

C# 4.0
UNLEASHED

800 East 96th Street, Indianapolis, Indiana 46240 USA

Bart De Smet

C# 4.0 Unleashed
Copyright © 2011 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval
system, or transmitted by any means, electronic, mechanical, photocopying, recording,
or otherwise, without written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained herein. Although every
precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions. Nor is any liability assumed for
damages resulting from the use of the information contained herein.

ISBN-13: 978-0-672-33079-7
ISBN-10: 0-672-33079-2

Library of Congress Cataloging-in-Publication Data

Smet, Bart de.
C# 4.0 unleashed / Bart de Smet.

p. cm.
Includes index.
ISBN 978-0-672-33079-7

1. C# (Computer program language) I. Title.
QA76.73.C154S63 2011
005.13’3—dc22

2010050192

Printed in the United States of America

First Printing: January 2011

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Pearson Education, Inc. cannot attest to the accu-
racy of this information. Use of a term in this book should not be regarded as affecting
the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possi-
ble, but no warranty or fitness is implied. The information provided is on an “as is”
basis. The author and the publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from the information
contained in this book.

Bulk Sales
Pearson offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales. For more information, please contact:

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
+1-317-581-3793
international@pearsontechgroup.com

Editor-in-Chief
Greg Wiegand

Executive Editor
Neil Rowe

Acquisitions Editor
Brook Farling

Development Editor
Mark Renfrow

Managing Editor
Sandra Schroeder

Senior Project Editor
Tonya Simpson

Copy Editor
Keith Cline

Indexer
Larry Sweazy

Proofreader
Chrissy White

Technical Editor
Doug Holland

Publishing
Coordinator
Cindy Teeters

Book Designer
Gary Adair

Compositor
Nonie Ratcliff

Contents at a Glance

Introduction . 1

Part I Introduction

1 Introducing the .NET Platform. 5

2 Introducing the C# Programming Language . 55

3 Getting Started with .NET Development Using C# . 99

Part II C#—The Language

4 Language Essentials . 171

5 Expressions and Operators . 247

6 A Primer on Types and Objects . 299

7 Simple Control Flow . 351

8 Basics of Exceptions and Resource Management . 409

9 Introducing Types . 463

10 Methods . 501

11 Fields, Properties, and Indexers . 545

12 Constructors and Finalizers . 579

13 Operator Overloading and Conversions. 603

14 Object-Oriented Programming. 643

15 Generic Types and Methods . 697

16 Collection Types . 753

17 Delegates . 777

18 Events . 833

19 Language Integrated Query Essentials . 901

20 Language Integrated Query Internals . 967

21 Reflection. 1047

22 Dynamic Programming. 1109

23 Exceptions. 1167

24 Namespaces . 1213

25 Assemblies and Application Domains . 1233

Part III Working with Base Class Libraries

26 Base Class Library Essentials . 1291

27 Diagnostics and Instrumentation. 1363

28 Working with I/O . 1391

29 Threading and Synchronization . 1431

30 Task Parallelism and Data Parallelism . 1501

Index. 1539

C# 4.0 Unleashediv

Table of Contents

Introduction 1

Who Should Read This Book? . 2
What You Need to Know Before You Read This Book . 2
How This Book Is Organized. 3

Part I Introduction

1 Introducing the .NET Platform 5

A Historical Perspective. 5
Win32 Programming in C . 6
Raising the Abstraction Level with MFC and C++ . 6
Component-Driven Development with COM . 7
Windows Development for the Masses in Visual Basic . 7
Reaching Out to the Web with Windows DNA . 8
Reaching Out to Java with J++. 8
Time for Lightning . 8

A 10,000-Feet View of the .NET Platform . 9
The .NET Platform . 9

The Common Language Infrastructure. 12
The Multilanguage Aspect of .NET . 14
Introducing .NET Assemblies. 15
The Common Type System Explained. 17

What’s Type Safety? . 17
Primitive Types . 19
Classes, Structures, and Enumerations. 19
Interfaces . 20
Delegates . 21
Members. 22
A Note on Generics . 23
The Role of the Common Language Specification . 23

Executing Managed Code . 24
The Assembly Manifest. 26
IL Code . 27
Metadata . 29
Mixing Languages . 30

Diving into the Common Language Runtime . 32
Bootstrapping the Runtime . 33
Assembly Loading . 35

C# 4.0 Unleashedvi

Application Domains . 37
JIT Compilation . 39
Native Image Generation . 42
Automatic Memory Management. 43
Exception Handling . 46
Code Access Security. 47
Interoperability Facilities . 49

The Base Class Library. 51
Summary . 54

2 Introducing the C# Programming Language 55

The Evolution of C# . 55
C# 1.0: Managed Code Development, Take One . 56
C# 2.0: Enriching the Core Language Features. 59
C# 3.0: Bridging the Gap Between Objects and Data . 64
C# 4.0: Reaching Out to Dynamic Languages . 76

A Sneak Peek at the Future. 89
Multiparadigm. 89
Language-Shaping Forces . 91
Compiler as a Service . 92
Taming the Concurrency Beast . 94

Summary . 97

3 Getting Started with .NET Development Using C# 99

Installing the .NET Framework . 99
The .NET Framework Version Landscape . 99
.NET Framework 4 . 103
Running the Installer . 106
What Got Installed? . 106

Your First Application: Take One . 109
Writing the Code. 110
Compiling It . 111
Running It. 112
Inspecting Our Assembly with .NET Reflector . 112

Visual Studio 2010. 116
Editions . 117
Expression . 119
Installing Visual Studio 2010 . 119
A Quick Tour Through Visual Studio 2010 . 120

Your First Application: Take Two . 124
New Project Dialog . 124
Solution Explorer. 126
Project Properties. 127

Contents vii

Code Editor . 128
Build Support. 130
Debugging Support . 136
Object Browser . 139
Code Insight . 139
Integrated Help . 144
Designers . 144
Server Explorer . 155
Database Mappers . 157
Unit Testing. 163
Team Development . 167

Summary . 169

Part II C#—The Language

4 Language Essentials 171

The Entry Point . 171
A Trivial Console Application . 171
Method Signatures . 172
Allowed Entry-Point Signatures . 173
Running the Sample. 175
Under the Hood . 176

Keywords . 177
Contextual Keywords . 178
Syntax Highlighting in Visual Studio . 179

A Primer on Types . 180
Code and Data . 180
Types, Objects, and Instances . 182
Variables . 183
Classes and Other Types . 184

Built-In Types . 185
Integral Types . 186
Floating-Point Types. 190
The Decimal Type. 194
The Boolean Type . 196
The String Type . 197
Object . 198
Dynamic Typing. 201
A Word on CLS Compliance . 202
A Matter of Style: Aliases or Not?. 208

Local Variables . 209
Declaration. 209
Scope. 210

C# 4.0 Unleashedviii

Assignment . 212
Constants. 213
Implicitly Typed Local Variable Declarations . 215

Intermezzo on Comments. 220
Single-Line Comments . 220
A Primer to Preprocessing Directives . 221
Delimited Comments . 223
Documentation Comments . 224

Arrays. 228
Internal Representation . 228
Single-Dimensional Arrays . 229
Array Initializers . 231
Jagged Arrays . 233
Multidimensional Arrays. 235

The Null Reference . 237
What’s Null Really? . 237
A Common Source of Bugs . 239

Nullable Value Types. 240
Internal Representation . 242
Use in C# . 242
A Type Background . 244

Summary . 246

5 Expressions and Operators 247

What Are Expressions? . 247
Arity of Operators . 248
Precedence and Associativity . 248
Evaluation of Subexpressions . 250

The Evaluation Stack. 251
Arithmetic Operators . 255

Integer Arithmetic . 255
Floating-Point Arithmetic. 255
Decimal Arithmetic. 258
Character Arithmetic. 259
Unary Plus and Minus . 260
Overflow Checking . 260
Arithmetic with Nullables . 265

String Concatenation . 266
Shift Operators. 270
Relational Operators . 271

Equality for Different Types. 272
Lifted Operators . 273

Contents ix

Logical Operators . 273
Integral Bitwise Logical Operators. 273
Use for Enumerations . 274
Boolean Logical Operators. 275
Nullable Boolean Logic . 277

Conditional Operators. 278
Under the Hood . 278

An Operator’s Result Type . 281
Associativity . 282

Null-Coalescing Operator. 282
Assignment . 285

Decaration Versus (Simple) Assignment . 285
Compound Assignment . 287
A Gentle Introduction to Definite Assignment. 290
Postfix and Prefix Increment and Decrement Operators 294

Summary . 297

6 A Primer on Types and Objects 299

Implicit Versus Explicit Conversions . 299
Cast Expressions . 300
The is Operator . 306
The as Operator . 311
Intermezzo: The Mythical Type Switch . 315

The typeof Operator: A Sneak Peek at Reflection . 317
Default Value Expression . 320
Creating Objects with the new Operator . 323

Behind the Scenes of Constructors. 325
Object Initializers . 328
Collection Initializers . 333

Member Access . 335
A First Look at Dynamic Typing . 337

Invocation Expressions. 339
Method Invocation . 339
Delegate Invocation . 341

Element Access . 347
Summary . 349

7 Simple Control Flow 351

What Are Statements, Anyway? . 351
Expression Statements . 353

Method Calls . 353
Assignments . 354
Pre- and Post-Increment/Decrement. 355

C# 4.0 Unleashedx

The Empty Statement. 355
Blocks. 356
Declarations . 357
Selection Statements . 358

The if Statement. 358
The switch Statement . 363

Iteration Statements. 376
The while Statement . 376
The do...while Statement . 380
The for Statement . 381
The foreach Statement . 384

A Peek at Iterators . 392
Loops in the Age of Concurrency . 400
The goto Statement . 402
The return Statement . 406
Summary . 408

8 Basics of Exceptions and Resource Management 409

Exception Handling . 409
Exceptions Are Objects . 411
Causes of Exceptions . 412
Throwing Exceptions. 423
Handling Exceptions . 423
The finally Clause. 432

Deterministic Resource Cleanup. 438
Garbage Collection in a Nutshell. 438
Object Disposal . 439
The using Statement . 441
Implementing IDisposable . 443
(In)appropriate Use of IDisposable . 446

Locking on Objects . 447
Under the Hood . 449
The lock Statement. 452
Intermezzo: Code Generation for Lock . 456
Be Careful with Locks. 458

Summary . 462

9 Introducing Types 463

Types Revisited . 463
Classes Versus Structs . 466

References Versus Values . 466
Heap Versus Stack . 470

Contents xi

Boxing . 478
The Dangers of Mutable Value Types. 483

Type Members . 486
Visibility . 486
Static Versus Instance . 490
Partial Types . 496

Summary . 499

10 Methods 501

Defining Methods . 501
Return Type. 502
Parameters . 504

Value Parameters . 505
Reference Parameters. 508
Output Parameters . 508
Parameter Arrays . 510
Optional and Named Parameters . 512

Overloading . 516
Defining Method Overloads . 517
Method Groups . 518
Overload Resolution. 519

Extension Methods . 522
Defining Extension Methods . 524
Overload Resolution. 526
Using Extension Methods . 527
How the Compiler Marks and Finds Extension Methods. 529

Partial Methods. 532
Extern Methods . 536
Refactoring. 537
Code Analysis . 543
Summary . 544

11 Fields, Properties, and Indexers 545

Fields . 545
Declaring Fields . 546
Accessing Fields . 546
Initializing Fields . 549
Read-Only Fields. 553
Constants. 555
Volatile Fields . 557

An Intermezzo About Enums. 558
Why Enums Matter. 558
Underlying Types . 559

C# 4.0 Unleashedxii

Assigning Values to Members. 559
The System.Enum Type . 561
Flags. 564
Revisiting the switch Statement . 568
Behind the Scenes. 568

Properties. 569
Declaring and Using Properties . 569
Auto-Implemented Properties . 572
How Properties Work. 573

Indexers. 574
Defining Indexers . 575
How Indexers Are Implemented . 577

Summary . 578

12 Constructors and Finalizers 579

Constructors. 579
Instance Constructors. 579

Static Constructors . 586
Destructors (Poorly Named Finalizers) . 589

Defining Finalizers in C# . 591
How Finalizers Are Run. 591
How Finalizers Are Implemented. 594
Disposal Before Collection: IDisposable . 595

Summary . 601

13 Operator Overloading and Conversions 603

Operators . 603
Defining Operators . 604
How Operators Are Found. 605
Nullability and Lifted Operators . 606
Which Operators Can Be Overloaded?. 609
Implementing Equality Operations . 615
How Operators Are Translated. 626

Conversions . 627
Built-In Conversions . 627
User-Defined Conversions . 631
Other Conversion Mechanisms . 638

Summary . 641

14 Object-Oriented Programming 643

The Cornerstones of Object Orientation . 643
A Historical Perspective. 643
Encapsulation . 647

Contents xiii

Inheritance. 648
Polymorphism . 654
Types in Pictures. 656

Inheritance for Classes . 657
Single Inheritance for Classes. 661
Multiple Inheritance for Interfaces. 663
Blocking Inheritance . 665
Hiding Base Class Members . 666

Protected Accessibility . 669
Polymorphism and Virtual Members. 670

Virtual Members. 671
Overriding Virtual Members . 673
Declaring Virtual Members . 675
Sealing and Hiding: Take Two . 676
How Virtual Dispatch Works. 678
How Base Calls Work. 682

Abstract Classes. 683
Interfaces . 686

Defining Interfaces . 686
Some Design Recommendations. 688
Implementing Interfaces . 690

Summary . 694

15 Generic Types and Methods 697

Life Without Generics . 697
A Real-World Example with Collections. 697
Performance Worries . 699

Getting Started with Generics . 699
Declaring Generic Types . 703
Using Generic Types . 708
Performance Intermezzo . 709
Operations on Type Parameters. 714

Default Values . 714
Getting the Type’s Reflection Info Object. 716

Generic Constraints . 716
Interface-Based Constraints . 717
Base Class Constraints . 723
Default Constructor Constraint . 724
Restriction to Value Types or Reference Types . 731

Generic Methods . 732
Co- and Contravariance. 740

Annoyances with Generic Types. 740
Broken Covariance for Array Types . 741

C# 4.0 Unleashedxiv

Safety Guarantees . 744
Generic Co- and Contravariance . 746
Under the Hood . 748
Where to Use . 750

Summary . 751

16 Collection Types 753

Nongeneric Collection Types . 753
ArrayList . 754
Hash Tables . 755
Queue. 758
Stack . 759
Summary . 761

Generic Collection Types . 762
List<T>. 762
SortedDictionary<TKey, TValue>

and SortedList<TKey, TValue> . 770
Queue<T> and Stack<T>. 774

Other Collection Types. 775
Summary . 775

17 Delegates 777

Functional Programming . 777
Historical Perspective . 778
Programming with Functions . 779

What Are Delegates? . 782
Delegate Types . 782
Delegate Instances . 787

Anonymous Function Expressions . 789
Closures: Captured Outer

Variables . 790
Lambda Expressions . 795
Expression Trees . 797

Invoking Delegates . 799
Putting It Together: An Extensible

Calculator . 803
Case Study: Delegates Used in LINQ

to Objects . 807
Asynchronous Invocation . 811
Combining Delegates . 824
Summary . 831

Contents xv

18 Events 833

The Two Sides of Delegates . 834
A Reactive Application . 835

Using Delegates . 836
Limitations on Plain Use of Delegates . 839
Using .NET Events . 840

How Events Work. 843
Raising Events, the Correct Way. 845
Add and Remove Accessors . 847
Detach Your Event Handlers. 852
Recommended Event Patterns . 861

EventHandler and EventArgs . 862
EventHandler<T>. 867
Designing Events for Use by Derived Classes . 869

Case Study: INotifyProperty Interfaces and
UI Programming . 871

Events in UI Frameworks . 876
Countdown, the GUI Way . 882
Modern Approaches to Reactive Programming . 888

Events Revisited . 890
Pull Versus Push . 894
Dictionary Suggest Revisited . 897

Summary . 900

19 Language Integrated Query Essentials 901

Life Without LINQ . 902
In-Memory Data. 902
Relational Databases. 903
XML. 907
The Birth of LINQ. 908

LINQ by Example . 909
In-Memory Data. 909
Relational Databases. 911
XML. 917

Query Expression Syntax . 920
Why Query Expressions?. 920
Getting Started. 922
Source Selection Using a from Clause . 923
Projection Using the Select Clause . 927
Filtering Using a where Clause . 933
Ordering Using the orderby Keyword. 935
Grouping Using the group by Clause . 942

C# 4.0 Unleashedxvi

Joining Using the join Clause . 949
Continuing a Query Expression Using

the into Clause . 955
Bindings with the let Clause. 961

Summary . 964

20 Language Integrated Query Internals 967

How LINQ to Objects Works . 967
IEnumerable<T> and IEnumerator<T> Recap . 968
LINQ to Objects Extension Methods . 970
Iterators . 974
Lazy Evaluation. 981
How Iterators Work. 984

Standard Query Operators. 990
Source Generators . 990
Restriction. 992
Projection. 997
Ordering. 1002
Grouping and Joining. 1003
Aggregation . 1008
Predicates . 1017
Set Theoretical and Sequencing

Operators. 1018
Sequence Persistence . 1020
Remote Versus Local with AsEnumerable . 1022

The Query Pattern . 1024
All About Methods . 1024
Overloading Query Expression Syntax . 1025

Parallel LINQ . 1027
The Cost of Optimization. 1028
AsParallel . 1028
How PLINQ Works . 1031
AsOrdered . 1032
Tweaking Parallel Querying Behavior. 1033
Parallel Enumeration with ForAll . 1034

Expression Trees . 1036
Query Expression Translation. 1036
Homoiconicity for Dummies. 1038
Expression Trees for Query

Expressions . 1041
IQueryable<T>. 1043

Summary . 1046

Contents xvii

21 Reflection 1047

Typing Revisited, Static and Otherwise . 1048
The Role of Metadata. 1048
The Multilanguage World . 1049
Taking Multilanguage to the Next Level . 1051
How Does All of This Relate to C# Programming? . 1052

Reflection. 1054
System.Type. 1054
A Primer on Application Extensibility. 1059
Reflection for Methods, Properties, Events,

and More. 1070
Custom Attributes . 1075

Lightweight Code Generation . 1082
Hello LCG . 1082
A Toy Compiler for Arithmetic Expressions . 1084

Expression Trees . 1091
Compiler-Generated Expression Trees . 1092
The Expression Tree API . 1093
Using the ExpressionTreeVisitor . 1105

Summary . 1107

22 Dynamic Programming 1109

The dynamic Keyword in C# 4.0 . 1109
The dynamic Type . 1111
Dynamic Typing Is Contagious. 1112
Deferred Overload Resolution . 1114
No System.Dynamic Type. 1117
When to Use dynamic: Case Study

with IronPython . 1119
DLR Internals. 1127

Dynamic Call Sites and Binders . 1128
Dynamic Dispatch . 1134
Custom Dynamic Objects with DynamicObject. 1140
A Primer to DynamicMetaObject . 1144
Dynamic Operations. 1147
Overall Architecture . 1148

Office and COM Interop . 1150
Essentials of COM Interop . 1152
Simplified COM Interop in .NET 4 . 1152
Case Study: COM Interop with Excel and Word . 1154

Summary . 1165

C# 4.0 Unleashedxviii

23 Exceptions 1167

Life Without Exceptions . 1167
Win32. 1168
COM . 1169
Lessons Learned. 1170

Introducing Exceptions. 1170
Exception Handling . 1172

try Statements . 1176
First-Chance Exceptions . 1178
Intermezzo on Historical Debugging

with IntelliTrace . 1183
When and What to Catch . 1184
Beyond Your Control . 1187

Throwing Exceptions. 1188
Defining Your Own Exception Types . 1190
(In)famous Exception Types. 1193

DivideByZeroException . 1193
OverflowException . 1194
NullReferenceException. 1194
IndexOutOfRangeException . 1195
InvalidCastException. 1195
ArrayTypeMismatchException . 1196
TypeInitializationException . 1196
ObjectDisposedException . 1198
OutOfMemoryException. 1200
StackOverflowException. 1202
ExecutionEngineException . 1205
ArgumentException . 1205
ArgumentNullException . 1206
ArgumentOutOfRangeException . 1207
InvalidOperationException . 1207
NotImplementedException . 1208
NotSupportedException . 1209
FormatException . 1210
AggregateException . 1211

Summary . 1212

24 Namespaces 1213

Organizing Types in Namespaces. 1213
Once Upon a Time . 1214
Assemblies and Namespaces. 1216

Contents xix

Declaring Namespaces . 1219
Naming Conventions . 1221
Visibility. 1221
Name Clashes Within Namespaces. 1222

Importing Namespaces . 1223
Name Clashes Due to Imports . 1225
Using Aliases . 1226
Extern Aliases . 1227
Extension Methods . 1230

Summary . 1232

25 Assemblies and Application Domains 1233

Assemblies . 1233
Modules and Assemblies. 1234
Types of Assemblies . 1236
Assembly Properties. 1237
Naming, Versioning, and Deployment. 1240
Strong Naming . 1244
The Global Assembly Cache. 1249
Referencing Assemblies . 1253
How Assemblies Get Loaded at Runtime . 1255
Native Image Generation (NGEN) . 1261
Visibility Aspects. 1265
Embedded Resources . 1268
Type Forwarding . 1270
Reflection Flashback . 1272

Application Domains. 1277
Creating Application Domains . 1278
Cross-Domain Communication . 1279
The Managed Add-In Framework . 1287

Summary . 1289

Part III Working with Base Class Libraries

26 Base Class Library Essentials 1291

The BCL: What, Where, and How? . 1293
What Is Covered?. 1293
Default Project References . 1293
Namespaces Versus Assemblies . 1294
The System and mscorlib Assemblies . 1296
System.Core’s Story of Red Bits and Green Bits . 1298

C# 4.0 Unleashedxx

The Holy System Root Namespace . 1301
Primitive Value Types . 1301
Working with Arrays. 1305
The Math Class. 1308
BigInteger: Beyond 32-bit and 64-bit Integers . 1310
Complex Numbers . 1312
Generating Random Numbers . 1314
Working with Date and Time . 1317
GUID Values . 1325
Nullability Revisited Briefly. 1327
The Uri Type. 1328
Interacting with the Environment . 1328
Leave the GC Alone (Most of the Time) . 1334
Native Interop with IntPtr. 1341
Lazy Initialization Using Lazy<T>. 1343
Tuple Types. 1344

Facilities to Work with Text . 1346
Formatting Text . 1346
Parsing Text to Objects. 1352
Regular Expressions . 1353
Commonly Used String Methods . 1356
The StringBuilder Class. 1359
Text Encoding . 1361

Summary . 1362

27 Diagnostics and Instrumentation 1363

Ensuring Code Quality . 1364
Code Analysis. 1364
Asserts and Contracts . 1366
Diagnostic Debugger Output. 1371
Controlling the Debugger. 1373
Logging Stack Traces. 1375
Measuring Performance Using StopWatch . 1376

Instrumentation . 1378
Using Event Logs . 1379
Monitoring with Performance Counters. 1382
Other Manageability Frameworks. 1385

Controlling Processes . 1386
Querying Process Information . 1386
Starting Processes . 1387

Summary . 1389

Contents xxi

28 Working with I/O 1391

Files and Directories . 1392
Listing Drives . 1392
Working with Directories . 1394
Working with Paths. 1397
The FileInfo Class . 1398

Monitoring File System Activity . 1400
Readers and Writers. 1401

The File Class. 1401
TextReader and TextWriter. 1406

Streams: The Bread and Butter of I/O . 1408
Memory Streams . 1409
Working with Files: Take Two. 1410
BinaryReader and BinaryWriter . 1411
Asynchronous Read and Write

Operations . 1413
Streams Are Everywhere . 1422

A Primer to (Named) Pipes . 1423
Memory-Mapped Files in a Nutshell. 1426
Overview of Other I/O Capabilities . 1429
Summary . 1430

29 Threading and Synchronization 1431

Using Threads . 1432
Explaining the Concept of Threads . 1432
The Managed Code Story . 1434
Where It All Starts: The Thread Class . 1436
More About a Thread’s Life Cycle . 1441
Managed Thread Characteristics . 1446
Dealing with Exceptions . 1451
Thread-Specific State. 1452
Essential Threading Debugging

Techniques . 1460
Thread Pools . 1463

.NET’s Thread Pool . 1464
Synchronization Primitives. 1471

Atomicity (or Lack Thereof) Illustrated . 1472
Monitors and the lock Keyword . 1474
Mutexes . 1477
Semaphores . 1480
More Advanced Locks . 1483
Signaling with Events . 1486

C# 4.0 Unleashedxxii

Interlocked Helpers . 1492
More Synchronization Mechanisms . 1494
BackgroundWorker . 1495

Summary . 1499

30 Task Parallelism and Data Parallelism 1501

Pros and Cons of Threads. 1502
Cutting Costs . 1502
An Ideal Number of Threads?. 1502

The Task Parallel Library . 1503
Architecture . 1503
Declarative Versus Imperative. 1504
What Are Tasks? . 1507

Task Parallelism . 1508
Creating and Starting Tasks. 1508
Retrieving a Task’s Result . 1511
Dealing with Errors . 1513
Continuations . 1518
Cancellation of Tasks . 1523
Parallel Invocation . 1525
Waiting for Multiple Tasks . 1525
How the Task Scheduler Works . 1527

Data Parallelism. 1529
Parallel For Loops . 1529
Parallel Foreach Loops . 1535

Summary . 1537

Index 1539

About the Author

Bart J.F. De Smet is a software development engineer on Microsoft’s Cloud
Programmability Team, an avid blogger, and a popular speaker at various international
conferences. In his current role, he’s actively involved in the design and implementation
of Reactive Extensions for .NET (Rx) and on an extended “LINQ to Anything” mission.
You can read about Bart’s technical adventures on his blog at http://blogs.bartdesmet.
net/bart.

His main interests include programming languages, virtual machines and runtimes, func-
tional programming, and all sorts of theoretical foundations. In his spare time, Bart likes
to hike in the wonderful nature around Seattle, read technical books, and catch up on his
game of snooker.

Before joining Microsoft in October 2007, Bart was active in the .NET community as a
Microsoft Most Valuable Professional (MVP) for C#, while completing his Bachelor of
Informatics, Master of Informatics, and Master of Computer Science Engineering studies
at Ghent University, Belgium.

http://blogs.bartdesmet.net/bart
http://blogs.bartdesmet.net/bart

Acknowledgments

Writing this book was a huge undertaking that would have been impossible without the
support of many people. I want to apologize upfront for forgetting any of you. (I’ll buy
you a Belgian beer if I did.)

First and foremost, I can’t thank my family enough for the support they’ve given me over
the years to pursue my dreams. I owe them complete gratitude for their support of my 6
years of university studies in Ghent and their tolerance of my regular absence to partici-
pate in the technical community. Moving halfway across the world to work at the
Microsoft headquarters has also been met with their understanding. Words seem insuffi-
cient to describe how incredibly lucky I am to have their ongoing support. Thanks once
more!

I wouldn’t have ended up in the world of computer science if not for some of my teach-
ers. For my first exposure to computers, I have to go back to 1993, checking sums during
math class at elementary school. Thanks to “Meester Wilfried” for his MS-DOS- and
GWBASIC-powered calculator that shaped my future. In high school, several people kept
me on this track as well. Math teachers Paul, Geert, and Ronny had to endure endless
conversations about programming languages. In a weird twist of history, I didn’t actually
study informatics in high school, but I nevertheless spent countless hours in the
computer rooms of my school. Without the support of Hans De Four, I wouldn’t be where
I am today. Sorry for all the network downtime caused by my continuous experiments
with ProfPass, domain controllers, and whatnot.

Looking back over the past 10 years, I’m eternally grateful to the people at the local
Microsoft subsidiary in Belgium (back then called Benelux) for adopting me into the early
.NET community and for giving me the chance to work on various projects. In particular,
I want to thank my first contact at Microsoft, Gunther Beersaerts, for all the advice he has
given me over the years. Gunther’s been a true source of inspiration, causing me to take
the speaker stand at various conferences. Your first presentation I ever attended (on
“Windows DNA”) is fondly remembered as a font of inspiration, an inspiration directly
related to my own “Speaker Idol” award at TechEd EMEA 2006.

During a number of summers in the early 2000s, many Microsoft Belgium people
provided a nice place for me to grow and learn while working on various exciting proj-
ects. Thanks to Chris Volckerick for taking me on board to build the (now defunct)
http://www.dotnet.be website, using what was called ASP+ back then. Later, Gerd De
Bruycker took me under his wing to develop the first MSDN home page for Microsoft
Belux. Your passion for the developer community has always stuck with me (not just that
wild community VIP party in Knokke).

A bigger project called SchoolServer was born in the summer of 2004. Christian Ramioul’s
faith in my technical skills needed to land this project was unbelievable. And getting to
know the IT professional audience that had to work with the solution wouldn’t have been

http://www.dotnet.be

possible without the wonderful collaboration I had with Ritchie Houtmeyers (remember
the countless hours spent in our server room office?) and Ricardo Noulez. Big thanks go
to Bart Vande Ghinste for giving me a crash course in COM+.

Over the years, I’ve had the honor to interact with a large number of community
members at various conferences. Listing all of them would be a Herculean task, so I won’t
even attempt to do so. I want to mention a few, though. First of all, thanks to the Belgian
developer evangelism team for their relentless support over the years. Gerd De Brucyker
and Tom Mertens, you’ve done a great job. Today’s community is in great hands with
Katrien De Graeve, Hans Verbeeck, and Arlindo Alves. Hans De Smaele, you continue to
be my ongoing source of debugging and bit-twiddling inspiration. Finally, and sadly
enough, this list wouldn’t be complete without taking a moment to remember the late
David Boschmans and Patrick Tisseghem, who passed away suddenly. We miss you guys!

My Redmond-based Microsoft Corporation career started in October 2007, thanks to Scott
Guthrie’s mail through my blog, asking me to interview with the company. Ultimately, I
ended up working on Windows Presentation Foundation’s AppModel team, where I felt
welcome from day one. In particular, I want to thank my first office mate, Chango
Valtchev, for the countless hours he spent bringing me up to speed in the codebase,
sharing tons of debugging insights, and sharing epic hikes. My first couple of managers,
Grzegorz Zygmunt and Adam Smith, have been great in helping me shape my early
career, while also accommodating my speaking engagements abroad.

As I began writing this book in 2009, many of my colleagues were put to the test. My
office mates Mike Cook and Eric Harding had to endure the most boring stories on
various language constructs, generated IL code, functional programming adventures, and
ways to (ab)use the C# programming language. Benjamin Westbrook, with whom I’ve
worked for several months, underwent a similar ordeal during lunchtimes. I have to
thank Ben for sharing the things he enjoys most when reading technical books; I hope
you find some of your stylistic ideas here and there throughout the book. Patrick
Finnigan deserves a special mention here, too. He’s a great colleague who has “had my
back” with regard to work our team has been doing. He has also provided invaluable tech-
nical and stylistic feedback about this book, making it better in the process. Thanks a lot!

Thanking all the other Windows Presentation Foundation colleagues I’ve worked with
and who gave me various technical insights would take up way too much space. Instead,
here’s a sampling of folks I’m very grateful to have worked with: Adam, Alik, Andre,
Dwayne, Joe, Eric, Matt, Saied, Zia. Thanks so much!

While on this writing adventure, I transitioned to the Cloud Programmability Team.
Thanks to Erik Meijer for taking me on board into the oasis he’s created for innovative
and creative ideas and for allowing me to work on one of my key passions: LINQ. My
colleagues Danny Van Velzen, Jeffrey Van Gogh, Mark Shields, and Wes Dyer have been
fantastic with bringing me up to speed. Endless technical discussions were a tremendous
source of inspiration that contributed directly to this book’s contents. This is also the
right spot to thank my professor Raymond Boute. It turns out Erik and I caught the
passion for functional programming from the same professor (although a few decades
apart).

Acknowledgments xxv

I can’t thank the Sams team enough, in particular Neil Rowe for his incredible patience
with me. Even though I always knew writing this book was going to be a huge task, lots
of unexpected twists made the schedule more challenging than anticipated. Combine this
with an ever-growing page count and changing table of contents, and I’m very grateful I
could write the book I think is right for a C# programmer audience, with virtually no
constraints. I also want to thank the technical team for leading the way through new
authoring and publication software and assisting with my numerous technical requests. A
special word of thanks goes to the technical reviewer, Doug Holland, and various other
team members who participated in various reviews. Writing a book is not only about
teaching your readers, it’s also a lot about learning things yourself (including some of the
English language, thanks Keith).

None of this book would exist if not for the wonderful C# language and its designers. I
want to thank Anders Hejlsberg and the entire language design team for giving us the
most popular .NET language out there. This big thank you also applies to the CLR team
for bringing a managed runtime to a wide variety of platforms. Internal resources, in
particular on our C# discussion list, have provided valuable insights.

Last but not least, I want to thank the waiters and waitresses in various downtown
Bellevue restaurants for tolerating my regular book-writing presence, as I hid behind a
laptop screen and asked for endless soda refills.

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an executive editor for Sams Publishing, I welcome your comments. You can email or
write me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We
do have a User Services group, however, where I will forward specific technical questions related to
the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and share
them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Neil Rowe
Executive Editor
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

This page intentionally left blank

Introduction

Does the world need yet another book about C#? Very rightfully, you might be asking
this question right now (and so did some of my colleagues when I first told them about
this book project). In short, what sets this book apart from many others is its in-depth
coverage of how things work. Personally, I’m a firm believer in education that stimulates
the student’s curiosity. That’s exactly one of the things this book aims to do.

The important thing is not to stop questioning. Curiosity has its own reason for existing. One

cannot help but be in awe when he contemplates the mysteries of eternity, of life, of the

marvelous structure of reality. It is enough if one tries merely to comprehend a little of this

mystery every day. Never lose a holy curiosity.

—Albert Einstein

Understanding how a language brings its features to life is always a good thing, which
will help you on many fronts. For one thing, coming up with a proper software design
requires a good insight into the “à la carte menu” of language features, so that you pick
the ones best suited for the job at hand and those that won’t leave you with a bitter after-
taste. Also solid knowledge about the language and its caveats is invaluable while debug-
ging your (or someone else’s) code. Occasional historical perspectives interwoven
throughout this book highlight why the language looks the way it does today.

A tremendous number of .NET libraries have been developed over the years, each address-
ing specific needs for particular applications. Doing justice to any of those by trying to
reduce their coverage to a few tens of pages seems overly optimistic. Moreover, different
developers have different needs: Maybe you’re in charge of user interface (UI) design or
web development, or maybe you specialize in service-oriented architectures or designing a
data-access layer. Each of those domains has specific concepts that deserve whole books
dedicated to them.

For all those reasons, this book shies away from even attempting such shallow and brief
coverage of the .NET Framework. Instead, this book focuses on the common ground
where all developers meet, the way they express their thoughts through programming
languages. In this book, you get essential insights into the foundations of the platform
and one of the most commonly used languages, C#. Armed with this knowledge, you
should be able to discover and understand many technologies that build on the platform.

As a concrete example, today’s libraries are built using object-oriented programming, so
the capabilities of this feature are fully explored. Similarly, recent application program-
ming interfaces (APIs), such as Language Integrated Query, have started to leverage the
expressiveness of programming constructs borrowed from the functional world, such as
lambda expressions, so we delve into how they work.

2 C# 4.0 Unleashed

Finally, at the intersection of different developer audiences, there are quite a few libraries
that no one can live without. Examples include primitive types, collections, parallel
programming capabilities, performing I/O operations, and so on. A discussion of those
libraries offers several benefits. Not only do you get a good idea about the essential toolset
the .NET Framework offers, you also learn about various language features that use them.
A good example is the discussion of generic types and Language Integrated Query
through the lens of collections.

I sincerely hope you enjoy reading this book as much as I enjoyed writing it. I’ve learned
a lot during the process, and I’m confident you will, too.

Homines dum docent discunt. (Latin phrase translated “Men learn while they teach.”)

—Seneca, Epistolae, VII, 7

Happy coding!
Bart J.F. De Smet
Bellevue, Washington

Who Should Read This Book?
This book is for anyone who wants to learn the C# programming language in depth,
understanding how language features truly work. While giving you those insights, you’ll
learn where and how to use the features to design various kinds of software. Essential
tools and techniques to carry out tasks such as debugging are covered too.

If you’ve already had prior exposure to C#—maybe a previous version of the language—
this book will help you grasp the new language features that have been added over the
years. If you’re new to the C# language and/or the .NET platform as a whole, this book
will guide you through the language in a step-by-step manner.

In summary, this book not only teaches the language’s capabilities, but it also looks behind
the scenes to build a solid foundation that will aid you in studying other parts of the .NET
platform. Because programming languages are at the heart of a developer’s expressiveness,
such a foundation is essential no matter what your day-to-day programming activities are.

What You Need to Know Before You Read This Book
No prior knowledge of the C# programming language is assumed, although it helps to
have a basic idea of typical language constructs. Any kind of modern programming back-
ground can help here. For example, readers with a background in C, C++, or Java will feel
at home with the C# syntax immediately. Those coming from C++ or Java will have no
issue appreciating the power of object-oriented programming. For Visual Basic developers,

Introduction 3

the different syntax might be a hurdle to overcome, but lots of concepts will sound
familiar.

Likely the most important thing to have is technical curiosity and the willingness to learn
and truly understand a (new) programming language and the platform on which it’s built.

How This Book Is Organized
Two writing principles have been taken as a guide in this book:

. Avoid backward references, causing mental jumps for the readers. In other words,
this book tells you the story of how various language features are built on top of
each other, starting from primitive constructs such as expressions and statements.
Sometimes making a little jump is unavoidable due to the historical evolution the
language has undergone. In such a case, I present you with the basics of the feature
in question and refer to a later chapter for in-depth coverage.

. Samples of technologies are interspersed with the coverage of language features that
underpin them. For example, a discussion of generics naturally leads to an overview
of various collection types in the .NET Framework. Similarly, a good explanation of
Language Integrated Query (LINQ) cannot take place without coverage of constructs
such as extension methods and lambda expressions.

From a 10,000-feet point of view, this book consists of three core pieces:

. The first four chapters introduce the .NET platform, the tooling ecosystem, and the
C# programming language. In this part, a good historical perspective is provided
that will help you understand why those technologies were created and how they
evolved.

. Chapters 5 through 25 cover the C# programming language itself, with immediate
application of language features where applicable. A further breakdown looks as
follows:

. We start by looking at basic constructs, such as expressions, operators, and
statements. These language elements should be familiar to anyone who’s been
programming before, allowing things such as arithmetic, control flow, and so
on. Finally, we introduce the notion of exception handling.

. Next, our attention is aimed at larger units of code. To set the scene, we start
by introducing the notion of types, and then cover members such as methods
and properties.

. This naturally leads to a discussion of object-oriented programming in Chapter
14, covering the notions of objects, classes, interfaces, virtual methods, and
so on.

C# 4.0 Unleashed4

. After explaining generic types and methods, we move on to orthogonal
language features, such as delegates, events, and Language Integrated Query
(introduced in C# 3.0). Constructs borrowed from functional programming are
covered here too.

. Next, we revise our notions of typing and introduce runtime services, such as
reflection, that allow a more dynamically typed code characteristic. This brings
us to an in-depth discussion of C# 4.0’s dynamic feature, including the
Dynamic Language Runtime infrastructure that underpins it.

. To put the icing on the cake, we take a closer look at the largest units of code
the programming language deals with: namespaces and assemblies. The latter
of the two touches quite a few runtime concepts, such as the global assembly
cache, native images, and application domains, all of which are explained here
too.

. Finally, the last chapters give an overview of the .NET Framework libraries about
which every good developer on the platform should know. Here we cover essential
types in the BCL, how to perform various kinds of I/O, diagnostic capabilities,
and the increasingly important domain of multithreaded and asynchronous
programming.

All in all, this book takes a language-centric approach to teaching how to program rich
and possibly complex applications on the .NET Framework. Activities such as API design,
coming up with proper application architectures, and even debugging issues with existing
code all benefit from a deep understanding of the language and runtime. That’s precisely
the sweet spot this book aims for.

CHAPTER 1

Introducing the .NET
Platform

IN THIS CHAPTER

. A Historical Perspective 5

. A 10,000-Feet View
of the .NET Platform 9

. The Common Language
Infrastructure 12

. The Multilanguage Aspect
of .NET 14

. Introducing .NET
Assemblies 15

. The Common Type System
Explained 17

. Executing Managed Code 24

. Diving into the Common
Language Runtime 32

. The Base Class Library 51

The computer programming landscape is changing
constantly to accommodate the needs of end users and to
bridge the gap between modern powerful hardware and
meaningful software applications. It’s a great time for us
developers to live, or should I say, us geeks. Personally, I
remember writing my first programs in BASIC, trying to
impress my teachers with computer solutions to mathemat-
ical problems. Today, I’m as excited about computer
programming as I was back then: Every few years, paradigm
shifts occur, old technologies vanish, and new ones are
introduced. At the time of this writing, it’s common to
design distributed software with pieces of code running
here and there, on various kinds of devices and in the
cloud, inside the browser and outside, talking to databases
and web services, and so on.

For developers to be successful in the jungle of software
engineering today, we need solid tools and basic building
blocks we can leverage to build up the solutions our
customers dream of. The .NET platform is such an environ-
ment adapted to the needs of the modern software devel-
oper. In this chapter, we explore the .NET platform in all its
breadth, covering its execution environment, the support
for various programming languages, the libraries it comes
with, and the tooling support available to develop on it. In
addition, we talk about the role of C# in this picture.

A Historical Perspective
It’s a general truth that you will have a better understand-
ing of today’s affairs when you appreciate the past. Total
overhauls of software platforms or revolutions in the way

6 CHAPTER 1 Introducing the .NET Platform

we think about programming do not occur that often, but when they happen, the lessons
learned from the past play a central role in the design of the future. The .NET platform is
no exception to this rule.

Let me raise a question to start the discussion. Why is it that the the Windows boot screen
has shown the year 1985 in the copyright caption for a long time? The answer is shock-
ingly simple: because the core application programming interfaces (APIs) of the operating
system go all the way back to that time, a quarter of a century ago. Obviously, ever since
then that API has grown to adapt to the current state of affairs with respect to hardware
and the way we write software. Backward compatibility is a great thing to ensure our
applications keep working without major rewrites every time the underlying platform
changes. In today’s world of connected systems, that’s even more true: Interoperable
protocols are used to ensure things keep working the way they originally did.

Win32 Programming in C

Talking about the Windows API, what did it mean for a developer to target the platform?
At that time, the use of C was the most obvious choice with which to write software, so
the API was designed to align with that programming model. The result was a flat API
with tons of functions spread across multiple header files, back then a well-accepted
means to tame complexity. But as the API grew with the introduction of new versions of
the operating system, it soon became clear that better techniques were required to keep
the complexity under control.

Not only that, the use of C as the programming language of choice caused grief for many
developers writing applications on top of the platform. Although C is a great language to
do low-level systems programming, it lacks higher-level constructs to organize programs,
and the need to deal with machine-level details such as memory management places a
big burden on the developer.

Raising the Abstraction Level with MFC and C++

One significant evolution that made developers’ lives easier was to raise the abstraction
level by embracing the object-oriented (OO) programming techniques from the world of
C++. The use of classes to group and expose platform functionality offers a more struc-
tured approach, making concrete development tasks easier. For example, using Microsoft
Foundation Classes (MFCs), one can be more productive in building graphical user inter-
face (GUI) applications because needless Win32 details such as message pumping and
window subclassing can be hidden from the developer.

On the flip side, MFC isn’t the solution to all problems because it doesn’t abstract over all
areas of Windows functionality. For instance, although MFC is well suited to do GUI
programming with all the bells and whistles like network communication and multi-
threading, it’s not a good choice to create Windows services. And although C++ is a vast
improvement over C thanks to object-oriented programming and templates, it still doesn’t
free the developer from difficult problems such as manual memory management.

7A Historical Perspective

Component-Driven Development with COM

Because larger applications were written on the Windows platform, it became apparent
that a more structured approach to building software was required. This evolution origi-
nated from the world of Office, where users wanted to embed content from different Office
files in other containers (for example, to display an Excel chart in a Word document). The
technology that enabled this was called Object Linking and Embedding (OLE). No longer
could applications be written as silos; different parts had to start working together.

In essence, one can think about software as a Lego kit: Given a number of building blocks,
it should be easy to compose bigger constructs using the individual blocks. Such blocks
were called components, and the Component Object Model (COM) was born. Given this
infrastructure, developers can define interfaces between different pieces of functionality so
that components can be built and maintained independently, potentially in different
languages. By doing so, islands of code become reusable in many contexts. To make devel-
opment for COM easier for C++ developers, the Active Template Library was built.

COM wasn’t the silver bullet to all problems, though. Its very powerful nature can be
perceived as scary to many developers, and although COM solved lots of problems, new
concerns were born. For instance, the reference counting memory management approach
can cause different sorts of debugging headaches, and the deployment of COM-based
applications is difficult because of component registrations and versioning issues, often
referred to as the dynamic-link library (DLL) hell.

This said, COM was, and still is, a success story upon which very complex software has
been built, also opening up for distributed computing using Distributed COM (DCOM)
and enterprise-level services such as reliable messaging, transaction management, declara-
tive security, and object pooling with COM+.

Windows Development for the Masses in Visual Basic

Another significant shift came with the introduction of Visual Basic, bringing the popular-
ity of the BASIC language to the Windows platform. Besides being an easy (and, for lots of
developers, familiar) programming language, Visual Basic offered rich tooling support to
allow for Rapid Application Development (RAD) where design of interactive user interfaces
becomes very easy.

The combination of an integrated development environment (IDE) with simple and
approachable abstractions over the underlying Win32 platform, easy data access mecha-
nisms, lots of handy built-in functions, and the capability to develop reusable controls
and COM components made Visual Basic a big success. Nevertheless, the heavy simplifi-
cation of the view on the underlying platform made certain concepts, such as multi-
threading, unavailable to the masses. On the language level, Visual Basic got stuck in
between its ancestors’ procedural nature and the modern approach of object-oriented
programming. Visual Basic remains a very popular language and has undergone many
transformations since its early days, having grown out to a full-fledged OO language on
the .NET Framework.

8 CHAPTER 1 Introducing the .NET Platform

Reaching Out to the Web with Windows DNA

In the late 1990s, standalone personal computing on Windows and enterprise-scale distrib-
uted applications got a new big brother called the Internet. Obviously, the need to target
the new application models that came with it became a gigantic requirement for develop-
ment platforms to be successful. One early attempt to turn Windows developers into web
developers was the so-called Windows Distributed interNet Applications Architecture
(DNA), which tried to push the use of COM for the creation of web applications.

Unfortunately, the Web had many loosely related technologies that needed to be mingled
together somehow: (D)HTML, JScript, VBScript, and Active Service Pages (ASP) jump to
mind. Tools such as Visual InterDev were created to aid in the creation of web applica-
tions, but soon it became apparent that the COM-style approach didn’t scale very well for
various reasons.

Reaching Out to Java with J++

Around the same time, Sun Microsystems created Java. There are two aspects to the tech-
nology. From the language point of view, Java was designed to be a modern object-
oriented language that did away with the complexities of C++ around memory
management and bug-prone features like multiple inheritance, unhygienic macros, and so
on. The other interpretation, Java as a platform, brought a runtime with a rich library to
write enterprise applications that run on various platforms and target various application
models both for the client and the Web.

A major downside to the Java strategy at the time was its tight coupling to a single
language, making it hard to interoperate with existing code or to reuse existing program-
ming skills in different languages while still targeting the same underlying runtime and
libraries. So to make Java- programming available on the Windows platform, a product
called Visual J++ was created together with a Java Virtual Machine (JVM) implementation,
a port of the libraries and bridges to the world of Windows in the form of the Windows
Foundation Classes (WFC).

Time for Lightning

So we’ve arrived in the late ’90s with a bunch of languages (C, C++, Visual Basic, J++, script-
ing, and so on) and technologies (Win32, ATL, MFC, COM+, and so forth) that do not line
up nicely for various reasons: mismatches in the type systems, incompatible interfaces
requiring lots of plumbing, lack of end-to-end tooling support, and more. This, combined
with the emergence of new application models such as web services, cried out for a funda-
mentally new platform to support the needs of modern application development.

Recognizing this problem, two camps formed within Microsoft. One camp believed in
pushing COM forward to what could have become COM++, eliminating the known limita-
tions of the platform and adding support for better web development, including web
services. Another camp had the opinion that it would be better to start with a blank page,
building a new runtime infrastructure from the ground up while providing interoperabil-
ity capabilities to existing code like Win32 platform code and COM components.

9A 10,000-Feet View of the .NET Platform

.Net Framework

…

S
m

art D
evice

A
pplications

W
eb

S
ervices

W
indow

s
A

pplications

W
eb

A
pplications

C# F# Python

VB C++ Ruby

…

Tooling Support

Visual Studio
Team System

.Net Libraries Win32 Interop COM Interop

FIGURE 1.1 The .NET platform.

And the rest is, as they say, history: The latter camp won, and the project code-named
Lightning was started. We’re now about 10 years later and shipping the fourth major
release of the .NET platform, which we take a closer look at now.

A 10,000-Feet View of the .NET Platform
The .NET platform is Microsoft’s development platform for Windows and the cloud. This
includes support for desktop applications, smart device applications, server and database
applications, web applications and services, and cloud applications deployed to Windows
Azure. In addition, the technology is available in more exotic corners of computer science,
ranging from operating system implementation (for example, Microsoft Research’s
Singularity research operating system) to gaming with the XNA framework and Microsoft
Robotics Studio for robotics. Figure 1.1 gives an overview of the .NET platform from a
10,000-feet view.

The .NET Platform

Before we dive into a more detailed structure of the platform and the surrounding ecosys-
tem, let’s point out the key features and advantages of the .NET platform as a whole:

. Object-oriented programming: Recognized to be the current paradigm of choice
to master complexity, the platform was built around the concepts of object-oriented

10 CHAPTER 1 Introducing the .NET Platform

programming (OO). The core of languages like C# are based on the OO principles,
and the OO paradigm is used as the glue that makes language interoperability
possible.

. Support for multiple languages: Although COM supported multiple languages
(most notably C++ and Visual Basic) in order to talk together, its cross-language
capabilities were limited to implementing interfaces. In .NET, true interoperability
between languages becomes possible with capabilities such as cross-language inheri-
tance. Together with a unified type system, this makes integration between code
written in different languages totally seamless. This also accommodates other
programming language paradigms, ranging from a functional programming style (as
seen in F#, but nowadays in certain C# and Visual Basic language features too) to
dynamic languages (such as Ruby and Python).

. Easy component-based development: The art of creating components containing
libraries and sharable pieces of application functionality is much simpler in .NET
than it was before. No COM interfaces like IUnknown need to be implemented, and
no registration is required. The unit of code sharing in .NET is based on the concept
of an assembly, which carries version info and all the metadata required to use it.
This eliminates the need to have separate header files and such.

. Simplified application deployment: In contrast to COM-based components, no
registration is required to deploy assemblies; just “xcopy deployment” suffices. In
addition to this, the DLL hell has been eliminated by supporting multiple versions
of the same component to exist side by side. The .NET Framework itself is a good
example of this capability, because it’s possible to have multiple versions of the
framework installed next to one another on the same machine.

. Rich base class library support: The .NET Framework comes with a rich set of
class libraries that provide basic building blocks to build rich applications, all of
which are provided in a consistent manner and designed based on OO principles.
Examples of such libraries include collections, text manipulation, database access,
file system manipulation, networking, XML support, rich service-oriented communi-
cation stacks, windowing systems, and so on.

. Various application types: Thanks to the rich base class library (BCL), it becomes
incredibly easy to write all sorts of applications based on the same framework foun-
dation. Support is provided for Windows desktop GUI applications (Windows Forms
and Windows Presentation Foundation [WPF]), web applications (ASP.NET), web
services (Windows Communication Foundation [WCF]), smart device applications
(Compact Framework), browser and Windows Phone 7 applications (Silverlight),
cloud applications for Windows Azure, and more.

. Unified runtime infrastructure: At the core of the .NET Framework sits the
Common Language Runtime (CLR), which provides unified runtime infrastructure in
the form of an intermediate language (IL) shared by all languages that run on the

11A 10,000-Feet View of the .NET Platform

platform, Just-in-Time (JIT) compilation of such IL code to native code for the
machine on which it’s running, automatic memory management through a garbage
collector (GC), assembly loading services, debugging services, threading, and so on.

. Interoperability with existing code: Although the .NET platform is meant to be a
solid replacement for older technologies, it’s quintessential to have good support to
reuse existing software components that were written in older technologies like
COM and to provide access to native operating system Win32 API functions through
a mechanism called P/Invoke.

. Exception handling: Error handling in the .NET Framework is provided through a
mechanism known as exception handling. This eliminates many of the worries asso-
ciated with manual error checking as done in Win32 programming and COM-based
APIs with so-called HRESULTs.

. Improved security model: With the advent of the Web, deployment of code
becomes a severe security risk. To mitigate this, the .NET runtime has a built-in secu-
rity mechanism called Code Access Security (CAS) that sandboxes code based on the
code’s origin, publisher evidence, and configurable policies. This security model is
orthogonal to the security mechanisms provided by the operating system, such as
access control lists (ACLs) and Windows security tokens.

. Web services capabilities: Right from the start of the .NET Framework, the plat-
form has had support for web services as a modern way of performing cross-platform
remote procedure calls based on Simple Object Access Protocol (SOAP) and
Extensible Markup Language (XML) standards. All this is provided using program-
ming paradigms that feel natural in the world of .NET, so developers do not require
a fundamentally different mindset to deal with web services. Over the years, the web
services support on the .NET Framework has grown significantly with support for the
WS-* set of web services standards.

. Professional tooling support: Visual Studio 2010 is the latest version of the
toolset that accompanies the .NET Framework to provide professional support for
the development of various types of applications with rich designer support, unit
testing frameworks, a project and build system (MSBuild), and, thanks to the unified
runtime infrastructure, rich debugging support can be provided for the cross-language
platform of .NET. The higher-end editions of Visual Studio, Premium and Ultimate,
are aimed at team development in conjunction with a server product called Team
Foundation Server (TFS) used for work-item tracking, source-control, project-reporting,
and document-sharing capabilities. Starting with the 2010 release, you can also
install TFS on client operating systems, which allows individual professional
developers to benefit from things such as source control.

12 CHAPTER 1 Introducing the .NET Platform

Let’s take a closer look at the essential concepts and features of the .NET platform right now.

READING TIP

Don’t worry if you don’t grasp all the concepts during a first read; that’s what the rest
of the book is for. But I do recommend that you not skip the remainder of this chapter
because it provides an end-to-end overview of the .NET philosophy and the platform
you’ll live and breathe after completing this book (if you don’t already). It’s essential for
all self-respecting .NET developers to have a solid understanding of the platform they’re
partying on.

Although things might be a bit overwhelming at first, I guarantee that all the concepts
will become natural by the time you finish this book. Revisit this chapter after you’ve
reached the back cover to assess this claim.

The Common Language Infrastructure
The Common Language Infrastructure (CLI) is an ECMA standard (specification 335) that
specifies the runtime infrastructure required to execute so-called managed code, to allow
different libraries and languages to work together seamlessly. At the time the .NET project
was started at Microsoft in the late ’90s, it was clear that the key to success in the space
cross-language interoperability was to involve language groups both inside the company
and outside (like Fujitsu to provide a COBOL implementation on the platform) to ensure
the robustness of the design. As part of that initiative, Microsoft formed a team with
Hewlett-Packard and Intel to work on standardizing the CLI, which took place in 2001.

One implementation of the CLI is the Common Language Runtime provided by Microsoft
itself, though other implementations exist, such as Mono and DotGNU Portable.NET.
Another reference implementation is provided by Microsoft, called the Shared Source CLI
(SSCLI), also known as Rotor, which runs on platforms like FreeBSD. This means code
written to target the .NET platform not only allows cross-language interoperability but
also enables you to run code on various platforms. More recently, the Moonlight project,
headed by Mono, has enabled Silverlight applications to run on UNIX-based platforms.

So what does the CLI embody? Figure 1.2 outlines the relationship between the three
core elements.

Starting on the outside, the CLI defines the Virtual Execution System (VES), an execution
engine or virtual machine (VM) that knows how to execute code as defined by the stan-
dard. The format of the code is called Common Intermediate Language (CIL), and meta-
data is used to describe information about the code. In addition, the CLI outlines the file
format of assemblies to ensure cross-platform compatibility.

13The Common Language Infrastructure

CLI

Virtual Execution System (VES)
Executable Code Format (CIL) and Metadata

File Format

CLS

Subset of CTS Types to Ensure Cross-
language Compatibility

CTS

Types Available to CLI-Compliant Languages

FIGURE 1.2 The Common Language Infrastructure.

Next is the Common Type System (CTS). This is one of the key parts to ensure cross-
language interoperability because it unifies the representation and behavior of data types
shared by those languages. For example, in the pre-.NET era, it was a common problem to
match up similar types between technologies, a typical example being string types: A
char* in C is different from a BSTR in COM. In today’s world, a string used in C# is no
different from one used in Visual Basic .NET or any other .NET language in use. To achieve
this goal, the CTS defines how valid types can be created: For example, multiple inheri-
tance is not allowed by the CLI’s type system, and in the end every type must derive from
the mother of all types: System.Object.

Finally, we arrive at the Common Language Specification (CLS). The CLS is a set of rules
on which all .NET languages should be based to make sure no types are exposed that some
languages cannot deal with. If all rules pass, a type can be marked as CLS-compliant,
which means all .NET languages will be able to interact with it. A concrete example of a
CLS rule is that a type should never have two public members that only differ in casing
(for example, Bar and bar) because some languages, like Visual Basic, are non-case-
sensitive and therefore are unable to resolve such a member name unambiguously.

14 CHAPTER 1 Introducing the .NET Platform

CTS

V
B

CLS

C++C#

FIGURE 1.3 Relationships between the CTS, the CLS, and .NET languages.

The relationship between the CTS, the CLS, and a few .NET languages is shown in
Figure 1.3. From this figure, you can see that .NET languages provide a superset to the CLS
(for example, in C# one can create a class with members that are different only by casing,
which is not CLS-compliant) but that the superset is not necessarily the same for all
languages. Also, some languages offer capabilities that fall outside the CTS; for example,
C++ supports multiple inheritance, but such code cannot be executed on a CLI-compliant
runtime (but it can use native code, which is outside the control of the execution engine).

The Base Class Library (BCL) provided by the .NET Framework is written such that CLS
compliance is ensured, meaning all the rich functionality defined in it is readily available
to all .NET languages.

The Multilanguage Aspect of .NET
As mentioned before, the .NET platform is a multilanguage platform, meaning different
programming languages can be used to build .NET applications and class libraries. Right
from the introduction of the .NET Framework, both Microsoft and external vendors
offered a rich set of languages compatible with the runtime, its type system, and the CLS.
At the time of this writing, more than 50 languages (according to Wikipedia) have been
implemented on top of the runtime.

15Introducing .NET Assemblies

The core languages provided by Microsoft as part of the .NET Framework 4.0 software
development kit (SDK) and the Visual Studio 2010 language family are as follows:

. Visual Basic .NET: A language immediately familiar to people who’ve written
(classic) Visual Basic applications before, but now targeting the .NET Framework
with full-fledged OO support.

. C#: The language developed in parallel with the creation of the .NET runtime and
first release of the BCLs, obviously based on the OO paradigm and with a very prac-
tical nature.

. C++/CLI: Formerly known as the Managed Extensions for C++, allows C++ code to
be executed on top of the .NET runtime, providing a great tool to deal with interop-
erability problems.

. F#: The latest addition to the core .NET language family is aimed at scientific and
financial computing and combines functional programming with the richness of
class libraries and OO.

Outside Microsoft, several languages have been ported to run on the .NET Framework.
Examples include COBOL, Smalltalk, Delphi, APL, Pascal, and much more.

The programming language landscape is always in flux, and having a unified runtime
infrastructure provides a great way to accommodate the needs of those different languages
while being able to reuse libraries across languages and provide tooling support. All of this
enables developers with different language preferences to work together and to choose the
right tools for the job. For example, whereas C# is a great general-purpose programming
language to create business applications, it’s more attractive to use F# when developing
scientific libraries.

Although the runtime is largely inspired by the fundamental principles that drive OO
programming and static typing, other paradigms have been successfully enabled on top of
the platform. Recently we’ve seen a resurgence of dynamic languages thanks to projects
such as Ruby on Rails. A few years ago, the need to provide a common infrastructure for
those dynamic languages became apparent, and work started to implement the dynamic
language runtime as an extension on top of the CLR. This work is now available in the
.NET Framework 4.0, where dynamic languages become primary citizens on the platform,
making the cross-language vision true across statically and dynamically typed languages.
Together with the development of the DLR, several dynamic languages have been imple-
mented to run on top of it; examples include IronRuby and IronPython.

Introducing .NET Assemblies
To execute code on the CLR, it needs to be translated into a format the runtime under-
stands, which is common to all higher-level .NET languages. This format is known as
Common Intermediate Language (CIL), mostly abbreviated IL. Code executing on the CLR
is known as managed code, in contrast to native code that executes directly on the
machine’s processor without additional runtime infrastructure. In addition to the IL

16 CHAPTER 1 Introducing the .NET Platform

instructions that catalyze the runtime to execute an application, the CLR needs metadata,
which describes the structure and organization of types. The use of metadata also elimi-
nates the need to have header files and helps various tools inspect types. Good examples
of such use of metadata include Red Gate’s .NET Reflector and the Visual Studio environ-
ment to provide services such as IntelliSense.

Besides their role as runtime institutes, assemblies also form the basic units of deployment
on the .NET platform. Because of their self-describing nature provided through the use of
metadata, assemblies can stand by themselves without requiring complicated registrations
carried out by installers: Simple file copy suffices. In addition, the built-in versioning
support makes it possible to have multiple versions of the same assembly on the same
machine, thus reducing deployment worries even more.

NOTE

Assemblies do not necessary imply single files. The .NET Framework also has the
notion of multifile assemblies, which are composed of individual modules. In other
words, the lowest unit of deployment granularity is not an assembly but a module. The
advantage of this model is the reduction of deployment cost in case common user
scenarios require only parts of assemblies to be present. On the flip side, modules
cannot be created using Visual Studio tools and require direct use of the command-
line compilers.

Static languages like Visual Basic and C# are compiled into assemblies, which are contain-
ers for IL and metadata. Strictly speaking, code can also be compiled into modules to allow
linking of many such modules at a later stage; we ignore this detail for now. Assemblies
are typically stored in files with the extension .dll or .exe but can be stored in other places,
too, such as databases. Although assemblies use the same extensions as native executables
or DLLs, this is where the similarity ends. The execution of assemblies immediately trig-
gers CLR to provide the necessary runtime services for the application to run, which are
fundamentally different from the means to run native code or COM servers.

Dynamic languages behave a little differently because it’s atypical for these types of
languages to get compiled as a separate step in the development process. Instead, script
files are fed into the runtime directly without prior compilation into separate assembly
files. To facilitate multiple dynamic languages on the runtime, a common format is
required to represent such code and translate it into CIL instructions during the execution
of the program. This is achieved by having multiple language-specific binders that know
how to translate script code to expression trees. Finally, those expression trees are taken in
by the DLR to turn them into CIL instructions so that the CLR can take over from that
point. Runtime-generated IL code is sometimes referred to as dynamic assemblies, too.

Figure 1.4 outlines the relationship between various languages, their compilation support,
and the underlying runtime. In reality, the picture is a bit more complicated because static
languages like C# can also target the DLR to bridge with dynamic languages. We elaborate
on that quite extensively when covering dynamic programming support in C# in Chapter
22, “Dynamic Programming.”

17The Common Type System Explained

C# Code VB Code Ruby Script Python Script

Common Language Runtime

Assemblies Expression Trees

Dynamic Language Runtime

C# Compiler VB Compiler Ruby Binder Python Binder

IL Code + Metadata

FIGURE 1.4 From code to instructions.

The Common Type System Explained
Types are the way of life in the world of the CLR. They define the way libraries and
programs are organized and how interactions between components can be realized.
Assemblies are containers for such types.

Let’s explore the merits of types in some more detail and look at the various kinds of types
supported by the runtime. Don’t worry about the C# syntax for now; we cover that exten-
sively as we move along.

What’s Type Safety?

To enforce code to deal with types in a correct manner, the CLR guarantees type safety.
This ensures objects can only be accessed in a manner that’s consistent with the object’s
type contract. Types consist of two things: the data that’s contained by objects of the type
(for example, a customer’s name and credit balance) and the operations you can perform
on that data (for example, DiscountPrice on a Product).

To illustrate type-unsafe operations, assume you were able to treat an object of type
Customer as if it were of type Product. Then, what would it mean to perform an operation
DiscountPrice to the customer object? Maybe you’d be changing the customer’s credit
balance. This is clearly an unsafe thing to do. Similarly, arbitrary memory access is an

18 CHAPTER 1 Introducing the .NET Platform

TABLE 1.1 CLS-Compliant Primitive Types

Type C# VB C++/CLI F#

System.Byte byte Byte unsigned char byte

System.Int16 short Short short int16

System.Int32 int Integer int/long int/int32

System.Int64 long Long __int64 int64

System.Single float Single Float single/float32

System.Double double Double Double double/float

System.Boolean bool Boolean Bool bool

System.Char char Char wchar_t char

unsafe thing because you might end up in the middle of some type without knowing the
type of the data that resides there.

Unmanaged languages like C and C++ allow this kind of thing to happen, which opens
the door to hard debugging problems and security vulnerabilities. At best, the process
crashes when invalid operations are carried out (for example, because of an attempt to
overwrite protected memory), but chances are good that type-unsafe operations go unno-
ticed for a while, making it very hard to trace the source of the problem when damage has
occurred already.

To eliminate this class of errors, the CLR enforces type safety. This is done by various
means, including code verification during JIT compilation and monitoring of the use of
types to make sure no operations incompatible with an object’s runtime type are made.
Our example vulnerability where an object of type Customer was “casted” to type
Product would result in a runtime exception, preventing the invalid operation from
happening at all.

A FEW WORDS ON TYPE SAFETY VERSUS STATIC AND DYNAMIC LANGUAGES

Do not confuse type safety with statically typed programming languages (like C#, for
the most part, and F#). Although dynamic languages (like Ruby and Python) do not
require users to specify types when dynamically typed code is written, objects still have
a well-defined type when the code is run. This is enough for the runtime, in this case
the DLR in concert with the CLR, to detect violations against type safety.

What distinguishes statically typed languages from their dynamically typed counterparts
is their potential to catch a good amount of violations early, at compile time, by enforc-
ing various rules. Code that can statically be proven to be type safe is called verifiably
type-safe code. The .NET Framework comes with a tool called PEVerify to determine
whether code is verifiably type safe.

19The Common Type System Explained

TABLE 1.1 CLS-Compliant Primitive Types

Type C# VB C++/CLI F#

System.Decimal decimal Decimal Decimal decimal

System.String string String String^ string

Primitive Types

User-defined types typically contain data, and all pieces of such data should have a type
by itself. Those types could be user-defined again but, obviously, at some point predefined
types need to be used. One of the CTS’s roles is to provide a number of such primitive
data types. Various languages on top of the .NET Framework have different “friendly
names” defined for those data types, but in the end they are all represented using their
underlying type, which is defined in the mscorlib.dll assembly that’s part of the BCL. The
fact that the same built-in types are used by various languages is one of the cornerstones
that allows true cross-language integration.

Table 1.1 shows primitive types that CLS-compliant languages are supposed to support.
The corresponding keywords in various languages are shown, too. In addition to those
types, various other non-CLS primitive types exist, such as unsigned variants for the
numeric data types.

Classes, Structures, and Enumerations

Because the CLI is inspired by the principles of OO programming, it shouldn’t surprise
you that classes are one kind of type the CLI supports. In essence, a class is a container for
data and operations that can be performed on that data. By keeping the data representa-
tion of a class private, one reaches the virtue of encapsulation, where implementation
details can change as long as the public contract stays the same.

Also in true OO style, the CLI supports the creation of class hierarchies, where one type
derives from another. For example, an Apple type could derive from a Fruit base class. The
details of this will be explained extensively when we cover OO programming with C#.

Classes are formally known as reference types because they live on the heap and are used
through references. An example of a built-in reference type is the String type. However,
lightweight types that are stack allocated can come in handy at times, so the CLI also
supports the notion of value types. Examples of value types include the numeric data
types (like Int32 and Double), the DateTime type, and so on. In the world of C#, value
types are declared as structs:

static class Calculator

{

public static int Add(int a, int b)

{

return a + b;

Continued

20 CHAPTER 1 Introducing the .NET Platform

}

}

struct Point

{

private readonly int _x;

private readonly int _y;

private readonly int _z;

public Point(int x, int y, int z)

{

_x = x; _y = y; _z = z;

}

public int X { get { return _x; } }

public int Y { get { return _y; } }

public int Z { get { return _z; } }

}

Enumerations are a special kind of value type used to represent a limited set of possible
values (for example, colors). This is quite different from named constant numeric values in
that enumerations enforce strong typing. Although Color.Red might have the same numeric
representation as Weekday.Monday, one cannot assign a Color value to a Weekday variable:

enum Color

{

Red,

Green,

Blue

}

Interfaces

Interfaces provide the capability to define contracts that can be implemented by classes or
structures. This way, the contract and the implementation of specific functionality can be
decoupled from one another. For example, given the following interfaces, one can define
what it means to enumerate over “something,” whether that is a collection type or data
received from a network socket:

interface IEnumerable

{

IEnumerator GetEnumerator();

}

interface IEnumerator

21The Common Type System Explained

{

bool MoveNext(); object Current { get; }

void Reset();}

Now code can be written to deal with anything that obeys this contract—for example, to
print the results of enumerating to the screen. This way, interfaces allow polymorphic
code to be written, something we look at in much more detail later on.

Delegates

The capability to pass blocks of code around for use in another place is very powerful. A
typical task that requires such a setting is the creation of a new background thread, which
requires the code the thread should start executing. Some platforms have solved this by
providing single-method interfaces like Runnable. This is quite some plumbing just to pass
a piece of code around. Another possibility is the use of function pointers, but type safety
suffers in such an approach.

Delegates combine the conciseness of function pointers while preserving the type safety
characteristic of single-method interfaces but without the ceremony to deal with them. An
example that deals with threading is shown here:

var t = new Thread(delegate(object data)

{

// Process customer object in the background

});

Customer customer = new Customer();

t.Start(customer);

This only shows delegates at the use site, where we pass a piece of code for customer data
processing to a new thread. The CTS has first-class support for code to declare its own
delegate types, which you can think of as statically typed method signatures that describe
the input and output types of the expected code blocks:

/* declaration of a delegate for binary mathematical operations on two integer

values */

delegate int BinaryOperation(int a, int b);

class WorkingWithDelegates

{

public int Calculate(BinaryOperation op, int a, int b)

{

// calling through the delegate

return op(a, b);

}

22 CHAPTER 1 Introducing the .NET Platform

public void Sample()

{

int three = Calculate(delegate(int a, int b) { return a + b; }, 1, 2);

}

}

NOTE

Since C# 3.0, the language supports lambda expressions, a more concise notation to
pass code around without much syntactical noise. In the preceding example, the sum
function we’re passing to the Calculate method could be written more concisely as (a,
b) => a + b.

We examine lambda expressions when talking about delegates in C# and during the
exploration of Language Integrated Query (LINQ), which was the main justification for
putting lambda expressions in the language.

Members

Most types can contain zero or more members of the following sorts:

. Fields: Used to store data, typically hidden from the outside to establish abstraction
and encapsulation.

. Methods: Define operations that can be carried out on the type or instances thereof.

. Constructors: Used to create an object instance of the containing type; in fact,
constructors are special methods in disguise.

. Finalizer: A type can have one finalizer method that gets called when the garbage
collector reclaims its memory. This is typically used to clean up native resources that
object instances hold on to.

. Properties: Provide get and set accessors to the state of the type or instances
thereof. Properties are a syntactical veneer over getter and setter methods and
provide metadata describing them.

. Indexers: Special properties that allow access on an object instance as if it were an
array. For example, List data can provide position-based indexing to make accessing
the data stored in it easier.

. Events: Means for consumers to register event handlers that are triggered when
something interesting happens. For example, UI frameworks use events to signal
user interactions such as button clicks.

The CTS also defines modifiers that can be used to specify the intended behavior of a
member. An example of such a modifier is the visibility of the member, which determines
whether the member can be accessed by other types, by subtypes only, or from inside the
defining assembly only.

23The Common Type System Explained

A Note on Generics

The second version of the CLI introduced support for generics, a way to make types and
members dependent on a certain type of parameter. In the type theory literature this is
known as parametric polymorphism. Typical applications of generics include the definition
and use of collection types:

var primes = new List<int> { 2, 3, 5, 7 };

int firstPrime = primes[0];

In the preceding example we’re using a generic collection type List<T>, where T has been
substituted for int. Similarly, we could construct specialized list types to contain strings,
Customer objects, or whatever else we see fit (including lists of lists). The use of generics
makes static typing possible in many more cases than before, resulting in better compile-
time checking and various performance improvements.

In times of .NET 1.x, collection types required the use of System.Object—the mother of all
types—as the element type, to be as generally applicable as possible. Dealing with
nongeneric collection types always required the use of runtime type conversions, incurring
a performance hit and the potential for runtime exceptions when the collection is misused:

ArrayList primes = new ArrayList();

primes.Add(2);

primes.Add(3);

primes.Add(5);

primes.Add(7);

primes[0] = “Bart”; // Wouldn’t be valid on a List<int>

int firstPrime = (int)primes[0]; // Invalid conversion causes runtime exception

The Role of the Common Language Specification

The CLS defines a subset of the CTS, limiting it to types that can be understood by any
.NET language on the platform. It accomplishes this by defining a set of rules that type
definitions need to satisfy.

Without a doubt, the first CLS rule is the most important one because it reduces the work-
load imposed on .NET developers to keep their types CLS-compliant:

CLS Rule 1: CLS rules apply only to those parts of a type that are accessible or visible

outside of the defining assembly.

This rule should cause a “D’oh” effect for everyone reading it. Because the CLS is about
cross-language interoperability, only things that are visible to the outside world matter. Or
string the reverse: Internal implementation details of assemblies can violate CLS rules at will.

24 CHAPTER 1 Introducing the .NET Platform

THE ART OF DEFINING RULES

The design of a proper set of CLS rules wasn’t a trivial exercise. On one hand, the
rules should be flexible enough to allow the implementation and use of language
constructs commonly used by developers. On the other, they should be restrictive
enough so that a large set of languages can be implemented on the CLI.

To ensure the relevancy of the runtime design in the light of permitting different
languages to run on top of it, Microsoft and its partners ran Project Seven. This project
implemented a set of popular languages on the runtime while its design and implemen-
tation were in progress, to provide early feedback and to steer the CLI, CTS, and CLS in
the right direction.

Today we pluck the fruits of this exercise with many languages targeting the .NET run-
time, allowing true interoperability without having to worry about too restrictive or too
permissive rules: The CLS strikes the right balance, and we should adore it.

Three audiences are affected by the CLS, so every rule is written from three different angles:

. Frameworks (libraries) are concerned about guaranteeing their maximum applicabil-
ity across languages. For example, frameworks should avoid the use of language
keywords in type or member names.

. Consumers access types defined by CLS-compliant frameworks but are not required
to be able to define types themselves. For example, consumers should be able to
instantiate types.

. Extenders are in between frameworks and consumers. They enable us to extend
upon framework-provided types but do not necessarily allow brand new types to be
defined. For example, extenders should be able to implement interfaces.

CLS rules will matter to you as a .NET developer primarily if you’re building framework
libraries you expect other developers to use from any .NET language they see fit. To indi-
cate CLS compliance and to trigger the C# compiler to check your compliance claims, an
assembly should have a CLSCompliant attribute applied to it:

[assembly: CLSCompliant(true)]

We return to this at a later point when you have a more solid understanding of the use of
custom attributes.

Executing Managed Code
Now that you know how types can be built and how IL code and metadata can be gener-
ated, either at compile time or at runtime, we should take a closer look at the execution
model for managed code.

25Executing Managed Code

Consider the following fragment of C# code, which implements and uses a simple
Calculator class. If the language constructs used here look foreign to you, don’t worry; we
cover the syntax and meaning of C# programs extensively throughout the book.

using System;

static class Program

{

static void Main()

{

var random = new Random();

int a = random.Next();

int b = random.Next();

var calc = new Calculator();

int sum = calc.Add(a, b);

Console.WriteLine(“{0} + {1} = {2}”, a, b, sum);

}

}

public class Calculator

{

public int Add(int a, int b)

{

return a + b;

}

}

The Main method in the class Program is where the execution of the program starts. First, a
random-number generator is created that is subsequently used to generate two integer
values, a and b. Next, a calculator object is used to add those two numbers together, and
finally the result of the calculation is printed to the screen.

The result of compiling this piece of code using the C# compiler is an executable assembly
that contains all the information required for the runtime to execute the code. We explore
the use the C# compiler and richer tools like Visual Studio 2010 in Chapter 2. What
matters for this first exploratory exercise is the structure of the resulting assembly. To
examine this, we can use the IL disassembler tool (ildasm.exe) that comes with the .NET
Framework SDK, as shown in Figure 1.5. In this figure, we can identify several pieces that
we’ll drill into right now.

26 CHAPTER 1 Introducing the .NET Platform

NOTE

If you wonder where the application icon of ILDASM comes from, try to remember the
initial code name of the CLR that was mentioned earlier in this chapter.

NOTE

ILDASM has a sister tool called ILASM, the IL assembler. Instead of writing in higher-
level languages like C# and VB, you could use this tool to assemble handwritten IL
code. However, this is a very extreme approach to managed code development. A
slightly more common use of ILASM is to use it in combination with ILDASM to do “IL
round-tripping”: Given an input assembly, it’s disassembled into IL, tweaked by hand or
with some tool, and reassembled. The ILDASM and ILASM tandem has been specifical-
ly designed to make such lossless round-tripping possible.

The Assembly Manifest

To start, there’s a manifest that describes the identity of our assembly, its dependencies,
and a couple of flags. For our little application, the manifest looks like this (omitting a few
irrelevant details):

// Metadata version: v4.0.30319

.assembly extern mscorlib

{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89)

.ver 4:0:0:0

}

.assembly intro

{

FIGURE 1.5 Use of the IL disassembler to inspect assemblies.

27Executing Managed Code

.hash algorithm 0x00008004

.ver 0:0:0:0

}

.module intro.exe

.imagebase 0x00400000

.file alignment 0x00000200

.stackreserve 0x00100000

.subsystem 0x0003 // WINDOWS_CUI

.corflags 0x00000001 // ILONLY

From the first comment line, we can see the metadata (and hence runtime) version for
which this assembly was built.

.NET FRAMEWORK VERSION HISTORY

Different versions of the CLR have been built over the first decade of the .NET platform’s
existence. However, not every version of the .NET Framework implies a new version of
the underlying runtime. The first release of the .NET Framework came with CLR
v1.0.3705 and was quickly updated to v1.1.4322 in the v1.1 release of the framework.

A major extension to the runtime, introducing generics, was on the menu for version 2
of the framework with version number v2.0.50727. If you’re curious about what the big
build number stands for: 2005/07/27.

The next few releases of the .NET Framework, versions 3.0 and 3.5, didn’t introduce
fundamental changes to the CLR but added lots of libraries such as Windows
Presentation Foundation (WPF), Windows Communication Foundation (WCF), Windows
Workflow Foundation (WF), and Language Integrated Query (LINQ). In other words,
version 3.0 and 3.5 of the .NET Framework came with the v2.0 CLR.

Now, with the fourth version of the framework, a major update to the CLR is shipped as
well, primarily improving the runtime services offered by the execution engine. The
underlying IL instruction set and metadata formats are kept compatible, though, to
ensure a smooth transition to the latest and greatest release of the .NET Framework
with binary compatibility for assemblies. For the curious, the full .NET 4 version number
is 4.0.30319.

The next entry in the manifest indicates an external assembly reference, which denotes a
dependency for our assembly. This assembly, mscorlib, is one of the core parts of the BCL.
Notice how version info about the referenced assembly is present; this is one of the keys
to eliminating the DLL version hell that existed before the advent of .NET. Besides our
own assembly’s identity, general information about its characteristics (for example, the
fact it’s a console user interface, or CUI) is kept in the manifest.

IL Code

By now we already know the role of IL code as a language-independent format in which
to express instructions. However, its generic nature extends in the other direction, too:
Being an intermediate representation, it also allows decoupling from the specifics of any

28 CHAPTER 1 Introducing the .NET Platform

2

Idarg.1

2

3

Idarg.2

5

add ret

intsum = Add(2, 3)

FIGURE 1.6 Evaluation stack transitions during IL code execution.

underlying hardware platform. The result is a very generic instruction set that’s rich
enough to express the needs of various languages and simple enough to be mapped onto
processor instructions, as we’ll see later.

Let’s take a closer look at one of the methods declared in our program (the Calculator’s
Add method). Here’s what it looks like:

.method public hidebysig instance int32 Add(int32 a,

int32 b) cil managed

{

.maxstack 8

IL_0000: ldarg.1

IL_0001: ldarg.2

IL_0002: add

IL_0003: ret

}

On the first line, the signature of the method is visible: Add is a method that takes in two
32-bit integer values and produces such a value. Besides this, metadata is present about
the visibility of the method, among other things.

Inside the method body, we see a total of four IL instructions being emitted by the C#
compiler. Without going into much detail about IL at this point, it’s worth noticing the
execution model of IL code is extremely simple. In essence, IL represents the instructions
to manipulate a stack-oriented execution environment. For instance, our Add method
pushes the method’s two arguments, a and b, on the stack, adds them together, and sub-
sequently returns the result. The evaluation of the method is illustrated in Figure 1.6, with
inputs a = 2 and b = 3.

As you can imagine, IL has many more constructs than the ones illustrated here. Types of
instructions include arithmetic and comparison operations, branching, method calls,
object allocations, and more.

29Executing Managed Code

PROTECTING YOUR INTELLECTUAL PROPERTY

People sometimes worry about how to protect their software’s intellectual property (IP)
when dealing with managed code, which is easy to inspect and even to decompile with
tools like .NET Reflector. The benefits of self-describing assemblies are huge (for exam-
ple, to aid in debugging scenarios), but concerns like IP are equally important to con-
sider. Luckily, tools exist to obfuscate managed code to make reverse engineering
much harder. For example, .NET Reflector itself is protected using such a technique.
Visual Studio ships with a community edition of a product called Dotfuscator that’s
designed to do precisely this.

Metadata

The last piece in the puzzle to turn assemblies to execution is metadata. It describes all the
types contained in the defined assembly in excruciating detail so that the runtime can set
up the required infrastructure to make execution possible. Tools also benefit from having
self-describing assemblies. The whole metadata system provided by the CLI is in fact much
like a relational database of related pieces of data, which makes it possible to query
various kinds of relationships. For instance, given a type, it’s easy to find all its members,
and the reverse relationship is equally easy to traverse. The .NET library that makes intro-
spection of types possible at runtime is called Reflection.

As a developer, you don’t have to worry much about metadata. Language compilers on the
.NET platform take the responsibility of emitting the necessary metadata details about the
types you as a developer define during your day-to-day programming job. However, the
flexibility of metadata allows for lots of scenarios that reach beyond the metadata required
to describe types. Using a feature called custom attributes, it’s possible to tag various enti-
ties such as types, members, parameters, and so on with custom metadata. Such metadata
can then be consumed at runtime by libraries to facilitate operations such as serialization
or exposure of methods through web services.

To illustrate matters, let’s take a look at the metadata describing the Calculator class from
our example:

TypeDef #2 (02000003)

TypDefName: Calculator (02000003)

Flags : [Public] [AutoLayout] [Class] [AnsiClass] [BeforeFieldInit]

(00100101)

Extends : 01000001 [TypeRef] System.Object

Method #1 (06000002)

MethodName: Add (06000002)

Flags : [Public] [HideBySig] [ReuseSlot] (00000086)

RVA : 0x0000209e

ImplFlags : [IL] [Managed] (00000000)

30 CHAPTER 1 Introducing the .NET Platform

CallCnvntn: [DEFAULT]

hasThis

ReturnType: I4

2 Arguments

Argument #1: I4

Argument #2: I4

2 Parameters

(1) ParamToken : (08000001)

Name : a

flags: [none] (00000000)

(2) ParamToken : (08000002)

Name : b

flags: [none] (00000000)

Method #2 (06000003)

MethodName: .ctor (06000003)

Flags : [Public] [HideBySig] [ReuseSlot] [SpecialName]

[RTSpecialName] [.ctor] (00001886)

RVA : 0x000020a3

ImplFlags : [IL] [Managed] (00000000)

CallCnvntn: [DEFAULT]

hasThis

ReturnType: Void

No arguments.

Here, you can observe the names of types and members associated with several flags (for
things such as visibility, method table layouts, and so forth). In addition, notice that every
piece of metadata has a unique number that allows for other pieces of metadata to cross-
reference it.

Mixing Languages

In the previous discussion, you’ve seen how to use a single language, in our case C#, to
build a complete application. This seldom is the case in a real-world environment where
libraries from various sources need to be combined to provide an end-to-end solution to
the problem at hand. In fact, our use of BCL types like System.Random and System.Console

is a good example of such a scenario. Although those happen to be written in C# too, as
most of the code in BCL is, that’s not a requirement at all thanks to the cross-language
capabilities provided by the CLR. However, consuming libraries is just the tip of the
language interoperability iceberg. Richer capabilities, such as extending existing types in a
different language than they were initially written in, is also part of the picture.

Let’s explore this angle to the CLR in a more concrete fashion. Instead of compiling our
Calculator class as part of an executable assembly, we’ll compile it into a library with a
.dll extension. As a matter of fact, the runtime cares little about the file extension to an
assembly, apart from the fact that EXE files are supposed to have an entry-point method.

31Executing Managed Code

FIGURE 1.7 Cross-language inheritance.

After we’ve built our calculator library, we can reference it when building a Visual Basic
application to use its functionality. Or we could go one step further, extending the
Calculator class using Visual Basic code. This way we achieve cross-language inheritance
for types, a very powerful capability that becomes possible thanks to the unified type
system. The Visual Basic code that does this is shown here:

Public Class FancyCalculator

Inherits Calculator

Public Function Multiply(a As Integer, b As Integer) As Integer

Return a * b

End Function

End Class

Obviously, this code also compiles to IL code, which looks like this:

.method public instance int32 Multiply(int32 a,

int32 b) cil managed

{

.maxstack 2

IL_0000: ldarg.1

IL_0001: ldarg.2

IL_0002: mul.ovf

IL_0003: ret

}

Nothing in this code reveals it was written in Visual Basic, and indeed exactly the same IL
could originate from compiling any other .NET language that carries out a multiplication
between two integer values. Figure 1.7 illustrates how the CTS supports inheritance of
types across languages.

32 CHAPTER 1 Introducing the .NET Platform

Calculator.dll

FancyCalculator
.dll

calc.Add(1, 2)
calc.Multiply(2, 3)

Add

Multiply

Calculator (C#)

Fancy
Calculator (VB)

C#
Compiler
(csc.exe)

VB
Compiler
(vbc.exe)

F#
Interactive
(fsi.exe)

FIGURE 1.9 Developing and using code in multiple languages.

Now, when using the FancyCalculator type from any .NET language, we don’t know that
its Add method was implemented in a different language than its Multiply method. To
illustrate the seamless integration the unified type system offers, let’s use our library from
inside F#’s interactive console. This is shown in Figure 1.8.

Figure 1.9 summarizes the development flow we’ve gone through to enable this scenario.

Diving into the Common Language Runtime
Now that you know how assemblies are built, the time has come to focus on the runtime
infrastructure the CLR offers. Actually, the concept of a runtime wasn’t groundbreaking at
the time the CLR was introduced: Languages such as Visual Basic have had them for years,

FIGURE 1.8 Using our multilanguage calculator type in F#.

33Diving into the Common Language Runtime

and so did Java with its virtual machine (JVM). What distinguishes the CLR from other
runtimes, though, is the fact that it’s decoupled from any particular language. Also, the
generalization of metadata through custom attributes was quite an innovative feature, as
you read much more about throughout this book.

Bootstrapping the Runtime

Previously you saw that executable assemblies are built as EXE files, which as we all know
are loaded by the operating system to run them in a separate process. In the pre-.NET
world, executable files simply contained native machine instructions that could be under-
stood directly by the processor. Because managed code assemblies require runtime services
to execute, a natural question is how the .NET runtime gets loaded when the operating
system encounters a managed executable.

For the operating system’s loader to recognize the executable file as a valid one, it needs to
have a structure that is defined in the PE/COFF file format, which stands for Portable
Executable, Common Object File Format. This file format describes the structure of
executable files with regard to the code and data sections they contain, in addition to
metadata structures describing things such as imported and exported functions. This stan-
dardized format is referred to in the CLI as the way to store assemblies in files.

Despite the richness of PE/COFF files, managed executables use just a tiny little bit of its
functionality, enough to transfer control to the CLR as soon as the executable starts. This
is achieved by emitting a tiny code section in every managed executable (at compile time)
that does basically just one thing:

JMP _CorExeMain

This jump instruction transfers control to a function called _CorExeMain that lives in the
mscoree.dll file under the system32 folder. From that point on, the runtime is in control.

REVEALING THE COMMON LANGUAGE RUNTIME ENTRY-POINT

The interested reader is invited to use the dumpbin.exe tool that ships with Visual
Studio (and is also available in the Windows SDK) to dump the import table of any
managed executable using the tool’s /imports flag. This will reveal the _CorExeMain
entry point being imported from mscoree.dll.

What’s this mscoree.dll thing anyway? The acronym stands for Component Object
Runtime Execution Engine, where the COR part is a last trace of the days when the
runtime was still considered an extension to COM, adding runtime services to make devel-
opers’ lives easier. Actually, the role of this DLL is very limited: It’s really a very tiny shim
that knows how to load an appropriate version of the CLR that’s capable of executing the
application being started. This facilitates side-by-side installations of multiple .NET
Framework versions. The decision which runtime to load is based on the metadata embed-
ded in the executable as well as policy configurations that live in the Registry.

34 CHAPTER 1 Introducing the .NET Platform

NOTE

Beginning with Windows XP, the operating system’s executable loader has some limited
built-in knowledge of the common language runtime to redirect the execution of a man-
aged executable to the runtime as early as possible. Nowadays, various built-in services,
such as Windows Installer, have intrinsic knowledge about the existence of managed
assemblies. Starting with Windows Vista, parts of the .NET Framework are an integral
part of the operating system installation to facilitate services that depend on them.

Once the shim knows what version of the runtime to load, it goes ahead and locates the
real execution engine DLL for the selected version of the runtime. The version-specific
runtime components live in folders underneath the %windir%\Microsoft.NET folder. In
.NET 2.0, the runtime DLL was called mscorwks.dll, which stands for Component Object
Runtime Workstation, another historical naming that reflects there once were multiple
flavors of the runtime. (One flavor was optimized to run on servers, while another was
optimized to run on clients or workstations, the main difference being different GC
behavior.) Today, this distinction is mode configurable, and no separate DLLs are required,
so .NET 4.0’s execution engine lives in a more logically named file, clr.dll.

NOTE

Keeping shims as tiny as possible is not always an easy thing to do. It sounds more
than logical that no version-specific runtime functionality should live in the shim, but in
practice that turns out to be a challenge. In .NET 4.0, the original shim has been
trimmed down to make it more future-proof. This refactoring made mscoree.dll into a
super-shim, with the remainder functionality moved to a new DLL called mscoreei.dll.
This way, the need to update mscoree.dll every time an update to the .NET Framework
is applied should decrease significantly.

One of the first things the runtime does after it has gained control over the execution of a
managed executable is to inspect the PE/COFF headers looking for a CLR-specific header
that specifies a pointer into the metadata directory of the assembly. Such a header is illus-
trated here:

clr Header:

48 cb

2.05 runtime version

20AC [304] RVA [size] of MetaData Directory

1 flags

IL Only

6000001 entry point token

Locating the entry point token through the metadata directories, the runtime now has
all the required information to locate the application’s entry point method and start

35Diving into the Common Language Runtime

OS Loader

intro.exe

PE Header

CLR Header

Metadata

IL Code

.text
(Native Code)

.idata
(Import Table)

Process Address Space

Loading the CLR

1. Executable loaded by OS
2. Loader stub to CLR entry point
3. CLR shim initialization
4. Inspect headers and policy
5. Shim loads specific CLR version
6. Finding managed entry point
7. Control transfer to managed code

intro.exe

JMP _CorExeMain

Program.Main()

mscoree.dll
_CorExeMain

mscoree.dll

clr.dll

1

7

2

3

5

4

6

FIGURE 1.10 Loading the common language runtime.

executing it. Finally, your C# code gets a chance to run! How that works in practice is the
subject of the next section.

The whole process of loading the CLR is summarized in Figure 1.10.

Assembly Loading

Naturally, a key task for the runtime is to locate and load assemblies required by applica-
tions on an on-demand basis. The component responsible for this is called fusion.
(Remember the CLR’s code name?) When an assembly is requested for loading, fusion
searches a set of known locations for a matching assembly.

As you might have guessed, this process is based on the name of the requested assembly.
However, naming for assemblies is not always as straightforward as dealing with simple
names like Calculator. To help deal with the versioning hell, assemblies can have strong
names that extend beyond simple names by adding things such as version information
and publisher information. This way, an application that was built to use a specific version
of a library won’t accidentally load a newer or older version of that library the application
was never tested with (and thus avoid potential compatibility issues).

When introducing the .NET Framework, we mentioned that simplified deployment was
one of the key goals of the new platform. So-called xcopy deployment is enabled by allow-
ing an application’s required assemblies to sit right next to the executable without any

36 CHAPTER 1 Introducing the .NET Platform

requirement for registrations. However, for libraries shared across multiple applications
(like the framework’s BCL itself), it makes sense to have a shared system location where
those assemblies can be stored. This location is called the Global Assembly Cache, or GAC.

To install assemblies in the GAC, they must be “strong-named signed.” Because the GAC is
a machine-wide trusted location, this restriction ensures assemblies are properly signed.
We talk about the process to sign assemblies in Chapter 25, “Assemblies, and Application
Domains.” In addition, the GAC allows multiple versions and cultures of the same assem-
bly to live next to one another. This is a key requirement to ensure the versioning story of
managed code applications works out nicely.

In reality, the GAC is a hierarchical folder structure that organizes assemblies based on the
runtime they’re targeting, their names, and version numbers. To hide the complexities of
this folder structure and to simplify management of the GAC, a shell extension is installed
by the .NET Framework to provide a user-friendly view on the assembly cache. You can
find the GAC under %windir%\assembly, as shown in Figure 1.11.

BROWSING THE INTERNAL STRUCTURE OF THE GAC

To see the internals of the GAC, open a command prompt and navigate the file system
to the %windir%\assembly folder. It’s also possible to disable—at your own risk—the
shell extension by putting a DWORD value DisableCacheViewer set to 1 under the
HKLM\Software\Microsoft\Fusion Registry key. In addition, a command-line tool called
gacutil.exe exists to inspect and maintain the GAC, which is the recommended and
supported way to do so.

It should be noted that starting with .NET 4, the GAC has been split. While the
%windir%\assembly folder contains assemblies prior to .NET 4, assemblies targeting
the new version of the runtime go under %windir%\Microsoft.NET\assembly.

The loading process of assemblies deals with searching a number of paths, including the
GAC, folders relative to the executing application, and configurable hint paths, trying to
find a matching assembly. This process, called assembly probing, can be monitored for diag-
nostic purposes using a tool called fuslogvw.exe, the Assembly Binding Log Viewer.

FIGURE 1.11 BCL assemblies live in the Global Assembly Cache.

37Diving into the Common Language Runtime

Application Domains

Isolation is an important technique to increase system robustness, to establish security
boundaries, and to have more granular control over execution. This well-known fact is
mirrored in the design of many platforms. For example, when executables on Windows
are run, the operating system executes them in separate processes to achieve isolation
between them. This isolation applies to various resources such as the memory, operating
system objects, and so on. By doing so, one crashing process cannot take down the whole
system, and security boundaries can be established to prevent malicious code from affect-
ing other processes (which could otherwise lead to security breaches).

The CLR has similar means of isolating groups of assemblies from one another. This is
achieved by the concept of application domains (abbreviated as AppDomains), which are
the units of isolation on the managed runtime. Application domains are the containers
wherein assemblies get loaded and executed. In addition, configuration and security
settings can be applied on individual application domains. Communication between
different application domains needs to happen using dedicated mechanisms such as .NET
Remoting, just like interprocess communication on Windows needs to happen using
special techniques such as shared memory sections or named pipes.

NOTE

Assemblies by themselves cannot be unloaded. The unit of granularity for unloading on
the CLR is the application domain. Therefore, application domains are typically used
when loading assemblies that are untrusted and need to be sandboxed. A good exam-
ple of such a scenario is the use of add-ins in a larger application.

When an application is started, the CLR creates a default application domain for the
assembly with the entry point to start executing. From that point on, application domains
are created on demand when the application or a library requests to do so. Typically, .NET
developers won’t be concerned with the manual creation of application domains; instead,
libraries such as the add-in framework rely on application domains for their isolation
properties while allowing developers to work with higher-level APIs that hide the
complexity of application domain loading, communication, and unloading.

To reduce the memory footprint by loading common assemblies like mscorlib.dll (in
which very basic data types such as string and integer live) multiple times, such assemblies
can be shared across application domains. Assemblies used this way are known as domain-
neutral assemblies and are highly trusted because their failure can take down the whole
process. Because assemblies by themselves cannot be unloaded, and because domain-
neutral assemblies always live outside the control of any real application domain, it’s
impossible to unload domain-neutral assemblies (other than by terminating the process).
Figure 1.12 illustrates the isolation properties of application domains.

38 CHAPTER 1 Introducing the .NET Platform

RETHINKING THE SOFTWARE STACK

The isolation properties of application domains have been leveraged in a wide variety
of scenarios, even reaching out to operating system design. Singularity is a research
OS written by Microsoft Research that’s almost exclusively based on managed code.
The properties of type-safe managed code play a central role in the design of
Singularity to isolate system services, user processes, and even drivers from each
other. Software isolated processes (SIPs) form the cornerstone of this OS-level isola-
tion and look a lot like application domains.

“Rethinking the software stack” is the design motto of Singularity and focuses on three
core pillars:

. SIPs for improved protection of system services and processes

. Contract-based channels to establish communication between these SIPs

. Manifest-based programs to aid in verification of system properties

For more information, visit http://research.microsoft.com/singularity, where a download
of the research development kit (RDK) is available if you want to experiment with this
research OS.

As mentioned before, the ability to establish boundaries between logical groups of code is
a great one in environments where untrusted code is to be loaded. One of the first
customers of the CLR was ASP.NET, the .NET successor to classic Active Server Pages tech-
nology. In the world of web hosting, many websites need to run on the same server.

AppDomain #1
(Default)

Calculator.exe

mscorlib.dll

Native DLLs

Calc.dll

System.dll

AppDomain #2
(Add-in #1)

GraphPlot.dll

System.Drawing.dll

System.dll

Calculator.exe

Domain-neutral Assemblies

mscoree(i).dll clr.dll

Common Language Runtime

AppDomain #1
(Default)

System.dll

mscorlib.dll

Native DLLs

IIS Assemblies

AppDomain #2
(website #1)

Contoso.dll

PaymentService.dll

System.dll

IIS Web Server Service

Domain-neutral Assemblies

mscoree(i).dll clr.dll

Common Language Runtime

Operating System Scheduler

FIGURE 1.12 Processes, application domains, and assemblies.

http://research.microsoft.com/singularity

39Diving into the Common Language Runtime

Maintaining separate processes for every website is far too heavyweight, so historically
web servers like Microsoft’s Internet Information Services (IIS) have had ways to run multi-
ple websites in the same process. With the advent of ASP.NET, application domains can be
leveraged to achieve this goal. Since IIS 7, the web server itself knows a good deal about
managed code, and application pools have become the unit of isolation in IIS. As you
might expect, those pools piggyback on application domains under the covers.

Today, managed code is running in lots of places, including in server products such as SQL
Server (version 2005 and later), where uptime is one of the most essential concerns. SQL
Server by itself is not a managed application, but instead it allows developers to use
managed code to extend its capabilities (for example, by means of managed stored proce-
dures). We say that SQL Server acts as a CLR host. Application domain isolation alone is
not good enough for such high-demand environments in which the host wants to have
much more control over what gets loaded and how the runtime behaves. For example, SQL
Server has its own memory manager, and natively hosting the CLR in the service process
would disturb it greatly. To answer to the needs of complex hosts, the CLR has a special-
ized hosting API that allows the host to have much tighter control over the CLR’s behavior.

NOTE

Since CLR 4.0, it has become possible to host multiple versions of the runtime inside
the same process side by side. At this lower level, isolation between each CLR’s run-
time infrastructure and the application domains living in each CLR is maintained. In
other words, different applications running on different versions of the CLR in the same
process cannot see each other.

JIT Compilation

As you’ve seen, all .NET languages compile code targeting IL as the destination code
format. Today’s processors do not know how to execute code written in this format, so
something needs to happen to turn IL code into instructions the target processor can deal
with. The runtime service that’s responsible for making the mapping between IL code and
native processor instructions is called the Just-in-Time compiler, often abbreviated as JIT
and referred to as “the jitter.”

NOTE

Although IL code is machine-independent, the .NET language compilers allow code to
be compiled targeting a specified machine architecture, using a /platform switch. This
functionality is used rather rarely but comes in handy sometimes when interoperating
with native code that requires a specific machine architecture. All this flag actually
does is modify a flag in the produced assembly to tell the runtime to enforce the use
of a certain architecture. You can inspect this flag, and even tweak it, using an SDK
tool called corflags.exe.

40 CHAPTER 1 Introducing the .NET Platform

This trick also comes in handy when developing code on an x64 platform if you want to
force your application assembly to run using x86, to inspect the runtime behavior.
Typically, you don’t need to do this because IL is platform-neutral, but when you run into
subtle issues that reproduce only on certain architectures, this is a potential ingredient
for easier debugging.

This decoupling from the runtime’s abstract machine language, IL, and the destination
computer’s underlying instruction set reveals yet another advantage of IL code: Assemblies
are independent from the target machine’s architecture. In the world of assembler, C, and
C++, this is fundamentally different because multiple compilations are required to target
various architectures. As the processor industry continues to move from 32-bit to 64-bit
processors, this is especially handy: As a .NET developer, you don’t have to do anything to
make your code run on a 64-bit machine.

The final compilation of IL code into native instructions opens up for extra optimization
opportunities in the jitter, too. Because the runtime has intimate knowledge of the plat-
form on which it’s running, platform-specific optimizations can be made when compiling
code. Other optimizations such as inlining are carried out by the jitter to improve perfor-
mance. Besides compiling code into native instructions, the jitter takes on code verifica-
tion and security checking tasks, too.

RUNTIME COMPILATION VERSUS INTERPRETATION

It’s important to understand that .NET code ultimately gets compiled into instructions
targeting the bare metal the code gets to run on. This differs fundamentally from run-
times that are based on interpretation, where intermediate code (sometimes also
referred to as byte-code) is read instruction per instruction while the program runs.
Although JIT compilation incurs an upfront cost for turning chunks of IL into native
code, the steady-state performance of the running code is generally much higher than
for runtimes based on interpretation.

But what makes this compiler deserve the status of being just in time? Assemblies might
contain lots of code that’s never executed during a particular run of a program. A good
example of this is code that deals with error handling, which hopefully has an exceptional
nature. The jitter will compile only the code that actually runs, doing this on a per-
method basis.

So how does JIT compilation work? When a managed assembly is loaded, the metadata
describing the structure of the types and the code contained in them becomes available.
Instead of compiling every IL method body into native code right away at load time, the
JIT needs to respect its “just in time” nature. To achieve this, upon entering a method the
runtime detects all the types referenced by that method’s code. For every type, the
runtime maintains a table that associates pieces of code with the type’s methods. Not
surprisingly, this table is called the MethodTable. Initially, all slots in the table are filled
with little pieces of code (sometimes referred to as a thunk) that call into a prestub helper.

41Diving into the Common Language Runtime

Calculator

JIT Compiler

static void Main()
{
 var calc = new Calculator();
 int four = calc.Add(1, 3);
 int five = calc.Add(2, 3);
 Console.WriteLine(sum);
}

// x86 assembler fragment
mov eax, dword ptr [ebp-40h]
add eax, dword ptr [ebp+8]
mov dword ptr [ebp-44h], eax
jmp 00000044

intAdd(int,int)

…

First Call to the Calculator’s Add Method

static void Main()
{
 var calc = new Calculator();
 int four = calc.Add(1, 3);
 int five = calc.Add(2, 3);
 Console.WriteLine(sum);
}

Subsequent Calls to the Calculator’s Add Method

Stub Call

ldarg.1
ldarg.2
add
ret

Calculator

intAdd(int,int)

…

JMI Thunk

FIGURE 1.13 JIT compilation in action.

The role of that code is to invoke the JIT compiler to turn the method’s IL body into
native code ready for execution on the machine’s processor.

Once the JIT compiler has finished translating the method code into native instructions
that now reside somewhere in an executable region of code, the prestub helper patches up
the MethodTable entry for the method to call into the generated native code. From this
point on, subsequent calls to the same method do not go through the prestub helper
anymore but end up in native code land immediately. Figure 1.13 illustrates the working
of the JIT compiler on our Calculator example.

NOTE

In reality, the MethodTable entry does not get patched with a direct jump instruction to
the generated native code. Instead, another little thunk (known as the JMI for
JittedMethodInfo) is used to facilitate this jump. By having this level of indirection, it’s
possible to deallocate the native code of a method that’s rarely used during the course
of program execution, to reduce the memory footprint of the application. If this hap-
pens, the thunk acts as a tombstone, triggering JIT compilation again on a subsequent
call to the method.

42 CHAPTER 1 Introducing the .NET Platform

Native Image Generation

Having to pay the price to JIT-compile application code and the class library assemblies
on which it depends doesn’t sound like a great idea. After all, once an assembly has been
deployed to a target machine, the processor architecture is certain, and all repeated JIT
compilations of the code in those assemblies will result in the same corresponding
native code. It seems we want a mechanism where we can still deploy IL-based assem-
blies (for all the benefits previously mentioned) but go through the burden of JIT
compilation only once.

To counter this concern, the CLR has the concept of “native image generation,” or NGEN.
The simplest way to think about NGEN is as an offline version of the JIT compiler that
can be invoked on whole assemblies, to translate them into native code and store the
result in a central location where the assembly loader will find them. (In practice, this is a
folder underneath the GAC location). From that point on, no runtime cost for JIT compi-
lation has to be paid anymore, resulting in fast startup times for applications. In addition,
a reduction in memory use can result if assemblies are loaded multiple times in the same
application (in different application domains, that is) because the native code image can
be memory-mapped.

GETTING TO KNOW NGEN THE HARD WAY

Users of Windows PowerShell 1.0, which is a managed code application, will have expe-
rienced the cost incurred by JIT compilations. Because of an issue with the setup
package, assemblies didn’t get NGEN’ed. A manual workaround to trigger NGEN was
published to the PowerShell blog. This workaround results in significant startup perfor-
mance improvements.

Windows PowerShell 2.0 will have proper NGEN’ing carried out by its installer.

NGEN can be used in two modes: interactive and background. In interactive mode, NGEN
compilation of the specified assembly is carried out immediately. When running an NGEN
task in background mode, its compilation is queued up for a background service known as
the NGEN optimization service (mscorscw.exe) to do the work later. This queue is priori-
tized so that important assemblies can take precedence over less frequently used ones. To
carry out NGEN administration tasks, a command-line utility called ngen.exe exists,
although most NGEN tasks are performed by software installers (for example, to queue up
background compilation jobs for the installer to finish more quickly).

All this sounds great, but there are some flip sides to NGEN. One potential issue is for
assemblies and their NGEN’ed counterparts to get out of sync when updates happen.
Command-line switches exist on ngen.exe to force updates when this is the case. Contrary
to what you might think, the performance of an NGEN’ed assembly is potentially slower
than for a JIT-compiled one. The native image compiler can’t make as many assumptions
about the runtime environment as its online friend, the JIT compiler. Therefore, NGEN
needs to be conservative, sometimes resulting in inferior code generation compared to the
JIT equivalent. Another potential performance regression comes from the potential image

43Diving into the Common Language Runtime

rebasing that needs to happen when the native image is loaded. The BCL assemblies care-
fully specify specific base addresses to load their NGEN’ed native image at, but calculation
of suitable base addresses isn’t always a trivial thing to do. This said, over the years the
CLR team has spent lots of effort to make NGEN as efficient as possible. One major step
forward was made in the 3.5 SP1 release.

To conclude, NGEN isn’t a silver bullet, and the rule of thumb for performance optimization
does apply to it: Let measurement be your guide in deciding whether NGEN is good for you!

Automatic Memory Management

Another core service provided by the runtime’s execution engine is garbage collection.
Historically, memory management has been a painful business for developers. Often,
error-prone code results, and even the simplest code gets bloated by low-level bookkeeping
code. On top of that, direct pointer manipulation isn’t exactly appropriate in a world
where memory safety and type safety are to be maintained.

Previous approaches to memory management were either too low-level (such as
malloc/free in C and new/delete in C++), causing bugs such as dangling pointers and
double frees, or reached their limits if things got too complex (such as the inability to
reclaim cyclic references in the world of COM’s AddRef/Release reference counting mecha-
nism, without manual intervention to break the cycle). One of the CLR’s goals was to
eliminate the need for developers to deal with memory management themselves. The
baked-in garbage collector (GC) realizes this goal.

NOTE

GCs are not a recent invention. In the late 1950s, the implementation of the LISP lan-
guage already required automatic memory management mechanisms. At that time, the
runtime cost of GCs was a strong argument to avoid languages that relied on them.
Over the years, performance of GCs has improved drastically, making the overhead a
relatively low cost to pay with lots of return on investment for developers. The CLR’s
GC is extremely optimized to reduce the runtime cost to an absolute minimum whenev-
er possible.

If you were to examine the IL instruction set in detail, you’d notice the existence of an
instruction called newobj to allocate object instances on the managed heap. This is the
instruction that corresponds to C#’s new operator we’ve already encountered in our
Calculator example. However, no matter how hard you try, you won’t find a correspond-
ing deallocation instruction. Enter the world of automatic memory management.

First, let’s focus on the mechanism used to allocate memory on the CLR. Various instruc-
tions cause this to happen, such as newobj to create new objects and newarr to create an
array. Don’t be concerned if those words don’t mean much yet; we discuss them exten-
sively later. All we’re concerned about for now is how memory is allocated when such
requests happen. To understand this, we need to dive into the structure of the managed
heap, which is the portion of memory managed by the CLR for the allocation of
managed objects.

44 CHAPTER 1 Introducing the .NET Platform

Allocations on the managed heap are extremely effective compared to allocations on
different heap implementations, such as the one provided by the C++ runtime. In essence,
heap allocations happen linearly, as illustrated in Figure 1.14. Here the heap already
contains a couple of objects denoted by letters A, B, and C.

NextObjPtr is simply a pointer that indicates the first free spot following already allocated
objects. Allocating object D is just a matter of reserving the necessary space from that
point on and moving NextObjPtr along. Contrast this to the C runtime heap, where allo-
cations require free list-scanning algorithms (with common strategies like first fit, best fit,
or worst fit) to find an available spot that’s large enough to hold an object of the
requested size. Besides potentially costly allocations, such algorithms cause heap fragmen-
tation because of unoccupied holes in the heap that are too small to hold any object.

Of course, because available memory is finite, the approach of an ever-growing linear heap
can’t keep working. At some point, NextObjPtr will reach the end of the heap, and some-
thing will need to happen to reclaim free space. This is where garbage collection kicks in.
The basic idea is fairly straightforward. In the first phase, the GC collects so-called root
objects, which are found in static variables, method arguments and local variables, thread-
local storage, and CPU registers. These are special because they are directly reachable by
the executing code.

Starting from the roots, references to other objects are traversed. For example, consider a
root of type Order that contains references to a Customer object and a Product object.
Because the Order object is reachable by the code, so are the Customer and Product

objects. All it takes to get there is to follow one object reference on the Order object. This
traversal is carried out exhaustively until all reachable objects are marked. Therefore, this
phase is called the marking phase. Figure 1.15 illustrates the marking of reachable objects.

In this example, a garbage collection pass has been triggered because an attempt was made
to allocate an object J, but the heap ran out of space, as you can see from the location of
NearObjPtr. When a GC is started, the execution engine suspends (meaning the evalua-
tion stack is frozen, among other things) so that roots can be identified and the heap can
be scanned. From the identified roots, objects A, E, and I are directly reachable. Objects B,
F, and G can be reached by traversing one or more object references starting from those
root objects. This ends the marking phase.

A B C

NextObjPtr

A

newobj Calculator

B C D

NextObjPtr

FIGURE 1.14 Allocation of a new object.

45Diving into the Common Language Runtime

A B C D G H IE F

NextObjPtr

Roots

FIGURE 1.15 Finding reachable objects.

Roots

A B E F G I

NextObjPtr

FIGURE 1.16 Result of sweeping and compacting the heap.

Now that reachable objects have been marked (using some bit on an object header called
the SyncBlock), the GC can move on to sweep the heap. It does this by walking the
memory linearly, reclaiming the space occupied by unreachable objects. In the example,
those are objects C, D, and H. As part of this phase, the heap is compacted by moving
objects into the space that has been freed. Figure 1.16 illustrates the result after sweeping
and compacting.

Notice how addresses used for object references need to be changed because of the
compaction that causes objects to move. What matters most to us developers is that the
heap now has plenty of free space, so our original object allocation for object J can succeed.

All of this is a gross simplification of the GC implementation in the CLR. In reality, the
heap is divided into regions called generations. The idea behind generations is to reduce
the number of full heap collections by splitting the heap into smaller regions. Freshly allo-
cated objects start their lives in generation 0, the smallest region. When object allocation

46 CHAPTER 1 Introducing the .NET Platform

fails, the GC tries collecting generation 0. If this frees enough space, the allocation can
succeed without collecting the rest of the managed heap. Because generation 0 is small,
the pause induced by its collection is minimal.

Typical allocation patterns produce lots of short-lived objects, so most of the time genera-
tion 0 collections should suffice. Objects that survive a generation during collection get
promoted to the next generation. In total, there are three such generations, numbered
from 0 to 2, with an increasing size. Objects larger than 85,000 bytes deserve special treat-
ment and are allocated on the Large Object Heap (LOH) to avoid having to move those
giants around during compaction. Another complication is the existence of pinned
objects, which cannot be moved because their location has been shared with unmanaged
code, and the GC cannot track those references to update them.

Exception Handling

Error handling is a tricky business. Disciplined error code checking on function return has
plagued developers for many years. For example, the following fragment is an excerpt
from the Platform SDK documentation on a COM-based API for file transfer:

IBackgroundCopyManager* g_pbcm = NULL;

HRESULT hr;

// Specify the appropriate COM threading model for your application.

hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);

if (SUCCEEDED(hr))

{

hr = CoCreateInstance(__uuidof(BackgroundCopyManager), NULL,

CLSCTX_LOCAL_SERVER,

__uuidof(IBackgroundCopyManager),

(void**) &g_pbcm);

if (SUCCEEDED(hr))

{

// Use g_pbcm to create, enumerate, or retrieve jobs from the queue.

}

}

This approach of error checking is tedious and greatly disrupts the flow of the code, espe-
cially because we expect errors to happen only occasionally. Also, there’s little flexibility in
the propagation of detailed error information; GetLastError values in Win32 and obscure
HRESULT values in COM are hardly to be called descriptive. To propagate error codes to
the place where the fault condition can be handled properly (for example, by retrying an
operation or by showing an error message to the user), there’s little room to wiggle.
Function return values are the most convenient spots to signal error codes, and all the
function’s return data needs to be exposed through output parameters, making the code
hard to write and understand.

47Diving into the Common Language Runtime

Something needed to change to reduce the ceremony for error propagation. The solution
used by the CLR is called structured exception handling, a technique that has been applied in
various programming languages before (such as C++ and Java, to name a couple) and can
leverage support provided by the operating system (called SEH).

Exceptions are simply objects that are “thrown” (some people say raised, but I like to keep
that verb for another context) when an exceptional situation arises. Examples of such situ-
ations include I/O errors, detection of invalid arguments passed to a function, user autho-
rization failures, and so on. By doing so, the contract of a function is not spoiled by the
mere possibility that something bad happens. After all, almost every code can fail: Think
of out-of-memory conditions for one. Here is an example of raising an exception:

public List<Customer> LoadCustomerData(string file)

{

if (!File.Exists(file))

throw new FileNotFoundException(file);

// Read data from the file and return Customer objects

}

Throwing exceptions to signal error conditions is one thing. The next part of the puzzle
we need to fill in is the capability to catch such an exception and act upon it. This is the
second pillar of structured exception handling. To reduce the burden of manually having
to propagate exceptions to callers, the runtime takes care of this by percolating the excep-
tion object up the call stack until an appropriate exception handler is found that’s willing
to deal with the exception. Figure 1.17 shows how the call stack is used to propagate an
exception up to the point where it’s caught.

The call stack is read from bottom to top: fillGrid_Click called into DisplayCustomers,
which in turn called into LoadCustomerData. There things go terribly wrong: The specified
file is not found, and an exception is thrown (step 1). Now the runtime kicks in and walks
the stack looking for a protected block with an associated handler that’s capable of
handling the FileNotFoundException exception object. It finds one in fillGrid_Click
and starts unwinding the stack in steps 2 and 3. Finally, control is transferred to the
exception handler in the catch block, as shown in step 4.

Code Access Security

Another runtime service provided by the CLR is Code Access Security (CAS), which is
tightly coupled to the call stack just like exceptions. At the time the CLR was designed,
the Internet had become a popular means of distributing software. Unfortunately, this
model also came with lots of security concerns; numerous security breaches were known
to be caused by blindly executing malicious code that was downloaded from the Internet.
This urgently demanded new ways to prevent malicious code from running, and that’s
what CAS is all about.

48 CHAPTER 1 Introducing the .NET Platform

FIGURE 1.17 Exception propagation.

Up until the point the CLR was introduced, authentication and authorization mechanisms
were tied to the concept of users and groups. For instance, a user authenticated to the
system by providing evidence about his identity: a password, smartcard, biometrics, and
so on. With the logon token, authorization can be performed to determine whether the
user should be granted access to a variety of resources such as files, system management
tasks, and so on. However, code run under a certain user account has the same rights as
the user. What we need is a mechanism that can sandbox code.

With CAS, code comes with evidence, too: It can be digitally signed by a certain publisher,
originate from a trusted location, and so on. Configurable policies relate evidence to
permission sets that are granted to the code during execution. To access various APIs,
certain permissions are required; for example, to interact with the file system or to call out
to managed code.

At the point an API demands a certain permission to continue, the CLR takes over and
performs a stack walk to make sure the assemblies in the caller chain are granted the
necessary permissions. This way, assemblies that are not trusted are kept from making calls
to security-sensitive APIs.

Figure 1.18 shows this stack walking in action. EvilCode.exe was downloaded from a
dubious location and lacks the necessary evidence to be granted permissions to interact
with the file system. In an attempt to steal or tamper with the user’s data, the assembly
calls out to TaxReporting.dll, a trusted assembly on the system installed by a tax-reporting
tool. The code in the tax-reporting assembly calls into the File.Create method that’s

49Diving into the Common Language Runtime

File Permission

SecurityException

S
ta

ck
 W

al
k

File Permission

File Permission

No File
Permission Grant

2
4

3

mscorlib.dll

EvilCode.exe

Demand for
File Permission

1

TaxReporting.dll

FIGURE 1.18 CAS performing a stack walk.

defined in mscorlib.dll, one of the BCL assemblies installed to the GAC, which is fully
trusted. However, the File.Create method raises a demand for file permissions. At this
point, the CLR starts the stack walk to check the granted permission set of each assembly
on the call stack against the demanded permission. TaxReporting.dll passes that check, but
the malicious code in EvilCode.exe doesn’t. Because the demand cannot be satisfied, the
CLR throws a SecurityException.

Interoperability Facilities

No matter how great the introduction of a new development platform and runtime envi-
ronment is, the capability to interoperate with existing code is key to the success of the
new technology. This is no different for the .NET Framework, so a big investment was
made to ensure existing code could work together with the new platform.

One piece of the interoperability stack is called Platform Invoke, or P/Invoke, which enables
calling native functions exported by DLLs. P/Invoke is typically used to call into operating
system functions that haven’t been exposed (yet) through the managed code libraries.

P/INVOKE FOR THE MASSES

Getting P/Invoke to work can require intimate knowledge of memory layout, conversions
between different types, calling conventions, and more. This can be utterly annoying to
get right. Luckily, the community of .NET developers recognized this and started an
online wiki where P/Invoke signatures and mappings for structs are posted. You can
find it at http://pinvoke.net.

In addition, the CLR team has built a tool called the P/Invoke Interop Assistant that
you can find at http://www.codeplex.com/clrinterop.

Because a giant pile of libraries has been written in COM, it was no more than logical to
have COM interop functionality in the .NET Framework too. This allows existing COM

http://www.codeplex.com/clrinterop
http://pinvoke.net

50 CHAPTER 1 Introducing the .NET Platform

libraries to be called from managed code, as well as the opposite where managed assem-
blies are exposed to COM. Two tools make both directions possible; they’re respectively
called Type Library Importer (tblimp.exe) and Type Library Exporter (tblexp.exe). To
reduce the burden of having to make such mappings for popular libraries, a set of primary
interop assemblies (PIAs) are provided by Microsoft (for example, to bridge with the Office
automation libraries).

NO PIA

Right after mentioning PIAs, I should point out the .NET 4.0 release provides a “no PIA”
feature. An obvious question is why we want to do away with something that looks like
(and is) a very powerful bridging mechanism to big COM automation libraries, like
Office’s. The truth is, PIAs are not disappearing completely, but their immediate use
gets restricted to compile time. Instead of having to deploy the PIAs—which can be
quite big—“no PIA” allows the used portions of a PIA to be linked in with the assembly
that’s using them. This way, deployment of the application becomes simpler, and code
size is reduced significantly.

A key part of these interoperability facilities is their capability to marshal types back and
forth. This process transparently maps between managed types and their native counter-
parts whenever required. Everyone who’s dealt with COM and native code knows how
much string representations exist in those worlds. By using the interoperability marshal-
ing functionality, all of those can be exposed to the managed code world as the BCL string
type (or, to be precise, the StringBuilder type if mutation is required). To guide this
marshaling, custom attributes are often used to provide the necessary information about
the native types that are involved.

THE COM DINOSAUR

Nobody knows how the dinosaurs came to their end. Today’s question is the opposite:
We don’t know when (if ever) the COM dinosaur will vanish from the developer’s universe.

Although rich interoperability capabilities were added to the .NET platform from day
one, optimists hoped to see the use of COM decline rapidly after the new platform was
introduced. Although progress has been made in this area and the number of new COM
libraries has dropped, giants like the Office automation libraries will be around for the
foreseeable future.

.NET 4.0 recognizes this fact and significantly reduces the number of pain points devel-
opers dealing with COM interop have been complaining about. It’s funny, though, that
the advent of the brand new dynamic language runtime has been one of the vehicles
that makes this mission easier to achieve. COM programming has always been a
dynamic experience (those familiar with COM will think of IDispatch instantaneously),

51The Base Class Library

and therefore the new dynamic language features introduced in C# 4.0 and Visual
Basic 10 provided a great opportunity to improve part of COM interop.

Besides this, C# 4.0 has added named and optional parameters, among other fea-
tures, to make dealing with COM easier than it has been for the first three releases of
the language.

The Base Class Library
Obviously, having a runtime in place is an essential ingredient to the success of the .NET
Framework. But far more important to application developers is the availability of a rich
BCL that gives access to a wealth of functionality for applications to leverage. In that lies
the success factor of various platforms: Windows with its Win32 API, Office with automa-
tion libraries, C++ with the Standard Template Library, and so on.

THE MULTILANGUAGE ADVANTAGE

It can’t be stressed enough that the cross-language nature of the .NET Framework
uniquely positions it in this picture. CLS-compliant libraries need to be written only
once to be directly usable from a rich set of .NET-enabled languages. This provides a
huge advantage to library writers.

The .NET Framework’s BCL has grown a lot since the first version was released in the early
2000s. Today, it’s nearly impossible to give complete coverage of the whole framework in
one book. Instead, it’s much more important to get a good idea about the basic building
blocks the framework is composed of. As a reader of this book, you’ll get a solid under-
standing of types and the members they’re composed of, so that exploring the .NET
Framework’s BCL should be relatively straightforward. Rarely do I have the complete solu-
tion to a problem in my head when I start developing a new piece of software, but armed
with those fundamentals, anything in the .NET Framework is in reach to learn about and
to leverage. This said, we cover a good deal of the big pillars of the BCL in this book.

Given its enormous proportions, a good structure is invaluable to discoverability of
features in the BCL. One key approach to enable this is by using a hierarchical organiza-
tion of the types provided, as opposed to the flat structure seen in the Win32 API. In the
world of managed code, this translates into the use of namespaces. The following are a
few examples of common namespaces and the functionality they group together:

. System contains the primitive data types like Int32, Double, String, Booleans,
and others.

. System.Collections provides access to convenient collection types such as lists, sets,
and dictionaries.

52 CHAPTER 1 Introducing the .NET Platform

. System.Data is the one-stop shop for data access functionality with support for
online and offline data access, targeting various kinds of databases.

. System.Diagnostics allows for interacting with system services for event logs,
performance counters, processes, and so on.

. System.Globalization contains classes that are used for writing globalized
applications.

. System.IO provides the constructs required to do all sorts of input/output, with
streams, support for files, named pipes, and such.

. System.Linq is where support for Language Integrated Query lives, enabling easier
access to all sorts of data through integrated language syntax.

. System.Net contains classes for networking, supporting various well-known proto-
cols such as TCP, UDP, and HTTP.

. System.Reflection allows runtime inspection of managed types as well as dynamic
generation of IL code.

. System.Security wraps all the security-related functionality, ranging from CAS and
permissions to cryptography.

. System.ServiceModel is the root namespace for the WCF APIs used in service-
oriented programming.

. System.Text has several useful types for manipulation of text, support for different
encoding schemes, and use of regular expressions.

. System.Web is where ASP.NET finds its home, containing various web controls,
configuration APIs, support for server-side caching, and so on.

. System.Windows makes a home for various user interface technologies such as
Windows Forms and the WPF.

. System.Xml obviously provides XML support of all sorts, including schema and
transformation APIs, LINQ support, and more.

We take a closer look at some of those namespaces and how they relate to the use of
assemblies throughout the book. For now, remember that the use of namespaces makes it
much easier to find the things you’re looking for, and often a simple guess or a directed
keyword search within the MSDN libraries directs you to the right place.

THE SYSTEM VERSUS MICROSOFT NAMESPACES

As you’ll see throughout this book, the .NET Framework contains two root namespaces:
System and Microsoft. What’s the distinction between them? The short answer is the
latter contains types that are relevant regardless of the platform the code is run on,
whereas the Microsoft namespace contains access to Microsoft-specific technologies.

53The Base Class Library

For example, file access functionality lives in System.IO given that all supported oper-
ating systems—including UNIX variants supported by projects like Mono—have support
for file access, whereas Registry access is a Microsoft Windows-specific concept and
hence lives in Microsoft.Win32.

Other examples of Microsoft-specific APIs include MSBuild, SQL Server, SharePoint, var-
ious Visual Studio libraries, and so on.

BCL, WITH A BIG B

In the original version of the .NET Framework, nearly all the libraries that shipped with
it were known collectively as the Base Class Library. It covered essentials like collec-
tion types, text manipulation, arithmetic functions, reflection, I/O functionality, and so
on. Notable exceptions are Windows Forms and ASP.NET libraries, which can stand on
their own, leveraging the core functionality provided in the class libraries underneath.
And in fact, for a while in the early betas of the 1.0 release, ASP.NET (originally called
ASP+) shipped as a separate installer. So, how to define the BCL? Everything but
Windows Forms and ASP.NET? But what about things such as data access libraries?
Clearly the line can be a bit blurry.

In .NET 2.0, this picture didn’t change much. Functionality of various libraries was
extended—with generics being a core improvement to the runtime—but no giant new
libraries were introduced. With .NET 3.0, things started to change a lot. Initially called
WinFX, the third release of the .NET Framework introduced a whole set of new libraries,
such as Windows Presentation Foundation (WPF), Windows Communication Foundation
(WCF), and Windows Workflow Foundation (WF). Apart from the fact that those libraries
ship out of the box with the .NET Framework distribution and lots of applications are
likely using them, they can’t really be called “base” class libraries.

Personally, I don’t like the BCL acronym all that much. For one thing, the types defined
within the BCL are not necessarily—and more often than not, they aren’t—base
classes in the object-oriented sense of the word. An alternative name could have been
the Fundamental Class Library, where only the bare primitives are defined, leaving other
libraries outside that picture. In some sense, the BCL can be delineated by all those
types that are tightly coupled with either the underlying runtime (for example, primitive
types, reflection capabilities, threading support, and so forth) or require lots of bridging
with native code to provide access to system-level services (for example, file access,
console input and output, and so forth). Other libraries like WPF, WCF, ASP.NET, and
even LINQ just happen to be bundled with the .NET Framework but shouldn’t be consid-
ered part of the Base Class Library.

One thing is sure: Don’t confuse the .NET Framework with the BCL. The .NET
Framework denotes the big umbrella for the runtime, libraries, as well as various tools
that ship with the redistribution. The BCL is just a tiny, though very important, part of
that picture. Where to draw the line between the BCL and the rest of the libraries is
much less important; all that matters is you have a lot of out-of-the-box libraries at
your service.

In times of a booming blogosphere, I’d rather define the BCL in terms of the features
discussed on the BCL team’s blog at http://blogs.msdn.com/bclteam.

http://blogs.msdn.com/bclteam

54 CHAPTER 1 Introducing the .NET Platform

Summary
In this chapter, you learned about the .NET platform in general—its history, design goals,
the cross-language interoperability story, and the core runtime services provided by the
common language runtime. We even sneaked a peek at the BCL.

Now that you have a solid understanding of the platform, let’s focus the C# language, our
main language tool in the rest of this book. We cover the history, design trends, and core
aspects of the C# language in the next chapter.

CHAPTER 2

Introducing the C#
Programming Language

IN THIS CHAPTER

. The Evolution of C# 55

. A Sneak Peak at the Future 89

Loaded with a basic understanding of the .NET platform
and its philosophy, we’re ready to dive in to one of its core
languages: C#. To set the scene, this chapter starts by
looking at the evolution of the C# language throughout the
first four releases of the .NET Framework. As we cover the
four versions of the language, core language features and
design themes will be highlighted.

Next, we take a look at the challenges that we’ll face in the
near future. At the end of this chapter, you’ll understand
the forces that have shaped the language covered in depth
throughout the remainder of the book. In the next chapter,
we switch gears and explore the tooling support available to
develop on the .NET Framework using C#.

The Evolution of C#
In this book, we explore the .NET Framework from the C#
developer’s perspective, focusing on the various language
features and putting them in practice with a wide range of
libraries that ship in the Base Class Library (BCL) or as part
of separate software development kits (SDKs). But before we
do so, let’s take a quick look at the various C# releases and
what has shaped the language into what it is today, the
.NET Framework 4. Figure 2.1 highlights the important
themes that defined the evolution of C# so far.

56 CHAPTER 2 Introducing the C# Programming Language

Dynamic Programming

Language Integrated Query

Generics

Managed Code

C# 1.0

C# 2.0

C# 3.0

C# 4.0

FIGURE 2.1 Main C# version themes.

C# 1.0: Managed Code Development, Take One

Creating a new runtime is one thing; providing a rich set of libraries to make the technol-
ogy relevant is another thing—moreover, it’s the most crucial thing developers care about
when deciding whether to embrace a new platform.

This put a big task on the shoulders of Microsoft’s .NET Framework BCL team, having to
write code targeting a runtime that was still under development. Obviously, one of the
core ingredients to make this mission successful was to have a programming language and
compiler—not to mention productivity tools such as debuggers—readily available to get
the development going.

Only two options were available. One was to retrofit an existing language like C++ or
Visual Basic on the .NET platform. Although this was in line with the whole vision of the
Common Language Infrastructure (CLI), it had its downsides. Porting languages, preserv-
ing semantics, and potentially introducing lots of backward-compatibility requirements
early on didn’t seem an attractive option under the pressure to get BCL development off
the ground as soon as possible.

As you might have guessed by now, the second option was to come up with a brand new
language. Such a language wouldn’t have to care about preserving backward compatibility
and could expose the richness of the Common Type System (CTS) in a no-nonsense way,
mapping language features directly onto their CTS counterparts. This marked the incep-
tion of project Cool, which stood for “C-style Object-Oriented Language,” later to be
renamed to C# (pronounced “see sharp”).

57The Evolution of C#

Design and implementation of C# began in late 1998, led by Anders Hejlsberg. He previ-
ously worked at Borland designing the highly successful Turbo Pascal and Delphi products
and later joined Microsoft to work on J++ and Windows Foundation Classes (WFC) and,
more recently, on C# and the rest of the Microsoft-managed programming languages.
Other core language design members were Scott Wiltamuth, Peter Golde, Peter Sollich,
and Eric Gunnerson.

THE ORIGIN OF THE NAME C#

Although Cool was a rather, let’s say, cool name, marketing folks wanted a different
branding for the new language. The C part in the name was a straightforward choice,
given that the language embraced C-style syntax, with curly braces, types in front of
names, and so on.

Because the new language was considered to allow a more modern approach to object-
oriented programming with type safety as its cornerstone, having the name imply a
degree of superiority to C++ (which was not designed with type safety as a central
theme) was desirable. Because the name C++ comes from the post-increment ++ oper-
ator applied to regular C, one option would have been to follow along that theme.
Unfortunately, C++++ is not syntactically correct (C+ = 2 would be too ridiculous), and
moreover, the new language did not intend to become a superset of C++.

So some brilliant mind came up with a postfix notation that has a meaning of “higher
than” but from a totally different domain: music notation. I’m not a musician myself,
but my office mate (thanks, Mike) reassured me the official definition of the sharp sign
(#) is to indicate “half a tone higher” on the note that precedes it. Lucky coincidence
or not, the sharp sign looks a lot like two post-increment operators stacked on top of
each other.

To keep typing the language’s name simple, the sharp sign is not written as Unicode
character U+266F (#) but as the number sign U+0023 (#) instead. The pronunciation
is “see sharp,” though.

Personally, I like the name C# a lot. For one thing, it definitely sounds better than
Managed C++, C++/CLI, or C++0x (no pun intended). Also, the use of the sharp sign in
programming language names has become some kind of trademark of the .NET
Framework, with the newborn F# language and the Spec# research project (a predeces-
sor to code contracts in .NET 4.0). And just for the sake of it, my blog is known as B#
(cheesy, I know).

References have been made to the meaning of the sharp sign in various places. At
some point, there was a research project called Polyphonic C# that explored the area
of concurrent programming using “chords.” (I won’t go into detail on this right now.)
Another project was CΩ (“see omega”), which used the last letter in the Greek alpha-
bet, omega, to indicate its rich extensive nature over C#. Technologies like LINQ in C#
and Visual Basic and XML literals in Visual Basic originate from this project.

58 CHAPTER 2 Introducing the C# Programming Language

For some unknown reason, the dynamic language folks didn’t get chased by the market-
ing department for choosing names with the “Iron” prefix, like IronPython and IronRuby.
Maybe because the use of metals in product names has precedents (think of Silverlight)
or perhaps because they did get away with the claim it stands for “I Run On .NET.”

So what were the design themes of the C# language right from the start? There’s no better
quote than the introductory sentence of the official C# specification, which is standard-
ized in ECMA 334:

C# is a simple, modern, object-oriented, and type-safe programming language. C# has its

roots in the C family of languages and will be immediately familiar to C, C++, and Java

programmers.

Let’s analyze those claims in a bit more detail:

. Simplicity matters. C# deliberately does away with language features that are known
to cause developers headaches, such as multiple inheritance, fall-through behavior
in switch statements, and nonhygienic macros.

. Modern is good. It means the language recognizes concepts developers are directly
familiar with, such as properties, events, and more recently, data querying, even
though “pure” object-oriented languages don’t need those.

. Object-oriented programming was, and still is, a widely accepted proven technique
to master complexity in worlds where tons of software components need to work
together seamlessly. No wonder the CLI and C# embrace it.

. Type safety is a big thing in the CLI. It eliminates whole classes of bugs and security
headaches that plague languages like C and C++. This said, C# still allows type-
unsafe code in regions explicitly marked as such.

. Having roots in the C family of languages makes the learning curve to get into C#
easy for developers who’ve been using C or any of its derivatives in the past.

With its rich feature set, great tooling support in Visual Studio .NET version 2002, and
backed by the rich BCL in .NET Framework 1.0, C# programming took a jumpstart.
However, the language designers were a long way from running out of ideas.

VISUAL OR NOT?

If you browse the Microsoft Developer Network (MSDN) website, you’ll often see refer-
ences to Visual C# rather than just C#. What’s the correct name? It depends what
you’re talking about: The language name simply is C#, whereas the development tool
Microsoft provides to develop with the language is called Visual C#, after the Visual
Studio tooling family it’s part of. A notable exception to this rule is Visual Basic, where
both the language and the product name are the same.

59The Evolution of C#

C# 2.0: Enriching the Core Language Features

Shipping a first release of a brand new platform and language was key to getting
the ball rolling, so sometimes decisions had to be made to cut certain features
during the development of this first release. The second release of the .NET

Framework allowed the opportunity to catch up with the things the design teams wanted
to do but hadn’t gotten a chance to in the first release.

BACKWARD COMPATIBILITY MATTERS

Making sure code written using a previous release of the language doesn’t compile
anymore—or worse, starts behaving differently—is an essential design criterion when
evolving the language.

C# is strict about this and aims to keep new releases of the language 100% compati-
ble with older versions. You might wonder how this is possible when introducing new
language features that potentially require new keywords. The answer lies in contex-
tual keywords.

Right from the start, C# has had contextual keywords. It simply means a certain word
can be treated as a keyword in certain contexts, while it can be used as an identifier in
others. A good example of such a keyword is value. In the following fragment, it’s used
as a keyword within the property set accessor to denote the value being set:

public string Name

{

get { return _name; }

set { _name = value; }

}

However, when used outside the scope of a property setter, value can be used as a
regular identifier, as follows:

static void Main()

{

int value = 42;

Console.WriteLine(value);

}

When C# 2.0 came around, new keywords were required to enable certain features. All
those newly introduced keywords were implemented to be contextual, so they can’t
clash with existing names used in the program. As an example, generics support the
specification of constraints on generic parameters using the where keyword:

static void Sort<T>(List<T> items) where T : IComparable

{

// Generic sort algorithm

}

60 CHAPTER 2 Introducing the C# Programming Language

In code written before C# 2.0, it was simply impossible to use where in such a context,
so there’s no risk of breaking something here. Also, by making the keyword contextual,
it can still be used as an identifier outside this context:

static void Main()

{

string where = “There”;

Console.WriteLine(where);

}

Later, when C# 3.0 came around (see further), query expressions were added to the
language. To express a filtering clause in a query, it simply makes sense to use the
where keyword (SQL, anyone?) but in another context:

var res = from person in db.People

where person.Age > 25

select person;

Again, contextual treatment for keywords saves the mission.

So why did C# 1.0 have contextual keywords if there was no chance of breaking exist-
ing code? Well, it’s a convenience not to have to escape “common words” just because
they tend to have a special meaning in certain locations. The value keyword is a great
example of that, but the same holds for get and set. Sometimes I wish this were
applied more aggressively, making keywords such as class contextual, too. Having
developed a system for school administration in a past life, I can assure you that the
use of the word class as an identifier was a rather natural choice to refer to an object
representing, um, a class. Luckily, C# has an escape mechanism for such cases:

MyClass @class = new MyClass();

To finish this point, if you ever find a piece of code that did compile in an older version
of the language but doesn’t anymore, you most certainly have found a defect. Beware,
though, that application programming interfaces (APIs) are a bit more relaxed when it
comes to changing behavior over time. This is typically done by deprecating certain API
members, making developers aware that a particular part of the API might go away in
future releases. We should consider ourselves lucky that the C# language has been
spared from this deprecating business thanks to careful design.

Generics
.NET Framework 2.0 came with a major update to the common language runtime, mainly
to add support for generics to the type system. Generics were prototyped in a project code
named Gyro run by Don Syme (later to become the creator of F#) and Andrew Kennedy,
both working at Microsoft Research. Such a fundamental addition to the type system
required revisions of the languages that build on top of it. Therefore, both the C# and
Visual Basic .NET languages were enhanced to provide support for both declaring and
consuming generic types.

61The Evolution of C#

To support the introdution of generics, the BCL team added various generic collection
types to the System.Collections.Generic namespace, an example of which is illustrated in
the code fragment here:

List<int> primes = new List<int>();

for (int n = 2; n <= 100; n++)

{

bool isPrime = true;

for (int d = 2; d <= Math.Sqrt(n); d++)

{

if (n % d == 0)

{

isPrime = false;

break;

}

}

if (isPrime)

primes.Add(n); // statically typed to take in an integer value

};

// no performance hit to convert types when retrieving data

foreach (int prime in primes)

Console.WriteLine(prime);

Generics offer better static typing, thus doing away with whole classes of code defects
and various performance benefits because they eliminate the need for runtime type
conversions.

Nullable Types
During the design of the first release of the CLI, a distinction had been made between
value types and reference types. Value types are stack allocated, whereas reference types
live on the managed heap. Therefore, reference types can have null values (conceptually
comparable to null pointers in native languages), whereas value types cannot.

The lack of an orthogonal approach in the classification of types versus their nullability
was seen as an oversight that was rectified in the second release of .NET Framework with
the introduction of nullable value types. This proves especially handy when mapping
database records to objects because nullability applies to all types in the world of (rela-
tional) databases.

The following is an example of the use of nullable types, denoted with a ? suffix:

int a = null; // won’t compile; int is a value type and cannot be set to null

int? b = null; // valid in C# 2.0 and above

62 CHAPTER 2 Introducing the C# Programming Language

NOTE

The use of the ? suffix comes from the world of regular expressions where it is used to
indicate “zero or one” occurrences of the thing preceding it. The ? operator is one of
the Kleene operators used to indicate multiplicity. Other Kleene operators include *
(zero or more) and + (one or more), but corresponding language features do not exist in
the world of C#.

The ? notation is a form of syntactic sugar, meaning it’s shorthand syntax for a
construct that would be tedious to type every time again. T? simply stands for
Nullable<T>, a generic type, where T is required to be a value type. In the preceding
example, we could have written int? as Nullable<int>, but you’ll agree that’s quite
some typing to express such a simple concept, hence the justification to provide
syntactic sugar.

Oh, and by the way, contrary to popular belief, nullable value types are not just a lan-
guage-level feature. Some of the runtime’s instructions have been enlightened with
knowledge about this type to accommodate for better integration.

Iterators
Although generics and nullable types can be seen as features to catch up with everything
the design team wanted to do in .NET 1.0 but didn’t get to because of the need to get the
first release out of the door, C# 2.0 introduced a few language features that reduced the
amount of plumbing required to express conceptually simple pieces of code. We can
consider this to be the tip of the iceberg on our journey toward a more declarative style of
programming.

One such feature is called an iterator and allows the creation of code blocks that produce
data on demand. This introduces a form of lazy evaluation in the language. An example of
an iterator declaration is shown here:

static IEnumerable<int> LazyPrimes()
{

for (int n = 2; n <= int.MaxValue; n++)
{

bool isPrime = true;
for (int d = 2; d <= Math.Sqrt(n); d++)
{

if (n % d == 0)
{

isPrime = false;
break;

}
}

if (isPrime)
yield return n; // Yield primes to the caller one-by-one

};
}

63The Evolution of C#

The use of the yield keyword controls the iterator’s behavior. If the consumer requests an
iterator to produce a value, it runs until a yield statement is encountered. At that point,
the iterator is suspended until the consumer asks for the next value. In the preceding
example, we’ve declared an iterator that can produce all integer primes (within the range
of positive 32-bit signed integer values). How many primes are calculated is completely
under the control of the consumer, as shown here:

foreach (int prime in LazyPrimes())

{

Console.WriteLine(prime);

Console.Write(“Calculate next prime? [Y/N] “);

char key = Console.ReadKey().KeyChar;

if (char.ToLowerInvariant(key) != ‘y’)

break;

Console.WriteLine();

}

If the user stops requesting prime numbers, the iterator will never go through the burden
of calculating more primes than were ever requested. Contrast this with an eager evalua-
tion scheme, where a whole bunch of primes would be calculated upfront and stored in
some ordered collection for return to the caller.

Manual creation of an iterator—without the yield keyword, that is—is an extremely
painful task because of its need to support suspension and subtleties that arise with multi-
threading, multiple consumers, and proper cleanup of used resources. Not only that, the
resulting code would look nowhere near the one we get to write with C# 2.0; the
meaning of the iterator would be buried under lots of plumbing, making the code hard to
understand.

C# alleviates this task by making the compiler generate all the boilerplate code required to
build an iterator. This is just one example of a feature that makes the language more
declarative, allowing developers to just state their intent, leaving the implementation
details to the language and runtime, also reducing the risk of introducing subtle bugs.

Iterators are essential glue for the implementation of a C# 3.0 feature, LINQ to Objects.
We get to that in just a minute.

NOTE

I consider another feature called closures to fall under the umbrella of “convenience
features” too. Because this feature is much more obscure, I’m omitting it from this
discussion, except to say that it provides essential glue to allow for seamless use of
some functional programming constructs within the language.

Again, the C# compiler takes responsibility over a lot of plumbing that would be
imposed on the poor developer otherwise. We cover closures in detail when discussing
the use of delegates and anonymous methods.

64 CHAPTER 2 Introducing the C# Programming Language

C# 3.0: Bridging the Gap Between Objects and Data

In some regard, C# 3.0 was the first release where the language designers got a real
chance to think deeply about the everyday problems developers face when writing
real-world code. Project Clarity identified one such problem, dealing with the

impedance mismatch between object-oriented programming and accessing data stores of
various kinds.

Language Integrated Query
One problem developers face when dealing with data access is the wide range of data
storage technologies: in-memory object graphs, relational databases, Extensible Markup
Language (XML) data, and so on. Each of those stores has its own API that’s different
enough from the others to throw developers a learning curve each time a different type of
data store is encountered. A way to unify those APIs was much desired, and that’s exactly
what Clarity stood for.

When this vision became real, the project was renamed Language Integrated Query, or
LINQ. It enables developers to use built-in language syntax to target any data store that
has a LINQ provider for it, as illustrated here:

var res = from product in db.Products

where product.Price > 100

orderby product.Name

select new { product.Name, product.Price };

NOTE

Similar language support was added to Visual Basic 2008. Also, LINQ has more query
operators than the languages surface; regular method calls can be used to take advan-
tage of these additional query operators.

The conceptual diagram depicting the relationship between languages and underlying
query providers is shown in Figure 2.2.

In addition to providing a unified query language, this approach has many additional
benefits. For example, it provides strong typing over the target domain, allowing for
compile-time checking of the soundness of queries. In addition, the LINQ provider
libraries can make sure queries are built correctly to eliminate whole classes of errors,
including security breaches such as SQL injection attacks.

This type of programming reflects the desire to move toward a more declarative style of
programming, where developers yield control to the language, runtime, and libraries. By
doing so, the platform as a whole can “reason” about the developer’s intent and do the
right thing, potentially optimizing the execution on behalf of the developer.

65The Evolution of C#

C# Visual Basic F# …

Objects DataSets …SQL Entities XML

Language Integrated Query

Query Operators Expression Trees

.NET Objects Relational Data XML Trees

<books>
…

</books>

FIGURE 2.2 Language Integrated Query.

NOTE

Almost all of today’s computers have multiple processor cores, allowing for true paral-
lelism. Imperative programming techniques do not scale well to write concurrent
programs for various reasons. Besides the need for low-level concurrency programming
using locks and other synchronization primitives (which are very hard to deal with), we
typically overspecify the solution to a problem. Instead of just expressing what we want
done, we also specify—in excruciating detail—how we want it done, using a bunch of
imperative constructs such as if statements, loops, and so on. By doing so, we paint
the runtime out of the picture, leaving it no other choice but to execute our imperative
program exactly as we’ve written it.

Manual parallelization of query-like constructs written in an imperative style (nested
for loops with a bunch of if statements and extensive use of intermediate data struc-
tures) would be a grueling and very error-prone experience for developers. However, in
the world of declarative programming, the runtime is left with enough knowledge about
our intent for it to optimize the execution. Today, with LINQ, this is no longer a dream: A
parallelizable version of LINQ to Objects has been created, dubbed PLINQ, which ships
in .NET Framework 4. The more cores the user has in her machine, the faster the query
executes. Mission accomplished.

Today, a wide variety of LINQ providers are available. Microsoft provides LINQ to Objects
(to deal with in-memory data), LINQ to XML, LINQ to DataSets, LINQ to SQL, and LINQ
to Entities (to deal with relational databases), and we can expect many more in the years
to come. In addition, lots of third parties have developed LINQ providers that target
nearly anything queryable out there: Amazon, Flickr, SharePoint, Active Directory, to
name just a few.

66 CHAPTER 2 Introducing the C# Programming Language

The introduction of LINQ in C# reflects the language’s practical nature, solving real-world
problems developers are facing. But the design of LINQ yielded many benefits beyond the
domain of querying, too. On the surface, it looks like LINQ forms a foreign island in an
otherwise imperative language, but in reality it’s built out of an amalgam of smaller
language features that provide benefits in and of themselves, too. Let’s look at those
features briefly.

Local Variable Type Inference
The introduction of generics in .NET 2.0 is all goodness but has one dark side: Type names
can grow arbitrarily because type parameters can be substituted for any type, including
other generic types. An example concretizes this:

Dictionary<string, List<PhoneNumber>> whitePages =

new Dictionary<string, List<PhoneNumber>>();

Wait a second: Doesn’t this line state the type twice? Indeed, on the left, the type is used
to declare a variable, and on the right, it’s used to instantiate an instance of it. The code
snippet doesn’t even fit on a single line because of this duplication. With local variable
type inference, you can omit the type on the left side, substituting it with the var
keyword and letting the compiler figure out the type for you based on the right side:

var whitePages = new Dictionary<string, List<PhoneNumber>>();

Although we can drop the type in the declaration of the local variable, this code is still
strongly typed. The compiler knows exactly what the type is, and the emitted code is
exactly as if you had written out the type yourself.

By itself, local variable type inference is useful for reducing the syntactic noise that comes
with the use of generic types, where it’s just a nicety to have. However, in some cases,
local variable type inference is required, as you’ll see next.

Anonymous Types
The desire to integrate query capabilities in the language introduces the need to have an
easy way to construct types on-the-fly. Projections (the select clause in a LINQ query) are
the most obvious places where this need becomes apparent.

var res = from product in db.Products

where product.Price > 100

orderby product.Name

select new { product.Name, product.Price };

Having to declare an explicit type for each projection would put quite some burden on
developers using LINQ. In the example, the compiler synthesizes an anonymous type with
properties Name and Price as specified in the projection.

The reason we call those types “anonymous” is because the compiler generates an
unspeakable name for them. Because we can’t refer to them, we need help from the

67The Evolution of C#

compiler to infer their names when assigning them to local variables. In the preceding
example, the result of the query was assigned to an implicitly typed local variable, letting
the compiler figure out its type.

Initializer Expressions
To make the initialization of collections and objects easier, C# 3.0 introduces initialization
expressions for both. Let’s take a look at them.

Object initializers make the instantiation of a type followed by setting a bunch of its
public properties (or public fields) easier to do, as part of one single expression. This
proves particularly useful when the type you want to instantiate lacks an appropriate
constructor:

class Product

{

public Product(string name)

{

Name = name;

}

public string Name { get; set; }

public decimal Price { get; set; }

}

In C# 2.0, you would have to write the following to create an instance of this type, with
both Name and Price set:

Product p = new Product(“Chai”);

p.Price = 123.45m;

With object initializer syntax, this can be abbreviated as follows:

Product p = new Product(“Chai”) { Price = 123.45m };

NOTE

To be precise, the code generated for an object initializer expression is slightly different
from the C# 2.0 snippet shown above it. We’ll ignore this detail now and defer a more
in-depth discussion until Chapter 6, “A Primer on Types and Objects.”

Object initializers are typically used in the projection clause of LINQ queries, when an
existing type is available (contrast this to the case where no type is available but an
anonymous type can be used) but lacks an appropriate constructor:

68 CHAPTER 2 Introducing the C# Programming Language

var res = from product in db.Products

where product.Price > 100

orderby product.Name

select new Product(product.Name) { product.Price };

Collection initializers bring simple initialization syntax to generic collection types. Since
the very beginning of C#, it has been possible to initialize arrays simply by specifying the
elements in between curly braces like this:

int[] primes = new int[] { 2, 3, 5, 7 };

However, when using generic collections like List<T> in C# 2.0, this nice syntax was no
longer possible. Instead, you had to write the following:

List<int> primes = new List<int>();

primes.Add(2);

primes.Add(3);

primes.Add(5);

primes.Add(7);

With C# 3.0, you get to write this (notice the nonmandatory use of local variable type
inference):

var primes = new List<int> { 2, 3, 5, 7 };

NOTE

Observe how collection initializers and object initializers can be combined nicely when
initializing collections of rich types. Another “better together” story.

Extension Methods
Extension methods enable you to extend existing types without using inheritance and thus
allow methods to be added to any kind of type. For example, suppose you want to add a
Reverse method to the System.String type that comes in the BCL. The best you could do
before C# 3.0 was to create a static helper method, making it rather cumbersome to use:

static class Helpers

{

public static string Reverse(string s)

{

char[] characters = s.ToCharArray();

Array.Reverse(characters);

return new string(characters);

}

}

69The Evolution of C#

static class Program

{

static void Main()

{

string name = “Bart”;

string reverse = Helpers.Reverse(name);

Console.WriteLine(reverse);

}

}

With extension methods, we can allow the static method to be used as if it were an
instance method:

string reverse = name.Reverse();

To enable this, the first parameter of the Reverse method is marked with the this
keyword, turning it in an extension method:

public static string Reverse(this string s)

LINQ uses extension methods to add query operators to interfaces like IEnumerable<T>
and IQueryable<T>.

NOTE

Extension methods allow the design and use of “fluent” APIs. A good example of a
fluent API is the System.String type: Most of its methods return a System.String
instance, allowing the next method to be called immediately, like so:

string bart = “ Bart “;

string art = bart.ToUpper().Trim().Substring(1); // ART

Without extension methods, any attempt to “chain in” another operation in the middle
broke the fluency of the code:

string bart = “ Bart “;

string tra = Helpers.Reverse(bart.ToUpper().Trim()).Substring(1); // TRA

It takes a few reads to figure out the order of operations in the preceding code frag-
ment. Thanks to extension methods, the preceding code can be made fluent again:

string bart = “ Bart “;

string art = bart.ToUpper().Trim().Reverse().Substring(1);

One great example of such a fluent API is LINQ itself, as you’ll see later on.

70 CHAPTER 2 Introducing the C# Programming Language

Lambda Expressions
Although C# has been an imperative object-oriented programming since the very begin-
ning, language paradigms have been added over the years. One such paradigm is func-
tional programming, the ability to write programs based on the use and definition of
mathematical function.

NOTE

In fact, one of the key enablers for functional programming in C# was added in the sec-
ond release of the language: closures. We won’t go into details right now, except to say
that turning programming paradigms into first-class citizens in an existing language
often takes more than one feature.

Lambda expressions are simply that: definitions of functions, but in a very concise form
with little syntactical ceremony. Because the underlying platform supports delegates as a
way to pass pieces of code around, lambda expressions can leverage this infrastructure and
be converted into delegates. The following example illustrates the creation of a function
that adds two numbers together, with and without the use of lambda expressions:

// C# 2.0 style

Func<int, int, int> add20 = delegate (int a, int b) { return a + b; };

// C# 3.0 style

Func<int, int, int> add30 = (a, b) => a + b;

The Func<T1, T2, R> type used in this example (with all parameters substituted for int) is
a generic delegate for a function that takes in something of type T1 and T2 and returns
something of type R. Its definition looks like this:

delegate R Func<T1, T2, R>(T1 arg1, T2 arg2);

WHERE THE NAME LAMBDA COMES FROM

Where the heck does a fancy name like lambda come from? The answer lies in the
lambda calculus, a mathematical framework to reason about functions, developed in
1928 by Alonzo Church. Lambda is actually a Greek letter, λ, and happened to
be chosen to name the theory. (Other calculi named after Greek letters exist, such as
the Pi calculus, which is used in the domain of parallel computing.)

It took about 30 years for this mathematical foundation to be applied in the domain of
computer science. LISP (due to McCarthy) was created in 1958 and can be considered
the first functional programming language, although it wasn’t directly based on the
λ-calculus. (Even though there was a lambda keyword, it didn’t follow the rules
of the calculus strictly.) A few years later, in the early 1960s, Landin used the
λ-calculus in the design of Algol-60.

71The Evolution of C#

Today, lots of functional programming languages are built on top of the groundwork
provided by the λ-calculus and its derivatives that mix in type theory. The inter-
ested, math-savvy reader is strongly encouraged to have a peek at those theoretical
foundations: They can only make you a better programmer. Luckily, very little of this
theory is required for C# developers to take advantage of lambda expressions, which
you’ll see as we cover them in more detail.

This evolution illustrates the continuous knowledge transfer between the domain of
pure mathematics and computer science. It’s a very healthy attitude for language
designers to make sure the things they’re doing have a strong mathematical founda-
tion. If the mathematicians haven’t figured it out yet, chances are slim that solid
language features are built from loose ideas. Pretentious as it may sound, “mathemati-
cians are always right” ought to be an axiom for programming language designers.

But why should we care about functional programming? I can come up with many good
reasons, but the most prominent one nowadays is the challenge we’re facing in the
world of multicore processors. It turns out functional programming is one promising
avenue toward effective use of multicore processors, thanks to their side-effect-free
nature. The pure functional programming language Haskell uses so-called monads (yet
another mathematical concept, this time from the world of category theory) to track
side effects in types. It turns out C#’s LINQ feature is deeply related to monads, as we
discuss later when we talk about LINQ in more depth in Chapter 19, “Language
Integrated Query Essentials.”

One use of lambda expressions is in LINQ queries where they’re invisibly present. For
example, the use of the where clause specifies a filtering condition for the records being
queried. Such filters, also known as predicates, can be expressed as little functions that
take in a record and produce a Boolean value indicating whether the record should be
included in the result set.

To illustrate this briefly, the following two queries are equivalent, where the first one is
written using built-in syntactical sugar and the latter one has “compiled away” all built-in
language constructs:

var res1 = from product in db.Products

where product.Price > 100

select product;

var res2 = db.Products

.Where(product => product.Price > 100);

Notice the appearance of a lambda expression in this metamorphosis. We cover this trans-
lation in much more detail when talking about LINQ.

Expression Trees
One of the more exotic language features in C# 3.0 are expression trees, which are closely
related to lambda expressions. In the previous section, you saw how lambda expressions
are used—potentially invisibly—in LINQ queries to represent little bits and pieces of a

72 CHAPTER 2 Introducing the C# Programming Language

query, such as a filter’s predicate function or a projection’s mapping function. For local
query execution, it makes perfect sense to compile those lambda expressions to pieces of
IL code that can run on the local machine. But when the query is supposed to run
remotely, say on a relational database engine, it needs to be translated into a target query
language, say SQL.

LINQ providers that target external data stores therefore need a way to cross-compile the
user’s intended query expression—that was written using LINQ—into whatever query
language they’re targeting, such as SQL, XPath, and so on. Various approaches can be
taken to solve this:

. Do not support extensibility for LINQ; instead, bake knowledge of various query
languages into the C# compiler and let it do the translation. Clearly this is unaccept-
able from a maintenance point of view and clashes with the main goal of LINQ (that
is, to provide unification of all sorts of query languages, including the ones we don’t
know of yet).

. Have LINQ providers decompile the intermediate language (IL) code that was
emitted by the C# compiler and go from there to the target query language. Not
only would this be far too complicated to be widely accepted by query provider
writers, but it also would prevent the compiler from changing its IL emission (for
example, to add more optimization, given that query providers would expect
specific patterns).

. Instead of turning lambda expressions directly into IL code, translate them into
some kind of intermediate representation with an object model that can be con-
sumed by query providers. This sounds much more promising, and this is where
expression trees come in.

So what are those expression trees? In essence, they are a way to represent code as data
that can be inspected at runtime. Consider the following lambda expression:

(int a, int b) => a + b;

Two possible translations exist. The first one is to turn it into IL code that’s readily avail-
able for local execution, using delegates:

Func<int, int, int> add = (a, b) => a + b;

int three = add(1, 2);

The alternative is to assign the lambda expression to an expression tree, in which case the
compiler emits the code as data:

Expression<Func<int, int, int>> add = (a, b) => a + b;

// the code represented by add can be inspected at runtime

A graphical representation of the expression tree used in our previous example is shown in
Figure 2.3.

73The Evolution of C#

Parameters Body

Left Right
a b

a

λ

+

b

FIGURE 2.3 Graphical representation of an expression tree.

NOTE

To be absolutely precise, the compiler turns an expression tree into code that builds
up a data structure representing the original code at runtime. This might sound mind-
boggling, but it’s not that hard. Our sample code for the add function is turned into
the following:

var a = Expression.Parameter(typeof(int), “a”);

var b = Expression.Parameter(typeof(int), “b”);

var add = Expression.Lambda<Func<int, int, int>>(

Expression.Add(a, b),

a, b);

When executed, this code calls into several factory methods that build up a data struc-
ture that represents (a, b) => a + b as data. For example, on the resulting add variable,
one could ask for its Body property, which would return a binary expression object that
represents the addition operation with operands a and b. Such knowledge can be used
by libraries like LINQ to SQL to turn the code the user wrote into efficient SQL queries.

Luckily, as a user of LINQ, you don’t need to know anything about all of this, but it cer-
tainly doesn’t hurt to know how things work behind the scenes.

ABOUT QUOTATIONS, META-PROGRAMMING, AND HOMO-ICONICITY

The concept of “code as data” is baked into the architecture of today’s computers,
which are based on the von Neumann machine. In such a machine, the memory
storage for instructions and data is the same, hence the ability to treat code as data.
The reverse is also true, treating data as if it were code, which is the most prominent
source of security bugs (for example, buffer overruns and execution of malicious script
that was downloaded with an HTML page).

However, the notion of “code as data” is far too useful to let it go. Unsurprisingly,
language features exploiting this rich capability have been around since the very begin-
ning. LISP, a language for LISt Processing created in 1958, has a mechanism called
quotations to suppress direct evaluation of expressions. Two LISP expressions are
shown here, both adding two numbers but the latter being quoted:

(+ a b)

‘(+ a b)

74 CHAPTER 2 Introducing the C# Programming Language

It’s not hard to figure out where the name “quotations” comes from, is it? LINQ expres-
sion trees actually have an expression node type named after this (constructed through
the Expression.Quote factory method), and the F# language has built-in support for a
similar mechanism of quoting pieces of code:

let add (a:int) (b:int) = a + b

let quotedAdd (a:int) (b:int) = <@ a + b @>

All of those quotations are similar in nature to the C# 3.0 expression:

Expression<Func<int, int, int>> add = (a, b) => a + b;

The ability to represent code as data is the cornerstone to enabling meta-programming
facilities in the platform and the language. Meta-programming is the capability of code
to inspect and manipulate code at runtime, which is a very rich concept. It might sound
rather abstract at first, but it’s real and in use today. Tools such as Reflector are one
example of inspection of code. Frameworks such as the LINQ provider model illustrate
the richness of runtime code inspection, too. Refactoring tools are a form of code
manipulators.

Expression trees in C# 3.0 (and VB 9.0) form the tip of the iceberg of the envisioned
meta-programming capabilities on the .NET platform. With the release of .NET 4.0 and
the dynamic language runtime, those expression trees have grown out to full-fledged
statement and declaration trees that can represent whole programs.

Finally, some trivia for true geeks. The capability to represent code written in a lan-
guage by other code in that language makes that language deserve the status of being
homo-iconic: homo = same, iconic = representation. Since version 3.0, C# has been
homo-iconic for the expression subset of the language, thanks to the introduction of
expression trees.

As you can see, expression trees are a very powerful concept to inspect code at runtime
and have a reach that goes much beyond their use in LINQ. One can think of them as
“reflection on steroids,” and their importance will only increase in the releases to come.

Auto-Implemented Properties
One feature outside the direct realm of LINQ made it into the C# 3.0 release: automati-
cally implemented properties. With this feature, adding trivial properties to a type defini-
tion becomes much prettier than it used to be.

What’s a “trivial property,” anyway? Properties are sometimes called smart fields, so one of
the most common patterns is to wrap field accesses in a property, and that’s it:

private int _age;

public int Age
{

get { return _age; }
set { _age = value; }

}

75The Evolution of C#

You’ll agree that exposing the field directly wouldn’t be a good idea because of the lack of
encapsulation, a crucial technique in object-oriented programming. But why should we
even have to bother defining an internal backing field if all we do with it is expose it
through a property directly?

That’s where auto-implemented properties come in. In C# 3.0, you simply get to write the
following instead:

public int Age

{

get; set;

}

The compiler synthesizes a private hidden backing field for you, and life is good. Both a
getter and a setter are required, but they support having different visibilities (for example,
to create more or less immutable data structures):

class Person

{

public Person(string name)

{

Name = name;

}

public string Name

{

get; private set;

}

}

If you ever want to turn the property into a nontrivial one, you can still go back to the
classic syntax and manually implement a getter/setter accessor without breaking the prop-
erty’s consumers.

NOTE

Some people refer to this feature as “automatic properties.” I don’t like that because
the word automatic seems to make people attribute magical runtime powers to those
properties (“Hey, it’s automatic...ought to be better”), even though they’re nothing but a
compile-time aid to reduce the amount of code a developer has to type. That alone
makes them a bit magic, but solely at compile time. This said, I can understand why
people want to abbreviate language feature names in spoken language; after all, terms
such as auto-implemented properties can be quite heavy on the tongue.

76 CHAPTER 2 Introducing the C# Programming Language

C# 4.0: Reaching Out to Dynamic Languages

The introduction of LINQ was a theme that drove the language evolution for both
C# and Visual Basic in the .NET Framework 3.5 timeframe. This kind of scenario-
driven language design formed a milestone in the history of the language and has

been received very well by developers. Following this philosophy, C# 4.0 also focuses on
making a key scenario that causes grief for developers much easier to deal with. Where C#
3.0 made data access easier, the fourth release of the language aims at making code access
much simpler than it used to be.

A Perspective on Dynamic Languages
The capability to bridge the gap between different languages has always been a core design
theme of the .NET platform, leading to its unified type system and code-execution infra-
structure. However, before the advent of the DLR, there was a dark spot in the language
integration gamma: dynamic languages. Despite the goal to simplify cross-language inte-
gration, little attention was paid to the domain of dynamic languages. This isn’t too
surprising, considering their popularity was relatively low at the time the CLI was
designed, therefore making statically typed languages a much more attractive target for
the platform.

Around 2005, half a decade later, the resurgence of dynamic languages was accepted as
fact. Technologies like JavaScript gained attention because of AJAX web programming,
interactive development experiences brought by languages like Python grew in popularity,
and the meta-programming facilities of platforms like Ruby on Rails made it an attractive
target for web programming. Dynamic was back, potentially stronger than ever.

THE STORY OF A GUY CALLED JIM... OR HOW THE DYNAMIC LANGUAGE
RUNTIME WAS BORN

Not everyone believed that CLR would be a good fit as the underlying runtime to enable
execution of dynamic languages. One such guy was Jim Huginin, who created Jython,
an implementation of the Python language on the Java Virtual Machine (JVM).

But why was this perception of the CLI being an unfriendly environment for dynamic
languages hanging around? Remember Project 7, the initiative run at the time of the
CLI’s inception to port a set of popular languages to the CLI as a sanity check for the
multilanguage design of the platform. Back then, an attempt, led by ActiveState, was
made to implement Python on .NET, concluding the performance of the CLI to be inade-
quate for dynamic language execution.

Jim wanted to figure out what made the CLR a hostile environment for dynamic
languages and decided to have a go with a .NET-based Python implementation. His
plan was to share his findings in a paper titled, “Why .NET Is a Terrible Platform for
Dynamic Languages.” In a matter of a couple of weeks, Jim had a prototype ready and
came to realize it actually ran much faster than Jython. Jim became a convert to the
CLR and joined Microsoft in August 2004 to become the architect of the Dynamic
Language Runtime, with IronPython as the first language on top of it.

77The Evolution of C#

At a later stage, IronRuby was added to the family of dynamic languages targeting the
DLR, and implementations of the DLR and both languages were shared with the .NET
community through Microsoft’s shared-source site CodePlex. Since the release of .NET
4.0, the DLR has become an integral part of the framework.

What Makes a Language Dynamic?
Often abbreviated as dynamic languages, we really mean to say dynamically typed
languages. So the core difference between those languages and their static counterparts is
in the typing. Let’s explore this a little bit more to set the scene.

In a statically typed language, the compiler knows the types of all the variables, fields, and
method parameters that occur in a program. Therefore, it can carry out compile-time
checking to make sure operations invoked on these objects are valid based on the type
information available. For example, in the following piece of code, the compiler knows
that the type of variable s is System.String (because we’ve declared it as such), and from
that it can prove that ToUpper is a valid method call because System.String has it:

string s = “Some text”;

string u = s.ToUpper();

NOTE

Do not confuse local variable type inference—the var keyword introduced in C# 3.0—
with dynamic typing. This feature still provides full strong and static typing; it just
enables us to let the compiler figure out the type on our behalf. Nevertheless, if we
attempt to carry out a nonexistent operation on an implicitly typed local variable, the
compiler will still detect the problem. In other words, type checking still happens at
compile time.

For example, the two declarations in the following code mean exactly the same (both
variables have type System.String, which was inferred for the latter one):

string s1 = “Some text”;

var s2 = “More text”;

However, typing any of those variables as dynamic has a fundamentally different mean-
ing, causing runtime lookups to happen for every operation invoked on it.

On the other hand, in a dynamically typed language, we don’t need to specify any types
upfront. Typically, there’s no need for the developer to compile the code (often referred to
as “script” in the context of dynamic languages); instead, it gets executed immediately
through interpretation or by compiling the code at runtime. This allows for a very interac-
tive experience where code can be typed and executed immediately in an interactive
prompt, just like command shells. The following is an example of dynamically typed code:

s = “Some text”

u = s.ToUpper()

78 CHAPTER 2 Introducing the C# Programming Language

Only at runtime can the system determine whether ToUpper is a valid operation to be
carried out on variable s because type information becomes available only at that point. If
s would happen to be an integer value instead, the call to ToUpper would fail no earlier
than at runtime.

WORD OF THE DAY: REPL

Interactive prompts for programming languages are called REPLs, which stands for
read-eval-print-loop: Code is read from the console, evaluated by some runtime service,
and the result is printed out. This interactive process keeps going until the developer
quits, making it a loop.

However, lots of people believe REPLs are a luxury exclusively available to the dynamic
language programmer. Nothing is further from the truth, though. Nowadays, statically
typed languages like F#—and potentially C# in a future release—offer interactive
prompts while preserving full static typing. It’s just that those environments typically do
a great deal of type inference to reduce the amount of types the user has to specify
explicitly.

The “Static Versus Dynamic” War
Dynamic languages have caused quite some controversy over the years, especially in circles
of believers in statically typed languages. The advantages of static languages are numerous:

. Robustness is perhaps the most cited benefit of static typing. The capability to catch
problems early by means of static type checking enables you to uncover issues early.
Or in other words, if it compiles successfully, it runs.

. Performance is another big advantage attributed to static typing. Because no runtime
support is required to resolve members on types, the compiler can emit efficient
code that doesn’t beat about the bush.

. Rich tooling support can be realized by leveraging the type information that’s stati-
cally available at development time. Popular power toys like refactoring engines and
IntelliSense are just a couple of examples of this.

. Scalability should be called out, too. The capability to make types a means for defin-
ing strong contracts between different components has the potential of reducing the
maintenance cost of complex systems as the system grows.

Nevertheless, it’s wrong for statically typed languages believers to curse all the dynamic
world as if it were inferior. In times when the Internet is glued together by script execu-
tion, loosely typed XML files are flying around, and large frameworks—such as Ruby on
Rails—have been written based on dynamic languages, we can’t close our eyes and ignore
dynamic typing.

The truth is there are increasing numbers of things that are weakly typed: XML without
an XSD schema, REST services, Python and Ruby libraries, even old COM APIs, and so on.
Before the advent of the DLR and .NET 4.0, the dynamic landscape was rather worrisome

79The Evolution of C#

for developers. Static language compilers refuse to emit code that’s loosely typed, and
therefore people have been looking for different ways to overcome this limitation through
APIs. Unfortunately, there’s no general approach to writing dynamic code. Each dynamic
“domain” has its own APIs without any unification or consolidation between the domains
whatsoever.

For example, suppose you get a .NET object from somewhere whose static type you don’t
know, but you happen to know the object has an Add method on it. To call it, you can’t
simply write the following:

object calculator = GetCalculatorFromSomewhere();

int three = calculator.Add(1, 2);

Instead, you have to go through the hoops of .NET reflection to call the method, like this:

object calculator = GetCalculatorFromSomewhere();

int three = (int)calculator.GetType().InvokeMember(“Add”,

BindingFlags.InvokeMethod, null, new object[] { 1, 2 });

It almost takes a Ph.D. to come up with this kind of code, and you get lots of new
worries in return: unreadable and hard-to-maintain code, potential optimization
headaches, and so on.

But matters only get worse as you enter different domains. Instead of being able to reuse
your knowledge about dynamic invocation techniques, you must learn new APIs. For
example, the following code tries to reach out to a JavaScript calculator object through the
Silverlight APIs:

ScriptObject calculator = GetCalculatorFromSomewhere();

int three = (int)calculator.Invoke(“Add”, 1, 2);

Similar in spirit but different in shape. This is just the tip of the iceberg; lots of other
domains face similar problems, even though developers hardly think about it anymore.
What about the XML you got from somewhere, without an XSD schema going with it? In
times of REST-based web services, such an approach is becoming more and more popular,
but consuming such an XML source gets quite painful:

XElement root = GetCustomerFromSomewhere();

int zip = int.Parse(root.Element(“Address”).Attribute(“ZIP”).Value);

This mess puts language designers at an interesting juncture: Either follow the direction of
static language purity or take a turn toward a “better together” vision. Either you can
make it incredibly hard for developers in static languages to reach out to dynamically
typed pieces of code or data (as shown earlier), or you can open up for a smooth road to
call into the dynamic world.

80 CHAPTER 2 Introducing the C# Programming Language

C# 4.0 dynamic does precisely that: makes it easy for developers to ease into various
domains of dynamically typed code and data. Just like LINQ unified data access, you
could see the dynamic feature unifies dynamic access. For example, the Calculator
example targeting either .NET objects or JavaScript objects could be written as follows:

dynamic calculator = GetCalculatorFromSomewhere();

int three = calculator.Add(1, 2);

PRAGMATISM VERSUS PURITY

The fact that C# 4.0 embraces dynamic typing to solve real-world problems developers
face emphasizes one of the core properties of the language: its pragmatic nature. This
is what makes C# such a popular language in the .NET community: its sense for real
problems by providing elegant solutions. LINQ is another example of this. Some may
say this affects the purity of the language, but the reality is there aren’t that many pure
successful languages out there. At the end of the day, software developers scream for
practical languages as opposed to the scientifically pure but impractical ones.

The dynamic Keyword
The only language surface for the dynamic feature is a correspondingly named keyword,
as shown in the previous example. Variables, members, or parameters that are typed as
dynamic will have late-bound behavior. This means whenever an operation, such as a
method call or property access, is invoked on the object, its resolution gets deferred
until runtime.

Let’s contrast early-bound code to late-bound code. The first example is early-bound code:

Calculator calculator = GetCalculatorFromSomewhere();

int three = calculator.Add(1, 2);

Here the compiler knows precisely what the type of the calculator variable is: It’s statically
typed to be Calculator, so operations on it can be checked during compilation. When the
compiler encounters the Add method call on the next line, it tries to find an overload
that’s compatible with taking in two integer values and returning an integer value. If it
finds a suitable candidate, it emits IL code to call that method immediately at runtime. If
no good overload is found, a compile-time error results.

In the dynamically typed code, the call to Add is resolved at runtime:

dynamic calculator = GetCalculatorFromSomewhere();

int three = calculator.Add(1, 2);

Now the compiler doesn’t even bother to find an Add method at compile time because it
simply doesn’t know what the type of the calculator variable will be. Instead of emitting
IL code to call directly into a known early-bound method, it emits code to invoke the
overload resolution logic at runtime. If a good match is found, the DLR will step in to

81The Evolution of C#

provide efficient call site code generation so that subsequent calls do not suffer from over-
load resolution again. If overload resolution fails, a runtime exception results.

DYNAMIC != VAR

Do not confuse the dynamic keyword with the var keyword from C# 3.0. The var
keyword is as statically typed as it possibly can; it just enables you to omit the type
and let the compiler infer it for you:

var languages = new List<ProgrammingLanguage>();

The preceding line means exactly the same as the much more verbose variant:

List<ProgrammingLanguage> languages = new List<ProgrammingLanguage>();

Trying to call a nonexistent method on the languages variable, say the misspelled Addd
method, will result in a compile-time error. Or even better, the Visual Studio editor will
catch the error immediately because all static type information is readily available.

In contrast, with the dynamic keyword, you’re essentially telling the compiler not to
bother attempting to infer the type, having it do overload resolution at runtime instead.

A more detailed explanation about how the C# compiler emits code that causes the DLR
to kick in—allowing it to reach out to any kind of dynamically typed code—will follow in
Chapter 22, “Dynamic Programming.”

STATIC WHEN POSSIBLE, DYNAMIC WHEN NECESSARY

The introduction of dynamic doesn’t mean you should start rewriting all your statically
typed code to use dynamically typed code instead. Static typing has many advan-
tages, and C# stays faithful to that belief. So whenever possible, use static typing—
it’s pure goodness.

But other than before the introduction of C# 4.0, when you absolutely need to go for
dynamic typing, it’s no longer a mission impossible to get it to work while keeping the
code readable and maintainable. What the new dynamic feature really enables is to
“gradually ease into” dynamic domains without sacrificing developer productivity.

By the way, if you don’t like dynamic at all and you want to keep people from using the
feature, I have good news. It’s relatively straightforward to disable dynamic support sim-
ply by emitting the “C# binder” during compilation (which can be achieved through the
Visual Studio 2010 IDE, for instance). I’ll get back to that later when we cover dynamic
end to end.

What the DLR Has to Offer
Execution of dynamically typed code relies on quite a few runtime services, such as over-
load resolution, code generation, and caching of acquired runtime data, to improve effi-
ciency of calls. Let’s explore what’s involved in making a dynamic call.

First, the language compiler generates code to package up all the information it has about
the intended call. This includes the type and name of the operation being invoked—for

82 CHAPTER 2 Introducing the C# Programming Language

example, a property called Price, a method called Add, and so on—as well as information
about the arguments passed in to it. To turn this information into usable information at
runtime, the compiler emits code that targets helper libraries, collectively called the C#
binder. Other languages targeting dynamic code have similar binders.

Next, during execution, the runtime type of the target and arguments of the call become
available. Now it’s up to the target domain—for example, Python, Ruby, JavaScript, regular
.NET objects, COM APIs, you name it—to decide whether that call makes sense. This is the
part that is involved with overload resolution and such, allowing the target domain to
enforce its semantics. Each such domain has a runtime binder to carry out those tasks.

If a suitable operation target is found, the runtime binder emits expression trees that
contain the code required to carry out the call. From this point on, all that keeps us from
executing the code is a runtime translation of the expression trees into code that can run
on the underlying execution engine, the CLR.

This last part, where expression trees get turned into real code, is the crux of the DLR.
Among code generation, it also offers APIs for the expression trees it accepts, as well as
runtime services to cache generated pieces of codes and provide fast paths to a call target,
bypassing all runtime binder interactions after initial calls have been made. So where the
CLR provided common infrastructure for statically typed languages, the DLR acts as a
library on top of it, ameliorating it with support for dynamically typed languages.

NOTE

The expression trees used by the DLR are the natural evolution of LINQ’s expression
trees that were introduced in the .NET 3.5 timeframe. In the world of querying, the only
required “code as data” formats required are expressions: roughly, things that evaluate
to have a value (for example, predicates or projections):

person.Age > 25

Expressions are insufficient to represent complete meaningful programs. To do that, we
need statements that include control flow constructs such as loops and conditions:

if (person.Age > 25)

Console.WriteLine(“Hello, “ + person.Name);

The DLR needs to be able to deal with the latter format for sure because it provides a
unified execution back end for dynamic languages like Ruby and Python that hand over
the user’s code in a tree format. Trees with the capability to express statements are
called (how original) statement trees.

There’s yet another level above statement trees: declaration trees. With these, it also
becomes possible to represent entire type and member definitions in a tree format
that can be consumed by the runtime and tools to generate IL code.

Confusingly, the collective set of trees is often referred to as expression trees, even
though they have more expressive power than the original LINQ expression trees. What
makes expression trees—sensu lato—an interesting topic is their role as the corner-
stone in enabling “compiler as a service.” To get to know what that is, read on.

83The Evolution of C#

IronPython

Expression Trees Dynamic Dispatch Call Site Caching

IronRuby C# Visual Basic Others…

Dynamic Language Runtime

.NET
Binder

JavaScript
Binder

Python
Binder

Ruby
Binder

COM
Binder

FIGURE 2.4 Dynamic language runtime architecture.

The end-to-end picture of the DLR’s role in enabling this full mesh between lots of front-
end languages and even more dynamic target domains is shown in Figure 2.4. Some of the
binders mentioned here are available out-of-the-box, while others ship with separate
downloads, such as the IronRuby distribution.

Starting with .NET 4.0, the DLR is available out of the box as part of the .NET
Framework, for languages to be implemented on top of it and for others to bridge with
the dynamic world.

Improving COM Interop
Despite the .NET platform’s classification as a successor to COM, there are still a huge
number of COM-based APIs around that developers need to integrate with. Since the earli-
est version of the .NET Framework, COM interop facilities have been built in to the
runtime and the libraries to make this possible, mainly with regard to mapping of types
back and forth and to facilitate COM calls.

At the same time, the designers of C# thought it was inappropriate for the language to
support a COM style of programming where it’s not uncommon to have methods that
take a bunch of parameters, most of which are optional and/or passed by reference. Part of
the whole .NET design mission was to make APIs more consistent and approachable, and
COM wasn’t always a particularly good stylistic example.

This led to an unfortunate dichotomy where Visual Basic (and Managed C++) were much
more attractive languages to deal with COM interop, leaving C# developers out in the
cold. Although various COM APIs have been exposed through cleaner managed APIs, the
capability to talk to the bare COM metal is still required often enough to warrant the
design and implementation of improved COM interop in the C# language.

One classic example of COM-based APIs is the Office automation libraries, which can be
accessed in managed code through primary interop assemblies (PIAs) that are available

84 CHAPTER 2 Introducing the C# Programming Language

from Microsoft. Here is an example of interop code required to create an Excel chart
using C# 3.0:

Excel.Worksheet wks = GetWorksheet();

// ...

wks.Shapes.Add(XlChartType.Bar, Type.Missing, Type.Missing, 400, 300);

Notice the use of Type.Missing to fill in the holes for optional parameters? With C# 4.0, it
now becomes possible to specify parameters by name, like this:

Excel.Worksheet wks = GetWorksheet();

// ...

wks.Shapes.Add(XlChartType.Bar, Width: 400, Height: 300);

The capability of APIs to declare optional parameters by supplying a default value and for
consumers to skip such parameters vastly improves common COM interop scenarios. We
refer to this tandem of features as named and optional parameters.

NAMED PARAMETER SYNTAX

You might wonder why the colon (:) symbol is used to specify values for parameter by
name, as opposed to the more natural-looking assignment (=) symbol. The reason,
once more, is backward compatibility. Although it’s strongly discouraged to write code
like this, it’s perfectly valid to do so in C#:

wks.Shapes.Add(XlChartType.Bar, Width = 400, Height = 300);

This piece of code assigns the value 400 to something with the name Width, using the
resulting value from that assignment as the second parameter to the Add method call.
This is similar for the third parameter, which gets its value from a side-effecting assign-
ment operation, too. If this syntax were to be used for named parameters, existing
code that relies on this would start breaking. Although people who write this sort of
code should be punished, backward compatibility means a lot to the C# team, and
hence the alternative syntax with the colon was chosen.

Another feature introduced in C# 4.0 is the capability to omit the ref modifier on para-
meters for COM interop method calls:

Word.Document doc = CreateNewDocument();

// ...

string fileName = “demo.docx”;

object missing = Type.Missing;

doc.SaveAs(ref fileName,

ref missing, ref missing, ref missing,

ref missing, ref missing, ref missing,

ref missing, ref missing, ref missing,

85The Evolution of C#

ref missing, ref missing, ref missing,

ref missing, ref missing, ref missing);

No less than 15 optional parameters, all of which had to be supplied by reference! With
C# 4.0, you get to write the code as it was always intended to look by the COM API:

Word.Document doc = CreateNewDocument();

// ...

doc.SaveAs(“demo.docx”);

This feature is known as the optional ref modifier.

NOTE

Optional ref modifiers are not a general language feature; this relaxation for parame-
ter passing by reference applies only to COM interop scenarios, where this style is
the default.

The need to specify the ref modifier explicitly in all other cases is pure goodness. It
makes it very explicit for readers to see where arguments are passed by reference
and where not:

int answer = 42;

Do(ref answer);

// The answer might not longer be 42 as it was passed by reference.

Being explicit about this prevents surprises, especially because passing arguments by refer-
ence is not the default in .NET. In COM, that’s different, causing lots of syntactical noise
when trying to use such APIs in managed code. Therefore, it makes sense to relax the rules
for those scenarios.

Although we’re in the domain of method calls, another feature worth mentioning is the
automatic mapping for parameter and return types from object to dynamic. Lots of COM
APIs deal with System.Object-typed parameters and return types to allow maximum flexi-
bility. However, to deal with those from managed code, one typically wants to cast to
some interface (corresponding to a QueryInterface COM call) provided for COM interop.
This gets cumbersome pretty soon, requiring lots of boilerplate code, especially when
dealing with return values. This kind of experience is often referred to as “peter-out
typing” because along the way you lose strong typing:

Workbook workbook = GetWorkbook();

Worksheet sheet = (Worksheet)workbook.Sheets[“Products”];

Range range = (Range)sheet.Cells[1, 1];

// Use the selected range.

In the C# 3.0 code here, the return types for the indexers into the Sheets and Cells

collections are statically typed to System.Object, so we need to cast to the appropriate

86 CHAPTER 2 Introducing the C# Programming Language

interface to continue. The reality is that COM is a dynamic experience to begin with—the
IDispatch interface being the ultimate example—so it makes sense to reduce this friction
when dealing with COM interop. Therefore, starting from .NET 4.0, occurrences of
System.Object in COM APIs are substituted by dynamic. This causes the DLR to kick in
and use the COM binder to call into the underlying COM APIs:

Workbook workbook = GetWorkbook();

Range range = workbook.Sheets[“Products”].Cells[1, 1];

// Use the selected range.

A final language feature that falls under the umbrella of improving COM interop is known
as “no PIA.” (Kind of weird for a language feature to have a negation in it, isn’t it?)
Historically, Microsoft has shipped so-called PIAs for popular COM libraries, containing
the exported type definitions with several enhancements to make the APIs easier to
consume from managed code. Although great, PIAs are typically hogs in terms of size, and
in the majority of cases only very small parts of the library are used. This causes grief with
regard to the size of applications—relevant for deployment—and because of the runtime
cost associated with loading giant assemblies.

With “no PIA,” the compiler can grab all the bits and pieces of a PIA that are used within
the application’s code and copy them into the application assembly being built. This elim-
inates the need to redistribute PIAs and reduces the load cost to a minimum.

LANGUAGE CO-EVOLUTION

Since the introduction of .NET, Microsoft has offered two mainstream managed code
languages: C# and Visual Basic. Although this perfectly illustrates how the platform
enables a wide variety of languages to be used for managed code development, it’s
been a major source of confusion for developers who have to make a language choice.
Both languages more or less target the same group of developers, writing enterprise
applications of various kinds.

Ideally, the main reason to prefer one language over another should simply be a matter
of background and personal preference. People coming from a C++ or Java background
will feel more at home in C#, whereas those who had prior exposure to Visual Basic 6
or earlier will find Visual Basic .NET more attractive.

In reality, differences in the gamma of language features offered by both languages
have been a source of frustration, forcing people to choose a particular language or be
left in the dark with missing features. Over the years, it became apparent this patholog-
ical situation should be dealt with, and starting from .NET 4.0, Microsoft has commit-
ted to “co-evolution” for both languages, making sure they keep on par with regard to
features being added.

One can see traces of this commitment in both languages today. C# 4.0 is adding
named and optional parameters, something Visual Basic has had from the start. In the
opposite direction, Visual Basic 10 now supports auto-implemented properties that
were in C# since version 3.0.

87The Evolution of C#

Covariance and Contravariance
Without a doubt, the most fancy-sounding new feature in C# 4.0 is generic interface and
delegate type co- and contra-variance. I won’t dive into details on the technical terminol-
ogy used here, so let’s just focus on what it enables instead.

A common situation people ran into when using LINQ was the following:

IEnumerable<Person> result = from student in db.Students

where student.Name.StartsWith(“B”)

select student;

In this piece of code, the type of the elements in the Students table is Student, which is a
subtype of Person. However, to treat the resulting sequence—an IEnumerable<Student>—
in a more general fashion, we’d like to assign it to a variable of type IEnumerable<Person>
instead. In C# 3.0, people were surprised you couldn’t do this, although it seems safe on
the surface.

The reason this didn’t work is because generic types were treated invariantly by the
language before the introduction of C# 4.0. This means generic parameters had to match
exactly for the assignment to work. However, IEnumerable<T> is safe to be used covari-
antly, which means an object of type IEnumerable<SubType> can be used where an
IEnumerable<SuperType> is expected. Why is this safe to do? I’ll omit all the gory details,
but the essential point is that the generic parameter is only used in “output positions” in
the interface definition:

interface IEnumerable<T>

{

IEnumerator<T> GetEnumerator();

}

Because it’s only possible to get values of type T out of the interface (through the enumer-
ator object, that is), it’s safe to treat them as less derived: “Okay, we got Student objects
back, but ignore the things that make a Student special and treat them as regular Person
objects instead.” However, if we’d be able to feed objects in through the interface, this
wouldn’t be safe anymore (for example, because you’d be able to stick a Docent object into
the collection while consumers expect objects to be of type Student). This would breach
type safety.

A similar issue exists when generic parameters are used in input positions (for example, on
the IComparer interface shown here). In C# 2.0 and 3.0, the following wouldn’t compile:

IComparer<Person> personComp = GetPersonComparerByWeight();

IComparer<Student> strComp = personComp;

Intuitively, you can see this should be fine: if something can compare arbitrary Person
objects, it ought to be able to compare Students, too, because every Student is a Person,
at least in our type hierarchy. This case is exactly the opposite as the IEnumerable<T> case:

88 CHAPTER 2 Introducing the C# Programming Language

Now we can treat something less derived (an IComparer for Person objects) as more
derived (comparing Students). We call this contravariance. Again, with C# 4.0 you’re now
able to do this.

Given that contravariance is the opposite of covariance, can you guess why this is safe for
IComparer<T>? Because this time T is used in “input positions” only, as illustrated here:

interface IComparer<T>

{

int CompareTo(T left, T right);

}

Typically, all you need to know about this theoretically very interesting feature is that
now you can do the things you were surprised you couldn’t do before. This reflects the use
of covariance and contravariance. The feature is symmetrical, though, allowing developers
to declare generic interface or delegate types with variance annotations on type parame-
ters. How this has been done for the BCL types IEnumerable<T> and IComparer<T> is
shown here:

interface IEnumerable<out T>

{

IEnumerator<T> GetEnumerator();

}

interface IComparer<in T>

{

int CompareTo(T left, T right);

}

Here the in and out keywords are used to indicate the variance treatment for the parame-
ter. Covariance is specified using the out keyword, restricting the type parameter’s use to
output positions only. Likewise, contravariance is indicated using in, this time allowing
the parameter to be used in input positions only. The compiler will enforce this to make
sure you don’t put type safety at risk.

NOTE

Covariance and contravariance are not limited to the context of generic types. In fact,
since C# 3.0, the language has support for both types of variance for (nongeneric)
delegate types. This proves particularly handy when dealing with event handlers.
Suppose, for example, we want to have one handler both for a MouseClick event on a
button and a KeyPress event on a text box. These events are defined as follows:

public event MouseEventHandler MouseClick;

public event KeyPressEventHandler KeyPress;

89A Sneak Peek at the Future

The delegates used to define the events look like this:

delegate void MouseEventHandler(object sender, MouseEventArgs e);

delegate void KeyPressEventHandler(object sender, KeyPressEventArgs e);

While having specialized knowledge about the events that occurred through their argu-
ments (for example, the mouse cursor position at the time of the click), we might just
be interested in the mere fact that any of those events happened without requiring
additional context. In other words, we want to write the following:

txtAmount.KeyPress += this.LoggingHandler;

btnSave.MouseClick += this.LoggingHandler;

In this case, the event handler method is declared like this:

private void LoggingHandler(object sender, EventArgs e)

{

// ...

}

See what we just did? We used the common super-type System.EventArgs on our gen-
eral-purpose logging handler. Thanks to C#’s delegate covariance and contravariance
feature, this is allowed, providing more flexibility when matching method signatures
against delegate types. Parameter types are treated contravariantly, while return types
are treated covariantly.

A Sneak Peek at the Future
Now that we’ve seen the current state of affairs of the C# language, let’s talk a bit about
the influences that are shaping the language’s future.

Multiparadigm

Traditionally, programming languages have been classified based on the paradigms on
which they’re based:

. Imperative programming languages use statements to modify the state of a program.
Those languages are very machine-oriented and reflect how the underlying hardware
works, hence giving developers low-level control over the system. Writing software
following this paradigm is about stating “how” execution needs to happen, not just
about “what” the problem is that needs to be solved. The earliest imperative
programming language was FORTRAN, and popular descendants include COBOL,
BASIC, Pascal, and C.

90 CHAPTER 2 Introducing the C# Programming Language

. Procedural programming extends on the foundation laid by imperative languages,
adding more structure to the way software is written by adding the concept of proce-
dures. Declared once, procedures can be called many times to reuse pieces of code.
This also helps to isolate state used across multiple procedures, making the program
as a whole more modular. It also gets rid of excess use of GOTO to control the flow
of execution.

. Object-oriented (OO) programming is today’s most popular paradigm to tame
complexity of software. Code is divided into object definitions (types) that define
state and operations on that state. By keeping the internal state of an object hidden
from the outside world (known as encapsulation), better modularity arises. Other
techniques in the OO paradigm include polymorphism and inheritance. Languages
such as Smalltalk, Eiffel, C++, Java, C#, and Visual Basic .NET can be classified as
object-oriented.

. Declarative languages shy away from modification of machine state and take a top-
down approach, starting from the problem definition (what) and hiding the execu-
tion details (how) such as control flow from the developer. This style reduces the
number of side effects and is regaining attention lately because of concurrent
programming.

. Functional programming is a subcategory of declarative programming. As the name
implies, it’s based on the concept of mathematical functions, avoiding mutation of
state and side effects whenever possible. This makes reasoning about the program’s
behavior easier and has the tendency to eliminate whole classes of bugs. It also
allows parallelization of execution with fewer worries than in the imperative world.
Sample languages include LISP and Schema, the ML-family of languages, and its
derivatives like F#, Haskell, and Erlang; but even spreadsheets can be considered
functional.

. Logic programming is more of a niche market but is another great example of
declarative programming. This paradigm tends to be popular in the development of
rule engines. The idea here is that the developer expresses logical rules, after which
logical questions can be asked to the program, having it figure out how to prove or
disprove the correctness of the question. Probably the most notable logic program-
ming language is Prolog.

Yet another taxonomy is established along the axis of typing, with a distinction between
statically and dynamically typed languages.

Over the years, C# has become more and more of a multiparadigm language, with bits and
pieces from various domains. “Pure” languages do not seem to have the reach they once
had for filling in the needs for general-purpose programming tasks.

At its core, C# is an object-oriented programming language, and .NET’s BCL is based on
the principles of OO. Since the introduction of C# 3.0, one can argue that C# has become
a functional programming language, too, with first-class functions and concise notation
using lambda expressions. This happened “by accident” somewhat as a side effect of

91A Sneak Peek at the Future

introducing LINQ, which is based on the lessons learned from the functional program-
ming world.

NOTE

Categorizing C# as a functional programming language is acceptable in the broad
sense of the term: the capability to program with functions. However, true functional
programming makes every use of side effects explicit through so-called monads. The
form of functional programming can be seen as extremist pure functional programming.
Haskell is the best example of a language that falls under this category.

The truth is we need side effects to do useful stuff. If everything were a pure mathe-
matical function, we could substitute our whole program by a simple constant. Even
simple tasks such as input/output (for example, from/to the screen) should be consid-
ered side effects. Requiring the developer to be explicit, in terms of types, about side
effects everywhere they occur doesn’t fit very well in a framework that’s centered on
the OO paradigm where mutation is a core feature.

With the introduction of C# 4.0, one can say C# has also become a dynamic language,
though; the use of dynamic dispatch is made very explicit through the use of the new
dynamic keyword.

Moving forward, you can expect more paradigms to be added to the mix. Some people
argue this spoils the “purity” of the language, but in today’s melting pot of cross-language
interoperability—greatly stimulated by Internet programming—to be relevant, languages
need to have the means to reach out to other worlds easily. This is a common theme for
many languages today: Dynamic languages are adding islands of static typing, functional
concepts are observed everywhere (including C++0x, the latest C++ standardization
proposal), and so on

Language-Shaping Forces

To understand what to expect from the future evolution of mainstream programming
languages like C#, we should first take a look at the themes that are gaining popularity
and at the challenges ahead:

. Meta-programming facilities are popping up in various platforms today. Nearly every
enterprise application written today contains code that has been generated somehow
(for example, to wire up user interface controls, to carry out mappings like object-
relational [O/R], or to consume web services through generated proxy objects). This
trend is definitely calling for a more accessible object model to represent code.

. Concurrency was once a niche market given the low number of machines that could
execute code in parallel. Today it’s nearly impossible to purchase a new computer
with just one processor core in it. Because general-purpose programming languages
evolve, they’ll need to provide means to structure and write code that allows for
better parallelization. There are still lots of open questions in this space, with no
silver bullet.

92 CHAPTER 2 Introducing the C# Programming Language

. Declarative programming is about yielding more control to the runtime when it
comes to executing code. Today, developers tend to overspecify the solution to the
programming task at hand. Our programs are embarrassingly imperative, leaving the
runtime no choice but to execute the program exactly as it has been written, with
little room for the runtime to be smart about how to execute the program.

. Domain-specific languages (DSLs) bring islands of domain specialization to the pro-
grammer toolbox. When developing software, the original problem domain often
gets lost in the translation into concepts of language targeted by the programmer.
Over the years, we’ve seen an ever-increasing number of little specialized languages
being built for various domains (for example, querying). Allowing integration with
general-purpose languages might be next.

The next sections sketch a couple of ideas the language teams at Microsoft are playing
with as we speak. When and how those technologies will be shipped is something left
open for the time being.

Compiler as a Service

As I’m writing this chapter, the managed language teams at Microsoft are working full
speed to turn the C# and Visual Basic compilers into managed code for a subsequent
release of the framework. This work will open the road to lots of scenarios in the field of
meta-programming.

Today, Microsoft’s C# and Visual Basic language compilers are black boxes: Source code
goes in, and assemblies come out, but what goes on in the middle is shielded away from
the users. With C# 3.0, the need to expose parts of the code representation—expression
trees more specifically—became apparent as a cornerstone to allow the creation of LINQ
providers. In such a setting, LINQ providers play the role of runtime extensions of the
compiler, inspecting code as data and turning it to execution (for example, by generating
SQL statements).

This trend of opening up the code representation has continued with the advent of the
DLR, but moving forward it’s desirable to have an object model for code that can be
shared by various languages, including old giants like C# and Visual Basic. The port of the
compilers’ code bases to managed code is the first step in that direction.

NOTE

One can think of the code-as-data mantra as an extension to the reflection capabilities
that have been present right from the start of .NET. The use of reflection allows code to
inspect types and their structure at runtime and forms the cornerstone of dynamic
code execution.

With .NET Framework 1.x, reflection was a one-way street: only loaded assemblies and
their types could be inspected, but it wasn’t possible to build new types on the fly. In the
second release of the framework, this changed a bit with the introduction of Lightweight

93A Sneak Peek at the Future

C# and VBCompliers

Meta-programming

Richer Tooling
(e.g., Refactorings)

Read-Eval-Print Loop
(REPL)

DSL Embedding

Source
code

Source
code

Source
Code

Source
code

Source
code

IL Code +
Metadata

Class

Foopublic

Field

Xprivate

string

FIGURE 2.5 Compiler as a service.

Code Generation (LCG). Using LCG, code can be emitted at runtime but at a high devel-
oper cost: having to deal with IL instructions, which can be an error-prone business.

Other avenues to code generation have been explored in the past. One such technology
is the Code Document Object Model (CodeDOM), which enables developers to generate
source code at runtime, resulting in a source code graph that can then be consumed
by CodeDOM providers to compile the code into an assembly. Providers exist for Visual
Basic, C#, JScript, and F#. Although this model works for whole-type code generation,
it’s too coarse-grained and heavyweight for generation of small pieces of code (for
example, to represent a single method with no containing type). A typical use of
CodeDOM is for code generation tools, like O/R mappers.

With the development of the new generation of compilers, a unified code object model
arises that can be used for various scenarios ranging from tool-driven code generation
to lightweight code generation at runtime.

This whole idea is often referred to as compiler as a service (CaaS) because the managed
code compilers will become available as runtime libraries that are easy to deal with. With
this infrastructure in place, the meta-programming sky becomes the limit:

. Code manipulation and inspection tools like refactoring engines or code verifiers
like FxCop become available for anyone to write and extend.

. Read-Eval-Print-Loops (REPLs) come into reach for (mostly) statically typed
languages like C#, allowing for an interactive development experience.

. Model-driven software benefits from the capability to translate a model definition
into executable code at runtime.

94 CHAPTER 2 Introducing the C# Programming Language

FIGURE 2.6 Gordon E. Moore, cofounder of Intel Corporation.

. DSLs can now host islands of general-purpose code. (For example, an MSBuild file
could contain C# code fragments.)

. Compile-time participation becomes a possibility, allowing compile-time code rewrit-
ing for purposes such as optimization or instrumentation.

When exactly all of this will happen is yet unknown, but the potential is too big to be
ignored.

Taming the Concurrency Beast

Every software developer should have heard about Moore’s law:

The complexity for minimum component costs has increased at a rate of roughly a factor of

two per year. Certainly over the short term this rate can be expected to continue, if not to

increase. Over the longer term, the rate of increase is a bit more uncertain, although there is

no reason to believe it will not remain nearly constant for at least 10 years. That means by

1975, the number of components per integrated circuit for minimum cost will be 65,000. I

believe that such a large circuit can be built on a single wafer.

Gordon Moore, Electronics, Volume 38 (April 1965)

All the way back in 1965, Gordon Moore (cofounder of Intel) formulated his empirical
law, predicting a doubling of the number of electronic components on a chip roughly
once a year. In practice, this meant a steady exponential speed-up for processors, an ideal
excuse for software developers to stick their heads in the sand when it comes to perfor-
mance optimization: “Wait a few years, and what’s slow today will be fast enough.”

Although this law still holds, giving us more transistor density on chips, it no longer
comes with a proportional speed-up (due to heat-dissipation issues and such). So instead

95A Sneak Peek at the Future

of giving us higher clock speeds, processor vendors are now giving us more cores per chip.
Given this, we can expect the number of cores per chip to start doubling every so often.

As an example, I started writing this book on a 4-year-old dual-core laptop, and at the
time of this writing I’m as excited as an expectant parent awaiting the arrival of my
recently ordered quad-core notebook. However, excited as I am, it’s the depressing truth
that most software written today doesn’t know how to use that many cores effectively.

Up to this point, developers have been better off avoiding the use of software concurrency
primitives like threads because they come with many headaches such as deadlocks,
convoys, and livelocks, just to name a few. And even if threads were used by the average
developer, it was most likely to work around limitations in technologies such as the
single-threaded nature of user interfaces on Windows.

Today, we can no longer ignore the importance of structuring our code so that it can start
taking advantage of multiple cores. Threads, being the lowest-level primitive to introduce
concurrency in programs, are no longer sufficient to deal with this alone. What we need
instead are higher-order primitives that open up for fine-grained concurrency: tiny bits
and pieces of execution that can be done in parallel if the hardware permits it.

Over the years, many approaches to parallel programming have emerged:

. Immutability is not a technology by itself, but rather a design and coding style
focusing on eliminating shared writable mutable state. If modification of data is not
permitted, there’s obviously no need to protect it against simultaneous modification.
If data needs to be modified, new copies are made instead. The functional program-
ming paradigm stimulates this style, and it’s the default in F#.

. Software transactional memory (STM) preaches exactly the opposite of immutability.
Shared writable access is permitted, but mishaps, causing the data to become incon-
sistent, are dealt with through transactional semantics. This allows software to
continue to be written in imperative style (with little additional language surface)
but requires support from either the hardware or the runtime. STM is largely a
research topic at this point.

. Side-effect–free programming is like immutability in a wider context; even simple
tasks like input/output are prevented unless they’re made explicit through the type
system. Haskell is such a language, enforcing this strictness on the developer.
However, even without strict language support, a style of side-effect–free develop-
ment can work. For example, filters and other clauses in LINQ queries are typically
free of side effects, allowing parallelization.

. Asynchronous programming allows nonblocking calls to be made (for example,
when making web requests), scheduling a piece of code (referred to as a continua-
tion) to be called back when the call completes. Right from the start of the .NET
Framework, there’s been support for this programming style, but the manual wiring
left up to the developer has been quite cumbersome. New features like F# asynchro-
nous workflows hide this complexity.

96 CHAPTER 2 Introducing the C# Programming Language

These styles have obviously led to the creation of libraries, runtime extensions, and
language features supporting their active use. The order in which I mention the nature of
those developer tools is quite important. In most cases, it’s too early for language design-
ers to make a commitment to putting constructs in the language in support of one partic-
ular approach to concurrency. While concurrency experts figure out the best angle of
attack to the problem, the language can keep itself free from potentially short-lived
constructs.

This said, since the release of C# 3.0, there are plenty of language constructs library writers
can piggyback on to provide a more-or-less natural integration with the existing language
when trying out new approaches. A good example are the new .NET 4.0 System.Threading
enhancements:

. Task Parallel Library (TPL) is the name for a set of primitives that allow scheduling of
lightweight tasks that can be run in parallel. Such tasks can either produce values—
in which case, they’re often called futures—or not. Note that tasks do not map to
threads in a one-on-one fashion; a user mode scheduler is used to reuse a pool of
threads, to avoid costly kernel mode transitions. Use of tasks is greatly simplified by
the use of lambda expressions, and even parallel control structures like loops have
been built out of this:

Parallel.For(1, 10, i => {

// perform computation

});

. Coordination Data Structures (CDS) are the building blocks for creating parallel algo-
rithms, including rich concurrency-safe collection types. Other primitives offered by
CDS include lightweight waits, locks, and events. Large parts of the user mode
scheduler used by TPL are based on those structures, but they’re also readily avail-
able for direct use by developers.

. Parallel LINQ (PLINQ) is a form of data parallelism, in contrast to TPL’s task paral-
lelism. In-memory queries written using LINQ expressions are ideal candidates for
parallelization. Assume you’re applying a filter (with the where clause) to a million
records; there’s nothing that prevents the runtime to be smart about the execution
and run chunks of the filtering task on different cores. PLINQ exactly does that and
again with minimal impact to the way code is written:

var res = from person in whitePages.AsParallel()

where person.City == “Seattle”

select person;

Readers interested in parallel programming—something that will only gain in importance
over the years to come—are strongly encouraged to take a look at various approaches that
have been researched. The .NET 4.0 System.Threading facilities are a good starting point
(and we explore those in Chapter 30, “Task Parallelism and Data Parallelism”), but tech-
nologies such as F# asynchronous workflows are worth checking out, too. Other good
search engine keyword searches include the Concurrency Coordination Runtime (CCR),
ConcRT, and the recently released incubation project Axum (formerly known as Maestro),

97Summary

which is a C#-like language with first-class concepts such as agents and domains for isola-
tion of state.

Summary
In this chapter, we took a look at the trends that have influenced—and are expected to
continue to influence in the foreseeable future—the C# language. After having been born
as an object-oriented language to go with the .NET Framework’s initial release, more and
more developer-convenient features have been added to C# (for example, to ease data
access with LINQ and to bridge with dynamically typed code using the DLR’s infrastruc-
ture). But we’re not done with C# yet; a lot of important trends need to be addressed going
forward, to simplify development of concurrent software, to make the platform a better
place for meta-programming, and to accommodate for the trends in the field of modeling.

Loaded with this general understanding of the field, you’re ready to start looking at the
practical development of C#-based applications in the subsequent chapters. Chapter 3
starts by looking at the installation of the .NET Framework and the spectrum of tools
available to develop managed code applications with it, and you write your first bare-
bones application.

This page intentionally left blank

CHAPTER 3

Getting Started with
.NET Development

Using C#

IN THIS CHAPTER

. Installing the .NET
Framework 99

. Your First Application:
Take One 109

. Visual Studio 2010 116

. Your First Application:
Take Two 124

Time to set yourself up for a successful journey through
the world of .NET development using C#. An obvious first
thing to tackle is to install the .NET Framework and the
necessary tools so that we can start running and writing
code. One tool we’ll pay a fair amount of attention to is
Visual Studio 2010, but we cover other useful tools, too.

To get our hands dirty, we’ll write a simple C# application
and highlight some of the important language elements, go
through the process of building it using various tools, and
look at how we can debug code.

Installing the .NET Framework
The first logical step to get started with writing code target-
ing the .NET Framework is to install it on your develop-
ment machine. At this point, we’ll skip the in-depth
discussion on how to deploy the .NET Framework to the
machines where your application code is to run ultimately,
be it a client computer, a web server, or even the cloud.

The .NET Framework Version Landscape

Over the years, various versions of the .NET Framework
have been released. In this book, we cover the latest (at the
time of this writing) release of the .NET Framework,
version 4, which goes hand-in-hand with the Visual Studio
2010 release.

Does that mean you can’t use the knowledge you gain from
.NET 4 programming to target older releases of the frame-
work? Certainly not! Although the .NET Framework has

100 CHAPTER 3 Getting Started with .NET Development Using C#

grown release after release, the core principles have remained the same, and a good part of
the evolution is to be found at the level of additional application programming interfaces
(APIs) that are made available through the class libraries. A similar observation of evolu-
tion obviously holds on the level of the managed languages: Features are added every
time around that often require additional framework support (for example, LINQ in C#
3.0, dynamic in version 4). As you can imagine, keeping track of all those versions and
their key differentiating features isn’t always easy. To make things more clear, take a look
at Table 3.1.

Notice that new releases of the .NET Framework typically go hand in hand with updates
to the Visual Studio tooling support. A notable exception to this rule was the .NET 3.0
release, where Visual Studio 2005 additions were made to support the newly added
features (for example, by providing designer support for Windows Presentation
Foundation [WPF]). On the other hand, notice how the managed languages evolve at a
slightly slower pace. It’s perfectly imaginable that a future release of the .NET Framework
will still be using C# 4.0 and VB.NET 10.0. History will tell.

WHAT ABOUT OPERATING SYSTEM INTEGRATION?

Being a logical extension to the Win32 API for Windows programming, it very much
makes sense to have the framework components readily available together with various
versions of the Windows operating system. However, Windows and the .NET Framework
evolve at a different pace, so the innovation on the level of the .NET Framework is not
immediately available with the operating system out there at that point in time.

One first little piece of integration with the operating system happened with Windows
XP, where the image loaded was made aware of the existence of managed code, to be
able to load managed executables with fewer workarounds than would be required
otherwise. In the Windows Server 2003 era, the 1.1 release of the .NET Framework
was brought to the operating system so that the ASP.NET web stack was available out
of the box for use in web server installations.

TABLE 3.1 .NET Platform Version History

Version Codename Visual Studio C# VB Flagship Features

1.0 Lightning 2002 (7.0) 1.0 7.0 Managed code

1.1 Everett 2003 (7.1) 1.0 7.0

2.0 Whidbey 2005 (8.0) 2.0 8.0 Generics

3.0 WinFX 2005 (8.0) 2.0 8.0 WPF, WCF, WF

3.5 Orcas 2008 (9.0) 3.0 9.0 LINQ

4.0 Dev10 2010 (10.0) 4.0 10.0 Dynamic

101Installing the .NET Framework

The bigger integration story happened around Vista, driven by the WinFX vision of
enhancing core system capabilities like windowing (with WPF) and communication (with
WCF). For a long time during the development of Vista—known as Longhorn at the
time—WinFX formed a core pillar of the next-generation operating system, and develop-
ment proceeded hand in hand with the operating system. Only later was WinFX decou-
pled from Vista and ported back to other platforms, resulting in what became known as
.NET Framework 3.0. This said, the .NET Framework 3.0 components still shipped with
Windows Vista as an optional Windows component that can be turned on or off. The
same holds for Windows Server 2008.

With the release of Windows 7, this tradition continues by making the .NET Framework
3.5 components available out of the box, and you shouldn’t be surprised to see the
.NET Framework 4 release integrated with a future release of the operating system.

This integration has several advantages, the most important of which is the decreased
framework deployment cost when targeting these operating systems for managed code
applications. But also for the operating system developers, this means managed code
becomes an option to write new functionality in.

What Table 3.1 doesn’t show is the versioning of the CLR. There’s a very important point
to be made about this: The CLR evolves at a much slower pace than the libraries and
languages built on top of it. Slow most often has a pejorative feel to it, but for the CLR this
is a good thing: The less churn made to the core of runtime, the more guarantees can be
made about compatibility of existing code across different versions of the .NET Framework.
This is illustrated nicely in Figure 3.1 based on the .NET Framework 3.x history.

From this figure, you can see how both .NET Framework 3.0 and .NET Framework 3.5 are
built to run on top of the existing CLR 2.0 runtime bits. This means that for all the
goodness that ships with those versions of the .NET Framework, no changes were
required to the core execution engine, a good sign of having a solid runtime that’s ready
to take on a big job.

RED BITS VERSUS GREEN BITS

A concept you might sometimes hear from Microsoft people in the context of frame-
work versioning is that of red bits and green bits. The categorization of framework
assemblies in red bits and green bits was introduced in the .NET 3.x timeframe to
distinguish between new assemblies (green bits) and modifications to existing ones
(red bits). Although .NET 3.x mostly added new library functionality to the existing .NET
2.0 layer, some updates were required to assemblies that had already shipped. With
the distinction between red bits and green bits, development teams kept track of those
modifications also to minimize the changes required to red bits to reduce the risk of
breaking existing applications.

102 CHAPTER 3 Getting Started with .NET Development Using C#

.NET Framework 3.5

.NET Framework 3.0

.NET Framework 2.0

.NET Framework 3.5 Class Library Additions

.NET Framework 3.0 Class Library Additions

.NET Framework 2.0 Class Libraries (BCL)

Common Language Runtime (CLR) 2.0

•Language Integrated Query (LINQ)

•Windows Presentation Foundation (WPF)

•Windows Communication Foundation (WCF)

•Windows Workflow Foundation (WF)

FIGURE 3.1 .NET Framework 3.x is built on CLR 2.0.

LOST IN TRANSLATION

Even more remarkable than the capability to add gigantic libraries like WPF and
Windows Communication Foundation (WCF) on an already existing runtime without
requiring modifications to it is the fact that very powerful language extensions have
been made in .NET 3.5 with the introduction of LINQ. However, none of those new
language additions required changes to the runtime or intermediate language (IL).
Therefore, C# 3.0 and VB 9.0 programs can run on the .NET 2.0 CLR. Even more, it’s
theoretically possible to cross-compile C# 3.0 programs into C# 2.0 code with an
equivalent meaning. A paper proving this claim was written by a group of language
designers at Microsoft and is titled “Lost in Translation.”

What all this means in practice is that .NET 3.0 is a superset of .NET 2.0, but with
some updates to the .NET 2.0 binaries, in the form of a service pack. Those service
packs are also made available by themselves because they contain very valuable fixes
and optimizations, and they are designed to be fully backward-compatible so as not to
break existing code. Windows Update automatically deploys these service packs to
machines that already have the framework installed.

103Installing the .NET Framework

One caveat, though: Don’t take this to mean that C# 3.0 programs can be ported blind-
ly to .NET 2.0 because implementations of various LINQ providers ship in various .NET
3.5 assemblies.

Another advantage that comes from keeping the runtime the same across a set of frame-
work releases is the capability to reuse existing tooling infrastructure (for example, for
debugging). With the release of Visual Studio 2008, this capability became visible to .NET
developers under the form of multitargeting support. What this feature enables is to use
Visual Studio 2008 to target .NET Framework 2.0, 3.0, and 3.5 using the same comfortable
tooling environment. And with .NET 4.0—as you’ll see later in this chapter when we
explore Visual Studio 2010—multitargeting has been extended to support all releases from
.NET 2.0 to 4.0.

What about .NET Framework 1.x? Development targeting those platforms will always be
tied to the use of the releases of Visual Studio that shipped with it (that is, Visual Studio
.NET versions 2002 and 2003). Too many fundamental changes to runtime infrastructure
were made between versions 1.x and 2.0 of the CLR, making multitargeting support for
.NET 1.x unfeasible. Luckily nowadays, the use of .NET 1.x has largely been phased out. If
you still have .NET 1.x applications around, now is the time to port them to a more recent
version of the platform (preferably .NET 4.0, of course).

But why should someone care to target an older release of the .NET Framework? Most
commonly, the answer is to be found in deployment constraints within companies, web
hosting providers, and so on. Having tooling support to facilitate this multitargeting is
pure goodness and also means you can benefit from core enhancements to the Visual
Studio tools while targeting older releases of the .NET Framework.

.NET Framework 4

The particular version of the .NET Framework we target in this book is .NET 4, using
Visual Studio 2010 and C# 4.0. Other than the .NET 3.x releases, .NET 4.0 has a new
version of the CLR underneath it, and obviously—in the grand tradition—it comes with a
bunch of new class libraries that will make life easier for developers.

Two keywords about .NET 4.0 are important to point out here:

. Side by side means .NET 4.0 can be installed next to existing versions of the .NET
Framework. What’s so special about this compared to .NET 3.x? The key difference is
updates to existing class library assemblies are no longer carried out in-place, but
new versions are put next to the existing ones.

. Backward compatible is a core success factor to the managed code developer. In
practice, it means that existing code that was compiled against .NET 2.0 or 3.x in the
past can now be targeted at .NET 4.0 without requiring source-level code changes.

Figure 3.2 illustrates a machine with all the versions of the .NET Framework installed next
to one another.

104 CHAPTER 3 Getting Started with .NET Development Using C#

WHAT’S UP WITH THOSE VERSION NUMBERS?

The full version numbers of the CLR and .NET Framework installations and binaries can
be somewhat distracting at first sight. Where do they come from?

In the .NET Framework 1.x timeframe, the build number (the third component of the
version number) was simply created incrementally. Version 1.0 released at build 3705,
and version 1.1 ended up at build 4322.

With .NET 2.0, it made sense to give more meaning to the build number, and the
pattern ymmdd was chosen: one digit for the year (2005), two digits for the month
(July), and two for the day (27).

This approach worked very nicely until the theoretical 35th day of the 55th month of
the year 2006: The metadata encoding for build numbers cannot exceed 65535, so
we’re out of luck using this pattern in its full glory. The result was a compromise. The
month and year encodings are kept the same, but the year is now considered relative
to the start of the release. For the .NET 4.0 release, the start of the release was in
2007, so from Figure 3.2, one can infer that I’m using the 2009 April 24th build at the
time of this writing.

Besides having various versions of the .NET Framework, .NET 4.0 pioneers the availability
of different “flavors.” Around the .NET 3.5 timeframe it became apparent that the size of
the .NET Framework had grown too large to enable fast friction-free installs, which are
especially important for client application deployments. Significant factors for such
deployments are download times and installation times.

To streamline typical deployments of the framework, a split has been made of the .NET
Framework class libraries, factoring out so-called Client Profile assemblies. Inside the
Client Profile bubble, one finds the Base Class Library (BCL) assemblies, things such as
WPF and WCF, and C# 4.0 language support, among other assemblies relevant for client

FIGURE 3.2 Side-by-side installation of .NET Framework versions.

105Installing the .NET Framework

application development. The remaining part (referred to as Extended Profile) contains
features like ASP.NET that client applications typically don’t need.

In practice, developers target either the full framework or the client profile subset of it.
Both packages have their own redistributable installers, where (obviously) the Client
Profile package is the smaller of the two and installs faster. Internally, the Extended Profile
package is just an increment on top of the Client Profile package, the result being a
layered cake as shown in Figure 3.3. The nice thing about this organization is that it’s
possible to upgrade a Client Profile machine to the full framework installation.

FOUR POINT, OH?

The careful reader will have noticed I’m mixing the use of .NET Framework 4 and .NET
4.0. Why this distinction, and where’s the .0 portion in the former? The answer is mar-
keting: It was decided to call the fourth version of the .NET Framework simply 4,
although internally assemblies have a minor version number, too. So, whenever I’m
referring to the product as a whole, I’m using .NET Framework 4, whereas for the more
technical reference to the current 4.x release I’m using .NET 4.0.

With this split, without a doubt you’ll wonder whether you need to memorize what’s
available in what subset of the .NET Framework. The fortunate answer is no because Visual
Studio 2010 extends its notion of multitargeting to the various “profiles” of the .NET

.NET Framework 4.0 Extended Profile

.NET Framework 4 Client Profile

.NET Framework 4.0 Class Libraries (BCL)

Common Language Runtime (CLR) 4.0

WPF WCF LINQ DLR …

ASP.NET WF MSBuild …

FIGURE 3.3 Client Profile subset of the .NET Framework.

106 CHAPTER 3 Getting Started with .NET Development Using C#

Framework. When the Client Profile subset is selected, Visual Studio 2010 prevents assem-
blies from the Full framework from being referenced.

.NET FRAMEWORK 3.5 CLIENT PROFILE

Chances are, you have heard about the .NET 3.5 Client Profile. This subset of the 3.5
version of the framework was the precursor for the idea of having different subsets of
the product and was realized in the .NET 3.5 SP1 timeframe. Unfortunately, the applica-
bility of the Client Profile 3.5 was rather limited because of architectural constraints:
Only on Windows XP machines with no prior version of the framework installed could
the subset be applied. In other cases, the Client Profile installer simply fell back to the
installation of the complete .NET Framework.

With .NET 4.0, those constraints no longer apply—thanks to an architectural overhaul
of the installer and the framework structure itself—and the Client Profile subset can be
installed on any operating system supporting the .NET Framework. Even more, this
exercise has been applied for other scenarios, too: On server deployments, various
client-specific APIs do not make sense, so a separate refactoring has been made to
lower the footprint on server installs, too.

Running the Installer

Playtime! To write code on the .NET Framework 4, let’s start by installing the Full .NET
Framework package. That’s really all you need to get started with managed code
development.

Where to get it? Just browse to http://msdn.microsoft.com/netframework and click the
link to the .NET Framework 4 download. The installer itself should be straightforward to
run: Accept the license agreement (shown in Figure 3.4), get a cup of coffee, and you’re
ready to go.

What Got Installed?

When the installation is complete, it’s good to take a quick look at what was installed to
familiarize yourself with where to find stuff.

The Runtime Shim
The runtime shim is really something you shouldn’t care much about, but it’s a conve-
nient way to find out the latest version of the installed CLR on the machine. The purpose
of the shim is to load the correct version of the CLR to execute a given application, a
particularly important task if multiple versions of the runtime are installed.

You can find the shim under %windir%\system32, with the name mscoree.dll. By looking
at the file properties (shown in Figure 3.5), you’ll find out about the latest common
language runtime version on the machine.

http://msdn.microsoft.com/netframework

107Installing the .NET Framework

FIGURE 3.4 .NET Framework 4 installation.

Although the file description states “Microsoft .NET Runtime Execution Engine,” this is
not the CLR itself, so where does the runtime itself live?

The .NET 4.0 CLR
Having a runtime shim is one thing; having the runtime itself is invaluable. All runtime
installations live side by side in the %windir%\Microsoft.NET\Framework folder. On 64-
bit systems, there’s a parallel Framework64 folder structure. Having two “bitnesses” of the
CLR and accompanying libraries is required to allow applications to run either as 32-bit
(Windows On Windows, or WOW) or 64-bit.

FIGURE 3.5 The version of the CLR runtime shim.

108 CHAPTER 3 Getting Started with .NET Development Using C#

Starting with .NET 4.0, the CLR itself is called clr.dll (previously, mscorwks.dll), as shown
in Figure 3.6.

The Global Assembly Cache
The Global Assembly Cache (GAC) is where class library assemblies are loaded for use in
.NET applications. You can view the GAC under %windir%\assembly, but a command-line
directory listing reveals the structure of the GAC in more detail. We discuss the role of the
GAC and the impact on your own applications exhaustively in Chapter 25, “Assemblies
and Application Domains.”

Figure 3.7 shows the structure of the .NET 4.0 GAC containing the 4.0 version of the
System.dll assembly, one of the most commonly used assemblies in the world of managed
code development.

GAC SPLITTING

Notice the v4.0 prefix in the name of the folder containing the .NET 4.0 version of
System.dll? This is an artifact of the “GAC splitting” carried out in .NET 4.0. This sim-
ple naming trick hides assemblies targeting different versions of the runtime so that a
specific version of the CLR doesn’t try to load an assembly that’s incompatible with it.
In the preceding example, CLR 2.0 will recognize only the first folder as a valid entry in
the GAC, whereas CLR 4.0 recognizes only the second one. This truly shows the side-
by-side nature of the different runtimes.

FIGURE 3.6 The common language runtime itself.

FIGURE 3.7 Inside the GAC.

109Your First Application: Take One

Tools
Besides the runtime and class library, a bunch of tools get installed to the framework-
specific folder under %windir%\Microsoft.NET\Framework. Although you’ll only use a
fraction of those on a regular basis—also because most of those are indirectly used through
the Visual Studio 2010 graphical user interface (GUI)—it’s always good to know which
tools you have within reach. My favorite tool is, without doubt, the C# compiler, csc.exe.
Figure 3.8 shows some of the tools that ship with the .NET Framework installation.

Other tools that can be found here include other compilers, the IL assembler, MSBuild, the
NGEN native image generator tool, and so on.

We explore quite a few of the tools that come with the .NET Framework throughout this
book, so make sure to add this folder to your favorites.

Your First Application: Take One
With the .NET Framework installation in place, we’re ready to develop our first .NET appli-
cation. But wait a minute...where are the development tools to make our lives easy? That’s
right, for just this once, we’ll lead a life without development tools and go the hardcore
route of Notepad-type editors and command-line compilation to illustrate that .NET devel-
opment is not tightly bound to the use of specific tools like Visual Studio 2010. Later in
this chapter, we’ll get our feet back on the ground and explore the Visual Studio 2010
tooling support, which will become your habitat as a .NET developer moving forward.

THE POWER OF NOTEPAD AND THE COMMAND LINE

Personally, I’m a huge fan of coding with the bare minimum tools required. Any text
editor, the good old command-line interpreter, and the C# compiler suffice to get the job
done. True, colleagues think I endure a lot of unnecessary pain because of this
approach, but I’m a true believer.

But why? For a couple of reasons, really. For one, it helps me memorize commonly
used APIs; for the more specialized ones, I keep MSDN online open. But more impor-
tant, the uncooperative editor forces me into a coding mode, where thinking precedes
typing a single character.

FIGURE 3.8 One of the .NET Framework tools: the C# compiler.

110 CHAPTER 3 Getting Started with .NET Development Using C#

For any decent-sized project, this approach becomes much less attractive. The ability to
navigate code efficiently and use autocomplete features, source control support, an
integrated debugging experience, and so on—all these make the use of a professional
editor like Visual Studio 2010 invaluable.

However, I recommend everyone go back to the old-fashioned world of Notepad and the
command line once in a while. One day, you might find yourself on an editor-free
machine solving some hot issue, and the ability to fall back to some primitive develop-
ment mode will come in handy, for sure. Anyway, that’s my five cents.

So as not to complicate matters, let’s stick with a simple command-line console applica-
tion for now. Most likely, the majority of the applications you’ll write will either be GUI
applications or web applications, but console applications form a great ground for experi-
mentation and prototyping.

Our workflow for building this first application will be as follows:

. Writing the code using Notepad

. Using the C# command-line compiler to compile it

. Running the resulting program

Writing the Code

Clichés need to be honored from time to time, so what’s better than starting with a good
old Hello World program? Okay, let’s make it a little more complicated by making it a
generalized Hello program, asking the user for a name to send a greeting to.

Open up Notepad, enter the following code, and save it to a file called Hello.cs:

using System;

class Program

{

static void Main()

{

Console.Write(“Enter your name: “);

string name = Console.ReadLine();

Console.WriteLine(“Hello “ + name);

}

}

Make sure to respect the case of letters: C# is a case-sensitive language. In particular, if you
come from a Java or C/C++ background, be sure to spell Main with a capital M. Without
delving too deeply into the specifics of the language just yet, let’s go over the code quickly.

On the first line, we have a using directive, used to import the System namespace. This
allows us to refer to the Console type further on in the code without having to type its
full name System.Console.

111Your First Application: Take One

Next, we’re declaring a class named Program. The name doesn’t really matter, but it’s
common practice to name the class containing the entry point of the application Program.
Notice the use of curly braces to mark the start and end of the class declaration.

Inside the Program class, we declare a static method called Main. This special method is
recognized by the common language runtime as the entry point of the managed code
program and is where execution of the program will start. Notice the method declaration
is indented relative to the containing class declaration. Although C# is not a whitespace-
sensitive language, it’s good to be consistent about indentation.

Finally, inside the Main method we’ve written a couple of statements. The first one makes
a method call to the Write method on the Console type, printing the string Enter your
name: to the screen. In the second line, we read the user’s name from the console input
and assign it to a local variable called name. This variable is used in the last statement,
where we concatenate it to the string ”Hello “ using the + operator to print it to the
console by using the WriteLine method on the Console type.

Compiling It

To run the code, we must compile it because C# is a compiled language (at least in today’s
world without an interactive REPL loop C# tool). The act of compiling the code will result
in an assembly that’s ready to be executed on the .NET runtime.

Open a command prompt window and change the directory to the place where you saved
the Hello.cs file. As an aside, the use of .cs as the extension is not a requirement for the
C# compiler; it’s just a best practice to store C# code files as such.

Because the search path doesn’t contain the .NET Framework installation folder, we’ll have
to enter the fully qualified path to the C# compiler, csc.exe. Recall that it lives under the
framework version folder in %windir%\Microsoft.NET\Framework. Just run the csc.exe
command, passing in Hello.cs as the argument, as illustrated in Figure 3.9.

If the user has installed Visual Studio 2010, a more convenient way to invoke the compiler
is from the Visual Studio 2010 command prompt. This specialized command prompt has
search paths configured properly such that tools like csc.exe will be found.

FIGURE 3.9 Running the C# compiler.

112 CHAPTER 3 Getting Started with .NET Development Using C#

MSBUILD

As we’ll see later on, it happens very rarely you’ll invoke the command-line compilers
directly. Instead, MSBuild project files are used to drive build processes.

Running It

The result of the compilation is an executable called hello.exe, meaning we can run it
immediately as a Windows application (see Figure 3.10). This is different from platforms
like Java where a separate application is required to run the compiled code.

That wasn’t too hard, was it? To satisfy our technical curiosity, let’s take a look at the
produced assembly.

Inspecting Our Assembly with .NET Reflector

Knowing how things work will make you a better developer for sure. One great thing about
the use of an intermediate language format in the .NET world is the capability to inspect
compiled assemblies at any point in time without requiring the original source code.

Two commonly used tools to inspect assemblies include the .NET Framework IL disassem-
bler tool (ildasm.exe) and .NET Reflector from Red Gate. For the time being, we’ll use
.NET Reflector, which you can download from the Red Gate website at www.red-gate.com/
products/reflector.

When you run the tool for the first time, a dialog like the one shown in Figure 3.11 will
appear. Here you can populate the initial list of assemblies displayed by .NET Reflector.
The choice doesn’t really matter for our purposes, but I recommend selecting the v4.0
framework version because that’s the one we’ll be dealing with most often in this book.

COMPACT FRAMEWORK AND SILVERLIGHT

There are more CLR flavors than you might expect. The CLR we’re using for our applica-
tion is known as the “desktop CLR.” That one by itself has some subcategories with
optimization targeting client applications versus server workloads. Besides the desktop
CLR, a trimmed-down runtime exists for mobile devices targeting ARM processors, and
yet another is used by Silverlight to run managed code in various browsers. (Not to
mention the various other variations that exist within Microsoft for research and incuba-
tion projects.) But one thing they all have in common is support for the ECMA Common
Language Infrastructure (CLI) standard.

FIGURE 3.10 Our program in action.

www.red-gate.com/products/reflector
www.red-gate.com/products/reflector

113Your First Application: Take One

FIGURE 3.11 Populating .NET Reflector’s initial assembly list.

After you’ve done this, you’ll see a short list of commonly used .NET assemblies being
loaded from the GAC ready for inspection. At this point, we’re not really interested in
those assemblies but want to load our own hello.exe using File, Open. This adds “hello” to
the list of loaded assemblies, after which we can start to drill down into the assembly’s
structure as shown in Figure 3.12.

Looking at this structure gives us a good opportunity to explain a few concepts briefly. As
we drill down in the tree view, we start from the “hello” assembly we just compiled.
Assemblies are just CLR concepts by themselves and don’t have direct affinity to file-based
storage. Indeed, it’s possible to load assemblies from databases or in-memory data streams,
too. Hence, the assembly’s name does not contain a file extension.

FIGURE 3.12 Inspecting the assembly structure in .NET Reflector.

114 CHAPTER 3 Getting Started with .NET Development Using C#

In our case, the assembly has been stored on disk as a file, more specifically as a file called
hello.exe. In .NET Reflector, we can observe this by the child node to our assembly, which
is the hello.exe module. Assemblies can consist of one or more modules, but the most
common case is to have just one module. We won’t go into detail on this topic for now.

Next, we encounter a node with a {} logo. This indicates a namespace and is a result of
.NET Reflector’s decompilation intelligence, as the CLR does not know about namespaces
by itself. Namespaces are a way to organize the structure of APIs by grouping types in a
hierarchical tree of namespaces (for example, System.Windows.Forms). To the CLR, types
are always referred to—for example, in IL code—by their fully qualified name (like
System.Windows.Forms.Label). In our little hello.exe program we didn’t bother to declare
the Program class in a separate namespace, so .NET Reflector shows a “-” to indicate the
global namespace.

Finally, we arrive at our Program type with the Main method inside it. Let’s take a look at
the Main method now. Select the tree node for Main and press the spacebar key. Figure 3.13
shows the result.

The pane on the right shows the decompiled code back in C#. It’s important to realize this
didn’t use the hello.cs source code file at all. The hello.exe assembly doesn’t have any link
back to the source files from which it was compiled. “All” .NET Reflector does is recon-
struct the C# code from the IL code inside the assembly. You can clearly see that’s the case
because the Main method does only contain two statements according to .NET Reflector,
even though we wrote it with three statements instead. .NET Reflector’s view on our
assembly is semantically correct, though; we could have written the code like this.

Notice the drop-down box in the toolbar at the top. Over there we can switch to other
views on the disassembled code (for example, plain IL). Let’s take a look at that, too, as
shown in Figure 3.14.

FIGURE 3.13 Disassembling the Main method.

115Your First Application: Take One

What you’re looking at now is the code as the runtime sees it to execute it. Notice a few
things here:

. Metadata is stored with the compiled method to indicate its characteristics: .method
tells it’s a method, private controls visibility, cil reveals the use of IL code in the
method code, and so on.

. The execution model of the CLR is based on an evaluation stack, as revealed by the
.maxstack directive and naming of certain IL instructions (pop and push, not shown
in our little example).

. Method calls obviously refer to the methods being called, but observe how there’s no
trace left of the C# using-directive namespace import and how all names of methods
are fully qualified.

. Our local variable “name” has lost its name because the execution engine needs to
know only about the existence (and type) of local variables, not their names. (The
fact that it shows up as str is due to .NET Reflector’s attempt to be smart.)

The attentive reader will have noticed a few strange things in the IL instructions for the
Main method: Why are those nop (which stands for no operation) instructions required?
The answer lies in the way we compiled our application, with optimizations turned off.
This default mode causes the compiler to preserve the structure of the input code as much
as possible to make debugging easier. In this particular case, the curly braces surrounding
the Main method code body were emitted as nop instructions, which allows a breakpoint
to be set on that line.

FIGURE 3.14 IL disassembler for the Main method.

116 CHAPTER 3 Getting Started with .NET Development Using C#

TIP

Explore the csc.exe command-line options (/?) to find a way to turn on optimization
and recompile the application. Take a look at the disassembler again (you can press
F5 in .NET Reflector to reload the assemblies from disk) and observe the nop instruc-
tions are gone.

Visual Studio 2010
Now that we’ve seen the hardcore way of building applications using plain old text
editors and the C# command-line compiler, it’s time to get more realistic by having a
look at professional tooling support provided by the Visual Studio 2010 products.
Figure 3.15 shows the new Visual Studio 2010 logo, reflecting the infinite possibilities of
the technology.

Since the very beginning of software development on the Microsoft platform, Visual
Studio has been an invaluable tool to simplify everyday development tasks significantly.
One core reason for this is its integrated development environment (IDE) concept, which
is really an expansive term with an overloaded meaning today. Although it originally
stood for the combination of source code editing and debugging support, today’s IDE has
capabilities that stretch a whole range of features such as

. Source code editing with built-in language support for various languages such as
C#, Visual Basic, F# and C++, including things such as syntax coloring, IntelliSense
autocompletion, and so on.

. Refactoring support is one of the powerful tools that makes manipulating code
easier and allows for the restructuring of existing code with just a few clicks in a
(mostly) risk-free manner.

. Exploring code is what developers do most of their time in the editors. Navigating
between source files is just the tip of the iceberg, with the editor providing means to
navigate to specific types and members.

FIGURE 3.15 The Visual Studio 2010 logo.

117Visual Studio 2010

. Visualization of project structures bridges the gap between architecture, design, and
implementation of software. In the spirit of UML, class designers and architecture
explorers are available right inside the tool.

. Designers come into play when code is to be generated for common tasks that
benefit from a visual development approach. Typical examples include GUI design,
web page layout, object/relational mappings, workflow diagrams, and so on.

. Debugging facilities are the bread and butter for every developer to tame the
complexities of analyzing code behavior and (hopefully not too many) bugs by step-
ping through code and analyzing the state of execution.

. Project management keeps track of the various items that are part of a software
development project, including source files, designer-generated files, project-level
settings, and so on.

. Integrated build support is tightly integrated with project management features and
allows immediate invocation of the build process to produce executable code and
feed build errors and warnings back to the IDE.

. Source control and work item tracking are enterprise-level features for managing
large-scale collaborative software development projects, providing means to check
in/out code, open and close bugs, and so on.

. Extensibility might not be not the most visible feature of the IDE but provides a
huge opportunity for third parties to provide extensions for nearly every aspect of
the tooling support.

Editions

I feel like a marketing guy saying so, but to “differentiate between the needs for various
software development groups,” Visual Studio 2010 is available in different editions. Here’s
an overview:

. Visual Studio Express Editions are targeted at hobbyist developers and students,
providing a great way to get rich tooling support to explore the .NET platform and
various languages. Individual downloads for Visual C#, Visual Basic, Visual C++, and
Visual Web Developer (targeting ASP.NET website development) can be found at
www.microsoft.com/express. Notice there’s also an Express Edition of SQL Server
2008 R2, giving access to a superb relational database engine (with a couple of
enforced restrictions). To complete the family, a new Windows Phone 7 Express
toolkit was added recently.

. Visual Studio Standard Edition is the entry-level edition for individual developers
and small teams, with all the essentials for rich application development on the
.NET platform, using any of the available programming languages. It has rich debug-
ger support and project templates for Windows and web applications, but it lacks
features like unit testing.

. Visual Studio Professional Edition is aimed at the professional developer, giving
access to the various languages in the same package. It has rich tooling capabilities

www.microsoft.com/express

118 CHAPTER 3 Getting Started with .NET Development Using C#

that stretch beyond those of the Standard Edition, including unit testing, support for
Visual Studio Tools for Office (VSTO) to extend the Office products using managed
code, mobile device development, SQL database project templates, and various types
of application deployment projects.

. Visual Studio Ultimate Edition is the collective name for the largest editions avail-
able, targeting large-scale team development. Different flavors exist, targeting vari-
ous roles within a development organization, such as developers, testers, architects,
and database professionals. Unique features include source control integration, rich
performance analysis tools, quality metric tools, and so on. On the server side,
there’s Team Foundation Server (TFS), which provides the necessary infrastructure
for work item tracking, source control, document libraries, project metrics report-
ing, and so on.

TLA OF THE DAY: SKU

The different editions of Visual Studio—and similarly for other products—are often
referred to as SKUs by Microsoft representatives. SKU is a TLA, a three-letter acronym
that refers to shelve-kept unit. It comes from the days software was mostly distributed
in cardboard boxes that were kept on shelves in the software store around the corner.
Today, though, lots of developers get their tools through downloads, MSDN subscrip-
tions, or enterprise agreements.

In this book, we mainly focus on language- and framework-level aspects of programming
on the .NET platform, which are separate from the tooling support. However, when cover-
ing tooling support, we assume the reader has access to at least the Professional Edition of
Visual Studio 2010. This said, lots of the features covered (such as debugging support to
name an essential one) are available in the Express Edition, too. From time to time, we’ll
have a peek at Team System-level features, as well, but in a rather limited fashion.

Oh, and by the way, Visual Studio is available in different (natural) languages beyond just
English. However, this book refers to the English vocabulary used in menus, dialogs, and
so on.

VISUAL STUDIO SHELL

In fact, Visual Studio is a highly extensible shell for all sorts of development and man-
agement tools. An example of a tool that’s built on the Visual Studio environment is
the SQL Server Management Studio. To allow the use of this infrastructure for use by
third-party tools, there’s the so-called Visual Studio Shell. One can go even further and
embed Visual Studio capabilities in a separate application by using the Visual Studio
for Applications (VSTA) platform.

119Visual Studio 2010

Expression

Applications with GUIs, either for Windows or the Web, are typically not just built by
development teams. An important peer to the developer involved in GUI development is a
professional designer working on the look and feel for the application’s user experience.

Platform-level technologies like Windows Presentation Foundation (WPF), Silverlight, and
ASP.NET are built with this fact in mind, allowing for rich styling capabilities and a sepa-
ration between developer code and UI definitions (for example, in terms of XAML). This is
a very powerful concept that enables developers and designers to work in parallel with
one another.

Although this book focuses on the developer aspect of .NET application development, it’s
important to know about the Expression family of tools that can be used by your designer
peers. More information about those tools can be found at www.microsoft.com/
expression.

Installing Visual Studio 2010

Installation of Visual Studio 2010 should be straightforward. Assuming you are using at
least the Professional Edition of the product, check boxes will appear to install managed
code/native code development support (see Figure 3.16). Make sure to check the managed
code option or switch the options page to the more verbose mode where individual
features can be turned on or off.

Depending on the number of features you select (I typically do a full installation to avoid
DVD or other install media hunts afterward), installation might take a while. If you don’t
already have those installed, various prerequisites, such as the .NET Framework, will get
installed as well, potentially requiring a reboot or two. But it’s more than worth the wait.

Once Visual Studio setup has completed, make sure to install the product documentation,
also known as the Help Library. Although the Visual Studio help system can hook up to

FIGURE 3.16 Visual Studio 2010 Ultimate installation options.

www.microsoft.com/expression
www.microsoft.com/expression

120 CHAPTER 3 Getting Started with .NET Development Using C#

the online version of MSDN seamlessly, it’s convenient to have the documentation
installed locally if you can afford the disk space. To do so, go to the Start Menu and find
the Manage Help Settings entry under the Visual Studio 2010, Visual Studio Tools folder.
Figure 3.17 shows the user interface of this tool, where one can install content from the
installation disk or by downloading it.

A Quick Tour Through Visual Studio 2010

With Visual Studio 2010 installed, let’s take a quick tour through the IDE you’ll be spend-
ing a lot of your time as a developer in.

What Got Installed
Depending on the edition you have installed, a number of tools will have been installed
in parallel with the Visual Studio 2010 editor itself. Figure 3.18 shows the Start menu
entry for Visual Studio 2010 for an Ultimate Edition installation on a 64-bit machine. A
few notable entries here are as follows:

. Visual Studio 2010 Command Prompt provides a command prompt window with
several environment variables set, including additions to the search path to locate
various tools such as the command-line compilers.

. Visual Studio 2010 Remote Debugger is one of my favorite tools when debugging
services or other types of applications that run on a remote machine. It enables you to
enable debugging applications over the network right from inside Visual Studio 2010.

FIGURE 3.17 MSDN Library installation option.

121Visual Studio 2010

FIGURE 3.18 Visual Studio 2010 Start menu entries.

TIP

Go ahead and use the Visual Studio 2010 command prompt to recompile our first
application we created earlier in this chapter. You should find that csc.exe is on the
search path, so you can simply invoke it without specifying the full path.

Another tool that got installed is ildasm.exe, the IL disassembler. Go ahead and use it
to inspect the hello.exe assembly, looking for the Main method’s IL code. Because we’ll
be using this tool from time to time, it’s good to know where you can launch it from.

Splash Screen and Start Page
The Visual Studio 2010 splash screen is shown in Figure 3.19. Prior to Visual Studio 2010,
the splash screen used to show the different extensibility packages that were installed.
Now this information is available from the Help, About menu.

New and notable packages in Visual Studio 2010 are the built-in Silverlight projects and
out-of-the-box support for the F# language.

CHOOSE YOUR MOTHER TONGUE

If this is the first time you’ve started Visual Studio 2010, you’ll be presented with a
dialog to select a settings template to configure the IDE for a specific programming
language. You can either stick with a general settings template or indicate your
preferred language (your programming mother tongue, so to speak). If you’re presented
with this option, feel free to go ahead and select the C# template.

All this means is some settings will be optimized for C# projects (for example, the
default language selection in the New Project dialog), but other languages are still avail-
able to you at any point in time. Hence the word preference.

122 CHAPTER 3 Getting Started with .NET Development Using C#

The first thing you’ll see in Visual Studio is the Start page shown in Figure 3.20. It
provides links to various tasks (for example, to reload recently used projects). An RSS feed
shows news items from the MSDN website.

FIGURE 3.20 Visual Studio 2010 Start page.

FIGURE 3.19 Visual Studio 2010 splash screen.

123Visual Studio 2010

FIGURE 3.21 Customizing the look and feel by docking panels.

Core UI Elements
The menu and toolbar contain a wealth of features. (We’ll only cover the essential ones.)
Make sure to explore the menu a bit for things that catch your eye. Because we haven’t
loaded a project yet, various toolbars are not visible yet.

Various collapsible panels are docked on the borders. There are several of those, but only a
few are visible at this point: Toolbox, Solution Explorer, and Error List are the ones we’ll
interact with regularly. More panels can be enabled through the View menu, but most
panels have a contextual nature and will appear spontaneously when invoking certain
actions (for example, while debugging). Figure 3.21 shows how panels can be docked at
various spots in the editor. The little pushpin button on the title bar of a panel can be
used to prevent it from collapsing. As you get more familiar with the editor, you’ll start
rearranging things quite bit to adapt to your needs.

“INNOVATION THROUGH INTEGRATION” WITH WPF

If you’ve used earlier releases of Visual Studio, you no doubt have noticed the different
look and feel of the IDE in the 2010 version. Starting with Visual Studio 2010, large
portions of the user interface have been redesigned to use WPF technology.

This has several advantages in both the short and long term, and today we’re seeing
just the tip of the iceberg of capabilities this unlocks. For example, by having the code
editor in WPF, whole new sets of visualizations become possible. To name just one
example, imagine what it’d be like to have code comments with rich diagrams in it to
illustrate some data flow or architectural design.

It’s worth pointing out explicitly that Visual Studio is a hybrid managed and native
(mostly for historical reasons) code application. An increasing number of components
are written using managed code, and new extensibility APIs are added using the new
Managed Extensibility Framework (MEF). Another great reason to use managed code!

124 CHAPTER 3 Getting Started with .NET Development Using C#

Your First Application: Take Two
To continue our tour through Visual Studio 2010, let’s make things a bit more concrete
and redo our little Hello C# application inside the IDE.

New Project Dialog

The starting point to create a new application is the New Project dialog, which can be
found through File, New, Project or invoked by Ctrl+Shift+N. A link is available from the
Projects tab on the Start Page, too. A whole load of different project types are available,
also depending on the edition used and the installation options selected. Actually, the
number of available project templates has grown so much over the years that the dialog
was redesigned in Visual Studio 2010 to include features such as search.

Because I’ve selected Visual C# as my preferred language at the first start of Visual Studio
2010, the C# templates are shown immediately. (For other languages, scroll down to the
Other Languages entry on the left.) Subcategories are used to organize the various
templates. Let’s go over a few commonly used types of projects:

. Console Application is used to create command-line application executables. This is
what we’ll use for our Hello application.

. Class Library provides a way to build assemblies with a .dll extension that can be
used from various other applications (for example, to provide APIs).

. Windows Forms Application creates a project for a GUI-driven application based
on the Windows Forms technology.

. WPF Application is another template for GUI applications but based on the new
and more powerful WPF framework.

. ASP.NET Web Application provides a way to create web applications and deploy
them to an ASP.NET-capable web server.

We’ll cover other types of templates, too, but for now those are the most important ones
to be aware of. Figure 3.22 shows the New Project dialog, where you pick the project type
of your choice.

Notice the NET Framework 4.0 drop-down. This is where the multitargeting support of
Visual Studio comes in. In this list, you can select to target older versions of the frame-
work, all the way back to 2.0. Give it a try and select the 2.0 version of the framework to
see how the dialog filters out project types that are not supported on that version of the
framework. Recall that things like WPF and WCF were added in the .NET Framework 3.0
(WinFX) timeframe, so those won’t show up when .NET Framework 2.0 is selected.

For now, keep .NET Framework 4.0 selected, mark the Console Application template, and
specify Hello as the name for the project. Notice the Create Directory for Solution check
box. Stay tuned. We’ll get to the concept of projects and solutions in a while. Just leave it
as is for now. The result of creating the new project is shown in Figure 3.23.

125Your First Application: Take Two

FIGURE 3.22 The New Project dialog.

FIGURE 3.23 A new Console Application project.

Once the project has been created, it is loaded, and the first (and in this case, only)
relevant file of the project shows up. In our little console application, this is the
Program.cs file containing the managed code entry point.

Notice how an additional toolbar (known as the Text Editor toolbar), extra toolbar items
(mainly for debugging), and menus have been made visible based on the context we’re
in now.

126 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.24 Solution Explorer.

Solution Explorer

With the new project created and loaded, make the Solution Explorer (typically docked on
the right side) visible, as shown in Figure 3.24. Slightly simplified, Solution Explorer is a
mini file explorer that shows all the files that are part of the project. In this case, that’s
just Program.cs. Besides the files in the project, other nodes are shown as well:

. Properties provides access to the project-level settings (see later) and reveals a code
file called AssemblyInfo.cs that contains assembly-level attributes, something we
discuss in Chapter 25.

. References is a collection of assemblies the application depends on. Notice that by
default quite a few references to commonly used class libraries are added to the pro-
ject, also depending on the project type.

WORRIED ABOUT UNUSED REFERENCES?

People sometimes freak out when they see a lot of unused references. Our simple
Hello application will actually use only the System assembly (which contains things
such as the basic data types and the Console type), so there are definitely grounds for
such a worry. However, rest assured there’s no performance impact in having unused
assembly references because the CLR loads referenced assemblies only when they’re
actually used. As time goes on, you’ll become more familiar with the role of the various
assemblies that have been included by default.

So, what’s the relation between a solution and a project? Fairly simple: Solutions are
containers for one or more projects. In our little example, we have just a single Console
Application project within its own solution. The goal of solutions is to be able to express
relationships between dependent projects. For example, a Class Library project might be

127Your First Application: Take Two

FIGURE 3.25 Project properties.

referred to by a Console Application in the same solution. Having them in the same solu-
tion makes it possible to build the whole set of projects all at once.

SOURCE CONTROL

For those of you who’ll be using Visual Studio 2010 in combination with Team
Foundation Server, Solution Explorer is also one of the gateways to source control,
enabling you to perform check-in/out operations on items in the solution, just to
name one thing.

Project Properties

Although we don’t need to reconfigure project properties at this point, let’s take a quick
look at the project configuration system. Double-click the Properties node for our Hello
project in Solution Explorer (or right-click and select Properties from the context menu).
Figure 3.25 shows the Build tab in the project settings.

As a concrete example of some settings, I’ve selected the Build tab on the left, but feel free
to explore the other tabs at this point. The reason I’m highlighting the Build configura-
tion at this point is to stress the relationship between projects and build support, as will
be detailed later on.

128 CHAPTER 3 Getting Started with .NET Development Using C#

Code Editor

Time to take a look at the center of our development activities: writing code. Switch back
to Program.cs and take a look at the skeleton code that has been provided:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

namespace Hello

{

class Program

{

static void Main(string[] args)

{

}

}

}

There are a few differences with the code we started from when writing our little console
application manually.

First of all, more namespaces with commonly used types have been imported by means of
using directives. Second, a namespace declaration is generated to contain the Program
class. We’ll talk about namespaces in more detail in the next chapters, so don’t worry
about this for now. Finally, the Main entry point has a different signature: Instead of not
taking in any arguments, it now does take in a string array that will be populated with
command-line arguments passed to the resulting executable. Because we don’t really want
to use command-line arguments, this doesn’t matter much to us. We discuss the possible
signatures for the managed code entry point in Chapter 4, “Language Essentials,” in the
section, “The Entry Point.”

Let’s write the code for our application now. Recall the three lines we wrote earlier:

static void Main(string[] args)

{

Console.Write(“Enter your name: “);

string name = Console.ReadLine();

Console.WriteLine(“Hello “ + name);

}

As you enter this code in the editor, you’ll observe a couple of things. One little feature is
auto-indentation, which positions the cursor inside the Main method indented a bit more
to the right than the opening curly brace of the method body. This enforces good indenta-
tion practices (the behavior of which you can control through the Tools, Options dialog).

129Your First Application: Take Two

FIGURE 3.26 IntelliSense while typing code.

More visible is the presence of IntelliSense. As soon as you type the member lookup dot
operator after the Console type name, a list of available members appears that filters out
as you type. Figure 3.26 shows IntelliSense in action.

Once you’ve selected the Write method from the list (note you can press Enter or the
spacebar as soon as the desired member is selected in the list to complete it further) and
you type the left parenthesis to supply the arguments to the method call, IntelliSense pops
up again showing all the available overloads of the method. You learn about overloading
in Chapter 10, “Methods,” so just type the ”Enter your name: “ string.

IntelliSense will help you with the next two lines of code in a similar way as it did for the
first. As you type, notice different tokens get colorized differently. Built-in language
keywords are marked with blue, type names (like Console) have a color I don’t know the
name of but looks kind of lighter bluish, and string literals are colored with a red-brown
color. Actually, all those colors can be changed through the Tools, Options dialog.

WORRIED ABOUT UNUSED NAMESPACE IMPORTS?

Just as with unused references, people sometimes freak out when they see a lot of
unused namespace imports. Again, this is not something to worry about but for a
different reason this time. Namespaces are a compile-time aid only, telling the compiler
where to look for types that are used throughout the code. Even though the preceding
code has imported the System.Text namespace, you won’t find a trace of it in the
compiled code because we’re not using any of the types defined in that namespace.

130 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.27 Reducing the clutter of excessive imported namespaces.

FIGURE 3.28 The background compiler detecting a typo.

Agreed, unused namespace imports can be disturbing when reading code, so Visual
Studio comes with an option to weed out unused namespace imports by right-clicking
the code and selecting Organize Usings, Remove Unused Usings.

If you try this on our code, you’ll see that only the System namespace import remains,
and that’s because we’re using the Console type that resides in that namespace. This
handy feature is illustrated in Figure 3.27.

Another great feature about the code editor is its background compilation support. As you
type, a special C# compiler is running constantly in the background to spot code defects
early. Suppose we have a typo when referring to the name variable; it will show up almost
immediately, marked by red squiggles, as shown in Figure 3.28.

If you’re wondering what the yellow border on the left side means, it simply indicates the
lines of code you’ve changed since the file was opened and last saved. If you press Ctrl+S
to save the file now, you’ll see the lines marked green. This feature helps you find code
you’ve touched in a file during a coding session by providing a visual clue, which is quite
handy if you’re dealing with large code files.

Build Support

As software complexity grows, so does the build process: Besides the use of large numbers
of source files, extra tools are used to generate code during a build, references to depen-
dencies need to be taken care of, resulting assemblies must be signed, and so on. You
probably don’t need further convincing that having integrated build support right inside
the IDE is a great thing.

131Your First Application: Take Two

FIGURE 3.29 Starting a build from the project node context menu.

In Visual Studio, build is integrated tightly with the project system because that’s ulti-
mately the place where source files live, references are added, and properties are set. To
invoke a build process, either use the Build menu (see Figure 3.29) or right-click the solu-
tion or a specific project node in Solution Explorer. A shortcut to invoke a build for the
entire solution is F6.

TIP

Although launching a build after every few lines of code you write might be tempting, I
recommend against such a practice. For large projects, this is not feasible because
build times might be quite long (though C# code compilation is relatively fast); but
more important, this style has the dangerous potential of making developers think less
about the code they write.

Personally, I try to challenge myself to write code that compiles immediately without
errors or even warnings. The background compilation support introduced for C# since
Visual Studio 2008 SP1 helps greatly to achieve this goal, catching silly typos early,
leaving the more fundamental code flaws something to worry about.

Behind the scenes, this build process figures out which files need to compile, which addi-
tional tasks need to be run, and so on. Ultimately, calls are made to various tools such as
the C# compiler. This is not a one-way process: Warnings and errors produced by the
underlying tools are bubbled up through the build system into the IDE, allowing for a
truly interactive development experience. Figure 3.30 shows the Error List pane in Visual
Studio 2010.

Starting with Visual Studio 2005, the build system is based on a .NET Framework technol-
ogy known as MSBuild. One of the rationales for this integration is to decouple the
concept of project files from exclusive use in Visual Studio. To accomplish this, the project
file (for C#, that is a file with a .csproj extension) serves two goals: It’s natively recognized
by MSBuild to drive build processes for the project, and Visual Studio uses it to keep track
of the project configuration and all the files contained in it.

To illustrate the project system, right-click the project node in Solution Explorer and
choose Unload Project. Next, select Edit Hello.csproj from the same context menu (see
Figure 3.31).

132 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.31 Showing the project definition file.

FIGURE 3.30 The Error List pane showing a build error.

In Figure 3.32, I’ve collapsed a few XML nodes in the XML editor that is built into Visual
Studio. As you can see, the IDE is aware of many file formats. Also notice the additional
menus and toolbar buttons that have been enabled as we’ve opened an XML file.

From this, we can see that MSBuild projects are XML files that describe the structure of the
project being built: what the source files are, required dependencies, and so forth. Visual
Studio uses MSBuild files to store a project’s structure and to drive its build. Notable
entries in this file include the following:

. The Project tag specifies the tool version (in this case, version 4.0 of the .NET
Framework tools, including MSBuild itself), among other build settings.

. PropertyGroups are used to define name-value pairs with various project-level
configuration settings.

133Your First Application: Take Two

FIGURE 3.32 Project file in the XML editor.

. ItemGroups contain a variety of items, such as references to other assemblies and
the files included in the project.

. Using an Import element, a target file is specified that contains the description of
how to build certain types of files (for example, using the C# compiler).

You’ll rarely touch up project files directly using the XML editor. However, for advanced
scenarios, it’s good to know it’s there.

Now that you know how to inspect the MSBuild project file, go ahead and choose Reload
Project from the project’s node context menu in Solution Explorer. Assuming a successful
build (correct the silly typo illustrated before), where can the resulting binaries be found?
Have a look at the project’s folder, where you’ll find a subfolder called bin. Underneath
this one, different build flavors have their own subfolder. The Debug build output is
shown in Figure 3.33.

For now, we’ve just built one particular build flavor: Debug. Two build flavors, more offi-
cially known as solution configurations, are available by default. In Debug mode, symbol
files with additional debugging information are built. In Release mode, that’s not the case,
and optimizations are turned on, too. This is just the default configuration, though: You
can tweak settings and even create custom configurations altogether. Figure 3.34 shows
the drop-down list where the active project build flavor can be selected.

134 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.33 Build output folder.

FIGURE 3.34 Changing the solution configuration.

THE ROLE OF PDB FILES IN MANAGED CODE

In the introductory chapters on the CLR and managed code, we stressed the important
role metadata plays, accommodating various capabilities such a IntelliSense, rich type
information, reflection facilities, and so on. Given all this rich information, you might
wonder how much more information is required to support full-fledged debugging sup-
port. The mere fact that managed code assemblies still have PDB files (Program
Database files) reveals there’s a need for additional “debugging symbols.” One such
use is to map compiled code back to lines in the sources. Another one is to keep track
of names of local variable names, something the common language runtime doesn’t
provide metadata storage for.

One of the biggest advantages of the MSBuild technology is that a build can be done
without the use of Visual Studio or other tools. In fact, MSBuild ships with the .NET
Framework itself. Therefore, you can take any Visual Studio project (since version 2005, to
be precise) and run MSBuild directly on it. That’s right: Visual Studio doesn’t even need to
be installed. Not only does this allow you to share your projects with others who might
not have the IDE installed, but it also makes automated build processes possible (for
example, by Team Foundation Server [TFS]). Because you can install Team Foundation
Server on client systems nowadays, automated (that is, nightly) build of personal projects
becomes available for individual professional developers, too.

In fact, MSBuild is nothing more than a generic build task execution platform that has
built-in notions of dependency tracking and timestamp checking to see what parts of an
existing build are out of date (to facilitate incremental, and hence faster, builds). The fact
it can invoke tools such as the C# compiler is because the right configuration files, so-
called target files, are present that declare how to run the compiler. Being written in

135Your First Application: Take Two

FIGURE 3.35 MSBuild invoked from the command line.

managed code, MSBuild can also be extended easily. See the MSDN documentation on the
subject for more information.

To see a command-line build in action, open a Visual Studio 2010 command prompt from
the Start menu, change the directory to the location of the Hello.csproj file, and invoke
msbuild.exe (see Figure 3.35). The fact there’s only one recognized project file extension
will cause MSBuild to invoke the build of that particular project file.

Because we already invoked a build through Visual Studio for the project before, all
targets are up to date, and the incremental build support will avoid rebuilding the project
altogether.

TIP

Want to see a more substantial build in action? First clean the project’s build output by
invoking msbuild /target:clean. Next, you can simply rebuild by issuing the msbuild
command again.

To convince yourself the C# compiler got invoked behind the scenes, turn on verbose
logging by running msbuild /verbosity:detailed. This will cause a spew of output to be
emitted to the console, in which you’ll find an invocation of csc.exe with a bunch of
parameters.

136 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.36 Code editor with a breakpoint set.

Debugging Support

One of the first features that found a home under the big umbrella of the IDE concept was
integrated debugging support on top of the editor. This is obviously no different in Visual
Studio 2010, with fabulous debugging support facilities that you’ll live and breathe on a
day-to-day basis as a professional developer on the .NET Framework.

The most commonly used debugging technique is to run the code with breakpoints set at
various places of interest, as shown in Figure 3.36. Doing so right inside a source code file
is easy by putting the cursor on the line of interest and pressing F9. Alternative
approaches include clicking in the gray margin on the left or using any of the toolbar or
menu item options to set breakpoints.

To start a debugging session, press F5 or click the button with the VCR Play icon. (Luckily,
Visual Studio is easier to program than such an antique and overly complicated device.)
Code will run until a breakpoint is encountered, at which point you’ll break in the debug-
ger. This is illustrated in Figure 3.37.

Notice a couple of the debugging facilities that have become available as we entered the
debugging mode:

. The Call Stack pane shows where we are in the execution of the application code.
In this simple example, there’s only one stack frame for the Main method, but in
typical debugging sessions, call stacks get much deeper. By double-clicking entries in
the call stack list, you can switch back and forth between different stack frames to
inspect the state of the program.

. The Locals pane shows all the local variables that are in scope, together with their
values. More complex object types will result in more advanced visualizations and
the ability to drill down into the internal structure of the object kept in a local vari-
able. Also, when hovering over a local variable in the editor, its current value is
shown to make inspection of program state much easier.

137Your First Application: Take Two

FIGURE 3.37 Hitting a breakpoint in the debugger.

. The Debug toolbar has become visible, providing options to continue or stop execu-
tion and step through code in various ways: one line at a time, stepping into or over
methods calls, and so on.

More advanced uses of the debugger are sprinkled throughout this book, but nevertheless
let’s highlight a few from a 10,000-foot view:

. The Immediate window enables you to evaluate expressions, little snippets of code.
This way, you can inspect more complex program state that might not be immedi-
ately apparent from looking at individual variables. For example, you could execute
a method to find out about state in another part of the system.

. The Breakpoints window simply displays all breakpoints currently set and provides
options for breakpoint management: the ability to remove breakpoints or
enable/disable them.

. The Memory window and Registers window are more advanced means of looking at
the precise state of the machine by inspecting memory or processor registers. In the
world of managed code, you won’t use those very often.

. The Disassembly window can be used to show the processor instructions executed
by the program. Again, in the world of managed code this is less relevant (recall the
role of the JIT compiler), but all in all the Visual Studio debugger is usable for both
managed and native code debugging.

138 CHAPTER 3 Getting Started with .NET Development Using C#

. The Threads window shows all the threads executing in a multithreaded applica-
tion. Since .NET Framework 4, new concurrency libraries have been added to
System.Threading and new Parallel Stacks and Parallel Tasks windows have been
added to assist in debugging those, too.

Debugging is not necessarily initiated by running the application straight from inside the
editor. Instead, you can attach to an already running process, even on a remote machine,
using the Remote Debugger.

New in Visual Studio 2010 is the IntelliTrace feature, which enables a time-travel mecha-
nism to inspect the program’s state at an earlier point in the execution (for example, to
find out about some state corruption that happened long before a breakpoint was hit).

ALTERNATIVE DEBUGGERS

The Visual Studio IDE is not the only debugger capable of dealing with managed code,
although it’s likely the most convenient one due to its rich graphical nature, which
allows direct visual inspection of various pieces of state and such.

Command-line savvy developers on the Windows platform will no doubt have heard
about CDB and its graphical counterpart, WinDbg. Both are available from the Microsoft
website as separate downloads, known as the Debugger Tools for Windows.

Although the original target audience for CDB and WinDbg consists of Win32 native
code developers and driver writers, an extension for managed code ships right with the
.NET Framework. This debugger extension is known as SOS, which stands for Son of
Strike, with Strike being an old code name for the CLR. You can find it under the frame-
work installation folder in a file called sos.dll. We take a look at the use of SOS
sporadically—for example, in Chapter 18, “Events,” to debug a memory leak in the
sidebar called “Using SOS to Trace Leaks.”

Besides SOS, there’s also a purely managed code debugger called MDbg, which stands
for Managed Debugger. This one, too, comes as a command-line debugger. Originally
meant as an example to illustrate the use of the CLR debugger APIs, I find it a useful
tool from time to time when I don’t have Visual Studio installed.

Given the typical mix of technologies and tools applications are written with nowadays,
it’s all important to be able to flawlessly step through various types of code during the
same debugging session. In the world of managed code, one natural interpretation of this
is the ability to step through pieces of code written in different managed languages, such
as C# and Visual Basic. But Visual Studio goes even further by providing the capability to
step through other pieces of code: T-SQL database stored procedures, workflow code in
Windows Workflow Foundation (WF), JavaScript code in the browser, and so on. Core
pillars enabling this are the capability to debug different processes simultaneously (for
example, a web service in some web server process, the SQL Server database process, the
web browser process running JavaScript) and the potential for setting up remote debug-
ging sessions.

139Your First Application: Take Two

FIGURE 3.38 Object Browser visualizing the System.Core assembly.

Object Browser

With the .NET Framework class libraries ever growing and lots of other libraries being used
in managed code applications, the ability to browse through available libraries becomes
quite important. We’ve already seen IntelliSense as a way to show available types and their
available members, but for more global searches, different visualizations are desirable.
Visual Studio’s built-in Object Browser is one such tool (see Figure 3.38).

This tool feels a lot like .NET Reflector, with the ability to add assemblies for inspection,
browse namespaces, types, and members, and a way to search across all of those. It doesn’t
have decompilation support, though.

.NET FRAMEWORK SOURCE CODE

Want to see the .NET Framework source code itself? This has been a longstanding
request from the community to help boost the understanding of framework functionality
and, in answer to this request, Microsoft has started to make parts of the source code
for the .NET Framework available through a shared source program starting from.NET
3.5. Even more so, Visual Studio has been enhanced to be able to step through .NET
Framework source code available from the Microsoft servers.

You can find more information on the Microsoft Shared Source Initiative for the .NET
Framework site at http://referencesource.microsoft.com/netframework.aspx.

Code Insight

An all-important set of features that form an integral part of IDE functionality today is
what we can refer to collectively as “code insight” features. No matter how attractive the
act of writing code may look—because that’s what we, developers, are so excited about,

http://referencesource.microsoft.com/netframework.aspx

140 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.39 Code navigation options.

aren’t we?—the reality is we spend much more time reading existing code in an attempt
to understand it, debug it, or extend it. Therefore, the ability to look at the code from
different angles is an invaluable asset to modern IDEs.

NOTE

For the examples that follow, we shy away from our simple Hello application because
its simplicity does not allow us to illustrate more complex software projects. Instead,
we use one of the sample applications that ships with Visual Studio 2010 in the
Microsoft Visual Studio 10.0\Samples\1033\CSharpSamples.zip compressed file,
under LinqSamples\SampleQueries.

To start with, three closely related features are directly integrated with the code editor
through the context menu, shown in Figure 3.39. These enable navigating through source
code in a very exploratory fashion.

Go To Definition simply navigates to the place where the highlighted “item” is defined.
This could be a method, field, local variable, and so on. We’ll talk about the meaning of
those terms in the next few chapters.

Find All References is similar in nature but performs the opposite operation: Instead of
finding the definition site for the selection, it looks for all use sites of it. For example,
when considering changing the implementation of some method, you better find out
who’s using it and what the impact of any change might be.

View Call Hierarchy is new in Visual Studio 2010 and somewhat extends upon the previous
two in that it presents the user with a hierarchical representation of outgoing and incom-
ing calls for a selected member. Figure 3.40 shows navigation through some call hierarchy.

141Your First Application: Take Two

FIGURE 3.40 Call Hierarchy analyzing some code.

So far, we’ve been looking at code with a fairly local view: hopping between definitions,
tracing references, and drilling into a hierarchy of calls. Often, one wants to get a more
global view of the code to understand the bigger picture. Let’s zoom out gradually and
explore more code exploration features that make this task possible.

One first addition to Visual Studio 2010 is the support for sequence diagrams, which can
be generated using Generate Sequence Diagram from the context menu in the code editor.
People familiar with UML notation will immediately recognize the visualization of
sequence diagrams. They enable you to get an ordered idea of calls being made between
different components in the system, visualizing the sequencing of such an exchange.

Notice that the sequence diagrams in Visual Studio are not passive visualizations. Instead,
you can interact with them to navigate to the corresponding code if you want to drill
down into an aspect of the implementation. This is different from classic UML tools where
the diagrams are not tightly integrated with an IDE. Figure 3.41 shows a sequence diagram
of calls between components.

To look at a software project from a more macroscopic scale, you can use the Class
Diagram feature in Visual Studio, available since version 2008. To generate such a diagram,
right-click the project node in Solution Explorer and select View Class Diagram. The Class
Diagram feature provides a graphical veneer on top of the project’s code, representing the
defined types and their members, as well as the relationships between those types (such as
object-oriented inheritance relationships, as discussed in Chapter 14, “Object-Oriented
Programming”).

Once more, this diagram visualization is interactive, which differentiates it from classical
approaches to diagramming of software systems. In particular, the visualization of the
various types and their members is kept in sync with the underlying source code so that
documentation never diverges from the actual implementation. But there’s more. Besides
visualization of existing code, the Class Diagram feature can be used to extend existing
code or even to define whole new types and their members. Using Class Diagrams you can
do fast prototyping of rich object models using a graphical designer. Types generated by
the designer will have stub implementations of methods and such, waiting for code to be

142 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.41 A simple sequence diagram.

FIGURE 3.42 A class diagram for a simple type hierarchy.

supplied by the developer at a later stage. Figure 3.42 shows the look-and-feel of the Class
Diagram feature.

143Your First Application: Take Two

Other ways of visualizing the types in a project exist. We’ve already seen the Object
Browser as a way to inspect arbitrary assemblies and search for types and their members.
In addition to this, there’s the Class View window that restricts the view to the projects in
the current solution. A key difference is this tool’s noninteractive nature: It’s a one-way
visualization of types.

Finally, to approach a solution from a high-level view, there’s the Architecture Explorer
(illustrated in Figure 3.43), also new in Visual Studio 2010. This one can show the various
projects in a solution and the project items they contain, and you can drill down deeper
into the structure of those items (for example, types and members). By now, it should
come as no surprise this view on the world is kept in sync with the underlying implemen-
tation, and the designer can be used to navigate to the various items depicted. What
makes this tool unique is its rich analysis capabilities, such as the ability to detect and
highlight circular references, unused references, and so on.

FIGURE 3.43 Graph view for the solution, project, a code file item, and some types.

IT’S AN ML WORLD: DGML

Designer tools are typically layered on top of some markup language (ML); for example,
web designers visualize HTML, and in WPF and WF, they use XAML. This is no different
for the Architecture Explorer’s designer, which is based on a new format called DGML,
for Directed Graph Markup Language. In essence, it describes a graph structure based
on nodes and links and hence can be used for a variety of tools that require such
graph representations/visualizations.

144 CHAPTER 3 Getting Started with .NET Development Using C#

Integrated Help

During the installation of Visual Studio 2010, I suggested that you install the full MSDN
documentation locally using the Manage Help Settings utility. Although this is not a
requirement, it’s convenient to have a wealth of documentation about the tools, frame-
work libraries, and languages at your side at all times.

Although you can launch the MSDN library directly from the Start menu by clicking the
Microsoft Visual Studio 2010 Documentation entry, more regularly you’ll invoke it
through the Help menu in Visual Studio or by means of the context-sensitive integrated
help functionality. Places where help is readily available from the context (by pressing F1)
include the Error List (to get information on compiler errors and warnings) and the code
editor itself (for lookup of API documentation). Notice that starting with Visual Studio
2010, documentation is provided through the browser rather than a standalone applica-
tion. This mirrors the online MSDN help very closely.

COMMUNITY CONTENT

Online MSDN documentation at msdn.microsoft.com has a more recent feature addi-
tion, allowing users to contribute content in some kind of wiki style. For example, if the
use of a certain API is not as straightforward as you might expect, chances are good
that some other user has figured it out and shared it with the world over there.

Designers

Since the introduction of Visual Basic 1.0 (as early as 1991), Rapid Application
Development (RAD) has been a core theme of the Microsoft tools for developers. Rich
designers for user interface development are huge time savers over a coding approach to
accomplish the same task. This was true in the world of pure Win32 programming and still
is today, with new UI frameworks benefiting from designer support. But as we shall see,
designers are also used for a variety of other tasks outside the realm of UI programming.

Windows Forms
In .NET 1.0, Windows Forms (WinForms) was introduced as an abstraction layer over the
Win32 APIs for windowing and the common controls available in the operating system.
By nicely wrapping those old dragons in the System.Windows.Forms class library, the
creation of user interfaces became much easier. And this is not just because of the object-
oriented veneer provided by it, but also because of the introduction of new controls (such
as the often-used DataGrid control) and additional concepts, such as data binding to
bridge between data and representation.

Figure 3.44 shows the Windows Forms designer in the midst of designing a user interface
for a simple greetings program. On the left, the Toolbox window shows all the available
controls we can drag and drop onto the designer surface. When we select a control, the
Properties window on the right shows all the properties that can be set to control the
control’s appearance and behavior.

To hook up code to respond to various user actions, event handlers can be created
through that same Properties window by clicking the “lightning” icon on the toolbar.

145Your First Application: Take Two

FIGURE 3.44 The Windows Forms designer.

Sample events include Click for a button, TextChanged for a text box, and so on. And the
most common event for each control can be wired up by simply double-clicking the
control. For example, double-clicking the selected button produces an event handler for a
click on Say Hello. Now we find ourselves in the world of C# code again, as shown in
Figure 3.45.

The straightforward workflow introduced by Windows Forms turned it into a gigantic
success right from the introduction of the .NET Framework. Although we now have the
Windows Presentation Foundation (WPF) as a new and more modern approach to UI

FIGURE 3.45 An empty event handler ready for implementation.

146 CHAPTER 3 Getting Started with .NET Development Using C#

development, there are still lots of Windows Forms applications out there. (So it’s in your
interest to know a bit about it.)

CODE GENERATION AND THE C# LANGUAGE

You might be wondering how the UI definition for the previous WinForms application is
stored. Is there a special on-disk format to describe graphical interfaces, or what? In
the world of classic Visual Basic, this was the case with .frm and .frx files. With
WinForms, though, the answer is no: The UI definition is simply stored as generated C#
(or VB) code, using the System.Windows.Forms types, just as you’d do yourself if you
were to define a UI without the use of the designer. Actually, the designer is a live
instance of your UI but with certain interactions rewired to the designer’s functionality
(for example, when clicking a button, it gets selected).

So where does this code live? In the screenshot with the event handler method; notice
the call to InitializeComponent in the constructor of the Form class. When you right-
click the call and Go to Definition, you’ll see another code file opens with the extension
.designer.cs:

#region Windows Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent()

{

this.label1 = new System.Windows.Forms.Label();

this.button1 = new System.Windows.Forms.Button();

this.textBox1 = new System.Windows.Forms.TextBox();

Here you’ll find code that sets all the properties on the controls, adds them to the
form, wires up event handlers, and more.

Notice the XML document comment on top of the InitializeComponent method
saying not to modify this code as it gets generated by the graphical designer and
changes will get overridden (at best) or might confuse the designer resulting in weird
behavior. Why is this important to point out? Well, the first release of the designer in
.NET 1.0 had to use the first version of the C# language. Nothing wrong with that, of
course, except for the fact that the generated code had to be emitted to the same file
as the one containing the event handlers’ code. Although technically challenging to
ensure the user’s code is not tampered with when updating the generated code, there
was a bigger flaw. Developers, curious as they are, felt tempted to tweak the generated
code from time to time, despite the warning comment on top of it, sometimes with
disastrous results. As a way to mitigate this (partly), code was emitted inside a
#region preprocessor directive to collapse it in the code editor, hiding it from the
developer by default.

147Your First Application: Take Two

A better way to deal with this situation was highly desirable, and the solution came
online in the .NET Framework 2.0 with the introduction of C# 2.0’s partial classes. In
essence, a partial class allows the definition of a class to be spread across multiple
files. Windows Forms was one of the first tools to take advantage of this by emitting
generated code to a separate file (with a .designer.cs extension) while keeping user-
written code elsewhere. In this regard, notice the partial keyword on the class definition
shown in Figure 3.45. As an implication, the designer can always rewrite the entire gen-
erated file, and the generated code file can be hidden from the user more efficiently.
Actually, just for that reason, by default Solution Explorer doesn’t show this file.

With this, we finish our discussion of Windows Forms for now and redirect our attention
to its modern successor: WPF.

Windows Presentation Foundation
With the release of the .NET Framework 3.0 (formerly known as WinFX), a new UI platform
was introduced: Windows Presentation Foundation. WPF solves a number of problems:

. Mixed use of various UI technologies, such as media, rich text, controls, vector
graphics, and so on, was too hard to combine in the past, requiring mixed use of
GDI+, DirectX, and more.

. Resolution independence is important to make applications that scale well on
different form factors.

. Decoupled styling from the UI definition allows you to change the look and feel of
an application on the fly without having to rewrite the core UI definition.

. A streamlined designer-developer interaction is key to delivering compelling user
experiences because most developers are not very UI-savvy and want to focus on the
code rather than the layout.

. Rich graphics and effects allow for all sorts of UI enrichments, making applications
more intuitive to use.

One key ingredient to achieve these goals—in particular the collaboration between design-
ers and developers—is the use of XAML, the Extensible Markup Language. In essence,
XAML is a way to use XML for creating object instances (for example, to represent a user
interface definition). The use of such a markup language allows true decoupling of the
look and feel of an application from the user’s code. As you can probably guess by now,
Visual Studio has an integrated designer (code named Cider) for WPF (see Figure 3.46).

As in the Windows Forms designer, three core panes are visible: the Toolbox window
containing controls, the Properties window with configuration options for controls and
the ability to hook up event handlers, and the designer sandwiched in between.

148 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.46 The integrated WPF designer.

One key difference is in the functionality exposed by the designer. First of all, observe the
zoom slider on the left, reflecting WPF’s resolution-independence capabilities. A more
substantial difference lies in the separation between the designer surface and the XAML
view at the bottom. With XAML, no typical code generation is involved at design type.
Instead, XAML truly describes the UI definition in all its glory.

Based on this architecture, it’s possible to design different tools (such as Expression Blend)
that allow refinement of the UI without having to share out C# code. The integrated
designer therefore provides only the essential UI definition capabilities, decoupling more-
involved design tasks from Visual Studio by delegating those to the more-specialized
Expression Blend tool for use by professional graphical designers.

Again, double-clicking the button control generates the template code for writing an event
handler to respond to the user clicking it. Although the signature of the event handler
method differs slightly, the idea is the same. Figure 3.47 shows the generated empty event
handler for a WPF event.

Notice, though, there’s still a call to InitializeComponent in theWindow1 class’s construc-
tor. But didn’t I just say there’s no code generation involved in WPF? That’s almost true,
and the code generated here does not contain the UI definition by itself. Instead, it
contains the plumbing required to load the XAML file at runtime, to build up the UI. At
the same time, it contains fields for all the controls that were added to the user interface
for you to be able to address them in code. This generated code lives in a partial class defi-
nition stored in a file with a .g.i.cs extension, which is illustrated in Figure 3.48. To see
this generated code file, toggle the Show All Files option in Solution Explorer.

149Your First Application: Take Two

FIGURE 3.47 Code skeleton for an event handler in WPF.

FIGURE 3.48 Generated code for a WPF window definition.

Notice how the XAML file (which gets compiled into the application’s assembly in a
binary format called BAML) is loaded through the generated code. From that point on, the
XAML is used to instantiate the user interface definition, ready for it to be displayed by
WPF’s rendering engine.

As an aside, you can actually create WPF applications without using XAML at all by creat-
ing instances of the window and control types yourself. In other words, there’s nothing
secretive about XAML; it’s just a huge convenience not to have to go through the burden
of defining objects by hand.

150 CHAPTER 3 Getting Started with .NET Development Using C#

LIGHTING UP THE WEB WITH SILVERLIGHT

There’s no reason why the advantages of WPF with regard to designer support, rich and
graphics layout capabilities, and so on should not be extended to the Web. That’s
precisely what Silverlight is about. Originally dubbed WPF/E, for WPF Everywhere,
Silverlight is a cross-platform (Windows, Mac, Linux) and cross-browser (Internet
Explorer, Firefox, Safari) subset of the CLR and .NET Framework class libraries (includ-
ing WPF) that can be used to create rich Web experiences. In the field of UI design, it
shares a lot of the WPF concepts, including the use of XAML to establish a designer-
developer collaboration foundation. Given all of this, it’s very straightforward for WPF
developers to leverage Silverlight and vice versa.

Since Visual Studio 2010, Silverlight project support has been added to the IDE, requir-
ing only additional installation of the Silverlight SDK.

A little tidbit for geeks: The main Silverlight in-process browser DLL is called agcore, as
a subtle hint to the chemical symbol for silver. I’ll leave it to the reader’s imagination to
figure out what was first: agcore or the public Silverlight name.

Windows Workflow Foundation
A more specialized technology, outside the realm of UI programming, is the Windows
Workflow Foundation (abbreviated WF, not WWF, to distinguish from a well-known orga-
nization for the conservation of the environment). Workflow-based programming enables
the definition and execution of business processes, such as order management, using
graphical tools. The nice thing about workflows is they have various runtime services to
support transaction management, long-running operations (that can stretch multiple
hours, day, weeks or even years), and so on.

The reason I’m mentioning WF right after WPF is the technology they have in common:
XAML. In fact, XAML is a generic language to express object definitions using an XML-
based format, which is totally decoupled from UI specifics. Because workflow has a similar
declarative nature, it just made sense to reuse the XAML technology in WF, as well
(formerly dubbed XOML, for Extensible Orchestration Markup Language).

Figure 3.49 shows the designer of WF used to define a sequential workflow.

The golden triad (Toolbox, Properties, and designer) is back again. This time in the
Toolbox you don’t see controls but so-called activities with different tasks, such as control
flow, transaction management, sending and receiving data, invoking external components
(such as PowerShell), and so on. Again, the Properties window is used to configure the
selected item. In this simple example, we receive data from an operation called
AskUserName, bind it to the variable called name, and feed it in to a WriteLine activity
called SayHello. The red bullet next to SayHello is a breakpoint set on the activity for
interactive debugging, illustrating the truly integrated nature of the workflow designer
with the rest of the Visual Studio tooling support.

For such a simple application it’s obviously overkill to use workflow, but you get the idea.
A typical example of a workflow-driven application is order management, where orders
might need (potentially long-delay) confirmation steps, interactions with credit card

151Your First Application: Take Two

FIGURE 3.49 A simple sequential workflow.

WPF STRIKES AGAIN

Not only is Visual Studio 2010 presented using WPF technology, the new workflow
designer is too. This clearly illustrates the richness that WPF can provide. Actually, the
workflow designer can be rehosted in custom applications, too.

ASP.NET
Also introduced right from the inception of the .NET Framework is ASP.NET, the server-
side web technology successor to classic Active Server Pages (ASP). Core differences
between the old and the new worlds in web programming with ASP-based technologies
include the following:

. Support for rich .NET languages, leveraging foundations of object-oriented program-
ming, eliminating the use of server-side script as with VBScript in classic ASP.

. First-class notion of controls that wrap the HTML and script aspects of client-side
execution.

. Related to control support is the use of an event-driven approach to control interac-
tions with the user, hiding the complexities of HTTP postbacks or AJAX script to
make callbacks to the server.

. Various aspects, such as login facilities, user profiles, website navigation, and so on,
have been given built-in library support to eliminate the need for users to reinvent

payment services, sending out notifications to the shipping facilities, and so on. Workflow
provides the necessary services to maintain this stateful long-running operation, carrying
out suspend and resume actions with state (de)hydration when required.

152 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.50 ASP.NET’s page designer.

the wheel for well-understood tasks. An example is the membership provider taking
care of safe password storage, providing login and password reset controls, and so on.

. Easy deployment due to the .NET’s xcopy vision. For instance, when requiring a
class library to be deployed to the server, there’s no need to perform server-side regis-
trations in the world of .NET.

. A rich declarative configuration system makes deployment of web applications eas-
ier, having settings stored in a file that’s deployed with the rest of the application
over any upload mechanism of choice.

From the Visual Studio point of view, ASP.NET has rich project support with a built-in
designer and deployment facilities. Figure 3.50 shows ASP.NET’s page designer.

By now, designers should start to look very familiar. This time around, the markup is
stored in HTML, containing various ASP.NET controls with an asp: prefix. The runat
attribute set to server reveals the server-side processing involved, turning those controls
into browser-compatible markup:

<asp:Button ID=”Button1” runat=”server” Text=”Say Hello” />

Again, the Toolbox contains a wealth of usable controls available for web development,
and the Properties window joins the party to assist in configuring the controls with
respect to appearance, behavior, data binding, and more. The designer surface is put in
Split mode, to show both the HTML and ASP.NET source, together with the Designer view.
Both are kept in sync with regard to updates and selections.

153Your First Application: Take Two

FIGURE 3.51 Event handler code in ASP.NET.

FIGURE 3.52 The Development Server has started.

The designer is quite powerful, actually. Take a look at the various menus and toolbars
that have been added for formatting, tables, the use of Cascading Style Sheets (CSS), and
more. This said, for more complex web design, another Expression family tool exists:
Expression Web. In a similar way as WPF with Expression Blend, this tandem of tools facil-
itates collaboration between developers and designers.

Hooking up event handlers is easy once more (testified by Figure 3.51’s generated event
handler code). What goes on behind the scenes is much more involved. Although you still
write managed code, ASP.NET wires up event handlers through postback mechanisms at
runtime. With the introduction of AJAX, various postback operations can be made asyn-
chronous as well. By doing so, no whole page refreshes have to be triggered by postback
operations, improving the user experience a lot.

To simplify testing ASP.NET applications, a built-in ASP.NET Development Server comes
with Visual Studio 2010, eliminating the need to install Internet Information Services (IIS)
on development machines. The Development Server serves two goals. One is to facilitate
debugging, and the other is to provide the site configuration web interface. Figure 3.52
shows the Development Server being launched in response to starting a debugging session
(by a press of F5, for example).

Debugging ASP.NET applications is as simple as debugging any regular kind of application,
despite the more complex interactions that happen under the covers. In the latest releases

154 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.53 Ribbon designer support in Visual Studio 2010.

of Visual Studio, support has been added for richer JavaScript debugging as well, making
the debugging experience for web applications truly end to end.

Visual Studio Tools for Office
Office programming has always been an area of interest to lots of developers. With the
widespread use of Office tools, tight integration with those applications provides an ideal
interface to the world for business applications. Originally shipped as a separate product,
Visual Studio Tools for Office (VSTO) is now integrated with Visual Studio and has support
to create add-ins for the Office 2007 versions of Word, Excel, Outlook, PowerPoint, Visio,
and InfoPath. Support for SharePoint development has been added, as well, significantly
simplifying tasks like deployment, too.

One of the designer-related innovations in Visual Studio 2010 is built-in support to create
Office 2007 ribbon extensions, as shown in Figure 3.53.

C# 4.0 DYNAMIC IN THE WORLD OF VSTO

Visual Studio 2010 and .NET Framework 4.0 are great releases for developers who
target Office. With the underlying Office APIs written in COM, use from inside C# has
always been quite painful due to the lack of optional and named parameters, the
required use of “by ref” passing for all sorts of parameters, and the loose typing of the
Office APIs. Because of all this, C# code targeting the Office APIs has always looked
quite cumbersome.

C# 4.0 eliminates all those problems, making the code look as it was intended to in
the world of the Office COM-based APIs. In addition, one of the core features that
makes this possible—dynamic typing—proves useful in lots of other domains, too.

155Your First Application: Take Two

FIGURE 3.54 Server Explorer with an active database connection.

Furthermore, there’s the concept of No PIA (primary interop assembly), significantly
improving the deployment story for managed Office add-ins. PIAs contain wrappers for
the Office APIs but can be quite large (in the order of several megabytes). Previously,
those needed to be deployed together with the application and were loaded into memo-
ry as a whole at runtime. With the No PIA feature, the used portions of the PIAs can be
linked in to the application’s assembly, eliminating the deployment burden and reducing
the memory footprint.

Server Explorer

Modern software is rarely ever disconnected from other systems. Database-driven applica-
tions are found everywhere, and so are an increasing number of service-oriented applica-
tions. Server Explorer is one of the means to connect to a server, explore aspects of it, and
build software components that are used to interact with the system in question. Figure
3.54 shows one view of Server Explorer, when dealing with database connections. Adding
a Component file to the project, one gets an empty design surface ready for drag and drop
of different types of server objects.

Server Explorer has built-in support for a variety of commonly used server-side technolo-
gies, including the following:

. A variety of database technologies, with support for SQL Server, Access, Oracle,
OLEDB, and ODBC. Connecting to a database visualizes things such as tables and
stored procedures.

156 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.55 Component designer surface with management objects.

. Event logs are useful from a management perspective both for inspection and the
emission of diagnostic information during execution of the program. .NET has rich
support to deal with logging infrastructure.

. Management Classes and Events are two faces for the Windows Management
Instrumentation (WMI) technology, allowing for thorough querying and modifica-
tion of the system’s configuration.

. Message queues enable reliable, possibly offline, communication between machines
using the Microsoft Message Queuing (MSMQ) technology. To send and receive data
to and from a queue, a mapping object can be made.

. Performance counters are another cornerstone of application manageability,
providing the capability to emit diagnostic performance information to counters in
the system (for example, the number of requests served per second by a service).

. The Services node provides a gateway to management of Windows Services, such as
querying of installed services, their states, and configuration and to control them. In
fact, C# can even be used to write managed code OS services.

For example, in Figure 3.55, a component designer was used to create a management
component containing management objects for a Windows server, a performance counter,
and an event log. No code had to be written manually thanks to the drag-and-drop
support from the Server Explorer onto the designer surface. The Properties window can be
used to tweak settings for the generated objects.

157Your First Application: Take Two

WHAT’S A COMPONENT?

The term component is probably one of the most overloaded words in the world of soft-
ware design. In the context of Visual Studio’s Component project item, it refers to a
subtype of the Component base class found in the System.ServiceModel namespace.
What precisely makes up such a component is discussed in Chapter 27, “Diagnostics
and Instrumentation,” where components are used quite often. In essence, compo-
nents make it possible to share code, access it remotely, manage memory correctly,
and so on. And on top of that, the notion of designer support is closely tied to the
component model, too.

Server Explorer is not only involved in the creation of management-focused components.
In various other contexts, Server Explorer can be used to drive the design of a piece of
software. One such common use is in the creation of database mappings, something so
common we dedicate the whole next section to it.

Database Mappers

Almost no application today can live without some kind of data store. An obvious choice
is the use of relational databases, ranging from simple Access files to full-fledged
client/server database systems such as SQL Server or Oracle. While having library support
for communicating with the database is a key facility present in the .NET Framework
through the System.Data namespaces, there’s more to it.

One of the biggest challenges of database technologies is what’s known as impedance
mismatch between code and data. Where databases consist of tables that potentially
participate in relationships between one another, .NET is based on object-oriented
programming; therefore, a need exists to establish a two-way mapping between relational
data and objects. In this context, two-way means it should be possible to construct objects
out of database records, while having the ability to feed changes back from the objects to
the database.

To facilitate this, various mapping mechanisms have been created over the years, each
with its own characteristics, making them applicable in different contexts. At first, this
might seem a bit messy, but let’s take a look at them in chronological order. We won’t go
into detail on them: Whole books have been written explaining all of them in much
detail. For now, let’s just deal with databases in .NET programming.

DataSet
.NET Framework 1.0 started coloring the database mapping landscape by providing a
means for offline data access. This was envisioned by the concept of occasionally
connected clients. The core idea is as follows.

158 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.56 DataSet designer.

First, parts of a database are queried and mapped onto rich .NET objects, reflecting the
structure of the database records with familiar managed types. Next, those objects can be
used for visualization in user interfaces through mechanisms like data binding in ASP.NET
and Windows Forms. In addition, objects can be directly updated in-memory, either
directly through code or through data-binding mechanisms. An example of a popular
control used in data binding is a DataGrid, which presents the data in a tabular form, just
like Excel and Access do.

Visualizing and updating in-memory objects that originate from a database is just one
piece of the puzzle. What about tracking the changes made by the user and feeding those
back to the database? That’s precisely one of the roles of the offline mapping established
through a DataSet, in collaboration with so-called data adapters that know how to feed
changes back when requested (for example, by emitting UPDATE statements in SQL).

A DataSet can be used in two ways. The most interesting one is to create a strongly typed
mapping where database schema information is used to map types and create full-fidelity
.NET objects. For example, a record in a Products table gets turned into a Product object
with properties corresponding to the columns, each with a corresponding .NET type.

To create a strongly typed DataSet, Visual Studio provides a designer that can interact with
Server Explorer. This makes it incredibly easy to generate a mapping just by carrying out a
few drag-and-drop operations. Figure 3.56 shows the result of creating such a mapping.

159Your First Application: Take Two

THE FUTURE OF DATASET

Some people believe that the use of DataSet has become redundant since LINQ’s intro-
duction in .NET 3.5 and its new mapping mechanisms. Nothing is further from the
truth. As a matter of fact, there’s even a LINQ to DataSet provider in the .NET
Framework class libraries.

DataSet is still a convenient way to represent tabular data, regardless of the type of
underlying data store. The reason this works is because DataSet was intentionally
designed to be decoupled from a particular database provider and to serve as a
generic data container mechanism.

One of the key advantages of DataSet is its direct support for XML-based serialization.
In fact, the extension of a strongly typed DataSet is .xsd, revealing this relationship.
When generating mappings from database schemas, you’re actually creating an XML
schema capturing type definitions and their mutual relationship. The command-line tool
xsd.exe that ships with the .NET Framework developer tools can be used to generate
C# or VB code from such a schema, just like the integrated designer does.

LINQ to SQL
After the relatively calm .NET 2.0 and 3.0 releases on the field of database mapping tech-
nologies, Language Integrated Query (LINQ) was introduced in .NET 3.5. As discussed in
Chapter 2 (and detailed in Chapters 18 and 19), LINQ provides rich syntax extensions to
both C# and VB, to simplify data querying regardless of its shape or origin. Besides LINQ
providers used to query in-memory object graphs or XML data, a provider targeting SQL
Server database queries shipped with .NET Framework 3.5.

In a similar way to the DataSet designer, LINQ to SQL comes with tooling support to map
a database schema onto an object model definition. Figure 3.57 shows the result of such a
mapping using the Northwind sample database. One core difference with DataSet lies in
the SQL-specific mapping support, as opposed to a more generic approach. This means the
LINQ to SQL provider has intimate knowledge of SQL’s capabilities required to generate
SQL statements for querying and create/update/delete (CRUD) operations at runtime.

Similar to the DataSet designer, Server Explorer can be used to drag and drop tables
(among other database items) onto the designer surface, triggering the generation of a
mapping. Notice how relationships between tables are detected, as well, and turned into
intuitive mappings in the object model.

Once this mapping is established, it’s possible to query the database using LINQ syntax
against the database context object. This context object is responsible for connection
maintenance and change tracking so that changes can be fed back to the database.

It’s interesting to understand how the designer generates code for the mapping object
model. Most designers use some kind of markup language to represent the thing being
designed. ASP.NET takes an HTML-centered approach, WPF uses XAML, and DataSet is
based on XSD. For LINQ to SQL, an XML file is used containing a database mapping defin-
ition, hence the extension .dbml.

160 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.57 LINQ to SQL designer.

To turn this markup file into code, a so-called single file generator is hooked up in Visual
Studio, producing a .cs or .vb file, depending on the project language. Figure 3.58 shows
the code generation tool configured for .dbml files used by LINQ to SQL. The generated
code lives in the file with .designer.cs extension. Other file formats, such as .diagram and
.layout, are purely used for the look and feel of the mapping when displayed in the
designer. Those do not affect the meaning of the mapping in any way.

Not surprisingly, the emitted code leverages the partial class feature from C# 2.0 once
more. This allows for additional code to be added to the generated types in a separate file.
But there’s more: A C# 3.0 feature is lurking around the corner, too. Notice the
Extensibility Method Definitions collapsed region in Figure 3.59?

You’ll see such a region in the various generated types, containing partial method defini-
tions. In the data context type in Figure 3.59, one such partial method is OnCreated:

public partial class NorthwindDataContext : System.Data.Linq.DataContext

{

#region Extensibility Method Definitions

partial void OnCreated();

#endregion

public NorthwindDataContext(string connection)

: base(connection, mappingSource)

{

OnCreated();

}

161Your First Application: Take Two

FIGURE 3.58 How the DBML file turns into C# code.

FIGURE 3.59 Generated LINQ to SQL mapping code.

The idea of partial methods is to provide a means of extending the functionality of the
autogenerated code efficiently. In this particular example, the code generator has emitted
a call to an undefined OnCreated method. By doing so, an extensibility point has been
created for developers to leverage. If it’s desirable to take some action when the data
context is created, an implementation for OnCreated can be provided in the sister file for
the partial class definition. This separates the generated code from the code written by the
developer, which allows for risk-free regeneration of the generated code at all times.

ADO.NET Entity Framework
Finally, we’ve arrived at the latest of database mapping technologies available in the .NET
Framework: the Entity Framework. Introduced in .NET 3.5 SP1, the Entity Framework

162 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.60 Entity Framework overview.

provides more flexibility than its predecessors. It does this by providing a few key
concepts, effectively decoupling a conceptual model from the mapping onto the database
storage. This makes it possible to have different pieces of an application evolve indepen-
dent of each other, even when the database schema changes. The Entity Framework also
benefits from rich integration with the WCF services stack, especially OData-based WCF
Data Services.

Figure 3.60 presents an architectural overview.

On the right is the execution architecture, a topic we’ll save for later. The most important
takeaway from it is the ability to use LINQ syntax to query a data source exposed through
the Entity Framework. In return for such a query, familiar .NET objects come back. That’s
what mapping is all about.

Under the covers, the data source has an Entity Client Data Provider that understands
three things:

. The conceptual model captures the intent of the developer and how the data is
exposed to the rest of the code. Here entities and relationships are defined that get
mapped into an object model.

. The storage model is tied to database specifics and defines the underlying storage
for the data, as well as aspects of the configuration. Things such as table definitions,
indexes, and so on belong here.

163Your First Application: Take Two

FIGURE 3.61 ADO.NET Entity Framework designer.

. Mappings play the role of glue in this picture, connecting entities and relation-
ships from the conceptual model with their database-level storage as specified in
the storage model.

To define both models and the mapping between the two, Visual Studio 2010 has built-in
designers and wizards for the ADO.NET Entity Framework, as shown in Figure 3.61.

WHAT’S IN A NAME? ADO.NET

ADO.NET was introduced in .NET Framework 1.0 as the successor to the popular ADO
technology available for COM developers, including the Visual Basic classic community.
ADO stands for ActiveX Data Objects and was by itself a successor to other database
access technologies such as RDO and DAO. Luckily, all of that belongs to the past, and
in fact the only relevant thing ADO.NET shares with its predecessor is its name. All con-
cepts in ADO.NET fit seamlessly in the bigger picture of managed code and an object-
oriented programming style.

Unit Testing

A proven technique to catch bugs and regressions early is to use unit tests that exercise
various parts of the system by feeding in different combinations of input and checking the
expected output. Various unit testing frameworks for .NET have been created over the
years (NUnit being one of the most popular ones), and for the past few releases Visual
Studio has built-in support for unit testing.

To set the scene, consider a very simple Calculator class definition, as shown here:

public static class Calculator

{

public static int Add(int a, int b)

{

return a + b;

}

public static int Subtract(int a, int b)

{

164 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.62 Creating unit tests.

return a - b;

}

public static int Multiply(int a, int b)

{

return a * b;

}

public static int Divide(int a, int b)

{

return a / b;

}

}

To verify the behavior of our Calculator class, we want to call the calculator’s various
methods with different inputs, exercising regular operation as well as boundary condi-
tions. This is a trivial example, but you get the idea.

Unit tests in Visual Studio are kept in a separate type of project that’s hooked up to a test
execution harness, reporting results back to the user. This underlying test execution infra-
structure can also be used outside Visual Studio (for example, to run tests centrally on some
source control server). Different types of test projects exist. Unit tests are by far the most
common, allowing for automated testing of a bunch of application types. Manual tests
describe a set of manual steps to be carried out to verify the behavior of a software compo-
nent. Other types of test projects include website testing, performance testing, and so on.

To create a unit test project, you can simply right-click types or members in the code
editor and select Create Unit Tests (see Figure 3.62).

Next, you select types and members to be tested (see Figure 3.63).

This generates a series of test methods with some skeleton code, ready for the developer to
plug in specific test code. Obviously, additional test methods can be added if necessary.

165Your First Application: Take Two

FIGURE 3.63 Selecting types and members to be tested.

The following is an illustration of such a generated test method:

[TestMethod()]

public void AddTest()

{

int a = 0; // TODO: Initialize to an appropriate value

int b = 0; // TODO: Initialize to an appropriate value

int expected = 0; // TODO: Initialize to an appropriate value

int actual;

actual = Calculator.Add(a, b);

Assert.AreEqual(expected, actual);

Assert.Inconclusive(“Verify the correctness of this test method.”);

}

The task for the developer is now to fill in the placeholders with interesting inputs and
outputs to be tested for. A much too simplistic example is shown here:

[TestMethod()]

public void AddTest()

{

int a = 28;

int b = 14;

int expected = 42;

int actual;

actual = Calculator.Add(a, b);

Assert.AreEqual(expected, actual);

}

166 CHAPTER 3 Getting Started with .NET Development Using C#

Notice the removal of the Assert.Inconclusive call at the end. If the test harness hits
such a method call, the run for the test is indicated as “inconclusive,” meaning the result
is neither right nor wrong. To write a more meaningful unit test, use another Assert
method to check an expected condition. For example, the Assert.AreEqual test checks for
equality of the supplied arguments.

TEST GENERATION WITH PEX

From the preceding example, it’s clear that Visual Studio 2010 does not possess
magical powers to understand your code and to thus generate a series of unit tests by
itself. This does not mean such a thing is impossible to achieve, though.

By analyzing code carefully, specialized tools can infer lots of valid test cases that hit
interesting conditions. In the preceding example, we haven’t written a test that deals
with overflow situations when the two arguments to the Add method are too big for
their sum to be represented as a 32-bit integer. Tools could infer such cases by looking
at the types being used.

Another appealing property of automated test generation is the capability to ensure
high numbers of code coverage. Assume you have some code with a bunch of condi-
tional branches, leading to an explosion in the possible execution paths. Flow analysis
tools can generate different sets of input values so that various code paths in the unit
being tested are hit.

If all of this sounds like a wonderful dream, wake up now. With Pex, Microsoft Research
has created such a toolkit that plugs in to Visual Studio. Pex stands for Program
Exploration, reflecting its automated test case generation powers based on reasoning
about the program. If you care about test coverage (you should!), Pex is definitely
something to check out. Visit http://research.microsoft.com/Pex for more information.

The nice thing about using Pex with .NET 4.0 is its synergy with managed code
contracts, something we’ll talk about later. An example of a contract is constraining the
range of an input value, a so-called precondition. Contracts not only serve documenta-
tion purposes, they’re also used to enforce correctness by means of theorem provers
or runtime checks. But combining the information captured in contracts with Pex is
even more exciting. Pex can use this wealth of information to come up with more test
cases that check violations of contracts and such.

Does all of this mean you should no longer write unit tests yourself? No. Although Pex
can take over the burden of generating various types of tests, there’s still lots of value
in writing more complex test cases that exercise various concrete scenarios your soft-
ware component needs to deal with. In other words, Pex enables you to focus more on
the more involved test cases while relieving you from the creation of slightly more bor-
ing (but nevertheless important) test cases.

Once unit tests are written, they’re ready to be compiled and executed in the test harness.
This is something you’ll start to do regularly to catch regressions in code when making
changes. Figure 3.64 shows a sample test run result.

http://research.microsoft.com/Pex

167Your First Application: Take Two

FIGURE 3.64 Test results.

Turns out I introduced some error in the Subtract method code, as caught by the unit
test. Or the test could be wrong. Regardless, a failed test case screams for immediate atten-
tion to track down the problem. Notice you can also debug through tests cases, just like
regular program code.

Tightly integrated with unit testing is the ability to analyze code coverage. It’s always a
worthy goal to keep code coverage numbers high (90% as a bare minimum is a good goal,
preferably more) so that you can be confident about the thoroughness of your test cases.
Visual Studio actually has built-in code highlighting to contrast the pieces of code that
were hit during testing from those that weren’t.

Team Development

To finish off our in-depth exploration of Visual Studio 2010 tooling support, we take a
brief look at support for developing software in a team context. Today’s enterprise applica-
tions are rarely ever written by a single developer or even by a handful of developers. For
example, the .NET Framework itself has hundreds of developers and testers working on it
on a day-to-day basis.

Team System and Team Foundation Server
To deal with the complexities of such an organization, Visual Studio Team System (VSTS)
provides development teams with a rich set of tools. Besides work item and bug tracking,
project status reporting, and centralized document libraries, source control is likely the
most visible aspect of team development.

The entry point for the use of Team Foundation Server (TFS) is the Team Explorer window
integrated in Visual Studio 2010 (see Figure 3.65).

Here is a quick overview of the different nodes in the Team Explorer tree view:

. The root node represents the TFS server we’re connected to. One of the nice things
about TFS is its use of HTTP(S) web services (so there is no hassle with port configu-
rations). Underneath the server, different team projects are displayed.

. Work Items is the collective name for bug descriptions and tasks assigned to
members of the team. Queries can be defined to search on different fields in the
database. Via the Work Items view, bugs can be opened, resolved, and so on.

168 CHAPTER 3 Getting Started with .NET Development Using C#

FIGURE 3.65 Team Explorer in Visual Studio 2010.

. Documents displays all sorts of documentation—Word documents, Visio diagrams,
plain old text files, and such—that accompany the project. Those are also available
through a SharePoint web interface.

. Reports leverages the SQL Server Reporting Services technology to display informa-
tion about various aspects of the project to monitor its state. Examples include bug
counts, code statistics, and so on.

. Builds allows developers to set up build definitions that can be used for product
builds, either locally or remotely. It’s a good practice for team development to have a
healthy product build at all times. Automated build facilities allow configuration of
daily builds and such.

. Source Control is where source code is managed through various operations to
streamline the process of multiple developers working on the code simultaneously.
This is further integrated with Solution Explorer.

Source Control
Source control stores source code centrally on a server and provides services to manage
simultaneous updates by developers. When a code file requires modification, it’s checked
out to allow for local editing. After making (and testing) the changes, the opposite opera-
tion of checking in is used to send updates to the source database. If a conflicting edit is
detected, tools assist in resolving that conflict by merging changes.

Figure 3.66 shows the presence of source control in Visual Studio 2010, including rich
context menus in Solution Explorer and the Source Control Explorer window.

Other capabilities of source control include rich source code versioning (enabling going
back in time), shelving edits for code review by peer developers, correlation of check-ins to
resolved bugs, and the creation of branches in the source tree to give different feature
crews their own playgrounds.

169Summary

FIGURE 3.66 Source control integrated in Visual Studio 2010.

CODEPLEX

In Figure 3.65 and Figure 3.66, I’ve been connecting to a team project stored on the
CodePlex website. CodePlex is an opensource project community provided by Microsoft
and based on Team Foundation Server as the back-end technology. The project I’m
using here is LINQ SQO (for Standard Query Operators) at http://linqsqo.codeplex.com.
It contains a custom implementation of LINQ to Objects, something we’ll talk about
much more in later chapters.

Summary
In this chapter, we installed the .NET Framework 4 and went through the motions of
building our first trivial but illustrative C# console application. While doing so, we
focused on the development process of writing and compiling code, and then we took a
look at how to inspect it using .NET Reflector. Because it’s unrealistic today to build soft-
ware without decent tooling support, we explored various aspects of the Visual Studio
2010 family. We covered integrated source exploration, build and debugging support, and
took a peek at the various project types and associated tools available.

In the next chapter, we leave the realm of extensive tooling for a while and learn about
the core fundamentals of the C# language.

http://linqsqo.codeplex.com

This page intentionally left blank

CHAPTER 4

Language Essentials

IN THIS CHAPTER

. The Entry Point 171

. Keywords 177

. A Primer on Types 180

. Built-In Types 185

. Local Variables 209

. Intermezzo on Comments 220

. Arrays 228

. The Null Reference 237

. Nullable Value Types 240

Essentials are important. This is no different with
programming languages, so we start by focusing on the
essences of the C# programming language: built-in types,
variables, expressions and statements, control flow,
methods, and so on.

The Entry Point
To keep things simple, we’ll make exclusive use of console
applications in the language-oriented chapters. Doing so
allows us to concentrate on the essentials of the program-
ming language without getting distracted by user interface
definitions and so on.

One thing to consider first is the managed code entry
point, which is where execution of the program starts.
Different types of applications have such an entry point,
including console applications and GUI applications built
with Windows Forms or Windows Presentation Foundation
(WPF). Other technologies, such as ASP.NET web applica-
tions, start execution of managed code in a different way,
but let’s not go there now.

A Trivial Console Application

By far the simplest managed code application that can be
written in C# is one that doesn’t do anything useful. The
following is only of academic interest, yes, but we have to
start somewhere:

172 CHAPTER 4 Language Essentials

class Program

{

static void Main()

{

}

}

Main is the managed code entry-point method for our application. Its body, delimited by
curly braces, contains the statements that get executed by the application. In this case, our
method body is empty.

CASE SENSITIVITY

Notice the casing of the Main method, with its first character uppercase. C# is a case-
sensitive language, just like other C derivatives such as C++ and Java. In other words,
method names that differ only in case denote different methods; so main and Main are
not the same. C# requires the managed code entry point to be styled exactly as shown
in the previous fragment.

Case sensitivity applies not only to method names. Keywords, names for types and
their members, namespaces—they all are subject to case-sensitive treatment.

Let’s point out an important point immediately. For an assembly to be Common
Language Specification (CLS)-compliant, no publicly visible type or member should dif-
fer only in case as compared to one of its peers. If this were the situation, non-case-
sensitive languages like Visual Basic would be in trouble, resolving the name
unambiguously.

C# doesn’t have the notion of global methods, meaning that all methods (and other sorts
of members, as you will see) need to be contained in a type definition. In our example,
the type is a class called Program. In the next chapter, we look at the distinction between
types and classes, so ignore this detail for now.

Method Signatures

Methods also have a signature, which you could see as the recipe that describes how the
method is to be called. The important parts of a method signature include the method
name, the return type, and the parameters. It also contains modifiers that are used to
“modify” the behavior of the method.

Let’s decipher our Main method signature shown in Figure 4.1 with regard to these concepts:

. One modifier, the static keyword, is applied to the method. This means the method
does not operate on a specific instance of the containing type. To explain this
further, we first have to learn about types and object-oriented programming, which
is subject of Chapter 14, “Object-Oriented Programming.” Stay tuned.

173The Entry Point

return type

modifier list method name

parameter list

static void Main()

FIGURE 4.1 Decomposing the Main method signature.

. The return type of the method is void. As the name implies, this means the method
returns nothing, making it a procedure. If the method were to return something, we
would call it a function. Languages such as Visual Basic make this difference explicit
by declaring procedures with a Sub keyword and functions with a Function keyword.
C# doesn’t make this distinction: void indicates a procedure.

. As we already know, Main is the name of the method. This name is used to call the
method (for example, from other places in the program or from other libraries). Main
is a bit different, being the entry point called by the CLR directly.

. Our entry point has an empty parameter list surrounded by parentheses, meaning
the caller can’t supply input for it when making a call. You’ll see in just a minute
that different signatures for the entry point are accepted to deal with command-line
arguments. Even when empty, this pair of parentheses cannot be omitted.

We refine the definition of a method signature in Chapter 10, “Methods,” when talking
about visibility and generic methods.

IS VOID A FIRST-CLASS TYPE?

Although we haven’t learned about types just yet, the curious reader will no doubt won-
der whether void, something used to denote nothing, is a true type. Slightly disappoint-
ing, the answer is no. You’ll see later why such a first-class treatment could be useful,
but to be honest it’s not a big deal.

Allowed Entry-Point Signatures

As we all know, invocation of programs in operating systems supports passing in command-
line parameters. In addition, executables can provide an exit code upon termination, indi-
cating the result of the invocation, with a zero value typically denoting a success state. To
enable those scenarios, four different signatures for the Main method are permitted:

static void Main()

static int Main()

static void Main(string[] args)

static int Main(string[] args)

174 CHAPTER 4 Language Essentials

Those are essentially the four combinations formed by the following:

. Returning an integer-valued exit code or none at all

. Accepting an array of command-line arguments or none at all

Only one entry point can be defined per executable assembly, so a choice must be made.
The default one chosen by Visual Studio is the third, taking in an array of command-line
arguments but returning no exit code. In practice, this means the CLR supplies a zero-valued
exit code on behalf of the developer, indicating a successful invocation and execution.

WINDOWS POWERSHELL

The next-generation command-line, scripting, and automation environment on the
Microsoft platform is Windows PowerShell. One of the things it does fundamentally
different from the classic Windows command-line interpreter involves its treatment of
commands.

In Windows PowerShell, commands are replaced by cmdlets (pronounced “comman-
dlets”) that all have very specialized tasks and can be combined easily by building a
pipeline out of them. The following is an example of such a pipeline:

dir | where { $_.WorkingSet64 -gt 10MB } | format-table

Input and output from those cmdlets is no longer based on string arguments and exit
codes but instead consists of full-fledged .NET objects. Because of this fundamentally
different approach, cmdlets are not written as managed executables but as classes
defined in a managed class library.

In the meantime, I silently hope for the day to come when a Windows PowerShell
cmdlet project template is provided by default in Visual Studio.

To illustrate a slightly more meaningful console application, taking advantage of the
richest entry-point signature available, take a look at the following piece of code:

using System;

class Program

{

static int Main(string[] args)

{

foreach (string arg in args)

{

Console.WriteLine(arg);

}

return args.Length;

}

}

175The Entry Point

FIGURE 4.2 Compiling and running the application.

Here we’ve added quite a bit of stuff, but don’t worry. By the end of the chapter, you’ll be
familiar with all of it. Can you guess what the program does now? It takes in an array of
command-line arguments, iterates over it using a foreach loop, and calls the
Console.WriteLine method to print each argument on a separate line. Finally, it returns
the value of the Length property of the array.

WHERE’S THE EXECUTABLE NAME?

In contrast to C’s main entry point, the command-line arguments array in C# does not
contain the program’s executable filename. In fact, this is more logical because the
user is invoking the program with some arguments, and clearly the program name is
not an argument to itself. However, it makes sense to get the name of the program in
various contexts. A typical example is to print a command-line usage note on the
screen in case invalid arguments are specified, something like this:

Usage: myapp.exe -U:<username> -P:<password>

One way to get to the executable’s name in managed code is by means of the reflec-
tion application programming interfaces (APIs), something we discuss in Chapter 21,
“Reflection.” Another solution is to get the full command line by calling the
Environment.GetCommandLineArgs method. This returns a string array with the first
element set to the executable filename.

Running the Sample

Based on the example in Chapter 3, you should be able to write our trivial console appli-
cation’s code in an editor of choice, compile it, and run it. To illustrate matters one
more time, we’ll go through the motions of compiling the application from the
command line and show its use. Figure 4.2 shows the use of the little application we’ve
written and compiled.

After having written the code in Notepad, saving it to a file with a .cs extension (a conven-
tion, not a requirement), we called the C# command-line compiler csc.exe on it. Next, we

176 CHAPTER 4 Language Essentials

invoked the resulting executable passing in three command-line arguments, which are
subsequently written to the screen. Finally, we use the ERRORLEVEL environment variable
to print the exit code of the last command invocation. This corresponds to the value
returned from the entry-point method, in our case the length of the arguments array.

Notice the double quotes around the last argument used in the preceding example. Those
are processed by the command-line interpreter as a delimiter for a single argument, so the
managed code application receives only three arguments in this case. If we had omitted
the quotes, five distinct arguments would be observed.

TIP

Try misspelling the entry point’s name (for example, by using invalid casing) or specify-
ing more than one entry-point method and observe the compiler’s error reporting on the
matter. The fact that the C# compiler expects to find a suitable entry-point method is
because we’re compiling as a console application. This is because we’ve omitted the
/target:<type> compiler switch, defaulting to an exe type. Try omitting the entry-point
method and compile using /target:library to see the compiler ignoring the lack of
an entry point when building a class library assembly with .dll extension instead.

When you look at the C# command-line compiler options for /target, you see another
type called winexe. What’s the difference between it and the (default) .exe type? The
answer lies in the window provided by the OS loader. For an .exe type, a console user
interface (CUI) is provided to the application, resulting in the typical black background
command-line interpreter look and feel. For winexe, a graphical user interface (GUI) win-
dow is provided (for example, for use by applications based on Windows Forms or WPF).

Under the Hood

How does the CLR know what type contains the entry point and how it’s called? Even
though we didn’t explicitly state this, the containing type’s name doesn’t matter. In line
with Visual Studio’s choice, we used Program, but that’s not mandatory. So the idea of the
CLR having hard-coded knowledge about looking for a method called Main on a type
called Program falls apart.

It turns out the CLR doesn’t care about the name of the method or its containing type at
all; instead, the answer lies in metadata used to keep track of the entry-point method
within the defining assembly. You can see this using ildasm.exe when looking at the code
for the entry-point method. From a Visual Studio 2010 command prompt, run ildasm on
the executable file and double-click the Main method in the Program class. Figure 4.3
shows what you see.

So why does C# require the entry point to be called Main if the CLR doesn’t care? Just a
matter of convenience, really. For one thing, looking for a method called Main in a source
base immediately points you to the starting point of the application because only one entry
point can be defined per assembly. Also if another name were to be allowed, developers

177Keywords

FIGURE 4.3 The .entrypoint metadata token in IL.

THE STATHREAD FOSSIL

In some older versions of Visual Studio, the generated entry-point method for a
console application was decorated with a custom attribute, like this:

[STAThread]

static void Main()

{

}

As a matter of fact, the generated entry-point methods for Windows Forms and WPF
applications still (and likely always will) have this STAThread attribute applied. What’s
its purpose? The answer lies in the COM roots that are deeply entangled in the operat-
ing system foundation. STA stands for single-threaded apartment, the most common
mode of operation for various COM components. A good example of its use is in user
interface programming on Windows.

Luckily, the managed code developer rarely needs to know about this unless dealing
with COM interop directly. And if the attribute is omitted in, say, a WPF application, an
exception will be thrown indicating to the developer to put it back.

Keywords
In our little example, we’ve already seen various keywords. Keywords source code charac-
ter sequences reserved by the language for some special meaning, and therefore they
cannot be used as identifiers in the user’s code.

would need some way to specify the entry-point method, either through a compiler switch
or by means of a specialized keyword. Clearly overkill, so a naming convention in line with
other C-style languages was chosen, with Main being the obvious choice.

178 CHAPTER 4 Language Essentials

So far, the keywords we’ve seen are class, foreach, in, int, return, static, string,
using, and void. At the time of this writing, C# has 78 reserved keywords. This sounds
like an incredibly large number, but by the end of this chapter you’ll already have seen
about half of them.

@

Under rare circumstances, the use of a keyword as an identifier is desirable. A few
years ago, I was involved in the development of some school administration software.
Information about students, courses, and classes had to be fetched from a database.
The singular form of classes is class, so it shouldn’t be surprising there was some
desire to use class as a local variable identifier.

Luckily, C# provides an escape valve for those rare but real circumstances, allowing a
reserved keyword to be escaped by prefixing it with the @ character. So instead of
writing class, which would be seen as a keyword, we could write @class.

Notice that the @ doesn’t become part of the identifier string; it’s just a way to escape
the keyword meaning during the lexing phase of compilation. This means if such an
identifier is to be exposed on the surface of some type (for example, by means of a
method argument), it reads as if the In the light of CLS compliance, it’s strongly dis-
couraged to expose names that could have a reserved meaning to the outside world
because other languages might not be able to deal with proper escaping. So if you use
the @ trick, limit yourself to local variables or internal state.

Contextual Keywords

A language with too many reserved keywords can definitely be annoying to developers
because of the need to escape keywords all over the place. Especially because keywords are
typically based on the English language, clashes with identifiers are a very real risk.
Imagine what would happen if value were a reserved keyword:

int @value = discount.Value;

As a matter of fact, value has a reserved meaning in C# but only in certain contexts.
This combines the best of both worlds, using natural-sounding English words to repre-
sent programming language features while leaving the word available for use as an iden-
tifier in certain contexts. You can refer to those identifiers with occasional special
meaning as contextual keywords, although this is not an official term used in the C#
language specification.

Here is the illustration of the use of the value contextual keywords in a property set accessor:

private int _age;

public int Age

{

get { return _age; }

set { _age = value; }

}

179Keywords

You’ll learn more about properties in subsequent chapters. Actually, the get and set

keywords used in declaring property accessors are treated in a context-sensitive manner, too.

Similarly, the value identifier has a specialized meaning in the context of indexers and
events. Thanks to this contextual treatment, the use of value is not reserved elsewhere, so
you can just write the following:

int value = discount.Value;

ON BACKWARD COMPATIBILITY AND KEYWORD REUSE

Backward compatibility is a big deal to the C# programming language. Every time a new
version is released, it’s key to ensure existing code keeps compiling fine. Contextual
keywords are one way to ensure this. When new keywords are required to raise the
expressiveness of the language required for new language features, they’re made into
keywords only in certain contexts.

Even though C# 1.0 didn’t have compatibility issues to worry about, contextual
keywords were used to reduce the number of reserved words that are commonly used
in English lingo, such as value, get, and set. In C# 2.0, new contextual keywords were
added (for example, the where keyword used for generic constraints).

Going even further with this, certain keywords are reused in different contexts where
they have a different meaning. This might sound confusing, but actually it’s not that
bad. For example, given that the where keyword was already used in C# 2.0 and ver-
sion 3 wanted to add query comprehension syntax, what would be the obvious choice
to express a filter? Right, where strikes again.

Syntax Highlighting in Visual Studio

Keywords, including ones that have a contextual characteristic, are highlighted in the
Visual Studio code editor. Assuming a default color scheme, sequences of characters that
have a special meaning in a given context are blue.

For Figure 4.4, I’ve changed the default setting to make keywords appear bold. Settings to
control the code editor’s look and feel can be found under Tools, Options, Environment,
Fonts and Colors. Select Keyword under Display items to control this setting for (contex-
tual) keywords. Notice how the background compiler for C# recognizes the contextual use
of the value keyword, asking the code editor to format it appropriately only in that partic-
ular context.

180 CHAPTER 4 Language Essentials

FIGURE 4.4 Syntax highlighting in Visual Studio.

A Primer on Types
Types are the bread and butter for managed code developers. Without going into too
much detail at this point—because we’ll dedicate whole chapters to in-depth exploration
of types—it’s good to have some basic understanding about what comprises a type.

Code and Data

Think of types as entities containing code and/or data. You can consider data to be the
most important part here, based on object-oriented considerations and whatnot. Given a
set of primitive types, as you’ll see in just a minute, new types can be defined. On the
field of data, defining a type can be seen as an act of composition.

For example, to represent a person object, you could define a Person class type containing
fields to hold the relevant data:

class Person

{

private string _name;

private int _age;

public Person(string name, int age)

{

_name = name;

_age = age;

}

public void Print()

{

181A Primer on Types

Console.WriteLine(_name + “ is “ + _age + “ years young”);

}

}

In this example, the fields are called _name and _age. The private keyword is a modifier
used to define the visibility for each field.

Fields are members that define the data the enclosing type consists of. Other members
deal with the code associated with the type. Code in this context is not in the sense of
source code, but executable instructions that can operate on data. Samples of such
members include methods, properties, indexers, events, and so on.

A CRISP LINE BETWEEN CODE AND DATA?

The line between code and data might be bit blurry at times. For example, properties
provide a means to access the data contained in an object, but strictly speaking they
consist of a pair of getter and setter methods. Methods should be categorized as code
(obviously).

Properties, as you will see in Chapter 11, “Fields, Properties, and Indexers,” are most
commonly used as smart fields, giving them a very data-centric feeling. In the context
of this section, however, we think about data in a representational fashion: To repre-
sent a person object, a string is required for the name, and an integer value is used for
the person’s age.

The Person class example contains two pieces of code, both of which are methods. One
method prints the person’s name and age to the screen. The other one is a special kind of
method, called a constructor. It’s used to create instances of the type, as discussed in the
next section.

Code and data aspects of a class called Person are contrasted in Figure 4.5.

_name

.ctor

Print

_age

Class Person

“Bart”

(IL Code)

26

(IL Code)

D
at

a
C

od
e

FIGURE 4.5 Code and data.

182 CHAPTER 4 Language Essentials

new T()

FIGURE 4.6 Abstract representation of a constructor.

Alternative terms for code and data are, respectively, actions and state, as used in the C#
language specification. Other languages use yet different terms. Just be consistent.

Types, Objects, and Instances

You’ve seen how types are containers for data and/or code. While some types may just
contain data, others may solely consist of code. That’s just a first order approximation;
further refinement is desirable. Notice how I’ve carefully used two terms from the preced-
ing section: person class versus person object. So what’s the distinction between the two?

Types are just blueprints that describe the shape of an object in terms of data contained in
it and code operating on it. By themselves, types are just a way to classify different sorts of
things our program needs to deal with in a safe manner. A thorough discussion of type
safety is deferred until Chapter 11. An example of a type is Person, with a capital P, as we
declared the class as such.

Objects are concrete instances of such types. Concrete things that can be used at runtime,
that is. In our example, a person called Bart, aged 26, can be represented as an instance of
type Person.

A logical question is how to go from a type to an instance of it. This operation is required
to create a concrete object to work with (for example, representing some person). Here
constructors enter the picture. Think of a constructor as some kind of factory that knows
how to produce concrete objects from type blueprints.

Figure 4.6 illustrates this concept in an abstract way. Given a type T, which just defines
the shape of an object (as indicated with dashed lines), the constructor for T acts as a
factory producing a concrete object (as indicated with the solid block).

In C#, constructors are invoked by using the new keyword, followed by the type name
and a (possibly empty) set of parameters between parentheses, just like with regular
method calls.

For our Person type, you could look at the factory as some kind of passport office that
produces person objects from a given name and age, as shown in Figure 4.7. (Yes, I know,
birthday would be more accurate.)

183A Primer on Types

new Person(“Bart”, 26)

Passport
Office

Name = “Bart”
Age = 26

FIGURE 4.7 Creating an object of type Person.

FACTORY METHODS

The use of the word factory in this context is very appropriate, but in the world of code
design patterns it’s been overloaded. A design pattern called factory method exists to
create object instances in a different way, avoiding direct use of constructors. In an
object-oriented setting, this technique can be useful for returning an object of a specific
subclass, depending on the input to the method. More information on object-oriented
programming appears in Chapter 14.

Variables

To store data, we need storage cells. Those are called variables and always have an associ-
ated type. A type-safe language like C# guarantees the values stored in such a variable
have the appropriate type. If this weren’t the case, it would be possible to look at a Person
instance as if it were a Fruit instance, something that doesn’t make sense and clearly indi-
cates a code defect.

Variables can occur in various places. Actually, we’ve seen most of them already. The first
one is as a local variable:

int value = discount.Value;

This declares a variable of type int and immediately assigns it some value by retrieving the
Value property (or field, if bad coding style is used) from another variable called discount.

Where did this discount variable come from? It could be a local variable by itself but
could equally well be passed in as a parameter to a method:

public void ApplyDiscount(Cart cart, Discount discount)

{

int value = discount.Value;

// ...

}

The second line of the shown method body is a single-line comment. We’ll look at
commenting styles separately at a later point. I’m just using it to indicate omitted code
you can fantasize about wildly.

184 CHAPTER 4 Language Essentials

Another variable category is found with fields, actually subdivided into two subcategories:
static and instance ones. For this distinction, see Chapter 9, “Introducing Types,” in the
section, “Static Versus Instance.” Here is an example of two instance variables, for the
_age and _name fields.

class Person

{

private string _name;

private int _age;

// ...

}

Other variable categories include array elements and output parameters, as you’ll see later.
For now, remember that variables are storage cells. What precisely they contain is
explained in the next section.

Classes and Other Types

So far, we’ve not made the distinction between a class and a type concrete. The CLR
supports multiple sorts of types (not to say “types of types”), but one big top-level distinc-
tion can be made, as follows:

. Variables of a value type immediately contain the data. When assigned to another
variable (for example, also when passing to a method parameter), the contents are
copied by value. So value types are passed by value (by default).

. Variables of a reference type store a reference to the data. This means multiple vari-
ables can refer to the same object, a principle called aliasing. So reference types are
passed by reference.

The definition of a reference type is called a class, whereas that of a value type is called a
struct. Corresponding keywords exist in C# to build self-defined types.

Ignore further implementation details for now; we discuss them in Chapter 9. To illustrate
matters, analyze Figures 4.8 and 4.9 carefully.

Notice how the type tag in Figure 4.8 contains System.Int32 as opposed to int. Those are
synonymous in C#, as you’ll see when we discuss built-in types. What really matters in
this figure is the fact that the assignment of x1 to x2 copied the value between cells. We
have not aliased 42 by having two references to it; instead, we have two copies of the
same value that live independently from each other.

On the other hand, with reference types, aliasing occurs as shown in Figure 4.9. For
example, when manipulating the person object through either of the two variables that
refer to it, the change becomes visible to both. Both variables refer to the same data, and
no copies of that data are made. Also notice how the _name field has a reference type,
causing a similar referencing situation. One thing we’ve omitted from this discussion for
now is the concept of the null literal.

185Built-In Types

42

int x1 = 42;

int x2 = x1;

x1

42x2

System.Int32

System.Int32

FIGURE 4.8 Value types are copied and passed by value.

Person p1 = new Person(“Bart”, 26);

_name

_age

Person p2 = p1;

p2

p1

Person

Person

26
“Bart”

FIGURE 4.9 Reference types cause aliasing.

Besides classes, other sorts of reference types exist in the world of managed code.
Interfaces, delegates, and arrays are examples of reference types. Under the umbrella of
value types, we find things such as enumerations and nullable types. Enumerations are
discussed in Chapter 11 in the section, “An Intermezzo on Enums.” More information on
nullable types appears during the discussion of expressions and operators in Chapter 5,
“Expressions and Operators.” For now, let’s take a look at some of the primitive types.

Built-In Types
Classes and structs can be used to define new reference or value types, respectively, by
defining fields for data storage. As you saw previously, fields are classified as variables, and
all variables have a type. Guess what? We just spotted a recursive definition: Value types
and reference types are composed of other types.

186 CHAPTER 4 Language Essentials

TABLE 4.1 Integral Types

C# BCL Type Range

sbyte System.SByte –128 to 127

byte System.Byte 0 to 255

short System.Int16 –32,768 to 32,767

ushort System.UInt16 0 to 65,535

int System.Int32 –2,147,483,648 to 2,147,483,647

uint System.UInt32 0 to 4,294,967,295

long System.Int64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

ulong System.UInt64 0 to 18,446,744,073,709,551,615

char System.Char 0 to 65,535 (U+0000 to U+ffff)

Clearly, this recursive definition needs to stop somewhere with a base case. In other
words, some primitive types should be available that cannot be decomposed any further
by means of fields. One way to determine such types is by looking at the types the CLR
natively knows about in terms of intermediate language (IL) instructions (for example, for
addition of two integers of floating-point numbers).

Actually, there are three views on the world of built-in types. First, at the lowest level
there’s the CLR representation of a type, consisting of bit patterns. One level up, we find
ourselves in the Base Class Library (BCL)’s view of the world, where convenient types are
defined to cover up the low-level details. An example is System.Int32 to represent a 32-bit
integer value as represented by the CLR. Those types add convenient members that make
life easier for developers. Finally, there’s the language-specific look at built-in types, where
keywords are defined as aliases for the underlying BCL types. For example, in C# in stands
for System.Int32.

Integral Types

Integral types are one category of built-in value types. They have an integral numeric value
represented by a number of bits (not surprisingly in powers of two) and can either be
signed or unsigned.

The u prefix is typically used as a prefix in the C# reserved word for those types to denote
unsigned integral types. A notable exception is byte, which is unsigned, where an s prefix
is used to indicate the signed variant. This aligns with what developers spontaneously
think of when you say “byte” (range 0x00 to 0xFF to say it in hex). And the English
pronunciation of “ubyte” didn’t sound too appealing either! Table 4.1 summarizes the
integral types with their C# and BCL names, along with their ranges.

Notice this aliasing of BCL types with C# reserved words is a constant mapping, indepen-
dent from the machine hardware the programs run on. It’s the Just-in-Time (JIT)

187Built-In Types

compiler’s job to ensure a variable’s precision is respected exactly on the platform where
the code is run.

HOW TO CALCULATE INTEGRAL TYPE PRECISION

If you’re wondering where the range of integral types comes from, it’s simply deter-
mined by the number of bits available. Given n bits, the range for unsigned values goes
from 0 to 2^n – 1. For signed values, the range stretches from –2^(n – 1) to 2^(n – 1)
– 1. Luckily, you don’t need to know this because the BCL types have each two proper-
ties called MinValue and MaxValue to get this very information.

WHAT ABOUT ARBITRARY PRECISION ARITHMETIC?

Even though the range of 64-bit numbers might seem astonishingly large, it often does
not suffice for scientific computations. This limitation reflects the machine-oriented
nature of the CLR, where arithmetic IL instructions ultimately get JIT compiled into effi-
cient CPU instructions.

Part of the appeal of functional languages to the scientific community is their large
integer support. This is no different with F#, which introduced a bigint type. Similarly,
dynamic languages on the DLR introduced their own big integer number types. To
consolidate those types, .NET 4.0 introduced a BigInteger type with arbitrary preci-
sion in the System.Numerics namespace.

Clearly, register-based processors can’t cope with arbitrary long numbers because they
can’t fit in the available registers for the ALU (arithmetic logical unit) to carry out
computations. Therefore, BigInteger numbers are represented as an array of 32-bit
integers, with parts of the arithmetic operations defined in managed code. This has a
cost associated with it, but rest assured the type has been optimized to withstand the
toughest calculations efficiently.

At the time of this writing, C# doesn’t have a reserved word to alias the BigInteger

type. Personally, I find this a good thing because C#’s numeric types have always had a
machine-like performance profile. Adding bigint would disturb this and pose a poten-
tial pitfall for the unaware developer who thinks “arbitrary” is always better than “fixed.”

Integral Literals
The ability to declare variables of integral types is one thing; the ability to assign values to
them is a necessity. Literals are representations of values in source code that are readily
understood by the compiler and turned into the correct representation at compile time.

Being integral numbers, an obvious choice for literals is to allow users to write them as is,
without culture-specific notation, that is (for example, not using thousands separator
characters). The following are a few examples:

byte b = 123;

short s = -234;

uint i = 1000000;

188 CHAPTER 4 Language Essentials

Literals do not necessarily appear is local variable assignments. For example, they can
equally appear as parameters to a method.

As an alternative to decimal notation, C# also supports hexadecimal notation by use of
the 0x of 0X prefix in a literal. Valid characters to follow this prefix include the 0–9 digits
as well as the characters a–f (either uppercase or lowercase). For example:

byte b = 0x7B;

short s = 0xF15;

uint i = 0x989680;

NO OCTAL OR BINARY?

C# supports neither octal nor binary notation for integral literals. Those tend to be
used much less than decimal and hexadecimal, but there’s also a practical reason for
it. Octal literals have been historically written down in various languages (such as C)
using a 0 character as the prefix. However, it’s not unlikely for developers to pad inte-
gral values with 0s in the front to nicely align source code. Or to write down flight num-
ber 047 as an integral value. It’s highly unlikely the user meant octal in such a case.
Therefore, C# chose to prevent this kind of mistake from happening.

Besides prefixes for hexadecimal, suffixes exist, too. But they serve a very different goal: to
specify the desired precision. Why do we need this at all? For starters, the following code
simply works as you expect it to:

long l = 42;

Even though the value 42 fits in an sbyte or byte, the fact the variable is declared to be a
long means it has 64 bits of signed precision. However, in other cases, you might need to
force a literal to have a certain precision for other things to work. Such a case exists when
multiple method overloads exist (that is, methods with the same name but different signa-
tures). For example, the System.Math class has overloads for the Abs (absolute value)
method that take in different numeric types, such as int and long:

int Abs(int value);

long Abs(long value);

// ...

Now, suppose you need to take the absolute value of –2,147,483,648. Okay, I know,
because this a mathematically pure function we could just calculate it upfront if we were
using only a constant input value anyway. But I’m just setting the scene with the simplest
possible example, so bear with me:

long res = Math.Abs(-2147483648);

189Built-In Types

If we look at the table with integral type precisions, we see that the absolute value doesn’t
fit in an int, so we need a uint or some long instead. Therefore, we assign the result to a
long, to pick one. However, the compiler types the literal passed in as a parameter to be
an int, and hence the first method is chosen:

int Abs(int value);

Because this method does not know how to represent the value 2,147,483,648 as an int
required by the return type, it blows up with a runtime exception, effectively terminating
our program forcefully.

What we need here is a way to tell the compiler to treat the literal not as an int but as a
long, for it to pick the other overload. Different workarounds exist, ranging from using an
intermediate local variable to the use of a conversion (see further). However, the use of an
integer type suffix is more appropriate here. Three such suffixes exist: u, l, and ul (all of
which can be written using any casing you want). The first one, u, indicates to treat the
literal as unsigned. Next, l, means to treat it as a long. And finally, ul means to treat it as
an unsigned long.

Here’s our fixed example using an integer type suffix:

long res = Math.Abs(-2147483648L);

For the precise rules for determining the type of an integral literal, refer to the official C#
specification, section 2.4.4.2.

NON-CASE-SENSITIVE SUFFIXES

Why are those type suffixes not case-sensitive, while C# is a case-sensitive language?
Every keyword being lowercased, the natural choice would be to only allow this natural
feeling style for suffix characters. However, a problem exists for the lowercase letter l
looking similar to numeral 1 in lots of fonts. It is clearer to write L to avoid this confu-
sion. To allow this and keep the typical style of lowercase, characters occurring in inte-
gral literals (including 0x and the hexadecimal letters) are not case-sensitive. This
makes more sense than having one exception to the lowercase rule (just for an L).

Character Literals
The char type is used to represent a single Unicode character. Character literals consist of
single quotes containing the character to be represented, or an escape sequence. A few
examples not involving the use of escapes are shown here:

char c1 = ‘A’;

char c2 = ‘b’;

char c3 = ‘ ‘;

char c4 = ‘#’;

Some characters need escaping using the backslash character as a prefix. Those are \’
(single quote), \” (double quote), \\ (backslash), \0 (null character), ’\a’ (alert, beeping

190 CHAPTER 4 Language Essentials

TABLE 4.2 Floating-Point Types

C# BCL Type Approximate Range Precision

float System.Single ±1.5 × 10^-45 to ±3.4 × 10^38 7 digits

double System.Double ±5.0 × 10^-324 to ±1.7 × 10^308 15–16 digits

the system speaker), ’\b’ (backspace), ’\f’ (form feed), ’\n’ (new line), ’\r’ (carriage
return), ’\t’ (horizontal tab) and ’\v’ (vertical tab). Some of these are old treasures you’ll
rarely ever use. Memorizing quotes and newline and horizontal tab characters should
suffice for day-to-day programming activities.

Escape sequences also permit the use of a character’s hexadecimal representation by prefix-
ing it with \x. One to four hexadecimal digits can be specified, with the letters being not
case sensitive. Examples of the use of escapes are shown here:

char c5 = ‘\t’;

char c6 = ‘\n’;

char c7 = ‘\x20’; // a space

char c8 = ‘\x2260’; // “not equal to” symbol

Floating-Point Types

You might remember the different types of numbers from grade school. Natural numbers
correspond to unsigned integral values, but where are the real numbers (not to mention
fractional numbers)? In the world of computer science, the answer is twofold, with a
significant difference with regard to precision. As humans, we’ve embraced the decimal
system, likely directly related to the number of fingers we’re born with. Computers work
with binary representation, though. This poses a problem with real numbers, some of
which can’t be represented exactly in binary. Let’s give it a try:

0.30 < 1/2 = 0.5

0.30 > 1/4 = 0.25

0.30 < 1/4 + 1/8 = 0.375

0.30 < 1/4 + 1/16 = 0.3125

0.30 > 1/4 + 1/32 = 0.28125

We can continue refining this sum of base-2 fractions to get closer and closer to 0.30, but
we cannot reach it precisely using binary representation. This is one of the things that
makes the use of real numbers on computers hard.

The approach shown in Table 4.2 is a simplification of the concept of floating-point
numbers, as you will see in just a minute. An alternative exists that avoids the use of those
fractions and is called decimal numbers. Those are the topic of the next section. But first,
what are the floating-point types supported in C#?

191Built-In Types

FIGURE 4.10 32-bit floating-point representation of 0.3.

Why those strange ranges, and why are they approximate? And what’s up with the
number of digits precision? The answer lies in the floating part. Stay tuned.

Internal Representation
A float is represented using 32 bits; a double uses 64 bits. The meaning of those bits does
not simply correspond to a fixed binary position, though. If it did, we would have to draw
the line between positions before and after the comma somewhere. What’s wrong with
that? One observation about the use of real numbers is this: Both big numbers (for
example, the light speed in meters per seconds has quite an impressive value) and small
numbers (for example, the size of an electron in meters is embarrassingly small) are
popular. For the one, we need bits as high (or large) as we can get. For the others, we need
bits as low (or small) as we can get. This is clearly conflicting.

To accommodate both situations, floating-point numbers are used. As the name implies,
the position of the point (decimal separator) is not fixed; instead, it floats. To achieve this,
the bit representation of floating numbers is divided into three parts:

. One single bit is used for the sign, indicating a positive (0) or negative (1) number.

. A number of bits (8 for single precision, 11 for double precision) is used to represent
an exponent (or coefficient).

. The remaining bits (23 for single precision, 52 for double precision) indicate the
mantissa (or significand).

The exponent itself is offset relative to a so-called bias, which has value the 127 for single
precision and 1023 for double precision. All of this might sound frightening, but it’s not
that hard to understand using a picture (see Figure 4.10).

192 CHAPTER 4 Language Essentials

IEEE-754

Floating points are a well-specified concept implemented by many platforms. The stan-
dard implemented by the CLR (and hence C# and other managed code languages) is
the popular IEEE-754 standard for floating-point numbers. There’s more to it than just
the formula discussed here, however. The standard also defines the results of opera-
tions like division by zero and calculation with infinities.

As you can see from the figure, some fractional numbers, like 0.3, can be approximated
very well but can’t be represented exactly. In lots of applications, this is not a huge
problem, but it’s good to be aware of this because it can lead to rounding errors in calcula-
tions, and errors may accumulate. So don’t be surprised if a float or a double doesn’t
contain exactly what you expect it to.

It’s important to remember that this is not a language- or runtime-specific limitation, but
a fundamental one. All platforms using floating-point numbers suffer from those restric-
tions. If this is not desirable, other types with precise decimal representations need to be
used, as discussed next. Typical examples include banking applications, where every
penny matters.

Intermezzo Behind the Scenes
For the curious readers, let’s dig a little deeper and see this imprecision for real using the
Visual Studio 2010 debugger. But first, let’s write a little piece of code that uses a real
literal, which we discuss in the next section:

static void Main()

{

double d = 0.3;

}

Notice that I’m omitting the necessary class declaration surrounding the method, but by
now you should be able to reconstruct this. When compiling, you’ll see a warning about
the fact we’re only assigning to local variable d but never using it. For now, it’s fine to
ignore this, but in general this indicates you have some dead code to take a closer look at
for cleanup.

Set a breakpoint (using F9, for example) on the closing curly brace of the Main method
and start the debugger (F5). When the breakpoint is hit, open a Memory window through
Debug, Windows, Memory. In the address box of the window, enter d as the name of the
local variable we want to take a look at in raw memory. Using the context menu, the
display can be set to 64-bit floating-point numbers.

Repeat the same steps to bring up another Memory window, again looking at variable d’s
memory contents. This time, leave the display settings alone. The result should look like
Figure 4.11.

193Built-In Types

FIGURE 4.11 Looking at the memory for a floating-point number.

FIGURE 4.12 Looking at the bits of the floating-point number.

First of all, observe how the Memory window displays the floating-point number as
0.299... rather than 0.300..., illustrating the imprecision we’re talking about. In the hexa-
decimal window, take a look at the byte pattern. Actually, it’s shown in reverse due to the
“endianness” of the platform. It really says 3FD3333333333333. Based on the floating-
point formula shown earlier, you can reconstruct the decimal value as a little exercise.
(Notice we’re in the 64-bit “double-precision” situation now.) For those of you running
Windows 7, the new Calculator has a great programmers mode to look at bit representa-
tions of numbers (see Figure 4.12).

Along the same lines, you may also wonder how the floating-point number gets loaded at
runtime. Was it the C# compiler that made the conversion into the right IEEE-754 repre-
sentation, or what? The answer is yes, as you can observe from running ildasm. In Figure
4.13, I’ve turned on the View, Show Bytes option.

194 CHAPTER 4 Language Essentials

FIGURE 4.13 Loading a floating-point constant in IL.

Here, the ldc.r8 instruction is used to load a floating-point constant of the specified value.
Feel free to go back to disassemble some program using integral types to see the instruc-
tions used there (ldc.i4 and so on).

Real Literals
Just like with integral values and characters, we want a way to be able to write real values
right inside source code. That’s what real literals are for. One difference compared to inte-
gral literals relates to the use of a decimal separator character, for which the dot is used:

double half = .5;

double pi = 3.14159265358979323846; // also available as Math.PI

A second difference lies in the use of scientific notation to specify an exponent part, using
either e or E as a separator character. Exponents can be positive or negative and represent
a power 10-based factor:

double mole = 6.02214179e23;

double planck = 6.62606896e-34;

Notice that the use of the character e doesn’t clash with hexadecimal notation because
such notation is not permitted in the context of real literals anyway.

Finally, there’s the use of real type suffixes to explicitly specify the desired real type the
developer wants a real literal to be treated as. Three suffixes exist, all of which are flexible
in casing (just like the integral type suffixes). The first is f or F, to treat the literal as a 32-
bit single-precision float. Using d or D, a 64-bit double-precision treatment can be enforced.
The third one, m or M, is discussed in the next section and is used for decimal values.

The Decimal Type

In the category of real types, you’ve learned about floating-point types so far. Despite their
wide range, the imprecision that comes with them may sometimes be problematic, espe-
cially in the context of financial calculations. To provide an answer to this, the BCL offers
a System.Decimal type that is surfaced in C# through the decimal keyword.

195Built-In Types

TABLE 4.3 Decimal Type

C# BCL Type Approximate Range Precision

decimal System.Decimal ±1.0 × 10^-28 to ±7.9 × 10^28 28–29 digits

FIGURE 4.14 Banker’s rounding.

Decimal is a 128-bit value with a smaller range than the floating-point numbers but with
higher precision due to exact decimal representations. These two properties apply very
well in the world of financial computing: Scales over a decimal order of magnitude of 300
(as with double) are ridiculously high, and the ability to represent simple values like 0.30
(for example, to denote 30 cents) precisely is much more valuable.

To keep primitive type definitions “tabled,” Table 4.3 presents decimal’s scorecard.

The representation of a decimal value is rather straightforward: 96 bits are used for the
coefficient and the remaining 32 bits contain flags for the sign and the scale, which should
be a value between 0 and 28 (inclusive bounds). The scale is where the difference lies with
floating-point types, being 10-based to guarantee (what’s in a name?) decimal precision.

What about the limitation in the number of digits? Suppose you have a literal that
exceeds that number, as the one that follows here has 30 digits in it, whereas only 29 are
permitted. A similar situation arises beyond the use of literals when computations such as
averages result in values that cannot be represented exactly anymore:

decimal x = 0.12345678901234567890123456789M;

The answer is banker’s rounding, named after a claim that it is used by bankers. Its idea is
based on balancing rounding up and down nicely to avoid a bias toward one of the two,
possibly accumulating over time. In essence—contradictory as this might sound—it’s
meant to be a rounding that’s as precise as possible.

So what’s the rounding based on? Simple: If the fractional part that exceeds the available
precision is over one half, round up. Otherwise, round down. And precisely in the middle,
round toward the nearest even integer. Figure 4.14 shows a few examples.

(–1)s c 10e

196 CHAPTER 4 Language Essentials

Decimal Literals
The format of decimal literals is the same as that of real literals: the decimal separator
character, the optional use of an exponent. As we’ve seen before, the real type suffix for
decimal is m or M.

There’s an interesting thing to notice about the use of this prefix in the context of deci-
mals. When no real type suffix is used on a real literal, the value is considered to be
treated as a floating point. As you know, floating-point numbers have precision issues, and
allowing an implicit conversion of those into decimals (with a higher precision character-
istic) would therefore pose a hidden data loss. For this reason, you should explicitly state
that a real literal should be treated as decimal using the m suffix:

decimal price = 79.95m;

However, because an integral literal can implicitly be converted to a decimal without risk
of information loss, it’s valid to assign an integral literal to a decimal variable:

decimal price = 99;

WHY THE M SUFFIX?

Two stories describe the origin of the m suffix for decimal literals. The first one has a
precise nature and trims down the number of possible suffixes by elimination. Starting
from the word decimal, clearly d couldn’t be used because it’s already used for the
double suffix. E is used for scientific notation, and c has a potential hexadecimal inter-
pretation. For i, the story goes it would be good to keep it free for a possible (but
rather unlikely) introduction of imaginary numbers or maybe to avoid font confusion with
1. That brings us to m as the first applicable character. And a and l are no good either,
for reasons of hexadecimal and use for long, respectively.

Version two of the origin story is much simpler: With decimal’s target audience being
the financial industry, why not use m for money?

The Boolean Type

Boolean values, named after George Boole, are used to denote logical truth values. Named
System.Boolean in the BCL, the type surfaces with the bool alias in C#. Only two Boolean
values exist, both of which have an associated Boolean literal. Unsurprisingly, those are
true and false.

MEMORY REPRESENTATION AND USE

Although only 1 bit would be required to express true or false, Boolean values are
represented by the CLR as 1 byte. You can see this from the Immediate window by
evaluating the sizeof(bool) expression. This is really just an implementation detail,
reflecting the smallest addressable unit of memory.

But from a typing perspective, there are really only two semantic values for the Boolean
type: An all-zero pattern represents false, while a byte with any bit set represents true.

197Built-In Types

In contrast to C and C++, C# is very strict about the use of Boolean values where
truth value semantics are required. For example, the if statement’s condition requires
a Boolean expression be supplied and nothing else (like a pointer or any integral
value in C).

The String Type

The built-in types we’ve seen so far are all value types. System.String, on the other hand,
is a reference type. To understand why this is the case, we first need to know about the
memory layout and its implications (the subject of Chapter 9, where we talk about the
heap and the stack).

SYSTEM.STRING VERSUS THE STRING RESERVED WORD

Don’t forget that the C# reserved words for built-in types are simply aliases for the
underlying BCL types. In the case of C#’s string, that is System.String. Both can be
used in source code, and when the System namespace is imported, the latter one can
be abbreviated to String, with a capital S.

This casing doesn’t change the characteristics of the type. String is, and always is, a
reference type. People with different programming backgrounds sometimes get this
wrong. For example, in Java there’s quite a difference between int and Integer, while
there’s only String and no string.

To state the obvious, the string type is used to represent textual data, based on Unicode
characters. One thing is a bit special about it: Strings in .NET are immutable. Once created,
you can’t change the contents of a string or grow or shrink it. Instead, you create a new
(modified) one. You’ll see some interesting implications about this in Chapter 5, in the
section, “String Concatenation.”

String Literals
String literals are formed by putting sequences of characters between double quotes (”).
The characters supported in a string literal are the same as the ones used in character liter-
als, including the use of escape sequences:

string a = “Hello world!”;

string b = “Bart says \”Hello C#!\””;

string c = “\\\\bartde-dev07\\c$\\Windows\\Microsoft.NET\\Framework”;

Having to escape backslashes all over the place can be quite cumbersome when dealing
with paths, as illustrated here. To make this easier, C# supports verbatim string literals. By
prefixing a string literal with @, characters are not escaped within the string:

string c = @”\\bartde-dev07\c$\Windows\Microsoft.NET\Framework “;

198 CHAPTER 4 Language Essentials

When a double quote is required in a literal string, it needs to be doubled because there’s
no way to escape it using \ anymore:

string b = @”Bart says ““Hello C#!”””;

Verbatim string literals can also stretch multiple lines:

string e = @”<Products>

<Product Name=””Chai”” Price=””49.95”” />

</Products>”;

Notice not only that the newlines are included in this multiline string but also that the
whitespace is preserved as it appears in the source code.

One final remark: Be wary about the use of \x hexadecimal Unicode character representa-
tions. Because \x can be followed by one to four hexadecimals, the subsequent character
can cause confusion if it’s a hexadecimal by itself. For example, assume you want a space
(hexadecimal \x20) followed by the character 1:

string wrong = “\x201”;

This won’t do the right thing because 201 is interpreted as the hexadecimal for one single
character (which looks anything but the intended space). To avoid this kind of mistake,
use fully expanded hexadecimals with all four digits:

string right = “\x00201”;

ESCAPING FROM ESCAPING ESCAPES

One design rationale for adding verbatim string literals to the language was not so
much file paths, but regular expressions. Paths are better off being stored in configura-
tion files anyway; and to concatenate paths, BCL support is available through
System.IO.Path.

However, regular expressions are typically burned into a program’s source code and can
be quite hard on the eye. Because they also use the backslash character as an escape
mechanism, writing such a regular expression down in C# code without verbatim string
literals would mean to “escape the escapes.” This would turn into a mess quickly, so
verbatim string literals come to the rescue.

As for all built-in types, we discuss the operations you can carry out with strings in
Chapter 5.

Object

We kept one of the most interesting types for the last: System.Object, otherwise known as
object in C#. What’s so special about this one? Recall that the .NET Framework is based

199Built-In Types

Value Types Reference Types

Object

ValueType

StringSByte

Int16

Int32

Int64

Boolean

Single

Decimal

Byte

UInt16

UInt32

UInt64

Char

Double

Struct Types
e.g., Point

Interface Types
e.g., IComparable

Delegate Types
e.g., Action

Class Types
e.g., Window

Array Types
e.g., Int.32[]

Enum Types
e.g., Color

Nullable Types
e.g., int?

FIGURE 4.15 The roots of the .NET Framework type hierarchy.

on the principles of object-oriented programming (OOP). In this setting, types form a hier-
archy; we pay much more attention to OOP in later chapters.

Every type in .NET, except for System.Object, has a base type from which it inherits code
as well as data. This sentence already gives it away. Because System.Object doesn’t have a
base type, it should necessarily be the (only) root of the type hierarchy. Although this may
sound of interest only for theoretical purposes, it has a very practical side to it: unifying
the type system across value and reference types.

Figure 4.15 shows the .NET Framework type hierarchy, constrasting the concept of value
types and reference types.

All of this means you can write very generic code, for example, in some algorithm or data
structure that can deal with objects of any type. In the first release of the .NET Framework,
collection types like ArrayList were built based on this principle, making them usable as
containers for data of any type:

ArrayList primes = new ArrayList { 2, 3, 5, 7, 11 };

int two = (int)primes[0];

primes.Add(“thirtheen”);

int thirteen = (int)primes[5]; // runtime error!

200 CHAPTER 4 Language Essentials

NOTE

In the preceding code snippet, I’m using a bunch of language features we haven’t
looked at yet. In particular, on the first line you can see a collection initializer. Line two
contains a cast expression and use of an indexer, and line three makes a method call.
Don’t worry, we cover all of these in quite some detail as we move forward.

Earlier, I used the word generic in a rather ad hoc fashion. The use of System.Object for
collection types wasn’t ideal for various reasons that will become apparent later, but the
biggest stumbling block is the potential for users to make silly mistakes (as illustrated in
the code fragment). Suppose you’re using an ArrayList to store integer values. Because
ArrayList is defined to be able to deal with any kind of object, however, nothing prevents
you from storing an object of another type, such as a string, in the same collection. In
addition, there are performance implications associated with this approach (due to boxing,
as you will see).

To address that, .NET 2.0 introduced the concept of generic types, which we pay
much more attention to in Chapter 15, “Generic Types and Methods.” One of the
key properties of generic types is that they make excessive use of System.Object go

away, essentially improving static typing and reducing typical silly mistakes that would
otherwise be caught only at runtime:

List<int> primes = new List<int> { 2, 3, 5, 7, 11 };

int two = primes[0];

primes.Add(“thirtheen”); // compile-time error!

int thirteen = primes[5];

BANNING SYSTEM.OBJECT?

A colleague of mine—the ultimate native code and COM geek—told me about his first
encounter with the .NET Framework in the 1.0 days. Although new runtimes like the
CLR promised heaven on earth for type-safe code and promoted the use of static
typing, you can guess his reaction when seeing a big number of casts in managed
code. When I asked about the nature of that code, he recollected the everywhere use
of collection types. That explained his original surprise, which resulted from the lack of
generics in the early days of the CLR.

As time goes on, the number of scenarios requiring direct use of System.Object
keeps decreasing. And by direct use I mean explicit declaration of variables of type
object. With .NET 2.0, generics were introduced to improve static typing, and in .NET
4.0 a new dynamic type was introduced to deal with dynamic typing in a more explicit
fashion than plain use of System.Object.

201Built-In Types

In today’s world, whenever I see such direct use of System.Object in freshly written
code, I get a bit nervous. As you get to know generics and dynamic better in the follow-
ing chapters, you should start feeling the same way. I think the time has come to con-
sider System.Object more of an implementation detail of the CLR type system rather
than a type amenable for direct use.

Declaring objects with the System.Object type is just one side of the coin, though. An
equally important perspective is that of using the operations defined on System.Object.
All types inherit those commonly used methods whose role we discuss in more detail in
Chapter 13, “Operator Overloading and Conversions.” Here they are to set the scene:

. Equals compares the instance against another object for equality.

. GetHashCode calculates a hash code for the instance. Hash codes are used to store
and retrieve objects efficiently in certain collection types.

. ToString provides a string representation of the instance.

Note that these three methods are all virtual, meaning derived types can (and often do)
override them to provide a specialized meaning. We discuss what these terms mean when
we cover OOP in Chapter 14.

All things being equal, should you still care about System.Object that much? It’s without
a doubt a good thing to know about its role in the type hierarchy and to see it as an ulti-
mate resort for generic programming if—for some very rare reason—generics don’t apply
in some circumstance. But nowadays, the most common use of System.Object should
likely be in the use of methods like ToString and Equals.

Dynamic Typing

Starting with .NET 4.0, C# supports dynamic typing. Variables typed as dynamic are
used in a late-bound fashion, meaning that operations applied to them are resolved
at runtime rather than at compile time. This is useful when dealing with an object

that cannot be typed statically in a comfortable manner. Samples include XML documents
without an XSD schema or objects from dynamic languages such as Python, Ruby, or
JavaScript.

Other than the built-in types we’ve seen so far, there’s no direct mapping between the C#
reserved word dynamic and an underlying BCL type. Instead, dynamic is a special alias for
System.Object, but with some additional metadata sprinkled on top of it to tell the
compiler to emit late-bound code. This makes a lot of sense actually: The “minimal” static
type in the CLR is System.Object; you can’t sink lower. By typing it as dynamic, you’re
essentially saying this: Dear compiler. Trust me, I’m confident that the operations I carry out will
make sense at runtime. So don’t waste your time trying to verify those statically at compile time.

202 CHAPTER 4 Language Essentials

object o = GetSomething();

o.DoSomething(); // compile-time error; System.Object does not have DoSomething

dynamic d = GetSomething();

d.DoSomething(); // check for the presence of DoSomething at runtime

Compile Time Type Versus Runtime Type
To make things a bit more concrete, assume a PetShop object defines a method called
GetPromotionOfTheDay whose return type is Animal. Different subtypes exist for Animal,
such as GoldFish and Canary. There can even be more structure with intermediate types,
such as Fish and Bird. We’ll look at OOP in the later chapters, but you get the idea.

Statically (a compile-time thing), all we know about GetPromotionOfTheDay is that it
returns an animal. Before driving to the shop to get the animal (a runtime thing), we can’t
know what we’ll get back, assuming we didn’t hear about the type of the promotion in
any way. At this point, we can make a few assumptions about the things we’ll be able to
do with the animal. Walk (a method call) won’t apply very well if we get back with a fish,
and it’s way too dangerous trying to Bathe (another method call) a cat. Maybe the only
thing we can be sure about is to Watch it.

Dynamically (a runtime thing), though, the animal we get back will have a concrete type.
It might be a dog, a goldfish, or whatnot. Now it makes sense to Walk the dog or to Bathe
the goldfish and so on. But there’s no way we could have known before obtaining the
animal. We’re using dynamic knowledge obtained in the act of getting the shop’s promo-
tion of the day.

Now let’s assume through some magical powers you happen to know that the PetShop’s
GetPromotionOfTheDay always returns a mammal (and doesn’t have the space to have a
whale in stock). As far as I know, all mammals except for whales can walk (but I’m not an
expert), so it will always be safe to call Walk on our purchased animal. From a statically
typed perspective, we can’t know this (a compile-time error), but given the additional
information we got somehow, we can treat the animal dynamically and call Walk on it
anyway. Figure 4.16 contrasts static and dynamic typing.

I detail the innards of dynamic typing and how to use and extend it in Chapter 22,
“Dynamic Programming.” With this, we conclude our journey through built-in types the
C# language knows about by means of reserved words.

A Word on CLS Compliance

Chapter 1, “Introducing the .NET Platform,” stressed the importance of cross-language
interoperability in the vision statement of .NET. One key criterion for success in this space
is ensuring that types created in one language can be used or extended from another
language. This is where the Common Language Specification (CLS) comes into play.

203Built-In Types

Animal

•Watch
•Feed

p

C
#

IL
Static Typing

C
o

m
p

ile
 T

im
e

R
u

n
ti

m
e Dog

Max •Walk
•Bark
•Jump

dCode Did Not Compile

p.Walk();

Animal

•Watch
•Feed

p

C
#

IL

Dynamic Typing

p.Walk();

[Dynamic]

// Expression tree for
// p.TryInvoke(“Walk”)

FIGURE 4.16 Static typing versus dynamic typing.

Before delving any deeper, let’s revisit the first rule of the CLS:

CLS Rule 1: CLS rules apply only to those parts of a type that are accessible or visible

outside of the defining assembly.

We haven’t talked about visibility yet, but the idea is rather simple. Assemblies contain
types, some of which can be exposed to the outside world. A similar observation holds for
types in relation to their members. Some members, such as fields or methods, are for
exclusive use by the type’s code, whereas others are part of the type’s contract and hence
exposed to others.

The first CLS rule states an obvious fact: To be cross-language–compatible, only those
parts of a type that are accessible or visible outside the defining assembly matter. In other
words: Do whatever you like on the inside, but stand still for a few seconds when you
touch the outside.

SHOULD I CARE?

Applications are often written by separating out certain functionality into helper
libraries, with the idea of code sharing in mind or for architectural cleanliness. It’s
sometimes tempting to say you will always be the only one using that library, and you’ll
always use C# for the job at hand. So why should you care about making the assembly
CLS-compliant?

204 CHAPTER 4 Language Essentials

FIGURE 4.17 Locating the AssermblyInfo.cs file in a C# project.

This naive assumption can pose a serious risk when the unexpected happens, requir-
ing you or someone else to reach out to the non-CLS-compliant library. Maybe a new
developer has been hired who’s fluent in another .NET language, or your firm has
decided to jump on the bandwagon of functional languages. Or you find yourself in a
situation where you want to call some of your library functionality from an interactive
prompt of some dynamic language.

For all those reasons, the first thing I do for 99% of my projects is to turn on CLS-compli-
ance checking. By doing so, I avoid trying to tweak a library into becoming CLS-compli-
ant and thus potentially breaking others that already rely on some of the noncompliant
public APIs. In general, I find the act of ensuring CLS compliance not something that dis-
turbs development workflow, and when a CLS compliance warning is raised, I’ve learned
something new about the platform. A win-win situation, if you ask me.

How to turn on CLS compliance checking? In essence, you just state that you ensure the
assembly is CLS-compliant, causing the C# compiler to carry out CLS-specific checks when
dealing with publicly visible stuff. To declare an assembly CLS compliant, an assembly-
level attribute is used. In Visual Studio, you can find those declared in a file called
AssemblyInfo.cs under the Properties node for the project in Solution Explorer. Figure 4.17
shows where to find the AssemblyInfo.cs file.

Open this file and browse around a bit to get a feeling about what information an assem-
bly can carry. Hover over the various attributes to see a brief explanation of their goals.
Most of those can be configured through the user interface, as you will see later. To make
the assembly CLS-compliant and to have the compiler check this claim, add the following
line somewhere in the file (at the bottom will do):

[assembly: CLSCompliant(true)]

The square bracket syntax is used for attributes, pieces of metadata that can be sprinkled
on top of various program entities. For example, to make a type serializable for storage on

205Built-In Types

disk, you can decorate the type with [Serializable]. Or to have the runtime carry out
security checks when calling a method, various permission attributes can be applied to it.
In this particular case, we’re targeting the CLSCompliant attribute at the whole assembly
and use the C# reserved word assembly to denote that.

In fact, attributes are defined by classes that derive from System.Attribute. The conven-
tion is to suffix their name with Attribute, but C# (among other languages) allows us to
omit that suffix when referring to the type as an attribute (that is, between the square
bracket pair). So although we wrote CLSCompliant, its real name is
CLSCompliantAttribute.

You’ll learn more about attributes and how to create our own custom attributes later when
we discuss the reflection capabilities of the platform in Chapter 21, in the section,
“Custom Attributes.”

A TALE OF NAMING

To ensure consistency when using types in the .NET Framework, naming conventions
have been established. Without going into much detail right now, one of those rules is
to use Pascal casing for everything externally visible, except for parameters.

Pascal-casing advocates the use of capital letters at the beginning of a word and for
every concatenated word in a name (for example, ToString, AsEnumerable,
PayCheck). When acronyms are involved, two-letter acronyms stay completely capital-
ized (as in DBConnection), whereas anything longer keeps only its first letter capital-
ized, like HtmlDocument.

The CLSCompliantAttribute class was introduced nearly from day one of the devel-
opment of the .NET Framework, when those rules weren’t established formally yet.
According to the rules, the name should have been ClsCompliantAttribute

instead. This little mishap was never corrected, and it would be a breaking change to
tweak it now.

The CLSCompliant attribute lives in the System namespace, so you either have to specify
the full name (System.CLSCompliant) or import the namespace by means of inserting a
using directive:

using System;

The Visual Studio editor makes those tasks really easy by means of a “smart tag” that
appears as soon as we write the unresolved name. You can open the little menu by using
the mouse or by pressing Ctrl+. (use the . key on the central part of the keyboard, not on
the numeric pad). Any of the first two options listed will resolve the name. I prefer the
first one as a matter of style. Figure 4.18 shows the addition of the CLS compliance
attribute to the assembly’s metadata information.

206 CHAPTER 4 Language Essentials

FIGURE 4.19 The C# compiler catching a CLS-compliance violation.

To see CLS-compliance enforcement in action, we need to violate some rules first. Because
we’re discussing built-in types at this point, let’s use a non-CLS-compliant type on a public
member to illustrate matters. Built-in types that lack CLS compliance are UInt16, UInt32,
UInt64, and SByte.

Switch back to any of your C# code files (typically Program.cs) and add a type defini-
tion to it:

public class Numbers

{

public ulong Large { get; set; }

}

A few things are essential here. First of all, the type’s modifier list sets the visibility to
public. This makes the type visible outside the defining assembly. Second, the same
applies to the automatically implemented property Large, causing it to be visible for users
of the containing Numbers class.

Because ulong is an alias for the non-CLS-compliant UInt64 type, we’ll get a CLS-compli-
ance violation warning when compiling the code (see Figure 4.19).

FIGURE 4.18 Adding CLSCompliant to the assembly.

207Built-In Types

FIGURE 4.20 CLS compliance remarks in the MSDN documentation.

NOTE

The ability to declare multiple types in the same code file (or compilation unit to be
precise) illustrates a point of flexibility of the C# language. Some other languages are
more pesky about this and enforce one type per file. In fact, this flexibility goes beyond
the definition of types. Because types can be organized in hierarchical namespaces,
you might think the source code folder structure needs to reflect this organization; for
example, System.IO.Stream would live in System\IO\Stream.cs. This is not the case,
and you can get as messy as you want.

Even though this flexibility can come in handy at times, it’s a good practice to limit the
number of types per file and name files after the (typically one) type they define. It’s
also good to have the folder structure reflect the namespace organization. You’ll be
thankful you did when you search for a code file in the absence of a rich editor with
source-exploration capabilities like Visual Studio.

We detail the distinction between assemblies and namespaces, and how they contain
types, in subsequent chapters.

Notice that the MSDN Library documentation points out non-CLS-compliant types with
recommendations about how to solve the issue, as shown in Figure 4.20.

Sometimes changing the type to a CLS-compliant one is not an option, so you want to
suppress the type, acknowledging the fact it might not be available to all .NET languages,
but you can live with this restriction. To do so, you can explicitly opt out from CLS
compliance for individual types or members. Typically, you want to narrow the island of
non-CLS-compliance as much as possible, so a member-level suppression is preferred over
a type-level one (unless the lack of a specific member’s usability renders the whole
containing type useless).

public class Numbers

{

[CLSCompliant(false)]

public ulong Large { get; set; }

}

208 CHAPTER 4 Language Essentials

WHAT ABOUT DYNAMIC?

Recently I had a discussion about adding a public member whose type is dynamic to
the .NET class libraries. Recall that dynamic is some kind of pseudo-type, effectively
standing for System.Object but with additional metadata instructing the compiler to
emit late-bound calls against the object.

What if a language doesn’t support late-bound code? Doesn’t that render the object
useless? This is definitely a blurry line; dynamic is not strictly more powerful than
System.Object; it’s merely a hint to a consuming compiler to emit special code. The
CLS was created at a point where statically typed languages were the main concern in
the world of managed code. Applying some of the CLS rules to dynamically typed code
is therefore a bit unnatural.

We ultimately concluded to consider it CLS compliant in the strict sense of the word
because the CLS cares primarily about static typing. From that perspective, dynamic is
simply System.Object, and sure enough that particular type is CLS compliant. Luckily,
in practice, the mainstream languages like C# and VB, as well as the DLR languages,
offer first-class support for dynamic types starting from version 4.0.

TIP

As an exercise, experiment a bit with other CLS rules you can find in the MSDN docu-
mentation. It’s good to get a feeling about what’s compliant and what’s not. There’ll be
quite a few that sound like Chinese at this point, but rules on case sensitivity and such
should be easy to play with, and you’ll readily see the compile-time effects in case of
violations.

A Matter of Style: Aliases or Not?

As stated earlier, the C# reserved words for built-in types are simply aliases for the corre-
sponding underlying BCL types. There’s no semantic difference whatsoever, so you can
use either one.

Sometimes people start long-winded discussions on what’s the preferred style. I deliber-
ately don’t participate in such discussion but have one rule of thumb: consistency. Mixing
aliases and raw BCL type names can yield only more confusion. But, objectively, both
have their merits.

. The BCL type names clearly indicate the range of numeric types in terms of bit
width but in a decimal-centric world that doesn’t tell the whole story at a glimpse.
And for types like decimal or byte, this argument doesn’t hold: You just need to
know the raw facts about precision, ranges, rounding, and so on anyway.

. On the other hand, the C# aliases tend to be shorter and reduce the number of
eye-catching types in your code: Editors like Visual Studio color built-in types as
keywords, whereas others are colored like types. Personally, I like to be able to skim
a piece of code, looking for specific type references without the noise of all the
built-in ones.

209Local Variables

A better argument to make is the amount of code out there that’s written in one style or
the other. As a personal observation, I think it’s safe to say the C# style has found its way
into the hearts of many more developers. So if you stick with raw BCL type names, you’ll
still have to know about the C# aliases to read and understand other people’s code from
various sources.

Local Variables
We’ve already talked about the many places where variables can occur: as locals within
a code block, as field members, as parameters, and so on. Let’s focus on local variables
for a second.

Declaration

A first aspect of local variables is their declaration and the scope in which they are avail-
able. Declaring a local variable happens in C style, with the type preceding the name:

int a;

long b;

string c;

Using a comma separator, different variables of the same type can be declared on the same
line:

int x, y, z;

NAMING STYLE

Although nothing in the language cares about or mandates the naming pattern used for
local variables, there are some useful recommendations to ensure code readability. The
short answer is camel casing, where the first letter of a variable’s name is lowercase
and subsequent starting letters of concatenated words are uppercase. For example,
firstName and htmlDocument are both valid camel-case identifiers.

Camel casing gets its name from the appearance of identifiers written in this style: The
uppercase characters stick out of the surface at the top, making it look like a camel
(either the one-humped or two-humped variety).

What about Hungarian notation, where variables get prefixed with a type hint, such as
dwSize (for DWORD) and pDbConnection (for pointer)? This style is not recommended
in managed code. Good variable names should carry enough meaning for you to infer
the type from the context.

210 CHAPTER 4 Language Essentials

Scope

Scope determines the region of program text (that is, lexical scoping) in which it’s valid to
refer to a name of some entity without requiring further qualification. Scopes can be
nested, too. For example, when declaring a class, a scope is introduced for its members.
Some kinds of members, like methods, introduce a new scope:

class ScopeSample
{

private int x = 42;

public void InnerScope()
{

int x = 53;
int y = x; // refers to the local variable x
// ...

}

public void OuterScope()
{

int y = x; // refers to the field x
// ...

}
}

The InnerScope method in the preceding sample declares a local variable called x, hiding
the class’s instance field that’s also called x. It’s actually possible to refer to x in the outer
scope by qualifying it as follows:

int y = this.x; // refers to the field x

The this keyword is used to refer to the current object instance, a notion detailed in
Chapter 9 and Chapter 14. Also within the scope of a member’s code block (for example,
within a method), new scopes can be established:

public static void PrintAbs(int x)
{

if (x >= 0)
{

int y = x;
Print(y);

}
else if (x < 0)
{

int y = -x;
Print(y);

}
}

211Local Variables

There are lots of other ways to write this code, but I’m merely illustrating the point of new
scopes being introduced by the if statements used in the code. Both branches introduce a
new scope, in which a variable y is declared. They don’t conflict because they are declared
in parallel with one another: Both y variables are distinct.

However, hiding a variable in the outer scope of the same code block is illegal:

public static void PrintAbs(int x)
{

int y = x;

if (x >= 0)
{

Print(y);
}
else if (x < 0)
{

// Error: A local variable named ‘y’ cannot be declared in this
// scope because it would give a different meaning to ‘y’,
// which is already used in a ‘parent or current’ scope to
// denote something else.
int y = -x; // error: hiding y in outer scope
Print(y);

}
}

Not only does this reduce potential confusion, it also eliminates the need for a way to
disambiguate both variables using some keyword. Think about it what would happen if
you have a bunch of nested scopes, each hiding variables from the outer scope, and you
want to refer to such a hidden variable declared “three scopes up.”

Similarly, it’s not allowed to reuse a variable name in an outer scope after it has been used
in a child scope:

private static void PrintInt(int x)
{

if (x >= 0)
{

int y = x;
Print(y);
return;

}

// Error: A local variable named ‘y’ cannot be declared in this scope
// because it would give a different meaning to ‘y’, which is
// already used in a ‘child’ scope to denote something else.
int y = -x;
Print(y);

}

212 CHAPTER 4 Language Essentials

And obviously, as you could have guessed by now, it’s invalid to declare a variable with
the same name but a different type in the same scope. In some other typeless languages,
this is possible but often a major source of confusion.

int x = 5;

// Error: A local variable named ‘x’ is already defined in this scope.

string x = “Five”;

Assignment

Besides declaration of local variables, there’s also the need to initialize them before they
can be used. C# is very strict about not permitting the use of uninitialized variables
because that’s a very common source of errors found in other languages. For this very
reason, the following fragment won’t compile:

int x;

// Error: Use of unassigned local variable ‘x’.

Console.WriteLine(x);

To ensure variables are properly assigned before they get used, C# has several rules on defi-
nite assignment, based on static program flow analysis. I won’t go into detail about those,
but I’ll sometimes mention some of the rules in passing.

Assignment is the act of substituting the contents of the storage cell associated with the
variable with some value or reference, depending on the type. For this to work, types need
to match. The assignment operator is =, where the left side (lhs) is the name of the vari-
able and the right side (rhs) is an expression to be evaluated:

int x;

x = 42;

Here, 42 is simply a constant expression consisting of an integer literal that gets assigned
to the variable with name x. The types line up nicely, so the compiler is happy. If you
violate the type, an error results:

int x;

// Error: Cannot implicitly convert type ‘string’ to ‘int’.

x = “Oops”;

The distinction between implicit and explicit conversions is discussed in Chapter 13,
“Operator Overloading and Conversions.” In the previous examples, there was no reason
not to declare and initialize the variable as part of the same statement:

int x = 42;

213Local Variables

Similarly, multiple variables can be assigned on the same line:

int x = 0, y = 1, z = 2;

So far, we’ve discussed simple assignment. After we’ve studied binary operators, we’ll take
a look at compound assignment. The following is an example in which you can predict
the behavior:

int x = 0;

x += 1;

Constants

Variables are, not surprisingly, variable. They can be written to many times, causing the
contents of the cell to get replaced. Constants, on the other hand, cannot be changed
after their initialization, which needs to happen at the point the constant is declared. To
declare a local constant, use the const keyword:

const int x = 42;

// Error: The left-hand side of an assignment must be a variable, property or

indexer.

x = 43;

Constants are subject to restrictions on what they can be initialized to: The value needs to
be computable at compile time. In practice, this means the integral and real number,
character, string, and Boolean types are allowed, as well as reference types when the null
literal is used.

It’s educational to see what’s happening here behind the scenes. Because the value is
computed at compile time, there’s no need to store it in some local variable (in IL-speak).
It can simply be inlined everywhere it’s used, as a constant.

Consider the following piece of code:

int x = 42;

const int y = 42;

Console.WriteLine(x);

Console.WriteLine(y);

Carry out the typical compile and disassemble steps to take a look at the generated IL code
for the containing method. Figure 4.21 shows the result.

Notice the IL directive for declaration of local variables:

.locals init ([0] int32 x)

214 CHAPTER 4 Language Essentials

FIGURE 4.21 Variables versus constants behind the scenes.

This declares that one local variable is needed to execute the code, and it has type int32
(the CLR intrinsic type corresponding to C#’s int and the BCL’s System.Int32). No such
entry exists for the constant y. This already gives away the different treatment local
constants deserve.

NOTE

Depending on whether you built in Debug or Release mode, the local variable x will pre-
serve its name through the glasses of ILDASM. The reason is ILDASM looks for a PDB
symbol file next to the assembly being disassembled to get more information, such as
the names for local variables. To the CLR, names of variables don’t matter, so they get
compiled away. If you don’t have a PDB file—the default behavior in Release mode—
you’ll see the local variable named V_0, a name generated by the disassembler for cos-
metic purposes.

Inside the IL code, you can see the constant 42 getting loaded using the ldc.i4.s instruc-
tion, which stands for “load constant integer 4 bytes signed,” and being stored to the local
variable slot using stloc.0 for “store to local slot 0.” This is indicated by the first rectangle.
On the subsequent couple of lines, that variable is loaded again to be fed in to the method
call for Console.WriteLine.

For the constant y, no local variable slot is reserved, and every occurrence of y in the
source code was substituted for the constant value. The second rectangle illustrates this. If
we had multiple uses of y within the scope, each of those would see an ldc.i4.s instruc-
tion for its constant value 42. On the other hand, multiple uses of x within the scope
would each result in the use of ldloc.0, to read from the local variable slot.

Besides constants, there are also readonly fields, something we explore and compare to
constants in Chapter 11.

215Local Variables

FIGURE 4.22 Implicitly typed local variables are statically typed.

Implicitly Typed Local Variable Declarations

In the previous sections, you’ve seen a syntax used to declare and initialize local
variables: specify the type, give the variable a name (lhs), and assign it some expres-
sion (rhs).

string name = “Bart”;

Expressions, as you will see, always have a type. This means we have specified some
redundant information to the compiler. On the left side, we called out a type explicitly,
while the compiler could infer that information from the right side. In this case, the
literal ”Bart” is of type System.String. So why do we need to specify that type explicitly
on the left?

The var Keyword
Until version 2.0 of the C# language, the answer was just this: That’s the way it is; live
with it. But starting with version 3.0, it’s possible to omit the type on the left for a local
variable declaration, making it implicitly typed:

var name = “Bart”;

Here, the var keyword instructs the compiler to infer the type for the variable based on
the expression found on the right side of the assignment symbol.

Don’t confuse this with dynamic or System.Object in any way. The variable is still stati-
cally typed at compile time: The compiler knows precisely what we mean. In fact, the
emitted IL code is instruction-by-instruction equivalent to that for the original fragment.
To prove this, use Visual Studio and take a look at IntelliSense and ToolTips, as shown in
Figure 4.22.

If var stood for System.Object, we wouldn’t see any meaningful IntelliSense for a string
object (other than the triad of Equals, GetHashCode, and ToString). And if it stood for
dynamic, we would see no IntelliSense at all because operations would be dispatched at
runtime. To conclude, var is statically typed.

216 CHAPTER 4 Language Essentials

Rationale
But why would you use it? For local variables with types as simple as string or int, it
doesn’t pay you much. Well, on the contrary, you might find code harder to read because
you have to infer the type yourself. There should be a better reason this feature was intro-
duced. Despite the language’s original code name, the C# language design team doesn’t
just add features because they are “cool.”

We haven’t discussed generic types yet, but they’re kind of simple to grasp. In
essence, they allow types to be parameterized by other types. A concrete example
will make things clearer:

Dictionary<string, List<int>> lotteryNumbers

= new Dictionary<string, List<int>>();

Here I’ve declared a local variable called lotteryNumbers that contains a dictionary
mapping each string key onto lists of integer values. Both Dictionary and List are generic
types for which we’ve specified type parameters. Don’t worry too much about the details
for now; what’s more important in the context of this discussion is how the code looks.

TIPS ON READING CODE

Programming languages need to be pronounceable. Not just for discussions in late-
night clubs for geeks, but even more so in the context of courses and such. For
example, how do you pronounce generic types? The required English glue words are of
and and. In the preceding example, we’ve declared a local variable of type Dictionary
of string and List of int.

Some languages are more syntactically terse than others. C# definitely is quite terse
with short keywords, curly-brace block syntax, and symbolic operators as opposed to
even more keywords. Visual Basic is closer to English and has many more keywords.
Yes, it seemingly takes more time to write the code (although good editors like Visual
Studio’s help tremendously with autocompletion support), but on the other hand, it’s
easier to read. For instance, our generic type in Visual Basic looks like this:

Dictionary(Of String, List(Of Integer))

Sound familiar?

Did you see it? Yes, we had to specify that excessively long type name twice to declare a
local variable of the particular type. On the left side, we pleased the compiler by telling
the type for the variable. On the right side, we used constructor syntax to create an instance
of the dictionary type. What constructors are precisely doesn’t matter at this point, but
the crux here is that the type of the expression on the right side is precisely what we’ve
specified on the left.

In .NET 1.0, before the advent of generic types, this wasn’t too much of a problem: Type
names could not grow arbitrarily long when being used. However, because generic types

217Local Variables

are parameterized on other types by their very nature, you can mix and match all sorts of
types together to build up a new one:

List<HashSet<Dictionary<string,Tuple<int,int>>>>

Having to specify such long type names repeatedly is not only tedious, it also reduces
code readability significantly. Starting from C# 3.0, type inference for local variables can
be used to shorten code:

var lotteryNumbers = new Dictionary<string, List<int>>();

Now it fits again on a single line, reducing the syntactical noise a lot.

ABOUT SEMICOLONS AND UNEMPLOYED UNDERSCORES

If it wasn’t clear yet, C# allows code to be split across multiple lines. The end of a
statement is indicated by the use of a semicolon character, as is common in C-style
languages. Other languages, such as Visual Basic, initially chose an opposite
approach: To split a code line, use a line continuation marker. In Visual Basic’s case,
that was the underscore character. I’m using the past tense here because the need for
a line continuation has been removed almost completely in Visual Basic 10. In tough
economic times, to assist the unemployed underscores in finding their next challenge,
a website was created for them: www.unemployedunderscores.com.

But there’s more. Although the usage simplification for generic types is a very convenient
effect that comes from introducing this form of type inference, it’s not a requirement. You
could live perfectly without it (although maybe just a little annoyed). However, in C# 3.0,
another feature was introduced as part of the LINQ mission: anonymous types. We defer
exhaustive coverage of this feature until Chapter 19, “Language Integrated Query
Essentials,” in the section, “Anonymous Types and Object Initializers,” but here’s a sample:

var person = new { Name = “Bart”, Age = 26 };

This creates an instance of a type with two properties called Name and Age, of type string
and int, respectively, initialized with the specified data. What’s special about the code is
the fact that we didn’t specify a type name at all. Instead, we let the compiler bake a type
on the fly, with the desired “shape” to hold the contained data. But if the compiler gener-
ated a type for us, of which we can’t know the name because we didn’t have to specify it,
how can we refer to it? The rescue lies in the use of var to let the compiler insert the type
name on our behalf.

To see this in action, type the preceding code in some C# project and observe the
IntelliSense in Visual Studio once more, as shown in Figure 4.23. As you can see, the tool
knows precisely what we’re talking about; we haven’t lost any of the type information.

www.unemployedunderscores.com

218 CHAPTER 4 Language Essentials

FIGURE 4.23 Type inference at work for an anonymous type.

Anonymous types were introduced as a prerequisite for writing down LINQ query expres-
sions, in particular projection and grouping clauses:

var expensive = from p in products

where p.Price > 100

select new { p.Name, p.Price };

To learn what the inferred type is for the expensive variable, you’ll have to wait until we
cover LINQ in depth in Chapter 19.

When to Use It
The appropriate use cases for this language feature have been the topic of long-winded
online and offline discussion group debates. Opinions stretch the whole spectrum of
possibilities:

. The conservative wing doesn’t feel at ease with the apparent lack of static typing,
even though they realize (hopefully) the use of var doesn’t change the statically
typed nature of the language at all. Some would go as far as banning the use of var
altogether.

. Realists form the middle camp and acknowledge var is unavoidable in some cases,
with the use of anonymous types more specifically, and beneficial in other cases (for
example, to reduce the need for lengthy generic type names).

. Extremists would use var everywhere possible. This borders on the edge of laziness
and can make code even more unreadable than it was to begin with: Type names are
a good source of documentation right inside the code (especially so when the right
side of the assignment contains a complicated expression).

219Local Variables

Personally, I prefer the middle ground here. Always put yourself in the shoes of the person
reading the code. If the type of the variable is not immediately apparent from the right
side, don’t use implicit typing using var. Examples include the following:

// Required

var person = new { Name = “Bart”, Age = 26 };

var expensive = from p in products

where p.Price > 100

select new { p.Name, p.Price };

// Good

var lotteryNumbers = new Dictionary<string, List<int>>();

var name = person.ToString();

// Bad

var mystery = GetSomething(); // what’s the return type of GetSomething?

var x = 2159940436; // answer immediately: int or long?

PHILOSOPHICAL NOTE

C-style languages have traditionally been writing types in front of identifiers: int x,
string y, List<Person> z. Personally, I can’t think of many good reasons this
approach was chosen, but it’s all said and done now.

Although the type is quintessential, it’s more convenient to find the declaration site of
a variable easily by its name and see what its type is next. By having variable-length
type names in front of identifiers, there’s no alignment of the names. This causes what
I call “Brownian eye motion” (after the name for the physical phenomenon of random
movement of particles in a fluid) when reading code:

int x = 42;

string y = “Hello”;

List<Person> z = new List<Person>();

Other languages have taken a different approach and write the type after the name.
Samples include Visual Basic with its Dim... Because... syntax and various func-
tional languages such as Haskell, ML, and F#:

’ Visual Basic

Dim x As Integer = 42

Dim y As String = “Hello”

Dim z As New List(Of Person)

(* F# *)

let x : int = 42

let y : string = “Hello”

let z : Person list = []

220 CHAPTER 4 Language Essentials

Turns out with var you can reach a similar effect. But ideally, you still want to see the
type, don’t you? That’s what the whole argument for some people is all about. Turns
out you sort of can force the type in there if you really want:

var x = (int)42;

var y = (string)”Hello”;

var z = new List<Person>();

Now I don’t recommend this practice. That’s why this sidebar is titled a “philosophical
note.” Turns out there are hidden caveats. Runtime costs, not really. But assume you
have a complex expression as the right side of an assignment and you inserted the
wrong cast. Casts are about stating you somehow know more than the compiler, telling
it to try a conversion between types at runtime (as discussed in Chapter 6, A Primer
on Types and Objects,” in the section, “Cast Expressions”). Chances are that your
code compiles just fine but blows up at runtime. This is definitely worse than what we
started from.

Intermezzo on Comments
So far, we’ve dealt with some of the program text the compiler cares about the most. If
you make mistakes with regard to syntax or more involved rules, you’ll be punished and
prompted to correct the error. As valuable as source code itself are comments to document
the code. Even though good source code should be self-explanatory for the most part—
because of the use of meaningful identifier names and so on—correct use of comments is
invaluable, too.

Being a C-style language, C# inherits a few of its commenting styles from that group of
languages. Let’s take a look.

Single-Line Comments

A single-line comment starts with two consecutive forward slashes and stretches until the
end of the source line. You’ve seen numerous examples of this style already:

// Bad

var mystery = GetSomething(); // what’s the return type of GetSomething?

var x = 2159940436; // answer immediately: int or long?

As you can see, the comment doesn’t necessarily need to stand on its own in a line of
code; it can also be used just at the end of a line after some meaningful source code. But it
can’t be used in the middle of a line of code because there’s no way to terminate the run
of comment text.

This style of commenting has a technical advantage: There are no worries about nesting of
comments, which—as you will see in the next section—can be problematic. For this

221Intermezzo on Comments

FIGURE 4.24 Single-line commenting a block of code in Visual Studio.

reason, Visual Studio provides tooling support for this commenting style, typically used to
“comment out” a bunch of source code, as shown in Figure 4.24.

TIP

Don’t leave large chunks of commented-out source code behind in code files; most
people find it very distracting when reading code. Even though you’ve deleted a large
portion of code because you found a better way to approach the problem, the old code
might still be of value for archeological purposes. A better way to keep track of those
changes is to use a decent source control system from which you can consult the his-
tory of source code files. Or if you really want to drop a hint in the source code, leave
just the essence of the original problem behind to help others avoid repeating the
same mistakes.

The Visual Studio editor uses a different colorization scheme for comments in source text.
The default color is green, but you can change that.

A Primer to Preprocessing Directives

Use the Visual Studio feature to comment out blocks of code while evolving the code at
development time. If you find yourself doing this quite often (for example, to enable or
disable some diagnostic code), you’re likely better off with conditional compilation using
an #if preprocessing directive. We won’t detail the preprocessing capabilities (which is
really a misnomer in the world of C# because there’s no separate preprocessor stage in
compilation) right now, but here’s the crux of it.

222 CHAPTER 4 Language Essentials

FIGURE 4.25 Defining symbols for conditional compilation.

Using the #define directive, a symbol can be defined for further use in conditional
preprocessing directives like #if. Blocks of code surrounded by #if and #endif are condi-
tionally included in the source code analyzed by the compiler, based on whether the
conditioning symbol is defined:

using System;

class Program

{

static void Main(string[] args)

{

#if DEBUG

Console.WriteLine(“Some diagnostic output:”);

Console.WriteLine(DateTime.Now);

#endif

foreach (string arg in args)

{

Console.WriteLine(arg);

}

}

}

The DEBUG symbol I’m using in the preceding fragment is automatically set when using
the Debug mode in Visual Studio. In Release mode, it isn’t. You can define your own
symbols using #define in the source text or by specifying the symbols to be set to a
compiler flag. The Project Properties dialog’s Build tab provides easy access to this setting,
illustrated in Figure 4.25.

TIP

Conditional compilation is a very powerful beast to maintain different build flavors of
the same source code. For example, large portions of the BCL are compiled for the
“desktop CLR” as well as for Silverlight. To accommodate for the slight differences
required here and there, conditional compilation is used.

223Intermezzo on Comments

Delimited Comments

You might have expected multiline comments here, but the more significant distinguish-
ing factor between different commenting styles is how a comment is terminated. For
single-line comments, this means the comment runs until the end of the line. For delim-
ited comments, a special character sequence is used to indicate the end of a comment.

Delimited comments are precisely that: They start with a /* sequence and end when the
first */ sequence is encountered. They’re especially useful for longer comments, eliminat-
ing the tedious repetition of //. In addition, you’ll find them often used to provide a
heading in source files, containing information about the file’s reason for existence, its
author, copyright information, and so on:

/* Program.cs

*

* Synopsis: Contains the managed entry-point of the application.

* Author: bartde

*

* Change history:

* 06/07/2009 - Initial creation

*/

using System;

class Program

{

The use of asterisk characters in front of the lines that make up the delimited comment is
not mandatory; they’re just a matter of style. In fact, Visual Studio provides them by
default when you add a new line to a delimited comment block.

Another place where delimited comments come in handy is to document parameters to
methods at a call site in an inline manner:

file.Save(“test.txt”, /* overrideExisting = */ false);

In the preceding fragment, the false Boolean literal doesn’t reveal its meaning from the
context immediately. Instead of using local variables with an indicative name, delimited
comments can be used to clarify meaning. Starting from C# 4.0, an alternative to this style
exists in the form of named parameters, as you’ll see later.

As mentioned before, one problem with delimited comments is the fact that they don’t
nest well. Recall my earlier definition: “They start with a /* sequence and end when the
first */ sequence is encountered.” So blindly surrounding a large piece of code with /* and
*/ is not a formula for guaranteed success. Visual Studio’s choice to use single-line
commenting style to comment out selected code is a direct reflection of this limitation.

224 CHAPTER 4 Language Essentials

As an example, consider the following piece of code:

/*

int x = 5;

/* Long comment starts here

* ...

*/

Console.WriteLine(“Some diagnostic output:”);

Console.WriteLine(DateTime.Now);

*/

Here, the last */ isn’t paired up with a starting /* sequence, causing a compilation error.
In Visual Studio, because of correct colorization, you’ll see this immediately.

Documentation Comments

The first goal of API writers obviously is to deliver a binary with the desired library func-
tionality. But without decent documentation, it’s often of little use for the consumers of it.
No matter how good the naming of types and public members is, additional information
on the intended behavior, caveats, and so on is invaluable, too.

To stimulate this practice and provide a structured approach for dealing with it, the C#
specification defines the concept of documentation comments. They’re only defined
meaningfully when applied to user-defined types or members, where the compiler knows
how to export them into a documentation file.

Documentation comments are based on XML to structure the different parts of documen-
tation required. Two styles can be used to write them down, either by starting with a
sequence of three forward slashes (///) or by using an extended version of delimited
comments with an additional asterisk (/**). The former is preferred because Visual Studio
helps you a lot. Third-party tools exist that help with the generation of comments as well.
One sample is GhostDoc, which can be found through the Visual Studio Gallery of add-
ins on MSDN.

For example, assume we’ve written a little Calculator class (cheesy, I know):

public static class Calculator

{

public static int Add(int a, int b)

{

return a + b;

}

}

225Intermezzo on Comments

FIGURE 4.26 Generating documentation comments.

FIGURE 4.27 IntelliSense for different tags is available.

Don’t worry about the use of various modifiers such as static, which will become clear
pretty soon. Suffice it to say I’m using best practices here by defining a stateless class as a
static class.

Parts of the code that will benefit from documentation comments are the class itself, its
public methods, and the parameters and the returned data. In this case, it’s fairly obvious
what the meaning is, but you can imagine much more involved definitions.

In Visual Studio, you can make the editor generate a template for required documentation
by typing the /// sequence on the line in front of the entity to be documented. In
Figure 4.26, I’ve done this for both the class and its Add method.

All you have to do now is supply some meaningful documentation. To make documenta-
tion as structured as possible, different tags are available, one of which appears Figure 4.27.

Rich documentation on writing documentation comments is available in the MSDN
library. The logical next question is how this documentation is emitted. First off, you need
to tell the compiler to generate a documentation file. In Visual Studio, the one-stop shop
for all such settings is the project’s Properties window.

226 CHAPTER 4 Language Essentials

FIGURE 4.28 Enabling generation of the XML documentation file.

The setting that controls the documentation file generation lives under Build, Output.
Notice you can tweak settings on a per-configuration basis: In Figure 4.28, I’m changing
only the documentation file setting for the active Release configuration.

From this point on, the compiler will make sure all publicly visible types and members
have (complete) documentation to go with them, generating warnings if that’s not the
case. An XML file will be emitted to the specified location. Here is an example of rich
XML documentation commenting:

/// <summary>

/// Provides simple calculator functionality.

/// </summary>

public static class Calculator

{

/// <summary>

/// Adds the integer numbers <paramref name=”a”/>

/// and <paramref name=”b”/> together.

/// </summary>

/// <param name=”a”>First integer term to add.</param>

/// <param name=”b”>Second integer term to add.</param>

/// <returns>

/// Sum of the integer numbers <paramref name=”a”/>

/// and <paramref name=”b”/>

/// </returns>

/// <exception cref=”System.OverflowException”>

/// Thrown when the computed sum does not fit in the precision of

/// System.Int32.

/// </exception>

/// <example>

227Intermezzo on Comments

FIGURE 4.29 Generated XML documentation file.

/// <code>int res = Add(1, 2); // produces value 3</code>

/// </example>

public static int Add(int a, int b)

{

return a + b;

}

}

Notice I’ve added more documentation about exceptions and provided a sample use. A
whole chapter is dedicated to exceptions (see Chapter 8, “Basics of Exceptions and
Resource Management”), and we also discuss the particular OverflowException later in
Chapter 5, in the section, “Overflow Checking.”

Take a look at the generated XML file next, shown in Figure 4.29.

SANDCASTLE

The XML documentation file is not ready for immediate consumption by end users; it
deserves some formatting. Being XML, techniques such as XSLT can be used to put a
nice face on the documentation. Various XSLT transforms for XML documentation can
be found online.

228 CHAPTER 4 Language Essentials

But often people want more. What about tight integration with the MSDN documenta-
tion, for instance? This is possible too. To generalize the idea of XML documentation
transformation, Microsoft has created a project code named Sandcastle, which is avail-
able at http://sandcastle.codeplex.com. This is highly recommended if you’re looking
for a professional way to generate rich documentation with indexes, search capabili-
ties, and more.

Arrays
Now that we’ve covered the built-in types in quite some detail and know from a few
examples it’s possible to define our own types, we can delve a bit deeper. What about
types of types? This might sound a bit “meta” at first, but the concept is very usable
nevertheless. One such construct that allows the creation of types out of existing ones is
called arrays.

A THEORETICAL UNDERTONE

Most books don’t introduce arrays this way, but I believe it helps to think of such crucial
concepts in a more structured manner. In particular, what we’re talking about in this
context are type constructors. Don’t confuse this with instance constructors or static
constructors, which both are proper C# language terms. Type constructors are a theoreti-
cal concept that expresses the capability of a new type to be created out of one or more
existing ones, without the need to write down a separate definition for the new type.

Array types, nullable types, and generic types all fall under this theoretical umbrella. To
focus on arrays, it’s possible to take any type whatsoever and construct an array type
out of it, without someone having to declare the array type explicitly. Suppose you’ve
written a Person type. Wouldn’t it be ridiculous and tedious if you had to define a
Person[] array type yourself for users to be able to use that? I’m sure you agree.

Type constructors are precisely about that: Given an existing type, the runtime under-
stands what it means to construct a more complex type over it. From a Person type,
you can readily define a Person[] array or even a Person[][] array of arrays. Similar
observations hold for nullable types and generic types, as you will see.

Internal Representation

Arrays provide storage for a number of variables that share a common type. Each element
can be indexed by an integral number, both to retrieve it and then replace it. This index is
zero-based. To create an array, a length needs to be specified to allocate memory for the
contained variables. Note, too, that arrays are reference types, so they’re passed by refer-
ence, and different variables can refer to the same array.

To illustrate how arrays are laid out in memory, take a look at Figure 4.30. Notice how the
array variable acts as a reference to some other piece of memory containing the elements
of the array.

http://sandcastle.codeplex.com

229Arrays

int[] squares = new int[10];
squares[1] = 1;

squares

Int32[]

0x0000

0x0000

0x0001

9

0

1

…

(null)

(null)

9

0

1

…

string[] friends = new string[10];
friends[0] = “Eric”;

friends

String[]

“Eric”

FIGURE 4.30 Arrays of value types and reference types.

Arrays can be created for value type or reference type elements. Upon creation, the CLR
ensures the memory for the array is zeroed out and doesn’t contain any garbage, as would
be the case in some other languages and runtimes. For value types, this means retrieving
an element from a newly allocated array will result in a zero value; for reference types,
you’ll get back a null reference. We discuss this later in the section, “The Null Reference.”

Single-Dimensional Arrays

Let’s start by having a look at single-dimensional arrays:

int[] squares = new int[10];

This code creates an instance of an integer array of length 10. To set and get elements in
the array, indices between 0 and 9 (inclusive bounds) can be used:

squares[3] = 9;

// ...

Console.WriteLine(squares[3]); // prints 9

230 CHAPTER 4 Language Essentials

FIGURE 4.31 Invalid indexing of an array triggering an exception.

You’ll see more structured ways to get or set all elements in an array later, using loops and
eventually using LINQ.

Historically, arrays have been a source of lots of bugs because of the lack of bounds check-
ing. In C and C++, for example, the length of an array is typically passed together with
the array (or in lower-level terms for those languages, a pointer) for the recipient to do
proper bounds checking. Bugs come from indexing too far into the array, ending up in
unknown memory territory. Notorious security vulnerabilities, such as buffer overruns,
come precisely from this.

To eliminate this class of bugs, arrays on the CLR are bounds-checked all the time. A little
performance penalty applies, yes, but with a huge return on investment. If code violates
the bounds of an array somehow, an IndexOutOfRangeException is thrown at runtime.
Why at runtime? Indexing into an array does not need to happen using a constant index
value; more often than not, the index is computed at runtime (for example, squares[i],
where i is an integer variable). It’s impossible for the compile to know the range of such a
computed value in all circumstances, so a runtime check is needed. Figure 4.31 shows an
IndexOutOfRangeException occurring upon invalid indexing into an array.

Bounds-checked omissions or violations indicate severe bugs in your code. Either you have
to sanitize (user) input that resulted in the computation of an invalid index, or you need
proper bounds checking somewhere nearby. To retrieve the length of an array from which
you can compute the bounds, use the Length (get-only) property:

for (int i = 0; i < squares.Length; i++)

{

squares[i] = i * i;

}

Here we’re using a for loop, where the loop condition checks that the index variable falls
within the range of the array’s boundaries. We discuss the precise structure of this loop
construct later, but it should be fairly understandable on the face of it.

231Arrays

Notice we need to use a strict less-than comparison because array indices in C# are zero
based. Some other languages, such as Visual Basic, allow us to control the base of arrays
(in Visual Basic’s case using the Option Base statement); C# doesn’t.

Array Initializers

Sometimes arrays have to be prepopulated with elements. To make this easier, a different
form of array creation expression exists:

int[] squares = new int[] { 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 };

Here the length of the array is inferred from the number of expressions in the initializer
list. If you specify the length between the square brackets, the number of elements that
are provided must match.

In fact, the syntax can be abbreviated. Notice the redundancy in saying the type of
the elements multiple times here. A shorter notation, using an implicitly typed
array creation expression, is as follows:

int[] squares = new [] { 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 };

Or even

int[] squares = { 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 };

And the icing on the cake, using an implicitly typed local variable:

var squares = new [] { 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 };

When the type of the array elements is left unspecified, as shown here, the best
common type of the elements in the initializer list is used as the type for the array. We
talk more about this concept when you have a better understanding of types and inheri-
tance hierarchies.

Behind the Scenes
Those of you interested in the machinery for initializing arrays likely wonder about the
performance of this. Is the preceding code really syntactical sugar for a bunch of store
operations into an array, which would cause excessive offset calculations and bounds
checking? Luckily, the answer is no.

Take a look at the disassembled code for the following fragment and compare it to the
resulting IL code shown in Figure 4.32:

int[] squares = { 0, 1, 4, 9, 16, 25, 36, 49, 64, 81 };

Console.WriteLine(squares[5]);

The first two instructions here are used to create a new array (newarr instruction) with
element type System.Int32 and size for 10 elements. In the last few instructions of the
method, you can observe the indexing operation to retrieve the element at index 5, using
the ldelem instruction.

232 CHAPTER 4 Language Essentials

FIGURE 4.32 Initialization of an array.

FIGURE 4.33 The field pointing at the array’s initialization data.

The instructions in the rectangle are of particular interest with regard to the array’s initial-
ization code. Here a method called InitializeArray is called, passing in the newly created
array instance and a token. This token is where the magic lives.

If you scan through the name of the token provided to the ldtoken instruction, you’ll see
__StaticArrayInitTypeSize=40, indicating a total byte size of 40 bytes. Recall that Int32
takes up 32 bits or 4 bytes, and we have 10 elements.

But where’s the data itself? In the main window of ILDASM, you’ll see a helper class next
to the Program class, as shown in Figure 4.33. Here, I’ve highlighted a field, ready for you
to double-click it. Don’t be shocked by the random numbers generated by the compiler; it
needs to enforce uniqueness:

.field static assembly valuetype ‘<PrivateImplementationDetails>{5B1857EF-1A80-4329-

8B18-B023349B2AC2}’/’__StaticArrayInitTypeSize=40’ ‘$$method0x6000001-1’ at

I_00002050

233Arrays

The last line, with the at IL keyword, is of interest. This number is an offset into a section
of the generated assembly file (which gets stored in the standard executable format known
as Portable Executable or PE), relative to the base for the executable image. If you’re a real
geek, read on; otherwise, just remember this: The compiler has turned our array initializer
into a blob of binary data that’s being loaded as a whole in a very efficient way.

If you want to dig deeper from this point on, you’ll need a tool called dumpbin.exe,
which gets installed with Visual Studio 2010 in the Visual C++ binaries folder. Your Visual
Studio 2010 command prompt should have it on the search path by default. If you run
dumpbin.exe /all, passing in the name of your assembly, you’ll see a bunch of data flying
over the screen. This is the binary dump of the assembly.

First you need to find the base address, which is found near the top in the Optional Header
Values section. It’s called “image base” and should have (assuming default settings) a value of
400000. Previously, we found an offset of 00002050 through the IL disassembly. This number
can be different, so double-check it. Either way, add up the two numbers, and you’ve found
the raw address where the array’s initialization data lives (in my case, that’s 402050).

If you scroll down farther in the dumpbin output, you’ll find a section Raw Data #1. This
is where you’ll take a look next. Locate the address found previously in the left column
(for example, 402050). At this point, you’ll see the ten 4-byte values in hexadecimal.

Jagged Arrays

As you learned earlier, arrays have a type constructor nature, meaning any existing type can
be used to create another array type (a recursive definition, that is). So what about arrays
of arrays? Sure enough, that works:

int[][] vectors = new int[3][];

An array with elements that are arrays by themselves is called a jagged array.

In the preceding example, we’re creating an array of integer arrays and specifying the
number of such arrays we want. The vectors array contains arrays by itself, which are
reference types. So right after the creation of the jagged array, it contains null references
for the elements. Next, we can initialize those elements as follows:

vectors[0] = new int[4];

vectors[1] = new int[2];

vectors[2] = new int[3];

Notice how the dimensions of the jagged array’s element arrays do not need to match;
this is where the name jagged arrays comes from. Notice the jagged line on the right in
Figure 4.34 where we illustrate this concept.

234 CHAPTER 4 Language Essentials

vectors

10
0

2 3

Int32[] []

Int32[] Int32

int[][] vectors = new int[3][];
vectors[0] = new int[4];
vectors[1] = new int[2];
vectors[2] = new int[3];

0 0 00

10 2

0 00

10

001

2

FIGURE 4.34 Jagged arrays.

More than two dimensions can be used, too. The number of dimensions is known as the
rank of the array, which can be retrieved using the Rank property. Referring to elements in
the array happens through consecutive indexing operations:

int[][][] moreVectors = new int[3][][];

// ...

moreVectors[0][1][2] = 15;

Having to initialize the jagged arrays one by one can be very tedious. If you already know
the entire shape of the array, you can once more leverage the power of array initialization
expressions:

var jagged = new [] {

new [] {

new [] { 1, 2, 3 },

new [] { 4, 5 }

},

new [] {

new [] { 6 },

new [] { 7, 8, 9 }

},

};

235Arrays

Multidimensional Arrays

Jagged arrays do not need to (but can) have a rectangular shape, which is what makes
them jagged in the first place. In some situations, arrays have a more regular shape,
making them amenable to the use of multidimensional arrays. A typical example is a
Sudoku challenge, which has nine rows and nine columns:

byte[,] sudoku = new byte[9,9];

The number of dimensions is indicated by writing commas between the square brackets of
the array type. When initializing the array, the size of the dimensions is specified. In this
particular case, we have two dimensions, but more dimensions are allowed (creating cubes
or hypercubes).

DON’T WASTE SPACE

In Chapter 27, “Diagnostics and Instrumentation,” we discuss code analysis (otherwise
known as FxCop) to examine how code quality can be guarded by a set of analysis
rules that are run during build. Multidimensional arrays trigger a warning in the cate-
gory performance because they tend to be misused from time to time, leading to a
waste of space. This puts additional pressure on the garbage collector and can nega-
tively impact performance.

As a rule of thumb, if the array you’re dealing with is sparse—that is, contains a lot of
empty or zero-valued cells—you’re better off with jagged arrays.

Indexing into a multidimensional array is done by comma-separating the indices:

int topLeft = boardGame[0,0];

boardGame[3,3] = 1;

Internally, the indices are used to compute the offset in the consecutive range of memory
storing the array. Figure 4.35 illustrates a multidimensional array.

To initialize the array, different syntaxes are allowed once more, but the most convenient
one is likely the following:

int[,] boardGame = {

{ 0, 1, 2, 3 },

{ 1, 2, 3, 4 },

{ 2, 3, 0, 1 },

{ 3, 0, 1, 2 },

};

236 CHAPTER 4 Language Essentials

boardGame

0

1

2

3

10 2 3

Byte[,]

Byte

byte[,] boardGame = new byte[4, 4];

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

FIGURE 4.35 Multidimensional arrays have a cubic shape.

If any of the “rows” is not initialized with a sufficient number of “columns,” the compiler
will trigger an error.

CODING STYLE

Notice the comma at the end of the fifth line? This one is optional, but the language
allows it as a matter of style. There are some other places where this is the case,
such as in the definition of enumerations. So don’t be surprised if you see someone
writing this; the code will compile fine.

Multidimensional arrays are not a C# thing only. Write the following piece of code:

int topLeft = boardGame[0,0];

boardGame[3,3] = 1;

This assumes you have a boardGame array initialized as shown before. Now take a look at
the IL code for the set operation, for example. From this, you can see how multidimen-
sional arrays are known at a fairly low level:

ldloc.0 // array: boardGame[

ldc.i4.3 // row: 3,

ldc.i4.3 // column: 3] =

ldc.i4.1 // value to be set: 1

call instance void int32[0...,0...]::Set(int32, int32, int32)

237The Null Reference

The Null Reference
So as not to complicate the discussion prematurely, I’ve not yet introduced a special
citizen in the world of reference types: null. Recall that reference types refer to some data
that lives somewhere in memory. Multiple variables of that reference type can refer to the
same data simultaneously, causing aliasing. However, it’s equally valid for a variable of a
reference type to refer to nothing. This is known as the null reference. Think of it as a
special “value” every reference type has available, readily provided by the runtime. In C#,
the null literal can be used to write down a null reference. For example:

string name = null;

Notice the null literal by and in itself doesn’t have a type. More specifically, it’s one of the
few expressions that are typeless. Why this matters will become apparent later when we
discuss method overload resolution in Chapter 10, for example. One implication that’s of
immediate relevance is the fact that you can’t use the null literal in the context of an
implicitly typed local variable:

var unknown = null; // Error: Cannot assign null to an implicitly-typed local.

NULL, NOTHING, NADA

If you ever need to read or write Visual Basic code, the null literal there is written as
Nothing. It’s a little unfortunate the NullReferenceException is mirrored after the
C# nomenclature for null references. If we had first-class typedef support in the
system, it would make sense to define a NothingReferenceException alias for Visual
Basic users.

Although conceptually related, null reference exceptions are not the same as access
violations, which occur in native code when a zero pointer is dereferenced. In the con-
text of null references, we’re talking about managed code references: They boil down to
memory locations ultimately but are subject to garbage collection and carry rich type
information for use by the CLR.

Figure 4.36 contrasts a null reference with a reference to an existing object in memory,
known as the heap.

What’s Null Really?

Nullability can be quite an artificial concept to think about. When something is null, is it
undefined or what? Consider the example of a phone book. Given a name, you can look
up a phone number. But what if you don’t find an entry? Does it mean the person doesn’t
exist at all, or does it mean that person doesn’t have a phone? Not to mention private
numbers that are unlisted!

238 CHAPTER 4 Language Essentials

(null)

“Bart”

name

string name = null;

name

name = “Bart”;

String

String

FIGURE 4.36 The null reference.

Unfortunately, opinions vary. Some say null indicates no value has been set; however, the
answer is that there’s no answer. Others overload the meaning to indicate situations where
no value can be found or computed: It’s impossible to formulate an answer. In my
opinion, the latter interpretation should be avoided. Why? Null is simply not a good way
to indicate errors. Better ways exist, such as returning a success/failure Boolean indicator
or throwing exceptions. The absence of a value—which is what null is really about—may
indicate an error, but it can equally be a valid situation.

Go back to the phone book example. Two fundamentally different conditions exist: Either
the specified name can’t be found or a blank entry exists. In the first case, we’ve caught an
error; either input was invalid, or the phone book is incomplete. The second case did
produce an answer, though; a user was found but no phone number is known. If null were
returned in both cases, how would the caller distinguish what has happened? And
consider what would happen when empty entries were initially not allowed in our phone
book but we want to change that: All callers would have to be rewritten to account for the
two possible interpretation of null.

This follows the idea of null as a proper value within the domain of a type.

NOTE

System.Collections.Generic.Dictionary<TKey,TElement> is a generic collection
type that supports our desired phone book semantics. Two methods exist to retrieve
the value for a given key: Either an exception is thrown if the key is not found or a
Boolean is returned to signal this condition to the user. Notice that the use of null
doesn’t appear in this picture at all, keeping it available as a proper value for use with-
in the dictionary. We discuss collections extensively in Chapter 16, “Collection Types.”

239The Null Reference

FIGURE 4.37 A bad encounter with a null reference.

A Common Source of Bugs

When an operation has to be invoked on an instance of such a reference type, a derefer-
encing operation occurs. It’s invalid, though, to dereference the null reference, causing an
exception to occur. Figure 4.37 shows such a NullReferenceException.

Null references that are unaccounted for are probably the number one source of bugs in
managed code programming. Rigorous checking for null references is an important pattern
everyone should master. Obviously, the question is where such checks need to be applied.

When designing a new library, it’s essential to specify the intended treatment of null refer-
ences coming in: Are they allowed or not? If not, how does the system protect against
them? Equally so for the output: Under what circumstances can the caller expect a null
reference to be returned? Essentially, you should crisply delineate the boundaries where
null references are allowed.

Although we talk much more about this, here’s a typical trick to protect against null refer-
ences. Assume we’ve defined some method—a process we discuss in Chapter 10—accept-
ing a parameter that’s potentially null:

public void ChargeAccount(Account account, decimal amount)

{

if (account == null)

throw new ArgumentNullException(“account”);

// Account processing code goes here...

}

Here we’ve protected a public method against a null reference coming in—assuming no
meaningful behavior can be defined in the face of such an input—by throwing an excep-
tion if case of a detected violation. This ensures we don’t blow up much deeper in the

240 CHAPTER 4 Language Essentials

code, potentially leaving things in a broken state and making it much harder to trace the
source of the problem.

Different exception types are used to indicate different kinds of failures or in this case
violations. ArgumentNullException—as the name implies—indicates an unexpected (hence
exceptional) null reference for the specified parameter. When other types of violations
occur, such as an argument that has an expected value outside a normal range of opera-
tion, exceptions of a different type are thrown. A commonly used one is
ArgumentException.

ASSERTIONS AND CONTRACTS

Throwing exceptions is just one technique to guard against incoming data violating
some contract. Exceptions are particularly useful to harden a public API surface where
you can’t trust the call to do the right thing. However, internally in your code it’s
common to have invariants that you want to hold true at all times, as well as pre- and
post-conditions. In essence, all of those are truth-valued conditions that indicate the
validity of some state. An invariant holds at all times; a precondition holds at the begin-
ning of some block (like a method), a post-condition at the end.

In sufficiently tested code, preferably in an automated fashion, assertions for such
checks suffice at development time. When the code is stressed under various condi-
tions, the assertions should never fail. This is where the typical use of debug asserts
come in. Not only do they check the health of the code, they also provide a great
source of documentation right inside the code.

Code contracts extend on this idea of asserts, having checks for valid states right
inside the code. Other than debug asserts, contracts can both be enforced at runtime
and checked at compile time. The runtime aspects of contracts consists of running
code that performs the required checks and throws an exception upon detection of a
violation. At compile time, a theorem prover is used to derive conditions that cause
contracts to be violated.

You can think of code contracts as asserts on steroids, providing much richer informa-
tion about the conditions under which the code can operate and what’s expected from
callers. It also helps a lot with maintenance of software as contracts provide rich infor-
mation and have the ability to catch violations early. You’re only just starting to see
what’s possible with .NET 4.0 code contracts.

Nullable Value Types
So far, we’ve examined nullability only in the context of reference types. If this
book had been written in the .NET 1.0 time frame, a reference types context would
have been the only valid context to discuss the concept. Let’s recap value and refer-

ence types first. Their main characteristic lies in the way instances of the type are passed.
Value types pass their data by value, whereas reference types just copy a reference to the
data, which means sharing can occur.

241Nullable Value Types

The fact that null was supported only for reference types was unfortunate, exposing to
the surface something that should really have been an implementation detail. Whether a
type supports null as a possible value should be decoupled from the type’s physical
representation.

For example, think of databases where an integer-valued column can contain null values.
If you don’t know the shoe size of a customer (and your database schema permits this
situation), leave it empty. Whether shoe sizes are represented as values or references into
some table is totally irrelevant in this discussion. Either way, they should have the right
to be null.

One way to circumvent this problem in the .NET 1.0 time frame was to store a Boolean-
valued “nullness” indicator next to the value-typed data:

class Person

{

private int _shoeSize;

private bool _hasKnownShoeSize;

}

This is definitely a cumbersome pattern in a world where null is already a well-established
concept. To rectify this situation, .NET 2.0 introduced the concept of nullable value types.

UNION TYPES

Types are like sets that define all the permitted “values” instances can have. In fact,
the analogy between type theory and set theory is well defined in academia. This is
nothing you should really need to know to write code in C#, but some other languages
make this correspondence very visible.

F# is such an example, where nullability is expressed in the form of option types. An
option type is constructed over an underlying type, extending its value domain with an
additional None value. For example, consider the int type, which does not have None as
a valid value:

let a : int = 1

let b : int = None (* invalid *)

In other words, the type is not nullable. To give the type nullability support, an option
type is created:

let c : int option = Some(1)

let d : int option = None (* valid *)

The option type is a sample of a discriminated union: The set of values it supports con-
sists of the union of other sets. With the option type, this is the union of the underlying
type’s domain (here, int) and the singleton None value.

242 CHAPTER 4 Language Essentials

Nullable<T>

Value of type T

HasValue Boolean

FIGURE 4.38 Representation of a Nullable<T>.

Internal Representation

Not surprisingly, given the existing physical representation of value types and reference
types, nullable value types are represented precisely as an encapsulation of this pattern (but
one both the runtime and various languages such as C# know about).

Let’s start on the lowest level with the runtime. Given a value type, which intrinsically
can’t accommodate for the null value, how do we create its nullable counterpart? The
answer is Nullable<T>, a generic type where T is the type parameter that accepts a value
type. Figure 4.38 dissects a nullable value in terms of a Boolean flag and an optional
value of type T.

Compare this type to a box, which can either contain something or nothing (Value), as
revealed by a label (HasValue) on the outside. If the box is empty according to HasValue,
the Value is meaningless. In reality, some value will sit in memory (because the underly-
ing value type is not nullable), but it’s garbage that’s unavailable to the user.

The whole Nullable<T> by itself is a value type—which provides benefits in terms of
memory management, as you will see in Chapter 9, in the section, “Heap Versus Stack”—
and maintains a Boolean flag indicating whether a value has been set.

Use in C#

Let’s take a look at an example:

int a = 42;

int b = null; // doesn’t compile

Nullable<int> c = 42;

Nullable<int> d = null; // this is valid

Having to write Nullable<int> every time you need a nullable integer can be quite
tedious. For that reason, C# has created a shorthand syntax for nullables, suffixing the
(value) type name with a question mark:

int? c = 42;

int? d = null; // this is valid

243Nullable Value Types

KLEENE CLOSURES

Readers who are familiar with regular expressions or formal means to express
grammar and such might have heard about the Kleene closure operators. And even if
you haven’t, you’ll have used wildcards in some command prompt environment. Three
essential suffix operators exist, denoting different multiplicities. Given some kind of
token, suffixing it with the * operator means zero or more instances, as in dir *.exe
(where the asterisk means any number of permitted characters). The + operator
doesn’t allow for empty productions and hence means one or more instances. Finally, ?
stands for zero or none.

It should be no surprise that the ? notation in C# resembles the corresponding Kleene
operator, which essentially expresses the concept of nullability.

Being able to assign the null literal to a nullable value type is nice, but what about testing
for null? Sure enough, C# permits this, too, to reduce friction as much as possible.
Nullable value types just look like reference types in their use:

double? number = GetNumber();

if (number != null)

{

// Do something

}

Nullable value types being value types themselves cannot have a null value on the level of
the CLR though. Recall that this is where this whole exercise of making value types
support null values started.

What you’re looking at in the preceding code fragment is syntactical sugar: The C#
language makes the code look straightforward, but internally more complex machinery is
put into action. This is a good thing, relieving the developer from having to know details
that hinder productivity and spoil code readability. In fact, the preceding fragment is
equivalent to the following form, where the HasValue property is used:

double? number = GetNumber();

if (number.HasValue)

{

// Do something

}

Curious readers can see this from ILDASM (see Figure 4.39). Many more places where
syntactical sugar is applied will become apparent as we proceed. If you’re curious about
how things work, as I am, you’ll find it irresistible to put shortcuts to ILDASM in all sorts
of prominent places.

244 CHAPTER 4 Language Essentials

FIGURE 4.39 Null-checks against nullable value types are syntactical sugar.

DOES THE COMMON LANGUAGE RUNTIME KNOW?

Because nullable value types have syntactical sugar support in languages such as C#
and Visual Basic, a popular misconception exists about their nature. Although they’re
mostly just an ordinary generic value type, they get special treatment in a few places in
the CLR. Boxing, a memory-related concept covered in the next chapter, is one place
where the CLR has built-in notions about Nullable<T>.

Nowadays, it’s fair to say the CLR’s type system in conjunction with nice language sup-
port approaches nullability and the distinction between value and reference types as
two orthogonal concepts, rectifying the 1.0 situation.

A Type Background

From a type perspective, you can draw the parallel to array types and generic types as type
constructors. Given a type, another type can be constructed thanks to out-of-the-box
runtime and language facilities. For nullable value types, that’s the case, too, but with
some restrictions. As the name implies, they’re only supported over value types, but it’s
also impossible to “nest” them, as in int?? or Nullable<Nullable<int>>.

The top part of Figure 4.40 shows the principle of a type constructor. Given any type T, as
indicated by the dotted-lined box, a more complex type can be created. In this example,
it’s a Nullable<T> type that provides a box around the original type with the HasValue
and Value properties on it. At the bottom, concrete instances of a Nullable<Block>—or
Block? in C# lingo—are shown. The label on the box represents the HasValue property,
which is either set to true or false. On the left, there’s a null-valued block; on the right, a
blue Lego block has been wrapped inside a nullable Block? type.

Of course, this assumes a Block would be meaningfully represented as a value type, which
is done purely for illustration purposes here. Agreed, this is a bit dubious: I’ve rarely seen
children play with blocks in a value-passing style because that would involve taking a
copy of a block every time it’s handed out.

245Nullable Value Types

Type Constructor

Block? Objects

Nullable<T>

Block? b = null; Block? b = blueLego;

FIGURE 4.40 Nullable<T> from an abstract viewpoint.

LIFE WITHOUT NULL?

Let’s be clear about one thing first: An orthogonal approach for nullability versus the
distinction between value and reference types is absolutely a good thing. It should be
every type’s right to support null as a proper value if it chooses to do so. However,
the attentive reader will spot another missing piece from the puzzle. With the inception
of nullable value types, null was brought to the world of value types. This aligns well
with modern society: Adding capabilities is always seen as a good thing. But what
about the opposite? Maybe I want to define a type for which null cannot be defined
meaningfully.

So here we are with a new asymmetry. For value types, we can opt in to nullability if we
want to support null values. But for reference types, we can’t opt out from nullability if
we don’t want to support null values. This proves to be a common source of errors as
people miss out on null checks.

A farfetched idea? Not really. Some languages (for example, Eiffel) have built-in support
for non-null types (also known as nonvoid types in Eiffel). Another sample is Spec#, a
research language created by Microsoft Research, based on C#. Spec#’s notation for a
non-null type used the exclamation mark, as in string! for a non-null string. F# strikes
a middle by embracing nullability for existing .NET types but promotes non-null types by
making them the standard for newly defined types. When null is required, regardless of
the underlying type representation, an option type is used.

Why are non-null types not in the mainstream languages and CLR at this point then?
One answer is to be found in the complications it brings to existing languages. Where
nullability extends the domain of a type, non-null types restrict it. For nullable value
types, if a language doesn’t support syntax for it (like int? in C#), the type is still
usable (although its use will become a bit more cumbersome). However, when taking

246 CHAPTER 4 Language Essentials

away values, the language needs to have rules to ensure no nullable values are
assigned in non-nullable positions. In a multilanguage world, this would be a very inva-
sive change.

All is not lost, though. With .NET 4.0 code contracts, a library approach is taken to
provide non-null contracts on variables. The underlying type doesn’t change, and no
syntax has to be added to languages, so the impact on existing languages and tools is
minimal. Because contracts get compiled into IL code, common tools can be provided
to check non-null constraints regardless of the used language:

public void ContractSample(string input)

{

Contract.Requires(input != null);

// ...

}

Think of this as an extension to the method signature that can be used by tools to rea-
son about the code, prove potential violations against the contract, emit rich documen-
tation for users of the API, and so on. Contracts can either be compiled into the code,
resulting in runtime checks, or compiled away when automated tools are used to prove
or disprove the contract’s validity by means of static code analysis. By having it as a
library, all languages can benefit from it.

Summary
By exploring the entry point of a program, we put ourselves in a position to experiment
with language essentials in this and the chapters to come. In this chapter, you learned a
good deal about the role types play in programs and what the built-in types are. Concepts
such as types, objects, instances, variables, assignment, arrays, and nullable value types
should hold no secrets for you anymore.

In the next chapter, we continue on our merry way through the C# language by starting
to write code that really does something. Expressions will be used to compute values, and
statements will drive the program’s execution through mechanisms such as control flow.

CHAPTER 5

Expressions and
Operators

IN THIS CHAPTER

. What Are Expressions? 247

. The Evaluation Stack 251

. Arithmetic Operators 255

. String Concatenation 266

. Shift Operators 270

. Relational Operators 271

. Logical Operators 273

. Conditional Operators 278

. An Operator’s Result Type 281

. Null-Coalescing Operator 282

. Assignment 285

Continuing our journey through language essentials,
we’ve arrived at the point where we focus on blocks of code.
One thing we need is the ability to compute values based
on existing ones, using expressions. Besides this, there’s a
need for control flow structures, sequencing of instructions,
and so on, which is provided through statements. In this
chapter, we start by looking at expressions. In the next
chapter we continue our journey through expressions
related to working with objects. Statements are covered in
the chapters following our discussion of expressions.

What Are Expressions?
A key ingredient to every programming language’s expres-
siveness stems from the use of expressions. In fact, some
languages are (almost) entirely based on this concept. C#
isn’t that extreme though. But what are expressions?
According to the language specification:

An expression is a sequence of operators and operands.

First, it’s important to notice expressions typically denote a
value by means of some computation. This is achieved by
having operators operate on one or more operands, carrying
out the desired computation. Because expressions represent
a value, they also do have a type.

Examples of operators include arithmetic operators,
comparison operators, and so on. Operands can be vari-
ables, literals, or even other expressions. This gives rise to a
tree structure, as illustrated in Figure 5.1.

248 CHAPTER 5 Expressions and Operators

Unary
Negation

Binary
Addition

Literal

0

>

a 5

–

+

Variable

FIGURE 5.1 Operators and operands in an expression.

Arity of Operators

Operators have an arity, indicating the number of operands on which they operate. For
example, negating an integer value takes just one operand and is said to be a unary opera-
tor. Other operations, such as addition or Boolean conjunction, require two operands and
are therefore classified as binary operators. The maximum number of operands in any oper-
ator in the C# language is three, making those operators ternary operators.

Precedence and Associativity

Operators also have a precedence relative to one another. The use of parentheses can be
used to circumvent those precedence rules. It’s often clearer to add some gratuitous pairs
of parentheses than to assume every reader of the code is intimately familiar with the
precedence of operators used in an expression.

Everyone knows examples from high school mathematics:

a + b * c

The preceding evaluates b times c before carrying out the addition with a. Adding paren-
theses—here really redundant as every self-respecting developer should know those basic
math rules, at least in my opinion—makes this ordering explicit:

a + (b * c)

Obviously, if you want to multiply the sum of a and b with c, precedence needs to be
overridden by adding a required pair of parentheses:

(a + b) * c

Alternatively, intermediate results could be stored in temporary local variables, which is a
good idea in case expressions become too large.

Table 5.1 showcases all available operators.

249What Are Expressions?

TABLE 5.1 Operator Precedence

Category Operators

Primary x.y f(x) a[x] x++ x— new typeof default checked unchecked delegate

Unary + , ! ~ ++x —x (T)x

Multiplicative * / %

Additive + -

Shift << >>

Relational, type test < > <= >= is as

Equality == !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

Null coalescing ??

Conditional ?:

Assignment, lambda = *= /= %= += -= <<= >>= &= ^= |= =>

TIP

Come back to this table after you’ve reached the end of this chapter. You should be
able to name all operators flawlessly, illustrate them with examples, and reason about
their resulting types.

Besides precedence, associativity is an important concept when talking about evaluation
of expressions. Assuming an operand (for example, the variable b) sandwiched between
two operators (for example, the integer addition operator +), what’s the order for the oper-
ations performed? In other words, does this operand associate with the operator on the
left first or the one on the right first? For example:

a + b + c

Here, operand b is precisely in this situation. Two options exist: When treated in a left-
associative manner, a + b is evaluated first. In a right-associative setting, b + c goes first. In
this case, as for most binary operators, left associativity is used:

(a + b) + c

250 CHAPTER 5 Expressions and Operators

As an example of right-associativity, consider the following assignment:

a = b = c

Here, c will get evaluated first, after which it’s assigned to b. The result of the assign-
ment is then assigned to a. Yes, this means an assignment operation has a value, as you
will see later:

a = (b = c)

Evaluation of Subexpressions

Precedence and associativity define the order in which operators are applied to their
operands. This is only part of the story, though. Another question is when the operands
are turned into values that the operators can deal with. One of the reasons this is impor-
tant is because of the potential side effects that occur during evaluation. Having a deter-
ministic ordering for those is a welcome feature.

Let’s set the scene by tweaking our preceding example just a tiny little bit:

int res = a() + b() * c();

Now a, b, and c are methods (or delegates, as discussed later) that get invoked. Ultimately,
those return some value that’s used for the operands of the various operators in this
expression. Recall that the multiplication operator does bind stronger than the addition
operator, so we already know the result of calling b and the result of calling c are going to
feed in to the multiplication. We haven’t said anything about the order in which these
operands are evaluated, though.

To see why this matters, make a little transformation to the code, introducing temporary
local variables for the evaluation results of the calls to a, b, and c:

int ta = a();

int tb = b();

int tc = c();

int res = ta + tb * tc;

From this, you can see that we’ve ordered the calls to a, b, and c in a left-to-right order.
This is how the C# language specifies ordering for evaluation of subexpressions. Notice six
orderings are possible in the preceding sample, but the left-to-right one is strictly enforced.

As mentioned before, this matters in the face of side effects. In this example, we’ve left
those totally unspecified, but you could imagine a, b, and c printing something to the
screen during evaluation. Thankfully, the order of those side effects is defined now.

251The Evaluation Stack

FIGURE 5.2 Inspecting evaluation of expressions.

The Evaluation Stack
To get a feeling about the way code executes on the .NET platform and to be able to
analyze fragments of intermediate language (IL) code, it’s important to know the concept
of the evaluation stack. IL is a stack-based language, meaning various operations pop their
operands or arguments from the stack to carry out evaluation. When evaluation completes
and a result is produced, it gets pushed on the stack.

To illustrate this, consider our running example again:

int a = 1;

int b = 2;

int c = 3;

int res = a + b * c;

To simplify matters, I’m using constant values for the three local variables. Everyone
knows the result here is 7, so we could have hard-coded the value, but what matters to us
is to see how the calculation is carried out.

You can guess the answer lies in ILDASM once more. Compile the preceding code into a
simple console application and take a look at the resulting code. It should look like the
one shown in Figure 5.2, assuming you’ve built in Debug mode.

First, notice our four local variables are preserved and have the appropriate type. No
surprise here. But let’s take a closer look at the evaluation order.

252 CHAPTER 5 Expressions and Operators

FIGURE 5.3 Evaluation stack transitions for assigning constants to variables.

OPTIMIZATION?

Couldn’t the compiler have optimized the preceding code to just the constant value 7?
After all, none of the operands involved in the expression are known at compile time.
Sure, in this case this would be completely safe to do (and in fact, some functional
languages would), but in the general case, this is not safe.

The reason doesn’t lie in the operands, but in the operators. As discussed later, opera-
tors can be overloaded so that custom types can define their own meaning for opera-
tors. If those operators do not behave as a pure function—that is, side effects can
occur—it’s not safe to change any of the runtime behavior.

In case of Int32 operands, it just happens the compiler can know all the behavior stati-
cally. But even that is a bit brittle in relation to arithmetic overflow behavior. We’ll come
back to that later in this chapter.

All in all, C# is an imperative language, and this kind of nontrivial compile-time evalua-
tion is avoided. One exception is the use of literals: If you were to write 1 + 2 * 3 in
your source code, it would get evaluated at compile time and substituted with an inte-
ger value 7.

The first couple of lines of IL are fairly straightforward; they just deal with assigning
constant 32-bit integer values to our local variables a, b, and c:

IL_0000: nop

IL_0001: ldc.i4.1

IL_0002: stloc.0

IL_0003: ldc.i4.2

IL_0004: stloc.1

IL_0005: ldc.i4.3

IL_0006: stloc.2

However, we can already illustrate the essentials of the evaluation stack here. I’ve omitted
the res variable from Figure 5.3, as well as the third assignment (for c).

253The Evaluation Stack

FIGURE 5.4 Evaluation stack transitions for arithmetic operations.

The nop instruction is simply a debug build artifact that corresponds to the opening curly
brace in the code. This allows developers to set a breakpoint on that line. Following this,
you’ll see three pairs of ldc and stloc instructions. Those correspond to the assignment
statements for a, b, and c. Their stack behavior is of particular interest:

. ldc loads a constant by pushing it onto the stack.

. stloc pops the top value from the stack and stores it in a local variable slot.

At the start of the method, the stack is empty. At the end of the method, it should be, too,
to keep the evaluation stack balanced. Also observe how local variable slots are zeroed out
upon entrance of the method.

So far, so good. You’ve seen how the constants get assigned to local variables. On to the
evaluation of the expression now:

IL_0007: ldloc.0

IL_0008: ldloc.1

IL_0009: ldloc.2

IL_000a: mul

IL_000b: add

As you can guess, ldloc loads local variable slots and pushes the value onto the stack. The
arithmetic instructions mul and add will pop two values from the stack, carry out the oper-
ation, and push the result, as shown in Figure 5.4.

ABOUT REVERSE POLISH NOTATION AND HP CALCULATORS

Stack-driven evaluation as just described corresponds to postfix or reverse Polish nota-
tion, where the operator is written after its operands. For example, the infix a + b * c
expression is turned into a b c * +. First a, b, and c are pushed on some stack, and
then * reduces the top two values b and c by multiplying them, and finally + is
performed over that result and a.

254 CHAPTER 5 Expressions and Operators

This approach has been very popular for use in desktop calculators (for example, the
HP-10C series). With such calculators, you first enter operands (enter the digits, and
then press Enter), and then carry out an operation (for example, by pressing +).

It’s no coincidence that the CLR uses such a stack-based evaluation mechanism. Very
machine-oriented in nature, it still provides enough abstraction over the way modern
processors work. In reality—a reality that becomes true after Just-in-Time (JIT) compila-
tion of IL code to x86 or x64 instructions—processors want operands in certain regis-
ters (like EAX and EBX) to carry out arithmetic operations on them. Similar arguments
hold for calling conventions that use registers for efficiency. In IL, no affinity is taken to
a particular machine architecture, thanks to the stack-based operation abstraction of
the virtual machine.

Notice how the order of evaluation with regard to the precedence of the used arithmetic
operators is respected. Finally, we’re left with the result of the evaluation on the stack
(that is, the value 7) and are ready to assign it to the res variable:

IL_000c: stloc.3

This puts our evaluation stack in an empty state again. The remaining instruction is a return.
Although the containing method was declared as a procedure (void-returning, if you will), a
ret instruction is required. This transfers control to the caller (in the case of the entry point,
that’s the CLR infrastructure itself) to gracefully terminate the executing process.

IL_000d: ret

MANY STACKS

What we’ve talked about here is only the evaluation stack. IL instructions directly deal
with this stack by pushing and popping values onto and from it. Think of it as a struc-
tured scratchpad.

Another stack is the call stack, which deals with maintaining (nested) method calls.
Each method call has state associated with it in a so-called frame. This state includes
things such as parameters, local variables used within the method, a return address,
and space to return a value to the caller if desired. The call stack also serves a role in
security enforcement with Code Access Security (CAS). During stack walks the call stack
is used to make sure the right permissions are in place to make certain method calls.

In reality, those stacks are tightly related to one another, and together they make up
the CLR stack. This should be considered just an implementation detail, though; it gen-
erally helps to think about both stacks separately because they serve different goals.

255Arithmetic Operators

Arithmetic Operators
Time to take a look at the various operators in C#. One popular category consists of arith-
metic operators, including +, -, *, /, and %. I bet you can guess the role of most, if not all,
of them: + is used for addition, - for subtraction and negation, * for multiplication, / for
division, and % for remainder after division.

Integer Arithmetic

Obviously, the arithmetic operators can operate on integral values, including int, uint,
long, and ulong. A few examples are shown here:

int a = 6;

int b = 7;

int mul = a * b; // 42

int add = mul + a; // 48

int div = add / b; // 6

int sub = mul - div; // 36

int rem = sub % b; // 1

All of this should be self-explanatory, except perhaps for the division and remainder oper-
ations. Integral division produces an integral result, rounding toward zero. For example, 3
/ 2 will produce 1, and -3 / 2 will produce -1. If you want fractional results, at least one
fractional number will have to be involved in the operation.

For the remainder operator, an invariant holds in relation to the subtraction, multiplica-
tion, and addition operators. More specifically (in mathematical syntax):

x % y = x – (x / y) * y

What about division by zero? An exception of type DivideByZeroException results, as
shown in Figure 5.5, so be careful to check for a potential division-by-zero condition
where required. Although you’ll learn how to catch exceptions, this particular one typically
indicates a bug in your application (for example, because of the lack of input validation).

Floating-Point Arithmetic

Float and double types cause floating-point arithmetic, as specified in the IEEE 754 stan-
dard. What’s so special about this? Well, recall the inherent imprecision that exists in
floating-point arithmetic. For most applications, that’s fine, but scientific or monetary
computation might be better off with different numeric types (such as decimal).

256 CHAPTER 5 Expressions and Operators

TABLE 5.2 Floating-Point Arithmetic for Division

+x -x +0 -0 +∞ -∞ NaN

+x +z -z +∞ -∞ +0 -0 NaN

-x -z +z -∞ +∞ -0 +0 NaN

+0 +0 -0 NaN NaN +0 -0 NaN

-0 -0 +0 NaN NaN -0 +0 NaN

+∞ +∞ -∞ +∞ -∞ NaN NaN NaN

-∞ -∞ +∞ -∞ +∞ NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

FIGURE 5.5 A DivideByZeroException should be avoided by checking the denominator.

But there’s more: Floating-point numbers have a series of special values to deal with infini-
ties and mathematical nonsense also known as NaN (not a number). The C# specification
contains tables to indicate the behavior of all arithmetic operators for all possible combi-
nations of input. If the result of a computation is too large to be represented as a floating-
point number, the result is an infinity (because there’s both a positive and negative one).
In a similar way, zero is special in the world of floating-point numbers: If the result of a
computation is too small to fit the precision available, it’s substituted for zero. There’s
even a positive and negative zero.

NaN is used to represent—what’s in a name?—something that’s not a number. Operations
involving such an animal result in NaN, too.

Table 5.2 shows division behavior when using floating-point arithmetic.

EPSILON

Readers with a mathematical background, more specifically in calculus, might have
heard about epsilon-delta definitions. In summary, those symbolic values represent
values that are made arbitrarily small—that is, taking the limit going to zero—to
approach some point and are used to define theorems about limits and continuity of
functions. Why should you care?

257Arithmetic Operators

FIGURE 5.6 System.Double fields for special floating-point values.

In the world of imprecision caused by floating-point arithmetic, epsilon finds a place,
too. If you take a look at the static fields on any of the floating-point types, you’ll find
one called Epsilon described as “defining the smallest positive value that can be
represented by the floating-point type.” This is especially important when comparing
two floating-point numbers for equality, to establish a margin of error. Instead of writing
a == b, you would write Math.Abs(a, b) <= epsilon, essentially to express the
numbers should be close enough to one another.

Unfortunately, the public Epsilon fields on Single and Double are not directly usable
for such approximately equals comparisons. Explaining why that is would be quite a
detour into all the oddities of floating-point arithmetic. If you want to learn more about
floating-point precision, search the Internet for more detailed information.

Where do those special values actually live? For one thing, C# doesn’t have literals for
things such as infinity and NaN: These are (hopefully) not your everyday values. To check
whether the result of a computation is any of those, static constant fields are available on
the floating-point types, as shown in Figure 5.6.

The reason I chose to illustrate the division table as an example is to point out an impor-
tant observation: Division by zero is allowed and returns an Infinity value. This is shown
in Figure 5.7 by looking at a Watch window to display the res variable.

This behavior conforms with the IEEE standard for floating-point arithmetic.

FIGURE 5.7 Floating-point division by zero.

258 CHAPTER 5 Expressions and Operators

FIGURE 5.8 Implementation of decimal arithmetic.

Decimal Arithmetic

Being a numeric type as well, decimal defines the same arithmetic operators as the integral
and floating-point types. The main difference lies in the way rounding is done, as you saw
Chapter 4. Based on the scales of the operands, the scale for the result is determined. For
example, if you’re adding two decimal values with different precision, what does the
resulting precision look like? For addition, the larger of the two precisions is used,
numbers are added, and then rounding is applied.

One more thing on the subject of rounding: In Chapter 4, you saw how the banker’s
rounding approach is used in the implementation of System.Decimal. One characteristic
of this is that it minimizes rounding errors. It doesn’t eliminate the need for rounding,
though. The following shows a typical example:

decimal res = (1m / 3m) * 3m;

Recall that the m suffix denotes a decimal literal. Although mathematically you
would expect the preceding example to evaluate to 1.0, the result is
0.9999999999999999999999999999. The reason for this is the fixed precision available to
represent the one-third decimal division result. The successive multiplication by 3 doesn’t
see anything but the number of digits available, resulting in the shown decimal. In other
words, decimal is not a rational number (which would mean keeping divisor and dividend
for numbers).

If you’re wondering, the arithmetic operations on System.Decimal are not implemented
by the CLR directly. Instead, most of the logic is defined in the BCL using operator over-
loads. This is proven in Figure 5.8 using .NET Reflector.

259Arithmetic Operators

Character Arithmetic

Strictly speaking, we’ve already covered arithmetic with the character type because it
involves integral arithmetic. I want to take a look at it separately, though, because syntac-
tically it might look a bit weird at first. Here is an example of some operations:

int numberOfLetters = ‘z’ - ‘a’ + 1;

char e = (char)(‘a’ + 4);

On the first line, two character literals are being subtracted. How does this work? Recall
that characters are represented in 2 bytes to be able to represent Unicode characters. In
fact, C# doesn’t directly specify arithmetic operations for integral types with a precision of
less than 4 bytes. That’s why our discussion about integral arithmetic only mentioned int,
uint, long, and ulong types.

What’s happening here is an implicit widening conversion, from the System.Char type to a
System.Int32, before the subtraction is carried out. Notice that I’m using associativity
rules here: ’z’ - ‘a’ is carried out first, before the addition to 1 (which is an int literal).
In other words, ’z’ becomes a System.Int32 value (122, its ASCII value, that is), and so
does ’a’. The subtraction then results in 25, and finally we add 1 to end up with 26. We
discuss widening and narrowing conversions later, but it should be easy to see where the
naming comes from. Going from a System.Char, which is 2 bytes long, to a System.Int32,
which is 4 bytes long, clearly widens the representation.

The second line illustrates a cast expression, as we discuss later. Ignoring the cast, the same
rules of widening conversion apply: ’a’ turns into a System.Int32, and 4 is added. The
result of this is by itself a System.Int32, which is represented as 4 bytes. However, we were
interested in getting a character back. To accomplish this, we need a narrowing conversion,
which can be carried out using an explicit cast expression. Because this can result in loss
of information (if the 4-byte value doesn’t fit in the desired 2-byte representation, that is),
C# doesn’t want to do this implicitly and forces the user to be aware of this by requiring
an explicit cast.

A handy trick to see where those implicit conversions lurk is to leverage local variable type
inference. Figure 5.9 shows the type inferred for arithmetic with character values.

FIGURE 5.9 Local variable type inference revealing arithmetic result types.

260 CHAPTER 5 Expressions and Operators

FIGURE 5.10 Hexadecimal display for variables.

FIGURE 5.11 Addition on the binary level.

Unary Plus and Minus

You’ve seen the + and - tokens being used for binary addition and subtraction already, but
they can also be used in a unary context, with one operand. In that setting, they are
used—not surprisingly—for unary plus and minus:

int x = 42;

int y = -x;

Overflow Checking

So far, we’ve omitted an all-important detail from this discussion: overflow checking. Due
to the limited precision offered by the built-in types—ignoring the new .NET 4.0
BigInteger type—there will be places where things go wrong. For example, take the
biggest 32-bit integer value and add 1 to it. What’s the result going to look like? To see
what’s going on, let’s take a look at the bit representation for int.MaxValue. To do this,
Visual Studio can help again, as illustrated in Figure 5.10.

The result will be 0x7fffffff, from which we can easily get to bit representation. Notice the
first bit indicates the sign: 7 in binary is 0111, where 0 indicates the number is positive.
Now add 1, whose representation is 0x00000001 (again with the very first bit to indicate
the sign, again positive). Figure 5.11 shows addition at the bit level.

Applying elementary calculation with carrying over (1 + 1 = 0 with 1 carried over), we end
up with 0x80000000 (remember that 1000 in binary corresponds to 8 in hexadecimal),

261Arithmetic Operators

whose sign bit clearly is 1, and hence the number is negative. This bit pattern actually
represents the most negative signed 32-bit integer value, which is int.MinValue. If it looks
like -0 to you, browse the Web for 2-complement representation to learn how negative
numbers are encoded. Either way, we’ve just observed an overflow during calculation.

Other situations that give rise to overflow exist. Obviously, other binary operations such
as multiplication can cause an overflow, but unary negation can too. Negating the small-
est integer value (-2147483648 for 32-bit signed integers) results in nothing less than that
number itself. Hard to believe? Just the wonders of 2-complement arithmetic.

By default, arithmetic operations in C# are unchecked, meaning overflow conditions don’t
crash the program. For most (business) applications, this is fine because the range of
numbers is typically not employed in its entirety. For example, a loop such as the follow-
ing is highly unlikely to cope with an array that exceeds int.MaxValue elements (swiping
memory allocation issues under the rug, as well):

for (int i = 0; i < array.Length; i++)

{

// Do something

}

Cleaner ways to enumerate an array exist using the foreach loop, which we cover when
talking about control flow statements in Chapter 7, “Simple Control Flow.”

ARIANE-5

Overflow conditions have given rise to notorious bugs. Arguably, the most famous one
is the Ariane-5 rocket crash. The software to control the trajectory calculation for the
rocket was written in Ada, with overflow trapping disabled for some reason. When posi-
tive numbers controlling velocity or acceleration all of a sudden become negative, you
can guess the result, and your rocket will be back to earth earlier than expected.

Note that C# chooses the “dangerous” overflow treatment by default, in contrast to
Visual Basic, where overflow checking is enabled by default. Overflow checking comes
at a cost, though, and given the intended audience for the language (that is, not for sci-
entific computing and such), it was chosen to go with unchecked arithmetic by default.
I sometimes regret this choice, but we have to live with it.

So suppose you care about overflow conditions and want the program to crash in case
such a dangerous situation arises. How do you turn unchecked arithmetic into checked?
To do this, C# has two keywords to control the behavior: checked and unchecked. These
keywords are used to establish a context that affects arithmetic instructions emitted by the
compiler. The CLR has checked and unchecked variants of arithmetic instructions that can
cause overflow, as we’ll prove now using some experiments.

262 CHAPTER 5 Expressions and Operators

FIGURE 5.12 The add instruction doesn’t protect against overflow.

As the running example, consider the following code:

int max = int.MaxValue;

int res = max + 1;

Console.WriteLine(res);

We already know this overflows results in -2147483648. Take a look at the IL code in
Figure 5.12 to see what’s going on here.

The resulting add instruction allows overflow conditions, causing the observed behavior.
Various options exist to turn on overflow checking. The first one is to use the checked
keyword as a unary expression:

int max = int.MaxValue;

int res = checked(max + 1);

Console.WriteLine(res);

Here, only the arithmetic operations in the expression surrounded by the checked(...)
syntax are subject to overflow checking. To accomplish this, the compiler has emitted
different code for the addition using the add.ovf instruction instead, as shown next. But
first, let’s see what the runtime behavior of the code is now. Figure 5.13 shows the result
of running this code in the Visual Studio debugger.

The result is an exception that, if left unhandled, results in program termination. We
discuss exceptions thoroughly, but the OverflowException is likely something you want to
leave unhandled. If you opted in to arithmetic overflow checking, it’s likely because you
wanted to avoid disaster in case of an overflow, and you’ll be better off having the
program terminate on the spot instead of trying to recover from it. Overflow should be

263Arithmetic Operators

FIGURE 5.13 Arithmetic overflow causing an OverflowException.

FIGURE 5.14 The add.ovf instruction throws an OverflowException in case of overflow.

considered a serious bug, and likely you need higher precision or a scientific number type
such as BigInteger.

Having to type checked around every expression can become very tedious. To avoid that,
you can define whole blocks to be checked as follows:

checked

{

int max = int.MaxValue;

int res = max + 1;

Console.WriteLine(res);

}

What’s up with the IL that causes this behavior? As you can see in Figure 5.14, the result-
ing code uses the add.ovf instruction instead.

264 CHAPTER 5 Expressions and Operators

FIGURE 5.15 Unsigned integer values don’t convert to signed integers implicitly.

Now every arithmetic instruction subject to overflow within the code block (delimited by
the curly braces) is checked. In this particular example, there’s only our addition opera-
tion, so this code is equivalent to our previous snippet.

UNCHECKED AND HRESULT

You might wonder what the role of the unchecked keyword is and where it comes in
handy. For one thing, it’s possible to turn on overflow checking for a whole program, so
unchecked gives you an option to opt-out of overflow checking in some part of the code.

Another place where unchecked proves useful is when dealing with interop code that
needs to check for HRESULTs. Based on bit-level flags, HRESULTs have a high bit of 1,
which corresponds to the severity bit. A bit value of 1 indicates failure, making it very
popular in code that rigorously needs to check for failure conditions. As an example,
take a look at E_FAIL’s definition. If you have the Windows SDK installed, you’ll find
this in a file called WinError.h; otherwise, just take my word for it:

#define E_FAIL _HRESULT_TYPEDEF_(0x80004005L)

When dealing with such HRESULTs in C#, you typically want to declare symbolic
constants for them to make code more readable. You also want to make them signed
integers so that a Succeeded function can simply check for positive values and a
Failed function for negative ones:

const int E_FAIL = (int)0x80004005;

However, the compiler will complain that you’re trying to assign a hexadecimal (positive)
literal within the uint range to a variable typed as int. Figure 5.15 illustrates the
compiler’s objection against such code.

To prevent this, the unchecked keyword comes in handy, used as an expression:

const int E_FAIL = unchecked((int)0x80004005);

Now the compiler will be fine with it, treating the hexadecimal as-is and just stuffing its
value in the E_FAIL variable.

But what if you want to protect your whole application against overflow conditions?
Requiring the use of the checked keyword everywhere is way too intrusive, so a compiler
flag exists to turn it on for the whole assembly. Not surprisingly, the flag is called
/checked, and it can also be enabled through the Visual Studio UI for the project settings.
Go to the project properties, open the Build tab, and click the Advanced button. An

265Arithmetic Operators

FIGURE 5.16 Whole-project overflow checking.

Advanced Built Settings dialog box opens, in which you’ll find a check box to turn on
overflow checking (see Figure 5.16).

Notice that a performance penalty might be associated with this. But as usual with perfor-
mance, don’t judge before you consider the user scenarios you care about. Premature opti-
mization is never a good idea. Personally, I tend to turn on checked arithmetic for most, if
not all, of my new projects. Unfortunately, making this the default in a future release
would be a breaking change (although programs relying on overflowing behavior likely
have a bug in them anyway).

Arithmetic with Nullables

What about nullable value types? How does arithmetic deal with the magical null value?
The answer lies in the concept of lifted operators, which are operators that “lift” the use of
operators that normally deal with non-nullable types to use with nullables:

+ ++ - -- ! ~

+ - * / % & | ^ << >>

== != < > <= >=

Don’t worry about operators that don’t look familiar yet; we’ll get to those soon. The spec-
ification of lifted operators defines what it means to apply the operator to a number of
null values. For example, for the binary arithmetic operations, the result is null if any of
the operands was null:

int? a = null;

int b = 5;

int? res = a + b;

Let’s not go into too much detail on this subject because things can get quite involved.
You can find more information in the official C# language specification.

266 CHAPTER 5 Expressions and Operators

FIGURE 5.17 String concatenation under the hood.

String Concatenation
Syntactically closely related to arithmetic operations is string concatenation, reusing the +
operator notation. The following is an example:

Console.Write(“Enter your name: “);

string name = Console.ReadLine();

string message = “Hello “ + name;

Console.WriteLine(message);

The way concatenation works internally is by calling into any of the String.Concat static
methods, as shown in Figure 5.17.

String concatenation is available not only between two string types but also between a
string and any object (System.Object). In that case, ToString is invoked on the object
before carrying out the concatenation. For example:

string res = “The answer is “ + 42;

When any of the operands to string concatenation are null, it gets substituted for the
empty string (””,” or string.Empty). It’s quite popular for the empty string and the null
reference to be treated interchangeably in quite some cases, hence this choice. In fact, the
BCL has an IsNullOrEmpty method on System.String to check for either of those cases:

if (string.IsNullOrEmpty(s))

{

// Do something

}

267String Concatenation

Concatenation of string literals or constants doesn’t result in runtime concatenation
because the compiler can just append the two strings. This can be useful to clarify code:

const string VER = “1.0.0.0”;

Console.WriteLine(“Sample version “ + VER);

It would actually be better to get the version number at runtime by means of reflection, but
consider this just as an illustrative fragment. The preceding code compiles into this:

ldstr “Sample version 1.0.0.0”

call void [mscorlib]System.Console::WriteLine(string)

The ldstr instruction just loads a string token from the executable’s binary, which is
already mapped into memory, making this more efficient than runtime concatenation.
There’s actually quite a bit to be said about performance in the light of string concatena-
tion. Concatenation doesn’t replace any of the operands with the new string because
strings in .NET are immutable. With compound assignment, you can write the following:

string people = ““;

foreach (string name in names)

{

people += name + “, “;

}

The compound assignment in the loop body is something we discuss later in this chapter,
in the section “Compound Assignment,” but it desugars (as in removing syntactic sugar)
into the following form:

people = people + name + “, “;

What we want to achieve here is a comma-separated string containing all the person
names in some collection called names. In other words, we’re aggregating a sequence of
strings into a single one.

STRING.JOIN AND LINQ’S AGGREGATE OPERATOR

The preceding code fragment suffers from having a trailing comma-space pair at the
end, which we probably don’t want. Better ways exist to do such an aggregation, allow-
ing us to avoid those trailing characters. One is string.Join:

string people = string.Join(“, “, names);

In fact, aggregating data is such a common pattern it’s been generalized in LINQ by
means of a generic Aggregate operator that can deal with aggregation of any data type:

int[] numbers = new [] { 1, 2, 3, 4, 5 };

int sum = numbers.Aggregate(0, (acc, n) => acc + n);

This uses functional programming concepts like lambda expressions, which we discuss
extensively when covering LINQ in Chapter 19, “Language Integrated Query Essentials.”

268 CHAPTER 5 Expressions and Operators

FIGURE 5.18 Watching intermediate strings getting allocated in memory.

To build up the aggregated string, we really want to mutate an existing string and append
things at the end during every visit through the loop. Although we’re not interested in
the intermediate stages, we’re allocating a new string in every iteration:

””

“Bart, “

“Bart, John, “

...

This creates memory pressure, which will result in a performance degradation. The allo-
cated strings always grow, lots of memory copies have to be created during every concate-
nation, and so on. To illustrate this, set a breakpoint at the end of the loop body (you can
set a breakpoint on the closing curly brace) and inspect the location of the people variable
in memory, illustrated in Figure 5.18. It will change after every iteration.

In the text display on the right, you can clearly see intermediate strings being allocated.

NOTE

After every iteration, the previous string object is orphaned; there’s no way to get back
to it, anyway. After all, we’re replacing the reference in the people variable with a refer-
ence to the newly allocated string. Remember that strings are reference types, so the
reference is replaced to point to some other location in memory containing the new
(slightly more aggregated) string. In summary, this means that after every previous
string object, an unreachable object remains in memory that’s under control of the
garbage collector.

In the preceding sample, you need to be a little lucky not to induce a garbage collection
(which is the source of potential performance bottlenecks) during this excessive string
concatenation. If this happens, the memory display will change.

269String Concatenation

Does this mean you should avoid string concatenation at all costs? No. A good rule of
thumb is that if you know the number of concatenations statically at compile time (for
example, because you do something like first + “ ” + last), string concatenation is fine.
However, if dynamic behavior (such as loops over collections of unknown size) is
involved, string concatenation can bite you.

Of course, you’re wondering what the better approach for such excessive string creation
patterns is. The solution is System.Text.StringBuilder:

using System;

using System.Text;

class Program

{

static void Main(string[] args)

{

string[] names = new[] { “Bart”, “John”, “Lisa” };

var peopleList = new StringBuilder();

foreach (string name in names)

{

peopleList.Append(name);

peopleList.Append(“, “);

}

string people = peopleList.ToString();

// More code...

StringBuilder provides a buffer for in-place string manipulation operations such as
concatenation, replace operations, and so on. It grows dynamically (in a smart way, to
provide additional space for subsequent operations) as more space is required and creates
less memory pressure than naive string concatenation.

ON STRING INTERNING AND THE STRINGBUILDER’S ROLE IN INTEROP

StringBuilder also plays a role in interoperability. When calling into unmanaged code
through the P/Invoke mechanism, the signature of the method used to make the call
needs to contain types that are marshalable. System.String is marshalable, but its
immutable nature makes it unsuitable when the unmanaged application programming
interface (API) needs to mutate the string. In such a case, it’s better to use the
StringBuilder type.

Why? Immutability for strings is baked into the runtime for various reasons. It helps to
eliminate nasty types of bugs in multithreaded code, it has nice security characteris-
tics, and so on. During P/Invoke, what you’re effectively doing is handing out a memory
location to unmanaged code. That code can then violate the immutability by scribbling
in the memory of the CLR string. One place where this really breaks functionality in an
observable way is with string interning.

270 CHAPTER 5 Expressions and Operators

String interning is a mechanism that reuses memory storage for strings if their
contents are the same. For example, if a string containing “Bart” is loaded twice, the
CLR can decide to allocate the string once and return the same reference to both
users. The reason this is safe to do is because strings are deemed immutable: No
other user can tweak the string, which would be visible to the other user. However,
during interop with unmanaged code, the CLR has no control over memory manipula-
tions, and changes to interned string can be made. For example:

string me = “Bart”;

string he = “Bart”;

SomeInteropMethod(ref me, me.Length);

Console.WriteLine(he);

Because both he and me have the same contents, the CLR can intern them: The same
memory containing the Unicode representation of ”Bart” will be referenced by both he
and me. Assuming that SomeInteropMethod writes to the memory referenced by the
supplied first argument, the change will become visible in both he and me!

Interop can be tricky. For example, when using a StringBuilder to provide room for
the unmanaged API’s output, you’ll have to make sure the StringBuilder has a suffi-
ciently large capacity. The StringBuilder constructor has an overload that accepts an
initial capacity that can be used for this purpose.

We discuss the essentials of interop in Chapter 22, “Dynamic Programming.” One rec-
ommendation in the meantime is to avoid it whenever possible. But when you absolute-
ly need it because none of the Framework APIs exposes the unmanaged code
functionality you’re looking for, browse the Web to see whether someone else has
already created a P/Invoke signature for you. A site to add to your favorites is
http://pinvoke.net.

Shift Operators
Far less commonly used than arithmetic operators are the operators that are tightly bound
to the underlying bit representation of integral types. One such category consists of shift
operators >> and <<, respectively known as left shift and right shift. Shift operators are
defined for the int, uint, long, and ulong types but can also be used with other integral
types because of implicit conversions.

The following are examples of shift operations:

int left = 3;

int lres = left << 5; // 96

int right = 42;

int rres = right >> 3; // 5

http://pinvoke.net

271Relational Operators

FIGURE 5.19 Shift operations illustrated.

Both operators take two operands. The one on the left takes the expression that needs to
be shifted, and the one on the right specifies the number of bits to shift (specified as an
int). The operation of both shift operations is illustrated in Figure 5.19.

As you can see in the figure, zero bits are shifted to the right in case of a left-shift, and to
the left in case of a right-shift. In both cases, bits get lost because they shift outside the
available bit positions.

Relational Operators
Another category of operators consists of relational operators, used to perform equality
checks or comparisons. The meaning of the following operators should be easy to guess:

== != < <= > >=

Built-in types, like the numeric types, support these operators, each of which returns a
Boolean value to indicate the result of the check. All of those operators can be overloaded
by types, as well, as you will see in Chapter 13, “Operator Overloading and Conversions.”

272 CHAPTER 5 Expressions and Operators

FLOATING-POINT NUMBERS

Floating-point numbers have some weird values, such as NaN, infinities, and positive-
and negative-zero representations. In compliance with IEEE 754, the CLR implements the
meaning for relational checks on floating-point numbers based on the following ordering:

–∞ < –max < ... < –min < –0.0 == +0.0 < +min < ... < +max < +∞

You can find more information about this and the treatment of NaN values in the C#
language specification.

Equality for Different Types

Equality checks are of particular interest. For reference types, the default behavior of ==
and != is to check equality and inequality of the references. In other words, do both the
left and right sides of the operator refer to the same object in memory? Often this behav-
ior is not desirable, and operator overloading is used to redefine the meaning of equality,
typically based on the underlying data contained by the type. A good example is
System.String, where == checks that both strings have the same length and contain the
same characters.

In the context of reference types and nullable value types, the equality checks against the
null literal should also be considered. For reference types, this is based on checking for the
null reference. For nullable value types, a call to HasValue is emitted.

NULL IN DIFFERENT WORLDS

As you’ve already seen in previous chapters, null can be bewilderingly strange at times.
The fact that other technologies and platforms sometimes have other definitions of null
doesn’t help for sure. Here are a couple of examples:

. In the world of relational databases and the SQL language, null is never equal to
null. Reasoning: If two pieces of data are undefined, what right do we have to
state they are equal?

. The situation is different for managed code developers: Two null references are
always considered the same.

Such differences can pose interesting challenges when bridging both worlds. A good
example is LINQ, where true C# syntax is used to formulate queries against any kind of
data source, including SQL. Does the use of == in a query expression need to match
the CLR semantics or the SQL semantics? Because LINQ abstracts over all kinds of
data sources, it’s desirable to implement source language semantics, and that’s exact-
ly what’s done.

For value types, unless overloaded, the == operator returns true if both operand values are
equal. In practice, that means equality of the bit pattern.

273Logical Operators

Object.ReferenceEquals, Equals, and ==
Equality is, perhaps surprisingly, a fairly complicated concept. There are three main
players that are closely related to one another.

Object.ReferenceEquals is a static method that can compare two objects for referential
equality. (That is, do they refer to the same data?) This corresponds to the default notion
of equality for reference types. We’ll delay the discussion of value types in this respect
until you’ve learned about boxing.

System.Object also has a virtual method called Equals. Virtual methods can be overridden
by subtypes to redefine the implementation of the method. Because Equals is available on
System.Object, it’s a popular method that gets called in a variety of places in the frame-
work to check for object equality (for example, for use in collections). As an example,
think of a set collection type that needs to enforce that all elements contained in the set
are different from one another.

Finally, there’s the == operator, which is merely provided for syntactical convenience and
is easier on the eye to most people.

After we discuss defining our own types, we’ll turn our attention to defining the meaning
of equality for our custom types.

Lifted Operators

For nullable value types, the relational operators are also lifted. Comparison of a non-null
value to null always results in false, except when inequality is checked:

int? a = 5;

int? b = null;

bool gt = a > b; // false

bool le = a <= b; // false

bool eq = a == b; // false

bool ne = a != b; // true

Nullable logic can be surprising. For example, if you thought the result of >= and < would
always be exact opposites when applied to the same operands, you can clearly see this
doesn’t hold any longer when null is in play.

Logical Operators
Logical operators are defined for integral types, Booleans, and enumerations.

Integral Bitwise Logical Operators

The available operators that deal with integral values—as usual defined for int, uint, long,
and ulong—include the following:

& | ^ ~

274 CHAPTER 5 Expressions and Operators

FIGURE 5.20 Integral bitwise operations.

These, respectively, correspond to the bitwise AND, OR, XOR (exclusive OR), and comple-
ment operations. The following are a few examples:

int x = 5;

int y = 3;

int and = x & y; // 1

int or = x | y; // 7

int xor = x ^ y; // 6

int compX = ~x; // -6

Figure 5.20 illustrates the operation of those operators (restricting myself to 4-bit represen-
tations to save space).

Use for Enumerations

Enumerations provide a way to define symbolic constants that belong together in a logical
fashion. Two different uses exist. One is to represent constants that represent distinct
values, such as values DayOfWeek.Monday through DayOfWeek.Sunday. It doesn’t make sense
to try to combine two such values into a new one.

The second use is with flags, where values can be combined meaningfully. As an example,
consider file I/O access modes FileAccess.Read and FileAccess.Write, which are very
useful when combined to open a file for read and write.

Where logical operators come into play is with flag-based enums. Enumerations have an
underlying integral type, and each member of the enumeration has a value of that type.
By declaring those as powers of two, bit mask operations can be used to see whether a
certain flag is set, and flags can be meaningfully combined:

[Flags]

public enum FileShare

{

None = 0x0,

Read = 0x1,

Write = 0x2,

ReadWrite = Read + Write, // has value 0x3

275Logical Operators

Delete = 0x4,

Inheritable = 0x10,

}

The preceding example is actually taken from the System.IO namespace. Ignore the jump
for the value used for Inheritable; this is likely chosen to make interop with Win32 APIs
easier. The important part is that every “basic flag value” has a unique bit associated
with it. Convenience values can be defined in terms of others by making a sum, as done
for ReadWrite.

Now the logical operators can be used to combine flags. For example:

FileShare flags = FileShare.Read | FileShare.Write | FileShare.Delete;

At another point in the code, we might need to check what flags are set, which can be
done by masking the input with the desired flag’s value. The way this works at the bit
level is depicted in Figure 5.21:

if ((flags & FileShare.Read) != 0)

{

// FileShare.Read was set, can proceed to read

}

FIGURE 5.21 Checking whether an enumeration flag has been set.

Boolean Logical Operators

A lof of readers will have thought of Boolean values by now in the context of our discus-
sion of logical operators. Yet I’ve kept Boolean logical operators for the last for a good
reason: short-circuiting variants exist, also known as the conditional logical operators.

But first, the regular non-short-circuiting ones. No surprises here: Standard Boolean logic
applies for AND, OR, XOR, and NOT, which are written as follows, respectively:

& | ^ !

276 CHAPTER 5 Expressions and Operators

Obviously, the result of those Boolean operators is a Boolean itself. However, from the
truth tables of the AND and OR operators, you might recall some important properties of
those operators: They can be short-circuited. To refresh your memory on this subject, take
a look at Figure 5.22.

FIGURE 5.22 Boolean logic truth tables for AND and OR.

Observe the first row for AND and the second for OR. Once the first truth value is
known, the result is already fully defined. Operators with short-circuiting behavior exist
for AND and OR:

&& ||

Recall that expressions can be formed from subexpressions, so the left and right operands
to the C# Boolean operators can be any Boolean-typed expression:

if (CheckPermissions(user) & !UserBlackListed(user))

{

// Perform sensitive operation

}

In this particular case, if CheckPermissions returns false, there’s no point in even checking
the UserBlackListed result value (which could be a costly operation; for example, hitting
a directory service on the network). So we can use the short-circuiting variant of the &
operator instead, which is written as &&:

if (CheckPermissions(user) && !UserBlackListed(user))

{

// Perform sensitive operation

}

A similar operator exists to short-circuit the | operator and is written as ||. If the first
operand is true, the second one won’t be evaluated.

277Logical Operators

FIGURE 5.23 Truth tables for nullable Boolean logic.

WHEN SIDE EFFECTS MATTER...SIGH

Modifying code to use short-circuiting behavior in an imperative language like C#—
where side effects are (unfortunately?) a way of life—can be a breaking change. For
example, in the preceding example, the UserBlackListed method might have the side
effect of writing to a log file that’s analyzed by some automated tools. Some of those
tools may depend on finding paired entries for CheckPermission operations followed
by UserBlackListed operations. By changing the code to short-circuit, the side effect
of writing to the log will also be gone in the negative case. Farfetched? Not really. Know
your side effects!

As an aside, these short-circuiting operators can be indirectly overridden by means of their
regular counterparts (& and |) and two other operators called true and false. That’s right:
true and false also have operators associated with them that get used when a custom
type needs to be evaluated for a truth value. That can be mind-boggling and is very rarely
used, but be aware of the fact that the language supports this kind of overloading. If
you’re wondering, && and || are defined in terms of those underlying operators as follows
(with T standing for the type that overloads the operators):

x && y = T.false(x) ? x : T.&(x, y)

x || y = T.true(x) ? x : T.|(x, y)

The ?: conditional operator used here is the subject of the next section. An example of
this kind of overloading could be a TrafficLight type, where drive/stop conditions can be
modeled as truth values.

Nullable Boolean Logic

Logic involving nullable Boolean values is three valued and mirrored after the SQL behav-
ior. The idea is pretty much based on the short-circuiting observation: For AND, if any of
the operands are false, the whole result ought to be false (similar for OR, but with the true
value). In other words, we don’t care if the other operand is null in such a case; the result
is well defined. Figure 5.23 summarizes nullable Boolean logic.

278 CHAPTER 5 Expressions and Operators

Personally, I try to avoid nullable Booleans in decision logic wherever possible. Even
though everything seems “logical,” basic laws of logic become very counterintuitive in a
nullable setting.

Conditional Operators
The conditional operator is the only ternary operator in the C# language, meaning it has
three operands. Some people like to refer to it as the ternary operator. I dislike this particu-
lar wording because nothing prevents the language designers from adding another ternary
operator at some point. So the conditional operator it is.

Being an expression, the conditional operator produces a value from its operands. In
essence, it’s a decision operator that computes and produces either the second or third
operand’s value, based on the outcome of the first operand’s truth value. An example will
make this clear:

int absOfX = x >= 0 ? x : -x;

In the preceding example, first the Boolean-valued relational expression x > 0 gets evalu-
ated. If the result is true, the operand between the ? and : characters is evaluated and
becomes the operator’s result. In the other case, the last operand following the : is evalu-
ated and returned. We can rewrite the preceding code as follows:

int absOfX;

if (x >= 0)

absOfX = x;

else

absOfX = -x;

The statement-centric approach has the same effect but is much more verbose. What sets
the conditional operator apart is the fact that it’s an expression, so it can be used wherever
an expression is expected:

DoSomethingWithPositiveValue(x >= 0 ? x : -x);

Without the conditional operator, you would have to declare a temporary variable to
hold the result of the conditional evaluation before feeding it into the place where the
value is needed.

Under the Hood

The conditional operator is implemented using branching similar to the if statement. The
code shown in Figure 5.24 is the result of an optimized Release build because the Debug
code is a bit more involved with temporary compiler-generated variables. Yes, that’s right.
The C# compiler knows to optimize code to some extent.

279Conditional Operators

FIGURE 5.24 The conditional operator behind the scenes.

A WORD ON OPTIMIZATION

People sometimes freak out when IL code doesn’t look as optimized as they expect it
to. The general approach taken by managed code compilers it to limit optimizations
and leave some of the potential further optimizations to the JIT compiler. This has an
important advantage of having a language-independent place to carry out optimizations.

So what’s up with this IL code fragment? As you see, it’s the code for an Abs method that
takes in an int and produces its absolute value. The ldarg.0 instruction is used to retrieve
the first argument passed in and push it onto the stack. We already know what ret does;
namely, it pops the value on top of the stack and returns it to the caller. What goes in
between is what’s of real interest to us.

A way to approach this code fragment is by means of basic block analysis. That is, we look
at the branch instructions (such as bge, meaning “branch if greater than or equal”) and
split the code in blocks that end with such a branch instruction or start with a label that’s
the target of a branch instruction. Finally, we draw arrows between the block based on the
branch targets and dotted arrows between consecutive blocks to indicate the case of
“fallthrough.” The result of this analysis is shown in Figure 5.25.

Solid arrows indicate the jump taken in case the branch instruction evaluated positively;
for example, bge of x and 0 saying “yes” causes a branch to IL_0008. Dotted arrows indi-
cate fallthrough, either because the block ends with no jump or because of a negative
branch condition result.

But why all this buzz? There’s something very important to be observed here: The condi-
tional operator evaluates only one of the value-producing operands. In the preceding case,
either -x is computed (using the neg instruction, for negate) or x is (which is a trivial oper-
ation). Again, this is very important in terms of side effects:

bool success = systemsOk ? LaunchRocket() : SendMaintenance();

280 CHAPTER 5 Expressions and Operators

x > 0

–x
x

absofx = …
return absofx;

IL_0008: ldarg.0

IL_0009: stloc.0
IL_000a: ldloc.0
IL_000b: ret

IL_0004: ldarg.0
IL_0005: neg
IL_0006: br.s IL_0009

IL_0000: ldarg.0
IL_0001: ldc.i4.0
IL_0002: bge.s IL_0008

FIGURE 5.25 Deciphering a conditional operator’s use.

If both method-call expressions were evaluated regardless of the systemsOk value, disas-
trous results would follow. This might seem logical, but I’ve seen people believe the condi-
tional operator can be rewritten as follows (where a generic parameter T is used to make
the “operator-alike method” work on any type):

T GetConditionalValue<T>(bool condition, T positiveValue, T negativeValue)

{

if (condition)

return positiveValue;

else

return negativeValue;

}

We explore generics in Chapter 15, “Generic Types and Methods.” What’s wrong with
this? The answer lies in the way method calls are processed, in a call-by-value manner:

bool success = GetConditionalValue(

systemsOk, LaunchRocket(), SendMaintenance());

This means that all arguments to the method call are evaluated first in a left-to-right
manner, pushed onto the stack, and finally the method is called. As you can see, this
would mean both LaunchRocket and SendMaintenance are called first, even though the
method will use only one of the two arguments (but the caller can’t know that).

281An Operator’s Result Type

IMMEDIATE IF

The problem with mimicking the conditional operator using a method is historically
grounded. Visual Basic had no conditional operator until very recently. Instead, there
was the “immediate if” function Iif, which basically implements like our
GetConditionalValue in the preceding example. The new If operator, on the other
hand, provides short-circuiting behavior just like the conditional operator in C# does.

Lack of a true conditional operator has bitten many people in the past. You can wonder
whether this problematic circumstance Visual Basic found itself in is due to the lack of
the operator or due to the way function calls are evaluated in most modern languages
today. After all, why do we need to evaluate all arguments to a method call (which can
be a potentially expensive operation) if the method may just use some (or even none)
of them in certain circumstances? This is the nature of call-by-value semantics.

Alternative call semantics exist that prevent this problem, such as Haskell’s call-by-
need semantics, where function parameters are lifted into “thunks” that get evaluated
at the point of their use. You’ll see those semantics can be simulated in .NET using
delegates and the new Lazy<T> type that was introduced in .NET 4.0.

An Operator’s Result Type
What about the type produced by the operator? Because either the second or third
operand can deliver the operator’s result, there needs to be some kind of compatibility
between them. When both have the exact same type, there’s no question at all. But what
if they don’t line up? Then the answer lies in implicit conversions. For example:

condition ? 42 : 123L

The resulting type of this conditional operator use will be long because it’s possible to
convert implicitly from int to long (without loss of data, that is). Obviously, the rule
holds symmetrically if the second and third arguments are swapped:

!condition ? 123L : 42

However, in the face of type hierarchies, the operator does not look for the “least common
supertype” as some people expect. Although we don’t know yet how type hierarchies are
formed, you can apply your gut feeling here. Both Apple and Kiwi are subtypes of Fruit,
so we could attempt to write the following:

Fruit forLunch = hasSpoon ? basket.GetKiwi() : basket.GetApple();

After all, Kiwi and Apple have a common supertype Fruit, right? Some think it would be
a good thing if the language would figure this out and infer the resulting type to be Fruit.
Others say no because of the Fruit type appearing out of nowhere. Languages that do a

282 CHAPTER 5 Expressions and Operators

lot of type inferencing tend to produce rather cryptic error messages. Consider the case
where the conditional operator is used as an argument to a method call:

AddToLunchPacket(hasSpoon ? basket.GetKiwi() : basket.GetApple());

Assume the compiler infers the type of the conditional to be Fruit, but the method does
not have an overload taking in a Fruit but only has one taking in a Vegetable. The error
message would read something like “No overload is found that accepts a Fruit,” even
though you haven’t written or used the Fruit type directly. This can be confusing, espe-
cially if deep type hierarchies come into play and the determined least common supertype
is totally nonobvious. Therefore, C# errs on the safe side and doesn’t permit this:

Type of conditional expression cannot be determined because there is no implicit

conversion between ‘Kiwi’ and ‘Apple’.

If you really want the conditional operator to produce a Fruit, an artificial cast will have
to be inserted to clarify your intent, as follows:

hasSpoon ? (Fruit)basket.GetKiwi() : basket.GetApple()

Either of the result operands will do because an implicit conversion exists between a type
and one of its supertypes, such as Kiwi to Fruit or Apple to Fruit. Now if you get an error
message about some Fruit not lining up, at least you can see where it’s coming from.

Associativity

A relatively minor remark to conclude the discussion of the conditional operator is its
right-associative behavior:

condition1 ? a : condition2 ? c : d

The preceding means the same as the following:

condition1 ? a : (condition2 ? c : d)

However, nested conditional operators tend to produce unreadable code quickly (partly
due to the terse ?: syntax), so I generally recommend avoiding such use.

Null-Coalescing Operator
Closely related to the conditional operator is the well-sounding null-coalescing
operator, which was introduced in C# 2.0 as part of the whole nullability straight-
ening mission. When dealing with reference types or nullable value types, it some-

times makes sense to be able to supply a default value as a substitute for null. That’s
precisely what the null-coalescing operator provides:

int? deposit = GetDeposit(user);

AddToAccount(user, deposit ?? 0);

283Null-Coalescing Operator

Written as an infix ?? operator, the null-coalescing operator first evaluates the left
operand. If it results in the null reference (for a reference type) or a nullable value with no
value set (HasValue is false), the right operand is evaluated to produce the result; other-
wise, the left operand’s value becomes the result. Let’s analyze the preceding example:

deposit ?? 0

It actually behaves like this:

deposit.HasValue ? deposit.Value : 0

As you can see, the nullable’s value gets unwrapped if not null. For reference types, no
unwrapping is needed. Assume that name is of type string in the fragment here:

name ?? “Person X”

Then this is shorthand for the following:

name != null ? name : “Person X”

Notice that the operator is lazy just like the conditional one, meaning the right default
value operand is evaluated only when needed:

name ?? GetDefaultValue()

If name is non-null, the GetDefaultValue method will not be called. Similar remarks about
types hold: Implicit conversions are permitted, but the language refuses to chase after a
least common supertype:

GetApple() ?? new Jonagold() // this is fine, a Jonagold is an Apple

GetApple() ?? new Kiwi() // this isn’t, no magical inference to Fruit supertype

The null-coalescing operator is also right-associative:

data ?? GetDefault() ?? GetAlternativeDefault()

This is the same as the following:

data ?? (GetDefault() ?? GetAlternativeDefault())

In other words, if data is null, we’re chasing for a default value. First we attempt
GetDefault(), but if that results in null, GetAlternativeDefault() is tried. But again, this
coding style is quite brittle, so it’s better to avoid it. Others may write it, though, so it’s
good to know how the language defines its meaning.

284 CHAPTER 5 Expressions and Operators

THE MYTHICAL NULL-PROPAGATING DOT

With null being a common source of frustration—creative minds don’t want to spend
their days writing null checks—people often ask for more constructs to deal with null.
One such common request is the null-propagating dot. The dot operator is used for
member lookup of various sorts, as shown here:

decimal discount = person.GetAccount(AccountLevel.Gold).Discount;

But what if the person doesn’t have a Gold account? Suppose the GetAccount method
returns null in such a case, requiring the caller to check for null:

Account account = person.GetAccount(AccountLevel.Gold);

decimal discount = account != null ? account.Discount : 0m;

This illustrates how intrusive null checking can become, especially if you “dot-chain” a
lot of lookups together. With the mythical null-propagating dot, this code could look like
the following:

decimal? discount = person.GetAccount(AccountLevel.Gold)?.Discount;

Here, ?. stands for “peter out at this point if the left side is null; otherwise, continue.”
Although this looks nice, a few complications can arise.

Notice how nullability becomes contagious to the whole expression. The result no
longer is of type decimal but of type decimal?. So introducing null propagation in the
middle of some existing code will start breaking other things because the type has
changed. Maybe such code breakage is a good thing because you’re most likely
working on eliminating a NullReferenceException. To fix such an issue, some code
churn should be acceptable. And sure enough, you could add a null-coalescing opera-
tion at the end:

decimal discount = person.GetAccount(AccountLevel.Gold)?.Discount ?? 0m;

You can approach the situation with the null-propagating dot also from a different
angle. It might well lead to bad coding practices where nonignorable null values are
swept under the rug in an almost invisible way. What if the maintainer of the example
were overly eager and did the following:

decimal discount = person?.GetAccount(AccountLevel.Gold)?.Discount ?? 0m;

Did you see the difference at a glance? Likely not. It’s not unreasonable to believe this
code wants to deal with the person object in some other place (for example, in the
middle of a shopping cart checkout line). Having a null reference for person is defi-
nitely not a good thing in such a case. With the null-propagating behavior, it becomes
easy to ignore this important “detail,” causing code to crash much later, where it might
be less obvious where the null value comes from. Of course, it all boils down to coding
discipline.

One last thing on this subject is the fact people tend to forget other operations on
objects exist that would benefit equally well from such a feature. Indexers and delegate
invocations jump to mind. Syntax becomes quite terse here:

285Assignment

vector?[“x”]

calculator.Add?(1, 2) // where Add is a property of type Func<int, int, int>

Don’t worry too much about indexers and delegates just yet; we cover them exhaustive-
ly in Chapter 11, “Fields, Properties, and Indexers,” and Chapter 17, “Delegates,”
respectively. It remains to be seen whether such null-propagating operators will make it
into the language at some point. Maybe support for non-null types would be a much
better value proposition to reduce null-centric bugs.

Assignment
We’ve used assignment repeatedly already. It’s simply a way to assign a value to a variable
(or property, indexer or event, to be precise). For example:

// Assigning to a local variable, declared elsewhere.

person = new Person(“Bart”, 26);

// Assigning to a property through a setter.

person.DayOfBirth = new DateTime(1983, 2, 11);

Decaration Versus (Simple) Assignment

It’s important to realize the fundamental difference between declaring variables and
assigning to them. Declaring a variable simply introduces a symbolic name (specified using
an identifier) in the containing scope, also specifying its type. Assignment is the act of
setting a value for the variable, which can be done multiple times as long as the variable is
in scope (unless the variable is declared as constant, that is). The following piece of code

int x = 42;

can be decomposed into two separate discrete steps:

int x;

x = 42;

The latter one is what we’re talking about here. It’s called a simple assignment that has the
form lhs = rhs. After evaluating the right side (rhs), it gets assigned to the left side (lhs).

Those of you who’ve been paying attention will remember that expressions have a value.
The fact that we’re covering assignment during our discussion of expressions reveals that
an assignment yields a value as a result. Here’s the language specification:

The result of a simple assignment expression is the value assigned to the left operand.

286 CHAPTER 5 Expressions and Operators

We’ve already used this property of assignment in passing, when talking about the as
operator, where we wrote a multiway branch for type checking:

if ((f = item as Fruit) != null)

{

return IsFreshFruit(f);

}

else if ((v = item as Vegetable) != null)

{

return IsFreshVegetable(v);

}

Here we’re assigning the result of the as operator expression to f or v and use the same
value to carry out a null check subsequently. Essentially, we’re using assignment for its
side effect of modifying a local variable’s value while also carrying out a null check for the
essential type check.

This kind of code should not be used excessively, though, because keeping track of the
many things happening on one line can be quite difficult. In this case, I’m convinced it’s
fine to do, but the use of assignment in all sorts of random places can make code very
subtle in no time:

DoSomething(a, a = 5, b = a + c)

There’s one other place where this property of assignment as an expression comes in
handy, multiple assignments:

x = y = z = 0

Simple assignment is a right-associative operation, so the preceding snippet is written as
follows in its parenthesized form:

x = (y = (z = 0))

SUBTLE BUT PRECISE

Language specifications need to be precise, but in being so they can get quite subtle,
too. Believe it or not, the specification of the assignment operation is a place that
gives rise to subtleties. Let’s rephrase what the specification states:

The result of a simple assignment expression is the value assigned to the left
operand.

Now an example to illustrate this. What’s the equivalent to the code here?

bar.Foo = foo.Bar = a + b;

287Assignment

We already know this can be rewritten as follows by using the property of right
associativity:

bar.Foo = (foo.Bar = a + b);

This already defines order unambiguously. To assign to bar.Foo, we need to evaluate
the right side first. So we end up with the following sequencing:

foo.Bar = a + b;

bar.Foo = ...;

But what do we replace the ellipsis with? What about a + b? That would clearly be a
waste of computation resources, but not only that. Undesirable but possible, a + b
could be implemented using an operator overload that has a side effect; for example, it
may print to the screen for some reason. By reevaluating a + b, we would cause that
side effect to happen twice.

What about using foo.Bar on the ellipsis? This isn’t any better: bar.Foo may be a
property, and calling its getter may carry out additional operations besides just getting
the value. Or in a more contrived scenario, the property might even not have a getter
but only a setter. What really happens here is the following:

var __temp = a + b;

foo.Bar = __temp;

bar.Foo = __temp;

In fact, some other languages define assignment in a different way: subtlety at the fun-
damental level.

Compound Assignment

Beside simple assignment, the language also supports compound assignment. This form of
assignment allows the use of a binary operator to be combined with assignment at one
time and has the following general form (where op stands for a binary operator):

x op= y

In the simplest case, it’s the equivalent to the more verbose form:

x = x op y

The reason I’m saying this is the simplest case is because rules exist that permit a conver-
sion to take place before assigning the result to x. Here are a few examples to illustrate the
use of compound assignments of various sorts:

int a = 42;

a += 6; // a = 48

a /= 8; // a = 6

char c = ‘z’;

c -= (char)2; // c = ‘x’

288 CHAPTER 5 Expressions and Operators

Notice the explicit conversion of the integer literal 2 to a char on the last line. This is
required because of a relatively simple rule that states types should line up. Intuitively, for
the form x op= y to work, it should be possible to assign y to x. If you omit the conversion
syntax, a very actionable compile-time error will result:

Constant value ‘2’ cannot be converted to a ‘char’

COMPOUND ASSIGNMENT: AN EXPRESSION TOO...

I wondered whether it was a good idea to mention this explicitly but ultimately decided
in favor of it: Compound assignment is an expression. Expressions are things that
produce a value. So they can be used wherever a value is expected:

bar.Foo(x += 5)

But don’t do this unless you want to explode your coworkers’ (or your own) heads.

Notice that compound assignment can be used on yet-to-be-discussed properties and
indexers, as well:

vector[“x”] += 2;

account.Balance *= 1.05m;

Properties and indexers are methods in disguise: One is used to retrieve the value (the
getter); the other is used to change it (the setter). For compound assignment to work,
both a (visible) getter and setter need to be in place. The preceding forms translate into
the following:

vector[“x”] /* set */ = vector[“x”] /* get */ + 2;

account.Balance /* set */ = account.Balance /* get */ * 1.05m;

Although my examples used only some of the arithmetic operators, be aware that others
work equally well: &=, |=, <<=, >>=, and so on.

When operator overloading is in play, compound assignment works, too. In fact, overload
resolution for the binary operator proceeds just as if you had written the long form
instead. The best overload for the operator is chosen. An example can be found for
DateTime and TimeSpan, their sum being a DateTime. For example, to increment a
DateTime object with five days, you could write this:

DateTime d = DateTime.Now;

d += TimeSpan.FromDays(5);

For strings, += works as well, but with the big caveat of string concatenation being a
memory-intensive operation due to the immutable characteristic of .NET strings. The
following code is worrisome for that very reason:

289Assignment

string alphabet = ““;

for (char c = ‘a’; c <= ‘z’; c++)

{

alphabet += c;

}

Every concatenation through the += compound assignment abandons the existing string
object and creates a new one. In total, we’ll have allocated no fewer than 26 intermediate
string objects (including the empty string, although that one should be interned). It’s
much better to write this kind of code using the StringBuilder object:

var sb = new StringBuilder(26 /* capacity hint for higher efficiency */);

for (char c = ‘a’; c <= ‘z’; c++)

{

sb.Append(c);

}

string alphabet = sb.ToString();

Alternatively, you could create an array of characters and use one of the String type’s
constructors to create a string out of it:

var ch = new char[26];

for (int i = 0; i < 26; i++)

{

ch[i] = (char)(‘a’ + i);

}

string alphabet = new string(ch);

ANOTHER USE OF += AND -=

The += and -= compound assignments are used in a different context, as well: to hook
or unhook event handlers for an event. We discuss this thoroughly when talking about
delegates and events in Chapter 17, “Delegates,” and Chapter 18, “Events,” but let’s
whet your appetite a bit by means of an example:

// Assume payCheck is a button control (for example, in WinForms, WPF or

ASP.NET),

// then the code below hooks up an event handler method to the Click event.

payCheck.Click += payCheck_Click;

290 CHAPTER 5 Expressions and Operators

FIGURE 5.26 An uninitialized variable exposing garbage.

void payCheck_Click(object sender, EventArgs e)

{

// This code will execute when the button is clicked.

}

As you might expect, to remove an event handler from an event, the dual -= syntax is
used.

In the context of UI development, those event handlers are set up by code emitted
through the UI designer tools. Events are useful in other contexts too, though, where a
pure code-driven approach will be required to hook up the handlers.

A Gentle Introduction to Definite Assignment

A significant part of the language specification deals with rules of definite assignment, in
short to ensure a variable is not used before it has been assigned to. Use of unassigned
variables has been a historical source of many bugs, and C# wants to avoid these kinds
of mishaps.

Let’s set the scene by looking at some simple native C/C++ code. What will the following
code print to the screen?

void main()

{

int x;

printfn(“%d\n”, x);

}

Before answering, notice the code will compile fine. In fact, some C/C++ compilers (for
example, Microsoft’s) will raise a red flag by emitting a warning:

warning C4700: uninitialized local variable ‘x’ used

But warnings can be ignored. As you will see, in C# this code would not compile because
the language treats this condition as an error instead. You can see why from the result of
executing the preceding C/C++ code, as shown in Figure 5.26.

291Assignment

The result? Garbage. To understand why this is the case, you should know about memory
management in the operating system, which does not guarantee zeroing out acquired
pieces of memory. In this case, the variable that’s allocated on the stack contains some
random data in it, and results can and will vary.

You’ll wonder whether it would be better to have memory zeroed out to begin with. That
certainly has its merits, eliminating the nondeterministic behavior that results from
random data. And in fact, the common language runtime guarantees that memory is
zeroed out before it’s exposed to code: Allocating a new object (using newobj) makes sure
the allocated memory consists of all-zero data and similar local variable slots are initialized
with zero data. To illustrate this, we can really go hardcore by writing—for this one time, I
promise—plain IL code in some text file:

.assembly extern mscorlib {}

.assembly Zero {}

.class Zero

{

.method static void Main()

{

.entrypoint

.locals init (int32 x)

ldloc.0

call void [mscorlib]System.Console::WriteLine(int32)

ret

}

}

Feels a bit like C#, doesn’t it? Believe me, IL isn’t hard at all. Either way, the preceding
code defines an assembly called Zero with a Main entry-point method that has one 32-bit
integer local variable called x. The code itself simply loads the local variable (ldloc.0) and
then calls the Console.WriteLine method on it. Don’t worry about mscorlib; this simply
indicates the assembly in which the System.Console class is defined. For the same reason,
the very first line adds a reference to the mscorlib external assembly, so the runtime
knows it should be prepared to load that one when required by the code.

Save this code in a file with an .il extension and call ILASM (for IL assembler, the opposite
of the disassembler) on it to produce an assembly. You’ll see the assembler doesn’t
complain about uninitialized data because the common language runtime guarantees it
will be initialized to zero as proven in Figure 5.27.

Notice the executable simply prints 0 because the local variable slot on the stack was allo-
cated with zero memory. Reason for euphoria? Maybe, maybe not.

292 CHAPTER 5 Expressions and Operators

FIGURE 5.27 The CLR’s clean slate with regard to memory management.

On the level of the runtime, this guarantee is nice to have. But in higher-level languages,
it’s better for the user to be explicit about things. Zero (or the null reference) might be a
good default value, but it might not be. For that reason, the seemingly equivalent C# code
does not compile, resulting in the error shown in Figure 5.28:

using System;

class Zero

{

static void Main()

{

int x;

Console.WriteLine(x);

}

}

To make the preceding code compile fine, you need to write the following where the
intent is unambiguously expressed by the user:

using System;

class Zero

{

static void Main()

{

int x = 0; // Or, in case the original code had a bug, another value...

Console.WriteLine(x);

}

}

293Assignment

FIGURE 5.28 Use of an unassigned local variable is an error in C#.

NO REDUNDANT ASSIGNMENTS

It’s not because C# forces the user to explicitly assign zero (if that’s the intended
value) that it needs to emit such an assignment in the produced IL code. The C# com-
piler knows about the common language runtime guaranteeing zero initialization, so in
the preceding fragment it won’t emit redundant ldc.i4.0 and stloc instructions to ini-
tialize x to 0.

The rules for definite assignment make sure a variable cannot be used before it has been
assigned to, unless it’s considered initially assigned. (For example, array elements or para-
meters to a method start their life as initially assigned.) To ensure this, the compiler uses
static flow analysis to make sure every code path leading to the use of a variable guaran-
tees it has been assigned. There are a few language constructs that guarantee a variable is
assigned to. One is the use of a simple assignment; another is the use of the variable for
an output parameter of a method, discussed in Chapter 10, “Methods.”

Let’s consider static code flow analysis for the following fragment to illustrate matters:

static int Abs(int x)

{

int res;

if (x < 0)

{

Console.WriteLine(“Negative”);

res = -x;

}

else

{

Console.WriteLine(“Positive”);

}

return res;

}

294 CHAPTER 5 Expressions and Operators

return res;

res not definitely
assigned

res not definitely
assigned

res definitely
assigned

res not definitely
assigned

int res;
if (x < 0)

Console.WriteLine(”Positive“);Console.WriteLine(”Negative“);
res = -x;

true false

FIGURE 5.29 Definite assignment checking through static flow analysis.

The compiler rightfully complains about res not being assigned on the last line with the
return statement. It has inferred this by considering all paths of execution that could lead
to that line. In this case, there are two if statement branches, of which the latter doesn’t
guarantee definite assignment for res. The compiler has caught a bug for you; for if
default assignment of zero were implicitly allowed, our code would return zero for every
positive value passed to this function. Figure 5.29 illustrates definite assignment analysis
for our little piece of sample code.

Postfix and Prefix Increment and Decrement Operators

Conceptually closely related to compound assignment with the + and - binary operators
are the postfix and prefix increment and decrement operators. In essence, they abbreviate
simple operators as “plus one” and “minus one” into succinct syntax, respectively as ++
and --. One common use can be found in the context of for loops, which are discussed
in the Chapter 7, “Simple Control Flow.” Here is the typical pattern to create a loop that
will execute the loop body 10 times:

for (int i = 0; i < 10; i++)

{

// Use integer value i if desired.

}

A for loop consists of four parts: an initializer (here int i = 0), a condition (i < 10), an
iterator (i++), and a loop body (the part in between curly braces). After initialization, the
loop runs until the condition evaluates false. At the end of every iteration, the iterator
executes. The loop that goes in reverse is written using a unary decrement operator, as
shown here:

295Assignment

for (int i = 9; i >= 0; i--)

{

// Use integer value i if desired.

}

MANUAL ARRAY INDEXING OR FOREACH?

Given the length of an array and the fact that indexing is zero-based, the typical loop
structure shown earlier is a popular technique to iterate over the elements of an array.
However, enumeration over collections—including arrays—is such a common thing that
the BCL defines IEnumerable and IEnumerator interfaces for such tasks. Languages
such as C# and VB provide for-each loop constructs that build on top of that. So
unless you need the index for elements, a foreach loop will yield cleaner code.

The iterator part is where a postfix increment operator is used, effectively increasing the
integer variable i with 1. In effect, we’re only using the postfix increment operator for this
side effect in the preceding example. However, being expressions, those operators produce
a value that can be used any place expressions can occur. The difference between postfix
and prefix behavior lies in what the resulting value is.

. Prefix operators perform the increment or decrement operation first and produces
the resulting value.

. Postfix operators produce the value before the increment or decrement operation is
carried out.

PRE, POST, IN

To make sure everyone is on the same page, a short explanation of vocabulary is in
order here. Pre stands for before or “in front of.” Examples include !b, -i, ~f, and ++x,
where the operator appears before its operand. Post is the opposite, meaning “after,”
as in x++, where the operator appears behind the operand. Finally, in means “in
between,” as with a + b and other binary operators in C#.

Prefix and postfix notation are not limited to unary operators; you can think of + a b
and a b + as valid syntaxes for addition. In fact, LISP prefers the use of prefix syntax,
whereas evaluators typically like postfix notation. (For example, in the stack-driven world
of IL, an operator appears after the operands are pushed onto the evaluation stack.)

A few examples will clarify this behavior, starting with the postfix case:

int x = 0;

// The value before the increment is assigned, so y will be set to 0.

int y = x++;

296 CHAPTER 5 Expressions and Operators

// At this point, x will have been incremented to 1.

Console.WriteLine(x);

In the prefix case, things are a bit different:

int x = 0;

// The value after the increment is assigned, so y will be set to 1.

int y = ++x;

// At this point, x will have been incremented to 1.

Console.WriteLine(x);

Decrement operators work in a similar fashion. To test your understanding, what does the
following code correspond to? No, I’m not advocating that you write this kind of code; I
just want to make sure evaluation order is clear in case you encounter such code.

int x = 0;

int y = (x += 1);

Console.WriteLine(“X = “ + x);

Console.WriteLine(“Y = “ + y);

FUN WITH SIDE EFFECTS

This should be nothing more than a pop quiz, but the combination of the behavior of
different operators can yield interesting results. At your next visit to a programmer’s
nightclub, try to distinguish C developers from C# developers by having them evaluate
the following:

int x = 0;

x += x++;

Even blogs have been subtitled with this fun expression. (If you don’t believe me, take
a look at http://blogs.msdn.com/lucabol.)

It should be clear that all arithmetic operations, including the ones discussed here, are
subject to overflow checking only when they appear in a checked context. Therefore, the
following code will run forever when it doesn’t appear in a checked context because the
value of x will overflow:

for (int x = 0; true; x++)

{

Console.WriteLine(x);

}

http://blogs.msdn.com/lucabol

297Summary

The discussed increment and decrement operators can also be applied to properties and
indexers if both getters and setters are available:

vector[“x”]--;

person.Age++;

Summary
In this chapter, we explored one of the key sources of expressiveness in the C# program-
ming language no developer can live without: expressions. After covering the role of
expressions and the runtime’s evaluation stack, we covered one particular set of expres-
sions; namely, operators.

The discussion of operators brought you to arithmetic operators and aspects of overflow
checking using the checked and unchecked keywords. Use of floating-point arithmetic was
explained as well, focusing on implications of limited precision. Next, you looked at other
kinds of operators, such as relation and logical ones. The conditional operator (commonly
referred to as the ternary operator) was covered too, pointing out its lazy evaluation of
operands. You also learned various aspects of working with null and nullable value types,
including the null-coalescing operator.

Finally, you learned various forms of asignment, ranging from simple to compound. This
also allowed you to learn increment and decrement operators, as commonly seen in for
loops to update an index variable.

Chapter 6, “A Primer on Types and Objects,” focuses on the concept of types from an
expression angle. More specifically, you learn how you can check for types, create new
object instances, access members on objects, and so on.

This page intentionally left blank

CHAPTER 6

A Primer on Types and
Objects

IN THIS CHAPTER

. Implicit Versus Explicit
Conversions 299

. The typeof Operator: A Sneak
Peek at Reflection 317

. Default Value Expression 320

. Creating Objects with the new
Operator 323

. Member Access 335

. Invocation Expressions 339

. Element Access 347

I have to admit, and colleagues will second, that I live and
breathe type systems. Static typing is a great thing because
you get feedback on invalid use of objects early on during
compilation.

With the CLR type system centered on object-oriented
programming concepts such as subtyping and virtual
dispatch, you have a powerful tool at hand to deal with
typing in a rich manner. When correctly used (especially
since the advent of generics in .NET 2.0), the need for
runtime type checks or conversions between types should
be quite rare. Rare, but not nonexistent.

This chapter focuses on various aspects of dealing with
types and objects. First, we discuss conversions and casts,
type checks, and operators such as typeof. Next, we briefly
explore the concept of dynamic types in C# 4.0. Finally, our
discussion focuses on the use of expressions to access
members, invoke methods, and so on.

Implicit Versus Explicit
Conversions
Simply stated, conversions are a way to treat an expression
as being of a specified type. This gives rise to two different
situations: Either the conversion is statically known by the
compiler to be safe (no data loss can occur) or such guaran-
tees do not exist.

In the former case, implicit conversions are permitted by the
compiler. Primitive types form a good playground to illus-
trate this. For example, given an int variable, it’s possible to

300 CHAPTER 6 A Primer on Types and Objects

treat it as if it were a long because all Int32 values definitely fit in the range of the Int64
type. This particular conversion is a representation-changing conversion that needs
runtime assistance because we’re stuffing a 4-byte value in an 8-byte one:

long Add(long a, long b)

{

return a + b;

}

Add(1, 2); // providing int literals that get converted to long implicitly

Implicit conversions can also occur without change of representation (for example, in case
of a conversion between a subtype and a supertype):

void PrintObject(object o)

{

Console.WriteLine(o);

}

PrintObject(“Bart”); // System.String is a subtype of System.Object

There are some hidden caveats with regard to a mechanism called “boxing” that occurs
when a value type is treated as a System.Object. We’ll delay discussion of this subtlety
until Chapter 9, “Introducing Types.”

Explicit conversions are conversions that are not permitted to go unnoticed because they
can potentially fail at runtime. The compiler doesn’t have enough evidence you know
what you’re doing, so you need to express your intent explicitly by means of a cast expres-
sion. All implicit conversions can be written down explicitly, though (for example, as a
way to make code self-documenting):

PrintObject((object)”Bart”);

An example of an explicit conversion between built-in types is one that goes from long to
int, where the potential for loss of information exists as int is less precise than long:

long x = 42;

int y = (int)x;

Both implicit and explicit conversions can be defined by custom types, as you will see in
Chapter 13, “Operator Overloading and Conversions.”

Cast Expressions

Cast expressions are a way to carry out explicit conversions at runtime. In essence, you’re
telling the compiler you know more about the type of an object than it can possibly
know. Don’t worry, the compiler is hardened against this type of insult.

301Implicit Versus Explicit Conversions

The syntax for a cast expression looks like this (where type is the name of a type):

(type) unary-expression

An example where this is used on a regular basis is while dealing with a weakly typed API.
To be maximally applicable, some APIs use the root of the type hierarchy, System.Object,
to deal with any kind of object imaginable. A good example can be found in the old,
nongeneric collection types in the System.Collections namespace:

var list = new ArrayList();

list.Add(“Bart”);

list.Add(“John”);

list.Add(“Lisa”);

string bartIsBack = (string)list[0];

On the last line, we’re using indexer syntax to retrieve the list’s element in the first posi-
tion (in a zero-based world, that is). For ArrayList to be able to cope with any kind of
element type, it has been typed to take in and give out objects of type System.Object.
Because we know this particular use of the ArrayList contains only string elements, it’s
safe to use a cast expression to convert the result of the indexer operation to the string
type. But the compiler can’t know this from the statically available type information, so it
has to take your word for it. An explicit word, that is.

CAST SYNTAX

The cast syntax using the two parentheses is not exclusively used for runtime conver-
sions. For one thing, implicit conversions can be written out explicitly, too:

string s = “Bart”;

object o = (object)s; // (object) part can be omitted

This redundant “cast” does not imply any representational change at runtime:
System.String and System.Object are both reference types, and references (but not
the data they’re referring to!) all have the same size. And it’s also safe to do so from a
typing perspective because System.Object is a supertype of System.String. In
effect, you’re losing type information here, so you’ll only be able to perform a subset of
the string functionality.

But there’s also the case of runtime conversions on literals, which is changing repre-
sentations. Only they happen at compile time, not at runtime. For example, the widen-
ing conversion of an int literal to a long can be written as follows:

long a = (long)42;

In essence, you started with a literal that fits in 4 bytes and asked the compiler to
widen it into 8 bytes because for some reason you need a long. Of course, you could
have used the L suffix for long literals, but I’m merely illustrating a point here: Cast
syntax does not imply runtime operations.

302 CHAPTER 6 A Primer on Types and Objects

FIGURE 6.1 Casting under the hood.

So how does a cast work? It depends. In the less-common case, a user-defined conversion
is available, and a plain call to the underlying conversion method results. The more
typical scenario of casting from some type (like System.Object) to a more specific type
(like System.String) involves a baked-in instruction of the IL instruction set.

Let’s take a quick look at this. Consider a simplified version of the preceding code frag-
ment where only Bart is added to an ArrayList and read back using the indexer notation:

var list = new ArrayList();

list.Add(“Bart”);

string bartIsBack = (string)list[0];

Let’s pay specific attention to the last line. Notice that for this code to compile you must
import the System.Collections namespace by means of a using directive:

using System.Collections;

ILDASM reveals the code shown in Figure 6.1, where I’ve highlighted the instruction that
carries out the casting job.

In the previous instruction, the call to the indexer was made (internally corresponding to
a method call to get_Item, as you will see later), which resulted in pushing the Sys-
tem.Object-typed return value on the stack. Subsequently, the castclass instruction pops
that object from the stack and attempts to convert it into an object of the specified type,
in our case System.String.

303Implicit Versus Explicit Conversions

NOTE

Although my examples always go between System.Object and its immediate subtype
System.String, casting can be done between any two types. For example, you may
have a FruitStore object that returns Fruit instances, but through unexplainable
powers you know that FruitStore sells only apples. In such a case, you would cast
Fruit to Apple.

Notice how I said it attempts the conversion. Recall that explicit conversions are about
forcing your will onto the compiler so that it faithfully emits a cast instruction to the type
of your choice even though it has no clue whether that call will succeed at runtime. In
this particular example, we do know that we only add string objects to the collection, so
we can only get objects of that type out.

But the fact the C# compiler is willing to believe you doesn’t mean the runtime has to.
Actually, if you would be able to cast an object to an incompatible type, you’re breaching
type safety. Treating a Kiwi object as an Apple to be fed into a Bakery will not yield the
right kind of AppleCakes in return. Clearly, that’s undesirable. To protect against such
dangerous situations, the runtime checks that the cast operation is sound.

As an example, the following code fragment will compile fine:

object o = 5;

string s = (string)o;

Here we attempt to treat a System.Int32 object as a System.String. This illustrates a very
important difference between compile-time types and runtime types. What the compiler
deals with is static knowledge. In the preceding code, we’ve stated o to be of type
System.Object, and nothing more specific than that. And even though we assigned it a
System.Int32 object, that doesn’t affect the compiler’s view of the world. To make this
even clearer, consider the variable o was not assigned anywhere near but came in through
a formal parameter on some method:

private void DoSomething(object o)

{

// Dear compiler, I know o ought to be a string:

string s = (string)o;

// Do something useful

}

304 CHAPTER 6 A Primer on Types and Objects

FIGURE 6.2 InvalidCastExceptions signal runtime type violations due to casts.

Now we clearly don’t know what the runtime type of o will be. All we can know from
static analysis is that it ought to be System.Object or any of its derived types. But suppose
we know that callers to this method will only ever pass in System.String instances; in this
scenario, it’s fine for us to use a cast inside the method body to do a runtime conversion.

You might be wondering why we would actually ever type a parameter of a method to be
less specific than what we know it should be. In the preceding case, why didn’t we type
the parameter to be System.String? There are various reasons this situation can arise,
actually: Interfaces and delegates are common sources of such seemingly pathological cases.
You’ll see why later.

Anyway, back to our fragment:

object o = 5;

string s = (string)o;

Clearly, this is not going to work: A number is not a string. Yes, we could turn a number
into a textual string somehow (by calling ToString), but from a typing perspective
numbers aren’t strings. If they were, operations such as ToUpper would have to be defined
on numbers, which is clearly nonsense.

The runtime responds to this attempt at violating type safety by means of an
InvalidCastException, as shown in Figure 6.2.

GENERIC TYPES

System.Object is the weakest strong type available in the framework. It’s obviously
very “generic” but rarely usable because you’ve lost any further knowledge about the
object’s type. Since .NET 2.0, generics can be used to achieve similar effects while still
preserving full-fledged type information. Therefore, various places that used to be typed
using System.Object can now be typed generically by use of a type parameter.
List<T> is such a type, where T indicates the element type of the collection, which is
used for the Add method’s input parameter and for the indexer’s type. This eliminates
the need for casts, has positive performance impact, and prevents certain classes of
errors because types get checked early (at compile time).

305Implicit Versus Explicit Conversions

FIGURE 6.3 A cast that can be proven never to succeed results in a compile-time error.

This doesn’t mean, though, that System.Object-typed variables or members will vanish
completely. One of the restrictions of generics is the need to fully specify all type para-
meters (resulting in a so-called closed type). The mere desire to treat some member
generically brings on the burden to add a type parameter to the containing type. For
example, in Windows Presentation Foundation (WPF), controls can have a Content
property that can be set to the data that needs to be visualized by the control.
Because every type of data should be allowed, two options exist: System.Object or a
generic parameter. The latter would definitely be handy because reading from the prop-
erty would yield data of a statically known type:

// Using a hypothetical generic Label<T> type

Label<Customer> businessCard = new Label<Customer>();

businessCard.Content = customers.GetByName(“Bart”);

Customer bart = businessCard.Content;

On the other hand, do you really want to bring on the need for developers to state the
Content type every time a control is used? Maybe Content is not used at all or is only
set. And what about designer tools? Is it reasonable to prompt the user for a type
every time a drag-and-drop operation of a content-enabled control is carried out? Given
all those observations, it’s probably better to use System.Object, and indeed that’s
what WPF does in this case:

// Using the realistic non-generic Label type

Label businessCardReal = new Label();

businessCardReal.Content = customers.GetByName(“Bart”);

Customer bart = (Customer)businessCardReal.Content;

In summary, generics where possible; System.Object where necessary.

Does this mean the compiler doesn’t do any checking at all and blindly emits a cast
instruction whenever you write code of this form? Despite the dynamic nature of casts,
there are still cases that are statically known to be impossible. For example, given that
Kiwi and Apple are both subtypes of Fruit, we know them to be siblings in the type hier-
archy. Such a relationship can never yield an “is a” relationship at runtime: There’s
enough information to determine this as compile-time nonsense, which is illustrated in
Figure 6.3.

The knowledge of a static type establishes a minimum for the runtime type. If we know
variable ”a” to be of type Apple, it can still turn out to be a Jonagold or another other
type of apple, but it can’t ever turn out to be a Kiwi (unless type safety is broken). If, on

306 CHAPTER 6 A Primer on Types and Objects

the other hand, you would have typed variable a as System.Object, the compiler would
not complain. Now all that’s known at compile time is that a can’t be anything less than
System.Object. It could well be a Kiwi, and hence the compiler trusts the judgment of the
developer. To put it another way, if no evidence is found against the user’s claim, the
compiler goes with it as is.

The is Operator

Casts, as described previously, should be used only if you’re absolutely sure that the object
can be converted to the specified type. If it can’t, a runtime exception occurs. In effect,
think about this exception as the absolute latest time where a typing error can be caught:
Face it, you have a bug.

So what if we’re just interested in knowing whether an object has a particular runtime
type? In other words, we want to make a runtime type check, essentially resulting in a
Boolean truth value. This is what the is operator is all about:

object o = “Bart”;

bool isString = o is string; // true

bool isInt = o is int; // false

The is operator is concerned only with types and considers type hierarchies as part of its
operation. For example, assuming Apple derives from Fruit:

// The jonagold variable represents an instance of Jonagold, a subtype of Apple

bool jonagoldIfFruit = jonagold is Fruit; // true

NOTE

What the is operator does not consider are user-defined conversions. Languages emit
calls to such methods when the user requests a conversion. But to the runtime, that’s
the end of it: A method by itself doesn’t define relationships between types.

Although in general the is operator requires a runtime type check, sometimes it can be
degenerate if enough information is known at compile time. For example, the following is
a tautology, meaning it always evaluates true:

bool IsAppleFruit(Apple a)

{

return a is Fruit; // true: I don’t know any apple that isn’t fruit

}

307Implicit Versus Explicit Conversions

FIGURE 6.4 The is operator exposed.

It’s statically known that every apple is a fruit because Apple is a subtype of Fruit. The
opposite case exists when the compiler knows for sure a typing relationship cannot
possibly hold:

bool IsAppleKiwi(Apple a)

{

return a is Kiwi; // false: can never hold

}

The interesting case is obviously when the compiler doesn’t have any clue about the
expressed type check, in which case the decision is left to the runtime:

bool IsItFruit(object it)

{

return it is Fruit; // who knows?

}

Internally, the is operator doesn’t look very exciting. Or does it? Let’s take a look anyway.
Turns out the CLR has a seemingly simple isinst instruction that pops the object from
the top of the stack, checks it against the given type, and pushes some result onto the
stack. But what’s the result? A Boolean? Not really... As usual, boil down the sample to its
essence and look at the generated code in Figure 6.4:

object o = “Bart”;

// compiler can’t judge the following because o is typed as System.Object...

bool isString = o is string;

What’s up here? On the first line of the marked block, the local variable is pushed onto
the stack. Next, isinst plays the runtime judge to decide whether the object is a string.
However, the result on top of the stack is not a Boolean; it’s the original object casted as a
string in case it turned out to be a string and null otherwise.

308 CHAPTER 6 A Primer on Types and Objects

SOFT AND HARD CASTS

Casts come in many flavors. Languages such as C and C++ are notorious for the many
forms of casting they offer. The CLR’s view of the world is simpler but also different. C
and C++ have casts that permit low-level bit reinterpretation, an operation that’s not
type safe in any way. In managed code, two casts exist merely as a way to either fail
immediately (castclass) or let the caller decide what to do in case of failure (isinst).
You could say castclass is “hard” and isinst is “soft” based on that behavior.

This explains the next two instructions, where the null reference is pushed onto the stack
using ldnull, followed by a comparison operation. It’s this comparison that ultimately
produces the desired Boolean value.

Now the ultimate question: Why would you use the is operator? People typically use it as
a means to do type-based dispatch: If an object is of type X, do this; if it’s of type Y, do
that; and so on. However, better ways to code up such a pattern often exist: virtual
methods. Because we cover this concept in Chapter 14, “Object-Oriented Programming,”
I’m keeping the explanation brief here.

Suppose you have a type hierarchy for food products sold by some store. The root of the
hierarchy is Food with immediate subtypes like Vegetable and Fruit that have further
subtypes of their own, like Tomato and Apple. Now, given any Food object, you need to
assess its freshness. The object-oriented approach to this is to have a virtual method
defined on Food and have subtypes override it to specialize its meaning. For example,
Tomato could define it in terms of the skin color, while Apple could key off freshness esti-
mation based on wrinkles on the skin or signs of rotten spots. Cookies, you say? Just look
at the “best before” date on the package. Figure 6.5 illustrates the notion of a virtual
method using a type hierarchy.

Given any Food instance, calling the IsFresh method on it will dispatch to the implemen-
tation for the runtime type. If the Food passed in is actually an Apple, it will call Apple’s
IsFresh override:

public void EnsureFreshness()

{

foreach (Food item in stock)

{

if (!item.IsFresh())

{

store.TossOut(item);

}

}

}

309Implicit Versus Explicit Conversions

FIGURE 6.5 A type hierarchy with an IsFresh virtual method.

All is good and well if you control the Food type and its descendants: Add the IsFresh
virtual method, implement it for each type that needs specialized treatment, and just call
the virtual method where required. The runtime will take care of making sure the right
method is called for you.

But when you’re dealing with an existing set of types you can’t extend, how do you go
ahead and implement a similar EnsureFreshness procedure? The answer lies in type
checks: For each food item you’re scanning, you’ll check the type and take the appropriate
action based on that outcome. A potential approach—which we refine in the next
section—looks like this:

public void EnsureFreshness()

{

foreach (Food item in stock)

{

if (!IsFresh(item))

{

store.TossOut(item);

}

}

}

private bool IsFresh(Food item)

{

if (item is Fruit)

{

310 CHAPTER 6 A Primer on Types and Objects

return IsFreshFruit((Fruit)item);

}

else if (item is Vegetable)

{

return IsFreshVegetable((Vegetable)item);

}

else

{

throw new InvalidOperationException(“Unknown food type.”);

}

}

And further down, you would have methods like IsFreshFruit and IsFreshVegetable

that check for known subtypes, all the way to a point where freshness can be judged
correctly. The pattern put into practice here is known as a (simple) visitor.

Clearly, this is a lot more boilerplate code than leveraging virtual methods, which essen-
tially perform a similar operation at runtime but baked in to the runtime and the type
system. For this very reason, you should use type checks only sparingly.

DYNAMIC

The use of dynamic typing, available since C# 4.0, is another way to tackle this
problem. Actually, it’s all about gradations of typing. Let’s explore this a bit further...

Even the very first approach using virtual methods has some dynamism to it: The
runtime gets to choose what method will be invoked based on the actual runtime type.
However, the compiler statically knows such a method will be available, so you’re
assured there won’t be a failure to “resolve the target method.”

Then there’s the visitor-based approach, where we specify type checks and casts in
excruciating detail. If type checks and casts are paired up correctly, we can be confi-
dent of avoiding trouble at runtime: The type check guarantees we can carry out a
runtime cast, and ultimately we perform operations against the casted object in a stati-
cally typed fashion.

Finally, there’s the dynamic newborn in C# 4.0. Instead of doing all sorts of type checks,
we could just say, “But I know there’s a method called IsFresh on all those objects, so
don’t bother to find it at compile time.” In this particular example, there should be no
reason at all to use this approach. However, if you’re handed in objects from outer
space (like a dynamic language), it will be your only reasonable way to proceed.

We discuss dynamic in Chapter 22, “Dynamic Programming.” It’s just important to real-
ize that C# provides you with all the tools to tackle a wide range of scenarios.
Personally, I favor trying to use static typing wherever possible (virtual methods includ-
ed, that is), but when absolutely necessary, I know I can rely on type checks or dynamic
to make my life easier.

311Implicit Versus Explicit Conversions

The as Operator

You might wonder why I made all that fuss about the underlying implementation of the
is operator. Well, as you’ve seen, the is operator actually performs a cast underneath the
covers and checks the result against null to determine whether the cast succeeded.
Contrast this with the behavior of the cast expression that throws an
InvalidCastException in case of a failed cast. Clearly, both cast mechanisms are useful.

This brings us to the as operator, which is the gentle equivalent to the cast expression:
Instead of throwing an exception on failure to cast, it simply returns null. In the previous
example where we dispatched types using the is operator, we actually did things rather
inefficiently. First we carried out a type check:

if (item is Fruit)

Although internally this already has produced the casted object in case of success, we ask
the compiler to check for null immediately and throw away the intermediate result of the
isinst cast instruction. And if the is operator evaluates to true, we cast again, this time
preserving the result:

return IsFreshFruit((Fruit)item);

INEFFICIENT OR NOT?

The inefficiency discussed here has to be taken with a grain of salt. First, you should
consider something inefficient only if realistic user scenarios are hurt by it. Chances
are the runtime’s JIT compiler does a good job of making things better under the hood.
What likely matters most is whether the code you wrote passes all sorts of tests with
regard to readability and maintainability.

Either way, it’s a good excuse to talk about Code Analysis tools and whatnot.

In fact, this inefficiency can be caught by code analysis tools in Visual Studio. While we’re
at it, let’s take a peek at this. Under the project’s Properties, you’ll spot a tab called Code
Analysis, illustrated in Figure 6.6. Use the first check box to enable code analysis during
build and choose the Microsoft All Rules rule set to turn on the most verbose checking.
This includes checks for performance issues resulting from bad coding practices.

Now write some code that follows the pattern described before. Check an object for some
type using the is operator and cast it subsequently in an if statement:

object o = “Bart”;

if (o is string)

{

312 CHAPTER 6 A Primer on Types and Objects

FIGURE 6.6 Enabling Code Analysis in Visual Studio 2010.

string s = (string)o;

Console.WriteLine(s);

}

Now build the project and watch the Error List. It should show something like Figure 6.7.
You might have more warnings; just ignore those for now.

Notice how it even mentions the underlying redundant instruction in the emitted IL
code: castclass. By now, you should be able to puzzle together the pieces of the code the
compiler has emitted. The is operator uses results in an isinst instruction, and the cast
expression (using the parentheses syntax) uses castclass, while isinst already produced
a result. The tools even suggest a fix: Use as.

So that’s what we’re going to do:

object o = “Bart”;

string s = o as string;

if (s != null)

{

Console.WriteLine(s);

}

And away goes the Code Analysis warning. Now we’re caching the result of the “soft” cast
for both purposes of type checking and using the resulting object, avoiding the redundant
cast instruction.

313Implicit Versus Explicit Conversions

FIGURE 6.7 Code Analysis catching a potential performance issue.

Obviously, more often than not we want to check for a variety of possible types and take
action for either of the known types. To illustrate how to do this, let’s try to rewrite our
IsFresh method from before:

private bool IsFresh(Food item)

{

Fruit f = item as Fruit;

Vegetable v = item as Vegetable;

if (f != null)

{

return IsFreshFruit(f);

}

else if (v != null)

{

return IsFreshVegetable(v);

}

else

{

throw new InvalidOperationException(“Unknown food type.”);

}

}

Clearly this is wasteful because we don’t need to attempt all casts to know what type of
object we’re faced with. It would be better to write the code as follows instead:

private bool IsFresh(Food item)

{

Fruit f = item as Fruit;

if (f != null)

{

314 CHAPTER 6 A Primer on Types and Objects

return IsFreshFruit(f);

}

else

{

Vegetable v = item as Vegetable;

if (v != null)

{

return IsFreshVegetable(v);

}

else

{

throw new InvalidOperationException(“Unknown food type.”);

}

}

}

But now our nice flat decision structure is lost. As stated before, it would be much better
to avoid having to write this kind of code altogether because better approaches are avail-
able, but in some cases we don’t have a choice. So, can we make the code look better
while still avoiding the potential performance issues we saw before?

private bool IsFresh(Food item)

{

Fruit f;

Vegetable v;

if ((f = item as Fruit) != null)

{

return IsFreshFruit(f);

}

else if ((v = item as Vegetable) != null)

{

return IsFreshVegetable(v);

}

else

{

throw new InvalidOperationException(“Unknown food type.”);

}

}

This gets a little subtle and combines assignment with null checking. Some colleagues will
likely curse me for writing this style of code, but I think it’s acceptable. We take a look at
the nuts and bolts of assignment in a few moments, so the preceding code should become
crystal clear.

315Implicit Versus Explicit Conversions

EXCESSIVE USE OF AS CONSIDERED HARMFUL

Overuse of the as operator is not a good idea. Use it for what it’s designed for, the
means of combining use of the is operator and a regular cast expression. This
means as should be seen as a type check in the first place, with the casted result as
a free gift.

Code that uses as but omits a null check almost certainly has a bug in it. If you know
for sure the object should be of a well-known target type, use a regular cast; otherwise,
you’re effectively trading the much-telling InvalidCastException for a
NullReferenceException down the road. An example of a case where you know the
type for sure but you’re losing it because of a weakly typed API is the use of the
threading APIs:

// A delegate is used as the parameter to the Thread constructor.

// Essentially we’re passing a reference to the method to run on the thread.

// The delegate used here requires the parameter to be of type System.Object.

var thread = new Thread(BackgroundWork);

thread.Start(“Hello” /* this becomes the parameter to the method */);

void BackgroundWork(object parameter)

{

// But here we know for sure we’ll always pass in a string message.

var message = (string)parameter;

// Do background processing for the message.

}

There’s a second reason the use of as might not be ideal: It doesn’t enable you to
distinguish between a null value originating from a failed cast and one that comes from
the input being null in the first place. So if null is to be considered a proper value for
the type under consideration, you’ll be better off with a regular cast expression.

Also notice that the as operator does work only with types that are nullable: reference
types and nullable value types. The is operator, on the other hand, works with all
types. This gives rise to a situation where the pattern of is followed by a regular cast
expression is still required.

Intermezzo: The Mythical Type Switch

The switch statement is a convenient way to express multiway branches that would
normally get written using tons of if statements. Switches typically operate based on
compile-time constant values, and that’s no different in C#:

switch (card.Type)

{

case CardType.Credit:

// Do something.

break;

316 CHAPTER 6 A Primer on Types and Objects

case CardType.Debit:

// Do something else.

break;

default:

// Other type of card. Do yet something else.

break;

}

We talk extensively about the switch statement in Chapter 7, “Simple Control Flow,”
but I wanted to point out one thing here: C#’s switch statement does not support
“switch on type.”

There are various reasons for this. First, the order of case labels in a switch statement is
irrelevant to the switch’s operation. This works because the object we’re switching on gets
compared to the constants for equality. Because all constants used in case labels need to
be unique, only one case can apply to the object. With types, the situation is different
because they comprise a hierarchy. For example, assume you’re switching a piece of food
on its type and specify cases for Fruit and Apple. For a Kiwi this is fine; the Fruit case
will fire. However, what about an Apple? Order of evaluation starts to matter: Does the
object’s type get checked for Fruit first or for Apple? Both apply. Different syntax would
be desirable to stress the fact that evaluation order matters.

But there’s another reason: If you decide to go through the burden of designing, imple-
menting, testing, and shipping a full-fledged language feature, it better be a good one
that’s widely usable. As mentioned throughout the text, switching on type can be avoided
in quite a few cases by taking advantage of runtime features such as virtual method
dispatch. But that doesn’t help you if switching on type is really the only option available.

In the light of good language design, it’s also important to take a look at the big picture.
Other languages are helpful with regard to providing possible approaches to a given
problem. With switching on types, that’s definitely the case. Languages such as ML (and
F# as a derivative of it) offer a bigger feature than just type-based switching. It’s called
pattern matching. Basically, the observation is made that besides switching on types, one
typically wants to extract data from the object at the same time:

match card with

| CreditCard(account, expiration) -> (* do something *)

| DebitCard(account, balance) -> (* do something else *)

| _ -> (* do yet something else *)

Here, the card object is checked against various types, and when a match is found data is
extracted from it and bound to local variables. Pattern matching doesn’t operate only on
regular objects; it can also be used to match over different types such as lists (extracting
the head element and tail list) or tuples (extracting the elements at the different positions
in the tuple).

It’s not clear whether C# will ever get a full-fledged pattern matching operator. But it
would definitely seem to be the better feature compared to simple type switching and may

317The typeof Operator: A Sneak Peek at Reflection

provide more value. In the meantime, if you’re designing an API that needs to be friendly
toward type switching and the use of virtual methods doesn’t give you what you want,
there are workarounds.

For example, the expression tree APIs in System.Linq.Expressions—which we explore
during our discussion of reflection in Chapter 21, “Reflection”—provide a tree-based
object model for expressions and statements. It’s a convenient way to represent code as
data so that code can be inspected at runtime (for example, for interpretation, optimiza-
tion, and translation). It’s common for consumers of such an API to have to switch on
types corresponding to nodes in the tree. For example, a + operation will be represented as
a BinaryExpression, whereas a ! operation is done using a UnaryExpression. Not to
mention other types of expressions like method calls and such.

Instead of requiring consuming languages to have a type switch or pattern matching capa-
bilities, the expression tree APIs define a NodeType enumeration to facilitate any switching
requirements:

switch (expression.NodeType)

{

case ExpressionType.Add:

var add = (BinaryExpression)expression;

// Do something.

break;

case ExpressionType.Not:

var not = (UnaryExpression)expression;

// Do something else.

break;

/* other cases */

default:

throw new InvalidOperationException(

“Unknown node type: “ + expression.NodeType);

}

Doesn’t look too bad after all. And in this particular case, it’s even advantageous to have
such an enumeration because it’s more fine-grained than the different types that are used
to represent expression tree nodes. There’s one BinaryExpression that’s used for all binary
expressions such as +, -, *, /, &, |, and so on. So while switching, you already get more
information than from a bare-bones type check.

The typeof Operator: A Sneak Peek at Reflection
One of the big advantages of having metadata baked in to the runtime is the capability to
provide reflection capabilities. Tools can use metadata to provide designer experiences by
providing property grids to configure items that need configuration (for example, UI
controls). Via reflection, that metadata is readily available at runtime.

318 CHAPTER 6 A Primer on Types and Objects

The most common starting point for use of reflection is at the type level. Suppose we
want to know all the properties a type exposes. For example, a Button control could have
a Width and Height of type double and a Text of type string. Or the built-in DateTime
type has properties like Day, Month, Year, and so on. So what we need is a runtime repre-
sentation of a type.

Now there are two popular routes to bring us to this information, depending on what we
have. Suppose we have an object somewhere that is an instance of a particular type. Using
the System.Object GetType method, we can simply ask every object, “Hey dude, what’s
your type?” The result of making such a call is a System.Type object describing the type
you were asking for. Do you see the meta-factor here? To describe a type at runtime, an
object of type System.Type is used. How nice can it get?

DateTime now = DateTime.Now;
Type t = now.GetType();
// Reflect on it...

It’s important to distinguish a couple of concepts here:

. A type describes the shape of and operations on an object; for example, DateTime
has storage for day, month, and year (among others) and provides operations to
access those (in this case, properties).

. Instances of a type represent something concrete; for example, the current time is an
instance of DateTime and similarly the moment Einstein was born can be repre-
sented as an instance of this type.

. System.Type is a type that describes a type—for example, providing information
about the properties, methods, fields, events, and so on that are available on the
type. To do so, it provides operations like GetProperties.

. An instance of System.Type represents a specific type; for example, the type
DateTime. By calling operations on the object you can find out about the type’s
properties (for example, Day, Month, and Year).

The first way to get to a System.Type object is shown in Figure 6.8, illustrating the rela-
tionship between a type, an instance thereof, and the result of calling GetType.

So given such an instance of System.Type, what can we do with it? Let’s not go into
details just yet because we’ll talk extensively about reflection in Chapter 21, but let’s just
illustrate a very simple use to display a type’s properties:

DateTime now = DateTime.Now;

Type t = now.GetType();
foreach (var prop in t.GetProperties())
{

Console.WriteLine(prop.Name);
}

319The typeof Operator: A Sneak Peek at Reflection

Instance Type

Constructor

Now

GetType

Day = 17

Month = 6

Year = 2009

DateTime

intDay{get; set;}

intMonth{get; set;}

intYear{get; set;}

DateTime

intDay{get; set;}

intMonth{get; set;}

intYear{get; set;}

Runtime Type
(Metadata, IL, etc)

Reflected Type
(System.Type)

FIGURE 6.8 Retrieving reflection information from an instance of a type.

In this code fragment, the type of prop is inferred using an implicitly typed local variable
(remember the var keyword?), not to reveal the reflection types yet: Can you guess how a
type describing a property would be called? Doesn’t really matter much; the bigger picture
is much more important. Not only types, but also the bits and pieces they’re composed of
(like properties, methods, and so forth) have a runtime representation in the world of
System.Reflection. And from that, you can delve even deeper, asking questions like,
“What are the types of a method’s parameters?” This is a very powerful concept.

The result of running the previous code snippet is shown in Figure 6.9.

FIGURE 6.9 Properties on System.DateTime.

320 CHAPTER 6 A Primer on Types and Objects

But what if you don’t have (or want to have) an instance of a type to call GetType on?
How do you get to the type information in that case? Assuming you know the type’s
name, the typeof operator comes to the rescue:

Type t = typeof(DateTime);

This produces exactly the same System.Type object as the fragment before but without the
need to have an instance of the type lying around.

WHAT ABOUT GENERIC TYPES?

As stated before, generic types are a form of type constructors. Types like List<T> are
open in a sense they have type parameters that are not set to a specific type. In case
of List<T>, T is such a type parameter. From open types, you can create a closed one
by supplying a type name for all type parameters (for example, List<int> or
List<string>).

Both open and closed generic types can be referred to using the typeof operator. The
closed ones are predictable; you can just write things like typeof(List<int>) to get
the System.Type object back that represents that type. In there, you’ll find things such
as an Add method with an int-typed parameter, just as if there were a specialized List
type that operates on integer numbers.

To deal with an open type in reflection, one more thing matters: the arity of the generic
type. The arity is simply the number of generic parameters on a type. It’s perfectly valid
to have multiple generic types with the same name but a different number of type para-
meters. The Tuple types are a good example of this: Tuple<T1,T2> exists and so
does Tuple<T1,T2,T3> and so on. So to refer to an open type using typeof, you must
specify the arity somehow. This is simply done by omitting names for the type parame-
ters but leaving the commas in: typeof(Tuple<,>) refers to the one with two type
parameters.

Why would you want to refer to an open generic type? Reflection is about true dynamic
behavior, where tasks that normally would be done at compile time can be deferred
until runtime. One such task is dynamic construction of a closed generic type, starting
from an open one. Suppose you want to create a Tuple<T1,T2> where the type para-
meters are not known until runtime for some obscure reason. In other words, the “val-
ues” for T1 and T2 are supplied at runtime in the form of System.Type instances. With
reflection, it becomes possible to construct such a generic type completely at runtime.
Not that I expect most readers will ever have to do this, but just in case, you now know
it’s possible.

Default Value Expression
As you’ve seen repeatedly, the introduction of generics in .NET 2.0 took away a bunch of
limitations that came from the mandatory use of System.Object in generic code, resulting
in weaker typing than desired. With generics, it’s possible to use type parameters and write
code in a fashion as generic as possible.

321Default Value Expression

However, sometimes one needs to synthesize a special “default value” for a type parameter
without knowing the type of the parameter until runtime. All that matters to set the scene
is that we are defining a generic type with a type parameter T. In the definition of that
type, we don’t know anything about T. It could be an int, a string, a Customer, whatever.
The generic type can use T anywhere as if it were a known type:

class Sample<T>

{

private T _data;

// ...

public void Reset()

{

// How can we set _data to the default value for type T?

}

}

For example, in this case we’re defining a field of type T. All is good and well, our code is
very generic as we intended it to be. But what if we need to check that _data against a
default value? (For example, if T were a reference type, that would be a null check?) Or say
you need to reinitialize the field to go back to its default value? Clearly, we need some-
thing here to express “default value of T,” for whatever T may be. That’s where the default
value expression comes in:

class Sample<T>

{

private T _data;

// ...

public void Reset()

{

_data = default(T);

}

}

Talking about generic parameters gives us a good opportunity to take a little look behind
the scenes and get a feel for how generics work. The essential idea is simple: Open generic
types are types with holes in them. Every type parameter creates such a hole whose size is
unknown. For example, if it’s set to an Int32, 4 bytes of storage will be required, but for a
DateTime more space will be needed. Think of the act of defining a generic type roughly as
operating a perforator that leaves holes for every occurrence of a type parameter. This
analogy is depicted in Figure 6.10.

322 CHAPTER 6 A Primer on Types and Objects

Sample<>

_data

Sample<int>

_data

class Sample<T>
{
 private T _data;
 // …
}

Sample<int>

int

T

a

Hole for T of
Unknown Size

4-byte int
Storage

FIGURE 6.10 Generic types in a nutshell.

To use a generic type, the holes need to be filled with some type, resulting in a closed
generic type. In office equipment terms, you can think of this operation as using a binder
to combine the open generic type with the supplied type parameters and bundle every-
thing up. Now the runtime knows how to lay out things in memory; it knows about the
holes and what needs to be put inside them.

In ILDASM, a generic type definition reveals the holes that originate from the use of
generic type parameters. You’ll find references to those holes in the various places where
type parameters can appear in the source code, such as fields, parameters, and so on.
Figure 6.11 shows a generic type through the lenses of ILDASM.

I’ll leave it to you to inspect the Reset method and see how default(T) is translated.
Suffice to say, the IL code needs a way to refer to the type parameter so that the runtime
can substitute it for the type that’s used. This results in types getting cooked up at runtime
that are statically typed in an end-to-end fashion, just as if you had written the specialized
type yourself. A little tidbit about performance is that closed generic types that share the
same underlying representation will be reused by the runtime. (For example, Sample<T>
will have one representation for all uses where T is a reference type.)

323Creating Objects with the new Operator

FIGURE 6.11 A generic type with a field of type T gives rise to a “hole.”

Notice the default value expression doesn’t just work with type parameters; it can be used
with any type. For reference types, default will produce a null reference; for value types,
it will produce the default value (everything “zeroed out” essentially):

int zero = default(int);

string nothing = default(string);

DateTime longAgo = default(DateTime); // 01/01/0001 12:00:00 AM

Creating Objects with the new Operator
We already know a couple of ways to create instances of types: the use of literals and
default value expressions. And because expressions evaluate to produce something of a
certain type, they can be used in all places where objects are expected.

However, so far we’ve yet to discuss one of the most common ways of creating object
instances: the use of constructors. Constructors are nothing but regular methods that are
defined on a type but are known to serve a special goal: They return an instance of the
containing type. Every type can have different constructors that take in different argu-
ments, as a matter of friendliness toward the consumer of the type. This is facilitated by
means of method overloading, discussed in Chapter 10, “Methods.”

Because we are deferring the discussion of defining our own types with constructors until
later, let’s take a look at an existing type from the BCL: System.TimeSpan, the representa-
tion of a difference between two times. To inspect the type while being able to peek under
the hood, we can use .NET Reflector. You can find a type by using the search option or by
drilling down through the tree view on the left (in this case, by following mscorlib,
CommonLanguageRuntime, System, TimeSpan). Figure 6.12 highlights the constructors of
TimeSpan as seen through .NET Reflector.

The most familiar way for a C# developer to spot the constructors is to look at the right
side where the decompiled C# code is shown. Constructors look like methods but don’t
have a return type and are named after the type itself. In this particular case, four over-
loads have been defined:

324 CHAPTER 6 A Primer on Types and Objects

FIGURE 6.12 Looking at the constructors for System.TimeSpan.

On the left side, in the tree view, the internal representation is shown. In reality, construc-
tors are defined as methods with the name .ctor. Because of their special status as
creators for object instances, they deserve special syntactical treatment in the language.
That’s what the new operator is about.

To create an instance of the TimeSpan type, you use the new operator followed by the type
name and a (possibly empty) set of parameters:

var oneHourAndAHalf = new TimeSpan(1, 30, 0);

Because the type already appears on the right side of the assignment, it’s perfectly fine to
omit the type on the left side and use type inference by means of the var keyword.

CONCRETE OR NOT?

Constructors can be called only for concrete types, but what does that mean? Let’s go
the opposite direction: Something concrete is not abstract. Abstract types are types
that lack parts of their implementation.

Interfaces are an example of this: They just describe what an object is capable of doing
(for example, IEnumerable says an object can be enumerated over, for example to
retrieve elements in a collection), rather than saying how it is done. So it doesn’t make
sense to create an instance of just IEnumerable; we need something that implements
the interface instead (like ArrayList).

public TimeSpan(long ticks);

public TimeSpan(int hours, int minutes, int seconds);

public TimeSpan(int days, int hours, int minutes, int seconds);

public TimeSpan(int days, int hours, int minutes, int seconds,

int milliseconds);

325Creating Objects with the new Operator

We discuss the role and use of abstract classes and interfaces when talking about
object-oriented programming techniques in Chapter 14.

Constructors can also be used on generic types. One common use is to instantiate a closed
generic type, meaning all generic parameters are supplied. For example, to create a list
collection for integer values, you can write the following:

var numbers = new List<int>();

Notice the use of an empty parameter list here. The constructor taking in no arguments is
also known as the default constructor. Types are not required to have a default constructor,
as you saw with the TimeSpan type.

Behind the Scenes of Constructors

To satisfy our technical curiosity, we would like to know how constructors are called when
writing code as shown earlier. As you already know, constructors are special methods that
cannot be called directly. Their special treatment reaches beyond the managed code
language compilers, though. The runtime also needs to treat them specially because they
are tightly coupled with memory-allocation mechanisms and such.

Let’s illustrate matters by using the ILDASM for the TimeSpan constructor call, as shown in
Figure 6.13.

FIGURE 6.13 A constructor call for a value type unraveled.

In fact, a few different cases for constructor calls exist. In our example, we’re creating an
instance of a value type and assigning it to a local variable. Upon entry of the method,
this local variable is already filled with all-zero bytes in memory. All the constructor has to
do is fill that memory with something more useful. Figure 6.14 illustrates the initialization
process of a value.

326 CHAPTER 6 A Primer on Types and Objects

TimeSpan

ticks=54000000000

oneHourAndAHalf
After

0x
12

34
56

78

0x12345678

IL_0001
ldloca

TimeSpan

ticks=0

oneHourAndAHalf
Before

Local Variables

Evaluation Stack

0x
12

34
56

78

0
30
1

0x12345678

IL_0003/4/6
ldc.i4

.ctor (hrs, min, sec)
{
ticks = (3600 * hrs +
 60 * min +
 sec) * 10000000;
}

IL_0007
call

FIGURE 6.14 How a constructor initializes a value type object.

First, the memory address of the local variable is retrieved using the ldloca instruction,
which stands for “load a local’s address.” In addition to the address being pushed on the
stack, the arguments to the constructor are pushed, too. For our example, there are three:
1 for hours, 30 for minutes, and 0 for seconds. Finally, a call is made to the constructor
method. The address where the data being initialized lives can be seen as an implicit para-
meter to the runtime to call the constructor method.

With reference types, things go a little differently. Room for the data contained in a refer-
ence type is allocated dynamically in another portion of memory (called the heap). In-
depth coverage of memory allocation in the CLR would lead us astray at this point, so let’s
ignore the nitty-gritty details for now. Just recall reference types consist of a reference to
data that lives elsewhere. Aliasing can occur, causing multiple references to exist to the
same piece of data.

The prototypical example of a reference type is System.String, which has a few construc-
tors defined that allow us to illustrate how instances of reference types are created:

var tenStars = new string(‘*’, 10);

This constructor takes in a char parameter and an integer one, producing a string that
consists of the repetition of the specified character as many types as specified by the
integer parameter. In the preceding example, 10 asterisks result.

327Creating Objects with the new Operator

FIGURE 6.15 Instantiating a reference type using the newobj instruction.

What the CLR needs to carry out here consists of a few tasks. First, it needs to allocate
memory where the string object can live. Next, it has to call the constructor to initialize
the data. This by itself may result in other allocations elsewhere in memory; in the preced-
ing example, that’s the case because it will be the constructor that figures out the total
length of the string (10 times a character takes 20 bytes due to Unicode). Finally, once the
constructor has run, a reference to the initialized object is returned. In terms of IL code,
this looks like Figure 6.15.

The key instruction here is newobj. It’s this instruction that’s responsible for allocating
memory for the object’s data, calling the constructor to initialize the freshly allocated
memory using the arguments supplied on the stack, and finally pushing a reference onto
the stack. On the last significant line of IL, this reference is stored in the local variable slot
for tenStars.

Notice that once an instance of an object is created using the newobj instruction, it’s
under control of the garbage collector. So don’t confuse a reference with a memory
address or pointer. Pointers are something physical, whereas references are a logical
concept in managed code. Although a reference internally consists of a pointer, users typi-
cally don’t have any need to know what that pointer’s value is, nor can they control it.
That’s merely an implementation detail the CLR is concerned with. Why? Because the
pointer is not stable; the garbage collector can move objects freely in memory whenever it
sees fit. In Figure 6.16, the string object can move through the cloud at any time.

PINNING

Strictly speaking, it’s possible to hand out a raw pointer to a managed object. But to do
so, you effectively need to the tell the CLR the object should not be moved in memory
while something (for example, a native code component used in interop) holds on to
the pointer. The task of doing this is called pinning and is a specialized concept typical-
ly used only in interop scenarios.

328 CHAPTER 6 A Primer on Types and Objects

10
42(’*‘)

IL_0001/3
ldc.i4

“**********” “**********”

(null)

tenStars

(null)

tenStars

Before
tenStars
After

Local Variables

Evaluation Stack

0x87654321

IL_0005
newobj

IL_000a
stloc

Heap Memory

FIGURE 6.16 How a constructor creates a reference type object.

Object Initializers

Calling constructors is an essential mechanism for creating new instances of objects,
but sometimes it doesn’t suffice. A common problem with constructors is the
number of overloads they have to accommodate for various scenarios. For example,

the TimeSpan type has no fewer than four constructor overloads for developer convenience.
Internally, a TimeSpan simply consists of a tick count, but as you’ve seen, more handy over-
loads exist that allow us to supply hours, minutes, and seconds (for example).

It turns out TimeSpan is a type that leads to a good developer experience: The most useful
overloads are available, so while browsing the list of overloads, you’ll most certainly want
something that’s close enough to what you want. In our previous example, we had to
express 1.5 hours, for which we used the overload taking in hours, minutes, and seconds.
Although seconds are of no interest to us, it doesn’t hurt much to have to specify a zero
value for that parameter.

Unfortunately, lots of other types exist that lack convenient constructors that suit every-
one’s needs. This problem ultimately boils down to an explosion of possible combinations
of the discrete pieces of data to be initialized. Assume you have a Person type that
contains 20 fields for name, date of birth, address, and so on. Maybe a few fields are
required, but others aren’t. So how many constructors do you provide to make everyone
happy? Not only would you go nuts trying to come up with all combinations, think of
the poor API user browsing the list of overloads in search of the right constructor.
Figure 6.17 pinpoints this issue by looking at constructor overloads in the code editor.

329Creating Objects with the new Operator

FIGURE 6.17 Constructor overloads? Brain overload!

If scanning a bunch of overloads yields no suitable overload, this can be quite a frustrat-
ing experience. Object initializer expressions can help alleviate this. To illustrate this, let’s
first create the simplest type possible:

class Person

{

public Person(string name)

{

Name = name;

}

public string Name { get; set; }

public int Age { get; set; }

}

IntelliSense will show exactly one overload for this Person type, which for some reason
doesn’t provide an overload that also accepts an age. But still we want to initialize both
the Name and Age (automatically implemented, as discussed in Chapter 11, “Fields,
Properties, and Indexers”) properties. Before the C# 3.0 release, you had to write two state-
ments to do this:

Person me = new Person(“Bart”);

me.Age = 26;

For creation of a new instance, this is a bit verbose, but it gets even worse if you just want
to pass a Person object to a method because you need an intermediate variable:

Person he = new Person(“John”);

he.Age = 62;

LogEntry(he /* why can’t I create the Person object inline? */, DateTime.Now);

Object initializer expressions combine calling a constructor with assignment to fields or
properties, like this (also using type inference for the variable using C# 3.0 var):

var me = new Person(“Bart”) { Age = 26 };

and

LogEntry(new Person(“John”) { Age = 62 }, DateTime.Now);

330 CHAPTER 6 A Primer on Types and Objects

THE LINQ LANGUAGE FEATURE BAG

The introduction of object initializer expressions in C# 3.0 was a positive side effect of
the design of LINQ. In query expressions, it’s common to project data onto rich objects
using a projection clause with the select keyword:

from p in db.People select new Person(p.Name) { Age = p.Age }

Because a query expression is, well, an expression, it’s desirable for all its clauses to
be expressible using expressions themselves. Initialization of objects using multiple
statements (recognized by sequencing using semicolons) does not fit in this picture
(hence the need for an expression to do rich object initialization). Without this, imagine
if you had to write something like this:

from p in db.People

select { Person res = new Person(p.Name); res.Age = p.Age; return res; }

Yuck.

A little tidbit: When a default (parameterless, that is) constructor overload exists, you can
omit the empty pair of parentheses when using an object initializer:

var product = new Product /* optional () */ { Name = “Chai”, Price = 12.34m };

One of the academically interesting properties of C# 3.0 is that it can be compiled into a
C# 2.0 equivalent. In other words, to show how C# 3.0 features are implemented, we can
simply show a piece of C# 2.0 code instead of having to resort to IL code. Because of this,
C# 3.0 features are often referred to as syntactical sugar (a good thing!). This applies to this
feature, too, so what’s the C# 2.0 equivalent of the code that initializes the me variable? It
might be a bit surprising to see two local variables being used for this:

Person me = new Person(“Bart”) { Age = 26 };

The preceding translates into this:

Person __temp = new Person(“Bart”);

__temp.Age = 26;

Person me = __temp;

The reason for this is that expressions are a means to express some kind of computation
that results in an object of some type. Once this computation is carried out, the result is
fed in to the place of use (for example, an assignment or a method call or whatever).
Notice we’re mentioning just one object here, being the result of the expression’s evalua-
tion. In the case of the preceding assignment, the whole expression’s result is to be used as
the right-side object in the assignment.

This treatment has the nice property of atomic assignment. If you’re initializing a publicly
visible object (for example, exposed through a property on some type), either the fully

331Creating Objects with the new Operator

initialized object becomes visible or the previous one remains visible (but nothing in
between). Here’s an example:

class Sample

{

public Person Visible { get; set; }

// More meaningful members.

private void Update()

{

// Bad.

Visible = new Person(“Bart”);

Visible.Age = 26;

// Good.

Visible = new Person(“Bart”) { Age = 26 };

}

}

This is of utmost importance in a concurrently executing context: One thread could be
executing the Update method while another is reading the Visible property. In the case
marked Bad, your thread may see the state between the constructor assignment and the
Age property setter call. This would result in you seeing a person called Bart of zero age.

On the other hand, in the Good case, there’s no such risk: A temporary (invisible to the
outside world) variable will be fully initialized first before it gets assigned to the Visible
property.

NAMED PARAMETERS TO THE RESCUE?

The constructor overloading paradox I sketched before can be really annoying in prac-
tice. I find myself searching for the best overload that suits my need quite often. Object
initializers help but only after the fact. Why? Follow me through it.

I know I need an instance of type X, setting properties A, B, and C. During my scan of
the overload list, I encounter constructors accepting, say, A, C, A+B, B+C, and A+C. But
none of that takes in all three. Sigh. The next step is to go through the overload list
again, knowing there’s no ideal match but now scanning for the best match. I decide to
choose A+B and use an object initializer to set C:

new X(someA, someB) { C = someC }

The case of too-specific constructors can also be annoying. Suppose I just need to
initialize B in the preceding case, but there’s no overload that takes in just B. I would
need to search for an overload with the fewest redundant parameters and supply a
default value for it:

new X(null, someB)

332 CHAPTER 6 A Primer on Types and Objects

FIGURE 6.18 IntelliSense for an object initializer’s initializer list.

With C# 4.0, there’s a new API design option due to named parameters: provide just
one constructor that accepts all possible parameters. Wait a minute, doesn’t that
mean the user has to specify all of them even if only a few may be of interest? Not if
the nonmandatory parameters are given default values:

class X

{

public X(A a = null, B b = null, C c = null)

{

// Initialization logic goes here.

}

}

Now the consumer of the type can write the following to initialize just B:

new X(b: someB)

Better or worse than object initializers? A hard call. For one thing, object initializers
require the properties used in the initializer list to have public setters. This is in dis-
tinct contrast with the desire to promote immutable types in a world of concurrency
(more about that later). Named and optional parameters have their disadvantages, too:
Not all languages support them, and there are various subtleties around default val-
ues, as you will see. So, suffice to say, this new approach is an option to consider in
API design, if nothing more.

What about Visual Studio support for object initializer expressions? Rest assured,
IntelliSense knows about it (proven in Figure 6.18) and tries to make your life as easy as
possible by showing the properties (or fields) that can be initialized while gradually reduc-
ing the number of items in list as you go along.

PROPERTIES VERSUS FIELDS

Object initializers can deal with two sorts of members: properties and fields. Which
one is better to use in APIs is discussed in Chapter 11, but suffice to say properties
are recommended. In lots of cases, properties just play the role of smart fields, being
simple wrappers around an underlying field for storage. The thing that distinguishes
them from fields is that data access is carried out using getter and setter methods.
This has the advantage that internal representation for a type is kept hidden to the
consumers. By doing so, internals can change without breaking the external use.

333Creating Objects with the new Operator

Collection Initializers

When arrays were introduced in Chapter 4, “Language Essentials,” you saw the use
of array initializer expressions to create an array and initialize its elements in one
operation:

int[] primes = new int[4] { 2, 3, 5, 7 };

Recall that various kinds of type inference can be used to simplify the preceding declara-
tion and initialization, even all the way down to the following:

var primes = new [] { 2, 3, 5, 7 };

What’s of more relevance here is the use of an initializer list delineated by curly braces
to supply the array’s elements. You’ll agree that’s way more handy than having to write
the following:

int[] primes = new int[4];

primes[0] = 2;

primes[1] = 3;

primes[2] = 5;

primes[3] = 7;

Although arrays are very useful constructs, they’re of limited use in various scenarios.
Often you need dynamically growing collection types instead, the ability to insert
elements at some location, or ordering properties, and so on. The System.Collections
namespace contains richer types with those capabilities. With the advent of generic collec-
tion types underneath System.Collections.Generic in .NET 2.0, things only improved.

But one thing has been lacking on collection types: a similarly easy way to create a collec-
tion type instance and initialize it in one go. So to do the same as the preceding code but
with a generic List<int> type, you would have to write this:

List<int> primes = new List<int>();

primes[0] = 2;

primes[1] = 3;

primes[2] = 5;

primes[3] = 7;

This is using convenient indexer access provided by the List<T> type, which makes it look
like an array. The same code could be rewritten as follows:

List<int> primes = new List<int>();

primes.Add(2);

primes.Add(3);

primes.Add(5);

primes.Add(7);

334 CHAPTER 6 A Primer on Types and Objects

With C# 3.0, this kind of code can be replaced by a collection initializer expression, as
follows (also using local variable type inference with var):

var primes = new List<int> { 2, 3, 5, 7 };

The way this feature is specified is by requiring a suitable Add method to be available on
the collection type being used in the initialization. Every element specified in the curly
braces is fed to such an Add method. In a way similar to object initializer expressions, a
temporary variable is used to initialize the collection before it gets assigned to its target or
used elsewhere (like a method parameter):

var __temp = new List<int>();

__temp.Add(2);

__temp.Add(3);

__temp.Add(5);

__temp.Add(7);

var primes = __temp;

As mentioned before, this has positive effects for multithreaded code. Some may worry
about performance: “What, another local variable?” Because a reference type is used here,
no copying of the whole data is needed. A simple copy of a reference is all that’s happen-
ing on the last line, which is a very lightweight operation.

THE LINQ CATALYST, AGAIN

Just like object initializer expressions, the introduction of collection initializer expres-
sions was directly motivated by LINQ as a way to have expression syntax for complex
initialization tasks in the context of a query.

Collection initializers can be used for types that have more complicated Add methods, too.
The generic Dictionary<TKey,TElement> type is such a case:

var ages = new Dictionary<string, int> { { “Bart”, 26 }, { “John”, 62 } };

Here key/value pairs are supplied, which results in an Add method with two parameters
being called:

var __temp = new Dictionary<string, int>();

__temp.Add(“Bart”, 26);

__temp.Add(“John”, 62);

var ages = __temp;

335Member Access

DUCK TYPING

Where does the language require the Add method to come from? Answer: No place
special. When translating the comma-separated list of elements in the initializer list
into Add method calls, regular overload resolution is used to find a suitable Add
method. This approach is called duck typing: “If it walks and quacks like a duck, it
ought to be one.”

However, just requiring an Add method to exist may give rise to weird uses. For
example, a Calculator type is likely to have an Add method, and writing something
like the following seems like nonsense:

var calc = new Calculator { 2, 3 };

With this, you create a Calculator instance, invoke the Add method on it, and throw
away the invocation result and end up with just the Calculator instance being
assigned. Clearly, not very useful.

To counter this weird use, the language wants to have a clue about the type being used
as a collection. The most general interface used by all collection types is
IEnumerable. Together with the Add method use, our duck type analog boils down to
“if you can enumerate over its contents, and it supports adding objects, it ought to be
a collection.”

The IEnumerable interface doesn’t have an Add method, though. Just finding “an” Add
method, wherever it comes from, suffices for usability with the collection initializer syn-
tax. And actually this is a good thing because collections, like a dictionary, don’t have
their Add methods defined on any interface.

Member Access
One thing we’ve been dealing with all the time without giving it explicit attention is the
concept of member access, indicated by the period (.) token:

Console.WriteLine(“Hello”);

person.Age = 26;

placeOrder.Click += placeOrder_Click;

Here we’re respectively looking up a method, a property, and an event using the member
access. Members are what types consist of and are accessible either through the type itself
(as in the first case, called a static method) or through a type’s instances (as in the latter
two cases). Fields can be accessed in a similar way.

336 CHAPTER 6 A Primer on Types and Objects

FIGURE 6.19 IntelliSense showing a list of instance members.

GENERICS

Sometimes member access is paired with the specification of type arguments in the
context of generics. A method itself may need a type argument, which is specified in
between < and > tokens:

var result = Activator.CreateInstance<MyType>();

We discuss this aspect when covering generics in Chapter 15, “Generic Types and
Methods.”

Member access is one of the places where IntelliSense can make a developer’s life much
easier (at least when statically typed objects are in place because the code editor can lever-
age the type information to provide a list of available members to access, as shown in
Figure 6.19).

Icons are used to differentiate between various kinds of supported members:

. Events show up with a lightning bolt, indicating they can be “fired” (or raised).

. Properties get a little hand pointing at a key/value entry on a card.

. Methods have the dynamism of invocation represented by displacement lines.

. Extension methods get sprinkled on an existing type, as indicated by an arrow.

. Fields are indicated by a blue cube for some reason.

Notice how members from base types (just plain old System.Object in the example) and
implemented interfaces (none in the example) show up in the IntelliSense list.

In the preceding example, only instance members show up. As the name implies, those are
associated with instances of a type. In addition, a type can have static members, which are
not tied to instances but live on the type itself. We discuss this distinction when defining
our own types in Chapter 9. Figure 6.20 shows static members on a type.

337Member Access

FIGURE 6.20 IntelliSense showing a list of static members.

FIGURE 6.21 Metadata tokens revealing early bound statically typed code.

IntelliSense capabilities are one of the great merits of static typing. We say that member
access is early bound when the compiler exactly knows the member being targeted by the
code. The IL code reflects this knowledge because it contains metadata tokens that unam-
biguously refer to the selected member. Consider the following code:

string s = “Bart”;

Console.WriteLine(s.ToUpper());

And take a look at the corresponding IL code in Figure 6.21.

A First Look at Dynamic Typing

Starting with C# 4.0, late-bound access to members is also available through
dynamic typing. In such a case, the compiler has no idea about the existence of
the selected members. This kind of behavior is desirable in various scenarios:

. Objects may be totally typeless because they come from some dynamic language like
Ruby or Python.

. Data representations may not have a schema, like with XML documents with no
corresponding XSD schema.

. You received some object back using the static System.Object type but have no
more specific type in reach to cast it to.

338 CHAPTER 6 A Primer on Types and Objects

FIGURE 6.22 No IntelliSense is available for dynamic late-bound operations.

Historically, interacting with “loosely typed” objects from C# has been very painful,
leading to lots of boilerplate code that hides the intent of the program. Because there is an
ever-increasing number of dynamically typed objects out there, the C# language designers
thought it would be a good idea to make such access easy.

To track the places—read: member accesses—where late-bound operations are required, C#
introduces a dynamic type:

dynamic misterX = GetUntypedPerson();

string name = misterX.Name;

Console.WriteLine(name);

Can you spot the dynamically dispatched late-bound member access in the preceding frag-
ment? Let’s walk through the code. On the first line, we get a person object that has no
static type. Maybe it comes from Python or script. Who knows? Instead of declaring the
misterX variable as System.Object (which every object can be typed as because it’s the
mother type for everything), we use dynamic. This tells the compiler to emit code that
does discovery of member accesses at runtime instead. In this particular case, the Name
property getter access will be deferred until runtime.

The code editor in Visual Studio knows about dynamic typing in the sense it clearly
admits it can’t provide any meaningful IntelliSense because of the dynamic nature of the
code. Figure 6.22 illustrates how missing type information manifests itself.

To avoid exploding brains, we won’t examine the IL code. Instead, we can use a version of
.NET Reflector that’s not aware of C# 4.0 features, which should look like Figure 6.23.

NOTE

As of this writing, the latest version of .NET Reflector still succeeded in meeting this
goal, but I expect a newer release of .NET Reflector will be able to fully decompile C#
4.0 code; at that point, the nitty-gritty details shown here will vanish.

What you’re looking at here are C#-specific binders that represent the late-bound opera-
tions we want to carry out. Highlighted in the figure is the member binder to a member
called Name. All the plumbing with call-site objects allows the Dynamic Language Runtime
(DLR) to kick in and dispatch the call efficiently. We go into detail about this subject in
Chapter 22.

339Invocation Expressions

FIGURE 6.23 A dynamic call site behind the scenes.

Invocation Expressions
Invocation is the act of calling another piece of code, possibly passing in arguments to
influence the code’s execution. Invocation mechanisms other than method calls exist due
to the concept of delegates.

Method Invocation

Keeping the best for the (almost) last: invocation expressions. Methods being the main
containers for code—and in fact, properties and indexers are methods in disguise—the
most meaningful operation to carry out with them is invocation.

Methods can be called directly or indirectly, the latter case referring to the use of dele-
gates. Either way, invocation syntax has the same shape: an expression followed by a
(potentially empty) comma-separated list of arguments between parentheses. You’ve
already seen numerous examples:

Console.WriteLine(“Hello”);

string s = person.ToString();

int three = calc.Add(1, 2);

All the preceding examples are regular method invocations. A call instruction targeting
the method is emitted in the IL code, as shown in Figure 6.24.

340 CHAPTER 6 A Primer on Types and Objects

FIGURE 6.24 Direct method invocations at the IL level.

CALL VERSUS CALLVIRT

The CLR has two different IL opcodes for method invocation: call and callvirt. But
what’s the difference? As the name implies, callvirt can call virtual methods. In the
preceding example, the ToString method we’re calling is defined on System.Object.
By making a virtual method call, the most specific override of that method is called: If
our Person type has redefined ToString, that implementation will execute; if not,
System.Object’s default implementation will get called. We discuss virtual methods in
more detail in Chapter 14.

The call instruction, on the other hand, doesn’t do this virtual dispatching and calls the
target method as specified. A typical example of its use is when calling static methods
such as Console.WriteLine in our example.

But what about the Add method on Calculator? Let’s take a look at the definition of
that type as used in the preceding example:

class Calculator

{

public int Add(int a, int b) { return a + b; }

}

This method is not declared using the virtual modifier, making it not a virtual method,
yet the resulting IL code uses a callvirt instruction. Why? Besides its virtual dis-
patch properties, callvirt has another useful property: It throws a
NullReferenceException if the object used as the target of the invocation is a null
reference. For that reason, the C# compiler emits callvirt even when a simple call
will suffice if the null case can be ignored.

341Invocation Expressions

Delegate Invocation

Another form of invocation is what I call indirect invocation. This is where delegates come
in: Instead of knowing the precise target of an invocation, you know how the target looks
in terms of the method signature. In essence, delegates are a way to pass methods around
as objects. They form a kind of contract between two parties: a consumer and a provider.
An example will clarify things, but we defer more thorough discussion until Chapter 17,
“Delegates.”

Let’s consider a “modest” calculator as a trivial (and honestly, contrived) example. What
the heck is a modest calculator? It’s one that knows about all commonsense arithmetic
operations but also admits it can’t know everything. So it enables the user of the calcula-
tor to supply (code for) custom operations while it provides a simple-to-use user interface
for all operations, whether they’re built in or provided by the user. Consider the self-
confident part of the calculator first, defining the operations it knows out of the box:

class Calculator

{

public int Add(int a, int b) { return a + b; }

public int Sub(int a, int b) { return a - b; }

public int Mul(int a, int b) { return a * b; }

public int Div(int a, int b) { return a / b; }

}

Imagine it being a bit more extended than just this: The calculator may have a user inter-
face, a way to accept input from the user in a natural way (click 1, +, 2 and press = to
cause a call to the Add method underneath). So there could be some internal tables that
associate programmed buttons (with a nice-looking caption) with methods.

Now on to the part that allows the calculator to be extended with custom operations.
Again ignoring lots of practical aspects on how to extend the user interface, we just focus
on the core essence: How can the user supply the calculator with a custom (binary) opera-
tion for it to use? The answer lies in a delegate, which is essentially a contract stating the
connection between inputs and output from a typing point of view. Without further ado,
here’s what a delegate declaration for a binary operation on integral numbers looks like:

delegate int BinOp(int a, int b);

Pretend the delegate keyword isn’t there and the BinOp identifier and you end up with a
method signature that says “given two integer values, I’ll produce an integer value as the
result.” How it does this is intentionally left unspecified.

Now we can extend the calculator with a method that not only takes in two operands for
an arithmetic operation but also the custom-defined operation itself by means of a delegate:

public int Ext(BinOp op, int a, int b)

{

if (op == null)

342 CHAPTER 6 A Primer on Types and Objects

FIGURE 6.25 Calling through a delegate.

throw new ArgumentNullException(“op”);

return op(a, b);

}

I agree that this example is a bit contrived because all we’re doing with the delegate is
making a single call on it. In reality, the act of setting up a custom operation in our calcu-
lator may be much more involved: A DefineOperation method could take in a BinOp,
together with a string for the programmable button’s caption, and wire up that button to
the BinOp instance.

The last line of the Ext method is where the delegate invocation happens: op is a variable
of type BinOp, and we use exactly the same syntax for invocation as if it were a (compile-
time) well-known method. So we’re calling a method through the delegate.

CODE IS DATA

Today’s computers follow the von Neumann machine model, where code and data live
side by side in the same memory. Delegates are a direct proof of this capability: They
are a means to pass code (a custom binary operation implementation) around as if it
were data (the op variable).

Delegate Invocation Behind the Scenes
So how does a delegate invocation work behind the scenes? You might be surprised to see
it’s a plain old method call to some Invoke method on a Delegate object. The instance of
the delegate is where the reference is made to the method to be called. This is conceptu-
ally similar to a function pointer in languages such as C and C++, but with much more
infrastructure around it to ensure type safety, to allow for garbage collection (meaning the
address of where the code lives in memory can change over time), to enforce security
rules, and so on. To illustrate the implementation, I’ve omitted the null-check code for
brevity in Figure 6.25.

343Invocation Expressions

FIGURE 6.26 Creating a delegate instance through the lenses of IL.

Creating Delegate Instances
So far, you’ve seen how to consume a delegate, which is what the calculator does by
calling through it. Equally important is how to create a delegate instance. Delegate
instances are created by using the new keyword, this time specifying the name of a method
to be passed on:

static void Main()

{

var calc = new Calculator();

Console.WriteLine(calc.Ext(new BinOp(Hypotenuse), 3, 4));

}

static int Hypotenuse(int a, int b)

{

return (int)Math.Sqrt(a * a + b * b);

}

The cast used in the Hypotenuse method carries out a narrowing conversion as Math.Sqrt

produces a double-typed result, but our calculator works only with integer numbers. It’s a
trivial exercise for you to change the calculator to work with double values instead,
allowing the cast to disappear. What’s of more interest to us is how the delegate instance
is created:

new BinOp(Hypotenuse)

This is how things can be done since C# 1.0, but since then things have been simplified.
We take a look at this in just a second, but first look at the plumbing at the IL level (see
Figure 6.26). It’s clear the runtime somehow needs to capture a reference to the
Hypotenuse method and store it inside the delegate instance.

344 CHAPTER 6 A Primer on Types and Objects

The ldftn, for load function, instruction is where the magic happens. This instruction
produces a “native int,” essentially an address for the requested reference. The native part
means the address length of the CPU we’re running on will be used because IL code is
machine agnostic. In addition to a reference to the method to be called, there’s a reference
to the object on which the method needs to be called. Because we’re dealing with a static
method here, null is specified as the target.

DEFINITELY MORE THAN FUNCTION POINTERS

The fact delegates support an invocation target object makes them quite different from
function pointers. The use of function pointers in native code also requires calling con-
ventions to line up precisely. When invoking a method on an object, the address of the
object needs to be passed along, as well, which typically happens as the first argument.
This makes up a “this-call,” where this stands for the target object. Invoking a stat-
ic method, on the other hand, doesn’t have such a hidden parameter. In the world of the
CLR such details are completely abstracted away through the concept of delegates.

You’ll agree that the code required to create a delegate instance is quite verbose: calling
some artificial constructor, having to define a separate method to form the delegate’s
target even if that method is almost trivial in some cases, and so on. One simplification
allows us to drop the new expression because the compiler knows the first argument to
Ext needs to be of type BinOp:

Console.WriteLine(calc.Ext(Hypotenuse, 3, 4));

This is a little better but nothing to write home about just yet. In some cases, the target
method can be quite long (for example, when using a delegate for execution on a back-
ground thread), so it’s fine and even desirable to declare a separate method for it. But in
our case, the Hypotenuse implementation is just a one-liner. How the method is called is
something the runtime doesn’t care about: All it needs is a reference to some code to wrap
a reference to inside the delegate. Welcome to C# 2.0.

Anonymous Methods
Anonymous methods allow us to abbreviate the preceding code by writing the
Hypotenuse implementation inline:

Console.WriteLine(calc.Ext(

delegate (int a, int b) { return (int)Math.Sqrt(a * a + b * b); },

3, 4));

Actually, this saves us from code-browsing overhead because the code passed through the
delegate is immediately apparent from the context. All the compiler does behind the

345Invocation Expressions

FIGURE 6.27 To the runtime, an anonymous method has a name.

FIGURE 6.28 Anonymous method names may reduce debuggability.

scenes is create a method with a random name (unknown to us and hence the anonymous
characteristic) to pass on through the delegate.

!@#$%

What’s up with the generated names for anonymous methods? They’re intentionally
created to be unspeakable, meaning it’s impossible for the developer to write valid C#
code that refers to them. For example, our <Main>b__0 method contains the < and >

characters, which are invalid for use in an identifier.

One thing the compiler does is capture some context in the generated name. In our
case, we can trace back the anonymous method to be defined in the Main method.
This brings up an argument I had a while ago with a colleague who didn’t like anony-
mous methods because they make stack traces in exceptions more cumbersome. For
example, assume we’ve built with overflow checking on, and someone crashed our
calculator by calling the programmed Hypotenuse button with overly large inputs.
Figure 6.28 illustrates the error message printed due to the exception occurring.

If we’re running outside a debugger and face such a call stack, it might not be immedi-
ately apparent where the crash happened. Okay, this might be a little annoying at first,
but it’s really easy in the world of .NET to trace it back using tools such as .NET
Reflector or ILDASM.

346 CHAPTER 6 A Primer on Types and Objects

Also as the language evolves, the role of the compiler has increasingly shifted toward
plumbing code generation to take this burden from the shoulders of the developer. A
good example of this is LINQ, where query expressions are composed of lots of little
functions to do things such as filtering, key selection for sorting, and so forth.
Anonymous methods are the glue that drives such code generation.

That said, I have some sympathy for this concern. Use of anonymous methods that are
way too big (like a background thread’s entry-point method) is best avoided. The likeli-
hood of something going wrong is definitely higher as code complexity increases.
Getting faced with weird call stacks (with compiler-generated names) may get too com-
mon in such a case, making debugging harder. But also in terms of coding style, writing
a long method inline of another one doesn’t help readability of the containing method
(in fact, the contrary).

Anonymous methods also support closures, a fairly key concept in functional program-
ming. Because anonymous methods appear in the body of another containing method,
they can capture outer variables:

var calc = new Calculator();

int x = GetDivOfTheDay();

int res = calc.Ext(delegate (int a, int b) { return (a + b) / x; }, 3, 4));

In this example, the anonymous method is capturing the outer variable x. In Chapter 17,
we take a look at how this works, what the semantics and use cases are, and the poten-
tial caveats.

Lambda Expressions
You can argue the syntactical overhead to pass the Hypotenuse function is still
quite high despite (or due to?) the use of anonymous methods. Just look at the
number of keywords required:

delegate (int a, int b) { return (int)Math.Sqrt(a * a + b * b); }

In fact, the compiler can know most of this from the context: We’re using this as the first
argument to Ext, which is of type BinOp. A BinOp is a delegate, so why do we need the
delegate keyword? It takes in two integer values, so why do we need to state the obvious
types for a and b? Obviously, we’re going to return something, too, so the return keyword
also seems redundant. Lambda expressions take all those observations into account and
allow us to reduce the code to the following:

Console.WriteLine(calc.Ext((a, b) => (int)Math.Sqrt(a * a + b * b), 3, 4));

The => lambda arrow can be read as “goes to,” so the preceding line merely states that
we’re passing in a function that takes arguments a and b (of types inferred from the
context but still statically known) to the square root of the sum of their products.
Concise, very readable, and desirable properties to promote a more functional style of
programming.

347Element Access

WHY “LAMBDA”?

Lambda is a Greek letter (written as λ) referring to the so-called lambda calcu-
lus, which is the theory underlying functional programming concepts. Lambda calculus
was developed by Alonzo Church in the late 1920s. The theory-savvy reader is encour-
aged to search the Web for a paper called “History of Lambda-Calculus and
Combinatory Logic” by Cardone and Hindley to learn more about this calculus (and a
story on the origin for the use of the letter lambda).

TWO REPRESENTATIONS

Lambda expressions do not have a type by themselves. Together with the null literal,
they make up the only kinds of expressions that are typeless in and of themselves,
meaning you can’t use local variable type inference on them:

var sum = (int a, int b) => a + b;

Even though it seems the compiler could infer this ought to be a delegate with two int
parameters and an int return type, that’s not what causes ambiguity around the type.
The key thing to know here is that lambda expressions can be represented either as
delegates (meaning readily executable code) or as expression trees. Expression trees
allow you to view the code that makes up the lambda, at runtime, through the eyes of
an object model. This allows libraries to take in a code-as-data representation and
manipulate it at runtime (for example, to cross-compile it into some other language).
Remote LINQ query execution (for instance, on a SQL database) is based on this princi-
ple, as you will see when we discuss LINQ in depth in Chapter 20, “Language
Integrated Query Internals.”

Element Access
The concept of member access has a finite feeling to it: If a member doesn’t exist, you
can’t call it. Whether finding a member is done by means of static typing at compile time
or using dynamic typing at runtime is mostly orthogonal to this. In some other settings,
though, it makes sense to have syntax to index into an object as a way to query for
runtime state in a friendly fashion.

Sound quite theoretical? In fact, you’ve already seen an example of this before when we
talked about arrays in Chapter 4. Consisting of elements, an operation to retrieve or
replace an element is desirable. This is achieved by means of square-bracket syntax:

int[] primes = new int[] { 2, 3, 5, 7 };

int five = primes[2];

There’s no “member-driven” way to access elements in an array. In fact, the array type
itself doesn’t know about the array’s arity (recall, the number of dimensions) and size of
the dimensions. Element access, therefore, has a dynamic feel to it, and validity of access
is enforced at runtime.

348 CHAPTER 6 A Primer on Types and Objects

DEPENDENT TYPES

The concept of a type depending on a value (for example, an array type depending on
the array’s size) does actually exist in type theory. It’s called dependent types but hasn’t
made it to mainstream platforms or languages. Using such a construct, it’s possible to
check more aspects of code at compile time (for example, to protect against invalid
array accesses). But even though the kind of typing isn’t baked into either the runtime
or the languages, theorem provers can be used to spot some cases of invalid accesses.

Because array element access has such a concise and natural notation, it was deemed
useful to allow types to define their own indexed access operations by means of so-called
indexers. Typical examples can be found in collection types:

var primes = new List<int> { 2, 3, 5, 7 };

// Index-based access just as with arrays. Lists are flexible arrays after all.

int five = primes[2];

var ages = new Dictionary<string, int> { { “Bart”, 26 }, { “John”, 62 } };

// Indexers can also use a different type.

// Dictionary<K,T> uses an index of type K, for the dictionary’s key type.

int bartAge = ages[“Bart”];

// We can add or replace key/value pairs in the dictionary as follows.

// This uses a setter method underneath.

ages[“Lisa”] = 8;

Another example is with indexing into a Vector object, where indices 0, 1, and 2 are used
to indicate a dimension. It’s even possible to provide different overloads for the indexer so
that x, y, and z are also allowed.

Indexers are essentially default properties that benefit from the concise square-bracket
access notation. They have two sides (each of which is optional): one to retrieve an
“element” (the getter) and one to replace an “element” (the setter). Ultimately, code that
uses an indexer results in calls to the underlying methods:

var primes = new List<int> { 2, 3, 5, 7 };

// Index-based access just as with arrays. Lists are flexible arrays after all.

int five = primes[2];

349Summary

Here, the indexer access results in the following IL code:

// Indexer’s argument.

ldc.i4.2

// get_Item is the indexer getter method.

callvirt instance !0 class [mscorlib] List`1<int32>::get_Item(int32)

// Store in slot for “five” variable.

stloc.1

You’ll read more about indexers and learn how to define them on your own types in
Chapter 11.

Summary
In this chapter, we continued our exploration of expressions, this time focused on types
and objects. First, we focused on different ways to carry out type checks, convert between
types, and so on.

After learning about the creation of object instances, we explored how to access members,
call methods, and delegates and perform element accesses. Delegates will receive much
more attention in Chapter 17, so we skimmed over some of the details. Nonetheless, you
have become familiar with different syntaxes to create delegates, including anonymous
methods and lambda expressions.

Expressions are all about computing values. But a life of computation is not sufficient for
the imperative code programmer; control flow mechanisms, such as conditional branch-
ing and loops, are important items in the developer’s toolbox. The next chapter examines
those concepts, commonly referred to as statements.

This page intentionally left blank

CHAPTER 7

Simple Control Flow

IN THIS CHAPTER
. What Are Statements,

Anyway? 351

. Expression Statements 353

. The Empty Statement 355

. Blocks 356

. Declarations 357

. Selection Statements 358

. Iteration Statements 376

. A Peak at Iterators 392

. Loops in the Age of
Concurrency 400

. The goto Statement 402

. The return Statement 406

After our thorough exploration of expressions, we’ve
arrived in the domain of statements. Programmers with a
background in any of the well-known imperative languages
will feel immediately at home with C#’s statements that
facilitate things such as branching and looping.

What Are Statements, Anyway?
Where expressions are used to drive computation, state-
ments are the main drivers for a program’s flow of execu-
tion. Simply stated, they define the actions a program takes
under various circumstances.

C# supports a variety of statements that make up a taxon-
omy like this:

. Expression statements allow a subset of the expres-
sions supported by the language to appear by them-
selves typically because they have useful side effects
besides producing a value. A few examples include
various forms of assignment, the increment and
decrement prefix/postfix notation, but also method
invocations.

. Blocks by themselves—roughly speaking, regions of
code delimited by curly braces—are a way to group
multiple statements together. They also play a role in
scoping of variables.

. Declaration statements are used to declare local vari-
ables or constants by associating a name with an
identifier. They’re closely related to blocks due to
scoping rules.

352 CHAPTER 7 Simple Control Flow

. Selection statements provide the tools to branch the execution flow based on the
result of an expression’s evaluation. Flow can be switched in a table-driven manner
based on that result, or Boolean conditions can be used to go one direction or another.

. Iteration statements are commonly referred to as loops; they execute the contained
statement a number of times based on some condition or to execute a given piece of
code for every element in a data sequence.

. Jump statements are a way to transfer control explicitly, which can mean various
things: You can go to the next iteration of a loop or break out of the loop altogether,
return from a method, throw an exception, and so on. Even the notorious goto
statement is available as a supported jump statement.

. Exception handling is done in a block-driven manner, where a region of code—
called a protected block—has associated exception handler blocks for the types of
exceptions it’s willing to handle. Besides the act of catching exceptions, a block can
be specified that runs regardless of the outcome of the protected block (finally).

. Resource management ensures proper disposal of used resources no matter what
happens during execution of the code. C#’s using statement provides a means to
take a structured approach when dealing with resources by scoping a resource’s use
to a block, guaranteeing the resource gets cleaned up no matter how control leaves
that block.

. Locks are one (rather low-level) way to coordinate execution of concurrent code. By
performing operations on an object by acquiring a lock, it’s ensured no other code
can execute as long as the lock is held. This allows you to serialize execution of oper-
ations that touch the object, preventing inconsistent states.

. Checked and unchecked contexts to control arithmetic overflow behavior are also
categorized as statements. We discussed checked versus unchecked arithmetic exten-
sively in Chapter 5, “Expressions and Operators,” where you saw both the expres-
sion syntax and the block-based statement syntax.

We take a look at all of those throughout the chapter, deferring detailed explanations on
exception handling, resource management, and locks until later. By the end of this
chapter, you should be fluent in all sorts of control flow.

ON SIDE EFFECTS AND EVALUATION ORDER

Statements also have an operation-sequencing nature; they define the order in which
things happen, denoted by semicolons and block syntax in C#. Expressions, on the
other hand, could be treated in a more flexible manner to improve efficiency of the
code. For example, expr1 * expr2 is a commutative operation, so the subexpressions
expr1 and expr2 could be reordered. Or they could even be evaluated in parallel.

So much for theory. Libraries written with many side-effecting operations in them (like
the Base Class Library, BCL), which are typically consumed from imperative languages
(like C#), give rise to nondeterministic behavior if the compiler (or runtime) would be

353Expression Statements

free to rearrange evaluation order. This is clearly not a very desirable property, and
therefore C# defines order of evaluation unambiguously. Refer to Chapter 5 to learn
more about this left-to-right evaluation of subexpressions.

(Pure) functional languages ban side effects—or more accurately, track them carefully
through the type system—to allow (among other reasons) this kind of flexibility in the
evaluation of expressions.

Expression Statements
Go to Chapter 5, copy and paste. It’s almost as simple as this. C# being an imperative
language doesn’t shy away from side-effecting operations in its core language definition.

Method Calls

Methods are the main way of performing operations. While method calls embody a type
of expression, they’re often used without caring about the return value (if any). That’s a
typical case of using an expression as a statement.

Side Effects Everywhere?
One concrete proof of this lies in the existence of the void type that can be used as the
return type of a method. Clearly, calling such a method is useful only for the side effects it
exposes, not for some value it returns:

Console.WriteLine(“Hello World”);

We’re lucky we have those side effects at our service. How would we print to the screen
otherwise? The preceding code line actually is a statement formed out of an invocation
expression, the sole difference being the occurrence of a semicolon at the end of the line.
The presence of side effects is so deeply rooted in the platform that calling a method and
discarding its result is permitted:

static void Main()

{

// Wasteful computation, ignoring the result.

Math.Sin(Math.PI / 2);

}

Math.Sin being a pure function with no side effects, the preceding code effectively throws
away the result of a computation. But to the compiler, it could equally well be the case
that the called method exposes interesting behavior, so it’s impossible to prune out the
whole call site. In other words, the compiler needs to be conservative.

Do Not Ignore Method Results
As a good rule, avoid ignoring method results. They exist for good reasons, sometimes to
indicate success or failure either directly (through a Boolean value) or indirectly (by means
of a null-valued result or another result object with error state inside it).

354 CHAPTER 7 Simple Control Flow

FIGURE 7.1 The dangers of ignoring method results.

In fact, the Visual Studio built-in Code Analysis feature has a warning for known cases in
which lacking checks for return values is a guaranteed formula for disaster. Let’s illustrate
with an example:

static int AddOne(string number)

{

int num;

int.TryParse(number, out num);

return num + 1;

}

Here we’re using the TryParse method with an output parameter, as explained when we
discuss methods in Chapter 10, “Methods,” to return the integer value for the parsed
string. However, TryParse also returns a Boolean, indicating whether the input was a valid
string representation of an integer number. Because we’re not checking for the failure
condition, the preceding code is probably buggy.

If you’ve turned on Code Analysis for your project (through the project’s Properties
window, Code Analysis tab), the preceding code will yield the warning shown in Figure 7.1.

Assignments

Assignments are generally considered to be statements in the first place, even though we
discussed them in the context of expressions before. In 99 percent of cases, assignments
will take a statement form:

name = “Bart”;

age = 25;

age += 1;

In Chapter 5 you saw how assignment expressions take on the value that is assigned to
the left side. Although this is definitely a nice property, it should be used sparingly. One of

355The Empty Statement

the few legitimate uses I can think of is the type switch mentioned in Chapter 6, “A
Primer on Types and Objects,” the section, “Intermezzo: The Mythical Type Switch.”

if ((f = item as Fruit) != null)

{

// Do something with the juicy piece of fruit...

}

Because you already know everything about assignments, there’s no need to repeat that here.

Pre- and Post-Increment/Decrement

The increment and decrement operators are similar to assignments with regard to their
usual treatment as statements. Useful for their side effects, they’re typically used in loop
constructs, as you will see later. Let’s revisit the example from Chapter 5.

for (int i = 0; i < array.Length; i++)

{

// Do something

}

In fact, in such a setting it doesn’t matter whether prefix or postfix syntax is used for
those operators because the only difference lies in the value that gets returned and not in
the side effect they’re causing. You’ll see both styles used interchangeably, with some
(ancient) C/C++ developers slightly preferring the prefix notation for its performance
benefit over the postfix one.

The Empty Statement
To ease into the subject of statements gradually, let’s start with the most mind-blowing of
all: the empty statement. Written as a simple semicolon by itself, it’s rarely useful. One of
the only cases where this comes in handy is when you’re writing some kind of “message
pump,” a loop that calls some processing method until it returns false to indicate no
further messages are to be handled:

while (ProcessMessage())

;

I predict most readers won’t ever have to write such a loop anymore—we’re well beyond
the manual message pumping required in classic Win32—but it’s good to know about its
existence in case you encounter this kind of code. In fact, you could eliminate the use of
the preceding empty statement by using an empty block instead:

356 CHAPTER 7 Simple Control Flow

FIGURE 7.2 Possible mistaken empty statement.

while (ProcessMessage())

{

}

In this particular case, either an empty block or an empty statement is fine. In most other
contexts, the use of the empty statement most certainly indicates an error, and the
compiler will warn you about this, as shown in Figure 7.2.

Blocks
Blocks provide a way to combine multiple statements and treat them as if they were just
one statement, as the language may expect in some places. At the same time, blocks estab-
lish a scope for local variables. (See Chapter 4, “Language Essentials,” for more informa-
tion.) An example of a typical use for blocks is found in various other statements, like the
if statement:

if (condition)

statement-if-true

else

statement-if-false

Notice that the if statement by itself doesn’t prescribe the use of curly braces for its
embedded statements. With blocks, we can provide multiple statements in those places:

if (user.Age >= 18)

{

session.User = user;

NavigateToHomepage(user.Homepage);

}

else

{

LogInvalidAccessAttempt();

ShowAccessDeniedPage();

}

Blocks also have a code-stylistic property because they promote indentation to reflect a
code’s structure. Visual Studio will automatically indent when starting a new line after an

357Declarations

FIGURE 7.3 Matching curly braces highlighted in Visual Studio.

FIGURE 7.4 Local variable type inference? Still statically typed!

opening curly brace. To make browsing code easier, matching curly braces are highlighted
when moving the cursor around (see Figure 7.3).

Declarations
To wrap up the discussion about well-known statements, we should consider declarations,
too. The declaration of a local variable consists of a type and a name specified using an
identifier:

int age;

Initial assignment can be carried out at the same time but is optional. All that’s required
for a declaration is a name and a type, unless local variable type inference (var) is used. In
that case, the compiler needs to see a right-side expression from which to infer the type:

var name; // This is invalid.

var name = “Bart”; // Here we can infer System.String.

It can’t be stressed enough that local variable type inference is just that: inference. The
variable is still completely statically typed; we just reduce the amount of physical
keyboard-driven typing we have to do. Figure 7.4 shows evidence of static typing in a
type-inferred context by means of IntelliSense.

358 CHAPTER 7 Simple Control Flow

For local constant declarations, the const keyword is used:

const int triangleSideCount = 3;

As you already know from Chapter 4, it’s invalid to try to reassign to a constant; other-
wise, what would be the point in calling it a constant?

NAMING MATTERS

Naming of identifiers is a relevant concern. Consistency and clarity can greatly help you
understand the meaning of variables. Some people prefer casing conventions for con-
stants, too, writing them all uppercase. Feel free to do so if it helps you.

Selection Statements
No meaningful program can operate without conditional execution. Depending on
runtime state, different groups of statements are executed. C# has two constructs that
enable this style: the if statement and the switch statement.

The if Statement

Starting by evaluating a Boolean expression, the if statement can conditionally execute
an embedded statement. Two forms exist, depending on whether you want to handle the
negative case:

// Ignore when condition evaluates false.

if (condition)

statement-if-true

// Also handle the false case.

if (condition)

statement-if-true

else

statement-if-false

Let’s look at an example that uses both branches:

static void Main()

{

var rand = new Random();

int n = rand.Next(0, 100);

PrintEvenOrNot(n);

}

static void PrintEvenOrNot(int n)

{

359Selection Statements

if (n % 2 == 0)

{

Console.WriteLine(“Even”);

}

else

{

Console.WriteLine(“Odd”);

}

}

In the Main method, we’re using a random number generator to select a number between
0 (inclusive) and 100 (exclusive). We pass it as a parameter to a method called
PrintEvenOrNot, where we use an if statement to check for even versus odd. Such a check
is typically carried out by taking the remainder after integral division, comparing it
against zero to identify an even number. In fact, this code could be simplified quite a bit
by using the conditional “ternary” operator to select the “Even” or “Odd” message based
on the condition. It’s clear such an approach works only for trivial cases where a value
(here a string) is selected in a conditional manner:

static void PrintEvenOrNot(int n)

{

Console.WriteLine(n % 2 == 0 ? “Even” : “Odd”);

}

This remark aside, let’s focus on the job at hand: the use of an if statement. First, notice
the condition needs to be a Boolean-valued expression (or to be precise, implicitly
convertible to System.Boolean). This is different from C and C++, where it’s common to
check for a nonzero value without using any relational operator at all. An often-seen
pattern is null checking:

// How one would check a string for null in C or C++.

int ManipulateString(LPWSTR str)

{

if (!str)

{

// Passed-in string was NULL. Return error condition.

return -1;

}

// Do core processing here.

return 0;

}

360 CHAPTER 7 Simple Control Flow

C# is much more strict about typing and therefore requires zero checks or null checks to
be stated explicitly. A typical case is argument checking, as shown here:

void ManipulateString(StringBuilder str)

{

if (str == null)

throw new ArgumentNullException(“str”);

// Do core processing here.

}

Notice how I’ve omitted the curly braces surrounding the if’s embedded statement. Do
this sparingly because it can lead to confusion. Why? One problem is the so-called
dangling else, as illustrated here:

if (condition1)

if (condition2)

// condition1 == true and condition2 == true

else

// ???

Question of the day: What does the else “associate” with? Does it go with the outer or
inner if? The preceding fragment is deceptive due to its outlining; it makes you believe it
goes with the outer if statement, which isn’t the case. The code is treated as follows:

if (condition1)

{

if (condition2)

{

// condition1 == true and condition2 == true

}

else

{

// ??? means condition1 == true and condition2 == false

}

}

With curly braces, you can completely avoid this kind of confusion. Another reason to
avoid the omission of block syntax is code diff tools, as used in source control systems. If
an if statement starts its life with a single line in one of its branches but lines get added,
you end up with more noise in code version comparison tools. A little annoyance you
might say, but still a very real one.

361Selection Statements

WHITESPACE SENSITIVITY... A RELIGION?

Remember that C# isn’t whitespace-sensitive, so you can’t change behavior by align-
ment only. This makes me think of a little story about a colleague.

Being a language freak, I tend to speak highly about various languages at lunch or in
other chats with my colleagues. One such language is F#, with its #light mode, which
essentially makes the language—in true ML language family style—whitespace-
sensitive. What’s the initial reaction of some of my imperatively trained colleagues?
Yes, right (as their stomachs turn). Today, it’s interesting to see how some of these
colleagues have been converted to the whitespace-sensitive camp after exposure to
languages like Python and F#.

Conclusion? Whitespace-sensitive languages are not necessarily a bad idea; it’s more a
matter of getting used to them than anything else. Personally, I like a few aspects
whitespace sensitivity brings with it: Outlining reveals part of the meaning of your code
(for example, the dangling else problem gets resolved by the width of the indentation,
no possibility for deception), and it makes the code look cleaner overall. And the fact
no curly braces or End keywords are needed is another plus, reducing the code size.

Personally, I omit the curly braces only in argument validation code that’s nothing more
but “test invalid condition and throw exception,” as shown in the preceding example,
while still keeping the two-line style:

if (str == null)

throw new ArgumentNullException(“str”);

I won’t debate whether the opening curly brace belongs at the end of the first line of the
statement or on a line by its own. Choose whatever you feel most comfortable with and
let Visual Studio know through Tools, Options, Text Editor, C#, Formatting, Indentation,
New Line Options for Braces (see Figure 7.5).

Those settings are used when typing code and when asking the editor to format a selec-
tion or a whole document, options you can find in the Edit, Advanced menu. A handy
shortcut that’s baked in my genes is Ctrl+K,D, which formats the whole document (source
file) you’re currently editing. How much you actually appreciate those features directly
correlates with how much of a style freak you are. As you can guess, I am! Oh, and I like
the defaults in Visual Studio, but—as promised—let’s not be fanatical about one particular
style versus another. De gustibus non est disputandum (“no disputes about tastes”).

COPPERS AHEAD! FXCOP AND STYLECOP

FxCop is the fancy name for the technology underlying the Code Analysis feature in
Visual Studio. It’s a collection of rules that perform static analysis on the intermediate
language (IL) level to spot potential code defects or inefficiencies. You’ve seen exam-
ples of this already, such as the detection of ignored method results.

362 CHAPTER 7 Simple Control Flow

FIGURE 7.6 Branching operations fueling an if statement.

FIGURE 7.5 Code formatting options in Visual Studio.

StyleCop, on the other hand, operates on the C# source file level and is currently not
included with Visual Studio. It’s a free download from http://code.msdn.microsoft.com/
sourceanalysis. Its role is to enforce coding style guidelines to aid code readability.

As usual, cop kinds of tools work best when applied right from the start of a project
and when turned on in the build system from day one. Running such tools on existing
large projects can be a great source of frustration in seeing how many potential
issues are found.

Internally, control flow is implemented by branching instructions. Plain old goto, if you
will. Figure 7.6 shows an illustration of the innards of the PrintEvenOrNot method.

http://code.msdn.microsoft.com/sourceanalysis
http://code.msdn.microsoft.com/sourceanalysis

363Selection Statements

This (optimized Release build) code is fairly easy to understand. The first three lines take
the remainder after division by zero. On the fourth line, the branching itself takes place.
Notice that on the IL level the brtrue (for branch when true) instruction can operate on
an integer value, where true stands for nonzero. In C#, to avoid mistakes, this is not
allowed: Conditions need to be expressed as a logical Boolean value. Conditional branch
instructions like brtrue cause either control to be transferred to the target label or control
to fall through to the next instruction.

WHAT DOES THE .S SUFFIX IN IL STAND FOR?

The answer is simple: short. Internally, branches are represented as offsets in the
code: Branch to the instruction x bytes away relative to the end of the current instruc-
tion in the code. Jumps can go in either direction (for example, a loop will jump back-
ward), so offsets are encoded using signed integral values. When this distance is
sufficiently small (as it often is), a short instruction can be used that takes its operand
as a 1-byte (signed) value rather than a 4-byte one. This means short jumps can bridge
a distance of at most 128 bytes back or 127 bytes forward. The result of all this is
smaller code size because of more efficient encoding for short jumps.

Another geeky tidbit: The labels in the IL reflect the byte positions of the instructions in
the code. Notice how IL_0003 jumps to IL_0005, meaning two bytes are used for the
branch instruction: one for the opcode (brtrue.s = 0x2D) and one for the (short 1-byte)
offset (which is 0x0B in our case). Those details can be revealed by turning on the
Show Bytes option from the View menu in the main ILDASM window. A quick calculation
proves the theory: The first byte following the branch instruction is at 0x05, and the off-
set is 0x0B. Guess what? The sum is 0x10, which is where the “Odd” case code lives.

The switch Statement

It’s a tradition to introduce the switch statement using the if statement first. Consider
the following fragment:

Image GetBackgroundForColorScheme(Color color)

{

if (color == Color.Red)

return Image.FromFile(“Roses.png”);

else if (color == Color.Green)

return Image.FromFile(“Grass.png”);

else if (color == Color.Blue)

return Image.FromFile(“Sky.png”);

else

throw new InvalidOperationException(“Expected primary color.”);

}

I’m using some System.Drawing types such as Color and Image in the preceding fragment,
but ignore this detail for just a second and focus on what makes this fragment tick.

364 CHAPTER 7 Simple Control Flow

Programmers often refer to this if statement pattern as a multiway branch. In fact, here
we’re using the ability to omit the curly braces around an embedded statement. I’ll leave it
to you to expand the fragment with curly braces everywhere and observe the “shape” of
the resulting code. It won’t look flat anymore.

Anyway, there are lots of cases where a multiway branch is based on the same three fixed
properties for the comparisons in the conditions:

. The same expression is used in every condition.

. Equality is tested.

. Comparison with a constant.

To be absolutely precise, the expression used will typically be a side-effect free one; if we
were to reevaluate the expression in every if statement, we would replicate side effects. So
a local variable is usually used as the basis for comparison.

This pattern of an expression’s comparison against different constant values is simplified
in the switch statement. In essence, it “switches” the execution of the code based on
constant comparisons, executing the code associated with the positive comparison case.

To delve a little deeper into the working of a switch statement, let’s simplify the fragment
a bit more by peeling off the System.Drawing aspect and defining our own Color type
using an enumeration. Although we discuss enumerations later, suffice to say, they are
named constants that are grouped together to form a (value) type of their own.

enum Color

{

Red,

Green,

Blue

}

Using the switch statement, the preceding code can be rewritten as follows, now using the
custom defined enum for Color:

Image GetBackgroundForColorScheme(Color color)

{

switch (color)

{

case Color.Red:

return Image.Fromfile(“Roses.png”);

case Color.Green:

return Image.Fromfile(“Grass.png”);

case Color.Blue:

return Image.Fromfile(“Sky.png”);

365Selection Statements

default:

throw new InvalidOperationException(“Expected primary color.”);

}

}

On the first line, we state our intent to switch on the value of color. Inside the switch
statement’s body, multiple case labels are defined, each specifying a constant value to
compare against. If the equality check passes, the code associated with the label is
executed. The default label takes care of the values that didn’t match any of the case
labels’ constants.

FACTORY METHODS

The code shown here uses the System.Drawing application programming interfaces
(APIs) to match a color with a known value and return an Image instance for it. Notice
how the Image instance gets created—not by calling a constructor but by calling a
static method, a method associated with the type itself rather than a particular
instance. Its signature looks like this:

public static Image FromFile(string filename);

This pattern for object instantiation is known as a factory method: a static method
defined on a certain type (here Image), returning an instance of the containing type.
But why was this pattern chosen over a regular constructor?

The answer lies in object-oriented programming, where Image is the base type for dif-
ferent more-specific image representations, such as a bitmap (for example, a .bmp file)
versus a metafile (for example, an .emf file). By using a factory method, the caller
doesn’t need to know which particular subtype to instantiate. Instead, the factory
method takes on the task of determining the desired type of the object based on its
arguments. In this particular example, it would open the file and analyze a header to
decide the best object type to represent the image.

To eliminate the Image type dependency, we’ll change our method to print a message to
the screen using the familiar Console type:

void PrintMessageForColor(Color color)

{

switch (color)

{

case Color.Red:

Console.WriteLine(“Red roses.”);

break;

case Color.Green:

Console.WriteLine(“Green grass.”);

break;

366 CHAPTER 7 Simple Control Flow

case Color.Blue:

Console.WriteLine(“Blue skies.”);

break;

default:

throw new InvalidOperationException(“Expected primary color.”);

}

}

This also gives us the opportunity to highlight another important property of the switch
statement in C#: Control is not permitted to fall through from one case to another, unlike
in C and C++, where this is a common source of bugs. Instead, C# requires each section to
end with a break statement. An exception to the rule is when there’s another guarantee
that a section is quit, such as returning from the containing method (our first example) or
throwing an exception (the default case in both examples).

Executing the break statement causes control to transfer to the line immediately following
the entire switch statement. Notice that the default case is optional; if it’s left unspecified,
execution simply resumes after the switch statement as if nothing happened. It’s also
possible to handle different cases with the same piece of code:

switch (color)

{

case Color.Red:

case Color.Green:

case Color.Blue:

Console.WriteLine(“Saw a primary color!”);

break;

}

JUMP BETWEEN CASES?

You can think of the case labels as jump labels, usable in goto statements (see the
section, “The goto Statement”). If a “basic block” of code does not end with a jump
statement, control falls through to the next line. It’s based on this observation: C and
C++ allowed this to happen between switch statement sections (accidentally, it seems).

Sometimes it makes sense to have one section execute other sections, as well, though
this occurs rarely. Because C# seems to enforce a break statement at the end of each
section, it looks like this wouldn’t be possible. Not true. A goto statement can be used
to jump between switch sections:

switch (color)

{

case Color.Red:

Console.WriteLine(“Red roses.”);

goto case Color.Blue;

367Selection Statements

case Color.Green:

Console.WriteLine(“Green grass.”);

break;

case Color.Blue:

Console.WriteLine(“Saw a primary color!”);

break;

}

Personally, I use this sparingly, if at all. Code can get quite unreadable in a matter of
seconds, and you might end up spending many hours tracing through code that jumps
all over the place. Try to avoid it.

What types of expressions (in this context, referred to as the governing type) can be
switched on? Any of the integral types (sbyte, byte, short, ushort, int, uint, long,
ulong), bool (why would you do that?), char, and enumeration types. If the expression
that’s being switched on doesn’t have any of those types, an implicit conversion is
attempted, but if that attempt doesn’t work either, a compile-time error occurs.

The case labels need to have compile-time constant values, which are all distinct:

string john = “John”;

switch (name)

{

case “Bart”: // OK.

// ...

break;

case john: // Not OK, unless you would use const string john = “John” instead.

// ...

break;

case “Bart”: // Not OK, already have “Bart” case covered.

// ...

break;

}

One of the properties of the switch statement in C# is that ordering of the case labels
doesn’t matter. (In C and C++, it does matter because fallthrough is permitted.) This also
helps explain why compile-time constants are required: If case label values could be the
same at runtime and the order of evaluation for case labels is left unspecified, in what
order will code execute? In addition, think about what would happen with regard to
ordering of side effects if case labels were expressions that need evaluation. If you need to
check for nonconstant values or want to enforce ordering, the if statement is your friend.

When using an enumeration for the governing type, the possible values are well
defined. Because of this, the code editor can be made more intelligent. To switch on an

368 CHAPTER 7 Simple Control Flow

2. Press Tab Twice and Type Color

3. Press Enter

1. IntelliSense for Switch Snippet

FIGURE 7.7 Code snippet for switch on enumeration value.

enumeration value with cases for every possible enumeration value, a code snippet can be
used (see Figure 7.7).

A “COMPLETE” SWITCH

Enumerations denote a finite set of known constant values that belong to the same
domain. For example, we’ve defined three colors, and that’s it. So in essence, the
switch illustrated here is “complete” because it stretches the whole range of possible
values. Or is it?

First, why would we bother about a switch having the property of being complete?
Here’s why: Suppose you want to write a function that returns some value for every
potential case, as shown here:

string ToDutchString(Color color)

{

switch (color)

{

case Color.Red:

return “rood”;

369Selection Statements

case Color.Green:

return “groen”;

case Color.Blue:

return “blauw”;

}

}

Unfortunately, the preceding code doesn’t compile because the C# compiler doesn’t
realize (for a good reason, read on) we’re exhaustively testing for what appear to be all
values in the domain of the Color enumeration. Because of this, it sees a code path
exists that doesn’t guarantee a string is returned from the method. Either we need to
supply a default case or return some dummy value at the end of the method. Or we
return in a forceful way by throwing an exception:

default:

throw new InvalidOperationException(“Unknown color.”);

This can be particularly annoying if you’re working on code coverage because it seems
impossible to hit the default case. Wouldn’t it be nice we could tell the compiler that
switch is “complete” (or let it infer that)? It would, if enumeration types would really
establish finite domains. But they don’t.

You already know this from one use of enumerations, with flags. In Chapter 5, we
looked at bit-level mask operations to test for flags. An enumeration for FileMode can
have Read and Write values defined as powers of two, allowing the user to combine
them into a ReadWrite by using the bitwise | operator. We’ve just created a value
that’s also a valid FileMode but hasn’t necessarily been declared explicitly in the
enumeration.

But also without the use of flags, enumerations are just integral numbers in disguise.
In our Color definition, the enumeration is really an int with some symbolic constants
defined using compiler-generated numbers (Red = 0, Green = 1, and Blue = 2).
Because the integral representation is handy as a storage mechanism (as opposed to
storing a new as a string), you can convert back and forth between an enumeration and
its underlying type:

var unknownColor = (Color)4;

Here’s how an unknown enumeration value can be born, a little unfortunately.

From a stylistic point of view, an often-recurring question is whether a switch statement’s
embedded statements should be wrapped in a pair of curly braces. Remember, blocks can
be used for scoping purposes, so the use of curly braces can be beneficial in case you need
local state and don’t want to spoil the outer scope:

static int Eval(Expression ex)

{

switch (ex.NodeType)

{

370 CHAPTER 7 Simple Control Flow

case ExpressionType.Constant:

{

var ce = (ConstantExpression)ex;

if (!(ce.Value is int))

throw new InvalidOperationException(“Only int supported.”);

return (int)ce.Value;

}

case ExpressionType.Add:

{

var be = (BinaryExpression)ex;

return Eval(be.Left) + Eval(be.Right);

}

case ExpressionType.Multiply:

{

var be = (BinaryExpression)ex;

return Eval(be.Left) * Eval(be.Right);

}

// Other binary operations.

default:

throw new NotSupportedException(“Can’t evaluate “ + ex + “.”);

}

}

This code uses expression trees from the System.Linq.Expressions namespace to define a
recursive expression evaluator for mathematical expressions. The mechanics of this are
irrelevant for the scope of this discussion (and a real evaluator would be more complex,
for sure). What matters is the use of blocks underneath the case labels, allowing us to
reuse variable names in different cases and such. Although this style of coding works, I
don’t like it very much.

Consider this: The preceding switch statement will likely have many more cases (subtract,
divide, remainder, checked counterparts, unary operators, and so forth), resulting in the
containing method growing really big. This hurts not only code readability, but it also
hampers “psychic debugging.” Your IT colleague walks into the office with an exception
stack trace scribbled down on a Post-It note (or sends an email if you’re in a modern
company). It reads Eval, Eval, Eval, Eval, Eval. Can you tell where the code went wrong? If
you’re lucky, there’ll be some more immediately apparent state (as shown in Figure 7.8,
the ex parameter’s ToString is shown by the debugger), but having more meaningful
method names can help a lot.

Personally, I like to break down the code into succinct methods, so the use of blocks in
switch statements decreases significantly:

static int Eval(Expression ex)

{

switch (ex.NodeType)

{

371Selection Statements

FIGURE 7.8 Obfuscated call stack due to excessive use of switch blocks.

case ExpressionType.Constant:

return EvalConstant((ConstantExpression)ex);

case ExpressionType.Add:

return EvalBinary((BinaryExpression)ex, (a, b) => a + b);

case ExpressionType.Multiply:

return EvalBinary((BinaryExpression)ex, (a, b) => a * b);

// Other binary operations.

default:

throw new NotSupportedException(“Can’t evaluate “ + ex + “.”);

}

}

I couldn’t resist, though, using a little lambda expression in EvalBinary to simplify the
binary operator case. You’ll see more on the use of lambdas Chapter 17, “Delegates,” and
when covering LINQ in Chapter 19, “Language Integrated Query Essentials,” and Chapter
20, “Language Integrated Query Internals.”

Also notice the self-confident use of cast expressions rather than the fail-safe as keyword.
In this case, we know for sure that an expression whose type is, say, Add needs to be a
BinaryExpression. If you know it for sure, use a cast!

ROBUST EVALUATORS

The approach taken to write an evaluator in the preceding snippet is quite standard.
It’s called “recursive descent” because we’re descending the expression tree recursive-
ly. One potential issue with such an approach is its call stack behavior; it’s not unimag-
inable for very complicated expressions to exhaust the call stack space resulting in a
StackOverflowException. Alternatives exist but are beyond the scope of this book.
So if you ever need to write a recursive evaluator that should be resilient against
deeply nested input, be sure to test for this potential issue.

Internally, the switch statement is implemented with direct assistance from the IL
instruction set. To keep things simple, let’s just use an int-based switch for illustration
purposes only:

372 CHAPTER 7 Simple Control Flow

FIGURE 7.9 A switch label specifies jump targets.

static string ToDutchBinaryString(int x)

{

switch (x)

{

case 0:

return “nul”;

case 1:

return “een”;

default:

throw new InvalidOperationException(“Not a binary digit.”);

}

}

The switch instruction is table-driven, basically specifying target labels for integral values
0, 1, 2, and so on. If gaps occur in the case labels (such as only having 0 and 2 above),
switch will transfer control to the default label for the missing ones (1, that would be). All
the ones that don’t belong to the “covered range” would fall through the switch instruc-
tion, where control is transferred to the default label, too.

In Figure 7.9, switch looks at the parameter value x and transfers control to label IL_0012
in case the value was equal to 0, and IL_0018 in case of 1. Otherwise, control falls through
where an unconditional jump is made to IL_001e where the default case lives.

Because the switch instruction knows about values 0, 1, 2, and so on for its consecutive
set of target labels, the compiler does some elementary math to fit code on this behavior.
For example, if you switch with cases for values 10 and 11, the compiler would subtract 10
before doing the switch, which is then based on 0 again. An example of this is shown
here, also leaving a gap in the range of values:

373Selection Statements

Number of Targets Followed by Offsets = x - 11

FIGURE 7.10 More-complex switch logic.

switch (x)

{

case 11:

return “elf”;

case 13:

return “dertien”;

default:

throw new InvalidOperationException(“Unexpected value.”);

}

Instead of switching on x, the code will switch on x, 11. Notice this is safe to do because
the subtraction operator used here is well known to the compiler for not having side
effects because only the built-in integral types are supported. The 11-case will correspond
to the first switch label, the nonexisting 12-case will be patched up to correspond to a
jump to default, and the 13-case will end up in its appropriate spot. The rest fall through.
Figure 7.10 illustrates this and also shows the bytes for the instructions and their operands.

If the range of values used in the switch is too fragmented to be normalized to a more or
less consecutive range, the compiler will resort to emitting code as if a regular multiway if
statement were written instead.

Notice that the zero-based nature of the switch instruction makes it ideally suited for
enumeration values because (in the standard case) those comprise a zero-based set of
values. For example, our Color enumeration has values 0 to 2 for Red through Blue
because we haven’t vetoed the default values chosen by the compiler (more on that later).

374 CHAPTER 7 Simple Control Flow

For string-based switches, the code is treated as if it were a multiway if statement compar-
ing the string against the supplied values using the == operator defined on the System.
String type. This performs a case-sensitive character-by-character equality check. If the
number of cases grows too big (today’s threshold being six or more, but that can change at
any time)—and because ordering shouldn’t matter to the developer—the compiler emits
more efficient code that uses a Dictionary<string, int> internally. This collection type
uses a technique called hashing to speed up lookup operations, as you will see when we
discuss collections in Chapter 16, “Collection Types.”

For example:

static string DutchDecimalDigitToEnglish(string s)

{

switch (s)

{

case “nul”: return “zero”;

case “een”: return “one”;

case “twee”: return “two”;

// Enough additional cases here.

default:

throw new InvalidOperationException(“Not a decimal digit.”);

}

}

This code gets compiled to the following equivalent, roughly:

static Dictionary<string, int> s_switchHelper; // really a random name

static string DutchDecimalDigitToEnglish(string s)

{

if (s_switchHelper == null)

s_switchHelper = new Dictionary<string, int>

{ { “nul”, 0 }, { “een”, 1 }, { “twee”, 2 }, /* more cases */ };

int __num;

if (s_switchHelper.TryGetValue(s, out __num))

switch (__num) {

case 0: return “zero”;

case 1: return “one”;

case 2: return “two”;

default: goto __default;

}

375Selection Statements

__default:

throw new InvalidOperationException(“Not a decimal digit.”);

}

The real code is slightly more complicated to accommodate multithreaded execution, but
the core of the idea is to turn a string-based switch into an int-based one natively supported
by the runtime. This mapping is based on a dictionary that is instantiated on first use.

But why all this fuss? Actually, I wanted to bring up a hidden message by using this partic-
ular example: Table-driven execution is a very useful technique. Obviously, your case
labels’ embedded statements could be much more involved and do much more than just
establish some mapping. But the next time you write a switch to encode some kind of
mapping, think about the possibility to use a table instead. Our example could be
completely rewritten as follows:

static Dictionary<string, string> s_dutchToEnglish;

static string DutchDecimalDigitToEnglish(string s)

{

if (s_dutchToEnglish == null)

{

s_dutchToEnglish = new Dictionary<string, string>

{ { “nul”, “zero” }, { “een”, “one” }, /* more mappings */ };

}

string english;

if (!s_dutchToEnglish.TryGetValue(s, out english))

throw new InvalidOperationException(“Not a decimal digit.”);

return english;

}

FOREIGN LANGUAGES IN A NUTSHELL: SELECT CASE AND MATCH

Although this book talks about C#, in the world of .NET you might have to face code
written in another language at some point. So I want to point out more-or-less corre-
sponding features to switch in other languages.

Visual Basic has Select Case, which can be used for the things we’ve done with
switch in C# but also a bit more, such as checks for ranges (Case 1 to 10) and
inequalities (Case > 1).

F# has a matching construct that goes way beyond what C#’s switch and Visual
Basic’s Select Case can do. It allows for full-fledged pattern matching of tuples, lists,
discriminated unions, and types. An example defining a function to calculate a shape’s
surface is shown here:

376 CHAPTER 7 Simple Control Flow

let surface shape =

match shape with

| Rectangle(w, h) -> w * h

| Circle(r) -> PI * r * r

Notice how match in F# is an expression rather than a statement because it produces
a value as the result of its evaluation.

Iteration Statements
Another quite fundamental technique in the context of imperative style of programming
is iteration, the repetition of execution of a certain piece of code. Time to cover C#’s four
loop constructs: while, do, for, and foreach.

The while Statement

To continue executing an embedded statement as long as a certain condition holds true,
the while statement is the ideal choice. Its shape is as follows:

while (condition)

embedded-statement

Just as with the if statement, the condition is a Boolean-valued expression, or to be
completely accurate, something implicitly convertible to a Boolean. Once more, this
means null checks or nonzero checks need to be made explicit, as opposed to C and C++,
where it’s not uncommon to write code like this:

// How one would copy a string in C or C++.

while (*cpy++ = *str++)

;

Side-effecting assignment, treatment of a character as a truth value, and other wackiness
with pointer arithmetic—no way in C#. (For the curious, the preceding code is a popular
string-copy pattern.)

A sample use of the while statement is shown here:

int i = 1;

while (i <= 10)

{

Console.WriteLine(new string(‘*’, i));

i++;

}

377Iteration Statements

Here we count from 1 to 10 using a local variable and print a number of asterisks to the
screen on every loop iteration. The block syntax is used to make have the loop body
contain two statements, though I recommend using curly braces even for single statement
loop bodies. Readers proficient with the post-increment operator—and by now everyone
should be—will notice this code can be abbreviated as follows:

int i = 1;

while (i <= 10)

Console.WriteLine(new string(‘*’, i++));

True, it’s shorter but not more readable. Avoid this in production code. Next, someone
comes around and adds an if statement to the loop body, causing the increment of i to
be conditional. Chances are the loop gets in a state where i isn’t incremented and the
condition never evaluates false: a runaway loop!

Sometimes it makes sense to write an infinite loop (for example, to create a message
processor that’s the driver of a service). Its task is to accept messages and dispatch them
to some worker that does the real processing. Don’t be surprised if you sometimes see
code like this:

while (true)

{

// Do something.

}

Your next logical question should be how the loop is terminated. This is a topic on its
own and highly depends on context. Sometimes exceptions are used for this purpose,
sometimes a Boolean flag is set (but it might not have an immediate effect because the
loop might be blocked while waiting for messages to come in), but yet other techniques
exist. While we’re at it, this is the ideal place to discuss how a loop’s iteration behavior
can be modified.

break

The break statement can be used to break out of a loop. It transfers control to the state-
ment immediately following the loop. For example:

var rand = new Random();

while (true)

{

var num = rand.Next();

if (num % 2 == 0)

break;

Console.WriteLine(num);

}

378 CHAPTER 7 Simple Control Flow

An odd-number lottery if you will. As soon as an even random number is found, we break
out of the loop. Break is one of those statements that justify the omission of curly braces
when used as the embedded statement for an if statement.

BREAKING... ONE LEVEL AT A TIME

In contrast to some other languages, C#’s break statement only allows us to break out
of the closest loop or switch statement. That is, if you have nesting going on—such
as loops inside loops or a switch inside a loop—you can only break out of the inner-
most construct.

Why doesn’t C#’s break account for that? There are probably a few reasons: Perhaps
it’s historically rooted; perhaps it’s because C and C++, the spiritual parents of C#,
don’t supply such a multilevel break either. Or perhaps it’s because such multilevel
breaks are not common, so there’s no reason to bloat the language.

“Too weak arguments,” you say. So what about this? Refactoring. Assume a multilevel
break is done by labeling loops and specifying the label as an “argument” to the break
statement, as shown here:

// Warning: this is not a valid C# program.

outer:

while (conditionOuter)

{

// Do stuff.

while (conditionInner)

{

// Some inner loop code.

break outer;

}

// Do more stuff.

}

When the inner loop grows too big, it’ll be a good idea to have the refactoring function-
ality in Visual Studio do its thing and extract a method for it. But in the presence of
labeled breaks, the code to be refactored is dependent on code much higher up,
making straightforward refactoring impossible. Obviously, this problem also exists when
using regular (much to be avoided) goto statements. Using labeled breaks, we’ve
essentially brought back part of the goto hell. In fact, you can explicitly use C#’s goto
statement to achieve this break effect if you really want.

One last argument I can bring up against labeled breaks is the fact that they don’t
improve code readability, requiring scrolling to find labels. With some flag-based plumb-
ing—as you will see—you can follow the break path one level at a time. You can think
of alternatives to labeled breaks, but they are at best cumbersome, too. For example,
specifying the nesting level to break out of (0 for current loop, 1 for outer one, and so
forth) is error-prone in the face of making updates to the code. Changing the nesting
levels requires us to patch up all break statements that depend on it.

379Iteration Statements

while (condition)

{
 •

 •

 •

 break;

 •

 •

 •

}
 •

 •

 •

while (condition)

{
 •

 •

 •

 continue;

 •

 •

 •

}
 •

 •

 •

FIGURE 7.11 The break and continue statements compared.

If you need to break at another level, some plumbing will be required. It’s clear you
need to break out of the innermost one and percolate the break up to the desired
point. A common technique is to set a Boolean flag and check for that flag immediately
after the inner construct to see whether another break is needed. A little example will
make this clear:

while (conditionOuter)

{

bool breakOuter = false;

// Do stuff.

while (conditionInner)

{

// Some inner loop code.

breakOuter = true;

break;

}

if (breakOuter)

break;

// Do more stuff.

}

This might not be as sexy as labeled breaks and whatnot, but it’s easy enough to trace
the flow of the code one level at a time. And it’s refactoring friendly: If you attempt to
refactor the inner loop into a separate method, breakOuter will become the return
value for that method.

continue

Whereas the break statement enables you to jump out of the loop and continue execution
with the statement following it, the continue statement enables you to go to the next iter-
ation. Figure 7.11 provides a conceptual overview by showing both next to each other.

380 CHAPTER 7 Simple Control Flow

I deliberately chose to make the continue control flow arrow point at the closing curly
brace as opposed to the first ellipsis inside the loop body. As you’ll see, other loop
constructs put some end-of-iteration logic at the bottom of the loop, nearly behind the
closing curly brace, if you will. But the more important part here is the fact the condition
is reevaluated when control is transferred using the continue statement. As with the break
statement, you can only continue the current loop.

LOOPS? GOTO IN DISGUISE, ONLY A BIT HARDER...

Under the hood, loops are implemented using branch instructions. Branches are plain
old goto statements on the IL level. That said, there are some subtleties in the imple-
mentation for control transfer with loops, break statements, and continue statements
in managed code.

The source of those complicates lies in exception handling, which we discuss exten-
sively in Chapter 8, “Basics of Exceptions and Resource Management,” largely dedicat-
ed to the topic. For example, a break statement occurring in a protected block inside a
loop’s body is more complicated than a simple goto because a special instruction is
required to leave a protected block. This instruction, appropriately called leave, tells the
runtime to ensure all the guarantees the exception handling code provides are met
(see further to learn what those are).

The do...while Statement

The while statement evaluates its condition before entering the loop body on every itera-
tion. If evaluation of the condition at the end of the loop is desired, the do statement is
your choice:

do

embedded statement

while (condition);

(Don’t forget the semicolon at the end of the last line.) An implication of this loop struc-
ture is that the body of the loop runs at least once. Control simply falls into the loop at
the start, and when the condition at the end evaluates positively, control is transferred to
the beginning of the loop body again.

As with the while statement, the break and continue statements can be used in a do state-
ment’s embedded statement, too.

381Iteration Statements

CODE MAINTENANCE CAVEAT

Because I once spent a couple of minutes staring at code that caused an infinite loop,
I thought I would share this little caveat with you. At some point, I decided to change a
do-while loop into a while loop: Code for the first iteration got somehow conditioned
inside the loop but could be pulled out of it, and all of a sudden there was no reason
anymore to keep the loop as a do-while. The condition got tweaked a little bit, too. But
for some unknown reason (at least at first), the code got stuck. Here’s what the code
looked like:

while (newCondition)

{

// Quite a bit of refactored code here.

// Next line not within the scroll area of the editor.

} while (oldCondition);

In my enthusiasm, I forgot to pull out the trailing while part of the do-while loop. The
result was my new loop ran flawlessly (as expected), but immediately thereafter the
remainder while part got turned into a new loop:

while (oldCondition)

;

The oldCondition expression always evaluated true, and there’s the infinite loop. I
considered myself lucky that the oldCondition was probably always going to evaluate
to true at the end of the loop, so I caught the problem immediately. If oldCondition
would have been false during the first testing, I know for sure it would have turned out
to be true the first time when demonstrating the project, making the whole thing hang.
Yes, Murphy was lurking, but this time he didn’t get me (believe me, he has on numer-
ous other occasions).

Personally, I rarely use the do statement. Most problems lend themselves to solving via the
while statement or for style loops, as you see in the next few sections.

The for Statement

Besides a condition and a body, lots of loops require an initialization phase as a preamble
to the execution of the loop. In addition to this, it’s common to have an update phase
that gets executed at the end of each iteration. The for statement is what enables cleaner
syntax for this scenario:

for (initializer; condition; iterator)

embedded-statement

As usual, the embedded statement has an optional pair of curly braces surrounding it.
(The usual remarks apply.)

382 CHAPTER 7 Simple Control Flow

The for statement can be seen as shorthand syntax for the following equivalent while
statement:

{

initializer;

while (condition)

{

embedded-statement;

iterator;

}

}

Notice the outer pair of curly braces establishing a scope for variables that may get intro-
duced in the initializer phase. This allows those variables to be reused across multiple for
statements, which is commonly seen for index variables such as i, j, and k:

var primes = new [] { 2, 3, 5, 7 };

// Forward loop over the array.

for (int i = 0; i < primes.Length; i++)

{

Console.WriteLine(primes[i]);

}

// Backwards loop over the array.

for (int i = primes.Length - 1; i >= 0; i—)

{

Console.WriteLine(primes[i]);

}

Unless you need the index values, there’s a cleaner way to iterate over an array (or any
collection for that matter) using the foreach statement, as you see in the next section.
Either way, for statements are most commonly used for loops that need some kind of index.

The initializer and iterator parts are comma-separated lists of expression statements, though
the typical use consists of a declaration in the initializer and some compound assignment
or pre- or post-increment/-decrement operation in the iterator. The following example
prints a list of powers of two:

for (int exp = 0, pow = 1; exp <= 10; exp++, pow *= 2)

{

Console.WriteLine(“2^{0} = {1}”, exp, pow); // Using a string formatter.

}

383Iteration Statements

Ignore the use of the string formatter for now. Intuitively, you should be able to see what
{0} and {1} stand for.

Break and continue statements are available for for loops just as they are for other
kinds of loops. The following is an example of the use of a break statement in the
context of a for loop:

static void PrintPrimes(int max)

{

for (int num = 2; num < max; num++)

{

bool foundDiv = false;

for (int div = 2; div <= Math.Sqrt(num); div++)

{

if (num % div == 0)

{

foundDiv = true;

break;

}

}

if (!foundDiv)

{

Console.WriteLine(num);

}

}

}

Be aware that this algorithm for finding prime numbers is not the most intelligent one
and is meant only to illustrate nested loops and the use of the break statement. Notice
that in the condition for the inner for statement a comparison is done between an integer
value and a floating-point number resulting from the Math.Sqrt call. This works because
an implicit conversion from int to double is available.

Finally, although some people prefer while (true) as the most appropriate way to write an
infinite loop, others believe they can make more of a statement using an obscure for
loop. I disagree with the latter group but leave the judgment to you (you agree!):

for (;;)

{

// Do something for”ever”; the (;;) above doesn’t really read like “ever”.

}

384 CHAPTER 7 Simple Control Flow

The foreach Statement

One of the most common sources of loop constructs enumerating over a collection of
some sort and executing some code for all the elements found. Welcome the foreach
statement, which provides you with this functionality.

Before we delve into details, let’s take a look at a few examples. The simplest collection
type is the array. Instead of writing a for loop that goes over a range of indices using the
array’s Length property as an exclusive upper bound, we can write the following:

int[] primes = new int[] { 2, 3, 5, 7 };

foreach (int prime in primes)

{

Console.WriteLine(prime);

}

The foreach statement breaks down into the following pieces:

foreach (type identifier in expression)

embedded-statement

Here, expression represents the source of the loop. You’ll see in just a minute what expressions
can be used for enumeration. In front of the in keyword, a local variable—referred to as the
iteration variable—is introduced. For every iteration, it will take on the value of an
element found in the source.

Another example can be found with the collection types. I’m using the generic ones from
the System.Collections.Generic namespace here:

var primes = new List<int> { 2, 3, 5, 7 };

foreach (int prime in primes)

{

Console.WriteLine(prime);

}

var ages = new Dictionary<string, int> { { “Bart”, 26 }, { “John”, 62 } };

foreach (string name in ages.Keys)

{

Console.WriteLine(“{0} is {1}”, name, ages[name]);

}

The first example should be self-explanatory. In the last one, we’re using the Keys property
of the Dictionary<K,T> generic type to get all the keys back that appear in the dictionary.
Inside the loop, we index into the collection based on that key to retrieve the age. This is
just one technique:

385Iteration Statements

FIGURE 7.12 Using the explicitly typed iteration variable.

foreach (KeyValuePair<string, int> item in ages)

{

Console.WriteLine(“{0} is {1}”, item.Key, item.Value);

}

Here, we’re enumerating over the dictionary itself as a sequence of (generic) KeyValuePair
objects, each of which has a Key (of type string in the preceding example) and a Value
(of type int here). Having to type the long generic type name can be tedious, so consider
yourself lucky that an implicitly typed local variable can be used here, too. To learn where
the compiler infers the type from, read on. Figure 7.12 shows IntelliSense for the
KeyValuePair object. Inferring the type using the var keyword should result in the same
IntelliSense auto-completion.

foreach (var item in ages)

{

Console.WriteLine(“{0} is {1}”, item.Key, item.Value);

}

To conclude our exploration of possible uses of the foreach statement—and to continue
down the road of type inference—here’s a sneak peek of the use of LINQ to query in-
memory data:

const int MB = 1024 * 1024;

var memHungry = from proc in Process.GetProcesses()

where proc.WorkingSet64 > 50 * MB

select new { proc.ProcessName, MB = proc.WorkingSet64 / MB };

To run this example, you must import the System.Diagnostics namespace, where the
Process type is defined. Recall that importing a namespace is done by means of a using
directive at the top of the file. The code editor can assist you in putting the right directive
in place: As soon as you’ve typed the unresolved type name, a little tip lights up under-
neath the name. You can either click this or press Ctrl+. (that is, the period key [or “dot”]
on the letters part of the keyboard) to select the namespace to import. Figure 7.13 shows
the smart tag that shows the option for importing the missing namespace.

386 CHAPTER 7 Simple Control Flow

FIGURE 7.14 The anonymous type used in the select clause propagates to the result.

FIGURE 7.13 Importing namespaces made easy.

It should be pretty clear what this query does: It finds all the processes running on the
machine with a working set larger than 50MB. The 64 in the WorkingSet64 property name
reflects the precision of the value (long, or Int64). Another 32-bit property called
WorkingSet exists, which is now marked obsolete due to its insufficient range to deal with
64-bit processes that can have a working set that doesn’t fit in a 32-bit value.

Where the need for implicitly typed local variables comes in is due to the select clause,
in which we’re using an anonymous type to project out only the pieces of data we’re inter-
ested in: the process name and the working set in megabytes. We cover anonymous types
when talking about LINQ more extensively in Chapters 19 and 20, but your gut feeling is
right: If a type doesn’t have a name (at least not pronounceable by the developer because
the compiler has generated a name behind the scenes anyway), how can we refer to it?
The answer is to have the compiler infer the type:

It’s clear the type used in the select “projection” clause is used to shape our resulting
objects, so it should appear somewhere on the surface of our query. This is illustrated in
Figure 7.14. In fact, I’m temporarily driving attention away from the enumeration aspect
that comes with a query: Before we can enumerate over elements, the foreach statement
requires us to state the type somehow. Here we can’t do anything but have the compiler
infer it for us:

foreach (var memoryHungryProcess in memHungry)

{

Console.WriteLine(memoryHungryProcess);

}

Figure 7.15 shows the result of running the query by means of iteration using the foreach
loop construct.

Notice that anonymous types have a ToString override in place that prints their property
names and values in a comma-separated string. Handy.

387Iteration Statements

FIGURE 7.15 The result of the memory hungry processes query.

IEnumerables Are the foreach Loop’s Best Friends
Time to take a look at how the foreach statement works. Although a little more compli-
cated than that, the foreach statement is intimately related to the IEnumerable interface
in the System.Collections namespace and its generic friend IEnumerable<T>. Essentially,
this means that foreach can deal with everything that’s “enumerable.”

ENUMERATIONS VERSUS ENUMERABLES

Don’t confuse enumerations with enumerables. It’s an unfortunate naming conflict
that’s historically rooted. Enumerations are value types that define a number of symbol-
ic constants, as you saw with Color during our discussion about the switch state-
ment. Enumerables, on the other hand, are objects that support being enumerated over,
named after the corresponding interfaces in the BCL. It should be clear from context
what’s meant if we use the word enumeration, either as a noun (for example, Color) or
as a verb (the act of enumerating over an enumerable (for example, with foreach).

To see how enumeration is formalized through the IEnumerable and IEnumerable<T>

interfaces, let’s take a look at them in Figure 7.16.

FIGURE 7.16 IEnumerable interfaces and friends.

388 CHAPTER 7 Simple Control Flow

At the bottom is the new (post .NET 2.0) world, with generic types. Because we’ll be
dealing mostly with those, our journey begins there.

First there’s IEnumerable<T>, providing a way to get an enumerator. In essence, an
enumerable only states it can be enumerated over, but the act of doing so is separated out
into a different enumerator type. This allows us to keep enumeration state on a per-
enumeration basis, so multiple iterations can be carried out simultaneously.

This brings us to the IEnumerator<T> type that gets returned by calling GetEnumerator on
the IEnumerable<T> object. Think of the enumerator as a cursor-driven way to retrieve
elements in a sequential fashion. A call to MoveNext advances the cursor and returns a
Boolean indicating whether a next element was found. If so, the get-only Current prop-
erty can be used to retrieve that element. Mix in a loop and you end up with a nice
pattern for enumeration: “while MoveNext returns true get the Current element,” as
illustrated here:

List<int> primes = new List<int> { 2, 3, 5, 7 };

IEnumerator<int> enumerator = primes.GetEnumerator();

while (enumerator.MoveNext())

{

int prime = enumerator.Current;

Console.WriteLine(prime);

}

And indeed, this is almost what the foreach statement compiles into in this case. Those
with an eye for detail will have spotted another interface in the previous diagram:
IDisposable. Enumerators implement this interface to provide proper resource cleanup,
something discussed in more detail in Chapter 8. Nevertheless, the IDisposable interface
is easy enough to explain in one line. Types implementing it establish a contract with
their consumers that states “if you’re done with an instance of mine, call the Dispose
method for me to clean up after you.”

Why do we need resource cleanup for enumeration? The short answer is to enumerate
over collections for no particular reason. But enumeration could also be provided over
things such as the contents of a text file in a line-by-line manner. No matter how iteration
is finished—by reaching the end, by breaking out of the loop, or because an unhandled
exception forcefully terminated the loop—we need to release resources that may be held.
A more accurate translation for the preceding iteration looks like this:

IEnumerator<int> enumerator = primes.GetEnumerator();

try

{

while (enumerator.MoveNext())

{

int prime = enumerator.Current;

Console.WriteLine(prime);

}

389Iteration Statements

FIGURE 7.17 A few commonly used collection types.

}

finally

{

if (enumerator != null)

enumerator.Dispose();

}

You’ll see the meaning of the try and finally keywords later, but the essence is this: The
code underneath try makes up a protected block. Exception handlers (using the catch
keyword) can be associated with such a block, as well as a finally block. The exception-
handling system guarantees the finally block is called no matter how control leaves the
protected block it’s associated with. In other words, in the preceding code, we’re guaran-
teed to clean up the enumerator’s state even if—for some reason—the code in the enumer-
ation blows up.

As you might expect by now, the collection types we’ve been using implement the
IEnumerable<T> interface, for some T. Typically, the generic parameter T is simply carried
over from the defining type; for example, a List<T> obviously can enumerate over
elements of type T, no matter what type is substituted for T. For a dictionary though, the
type parameter to IEnumerable<T> is more complex, as revealed in Figure 7.17 using a
Visual Studio Class Diagram.

Can you see how the generic parameter on IEnumerable<T> ultimately ends up as the type
for the iteration variable? From IEnumerable<T>, we get an IEnumerator<T> whose
Current property is typed to be of type T. Because the generic Dictionary type imple-
ments the IEnumerable<KeyValuePair<TKey, TValue>>, the iteration variable will be of
type KeyValuePair<TKey, TValue>.

INTERFACES IN A NUTSHELL

In this whole discussion, we’ve met no less than five interfaces: the generic and non-
generic IEnumerable and IEnumerator ones, as well as IDisposable. Interfaces
establish a contract between two parties. One party says, “As long as you provide such

390 CHAPTER 7 Simple Control Flow

and such operations, I can work with you.” An example of such a party is the foreach
statement, requiring someone to implement what it means to perform an enumeration.
The other side says, “I’ll obey the rules of the contract so that others can work with me
to carry out a specific task.” The obvious example of that side is the collection types
that have gone through the burden of implementing an IEnumerable interface. Oh, for
the record, the I prefix stands for “interface” and not the first person in the English lan-
guage as in “Look mom, I can enumerate.”

How It Really Works
Even though the IEnumerable<T> and IEnumerable interfaces are great ways to express the
ability to enumerate over something, the foreach statement is a bit looser in its considera-
tion of what’s “enumerable.” In fact, all the foreach statement cares about is having the
enumeration pattern available:

. Can I ask the source expression for an enumerator by means of some method called
GetEnumerator?

. Does the resulting enumerator have a MoveNext method returning a Boolean to indi-
cate the success state of advancing the cursor?

. Is it possible to ask that same enumerator object for the current element we’re at in
the iteration, using a property Current with a getter?

. And—this is optional—if there’s a disposable pattern on the enumerator object, I’ll
call it faithfully.

In addition to this, the type used to declare the iteration variable can be used in a hidden
cast expression. This has historical grounds because .NET 1.x only had the nongeneric
IEnumerable interface, whose enumerator was IEnumerator. Because enumeration should
work for all collections with any element type imaginable, the logical choice was made to
type the Current property as System.Object. An example is ArrayList, as shown here
(using plain old C# 1.0 syntax to put us in a pre-generics mood):

ArrayList primes = new ArrayList();

primes.Add(2);

primes.Add(3);

primes.Add(5);

primes.Add(7);

foreach (int prime in primes)

{

Console.WriteLine(prime);

}

Even though the elements appear as System.Object to the foreach loop’s innards, C#
allows the user to specify a more specific type for the iteration variable. Internally, a cast is
carried out. Obviously, if the (nongeneric) source collection contains something of a type

391Iteration Statements

FIGURE 7.18 Read-only treatment of the iteration variable.

incompatible with the iteration variable’s type, an InvalidCastException will occur. But
typically that indicates you have a bug in the first place because most collections are meant
to be containers for elements of the same type (or at least something more specific than
System.Object; for example, Fruit). One more caveat is the hidden cost of boxing and
unboxing (explained in Chapter 9, “Introducing Types,” in the section, “Boxing”) associ-
ated with nongeneric collections containing value typed objects. And the use of nongeneric
collection types in the post .NET 1.x era should be less common than it used to be.

DUCK TYPING

The fact that the foreach statement doesn’t strictly depend on interfaces but rather
can deal with patterns that look “okay” for the task at hand is a form of duck typing in
the language. Some shiver at the thought of this, but let’s be honest: What are the
chances that an object that has a GetEnumerator method that returns an object with
MoveNext and Current is not meant to be enumerated over?

More Trivia
The foreach statement was arguably the most complex statement in C# 1.0 in terms of its
behavior and implementation. One more characteristic it has is the read-only treatment of
the iteration variable. The IEnumerable pattern is a one-direction retrieval-only mecha-
nism, so there’s no way to stuff items back in. In fact, the enumerator’s contract is that it
requires only a getter for the Current property. Therefore, every attempt to assign to the
iteration variable (either directly or indirectly; for example, using the ++ operator) will
result in a compile-time error. Figure 7.18 shows an error message originating from an
attempt to mutate the iteration variable.

Notice that the read-only property is a shallow concept. Although you can’t replace the
element itself, you can change its content when dealing with a reference type. Assume
you have some Account class that keeps the balance of a banking account and you want to
pay out interest (ignoring lots of complications around transactions):

foreach (var account in bank.GetAccounts())

{

account.Balance *= 1.05m;

}

In addition to this, various collection types enforce rules that make it impossible to
change a collection’s contents while enumeration is in progress. Such conditions are

392 CHAPTER 7 Simple Control Flow

FIGURE 7.19 Don’t modify collections while enumerating over them.

checked at runtime, causing an exception to be thrown when a violation is detected.
Figure 7.19 shows the runtime exception occurring from the loop when the underlying
collection has been tampered with during iteration.

A Peek at Iterators
Now that you’ve learned about iteration constructs in general and the foreach
loop’s capability to deal with IEnumerable objects, we’re in an ideal position to
introduce the concept of iterators. So far, all enumeration sources we’ve seen are

collections of some sort. But what about creating our own sources to provide sequences of
data consumable through enumeration?

Observe the true nature of the foreach loop first. In its true essence, it pulls data from
some sequence of elements by querying that sequence using the MoveNext and Current

members. Nothing requires the data returned to be available before the iteration starts;
what about computing it as we go? Here we enter the domain of lazy evaluation.

An example of a lazy computation is to ask prime numbers one by one rather than have a
persistent collection of them in memory. For this sequence of data to be consumable
through the foreach loop, it needs to expose the iteration pattern explained in the previ-
ous section.

So let’s give it a try to make up such a lazy computation by hand. Rest assured that the
feature discussed here, iterators, will make the following code much easier to write. I
merely want to point out what a royal pain writing such a thing by hand can be. First, we
define a class that will act as the entry point to the computation. Here the enumeration
pattern starts by providing a GetEnumerator method:

class PrimeGenerator
{

public PrimeEnumerator GetEnumerator()
{

return new PrimeEnumerator();
}

}

393A Peek at Iterators

We detail the mechanics of declaring classes and their members in Chapter 9, but as you
can see, there isn’t much to it. Ultimately, we want to be able to use an instance of this
type as the source for a foreach statement:

foreach (int prime in new PrimeGenerator())

{

Console.WriteLine(prime);

Console.Write(“Want More? “);

if (!Console.ReadLine().ToLower().StartsWith(“y”))

break;

}

Notice we’re using the flexibility of the foreach statement because we’re not implement-
ing any of the IEnumerable interfaces. There’s no reason not to implement those, but to
keep it simple I chose to omit details on interface implementation for now.

Next up is the enumerator itself. Here, we need to have two members: One is the
MoveNext method; the other is the Current property with a get accessor available on it.
Don’t worry too much about the details for now but concentrate on how our nice algo-
rithm now needs to maintain state across MoveNext calls. A call to MoveNext signals that
the consumer—in our case, the foreach statement—is asking us for the next element. At
that point, we need to know what the last prime was we yielded back to the caller and
start our search for the next one. When we find one, we need to break from the loop,
assign to the _current field (which is used in the Current property to return a value to
the caller) and return from MoveNext saying we found one:

class PrimeEnumerator

{

private int _current = 1;

public bool MoveNext()

{

for (int num = _current + 1; num < int.MaxValue; num++)

{

bool foundDiv = false;

for (int div = 2; div <= Math.Sqrt(num); div++)

{

if (num % div == 0)

{

foundDiv = true;

break;

}

}

394 CHAPTER 7 Simple Control Flow

FIGURE 7.20 Computing prime numbers on request.

if (!foundDiv)

{

_current = num;

return true;

}

}

return false;

}

public int Current

{

get { return _current; }

}

}

Notice how I’ve bound the outer loop to int.MaxValue to avoid overflow conditions,
which would put us in the land of negative integers where prime numbers are ill defined
(and worse, our algorithm would choke on it). Figure 7.20 illustrates lazy computation of
prime numbers using an iterator in practice.

As you can see, creating an iterator by hand is doable but not very appealing. And here
we’re not even dealing with resource deallocation (through IDisposable) or more
complex control flow inside the iterator. Starting with C# 2.0, iterators can be used to
make writing such a beast much easier. In fact, the LINQ to Objects implementation is
almost completely based on this feature (as you will see in Chapter 20).

Recall our PrintPrimes example? If not, browse back to the section “The for Loop” and
commit it to memory. Now look at the following code and search for the few differences:

395A Peek at Iterators

static IEnumerable<int> GetPrimes(int max)

{

for (int num = 2; num < max; num++)

{

bool foundDiv = false;

for (int div = 2; div <= Math.Sqrt(num); div++)

{

if (num % div == 0)

{

foundDiv = true;

break;

}

}

if (!foundDiv)

{

yield return num;

}

}

}

To make things easy, I’ve highlighted the differences in bold:

. The return type of the method has become IEnumerable<int>. This has the potential
of turning the whole method body into an iterator if the feature mentioned in the
next point is used.

. Instead of returning from the method using the plain-vanilla return keyword, we
yield objects back to the caller on a one-by-one basis using the yield return key-
words instead.

Internally, iterators do precisely what we’ve done by hand: They build up a state machine
that keeps track of the point in execution where control was yielded so that a subsequent
MoveNext call can resume in a state where the previous call left off. In addition, the
generator iterator code ensures proper cleanup of resources that are used within the itera-
tor’s code. It also deals with multithreaded access so that multiple iterations can be in
flight simultaneously. Without going into detail, let’s just glance at the macroscopic
structure of the generated code. Figure 7.21 shows the complexity of an iterator through
the glasses of ILDASM.

396 CHAPTER 7 Simple Control Flow

FIGURE 7.21 Generated code for an iterator.

All we have to do now is patch up our consuming code:

foreach (int prime in GetPrimes(int.MaxValue))

{

Console.WriteLine(prime);

Console.Write(“Want More? “);

if (!Console.ReadLine().ToLower().StartsWith(“y”))

break;

}

The most important property of an iterator is without doubt the fact it keeps the code
readable, as it was intended to look in the first place. Everyone knows return; now you
simply use yield return and don’t have to worry with all the bookkeeping around
suspending and resuming the iterator’s execution. All such plumbing is taken care of by
the compiler.

To whet your appetite about LINQ, let’s give away the implementation of one of its
query operators: Where (a method, hence with a capital letter). We’ve already used
the where clause (a keyword, hence a lowercase letter) in a previous example to

filter out those processes whose memory footprint is larger than 50MB:

397A Peek at Iterators

const int MB = 1024 * 1024;

var memHungry = from proc in Process.GetProcesses()

where proc.WorkingSet64 > 50 * MB

select new { proc.ProcessName, MB = proc.WorkingSet64 / MB };

The where keyword is just syntactical sugar over a call to a Where method, which in this
context is referred to as a query operator. We detail this translation of query expressions
into method calls in more detail during our coverage of LINQ in Chapter 19, but here’s
what the query expression in the preceding code “desugars” into:

var memHungry =

Process.GetProcesses()

.Where(proc => proc.WorkingSet64 > 50 * MB)

.Select(proc => new { proc.ProcessName, MB = proc.WorkingSet64 / MB });

LINQ to Object’s Where operator is implemented as follows:

public static IEnumerable<T> Where<T>(this IEnumerable<T> source,

Func<T, bool> predicate)

{

foreach (T item in source)

{

if (predicate(item))

{

yield return item;

}

}

}

I’ve omitted some details here around parameter validation, which you’ll see later. More
important to understand is how this iterator works. First, notice it’s a generic method that
can deal with any IEnumerable<T> as its input. The fact the first parameter has the this
modifier on it makes it an extension method. This allows slightly different and more natural
calling syntax by allowing that argument to appear as the left side:

result = src.Where(predicate);

The preceding code is the same as the following:

result = Enumerable.Where(src, predicate);

Enumerable is the name of the class in which this Where method is implemented; its
namespace is System.Linq, as you will see later. Either way, the first calling syntax defi-
nitely feels more natural because you can read it from left to right: Take the src and apply
the Where operator, giving it a predicate. In fact, in our example, Select is another such

398 CHAPTER 7 Simple Control Flow

query operator. Without extension methods, the whole query (expressed as method calls)
would look like this:

var memHungry =

Enumerable.Select(

Enumerable.Where(

Process.GetProcesses(),

proc => proc.WorkingSet64 > 50 * MB

), proc => new { proc.ProcessName, MB = proc.WorkingSet64 / MB }

);

Do you still recognize the original query with a simple glance? No. Although extension
methods are purely cosmetic, they serve a very important goal: code clarity (would that be
the reason LINQ’s original code name was Clarity?).

Back to our Where operator implementation. By now you should have enough intellectual
baggage to understand the essence of it:

foreach (T item in source)

{

if (predicate(item))

{

yield return item;

}

}

On the outer level, we loop over a sequence “source” of type IEnumerable<T>, so the
elements are of type T, whatever that may be. That’s the essence of programming with
generics: You end up with an abstraction over “any type” by using a type parameter.
Inside the loop, we use delegate invocation to call through the predicate delegate. Its type
is Func<T, bool>, a generic type that’s defined as follows:

delegate TResult Func<T, TResult>(T arg0);

So this Func generic type of arity 2 (meaning it has two generic type parameters) can
represent any unary function: Given one argument of type T, it produces an answer of
type TResult. Here are a few examples to make the use of this function delegate type clear:

Func<int, int> twice = x => x * 2;

Func<string, int> length = s => s.Length;

Here we’re using lambda expressions (introduced and briefly discussed earlier in this
chapter). Notice how the same Func<,> delegate type can be used with different generic
type arguments to denote functions operating on different types. Generics once again.

In the context of our Where query operator, we’re describing a function that goes from
type T to System.Boolean. That’s what a predicate is all about: asking whether an element

399A Peek at Iterators

Query Results

IEnumerable <T>

IEnumerable <R>

Data source

S
el

ec
t

Fo
re

ac
h

W
h

ere

FIGURE 7.22 Interaction between different iterators in a query.

should be included in the resulting sequence. And that’s precisely what happens in the if
statement. If the predicate says yes, the element is yielded to the caller. And all of this is
done in a lazy fashion: When the caller stops pulling out elements from the query, no
more elements are analyzed, and the loop terminates. Fascinating, isn’t it?

LINQ enables us to arbitrarily chain together several operators. For filtering, Where is used;
it takes in a sequence and produces a new one. In our sample query, we fed the output of
this filtering operation into the projection done by Select, producing yet another
sequence. And we can continue doing so, with operations like sorting, grouping, aggrega-
tion, and so on. This concept is illustrated graphically in Figure 7.22.

This use of wheels and chains precisely illustrates the point. The foreach statement essen-
tially pulls the chain, causing the Select wheel to move. Internally, this one uses a
foreach statement to suck data out of the results of the Where query operator. And that
one ultimately consumes data from the data source; in our case, Process.GetProcesses().
As soon as the consuming foreach statement stops running (for example, because of a
break statement), the iterators connected through the chain stop ticking, too.

We discuss LINQ in much more detail later on, but I want you to remember one thing
right now. If you’re writing loop constructs to process data, LINQ might be a better
choice. For one thing, it leads to a dramatic improvement in code readability, and laziness
can be an advantage to avoid needless computation.

400 CHAPTER 7 Simple Control Flow

FIGURE 7.23 The System.Threading.Parallel type’s parallel loop constructs.

As a little exercise, try to rewrite the process-filtering example in terms of typical loop
constructs. I’m sure you’ll come to realize the intent of the code gets buried underneath
the imperative style of code. And we’re not yet doing more fancy query operations like
sorting, grouping, and so on.

Loops in the Age of Concurrency
Looked at from a different perspective, loop constructors are essentially a source of tasks.
If every iteration of a loop is independent from another iteration’s state, there’s no reason
the individual iterations can’t be run in parallel. In the age of multicore processors on
every desk, better ways to unleash the hardware’s power are a much-searched-for treasure.
The new System.Threading namespace additions in .NET 4.0 provide for this in various
ways, one of which is the concept of parallel loop constructs. We look at this in more
detail in Chapter 30, “Task Parallelism and Data Parallelism.” Figure 7.23 shows the
Parallel class’s static methods.

It’s important to realize that those constructs are provided by libraries as opposed to any
of the managed code languages. This is a huge advantage because all languages immedi-
ately benefit from this addition while not committing to new language syntax just yet.
They may slip into the language at some point, however, but only if those constructs
become popular. However, because C# has become expressive enough due to the introduc-
tion of lambda expressions in version 3.0, the use of those constructs feels quite natural:

Parallel.For(1, 100, i =>

{

// Loop body code goes here.

});

To make parallel loops worthwhile, the work they do inside their loop bodies should be
sufficiently heavy to exceed the overhead of setting up the multithreaded infrastructure
required. One place where those conditions are met is when dealing with data-intensive
operations, as in LINQ. For example, when filtering a huge set of data, it’s possible to

401Loops in the Age of Concurrency

Input Data Set

Partitioning Operation

Distribute

Collect

Merge Operation

P
o

o
l o

f
W

o
rk

er
s

(~
 #

 o
f

C
o

re
s)

Output Data Set

FIGURE 7.24 Data filtering lends itself to parallelization.

partition the input data and let every processor core handle a part of it. Figure 7.24 shows
parallel execution of filtering.

PLINQ, for Parallel LINQ, is an implementation of the query operators that allow for
parallel execution, leveraging the new System.Threading.Tasks namespace in .NET 4.0.
For an input set as small as the processes on your machine, this won’t be worth it. For
larger input sets, however, this can make a significant difference. The change required to
make a query parallel is easy:

var memHungry = from proc in Process.GetProcesses().AsParallel()

where proc.WorkingSet64 > 50 * MB

select new { proc.ProcessName, MB = proc.WorkingSet64 / MB };

402 CHAPTER 7 Simple Control Flow

The goto Statement
In true C and C++ style, C# provides a goto statement to perform unconditional control
transfer to a point in the code marked by a label. The greatest computer scientists have
debated the use of goto for years:

. Edsger Dijkstra, a Dutch computer scientist, published his infamous paper “Go To
Statement Considered Harmful” in 1968. At that time, structured programming (if,
while, and so on) was gaining popularity, and most typical cases of goto got elimi-
nated by it. And true, use of goto all over the place quickly results in spaghetti code.

. Donald Knuth, known for his “The Art of Computer Programming” series, stated this
viewpoint is too extreme and argued that in some cases use of the goto statement
still makes sense. He did so in his “Structured Programming with go to Statements”
paper a few years later in 1974.

The goto statement has often been used, even in the world of structured programming,
for error propagation (for example, in the world of COM with its success-reporting
through HRESULTs):

// Dealing with HRESULT return codes in C or C++.

HRESULT InitDownloadManager()

{

IBackgroundCopyManager* g_pbcm = NULL;

HRESULT hr;

hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);

if (FAILED(hr))

goto Exit;

hr = CoCreateInstance(__uuidof(BackgroundCopyManager), NULL,

CLSCTX_LOCAL_SERVER,

__uuidof(IBackgroundCopyManager),

(void**) &g_pbcm);

if (FAILED(hr))

goto Exit;

// More code here.

Exit:

// More cleanup here.

if (g_pbcm)

{

403The goto Statement

g_pbcm->Release();

g_pbcm = NULL;

}

return hr;

}

To make matters worse, the check-for-FAILED-and-jump pattern is sometimes obfuscated
using a CKHR macro. Nevertheless, without a better error condition propagation system, it
can be argued this style of coding is the best one can use to propagate errors.

However, in the world of the common language runtime and C#, we have a full-fledged
exception-handling mechanism (as explained later), so error propagation is no longer an
argument to justify the use of the goto statement. Personally, I haven’t had the honor (?)
of using a goto statement in C# for a long time. One place where it can come in handy is
to jump out of nested loops, which is only supported through the use of the goto state-
ment in C#. But that, too, I haven’t had to do for an equally long time.

No matter how unlikely the need for a goto statement is nowadays, it isn’t fair to omit it
from the discussion. The crux of it? A labeled target and a goto statement:

// Code here.

Target:

// More code here.

goto Target;

// Even more code here.

Internally, the goto statement is as straightforward as an unconditional jump in IL code.
Notice that branching is a core concept in the world of IL, providing the fuel that makes
various statements run. If statements and switch statements typically jump forward to
the place where the code to be executed lives. Loops, on the other hand, jump backward
to reexecute a code block over and over again as long as a condition holds. So, yes, IL is
spaghetti code but at an appropriate level. The real concerns about misuse of goto are
about use in higher-level languages.

COMEFROM

Goto has become so infamous that some (not-so-useful) languages have introduced
the dual concept of “come from” as a joke. In fact, this idea is not as stupid as it
sounds and is used in flow analysis mechanisms inside compilers and such. But use-
ful as a real control flow mechanism? Not so much.

The careful reader will have noticed something weird about the preceding piece of code:
How can control ever reach the comment stating “Even more code here” if there’s an

404 CHAPTER 7 Simple Control Flow

FIGURE 7.26 Configuring levels for and treatment of warnings.

FIGURE 7.25 Unreachable code analysis raising a warning.

unconditional jump in front of it? Similar situations exist for loops that run forever or
return right inside their body, leaving the code following the loop unreachable:

while (true)

{

// Act busy.

}

Console.WriteLine(“Done.”);

One task the compiler carries out is reachability analysis to find dead pieces of code; those
typically indicate leftovers of some refactoring or reveal a bug where the developer still
thinks some piece of code executes sometimes but in fact never can. In the code editor,
unreachable code is marked as a green squiggly warning (see Figure 7.25).

This brings up the point of warnings versus errors. Most of the time, warnings raise valid
concerns that the developer should address. To avoid sloppiness, you can turn on the
Treat Warnings as Errors mode in the project configuration. Also make sure the warning
level is set to the highest available (see Figure 7.26).

405The goto Statement

FIGURE 7.27 Finding warning numbers through the Output window entries for the build.

FIGURE 7.28 Use of a #pragma directive to suppress a warning.

But what if you encounter a warning that you think is safe to ignore? In that case, you
can suppress it, either at the project level using the Suppress Warnings list, where you
enter a comma-separated list of warning numbers, or in line with the code. The first thing
to know, though, is the warning’s number, which you can find in the Output window, as
shown in Figure 7.27.

Suppressing this particular warning can (should!) be seen as complete nonsense, but I am
just illustrating the point that—as a last resort, after you’ve convinced yourself repeat-
edly—warnings can be suppressed. To do this inside the code, use a #pragma directive (an
abbreviation for pragmatic, also an inheritance from C and C++). Figure 7.28 shows a
#pragma directive in the code editor.

The 0162 number is what we found inside the Output window as the warning number.
Also be sure to restore the suppression as a best practice to avoid covering up potential
other occurrences of the same warning that you didn’t want to suppress. If you really
think a certain warning should be suppressed for the whole project, you can do so in the
project’s Build configuration, as pointed out before.

406 CHAPTER 7 Simple Control Flow

FIGURE 7.29 Illustrating the call stack.

The return Statement
In a world where method calls are one of the most essential ways to structure code, we
need two core concepts: One is to call a method, using invocation syntax, as you saw
when we discussed expressions; the other is a way to return from a method, transferring
control back to the caller. Intimately related to this is the concept of a call stack as a
means to keep track of who’s called what. Figure 7.29 shows the transitions of the call
stack when making a method call and returning a result.

The return statement has two forms. When used in a procedure—a method that returns
the magical void type—it takes no operand and simply means to transfer control back to
the caller before reaching the end of the current method:

void PrintName(string name)

{

if (name == null)

return;

Console.WriteLine(name);

}

Depending on the structure of the code, this might be cleaner than using opposite logic
where the end of the method is used as the one and only place where control is trans-
ferred to the caller. Such a style tends to yield quite some indentation typically and
decreases code readability:

407The return Statement

FIGURE 7.30 All code paths should return a value.

void PrintName(string name)

{

if (name != null)

{

// Imagine this code is much,

// much

// longer...

Console.WriteLine(name);

}

}

The second case is where a method has a return type, requiring the return statement to
specify an expression as its operand. That expression should be implicitly convertible to
the return type of the containing method:

void Add(int a, int b)

{

return a + b;

}

All possible execution paths through the code should eventually lead to a point where a
return occurs (modulo edge cases like having an infinite loop). If this condition is not
met, the compiler will complain (see Figure 7.30).

With a void-returning method, it’s fine to just fall out of the current method upon reach-
ing the end of the method. There’s no value to return anyway.

408 CHAPTER 7 Simple Control Flow

Summary
In this chapter’s primer to statements, we started by looking at treating expressions as
statements, and then explored blocks and declarations to set the scene. Next, the bare-
essential control flow mechanisms, such as selection and loop statements, were explored.
You even got a peek at iterators, which are the essential glue that binds LINQ to Objects,
as you will see later.

To further understand control flow, we looked at the (mostly) evil goto statement and
return statements. There’s more to be told about more advanced control flow with regard
to exceptions and mechanisms to ensure proper resource clean-up, which are part of the
next chapter.

CHAPTER 8

Basics of Exceptions and
Resource Management

IN THIS CHAPTER
. Exception Handling 409

. Deterministic Resource
Cleanup 438

. Locking on Objects 447

Continuing our exploration of statements in the C#
programming language, we now look at concepts such as
exceptions, locks, and proper resource disposal. Later
chapters detail many of those aspects. For now, it’s essen-
tial for you to have a good understanding of the breadth
of statements.

Exception Handling
One strength of managed code lies in the structured
approach to error handling using exceptions. Recall our
native code fragment in the context of the goto statement’s
discussion in Chapter 7, “Simple Control Flow,” in the
section, “The goto Statement?” Let’s refresh our minds and
highlight a few aspects of it:

// Dealing with HRESULT return codes in C or C++.

HRESULT InitDownloadManager()

{

IBackgroundCopyManager* g_pbcm = NULL;

HRESULT hr;

hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);

if (FAILED(hr))

goto Exit;

hr =

CoCreateInstance(__uuidof(BackgroundCopyManager), NULL,

CLSCTX_LOCAL_SERVER,

__uuidof(IBackgroundCopyManager),

(void**) &g_pbcm);

410 CHAPTER 8 Basics of Exceptions and Resource Management

if (FAILED(hr))

goto Exit;

// More code here.

Exit:

// More cleanup here.

if (g_pbcm)

{

g_pbcm->Release();

g_pbcm = NULL;

}

return hr;

}

Our observations are as follows:

. Methods typically return an error code, whether it’s a plain old int (as seen in
Win32 APIs) or something more advanced like an HRESULT (as practiced in the world
of COM). This monopolizes one of the most useful pieces of a method signature, the
return type, leaving no space for a real return value. And numeric error codes don’t
tell anything; one needs to have a header file or some gigantic table on the side to
look up the meaning of an error code.

. This approach reflects itself onto the caller. First, callers need to be disciplined
enough to check the return value for every single call to make sure execution
succeeded. But that’s not the only thing: Because the return type is not used to
return the true result of the call, output parameters need to be wired up by passing
addresses to local variables.

. Cleanup logic is tedious, as well, making sure no cases are missed regardless of how
the method executes (success or failure). The most convenient way to organize this
is by means of an unconditional jump to clean up logic near the end of the method
body. However, this decentralizes the use of a resource from the place where it gets
released. During code inspection, this can be rather annoying because it distracts
you from the real intent of the code.

. Errors need to be propagated manually if the code is not willing to deal with certain
error cases itself, hoping someone will not ignore it upstream. All it takes to end up
in a nasty situation is one sloppy method on the call stack that ignores the error
code. You can hope for the best but nothing more.

In short, exceptions provide a means for detailed error propagation that doesn’t interfere
with the method signatures (highly reduced need for the use of output parameters) and
allows for a structured way to catch errors and handle them.

411Exception Handling

Exceptions Are Objects

One question is how errors are represented in the world of exceptions. Given that the CLR
is an object-oriented platform, the answer is pretty obvious: objects. We won’t look at how
to define exception types of our own just yet but will instead focus on the essence of such
a type and look at how exceptions can be thrown and caught.

Exceptions are subtypes of a class called System.Exception, which defines the following
useful members (see Figure 8.1). (I’ve omitted a few irrelevant details for now.)

One key piece of information about an exception lies outside its members: the type name
of the exception itself. For example, an error signaling a missing file will be represented as
a FileNotFoundException, deriving from the System.Exception type in one way or
another. Compare this to the meaningless integral value 2 used in the Win32 API to repre-
sent such a condition. (To verify this for yourself, you can print the corresponding
message at the command line by running net helpmsg 2.)

A second piece of information is found in the Message property, which contains a string
explaining the problem. This can be shown to the user but is useful during debugging,
too. One string message can be worth a thousand cryptic error codes. HelpLink is some-
times populated with a URI to available help information.

Other more-technical error details can be retrieved through the StackTrace property,
which dumps information about the location where the error happened in terms of the
call stack. This highlights a key aspect of the exception mechanism in the CLR: Errors
propagate automatically through the call stack as long as they’re not caught. Contrast this
with the manual and error-prone propagation of error codes.

FIGURE 8.1 Most relevant members of the Exception base type.

412

Causes of Exceptions

Different situations give rise to exceptions:

. Code defects, such as forgetting null checks causing NullReferenceExceptions or
passing invalid arguments to some method that signals the defect using an
ArgumentException or variation thereof.

. Runtime disasters that prevent the CLR’s execution engine from continuing execution;
for example, due to insufficient memory (OutOfMemoryException) or a stack overflow.

. Error conditions in the environment where the code is operating, such as a missing
configuration file, failure to connect to a web service or a database, or an external
component failing.

. Rarely ever recommended, exceptions can sometimes be (mis)used to drive certain
aspects of code execution. An example is the runtime’s use of ThreadAbortException
to signal to a thread that it should terminate.

The developer’s course of action depends on the category under which an exception type
falls (which, admittedly is an ill-defined concept)—an exploration.

Code Defects and Input Validation
Failure to check for null in a case where it’s not permitted is inexcusable and a bug in your
code, for sure. On the other hand, failure to pass in a valid argument to some method
could be a bug or not, depending on where the input comes from. For example:

int[] numbers = new [] { 2, 3, 5, 7 };

for (int i = 0; i <= numbers.Length; i++)

{

Console.WriteLine(numbers[i]);

}

Do you see the problem? We’re not using the right range of indices to retrieve elements
from the array because of an off-by-one error; the less-than operation should be noninclu-
sive. This is a bug, for sure, causing an IndexOutOfRangeException.

But what if the input to some API comes from the user? It really depends. Some APIs
provide a means for you to validate input before calling the method that does the real
work. Others provide a “safe” function that won’t throw an exception in case of an error
but will instead signal it using a Boolean or such. Let’s start by showing an example of an
API that throws in case of invalid input:

Console.Write(“What’s your age? “);

string age = Console.ReadLine();

int yearOfBirth = DateTime.Now.Year - int.Parse(age);

Console.WriteLine(“I bet you were born around “ + yearOfBirth + “.”);

CHAPTER 8 Basics of Exceptions and Resource Management

413Exception Handling

FIGURE 8.2 An unhandled exception causes the program to terminate.

Here we ask the user for an age, which should be a numeric value. The ReadLine method
returns a string, so we need a way to convert from a string to an integer, which can be
done using the static Parse method on System.Int32 (here using the C# keyword). But
what if the user writes something non-numeric or something that doesn’t fit in the preci-
sion of a 32-bit signed integer? Right, int.Parse will throw an exception (see Figure 8.2).

From this, you can see how unhandled exceptions will crash the program. Depending on
the computer’s configuration, this will either result in a dialog where the user can choose
to attach a debugger or a Watson crash memory dump that can be used for post-mortem
debugging. Obviously, your code should protect against such a program crash for these
kinds of exceptions because they’re within your control.

For example, to harden the integer-parsing code shown previously, you could handle the
FormatException. However, APIs that require exceptions to be handled for a reasonable
scenario are not well designed. Code gets more obscure, and there’s a significant perfor-
mance hit incurred by throwing and catching an exception. Notice this performance
penalty is irrelevant if exceptions are kept for true exceptions cases: If the bottleneck for
execution speed of your program lies in exception handling, you have a much more
serious issue to tackle first. But let’s show what handling the exception would look like:

Console.Write(“What’s your age? “);

string age = Console.ReadLine();

try

{

int yearOfBirth = DateTime.Now.Year - int.Parse(age);

Console.WriteLine(“I bet you were born around “ + yearOfBirth + “.”);

}

catch (FormatException)

414 CHAPTER 8 Basics of Exceptions and Resource Management

{

Console.WriteLine(“Invalid age specified.”);

}

We explore the details of the exception-handling syntax later, but the idea is fairly easy:
The code within the try block is “tried” for execution. If an exception occurs somewhere
in there, the runtime searches for handlers that can deal with the exception type at hand.
If one is found in a catch block, the exception is caught, and control is transferred to the
handler’s block.

Notice that we could have restricted the contents of the try block to just the int.Parse
call because that’s the one that can throw a FormatException. Although restricting the
protected region is a good idea in many cases, doing so in this example would cause the
code to change even more by introducing another local variable for the int.Parse result.
Feel free to try this at home.

As an exercise, try to build some retry logic around this using a loop and observe how
much more obfuscated the code gets because it needs to deal with an error condition for
the perfectly valid scenario of the user entering dumb input.

One good thing to keep in mind when dealing with input to an API is to make sure input
is properly validated, especially when the input is under your control. In this case,
however, the user can specify every possible string, and there’s no way of knowing upfront
whether that string represents a valid integer. The way to do that is to use Parse, which
throws an exception if the input is invalid. We’re in a circular argument here. In this case,
there’s a “safe” API called TryParse that will signal validity of input using a Boolean:

Console.Write(“What’s your age? “);

string ageString = Console.ReadLine();

int age;

if (int.TryParse(ageString, out age))

{

int yearOfBirth = DateTime.Now.Year - age;

Console.WriteLine(“I bet you were born around “ + yearOfBirth + “.”);

}

Notice TryParse is using a feature we didn’t quite explore yet, output parameters, to allow a
method to return other values besides the method return value itself. We take a closer look
at this feature after we discuss parameter-passing styles such as by reference and by value.

Again as an exercise, try to create a retry loop around this using a loop. Tip: The do state-
ment will work very well in this case, allowing you to ask for an age until a valid integral
number is specified that causes TryParse to succeed.

415Exception Handling

IMPROVING APPLICATION PROGRAMMING INTERFACES

In the previous sections, you’ve actually read about lessons learned in API design
directly inside the BCL itself. The .NET 1.x libraries lacked “safe” Try variants for
parsing methods on various basic types, requiring users to catch a FormatException
to validate input for a required type. This API shortcoming was addressed in .NET 2.0
with the introduction of the Try variants illustrated here.

At the time of the introduction of the first version of the .NET Framework, not all API
design guidelines were perfectly tuned yet. This whole new way to deal with error condi-
tions is like a new toy that could easily be overused when older approaches are more
suitable. int.TryParse is a good example of this. Error reporting through return val-
ues definitely feels like the old-fashioned Win32 or COM style, but the difference here
is the use of a Boolean rather than a meaningless integral value.

Runtime Disasters
You can’t protect against some exception types, and you shouldn’t try, either. Those are
the real disastrous types that should cause the execution engine to shut down (because it
can, and most likely will, become unstable).

One such type I hope you never see pop up is the ExecutionEngineException. It signals that
the virtual machine has encountered an internal error. More commonly seen are exceptions
that signal a lack of much-required resources, such as call stack space
(StackOverflowException) or heap memory (OutOfMemoryException). The latter one will
occur if, after the bravest attempts of the garbage collector, not enough space is found in the
process’s virtual memory address space to provide room for a requested object allocation.
But let’s focus on the former one; it’s much easier to reproduce for illustration purposes.

The call stack is a finite resource. With every method call, the stack depth grows until that
method returns. One really interesting aspect of the use of a call stack is the capability to
write recursive algorithms, where a method calls itself (most likely with different argu-
ments). A typical example is crawling tree structures to visit every node. If the tree depth
is too large and/or the number of methods called for every node visit is substantially big,
you’ll overflow the stack. Lots of things live on this stack, such as method arguments and
local variables, also contributing to memory pressure.

That said, call stacks typically have enough space to accommodate a program’s needs, so
hitting a StackOverflowException is most likely the result of a bug in the user’s code:

static void Main()

{

Main();

}

A little contrived, true, but it’s always possible to have some silly typo somewhere
causing a cycle in methods that call each other. If this goes on forever, your program is

416 CHAPTER 8 Basics of Exceptions and Resource Management

FIGURE 8.3 Overflowing the call stack.

trapped in infinite recursion, but you’ll learn soon enough through this exception shown
in Figure 8.3.

THE CASE OF MY SILLY TYPO (AND NAMING CONVENTIONS)

I had the honor of plowing through a stack overflow because of a silly typo. Using XML
serialization APIs, object instances can be created from an XML file: <Student> maps
on the Student type; you get the idea. Attributes of XML elements are mapped onto
properties, and nesting can occur. Life was good until I hit this weird stack overflow
exception. XML being hierarchical, my immediate thought was an issue with the dese-
rializer API implementation getting stuck in infinite recursion. Always blame others
first, right?

Because I couldn’t pinpoint the issue from looking at the call stack, I started peeling
off complexity from my objects. Each object, representing a Student or whatnot, had
many properties. In an attempt to prove my theory of the serializer being at fault, I took
away half of the properties until the code ran and put them back gradually until it failed
again. Here’s the property I narrowed the problem down to:

private string name;

public string Name

{

get { return name; }

set { Name = value; }

}

Do you see the flaw? No? Look again and remember that letter case matters in C#.
The deserializer needs to set properties based on attributes. It does so by calling the
property set accessors. Because this code was written before C# 3.0’s introduction of
auto-implemented properties (discussed later), I had to create storage fields myself for
every property. The standard pattern is to create trivial getter and setter accessors
around those in corresponding properties.

417Exception Handling

However, I used the wrong letter case on the name of the field in the setter: Instead of
writing name, I wrote Name, which is the name of the property itself. That’s the source of
the unbounded recursion. Assigning to a property calls its setter, and we’re doing this
from the setter itself. The reason I didn’t run into this problem outside the deserial-
izer’s case was because my types had constructors defined for use elsewhere, which
directly assigned to the underlying fields:

public Student(string name)

{

this.name = name;

}

Three lessons learned here are as follows:

. Be sure to have high code coverage with unit tests, even for things that seem as
trivial as property setters.

. Naming conventions can help reduce the likelihood of introducing problems. Ever
since, I prefix my fields with an underscore.

. Don’t blame others blindly, especially when talking about framework code that’s
highly tested. That blame will bounce back at you quickly.

So the next time you see a stack overflow and you haven’t intentionally written a deeply
recursive algorithm, you can be quite sure you have some bug somewhere in your code.

Notice that the runtime doesn’t enable you to catch disastrous exception types. No matter
how hard you try, the runtime will give up all hope and terminate the process to avoid
risking instabilities, data corruption, and so on.

TIDBIT FOR HARDCORE DEBUGGERS

Sometimes when people get deep into debugging managed code application crashes
using advanced debuggers like WinDbg with SOS (more on that later), they get misled
by the presence of an OutOfMemoryException object that you can find on the heap.
Figure 8.4 uses SOS to prove the existence of this instance on the managed heap. For
some reason, this sometimes leads novices to conclude an out-of-memory condition
caused the program to fail. Chip vendors have probably benefited from this as develop-
ers recommended buying more RAM, but this is a completely wrong conclusion for
reasons we’re explaining here.

OutOfMemoryException doesn’t necessarily (and usually doesn’t) mean there’s not
enough physical memory in the machine. All it means is there’s insufficient address
space left in the executing process for the garbage collector to allocate additional
space for the managed object heap. An in-depth discussion about virtual memory and
address space is beyond the scope of this book, but you’ll find such information in
every self-respecting book on operating systems.

418 CHAPTER 8 Basics of Exceptions and Resource Management

FIGURE 8.4 The pre-allocated OutOfMemoryException for managed code.

So you might wonder why there’s an OutOfMemoryException to be found on the man-
aged object heap at all times. Think about it and you’ll see it’s quite logical. Exceptions
are classes, whose instances get allocated on the heap. If this particular exception
type is used to indicate the inability to get more heap space for object allocations, how
would you allocate space for the exception object itself when the condition arises?
Right, you can’t. So, early during the startup of the runtime, it allocates an instance of
the OutOfMemoryException to have it ready in case it needs to be thrown.

Environment Error Conditions
Besides bugs such as null dereferences and out-of-bounds indexing or runtime disasters,
there’s also the situation of error conditions in the environment the code is operating
under. For example, our code might rely on the existence of a file or expect to be able to
create a network connection to another machine (for example, to access a database). It’s
outside the control of our code to ensure the environment is in a good condition.
However, we can (and typically should) make our code robust against such failures to
signal issues to the user or at least to terminate gracefully. Consider the following code:

static void PrintFile(string path)

{

foreach (string line in File.ReadAllLines(path))

{

Console.WriteLine(line);

}

}

To write this code, you have to import the System.IO namespace that contains the File
type we’re using to read all lines from a file. But can you spot the problem? Right, the file
with the specified path might not exist at the time of executing this method. One thing
we can do to mitigate against this condition, at least partially, is to check whether the file
exists and take appropriate action if not:

419Exception Handling

FIGURE 8.5 MSDN library documentation for File.ReadAllLines exceptions.

if (!File.Exists(path))

{

// Handle the problematic situation.

}

The question is, of course, whether we can handle the problem locally or should do the
check higher up, at the point we pass the path to the method. This very much depends on
your domain. Maybe a fallback to defaults exists, maybe not. Documenting the error-
handling behavior of a method is very desirable, as you can see. This is no different for
the BCL and .NET Framework library APIs. Figure 8.5 shows the list of exceptions that can
be thrown from File.ReadAllLines.

Notice how many other error conditions exist for this System.IO method. I’ve just selected
one as the topic for discussion, but others are equally valid for consideration here. Some
simply indicate bugs, such as ArgumentNullException, whereas lots of others indicate
problems encountered during the core execution.

420 CHAPTER 8 Basics of Exceptions and Resource Management

FIGURE 8.6 An unhandled FileNotFoundException showing up in the debugger.

MORE TYPING?

Exceptions signaling silly bugs should be regarded as deferred code checks, to
compensate for issues that can’t be caught at compile time. Being a type system
freak, I like to point out that some classes of errors could really be checked at compile
time when enhancements to the type system are implemented. One case is the cruel
null value, which could be avoided if non-null (non-void in Eiffel lingo) types were intro-
duced. Range checks (for example, an integer needs to be a number between 1 and
10) could be avoided if it were possible to create a dedicated type with just that range.

Some of those ideas are actually getting implemented today. Non-null types can be
mimicked (to enough of an extent that compile-time checking can be done) in the world
of .NET 4.0 code contracts, as you will see later. Some other type systems allow type
such as “int where value >= 1 && value <= 10.”

However, even if we check for the file’s existence upfront, we’ve only partially mitigated
the problem. Between the time the check is carried out and the file is opened, there might
have been a context switch that caused another program to delete, rename, move, lock, or
secure the file. Perhaps the particular circumstances under which your code is running
make this an unlikely situation, but it’s important to realize the potential for problems
here. Other factors are the amount of code that runs between when the check is carried
out and the file operation is attempted and the location of the file (for example, a file
share accessible to lots of users or machines).

Either way, if the file doesn’t exist at the point ReadAllLines tries to open it to read its
contents, a FileNotFoundException occurs (see Figure 8.6).

In contrast to the preceding two categories of exceptions—the ones that originate from
bugs and the ones that indicate truly fatal runtime circumstances—this sort of exception is
fine to be caught in case a meaningful action can be defined in case of failure or maybe

421Exception Handling

FIGURE 8.7 Specifying command-line arguments for the debugger.

just to log the condition and terminate a unit of work. (For example, failure to handle a
request should not bring down the whole server.) Let’s take a look at how this can be done:

static void Main(string[] args)

{

if (args.Length != 1)

{

string executable = Environment.GetCommandLineArgs()[0];

string executableFileName = Path.GetFileName(executable);

Console.WriteLine(“Usage: {0} <file>”, executableFileName);

return;

}

string path = args[0];

try

{

PrintFile(path);

}

catch (FileNotFoundException ex)

{

Console.ForegroundColor = ConsoleColor.Red;

Console.WriteLine(ex.Message);

Console.ResetColor();

}

}

You run this example under the Visual Studio debugger by pressing F5, and you’ll have to
specify the command-line arguments. This can be done through the project properties,
illustrated in Figure 8.7.

In writing a little ad hoc tool, the use of File.Exists is likely acceptable, too. But there
are lots of other exceptions we might want to mitigate, such as the

422 CHAPTER 8 Basics of Exceptions and Resource Management

UnauthorizedException. Even the ArgumentException might need treatment in this case
because it’s not unimaginable for the user to specify an invalid path. As an exercise, imple-
ment a few other exception handlers and take a look at the properties available on the
various exception types.

WHERE ARE THE CHECKED EXCEPTIONS?

Some other programming languages have the concept of checked exceptions by which
a method declares the exceptions it may throw, forcing the caller either to catch the
exception or propagate it to its caller:

string[] ReadAllLines(string path) throws FileNotFoundException /* and more */

Although this is a nice way to ensure proper exception handling, there are a couple of
practical issues.

First, using checked exceptions on interface declarations is rather fragile. A practical
implementation of the interface may require other exceptions to be thrown. For
example, a GetUser interface method may be implemented based on file access
(IOException being a reasonable error condition) or based on database access (where
a SqlException may occur). And changing the interface after its initial release is a big
no-no because you’ll break everything that depends on it: Adding an exception type to a
throws clause requires callers to handle or propagate it, so you end up breaking every-
thing that already used the interface. You have a version issue at this point:

interface IUserManagementService

{

User GetUser(string username) throws UserNotFoundException;

}

Second, use of checked exceptions can be very annoying because the compiler starts
complaining about unhandled exception types all the time. In lots of cases, you find
yourself in a project phase where you want to throw something together quickly, in a
mindset of “I’ll patch parts up later.” The simplest way to get around excessive
compiler warnings is either to catch and swallow exceptions on the spot (“oh, this will
never happen”) or propagate all of them by adding a throws Exception clause (that
is, throwing the mother type of all exceptions accommodating for everything inside):

void Foo() throws Exception

{

// Every checked exception is propagate unnoticed here.

}

You’ve effectively just suppressed the whole feature. Exceptions are unfortunately
something you have to think about all the time, severely impairing your development
productivity at times. It’s not clear whether checked exceptions are worth the trouble
because of those hidden rat holes. Therefore, C# (and many CLR languages) go for a
more minimalist approach without checked exceptions.

423Exception Handling

Throwing Exceptions

Time for a more structured look at working with exceptions. We’ll start with the act of
throwing exceptions to signal an error condition. Not surprisingly, throwing an exception
is done using the throw keyword, specifying an instance of an exception type. For example:

void DisplayUserProfile(string user)

{

if (user == null)

throw new ArgumentNullException(“user”);

if (user == ““)

throw new ArgumentException(“exception”);

if (!Profiles.Exists(user))

throw new UserNotFoundException(user);

// Do real work here.

}

The third exception type used here is a custom exception type, something we explore
later. What matters here is the syntax of the throw statement, which is, as you can see,
very straightforward. That said, I sometimes make the silly mistake of thinking throw also
creates an instance:

throw /* don’t forget new here */ ArgumentException(“user”)

So you might be getting your exception instance from elsewhere rather than by using a
new expression in conjunction with the throw statement. This instance could be instanti-
ated upfront (like OutOfMemoryException’s single instance is in the runtime) or be
retrieved by calling some method. The latter technique is often handy when exception
messages have to be localized, which can be taken care of by custom logic in the excep-
tion creator method.

Handling Exceptions

Handling exceptions is done by protecting a certain block of code using try and having
an exception handler associated with it using catch. You saw examples of this earlier, but
let’s take a closer look:

try

{

PrintFile(path);

}

catch (FileNotFoundException ex)

{

424 CHAPTER 8 Basics of Exceptions and Resource Management

FIGURE 8.8 Disabling Just My Code.

Console.ForegroundColor = ConsoleColor.Red;

Console.WriteLine(ex.Message);

Console.ResetColor();

}

Here we’re protecting the call to PrintFile against the FileNotFoundException. Of course,
the protected block of code (following the try keyword) can consist of more than one line
of code, but it’s a good practice not to protect too much code if you’re only after catching
an exception from a specific call somewhere in there.

CURLY BRACES REQUIRED

Sometimes there are those unexplainable asymmetries in languages. Even though
statements such as if, while, for, and so on enable you to omit curly braces if the
embedded statement is just a one liner, try and its friends don’t. Because I love curly
braces (because the C# language lacks whitespace sensitivity), I’m not offended by
this asymmetry.

Notice in the preceding code that the PrintFile method doesn’t throw
FileNotFoundException itself; instead, one of the methods it calls, ReadAllLines, does.
This illustrates the intimate coupling that exists between exception propagation and the
call stack. Contrast this to manual HRESULT-checking code, where it’s the user’s responsibil-
ity to propagate errors by hand all over the place.

In fact, it’s not even the ReadAllLines method that executes the throw statement for this
exception type. Internally, the ReadAllLines method calls into many more helper
methods, and one of those will detect the problem and throw the exception. To illustrate
this, first disable the Just My Code feature via Tools, Options, Debugging, General, as
shown in Figure 8.8.

425Exception Handling

FIGURE 8.9 The exception helper in the debugger.

FIGURE 8.10 Enabling first-chance exceptions.

Just My Code hides code you haven’t written from various places like the Call Stack
window. Because we’re already handling the exception, simply executing the code won’t
enable us to observe the point where the exception is thrown. One way to get to see this
is by inspecting the stack trace through the exception object’s StackTrace property. You
can try this by setting a breakpoint inside the exception-handler block and inspecting the
ex local variable when the breakpoint is hit. Visual Studio also has an exception helper
tool that can show you the exception that was caught (see Figure 8.9). After opening the
exception helper, click View Detail to inspect the exception object.

There’s another way for you to see precisely where an exception occurred, even though it’s
caught by the code. From the time an exception is thrown until its caught (or not,
depending on the situation), lots of things happen. The whole exception system in the
runtime is quite complicated, but in essence there are different phases:

. When the exception is thrown, a first-chance exception notification is sent out. This
can be seen in a debugger, as you see shortly.

. Next, the runtime walks the call stack looking for a protected block that has an asso-
ciated handler willing to handle the exception based on its type.

. The next thing on the runtime’s checklist is to unwind the stack until it finds an
exception handler or all the way back to the entry point if no handler exists.

. Finally, control is transferred to the found handler, supplying the exception object to
the handler’s catch block.

To observe an exception as it gets raised, you can enable first-chance exception notifica-
tions under the debugger. In Visual Studio, you can do so through a dialog under Debug,
Exceptions, as shown in Figure 8.10.

426 CHAPTER 8 Basics of Exceptions and Resource Management

FIGURE 8.11 A first-chance exception notification.

void _Error.WinIOError(int, string)

void Program.PrintFile(string)

void Program.Main(string[])

string[] File.ReadAllLines(string)

 •

 •

 •

Have handler?

Throw New
FileNotFoundException(...)

Have handler?

Have handler?

FIGURE 8.12 Walking the stack to find an appropriate handler.

Now if you run the application again with an invalid file path, you’ll see the debugger
break at the point the exception is thrown, as shown in Figure 8.11. That is, at the point
where it starts to pop up in our own code because the real origin is deep in the stomach of
the BCL code.

Notice the Call Stack window now that the Just My Code option is disabled. The excep-
tion was really thrown by some helper method called __Error.WinIOError in a response
to initialization of a FileStream object through the use of a StreamReader. This illustrates
where the exception starts its life and how it bubbles up the call stack to a point where it
can get handled. Figure 8.12 shows a stack walk carried out by the runtime to find an
exception handler.

427Exception Handling

FIGURE 8.13 Exception handling from an IL perspective.

The same code block can be protected by declaring handlers for different exception types.
In fact, this is shorthand for nested try statements:

try

{

PrintFile(path);

}

catch (FileNotFoundException ex)

{

PrintException(ex);

}

catch (UnauthorizedAccessException ex)

{

PrintException(ex);

}

Under the covers, protected regions of code are kept track of by means of offsets and
lengths within the instruction stream of a method. This is carefully hidden, and even
tools like ILDASM reflect the readable block structure (see Figure 8.13). Notice the use of
the leave instruction to jump outside a protected region or a handler, which is a require-
ment so the runtime can do the necessary bookkeeping.

Back in C# world now: Because exception types form a hierarchy—the root being
System.Exception—the order of handlers matters. For illustration purposes, assume you
have a BadFoodException from which a RottenAppleException is derived. The following
code handles exceptions to avoid bad food being processed in some production chain:

428 CHAPTER 8 Basics of Exceptions and Resource Management

FIGURE 8.14 Ordering of catch clauses matters.

try

{

AddToPackage(fruit);

}

catch (BadFoodException)

{

TossAway(fruit, RecycleBins.GeneralGarbage);

}

catch (RottenAppleException)

{

TossAway(fruit, RecycleBins.Compost);

}

Notice in the preceding fragment that you don’t need to specify a variable name for an
exception object in a catch block. Anyway, because RottenAppleException derives from
BadFoodException, the former will never execute. The compiler will actually prevent you
from writing this kind of code. Figure 8.14 shows the error message produced by the
compiler when it detects a meaningless ordering of exception handlers.

Don’t Catch All Exceptions
It might be tempting in some cases to write a catch-all handler by using either the root
type System.Exception or by simply omitting a type:

try

{

// Do something here.

}

catch /* or with (Exception ex) */

{

// Catches all exceptions.

}

In general, this is highly discouraged. There will be exceptions you can’t handle properly,
so there’s no point in even attempting to catch those. Because lots of people actually

429Exception Handling

wrote this kind of code—causing certain fatal runtime exception types to be caught even
though the process was in an instable state—the .NET 4.0 CLR has classified some of its
own exception types as uncatchable.

In some rare cases, catching all exceptions is a valid thing to do. For example, the crash
of a single worker thread should perhaps not bring the whole process down. In such a
case, it might be worth it to wrap the contents of the worker thread’s method in a catch-
all try statement. Other than for such scenarios, be responsible in the way you handle
exceptions.

RUNTIMEWRAPPEDEXCEPTION

At the level of IL, it’s possible to throw any kind of object, even if it’s of a type that
doesn’t derive from System.Exception. This support was put in place to accommo-
date other languages, such as C++, where this is a perfectly valid thing to do. However,
this poses a problem for other languages interoperating with such code because it
causes a distinction between catch and catch (Exception), where only the former
would be able to catch the exception object. But even if you did so, you couldn’t get to
the object because it’s invalid to write the following:

catch (object o)

To resolve this nasty situation, the CLR wraps such exception objects in a special
exception type called RuntimeWrappedException so that catch (Exception) han-
dlers will catch it, too. Its WrappedException property exposes the object that was
originally thrown.

Rethrow
Sometimes you come to the conclusion you can’t really handle an exception even though
you’ve caught it inside a catch clause. You may conclude so by inspecting the exception
object’s properties or maybe because some other condition holds true at the time the
exception is caught. In such a case, you want to propagate the caught exception further
up the call stack, a technique known as rethrow:

try

{

motor.Start();

}

catch (MotorFailureException ex)

{

if (ex.Component != EngineComponent.Transfer)

throw;

// Handle transfer component failure.

}

You can either rethrow by writing a throw ex statement, where ex stands for the caught
exception object, or by simply writing throw, which rethrows the exception object being

430 CHAPTER 8 Basics of Exceptions and Resource Management

FIGURE 8.15 The rethrow IL instruction for a throw statement in C#.

handled currently. Obviously, the naked throw statement will work only in the context of
a catch clause.

THE MYTHICAL DIFFERENCE BETWEEN THROW AND RETHROW

At the IL code level, there are two different throw instructions. One is throw, specifying
an object to be thrown on top of the stack. The other is rethrow, which rethrows the
exception currently being handled. The C# compiler actually translates the “naked
throw” to a rethrow instruction, whereas one specifying an exception object gets
encoded using a throw instruction. Figure 8.15 shows the rethrow instruction for the
following piece of C# code:

try

{

Do2();

}

catch

{

throw;

}

Also notice how a catch-all without any exception type specified gets encoded as a
catch clause using the System.Object type.

But is there any difference in the behavior of throw versus rethrow? Unfortunately, at
the moment, because of a common language runtime implementation quirk, the answer
is no. The goal of rethrow was to preserve the stack trace of the original exception’s
location, whereas throw would reset it. So a rethrow would be completely transparent
with regard to any intermediate handlers that intercepted it.

Unfortunately, in the current CLR implementation, the stack trace also gets reset on
rethrow, so you lose the original context. In the preceding example, you really want to
see Do2 on the stack trace, but that information gets lost. Instead, you’ll see Do on top
of the stack trace.

431Exception Handling

FIGURE 8.16 Filters are sometimes provided through framework library means.

In the preceding example, the need for an if statement inside a catch clause can be ques-
tioned if we own the exception types ourselves. It would have been better to avoid this
altogether by introducing a hierarchy for exception types instead so that we could catch a
more specific type. Unfortunately, you don’t always control exception types, or conditions
may be more complex, giving rise to the use of a rethrow instead.

Filters, but Not at the Language Level
In fact, the CLR supports another exception-handling feature called filters, which allow
you to specify a predicate to go with a catch clause. When an exception is about to be
caught based on its type, the CLR first transfers control to the filter to decide whether it
needs to be caught. If the filter evaluates to true, control is transferred to the handler;
otherwise, the exception mechanism keeps looking for another handler.

Filters execute in the context of the first phase of exception handling (first-chance excep-
tions, as we’ve seen before), where the stack is walked in a search for a suitable handler.
Things can get nasty when a filter by itself throws. Although they can be useful at times,
C# omits filters from the language altogether. Some other languages like Visual Basic have
them, though:

Try

motor.Start()

Catch ex As MotorFailureException When ex.Component = EngineComponent.Transfer

// Handle transfer component failure.

End Try

Some framework libraries actually provide means to hook up filters from any language,
despite the fact C# doesn’t have them. One such example is WPF’s Dispatcher, which has
an UnhandledExceptionFilter event that allows users to hook up a filter (see Figure 8.16).

Notice how the Remarks section warns against causing secondary exceptions in the
context of a filter. Internally, the infrastructure for this feature is implemented using a tiny

432 CHAPTER 8 Basics of Exceptions and Resource Management

FIGURE 8.17 Filters through the eyes of .NET Reflector.

bit of Visual Basic code that gets linked in to the rest of the WindowsBase assembly, which
is written in C#. So yes, there’s a bit of Visual Basic in the framework here and there.
It’s also interesting to see how Reflector reacts to encountering a filter. Have a look at
Figure 8.17 and notice the invalid C# syntax emitted by Reflector.

The finally Clause

Another aspect to exception handling is found in the finally clause that can be associ-
ated with a try statement. To illustrate its purpose, let’s rewrite our PrintFile method
using some more low-level primitives from the System.IO namespace:

static void PrintFile(string path)

{

FileStream fs = File.OpenRead(path);

StreamReader sr = new StreamReader(fs);

string line;

while ((line = sr.ReadLine()) != null)

{

Console.WriteLine(line);

}

}

This code has severe flaws in it. Even if we succeed in opening the file on the first line, we
never close the FileStream object, which causes leakage. Wait a minute, didn’t the CLR
have a garbage collector to take care of this? True, but as you will see, the garbage collector
doesn’t allow for deterministic “on the spot” disposal of objects. Even though we’re aban-
doning the FileStream object after the method returns (in garbage collector terms, the

433Exception Handling

FIGURE 8.18 Failure to release native resources can lead to severe problems.

object referred to by fs has become unreachable), it may take a considerable amount of
time until the garbage collector comes around to clean it up.

Because we don’t want to hold on to the resources used by the FileStream object, we want
to close them as soon as we’re done with it. This is what the FileStream’s Close method is
responsible for. The reason this is important for this particular API is because it depends
on native Win32 resources (in this case, file handles). To observe this problem on your
own, set a breakpoint in the Main method beyond the execution of PrintFile and try to
delete the file being printed. Because a file handle is kept open by our process (assuming
the GC hasn’t come around to finalize the FileStream object yet), you won’t be able to
carry out this task. Figure 8.18 shows a file being locked because of improper cleanup.

WHAT ARE HANDLE.EXE AND VSHOST.EXE?

In Figure 8.18, I’m using the Sysinternals tool handle.exe to see what process is
holding on to a Win32 handle for our file. As expected, it reveals our PrintFile process
that’s being run under the debugger. Make sure to check out the other invaluable
Sysinternal tools at the following publicly accessible share: \\live.sysinternals.com\
tools.

However, notice the process name is not PrintFile.exe (by default, the assembly file
name is the project’s name with .exe appended), but PrintFile.vshost.exe. Here you’re
seeing the effect of the Visual Studio hosting process debugging feature, which
enables improved performance and expression evaluation (for example, in the
Immediate Window, you can type a + b if a and b are two variables in scope when a
breakpoint is hit), among other features.

It’s clear we need to close down the resources held on to by some of the objects involved
in the file reading operations. Looking at the IntelliSense for the FileStream and

434 CHAPTER 8 Basics of Exceptions and Resource Management

StreamReader objects, we will see Close methods that look precisely like what we’re
looking for. It might be tempting to patch up the code as follows:

static void PrintFile(string path)

{

FileStream fs = File.OpenRead(path);

StreamReader sr = new StreamReader(fs);

string line;

while ((line = sr.ReadLine()) != null)

{

Console.WriteLine(line);

}

sr.Close();

fs.Close();

}

Not too bad, but not quite okay just yet. What if an exception is thrown anywhere
between opening the underlying resources and the point where we call Close? Right, the
Close method calls wouldn’t succeed, and we would be leaking the file handle again until
the process terminates. What we actually need is a way to write a block of code that’s
guaranteed to execute regardless of whether an associated block ran successfully or was
quit due to an exception. This is what the try statement’s finally clause can be used for:

FileStream fs = File.OpenRead(path);

try

{

StreamReader sr = new StreamReader(fs);

try

{

string line;

while ((line = sr.ReadLine()) != null)

{

Console.WriteLine(line);

}

}

finally

{

sr.Close();

}

}

finally

{

fs.Close();

}

435Exception Handling

You see in the next section how this pattern of deterministic resource disposal can be simpli-
fied with a using statement, but it’s important to understand the essence of the finally

clause. No matter how control flow leaves the try block, the finally clause will execute:

void NothingHere()

{

try

{

throw new NotImplementedException(“Nothing of interest here.”);

}

/*

catch (NotImplementedException ex)

{

Console.WriteLine(ex.Message);

}

*/

finally

{

Console.WriteLine(“Leaving NothingHere.”);

}

}

The preceding fragment illustrates how the finally clause executes if the associated try
block encounters an exception. The use of a finally clause can be combined with one or
more catch clauses. Even if an exception gets caught (by uncommenting the catch clause
in the preceding fragment), the finally clause still executes when control leaves the
corresponding catch clause. Just think of this setting as consisting of nested try state-
ments, the outer one with a finally clause and the inner one with the catch clauses.

Leaving control from a try block by means of a method return gives rise to execution of
the finally clause, as well:

int GetNumber()

{

try

{

return new Random().Next();

}

finally

{

Console.WriteLine(“Leaving GetNumber.”);

}

}

Notice that it’s impossible for the user’s code to transfer control to or out of a finally
clause; such control transfers are completely within the control of the runtime through

436 CHAPTER 8 Basics of Exceptions and Resource Management

try
{
 // Do something.
 ThisCouldFail();
 // Do something else.
}
catch (SomeException ex)
{
 // Handle exception.
}
finally
{
 // clean-up.
}

Throws
SomeException

Successful Execution Exceptional Execution

try
{
 // Do something.
 ThisCouldFail();
 // Do something else.
}
catch (SomeException ex)
{
 // Handle exception.
}
finally
{
 // clean-up.
}

FIGURE 8.19 Execution flow with a finally clause.

the exception handling subsystem and the use of the leave instruction. So for example, it’s
not possible to return from a finally clause. This is quite logical if you think about it for
a moment. If a finally clause gets executed because an unhandled exception terminates
the containing method’s execution, what would be the meaning of returning a value to
the caller? And what about returning from a finally clause if it gets executed because the
corresponding try block executes a return statement? Would it override the try block’s
return value?

FINALLY AND FAULT

The CLR’s exception handling system is more complete than what most languages
expose. You’ve already seen how filters are not available in C#, whereas Visual Basic
offers them. Where filter can be seen as a sister feature to catch, finally has a
sister feature, too. It’s called fault.

Finally clauses always execute regardless upon leaving the associated try block, but
fault clauses execute only when the associated try block is left because of an
exceptional state. To mimic this functionality from C#, you could use a Boolean flag
that gets set when the try block is left in a successful state. Inside the finally
block, this flag can get checked to detect an exceptional exit.

Figure 8.19 illustrates different possible execution flows in a try-catch-finally setting under
the absence or presence of an exception.

What about throwing an exception from a finally clause? In general, try to avoid this
wherever possible but note that it’s possible to do exception handling in the context of a
finally clause, too. The same holds true for a catch clause, but throwing an exception

437Exception Handling

FIGURE 8.20 The inner exception object.

while another one is being handled will cause the first one to get lost. In other words,
there can be only a single exception flowing through the exception-handling system at a
time (to be precise, on a per-thread basis).

One situation where throwing from the catch clause is used regularly is when wrapping
exception objects. For example, an API may fail to connect to a server because of some
network exception or because the server exceeded the number of connections it can
accept. In such cases, one often wants to present this kind of failure as a general “connec-
tion failure exception” (whatever the name is you chose for it) so that callers can catch
that type of exception if they’re interested in handling connection failure somehow (for
example, by showing the user some dialog box). At the same time, though, you want to
preserve the original context in a so-called inner exception:

try

{

conn.Open(host, port, user);

}

catch (ServerExceededConnectionLimit ex)

{

throw new ConnectionException(“The server refused the connection.”, ex);

}

catch (SocketException ex)

{

throw new ConnectionException(“Failed to open socket to the server.”, ex);

}

Notice the second parameter passed to our ConnectionException constructor call. You’ll
see later how to declare your own exception type, but the typical pattern is to have a
constructor that takes in a string for the exception message and an Exception instance for
the inner exception. Internally, this constructor simply calls the similar constructor on the
System.Exception base class. Figure 8.20 shows the correlation between this constructor
parameter and the read-only property that exposes the inner exception.

438 CHAPTER 8 Basics of Exceptions and Resource Management

Deterministic Resource Cleanup
Dealing with various kinds of resources is an everyday task for most developers. This
ranges from local files to remote databases or web services. To make your application well
behaved, it’s often important to release resources as soon as they’re not needed anymore.
While the .NET runtime has automatic memory management using the garbage collector,
other external resources often don’t. In such cases, cooperation from your code might be
needed to properly close such resources.

Garbage Collection in a Nutshell

As mentioned previously, the .NET runtime features automatic memory management
using a garbage collector. The advantages of the service should not be underestimated
because whole classes of bugs get eliminated by it. Examples of common memory manage-
ment issues that come to mind include leaking objects or freeing objects multiple times (a
“double free”).

Conceptually, the garbage collected memory heap gives you the illusion of an infinite
memory space from which you can allocate as much as needed. Obviously, resources are
limited. Not as limited as the physical memory, obviously, because today’s operating
systems offer memory virtualization mechanisms. But still, the party can’t last forever.
Instead of having to reclaim memory yourself in a disciplined way, the garbage collector
will come around every so often and eliminate dead objects.

But it’s not all heaven on earth. One of the fundamental properties of the garbage collec-
tor is its asynchronous background nature. You can’t predict when a garbage collection
will happen, so the lifetime of objects is nondeterministic. Although nondeterminism in a
world as precise as computer science doesn’t sound very good, it’s a perfectly viable thing
for automatic memory management in most cases.

To illustrate matters, take a look at the diagram in Figure 8.21.

Allocation for a new object is requested in step 1, but insufficient heap space is available.
Ignore managed heap generations for now; we’ll assume there’s one contiguous block of
memory available to comprise the entire managed object heap.

This request for object allocation triggered a collection, which is carried out in step 2. In
the first phase, the collector finds all reachable objects (that is, objects code could still
reference because references thereto exist in the evaluation stack) in static fields and
whatnot. How this tracing and subsequent marking of live objects is carried out is of little
relevance. During a second pass, the collector eliminates dead objects to make room for
new ones and compacts the heap to reserve room at the end. You can envision the result
of this being a move of the “high-water mark” indicating the end of contiguous space
allocated by objects on the heap. Notice how much room is available after object I follow-
ing the compaction phase.

439Deterministic Resource Cleanup

Request for object allocation

newobj Person

Triggered garbage collection

Heap allocation

Return reference to heap object

newobj Person

A B C D G H IE F

A B E F G I

Roots

1

2

3

4

A B E F G I J

FIGURE 8.21 Garbage collection induced by new object allocations.

Now that we have enough room, step 3 can proceed with granting the request for heap
space and performs the allocation. This moves the high-water mark farther, and the heap
starts filling again. If at some point a collection as in step 2 can’t make room for enough
memory, an OutOfMemoryException is thrown.

Step 4 is trivial; the address to the newly allocated object on the heap is pushed onto the
evaluation stack so that IL code can now work with the object (for example, to store it in
a local or a field), call methods on it, and so on.

Object Disposal

Now I want you to look outside the reach of the garbage collection itself and focus on
object C in the heap. At the point of the collection, C is not reachable anymore because
there’s no single path through object references that can lead to it from a root, which is a
location known to be reachable. Apparently, there was an object D holding on to it, but
that object by itself is not reachable anymore.

What we don’t know is at what point in the past object C was allocated. It could be a few
milliseconds ago, but it could also be hours or more (assuming, for instance, the applica-
tion was idle waiting for user input). If C holds on to some resource that should not be
kept alive needlessly (like a database connection or a file handle), we’ve created a prob-
lematic situation. This is the pitfall nondeterministic timing for object deallocation causes.

440 CHAPTER 8 Basics of Exceptions and Resource Management

FIGURE 8.22 The IDisposable interface.

For objects that require a deterministic way of cleanup, it’s clear we need something else.
This is where the IDisposable interface kicks in, which is incredibly simple: It just
contains a single Dispose method that takes no parameters and doesn’t return anything
(see Figure 8.22). As you can guess, the goal of that method is to be called when an object
instance needs to be cleaned up on the spot:

void Dispose();

The IDisposable interface is not something the runtime knows about intrinsically. In
other words, this doesn’t change the way the garbage collector will ultimately reclaim the
object’s memory allocated on the heap. What it does, on the other hand, is provide a
means for code to trigger cleanup of resources the object holds on to (for example, file
handles and database connections). Notice that the documentation actually hints at this
use by mentioning “unmanaged resources.”

Because we shouldn’t hold on to those resources when we’re done with them under any
circumstance, it’s important to trigger this cleanup operation on every code path: normal
or exceptional. Recall our discussion about the use of the finally clause to ensure proper
cleanup of a FileStream and StreamReader object:

FileStream fs = File.OpenRead(path);

try

{

StreamReader sr = new StreamReader(fs);

try

{

string line;

while ((line = sr.ReadLine()) != null)

{

Console.WriteLine(line);

}

}

finally

{

sr.Close();

441Deterministic Resource Cleanup

}

}

finally

{

fs.Close();

}

This gets quite clunky due to syntactical noise associated with try and finally blocks and
the need for increasing indentation levels all over the place.

The using Statement

Step back for a moment and reflect on the preceding piece of code. We’re writing down
how object disposal needs to be carried out in excruciating detail. But really, all we want
to say is we’re using a certain resource and want to leave the guaranteed cleanup to the
language and runtime. This is where the using statement comes in:

using (FileStream fs = File.OpenRead(path))

using (StreamReader sr = new StreamReader(fs))

{

string line;

while ((line = sr.ReadLine()) != null)

{

Console.WriteLine(line);

}

}

This code does almost exactly the same as the original code. The using statement consists
of two different parts. Between the parentheses is the resource-acquisition expression; it indi-
cates the resource that will be used inside the block underneath and needs to be cleaned
up no matter how the block is left. The block itself is simply the code that executes with
the acquired resource in scope.

The translation carried out by the compiler is as follows. Assume the following code frag-
ment that uses the using statement:

using (T resource = expression)

embedded-statement

This corresponds to the following expansion:

{

T resource = expression;

try

{

embedded-statement

}

442 CHAPTER 8 Basics of Exceptions and Resource Management

finally

{

if (resource != null)

((IDisposable)resource).Dispose();

}

}

NO DUCKS HERE

Previously, you saw how the foreach statement allows duck typing. The objects it
deals with don’t need to implement IEnumerable and IEnumerator; as long as they
have the required methods, things are fine. The using statement requires an
IDisposable object, so just having an object that has a Dispose method is not suffi-
cient to use the using statement.

By having the outer set of curly braces, a new scope is established for the resource vari-
able. The null check in the finally clause exists only for reference type resources because
value types cannot have a null value.

There are a few rules about what you can do inside the using block. For starters, the vari-
able declared for the resource cannot be assigned to; after all, what would it mean to
“replace” a resource you’re using in the middle of using it: disposing the current resource
when it gets reassigned and disposing the new resource at the end of the block? Lots of
complications would arise here, so this is not allowed. Along the same lines, the resource
variable cannot escape the block in a by-reference manner because that would allow it to
be replaced, too. You’ll learn more about by-reference argument passing later.

This is likely the most common form in which the using statement is used. Other forms
exist where the resource-acquisition expression is not a local variable declaration but just a
plain-vanilla expression of some kind. In such a case, the compiler simply infers the type
of the expression and creates an unnamed local variable for you:

using (expression)

embedded-statement

becomes

using (var __resource = expression)

embedded-statement

To be completely honest, the example of printing a file can be simplified as follows:

using (StreamReader sr = File.OpenText(path))

{

string line;

443Deterministic Resource Cleanup

while ((line = sr.ReadLine()) != null)

{

Console.WriteLine(line);

}

}

The reason I kept things a bit more complicated was to show the (fairly obvious) ability to
nest try-finally statements and using statements. From our previous use of nested using
statements, you can see it’s possible to omit curly braces around the embedded statement,
which is typically done only when multiple resources are used together, and thus reduce
the indentation level of the code:

using (FileStream fs = File.OpenRead(path))

using (StreamReader sr = new StreamReader(fs))

{

// Two indentation levels for the price of one.

}

Readers paying attention to detail will have spotted a subtle difference between the origi-
nal use of the finally clauses in the original PrintFile example versus the expanded
forms of the using statements presented here. The using statement expands to a call to a
Dispose method, whereas our original code called a Close method. For objects such as
FileStream and StreamReader, it makes more sense to name the disposal method Close
because that feels more natural for the domain of file I/O APIs. Similarly, objects that deal
with connections may have a Disconnect method as an alias to Dispose.

In general, though, when an object implements IDisposable, it’s often recommended to
leverage the using statement to deal with proper cleanup. Sometimes this is not possible,
for instance when the disposable object lives in an object field. In such a case, its disposal
time is correlated with the lifetime or disposal time of the containing object. Calling the
Dispose method or an alias thereof must be carried out manually in such a situation, in
the appropriate place.

Implementing IDisposable

You haven’t seen how to declare a type or implement an interface just yet, but it is very
simple to understand. To create an IDisposable type, you write something like this:

class MyResource : IDisposable /* this means we’re implementing IDisposable */

{

// Useful members go here.

public void Dispose()

{

// Do some disposal operation here.

}

}

444 CHAPTER 8 Basics of Exceptions and Resource Management

Things are a bit more complicated, though, because you typically want the underlying
resources to get deallocated even if the Dispose method is not called (because of a type’s
user screwing up, for example). This is where the use of a finalizer comes in. We detail the
concept of a finalizer when talking about classes, but put simply, it gets called by the
garbage collector when the object is about to be cleaned up:

class MyResource : IDisposable /* this means we’re implementing IDisposable */

{

// Useful members go here.

public void Dispose()

{

// Do some disposal operation here.

}

~MyResource()

{

// This is the finalizer method.

}

}

UNFORTUNATE SYNTAX

The use of the tilde syntax to indicate a finalizer method is a bit unfortunate because
the same syntax is used in the world of C++ to indicate a destructor, which is a form of
deterministic cleanup. In the world of the CLR, though, the garbage collector causes
nondeterministic cleanup, and finalizers are part of that picture. In fact, under the
hood, the finalizer is implemented as a Finalize method; you can verify this by look-
ing at the generated IL code. Languages such as Visual Basic require the user to write
a Finalize method instead, thus avoiding syntactical confusion.

Finalizable objects go through an additional step when the garbage collector detects
they’re no longer reachable and subject to deallocation. Instead of deallocating the object
during the collection cycle, the object is put in a queue (sometimes referred to as the
freachable queue, for finalization-reachable queue). Before deallocation happens, the final-
izer methods for the objects in that queue are getting called. Finally, the object reaches a
state where it can get deallocated just like any regular object. As a rule of thumb, don’t
implement a finalizer method unless you absolutely need it. Violating this rule will put
additional stress on the garbage collector, which is strongly discouraged.

The big question now is how to relate the IDisposable pattern and the use of finalizers
with one another. If a user calls the Dispose method explicitly, there’s no need for the
finalizer to run anymore because you’ve already got a chance to clean up resources onto
which the object holds. On the other hand, if Dispose is never called but the object got

445Deterministic Resource Cleanup

unreachable, the finalizer is required to run and do the same cleanup as the Dispose
method would have done if it were called properly by the user during the object’s lifetime.
So we have the same cleanup logic in both places. Those observations give rise to the
following pattern:

class MyResource : IDisposable

{

private bool _disposed;

public void Dispose()

{

Dispose(true /* called by user directly */);

GC.SuppressFinalize(this); // Tell the GC not to finalize this object.

}

void Dispose(bool disposing)

{

if (!_disposed)

{

// Clean up logic goes here.

// Code can use “disposing” to distinguish between cases.

_disposed = true;

}

}

~MyResource()

{

Dispose(false /* not called by user directly */);

}

}

The _disposed field is also used in other members to check whether the object is not
disposed before carrying out an operation: If a file handle is already closed, it’s invalid to
invoke subsequent operations on the object wrapping it. If a member is called when
_disposed is already set to true, the code should throw an ObjectDisposedException:

public void Write(string message)

{

if (_disposed)

throw new ObjectDisposedException(“MyResource” /* name of the resource */);

// Do work here.

}

If the disposable pattern looks frightening, take a second look at it with me. The public
Dispose method is what the user calls, either by calling it directly, through an alias like

446 CHAPTER 8 Basics of Exceptions and Resource Management

Close, or by means of the using statement. Internally, it simply calls the helper Dispose
method with a Boolean argument to perform the cleanup. Here we centralize all logic for
both the IDisposable case and the finalizer case. The disposing parameter is used to
differentiate both cases in case cleanup logic needs to be a bit different depending on the
use. In addition to calling the cleanup code, Dispose also tells the garbage collector it
doesn’t need to bother calling the finalizer method because the user has already done the
disposal explicitly.

To wrap up this preliminary discussion about disposal patterns, note that generally you’ll
be at the consuming side where the proper use of the using statement can save you lots of
headaches. If you forget to dispose of a resource properly, issues may pop up when you
least expect them, so make sure to check whether a type implements IDisposable. If so,
take the appropriate action to ensure the object gets disposed at a reasonable time.

Along those lines, try to avoid having a using statement’s code block exceed the time the
acquired resource is needed. This keeps the resource alive for an unnecessarily long period
and can lead to all sorts of contention (lock duration, pool exhaustion, and so forth) on
whatever system maintains that resource. Remember, you’re probably not the only one
who relies on the resource or the system maintaining it.

/*ab*/using (resource)

{

// Lots of resource-agnostic fluff here.

/* Really using the resource here. */

// And more fluff that doesn’t rely on the resource.

}

(In)appropriate Use of IDisposable

One danger of telling people the implementation of the using statement is that they start
to retrofit the pattern for purposes other than deterministic resource cleanup. In its true
essence, the using statement is a try-finally statement in disguise with some method
call happening nearly at the very end of the associated block. The following is a sample
use of IDisposable is to implement a code execution timing facility:

using (new ExecutionTimer(Console.Out /* to log to */))

// Code to be benchmarked goes here.

Here, the constructor of ExecutionTimer would start the timer and the Dispose method
would stop it, printing the elapsed time since the constructor was called to the specified
logger. Although this can be handy at times, the using statement was never intended to
be a general-purpose code block decoration facility. When browsing code, seeing a using
statement is meant to trigger “aha, the developer is dealing with some resource that

447Locking on Objects

requires cleanup” (IDisposable semantics) and not “aha, the developer is sneaking in
some code at the end of the block to do whatever he sees fit.”

In the preceding example, things are even a bit more subtle because the constructor hides
essential logic, too. Refactoring the code to construct the object higher up and feed it in a
local variable expression in the resource-acquisition part of the using statement would
have very different semantics because you would be measuring a bigger code block’s
execution time.

What we would really need to make such scenarios of associating pieces of code with
leaving and entering of a block is some kind of first-class treatment of blocks by the
language. Action delegates turn out to be such a thing in disguise but still suffer from
some syntactical noise:

ExecutionTimer.Measure(() => // using lambda expression syntax here

{

// Code to be benchmarked goes here.

});

In the preceding example, the Measure method would start a timer first, then call the dele-
gate that’s passed in, and finally stop the timer and report the elapsed time at the end.
Obviously, the destination logger could be fed in to the method as a parameter, too.

You could think of a way to allow this syntax to be made easier if (and this is all hand-
waving amateur language design) some delegate appears as the last parameter on a
method, so that “juxtaposition” of a method and a block means the same as feeding the
block in to the method as a delegate:

ExecutionTimer.Measure(Console.Out) // The block becomes a second parameter.

{

// Code to be benchmarked goes here.

}

Another concern is the fact that calling through the delegate has an additional cost that
becomes truly hidden now to the user of the method. It’s not clear first-class block treat-
ment based on delegates (or any such feature at all) will hit the top of feature prioritiza-
tion lists for the language in the foreseeable future.

Locking on Objects
Lots of real-world software doesn’t have a single thread of execution. To execute multiple
tasks at a time, threads or abstractions thereof (such as tasks in .NET 4.0) are used. It’s the
responsibility of the underlying operating system scheduler or a runtime facility to let
units of execution get a turn at making progress. Concepts such as context switches,
thread pool management, and so on directly relate to this.

448 CHAPTER 8 Basics of Exceptions and Resource Management

What’s of more interest to us in this context is the problem of different threads accessing
the same resource simultaneously. This gives rise to potential issues with regard to consis-
tency of state. To avoid going too abstract here, let’s make things very concrete by present-
ing a Counter class that maintains a single integer value and has two operations,
Increment and Decrement:

class Counter

{

private int _value;

public void Increment()

{

_value++;

}

public void Decrement()

{

_value—;

}

public int Value { get { return _value; } }

}

Dissecting this code, we start by observing a field called _value that stores the counter’s
value. The property at the end of the class definition provides a read-only means to read
out the value of the counter. The Increment and Decrement methods are trivial to under-
stand and operate on the underlying field.

Based on this, you can certainly predict the behavior of the following code:

const int N = 100000000;

var count = new Counter();

for (int i = 0; i < N; i++) count.Increment();

for (int i = 0; i < N; i++) count.Decrement();

Console.WriteLine(count.Value);

If that doesn’t produce zero, things have gone really wrong. But what if the incrementing
and decrementing loops are operating in parallel? To illustrate this, we could use plain old
threads, but let’s go for .NET 4.0’s new facilities and use the Parallel class to declare our
parallel invocation desire:

449Locking on Objects

FIGURE 8.23 Parallel execution nondeterminism.

const int N = 100000000;

var count = new Counter();

Parallel.Invoke(

() => { for (int i = 0; i < N; i++) count.Increment(); },

() => { for (int i = 0; i < N; i++) count.Decrement(); });

Console.WriteLine(count.Value);

Parallel.Invoke simply takes in a series of delegates that we want to execute in parallel.
The most natural way (starting from C# 3.0) to pass in such delegates is by means of
lambda expression syntax: () => { /*code*/ } stands for “no arguments, (), goes to, =>,
/*code*/.” The result? Faster code, but truly nondeterministic (see Figure 8.23).

Under the Hood

You might, and actually should, wonder where this nondeterminism comes from. To
understand this, we need to delve a little deeper. The crux of the problem lies in the fact
Increment and Decrement are not atomic operations:

public void Increment()

{

_value++;

}

The use of the post-increment expression (used as a statement here) really decomposes in
three distinct operations that are carried out sequentially: First the value is read, then it
gets incremented, and finally it gets assigned back to the field. Figure 8.24 shows the IL
code corresponding to a post-increment expression.

450 CHAPTER 8 Basics of Exceptions and Resource Management

FIGURE 8.24 Non-atomic post-increment on a field.

this

IL_0001
ldarg.0

this

this

this

123

this

124

IL_0002
dup

IL_0003
ldfld

IL_0008/9
ldc.i4.1

add

IL_000a
stfld

Counter

_value =
123

Evaluation Stack

Counter Object
Counter

_value =
123

Counter

_value =
123

Counter

_value =
123

Counter

_value =
124

FIGURE 8.25 An “innocent” post-increment operation on a field.

It’s worth the effort to try to understand this code fully. And how better than to show it
with an evaluation stack transition diagram, as we’ve done before on various occasions
(see Figure 8.25)? You’ll get the hang of it soon, believe me.

The first two instructions are really setting up plumbing for what’s coming afterward:
ldarg.0 loads the very first argument on the method, which is a reference to the object
instance itself in case of an instance method (the this reference). Instructions such as
ldfld and stfld (load and store field) require the instance on the top of the stack. They’ll
pop the instance reference from the stack and subsequently load or store from or to the
field in question. Because we need to carry out both operations in the same method body,
the loaded this reference is duplicated by the dup instruction. This prevents having to use
ldarg.0 twice, in favor of the dup instruction, which merely copies a few bytes holding
the object reference to be duplicated on the evaluation stack.

Where the trouble in multithreaded execution comes in is with the last four instructions.
Assume any number of other threads are executing operations on the same field (for
example, to decrement). Any number of interleaving schemes is possible because the

451Locking on Objects

this

122

this

123

IL_0008/9
ldc.i4.1

sub

IL_000a
stfld

this

124

IL_0008/9
ldc.i4.1

add

IL_000a
stfld

Counter

_value =
123

Counter

_value =
123

this

IL_0003
ldfld

123

C
on

te
xt

 S
w

itc
h

C
on

te
xt

 S
w

itc
h

IL_0003
ldfld

Counter

_value =
123

~1
:

In
cr

em
en

t
~2

:
D

ec
re

m
en

t

Counter

_value =
122

Counter

_value =
122

Counter

_value =
124

FIGURE 8.26 Interleaved execution of two threads.

runtime (typically aided by the operating system underneath) is allowed to context switch
threads at any point. One example is shown in Figure 8.26.

Every managed thread of execution has its own evaluation stack. In the figure, right after
the field is read by the first thread (~1), a context switch occurs, giving the second thread
some time to execute (~2). That thread reads the field as well and subtracts and stores the
resulting value. However, the first thread has a copy of the original value on its evaluation
stack, and when a switch occurs back to the first thread, it proceeds under the assumption
the field hasn’t changed in the meantime. It increments the original value and stores the
resulting value, effectively overwriting the second thread’s update. In the world of data-
base transactions, terminology such as “nonrepeatable reads” would apply to describe this
circumstance.

Most likely, the time a thread gets to execute (known as a quantum at the OS level) will
exceed more than four IL instructions by far. However, a context switch could occur in the
middle of each thread. As such, the code is flawed, and observing this multithreading
issue can take some time (likely it fails for the first time during a presentation to your
manager). What we need to enforce here is atomicity of the increment and decrement
operations by making sure the four instructions that read, calculate, and store are not
interrupted by context switches. Or more accurately, during that critical section, no other
thread should get a chance to touch the same state.

452 CHAPTER 8 Basics of Exceptions and Resource Management

FIGURE 8.27 Parallel stacks showing simultaneous execution.

Actually, you can see the threads executing simultaneously by using the Parallel Stacks
window found under the Debug, Windows menu (see Figure 8.27). This feature was added
in addition to the Threads window in .NET 4.0, where threads got an additional abstrac-
tion level called “tasks.” The Parallel Tasks and Parallel Stacks windows enable users to get
a better picture of what task spawned which other tasks and so on.

A SIMPLER FIX

Before I continue discussing multithreading and locking techniques, I have to say this
particular example is so simple that we can tackle it in a very specific way to yield the
correct result. Incrementing and decrementing values are such common operations that
atomic variants for it exist, directly supported by the processor hardware. During a
single instruction on the hardware level, it’s impossible for the OS to perform a context
switch, so that takes care of the problem:

public void Increment()

{

Interlocked.Increment(ref _value);

}

public void Decrement()

{

Interlocked.Decrement(ref _value);

}

Notice that the hardware itself has parallelization built in based on the concept of
pipelining, but that stretches way beyond our scope of discussion.

The lock Statement

Since the very first version of the C# language, it was thought important to have
language-level support for mutual-exclusion execution of code. The central concept here is
that of a lock, which is acquired upon entrance of a block of code and released at the end
of it. Lock ownership is an exclusive right; no two blocks of code should be allowed to
execute simultaneously. When a lock is already held when another piece of code tries to

453Locking on Objects

this

123

IL_0008/9
ldc.i4.1

add

this

124

IL_000a
stfld

Counter

_value =
123

Counter

_value =
123

C
on

te
xt

 S
w

itc
h

C
on

te
xt

 S
w

itc
h

IL_0003
ldfld

Counter

_value =
123

~1
:

In
cr

em
en

t
~2

:
D

ec
re

m
en

t

Counter

_value =
123

Counter

_value =
124

Counter

_value =
124

Acquire
Lock

Release
Lock

Acquire
Lock

FIGURE 8.28 Mutual exclusion due to locking.

acquire it, the latter piece of code will have to wait until the lock is released again. The
idea of threads acquiring and releasing locks is shown in Figure 8.28.

When the first thread starts its execution, it acquires the lock, which is fine because no
other thread is currently holding it. The mechanics of acquiring a lock are shown later,
but let’s just focus on the conceptual diagram for now. Next, the thread starts its execu-
tion. Assuming a context switch occurs at the same time, as we’ve shown in our previous
example (but that could vary, of course), the second thread gets scheduled and a context
switch occurs.

Now the second thread starts by attempting to acquire the same lock as the first thread.
Locks are put on resources that cannot be accessed simultaneously by different parties, so
the same lock should be used by the different parties trying to access the protected
resource. Because thread one already holds the lock, the request of thread two to acquire
the lock fails. The second thread now enters a blocked state, and the threading infrastruc-
ture will decide to switch it off and give control to another thread. Thread two now effec-
tively becomes “unschedulable” and won’t be considered for context switches until the
lock is released. Ultimately, thread one, which isn’t blocked on anything, will get sched-
uled and can continue to run. Ultimately, it will release the lock, at which point the book-
keeping for threads will indicate that thread two now is schedulable because it no longer

454 CHAPTER 8 Basics of Exceptions and Resource Management

IL_0008/9
ldc.i4.1

sub

IL_0003
ldfld

this

122

IL_000a
stfld

Counter

_value =
124

Counter

_value =
124

C
on

te
xt

 S
w

itc
h

this

123

Counter

_value =
124

~1
:

In
cr

em
en

t
~2

:
D

ec
re

m
en

t

Counter

_value =
124

Counter

_value =
123

Counter

_value =
123

Release
Lock

Acquire
Lock

Release
Lock

FIGURE 8.29 Mutual exclusion due to locking, continued.

has to wait for the lock to become available. Figure 8.29 shows how the decrementing
thread runs its code inside the lock, while the first thread cannot proceed.

PREEMPTIVE, NOT COOPERATIVE

To be precise, I should point out that the diagrams hide an important detail. The dotted
lines that indicate context switches seem to be triggered by the threads themselves,
which is not the case. In reality, the thread switching is controlled by the runtime in
concert with the operating system, deciding when a thread switch happens and which
thread gets scheduled next, based on information about blocked threads (waiting on
some operation to complete) and things such as fairness rules (making sure every
thread eventually gets a chance to make forward progress). The previous thread gets
interrupted, which is known as preemption, hence the name preemptive scheduling.

Preemptive scheduling is in contrast to cooperative scheduling, where threads decide
themselves to yield control to another thread at some point. Bookkeeping for coopera-
tive scheduling is much harder because every thread needs to have insight as to the
global picture: who’s waiting for what (to avoid yielding control to a thread that will
remain stuck for the rest of its days, bringing the system to a halt), how long every
thread had a chance to run (to ensure fairness), and so on. This is a specialized
domain that is not feasible for general-purpose runtimes and operating systems.
Advanced software, such as the SQL Server database engine, employ such schemes.

455Locking on Objects

So far, we’ve not yet considered how to acquire and release a lock from C#. The answer
lies in the lock statement, which provides a simple block-based mechanism to establish
mutual exclusion based on an object on which to lock. Instances of a reference type can
be used to take a lock on, essentially making that object the lock protecting some
resource. Here is an example of its use in the context of our Counter class:

class Counter

{

private int _value;

private object _lock = new object();

public void Increment()

{

lock (_lock)

{

_value++;

}

}

public void Decrement()

{

lock (_lock)

{

_value—;

}

}

public int Value { get { return _value; } }

}

Upon entrance of the block used in a lock statement, the code attempts to acquire the
lock that lives on the object specified in the expression between the parentheses (in the
example, _lock). It’s very common to use a plain-vanilla System.Object instance as an
object to use as a lock; after all, it’s the smallest reference type possible, and you won’t
typically use it for anything but the lock.

WHY NO LOCKING ON THE THIS REFERENCE?

As a rule, never lock on publicly accessible objects. The user of the Counter class could
lock on an instance of it, which will upset the logic inside. You could essentially sabo-
tage the working of the object from the outside, causing bad things such as deadlocks.

How does the lock statement work internally? It’s important to make sure the lock is
released under any circumstance where control leaves the critical section, so a
try-finally statement will be an essential part of the picture. A remaining question is

456 CHAPTER 8 Basics of Exceptions and Resource Management

FIGURE 8.30 The lock statement unraveled.

how the lock is acquired and released. The CLR doesn’t have those primitives inside the IL
instruction set, so BCL calls have to be used to realize this. The whole picture is shown in
Figure 8.30.

The portion wrapped in the big curly braces is the compiled code from inside the lock
statement’s code block. The rest of the code is what the lock statement itself is responsible
for and essentially boils down to a call to Monitor.Enter before executing the code and
one to Monitor.Leave inside the finally clause to be guaranteed it runs for sure, even if
an exception is thrown during execution of the block.

Those primitives from the System.Threading namespace can be called manually, as well, if
you want. More Monitor methods exist to accommodate a variety of scenarios (for
example, if you want to wait to acquire a lock only for a specified duration). If that
timeout is exceeded, you could go on to do something else and attempt to acquire the
lock again at some later point.

Intermezzo: Code Generation for Lock

In the last release of the C# language, code generation for the lock statement has been
changed due to a truly fascinating story in compiler development land. Consider the
following fragment:

lock (expression)

embedded-statement

457Locking on Objects

Before version 4.0, this lock statement translated into the following fragment:

var __lockExpression = expression;

Monitor.Enter(__lockExpression);

try

{

embedded-statement

}

finally

{

Monitor.Exit(__lockExpression);

}

It turns out, the preceding code is plagued with some very subtle issues. For starters, the
lock object is stored in a temporary local variable to ensure the same lock is released as the
one that was acquired. If the lock expression references a field or calls a method, it’s possi-
ble (though definitely not recommended as a good practice) for the lock object to change.
In such a case, other threads blocked on the original lock object would never get unblocked
if the lock release weren’t symmetric to the acquisition. That was easy to grasp, wasn’t it?

Even more headaches come from a seemingly innocent instruction: nop, which stands for
no operation and is essentially a resource-wasteful instruction because it doesn’t do
anything useful by itself. One place where it’s used is to allow users to set a breakpoint on
lexical tokens such as curly braces, so the compiler emits a nop instruction for those in
debug builds. However, any instruction in the CLR can throw a thread abort exception,
including this one.

Where does the problem with this fragment come from, and what does nop have to do
with it? Turns out in nonoptimized builds, the compiler can emit a nop instruction
between calling Monitor.Enter and entering the following try-finally statement. The
reason for this is to allow the user to set a breakpoint on the try keyword itself, which
doesn’t result in an instruction itself (and breakpoints can be set only on instructions).
However, because of this case, it’s possible the lock gets acquired but never gets released if
the nop instruction throws a ThreadAbortException and the protected block is not entered
yet (so the finally clause never runs). As a result, we may have deadlocked the code
because other threads waiting for the lock to be released will never be able to continue.

THE DREADED THREADABORTEXCEPTION

Before I proceed here, you should realize that using ThreadAbortException is almost
never a good idea. Given a Thread object, calling the Abort method on it causes the
CLR to throw a ThreadAbortException on that thread in an attempt to take it down.
There are lots of issues with this approach: You don’t know in what state the thread is
at the point it gets aborted, potentially causing an inconsistent state as a result. And
more horror stories exist about ThreadAbortException.

458 CHAPTER 8 Basics of Exceptions and Resource Management

Whenever a thread (or task in the world of .NET 4.0 concurrency constructs) is meant
to be able to be stopped before it naturally finishes, you should implement a graceful
mechanism that allows doing so. For example, a Boolean flag could be set to signal to
the thread that it needs to stop at the first moment it sees fit (and when it’s safe to do
so with regard to the state it manipulates).

So why does Thread.Abort even exist? Answer: Emergency situations, when an appli-
cation domain (the unit of isolation for code execution on the CLR, see Chapter 25,
“Assemblies, and Application Domains”) needs to be terminated forcefully.

What we’re pointing out in the text is merely the potential for this dreaded thread abort
exception to cause troubles in the face of the lock statement implementation, without
actually judging whether the use of it is a good thing (it isn’t).

Starting with C# 4.0, the generated code for the lock statement has changed to be as
follows, just as shown in the IL fragment earlier:

bool __lockTaken = false;

var __lockExpression = expression; // assignment really happens in try block

try

{

Monitor.Enter(__lockExpression, ref __lockTaken);

embedded-statement

}

finally

{

if (__lockTaken)

Monitor.Exit(__lockExpression);

}

The Boolean __lockTaken flag is set by the Monitor.Enter method and is required to
reflect the truth about the lock acquisition state in the face of ThreadAbortExceptions.

Be Careful with Locks

Just as with the using statement, it’s highly recommended to keep the embedded block as
tiny as possible. For both statements, the main motivation is contention. If a resource is
used with the using statement, others might be waiting for it, or you might be putting a
needless amount of stress on the resource management system underneath. In case of a
lock, you’ll be slowing down other threads, keeping them blocked longer than absolutely
required to ensure the consistency we’re in search of.

But there’s another reason, too. Locking is just an essential primitive to provide for mutual
exclusion between multiple threads of execution. But that’s about it. The lock statement
by itself doesn’t give any atomicity or consistency guarantees whatsoever. An example:

459Locking on Objects

void TransferFunds(Account from, Account to, decimal amount)

{

lock (globalTransferLock)

{

from.Funds -= amount;

to.Funds += amount;

}

}

The core idea of this lock sample is simple: We don’t want to see money appearing out of
nowhere or see the total amount of money in the world decrease because of inconsistent
transfers. This could happen in lots of cases (for example, if two threads are dealing with
the same “from” account and both have read the balance to be $1,000,000 before doing
the transfer). As a result, write operations will overlap, and money comes out of nowhere
(assuming a positive amount):

Thread 1: 1,000,000 - 500,000 = 500,000

Thread 2: 1,000,000 - 250,000 = 750,000

Either way, whatever thread wins the battle, the result is clearly not $250,000 as would
be expected.

But there are quite a few problems with the suggested solution’s code. First, we seem to
lock on some global lock object called transferService. All transfers in the whole bank
depend on a single lock object, which is definitely very safe. (No two transactions can
happen at the same time at all, assuming all transaction code is wrapped in such a lock
statement.) On the other hand, this can be a big source of resource contention.
Performance issues with locks typically stem from contention, but there’s only one way to
know whether it affects you: Measure it!

In fact, we should consider ourselves lucky we went for a global lock earlier for reasons of
correctness. If you conclude there’s too much contention going on, slowing down the
whole system, you might be tempted to suggest the following fix:

lock (from)

{

lock(to)

{

from.Funds -= amount;

to.Funds += amount;

}

}

Congratulations, you’ve just made matters worse than they were. But if you lock on both
accounts, we should be fine, shouldn’t we? Conceptually that sounds right, yes, but some
caveats apply. Okay, we’re locking on a publicly visible object, which is definitely not
recommended, but we can argue that we’re in a trusted subsystem where we’re the only

460 CHAPTER 8 Basics of Exceptions and Resource Management

Account

_funds =
$500,000

Account

from to

to from

_funds =
$750,000

TransferFunds(from, to, amount)

1:
2:
3:
4:
5:

~?

~1

~2

~1

~2

~1: $250,000

~2: $125,000

// Initial state

1: lock (from) {

1: lock (from) {

2: lock (to) {

2: lock (to) {

Blocked on

Blocked on

lock (from) {
 lock (to) {
 // Transfer
 }
}

FIGURE 8.31 Inconsistent ordering of lock acquisition leads to deadlocks.

ones that will acquire locks on those objects, so let’s dismiss that argument. The bigger
issue here lies in the ordering of locking on account objects, a classic in concurrency
courses. Think about what happens if another thread is attempting a transfer with the
same two accounts but from and to are swapped.

In Figure 8.31, you can see what happens if context switches happen between both
threads in the middle of acquiring locks. Both threads are waiting for a lock, and neither
can make progress, ever: They’re waiting for each other, resulting in a deadlock situation.
Unless you can ensure locks on multiple objects are always acquired in the same order,
you shouldn’t do such a thing. Learning how to ensure a consistent lock ordering for the
case of two random accounts would lead us too far. Devising a fine-grained locking
scheme may even be a totally irrelevant question if the solution using a global lock
doesn’t pose a bottleneck.

This brings us to the point we’re making here: limit the amount of code that executes
under a lock that’s being held. Not only to reduce contention, but also because of the risk
of causing exceptions while you’re modifying critical state. The lock statement doesn’t help
with that: If an exception is thrown in the middle of touching state, changes made up to
that point aren’t rolled back. In the running example, it seems there’s not much going on:

from.Funds -= amount;

to.Funds += amount;

461Locking on Objects

However, this could be very deceptive. Funds is most likely implemented as a property, so
in reality the preceding code is calling get and set accessor methods. Although it’s highly
recommended to make property accesses not excessively expensive (in a sense, they would
trigger an amount of code of a different order of magnitude compared to accessing a
field), there might be a bit of code in there. Maybe setting a property triggers a change
notification to other parts of the system (for example, to synchronize the online banking
view of the account). Such operations could fail and throw an exception. If that’s the case
and we don’t protect against it in the calling code, we might have subtracted the amount
from one account without adding it to the other one. Avoiding running large pieces of
code mitigates such a risk.

ACID

In the world of database systems, transactions are characterized with four properties,
often abbreviated as ACID for atomicity, consistency, isolation, and durability:

. Atomicity means a whole transactional operation either succeeds or rolls back as
a unit. No intermediate inconsistent states are possible. In the example of
accounts, that means it’s impossible for one account to be debited if the other
didn’t get credited.

. Consistency denotes the guarantee the database will remain consistent in all
circumstances. Transactions preserve the consistency property no matter
whether they were committed or rolled back. For a banking system, it means no
money falls off the radar or enters it out of nowhere.

. Isolation ensures intermediate states that exist during execution of a transaction
are invisible to other transactions that are in flight. In the accounts example, this
means no one should be able to see one account in a debited state while the
other hasn’t been credited yet.

. Durability is about the database system guaranteeing that as soon as the trans-
action is committed, the results are persisted in such a way that they are perma-
nent. If the bank suffers an electric power outage right after the user saw the
transaction completed, it’s guaranteed the database will get back to that
completed state as soon as power is restored.

The lock statement construct doesn’t really provide ACID guarantees as full-fledged
database systems do. Instead, consider it just a low-level primitive that can be used to
write systems that provide more guarantees but that is and stays the user’s responsi-
bility. It would take introducing software transactional memory (STM) to get beyond this
“restriction,” but when (and if) that will (ever) happen is a big unknown.

In other words, locking doesn’t provide a way to perform transactional operations by
itself. All the lock statement ensures is mutual exclusion and avoidance of deadlocks if an
exception occurs due to the use of a try-finally protected region of code, guaranteeing
release of the lock under all circumstances. This might be a good thing, but typically it
isn’t. Assume one thread threw an exception during modification of state, and things just
got terribly inconsistent. Because of the use of the lock statement, the lock will be

462 CHAPTER 8 Basics of Exceptions and Resource Management

released through the finally clause underneath. This allows other threads that are
waiting on the lock to continue running (well, one at a time of course, due to mutual
exclusion), but they will now do from an inconsistent state. The key message here is this:
Avoid throwing during the time a lock is held.

Summary
Congratulations. After having read this and Chapter 6, “A Primer on Types and Objects,”
you’re pretty much an expert in procedural programming techniques now, employing the
whole reach of the C# statements spectrum. In this chapter, we discussed different parts of
the exception-handling system, most notably focusing on how to write code that’s robust
in the face of exceptions but also showing how to throw exceptions ourselves.

Next, we took a look at constructs that build on the exception-handling system, such as
proper resource cleanup with the using statement and coordination of concurrent code
using mutual exclusion provided by the lock statement.

In the next chapter, we continue to zoom out and look at classes, structs, and containers
for them in the form of namespaces. You’ll learn how to create your own types using
object-oriented principles and provide typical members for them such as constructors,
methods, properties, and indexers.

CHAPTER 9

Introducing Types

IN THIS CHAPTER

. Types Revisited 463

. Classes Versus Structs 466

. Type Members 486

Step by step, we’re emerging from the cave of discrete
language elements and starting to combine them into large
programs. After our extensive coverage of expressions and
statements, time has come to use them in a broader
context. In this and the following few chapters, we lay the
basis for “programming in the large,” exploring classes and
structs as well as the various sorts of members they support.

In this chapter, we focus on the concept of types and
contrast classes and structs. The discussion of a type’s
members is deferred until further chapters.

Types Revisited
At the heart of managed code lies the concept of types.
Defining the concept of a type is not an easy task, but put
simply, it offers a means for the runtime to know what
precisely a certain object is, and hence what the valid oper-
ations are to be performed on it. Typing is a crucial concept
in the world of managed code because of the type-safety
guarantees the platform offers.

Types are blueprints for objects. They describe the shape of
objects that are said to have that particular type. Such a
shape has two key elements:

. Data is what an object contains and operates on. It
directly relates to the layout of objects in memory
because storage needs to be provided for all the
discrete pieces of data that make up an object.

464 CHAPTER 9 Introducing Types

. Operations are defined to offer functionality that operates over the data, possibly
taking in and/or returning other pieces of data (which by themselves have types).

If you read carefully, you can spot a recursive nature in this definition. While a type
defines the shape of an object, it does so by wrapping up pieces of data and providing
operations over it. All data involved has a type by itself, too. Obviously, this needs to end
somewhere. This is where primitive types enter the picture. For example, some type repre-
senting a Person may contain a name stored as a string as well as a date of birth stored as
a DataTime. Notice that DateTime by itself can be broken down further into year, month,
day, and so on. But ultimately, the DateTime type contains some integral values that
describe a date and time unambiguously.

In addition to the code + data breakdown, types can be categorized as concrete versus
abstract. Concrete types can have instances of them, whereas abstract ones can’t. Abstract
types provide a means to define proper type hierarchies, where parts of a type’s implementa-
tion are left to extenders of a type. Interfaces are the canonical example of such abstract
types, defining a set of operations as a contract for collaboration between different compo-
nents: “If you implement this and that operation, we’re in business.”

The simplest way to remember the relationships in which a type participates is to think in
terms of verbs. The “is a” relationship denotes a type hierarchy. Every Person is also an
Object. To describe the data a type combines together, the “has a” relationship fits it all.
And finally, to describe operations, “can” seems an appropriate choice.

Figure 9.1 contains more information than we’ve categorized so far. It states that Person
and Object are classes, denoting the sort of type we’re dealing with. After we’ve expanded
a type definition, collapsible regions appear for the different kinds of members that exist:
fields, properties, methods, and so on. For now, we’ve only characterized methods as code
and fields as data but haven’t classified properties yet. Conceptually, they’re a way to
expose data, although physically they’re defined as operations (that is, code).

To be completely fair, a third element exists in this cocktail: metadata, which is data about
the type and its members itself. Metadata has several roles. For starters, it enables the
exploration of the capabilities of types at runtime using reflection, allowing questions to
be asked (such as, “What are the methods on this type?”) at runtime. Furthermore,
certain kinds of members are fueled by metadata. For example, although properties look
like a mechanism to expose data, they really consist of (pairs of) methods underneath.
Using metadata, tools can explore the capabilities of types (for example, for IntelliSense)
and receive guidance on how to consume the type (for example, use of a property getter
corresponds to such a method call). Finally, metadata is a driver for certain runtime
aspects. The canonical example is serialization, which can be turned on for a type using a
custom attribute:

[Serializable]

class Person { /* ... */ }

465Types Revisited

FIGURE 9.1 Decomposing a type.

Different sorts of types exist, two of which we look at in this chapter: classes and structs.
Both provide containers for code and data, whereas some of the other types are exclu-
sively focused on one aspect. For example, delegates and interfaces are all about operations
you can perform, whereas enumerations are all about data that gets defined as named
constants. Figure 9.2 illustrates where classes and structs live.

ClassesC
o

d
e

Structs

Data

FIGURE 9.2 Where classes and structs are situated.

466 CHAPTER 9 Introducing Types

Classes Versus Structs
Figure 9.2 illustrates where classes and structs fit in the sea of types that are available to
managed code developers. You can debate where exactly in the diagram sorts of types
belong, but let’s accept my choice for now.

References Versus Values

Struct is a fancy word for value type. Recall that value types are copied by value; every
time an instance of a value type (sometimes abbreviated simply as value) is passed, a copy
is created. This is in sheer contrast to reference types, where a reference to the object is
passed along.

Let’s concretize matters by considering integral numeric values. Why are those value
types? There are a couple of reasons. First, values have some kind of immutable character-
istic: 1 is 1 and will always be. Although immutability is not a requirement for value
types, not obeying it is asking for trouble, as you will see. This doesn’t mean a variable of
a value type can’t change (after all, isn’t the point of a variable to vary?); all I’m saying is
that the value itself can’t change:

for (int i = 0; i < 10; i++)

// Do something

Here, the value of variable i is changing all the time. However, the instances of the Int32
type are not changing: By incrementing 1, you’re not affecting everyone who’s using 1
somewhere. Even in natural language, this is reflected: When using the word one to mean
a number, you’re not referring to some magical instance of the number 1 kept in some
central location (that one). And we deem it pretty unlikely a genius mathematician will
come around anytime soon mandating a change to the number 1! Figure 9.3 contrasts the
notion of a value with that of a reference.

Another canonical example of a value type is a point. A point has different coordinates,
like X and Y, but those are fixed. You might wonder: But what if something needs to be
moved? What’s changing is not the point’s data itself, but rather the location of the object
being moved. This location will be of type Point, and during a move it will get a different
value assigned. Imagine that Point is a reference type and the following code sets the

1Correct

1

i

Wrong i X
FIGURE 9.3 Integral numbers are value types.

467Classes Versus Structs

(10,10)
Our Apartment Next Door

(20,20)

FIGURE 9.4 Point as a reference type.

Location property for a table and a kid in two different rooms, where location is relative
to some corner of the room. The table is positioned at position (10,10), and the kid is
reading his Tintin book also at position (10,10), so the same instance of the Point type
could be used for both:

var p = new Point(10,10); // with Point a reference type

kid.Location = p;

table.Location = p;

Now, what happens if the person in the first room wants to move his table to position
(20,20)? Different approaches can be taken, but the aliasing property of reference types
can be disadvantageous. Because the same instance of Point is used for both Location
properties, changes to this very instance will affect both objects’ locations:

p.X += 10;

p.Y += 10;

I’m guessing the kid won’t be happy to be moved by some invisible teleportation force, as
illustrated in Figure 9.4.

468 CHAPTER 9 Introducing Types

Our Apartment Next Door

(10,10) (10,10)

(20,20)
(10,10)

FIGURE 9.5 Point as a value type.

Two things are really going on here. First, the fact Point is treated as a reference type
makes aliasing possible. Second, we can assign to X and Y of the Point object—that is, the
data is mutable. There are different ways to avoid the problem, but really the core
problem lies in the fact we’re using a reference type to denote something that has value
characteristics. Is it really the case multiple things should be able to refer to the same
point? Rather unlikely.

Using a value type for Point, things start to look quite different. Even though the same
code will work, semantics are different. Upon assignment of the struct’s value to the differ-
ent Location properties, a copy is taken:

var p = new Point(10,10); // with Point a reference type

kid.Location = p;

table.Location = p;

The kid and table objects no longer refer to the same object: They simply don’t refer to the
point anymore; instead, they store a point value. The effect of changing the point’s value
on one of the objects is illustrated in Figure 9.5.

469Classes Versus Structs

MUTABILITY, AN ORTHOGONAL CONCERN

The main consideration for choosing between value types versus reference types
should be the desired semantics. If you naturally refer to some object, a reference type
is appropriate so that multiple entities can refer to the same instance of it. On the
other hand, value types represent things that are just that: values, as in quantities,
coordinates, colors.

Although it typically doesn’t make sense to mutate a value—and indeed, doing so is
highly discouraged, as discussed later—neither the runtime nor the C# language
prevents you from doing it. But quick, tell me what it would mean to you to change the
number 1 or tweak the RGB representation of the color Red.

Reference types, more often than not, are written to be mutable in true imperative
programming style, which gets reflected in object-oriented programming, as well
(although it’s not a fundamental pillar of OO). For example, calling a method for money
transfer on an account will change its balance, and setting a person’s age property will,
uhm, change its age. However, it’s perfectly doable to construct reference types that
are immutable: Once created, you can’t change their state anymore. The canonical
example of an immutable reference type is System.String.

The de facto use of mutability in all sorts of circumstances is no longer an ideal prac-
tice in today’s world of concurrent software. The more mutable state there is, the more
synchronization is needed when objects are handed out and all sorts of components
can start to mutate them. Therefore, the use of data structures that are immutable by
default can be a huge advantage to aid in parallelizing software. When state is only
readable, it’s fine to hand out objects to different components; they can’t spoil things.
Simply stated, “shared mutable state = trouble.”

At this point, neither the runtime nor most languages on top of it provide direct means
to ensure or enforce immutability. That certainly may change in the future because the
role of parallel computing is increasing. Traces of this influence can be found today in
the new .NET 4.0 System.Threading namespace but also in the F# language where
immutability is the default.

In summary, structs are value types and classes are reference types. Figure 9.6 highlights
the role of structs and classes in the bigger picture of types. To declare such types, dedi-
cated keywords are used, which unsurprisingly are called struct and class, respectively:

struct Point

{

// Members go here.

}

class Person

{

// Members go here.

}

470 CHAPTER 9 Introducing Types

Value Types Reference Types

Object

ValueType

StringSByte

Int16

Int32

Int64

Boolean

Single

Decimal

Byte

UInt16

UInt32

UInt64

Char

Double

Struct Types
e.g., Point

Interface Types
e.g., IComparable

Delegate Types
e.g., Action

Class Types
e.g., Window

Array Types
e.g., Int.32[]

Enum Types
e.g., Color

Nullable Types
e.g., int?

FIGURE 9.6 Structs and classes.

Heap Versus Stack

Lots of books start the discussion about reference types versus value types by pointing out
their different memory-allocation characteristics. To say the least, this is a weird thing to
do because this is truly an implementation detail. So the first decision factor when choos-
ing between a reference type and a value type should concentrate on the intended
semantics as opposed to potential benefits in terms of memory-allocation and -dealloca-
tion patterns.

We should pay some attention to the way things work on this level, too. Here’s the deal:

. Value types (such as structs) are stack allocated.

. Reference types (such as classes) are heap allocated.

I’m actually omitting a slight detail for now (boxing), but this is the general picture. Pretty
simple, isn’t it?

So, what’s this heap and stack thing all about? We’ve already seen the use of the evaluation
stack when looking at some intermediate language (IL) code generated by the C# compiler.
The data stored for value type instances simply lives on that stack directly (that is, without

471Classes Versus Structs

Setting Up the Call Execution of Method

Evaluation
Stack Space

Add

5

3

•
•
•

Main

Arguments and
Local Variables

ldc.i4.3
ldc.i4.5
call Add

S
ta

ck
fr

am
e

1 G
ro

w
s

S
ta

ck
fr

am
e

0

5

3

3

•
•
•

ldarg.0

5

5

3

3

•
•
•

ldarg.1

5

3

8

8

•
•
•

add

•
•
•

ret

FIGURE 9.7 Value types’ values live on the stack.

referring to some other place in memory). For example, Int32 is a value type, so in the
following method, variables a and b, as well as the return value, live directly on the stack:

static int Add(int a, int b)

{

return a + b;

}

Recall that this code basically performs four operations on the IL level, to fetch the two
arguments one by one (pushing them on the stack), add them, and return to the caller:

ldarg.0

ldarg.1

add

ret

Figure 9.7 shows how this method operates, assuming it has been called from some Main
method that passed in arguments 3 and 5.

Strictly speaking, the runtime doesn’t require all stack structures to be interwoven. In fact,
we’re dealing with at least two conceptual stacks:

. The call stack, where arguments, locals, and return values are kept

. The evaluation stack, where the IL code operates on as some kind of scratchpad

472 CHAPTER 9 Introducing Types

What’s of more importance here is to observe that the values themselves are allocated on
the stack. This has a couple of interesting effects with regard to memory use: A value can’t
outlive its stack frame. (That is, when a method returns, all its local variables and argu-
ment values are automatically deallocated.) In the last transition in Figure 9.7, this is made
very clear: When Add returned, the values 3 and 5 that lived in its stack frame got lost.

THE KEY TO RECURSION

Stack-allocated arguments and return values are the key to enabling recursion where a
method is permitted to call itself. In much more primitive languages, arguments to pro-
cedures were kept in statically known memory locations. As a result, only one call to a
certain procedure could be in flight at the same time because there’s only one place
for its arguments. Making a second call would override the data in those argument
slots, and similar problems exist for keeping track of the return value (and the return
address, for the same reason).

Not only deallocating memory on the stack is trivial (simply by lowering the high-water
mark for memory allocated on the stack), allocation is equally trivial. Just store the value
on top of the stack and move the high-water mark up for subsequent allocations not to
overwrite the newly allocated value. If the stack runs out of space for some reason (for
example, too deep recursion), a StackOverflowException results.

The main advantage lies in the trivial deallocation, which has a performance benefit over
deallocation of heap objects, as you will see. As a downside, extra care is needed when
handing out references to objects on the stack. Luckily, this is something the C# language
protects us against, putting very strict rules on passing stack-allocated objects “by refer-
ence.” We discuss this further in Chapter 10, “Methods,” but here’s the idea:

static void ChangeIt(ref int a)

{

a = 42;

}

static void Main()

{

int x = 24;

ChangeIt(ref x);

Console.WriteLine(x); // will print 42

}

Notice that the use of the ref keyword to indicate a parameter is passed by reference, both
at the declaration site (the ChangeIt method definition on top) and the use site (the call
to it from Main). The execution of the preceding code is depicted in Figure 9.8.

473Classes Versus Structs

ChangeIt

24

•
•
•

Main

ldloca.0
call ChangeIt

24

•
•
•

ldarg.0

24

42

•
•
•

ldc.i4 42

42

•
•
•

stind.i4

42

•
•
•

ret

FIGURE 9.8 References to an object on the stack.

In the execution diagram that is Figure 9.8, ldloca stands for “load local address,” which
produces a strongly typed reference to the local variable. The stind instruction allows
setting what such a reference is referring to and stands for “store indirect.” Don’t
confuse the concept of references in managed code with pointers because the runtime
has full knowledge of the type of the reference as opposed to pointers being naked
memory addresses.

Passing a value by reference doesn’t magically turn it into a reference type: The value still
lives on a stack as it always did. But what’s the protective measure required we were allud-
ing to? Consider the following code:

static ref int s_badRef; // Invalid C# code!

static void Main() {

First();

Second();

}

static void First() {

int x = 5;

StoreRef(ref x);

}

static void Second() {

double d = 3.14159;

}

static void StoreRef (ref int x) {

s_badRef = x; // Can’t do such a thing in C#.

}

474 CHAPTER 9 Introducing Types

5

•
•
•Main

s_badRef

StoreRef

5

•
•
•Main

First First

s_badRef

StoreRef

5

•
•
•Main

First

s_badRef

5

•
•
•Main

s_badRef

3.14159

•
•
•Main

Second

s_badRef

3.14159

•
•
•Main

s_badRef

5

•
•
•Main

First

s_badRef

It’s a double!

Refers to an int!

FIGURE 9.9 Hypothetical incorrect use of references into the stack.

When First is called, the local variable for the integer value 5 gets allocated on the stack.
StoreRef uses the C# by-reference argument-passing feature to get a reference to the vari-
able on the stack. Assume it were possible to store away such a reference; you would have
successfully captured a reference into the stack memory that would be kept beyond the
point where First returns, and hence the local variable for 5 is abandoned. A subsequent
call to Second would reuse that stack memory (for example, to allocate a double). But
because the stored reference is of type int32& (& being the notation of such a reference in
IL terms), you could invoke operations on the data as if it were an integer, even though it
is a double value. We’ve just broken type safety.

Correctly behaving managed code, as generated by C# programs, can’t do such a thing.
Although the use of the stack poses some restrictions, it provides great benefits because of
the low cost involved in deallocating memory. No complex memory management systems
are required to deal with this, as is required on the heap.

Reference types are allocated on what’s known as the managed object heap, which is
under control of the garbage collector. It provides a way for objects to be allocated such
that their lifetime can outlive stack frames. All that can possibly live on the stack are refer-
ences to the data, which is heap allocated.

The problem is we’re storing a reference to something on the stack while that reference
outlives the stack frame. Figure 9.9 shows such a potential mishap.

475Classes Versus Structs
A

llo
ca

te
A

llo
ca

te

Native Heap

Managed Heap
NextObjPtr

A B C D E F

B D F

NextObjPtr

A B C D GE F

Free List

B D G FFree List

Internal
Fragmentation

FIGURE 9.10 Heap memory allocation.

Other than in the world of native code, allocating memory on the heap is simple and effi-
cient because of the illusion of infinite memory the heap creates. Heaps for use by native
code typically maintain a free list to find memory to grant allocation requests, which
requires search logic and use of some fitting algorithm. The difference in the case of allo-
cation is illustrated in Figure 9.10.

Notice how easy it is to allocate memory on the managed heap: Just see whether there’s
enough space left, allocate, and move the high-water mark. Looks familiar, doesn’t it?
Allocating memory on the managed heap is conceptually similar to stack-based allocation.

In the world of native code, more complexity is usually involved: To find available space,
a free list needs to be searched. When a suitable spot is found (for example, by first-fit
search), a pointer to the memory location is returned and the free list is patched up. In
doing so, little regions of memory can appear that nearly no object can ever fit in. These
allocate space nevertheless and are a waste of memory space. This is known as internal
fragmentation, something the managed heap doesn’t suffer from.

Before we explain what happens when the heap is full in both the native and managed
world, let’s first illustrate how deallocation happens in the native world. Managed code
takes away this burden of manual memory management from the developer, but in native
code it’s the only way to reclaim memory (see Figure 9.11).

476 CHAPTER 9 Introducing Types
D

ea
llo

ca
te

 D

Native Heap

B G FFree List

B D G FFree List

FIGURE 9.11 Heap memory deallocation in native code.

A
llo

ca
te

 2
0

B
yt

es
A

llo
ca

te
 2

0
B

yt
es

G
ar

ba
ge

 C
ol

le
ct

io
n

Native Heap

Managed Heap
NextObjPtr

A B C D GE F

9 B 4 D 152G F

NextObjPtr

B D GF

NextObjPtr

B D G HF

Free List

Out of Memory

FIGURE 9.12 Heap allocation triggering garbage collection.

Simply stated, the freed memory is returned to the free list. Obviously, adjacent free space
can be merged into one block of free space to reduce fragmentation. In managed code,
there’s no deterministic deallocation. Instead, memory gets reclaimed when the heap runs
out of space, a task carried out by the garbage collector, as shown in Figure 9.12.

Notice how running out of memory in native code is possible due to the effects of internal
fragmentation. Even though enough space might still be available from a global point of
view, there might be no single free block that’s big enough to fit the requested amount of

477Classes Versus Structs

memory. Garbage collectors deal with this problem by compacting memory to make more
contiguous space available.

The garbage collector operates in a few phases:

. Live objects are traced recursively by following references between objects starting
from known live locations: Things on the heap, in static locations, and so on are
all within reach of executing code and should not be deallocated. Similarly, all
objects to which they refer (either directly or by following more references) should
stay alive too.

. After marking all the live objects, the collector sweeps the heap to free all dead
objects. During this phase, objects may be detected that need finalization, complicat-
ing this a bit. But in essence, unmarked objects are dead and are subject to cleanup.

. Compacting moves objects together so that they make up contiguous space.
During this process, references need to be patched up. If an object moves in mem-
ory, all objects referring to it need to be tweaked so that they refer to the right
location in memory.

As we’ve seen, allocating managed objects is very cheap. The flip side is that it can trigger
a garbage collection from time to time as the heaps gets populated and runs out of space.
Because garbage collecting the whole heap is a costly operation, the heap is split in differ-
ent generations. The idea is that lots of programs create a bunch of objects that are short-
lived in nature. Many more such objects exist than the ones that remain in memory for
longer durations of program execution.

This observation leads to a design where the heap is divided into three generations: Gen0,
Gen1, and Gen2. Gen0 is the smallest one; when objects are allocated, they start their life
in Gen0. At some point, Gen0 will run out of space. This triggers a garbage collection,
which starts by cleaning up the dead objects in Gen0. Objects that survive the collection
cycle—and it’s expected lots of objects were short-lived, so the number of survivors is rela-
tively low—get promoted to Gen1, which means they’re starting to age and are less likely
to be reclaimable anytime soon. The size of Gen1 is larger than that of Gen0.

Promotion of objects from Gen0 to Gen1 can by itself cause Gen1 to become full, at
which point it gets collected, too. Because it’s larger than Gen0, it will take more time to
carry out this collection, but the whole theory is that Gen1 collections should be much
less common than Gen0 collections. And as you can guess by now, survivors of Gen1
collections are promoted to Gen2. If Gen2 gets full, it’s collected, but objects are no longer
promoted to a next generation (because Gen2 is the last one). It’s also the largest one,
providing room for the long-lived objects of the application. Again, the idea is that Gen2
collections are much less common than Gen1 collections.

If at some point Gen2 is still full after a collection and the memory request can’t be
granted, the garbage collector may respond to this by asking the operating system for
more memory. However, when nothing helps anymore, an OutOfMemoryException will be
thrown, indicating the allocation failure.

478 CHAPTER 9 Introducing Types

LARGE OBJECT HEAP

To be completely honest, I should point out there’s a fourth space on the managed
heap called the large object heap (LOH). It provides space for objects that have a size
of 85,000 bytes or more. Those are not subject to collection based on generations
because they’re deemed too expensive to move around all the time. Typical examples
include images that got loaded in memory.

Boxing

One of the core design choices made for .NET’s type system is to have a unified view over
value types and reference types. By doing so, every type derives from the mother of all
types: System.Object. Especially in the pregenerics era, this had several advantages because
you could define a general-purpose data structure such as a list to hold objects of any type:

public class ArrayList

{

private object[] items;

...

}

In languages such as Java, there was no such unification, requiring users to jump through
seemingly artificial hoops to package up (the equivalent to) a value typed object in some
“box” before it could be used where an Object-typed instance is expected:

// How things would look in Java, requiring explicit boxing.

Object number = new Integer(42);

Compared to unmanaged languages like C and C++, the .NET platform tries to abstract
away from memory-centric design choices such as stack allocation and heap allocation
that would have to be taken by developers using types. The allocation location of an
object depends solely on its type, not its use. This is in direct contrast with, for example,
C++, where one can either heap-allocate (using the new keyword) or stack-allocate objects.

In fact, it’s fair to say that even the use of the stack for value type object allocations on
.NET is pretty much an implementation detail. One of the biggest advantages of using the
stack for value type allocation is that it makes deallocation simple. Just drop the high-
water mark of the stack (for example, upon returning from a method) to deallocate objects
that live at the top of it. Because no one can reference to those cells (in well-behaved and
verified programs, that is; refer to Figure 9.9), it’s safe to do so.

In the world of this unified type system (with regard to value versus reference types), what
do you expect to be the characteristic of the root of the type inheritance hierarchy,
namely System.Object? Does it have to be a reference type of a value type? There’s no
simple answer to this question, without going into detail about the implementation of the
runtime. Suffice to say that it’s more convenient to make System.Object a reference type
and have value types derive from it through a System.ValueType that receives special

479Classes Versus Structs

treatment from the runtime. The following piece of code can be used to visualize the
inheritance hierarchy a value type, like a System.Int32, is involved in:

int x = 42;

var int32 = x.GetType();

Console.WriteLine(int32);

var valueType = int32.BaseType;

Console.WriteLine(valueType);

var @object = valueType.BaseType;

Console.WriteLine(@object);

var nothing = @object.BaseType;

Console.WriteLine(nothing == null ? “Root of hierarchy” : “Oops”);

REFLECTION

The preceding fragment uses a runtime facility called reflection that allows us to take a
look at an object’s type and all of its members, at runtime. We discuss the use of
reflection later in Chapter 21, “Reflection.” For now, just take a look at the return type
of the GetType and BaseType calls, which is System.Type. This type acts as a descrip-
tor for a type. An instance of System.Type describes a type. It can be compared to
metadata catalog tables in database systems, which, for example, reflect the columns
defined on a table.

Because System.Object is a reference type, receivers of such an object will want to reach
out to the heap to access the encapsulated data. However, because value types derive from
this base type, there seems to be an issue:

Bar(42);

...

void Bar(object x)

{

// Use x one way or another

}

Here, the Bar method expects a parameter that’s statically typed to be System.Object, so
code using this object inside the Bar method will look out for the object on the heap.
Essentially, a System.Object is the managed code analogy to a pointer. However, if we
pass an Int32 value 42 to it, does that mean to look at address 42 in the heap? Clearly,

480 CHAPTER 9 Introducing Types

0x1234

Bar

System.Object
“Bart”

0x1234 is referencing a
string object.

42

Bar

System.Object

Value 42 should not be
treated as a reference.

42

Foo

System.Int32
The type tells us not to
treat 42 as a reference.

FIGURE 9.13 Treating a value type as a reference would violate type safety.

something is missing to make the preceding code work. In contrast, the following frag-
ment doesn’t suffer from this problem because the receiving end sees the Int32 coming in
with that particular type:

Foo(42);

...

void Foo(int x)

{

// Use x one way or another

}

Stated otherwise, there’s a convention that says value typed parameters must be located
on the stack. (The caller pushes them on there, the callee finds them there.) In the first
example, though, receiving a reference typed parameter would mean to look on the heap.
Figure 9.13 shows how invalid treatment of a value (which is merely an opaque bit
sequence) as a reference would violate memory and type safety.

To solve this problem, the runtime has a mechanism called boxing (and the reverse opera-
tion called unboxing) to pass a value typed object in such a manner that it can safely be

481Classes Versus Structs

FIGURE 9.14 The value type object gets boxed before the call to Bar(object).

viewed through the lenses of a reference. To do so, it basically “boxes” the value up in a
heap-allocated cell, tagged with type information. This only needs to happen when an
instance of a value type is to be treated as a System.Object. To go back the other way, the
contents of the cell can be transferred back to the stack to be used as a value type directly.

For illustrative purposes, compile the little Bar calling code fragment and take a look
inside ILDASM. To show the unboxing as well, cast the received parameter back to an int,
as shown here:

class Box

{

static void Main()

{

Bar(42);

}

static void Bar(object value)

{

// For some mysterious reason, we know we’ll always

// get an Int32 through the value parameter.

int a = (int)value;

}

}

Figure 9.14 shows the code emitted for the Main method. As you can see, the compiler has
emitted a box instruction to wrap up the int32 value in a heap-allocated object to make
sure the receiving end can safely access the object.

On the receiving end, the opposite operation happens as a result of casting the object-
typed parameter up to an Int32. At this point, the integral value needs to be transferred
back to the stack, which is done by the unbox operation, as shown in Figure 9.15.

482 CHAPTER 9 Introducing Types

FIGURE 9.15 Unboxing transfers the heap-allocated box contents back to the stack.

42

Main

0x1234

Call Bar

Main

0x1234

42

ldc.i4.s 42

box Int32

unbox Int32

Bar

value

Int32

42

Int32

42

FIGURE 9.16 Unboxing a value that got boxed before.

This whole mechanism is summarized in Figure 9.16.

One of the most attractive aspects of boxing is also the main disadvantage. Because the
whole boxing and unboxing process is transparent to the developer (module the cast,
which just looks like any other ordinary cast), it’s not at all clear that heap allocations are
happening. In some cases, this could lead to suboptimal performance, typically when used
in conjunction with large-volume nongeneric collections:

var lst = new ArrayList();

for (int i = 0; i < 1000000; i++)

lst.Add(i);

483Classes Versus Structs

var sum = 0L;

foreach (int i in lst)

sum += i;

Here, every call to Add causes boxing because the receiving parameter is typed to take in a
System.Object. In the foreach loop, which is really syntactical sugar on top of the
enumerator pattern, unboxing happens when the IEnumerator.Current property is to be
assigned to the loop variable i, which is typed to be Int32.

GENERICS

The key issue with the preceding fragment is not so much about boxing and unboxing
but points at a missing type system feature pre-.NET 2.0. In particular, the lack of
being able to parameterize the ArrayList on an element type forces us to cast up and
down all over the place, both to get elements in and out of the collection. If the
elements turn out to be value types, this corresponds to boxing and unboxing.

Generics were introduced in .NET 2.0 to mitigate the omission of parameterized types.
By creating a blueprint of a collection type that can hold “elements of type T, where T
can be substituted for any concrete type,” the runtime knows exactly what the layout of
a constructed type looks like. In other words, the use of object as the escape valve is
no longer needed, hence avoiding boxing. In the world of generics, we would write the
earlier code as follows:

var lst = new List<int>();

for (int i = 0; i < 1000000; i++)

lst.Add(i); // Now takes in an int parameter...

var sum = 0L;

foreach (int i in lst)

sum += i;

No boxing or unboxing takes place for this piece of code anymore. You are invited to
run some performance tests on these code fragments using the Stopwatch class. As
usual, keep in mind that the value of performance tests is to be questioned, especially
if you haven’t set a baseline for your application’s performance against which to
measure. Nevertheless, having core improvements at the runtime level pays off
because every user of the runtime (and the frameworks on top of it) benefits from it.
Generics are such a feature.

We discuss generics in much more detail in Chapter 15, “Generic Types and Methods.”

The Dangers of Mutable Value Types

Being passed by value, there are some dangers associated with the use of value types, espe-
cially when they’re made mutable. In general, it’s a bad idea to allow mutation of structs;
instead, simply create a new value instance and substitute the original value altogether. A

484 CHAPTER 9 Introducing Types

good example of the problems that could arise when dealing with mutable value types is
shown here:

using System;

class Program

{

static void Main()

{

var kid = new Kid();

Console.WriteLine(kid.Location.X + “, “ + kid.Location.Y);

kid.Location.X = 3;

kid.Location.Y = 4;

Console.WriteLine(kid.Location.X + “, “ + kid.Location.Y);

}

}

class Kid

{

public Point Location { get; set; }

}

struct Point

{

public int X { get; set; }

public int Y { get; set; }

}

What would you expect the outcome to be? Let’s take a look. Due to the zero initialization
of fields by the runtime, the original printout of the coordinates should be all zeros. The
interesting bit happens on lines three and four of the Main method. Because we’re trying
to move the object, we’re retrieving the original Location object, which is typed to be a
Point. Because this type is a struct, it’s copied by value. In other words, we just got a local
copy of the (0, 0) point and will now try to mutate it:

// How line 3 would be translated

_temp = kid.Location; // Oops, this creates a copy

_temp.X = 3;

// How line 4 would be translated

_temp = kid.Location; // Again, a copy is made

_temp.Y = 4;

If this code would compile fine, the kid’s location wouldn’t change at all because nothing
but the local copy of the point was changed. Luckily, the C# compiler prevents you from
making this mistake:

485Classes Versus Structs

pt.cs(9,1): error CS1612: Cannot modify the return value of ‘Kid.Location’

because it is not a variable

pt.cs(10,1): error CS1612: Cannot modify the return value of ‘Kid.Location’

because it is not a variable

Instead of trying this, it’s better to prevent changes to the Point object and just have the
user substitute the Location property value for an entirely new Point instead:

using System;

class Program

{

static void Main()

{

var kid = new Kid();

Console.WriteLine(kid.Location.X + “, “ + kid.Location.Y);

kid.Location = new Point(3, 4);

Console.WriteLine(kid.Location.X + “, “ + kid.Location.Y);

}

}

class Kid

{

public Point Location { get; set; }

}

struct Point

{

private int _x;

private int _y;

public Point(int x, int y)

{

_x = x;

_y = y;

}

public int X { get { return _x; } }

public int Y { get { return _y; } }

}

Alternatively, turn the location’s type into a reference type. However, doing so blindly just
to restore the mutability property usually is not a good idea. Always think about the char-
acteristic of the type first: Does it represent a value, or is it something one wants to refer
to? When the former is true, a struct is the right choice, and declaring the value type as
immutable is highly recommended.

486 CHAPTER 9 Introducing Types

MAKING IMMUTABILITY SIMPLER

Because of a growing desire to have a simpler concurrent programming model, it is
quite possible that future versions of the runtime and/or language will offer more
immutability primitives.

Notice that our declaration of properties with private setters doesn’t offer all the
desired protection against mutation. It’s still possible for code defined on the struct to
mutate its fields. It would be much better to declare two read-only fields for the X and
Y coordinates. A thorough discussion of fields and properties is the subject of Chapter
11, “Fields, Properties, and Indexers.”

Type Members
Types have members defined on them that provide means to store state or invoke opera-
tions. Those members include methods, constructors, fields, properties, indexers, events,
and a few more concepts. Before we focus on each of those, we’ll cover some of the
general aspects associated with members, such as visibility and the distinction between
static and instance members.

Visibility

To limit access to members, accessibility modifiers exist. This functionality is intertwined
with support for object-oriented programming, as you will see in Chapter 14, “Object-
Oriented Programming.”

Type Visibility
Visibility exists not only on the member level, but also on the type level. Let’s take a look
at that first. A type’s visibility determines from where it can be used, in particular whether
other assemblies can access it. Assemblies can be seen roughly as containers for types (as
detailed in Chapter 25, “Assemblies and Application Domains”). For example, the
System.String type lives in an assembly called mscorlib.dll and has been declared as
“public,” which means other assemblies can access it.

If you were to take a look at mscorlib.dll in tools like Reflector, you would notice quite a
few types that are displayed using a gray font, indicating they’re nonpublic. Those types
can be used only from within the same assembly and are said to be “internal.” This is the
default for types if no visibility modifier is specified:

namespace HR

{

class Person

{

public string Name { get; set; }

public int Age { get; set; }

}

}

487Type Members

Here, the Person type doesn’t have an explicit access modifier specified. Assuming the
type is defined directly in a namespace (which can be omitted and is discussed in Chapter
24, “Namespaces”), its visibility defaults to internal such that other types in the same
assembly can access it, but types on the outside can’t. Notice that you can also nest structs
and classes, in which case the omission of an access modifier defaults to private:

class Person

{

class Jewelry // Only accessible to code inside the Person class

{

}

}

The same defaults hold for types other than classes, including interfaces, structs, enums,
and delegates. To override those, you can specify another access modifier explicitly:

namespace HR

{

public class Person

{

public string Name { get; set; }

public int Age { get; set; }

}

}

With the Person type declared as public, another assembly referencing ours can now
access and use it. You learn how to structure types in assemblies and cross-reference them
in Chapter 25.

For nested types, things are a bit different. Here the concept of accessibility domains
comes into play. In short, an accessibility domain indicates where in a program a type or
member can be referenced. Nesting of members in types but also of types in other types
causes the accessibility domain not only to depend on the access modifier but also on the
accessibility domain of the enclosing type. For example:

class Person

{

public class Jewelry

{

}

}

Here, the Jewelry class is declared public, but it won’t reveal the type to the outside world
because the enclosing class isn’t made public too. The effective accessibility for the inner-
most type is internal, just like its enclosing type.

488 CHAPTER 9 Introducing Types

LIKE ACCESS CONTROL SYSTEMS

It might help to think about accessibility domains as being similar to access control
systems (for example, on the file system level). In there, you may have full access to a
file (our analogy to a member), but if you don’t have the rights to traverse the folder
hierarchy (analogous to possibly nested types) leading to the file, you’re still out of luck
with regard to access to the file.

By default, it’s a good practice to keep types internal to your own assembly unless you’re
providing a framework library or require different components of your program to depend
on each other. When you make something public, you can bet that others will start to
depend on the exposed functionality. This will prevent you from evolving the types in
various ways without breaking others. The opposite way of starting by making things
internal (the default) enables you to change your mind and expose stuff going forward.

Member Visibility
At the level of types, we’ve seen a number of access modifiers already. One is public, whereas
another is internal (the default, hence we didn’t show it). To recap, the former exposes the
type to other assemblies, whereas the other restricts its access to the current assembly.

When nesting members in types or when nesting types in types, there are a few more
options to pick from in the realm of accessibility. The defaults are also quite different
depending on the nature of the types involved. For classes and structs, things are very
similar. The default visibility for a member in those is private:

class Person

{

int _age;

}

class Program

{

static void Main()

{

var p = new Person();

p._age = 27; // Error: _age cannot be accessed; it’s private to Person

}

}

To avoid confusion, it’s good practice to explicitly state the visibility. Especially for people
coming from a C/C++ background, things may get confusing otherwise because the
distinction between structs and classes is tightly coupled with visibility in those languages.
An example of a mix of visibility modifiers is shown here:

489Type Members

class Person

{

private int _age;

public void Pay(decimal amount) { ... }

internal void Fire() { ... }

}

The private access modifier restricts access to the same type only. For example, the Pay
method could use the _age field to make some calculations, but no one outside the type
can access the field.

When using public, the member has the potential to be seen from outside the enclosing
type, in case the enclosing type has sufficient visibility by itself. This is based on the
concept of accessibility domains, as discussed previously. In the preceding example, the
type is internal, so Pay won’t be visible outside the current assembly even though it’s public.

Finally, the internal modifier exposes the member to the whole enclosing assembly, which
isn’t any different from Pay in the example. However, if the Person type were to be public,
the Fire method would still be restricted to the current assembly only.

Two more accessibility levels exist, called protected and protected internal. Those are
tightly coupled with object-oriented programming, which is discussed in Chapter 14.
Because structs cannot be used in inheritance hierarchies, the use of those access modifiers
is restricted to classes.

Two other type categories exist. One is the concept of an enum, which is much like a
collection of named values. Those values act as members of the enum and are always
public. Chapter 11 contains an overview of enums and their use.

enum Color

{

Red,

Blue,

Green

}

For interface types, members are always public, too. Interfaces enable you to declare a
contract to be implemented by a type. We discuss interfaces in Chapter 14.

interface IEnumerable

{

IEnumerator GetEnumerator();

}

490 CHAPTER 9 Introducing Types

Static Versus Instance

Different types of members can be associated with instances of a type or with the type
itself. This is where the static modifier comes in, allowing one to associate a member with
a type rather than individual instances. Or to look at it another way, a type’s static
members are shared across all instances, whereas instance members can be associated with
and operate on individual instances. This sharing viewpoint is, in fact, how Visual Basic
surfaces static members, using a Shared keyword rather than C#’s static.

As mentioned previously, classes allow bundling together state and operations in one
notion, which closely aligns with object-oriented programming principles. When looking
at the concept of shared static members, both those concerns apply there, too. One place
where we’ve already seen the use of the static keyword to denote an operation is on
every single entry point to a program we’ve written so far:

class Program

{

static void Main(string[] args)

{

...

}

}

CODE SNIPPETS FOR COMMON TASKS

Visual Studio has a feature called code snippets that enable templated snippets of
code to be inserted by using a shortcut. Because declaring a Main method is common,
snippets for different Main method definitions are included with the product. For
example, to insert “static void Main,” you can type svm and press Tab twice. The “sim”
snippet is used to insert a Main method with an int return type.

The value of this feature is rather limited for Main method declaration; after all, the cre-
ation of an executable project includes the entry-point declaration right from the start.
However, for other patterns, such as various kinds of statements or members, snippets
are quite handy. For example, you can insert a constructor on a type using ctor.

Notice that the omission of an access modifier on the Main method is permitted because it
gets very special treatment by the runtime. What’s of key importance in our example is
the fact that the Main method is shared across all instances of Program. In fact, you usually
don’t even create an instance of the Program class. Now let’s try to add another method to
the Program class and call it from Main, as follows:

class Program

{

static void Main(string[] args)

{

491Type Members

FIGURE 9.17 Static members cannot call instance members directly.

if (args.Length != 1)

{

PrintUsage();

return;

}

}

void PrintUsage()

{

Console.WriteLine(“Usage: sample.exe <file>”);

}

}

The preceding won’t compile because PrintUsage is not declared as static. Because of their
instance-independent nature, static members cannot reach out to instance members (if no
target instance is specified). Figure 9.17 pinpoints this code defect in the error list.

Declaring the PrintUsage method as static will resolve this issue. Similar remarks hold for
the use of state, which is kept in so-called fields. We cover methods, fields, and other
members in much more detail, but suffice to say that fields cover the data and state aspect
of a type, whereas methods deal with the operational behavior. Here is an example of a
singleton class that leverages a static field. This allows us to explain quite a few concepts
all at once.

. Notion of class instances

. Creation of instances using constructors

. Recap of visibility aspects on members

. Use of static members and fields

492 CHAPTER 9 Introducing Types

Because this example serves merely to set the stage for further exploration, we’ll not delve
too deeply into the object-oriented concepts (which are covered in Chapter 14).

sealed class PaymentService

{

private static PaymentService s_service;

private Queue<Payment> _payments;

private PaymentService()

{

// This is a private constructor; therefore it can only

// be called from inside the PaymentService type.

_payments = new Queue<Payment>();

}

public static PaymentService Service

{

get

{

// Create service the first time it’s requested. For

// the remainder of the program’s lifetime we’ll be

// using this singleton instance.

if (s_service == null)

{

s_service = new PaymentService();

}

return s_service;

}

}

public void SchedulePayment(int fromAccount, int toAccount, decimal amount)

{

_payments.Enqueue(new Payment(fromAccount, toAccount, amount));

}

}

The idea of this PaymentService is to be a singleton, meaning only a single instance of it
can exist in the program. In a slightly more flexible setting, you might want to control the
number of instances of a given type that can be created. The first thing you must do to
avoid creation of arbitrary instances of the class is to make sure no one can call the
constructor. Instance constructors are a means of creating an instance of a class; you’ll see
later that static constructors exist, too, allowing you to initialize static state.

493Type Members

private PaymentService()

{

// This is a private constructor; therefore it can only

// be called from inside the PaymentService type.

_payments = new Queue<Payment>();

}

They look like methods but lack a name or a return type, depending on your point of
view. One way to look at it is as a method whose name is the same as the containing
class’s. Alternatively, you could say it doesn’t have a name and the return type is the
containing class.

Because there’s no static keyword on the preceding constructor, it’s an instance construc-
tor, which can be called using the new keyword, as we see in the Service property. Because
it’s declared with the private access modifier, the only valid place for it to be called is from
inside the same class. Notice that the constructor does initialize per-instance state that’s
kept in the _payments field. The underscore-prefixed notation is a widely used pattern to
recognize the use of fields rather than, say, local variables or parameters.

private Queue<Payment> _payments;

The Service property is declared as public and static, hence the way to call it will be as
follows, “dotting into the type”:

PaymentService theOneAndOnlyInstance = PaymentService.Service;

On the inside, this property checks whether there’s already a single instance of the type
created by checking the static s_service field. Across all instances of the type, there’ll be
only one such field, which is exactly what allows us to enforce the singleton policy:

public static PaymentService Service

{

get

{

// Create service the first time it’s requested. For

// the remainder of the program’s lifetime we’ll be

// using this singleton instance.

if (s_service == null)

{

s_service = new PaymentService();

}

return s_service;

}

}

494 CHAPTER 9 Introducing Types

Again, the use of the s_ prefix to denote a static field is purely a convention that you can
either take or leave (but if you take it, be consistent about it across your codebase).

From a user’s point of view, dealing with the singleton and invoking SchedulePayment
now looks like this:

// Static members are called with the type (name) as the left-hand side.

var service = PaymentService.Service;

// Instance members are called with an instance as the left-hand side.

service.SchedulePayment(123, 321, 456.78m);

After we’ve created our single authoritative payment service instance by calling the
Service property, we can call instance members such as the method shown here:

public void SchedulePayment(int fromAccount, int toAccount, decimal amount)

{

_payments.Enqueue(new Payment(fromAccount, toAccount, amount));

}

This one now operates on instance data (in this particular case, the _payments field). In
every single instance of PaymentService (in our case, carefully controlled to be just a
single one), such a piece of _payments data exists.

Almost all types of members can be used either on a static level or an instance level. In
the preceding example, we saw an instance constructor and an instance method, together
with a static property.

WHY BOTHER WITH SINGLETONS?

You might wonder why you would want to bother with a singleton instance if you could
make all the operations and state static anyway. For example, in our code, we could
have created a static SchedulePayment method that uses a static field for payments
internally. Although this is true, there are cases where the use of a singleton leads to a
cleaner overall design. One case is where you want the returned singleton object to
obey a certain interface contract, which exists only for instance members. So in such a
situation, you must have an instance.

Related to this is the factory pattern, where you want to create a static method to
construct an object of a given type. However, thanks to object-oriented principles, you
can return an instance of a subtype from inside the factory method:

static Animal CreateAnimal(int legs, ...)

{

if (legs == 0 && ...) return new Fish();

else ...

}

495Type Members

In this example, CreateAnimal could return a Fish or a Mammal based on different
inputs. The decision what to return could be based on the number of legs or other
characteristic properties of an animal that got passed to the factory method.

Another example of the use of static is shown here. It basically keeps a counter for the
number of instances created, on a per-type basis. If this state were to be kept on each
instance, it clearly couldn’t be a “shared” counter.

class Person

{

private static int s_population;

public Person()

{

s_population++;

}

}

STATIC ISN’T YOUR MAIN APPLICATION INGREDIENT

The brilliance of cooks with a flagship cuisine lies in their intimate knowledge of which
flavors and ingredients work and don’t work for their masterpiece dishes. In the world
of programming, the same truth holds.

As object-oriented as C# (and, in fact, the CLR) is, seldom should you see static
members be dominant in your code base. In fact, use of static members on all possi-
ble occasions comes very close to procedural programming. By using static every-
where, you can’t take advantage of core object-oriented principles such as virtual
methods and polymorphism. Those concepts are discussed in Chapter 14.

Beginning programmers in C-style object-oriented languages sometimes miss out on
the object-oriented constructs and spread the use of “static” throughout the code in a
contagious manner. Perhaps the fix vaguely suggested by Figure 9.17’s error (that is, “I
don’t seem to have an instance, let’s make it static”) encourages this.

Either way, the core question to ask for each member is whether you want it to operate
on a per-type basis or a per-instance basis. For example, the notion of opening a data-
base connection likely has most meaning when applied to some instance of a
Connection object.

To summarize our discussion, the distinction between static and instance state is illus-
trated in Figure 9.18.

496 CHAPTER 9 Introducing Types

Person

s_population = 2

1

T
y
p
e

N

I
n
s
t
a
n
c
e
s

h
a
s

a

h
a
s

a

Associated
with type

is
 a is
 a

Bart

_age = 27

John

_age = 62

FIGURE 9.18 Static versus instance state.

Partial Types

Although at this point we’re focusing on members that live in types such as structs
and classes, this is a good time to introduce the concept of partial definitions. To set
the scene, we have to discuss the physical structure of a development project in

terms of files and the types they define.

It’s typical and considered good style to define types in a file that has the same name as the
type itself. For example, a class Person would be defined in a file called Person.cs. Although
this is not required by the compiler or the runtime (in contrast to, say, Java, where folders
and files play a role in type lookup), it has various advantages when browsing code.

During prototyping or experimentation, though, it’s often handy to put multiple types in
the same file. Sometimes it also makes sense to put (little) types that belong together close
to each other in one file, too. As you will see later, types are structured in namespaces,
which are typically reflected in a folder structure in a project. Again, this is not required
by the runtime. It’s up to you to apply good judgment when making decisions about
physical file organization in a project, but seriously consider these hints.

PROJECT FOLDERS AND “USAGE-FIRST” DEVELOPMENT

Some features in Visual Studio apply the guidance mentioned here when organizing the
structure of a project and when generating types. For example, the creation of folders
inside a project will reflect itself in the namespace chosen for new files that get added
to that folder. If the project’s default namespace is Contoso.Cashflow and a folder is
called Services\Payment, a new file added to that folder will get a namespace declara-
tion for Contoso.Cashflow.Services.Payment, containing a type reflecting the file-
name. All this can be modified by the developer, but there are good reasons to follow
such a convention. Clarity and consistency of project file organizations is invaluable.

Starting with Visual Studio 2010, you can also let the IDE generate types and their
members based on “usage-first” development. Before actually defining a class called
Person, you can start writing code that will reflect its use:

var p = new Person(“Bart”, 27);

497Type Members

Right-clicking Person will give an option to generate a type of choice (either a class or
a struct), which will be placed in a file called Person.cs. Again, disciplined use of well-
defined folder and file organization is encouraged.

Now that you’ve learned how a single code file can contain multiple type definitions, the
opposite question can be asked: Can the definition of a type be stretched across different
files? Starting with C# 2.0, the answer is yes, thanks to the feature of partial classes (structs
and interfaces). Although this feature is useful by itself to group various aspects of a type’s
implementation in distinct files, resulting in faster code browsing, the feature’s main
reason for existence stems from code-generating tools. A good example can be found in
the Windows Forms designer, which emits code that defines the layout of controls on a
form. This autogenerated code is not meant to be touched by developers directly because
it gets regenerated when using the designer, possibly overwriting changes made by devel-
opers. Before C# 2.0, this code got emitted to a (collapsed) “region” in the form’s code file:

class LoginForm : Form

{

#region Windows Form Designer generated code

...

#endregion

//

// Developer code goes here...

//

}

The #region directive enables sections of code to be collapsed in code editors such as
Visual Studio. Obviously, having this generated code section in the same code file where
developers had to add code for various event handlers (which obviously cannot be gener-
ated by the designer because you want custom code in there) piqued developers’ curiosity.
By accident or not, and despite warnings discouraging people from changing the gener-
ated code, this code got tweaked by users from time to time, sometimes even rendering
the designer broken as it choked on unknown code.

XAML TO THE RESCUE?

Although code generation works just fine, it’s often a source of headaches, too. One of
the main flaws of automatic code generation is the difficulty for tools to regain intelli-
gence about the code’s intent. For example, the Windows Forms designer must execute
the designer-generated code to figure out how the controls are laid out. Furthermore, the
ability for developers to mess with generated code can cause quite a bit of grief as well.
Changes can get overwritten by tools, causing developer frustration. Tweaked generated
code can also cause designers to freak out due to unexpected behavior caused by the
foreign code inserted by the developer (for example, exceptions may occur).

498 CHAPTER 9 Introducing Types

FIGURE 9.19 A Windows Form’s definition spread across two files.

Even though code is usually required to execute items, it’s not the ideal medium for
sharing across different tools and even people. In some sense, the use of code is
“one bridge too far,” going directly to details of the implementation rather than express-
ing the domain-specific notions (such as nesting of UI controls). For example, the code
that gets generated by the Windows Forms designer isn’t well suited for use by tools
other than Visual Studio’s, which may be a worthy goal when professional (human)
designers enter the picture.

XAML is a markup language used by WPF to express the declaration of a UI in a way
that it can be shared easily between different tools such as Visual Studio and
Expression Blend. To make the XAML markup executable, it ultimately is turned into
code during compilation, but the original declarations remain available (and are general-
ly safe to be tweaked manually by designers and developers). This is basically what
allows the “designer-developer” collaboration food chain that’s a key design goal for
Windows Presentation Foundation (WPF) and Silverlight.

To avoid those issues, C# 2.0 introduced the notion of partial classes, such that the gener-
ated code can be separated from the code that’s written by the developer. When looking
in Visual Studio 2010, you’ll clearly see two files for a Windows Forms form that was
added to the project, as shown in Figure 9.19.

499Summary

Notice how simple the code on the right (which is the developer’s playground to add
custom logic to the form) looks, in contrast to what it would have looked like before C#
2.0. In practice, you almost never have to inspect the generated code that appears on the
left and is stored in a .Designer.cs file.

The key essence of this feature lies in the fact that a class’s (or struct’s or interface’s)
members can be spread across multiple files. To use it, you just prefix the class, struct, or
interface keyword with partial. One or more partial definitions of the type can now occur
throughout all the files that get compiled. During compilation, it’s the compiler’s job to
paste together all the fragments that make up the same type.

PARTIAL METHODS

C# 3.0 introduced another “partial definition” feature, called partial methods. We take
a look at them in Chapter 10. The common theme between all those features is to aid
in code-generation scenarios where a code generator takes responsibility for one part
of a type definition and the developer takes care of the other parts.

Summary
Types are the containers for state and operations. Although we haven’t talked about
object-oriented programming yet, we’ve learned about various essential features of types.
First, we constrasted classes and structs, discussing concepts of references and values.
Related to this, we learned about memory management provided by the runtime, in
particular the stack and the heap. Finally, the concept of boxing was explained.

In preparation for the next few chapters, we also talked about common aspects of a type’s
members. This includes the notion of visibility and the difference between static- and
instance-level members. To wrap up our discussion of members, we also learned how to
use partial types to split the definition of a type’s members across different code files.

Now that we’ve learned about types as containers of members, we’re ready to look into
them in more detail. The next chapters discuss the code aspect of types being methods,
followed by an exploration of the data aspect exposed through fields, properties, and
indexers. Constructors and finalizers are covered as well.

This page intentionally left blank

CHAPTER 10

Methods

IN THIS CHAPTER
. Defining Methods 501

. Return Type 502

. Parameters 504

. Overloading 516

. Extension Methods 522

. Partial Methods 532

. Extern Methods 536

. Refactoring 537

. Code Analysis 543

After having introduced the notion of types in Chapter 9,
we’re now ready to zoom into a type’s members one by one.
In this chapter, we focus on methods. Classes and structs act
as containers for both data and operations. As you’ll see, all
the available members emphasize one of those aspects. For
methods, we’re clearly in the latter camp because they
consist of code bodies. Users of the type can invoke those
methods to carry out certain tasks that can modify state.

We also learn how to declare methods, dealing with
concepts such as signatures, parameters, and overloading.
Furthermore, our attention will reach out to method-related
language features such as partial methods, extern methods,
and extension methods.

Special kinds of methods, such as constructors or property
getters and setters, are discussed in later chapters. For now,
we focus on “plain old” methods only.

Defining Methods
A method can be defined as either a static or an instance
member, which influences what state is available to it.
You’ve seen the use of a special static method plenty of
times, namely an application’s entry point Main method:

class Program
{

static void Main(string[] args)
{

...
}

}

502 CHAPTER 10 Methods

More Modifiers

Return TypeAccess Parameter List

Name

public static int Add(int a, int b)

FIGURE 10.1 Method header.

Of the modifiers available on a method declaration, we’ve only used the static one. Many
other modifiers exist to specify things such as visibility (public, private, internal, and the
OO-related protected and protected internal access modifiers). You’ll see more of those
modifiers in Chapter 14, “Object-Oriented Programming,” including abstract, virtual,
override, sealed, and new.

The declaration of a method consists of two parts: a method header and an optional
implementation code block (referred to as the method body). Don’t worry about the fact
that the implementation is optional for now; it will become clear in the next chapter.

Figure 10.1 illustrates what makes up the method header. The required parts include the
method name, return type, and parameter list.

GENERIC METHODS

From the illustration in Figure 10.1, we omitted two more optional parts that deal with
generics: type parameters and generic constraints. Because a whole chapter is devoted
to generics (Chapter 15, “Generic Types and Methods”), we don’t discuss them here.

Return Type
The return type of a method can be either a type or void. This indicates what a caller of
the method will get (under normal circumstances) in return for calling the method. When
a type is specified, all execution paths through the method’s body should reach a point
where the return keyword is used to hand back a result to the caller. As you see later, it’s
also possible for a method to throw an exception. For example:

public static int Div(int n, int d)
{

if (d == 0)
throw new ArgumentOutOfRangeException(“d”);

return n / d;
}

503Return Type

FIGURE 10.2 Every code path should return a value of the specified return type.

In the preceding example, the expression n / d results in an int value that can be
returned to the caller by using the return keyword. If the denominator is zero, an excep-
tion will terminate the method without the need to reach a return statement. It’s invalid
to have any code path that doesn’t return a value that’s compatible with the return type.
This is shown in Figure 10.2. In this particular example, the compiler reasons that the last
if statement’s condition might not be evaluated as true, so we would fall through to the
end of the method without returning a value.

Notice that the compiler doesn’t apply type-specific “domain reasoning” to be smarter
about certain branching logic. With our human reasoning, we could figure out we cannot
reach the end of the method without returning correctly because two integers are either
less than, greater than, or equal to each other. A correct fix would be to restructure the
code as follows:

static int Compare(int a, int b)

{

if (a < b)

return -1;

else if (a > b)

return +1;

else

return 0;

}

Alternatively, you could leave out the last if statement and simply return zero when the
execution reaches that point. Or if the contract of Compare is to return a negative number
when a is smaller than b, zero when they are equal, and a positive number if a is greater
than b, the following code would be much simpler:

504 CHAPTER 10 Methods

static int Compare(int a, int b)

{

return a - b;

}

Besides the use of exceptions, one other case where you don’t need to return from a
method is when the compiler can prove you got an infinite loop going on. In that case,
you simply can’t return from the method anyway, short of throwing an exception:

static int Forever()

{

while (true) { ... }

}

If the return type is declared to be void, no return statements are necessary. It’s valid to
use them to quit the method before reaching the closing curly brace of the method body
if no expression is specified. (That is, you can’t return “something” from a “void”-return-
ing method.) For example:

static void Main(string[] args)

{

if (args.Length == 0)

{

Console.WriteLine(“Usage: echo <name>”);

return;

}

Console.WriteLine(“Hello {0}”, args[0]);

}

As you can see, the use of return is not needed at the end of the method, and we can
simply fall “through the bottom of the method” to exit and return to the caller. To exit the
method before reaching the end, the return statement can be used to simplify logic inside
the method body. (For example, in the preceding example it saves us from an else case.)

Parameters
A method can accept zero or more parameters, which mainly act as inputs to a method, in
particular to communicate additional state to it. When no parameters are required, an
empty pair of parentheses is still required:

static void PrintUsage()

{

Console.WriteLine(“Usage: echo <name>”);

}

505Parameters

If one or more parameters are required, the parameter list is a comma-separated list of
distinctly named parameters, prefixed with a type and optional modifiers.

PARAMETER OR ARGUMENT?

Terms that are often confused and incorrectly used interchangeably are parameter and
argument. The distinction is quite simple, though. Parameters live on a declaration site
(for example, in the parameter list of a method), whereas arguments are specified in a
call site (for example, when invoking a method). Depending on the angle you approach
them, they’re very similar: One makes up the receiving end; the other makes up the
sending end.

Here are a couple of valid method headers with a different numbers of parameters and
some modifiers:

string Concat(string str0, string str1, string str2)

bool TryParse(string s, out int result)

int Exchange(ref int location1, int value)

void WriteLine(string format, params object[] arg)

Except for the first method, all methods show a different parameter modifier in action. We
now discuss all those modifiers in more detail.

Value Parameters

One type of parameter is known as a value parameter. Basically, it’s a parameter that
doesn’t have special modifiers. But why is it called a value parameter? Basically, such a
parameter receives its input (the argument on the call site) by value. Notice that this has
nothing to do with value or reference types but is simply an aspect of the invocation of a
method. Passing a parameter by value means that one can simply assign to the parameter
inside the method without affecting the call-site argument.

In more technical terms, the receiving method has a separate storage location for each
value parameter that is not shared with the call site at all. To make this clearer, take a look
at Figure 10.3, which illustrates passing an argument by value.

When Foo mutates the received parameter value, it’s really mutating a local copy that
was made during the call. When the call returns, the assigned value isn’t propagated to
the caller.

The same holds true for a reference-typed object that’s passed to a value parameter. When
the callee assigns to the received parameter, the assignment doesn’t affect the caller.
However, changes to the object instance itself will be visible to the caller. It might help to
think in terms of what gets copied (just the reference, not what it refers to) and where the
accessed data lives. Figure 10.4 shows the effects of a method mutating a reference-typed
object instance.

506 CHAPTER 10 Methods

void Bar()
{
 int a = 5;
 Foo(a);
 bool b = a == 5;
}

void Foo(int x)
{
 x++;
}

5a

falseb

Bar

Locals

5x

Foo

Locals

G
ets copied

void Bar()
{
 int a = 5;
 Foo(a);
 bool b = a == 5;
}

void Foo(int x)
{
 x++;
}

5a

falseb

Bar

Locals

6x

Foo

Locals

void Bar()
{
 int a = 5;
 Foo(a);
 bool b = a == 5;
}

void Foo(int x)
{
 x++;
}

5a

trueb

Bar

Locals

FIGURE 10.3 Passing an argument to a value parameter.

void Bar()
{
 Person p = …;
 Foo(p);
 …
}

void Foo(Person x)
{
 x.Age++;
 x = new Person();
}

p

Bar

Reference
Gets Copied

x

Foo

“Bart”
27

Update is visible to the
caller (x is an alias of p).

Update happens
“through” this reference.

void Bar()
{
 Person p = …;
 Foo(p);
 …
}

void Foo(Person x)
{
 x.Age++;
 x = new Person();
}

p

Bar

x

Foo

“Bart”
28

FIGURE 10.4 Passing a reference-typed object by value causes aliasing.

507Parameters

void Bar()
{
 int a = 5;
 Foo(ref a);
 bool b = a == 5;
}

void Foo(ref int x)
{
 x++;
}

5a

falseb

Bar

Locals

x

Foo

Locals

R
eference Is M

ade
void Bar()
{
 int a = 5;
 Foo(ref a);
 bool b = a == 5;
}

void Foo(ref int x)
{
 x++;
}

6a

falseb

Bar

Locals

x

Foo

Locals

void Bar()
{
 int a = 5;
 Foo(ref a);
 bool b = a == 5;
}

void Foo(ref int x)
{
 x++;
}

6a

falseb

Bar

Locals

FIGURE 10.5 Passing an argument to a reference parameter.

ASSIGNING TO VALUE PARAMETERS CAN BE CONFUSING

From these examples, it should be clear that assigning to a value parameter results in
possibly confusing code. I prefer to use an extra local variable when the input of a
method needs to be manipulated locally. This also helps debugging because the para-
meter value will always reveal what was originally received.

What happens here is that the reference gets copied by value when making the call from
Bar to Foo, passing p as an argument to value parameter x. Once the call is made, both p
and x now refer to the same object that lives on the .NET heap. In other words, those two
variables act as aliases, both referring to the same object. A change through one of the
references will become apparent to subsequent accesses made through one of the aliases.

However, when the callee assigns to its local variable x, it effectively puts a reference to
another object in the cell, which is invisible to the caller. You are invited to draw the state
transitions (similar to the last transition shown later in Figure 10.5) caused by the follow-
ing line in Figure 10.4:

x = new Person();

A reference or value type simply indicates where instances of the type get allocated and
what gets copied upon passing such an object by value. Value-typed objects are copied
wholesale, whereas for reference-typed objects the reference to the target instance is

508 CHAPTER 10 Methods

copied, causing aliasing (multiple references referring to the same instance). When using
value parameters, the receiving end holds such a local “copy” of the object. Any assign-
ment to that local cell is invisible to the caller, but modifications made through a refer-
ence will be visible to the caller due to aliasing.

Reference Parameters

Although assignment to a value parameter is visible only to the current method and not
to its caller, reference parameters can circumvent this. Instead of making a copy of the
object (whatever that means is dependent on the value- or reference-type characteristic of
the object, as you learned in Chapter 9, “Introducing Types”), a reference is made to the
local variable held by the caller. Figure 10.5 illustrates the use of the ref modifier to create
a reference parameter. Contrast the diagram with that shown earlier in Figure 10.3 to see
the difference.

Now inside the Foo method we have a reference to the local variable held in the context
of the calling Bar method. Any assignment to the reference parameter will happen to the
original location that was passed.

Notice that the use of the ref keyword is mandatory both on the declaration of the para-
meter and when passing the argument. The latter requirement was introduced to make it
obvious what’s going on when reading the code of the call site. Whenever you see an
argument being passed by reference, you can expect the variable that’s passed to be
replaced wholesale by the method being called.

REF MANDATORY, MOST OF THE TIME

Starting in C# 4.0, ref is not mandatory when used for interop with COM only. This is
discussed later in Chapter 22, “Dynamic Programming.”

Output Parameters

Closely related to reference parameters are output parameters. Conceptually, they serve as
additions to the single “return channel” provided by a method’s return type. By using the
out modifier, such a method can be created:

static bool TrySqrt(int input, out double root)

{

root = 0.0; // Will learn in while why this is needed

if (input < 0)

return false;

root = Math.Sqrt(input);

return true;

}

509Parameters

FIGURE 10.6 Reference and output parameters use the & suffix.

In this example, we use the return type to denote success or failure, while the output para-
meter will receive the result in case of success. This is a common pattern for various Base
Class Library (BCL) types such as numeric value types that have a TryParse method:

Console.Write(“Enter your age: “);

string input = Console.ReadLine();

int age;

if (!int.TryParse(input, out age))

// Print error message, maybe let the user retry

else

// We got a valid age

Prior to .NET 2.0, such methods didn’t exist, and Parse methods had to be used instead.
The difference between TryParse and Parse is what happens upon passing invalid input
to the method. Parse throws an exception, whereas TryParse doesn’t. Because exceptions
are expensive and an invalid numeric string is not an exceptional case when dealing with
user input, TryParse makes much more sense because it communicates success or failure
through a Boolean value that can be checked easily.

Notice again how the out keyword has to be used at both the declaration site and the call
site. Similar to reference parameters, this clarifies to the reader of the code what’s going on
at the method’s call site.

Internally, ref and out are implemented both as ref. In fact, the common language
runtime does not have a notion of output parameters. Figure 10.6 shows the method
header for the following declaration, which uses both ref and out:

void Bar(int a, ref int b, out int c)

Basically, output parameters are implemented as reference parameters with an extra piece
of metadata stuck on them. The use of this metadata allows compilers to give reference
and output parameters different treatment.

So what’s the key difference between both parameter types from a C# programmer’s point
of view? The answer lies in “definite assignment rules” both at the side of the caller and of
the callee. For a variable to be passed to a reference parameter, it must be assigned first.
For output parameters, the responsibility for assignment is with the method being called,

510 CHAPTER 10 Methods

FIGURE 10.7 Definite assignment enforcement for reference and output parameters.

which should guarantee that every code path ensures the output parameter to get assigned
to. Figure 10.7 shows violations of both rules.

DON’T USE TOO MUCH

Use of output parameters can seem tempting to return multiple results from a method
but is rather sticky in the call site because a separate local variable must be declared
upfront and the out keyword is required. When you start returning a lot of data, consid-
er wrapping it in some specialized return type. Also starting from .NET 4, you can use
the System.Tuple generic types to package objects.

Parameter Arrays

Some methods can benefit from having an unbounded number of arguments passed to
them. So far, we’ve seen an example of this in passing, namely the Console.WriteLine
method. Because the first argument can be used to provide a so-called format string,
which is a string with placeholders for variant portions, the remainder arguments to fill in
those gaps depends on the string itself. For example:

Console.WriteLine(“{0} + {1} = {2}”, a, b, a + b);

The use of format strings comes in handy when dealing with quite a bit of formatting,
where string concatenation would become very ugly and unreadable:

Console.WriteLine(a + “ + “ + b + “ = “ + (a + b));

In addition to this, it allows for a clean way to localize strings, such as error messages,
where the position of the variant portions will be language-dependent:

Could not find file {0}.

Het bestand {0} werd niet gevonden.

511Parameters

It’s clear that the last arguments passed to Console.WriteLine can be plentiful. To allow
for a natural calling syntax, it should be possible for the user to pass any number of argu-
ments in a comma-separated manner. But how should the other side (being the method
implementation) receive those arguments? This is precisely what parameter arrays enable.
They’re simply parameters of some array type that appear at the end of the parameter list
and are prefixed with the params keyword. The receiving end simply sees them as arrays,
but the calling side can omit the array creation code and simply pass arguments comma-
separated as if they were corresponding to separate parameters. For example:

static int Sum(params int[] numbers)

{

int sum = 0;

foreach (var n in numbers)

sum += n;

return sum;

}

This method can be called either by passing an array or by using the more convenient
comma-separated notation:

int six = Sum(new[] { 1, 2, 3 });

int ten = Sum(1, 2, 3, 4);

The last call basically gets turned into a form like the one here, where an array gets allo-
cated on the user’s behalf.

Only one parameter array can appear in a method header, and if it does, it should be the
last parameter of the list. Because methods can have overloads (discussed in the
“Overloading” section in this chapter), overload resolution might have to pick between a
parameter array and a regular method. For example:

static int Sum(params int[] numbers)

{ ... }

static int Sum(int a, int b)

{ ... }

static int Sum(int a, int b, int c)

{ ... }

The definition of additional low-parameter-count regular methods in addition to one that
takes a parameter array is a common practice to reduce excessive heap allocations for
arrays passed to every single method call. When calling the Sum method with two or three
arguments, the regular methods will take precedence over the parameter array one. This
technique is also applied to Console.WriteLine, as shown in Figure 10.8.

512 CHAPTER 10 Methods

FIGURE 10.8 Use of parameter arrays for methods with high argument count.

Optional and Named Parameters

To aid with COM interoperability scenarios, C# 4.0 introduced optional and named
parameters. Although we discuss those interoperability features in more detail when
talking about dynamic programming, this is the right place to discuss optional and

named parameters.

Methods can have overloads. Basically, that means that different method headers can exist
that all share the same name but differ in the number of parameters or the type those
parameters have. Often, one wants to provide “convenience overloads” for methods that
take a bunch of parameters, supplying default values for more advanced parameters.

A good example is the file-creation application programming interface (API) that exists in
the System.IO namespace. One of the most specialized overloads looks like this:

public static FileStream Create(string path, int bufferSize,

FileOptions options)

Two other overloads exist that gradually peel off parameters to reduce the burden put on
the user of the API when default values make sense:

public static FileStream Create(string path)

{

return Create(path, 0x1000, FileOptions.None);

}

public static FileStream Create(string path, int bufferSize)

{

return Create(path, bufferSize, FileOptions.None);

}

Those simply supply default values for the omitted parameters and call into the most
specific overload that will do all the heavy lifting. Although this works just fine, there’s a

513Parameters

FIGURE 10.9 Representation of optional parameters uses [opt] and .param metadata.

lot of overhead associated with the declaration and wiring up of all the different over-
loads. In addition, the API writer must sense which parameters are going to be most
popular and which ones users will usually want to omit. In this example, the designers of
System.IO thought there was no need for the following overload:

public static FileStream Create(string path, FileOptions options)

With optional parameters, you can take an alternative approach for defining those
methods. Instead of having more overloads, parameters can specify a default value that’s
put in place when the parameter is omitted in a method call. In this example, the API
could be redefined as follows:

public static FileStream Create(string path, int bufferSize = 0x1000,

FileOptions fileOptions = FileOptions.None)

After specifying the parameter type and name, a default value is supplied using what looks
like an assignment. Optional parameters have to go after all required parameters. Valid
default values include constants such as numerals, Boolean values, strings, enums, and the
null reference.

Looking in ILDASM, we see that those parameters got some additional metadata that indi-
cates their optional nature, as well as the default values. Figure 10.9 illustrates this. In
particular, notice that no overloads get generated. Just a single method is defined, with
extra information about the optional parameters.

When calling the method, you can omit any of the optional parameters:

Create(\temp\test.txt”)

Create(\temp\test.txt”, 1024)

Create(\temp\test.txt”, 1024, FileOptions.RandomAccess)

Figure 10.10 shows how the IntelliSense in Visual Studio communicates the default values
for optional parameters when targeting a certain method. The square bracket notation is
commonly used to indicate something that’s optional.

514 CHAPTER 10 Methods

FIGURE 10.10 Optional parameter default values showing up in IntelliSense.

If an optional parameter is omitted, the compiler inserts its default value in the call site
(indicated in bold), so the preceding examples are turned into these:

Create(\temp\test.txt”, 4096, FileOptions.None)

Create(\temp\test.txt”, 1024, FileOptions.None)

Create(\temp\test.txt”, 1024, FileOptions.RandomAccess)

BE SURE DEFAULT VALUES ARE TRULY CONSTANT

The mechanism of burning the default values for optional parameters in the call site
has advantages and disadvantages. On the positive side, the runtime doesn’t have to
perform checks to somehow determine which parameters have been left out during a
call, inserting default values at runtime. An alternative implementation by which the
compiler would generate overloads could have worked, too, but it wouldn’t interoperate
with existing languages that support optional parameters (such as Visual Basic).

On the flip side, you might be surprised by the fact that the compiler copies default
values into the call sites where an argument corresponding to the optional parameter
was omitted. In particular, suppose you have multiple assemblies, one of which has a
public method with optional parameters defined. Now another assembly calls this
method and omits an optional parameter, causing the compiler to copy the default
value into your assembly’s call site. In this scenario, it no longer suffices to update the
default value in the assembly that declares the method because the value got copied
to all assemblies using the method. All clients need to be recompiled to pick up the
new default.

For this reason, it’s strongly encouraged to use optional parameters only when you’re
absolutely sure the defaults will remain as is, for eternity. If this is not the case, you’re
better off with classic overloads.

In contrast to a fixed set of overloads, you can now mix and match which parameters to
supply to a method call by using the C# 4.0 named parameter feature. The idea is simply
to specify an argument value for a parameter by writing down the name rather than
matching argument values to parameters by their positions. Suppose you want to override
the default value for the FileOptions flag but leave the default bufferSize alone. Using
named parameters, you can write the following:

Create(\temp\test.txt”, fileOptions: FileOptions.RandomAccess)

Figure 10.11 shows the IntelliSense experience showing the availability of a certain para-
meter by its name.

515Parameters

FIGURE 10.11 Named parameters showing up in IntelliSense.

Named parameters are independent from optional parameters in that they can be used to
specify any parameter by its name. For example, you could even call a method like
int.TryParse as follows, using the parameter names:

int res;

if (int.TryParse(result: out res, s: “Hello”))

...

No matter how you specify arguments, the C# compiler will always check whether you’re
calling an existing method overload. For example, if you were to omit the s parameter just
given (which is not declared as optional on TryParse), the compiler would complain that
it can’t find a suitable overload. Also once you start specifying parameters by name in a
method call, subsequent parameters should be specified by name, too; otherwise, the
following would be very cryptic and likely ambiguous. Think about it...which parameter
should the string literal be assigned to?

Create(fileOptions: FileOptions.RandomAccess, @”c:\temp\test.txt”)

DON’T MESS WITH NAMES!

Because languages can specify parameters by name, you should never rename a public
method’s parameters after you’ve shipped your library for the very first time. If you do
so, a recompile of client code using your library may fail because it can’t find a
renamed parameter anymore. For example, if the File.Create API were to change the
fileOptions parameter to be called fileOption, some of our sample calls would no
longer compile. Notice, however, that clients will continue to work fine as long as the
code doesn’t get recompiled. Resolving named parameters is a compile-time only job.

Note that that the order in which arguments are evaluated is always left to right, also
when named parameters are involved. Consider the following code:

public static void Main(string[] args)

{

Console.WriteLine(Add(b: AskInt(“b”), a: AskInt(“a”)));

}

private static int AskInt(string name)

{

516 CHAPTER 10 Methods

Console.Write(name + “: “);

return int.Parse(Console.ReadLine());

}

private static int Add(int a, int b)

{

return a + b;

}

The call to Add specifies for some bizarre (but valid) reason both its parameters by name,
in reverse order. Let’s simplify the code first to illustrate what the compiler does when it
encounters named parameters. Suppose you write the following expression:

Add(b: 5, a: 3)

Lookup of named parameters is a task performed by the compiler, not the runtime. In
other words, every call to Add in the resulting assembly expects argument values for para-
meters a and b to be specified in that order. As a result, the compiler will rewrite the
preceding expression code to the following call at runtime:

Add(3, 5)

However, it’s a bit more subtle than this. If the evaluation of the expressions for the argu-
ment values would have a certain side effect, this would change the meaning of the
program compared to what people will expect. Consider our sample call:

Add(b: AskInt(“b”), a: AskInt(“a”))

AskInt reads an integer value from the console. If the preceding call were to get reordered
as follows, the order of the prompts would be different from the lexical left-to-right order
in which the calls to AskInt appear in the code:

Add(AskInt(“a”), AskInt(“b”))

To restore the expected behavior and have consistent left-to-right evaluation order, the
compiler generates the following code instead:

int __t1 = AskInt(“b”);

int __t2 = AskInt(“a”);

Console.WriteLine(Add(__t2, __t1));

Overloading
Within the same struct, class, or interface, different methods with the same name can
exist, as long as they differ in their signatures. The concept of a signature goes beyond just
methods; instance constructors, indexers, and operators have them, too. For a method, a

517Overloading

FIGURE 10.12 IntelliSense got smarter in Visual Studio 2010.

signature roughly corresponds to the method’s header, as illustrated earlier in Figure 10.1.
One notable difference is the fact that a signature doesn’t include the return type as part
of its formal definition. Although other differences exist that can be studied by specifica-
tion lovers, this description suffices for our purposes.

Defining Method Overloads

To define overloads for a method with a given name, you just define all the overloads as
part of the same containing type. Where you put the method in the file (or files, in case
partial classes are used) doesn’t matter, though keeping overloads of a method lexically
together helps when browsing the code.

A WORD ON NAMING CONVENTIONS FOR METHODS

Talking about method naming as the grouping key for a set of overloads, it’s good to
say a word or two on the conventions in use for method names. Basically, they follow
the so-called Pascal naming convention, where they start with an uppercase letter and
each word starts with a capital too. For example, TryParse and WriteLine are conven-
tional names, whereas tryParse or Writeline are not.

In fact, Visual Studio 2010’s IntelliSense actually has intrinsic knowledge about this
naming convention and allows you to autocomplete a method name simply by specifying
the uppercase letters that appear in it. The same holds for type names that follow the
same convention. Figure 10.12 shows this new IntelliSense feature put into practice.

As usual with conventions, they’re just that: conventions. For consistency in API design,
it’s good to follow them, though neither compilers nor the runtime do check confor-
mance. Other tools, such as FxCop and StyleCop, can be used to perform such checks
as part of your development process.

As you’ve seen in the rough definition of signatures, the return type doesn’t get included,
so one cannot overload solely by return type. Therefore, the following code is invalid
because both methods have the same parameter types but differ only in their return type:

static int Add(int a, int b) { ... }

static long Add(int a, int b) { ... } // Oops: only differs in return type

However, if the second method were to differ from the first in more than just the return
type (for example, taking two long parameters instead), things would be fine.

518 CHAPTER 10 Methods

static int Add(int a, int b) { ... }

static long Add(long a, long b) { ... } // Oops: only differs in return type

Another part of a signature that cannot be the sole difference across different overloads are
the ref and out modifiers. Readers with an eye for detail will remember that out and ref

are implemented using the same calling mechanism at the runtime level and differ only by
an additional piece of metadata for the compiler to inspect. Because the runtime cannot
differentiate between out and ref (well, without going through metadata hoops, which
would be rather inefficient in today’s world), it isn’t possible to compile the following:

static bool TryParse(string s, out int result) { ... }

static bool TryParse(string s, ref int result) { ... }

Method Groups

Closely related to method overloads are method groups, which are typically used with
delegates, as you will see later in Chapter 17, “Delegates.” Basically, a method group is a
set of overloaded methods that’s classified as an expression and is created by using a
member lookup operation. For example, the following are method groups:

Console.WriteLine

name.Substring

In a nutshell, delegates are a means to refer to a method such that it can be passed along
as an object. For example, one piece of code might need “a method that will be able to
take an object and return a Boolean to indicate whether it passes a condition.” To express
this, it can take in a delegate that basically captures the signature of such a helper method
it needs to carry out its task. For example:

delegate bool Filter(int number);

Delegates are types and hence can have instances. To create an instance of the Filter
type, you can declare a variable and assign a method group to it. Given the following
method, which has the appropriate signature, a Filter object can be created as shown on
the last line:

static class Predicates

{

static bool IsEven(int number)

{

return number % 2 == 0;

}

}

...

Filter filter = Predicates.IsEven; // Using a method group

519Overloading

Creation of a delegate by use of a method group carries out some overload resolution to
check whether the set of overloads represented by the method group contains a method
that’s compatible with the delegate’s signature. For example, we could have multiple
IsEven overloads that differ in the input parameters they accept. When the group gets
assigned to a Filter delegate that expects an int input parameter, it’s the job of the
compiler to figure out the best match for the delegate object to refer to.

Delegates can be invoked just as if they were regular methods. By doing so, the target
methods captured by the delegate instance will be invoked. Essentially, delegates are a
means to introduce one level of indirection to call a method. With our Filter delegate in
place, a general-purpose filtering method can be created:

static int[] Where(int[] numbers, Filter predicate)

{

// In fact, a more general-purpose Where method exists in LINQ.

// It uses a generic delegate to filter elements of a generic collection.

// For a thorough explanation, see the chapter on LINQ.

var results = new List<int>();

foreach (int n in numbers)

if (predicate(n)) // delegate invocation

results.Add(n);

return results.ToArray();

}

We discuss delegates in much more detail in Chapter 17 and put them into practice in
Chapter 18, “Events” (events use delegates under the covers).

Overload Resolution

When multiple overloads for a method with a given name exist, one of the compiler’s
duties is to figure out which method is to be called given a certain argument list. A whole
set of rules exists to figure out the “best target.” Those rules largely correspond to
common sense and what developers would expect to be the best match. A simple example
can be given using the Math.Abs method, which has seven overloads:

public static decimal Abs(decimal value);

public static double Abs(double value);

public static float Abs(float value);

public static int Abs(int value);

public static long Abs(long value);

public static sbyte Abs(sbyte value);

public static short Abs(short value);

520 CHAPTER 10 Methods

FIGURE 10.13 An implicit conversion bridges the gap between argument and parameter.

Most, if not all, readers will agree on the overload that has to be called in the following
piece of code using Math.Abs:

int x = int.Parse(Console.ReadLine());

Console.WriteLine(“Abs({0}) = {1}”, x, Math.Abs(x));

Because there’s an exact match of a method signature in the set of available overloads, it
shouldn’t be a surprise that the Math.Abs(int) candidate is chosen. If no exact match is
found, other rules kick in to find the best possible match:

uint x = uint.Parse(Console.ReadLine());

Console.WriteLine(“Abs({0}) = {1}”, x, Math.Abs(x));

Although taking the absolute number of a positive unsigned integer doesn’t make much
sense, it illustrates the point of overload resolution quite well. Because there’s no exact
match taking in a uint as the sole parameter, implicit conversions (see Chapter 13,
“Operator Overloading and Conversions”) are considered. In this case, it’s possible to
convert the uint argument to a long implicitly (that is, without the user specifying it
explicitly), that overload is used as shown in Figure 10.13. The reason this implicit conver-
sion from a uint to a long exists is because every 32-bit unsigned integer fits, without any
loss of precision, in a 64-bit (long) signed integer.

Many more rules exist to define overload resolution in a more formal manner in the C#
language specification. I won’t digress; if you’re interested, see the specification. All you
need to know for practical purposes is the fact the compiler (not the runtime) is in charge
of finding a good overload. If the chosen target is not the expected one (which shouldn’t
happen too often), it’s always possible to influence the decision by adding more casts. This
is also the way to guide the compiler in a certain direction if no best match can be found
and the call is ambiguous:

public static void Main(string[] args)

{

Bar(“Which one”, “will you pick?”);

}

public static void Bar(object a, string b) { ... }

public static void Bar(string a, object b) { ... }

521Overloading

FIGURE 10.14 Ambiguities found during overload resolution prompt for manual resolution.

Because both overloads of Bar are equally suited (since every string is an object and can be
treated as such), the compiler cannot make up its mind (luckily) and raises an error signal-
ing the ambiguity, as shown in Figure 10.14. One way to solve this is to specify the
intended parameter types explicitly:

public static void Main(string[] args)

{

Bar((object)”Pick the”, “first one”);

Bar(“Pick the”, (object)”second one”);

}

CHALLENGES WITH GENERICS

Generics, which are the subject of Chapter15, pose extra challenges in relation to over-
load resolution. Basically, generics enable you to abstract over types used as parame-
ters to types or methods:

public static void Main(string[] args)

{

Bar<int, string>(1, “2”); // This is fine...

Bar<int, int>(1, 2); // ...but what’s meant here?

}

public static void Bar<TFirst, TSecond>(TFirst f, TSecond s) { ... }

public static void Bar<TFirst, TSecond>(TSecond s, TFirst f) { ... }

When type parameters are inferred from the generic method’s usage, some tie-breaker
rules exist that will prefer nongeneric parameters that provide a good match over going
down the generic road. For example:

public static void Main(string[] args)

{

Foo(1, 2); // second one is used as “int” is better than “TSecond”

}

public static void Foo<TFirst, TSecond>(TFirst f, TSecond s) { ... }

public static void Foo<TFirst>(TFirst f, int n) { ... }

522 CHAPTER 10 Methods

When designing generic-rich APIs, it’s always a good idea to think about cases where
the substitution for generic type parameters could result in ambiguities as the ones
shown here. Whenever possible, try to avoid putting disambiguation challenges on the
API user because they can be quite tricky to resolve.

The best way to get a good feeling about overload resolution is to play with it in the
context of .NET Framework APIs and such. Overloads are used quite extensively to provide
developer convenience, so you’ll encounter them frequently.

Extension Methods
Introduced in C# 3.0 as part of the LINQ-enabling language feature set, extension
methods provide a means to extend an existing type (such as a class, struct, inter-
face, enum, delegate) with additional methods that can be invoked as if they were

instance methods. Basically, they provide user convenience for calling helper methods.

Prior to .NET 3.5 (which carried C# 3.0 and VB 9.0, both with extension methods as a
language feature), it was rather cumbersome to define additional functionality on an
existing type if you didn’t own that type. For example, assume you got some urgent need
for a method to reverse a string. Wouldn’t it be great to be able to write the next piece of
code to do so?

var input = Console.ReadLine();

Console.WriteLine(input.Reverse());

Unfortunately, the framework designer didn’t feel like introducing a Reverse method on
the System.String type, so the preceding code can’t be written. Extending the string type
isn’t a feasible option to resolve this issue because you want to have the Reverse method
on every string object, not on just some specialized subtype thereof. (Besides that, the
string type in the BCL is sealed, and therefore you cannot derive from it, as you learn in
Chapter 14.) The only way you can introduce a Reverse operation is to define a helper
method like the following:

static class StringExtensions

{

public static string Reverse(string s)

{

var chars = s.ToCharArray();

Array.Reverse(chars);

return new string(chars);

}

}

523Extension Methods

Because strings are immutable in .NET, you cannot modify them in place, and therefore
you need to create a new string with the reversed character sequence to achieve this task.
Using the preceding helper, you can now write the following code:

var input = Console.ReadLine();

Console.WriteLine(StringExtensions.Reverse(input));

Unfortunately, this breaks the “fluency” of the code quite a bit. In particular, it’s not possi-
ble to “chain together” a set of method calls that transform the string. For example:

var input = Console.ReadLine();

Console.WriteLine(input.ToUpper().Reverse().ToLower());

Whether such excessive chaining is a good thing can be debated. Because every intermedi-
ate method call could return null or throw an exception, it can become quite hard to track
down a point of failure. In addition, no local variables hold the intermediate results,
which could be handy for debugging. Nonetheless, the need for helper methods breaks
fluency and left-to-right reading of code in a lot of cases:

var input = Console.ReadLine();

Console.WriteLine(StringExtensions.Reverse(input.ToUpper()).ToLower());

One concrete API where the fluent pattern is very attractive to have is LINQ. We discuss
this in much more detail later (see Chapter 19, “Language Integrated Query Essentials”),
but for now contrast the following two sample queries from a syntactical point of view.
I’m sure you’ll agree the first one is more readable and communicates the order of opera-
tions much better:

var resNew = new[] { 1, 2, 3 }

.Where(x => x % 2 == 0)

.Select(x => x.ToString());

var resOld = Enumerable.Select(

Enumerable.Where(

new[] { 1, 2, 3 },

x => x % 2 == 0

),

x => x.ToString()

);

In fact, the first fragment is turned into the second at compile time by means of the
extension methods language feature. Ignore the weird-looking arrow syntax for now;
those are lambda expressions, which are discussed in Chapter 17. If you want to read the
code aloud, pronounce the fat arrow as “goes to,” and you should be able to get a feel for
what those lambda expressions stand for.

524 CHAPTER 10 Methods

Defining Extension Methods

Back to our string reversal example to show how we can enable the instance-method-
looking invocation syntax for our extension to the System.String type. Compared to the
original helper class and method code we wrote before, the only difference is to put a this
modifier on the first parameter of the method:

static class StringExtensions

{

public static string Reverse(this string s)

{

var chars = s.ToCharArray();

Array.Reverse(chars);

return new string(chars);

}

}

In C#, the this keyword is used in no fewer than four different places, most of which we
still have to discuss. Here’s an overview:

. To refer to the current instance of an object. This can be used to refer to all sorts of
members, such as this._age to refer to a field. An extra example is an instance
method Bar calling another instance method Foo on the same object by writing
this.Foo(arguments). The this keyword can be omitted in those cases but is often
included for clarity.

. To call one instance constructor overload from another one. You’ll see this in
Chapter 12, “Constructors and Finalizers.”

. As the keyword to denote an indexer, which is a special kind of property that can be
defined on a type. For example, a Vector type could define an indexer allowing users
to write vector[0] or vector[“x”] to refer to a component of a vector instance.
You’ll learn about indexers later in this chapter.

. For the declaration of extension methods (as you have seen just now).

Now that we’ve turned our helper method in an extension method, we can write the code
to reverse a string in a much nicer form:

var input = Console.ReadLine();

Console.WriteLine(input.Reverse());

In the IntelliSense list, extension methods show up with an extra adorner on top of the
method icon, as shown in Figure 10.15.

525Extension Methods

FIGURE 10.15 An extension method showing up in IntelliSense.

Notice that another Reverse extension method seems to exist on System.String. In fact,
this is an extension method on the generic IEnumerable<T> interface type, which is
defined as part of the Standard Query Operators of LINQ. Every string is a sequence of
characters. and hence System.String implements the IEnumerable<char> interface. The
Reverse operator in LINQ can operate on every sequence (of any type T) and return the
sequence in reverse.

STATIC CLASSES

Notice extension methods are defined in static classes, which is a requirement enforced
by the compiler. Static classes were introduced in C# 2.0 to guard against creation of
unusable classes that result from forgetting to mark a method as static. Before C# 2.0,
to declare a class with only static utility methods, the following pattern was used:

class Helpers

{

private Helpers() {}

public static void Bar() { ... }

...

}

By defining a private instance constructor (see Chapter 12), no one can ever create an
instance of the helper class, which is clearly the right thing to do because all methods
on the class are static and hence don’t need an instance to operate on. However,
mistakes in definitions of such types weren’t caught, in particular when someone
added a method and forgot to mark it as static:

class Helpers

{

private Helpers() {}

public static void Bar() { ... }

public void Foo() { ... } // Oops, forgot to mark as static

...

}

526 CHAPTER 10 Methods

Now nobody can ever call this method (without playing dirty tricks using reflection APIs,
that is) because no instance can be created to invoke the method on. By marking the
class as static, the compiler enforces that only static members are defined.

Overload Resolution

Actually, the fact that two Reverse extension methods show up illustrates how overload
resolution applies to extension methods, too. When we write the following code, the
compiler considers the extension method on string to be a better match than the one
that’s defined on IEnumerable<T>, with T substituted for char:

var input = Console.ReadLine();

Console.WriteLine(input.Reverse());

Hence, our method will take precedence over the one defined by the LINQ APIs. Also,
extension methods are considered only when no suitable instance method is found. In
other words, they are performed as a “last-chance lookup” operation after all attempts to
find instance methods fail:

static class StringExtensions

{

public static string Substring(this string s, int startIndex)

{

Although it’s valid to define an extension method like the preceding one, you won’t be
able to call it through “instance invocation syntax” because System.String already has a
Substring method that takes in an int parameter:

var art = “Bart”.Substring(1);

Because an instance method is found, the compiler doesn’t have to go and look for some
extension method that takes a string as the first parameter and accepts an integer after it.
If we still want to call our extension method, we can do so by using static method invoca-
tion syntax:

var art = StringExtensions.Substring(“Bart”, 1);

Notice that because of this order of overload resolution, only attempting to use extension
methods after all instance method lookups fail, an extension method cannot be called
because it’s a “better match than” an instance method. For example:

static class StringExtensions

{

public static string Substring(this string s, byte startIndex)

{

527Extension Methods

The preceding extension method could be somehow defined as an efficient substring that
takes advantage of taking in a byte-sized startIndex as opposed to a 32-bit integer. So if
we write a substring with an index typed to be a byte, the compiler will first hunt for a
suitable instance method. Because a byte is implicitly convertible to an int, it will pick the
Substring method defined on System.String, never considering our “overload”:

var art = “Bart”.Substring((byte)1); // Calls System.String.Substring

This might be surprising at first, but it’s one of the measures put in place to ensure that
C# 2.0 code continues to work as it did before, even after being recompiled in C# 3.0.

VERSIONING STORY

Extension methods have a poor versioning story due to the overload resolution rules
explained earlier. As soon as the this parameter’s type introduces an instance method
with the same name, it will be considered first upon recompiling code that used an
extension method with the same name. For example, if .NET 4+x introduces a Reverse
instance method without any parameters on System.String, that one will be picked up
when you recompile the code targeting that new platform. If this method has different
behavior than our own extension method, it can lead to unexpected changes.

Nonetheless, it’s always possible to switch back to invoking the extension method by
using a static method call instead, once such a regression is spotted. It’s also not
unimaginable for tools to help detect such versioning issues when code is upgraded to
use a newer version of a library or framework that might have brought new and conflict-
ing instance methods with it.

Using Extension Methods

You’ve already seen how to use an extension method simply by using the first parameter
as the left side (mimicking instance method invocation syntax), but another question is
how those extension methods become available. The answer is to be found in the use of
namespaces, which are covered in Chapter 24, “Namespaces.” In short, a namespace
provides a means to group types in a hierarchical manner. For example, the System.Text
namespace contains types like StringBuilder, while System.IO contains types that deal
with files, streams, and so on. Instead of having to specify full type names all over the
place, you can import a namespace using the using keyword in C#:

using System;

class Program
{

static void Main()
{

// Same as writing System.Console.WriteLine(“Hello”);
Console.WriteLine(“Hello”);

}
}

528 CHAPTER 10 Methods

FIGURE 10.16 Extension methods come and go with namespace imports.

Starting from C# 3.0, the using keyword is also used to import extension methods that are
defined in public static classes within the imported namespaces. For example, the follow-
ing complete program defines two namespaces, one of which contains extension methods.
As long as that namespace is not imported for the code defined in the other, the extension
method is not visible. Figure 10.16 proves this point by looking through the lenses of
IntelliSense. Also notice that because of the lack of an import of System.Linq, the Reverse
method defined on IEnumerable<T> doesn’t show up:

namespace Fabrikam.Utilities

{

using Contoso.CashFlow; // This is required to “see” the Reverse method.

public class Program

{

public static void Main(string[] args)

{

var traB = “Bart”.Reverse();

}

}

}

namespace Contoso.CashFlow

{

static class StringExtensions

{

public static string Reverse(this string s) { ... }

}

}

529Extension Methods

How the Compiler Marks and Finds Extension Methods

Two more questions can be raised about the implementation of extension methods at the
level of the compiler. Both those questions relate to the bookkeeping done to mark exten-
sion methods and find them during overload resolution.

As with most post-C# 2.0 language features, extension methods are syntactical sugar on
top of runtime primitives, introduced to provide more developer convenience. To imple-
ment those features, the runtime didn’t have to change at all. This can be seen clearly in
the code emitted for our Reverse extension method call:

var input = Console.ReadLine();

Console.WriteLine(input.Reverse());

The preceding code is turned into this:

var input = Console.ReadLine();

Console.WriteLine(StringExtensions.Reverse(input));

To the runtime, an extension method simply looks like a static method call. Extension
methods enable developers to make the code look better, favoring instance method call
resemblance over plain static method calls. For the compilers of languages that support
extension methods (such as C# and Visual Basic) to recognize an extension method as a
special kind of static method, an attribute is applied on the method as a piece of meta-
data. This ExtensionAttribute is defined in the System.Runtime.CompilerServices name-
space. In our case, the Reverse method definition is really equivalent to the following:

static class StringExtensions

{

[Extension]

public static string Reverse(string s) { ... }

}

Because this is merely an implementation detail, the compiler requires you to use the this
keyword instead of using the attribute directly (even though the Visual Basic language
publicly documents to use the ExtensionAttribute to declare an extension method in
Visual Basic). Figure 10.17 proves this attribute is recognized and used by the compiler.

To find extension methods suitable for use during overload resolution, the compiler
searches for visible methods marked with ExtensionAttribute across all static classes in
types defined in imported namespaces for all the referenced assemblies. Using the reflec-
tion APIs, you can write a similar extension method dumper for a given interface. The use
of reflection and the LINQ syntax that follows is explained in Chapter 21, “Reflection,”
and Chapter 19, “Language Integrated Query Essentials,” respectively:

var res = from t in typeof(Enumerable).Assembly.GetTypes()

let n = t.Namespace

530 CHAPTER 10 Methods

FIGURE 10.17 Use of the ExtensionAttribute happens behind the scenes.

where n != null && n.StartsWith(“System.Linq”) // “using System.Linq”

from m in t.GetMethods(BindingFlags.Public | BindingFlags.Static)

where Attribute.IsDefined(m, typeof(ExtensionAttribute))

select m;

foreach (var m in res)

Console.WriteLine(m);

EXTENSION PROPERTIES, EVENTS, INDEXERS, FIELDS, AND SO ON

Typically, language features are quite broad, treating different types of members on the
same footage. For historical reasons, extension methods haven’t been generalized into
“extension members.” After all, to enable LINQ with fluent chaining of query operators,
only extension methods were needed.

The lack of the generalized concept of extension members has given rise to many
feature requests for things such as extension properties. Those even made it to the
tentative feature list for C# 4.0 but fell off the list mainly due to design difficulties. In
particular, there’s no convenient place on today’s syntax for properties to put the this
parameter. Different approaches were considered, ranging from adding some notion of
indexable properties to pattern-based recognition of properties:

public static int Size[this FileInfo file]

{

get { ... } set { ... }

}

// Another possibility

public static int get_Size(this FileInfo file) { ... }

public static int set_Size(this FileInfo file) { ... }

531Extension Methods

Both have major drawbacks. First, although the concept of indexed properties exists at
the runtime level, having such a language feature could cause confusion because
expressions such as x.Bar[0] could either mean retrieving a collection from property
Bar and index into it or calling the indexed property Bar with argument 0. Also assign-
ments to such an indexed property feel a little weird (agreed, this is a subjective thing
as with most language features).

The second approach of using get and set prefixes (which follow internal naming
convention used for compiler-code generated for properties) is unprecedented in the
language and doesn’t look like a regular property at all.

Furthermore, the first proposed syntax isn’t well suited to enable for auto-implemented
properties (see Chapter 11, “Fields, Properties and Indexers”) where getter and setter
blocks are omitted. The difficulty with those is how to store the data get and set by the
property in some location associated to the object instance targeted by use of the
property. This would have to be some kind of global dictionary, which introduces global
state and poses challenges for the garbage collection of extension property data when
a target instance goes away.

Other extension members have their own difficulties with regards to a clean syntax that
fits a model following the design of extension properties. Yet another approach would
be to define the concept of an “extension class” that has the this parameter implicitly
available in all the members that become extension members:

class StringExtensions extends String // not “extends” as in Java

{

public string Reverse() { /* use this as if we were a string ourselves */ }

public int Size { get { ... } set { ... } }

}

One drawback is that it would result in quite a few such extension classes when used
to extend generics. For example, some of LINQ’s query operators are defined on the
generic IEnumerable<T>. Other LINQ operators (such as Sum, Min and Max) target spe-
cific sequence types such as IEnumerable<int> or IEnumerable<long>. Besides the
explosion in the number of “extension types,” it also introduces yet another way to do
extension methods alongside the existing this syntax.

EXTENSION MEMBERS, UNLIKE EXPANDOS

Dynamic languages use a concept called expandos to be able to add members to exist-
ing objects. Extension methods, though, use a different compile-time approach to
create the illusion of being able to extend types with an additional method. One differ-
ence between both concepts lies in the fact that an expando can extend a particular
object instance with additional members, whereas extension methods are associated
with a type instead.

532 CHAPTER 10 Methods

Starting with C# 4.0, the concept of an expando can be implemented, as well, thanks
to the dynamic keyword and the DLR infrastructure. (See Chapter 22 for more informa-
tion.) The ExpandoObject type defined in System.Dynamic enables scenarios like
bags that gain members at runtime:

dynamic person = new ExpandoObject();

person.Name = “Bart”;

person.Age = 27;

Console.WriteLine(“{0} is {1}”, person.Name, person.Age);

Although it seems that the object gains a property called Name and one called Age, it
really acquires some more data stored in it. Basically, the Expando provides some
dictionary that associates Bart to Name and 27 to Age, while dynamic lookup using
property syntax provides access to this storage.

Extension properties would be quite different because you would be able to define a
new property associated with a type and have custom code inside it. Some dynamic
languages offer such abilities, as well; for example, Windows PowerShell with its exten-
sible type system (exposing notions like script properties). However, being a statically
typed language at its core, the concept of extension members in C# would likely have
to be a statically typed notion.

Partial Methods
Closely related to partial classes are partial methods, which were introduced as part
of the LINQ language features wave in .NET 3.5 and C# 3.0. As with all “partial”
features, this you must do with code-generation scenarios, too. The original use

case for the feature serves as a good illustration of its purpose. Enter LINQ to SQL.

LINQ to SQL has a designer to create classes corresponding to tables in a database (a form
of object-relational mapping). To try this out for yourself, add a new LINQ to SQL Classes
file to your project using the Add New Item dialog. An example of a mapping created in
the designer is shown in Figure 10.18. A thorough discussion about how to define a LINQ
to SQL mapping is irrelevant for our discussion, but one essential configuration task for
this example is to have one property declared as a primary key (which will influence the
code generation). Setting properties on the mapping’s properties can be done using the
Properties pane in Visual Studio.

Although the mapping file is stored as an XML file with extension .dbml (to be used and
regenerated by the designer), a single file generator registered in Visual Studio turns this
markup into a generated .designer.cs file, which can be seen in Solution Explorer. Let’s
take a look at the code that was generated for our simple mapping, which is found in the
.designer.cs file (not the regular .cs file).

533Partial Methods

FIGURE 10.18 Generated files for a LINQ to SQL mapping.

One trimmed-down fragment of the generated code for the Person class looks like this:

public partial class Person : INotifyPropertyChanging, INotifyPropertyChanged

{

private int _ID;

private string _Name;

private int _Age;

#region Extensibility Method Definitions

partial void OnNameChanging(string value);

partial void OnNameChanged();

...

#endregion

public string Name {

get {

return this._Name;

}

set {

if ((this._Name != value)) {

this.OnNameChanging(value);

this.SendPropertyChanging();

this._Name = value;

this.SendPropertyChanged(“Name”);

this.OnNameChanged();

}

}

}

...

}

534 CHAPTER 10 Methods

FIGURE 10.19 Implementing partial methods of our choice.

Notice the highlighted portions of code while inspecting the example. At the bottom of
the generated class, we find a property for the person’s name. As you will see later, a prop-
erty has a getter and setter that are invoked when the property is read or written to,
respectively. The generated setter code adds quite a bit of logic to track changes made to
the object, such that the LINQ to SQL data context can be used to submit changes to the
database in the form of a T-SQL UPDATE statement. To facilitate this, it uses the
INotifyProperty interfaces that are part of the BCL. People familiar with SQL DML state-
ments will likely already know why a primary key was needed in our mapping because the
generated T-SQL UPDATE statement will select the record targeted for update by specifying a
filtering T-SQL WHERE clause based on the primary key value of the object. All this plumb-
ing results in easy-to-use object-relational mapping.

Two lines of code in the setter are of particular interest and are highlighted in bold in the
preceding code snippet. Calls to OnNameChanging and OnNameChanged were emitted by the
code generator as extensibility points for the generated code. If we follow those method
calls to the target method definition, we end in a region containing methods that are
declared as partial:

#region Extensibility Method Definitions

partial void OnNameChanging(string value);

partial void OnNameChanged();

...

#endregion

Also notice how the generated Person class is marked as partial itself. The goal of the
partial methods is for developers to provide custom logic in other parts of the partial
class definition. Figure 10.19 shows us typing the partial keyword in the Person class in
another (nongenerated) .cs file to specify logic for any of the partial methods.

535Partial Methods

An example of an implementation for one of the property change methods is to reject
invalid input by means of throwing an exception. Yet another use is to perform some kind
of logging whenever changes happen. What’s quintessential about the partial methods
feature is that it cleanly separates generated code from customizable code, while both
kinds of code belong to the same type definition:

partial class Person

{

partial void OnAgeChanging(int value)

{

if (value <= 0)

throw new ArgumentOutOfRangeException(“value”);

}

partial void OnCreated()

{

Console.WriteLine(“New Person created.”);

}

}

When no implementation is given for a partial method, the whole call site (typically in
the generated portion of the class definition) simply disappears. For example, for the
preceding code, the setter for Age will really look like this:

if ((this._Age != value)) {

this.OnAgeChanging(value);

this.SendPropertyChanging();

this._Age = value;

this.SendPropertyChanged(“Age”);

// This code gets dropped as no implementation is given:

// this.OnAgeChanged();

}

It’s easy to verify this claim using tools like Reflector or ILDASM. As a result of this tech-
nique, partial methods can only be void-returning and cannot have any output parame-
ters. If that weren’t the case, it would be unclear what those resulting output values for
the method call would have to be if no implementation is given.

Also, partial methods can only be private (and for that reason no access modifier is
allowed). If they were public and someone were to try to call them without having the
guarantee an implementation exists, things would go terribly wrong. Along the same
lines, it’s impossible for a delegate to refer to a partial method because it might not exist.

In summary, the use of partial methods is usually related to code-generation scenarios
where the code generator wants to provide “extensibility points” to the developer. By

536 CHAPTER 10 Methods

doing so, a clean separation between custom logic and generated code can be achieved. At
the runtime level, there is no such thing as partial classes or partial methods; those are
purely compile-time illusions.

Extern Methods
One other type of method declaration supported by C# is an extern method. Basically, it
enables you to specify a method whose definition lives somewhere else. This sounds rather
vague, and indeed it is, as the runtime has to come in to help and find the target imple-
mentation for the method. Basically, the only directly applicable scenario for end users is
the technique of P/Invoke, where one bridges to a method defined in unmanaged code
(for example, in a Win32 API). The following piece of code shows this in practice:

public static void Main(string[] args)

{

int size = 0;

var user = new StringBuilder(size);

if (!GetUserName(user, ref size))

{

var error = Marshal.GetLastWin32Error();

if (error != ERROR_INSUFFICIENT_BUFFER)

{

Console.WriteLine(“Unexpected error: “ + error);

return;

}

user = new StringBuilder(size);

if (!GetUserName(user, ref size))

{

error = Marshal.GetLastWin32Error();

Console.WriteLine(“Unexpected error: “ + error);

return;

}

}

Console.WriteLine(“Welcome, {0}”, user.ToString());

}

const int ERROR_INSUFFICIENT_BUFFER = 122;

[DllImport(“Advapi32.dll”, SetLastError = true)]

static extern bool GetUserName(StringBuilder lpBuffer, ref int nSize);

537Refactoring

Interop plumbing can be quite challenging because you need to take care of a lot of
things. One key thing is to make sure the interop signature is correct in terms of data
types and input/output behavior of parameters. The www.pinvoke.net community site can
be a good help to find interop signatures for Win32 APIs, and in fact the DllImport
shown here was taken from that site.

Although we could have allocated a buffer that’s large enough to begin with (the current
maximum length of a username, in Windows 7, is set to 256 and is defined in the UNLEN
#define inside the LMCons.h header file in the SDK), we went for a coding approach that’s
more illustrative of typical excessive error checking and handling when dealing with
P/Invoke. The parameters on the DllImport attribute applied to the extern method indi-
cate where the function is defined as well as certain aspects of its behavior, such as error
code communication and marshaling of strings (of which there are many different kinds
in the unmanaged world). Here, we’re using a function GetUserName that’s defined in the
Advapi32.dll Win32 system binary. The signature corresponds to the one of the native
function (see MSDN for more information):

[DllImport(“Advapi32.dll”, SetLastError = true)]

static extern bool GetUserName(StringBuilder lpBuffer, ref int nSize);

The use of SetLastError indicates whether the Win32 GetLastError way of storing error
codes is used by the function. In essence, this tells the interop infrastructure of the CLR to
call GetLastError upon returning from the P/Invoke call, such that the managed code can
access the last Win32 error code (another set of cryptic constants that are documented in
MSDN documentation) through Marshal.GetLastWin32Error.

From a language point of view, an extern method is indicated with the extern keyword,
cannot have an implementation body (notice the trailing semicolon is required), and
must have a custom attribute applied to it. From the runtime’s point of view, how the
method gets found depends on the attribute that’s applied to the method. DllImport is
one such attribute the runtime knows about, triggering the P/Invoke infrastructure to be
looped in when a method call needs to be dispatched.

Other attributes for extern methods exist, though they’re not directly accessible to users of
the framework. One example is MethodImpl, which can be used to make internal calls to
runtime infrastructure methods. An example is the System.Object.GetType method,
whose implementation lives deep inside the runtime. Figure 10.20 shows the use of the
extern modifier on its definition through the eyes of Reflector.

Refactoring
Methods are at the center of a type’s operational behavior. They often acquire quite a bit
of logic to carry out the task at hand. To tame this complexity, it’s essential to have a
proper code structure where common tasks are factored out in utilities. By making each
method carry out a well-described specialized task, it should become easier to compose
and reuse bits and pieces of functionality. On a larger scale, object-oriented programming
techniques (which are discussed in Chapter 14) are very useful to separate concerns.

www.pinvoke.net

538 CHAPTER 10 Methods

FIGURE 10.21 Calculating code metrics for a project.

FIGURE 10.20 An internal runtime call used for the extern GetType method on Object.

Refactoring is the label applied to a set of techniques that involve continuous attention to
keeping a program’s code readable, maintainable, and sound for ease of extensibility in
the future. One way to achieve this is to reduce the complexity and entanglement of
different pieces or components in the system. Although methods and other operational
aspects of code are typical targets for refactoring, similar techniques apply to the data-
intensive portions of a program. For example, although it might be meaningful to have a
Person object contain a street, city, and ZIP code, integration of the program with some
online map service may steer toward a design where a Person has an Address object.

Various metrics can be used to quantify the complexity and maintainability of a piece of
code. A good developer tends to recognize the need for refactoring while operating on
autopilot, though various tools may be of help to spot possible code-maintenance night-
mares. Visual Studio has a Code Metrics feature that can help spot possible issues, as
shown in Figures 10.21 and 10.22.

539Refactoring

FIGURE 10.22 A project with good maintainability.

FIGURE 10.23 The Refractor context menu hosts a few simple refactoring techniques.

The Code Metrics feature includes a set of different metrics computed from the compiled
project. A full explanation of those metrics goes beyond the scope of this book, but you
want to try keeping the maintainability index high while reducing both class coupling
(the more types are coupled through calls, parameters, and so on, the harder it is to reuse)
and cyclomatic complexity (number of distinct code paths makes testing harder).

Although refactoring is a noble goal, never lose sight of correctness of the code. In fact,
the idea of refactoring techniques is never to change the functionality of the software. In
essence, every refactoring should be nothing but a mechanical rewrite of code such that
all original properties are maintained. This can prove quite tricky in an imperative
programming language that’s full of side effects. For example, elimination of common
subexpressions doesn’t always preserve semantics:

// Before: will ask input twice and concatenate it

Console.WriteLine(Console.ReadLine() + Console.ReadLine());

// After: will ask input once and duplicate it

string x = Console.ReadLine();

Console.WriteLine(x + x);

Visual Studio contains some refactoring techniques that can be carried out through the
code editor. Figure 10.23 shows where to find those. Third-party extensions often come
with more-sophisticated refractoriness that can become quite addictive once you get the
hang of refactoring-assisted development.

540 CHAPTER 10 Methods

FIGURE 10.24 Preview of a new method signature after parameter reordering.

In the example shown in Figure 10.23, you can think about three possible explanations
for the weird definition of Subtract that performs the subtraction operation out of order
compared to the method parameters. Maybe it’s a bug, perhaps it’s an artifact of the code’s
evolution (unlikely given the simplicity of the example), or maybe it’s just some unex-
plainable strange convention (or oversight) introduced by the original author. In all but
the first case, reordering of parameters may be a good idea to make the code look better
and behave more predictably. Figure 10.24 shows this refactoring in action, first allowing
the user to pick the new order of parameters.

Once we have found a suitable ordering, we can confirm the refactoring and preview the
changes. Visual Studio will propose the following refectories code. Notice how all call sites
to the refectories method are changed, as well.

public static void Main(string[] args) {

Console.WriteLine(Subtract(3, 5));

}

public static int Subtract(int a, int b) {

return a - b;

}

BEHAVIOR MAINTAINED?

Even those simple refactorings tend not to preserve semantics in more advanced sce-
narios. For example, reorder parameters will reorder arguments in each call site. But if
evaluation of an argument is based on an expression that has possible side effects,
those effects will be swapped as well because of C#’s left-to-right evaluation of subex-
pressions. Whether you should write such code to begin with is another matter.

541Refactoring

Perhaps the most useful refactoring is the one to extract methods. Performing this can be
triggered by a number of motivations. One is when you notice a method growing too
large and a certain portion of it can be factored out as a piece of functionality that can
stand on its own (and potentially be reused). Another related one is based on spotting
common helper methods being used in different places throughout your source code base.

An example of the extract methods refactoring is shown here. Don’t worry too much
about the APIs used by this piece of code; all the magic will become clear in Chapter 21.
Suffice to say, the code to determine a table name based on some entity type is quite
involved and has little to do with the surrounding code. One place where such code
would be written is in a LINQ provider’s query translation code. It’s also not uncommon
for such utilities to be useful in different places, so extracting a common helper method is
a good practice:

public static void Main()

{

string query = TranslateQuery(typeof(Person) /* more args omitted */);

Console.WriteLine(query);

}

public static string TranslateQuery(Type entity /* more params omitted */)

{

string tableName;

if (Attribute.IsDefined(entity, typeof(TableAttribute)))

{

object[] attributes = entity.GetCustomAttributes(

typeof(TableAttribute), false);

TableAttribute table = (TableAttribute)attributes[0];

tableName = table.Name;

}

else

{

tableName = entity.Name;

}

//

// Much more (nicely factored) code here...

//

string projection = TranslateProjection(/* args omitted */);

string filter = TranslateFilter(/* args omitted */);

return “SELECT “ + projection + “ FROM “ + tableName + “ WHERE “ + filter;

}

Instead of having the if-else branch right inside TranslateQuery, we would like to have
a separate method that will return a table name for further use. In fact, the code that’s

542 CHAPTER 10 Methods

FIGURE 10.25 Extract Method has inferred a suitable signature based on the code.

responsible for translating the projection and filter clauses is already nicely factored out in
helpers, as you can see. Figure 10.25 shows the extract code dialog with the proposed
resulting method signature for the selected piece of code.

The resulting code now looks like this, after a little bit of additional cleanup to eliminate
some excessive local variables (in favor of redirect return statements):

public static string TranslateQuery(Type entity /* more params omitted */)

{

string tableName = TranslateTableName(entity);

...

}

private static string TranslateTableName(Type entity)

{

if (Attribute.IsDefined(entity, typeof(TableAttribute)))

{

object[] attributes = entity.GetCustomAttributes(

typeof(TableAttribute), false);

return ((TableAttribute)attributes[0]).Name;

}

else

{

return entity.Name;

}

}

543Code Analysis

FIGURE 10.26 Some Code Analysis warnings related to methods.

In fact, further refactoring could be done to extract a helper method whose sole purpose is
to obtain the single custom attribute applied to a Type object. This would hide the
complexity of GetCustomAttribute, casts, and indexing. We leave such an experimental
cleanup to you.

Code Analysis
Running Code Analysis (available through the project’s context menu) typically yields
quite a few warnings related to methods. Figure 10.26 shows the result of running the
analysis (with all rules enabled in the project’s settings) for a simple program. All the
warnings should be understood by now, and fixes should be obvious.

Warnings can be suppressed if you have some good reason for it. Using the rule sets
feature available through the project’s configuration settings, each project can decide what
level of strictness to apply with regard to various rules. For example, the naming of para-
meters may be something you don’t care much about. That said, keep in mind that
publicly visible methods can be called with parameters specified by name. Once you ship
with certain names, you must keep it that way to avoid breaking client code.

Two rules deserve a bit more explanation. CA1822 warns about instance methods that do
not access instance state. In this particular case, there’s no reason we can’t mark the Add

544 CHAPTER 10 Methods

method as static. If we do so, we’ll see CA1053 for Calc as well because the class contains
only static methods. For utility classes like this one, it does make a lot of sense to mark
the whole class as static, as discussed earlier in this chapter. Although some rules produce
a lot of noise, these two show useful design improvement suggestions.

Summary
Right at the center of the code aspect of types are methods. While you learned how to
invoke methods while covering C# expressions, this chapter went into the aspect of
declaring methods in various ways.

First, you learned about method parameters and various ways they can be passed. This
includes input-only parameters as well as parameters that are passed by reference or act as
an output for the method. You also learned about parameter arrays and the C# 4.0 features
of named and optional parameters.

Next, the discussion led you to the notion of signatures and the ability to overload
methods. Overloading methods comes in handy quite often to increase an API’s flexibility.
Resolution of calls based on method groups and overloads finished off the coverage of
this concept.

Special kinds of methods were discussed as well. Introduced in C# 3.0, extension methods
provide a means to define a static method that can be applied to an object as if it were an
instance method. Partial methods (introduced in C# 2.0) aid with code generation tools,
and extern methods allow for interoperability scenarios.

Finally, you learned a few things about refactoring and code analysis aspects of working
with methods. In the next chapter, you learn about the data aspect of types, embodied by
fields, as well as members to expose the data: properties and indexers.

CHAPTER 11

Fields, Properties,
and Indexers

IN THIS CHAPTER
. Fields 545

. An Intermezzo About
Enums 558

. Properties 569

. Indexers 574

Having covered the code aspect of types by looking at
methods in Chapter 10, we can now move on to the data
aspect of types. Fields are containers for data that’s part of a
type or its instances. We now discuss how to declare and
use fields.

After an intermezzo about enum types—which merely are
very data-centric types with symbolic names for special
values—we continue our exploration with properties and
indexers. Those members are closely related to the data
aspect of types in that they usually provide code-based
accessors to an object’s start.

Fields
Whereas methods delineate the far-left end of the code-data
spectrum, fields are on the far-right end. Fields serve as the
data storage associated with a class or a struct (static fields)
or instances thereof (instance fields).

Fields are variables that are declared within a class or struct
definition and can have access modifiers controlling their
access. Typically, fields are declared as private or protected
as a matter of encapsulation, an object-oriented technique
explained in Chapter 14, “Object-Oriented Programming.”
By doing so, it’s possible to evolve the internal data struc-
ture of a class or struct without breaking users of the type.
Properties can be used as a convenient way to access fields,
while retaining the ability to change the underlying
storage of data.

546 CHAPTER 11 Fields, Properties, and Indexers

Declaring Fields

To declare a field, you must specify at least a type and a field name. Multiple fields with
the same type can be put on a single line in a comma-separated manner, just like you can
do for variables within a code block. Here, some instance and static fields are declared on
a Person class:

class Person

{

private static int s_population;

private string _name;

private int _age;

}

By default, fields are private, regardless of whether the containing type is a struct or a
class. This is different from C++, where classes and structs don’t relate to the allocation
location of objects but instead determine the default visibility of members. It’s deemed
good style to be explicit about visibility, though.

NAMING CONVENTIONS

The naming guidelines for fields differ based on visibility. Pascal casing (starting with
an uppercase) is used for public and protected fields, but as mentioned previously,
nonprivate visibility is discouraged. Camel casing is used for private fields (that is,
starting with a lowercase and capitalizing subsequent “words” in the name).

For private fields, another convention is often used, derived from MFC. Instead of just
starting with a lowercase, you prefix the name with s_ for static fields and with m_
(likely from member) for instance fields. Sometimes, the m is dropped for the latter
category of fields.

It is quite convenient to be able to distinguish local variables from fields. Also in con-
structors, as you’ll see later, the name of a field is often identical to a parameter that’s
used to initialize the corresponding field. This avoids the need to qualify the field with
the this keyword. I prefer the use of s_ and _ as prefixes to field names. But as
usual, be consistent with conventions.

Accessing Fields

Depending on whether the field is declared as static or as an instance field, it can be
accessed in a different manner. For instance fields, you must qualify the lookup by specify-
ing the target instance. To access a field from within the declaring type, you can omit the
target instance qualification or use this:

class Person

{

private string _name;

private int _age;

547Fields

public override string ToString()
{

return _name + “ is “ + this._age;
}

}

You’ll learn what the override modifier on a method means in Chapter 14. It’s also essen-
tial to realize that the private access modifier doesn’t prevent you from accessing another
instance’s private fields as long as that access happens within code defined on the type. To
clarify this, consider the following code, which implements an equality check operation
for Person instances:

class Person
{

private string _name;
private int _age;

public override bool Equals(object obj)
{

if (obj == null || obj.GetType() != this.GetType())
return false;

var other = (Person)obj;
return other._name == this._name && other._age == this._age;

}
}

Implementing a correct Equals override is discussed in Chapter 13, “Operator Overloading
and Conversions,” when we discuss operator overloading. The essence is quite simple,
though. First we make sure the object passed to us for comparison is of the same type.
Instead of using is or as (which produce a positive result when subtyping is involved), we
perform an exact match on the System.Type returned by GetType. In addition, we also
have to make sure we’re not asked to compare with the null reference because null is
never equal to an instance. When we know we’re comparing existent apples to apples
(well, in this case, people), we simply compare the fields pairwise. This illustrates that
code declared within the Person type can access the private members of any instance of
that Person type.

Static fields are qualified by the type of the containing type. Except for static read-only fields
(covered later in this chapter), it shouldn’t be the case that such fields are being accessed
from outside the containing type. If that holds true, type qualification can be omitted:

class Person
{

private static int s_population;
private string _name;
private int _age;

548 CHAPTER 11 Fields, Properties, and Indexers

public Person(string name, int age)

{

s_population++;

_name = name;

_age = age;

}

}

This piece of code defines an instance constructor that will initialize the _name and _age

fields on the current instance. In addition, it increments the population counter, which is
kept in a static field (and hence shared across all instances). Notice that the population
count will never go down, even though Person objects can become garbage and get
collected. You’ll see later how we could achieve such a decrement effect using destructors
(and why you shouldn’t do it that way).

Because the s_population field is declared as private, we can access it only from within
the declaring Person type. Because outsiders might be interested in this information,
you’ll want to expose it. Instead of marking it public (which would imply everyone can
mess with it), we provide an accessor get-only property:

class Person

{

private static int s_population;

public static int Population

{

get { return s_population; }

}

}

Notice that we’ve marked the property (another member type that is discussed later in this
chapter) as static, and therefore we can access it as follows from the outside:

class Universe

{

public static void PrintStatistics()

{

Console.WriteLine(“Number of citizens: {0}”, Person.Population);

}

}

Static fields can be accessed from within instance members, as you saw already when we
incremented the s_population value from within an instance constructor. On the outside,
static members don’t show up on instances. Figure 11.1 shows a compilation error shown
for an invalid attempt to access a static field through an instance.

549Fields

FIGURE 11.1 Static members cannot be accessed using an instance reference.

FIGURE 11.2 Static members can’t provide an implicit this instance reference.

Although the language could support this, code tends to be cleaner if it’s apparent from a
member’s use whether that member is static or an instance.

Because static members are shared across instances, you can access them from within an
instance member (without the need for qualification by type name). However, because a
particular instance’s state is not accessible when no target instance is specified, you cannot
access instance members from within static members. An example of a mistake against
this rule is shown in Figure 11.2. Because the expanded form of this particular field refer-
ence would be this._age, it should be clear why this can’t work. There is no such thing as
a current this reference in a static member.

Finally, notice how a static member can access (private) instance members as long as an
instance is specified:

class Person

{

...

public static bool IsYounger(Person x, Person y)

{

// Don’t forget to add null-checks!

return x._age < y._age;

}

}

Initializing Fields

The common language runtime (CLR) ensures that fields (as well as other kinds of vari-
ables) get zero-initialized when their memory is allocated. In practice, this means that
reference typed fields will have a default value of null. For value types, all the object’s

550 CHAPTER 11 Fields, Properties, and Indexers

FIGURE 11.3 Default values are automatically assigned to fields.

fields will recursively get zero-initialized. Primitive value types receive their default values;
for example, an int will be set to 0. Consider the following example:

class Basis

{

private Vector _direction1;

private Vector _direction2;

}

class Vector

{

private Point _start;

private Point _end;

}

struct Point

{

private int _x;

private int _y;

}

Creation of a new Basis instance will result in both direction fields to be set to null. For
each new Vector instance, we’ll receive zero-initialized Points in both _start and _end.
Such a zero-initialized Point will have both _x and _y set to a zero 32-bit integer. This
default initialization is revealed in Figure 11.3, where the compiler has detected the fields
are never being assigned to.

Notice that the compiler doesn’t enforce that fields must be assigned to before they are
used. This is in contrast to local variables that do need assignment prior to use:

551Fields

static void Bar()

{

int a;

Console.WriteLine(a); // Error!

}

It’s not atypical for certain fields to keep their default value for certain construction
modes. One constructor may set three fields, another convenience constructor might set
only two, leaving the third to its default value. This can be said to be pretty intentional,
while reaching the use of a local variable that didn’t get assigned to yet (determined based
on control flow analysis within the method) can be said to be more dubious. For this
reason, leaving fields uninitialized (or should we say, default-initialized) is valid, whereas
use of unassigned locals is not.

Besides using default initialization values for fields, you can also initialize them manually
(for example, if a nondefault value is required as the initial state). For example, if you
would like a Point to start off with 3, 5 as the x and y coordinates, you could write this:

class Point

{

private int _x = 3;

private int _y = 5;

}

Field initializers can be defined only on a class, not on a struct. The reason behind this is
related to the ease of struct allocation on the stack, such that no code has to run. As you’ll
see right now, field initializers translate into constructor code. If structs were to have para-
meterless constructors that guarantee field initialization, parts of their design would start
to fall apart.

The code for the preceding class is turned roughly into the following:

class Point

{

private int _x;

private int _y;

public Point()

{

_x = 3;

_y = 5;

}

}

I’m saying “roughly” because there’s a subtle difference in the order in which the object’s
state is initialized and the base class’s constructor (in this case, System.Object’s) is called.
Figure 11.4 shows the code generated for the field initializer code.

552 CHAPTER 11 Fields, Properties, and Indexers

FIGURE 11.4 Field initializers run in the constructor before calling the base constructor.

Field initializers can contain more code than just constant expressions. Just to illustrate an
extreme use of this feature, consider the following code:

class Person

{

private string _name = Console.ReadLine();

}

Creating an instance of Person will now trigger a Console.ReadLine call whose output will
be assigned to the new instance’s _name field. Obviously, such a side effect that gets trig-
gered by object construction is usually not desired. More appropriate uses of the feature
include initialization of fields to results of some computation (for example, using Math
methods or using string operations). In fact, field initializers are simply run in the textual
order in which they appear in the source code. Although it’s important for the language
to have a strict definition of what’s expected, it’s discouraged to rely on this order because
it can result in subtle and brittle code because just reordering the fields could cause differ-
ent results:

class Person

{

private string _first = Console.ReadLine(); // Gets asked first

private string _last = Console.ReadLine(); // Gets asked second

}

Basically, the this reference is not available for any use during field initialization. For this
reason, it’s also not allowed to reach out to any of the object’s instance members (other
than the fields being initialized) from inside field initialization expressions. The following
piece of code is invalid, and (believe me) you even don’t want to think about what it
would mean if it were allowed:

553Fields

class Person

{

// Error CS0027 will result, indicating the “this” keyword cannot be used here.

private string _name = this.ToString();

public override string ToString()

{

return _name;

}

}

In a constructor, though, you can call methods (including virtual ones, which are
explained in Chapter 14). Be careful when you do so because the order of initialization
will matter quite a bit.

Similar initialization options are available for static fields. One difference is that you can,
in fact, call static methods during the initialization. But just because you can doesn’t
mean you should. In general, use initializers for (relatively) simple and straightforward
initialization tasks.

Read-Only Fields

Read-only fields can be initialized only from inside the constructor or through a field
initializer. Basically, this stimulates the use of immutability as it protects against further
modification of the field after the containing object’s (or type’s) initialization. The follow-
ing code illustrates correct use of a read-only field that’s initialized within a constructor:

class Person

{

private static int s_population;

private readonly int _id;

public Person()

{

_id = s_population++;

}

public int ID

{

get { return _id; }

}

}

554 CHAPTER 11 Fields, Properties, and Indexers

FIGURE 11.5 Read-only fields should not be initialized after the object’s construction.

Figure 11.5 shows a violation against the read-only field assignment requirements. As you
will see later, the use of auto-implemented properties does not (sadly) provide for the use
of read-only fields.

Notice it’s also not allowed to pass read-only fields by reference or supply them to an
output parameter of a method beyond the point of initialization. We illustrate this by
showing how read-only fields can be used with ref and out, but only in a valid context for
their initialization.

For example, the following doesn’t work because _id is assigned from a method that could
be called from a place other than a constructor. If InitializeId were to be called from a
place other than a constructor or field initializer, the read-only property would be violated.

class Person

{

private static int s_population;

private readonly int _id;

public Person()

{

InitializeId();

}

private void InitializeId()

{

_id = s_population++;

}

}

However, you can pass the read-only field by reference or as the target of an output para-
meter as a workaround because the compiler can prove _id will be modified only from
within the constructor:

555Fields

FIGURE 11.6 A constant turns into a “literal” in IL code.

class Person

{

private static int s_population;

private readonly int _id;

public Person()

{

InitializeId(out _id); // This is valid in this context.

}

private void InitializeId(out int id)

{

id = s_population++;

}

}

If you try to feed _id to InitializeId elsewhere, the compiler will complain again.

Constants

Similar to, yet different from, read-only fields are constants. Constants aren’t fields but
deserve treatment in this context because of their similar syntax and to point out some of
the fundamental differences.

The goal of constants is to provide a way to declare values that will never change both
during the duration of the program until eternity. Examples of constants include
e (2.71828...) and Pi (3.14159...). Things that seem constant but deceptively are not
include values such as tax percentages.

For example, System.Math defines a couple of public constants:

public static class Math

{

public const double PI = 3.1415926535897931;

public const double E = 2.7182818284590451;

...

}

Constants can be computed at compile time and are stored in the metadata associated
with the containing type. Figure 11.6 shows how Math.E looks in ILDASM.

556 CHAPTER 11 Fields, Properties, and Indexers

FIGURE 11.7 Constant values get copied wherever they are used.

The declaration of a constant uses the const keyword and cannot include the static
keyword. The value supplied to the constant should permit to be fully evaluated at
compile time. This includes primitive types like numbers and Booleans, string literals, and
null references for reference types. Calling a constructor (or another other kind of
method) is not permitted because it would involve runtime execution of code.

When using a constant, the compiler copies its value verbatim to the use site. For
example, consider the following piece of code used to calculate the surface of a circle:

class Circle

{

private double _radius;

public Circle(double radius)

{

_radius = radius;

}

public double Surface()

{

return Math.PI * _radius * _radius;

}

}

Looking in Reflector for the Surface method, we see no trace whatsoever of Math.PI.
Figure 11.7 shows how the constant got burned into the use site at compile time.

Because constants are copied to places where they’re used, you cannot change a constant
after it’s been exposed. For example, if the .NET Framework developers were to change the
value of Pi (and no, they don’t have such a mandate, contrary to the stories about
American states trying to legislate the value of Pi in the late 1800s), every application that
picked up the original value would have to be recompiled. This is in contrast to (static)
read-only fields, which are accessed at runtime:

class IndianaMath

{

public static readonly double PI = 3.2;

}

557Fields

FIGURE 11.8 Read-only fields are looked up at runtime.

Figure 11.8 shows Reflector when using IndianaMath.PI from the Surface method.

Despite the fact that constants are computed at compile time, that doesn’t prevent you
from making them dependent on one another, as long as there’s no cyclic dependency:

class Naturals

{

public const int ZERO = ONE - 1;

public const int ONE = ZERO + 1;

public const int TWO = ONE + ONE;

}

In the preceding code, ZERO and ONE are mutually dependent, so the compilation will fail;
however, if we assign 0 to ZERO, the preceding code will compile fine. Also you shouldn’t
use expressions that cause arithmetic overflow at compile time unless you explicitly wrap
them in an unchecked(...) expression:

class Naturals

{

// CS0220: The operation overflows at compile time in checked mode

public const int LARGERTHANLARGE = int.MaxValue + 1;

}

With regard to naming, both read-only fields and constants are typically spelled using all-
uppercase words.

In summary, read-only fields and properties differ in two aspects:

. Read-only fields can be computed at runtime by running code, whereas constants
need to be fully evaluated at compile time.

. Constants have a nonexistent versioning story because their value gets burned into
use sites, whereas read-only fields are looked up at runtime.

Volatile Fields

Multithreaded programming is notoriously hard, especially when optimizations are carried
out by the compiler, runtime, or even the hardware. In particular, reads and writes to
memory can sometimes be reordered to improve execution efficiency. In such a case, fields

558 CHAPTER 11 Fields, Properties, and Indexers

can be declared as volatile to ensure reads and writes to the field are not moved relative to
surrounding code. Because this is a very specialized subject, refer to online documentation
detailing the CLR memory model and practical uses of the volatile keyword.

An Intermezzo About Enums
Related to constants are enums, which are value types that contain for their members a set
of named constants. A typical example of an enum is Color, as shown here:

enum Color

{

Red,

Green,

Blue,

}

Right inside the framework you can find quite a few enums, as well; for example, to indi-
cate a “file open mode” when using System.IO APIs. Just like other value types, you can
apply an access modifier to the type.

(TRAILING) COMMAS

Notice that an enum’s members are comma separated and not semicolon separated.
Basically, they denote a list of symbolic values. A trailing comma is allowed after the
last member, which is often put there so that the addition of new members to the
enum doesn’t show up while comparing old and new versions of a file.

Why Enums Matter

One key difference with constants defined on (and exposed by) some type is the fact an
enum puts all related constant values under a common umbrella. Because of this, stronger
typing ensues, (partly) avoiding invalid assignments. The use of our Color enum is shown
here on the first line; the second line is invalid:

Color red = Color.Red;

Color blue = 17; // Invalid assignment.

Notice that we’ve stated that invalid assignment to an enum-typed variable is only partly
mitigated because an explicit conversion from the underlying type to an enum exists. This
allows for easy serialization scenarios where an enum’s value is stored away and put back
in after deserialization. As you will see later, enums can also be used for “flag masks,” in
which case values may be assigned that represent a combination of flags. In such a case,
protection against invalid values would become slightly harder:

Color red = Color.Red;

Color blue = (Color)17; // This works.

559An Intermezzo About Enums

Underlying Types

Because we’ve mentioned the word constant quite a bit, you might be wondering where
enum members get their values. Moreover, what’s the type of those constant values? To
answer those questions, we must introduce the notion of an underlying type that’s asso-
ciated with an enum’s definition. The underlying type indicates the domain for the
constants declared within the enum. If left unspecified, an enum’s underlying type is a
32-bit integer. You can specify the underlying type explicitly as shown here:

enum Color : long

{

Red,

Green,

Blue,

}

You’ll see this colon “derives from” syntax recurring quite a bit in Chapter 14 when we
discuss inheritance. Permitted underlying types are integral numeric types such as byte,
short, int, and long, together with their unsigned variants.

Assigning Values to Members

What we haven’t explained yet is where the (constant) values for the enum’s members
come from. Because we didn’t specify any values here, the enum will automatically get
consecutive constant values for its members, starting from zero. So the definition of our
Color enum is equivalent to the following:

enum Color

{

Red = 0,

Green = Red + 1,

Blue = Green + 1,

}

You can see those values by casting an enum value to the underlying type. Notice that
calling ToString on an enum will actually print the symbolic name corresponding to the
enum member:

Color red = Color.Red;

Console.WriteLine(red); // Prints “Red”.

Console.WriteLine((int)red); // Prints “0”.

Instead of relying on the automatic numbering, you might want to supply values yourself,
as shown here. This provides several advantages because you might want to use some rele-
vant integral values that make sense in the target domain of the enum:

560 CHAPTER 11 Fields, Properties, and Indexers

enum Color : uint

{

Red = 0xFF0000,

Green = 0x00FF00,

Blue = 0x0000FF,

}

BEWARE OF CONSTANTS

Being containers for constant values, enums exhibit the properties similar to those for
regular constants. In particular, a constant’s value gets copied into use sites, which
means versioning of an enum needs some careful treatment.

For one thing, changing explicitly assigned constant values will obviously break users
that rely on those values, and because of the copying behavior they won’t notice the
change until a recompilation of their code happens. Also, when some storage system
is using an enum’s underlying values, changes will get persisted data and actual enum
definitions out of sync, resulting in disasters.

Another caveat to be aware of is that the order of members in an enum matters when
values are implicitly assigned in a sequential manner. So reordering values in an enum
is not a good idea. If you need to add new values in a next release, add them at the
end (rather than, say, sorting them alphabetically).

Those remarks hold especially if enum values are externally visible, either through
some persistence mechanism or through a public access modifier that will cause
clients to clone the values into their code.

Within an enum definition, it’s possible to have different members with the same value,
which can be useful if two aliases are desired for a same underlying value. In the following
code, we’re using both English and Dutch names for the colors, just for illustration purposes:

enum Color : uint

{

Red = 0xFF0000,

Rood = Red,

Green = 0x00FF00,

Groen = Green,

Blue = 0x0000FF,

Blauw = Blue,

}

It’s also possible to use automatic numbering for some members and explicit values for
others. When no value is specified for an enum member, it gets its value by adding one to
the enum member preceding it.

561An Intermezzo About Enums

The System.Enum Type

Consider the example shown in the previous section. Now think about what you would
expect to happen when using a ToString operation on, say, the Color.Red value. Recall
that this operation provides a symbolic name for the enum value in question. However,
because there are two enum members with the same value, only one of both symbolic
names will be returned. Which one it will be? You can’t tell.

This brings us to another discussion about the use of metadata within the platform.
Because the runtime representation of an enum value is nothing but its underlying
numeric (integral) value, associating it back to a friendly member name is a bit of an
unnatural act that requires the ToString operation to reach into metadata associated with
the enum type. The code that enables this lives in the System.Enum type and leverages the
reflection subsystem (which is discussed in Chapter 21, “Reflection”).

Every enum type derives from System.Enum, as illustrated later in the “Behind the Scenes”
section. Although this doesn’t buy us much at the instance member level (except for a
method called HasFlag, which is explained in a minute), the Enum type has some handy
static members defined on it.

Three Different Ways to Get a String Representation
The capability to turn an enum value into a string representation with a friendly name
proves to be useful quite often. Besides the instance ToString method, you might want to
get the string representation of an enum’s underlying type value. Such a value may be
retrieved from some external storage where the numeric value is kept rather than a string
representation.

For example, assume we got our Color enum, this time without the Dutch aliases for the
contained members:

enum Color : uint

{

Red = 0xFF0000,

Green = 0x00FF00,

Blue = 0x0000FF,

}

Next we got the raw constant value for, say, Red. This value might have been retrieved
from a database, the Registry, a configuration file, or whatnot. To turn it into a friendly
string representation, we can do a couple of things. One possibility is to cast the value
back to the enum and perform ToString on it:

uint value = 0xFF0000;

Color c = (Color)value;

Console.WriteLine(c.ToString(“G”)); // “G” is the default and can be omitted.

Console.WriteLine(c.ToString(“D”));

Console.WriteLine(c.ToString(“X”));

562 CHAPTER 11 Fields, Properties, and Indexers

Three format strings are available on Enum methods that turn an enum value into a
string. The default, G, prints the friendly name associated with the constant. To get the
decimal or hexadecimal value, respectively, use D or X. Alternatively, we can use the
*System.Type of the enum type and leverage the Format method:

Console.WriteLine(Enum.Format(typeof(Color), value, “D”));

Console.WriteLine(Enum.Format(typeof(Color), value, “X”));

Console.WriteLine(Enum.Format(typeof(Color), value, “G”));

Yet another possibility is to use Enum.GetName, as follows:

Console.WriteLine(Enum.GetName(typeof(Color), value));

Enumerating an Enum
Being an “enumerated series” of named constants, you might want to get all of an enum’s
defined members. Both GetNames and GetValues allow you to do so. Both will return an
array with results, ordered by the binary values of the corresponding constants. If no
aliases with the same value exist, both arrays will have equal length. The following code is
used to print all the names and values available in an enum:

foreach (string member in Enum.GetNames(typeof(Color)))

Console.WriteLine(member);

foreach (uint member in Enum.GetValues(typeof(Color)))

Console.WriteLine(member);

Notice that the output of the preceding code will be Blue, Green, Red because of the value
used for each of the enum constants. Because it’s common to think of colors in terms of
RGB values, it makes sense to list them in that order, despite their common hexadecimal
representations growing in the opposite order.

If no duplicates exist, the following examples with LINQ’s Zip operator can be used to get
name/value pairs for an enum’s members. The Zip and Cast methods used here are
discussed in detail when we cover LINQ in Chapter 19, “Language Integrated Query
Essentials.”

var res = Enum.GetNames(typeof(Color)).Zip(

Enum.GetValues(typeof(Color)).Cast<uint>(),

(name, value) => new { Name = name, Value = value }

);

// { Name = Blue, Value = 255 }

// { Name = Green, Value = 65280 }

// { Name = Red, Value = 16711680 }

foreach (var member in res)

Console.WriteLine(member);

563An Intermezzo About Enums

Converting Integral Values to Enum Values
You learned how to turn an integral value back into an enum value, simply by using an
explicit conversion. However, what happens if that integral value isn’t defined on the
target enum type? Such a situation is likely to arise when such a value is retrieved from
some persistent external storage (for example, the Registry, which can be tweaked by some
administrator):

uint value = 0xFF0001;

Color c = (Color)value;

Console.WriteLine(c);

The preceding code will just work fine and print the decimal representation of the color
even though no enum member exists with the given value. When talking about flags
enums, we see this may come in handy. However, if an enum defines a “discrete” domain
of values (either this or that but not a combination of those), stricter checking might be
desirable. Enter the IsDefined method of System.Enum that enables precisely this scenario:

static void Main()

{

PrintColor(0xFF0000);

PrintColor(0xFF0001); // Oops...

}

static void PrintColor(uint color)

{

if (!Enum.IsDefined(typeof(Color), color))

throw new ArgumentOutOfRangeException();

Color c = (Color)color;

Console.WriteLine(c);

}

Use of exceptions is the subject of Chapter 23, “Exceptions.” All you must remember from
this example is the behavior of the IsDefined method, returning false if the specified
value is not defined on the enum.

Converting Strings to Enum Values
One final type of conversion is to start from a string representation like “Red” and go back
to a corresponding enum value. Ignoring localization scenarios, this may be used to allow
a user to enter a color “by name” while code wants to use the corresponding enum value
on Color. Other uses include persistence based on a name rather than a value (which
would allow enum values to change across versions of an application, though that’s still
not recommended, especially if the enum type is publicly visible).

Both the Parse and TryParse methods can be used to achieve such a conversion. The
latter method was introduced in .NET 4. Whereas the former method throws an exception

564 CHAPTER 11 Fields, Properties, and Indexers

if the string is not found as any of the enum’s member names, the latter uses an output
parameter and returns false if conversion fails. For flagged enums, which are discussed
next, you can also pass in a comma-separated list of enum members that will make up the
enum’s value:

Console.Write(“Enter a color name: “);

var colorName = Console.ReadLine();

Color color;

if (!Enum.TryParse(colorName, /*ignoreCase*/ true, out color))

Console.WriteLine(“Color {0} doesn’t exist.”, colorName);

else

Console.WriteLine(color);

Use of TryParse is recommended over Parse because invalid input is not too uncommon,
and the expense (both in terms of processor cycles as well as code bloat) of exception
handling to detect such input is high. Also because the TryParse method was introduced
post-.NET 2.0, it can leverage generics to return the enum value in a strongly typed
manner (rather than the System.Object return type on Enum.Parse).

Flags

Besides their use for discrete named constants, enums can also be used to describe flags.
For example, System.IO defines the FileOpen enum as follows:

public enum FileMode

{

CreateNew = 1,

Create = 2,

Open = 3,

OpenOrCreate = 4,

Truncate = 5,

Append = 6,

}

This nonflags enum is passed to APIs like File.Open to specify which mode to open the
file with. Basically, this enum corresponds to Win32 constants passed to CreateFile. In
fact, the values used for the different FileMode members directly map onto those used on
the Win32 API being called. It’s clear that something like FileMode describes a set of
discrete values that are mutually exclusive. You can only “open” the file in any of the six
available modes. Combining things such as Append with CreateNew doesn’t make sense.

A similar nonflags enum is System.ConsoleKey, which contains key codes. Because it
excludes values for modifier keys like Shift, Ctrl, and Alt, there’s no meaning to combin-
ing multiple enum values. After all, you can’t press A and B exactly at the same time;

565An Intermezzo About Enums

instead, your program will get to see each value one at a time in the order they were
delivered by the input subsystem. Other examples include System.DayOfWeek because
clearly it can’t be both Monday and Wednesday at the same time (and place).

However, for lots of other enums, it makes sense to combine values. For example, the
FileShare enum in the System.IO namespace does this. Can you tell the difference
compared to the FileMode enum declaration?

[Flags]

public enum FileShare

{

None = 0,

Read = 1,

Write = 2,

ReadWrite = Read | Write,

Delete = 4,

Inheritable = 16,

}

By putting the Flags attribute on top of the enum, it becomes known as a flags enum
whose values can be combined, typically using the | bitwise OR operator. For example, the
ReadWrite entry in the preceding enum is built out of the combination of Read and Write.
Its decimal value is 3, obtained from the bitwise OR (which coincides with the sum of the
two values).

Defining Flags Enums
Values of a flags enum are typically powers of two, except for auxiliary entries such as
ReadWrite that associate a friendly name to a combination of flags. Wherever a flags
enum is used, a combination of flags can be passed in by using the | operator. Whether
certain combinations are meaningful for the target API is another question that should be
addressed by providing proper documentation. For more information about the use of
FileShare, refer to the MSDN documentation.

An equivalent way of looking at those flags enum values is to regard them as “values with
exactly 1 bit set to 1” (which are powers of two). Each bit on the underlying type repre-
sents exactly one flag, and there’s no interference between flags in terms of the bits they
use. This also shows why the underling type may be of importance to you. For flags
enums, it’s no longer the range of an integral value type that matters (such as the large
range for uint, stretching from 0 to 4,294,967,295). Instead, the number of bits in the
number matters (32 for a uint or int) and determines the maximum number of distinct
flags that can be set by an enum value.

Use of a flags enum is often preferred over APIs that take a bunch of Boolean values as
parameters to determine a modus operandi. For example, File.Open takes three enums,
one of which is the FileShare flags enum:

566 CHAPTER 11 Fields, Properties, and Indexers

public static FileStream Open(

string path,

FileMode mode,

FileAccess access,

FileShare share

) { ... }

Imagine what it would look like if FileShare were expanded into four Boolean parameters
that stand for Read, Write, Delete, and Inheritable, respectively. Use of the method would
involve passing four Booleans that have little meaning to the reader. Writing down a series
of flags immediately conveys the message to the reader:

File.Open(“c:\\boot.ini”, FileMode.Open, FileAccess.Read,

FileShare.Read | FileShare.Write);

NAMED PARAMETERS: A VIABLE ALTERNATIVE?

Some readers might object to the statement that an API with a bunch of Boolean para-
meters is less desirable, in favor of flags enums. Because C# 4.0 now enables you to
specify parameters by name, such an API could be defined with default false values for
every parameter. The ones to be set could be passed by name:

File.Open(..., read: true, write: true);

Although this is a great observation, parameter passing is just one place where enums
are used. What if your method takes in a set of flags but needs to store those flags
somewhere? Do you now declare a whole bunch of fields (each of which will take up 32
bits by themselves, the size of a Boolean)? Also, do you want to pass those flags on to
other methods all over the place? Likely, the answer to both questions is no, so you’ll
agree that flags are a better idea.

Checking for Flags
So far, we’ve explored how a flags enum value can be constructed simply by using the
bitwise OR operator. What we haven’t explained yet is how the receiving end can find out
about the flags that are set on a value. Arithmetic-savvy readers will immediately get some
ideas about how to check whether a certain bit in a value is set. In essence, what you’re
going to do is apply a bit mask to perform the check. Figure 11.9 illustrates this.

The bitwise AND operator comes to the rescue to check whether a flag is set. As an
example, the following code takes in a FileShare enum and checks whether the Read flag
is set. The use of TryParse (and Parse) enables users to specify flags in a comma-separated
manner. Try entering things such as Read, Read, Write, and Delete to see the behavior.
Because FileShare lives in the System.IO namespace, you’ll have to add a using
System.IO; directive at the start of the file:

567An Intermezzo About Enums

FIGURE 11.9 Read-only fields are looked up at runtime.

Console.Write(“Enter FileShare flags: “);

var input = Console.ReadLine();

FileShare fileShare;

if (!Enum.TryParse(input, /*ignoreCase*/ true, out fileShare))

{

Console.WriteLine(“Invalid flags specified.”);

return;

}

if ((fileShare & FileShare.Read) == FileShare.Read)

Console.WriteLine(“Read flag set.”);

Instead of using the bitwise AND operator, you can also use the HasFlag method that’s
introduced as an instance method on System.Enum starting from .NET 4:

if (fileShare.HasFlag(FileShare.Read))

Console.WriteLine(“Read flag set.”);

From these examples, you can already see various operators are supported on enum
values. We use bitwise AND and bitwise OR, as well as the == equality operator. Other
supported operators include all comparison operators (such as <), the addition and
subtraction operators, more bitwise operations (^ for XOR and ~ for inversion), and the
increment and decrement operations (++ and --).

568 CHAPTER 11 Fields, Properties, and Indexers

FIGURE 11.10 Generating a switch statement for an enum.

Revisiting the switch Statement

Code often has to dispatch to certain logic based on an enum value. One of the best
candidate statements to carry out this task is the switch statement. In fact, the code editor
in Visual Studio has a handy feature for generating a full switch statement for all of an
enum’s members. Here’s the way to do it: Given a variable of an enum type, type switch
and press Tab twice. Now enter the variable name and press Enter. For our Color type, this
technique is illustrated in Figure 11.10.

Although it might seem tempting to get rid of the default branch, this isn’t a good idea
because enums can carry undefined values, as discussed previously. Put some proper code
in there that raises a runtime exception to guard against unknown values. Also, if your
code is to return something based on an enum value, you won’t get away with omitting
the default branch due to the language’s definite assignment rules (“all code paths need to
return a value”).

You can also use regular if statements to carry out specific actions based on an enum’s
value. However, when there are a lot of cases to look for, the switch statement is almost
certainly the better choice, both for code readability and efficiency of execution.

Behind the Scenes

To wrap up our discussion about enums, let’s take a quick peek behind the scenes. Even
though the use of the colon syntax to specify an underlying type makes it seem like the
enum type derives from the underlying type, this is not the case. All enum types derive
from the System.Enum base type that’s supplied by the runtime. Each member defined on
the enum turns into a constant field. An instance of the enum contains a single field
holding the value that’s being used. Figure 11.11 shows what an enum definition looks
like in ILDASM.

569Properties

FIGURE 11.11 Under the hood, an enum contains both instance and static members.

If you’re somehow interested in the underlying type for an enum type, there’s a handy
static method called GetUnderlyingType on System.Enum. On an enum value, you can
invoke the instance method called GetTypeCode to get a TypeCode enum that denotes the
underlying type.

Despite an enum being classified as a value type, each enum type’s base class derives from
System.ValueType, which is a class. Don’t worry about this oddity at the runtime level.
What you get is a value type with all the copying semantics discussed before; how it’s
implemented internally should be the least of your concerns.

Properties
With knowledge of the cornerstones of a type’s operations and state under our belts, we
can proceed with our exploration of other members available on classes and structs.
Properties are a mix between state and operations. On the one hand, they’re like fields
providing get and set access to a piece of state; on the other hand, they’re like methods
because those get and set operations can contain code. For those reasons, properties are
sometimes said to be smart fields.

Declaring and Using Properties

Like most other members, properties can have access modifiers, can be associated with the
type (static) or an instance thereof, and can support other object-oriented modifiers that
are discussed in Chapter 14. Their characteristic syntactic surface consists of one or two
accessors, which are code blocks that deal with get or set operations:

class Person

{

private string _name;

private int _age;

public string Name

{

get { return _name; }

570 CHAPTER 11 Fields, Properties, and Indexers

set { _name = value; }

}

public int Age

{

get { return _age; }

set { _age = value; }

}

}

In the preceding example, both Name and Age are properties. Each of those properties has a
get and a set accessor, both of which are publicly visible. Properties can also be made
read-only or write-only by omitting a getter or setter. It’s quite uncommon to have write-
only properties, but read-only properties are common.

Using the properties on our Person class looks like this:

var person = new Person();

person.Name = “Bart”;

person.Age = 27;

Console.WriteLine(person.Name + “ is “ + person.Age);

The second and third lines call the property set accessors, which receive the object to the
right of the assignment operator through the contextual value keyword. Outside property
(and indexer) setters, value can be used as a regular identifier. This was one of the first
contextual keywords to appear in C#, all the way back to C# 1.0. On the fourth line, both
properties’ get accessors are invoked to obtain the property’s value. Getters are like
methods that have to return an object of a type compatible with the property’s return type.

Alternatively, the preceding code could be written using an object initializer expression,
which was introduced in C# 3.0:

var person = new Person {

Name = “Bart”,

Age = 27

};

Console.WriteLine(person.Name + “ is “ + person.Age);

One subtle difference lies in the use of an intermediate local variable used to construct the
object and set its properties, prior to final assignment to the person variable. This is
required to make sure no one can see the object in an intermediate initialization stage:

var __t = new Person();

__t.Name = “Bart”;

__t.Age = 27;

var person = __t;

571Properties

Accessors can also differ in accessibility, as long as it’s strictly more restrictive than the
property they’re defined in. For example, our Age property could be declared as public,
making both getter and setter publicly accessible. To restrict access to the set accessor, that
one could be declared as private:

public int Age

{

get { return _age; }

private set { _age = value; }

}

Making an accessor more accessible than its containing property is not allowed. Although
use of a private setter in combination with a public getter is a possible approach to limit
access, it doesn’t protect against mutation of the object. All members inside the type can
call the setter. Use of read-only fields is recommended if the data is meant to be set only
once during construction. In such a setting, you can’t have property setters because those
would have to assign to the “backing field,” which isn’t allowed:

class Person

{

private readonly string _name;

private readonly int _age;

public Person(string name, int age)

{

_name = name;

_age = age;

}

public string Name

{

get { return _name; }

}

public int Age

{

get { return _age; }

}

}

The code inside accessors shouldn’t be heavyweight and typically doesn’t do much more
than access some local state kept in a field or so. Some exceptions to this rule apply (such
as .NET 4’s Lazy<T>.Value property), but in most cases users expect a property to be
merely a smart field.

572 CHAPTER 11 Fields, Properties, and Indexers

Use of properties is recommended over publicly accessible fields because use of fields
limits a type’s capability to evolve the internal storage structure without breaking the
type’s users. Properties provide you with a level of indirection (encapsulation) when access-
ing fields (or small computations derived from it).

Concerning exceptions, it’s fine for property accessors to throw exceptions. The most
common case where this is used is to validate the value coming in to a property set
method, which is just like any other public input that should be validated:

public string Name

{

get { return _name; }

set

{

if (string.IsNullOrEmpty(value))

throw new ArgumentNullException(“value”);

_name = value;

}

}

“CONSTITUENT TYPES” AND VISIBILITY

Although we’ve discussed accessibility in various contexts already, we haven’t told the
whole story yet. A member’s constituent types are the set of types that appear in that
member’s declaration, such as a property type or a method’s return types and its para-
meter types.

It’s not permitted to have constituent types that are less accessible than the declaring
member itself. For example, a public method cannot take in an object of a type that’s
not publicly accessible. If it were to, how could a user invoke the method? As an exer-
cise, try to expose an internal Address type through a property’s return type and
observe the compiler error that ensues.

Auto-Implemented Properties

C# 3.0 introduced a feature called auto-implemented properties to reduce the
“syntactic ceremony” involved in creating “simple properties” that are nothing but
smart fields. Instead of having to declare the backing field and a property accessing

that field manually, the following syntax takes care of it all:

class Person

{

public string Name { get; set; }

public int Age { get; set; }

}

573Properties

FIGURE 11.12 Auto-implemented property snippet in Visual Studio 2010.

The preceding code is turned into this equivalent:

class Person

{

private string <Name>k__BackingField;

private int <Age>k__BackingField;

public string Name

{

get { return <Name>k__BackingField; }

set { <Name>k__BackingField = value; }

}

public int Age

{

get { return <Age>k__BackingField; }

set { <Age>k__BackingField = value; }

}

}

Although the accessibility of the generated get and set accessor can be specified, it’s not
possible to declare the backing fields as read-only. I hope that this little feature omission
gets rectified in a future release of the language, maybe as part of larger immutability
crusades undertaken by the language designers. Auto-implemented properties can easily be
inserted in Visual Studio by using the prop snippet. Type prop and press Tab twice, as
shown in Figure 11.12.

How Properties Work

Properties are nothing but one or two accessor methods that are grouped together by a
piece of metadata. This allows code editors and runtime services like reflection to see them
as a unique kind of member. Some other languages don’t have such a first-class treatment
for concepts like properties (and indexers, and events, and so on) and rely on some
naming convention instead:

class Person

{

public string getName() { ... }

public void setName(string name) { ... }

}

574 CHAPTER 11 Fields, Properties, and Indexers

FIGURE 11.13 Dissection of a property.

Although this works just fine, it makes tooling harder, and (what ought to be) properties
are clustered together in the method list. Because get and set accessor pairs are such an
established concept, .NET made them first-class metadata citizens.

Figure 11.13 shows a property definition in our much beloved ILDASM tool. As you can
see, there are methods for the accessors that use get_ and set_ prefixes. In addition, a
property acts as a piece of metadata that bundles those two methods together. Code that
uses a property’s getter or setter uses a direct method call to the respective methods. The
metadata is simply there for tooling and services like serialization.

Indexers
Closely related to properties are indexers. Both classes and structs can contain just one
indexer, which is best described as a parameterized property that can be invoked by using
an indexing expression. The stereotypical example of an indexer is on a vector object or a
dictionary collection. Let’s first show how the latter is used on the generic Dictionary
type defined in System.Collections.Generic and then move on to defining our own
Vector type with an indexer:

var phoneBook = new Dictionary<string, int>();

phoneBook[“Bart”] = 51662;

phoneBook[“John”] = 96207;

Console.WriteLine(“Bart’s phone number is: “ + phoneBook[“Bart”]);

The second and third lines add entries to the dictionary by passing the intended key as a
parameter to the indexing expression and by assigning to it. On the fourth line, we read

575Indexers

an entry from the dictionary. Notice with C# 3.0 collection initializers, you can initialize
the dictionary as follows:

var phoneBook = new Dictionary<string, int> {

{ “Bart”, 51662 },

{ “John”, 96207 }

};

This doesn’t use the indexer but invokes the dictionary’s Add method two times, once for
each element initialization entry.

“EVERYTHING SHOULD BE A DICTIONARY”

In some dynamic languages, the art of indexing is indistinguishable from regular
member access. For example, accessing element 0 in an array xs could be xs.0 (not
permitted in C#), accessing a member could either be pt.X or pt[“X”], and you could
simply add members by assigning to a yet-undefined member.

Starting from C# 4.0, this can be enabled through the use of dynamic and the
ExpandoObject type in the System.Dynamic namespace. However, it’s my (and my
manager’s) opinion that static typing should be preferred over dynamic typing whenever
possible. You learn more about dynamic later in Chapter 22, “Dynamic Programming.”

Defining Indexers

To define an indexer, you use the this keyword in yet another context. Take a moment to
think back about all the allowed uses of this you’ve seen so far. To see why the this
keyword is used in this context, take a closer look at the following code:

Vector victor = new Vector(1, 2, 3);

Console.WriteLine(“X = “ + victor[0]);

// We’re leaving the implementation of an indexer with a string-typed parameter

// as an exercise for the reader. (See the next code fragment.)

Console.WriteLine(“Y = “ + victor[“y”]);

Console.WriteLine(“Z = “ + victor[2]);

Because indexing operates on the object directly, there’s no member name involved. In
fact, from the receiving end’s point of view, the left side of the indexing operation is
nothing but the object itself, hence this. To define the first indexers taking in an integer
parameter, you therefore write the following:

class Vector

{

private int _x, _y, _z;

public Vector(int x, int y, int z)

576 CHAPTER 11 Fields, Properties, and Indexers

{

_x = x; _y = y; _z = z;

}

public int this[int index]

{

get

{

if (index == 0) return _x;

else if (index == 1) return _y;

else if (index == 2) return _z;

else throw new ArgumentOutOfRangeException();

}

}

// Insert the implementation of an indexer with a string-typed parameter

// here, allowing the user to write things like vector[“x”] or vector[“Y”].

}

There are different ways to look at it. One is to see the indexer as a property with this as
its name, taking in one or more parameters specified between square brackets rather than
parentheses. Inside both accessors, those parameters’ values are available for use; in the
setter, the contextual value keyword receives the incoming object.

For the most part, indexers and properties are similar. One notable difference is that
indexers cannot be defined as static members. Also notice that because indexers require at
least one parameter (none of which can be ref or out) to be specified at the use site,
putting a default value on the first parameter isn’t allowed:

class Vector

{

...

public int this[int index = 0] { ... }

If this were permitted, you could write the following, which could be interpreted as quite
confusing (compared to array-creation expressions):

Vector v;

int x = v[];

I leave it as an exercise for you to define a set accessor on the preceding indexer and to
implement the setter that takes in a string parameter that specifies the axis using letters
x, y, or z.

577Indexers

FIGURE 11.14 Indexers are indexed properties called Item, declared as a default member.

How Indexers Are Implemented

Even though the CLR has the notion of indexed properties, which are properties that
accept parameters, C# doesn’t fully expose this feature. Only in COM interop scenarios
(the subject of Chapter 22) and starting from C# 4.0, indexed properties can be consumed
in limited scenarios. One key problem with generalized use of indexed properties is the
multiple meanings the following piece of code could have:

employees.Numbers[“Bart”];

Does this mean we can obtain an object called numbers that we subsequently are indexing
into, or does it mean that there’s an indexed property called Numbers that does accept a
string as its parameter?

Indexers as they’re known in C# are a special indexed property of which only a single one
can be defined on a type. The way this is realized is by means of giving it a fixed name
called Item and applying a DefaultMember custom attribute to the class or struct contain-
ing it. Figure 11.14 shows this whole setup.

Languages know that default members deserve special treatment in a way that they don’t
require the property name to be used to access them. So indexing into one of our Vector
object’s x coordinate using an index of zero is turned into the following code. However,
it’s not permitted to use the Item name to access an indexer in C#.

victor.Item[0] = 42;

An artifact of this implementation mechanism is that you can’t declare both a property
called Item and an indexer in a class or struct in C#. Even though the DefaultMember
attribute could refer to something other than Item, the compiler doesn’t rename an

578 CHAPTER 11 Fields, Properties, and Indexers

FIGURE 11.15 Properties named Item will clash with indexers.

indexer to disambiguate this scenario. Figure 11.15 shows the (rather unexplainable, at
least to people who didn’t read this) error message that results.

Summary
After our coverage of the code aspects of types in Chapter 10, “Methods,” we aimed our
discussion at their data aspect in this chapter. Both aspects are quintessential in the defini-
tion of types. Nonetheless, some members of types don’t fall in just one category; for
example, properties and indexers.

First, you explored the extreme end of a type’s state spectrum by covering fields, which act
as containers for state associated with a type or an instance of a type. You learned how to
declare and initialize fields, also covering the notion of read-only fields that are
immutable outside what’s known as the constructor. At first sight, constants are similar to
read-only fields, so you learned about some important differences.

After talking about fields, you explored properties and indexers. Both of those types of
members are quite “stateful” but can have logic associated with retrieval (get) and assign-
ment (set) operations. Properties are sometimes called smart fields for this very reason.
You also learned about the C# 3.0 feature of auto-implemented properties.

In Chapter 12, “Constructors and Finalizers,” you look at another place where code and
data meet on the level of types. Constructors act as members responsible for initializing
a type’s or an instance’s state. Finalizers can be used to clean up state upon destruction
of an object.

CHAPTER 12

Constructors and
Finalizers

IN THIS CHAPTER
. Constructors 579

. Static Constructors 586

. Destructors (Poorly Named
Finalizers) 589

After having covered the code and data aspects of types
by exploring methods, fields, properties and indexers, we’re
now ready to discuss where both aspects clearly meet. This
includes logic to initialize a type (by means of a static
constructor) and its instances (by means of an instance
constructor). Furthermore, sometimes it’s needed to
perform certain clean-up actions upon destruction of an
object instance. As you’ll see, this use of so-called finalizers
can be reduced to a minimum due to the presence of
garbage collection. In some cases though, use of finalizers is
required to ensure proper clean-up of native resources held
on to by an object.

Constructors
Constructors serve the goal of carrying out initialization
tasks that are required for new class instances or for the
initialization of a type. The first type of constructor is called
an instance constructor; the latter is called a static construc-
tor (or initializer in terms of CLR lingo).

Instance Constructors

During the creation of a new instance of a class, one often
wants to run some code to initialize the state associated
with the instance being created. Examples include setting
fields or running other initialization tasks.

As such, constructors are special kinds of methods that
cannot be called directly but are invoked through the use of
the new operator. Parameters can be used on a constructor
definition to pass data to the newly created object. To

580 CHAPTER 12 Constructors and Finalizers

declare such an instance constructor, you define what looks like a method but has the
name of the class and omits a return type:

class Person

{

private readonly string _name;

private readonly int _age;

public Person(string name, int age)

{

_name = name;

_age = age;

}

}

The constructor shown here will be called when you write the following piece of code that
creates a new Person object:

var bart = new Person(“Bart”, 27);

It’s best to think about constructors as just a special kind of method. This means that all
the following similarities apply:

. Constructors can have an access modifier.

. Multiple overloads can be defined.

. The constructor’s body can contain all constructs allowed in a method.

. Starting from C# 4.0, default parameter values can be present.

Despite these similarities, it’s recommended to keep a couple of best practices in mind for
a constructor’s design. For one thing, it’s best to make constructors basically a way to set a
series of fields with minimal work. Avoid doing long-running computation as part of
construction; instead, factory methods or initialization methods may be used.

Behind the Scenes
To convince you about this resemblance to regular methods, let’s inspect the definition of
a class with a constructor. Figure 12.1 shows that a constructor is nothing but a method
with a special .ctor name. Notice how certain pieces of metadata applied to the method
indicate this “special name” nature.

The creation of a new object instance using the new keyword will trigger a call to the
constructor. It’s pretty much like a method call in terms of evaluation stack behavior
except for the use of a different newobj instruction. This is where the runtime gets in
control to allocate the (zero-initialized) heap memory needed for the instance. When
everything is set up to run custom code, the constructor method is invoked. Figure 12.2
illustrates the newobj instruction.

581Constructors

FIGURE 12.1 Constructors are methods with a special name.

FIGURE 12.2 Constructors are invoked through a newobj instruction.

Default Constructors
If no constructors are defined explicitly, a default parameterless constructor will be created
for you. Because a newly allocated object will be guaranteed to have all of its fields zero-
initialized, this shouldn’t pose any problem.

class Person

{

private string _name;

private int _age;

public string Name

{

get { return _name; }

set { _name = value; }

}

public int Age

{

get { return _age; }

582 CHAPTER 12 Constructors and Finalizers

set { _age = value; }

}

}

In the preceding example, a new Person instance will have a Name property that returns
null and an Age property that returns zero. Because the act of initializing an object by
setting a bunch of properties is quite tedious (even a bit with C# 3.0’s object initializer
syntax), it’s recommended to have a way to initialize state using constructors. Also, the
use of constructors enables you to declare fields as read-only and limit the initialization of
those fields to constructors.

After a constructor with parameters is defined, the default constructor is no longer
emitted automatically. If it still makes sense to have a default constructor, you can put it
in manually:

class Person

{

private string _name;

private int _age;

public Person()

{

// Does anything meaningful go in here?

}

public Person(string name, int age)

{

_name = name;

_age = age;

}

}

In design patterns like factory methods, a default publicly visible constructor is not
desired because a static method will take over the externally visible job of construction. In
such a case, you can hide the default constructor by explicitly adding a private one:

class Ticket

{

private readonly int _id;

private Ticket(int id)

{

_id = id;

}

583Constructors

public static Ticket PurchaseTicket()

{

// A long-running task may be needed to purchase a ticket, ultimately

// returning one that can only be constructed here:

return new Ticket(321);

}

}

What About Structs?
Up to this point, we’ve only mentioned classes during our constructor discussion. This
raises the question of whether structs can have constructors. The answer is yes, except for
parameter-free “default” ones.

One of the main reasons why nondefault parameter-free constructors on structs are
considered harmful (and are disallowed by C# for that reason) is the cost that would be
associated with creating arrays of a struct type. For each element in such an array, the
runtime would have to run the default constructor. Notice that this isn’t the case when
you initialize an array of reference types because all elements will be set to null.

Also, if you implement a constructor on a struct, you need to make sure all fields are
explicitly assigned to. The reason for this is that your struct’s constructor is taking over
initialization tasks. In fact, no newobj instruction is used to allocate a new struct value
because such a value lives on the stack. Basically, your constructor gets to operate on a
piece of reserved stack space and needs to initialize all of it. For example:

struct Point
{

private readonly int _x;
private readonly int _y;

public Point(int x, int y)
{

_x = x;
_y = y;

}
}

To initialize a Point value, you can either invoke the constructor using the new operator or
invoke the default constructor, which cannot be hidden on structs. The rationale for this
is pretty simple. Because the default way to create a new struct value is by returning all-
zero memory (and this is used for arrays, too), it makes little sense to block that off. And if
such a hiding operation were permitted, what would it mean to create an array of a value
type? Is the runtime somehow allowed to call your private default constructor?

The following code fragment shows two ways to initialize a new Point value:

var p1 = new Point(3, 5);

var p2 = new Point();

584 CHAPTER 12 Constructors and Finalizers

FIGURE 12.3 Constructors for structs operate on allocated stack space.

FIGURE 12.4 All fields of a struct must be fully assigned by code run in the constructor.

HEAP VERSUS STACK, ONCE MORE

In contrast to languages such as C++, the use of the new operator does not imply heap
allocation. Where an object gets allocated solely depends on its type: Value types go
on the stack, reference types go on the heap. Sometimes the use of an object also
affects where it goes (cf. boxing).

This piece of code gets translated into what’s shown in Figure 12.3, assuming the code was
compiled without optimizations turned on.

One thing to observe here is the lack of newobj calls. Instead, the address of the (stack-
allocated) local variable is passed to the constructor method to operate on. The code in
the constructor is then responsible for properly initializing all fields contained in that
piece of memory. If this is not done, the compiler complains in the way depicted in
Figure 12.4. When using the default constructor, the initialization of the local variable is
carried out by the initobj instructions.

585Constructors

To invoke the default initialization behavior (for example, if your struct’s constructor
wants to set only a couple of fields), you can write the following, which is discussed next:

struct Point

{

private readonly int _x;

private readonly int _y;

public Point(int x) : this() // Will set _y = 0

{

_x = x;

}

}

ZERO: HARDER THAN YOU EXPECT

Zero-initialization is a seemingly simple topic but has quite a few complications, espe-
cially when the runtime wants to make guarantees. Memory that hasn’t been zeroed-
out could pose severe security and reliability risks. It’s one of the most common
programming errors in unmanaged code.

For more information about all aspects of zero-initialization and which guarantees can
be made by the runtime (or why not), the interested reader is most welcome to take a
look at the Common Language Infrastructure (CLI) specification. Luckily, there’s no
need to worry about it all.

Constructor Initializers
In the earlier example of the struct, I introduced some syntax you haven’t encountered
yet. For our constructor to call the default one (which is always present on a struct), we
wrote the following:

public Point(int x) : this()

Use of the this keyword to invoke a constructor from another one is known as a
constructor initializer. In Chapter 14, “Object-Oriented Programming,” you’ll see there’s
also the base keyword that can be used to invoke a base class constructor. This feature
permits “overloading for constructors” and is usually used to avoid code duplication
across different constructors. For example, a Point might have some default initialization
for certain fields if they are omitted from the constructor argument list:

struct Point

{

private readonly int _x, _y, _z;

private readonly DateTime _t;

586 CHAPTER 12 Constructors and Finalizers

public Point(int x, int y, int z, DateTime t)

{

_x = x; _y = y; _z = z; _t = t;

}

public Point(int x, int y, int z)

: this(x, y, z, DateTime.Now)

{

}

public Point(int x, int y)

: this(x, y, 0, DateTime.Now)

{

}

}

Inside the call to this, all the constructor’s parameters are in scope. Fields of the object
under construction obviously are not available yet. In contrast to default parameter values
in C# 4.0, the default arguments passed from one constructor to another can include any
expression (such as DateTime.Now, which isn’t constant).

CALLS TO THIS AND BASE MUST COME FIRST

Different languages have different orders for initialization. C++ objects suffer from an
identity crisis when they’re being created (due to vtable changes), Java has the addi-
tional complexity of instance initializers, and so on. One thing Java and C# have in
common is the restriction to call initializers, using this or base (or super in Java), only
on a constructor’s first line. C# enforces this through the colon-based syntax, whereas
Java allows a call to this to appear on the first line of the constructor body only.

Static Constructors
Where instance constructors take on the task of initializing a new object instance, the role
of static constructors (sometimes referred to as type initializers) is to initialize a type’s
static state. Although the runtime provides type initializers for more than just classes and
structs, C# restricts their declaration to those categories of types (mainly because of their
limited use of other types).

A static constructor looks like an instance constructor but is declaring using the static
keyword, doesn’t have an access modifier, and can’t take any parameters. Just like any
other static member, it can only access other static members and is primarily used to
assign the type’s static fields. In fact, static field initializers become part of the code run by
the static constructor. For example:

587Static Constructors

class PaymentService

{

private static PaymentServiceProxy _proxy;

private static Logger _logger;

static PaymentService()

{

_proxy = new PaymentServiceProxy();

_logger = new Logger(“log” + _proxy.Timestamp + “.txt”);

}

...

}

Static constructors can’t be invoked by the user directly. Instead, it’s the runtime’s task to
ensure a static constructor has run any time before static members on the containing type
are used or an instance of a class is created.

To illustrate this, consider the following struct definition containing a static member and
a static constructor. Per the rules described earlier, the static constructor will be run only
when the static B method is called. For a class, things are bit a different, and the static
constructor will also be run prior to any instance creation. In either case, a static construc-
tor is run only once per application domain. This concept is explained later; for now, it
suffices to simplify this statement to “once in an application’s lifetime”:

struct A

{

static A()

{

Console.WriteLine(“In A::.cctor”);

}

public static void B() { /* ... */ }

}

For the preceding example, the following code illustrates the behavior of when the static
constructor is triggered by the runtime for a struct:

//

// None of those lines will trigger the static constructor.

//

A a = new A();

Console.WriteLine(a.ToString());

588 CHAPTER 12 Constructors and Finalizers

//

// However, this will.

//

A.B();

Also try to turn the struct into a class and observe the differences. From all of this, there’s
one key takeaway: You don’t directly control when a static constructor is run and there-
fore you shouldn’t rely on it. The only guarantee made by the runtime is that the execu-
tion of the code happens “early enough” such that subsequent uses of the type will see
static state in a fully initialized shape.

Because static constructors get run at a time that might not be obvious to the user of a
type, it’s highly recommended not to throw exceptions from this code unless things get
really, really bad. Instead, it’s better to have a static initialization method that could be
wrapped in an exception handler if things can be expected to fail. Establishing database
connections, opening files, and so on are all tasks that can go wrong. If an exception
occurs from a static constructor, it will surface wrapped in a
TypeInitializationException:

static void Main()

{

A a = null;

try {

a = new A();

}

catch (TypeInitializationException ex) {

Console.WriteLine(ex.InnerException.Message);

}

Console.WriteLine(a.ToString());

}

class A

{

static A(){

throw new Exception(“Oops!”);

}

public A(){

Console.WriteLine(“Will never get here!”);

}

}

Even though the preceding code will catch the exception, this should be considered a very
lucky coincidence. In general, your code won’t scale if you have to wrap every single
instance creation or static member access in a handler protecting against the possibility

589Destructors (Poorly Named Finalizers)

FIGURE 12.5 Static constructors are just methods with special names and treatment.

you’re triggering a type initializer to run. Furthermore, even if you feel brave and try to
make this happen, what about field initializers, which can’t be wrapped in try-catch blocks?

Also, things get unreliable in no time because the preceding code won’t succeed in creat-
ing the requested new instance of class A. As a rule of thumb, consider the app domain
to be crashed if a type initializer fails. One way to do some final cleanup in response to
any exception that’s taking down the application domain is to use the following code
with an event handler on the AppDomain object. You’ll learn about event handlers in
Chapter 18, “Events,” and the lambda expression syntax in Chapter 17, “Delegates,” to
specify a delegate.

AppDomain.CurrentDomain.UnhandledException += (o, e) =>

{

// Could inspect e.ExceptionObject in here.

};

Finally, Figure 12.5 shows how a static constructor is surfaced in IL code, with the .cctor
special name.

STATIC CLASSES RECAP

While we’re talking about static constructors, let’s recap the concept of static classes.
Those types are just regular classes but without the capability to create new instances;
instead, they contain only static members and don’t have an instance constructor avail-
able. A static constructor can be defined, though.

Static classes shine in scenarios where static helper methods have to be wrapped
together. The lack of global methods in C# is easily circumvented by putting all helper
methods in a static class. This also helps organize them in buckets that share certain
tasks (for example, TypeHelpers or Math).

Destructors (Poorly Named Finalizers)
Besides constructors, C# has the notion of destructors. Before going any further, let’s start
with the mandatory warning. In the world of garbage collection, destructors only share
their name with the concept known from C++. That is, they are totally different in

590 CHAPTER 12 Constructors and Finalizers

behavior, despite their common syntax. To put this straight, consider the following piece
of C++ code. Readers unfamiliar with C++ can skip the following example.

#include <stdio.h>

class Destruct

{

public:

Destruct() {

printf(“Constructing\n”);

}

~Destruct() {

printf(“Destructing\n”);

}

};

void Stack() {

printf(“Stack - begin\n”);

Destruct d;

printf(“Stack - end\n”);

}

void Heap() {

printf(“Heap - begin\n”);

Destruct *d = new Destruct();

delete d;

printf(“Heap - end\n”);

}

int main() {

Stack();

Heap();

}

One key difference is the fact that C++ classes and structs can be allocated either on the
stack or the heap, depending on their use. Just declaring a local variable of the type will
cause it to be stack-allocated, whereas use of the new operator results in heap allocation.
Let’s start with the stack-allocated case, which prints this:

Stack - begin

Constructing

Stack - end

Destructing

591Destructors (Poorly Named Finalizers)

At the point we declare the local variable of type Destruct, the default constructor is
called, causing Constructing to be printed. At the point the method is quit, the code
compiled for the method ensures the stack-allocated object is destructed by a call to the
destructor. This is a form of deterministic cleanup.

For the heap-allocated example, the output differs slightly. Here the responsibility of delet-
ing the object is upon the user by using the delete operator. At that very point in time,
the destructor will be called:

Heap - begin

Constructing

Destructing

Heap - end

This, again, is a form of deterministic cleanup. In both cases, it’s either lexical scoping or
manual user intervention that causes the destructor to be called. In none of the cases does
a runtime service kick in to call the destructor’s code.

Defining Finalizers in C#

Before discussing their behavior in full detail, also contrasting it to the C++ behavior
shown earlier, we first show how to declare a finalizer in C#. Because they share the C++
syntax, the language specification calls them destructors, but to avoid confusion with any
of your C++ programmer friends, let’s call them finalizers.

Here’s a finalizer defined in C#, using the class’s name prefixed with a ~ character:

class A

{

~A()

{

Console.WriteLine(“Destructing instance of A”);

}

}

Finalizers cannot have an access modifier, nor can they have any parameters. They
cannot be called explicitly by the user (so it doesn’t make sense to pass parameters), as
you will see.

How Finalizers Are Run

Now let’s move on to the discussion about their behavior and best practices associated
with the use of finalizers. In contrast to C++, finalizers are called by the runtime when the
object instance is no longer accessible by user code. The runtime service in charge of their

592 CHAPTER 12 Constructors and Finalizers

invocation is the garbage collector that’s responsible for releasing memory held by heap-
allocated objects at a point after they’ve become unreachable by code. Earlier we discussed
the mark-and-sweep mechanism employed by the garbage collector to scan memory, mark
objects that are still alive, and collect the ones that cannot be used any longer.

When an object gets garbage collected and it implements a finalizer, that method will be
scheduled to be run by the garbage collector before the final reclamation of the memory
held by the object. Because of how the garbage collector works, finalizers put additional
stress on the runtime. Here’s why.

During garbage collection, the runtime’s execution of managed code is suspended because
memory is being manipulated and references are temporarily inconsistent. If code were
allowed to run at this time, this would pose a breach in type safety because following a
managed reference could lead you into no-man’s land. As a result, code in finalizers
cannot be run while the collection is in progress. Instead, the object that has become eligi-
ble for finalization (determined by the implementation of a custom finalizer) is put in a
queue to be processed later when the execution engine is restarted after the garbage collec-
tion that was in-flight.

Because of this behavior, use of an empty finalizer is the worst possible thing you can put
an object through because you simply postpone its death for no good reason. You’ll soon
learn how the use of a finalizer can and should be avoided whenever possible. But first,
let’s show a finalizer being called:

static void Main()

{

A a = new A();

// Won’t collect before the application quits.

Console.ReadLine();

}

class A

{

~A()

{

Console.WriteLine(“Destructing instance of A”);

}

}

Unless something totally unexpected happens, causing the garbage collector to kick in for
the preceding fragment, the finalizer for the instance of A won’t get called until the very
last point in time when the application quits. There’s simply not enough stress on the
managed heap to warrant a collection in the preceding example. To truly illustrate the
nondeterministic behavior of finalization, let’s show a more contrived example of exces-
sive allocation, resulting in collection:

593Destructors (Poorly Named Finalizers)

while (true)

{

A a = new A();

}

A new object is allocated on the heap for every iteration through the loop. This causes the
heap to grow until generation 0 becomes full. At that point, the garbage collector will kick
in to collect objects that are no longer reachable. In fact, all objects allocated by prior iter-
ations are unreachable because we overwrote the local variable in which their reference
was kept. To show which objects get allocated and which ones get finalized, we’ll add
some counting mechanism to A:

class A

{

private static int s_id;

private int _id;

public A()

{

_id = s_id++;

Console.WriteLine(“Allocated instance “ + _id);

}

~A()

{

Console.WriteLine(“Finalized instance “ + _id);

}

}

When executing this code, results will likely vary from computer to computer and from
run to run because of the parameters the garbage collector takes into account (such as the
system’s overall memory pressure). However, you should see objects being allocated for a
long while until the very first collection kicks in and removes orphaned instances:

Allocated instance 8338

Allocated instance 8339

Allocated instance 8340

Allocated instance 8341

Finalized instance 8331

Allocated instance 8342

Allocated instance 8343

Finalized instance 6

Finalized instance 7

594 CHAPTER 12 Constructors and Finalizers

The order in which those objects get finalized is totally nondeterministic. You could also
monitor collection count to see when a gen0 collection happens:

int gen0 = 0;

while (true)

{

A a = new A();

var new0 = GC.CollectionCount(0);

if (gen0 != new0)

{

Console.WriteLine(“Gen0 collection triggered”);

gen0 = new0;

}

}

How Finalizers Are Implemented

To justify our naming of finalizers over destructors, take a look in ILDASM at the gener-
ated code, as shown in Figure 12.6. As you can see, C# destructors get turned into
methods that override the Finalize method, which is defined on System.Object. The
user’s custom logic and a call to the base class’s finalizer live inside this method. Although
we still have to learn about inheritance, the idea is simple. When a class derives from
another one to specialize its behavior, it’s essential for the base class’s cleanup logic to run
as part of finalization. The code in our finalizer will be equivalent to the following:

~A()

{

try {

Console.WriteLine(“Finalized instance “ + _id);

}

finally {

base.Finalize(); // Calls System.Object’s Finalize method.

}

}

Even though destructors turn into Finalize methods, C# disallows direct use of this
method (for example, using the override keyword). Visual Basic, on the other hand,
doesn’t add destructor syntax and lets users override the Finalize method.

NOT FOR STRUCTS

Finalizers can only be defined on classes. The bookkeeping to determine when a
struct’s finalizer has to run would seriously hamper their lightweight nature.

595Destructors (Poorly Named Finalizers)

FIGURE 12.6 Destructors override the Finalize method.

Disposal Before Collection: IDisposable

Finalizers are typically implemented to ensure resources that are beyond the garbage
collector’s domain of responsibility get cleaned up properly. A good example is when you
must deal with unmanaged resources (for example, in Win32 interop scenarios requiring
manual release of object using calls to CloseHandle). Although lots of Win32 APIs have
been wrapped in the .NET Framework, you might sometimes need to P/Invoke some other
APIs manually. As an example, consider the CreateJobObject Win32 function, which
allows for the creation of jobs, which are groups of processes. A managed code wrapper
could look like this:

public class Job

{

[DllImport(“kernel32.dll”, CharSet = CharSet.Unicode, SetLastError = true)]

static extern IntPtr CreateJobObject(SECURITY_ATTRIBUTES att, string name);

[DllImport(“kernel32.dll”, SetLastError = true)]

static extern bool AssignProcessToJobObject(IntPtr job, IntPtr process);

[DllImport(“kernel32.dll”, SetLastError = true)]

static extern bool TerminateJobObject(IntPtr job, uint exitCode);

private IntPtr _handle;

private Job(IntPtr handle)

{

_handle = handle;

}

public static Job CreateOrOpen(string name)

{ // Notice a “null” name is allowed by the Win32 function.

var res = CreateJobObject(null, name);

596 CHAPTER 12 Constructors and Finalizers

if (res == IntPtr.Zero)

throw new Win32Exception(); // Will use the last Win32 error.

return new Job(res);

}

public void AddProcess(Process process)

{ // Omitted required null-check!

if (!AssignProcessToJobObject(_handle, process.Handle))

throw new Win32Exception(); // Will use the last Win32 error.

}

public void Terminate(uint exitCode)

{

if (!TerminateJobObject(_handle, exitCode))

throw new Win32Exception(); // Will use the last Win32 error.

}

}

Don’t worry too much about the P/Invoke signatures, which are a subject on their own.
Adam Nathan’s great book on interop (.NET and COM: The Complete Interoperability Guide,
Sams Publishing) is the ultimate resource if you want to become an interoperability wizard
on .NET. Here are some essential facts:

. The return value of various functions often determines success or failures in the
world of Win32. Here, checks for NULL and Boolean false are carried out.

. Win32 errors are often communicated through a last error slot, which can be
accessed through GetLastError. The Win32Exception method will capture this code
automatically, as long as we set SetLastError to true.

. Marshaling of strings requires proper configuration depending on the target API.
Here we marshal the string using Unicode.

. More essential to our discussion is the storage of the IntPtr handle in a field on the
Job wrapper object.

For completeness, here’s the security attributes wrapper used by the CreateJobObject
method. Use of the StructLayout attribute makes sure the receiving end (Win32) will see
the fields in the intended order. If this attribute is omitted, the CLR is free to pick the best
layout for the fields to reduce memory occupation and/or word alignment:

[StructLayout(LayoutKind.Sequential)]

internal class SECURITY_ATTRIBUTES

{

public int nLength;

public IntPtr lpSecurityDescriptor;

public int bInheritHandle;

}

597Destructors (Poorly Named Finalizers)

Using this type is shown in the following code. It creates five instances of Notepad, puts
them in the same Win32 job object, and then terminates all of them in one go upon user
request. Jobs have more capabilities beyond process termination. The interested reader
could regard this as a great P/Invoke exercise to port other job object functions (see
MSDN) to our wrapper class:

var job = Job.CreateOrOpen(“Demo”);

for (int i = 0; i < 5; i++)

{

using (var proc = Process.Start(“notepad.exe”))

job.AddProcess(proc);

}

Console.WriteLine(“Press ENTER to terminate job...”);

Console.ReadLine();

job.Terminate(0);

Unfortunately, our wrapper code is flawed in one fundamental way: We’re leaking the
handle returned by CreateJobObject. This isn’t cool, and even though the operating
system will close the handles automatically upon the owning process’s termination, it
forms a potentially critical leak when lots of Job wrappers are created. In fact, notice how
we wrapped the creation of a new Process object in a using block as well:

using (var proc = Process.Start(“notepad.exe”))

job.AddProcess(proc);

Recall that the using block is merely syntactical convenience for the following equivalent
code (ignoring the introduction of a surrounding scope to limit use of the proc variable):

Process proc;

try

{

proc = Process.Start(“notepad.exe”);

job.AddProcess(proc);

}

finally

{

if (proc != null)

proc.Dispose();

}

598 CHAPTER 12 Constructors and Finalizers

Enter the IDisposable interface, which we’re going to bring to our Job object next. The
call to Dispose realizes a form of deterministic cleanup, such that the resource kept by the
wrapper class (in this example, Process) can be released on the spot. Notice closing a
handle for a Win32 process object doesn’t terminate that process; it merely releases the
“reference” we hold to that process.

Providing a way to do deterministic cleanup is preferred over the use of finalizers. Or
better, as you will see, it’s used in conjunction with finalizers. But let’s not skip ahead and
ameliorate our Job object with an IDisposable implementation:

public class Job : IDisposable

{

...

[DllImport(“kernel32.dll”, SetLastError = true)]

static extern bool CloseHandle(IntPtr obj);

private IntPtr _handle;

...

public void Dispose()

{

CloseHandle(_handle);

}

}

This is a good first attempt, which will allow the user to wrap the Job object in a using
block for the kept handle to be disposed:

using (var job = Job.CreateOrOpen(“Demo”))

{

for (int i = 0; i < 5; i++)

using (var proc = Process.Start(“notepad.exe”))

job.AddProcess(proc);

Console.WriteLine(“Press ENTER to terminate job...”);

Console.ReadLine();

job.Terminate(0);

}

However, there are a couple of issues left. First, what happens if the user doesn’t take the
using block route and calls Dispose manually? At first sight, there’s no issue with that, but
the disposed object can still be used after the Dispose call. Now we have an already closed
_handle field, but the instance methods can still use it:

599Destructors (Poorly Named Finalizers)

...

job.Dispose();

job.Terminate(0);

In this code fragment, the call to Terminate will fail because the handle is no longer valid,
which will be surfaced as a Win32Exception with a proper message. To prevent such
mishaps, you’ll want to keep some disposal flag around and reject method calls other than
Dispose after disposal:

public class Job : IDisposable
{

...
private bool _disposed;

public void AddProcess(Process process)
{

if (_disposed)
throw new ObjectDisposedException(“job”);

...
}

...

public void Dispose()

{
if (!_disposed)
{

CloseHandle(_handle);
_disposed = true;

}
}

}

REPEATED DISPOSAL SHOULD BE ALLOWED

It’s a good practice to allow multiple Dispose calls because there may be multiple
code paths that double, triple, and so on release an object. Every Dispose call beyond
the first one should be a no-op. Such a Dispose method is said to be “idempotent.”

Although this is already better, we’re still in trouble. No matter how much you believe in
the goodwill of mankind, there will be developers who forget to dispose the Job object. In
such a case, you still don’t want to leak the acquired handle if the object is no longer
reachable by code. To accommodate for this eventuality, you want to put a finalized in
place, too. The pattern to be used here looks like this:

600 CHAPTER 12 Constructors and Finalizers

public void Dispose()

{

Dispose(true);

GC.SuppressFinalize(this);

}

protected virtual void Dispose(bool disposing)

{

if (!_disposed)

{

if (disposing)

{

// We were called by the Dispose method.

// Release managed resources (like other IDisposables) here.

}

// Also null out reference type fields here.

CloseHandle(_handle);

_disposed = true;

}

// If there were a base class that’s IDisposable, call that one too.

// base.Dispose(disposing);

}

~Job()

{

Dispose(false);

}

That’s quite a bit of code but a recurring pattern. In the user calls Dispose manually, we
call the Dispose helper method with a true flag, such that the code in there can do some
additional work to release other managed resources (such as Component objects, which do
have a Dispose method themselves). No matter what case we’re in, we’ll also release the
unmanaged resource (which is the only resource in our case). If the finalizer gets invoked,
we’ll get into that same helper method, but passing another flag to reduce work since
other managed resources will be taken care of.

A few other things should be noted. First, the act of making the Dispose helper method
protected and virtual will allow a subclass to call the base class’s corresponding Dispose
helper method to perform further cleanup. Alternatively, we could prevent users from
deriving from our class by marking it sealed, as discussed in Chapter 14.

Finally, and not without significant importance, notice how the Dispose method adds a
call to the SuppressFinalize static method on the GC class. This basically tells the GC not
to bother calling our finalizer because the user has already triggered deterministic cleanup

601Summary

FIGURE 12.7 Proper handle release triggered by a call to Dispose.

and the finalizer doesn’t have any work left to do anymore. By doing so, you avoid the
extra object death ceremony involving the finalizer queue:

public void Dispose()

{

Dispose(true);

GC.SuppressFinalize(this);

}

With all of this in place, we should never leak the job object handle anymore. To verify
this claim, you can use Task Manager and observe the Handles column decrementing by 1
after the call to Dispose. Figure 12.7 shows this experiment. If the Dispose method isn’t
called, it will take some garbage collector cycles before the object disappears.

SAFEHANDLE

Dealing with handles and providing a manual implementation of IDisposable and a
finalizer is tricky business. To simplify this task, .NET 2.0 introduced the concept of
SafeHandle objects, which are recommended to be used when dealing with some typi-
cal types of handles (see MSDN). The Microsoft.Win32.SafeHandles namespace
contains base classes for a series of handle types.

Summary
Initialization logic for newly created object instances or even types themselves is what
constructors are about. In this chapter, you learned how to declare constructors that deal
with such initialization of state. You saw how to chain constructor calls and learned about
implications of having type initialization logic in static constructors.

602 CHAPTER 12 Constructors and Finalizers

Finalizers (sometimes referred to as destructors) deal with cleanup logic that’s executed
upon destruction of an object. Although not necessary for pure managed code, the use of
finalizers is important when native resources need to be released because they are
beyond the control of the garbage collector. To enable the user to clean up an object
prior to its automatic destruction by the garbage collector, the IDisposable interface can
be implemented.

In Chapter 13, you look at a last set of members that can be declared on a type. In partic-
ular, you explore the concept of operator overloading and user-defined conversions
between objects of different types.

CHAPTER 13

Operator Overloading
and Conversions

IN THIS CHAPTER
. Operators 603

. Conversions 627

One set of members declared on a type is left to be
discussed: operator overloads and user-defined conversions.
All of those types of members are defined as a special kind
of static methods that can be invoked through various
built-in language constructs.

Operator overloading comes in handy when defining types
that have natural meanings for operations such as addi-
tion, logical operators, and whatnot. A good example is a
Vector type. User-defined conversions are typically related
to objects that represent some kind of value. In such a case,
it might make sense to define conversions between differ-
ent types of values—that is, from an angle in degrees to
one in radians.

Operators
We’re almost at the end of our journey through the world
of class and struct members. Possibly the most powerful
member type (but not quite as powerful as the same notion
in languages such as C++) are operator overloads. Basically,
operator overloads are special static methods that can be
invoked as a result of using operator syntax such as +, &&
(a very special one consisting of two operator invocations,
as you will see), ==, and so on.

604 CHAPTER 13 Operator Overloading and Conversions

Using this feature, it becomes possible to provide more natural-looking and convenient
syntax for various operators a type can support on its instances. Vectors are a great
example of this:

Vector v1 = new Vector(1, 2, 3);

Vector v2 = new Vector(3, 2, 1);

Vector allFour = v1 + v2; // (4, 4, 4)

Vector larger = v1 * 4; // (4, 8, 12)

int dotProduct = v1 * v2; // 10

POWERFUL TOOLS ARE WEAPONS, TOO

A powerful tool’s main drawback is its potential to be used as a weapon. Overloading
of operators is one of those tools. Although physicists will drool at the sight of operator
overloading, it might not be obvious to people reading your code what’s meant by the
nonstandard use of an operator. Even the simple Vector sample shown in this section
can be interpreted ambiguously: Does * mean dot product or cross product (recall that
you can’t overload by return type)?

Defining Operators

The definition of an operator looks like a public static method that uses the operator
keyword to indicate its specialized nature. Unary operators should take exactly one single
parameter, whereas binary ones should take two. None of the parameters can be passed by
reference or as an output parameter. The return type does have restrictions for certain
operators, too.

As an example, consider the Vector class again. This time we’ll define a set of useful oper-
ators:

class Vector

{

private int _x, _y, _z;

...

// Whitespace is allowed between “operator” and “-”.

public static Vector operator -(Vector vector)

{

return new Vector(-vector._x, -vector._y, -vector._z);

}

public static Vector operator +(Vector left, Vector right)

{

return new Vector(

left._x + right._x, left._y + right._y, left._z + right._z);

}

605Operators

// We choose the dot product to show a different return type.

public static int operator *(Vector left, Vector right)

{

return left._x * right._x + left._y * right._y + left._z * right._z;

}

// For a scalar product, just one of the operands has to be a Vector.

public static Vector operator *(Vector vector, int scale)

{

return new Vector(

vector._x * scale, vector._y * scale, vector._z * scale);

}

}

Notice that with the unary arithmetic negation operator and the binary arithmetic addi-
tion operator it’s not yet possible to do binary arithmetic subtraction unless you write
the following:

Vector difference = v1 + -v2;

To enable proper subtraction as a single-step operation, you’ll want to define such an
operator, too.

How Operators Are Found

For an operator to be valid, at least one of its parameters should be the same as the declar-
ing type (or, for structs, the nullable variant of it). This requirement is related to the way
operators are searched for by the compiler, scanning static methods defined on operand
types that participate in the operator’s signature. Note that none of the operators have
certain fixed properties such as “commutativity” (for example, where a + b and b + a
always yield the same result). As a result, our overload of multiplication of a Vector with
an integer value works only one way:

Vector okay = v1 * 4;

Vector fail = 4 * v1;

Because the compiler can’t find a binary arithmetic addition operator accepting the two
specified operand types on either System.Int32 or Vector, it bails out. To enable the
second use, you must define a second operator that accepts the operands in the order
that’s desired. Obviously, the operator’s implementation can invoke another’s:

public static Vector operator *(int scale, Vector vector)

{

return vector * scale;

}

606 CHAPTER 13 Operator Overloading and Conversions

The act of locating the best possible candidate operator follows principles similar to
method overload resolution. In particular, operators defined on more-derived types will be
better candidates than ones defined on less-derived types. This is illustrated here with the
(limitedly useful) unary plus operator:

class Bar

{

public static Bar operator +(Bar b)

{

return b;

}

}

class Foo : Bar

{

public static Foo operator +(Foo f)

{

return f;

}

}

The first line of the following example will call Bar’s operator, while the second line is
turned into a call to Foo’s operator. As you can see, the operator on the most derived type
wins in that case. Hovering over the + token in Visual Studio will, in fact, reveal which
operator is picked:

Bar b = +new Bar();

Foo f = +new Foo();

Nullability and Lifted Operators

Introduced in .NET 2.0, nullability allows for the use of struct values in conjunction
with a null value. As a short recap, the ? suffix can be appended to a value type
name to create the nullable variant of it. This enables you to write code like this:

int? a = 42;

if (a != null) // Really a.HasValue

Console.WriteLine(“Value = “ + a /* .Value */);

int? b = null;

if (b == null)

Console.WriteLine(“Null”);

As with most changes that touch the type system of the runtime (and hence languages
taking advantage of its features), nullability had quite an impact on the language. In the

607Operators

context of operators, the concept of lifted operators was introduced. The idea is this:
Instead of requiring predefined and user-defined operators to operate both on value type
parameters as well as their nullable forms, it suffices to define such operators for the plain
value types only. By means of the concept of lifting, operators like these become readily
available on the nullable forms.

For example, the binary arithmetic addition operator can operate on two int operands but
is available on nullable int operands, as well, through lifting. If any of the operands are
null values, the result will be null, too. If both are non-null, their contained values are
unwrapped, added together, and wrapped back into a nullable int:

int? a = 3, b = 5, c = null;

// Will print 8. The type of a + b is by itself an int?.

Console.WriteLine(a + b);

// All of those will simply print an empty line since the results are null.

Console.WriteLine(a + c);

Console.WriteLine(c + b);

Console.WriteLine(c + c);

Lifted operators include unary operators +, -, ~, !, ++, and --; binary operators +, -, *, /, %,
<<, >>, &, |, and ^; as well as relational and equality operators <, <=, >, >=, ==, and !=.

Most of the unary and binary lifted operators return null if (one of their) operands is null,
with the exception of | and &, which follow three-valued logic principles. (For example,
use of | on true and null will produce null.)

The relational operators return false if any of the operands is null. Equality operators
consider null to be equal to null. This is aligned with the behavior for reference types
where two null references are equal.

Because of the lifted operator feature, the following struct’s user-defined operators can be
used on the struct’s nullable form, as well:

struct Vector

{

private int _x, _y;

public Vector(int x, int y)

{

_x = x; _y = y;

}

public static Vector operator +(Vector left, Vector right)

{

return new Vector(left._x + right._x, left._y + right._y);

608 CHAPTER 13 Operator Overloading and Conversions

}

public override string ToString()

{

return string.Format(“(X = {0}, Y = {1})”, _x, _y);

}

}

If Vector were to be defined as a class, the + operator obviously will simply accept null
references. However, because the parameters on the + operator overload are not declared
to be nullable, there’s no way for those to receive null values. Instead, the language lifts
the use of the + operator on nullable arguments:

Vector? v1 = new Vector(3, 4);

Vector? v2 = new Vector(2, 1);

Vector? v3 = null;

// Will print (5, 5). The type of v1 + v2 is by itself an Vector?.

Console.WriteLine(v1 + v2);

// All of those will simply print an empty line since the results are null.

Console.WriteLine(v1 + v3);

Console.WriteLine(v3 + v2);

Console.WriteLine(v3 + v3);

It’s also possible for just one operand to be nullable. In that case, the non-nullable one
will be converted to a nullable one, prior to invoking the operator.

To illustrate how the lifted + operator is implemented in terms of the nonlifted custom
one, consider the following code:

static Vector? Add(Vector? v1, Vector? v2)

{

return v1 + v2;

}

This code gets turned into the following equivalent piece of code. In reality, there are
some slight differences, which are irrelevant to our discussion.

static Vector? Add(Vector? v1, Vector? v2)

{

if (v1.HasValue && v2.HasValue)

return v1.Value + v2.Value; // Call our operator definition.

return null;

}

609Operators

Instead of relying on the lifted operator behavior, it’s also possible to take control over
dealing with null values. To do so, define an operator overload that operates on the value
type’s nullable form. An example is shown here, where we consider a vector that’s null to
be the same as a zero-length vector:

public static Vector? operator +(Vector? left, Vector? right)

{

if (left == null & right == null)

return null;

if (left == null)

return right;

if (right == null)

return left;

return left.Value + right.Value;

}

Make sure not to write “left + right” on the last line because you would be calling the
operator itself over and over again, ultimately causing stack overflow. Our example now
produces different results:

Vector? v1 = new Vector(3, 4);

Vector? v2 = new Vector(2, 1);

Vector? v3 = null;

// Will print (5, 5). The type of v1 + v2 is by itself an Vector?.

Console.WriteLine(v1 + v2);

// Print (3, 4) and (2, 1).

Console.WriteLine(v1 + v3);

Console.WriteLine(v3 + v2);

// Prints an empty line since the result is null.

Console.WriteLine(v3 + v3);

The right design decision will vary from case to case. First, it’s important to make sure the
use of a struct is appropriate, as discussed before. If that’s the case, figure out whether null
is a value that needs special treatment. If so, take control by defining specialized operators.

Which Operators Can Be Overloaded?

Lots of operators support being overloaded by the developer of classes and structs.
Although I could show examples of all of them, I’ll limit myself to illustrating a couple of
special ones. We also discuss in this section how certain expressions that use operators are
turned into uses of custom operators.

610 CHAPTER 13 Operator Overloading and Conversions

A Mandatory Listing
An exhaustive list of all the operators that can be overloaded is shown here. All but a few
should look pretty straightforward. The others are the subject of further discussion in the
following sections.

. Unary operators: +, -, ~, !, ++, --, true, false

. Binary operators: +, -, *, /, %, <<, >>, |, ^, <, <=, >, >=, ==, !=

Some operators are implemented in terms of the others. Examples include &&, ||, and the
ternary conditional operator.

Increment and Decrement, Pre and Post
The first two operators we take a look at are ++ and --. Because we all know from our
discussion of expressions in Chapter 5, those operators can appear in two positions, as
shown here. The result of running this code is that all variables will have a final value of 1.

int i = 0;

// j will be assigned i’s value prior to incrementing it, hence it will be 0.

// After this post-increment, i’s value will be equal to 1.

int j = i++;

// j will be pre-incremented before its updated value is used, and becomes 1.

// k gets this updated value of j, resulting in a value of 1.

int k = ++j;

When defining our own ++ (or --) operator, we can’t control the behavior depending on
the position in which the operator appears. For both uses, our operator’s code will be
called. All that’s different is when this call happens. Another restriction on ++ and -- opera-
tors is that their return type should be the same as the defining type’s or a subclass thereof.

As an example, let’s define a cursor class with a ++ operator on it. The definition of the
class is trivial, containing one position field and an overload for ToString used for pretty
printing. What’s of more interest to us is the operator’s definition:

public static Cursor operator ++(Cursor c)

{

// The definition of Cursor is left as an exercise. A simple implementation

// could just encapsulate an integer value. More advanced examples of a

// cursor include a “caret” rendered in some custom textbox control, where

// increment means moving the “caret” to the right.

// Just return a new cursor that has advanced one position.

// Contrast to C++’s overloading for this operator, one isn’t asked to

// change the incoming Cursor’s position in place.

return new Cursor(c._pos + 1);

}

611Operators

With this in place, let’s analyze how the operator gets invoked for the pre-increment and
the post-increment uses of it. There should be no big surprises about this, and the output
of the following code should be predictable:

var c = new Cursor(42);

Console.WriteLine(“Before: “ + c);

Console.WriteLine(“During: “ + c++);

Console.WriteLine(“After: “ + c);

var d = new Cursor(42);

Console.WriteLine(“Before: “ + d);

Console.WriteLine(“During: “ + ++d);

Console.WriteLine(“After: “ + d);

Got your solution ready? Here are the results. The first use, the post-increment one, will
print 42 twice and 43 once. That is, the increment operator call for c happens after c’s
value has been used to compute the string concatenation that’s put on the screen. For the
second pre-increment example, the outcome is 42 once and 43 twice.

Compound Assignment
The use of compound assignment (for example, +=) also supports user-defined operators.
With a few simplifications around conversions and cases where complex expressions are
used (requiring constituent expressions of the left side to be evaluated only once), the
form a += b is turned into a = a + b. For the binary + operator, user-defined operators
and lifted operators can be taken into consideration.

Reusing our vector example, the following fragment will use our operator definition:

Vector v1 = new Vector(3, 4);

Vector v2 = new Vector(2, 1);

// Turns into v1 = v1 + v2;

v1 += v2;

Console.WriteLine(v1);

Compound assignment can be used with all the overloadable binary operators that were
listed before.

Short-Circuiting Logical Operators and the Conditional Operator
Looking at the list of overloadable unary operators, two weird-looking operators catch the
eye immediately. Aren’t true and false just Boolean literals rather than operators?
Obviously, the answer is no. The true and false unary operators play an important role in
defining both of the short-circuiting && and || operators. It also helps out for the defini-
tion of the conditional operator.

612 CHAPTER 13 Operator Overloading and Conversions

To understand this, let’s recap the behavior of those operators. What makes them so
special? The short answer is that not all the expressions that are used as operands on the
operator have to be evaluated in certain cases. Here is a code fragment that proves this
point by means of side effects:

static bool PromptBool(string s)

{

Console.Write(s);

return bool.Parse(Console.ReadLine());

}

static int Get(string s)

{

Console.WriteLine(s);

return 42;

}

static void Main()

{

bool and = PromptBool(“l: “) & PromptBool(“r: “);

Console.WriteLine(“& -> “ + and);

bool andAlso = PromptBool(“l: “) && PromptBool(“r: “);

Console.WriteLine(“&& -> “ + andAlso);

bool or = PromptBool(“l: “) | PromptBool(“r: “);

Console.WriteLine(“| -> “ + or);

bool orElse = PromptBool(“l: “) || PromptBool(“r: “);

Console.WriteLine(“|| -> “ + orElse);

int res = PromptBool(“condition: “) ? Get(“true”) : Get(“false”);

Console.WriteLine(“?: -> “ + res);

}

By entering true or false at the prompts, you can easily illustrate the fact that some of
the operators short-circuit evaluation as soon as the result can be determined.

For example, while the evaluation for and will always ask for a left and right operand
value, the evaluation for andAlso won’t. If the left operand value is false, there’s no way
the Boolean AND operation can still produce true. Because of this, the prompt for a right
operand will never be displayed. A similar behavior exists for the Boolean OR operator’s
short-circuiting || variant: When the left operand evaluates to true, there’s no point in
evaluating the right operand anymore.

613Operators

This is where the true and false operators come in. To define the short-circuiting && and ||

operators in terms of the & and | operators, the language specification says the following:

x && y is evaluated as T.false(x) ? x : T.&(x, y)

x || y is evaluated as T.true(x) ? x : T.|(x, y)

Because this is quite terse syntax, some further elaboration is most welcome. First, T here
stands for the type defining the binary operator that got picked by resolution rules. In the
syntax used for the language specification, calling an operator defined on a type simply
looks like a static method invocation.

To evaluate a short-circuiting version of a binary logical operator, the first question the
resulting code has to ask is whether the outcome of the operation can be determined by
just looking at the first operand. This is precisely what true and false unary operators do.
They ask this question: Hey, are you semantically equivalent to true (or false)? If that is
not the case, the underlying binary operator is called.

SYNTAX VERSUS SEMANTICS

The C# specification (like most other languages) quite intensively uses the English
language to describe the semantics of various constructs. Although this works rela-
tively well in practice, you must memorize lots of remarks to fully grasp some of the
evaluation rules that are applied.

For example, in the excerpt for the definition of && and || in terms of &, |, true, and
false shown earlier, there’s a bit of imprecision because this literal transformation has
different behavior than what’s intended. Extra English-written clauses document that
the expression for x will get evaluated only once and that this result will be reused for
every appearance of x in the conditional operator.

In more-formal language specifications (of which I only know academic language exam-
ples), the semantics would shine through the (more mathematically dense) notation.

For example, with regard to overloading the binary logical & operator and enabling it for
use in a short-circuited form, consider the following FilterBool struct. Such a type can
come in handy for scenarios of scientific computing or bridging between C# code and
some evaluation engine (like a database performing filter operations using Boolean logic):

struct FilterBool

{

public static FilterBool operator &(FilterBool left, FilterBool right) {

// Carry out the evaluation.

}

614 CHAPTER 13 Operator Overloading and Conversions

public static bool operator true(FilterBool value) {

return value.Evaluate();

}

public static bool operator false(FilterBool value) {

return !value.Evaluate();

}

...

}

Here, we’ve omitted the Evaluate method and some additional state that’s likely to be
kept by a FilterBool value. Such state may be a string that’s sent to an evaluation engine
(such as a symbolic mathematics package), an expression tree data structure, or whatnot.
Either way, the Evaluate method gets called by both the unary true and false operators
(which need to be defined in pairs) to tell the caller whether the FilterBool value is
semantically equivalent to true or false. This enables short-circuiting. Both those unary
operators need to return a regular System.Boolean. The binary operator itself will only
work for short-circuiting if the return type corresponds to the operand types. From the
user’s point of view, consider the following code:

FilterBool a = ...;

FilterBool b = ...;

FilterBool and = a & b;

FilterBool andAlso = a && b;

For the evaluation of and, our & operator will simply be called, without any use of the
true and false operators whatsoever. However, in evaluating andAlso, we first see a call to
the false operator, passing in a. If that one returns true (acknowledging that a is seman-
tically equivalent to false), b never gets evaluated. In the other case of the false operator
returning false (denying that a is false), the & operator will get called to make the final
call on the result of the logical AND.

Yeah, I know, that’s a whole lot of juggling with true and false in sentences. To see how
those operators really work, it’s best to step through the evaluation of && or || using the
debugger.

DID YOU KNOW... THERE ARE NON-SHORT-CIRCUITING LOGICAL OPERATORS?

Some people using C#-like languages have forgotten (or never knew) about the exis-
tence of the & and | non-short-circuiting operators. Even more so, some people believe
those are just there for bitwise operations. Most likely, excessive use of the short-
circuiting operators in documentation and examples is the reason for this. Admittedly,
the virtues of those operators justify their use in most cases.

615Operators

However, when defining your own type with Boolean logic binary operators on it, people
might be surprised when your type isn’t enabled for short-circuiting operator use. From
your perspective, this means no true and false operators were defined. There are two
ways to put people at ease. The best, of course, is if you can provide a meaningful
implementation for the true and false operators, triggering some kind of evaluation
on the spot. However, even if that’s not the case, you could play a little trick and
enable the short-circuiting syntax nonetheless. Just implement both the true and
false unary operators to return false. If you look back at the language specification
for the short-circuiting operators, you’ll see that this will cause the underlying & or |
operator to be called in any case, due to the way the conditional operator works:

our special x && y is evaluated as false ? x : T.&(x, y)

our special x || y is evaluated as false ? x : T.|(x, y)

Yes, you’re overloading the semantics of the short-circuiting operators to be non-short-
circuiting in any case, but it may be justifiable for user convenience.

Finally, using the conditional “ternary” operator with a non-Boolean condition operand
also leverages the unary true operator (unless an implicit conversion, discussed at the end
of this chapter, can turn the condition operand type into a Boolean). For example, the
following piece of code will be allowed using our FilterBool type:

FilterBool condition = ...

int result = condition ? 42 : 31;

The result of this fragment’s compilation will be as follows (using pseudo-syntax), invok-
ing the unary true operator to have a Boolean value for the condition:

FilterBool condition = ...

int result = FilterBool.true(condition) ? 42 : 31;

Pairwise Declaration for Relational and Equality Operators
When specifying user-defined relational or equality operators, the language enforces
proper pairwise declaration such that essential (Boolean logic) manipulations can be
applied on any applicable expression. Therefore, it’s not possible to overload the == opera-
tor without having a != operator in place, too. Similarly, < and > operators need to be
declared in pairs and so do <= and >=. Figure 13.1 shows the compilation errors resulting
from omitting a paired operator where needed. Notice that the return type of those opera-
tors can differ from Boolean.

Implementing Equality Operations

One of the most commonly overloaded operators is == (and its != sister operator). To
ensure expected behavior for those operators, a few guidelines exist. In particular, we have
to explain the relationship between the operators and the System.Object Equals methods
that are available.

616 CHAPTER 13 Operator Overloading and Conversions

FIGURE 13.1 Pairwise operator declaration enforcement.

The Role of System.Object’s Instance Equals Method
Defined on System.Object, the “mother type of all types”, the Equals instance method is
used to compare whether two objects are “equal,” whatever that means for the types of
the target object and the one being compared.

class Object

{

...

public virtual bool Equals(object obj) { /* default implementation */ }

}

As you learn in Chapter 14, “Object-Oriented Programming,” virtual methods can be over-
ridden by deriving types. It’s typical for types to do so for System.Object’s virtual
methods, which include Equals, GetHashCode, and ToString. Before we get into overriding
the Equals method, let’s discuss its default behavior.

For reference types, the default Equals method implementation performs a reference
equality, checking whether both references refer to the same object. For value types, a
bitwise equality is carried out, checking whether both values carry the same data. This is
illustrated in Figure 13.2, where public fields are used to keep things simple.

WHAT ABOUT BOXING?

Because reference types get compared by reference equality and boxed value types are
a form of reference types, you might wonder about the outcome of the following code
(with Point declared as a struct):

var p1 = new Point { X = 3, Y = 5 };

var p2 = new Point { X = 3, Y = 5 };

Console.WriteLine(p1.Equals(p2));

617Operators

FIGURE 13.2 Default implementation of Object.Equals.

object o1 = p1;

object o2 = p2;

Console.WriteLine(o1.Equals(o2));

The first result, comparing p1 and p2, which consist of the same bit sequence for their
representation, should be a straightforward true. Based on the previous discussion,
you might think the second result, comparing the boxed values, will print false
because clearly the two boxes will be at different locations on the heap, such that o1
and o2 will hold different references.

Luckily, the Equals method for a System.ValueType (which is the base type for all
structs, especially important for boxing) has been overridden to do the right thing,
namely comparison of the boxed values in a bitwise manner. So the output of the sec-
ond equality check is true, too.

Overriding the Equals Method
In some cases, it might make sense to override the default equality behavior for either a
value type or a reference type. The most common scenario is to customize this for a class,
to do a (partial) field-by-field equality check. An example is to treat two Person objects as
equal if they have an equal identifier, which is considered to be unique for each living
person our application cares about:

class Person

{

public int Id { get; set; }

public string Name { get; set; }

public int Age { get; set; }

618 CHAPTER 13 Operator Overloading and Conversions

public override bool Equals(object obj)

{

// Implementation goes here.

}

}

For this chapter, don’t worry about the override modifier on the Equals method, which is
explained thoroughly in Chapter 14. It simply indicates we’re specializing the base class’s
Equals method.

So what’s the right way to implement the Equals method? Because Equals is weakly
typed, taking in another System.Object instance, we might be comparing objects that
have different types (for example, comparing apples to lemons). To take care of this case,
we need to include an exact type check first. Use of is or as would also pass if we’re
comparing a Person object with a subtype thereof (see Chapter 14, “Object-Oriented
Programming”). Also, the input object could be null in either case. Clearly, comparing an
instance (being ourselves, one that the Equals method is being called) to the null refer-
ence has to return false, too. Putting all those pieces together, we end up with the follow-
ing implementation that will only allow two Person objects to be compared. In other
scenarios, it might be possible to compare objects of two different types, resulting in more
type checks:

public override bool Equals(object obj)

{

if (obj == null || obj.GetType() != this.GetType())

return false;

var other = (Person)obj;

return this.Id == other.Id;

}

For this implementation, we only compare both Person object’s Id properties because
that’s what we consider to be unique about a person. Obviously, more properties could be
subject to comparison in other scenarios.

Notice how we used the == operator for the Id properties, assuming it does the right thing
for that property’s type. (It does because it’s an int.) When carrying out field-by-field
equality checks, it’s good to use == or the static Object.Equals method (which we look at
next). One particular reason that’s the case is that use of the instance Equals method
would need more care:

public override bool Equals(object obj)

{

...

// Assume each Person has a unique Name, and that’s what we compare.

return this.Name.Equals(other.Name);

}

619Operators

What would happen if this.Name is somehow set to null? When using the == operator or
the static Object.Equals method, you don’t run into that problem because those take in
both objects to be compared and should do the right thing in the face of null references.

Required Properties for the Equals Instance Method
Each implementation of an Equals method override is assumed to exhibit a set of fixed
properties on which all users can rely. Those properties include the following:

. Commutativity, such that x.Equals(y) is the same as y.Equals(x).

. Transititivity, such that x.Equals(y) and y.Equals(z), if and only if x.Equals(z).

. Reflexivity, such that x.Equals(x) always holds (except for cases where floating-
point arithmetic is involved, offering a bit more relaxation).

. Successive x.Equals(y) calls return the same result if x and y aren’t modified.

. Don’t throw exceptions for an Equals method.

. No instance is equal to null; that is, x.Equals(null) returns false if x is not null.

When to Override the Equals Method
Overriding the Equals method is recommended for reference types that do have some
property that warrants different instances (hence resulting in different instances) to be
treated as equal. Our Person example does precisely this based on some unique identifier
property each instance of the type carries.

For value types, the default implementation often suffices, but overriding it manually
can cause considerable speed-ups. If the performance of value type comparison tends to
be a bottleneck in your application, providing a manual override would be a good thing
to check out.

As you see later, recommendations for overloading the == operator differ slightly from the
advice to override the Equals method. In particular, doing so for structs is wholeheartedly
recommended, whereas it should be less common for classes.

The Importance of GetHashCode Consistency with Equals
If we just override the Equals method without also overriding the GetHashCode virtual
method that’s defined on System.Object, the compiler will emit a warning, as shown in
Figure 13.3.

The GetHashCode method is essential for certain collection types (such as Hashtable) that
create element lookup structures based on each object’s hash code. When searching for an
element in the collection, the search scope first gets narrowed by finding the “bucket” to
which the object belongs. This is based on the hash code. After that bucket is found, and
if it contains more than one element, the Equals method is used to figure out whether the
object is present in the collection.

620 CHAPTER 13 Operator Overloading and Conversions

FIGURE 13.3 You should pair overrides for Equals with overrides for GetHashCode.

If two objects are said to be equal according to the result of Equals, they should also
return the same hash code. Conversely, if two objects have the same hash code, they do
not necessarily need to be equal. The reason why the latter isn’t a requirement is quite
fundamental. Notice that the return type of GetHashCode is an int:

class Object

{

...

public virtual int GetHashCode() { /* default implementation */ }

}

If the hash code for every distinct instance of a certain type had to be unique, that type
could never support more than 2 power 32 instances, which is determined by the range of
a 32-bit integer. Also, ensuring unique numbering for all instances would likely involve
complicated bookkeeping and state maintenance for the type implementer. Instead, a
good hash code exhibits the property that the likelihood for the hash code computed for
two different instances of a type is different, too. The better a hash code is, the better
collection types containing objects of that type will perform.

Implementing GetHashCode is usually not that hard. You simply want to return an integral
value based on the object’s fields that contribute to its equality. In our example for a
Person type, the only field that participates in the equality check is Id, and therefore our
implementation could look like this:

public override int GetHashCode(object obj)

{

return this.Id.GetHashCode();

}

621Operators

Typically, you want to delegate to each (non-null) field’s GetHashCode to provide the
constituent parts of your own object’s hash code. If multiple fields are involved, use of the
bitwise XOR operator is extremely handy to put hash codes together:

public override int GetHashCode(object obj)

{

// Assume each Person has a unique Id and Name.

// The Equals method should use those fields for equality checking.

return this.Id.GetHashCode()

^ (this.Name != null ? this.Name.GetHashCode() : 0);

}

The implementation of GetHashCode should not return an exception and should keep
returning the same value for an object as long as it doesn’t change. There’s no need to
ensure that hash codes for equal objects stay the same across different executions of the
program; as long as equal objects have the same hash code during one run of the code,
that’s fine. As a result, a hash code should not be used for persistence purposes. Finally,
computing a hash code should take little time.

To wrap up our discussion about hash codes, Figure 13.4 illustrates the inner workings of a
hashtable-based collection type while evaluating a Contains inquiry for an element. In this
example, both Bart and John share the same hash code. When looking for Bart, the first
very efficient lookup operation is to find the bucket corresponding with his hash code.
When the bucket is found, a linear search is needed to check whether any of the objects in
the bucket equals the input. This illustrates that the more distributed the hash codes are,
the better the lookup will perform (because buckets will contain fewer elements).

Hashtable personnel

Find bucket

Equals

Person bart

GetHashCode

With hash 42
{ John, 62 }
{ Bart, 27 }

“Bart”
27

42

Hey, does bart
work here?

Yes, found bart
in the collection!

1

3
2

FIGURE 13.4 How a Hashtable collection uses GetHashCode and Equals methods.

622 CHAPTER 13 Operator Overloading and Conversions

IEQUALITYCOMPARER<T>

Starting from .NET 2.0, a generic interface has been introduced to provide a new
means to perform equality checks and hash code retrieval. This interface, called
IEqualityComparer<T>, is discussed in Chapter 16, “Collection Types.”

For implementing the interface, all the remarks for overriding System.Object’s Equals
and GetHashCode methods hold for the corresponding methods that live on the inter-
face. An abstract base class called EqualityComparer<T> can be used to implement
the interface in a robust manner. A related IEquatable<T> interface was added to the
mix as a means to perform equality checks in a strongly typed manner. Instead of tak-
ing in a weakly typed object to the Equals method, it takes in an instance of the gener-
ic type parameter T, hence comparing objects of compatible types. Refer to MSDN for
more background information about this particular interface and when to use it.

The Static Equals and ReferenceEquals Methods on System.Object
Besides an instance-level Equals virtual method, System.Object also defines two static
equality check methods. One is called Equals and provides a means to compare any two
objects. It basically performs a couple of null checks before dispatching into the first
object’s instance Equals method:

class Object

{

...

public static bool Equals(object objA, object objB)

{

return objA == objB

|| objA != null && objB != null && objA.Equals(objB);

}

}

First, it checks whether both objects are the same based on a reference equality check
carried out by the IL code generated for the == operator applied between two objects. This
particular use of the == operator on System.Object operands will always result in a refer-
ence equality check, which is also what the ReferenceEquals static method does:

class Object

{

...

public static bool ReferenceEquals(object objA, object objB)

{

return objA == objB;

}

}

If objA and objB are not the same reference, Equals makes a second attempt dispatch to
the virtual Equals method on the first parameter, if none of the parameters are null.

623Operators

(If both are null, the == operator will have returned already.) The most specialized Equals
method override will now take responsibility in determining the equality.

OPERATORS ARE NOT DISPATCHED

It’s important to realize this Equals method is as weakly typed as it can be. Because
operators are static methods that are resolved at compile time, the == operator has to
be found on the either of the operand types, in this case System.Object. No special
== operator overload is defined on System.Object though; instead, a simple IL instruc-
tion is used to implement this equality check.

Because operators are static methods, there’s no virtual dispatch happening based on
the dynamic types of the operands at runtime. Suppose Object.Equals were called
with two Person objects; the == operator in the preceding code would still use the
System.Object default == behavior, even if Person has a more specialized == operator
defined. In short, operators are resolved entirely at compile time (well, if we ignore C#
4.0’s dynamic typing feature). We discuss virtual dispatch in Chapter 14.

It’s important to emphasize that Equals method implementations should obey the law of
commutativity with respect to both parameters. If this isn’t the case, executing the static
Equals method with the arguments swapped will produce different results. Because of
this, you should never implement equality between one of your types and a type whose
implementation you don’t control. For example, consider a Person type that returns true
when applying Equals between a Person instance and a string corresponding to the name
of the person:

bool returnsTrue = new Person { Name = “Bart” }.Equals(“Bart”);

Although this particular direction of comparison can work perfectly, there’s no way for
you to ensure commutativity will be realized. For the following piece of code to work, the
Equals method on System.String would have to know about your type:

bool returnsFalse = “Bart”.Equals(new Person { Name = “Bart” });

Because Object.Equals calls the virtual Equals instance methods of the first argument,
the broken commutativity will surface there, too:

bool returnsTrue = Object.Equals(new Person { Name = “Bart” }, “Bart”);

bool returnsFalse = Object.Equals(“Bart”, new Person { Name = “Bart” });

So performing type checks inside an Equals override is fine as long as you control the
implementation of the Equals operator on all the types involved. All of them should
know which types of objects can be compared for equality.

It’s better to avoid such contrived equality checks because there’s a good risk of missing out
on a particular case, causing hard-to-debug problems. For instance, if a collection type once
compares two elements a and b using a.Equals(b) and another time (because of another

624 CHAPTER 13 Operator Overloading and Conversions

element traversal order) using b.Equals(a), things will likely go terribly wrong. And typi-
cally with such problems, the issue will crop up only after the code has run a long time.

Overloading the == Operator
Finally, after some mandatory detours through the world of System.Object’s methods,
we’ve arrived at our final goal of overloading the == operator. Doing so is encouraged if
the type carries value semantics, meaning two instances are really the same. A good
example is a complex number type, which may be implemented as a class or a struct. If no
value semantics are present, it’s best to omit a == operator definition in favor of just an
Equals override (if needed).

One first thing to realize is that no default == operator is present for types, in contrast to
the availability of a default Equals implementation. For example, the following won’t work:

struct Point { public int X; public int Y; }

...

var p = new Point { X = 1, Y = 2 };

var q = p;

Console.WriteLine(p == q); // Fails since no == operator is found.

For classes, things are a bit different because the use of a == operator will be allowed, as
shown here. However, there’s no default type-specific implementation for == as there is for
Equals. Instead, == applied to any two reference typed objects will return the result of a
reference-equality check:

class Person { public string Name; public int Age; }

...

var p = new Person { Name = “Bart”, Age = 27 };

var q = p;

Console.WriteLine(p == q); // Returns true due to reference equality.

Following the guidelines, we won’t overload == for our Person class because you can
barely claim a person to be a value. In that case, just overriding Equals suffices. For value
types, though, if you override Equals, you must also implement an == operator:

struct Point

{

private readonly int _x, _y;

public Point(int x, int y)

{

_x = x; _y = y;

}

625Operators

public override bool Equals(object obj)

{

if (obj == null || obj.GetType() != this.GetType())

return false;

var other = (Point)obj;

return this == other;

}

public override int GetHashCode()

{

return _x.GetHashCode() ^ _y.GetHashCode();

}

public static bool operator ==(Point p1, Point p2)

{

return p1._x == p2._x && p1._y == p2._y;

}

public static bool operator !=(Point p1, Point p2)

{

return !(p1 == p2);

}

}

Notice how we avoided any redundancy in equality checking code by calling into our
operator overload from the Equals method. Also, the mandatory paired != operator uses
the == implementation to determine its result.

Make sure to test all uses to catch any possible cyclic reference that causes some infinite
recursion. It’s any easy trap to fall into. For the preceding code, the next series of tests do
a decent job at checking some properties:

var p1 = new Point(1, 2);

var p2 = new Point(2, 3);

var p3 = new Point(1, 2);

var s = “Other”;

// False

Console.WriteLine(p1.Equals(p2)); Console.WriteLine(p2.Equals(p1));

Console.WriteLine(p1 == p2); Console.WriteLine(p2 == p1);

Console.WriteLine(p1.Equals(s)); Console.WriteLine(s.Equals(p1));

Console.WriteLine(p1.Equals(null)); // Console.WriteLine(null.Equals(p1));

// Shouldn’t compile as there’s no == operator between Point and string

//Console.WriteLine(p1 == s); Console.WriteLine(s == p1);

626 CHAPTER 13 Operator Overloading and Conversions

// True

Console.WriteLine(p1.Equals(p3)); Console.WriteLine(p3.Equals(p1));

Console.WriteLine(p1 == p3); Console.WriteLine(p3 == p1);

Based on our discussion about both of Object’s Equals methods and the discussion about
== operator overloading, none of the results shown earlier should come as a surprise.

STRING INTERNING AND EQUALITY

Strings are interesting objects for a number of reasons. They’re immutable, are imple-
mented as reference types, but have value semantics. Adding all of those properties
together, we have something rather exotic. Matters get even fancier since the runtime
knows a great deal about string objects. One thing it does is so-called interning, allow-
ing strings with the same contents to be reused, which is possible thanks to immutabil-
ity. The following code shows some of this behavior:

var s1 = “Hello”;

var s2 = “Hel”; s2 += “lo”; // Runtime concatenation to avoid compiler smarts

var s3 = string.Intern(s2); // Memory used for s1 will be found to equal s2

Console.WriteLine(s1 == s2); // Value equality on string contents -> true

Console.WriteLine(s1 == s3); // Same deal

Console.WriteLine(s1.Equals(s2)); // Value equality again

Console.WriteLine(s1.Equals(s3)); // Same deal

Console.WriteLine(Object.ReferenceEquals(s1, s2)); // Not the same!

Console.WriteLine(Object.ReferenceEquals(s1, s3)); // But those are...

The second-to-last call returns false because s1 and s2 are different references; how-
ever, using interning s3 will have the same reference as s1.

How Operators Are Translated

To conclude our discussion about user-defined operators, we take a quick peek at the way
their definition gets implemented. As revealed by the static modifier, operators are associ-
ated with the type on which they’re defined, rather than with an instance. This has some
advantages in terms of compile-time resolution of operators but also limits their expres-
siveness in terms of runtime dynamism. It’s also not possible to create interfaces that
require an implementing type to support certain operators, which is precisely what the
mythical INumeric interface would be about (“can Add, Multiply, and so on”). This is a bit
of an unfortunate implication of the design of operators.

Operators’ operational nature makes their most natural implementation to be regular
(static) methods. No metadata is associated with them to declare their “operatorness.”
Instead, a simple naming convention was introduced such that languages that support
user-defined operators can search for them. In particular, each operator has an English
noun (such as Equality for ==). An op_ prefix indicates the method is an operator. Some
languages that don’t support direct use of operators in terms of syntax can still make oper-
ators available as regular method calls. Language documentation on MSDN provides those
names for all supported operators, in case you’re interested.

627Conversions

FIGURE 13.5 Implementation of operators in terms of methods with an op_ prefix.

Figure 13.5 shows the methods available on our Vector type, reflecting the various opera-
tors we’ve defined.

Conversions
The final member type discussed in this chapter is the conversion operator. Conversions
enable an object of one type to be turned into an object of another type, either in an
implicit manner (where simple assignment suffices) or an explicit manner (where explicit
“cast” syntax must be used).

Built-In Conversions

Both the CLR and C# support a number of built-in conversions that can be used with
primitive types and some special types like enumerations and delegates. To start our
discussion about conversions, and the user-defined ones more specifically, let’s get in the
right mindset by looking at some of the built-in ones first.

Numeric Conversions
A large number of numeric conversions exist. Some of those conversions don’t require cast
syntax to be used and are called implicit. This means that wherever a number of a specific
type is expected, you can supply one of a type that’s implicitly convertible into the
expected type. Support for implicit conversions on numbers typically corresponds with
those conversions that will not lose precision (a few floating-point cases set aside) through
the conversion. An example is assignment of a 32-bit integer to a 64-bit long:

int i = 123;

long l = i; // Can hold the int.

Some other languages, such as Visual Basic, also introduce the related notion of widening
versus narrowing conversion. Widening conversions go from a type with a smaller range

628 CHAPTER 13 Operator Overloading and Conversions

to one with a larger range (but including the first’s range entirely). The preceding example
of int to long falls under this category because every int can be held by a long, too. Such
widening conversions can be done implicitly, whereas the narrowing ones (that may lose
information or fail at runtime) must usually be carried out explicitly.

Back to the world of C#, one of the explicit conversion examples is exactly the opposite of
the one shown earlier. Instead of going from an int to a long, we could try exactly the
other way around. In that case, the compiler won’t allow you to do this implicitly because
the conversion may lose information. Not every 64-bit long fits in a 32-bit int:

long l = 123;

int i = (int)l; // Dear compiler: believe me, I know what I’m doing!

Recall from our coverage of expressions that the checked keyword can be used to turn on
overflow checking as part of an expression’s evaluation. This can be used for such explicit
conversions, too, triggering an OverflowException if the conversion fails. The following
will actually do so:

long l = 2L << 32; // Notice the use of L to calculate 2^32 as a long

int i = checked((int)l); // This will throw an OverflowException.

Enumeration Conversions
As you learned in Chapter 11, “Fields, Properties, and Indexers,” enumerations are
nothing but numeric value types in disguise. The underlying type is what determines all
of an enum’s values’ representation. Only one implicit conversion exists, from the literal 0
to a value of the enum’s type. This allows default-value initialization of enum values. It’s
assumed that the zero value of an enum provides a meaningful default. Often, it is named
None for precisely that reason:

ConsoleColor color = 0; // Will be the same as ConsoleColor.Black.

FileShare share = 0; // Will be the same as FileShare.None.

FileMode mode = 0; // Meaningless, since there’s no 0 value in the enum.

Explicit conversions requiring a cast exist between the enum type and its underlying type
(but in fact also to other numeric types), in both directions:

ConsoleColor red = (ConsoleColor)12;

int twelve = (int)red;

Nullable Conversions
Intended to be a natural extension to the use of regular value types, their nullable forms
support a series of conversions that are much expected. For example, you can always go

629Conversions

from an underlying type to its nullable form in an implicit manner. Furthermore, all the
implicit numeric conversions apply to nullable forms, too:

int i = 42;

int? ni = i; // int -> int?

long? nl1 = i; // int -> long?

long? nl2 = ni; // int? -> long?

When converting between values of different nullable types, a null-value represented by a
HasValue property retuning false will simply result in a null value of the target type. If
the value isn’t null, the underlying value will be converted and wrapped in a value of the
target type.

On the explicit conversion side, nullables support the lifted form of the underlying type’s
explicit conversions. In addition, you can also go from a nullable value to its non-nullable
type. In such a case, an exception will be thrown if the original value is the null value:

long? l = 123;

int? i = (int?)l;

int? n = null;

int j = (int)n; // Will throw an InvalidOperationException

Reference Conversions
For reference types, a wide range of conversions exist, most of which require a further
discussion about object-oriented programming principles, which are covered in Chapter
14. For completeness, we simply mention the supported conversions here and illustrate
them with a couple of examples.

Implicit conversions exist between an object of a certain reference type and any of its base
types or interfaces it implements. As a result, every object of a reference type can be
converted to an object of type System.Object:

List<int> xs = new List<int> { 1, 2, 3 };

IList<int> list = xs; // Every List<T> implements IList<T>.

IEnumerable<int> sequence = list; // Every IList<T> is an IEnumerable<T>.

Student s = new Student(“Bart”, 27, Grade.Third);

Person p = s; // Every Student is a Person.

string s = “Hello”;

object o = s; // Every string is an object.

Arrays support covariant conversion, which is discussed as part of our coverage of generics
in Chapter 15, “Generic Types and Methods,” which simply means you can assign an

630 CHAPTER 13 Operator Overloading and Conversions

array of a more derived type to one of a less derived type. For example, an array of strings
can be assigned to an array of objects:

string[] names = new[] { “Bart”, “John” };

object[] objects = names; // Because every string is an object...

BROKEN ARRAY COVARIANCE

As you learn in Chapter 15, covariance for arrays poses an issue concerning type safe-
ty, which is mitigated by runtime type checks. The history of this broken form of vari-
ance lies in the CLI’s intent to support a whole range of programming languages,
including some that have broken variance in their type system. As you’ll see, with
generics, things are much better nowadays.

One more implicit conversion that’s often used when dealing with reference types is the
use of the null literal, which can be converted into any reference type. In fact, the null
literal doesn’t have a type of its own; instead, it’s flexible in that it lends itself to be used
with any reference type (or nullable value type):

string s = null;

Furthermore, there are a few implicit reference type conversions to special base types that
are provided by the runtime. Every delegate can be assigned to System.Delegate and
every array to a System.Array. You might recall that every enumeration value can also be
assigned to a System.Enum, which is in fact not a reference conversion because the original
type isn’t a reference type to begin with. This causes what’s known as a boxing conver-
sion, which is discussed in the next section.

For the explicit conversions supported on reference types, you can always attempt to cast
upward, from a less-derived type to any of its deriving types. For example, because an
object may be a string, attempting such a conversion is permitted. However, because
there’s no guarantee it works, an InvalidCastException can result if the given object
turns out to be something other than a string. If an explicit conversion can be proven not
to work, ever, the compiler won’t permit it to be written:

object o = “Hello”;

string s = (string)o; // An object could be a string.

Person p = new Student(“Bart”, 27, Grade.Third);

Student s = p; // A Person could be a Student.

object q = new Person(“John”, 62);

string t = (string)q; // Throws an InvalidCastException.

Animal a = new Giraffe();

Person x = a; // Will fail to compile: an Animal is never a Person.

631Conversions

Similar explicit conversions are permitted using interfaces: An IEnumerable<int> could
be List<int>, but it could well be of another collection type. So the conversion may fail
at runtime.

THE IS AND AS KEYWORDS

Type checks using the is and as keywords can be used to mitigate runtime exceptions
that result from attempts to cast objects. Whereas is returns a Boolean as the result
of comparing an object with a type (roughly indicating whether it will be possible to
assign the object to a variable of that type), as will attempt the conversion and return
null if it’s invalid. Therefore, as cannot be used if a null reference is permitted for the
operand object because disambiguation of a failed conversion and a null reference can-
not be achieved.

Boxing and Unboxing Conversions
As you learned before, assignment of a value type to a reference type invokes a runtime-
level mechanism called boxing. The opposite direction invokes the reverse operation
known as unboxing. Those operations are directly associated with the CLR’s memory
layout, going between stack and heap allocation. Although flexible and allowing for a
unified view on types, boxing puts additional stress on the garbage collector. With the
advent of generics, boxing largely can be avoided.

The following code fragment shows an implicit boxing conversion and an explicit one
that performs unboxing thereafter:

int i = 42;

object o = i; // Boxing is happening here

int j = (int)o; // Unboxing is happening here.

Other implicit boxing conversions include going from an enum to System.Enum, going
from a value type to System.ValueType, and going from a value type to an interface it
implements. Support for dealing with nullable types exist, too.

The explicit unboxing conversions pretty much go the opposite way as the ones that were
described previously for implicit boxing.

User-Defined Conversions

Now that you have a sense of various supported built-in conversions, you can learn how
you can define both implicit and explicit conversions on user-defined types. Although
conversions can be handy, it’s recommended to keep a few design best practices in mind.
The most important one involves implicit conversions, which should never lose any infor-
mation, nor should they ever throw an exception as part of their operation. The reason for
those recommendations is straightforward: Because an implicit conversion can be injected
silently by the compiler, it might not be obvious at all what’s going on with the code.

632 CHAPTER 13 Operator Overloading and Conversions

Cartesian Coordinates
(x, y)

Polar Coordinates
(r, θ)

Conversions

y

θ

x

r

r = +x2 y2 θ = atan()y
x

x = y = r sin(θ)r cos(θ)

FIGURE 13.6 A point represented in Cartesian and polar coordinates.

Implicit conversions are considered by the compiler when an expected type (for example,
for the target of an assignment to a field or a parameter) does not match the type of the
object that’s available. In such a case, the compiler will start a hunt for an applicable
implicit conversion and pick the best match subject to a set of rules. A compilation error
is raised if no such operator can be found (or more than one is equally well applicable).

To illustrate user-defined conversion operators, we start by defining an explicit one that
operates on a Point type. Points can have multiple representations depending on the
coordinate system that’s picked. For illustration purposes, we’ll consider points in two
dimensions, which can be represented using Cartesian (x, y) coordinates but also using
polar coordinates. Figure 13.6 shows those coordinate systems for a given point, including
conversions back and forth.

For each coordinate system, we’ll define a representation using a struct type that will
simply contain two fields for the coordinates. We’ll pick double for the representation of
those coordinates and consider the angle theta to be represented in radians. To allow users
to make use of the point values in APIs that support either of the two coordinate systems,
we’ll define an explicit conversion between the two.

The reason we’re going with an explicit conversion is rather obvious. Because the conver-
sion involves possible loss of precision, due to the use of floating-point numbers, we
should not go for an implicit conversion. Going back and forth between coordinate
systems might not result in exactly the same original point due to rounding errors. The
following code implements both structs and the conversions:

struct CartesianPoint

{

private readonly double _x, _y;

public CartesianPoint(double x, double y)

{

633Conversions

_x = x; _y = y;

}

// Add get-only properties and ToString overload.

public static explicit operator PolarPoint(CartesianPoint p)

{

// Math.Atan could be used below as well, feeding in p._y / p._x. This

// will still work fine, even if _x is zero, due to the use of floating

// point PositiveInfinity or NegativeInfinity for the division-by-zero.

return new PolarPoint(

Math.Sqrt(p._x * p._x + p._y * p._y),

Math.Atan2(p._y, p._x)

);

}

}

struct PolarPoint

{

private readonly double _radius, _theta;

public PolarPoint(double radius, double theta)

{

_radius = radius; _theta = theta;

}

// Add get-only properties and ToString overload.

public static explicit operator CartesianPoint(PolarPoint p)

{

return new CartesianPoint(

p._radius * Math.Cos(p._theta),

p._radius * Math.Sin(p._theta)

);

}

}

Notice how we use the same operator keyword as we did for user-defined operators, with
the sole difference being the presence of the explicit (or implicit, as you will see further)
keyword to denote we’re defining a conversion. Conversion operators are unary operators
that either take in or return an object of the containing type. The order of the keywords
and the return type is also determined strictly: first “explicit operator,” then the return
type, and then the single-parameter list.

634 CHAPTER 13 Operator Overloading and Conversions

FIGURE 13.7 An explicit conversion gets implemented as an op_Explicit method.

With this code in place, we can write the following user code, invoking the explicit opera-
tor by means of cast syntax. This code assumes we have a decent ToString defined on the
two types such that we can inspect the result easily.

var pt = new CartesianPoint(1, 1);

Console.WriteLine(pt);

Console.WriteLine((PolarPoint)pt);

Console.WriteLine((CartesianPoint)(PolarPoint)pt);

Try substituting the Cartesian coordinates on the first line with some other values to see
the round-tripping behavior of the first line. For quite a few values, you’ll see the original
value being printed to the screen again. However, because of rounding errors, you might
see slight differences from time to time (for example, for a Cartesian point with (0, 1) as
its coordinates):

(0, 1)

(1, 1.5707963267949)

(6.12303176911189E-17, 1)

This is nothing but floating-point imprecision, where the X-coordinate of the result really
is a zero value, hidden by some incredibly small noise. However, it illustrates nicely why
we shouldn’t have used an implicit conversion here. Figure 13.7 shows a user-defined
conversion to be nothing but a special op_Explicit (or op_Implicit) method.

Use of implicit conversions is less generally applicable and is restricted to some more
specialized scenarios. One is where a type acts as a wrapper around a value of another type
(for example, a FilterBoolean that has some special semantics implemented behind
custom-defined operator s), but whose representation can always be turned into a regular
CLR Boolean (or maybe a nullable form thereof). The opposite direction for the conver-
sion is often also applicable:

635Conversions

struct FilterBoolean

{

private readonly bool _value;

public FilterBoolean(bool value)

{

_value = value;

}

// Other members from previous examples could go here.

public static implicit operator bool(FilterBoolean b)

{

return b._value;

}

public static implicit operator FilterBoolean(bool b)

{

return new FilterBoolean(b);

}

}

With the preceding definition, it becomes incredibly easy for users to supply one of those
FilterBoolean values where a regular Boolean is expected and vice versa. For example:

static void Main()

{

PrintIfTrue(new FilterBoolean(true), “Hello”);

}

static void PrintIfTrue(bool value, string s)

{

if (value)

Console.WriteLine(s);

}

Implicit conversions are considered only if a better overload match isn’t found. That is, if
a PrintIfTrue overload would exist taking in a FilterBoolean, that one would be taken
over the one requiring an implicit conversion for the first argument value.

Also, multiple user-defined implicit conversions cannot be used on a single expression.
The following example illustrates such a case:

struct FilterInteger

{

// Field, constructor, etc. omitted

636 CHAPTER 13 Operator Overloading and Conversions

FIGURE 13.8 An implicit conversion followed by a conversion of an Int32 to an Int64.

public static implicit operator SpecialInteger(FilterInteger i)

{

return new SpecialInteger(i._value);

}

}

struct SpecialInteger

{

// Field, constructor, etc. omitted

public static implicit operator int(SpecialInteger i)

{

return i._value;

}

}

Given this, it’s not possible to write the following, even though you could go from
FilterInteger to SpecialInteger and then to a System.Int32, all implicitly. Only a
single implicit conversion step with a user-defined conversion is allowed.

int i = new FilterInteger(42);

When built-in conversions are involved, you’ve got one more shot, so to speak. In this
example, you could take a SpecialInteger and assign it to a long. This will first go to an
Int32 using the user-defined conversion and be widened into a long afterward:

long l = new SpecialInteger(42);

Figure 13.8 shows the implicit conversion from SpecialInteger to Int32 taking place
through the invocation of the op_Implicit method. Once we’ve arrived at the Int32, one
more instruction takes care of the built-in conversion to a long (that is, conv.i8, where
the 8 stands for the number of bytes making up the integer).

637Conversions

To emphasize the danger of ill-behaved implicit conversion operators, consider the case
where an exception would appear on a seemingly innocent assignment statement as the
one shown in the last code fragment. It won’t at all be obvious to people reading (or
debugging) the code why this exception appears out of nowhere.

struct BadInteger

{

public static implicit operator int(SpecialInteger i)

{

throw new Exception();

}

}

...

var bad = new BadInteger();

int val = bad; // Throws here?!

When defined on value types, conversions also participate in null-value lifting, as you’ve
seen for other operators, too. In our running example, a nullable FilterInteger or a non-
nullable FilterInteger could be converted into a nullable Int32:

int? i = new SpecialInteger();

int? j = default(SpecialInteger?);

SYSTEM.NUMERICS

One of the best examples of valid uses of user-defined operators and conversions can
be found in the .NET 4 System.Numerics namespace, containing types like
BigInteger and Complex. Both of those types implement a bunch of conversions that
allow primitive typed values to be turned into those special ones, thus reducing the fric-
tion that would exist to create new instances of those types. Implicit ones are used to
take primitive types to BigInteger, and explicit ones are used to leave that world
again (because not every BigInteger will fit in, for instance, an Int32):

BigInteger x = int.MaxValue; // Implicit conversion from Int32.

BigInteger y = x + 1; // BigInteger arithmetic.

BigInteger z = (int)y; // Will throw an exception since it doesn’t fit.

The Complex type also has a bunch of conversions, mostly implicit ones that can be
used to turn a numeric value of a built-in type into a Complex number (which will use
the input value for the real part). Explicit ones aren’t provided to leave the world of a
complex number. This would have little use because for every number with an imagi-
nary part, the conversion would fail. Instead, users can access the real and imaginary
parts using properties named as such.

638 CHAPTER 13 Operator Overloading and Conversions

Other Conversion Mechanisms

Conversion is such an important concept that history has yielded many shapes and forms
of conversion mechanisms. We briefly touch on those here, but refer to MSDN documen-
tation for a more thorough discussion.

System.Convert, Your One-Stop Conversion Shop
The first version of the .NET Framework introduced a (static) Convert class in the System
namespace to help out people with all sorts of conversions involving primitive types
supported by the runtime and the framework. Although some of the methods on the class
do have a corresponding method elsewhere, the overall intent of Convert is to bundle all
sorts of conversions together.

Most methods start with To, followed by a primitive type name, such as Int32, Char,
Boolean, String, and so on. All of those methods have a whole series of overloads that
accept 19 or so different parameter types. As a result, one gets a “full mesh” of from-to
type pairs, the from part encoded in the parameter type and the to part encoded in the
method name. For example, the ToInt32 method can be used in a variety of ways:

int five = Convert.ToInt32(5); // Essentially a no-op.

int nine = Convert.ToInt32(“9”); // Much like int.Parse.

int four = Convert.ToInt32((byte)4); // Much like an implicit cast.

int zero = Convert.ToInt32(false); // Cannot be achieved using a cast.

int oops = Convert.ToInt32(DateTime.Now); // InvalidCastException.

The second of those example uses also accepts an additional format provider argument
that allows to influence the behavior of the parse operation carried out on the string (for
example, for globalization purposes).

Except for a few handy methods like FromBase64String, ToBase64String, and some of the
numeric conversion method operators accepting a numeric base (as 2 for binary), I have
seldom used the Convert class. Be prepared, though, to encounter code that uses this type
excessively; some people really like it.

IConvertible

Closely related to the System.Convert class, the IConvertible interface provides all the
To* conversion methods supported through System.Convert. When a type chooses to
implement this interface, it readily becomes through System.Convert methods that take
in a System.Object as the argument. For example:

var pt = new Point(3, 4);

var s = Convert.ToString(pt, null /* format provider */);

If Point were to decide to implement IConvertible, it could provide a ToString method
that comes from the IConvertible interface, providing a meaningful conversion.
However, other than the primitive types in the System namespace, little types do imple-
ment this interface. Unless your type supports a lot of conversions to the 16 primitive
types that have conversion methods defined on IConvertible, and you really want to

639Conversions

enable the use of the Convert class with your type, there’s little incentive to bother
providing an implementation.

TypeConverter

A generalization on top of type conversion is provided by the TypeConvert class that’s
defined in the System.ComponentModel namespace. Its goal is to provide a means for both
designers and runtime libraries to deal with conversions. This is usually used in conjunc-
tion with UI frameworks like WPF, where the concept of a conversion is known to the
XAML language. For example, to specify a Point, you can write ”3,4” as a string, which is
turned into a Point whose X- and Y-coordinates are 3 and 4, respectively.

The TypeConverter base type provides a set of virtual methods one can override. Those
methods include CanConvertFrom, CanConvertTo, ConvertFrom, and ConvertTo, as well as a
couple of other ones that are infrequently overridden. An example of a type converter for
a Point type is shown here:

class PointConverter : TypeConverter

{

public override bool CanConvertFrom(ITypeDescriptorContext context,

Type sourceType)

{

if (sourceType == typeof(string))

return true;

return base.CanConvertFrom(context, sourceType);

}

public override bool CanConvertTo(ITypeDescriptorContext context,

Type destinationType)

{

if (destinationType == typeof(string))

return true;

return base.CanConvertTo(context, destinationType);

}

public override object ConvertFrom(ITypeDescriptorContext context,

System.Globalization.CultureInfo culture, object value)

{

if (value == null)

throw base.GetConvertFromException(value);

var s = value as string;

if (s != null)

{

double x, y;

string[] parts = s.Split(‘,’);

640 CHAPTER 13 Operator Overloading and Conversions

if (parts.Length != 2 || !double.TryParse(parts[0], out x)

|| !double.TryParse(parts[1], out y))

throw base.GetConvertFromException(value);

return new Point(x, y);

}

return base.ConvertFrom(context, culture, value);

}

public override object ConvertTo(ITypeDescriptorContext context,

System.Globalization.CultureInfo culture, object value,

Type destinationType)

{

if (value is Point && destinationType == typeof(string))

return ((Point)value).ToString();

return base.ConvertTo(context, culture, value, destinationType);

}

}

To enable the type convertor for our Point type, we have to register it by using a
custom attribute:

[TypeConverter(typeof(PointConverter))]

struct Point

{

...

}

By putting this attribute in place, (UI) designers will be able to find a converter that can
be used to convert user input into a Point type and vice versa. An implementation like
ours exists for the Point type defined in WPF’s System.Windows namespace (as well as for
the Point in System.Drawing used by Windows Forms). Figure 13.9 shows the use of
another converter type that deals with brushes, allowing them to be specified using a
string. A brush is an abstraction over a way to paint some surface, which can be a solid
color, as shown here.

641Summary

FIGURE 13.9 Specification of a Label’s brush using a string that gets converted.

Summary
This chapter wrapped up the discussion of a type’s set of members by looking at operator
overloading and user-defined conversions. Care should be taken when deciding on the
definition of any of those: It might not be immediately obvious what code means if primi-
tive language operators get a totally different meaning due to excessive overloading.
However, there are quite a few cases where overloading operators and providing conver-
sions between types (typically values) is beneficial. Typical samples include mathematical
constructs such as a Vector.

Extra care should be taken also when overloading equality operators. More information
about this appears in Chapter 14, when you learn about virtual methods, such as
System.Object’s Equals method.

Now that you’ve learned about all members supported on classes and structs, you’re ready
to explore the notion of object-oriented programming in the next chapter.

This page intentionally left blank

CHAPTER 14

Object-Oriented
Programming

IN THIS CHAPTER

. The Cornerstones of Object
Orientation 643

. Inheritance for Classes 657

. Protected Accessibility 669

. Polymorphism and Virtual
Members 670

. Abstract Classes 683

. Interfaces 686
Because you’ve familiarized yourself with the various
members that make up classes and structs, you’re now
ready to step up one more level and establish relationships
between classes. This is one of the various aspects that
object-oriented programming embodies.

Before delving into the language-specifics of object-orienta-
tion, you start by learning the three big pillars of this
programming paradigm: encapsulation, inheritance, and
polymorphism. After you’ve familiarized yourself with those
concepts, you take a look at a series of language and
runtime features that enable them, including virtual
methods (and v-tables), keywords such as override, new,
protected, and abstract. Finally, you examine different
ways to establish contracts for a type’s functionality in
terms of abstract classes and interfaces.

The Cornerstones of Object
Orientation
Object-oriented programming is largely built on three core
pillars, which we discuss in just a minute. But first, why
should you care? Or, better, what types of problems does
object-oriented programming (OOP) aim to solve?

A Historical Perspective

As the art of programming has continually and increasingly
tried to move away from bare-bones down-to-the-metal
machine instruction sequences, more-structured program-
ming approaches have entered the programmer’s toolbox.

644 CHAPTER 14 Object-Oriented Programming

It should be clear that low-level manipulation of machine state in terms of registers,
manual memory management, valid instruction ordering, and so on is not the most
appealing way to program enterprise-level applications (or, in fact, anything beyond the
lowest levels of kernel or driver primitives).

One of the first advances made in democratizing programming was the introduction of
textual symbolic languages, moving away from raw byte sequences. Although assembler
languages were an obvious first target, higher-level structured programming concepts had
even more appeal. Instead of dealing with branch statements (à la goto), why can’t we
have statements and abstract away branching logic? Figure 14.1 illustrates an overlay of
C code with its corresponding assembler, emphasizing some of the low-level maintenance
tasks that are abstracted away.

Another common source of programmer pain was the fact that low-level languages were
tied to a particular machine’s architecture. You had to know a whole bunch of details of
the instruction set, registers, and so on to write good code. Besides hindering portability of
code to other machines, things were very error-prone. Also, the slightest change to the
intended logic could cause a huge impact on the rest of the code. For example, adding a
single parameter to a routine can require spilling registers into stack allocations. The need
for procedural programming became obvious. This notion roughly corresponds to the C#
and CLR notions of methods and method calls. Extra layers of indirection are put in place

FIGURE 14.1 Control flow and stack maintenance abstractions in C.

645The Cornerstones of Object Orientation

such that intermediate language (IL) code has instructions to deal with any number of
arguments, regardless of the target machine architecture. The Just-in-Time (JIT) compiler
will do the rest to make sure the code gets executed in an efficient manner, leveraging
CPU registers wherever possible.

We’ve made quite a leap here, omitting intermediate stages of evolution, but concepts
such as blocks, variables, scope, and so on all contributed to those first generations of
languages. These concepts enabled structuring programs in terms of reusable routines, but
one big thing was still lacking: how to manage state used by all those little routines. In
particular, it’s extremely useful to have a way to deal with state beyond a single invocation
of a procedure. One of the features in C is the capability to declare a local variable as
static, which will cause its contents to stay alive across invocations:

void Inc() {

static int i = 0;

printf(“%d\n”, ++i);

}

int main() {

Inc(); // Prints 1

Inc(); // Prints 2

}

In this example, the C/C++ compiler has allocated a memory location for static variable i,
away from the stack frame tied to a particular invocation of Bar. In other words, we’ve
created some kind of global state that is visible only from inside Bar methods. What
makes it global is the fact it isn’t local (another shocker). Looking at it from a different
angle, you could also say that Bar is no longer a “pure function” because it relies on state
that’s not coming in through any of its parameters.

Although the preceding sometimes comes in handy, it lacks the capability to share state
across different functions, unless all such state is always threaded through the code by
means of explicit parameter passing. For example, how would we define counter func-
tionality with increment and decrement options? One solution is to introduce really
global state:

static int i = 0;

void Inc() {

printf(“%d\n”, ++i);

}

void Dec() {

printf(“%d\n”, —i);

}

646 CHAPTER 14 Object-Oriented Programming

Although this will work fine, we’ve just opened a big hole in our application because code
other than Inc and Dec could manipulate the shared integer global variable.

And this has brought us pretty close to one of the pillars of object orientation, namely the
capability to encapsulate state and operations in logical units, referred to as classes. In
fact, the preceding code suffers from more issues than just the exposure of the global state
variable. Because it’s global (and static), there cannot be two or more counters that operate
on their own counter values. This introduces the need for instances of those classes. In
C++, one of the first truly mainstream industrial-strength object-oriented languages, we
would write the following:

class Counter {

int id, i;

public:

Counter();

void Inc();

void Dec();

};

Counter::Counter() {

static int n = 0;

id = n++;

i = 0;

}

void Counter::Inc() {

printf(“%d -> %d\n”, id, ++i);

}

void Counter::Dec() {

printf(“%d -> %d\n”, id, —i);

}

void main() {

Counter *c1 = new Counter();

Counter *c2 = new Counter();

c1->Inc(); // 1

c2->Dec(); // -1

c2->Inc(); // 0

c1->Inc(); // 2

c1->Dec(); // 1

c2->Inc(); // 1

}

Ignore the separation between the class definition and the implementation of the class’s
members, which is one of the intricacies of C++ (typically used in conjunction with the

647The Cornerstones of Object Orientation

concept of headers). What matters more is that each Counter has instance-level state for its
identifier (a unique number for each counter, maintained by the constructor), as well as the
current counter’s value. This state no longer leaks outside the boundaries of the containing
class instance, which realizes encapsulation. Also, the operations for the counter are no
longer global functions but have turned into methods associated with the class.

Encapsulation

Even though the previous discussion has pretty much introduced this concept already,
let’s bring it over to the world of C# first. Encapsulation enables members (including fields
for state, as well as all the other members discussed in Chapters 11, 12, and 13) to be asso-
ciated with a type. In fact, C# doesn’t allow global members that are defined outside a
type (even though the CLR does). In this world, our counter looks like this:

class Counter {

private int _id, _i;

private static int s_n;

public Counter() {

_id = s_n++;

}

public void Increment() {

Console.WriteLine(“{0} -> {1}”, _id, ++_i);

}

public void Decrement() {

Console.WriteLine(“{0} -> {1}”, _id, —_i);

}

public int Count

{

get { return _i; }

}

}

We already know from Chapter 10, “Methods,” what keywords such as static and public

mean. All we’re emphasizing here is the fact that you put members in types, which will be
restricted to classes (and interfaces) in this chapter. To use our counter type, we can
construct instances by using the new keyword, which shouldn’t be new either:

Counter c1 = new Counter();

Counter c2 = new Counter();

c1.Increment(); // 1

c2.Decrement(); // -1

c2.Increment(); // 0

648 CHAPTER 14 Object-Oriented Programming

c1.Increment(); // 2

c1.Decrement(); // 1

c2.Increment(); // 1

Of incredible importance to the technique of encapsulation is the capability to declare an
accessibility level on members. This serves a couple of goals, one of which is to make sure
no outsiders can touch state in a manner that’s inconsistent with the consistency
intended for (instances of) the type. In our case, it should never be possible for the
counter to experience a lapse in values if no Inc or Dec commands were issued.

Even if the outside world is well intentioned with exposed writable state, other dangers
are lurking. For example, private state may not be secure to be exposed. Also, exposing
implementation details of a type hinders the type’s owner in evolving the way the type
works. This is the main reason to never expose fields directly but to instead provide get/set
accessors through properties, as discussed in Chapter 11, “Fields, Properties, and Indexers.”

Inheritance

The next pillar of OOP is inheritance. Now that we have nice encapsulation of functional-
ity in a (class) type, what about reusing it for other types? There are two ways to do this.
One is to wrap the use of one type in another one. For example, a customer tracking
system may use a counter to keep track of the number of current visitors in an online store.

However, this containment mechanism is not very different from any other use of a
counter elsewhere in the code. In fact, our customer-tracking system (implemented as
another class) encapsulates a counter and may expose some of the counter’s operations to
the outside world. For example, our counter could have a Count get-only property that
may simply be exposed on the customer-tracking system:

class Tracking

{

private Counter _activeVisitors = new Counter();

public User Logon(string user, string password)

{

// Authenticate and authorize. Throw on failure.

_activeVisitors.Increment();

// Code to return a User object.

}

public void Logoff(User user)

{

// Some plumbing...

_activeVisitors.Decrement();

}

649The Cornerstones of Object Orientation

public int CurrentVisitorCount

{

get { return _activeVisitors.Count; }

}

}

Another scenario for reuse of a counter is to create a specialized counter. Given the bare-
bones functionality that our Counter class defines, we could create a new kind of counter
that exposes more operations or specializes the existing operations. To do so, we want to
create a subclass of Counter that shares the same contract to the outside world. This estab-
lishes three important properties:

. Reuse: Someone has already invested in creating a solid counter; why can’t we lever-
age those operations if we want to create an advanced counter?

. Extend: In addition to reusing the existing operations on a counter, a subtype of a
counter could add more operations, possibly using the existing ones.

. Modification: By overriding some of the counter base type’s members, those could
be tweaked to provide specialized behavior.

Let’s take a look at all of those now. Starting from a slightly modified Counter class, we
want to create specialized counter subtypes. One will guard against negative values, while
another will count by increments and decrements larger than 1. Yet another one will
extend the counter with a Reset operation.

Don’t worry too much about a whole set of concepts and related keywords that are intro-
duced here; they all get in-depth treatment later in the chapter. Just go with the flow to
get some basic notions wired up in your brain. To make our class a bit more useful, we’ll
redefine it somewhat to get rid of a counter identifier and the printing behavior and to
expose the Count value:

class Counter {

public int Increment() {

return ++Count;

}

public int Decrement() {

return —Count;

}

public int Count { get; private set; }

}

Notice we’re using an auto-implemented property to keep the counter value, with only
public accessibility for the get operation. Such a property saves us from declaring a
backing field and trivial get and set accessors, which is fine because we don’t need the
field to be declared as read-only (as explained in Chapter 11).

650 CHAPTER 14 Object-Oriented Programming

The first thing we have to do is permit our Counter for inheritance, basically allowing
other classes to derive from it. This is enabled by default (that is, if no sealed keyword is
used on the class definition):

/* I am not “sealed” */ class Counter

{

...

}

At this point, we can already extend the class by declaring a subclass. To do so, we just
declare another class and specify Counter in its inheritance list, which appears after the
colon token:

class ResettableCounter : Counter

{

}

Just doing this will allow us to use the ResettableCounter with exactly the same members
as Counter exposed on it (with the exception of constructors, as you will see later). We say
that the subtype has inherited the base type’s members:

var counter = new ResettableCounter();

Console.WriteLine(counter.Increment());

Obviously, we want to add more to operations to this specialized counter; in particular we
promised the user the capability to reset it to zero. One way to do this is by defining a
Reset method that will count down until the counter reaches zero:

class ResettableCounter : Counter

{

public void Reset()

{

if (Count < 0)

while (Count < 0)

Increment();

if (Count > 0)

while (Count > 0)

Decrement();

}

}

651The Cornerstones of Object Orientation

A NOTE ON THREAD SAFETY

In our discussion about the Counter class and its subtypes, we consider a type that
doesn’t make any promises of thread safety. If multiple users are dealing with the
counter at the same time, from different threads, invariants may get broken. It’s the
user’s responsibility to prevent simultaneous use of the counter.

To say the least, this code is an annoying and inefficient way to get back to zero.
Nonetheless, it shows we’ve inherited the Increment and Decrement operations from the
base class and can use those perfectly well from inside the derived class. To make things
nicer, the base class could allow subclasses to access other base class members by declaring
those as protected:

class Counter {

...

public int Count { get; protected set; }

}

This means that the Count property is accessible to the code defined on the class itself
(that is, just like private accessibility) but also to derived types. It isn’t available to the
others outside the inheritance hierarchy. As a result, our ResettableCounter can write
the following:

class ResettableCounter : Counter

{

public void Reset()

{

Count = 0; // The setter is accessible to us, a derived class.

}

}

You will agree this code is much easier on the eye and arguably more efficient.

So far, you’ve seen how to derive from a base class and extend it with additional members.
This leaves us with the modification promise made earlier. How can we tweak the behav-
ior of, say, Decrement to throw an exception if the counter is about to drop below zero?
The answer is twofold. First, the base class needs to give the green light for such modifica-
tion. It does so by marking a member overridable using the virtual keyword:

class Counter {

public virtual int Increment() {

return ++Count;

}

652 CHAPTER 14 Object-Oriented Programming

public virtual int Decrement() {

return —Count;

}

public int Count { get; protected set; }

}

DIFFERENT LANGUAGES, DIFFERENT DEFAULTS

In a true fundamentalist object-oriented spirit, some languages declare members as
virtual by default, requiring the user to block the capability to override it explicitly using
keywords like final (or sealed in C# terms). Although this seems desirable, it causes
nightmares in terms of maintainability of framework libraries because it isn’t possible
to disable overridability after it has been exposed as such. Doing so would break exist-
ing subclasses. For that very reason, the default in C# is to have nonvirtual members,
requiring explicit use of the virtual keyword if desired.

Notice that C# has a hybrid set of defaults. For members, the default is sealed. For
classes, the default is to allow inheritance (that is, nonsealed). Whether this inconsis-
tency is a good thing can be debated. I tend to mark classes as sealed by default,
whereas my boss defends the C# default.

With virtual members in place, subclasses can use the override keyword to specialize a
member’s behavior. Typically, you’ll want to call the base class’s functionality as part of
the specialized implementation, which is done using the base keyword:

class NonNegativeCounter : Counter

{

public override int Decrement()

{

if (Count == 0)

throw new InvalidOperationException(“Can’t count below zero.”);

return base.Decrement();

}

}

Another counter built by extending and modifying the base class’s behavior through
inheritance is shown here:

class StepCounter : Counter

{

private int _step;

public StepCounter(int step)

653The Cornerstones of Object Orientation

{

_step = step;

}

public override int Increment()

{

Count += _step; // Remember the setter is protected!

return Count;

}

public override int Decrement()

{

Count -= _step; // Remember the setter is protected!

return Count;

}

}

Besides inheritance from classes, you can also “inherit from” an interface, which more
commonly is referred to as implementing an interface. Interfaces provide a contract
between two parties: an implementer and a consumer.They are related to abstract classes in
that they don’t provide a default implementation of their members. We’ll look at this in
more detail in the section “Abstract Classes,” later in this chapter. It’s the task of the deriv-
ing or implementing type to do so:

// Contract: “I can compare myself to somebody else of type T”

interface IComparable<T>

{

int CompareTo(T other);

}

Our counter could implement this (generic) interface. You see how implementing an inter-
face is handy for use through polymorphism in just a minute:

class Counter : IComparable<Counter> {

...

public int CompareTo(Counter other)

{

// Negative if “this < other”, positive if “this > other”, zero if equal

return this.Count - other.Count;

}

}

654 CHAPTER 14 Object-Oriented Programming

Polymorphism

The final pillar of object-oriented programming is known as polymorphism, from the
Greek word that stands for “many shapes.” In fact, when talking about inheritance, we
have already seen most of the polymorphic principles illustrated at the level of member
declarations. More specifically, the virtual and override keywords are at the heart of the
principle of polymorphism. What we haven’t talked about yet is the different uses it
allows. So far, we’ve used virtual and override to be able to specialize a class:

class NonNegativeCounter : Counter

{

public override int Decrement()

{

if (Count == 0)

throw new InvalidOperationException(“Can’t count below zero.”);

return base.Decrement();

}

}

To use this counter, we could simply write the following:

NonNegativeCounter counter = new NonNegativeCounter();

counter.Increment();

counter.Decrement();

counter.Decrement(); // Will throw an exception.

However, in addition to this, the principle of polymorphism enables you to use all types
of counters through their base class type. That is, where a Counter is expected, you can
use an object of any type derived from Counter, as well:

Counter counter = new NonNegativeCounter();

counter.Increment();

counter.Decrement();

counter.Decrement(); // Will throw an exception.

Despite the static type of the variable counter to be different from NonNegativeCounter,
we’ll still see the specialized counter’s behavior being triggered by calls to the methods
Increment and Decrement. The mechanism enabling this is virtual dispatch, which is
discussed in more detail later.

Essentially, calls to virtual methods loop in the CLR to take care of a virtual dispatch oper-
ation that depends on the runtime type of the object involved. In the preceding example,
the static type (that is, the type known to the compiler for the variable slot) of counter is
Counter, while the runtime type of the object held in that variable happens to be the

655The Cornerstones of Object Orientation

more specialized NonNegativeCounter. Calls to virtual methods are routed to the most
specific implementation, which is found by looking at the runtime type.

The reason for the name polymorphism should be more or less apparent. For a single type,
multiple different shapes can exist, which are defined by subtypes. All of those share
common parts. For example, each Shape object can have a bounding rectangle and a
color, whereas a more specialized Circle will have additional properties like radius, while
yet another subtype Polygon will have a count of sides, too. To UI frameworks, it won’t
matter which Shape object you give it, as long as all of them have some virtual Draw
method available.

Polymorphism is applicable everywhere objects are passed or held. For example, you can
have collection types that are declared to hold Shape objects, but every object of a type
derived from Shape will be allowed to get in there, as well:

List<Shape> shapes = new List<Shape>();

shapes.Add(new Rectangle(3, 4));

shapes.Add(new Circle(5));

Places where objects are passed are equally important in polymorphic code. Often, you
will see constructors, methods, or other members expecting objects of a certain type that
support a set of required operations. The runtime type of the object passed in will deter-
mine the final behavior:

class Graphics

{

public void Paint(Shape shape)

{

// Code could query the shape for its dimensions and finally

// call some virtual Draw method to ask the objects to draw

// itself at calculated coordinates x and y:

int x = ...; int y = ...;

shape.Draw(this, x, y);

}

}

All of this enables an open-world model where different parties can contribute to an appli-
cation by deriving from classes, overriding behavior where needed. In our running
example of a UI framework, third parties can contribute their own controls, as long as
they implement the required operations for things such as rendering.

During our further discussion about polymorphism and inheritance, we’ll describe a series
of language constructs that are related:

. Establishing type hierarchies by deriving classes using the : syntax

. Declaring virtual members using the virtual keyword

656 CHAPTER 14 Object-Oriented Programming

virtual string ToString()
virtual int GetHashCode()

virtual bool Equals(object o)

Object

void Dispose();

IDisposable

Point Position { get; }
virtual void Draw()

void Dispose()

Shape

override void Draw()
int Radius { get; }

Circle

override void Draw()
int Width { get; }
int Height { get; }

Rectangle

Every Object can be
turned into a string

Shape implements the
IDisposable interface

Circle is a subclass
of Shape

Object is the
base class of Shape

Circle extends Shape
with a Radius

Every Rectangle is a Shape
Rectangle inherits from Shape

Rectangle
overrides Draw

Every Shape
has a Position

FIGURE 14.2 Object-oriented concepts for classes and interfaces.

. Overriding base class members using the override keyword

. Blocking member overrides using the sealed keyword

. Dispatching to a base class member using the base keyword

. Hiding base class members using the new keyword

. Abstracting base classes using the abstract keyword

. Notes on single inheritance, interfaces, and extension methods

But first, we examine the various relationships between types.

Types in Pictures

Because there’s quite a bit of vocab associated with OOP, it’s worth taking a moment and
putting all of it together in a picture. Follow Figure 14.2 while reading the following few
paragraphs.

The CLR, and hence C#, supports single inheritance for classes and multiple inheritance for
interfaces. This means that every class has a single base class (which by default is
System.Object, the mother of all types). Alternatively, we could say that a class is a

657Inheritance for Classes

subclass of its base class. Each class can implement zero or more interfaces, which means
providing an implementation for the interface’s members. At this point, the class supports
or exposes the interface. Classes have members that are inherited from the base class or
are introduced by the class itself.

As a result of inheritance, we end up with a type hierarchy. Notice that the “subclass of”
relationship is transitive. That is, if D is a subtype of a subtype of a type B, we also
consider D to be a subtype of B. An implication of this is that every type is a subtype of
the System.Object mother type, which acts as the root to any type hierarchy (and is often
omitted because it’s implied). Subtypes are different from the base type, which denotes the
(single) immediate parent of a type.

Inheritance for Classes
The first thing we want to look at is how to derive a class from another one. C# uses a
single syntax for inheritance both from a class or a set of interfaces, which is different
from languages like Java, in which two keywords, extends and implements, are used. In
the following example, we explicitly derive a class from System.Object:

class Person : Object

{

public Person(string name, int age)

{

Name = name;

Age = age;

}

public string Name { get; private set; }

public int Age { get; private set; }

}

The preceding code is no different from omitting the colon and base type altogether
because Object is the default base type if left unspecified:

class Person

{

public Person(string name, int age)

{

Name = name;

Age = age;

}

public string Name { get; private set; }

public int Age { get; private set; }

}

658 CHAPTER 14 Object-Oriented Programming

FIGURE 14.3 Constructors are not inherited.

Where things get more interesting is when we specify another nontrivial base class, as
shown here. In this scenario, Student is declared as a subclass of Person:

class Student : Person

{

}

There are a few interesting things to be discussed about the preceding code. First and fore-
most, the preceding code doesn’t compile. The reason for this is that the base class’s
members are inherited and hence available on the subclass, with the exception of
constructors. Because the base class has declared a nondefault constructor, what would it
mean from an initialization point of view if we were to create a new instance of Student?
How does the base class constructor ever get invoked?

var student = new Student();

Console.WriteLine(student.Name + “ is “ + student.Age); // What should it be?

Figure 14.3 shows the error message produced by the compiler when this situation is
detected. To convince yourself that constructors are not inherited from the base class, try
writing the following piece of code:

var student = new Student(“Bart”, 27);

Console.WriteLine(student.Name + “ is “ + student.Age);

659Inheritance for Classes

FIGURE 14.4 Calling a base class constructor.

To resolve this issue, we have to provide an instance constructor on the subclass. Let’s try
it by adding a default constructor first:

class Student : Person

{

public Student() { }

}

Again, the compiler will complain, this time pointing out that Person does not contain a
constructor that takes zero arguments. It’s simply not possible to initialize Person

without calling any of its constructors (low-level mechanisms in the CLR serialization
stack set aside), so the subclass cannot escape its responsibility to loop one of the base
class’s constructors when creating an instance of its own. Here is a valid way to get out of
this situation:

class Student : Person

{

public Student(string name, int age)

: base(name, age)

{ }

}

The base keyword is used here to refer to the immediate base class, in this case to call a
constructor. Figure 14.4 shows the IntelliSense provided upon invoking the base class
constructor, which is possible only in the context of a constructor using the colon-
prefixed syntax (symmetric to the declaration of a subclass).

Now it’s no longer possible to create a Student instance without specifying a name and an
age, which will be set on the members inherited from the base class:

var student = new Student(“Bart”, 27);

Console.WriteLine(student.Name + “ is “ + student.Age);

Figure 14.5 proves that the Name property was inherited from the base class: IntelliSense
mentions the base class Person in the tooltip for the selected Name property. Notice
members from the base class’s base class also show up. In this case, this is System.Object.

660 CHAPTER 14 Object-Oriented Programming

Typically, just creating a subclass without further specialization is not very useful. In the
next parts of the chapter, you learn how to override behavior, but for now let’s just focus
on extending a class with new members. For example, let’s extend a student with a new
College property:

class Student : Person

{

public Student(string name, int age, string college)

: base(name, age)

{

College = college;

}

public string College { get; private set; }

}

Notice how we use the base class constructor to initialize the inherited state, while we add
more code to the constructor to initialize the state that’s specific to the subclass. As you
saw before, constructors can also be chained within the current class, using the this
keyword. This still works in the context of subtyping, as long as the constructor calls ulti-
mately result in a proper call to a base class constructor:

class Student : Person

{

public Student(string name, int age)

: base(name, age)

{ }

public Student(string name, int age, string college)

: this(name, age)

{

College = college;

}

public string College { get; private set; }

}

FIGURE 14.5 Members are inherited from base classes.

661Inheritance for Classes

FIGURE 14.6 No multiple-class inheritance allowed.

In this example, it’s possible to create a new Student object without specifying a college
parameter (if that were desirable). Either way, we ultimately have to initialize the base
class’s inherited state by calling a base class constructor.

OUTSMARTING THE COMPILER... OR NOT?

If you have a hacker’s mind like I do, you’ll find it challenging to try to work around
restrictions imposed by the compiler, like the one shown in Figure 14.3. In fact, you
can, with very limited success. If you create a cycle in constructor chains using the
this keyword, the compiler won’t notice you’ve never called a base constructor.
However, all you’ve done is create a set of mutually recursive constructors that will
result in a stack overflow exception at runtime.

Single Inheritance for Classes

The CLR, the C# programming language, as well as other Common Language
Infrastructure (CLI) languages support only single inheritance for classes. In other words,
only a single base class can be used for any given class. When omitted, that base class is
System.Object. In the example shown in Figure 14.6, we try to declare a class Tomato,
which is both a Fruit and a Vegetable.

THE DIAMOND PROBLEM

One of the main reasons for not supporting multiple-class inheritance in the CLR comes
from the well-known problems and complexities that arise from multiple inheritance, as
seen in languages like C++. One such problem is known as the diamond problem.

Named after the shape of a type hierarchy where a class D derives from both B and C,
both of which derive from A, the diamond problem pinpoints complexities that arise in
this setting. Suppose A has a member called Bar and both B and C override it. Which
of the two overrides should be called when code in D calls the equivalent of
base.Bar() in C#? This introduces the need for virtual base classes, which complicate
programming quite a bit.

662 CHAPTER 14 Object-Oriented Programming

Less-invasive forms of multiple inheritance have been suggested here and there, the
most notable of which include traits and mixins. In fact, those aren’t really forms of
multiple inheritance but allow certain sets of functionality to be adopted by classes,
thus reducing the need for duplication of code. Approaches such as those have their
problems, too.

As you will see, the CLR supports multiple inheritance for interfaces, which doesn’t suf-
fer from those problems but is of limited use to overcome some of the scenarios
where multiple inheritance proves handy. However, extension methods can be used to
mimic “interfaces with default implementations” to some extent.

Because of single inheritance for classes, the base class of any class is defined in an unam-
biguous manner. Therefore, to refer to a base class’s members explicitly, you can use the
single keyword called base. Where this refers to the current instance (of the containing
type), base refers to the immediate base class. In most cases, the use of the base keyword
is optional:

class Student : Person

{

// Constructors shown earlier.

public string College { get; private set; }

public override string ToString()

{

return base.Name + “ is “ + base.Age

+ “ and studies at “ + this.College;

}

}

Later you’ll see one case where the use of the base keyword is required to disambiguate
between a subclass’s member and a base class’s member with the same name. We discuss
this scenario when talking about hiding members in the section, “Sealing and Hiding:
Take Two.”

INHERITANCE OR CONTAINMENT?

Here’s another story for you. A long while ago, in the .NET 1.0 days, I was explaining
OOP and inheritance. It turned out my explanation was unnecessary for a reason I’ll
explain here.

Some of my friends were working on a user interface application that had to display a
Windows Forms tree view control to visualize an organization chart. If the user clicked a
node in the tree, details for the selected node should have been displayed in another
pane to the right (much like Windows Explorer). The obvious question was how to asso-
ciate the rich business object representing an entry in the organization hierarchical
structure with the TreeNode object used in the UI.

663Inheritance for Classes

Knowing the art of OOP, my choice was quite obvious: Let’s derive a subclass from
TreeNode, add a property to it to contain the business object, and that’s it. Windows
Forms will still work fine with our custom TreeNode object (polymorphism), and we have
a spot to put the business object.

However, explaining this object-oriented technique turned out to be challenging because
my friends didn’t have such a background. Exploring the API surface of TreeNode a bit
more, I soon discovered a Tag property on the Windows Forms Control type, allowing
an arbitrary object to be associated with a control. Instead of inheritance, this uses the
technique of containment. The only drawback is the weakly typed nature of it, having to
cast back from Tag’s object type to the business object type. Ultimately, we settled for
this approach.

Yet another option is to have an external collection that associates the (regular)
TreeNode objects with the business objects (for example, using some kind of dictio-
nary collection type). This, however, leads to memory-management concerns: Upon
removal of a tree node, you should clean the auxiliary data structure, too.

Multiple Inheritance for Interfaces

Each class (or struct) can implement multiple interfaces. Interfaces are covered at the end
of this chapter, but you can roughly regard them as contracts that do not have an imple-
mentation of their own. When implementing an interface, you basically promise to obey
the contract specified by the interface. One example is IDisposable, which we talked
about in Chapter 12, “Constructors and Finalizers.”

public interface IDisposable

{

void Dispose();

}

Implementing an interface is allowed to coexist with derivation from a base class or imple-
mentation of zero or more interfaces. In the class base specification, which is the part of
the class declaration after the colon, the base class (if any is specified) has to come before
the list of interfaces implemented by the class. All of those are comma-separated:

class Stream : MarshalByRefObject, IDisposable

{

...

public void Dispose()

{

// I promised to implement IDisposable. Here it is.

}

}

664 CHAPTER 14 Object-Oriented Programming

FIGURE 14.7 Multiple inheritance for interfaces.

The Base Class Library (BCL) is full of types that implement multiple interfaces. Some
notable ones are all the numeric primitive types that derive from System.ValueType and
implement a bunch of interfaces allowing for comparison, equality checks, formatting,
and so on. This is illustrated in Figure 14.7 by means of inspection through .NET Reflector.

INHERITANCE FOR STRUCTS: WHY (NOT)?

In the example shown in Figure 14.7, you might notice how Byte derives from the
System.ValueType class, even though the Byte type itself is a struct. This is one of the
implementation details of the CLR unified type system, facilitating things such as boxing.

Beyond inheriting from System.ValueType, there’s no subtyping possible for value
types, other than the implementation of interfaces. By implication, there’s also no
means to do polymorphism with structs. The reason this is the case is a rather funda-
mental one. Recall that value types get allocated on the stack by default. If we were to
allow subtyping for structs, you could have a Point2D variable on the stack and assign
it a subtype of type Point3D:

static double Distance(Point2D first, Point2D second)

{ ... }

static void Main()

{

var point1 = new Point3D(1, 2, 3);

var point2 = new Point3D(4, 5, 6);

Console.WriteLine(Distance(point1, point2));

}

Assume in the preceding example that both Point2D and Point3D are structs and the
latter is a subtype of the former (hypothetically). Implementation of the Distance
method using stack allocation for the parameters has just become incredibly hard
because the size of the parameters is no longer fixed. Where a Point2D may have two
fields of type Int32 (hence causing a total of 8 bytes to allocate the object), any
subtype may add an arbitrary amount of data to it.

665Inheritance for Classes

Because of this, the Distance method could not be written with a fixed layout in terms
of stack-allocated memory. The way to get out of this issue is to put the parameters
elsewhere, for example by storing the parameters on the managed heap. But wait a
second, why did we have structs in the first place then? Indeed, one of the major
strengths of structs is their lightweight stack-allocated fixed-size nature. Allowing
subtyping would defeat this.

Therefore, the following will fail to compile, pointing out that Point2D in the interface
list is not an interface:

struct Point2D

{

int x, y;

}

struct Point3D : Point2D

{

int z;

}

The nomenclature for the part after the colon differs for classes and structs. In the
first case, it’s called the “class base specification.” In the latter case, it’s referred to
as the “interface list” because the word base has no meaning in this context, as
explained earlier.

Blocking Inheritance

Allowing inheritance yields a great amount of flexibility with regard to application
programming interface (API) design. At the same time, it comes as a big responsibility for
the designers of the base classes. If the behavior of a base class method changes, it might
break subtypes. This is especially true if virtual methods are used, as you will see later.

To avoid such responsibilities, you can mark a class as noninheritable by means of the
sealed keyword. Doing so prevents anyone from inheriting from the class:

sealed class Student : Person

{

...

}

class GraduateStudent : Student // fails to compile

{

}

Figure 14.8 shows the error emitted by the compiler in this case. Later you see how you
can apply the sealed keyword to a member.

666 CHAPTER 14 Object-Oriented Programming

FIGURE 14.8 Multiple inheritance for interfaces.

A BALANCING ACT

Deciding to use the sealed keyword on classes is a bit of a balancing act. If you do it,
you escape some responsibility for future compatibility guarantees. At the same time,
you limit flexibility for the type’s users.

Hiding Base Class Members

Sometimes it’s useful to hide a base class member by introducing a member with the same
name of a subclass. After all, when defining a subclass, you don’t control the names
chosen by the author of the base class. If it turns out the best name for the new member
to be introduced on the subclass clashes with a member’s name on the base, hiding can be
used. Later, in the section called “Interfaces,” you see how a similar situation can arise
when an interface is being implemented.

The following example illustrates what we’re talking about for both instance and static
members. Although we’re only showing methods here, the same applies for other
member types.

class Bar

{

public void Foo() { Console.WriteLine(“Bar.Foo”); }

public static void Qux() { Console.WriteLine(“Bar::Qux”); }

}

class Baz : Bar

{

public void Foo() { Console.WriteLine(“Baz.Foo”); }

public static void Qux() { Console.WriteLine(“Baz::Qux”); }

}

667Inheritance for Classes

FIGURE 14.9 The C# compiler warning about possibly unintentional hiding taking place.

To see what happens in the preceding code, consider the following piece of code:

Bar bar = new Bar();

bar.Foo();

Baz baz = new Baz();

baz.Foo();

Bar bazAsBar = baz;

bazAsBar.Foo();

This code will print Bar.Foo, Baz.Foo, and Bar.Foo. Both the second and third outputs are
of interest. Depending on the static type of the variable, a different Foo method is called.
In fact, the compiler has chosen which method to call based on that type. You’ll see how
this is different when the virtual modifier is used, resulting in virtual dispatch.

Notice how we’re using bazAsBar as an illustration of the polymorphic property of OOP.
Here, we’re assigning an object of a more-derived type to a variable of a less-derived type.
That is, everywhere a Bar is expected, we can also pass a more-specialized Baz.

When looking at Baz’s declaration, it might not be immediately apparent Foo indeed is
hiding a base class member. Code within Baz’s implementation may also call Foo in the
belief it will result in a call to the base class member. But as soon as someone puts a new
Foo method on the type, hiding the inherited one, the meaning of that code will start to
change. To prevent such mishaps, the compiler emits a warning telling you about the
naming clash introduced. Figure 14.9 shows this, suggesting a solution (use of the new
keyword as a modifier on the method):

class Baz : Bar

{

public new void Foo() { Console.WriteLine(“Baz.Foo”); }

public new static void Qux() { Console.WriteLine(“Baz::Qux”); }

}

668 CHAPTER 14 Object-Oriented Programming

THREE MEANINGS OF THE NEW KEYWORD

Since C# 2.0, the new keyword can be used in three places. The most well-known one
is in an expression context to create a new instance of a given type, typically invoking a
constructor. (For delegates, things are a bit more complex.) The second use site for the
new keyword is hiding, which was available in C# 1.0, too. Here, the new keyword is
used as a modifier.

With the introduction of generics in C# 2.0, the new keyword was reused to allow decla-
ration of a generic constraint. We take a look at generics and constraints later, but
here’s a code fragment to whet your appetite:

class Factory<T> where T : new()

{

// Code is allowed to do new T()

}

Here, the generic type Factory<T> cannot be constructed with a type parameter for a
type that doesn’t have a default constructor defined.

The new modifier is simply used to declare intent and acknowledge the subtleties that may
arise by writing code this way. To call the base class member from the inside, you can use
the base keyword. For static members, qualification with the type name is used to indicate
the target member:

class Bar

{

public void Foo() { Console.WriteLine(“Bar.Foo”); }

public static void Qux() { Console.WriteLine(“Bar::Qux”); }

}

class Baz : Bar

{

public void Foo() { base.Foo(); Console.WriteLine(“Baz.Foo”); }

public static void Qux() { Bar.Qux(); Console.WriteLine(“Baz::Qux”); }

}

From the outside, you can use casts to indicate which static type to operate on, causing
the compiler to pick the intended method:

static void Main()

{

Baz baz = new Baz();

baz.Foo();

669Protected Accessibility

((Bar)baz).Foo(); // calls base one

Bar bazAsBar = baz;

bazAsBar.Foo();

((Baz)bazAsBar).Foo(); // calls derived one

}

When we discuss virtual methods in the section, “Polymorphism and Virtual Members,”
you learn how the new and override modifiers are mutually exclusive.

Protected Accessibility
So far, we’ve dealt with publicly accessible members during our explanation of inheri-
tance. However, a more granular accessibility level, called protected, exists for use in combi-
nation with inheritance and OOP.

Whereas public members are visible to the world, both inside and outside the assembly,
private members are visible only within the declaring type (including nested types).
Because type hierarchies establish “families of types,” a corresponding accessibility level
seems attractive. This is what protected does: It allows access to the member to code in
the declaring type as well as code in derived types. You’ve seen such an example with our
introductory Counter exploration:

public class Counter

{

public int Count { get; protected set; }

}

In this example, the Count property is available to be read from anywhere (public),
whereas the setter is only available to code in Counter or any subclass:

public class ResettableCounter : Counter

{

public void Reset()

{

base.Count = 0; // base can be omitted

}

}

Figure 14.10 shows accessibility with arrows indicating “is accessible to” relationships. The
internal accessibility level is explained when we cover assemblies in Chapter 25,
“Assemblies and Application Domains.”

670 CHAPTER 14 Object-Oriented Programming

THE MYTHICAL PROTERNAL AND INTECTED MODIFIERS

One accessibility level that hasn’t been covered in Figure 14.10 is spelled out as
“protected internal” or “internal protected” in C#. Both orders of the modifiers mean
the same: The member is available to other types within the same assembly and avail-
able to types in the inheritance hierarchy.

Although the CLR supports an or interpretation for the combination of both modifiers
(that is, accessibly to derived types but only in the same assembly), C# doesn’t. This is
sometimes referred to by the C# team as the “proternal” or “intected” feature request,
mainly because it’s not at all clear what the modifier would look like.

Polymorphism and Virtual Members
Now that you know how to derive a class and call members on the base class, we’re ready
to introduce another pillar of OOP: polymorphism. In passing, we’ve already seen how an
instance of a subclass can be used in a place where a less-derived type is expected. This
enables code such as that shown here:

string s = “Hello”;

object o = s;

Interited members
keep accessibility,

so B is visible here.

Peerpublic class Base

class Derived

class MoreDerived

private int A;
internal int C;
public int D;
protected int B;

Assembly A Assembly B

World

FIGURE 14.10 Accessibility in pictures.

671Polymorphism and Virtual Members

Because every string is an object, we can do this assignment. Where things get interesting
is when we try to invoke a method on o. In particular, what should happen if we call, say,
the ToString method:

Console.WriteLine(o.ToString());

Who’s responsible for creating a suitable ToString method that will provide meaningful
output? In this particular case, we happen to know that o really contains a string, so we
expect the ToString result on a string to be... well, that very same string. However, if we
look at what the compiler knows about o, it cannot emit code that does immediately
invoke a System.String-specific method. After all, we’ve typed o to be of type
System.Object, and nothing more. This becomes more obvious when we increase the
“distance” between the definition and use of the Console.WriteLine parameter:

static void Main()

{

Print(“Hello”);

Print(5);

}

static void Print(object o)

{

Console.WriteLine(o); // Console.WriteLine will call ToString on o.

}

Clearly, the compiled code for neither Print nor Console.WriteLine can anticipate what the
runtime type will be for the input parameter. In other words, the compile-time static type
knowledge is reduced to what we’ve told the compiler: Print takes an object, and that’s it.

So how can the ToString call on the object passed in (ultimately happening in the depths
of the Console.WriteLine implementation) ever defer the decision on the final behavior to
the object’s best ToString method available? Obviously, we must define what we mean by
“best available,” but you get the idea. The System.Object default ToString implementa-
tion won’t cut it because it would print just the object’s type name:

System.String

System.Int32

This observation brings us to virtual members and virtual dispatch.

Virtual Members

Methods, properties, indexers, and events can be declared as virtual members using the
virtual keyword used as a modifier on the member declaration. Virtual members can be
overridden in a derived class to specialize their behavior. The simplest example can be

672 CHAPTER 14 Object-Oriented Programming

found on the System.Object type itself, which is roughly defined as follows (omitting a
bunch of irrelevant custom attributes and members):

public class Object

{

public virtual bool Equals(object obj) { /* default implementation */ }

public virtual int GetHashCode() { /* default implementation */ }

public virtual string ToString() { /* default implementation */ }

public Type GetType() { /* the one and only implementation */ }

...

}

Notice how three methods have been declared as virtual by the .NET Framework team.
Although those methods have default implementations, a common developer task is to
override them with specialized behavior to account for the specific semantics of the
derived type. You see how in just a moment.

Notice how the GetType method is not declared as virtual. All this means is that the
method’s implementation cannot be overridden by a derived type, and only the built-in
implementation can be used. After all, how could one provide a meaningful override for
this low-level primitive? If you call GetType on an instance, you always expect to get back
the runtime type of that object. The CLR exactly knows how to do this, and therefore
there’s no role for subtypes to specialize this behavior.

As you saw before, the mere act of deriving from a class causes the members of the base class
to be inherited. To be precise, not all of those may be accessible in the subclass; for example,
a private member won’t be available to the subclass. In other words, all the System.Object

methods shown earlier, including GetType, are readily available on any subtype:

Person bart = new Student(“Bart”, 27, “C# Academy”);

Person lisa = new Student(“Lisa”, 23, “VB Academy”);

Console.WriteLine(bart.ToString()); // OO.Student (the full type name)

Console.WriteLine(bart.Equals(lisa)); // false (no reference equality)

Console.WriteLine(lisa.GetHashCode()); // Some 32-bit integer value

Console.WriteLine(lisa.GetType()); // OO.Student (ToString of Type object)

At this point, we haven’t done anything but inherit the base class’s default behavior, ulti-
mately going all the way back to System.Object: Student derives from Person, and Person
derives from Object. None of our custom Student and Person types has defined custom
specialized behavior for any of the virtual methods shown earlier.

In the following section, we take a look at how to override virtual members based on the
example with System.Object virtual methods shown earlier.

673Polymorphism and Virtual Members

FIGURE 14.11 Use of the override keyword.

FIGURE 14.12 Default implementation for an overridden method.

Overriding Virtual Members

Overriding a virtual member is done by means of the override keyword. When you type
the keyword in the Visual Studio IDE, IntelliSense provides a list of members that can be
overridden, as shown in Figure 14.11.

As soon as we pick a member from the list presented to us, Visual Studio generates a
default implementation that does nothing but defer execution to the base class implemen-
tation, as shown in Figure 14.12.

Obviously, you’ll usually want to substitute this code for something more meaningful.
However, in some cases, you’ll still be using a call to the base method to assist in your
implementation’s logic. You’ll see this in a moment. First, let’s override ToString for our
Person type, simply to print the name and age of the person:

public override string ToString()

{

return Name + “ is “ + Age;

}

674 CHAPTER 14 Object-Oriented Programming

FIGURE 14.13 Virtual dispatch of ToString in action.

Even though we haven’t talked about virtual dispatch yet, this suffices to illustrate the
behavior of calling ToString in two different ways. One time we call ToString simply on a
variable that’s declared to be of type Person. Things get more interesting in the second
example, where we call ToString on a variable whose static type is object:

Person bart = new Person(“Bart”, 27);

Console.WriteLine(bart.ToString());

object him = bart;

Console.WriteLine(him.ToString());

Both calls to ToString result in the same output, calling into our implementation with the
specialized Person-specific behavior. Figure 14.13 proves this behavior through the lenses
of the debugger. This is, as you will see, virtual dispatch at work.

Given that we’ve overridden ToString on Person and given that a subtype inherits its base
type’s members, what you would expect the ToString operation on Student to print?
Right, our Person’s ToString implementation will be invoked, once more illustrated in the
presence of polymorphic code (as we treat bart as object):

object bart = new Student(“Bart”, 27, “C# Academy”);

Console.WriteLine(bart.ToString());

675Polymorphism and Virtual Members

Obviously, we can now also override the ToString method on the Student class. Here it
becomes useful to invoke the base class’s ToString method simply to append the
subclass’s additional information to it:

public override string ToString()
{

return base.ToString() + “ and attends “ + College;
}

As soon as we do this, the call to ToString in the preceding sample code dispatches to the
ToString implementation on the more-derived Student type.

Declaring Virtual Members

To illustrate the concept of virtual members from a different angle, let’s define another
type hierarchy in which we declare virtual members ourselves (rather than overriding the
ones from System.Object). A good example is the concept of a Shape that can be queried
for its area and circumference. Depending on the subclass of Shape, calculation of those
values will differ:

class Shape
{

public virtual double Area
{

get { return 0.0; }
}

public virtual double Circumference
{

get { return 0.0; }
}

}

For the time being, we use default implementations for those virtual property getters,
which don’t look as if they produce very meaningful values. Later on, after you’ve learned
about abstract classes and members, we discuss how to omit such an implementation
altogether.

Now let’s define a couple of subclasses, Circle and Square, both of which have pretty simple
computations for both metrics. We define those computations by means of overriding:

class Circle : Shape

{

public Circle(double radius)

{

Radius = radius;

}

676 CHAPTER 14 Object-Oriented Programming

public double Radius { get; private set; }

public override double Area

{

get { return Math.PI * Radius * Radius; }

}

public override double Circumference

{

get { return Math.PI * 2 * Radius; }

}

}

class Square : Shape

{

public Square(double side)

{

Side = side;

}

public double Side { get; private set; }

public override double Area

{

get { return Side * Side; }

}

public override double Circumference

{

get { return 4 * Side; }

}

}

As we enter this code, IntelliSense will help us by suggesting the members that can still be
overridden. With this code in place, we can write polymorphic code:

Shape s1 = new Circle(2.0);

Console.WriteLine(s1.Area);

Shape s2 = new Square(3.0);

Console.WriteLine(s2.Circumference);

Sealing and Hiding: Take Two

As previously mentioned, the sealed keyword prevents a class from being derived any
further. We can also apply such specialization prevention at a more granular level of

677Polymorphism and Virtual Members

members, too. For example, while we may leave our Square type unsealed (the default),
we can prevent people from overriding the virtual properties we’ve defined:

class Square : Shape

{

public Square(double side)

{

Side = side;

}

public double Side { get; private set; }

public sealed override double Area

{

get { return Side * Side; }

}

public sealed override double Circumference

{

get { return 4 * Side; }

}

}

Now if someone comes in and defines a subclass of Square, say ColoredSquare, it’s no
longer possible to override the computation properties Area or Circumference.

With regard to hiding using the new modifier, it’s possible to hide an inherited member,
including virtual ones, but the combination of override and new doesn’t make sense.
After all, what would it mean to state that you’re hiding a base member and at the same
time insist on overriding a base member? First you ask to define a different member alto-
gether, and next you want to override the base member. Those are clearly conflicting
requirements stated by the developer:

class Bar

{

public new string ToString()

{

return “Hi there!”;

}

}

Considering the preceding code, try to predict the output of the following:

Bar b = new Bar();

Console.WriteLine(b.ToString());

Console.WriteLine(b);

678 CHAPTER 14 Object-Oriented Programming

Here, the first call to Console.WriteLine involves calling ToString on a variable that’s stati-
cally typed to be Bar. The compiler will find a ToString method on the Bar type that hides
the inherited member, so it chooses that one. As a result, the first call will print “Hi there!”

The second call, however, uses the WriteLine overload that accepts System.Object as its
argument. Inside WriteLine, ToString will be invoked without any compile-time knowl-
edge of the type passed in, other than the fact it is a System.Object. A virtual call results.
Because we didn’t override ToString but have hidden it, the default ToString method,
inherited from System.Object, is called, hence printing Bar’s type name.

If we were to do things polymorphically by assigning the newly created Bar instance to a
variable of type System.Object, things are different, too:

object o = b;

Console.WriteLine(o.ToString());

Console.WriteLine(o);

Now, both calls to ToString, once explicitly and once by Console.WriteLine’s code, result
in a virtual call. Because Bar hasn’t overridden the ToString method, both calls print the
type name of Bar.

How Virtual Dispatch Works

At first sight, virtual dispatch might look like a bit of magic. The compiler did know about
a static type, yet a virtual method override on the runtime type is considered for execu-
tion. How does that work? The answer lies in the runtime facilities provided for method
calls. A set of different instructions exist to call methods, two of which are used by the C#
compiler. One is call, the other is callvirt. From the name, you can already infer the
task of the second (although the C# compiler uses it for other purposes, as you will see).

Consider the following piece of code, given our Shape and Circle classes we defined
earlier. Observe how the call to Radius involves a nonvirtual member, whereas the call to
Area should be carried out using virtual dispatch.

Circle c = new Circle(3.0);

Console.WriteLine(c.Radius);

Shape s = c;

Console.WriteLine(s.Area);

Figure 14.14 shows the IL code corresponding to the preceding fragment. A few things
should be pointed out. First, notice how all calls to the static WriteLine method overloads
are carried out using the call instruction. Because static methods can never be virtual (after
all, you call them by specifying a type name), this is expected. However, both calls for the
Radius and Area property getters are done using callvirt. When looking at the code for
Shape and Circle, you would expect only the get_Area call to use callvirt. The reason
both use callvirt is a difference in behavior with regard to null checks: callvirt will
properly throw a NullReferenceException as soon as it sees the target is a null reference.

679Polymorphism and Virtual Members

FIGURE 14.14 IL code containing both virtual and nonvirtual calls.

The call instruction, on the other hand, might not do so if the method does not touch
any instance state on the target.

Other than the little IL reading caveat pointed out earlier, the callvirt instruction will
quite rapidly figure out the method is in fact nonvirtual and work just as call would.
Now that we’ve highlighted the existence of two different instructions, we can take a close
look at both of them and how virtual dispatch works.

The first thing to point out is that virtual dispatch works at the method level from a CLR’s
point of view. Despite the fact it’s valid to use the virtual modifier on other member types
in languages such as C#, it really is a method-level construct. For example, for a property,
it’s a characteristic of the getter/setter methods.

Now take a look at the code generated for our code, as shown in Figure 14.14. Notice the
types on which the method being called is defined. No surprises should exist for the static
WriteLine methods. The calls to property getters are based on the information available
about static types at compile time. For Radius, the compiler knew that the target was of
type OO.Circle. Where things get interesting is for virtual methods that are being
targeted. In such a case, the least derived type declaring the virtual method will be used.
For our example, OO.Shape’s get_Area method is targeted. But even if we were to write the
following code, this particular method would be used:

Circle c = new Circle(3.0);

Console.WriteLine(c.Area);

Despite the fact we’re calling Area on something that’s statically known to be Circle, a
virtual call to Shape’s Area getter will be emitted. From this point on, the runtime is in
control to dispatch the call to the most specific implementation it can find.

680 CHAPTER 14 Object-Oriented Programming

System.Object

ToString

Equals

GetHashCode

Finalize

.ctor

GetType

MemberwiseClone

FieldSetter

FieldGetter

GetFieldInfo

Equals

ReferenceEquals

0

1

2

3

4

5

6

7

8

9

10

11

Shape

ToString

Equals

GetHashCode

Finalize

get_Area

get_Circumference

.ctor

0

1

2

3

4

5

6

Circle

ToString

Equals

GetHashCode

Finalize

get_Area

get_Circumference

.ctor

get_Radius

set_Radius

0

1

2

3

4

5

6

7

8

FIGURE 14.15 v-tables for different types, related through subtyping.

The way this virtual dispatch mechanism works at runtime is quite involved, but we’ll do
our best to boil it down to its essence. At runtime, when loading types, the CLR builds a
so-called v-table, which stands for virtual dispatch table. This table contains a mapping from
virtual methods to their code location. Given an object instance, it’s an easy step to get to
the object type’s v-table, simply by computing some offset in memory. When the callvirt

instruction is used, the runtime finds the v-table, grabs the entry at the offset correspond-
ing to the virtual method, and invokes the code at the location the entry points at.

Essentially, from an object, we can find its type information, and from that we can find
the v-table (which is like a telephone book) from which we can find the method target to
be called (which is like an address for a given name in a telephone book). Figure 14.15
shows the v-table for the Circle, Shape, and Object types. The dark gray areas indicate
virtual method slots. Notice that the order is preserved through subtyping. When a call is
made to the get_Area property getter defined on Shape, the runtime looks at v-table slot 4
on the target object. That slot will always point at the code that takes up the role of
executing the virtual method. For a Circle object, get_Area will refer to the code we
wrote on the Circle class, using the override keyword to specialize the Area getter
defined on the Shape base class.

Because we didn’t override ToString, Equals, or GetHashCode, however, entries in those
slots will refer to the implementation defined by System.Object. If Shape were to have an
override for, say, ToString, the v-table slot for ToString on Circle would refer to that
implementation because it’s the “best one” available.

Figure 14.16 shows how the v-table is laid out for our Person class where we override the
ToString method but leave the Equals, GetHashCode, and Finalize methods in place by

681Polymorphism and Virtual Members

System.Object

ToString

Equals

GetHashCode

Finalize

0

1

2

3

Person

ToString

Equals

GetHashCode

Finalize

0

1

2

3

 public virtual string ToString() { … }

 public virtual bool Equals(object obj) { … }

 public virtual int GetHashCode() { … }

 public virtual void Finalize() { … }

class Object

{

}

class Person

{

}

 public override string ToString() { … }

FIGURE 14.16 How override influences a v-table.

simply inheriting them from System.Object. Recall that the Finalize method is used for
destructors in C#.

When a call is made to System.Object::ToString on an object whose runtime type is
Person, the v-table slot at position 0 will be consulted, referring to the ToString method
override defined on the class Person. On the other hand, if someone is comparing a
Person object to another object by calling the System.Object::Equals virtual method, the
v-table slot corresponding to Equals will refer to the implementation that Person inher-
ited from the System.Object base class:

object o = new Person(“Bart”, 27);

// IL code for the call here:

// ldloc.0 // local variable containing o

// ldstr “Hello” // pushes a string reference

// callvirt System.Object::Equals(object) // causes v-table lookup at slot 1

bool equal = o.Equals(“Hello”);

One simple trick to remember v-tables is the telephony network. Some numbers like yours
and mine are fixed: Calling them from anywhere in the country will place a call to the
outlet in the wall. However, some numbers that seem fixed, such as emergency lines (for
example, 911 in the United States) really relay to a response center that’s “not too far
away.” Those numbers can be considered virtual and are overridden at more granular
levels of the phone network. Nonetheless, callers always use the same emergency number,
despite the fact that routing may occur to deliver the call to the “closest response unit.” In
this setting, a region can be seen as a subclass of a bigger region, which can override the
“implementation of” certain numbers.

682 CHAPTER 14 Object-Oriented Programming

FIGURE 14.17 Base calls use the call instruction.

How Base Calls Work

Now that you know how virtual calls are made, one remaining question is how a base call
avoids getting trapped in some kind of endless recursion. Consider the following code we
wrote for Student:

class Student : Person

{

public override string ToString()

{

return base.ToString() + “ and attends “ + College;

}

}

Assume the base call for ToString would be handled in a virtual manner using a callvirt
instruction for System.Object::ToString. The innards of virtual dispatch would inspect
the v-table of the runtime type of the object (that is, a Student). In the slot for ToString,
a reference would be found to the Student’s ToString code, as shown in the preceding
code. So we end up where we started, resulting in an endless recursion. Clearly, the imple-
mentation of the base call should be different. And indeed it is, as shown in Figure 14.17.

As you can see on line IL_0002, the base call gave rise to the use of a call instruction,
which results in a direct call into the target method, bypassing any runtime intelligence
for virtual dispatch.

683Abstract Classes

Abstract Classes
Recall our definition of the Shape class. One remark we made when defining its two
virtual properties was the fact we had to provide default implementations that didn’t
really have much meaning:

class Shape

{

public virtual double Area

{

get { return 0.0; }

}

public virtual double Circumference

{

get { return 0.0; }

}

}

Although 0.0 might seem like a good default value, wouldn’t it be much better not to have
to specify a value at all? Moreover, does it even mean to create an instance of the Shape

object? Isn’t a shape something very abstract that needs to be concretized to help someone
draw a mental picture? Although Square and Circle are very concrete, the concept of a
Shape definitely isn’t. The following use of Shape looks weird for that very reason:

Shape someShape = new Shape();

// So you tell me: what can we do with it?

This brings us to the concept of abstract classes, which are classes that do not permit
instantiation and are meant to be inherited from. Subclasses can continue to be abstract or
can be concrete if they’ve filled in all the “abstract holes.” To declare an abstract class, we
use the abstract keyword on the class’s declaration itself:

abstract class Shape

{

public virtual double Area

{

get { return 0.0; }

}

public virtual double Circumference

{

get { return 0.0; }

}

}

684 CHAPTER 14 Object-Oriented Programming

FIGURE 14.18 Some errors made in the definition of abstract classes and members.

At this point, it’s no longer possible to instantiate an object of type Shape:

Shape someShape = new Shape();

// The problem is gone: the above simply doesn’t compile anymore.

But we can do a better job, getting rid of the bogus default implementations for Area and
Circumference by declaring those properties as abstract members, again using the same
abstract modifier:

abstract class Shape

{

public abstract double Area

{

get;

}

// Same for Circumference

}

At this point, we can no longer use the virtual modifier because every abstract member
will be virtual per definition: It takes some subclass to override it before it’s possible to use
the member at all. Also, it’s not allowed to have any implementation whatsoever on a
virtual member, hence the use of a semicolon to indicate the absence of a code block
implementing the member’s behavior. Figure 14.18 shows typical compiler errors raised
when those rules are disobeyed.

685Abstract Classes

When deriving from an abstract class, you can choose to provide implementations for all
the abstract members or to leave certain members abstract. In the latter case, the derived
class should also be marked as abstract. Thus, abstract classes allow for gradual specializa-
tion until a point where the resulting most derived class can be marked concrete (that is,
without abstract specified on it).

Implementation of abstract members uses the override modifier, just as if the member
were not abstract:

class Circle : Shape

{

...

public override double Area

{

get { return Math.PI * Radius * Radius; }

}

public override double Circumference

{

get { return Math.PI * 2 * Radius; }

}

}

Abstract classes can have constructors, which even can be declared as public, for use by
subclasses. Because only subclasses should use them, the only correct accessibility level
should really be protected (without the internal part). If no constructor is put in place, C#
automatically puts a protected default constructor in place.

One good example of an abstract class that ships in the .NET Framework is the Stream class
in System.IO, which has many derived concrete types, such as FileStream. The part of
Stream that’s abstract includes various Write and Read methods, as well as things such as
Seek, properties for CanRead and CanWrite, and so on. It’s up to a subclass to override those
abstract members (for example, by implementing them in terms of Win32 file I/O APIs).

AVOID A LARGE BURDEN ON THE IMPLEMENTORS

Good use of abstract classes often provides a base implementation with a whole
bunch of members but limiting the abstract portions to a minimum. For example, while
an abstract class may provide a large set of overloads for some methods, it’s good to
mark only the most specific (that is, with the highest parameter count) overload as
abstract. This way, implementors need to override just one method and get all the over-
loads, including argument checking, for free.

As usual when multiple parties are involved, the key to success is to give people a
good return on investment: Implement a handful of members, and you’ll get a rich con-
crete class in return. One of the most demotivating experiences is to face an abstract
class with a gazillion abstract members on the to-do list.

686 CHAPTER 14 Object-Oriented Programming

Interfaces
Although some framework designers disagree with the statement, I (and the C# specifica-
tion) sincerely think that interfaces denote contracts. In some respects, the concept of an
interface is similar to that of an abstract class. First, you cannot create instances of an
interface, which therefore can be considered to be “abstract.” Second, the syntax of
declaring members on an interface is pretty similar to abstract members on an abstract
class. As you will see, this is pretty much where analogies end. Figure 14.19 illustrates the
role of interfaces in terms of a contract shared between two parties: the implementor and
the consumer.

Defining Interfaces

To declare an interface, you use the interface keyword rather than class or struct. In
the interface body, zero or more members can be specified, without any implementation
provided. For example:

public interface IDisposable

{

void Dispose();

}

All this says is that a type implementing this interface promises to support the disposal
operation by providing an implementation for the Dispose method.

CONTRACTS OR NOT?

Where some people disagree with the idea of interfaces as contracts is that they do
not really specify a “complete contract” beyond a series of signatures that are merely a
syntactic concern. For example, what’s a type supporting IDisposable supposed to do
if Dispose is called multiple times? Or what does implementing IDisposable mean for
other operations on the type if Dispose has been called? The answer to those ques-
tions lies in documentation.

If you implement the
contract, I’ll be able to

use your services

C
onsum

e

Im
pl

em
en

t

Type implementing
the interface

I agree to implement the
contract, so that you are
able to use my services

Interface as
a contract

FIGURE 14.19 Interfaces are contracts between implementors and consumers.

687Interfaces

It’s also possible to have interfaces derive from one or more other interfaces. An example
in the BCL is the IList<T> generic interface, which defines positional access over an
ICollection<T> object, using an indexer and a pair of methods:

public interface IList<T> : ICollection<T>

{

T this[int index] { get; set; }

void Insert(int index, T item);

void RemoveAt(int index);

}

In fact, ICollection<T> by itself derives from another base interface, IEnumerable<T>:

public interface ICollection<T> : IEnumerable<T>

{

int Count { get; }

bool IsReadOnly { get; }

void Add(T item);

void Clear();

bool Contains(T item);

void CopyTo(T[] array, int arrayIndex);

bool Remove(T item);

}

Finally, the IEnumerable<T> interface has the nongeneric variant as its base interface:

public interface IEnumerable<out T> : IEnumerable

{

IEnumerator<T> GetEnumerator();

}

The out modifier specified on generic type parameter T is explained in Chapter 15,
“Generic Types and Methods,” and is used to indicate so-called contravariance. You can
ignore it for the time being.

A few more remarks are called for. Notice how none of the members on interfaces have an
accessibility modifier. Members of an interface are always considered to be public because
they can be called through the interface contract with no restrictions:

FileStream fs = File.OpenRead(...);

// Can be done everywhere if we can put our hands on fs.

((IDisposable)fs).Dispose();

688 CHAPTER 14 Object-Oriented Programming

You see later, in the “Implementing Interfaces” section, why the cast may be necessary
sometimes. In the preceding example, we’re just making the call through the interface
explicit using this syntax.

Furthermore, it’s invalid to specify any modifier on an interface’s members. They’re always
abstract and virtual, and it’s an error to state this explicitly. No accessibility is allowed, and
things such as override or static don’t make sense. The last statement might be surpris-
ing, but there’s no such thing as static interfaces.

Some Design Recommendations

Contracts are sensitive matters. This is no different for interfaces, so some design recom-
mendations are in order to ensure you don’t paint yourself in a corner when defining
interfaces or abstract base classes.

Versioning
Interfaces are particularly weak in the context of versioning of code. Once an interface
has shipped and customers are implementing it, it’s a breaking change to add members
to the interface in subsequent releases. Because of this, it’s never a good idea to define
interfaces that do a bunch of unrelated things, as their “dumping ground” for a
potpourri of members will last for only a single release. Instead, make sure an interface
does one thing well.

Or Should I Use a Class?
Because of the versioning troubles that interfaces can bring, it’s sometimes better to use a
class. Adding members to a class is not a breaking change, whereas adding abstract
members would be. If new members can have a decent default implementation and can be
marked as virtual such that derived types can override it, use of a class may be a good thing.

On the other hand, classes support only a single inheritance axis, whereas interfaces
support multiple inheritance. For that reason, be wary about giving away the one shot
you’ve got at class inheritance. As an example, if the only way to get a type to be dispos-
able were to derive from a Disposable base class, no single customer would be able to
design a class hierarchy of her own because the Disposable base class monopolizes the
single spot for a base class.

During an object-oriented design challenge, I like to ask myself what a type’s relationship
to a base class or interface should be. If the best fit is the “is a” relationship, an abstract
class is the best choice. An example includes Stream because every specialized stream
clearly “is a” Stream. If the answer is the “supports” or “can” relationship, interfaces
should be a better choice. For example, IDisposable means that every implementing type
“can” dispose.

Finally, interfaces can be used on structs, whereas abstract base “structs” don’t exist.

Single-Method and Zero-Method Interfaces
Interfaces with zero or one methods are interesting beasts that could have different
reasons for existence. Depending on the reason, it might or might not be good idea to use
an interface at all.

689Interfaces

One case is the first-class object characteristic of an interface. An object implementing an
interface can be passed using the interface type. If the sole goal of passing such an object
is to wrap a single method, a delegate is usually a better choice. In languages like Java that
lack delegates, the only way to achieve this is by providing a single-method interface like
Runnable. However, in .NET you can do better by declaring a delegate à la ThreadStart.
You’ll learn about delegates later, including how a delegate can wrap addition state thanks
to closures.

Another case occurs when an interface is simply used as a marker to declare that a type
supports some kind of usage. A good example is to communicate the capability to expose
a class through a web service. Instead of using a zero-member marker interface, the use of
custom attributes is often better and reduces clutter:

[WebService(/* parameters can be specified here */)]

class PaymentService /* rather than : IWebService */

{ ... }

The preceding example stems from the .NET 1.x days with classic web services supported
in ASP.NET. In today’s world, Windows Communication Foundation is preferred, which
also uses attributes to denote things such as contracts, even on interfaces themselves:

[OperationContract]

public interface IPaymentService

{

void TransferBalance(int from, int to, decimal amount);

}

REENFORCING THE INTERFACES AS CONTRACTS PHILOSOPHY

Windows Communication Foundation (WCF) takes the idea of interfaces as contracts
one step further and maps the idea onto a distributed setting of services. The idea is
to separate the contract from implementations, allowing an interface to be shared
across tiers as the single authoritative contract. Such exchange of contracts can be
exposed through various formats as well, including WSDL and the Metadata Exchange
specification for web services. Either way, what denotes the contract in the world of
CLR services and clients is the interface, annotated with custom attributes to provide
more parameterization of intent.

If an interface is to be implemented on an object to add some aspect or “ability” to it, the
use of an interface is recommended. An example includes IDisposable, where it suffices
to implement a single method to turn on the “ability of disposing.”

Contracts: Take Two
Because interfaces can be regarded as contracts between different parties, it’s important to
provide good documentation stating what the different members should do. A good

690 CHAPTER 14 Object-Oriented Programming

example is the IDisposable interface where multiple calls to Dispose should have no
further effect beyond the first call (the property of idempotency) and where no further
interactions with the object should be possible after it has been disposed (by throwing an
ObjectDisposedException).

One example of an interface contract gone bad is ICloneable, which is used to indicate
that instances of a type can be cloned. However, the designers never specified whether a
shallow clone (just copying a reference for reference typed members) or a deep clone
(recursively cloning reference-typed members) is desired. As a result, the interface has a
limited value:

public interface ICloneable {

object Clone();

}

Implementing Interfaces

To implement an interface, you specify the interface name on the class or struct definition
after the colon:

class Resource : IDisposable

{

public void Dispose() { ... }

}

When doing so, provide implementations for the interface’s members or mark them as
abstract, deferring to a subclass. Two ways to implement interface members are available.
The one shown in the preceding snippet is sometimes referred to as implicit interface imple-
mentation. When defining the Dispose method, we didn’t state we’re going to satisfy the
contract provided by IDisposable. As a result, we can call the interface method in a
variety of ways:

Resource res = new Resource();

res.Dispose();

((IDisposable)res).Dispose();

In the second case, we’re using virtual dispatch mechanisms to deliver the call through
the interface contract. The runtime facilities to materialize the call are similar to the ones
we saw before but involve an additional concept of “interface maps,” which are beyond
the scope of this book. For the first call to Dispose, we’re invoking the method as it is
exposed on the Resource type’s public “interface.” You learn later how we can hide the
method from an implementing type’s public interface.

Notice how the accessibility of the Dispose method provided for the implicit interface
implementation is declared to be public. This is a requirement because every interface

691Interfaces

FIGURE 14.20 Implementations for interface members should be public.

FIGURE 14.21 Implicit or explicit?

member should be accessible through the interface wherever it is used. Figure 14.20 shows
an error against this rule.

Modifiers allowed on interface members include abstract and virtual. The latter can be
used to allow subclasses to override the interface member’s implementation.

Because multiple interfaces can be implemented by a single class or struct, it’s obvious
that naming clashes can occur. For example, assume we’re implementing both IBar and
IBaz, which have a member with the same name and signature:

interface IBar

{

void Foo();

}

interface IBaz

{

void Foo();

}

class Qux : IBar, IBaz

{

// How can we have two Foo methods here?

}

To satisfy the implementation needs, we somehow need to get out of the naming clash.
The answer lies in explicit interface implementation. Figure 14.21 shows the two options
Visual Studio provides when adding an interface to the declaration of the struct or class.

692 CHAPTER 14 Object-Oriented Programming

If you click the option to explicitly implement the interface, the following code is generated:

class Qux : IBar, IBaz

{

#region IBar Members

void IBar.Foo()

{

throw new NotImplementedException();

}

#endregion

}

Observe the name of the generated Foo method, prefixed with the IBar interface name.
Also notice the lack of an accessibility modifier. In fact, you’re not permitted to specify an
accessibility modifier on the member. The result of the preceding code is we’ve declared a
Foo method that doesn’t appear on the public interface of the containing Qux class and
can be invoked only through the interface:

Qux qux = new Qux();

qux.Foo(); // Doesn’t exist

((IBar)qux).Foo(); // But this works

Obviously, we still need to implement the Foo method for IBaz. We can do so either in an
explicit manner as well or implement it implicitly, thus making its Foo method appear on
the public interface of Qux. For example:

class Qux : IBar, IBaz

{

void IBar.Foo()

{

Console.WriteLine(“IBar.Foo”);

}

public void Foo()

{

Console.WriteLine(“IBaz.Foo”);

}

}

I’ll leave it to you to call both methods in a variety of ways, through their respective inter-
faces and in a public manner where applicable.

693Interfaces

Besides their help in resolving name clashes, explicit interface implementations can also
be used to reduce clutter on a class’s or struct’s public interface. This technique also comes
in handy to provide a friendlier name for an interface’s functionality:

class Resource : IDisposable

{

void IDisposable.Dispose() { ... }

// May be a name users expect, rather than Dispose.

public void Close()

{

((IDisposable)this).Dispose();

}

}

Notice that the preceding implementation of IDisposable is still usable through the using
block feature in C#:

using (var res = new Resource()) // Will call ((IDisposable)res).Dispose

{ ... }

One example where the use of explicit interface implementation is unavoidable is the use
of the generic IEnumerable<T> interface, which derives from the legacy nongeneric
IEnumerable variant. As soon as you hit Visual Studio’s smart tag’s option to implement
the interface implicitly, you’ll see an explicit part being emitted, as well:

class Trie<T> : IEnumerable<T>

{

public IEnumerator<T> GetEnumerator()

{

throw new NotImplementedException();

}

IEnumerator IEnumerable.GetEnumerator()

{

throw new NotImplementedException();

}

}

Because both IEnumerable<T> and IEnumerable contain a method called GetEnumerator
with the same signature (recall that the return type isn’t part of a signature), one or both
implementations have to be done explicitly. Because both implementations will expose

694 CHAPTER 14 Object-Oriented Programming

the same enumerator (every IEnumerator<T> is also a nongeneric IEnumerator), you can
avoid duplication by wiring the nongeneric GetEnumerator to its generic brother:

IEnumerator IEnumerable.GetEnumerator()

{

return GetEnumerator(); // This does not recurse infinitely!

}

Because the GetEnumerator call is not decorated with a specific interface type (by means
of a cast, as you saw before for our Resource type’s Close method), it does correctly call
the implicit implementation method, thus not causing endless recursion as one might
first think.

ITERATORS

IEnumerable<T> is one of my most beloved interfaces in the entire BCL. It’s the inter-
face that fuels the LINQ to Objects implementation, providing very rich querying capabil-
ities over in-memory collections.

All the LINQ operators over such in-memory sequences are implemented to return
IEnumerable<T> return sequences. However, to implement them, iterators were used.
Iterators are methods that return IEnumerable<T> or IEnumerator<T> and use the
yield keyword to return the sequence’s elements to the caller upon a call to
MoveNext. You learn more about those later when we discuss LINQ in Chapter 20,
“Language Integrated Query Internals.”

This concludes our discussion about interfaces. In general, if you’re writing code where
you want some other party or component to provide a specialized implementation of
some operations, you can use interfaces to formalize such a contract.

Summary
In this chapter, you explored the breadth and depth of object-oriented programming in
both the C# programming language and the CLR. First you learned three fundamental
pillars of the object-oriented paradigm:

. Encapsulation, to hide implementation details and bundle members together in
logical units such as classes.

. Inheritance, providing the capability for subtypes to inherit base type members and
extend upon them.

. Polymorphism, allowing use of a more-derived type where a less-derived type is
expected. Virtual dispatch allows for polymorphic use of objects.

695Summary

After covering those pillars, we mapped them onto several concepts as exposed by the C#
programming language. First, we familiarized ourselves with the syntax used to perform
inheritance of a single base class or multiple interfaces. Inheritance is limited to interfaces
for structs, whereas a class can have a single base class, which by default is System.Object
if left unspecified.

Packed with essential knowledge of inheritance, we moved on to a discussion about base
member calls, how constructors are not inherited, and the protected accessibility level that
restricts member access to the declaring class and any of its subclasses. You also saw how
inheritance can be blocked at the class level and at the member level and how inherited
members can be hidden by other members.

Next, we discussed the concept of polymorphism, which is surfaced through the C#
language in terms of keywords such as virtual and override. To explain those concepts, we
related them to inheritance first, followed by several observations of the way virtual
methods are dispatched. This led to a brief exploration of v-tables in the CLR.

Finally, we covered the concept of nonconcrete types, materialized through abstract classes
and interfaces in the CLR and C#. Both those kinds of types omit (some or all of) the
implementations of members and defer providing such implementations to derived types.
Although both represent some kind of contract between two parties, both have their
advantages and disadvantages around, most notably, versioning (interfaces) and the
impact on inheritance hierarchies (abstract classes).

This page intentionally left blank

CHAPTER 15

Generic Types and
Methods

IN THIS CHAPTER

. Life Without Generics 697

. Getting Started with
Generics 699

. Declaring Generic Types 703

. Using Generic Types 708

. Performance Intermezzo 709

. Operations on Type
Parameters 714

. Generic Constraints 716

. Generic Methods 732

. Co- and Contravariance 740

The second release of the .NET Framework and the CLR
added support for generic types, which provide a way to
parameterize types on...types. This allows for the creation of
more generally applicable types while preserving static type
information. In this chapter, we study the language-level
and runtime-level constructs exposing this feature. Besides
this, we also see how to design and build our own generic
types, using rich features like constraints and the new
generic co- and contravariance annotations added in .NET 4.

Life Without Generics
In the first release of the .NET Framework, the declaration
of a type had to be closed, meaning all the information of a
type’s layout with regard to its fields and members had to
be filled in. This posed an important limitation upon frame-
work designers who wanted to keep their types as generally
applicable as possible. A typical example can be found in
the realm of collection types.

A Real-World Example with Collections

Suppose you’re writing an implementation of a list data
structure, which maintains a sequential ordering of
elements and allows index-based access to its elements. Our
collection type provides an improvement over arrays
because it allows for the underlying storage to grow when
needed. Internally, the most obvious way to implement this
is by using an array to store the elements and copy
elements to a larger array when storage space is exceeded.
So what’s the problem?

698 CHAPTER 15 Generic Types and Methods

Well, with a regular array, you can statically type the array so that it can contain elements
of only a certain type:

int[] xs = new int[] { 1, 2, 3 };

This is very convenient as the type is dragged along throughout the code, preventing the
user from making silly mistakes:

xs[0] = “Should not be here”;

Now our framework developer in charge of creating a list collection object comes along
and wants to make arrays better by providing dynamic growing capabilities and various
other interesting features. To make it work with any element type, the underlying storage,
an array, has to be typed such that it can contain objects of any type. Before .NET 2.0, the
only way to do so was by looking at the type hierarchy and generalizing along that axis by
using a common supertype. What’s the least common supertype of all objects? Right,
System.Object:

class ArrayList {

private object[] _elements;

...

public object this[int i] {

get { return _elements[i]; }

set { _elements[i] = value; }

}

public void Add(object o) {

// Add to array, dynamically growing as necessary.

}

...

}

However, typing the internal storage as an object-array causes a cascading effect of this
very general type to appear everywhere on the public surface of the type. Because users of
the list typically want a homogeneous list of elements with regard to their types, this is
highly undesirable and causes trouble:

ArrayList xs = new ArrayList();

xs.Add(1);

xs.Add(2);

xs.Add(3);

// An evil guy messing with the collection...

xs[0] = “Should not be here”;

// This cast causes an InvalidCastException to be thrown...

int first = (int)xs[0];

699Getting Started with Generics

FIGURE 15.1 Without generics, typing needs to be enforced at runtime.

Not only do users have to use an excessive amount of casts to work with the application
programming interface (API), the compiler doesn’t catch any violations against any
implicit contract with regard to the (by the human) expected types fed in to the collection.

In the preceding example, the evil guy can just go ahead and stuff a string in our collec-
tion: It’s a System.Object anyway, so the compiler is fine with it. However, when getting it
out we’re still working under the assumption only integer values could have been added to
the collection, so we’re casting the result of an indexer operation back to int. The only way
for the CLR to guarantee type safety is to check types dynamically at runtime (which is the
case for casts in general) and throw an exception if a violation is detected. The preceding
example dies pathetically with an InvalidCastException, as shown in Figure 15.1

Performance Worries

Use of System.Object as the escape valve to make things as general as possible doesn’t
only have bad characteristics with regard to compile-time safety; things are getting very
suboptimal on the field of performance, as well. Not only do runtime checks’ needed cast
instructions induce additional cost, keeping a value type object as a System.Object causes
boxing. Recall how boxing involves wrapping a value in a heap-allocated box, therefore
adding pressure to the garbage collector. And when the value needs to be retrieved with
its original type, the symmetric unboxing operation occurs. Figure 15.2 illustrates boxing
and unboxing.

Getting Started with Generics
Generics allow developers to define types and methods that are parameterized with type
parameters. Those parameters are ultimately filled in when such types or methods are used.
Let’s concentrate on generic types for the time being, deferring treatment of methods
until later.

700 CHAPTER 15 Generic Types and Methods

Managed Heap

Box Unbox

int i = (int)o;

42

object o = 42;

Int32
42

FIGURE 15.2 Boxing and unboxing.

When creating a generic type, whether it’s a class, struct, interface, or delegate, you’re
adding one or more type parameters to the type declaration. On the other side of the
picture, a user of the type can specify types for those parameters. Let’s take a look at an
example to set the scene:

class List<T> {

private T[] _elements;

...

public T this[int i] {

get { return _elements[i]; }

set { _elements[i] = value; }

}

public void Add(T o) {

// Add to array, dynamically growing as necessary.

}

...

}

In the preceding example, we’re defining a generic type called List, with one type para-
meter that listens to the symbolic name of T. Or, if you prefer it shorter, we’ve created a
List of T. When using this type to store elements of a certain type, T gets substituted for
something more tangible (for example, int or string):

List<int> xs = new List<int> { 1, 2, 3 };

List<string> names = new List<string> { “Bart”, “John” };

In fact, the generic type shown here is already implemented for us in the BCL, under the
System.Collections.Generic namespace, where a bunch of other generic collection types
reside. We take a closer look at those later in this chapter because collections are one of
the main motivators for this feature.

A generic type that’s “instantiated” with its type parameters carries type information that
makes things much stronger typed, as shown in Figure 15.3.

701Getting Started with Generics

FIGURE 15.3 Generics improve static type checking.

FIGURE 15.4 Better compile-time checking facilitated by the use of generic types.

Notice in Figure 15.3 how the List<T>’s Add method that takes in an argument of generic
type parameter T gets surfaced, at compile time, as a method that takes in an int value.
Trying to specify an object with an incompatible type now causes compile-time errors as
opposed to failed runtime checks that get surfaced as exceptions:

List<int> xs = new List<int> { 1, 2, 3 };

// An evil guy trying to mess with the collection...

xs[0] = “Should not be here”;

// No need to cast here anymore...

int first = xs[0];

The second line of code now fails to compile, as shown in Figure 15.4. This is a good
example of failure being a positive thing because intractable runtime errors are now
prevented entirely.

COLLECTION INITIALIZERS

In the previous examples, we’ve used a C# 3.0 feature called collection initializers,
which enables us to initialize a collection’s elements using the curly brace syntax famil-
iar from arrays:

int[] xsArray = new int[] { 1, 2, 3 };

List<int> xs = new List<int> { 1, 2, 3 };

702 CHAPTER 15 Generic Types and Methods

Bart,
26 Years

Object

Constructor Call

Substitute Type

Parameters

Type

Person
string name; int age;

Generic Type

List<T>
T[] elements;

Constructed Generic Type

List<int>
int[] elements;

FIGURE 15.5 Analogies between constructing objects and constructing generic types.

This feature is enabled for types that implement the IEnumerable<T> type and have
an Add method available. Under the hood, code gets generated that calls this Add
method for all the elements specified in the initializer list.

For more information about the rationale of this feature with regard to LINQ, refer to our
earlier discussion about object initializers in Chapter 6, “A Primer on Types and Objects.”

Conceptually, you can compare the declaration of a generic type with a blueprint from
which other types can be formed. In a more formal setting, those blueprints are known as
unbound generic types, where the unbound adjective qualifies the presence of type argu-
ments that haven’t been applied yet.

With some goodwill, you can draw a parallel between object instantiation and the use of
generics to instantiate types. Although in the former case one constructs bigger objects out
of smaller ones (for example, a Person consisting of a name and an age), the latter uses
types to create types out of. Also on the syntactical level, there’s a little analogy, where
object constructors use regular parentheses to take in object parameters, whereas generic
types use angle brackets to take in type parameters.

Figure 15.5 compares construction of objects with construction of types.

POLYMORPHISM, UNIVERSAL QUANTIFICATION AND GYRO

Whenever something can take on multiple shapes or forms, it can be said to be poly-
morphic. Generics are no exception to this rule and are in fact a form of type-level poly-
morphism: For every substitution of its type parameters, another flavor of the original
type is created.

In the preceding paragraph, I subtly used the phrase for every. Readers familiar with
predicate logic will recognize the “for all” quantifier in the informal language used over
here. Type theoreticians have recognized the same similarity (well, sort of, as types
were invented before programming languages were) and called the theoretical founda-
tion of generic types universal quantification.

703Declaring Generic Types

Rich type systems have always inspired computer scientists to do better, trying to
catch more and more errors at compile time in favor of runtime checks. The way
generics came along in the CLR is no different. In the early .NET 1.0 era, it was widely
recognized within Microsoft that an extension to the type system would be very desir-
able to allow parameterized types. A little later, two researchers of Microsoft Research,
Don Syme and Andrew Kennedy, improved the CLR with generic types originally code
named Gyro. The rest is history, and today you can harvest this great type system-level
feature addition.

Declaring Generic Types
Let’s take a closer look at how generic types are declared. We’ve already seen the syntax
used, using angle brackets < and > to specify a comma-separated list of type parameters.
For example, here’s another generic collection type with two type parameters:

class Dictionary<TKey, TValue>

VISUAL BASIC SYNTAX

When talking about generic types, use the word of to separate the name of the type
from its type parameters, as denoted by angle brackets in C#. Visual Basic sounds like
plain English language and uses the Of keyword to make this explicit:

Class List(Of T)

‘...

End Class

To construct a type out of the generic type, the same of keyword is used, followed by
the type to be substituted for the type parameter in that position—for example,
List(Of Integer).

Stylistically, generic type parameters are prefixed with a capital T, followed by a descrip-
tion of the parameter. This pretty much mirrors the naming convention used with inter-
faces, where an I prefix is used. Sometimes, especially when there’s only a single type
parameter, a single letter is used, although style best practices do not recommend this.

Obviously, the names of type parameters need to be unique to avoid name clashes, just as
is the case for variable names within a method. Within the declared generic type, its type
parameters can be used in places where a type is expected (for example, when declaring
fields, for method parameters, to declare variables).

Let’s continue our investigation of generic type declaration by taking a look at the way
they get represented under the hood. For illustration purposes, consider the following
fairly empty List<T> implementation:

704 CHAPTER 15 Generic Types and Methods

FIGURE 15.6 A generic type seen in ILDASM.

class List<T> {

private T[] _elements;

}

TRAIN YOUR KNOWLEDGE ON DATA STRUCTURES!

I leave it as an exercise for you to implement an efficient generic list type with Add and
Insert methods, as well as indexer accessors to get and set the list’s elements. To
get inspiration about what a real List<T> implementation might look like from a usage
point of view, take a look at System.Collections.Generic. Obviously, you won’t want
to create your own List<T> implementation (after all, the BCL folks have already done
it for you), but it’s still a fun little exercise!

Looking at the resulting assembly through the eyes of ILDASM, you’ll see something along
the lines of Figure 15.6.

First, notice the weird-looking name of the resulting type at this level: List`1<T>. After the
back-tick, the compiler has encoded the type’s arity, indicating the number of type para-
meters it takes. Fair enough, but what’s up with the _element array’s type? We recognize
the square bracket syntax that denotes an array type, but what about the !0 part that goes
in front of it? That’s nothing less than a “hole” caused by the occurrence of the T type
parameter in that spot, referring to it by its index in the type parameter list. The exclama-
tion symbol indicates that a reference to a hole follows, and 0 refers to the first type para-
meter, which is T. If you double-click the _elements entry, you’ll see the following:

.field private !T[] _elements

Here ILDASM is so kind to resolve this !0 business down to the original parameter name
for readability purposes. So, in their true essence, generic types are types with holes
punched in them. Figure 15.7 shows List<T> with its single generic parameter.

705Declaring Generic Types

Hole in
the Type

List<T>
0[] elements;

FIGURE 15.7 Generic types are blueprints with placeholders, or holes.

UNLIKE TEMPLATES

Generics should not be confused with C++ templates. Although they serve similar pur-
poses, templates are a compile-time technique, whereas generics survive until runtime,
as seen through our IL code inspection. This results in several advantages, such as
the capability to declare a generic type in one language and use it from another one,
which is one of the main features of .NET.

Not only classes support generics. Structs and interfaces do, too, as illustrated by the
IEnumerable<T> and IEnumerator<T> interfaces in System.Collections.Generic:

public interface IEnumerable<out T> : IEnumerable {

IEnumerator<T> GetEnumerator();

}

public interface IEnumerator<out T> : IDisposable, IEnumerator {

T Current { get; }

}

WHAT’S THE OUT MODIFIER USED FOR?

Don’t freak out about the out modifier used on the declaration of the type para-
meter T in the preceding fragment. Later in this chapter, in the section “Co- and
Contravariance,” you read in great detail about this feature called generic covari-

ance, introduced in C# 4.0.

It’s not uncommon for generic interfaces to have their nongeneric counterparts in the
implementation list, so that nongeneric usage is still possible when such a need arises for
one reason or another.

Type parameters on the declaring type can be used as type parameters on other generic
types. For example, in the IEnumerable<T> interface, the GetEnumerator method returns
an IEnumerator<T>. All this says is that whenever IEnumerable<T> is instantiated with a
type for its type parameter T, that same type will be used to instantiate the
IEnumerator<T> returned by GetEnumerator.

706 CHAPTER 15 Generic Types and Methods

FIGURE 15.8 Naming of type parameters is flexible.

How about implementing this interface? Different possibilities exist, one of which is to
carry on the type parameter to the implementing type, which will become generic by itself
in that case. List<T> is a good example because it implements IEnumerable<T>:

public class List<T> : ..., IEnumerable<T> {

...

}

Notice that the choice of the name for a type parameter is not tied to the declaring type.
For example, when implementing to IEnumerable<T>, you are not required to use T as the
name for the type parameter on the implementing type. In other words, at the use site,
you can choose a different name:

public class List<TElement> : ..., IEnumerable<TElement> {

...

}

In fact, Visual Studio will show you the mapping between the type parameter names at
the declaration site and use site. Figure 15.8 shows IntelliSense revealing parameter names
and their mapping.

Instead of propagating type parameters, you can also implement a generic interface by
supplying any of its type parameters:

class Numbers : IEnumerable<int> {

public IEnumerator<int> GetEnumerator() {

...

}

...

}

Because a type parameter can be substituted for any type (though, as you see later, this
can be restricted by use of constraints), it can be filled in with a generic type by itself, too.
A good example is found on IDictionary<TKey, TValue>, a generic interface of arity two,
meaning it has two type parameters:

707Declaring Generic Types

public interface IDictionary<TKey, TValue> : ...,

IEnumerable<KeyValuePair<TKey, TValue>> {

...

}

Here, notice how the IEnumerable<T> interface is getting implemented with another
generic type in its T type parameter position. KeyValuePair<TKey, TValue> by itself is a
generic struct of arity two (the arity is the number of parameters):

public struct KeyValuePair<TKey, TValue> {

public KeyValuePair(TKey key, TValue value);

public TKey Key { get; }

public TValue Value { get; }

}

Let’s concretize this a little bit by performing a mental substitution of IDictionary’s type
parameters. Suppose we’re implementing a phonebook where the key is a person’s name
(represented as a string) and the value is used to contain that person’s phone number (for
sake of argument represented as a simple int). This phonebook can be enumerated over,
producing a sequence of key/value pairs that tie together a string (for the person name)
with an int (for the phone number). An example is shown here:

var numbers = new Dictionary<string, int> {

{ “Bart”, 911 },

{ “John”, 119 }

};

foreach (KeyValuePair<string, int> entry in numbers) {

// Do something...

}

In the preceding code, we’re using C# 3.0’s collection initializers once more to
populate the created dictionary object. This corresponds to the following code
(using variables with a double underscore prefix to indicate their compiler-

generated nature in case collection initializers are used):

var __temp = new Dictionary<string, int>();

__temp.Add(“Bart”, 911);

__temp.Add(“John”, 119);

var numbers = __temp;

The Add methods being called are defined on Dictionary<TKey, TValue> with the follow-
ing signature, again using the type parameterization introduced by the containing type:

void Add(TKey key, TValue value);

708 CHAPTER 15 Generic Types and Methods

FIGURE 15.9 Creating a constructed generic type with help from Visual Studio.

This should give you a good initial idea about where type parameters can be used to make
a type as generic as possible with regard to the objects it operates on, without losing any of
the rich type information at compile time.

Using Generic Types
In our discussion about generic types, you learned how a generic type is used repeatedly.
Let’s concentrate on the phonebook example a bit more:

var numbers = new Dictionary<string, int> {

{ “Bart”, 911 },

{ “John”, 119 }

};

In the preceding code, we’re making a constructed generic type by substituting the TKey type
parameter for string and the TValue type parameter for int. As you expect from a great
development environment, Visual Studio provides IntelliSense when supplying types for
generic type parameters, as shown in Figure 15.9.

Behind the scenes, the type parameterization specified while creating a constructed
generic type survives in the intermediate language (IL) code. Looking at it from a different
angle, it’s the CLR that’s responsible for dealing with the creation of the ultimate type,
rather than the front-end language compiler. As mentioned before, this is quite different
from the way C++ templates work.

The role of the CLR—and in particular the Just-in-Time (JIT) compiler—is to come up with
concrete memory layouts for all the constructed generic types it comes across at runtime.
This effectively constitutes substitution of the holes created by type parameters, as you
saw earlier during our discussion about the declaration of generic types. Ultimately, the
result is just as if someone created a specialized nongeneric class with the parameter types
baked into the appropriate positions, as shown in Figure 15.10.

NO ERASURE

Another platform that provides a way to parameterize types is Java. Despite sharing the
name generics, the way it’s implemented differs from the CLR’s approach. Generic
types in Java are more of a compile-time illusion, allowing the runtime to remain the
same and even to target existing nongeneric collection types. All the compiler does is
make sure the constructed generic types are used correctly, but in the end the type
parameters are erased away.

709Performance Intermezzo

Hole in
the Type

Hole Got
Filled Up

List<T>
0[] elements;

List<int>
int[] elements;

List<string>
string[] elements;

FIGURE 15.10 Creating a constructed generic type fills up the holes in the type definition.

FIGURE 15.11 Constructing a generic type from an IL perspective.

To realize a true cross-language interop story and to eliminate inefficiencies like boxing
of value types, the .NET folks chose to bake generics into the CLR type system instead.

Performance Intermezzo
As mentioned at the beginning of this chapter, one benefit of generic types is their
allegedly better performance profile. An underlying problem also mentioned earlier in this
chapter is the excessive boxing that occurs when storing value types using the most
applicable type in .NET: System.Object.

Figure 15.11 shows the creation of a constructed generic type through the lenses of the
ILDASM tool once more. Don’t worry too much about the details, but observe how the
full type information about the generic type’s parameterization is preserved.

710 CHAPTER 15 Generic Types and Methods

WHAT ABOUT BOXING IN OTHER PLATFORMS?

.NET’s capability to treat value types and reference types in the same manner is a side
effect of its unified type system design philosophy. It allows all languages to think in
terms of a single type hierarchy, abstracting away seemingly irrelevant differences
between various kinds of types: Everything is a System.Object in the end.

Other platforms, such as Java, did not go that far and maintained some differentiation
between values and references. In particular, primitive types could not be used in
places where an object type was expected. Instead, wrapper classes (which are refer-
ence types) were created to bridge the gap. For example, an int value has a counter-
part called Integer. In fact, this is nothing but manual boxing.

One positive implication of the Java approach is the fact that heap allocations get more
visible because users must manually new up a wrapper object when adding it to a col-
lection. However, it came at the cost of true unification of types, and with the advent of
generics in this platform, things have gotten more implicit, too.

Going back to our sequential list example, we can ask ourselves what the most efficient
collection type will be: ArrayList or its generic counterpart List<T>. As a reference for
any measurements, we also consider a plain old array. Of course, we first need to define
how we’re going to test matters.

The only thing we’re concerned about here is the cost of boxing: Is it really that bad?
Because in this analysis we don’t really care about dynamically growing collections, we’ll
fix the number of elements upfront. For an array, that’s easy to do when creating the new
array instance. And for the collection types, we can do so by specifying an initial capacity
as a constructor argument. Internally, both ArrayList and List<T> use an array for the
underlying storage, so effectively this corresponds to an array size specification:

const int N = 10000000; // 10 million elements

var array = new int[N];

var arrList = new ArrayList(N);

var genList = new List<int>(N);

Because ArrayList is object based, the array that will keep the integer values inside of it
will be an object[]. This is where we expect the costly boxing to kick in, as shown in
Figure 15.12. Obviously, an array with element type Int32 is the most efficient representa-
tion for the data, being a consecutive range of memory to keep the elements in. Because of
the way generics work, we expect the List<int> to correspond to such an array internally.

Nevertheless, we shouldn’t expect the generic List<int> to be as efficient as the plain old
int array because the collection type has to do a little more work. On every insert into the
list, it must check whether there’s sufficient space left to store the value in the backing
array storage. If not, it has to grow the array. We’ve avoided the condition of having to
grow the array by setting an initial capacity, but the cost of checking against the current
array size remains for every insert.

711Performance Intermezzo

array

Managed Heap

Int32[]

1 1 1 1

0 1 2 N

…

Expecting a Similar
Layout for genList

arrlist

Managed Heap

object[]

0 1 2 N

…

Int32
1

Int32
1

Int32
1

Int32
1

FIGURE 15.12 Storing Int32 values in an object array causes boxing.

Based on this observation, we expect List<int> to be a bit slower than int[]. However,
the use of an ArrayList to store int values is expected to be quite painful due to the cost
of having to box up the values when storing them in the array, as well as the inverse
when retrieving a boxed value and casting it back to the value type.

In addition, we expect the excessive use of boxing behind the scenes to add pressure to
the garbage collector (observe the huge managed heap cloud in Figure 15.12), so the
number of garbage collections will provide an idea about the cost, too. So let’s put things
to the test and write some code. First, here’s a helper method:

static void Measure(string message, Action a) {

var sw = new Stopwatch();

sw.Start();

a();

sw.Stop();

Console.WriteLine(message, sw.Elapsed);

}

Measure takes in a message to be printed in the form of a format string with a {0} hole
where the elapsed time will be stuffed in. The second parameter is a delegate of type

712 CHAPTER 15 Generic Types and Methods

Action, something we examine in excruciating detail in Chapter 17, “Delegates.” Think of
it as a way to pass a piece of code in, which will get invoked on the third line.

MEASURE, MEASURE, MEASURE... BUT DO IT RIGHT!

Performance is a verb: to measure. Keep in mind this experiment is merely to prove a
point about generic types. In the real world, you should spend your valuable time
hunting down performance bottlenecks that impact your application’s performance. But
to know whether there’s an impact, you first need to establish a min-bar against which
to measure your performance. For example: “the time to respond to the user should be
under a certain threshold.” In summary, optimize what matters. But at the same time,
it doesn’t hurt to have some basic idea what to look for, like boxing.

One word of advice can’t be omitted: If you measure (and you should if you want to
assess your app’s performance), do it right! The StopWatch class in System.
Diagnostics is your best friend whenever you want to do performance measurements.
Don’t use subtraction of DateTime.Now values because those don’t have a large
enough time resolution to be useful or trustworthy for purposes of performance
measurements. StopWatch, on the other hand, uses low-level Windows primitives to
perform the measurement based on a higher-resolution timer.

The key takeaway is this: Avoid premature optimizations, set a min-bar, measure
against it, and save your valuable time for things that really matter.

Given our little measurement helper method, we’ll kick off six tests: reading from and
writing to each of the three collection types. In addition, we’ll print out the number of
garbage collections as we go along. First, here’s our ArrayList:

Measure(“Write ArrayList: {0}”, () => {

for (int i = 0; i < N; i++)

arrList.Add(1); // Expected: BOXING!

});

Measure(“Read ArrayList: {0}”, () => {

int sum = 0;

for (int i = 0; i < N; i++)

sum += (int)arrList[i]; // Expected: UNBOXING!

});

PrintGCStats();

Don’t worry about the syntax used to pass the Action delegate as the second argument to
the Measure method calls. This syntax, called lambda expression syntax, will become clear
to you in Chapter 17, “Delegates.” Until then, read it as an inline method declaration
taking no arguments (hence the empty pair of parentheses) and that goes to (the fat arrow
token =>) a method body containing the code to execute (between curly braces).

In the preceding code, we expect that storing elements in the ArrayList will cause boxing
because the underlying storage type is an object array (and in fact, it occurs much earlier

713Performance Intermezzo

as we’re passing the constant value 1 as an object to the Add method). When reading from
the list using indexer syntax, we must cast the retrieved object back to the Int32 value
type, something we expect to cause unboxing.

The PrintGCStats method uses the System.GC class to query the garbage collector for
statistics about the number of collections carried out so far during the runtime of the
program, on a per-generation basis. (See earlier chapters in this book for more information
about this.)

static void PrintGCStats() {

Console.WriteLine(“Gen 0: {0}, Gen 1: {1}, Gen 2: {2}\n”,

GC.CollectionCount(1), GC.CollectionCount(2), GC.CollectionCount(3));

}

Next, we do the same for the generic List<int> type. For this case, we expect things to be
better because the storage array will get strongly typed at runtime when the CLR creates a
specialized constructed generic type:

Measure(“Write List<int>: {0}”, () => {

for (int i = 0; i < N; i++)

genList.Add(1); // Expected: capacity check

});

Measure(“Read List<int>: {0}”, () => {

int sum = 0;

for (int i = 0; i < N; i++)

sum += genList[i];

});

PrintGCStats();

Notice how the read loop no longer needs a cast expression because the indexer on the
generic list object will be statically typed to produce an int value.

Finally, to establish a basis for comparisons, we apply the same tests to a plain int array,
which we expect to get the best performance across the board. After all, each of the collec-
tion types we’re testing encapsulates an array:

Measure(“Write int array: {0}”, () => {

for (int i = 0; i < N; i++)

array[i] = 1;

});

Measure(“Read int array: {0}”, () => {

int sum = 0;

for (int i = 0; i < N; i++)

sum += array[i];

});

PrintGCStats();

714 CHAPTER 15 Generic Types and Methods

FIGURE 15.13 Execution time and the number of garbage collections.

Again, no boxing is expected because the array is statically typed to have Int32 elements,
and getting elements out of it is a statically typed operation, too, requiring no casts. Time
to run all of our tests! Figure 15.13 shows my results.

From this, you can clearly see how the ArrayList has put significant pressure on the heap
due to the excessive boxing for the 10 million elements stored in it. In fact, this has trig-
gered no less than 14 gen0 collections and even a handful of gen1 collections, which are
more expensive. No wonder the performance of ArrayList is quite terrible compared to
raw array accesses.

Use of generics, on the other hand, makes things much better. First, we didn’t cause any
more garbage collections, and performance got very close to raw arrays. Although there’s
still a minor performance difference compared to raw arrays, don’t forget about the addi-
tional value added by generic collections (for example, the capability to dynamically
expand the collection when needed).

Operations on Type Parameters
Let’s ask ourselves a quick question: Given a type parameter T, what kind of operations
can we carry out over it? Because the type parameter T can be substituted for anything, our
generic code can’t deal with specifics of a certain type. Nevertheless, a few basic operations
can be meaningfully defined.

Default Values

One operation is to retrieve a default value for a type parameter. For a reference type, the
default value is always the null reference, whereas for value types it’s a value with all-zero
content. This is something the CLR can meaningfully provide as an operation that makes
sense for any type parameter used. In C# terms, this is realized using the default keyword:

int zero = default(int);

string @null = default(string);

T @default = default(T); // could be null, could be all-zero

715Operations on Type Parameters

One place that comes to mind where this can be put to handy use is inside constructors
for generic types, initializing fields of a generic parameter type. This is a bit far-fetched,
though, because the default behavior is to provide all fields in their default state upon
object construction (a hard guarantee made by the runtime). A better example is when we
need to clear a field of type generic parameter type T outside the constructor (for example,
when writing a generic cache mechanism):

class Cache<T> {

private bool _invalidated;

private T _value;

// Provide a way to recompute the value, for example, using a delegate.

// In fact, the BCL has a similar construct called Lazy<T>.

public void Reset() {

_invalidated = true;

_value = default(T);

}

}

Here, we need to reset the cached value by setting the stored value back to its default
value. By doing so, for a reference type, the stored object is no longer referenced and can
hence be reclaimed by the garbage collector.

WEAK REFERENCES

In fact, the framework provides a more fundamental mechanism to deal with the situa-
tion where an object is handy to have but an application can live with it being collected
by the garbage collector (for example, because it can be recomputed if needed). This
mechanism is called a weak reference and is exposed through a type in the BCL called
(how surprising) WeakReference.

In fact, the garbage collector knows about this special type and knows to give it special
treatment. Inside the WeakReference lives a System.Object-typed object that can be
accessed through a Target property. A property called IsAlive can be checked to see
whether the target object is still there or has been reclaimed because the garbage
collector thought there was a better use of memory on the system.

For more information, take a look at the MSDN documentation on the topic.

Let’s take a quick look at how the default(T) expression gets realized in IL. In essence,
the initobj instruction can deal with any type specified as its operand, turning the refer-
enced location into the type’s default value. The first two nontrivial lines of the code take
the address of the this._value field, which is then used as an input to initobj to zero
out the contents, resulting in either a null reference or an all-zero value type. Figure 15.14
shows the inner workings of default(T).

716 CHAPTER 15 Generic Types and Methods

FIGURE 15.14 Default(T) relies on initobj to get its behavior.

Getting the Type’s Reflection Info Object

The other operation that’s meaningfully defined on a generic parameter T is the typeof
expression that gets the System.Type object describing, at runtime, the type that was
supplied for the type parameter T:

Type t = typeof(T);

var methods = t.GetMethods();

Because you’ll be reading a whole chapter about reflection (Chapter 21, “Reflection”), we
defer further discussion about System.Type until later. Practically speaking, you should
rarely have to use the typeof(T) trick.

Generic Constraints
So far, you’ve learned how to declare a generic type and how to use it. Although the latter
operation will be your main point of contact with the world of generics, you’ll sometimes
want to write your own generic type. However, up to this point, we haven’t been able to
do much with a generic type parameter inside the type definition. Let’s take a look from
an abstract point of view first. Consider the following piece of code:

class Foo<T> {

public void Bar(T input) {

// What can be do with T?

}

}

The main question is what we can do with the input received as a parameter on Bar. For
one thing, we can take the object and store it somewhere (for example, in a private field).
That’s precisely what a List<T> does, sticking the received elements in an array with
element type T. For example:

717Generic Constraints

FIGURE 15.15 The compiler doesn’t know about T other than it should be an object. D’oh!

class Foo<T> {

private T _field;

public void Bar(T input) {

_field = input;

}

}

Similarly, we could read from a field typed a T and give the object back through some
means like a method, a property, or an indexer. But maybe we also want to perform
certain actions on an object of the parameter type T. Let’s see in Visual Studio what
IntelliSense suggests in Figure 15.15.

What we’re seeing here is nothing more than the IntelliSense for the instance members on
System.Object. This really makes sense because T can be substituted for everything, an
int, a string, another generic type, whatever. And all of those have nothing in common
except that they all derive from System.Object at some point.

So can’t we do anything but those operations on an object declared to be of a generic
parameter? Luckily, the answer is no. By putting constraints on type parameters, we can
enrich the number of operations we can perform. That sounds a little contradictory at
first, so let’s examine this further. You’ll see this is nothing but a world of give and take.

Generic constraints are a way to restrict the constructed types that can be created from a
generic type definition. In other words, what gets constrained is the use site of the generic
type. As a result, the declaration site gets more guarantees about operations it can perform
with objects typed to be of the constrained type parameter. So by giving more guarantees
about the type parameter to the generic type using it, we’re taking away some of the flexi-
bility as to which constructed generic types can be defined out of it.

Interface-Based Constraints

An example is in order. Suppose we want to create a collection that can keep elements
sorted. To make the collection maximally applicable, we want to declare it as a generic
type. However, just creating an OrderedList<T> is too permissive because not every type is
suitable for sorting purposes. So we want to constrain the flexibility on the type parameter

718 CHAPTER 15 Generic Types and Methods

T by saying we only allow “types T that are orderable.” What makes a type orderable? That
starts to smell like a contract, something that can be enforced by the implementation of a
certain interface. IComparable<T> comes to mind:

public interface IComparable<in T> {

int CompareTo(T other);

}

If we can compare any two objects of type T, we can keep things sorted. Lots of types in
the .NET Framework, especially the primitive types, implement IComparable<T>:

public struct Int32 : ..., IComparable<Int32> {

public int CompareTo(Int32 value) {

return this - value; // if this < value, the result is negative; etc

}

}

The semantics of IComparable<T>’s CompareTo method should be easy to understand: If
the current object (this) is less than the specified object of the same type (value parame-
ter), the return value is negative; if it’s equal, the result is zero; if it’s greater, we get a posi-
tive value back.

The remaining question is how to make our OrderedList<T> constrained to accept only
types T that implement IComparable<T>. The answer lies in the where keyword:

class OrderedList<T> where T : IComparable<T> {

// Now we can use the CompareTo method on objects of type T...

}

In this particular case, we’re saying that OrderedList<T> can only accept, for its type para-
meter T, types that implement (the colon syntax) IComparable<T>. Let’s see what this adds
to the things we can do inside the generic type first. Assume we’re using a List<T> as the
internal storage for an OrderedList<T> so that we don’t have to worry about dynamically
growing array-based storage. Now we have the task to implement an Add method that will
insert the object in the right spot based on comparisons made to the existing elements:

class OrderedList<T> where T : IComparable<T> {

private List<T> _elements = new List<T>();

public void Add(T value) {

int i = 0;

while (i < _elements.Count) {

if (_elements[i].CompareTo(value) >= 0)

break;

i++;

719Generic Constraints

FIGURE 15.16 IntelliSense knows about the generic constraints.

}

_elements.Insert(i, value);

}}

This algorithm is naively simple, and much better ways exist to keep a sorted collection
using tree structures and whatnot, but what matters to us here is how the constraint now
allows us to rely on the CompareTo method on objects of type T. In this particular case, the
compiler knows that List<T>’s indexer will return an object of type T. Because the value
argument passed to Add is also of type T, it’s possible to resolve the CompareTo method call
correctly as proven in Figure 15.16.

To convince yourself this algorithm works (and to get an idea about how suboptimal this
choice of algorithm is), you can use the following code:

var ordered = new OrderedList<int>();

var rand = new Random();

for (int i = 0; i < 10000; i++)

ordered.Add(rand.Next(100));

bool faulty = false;

int prev = -1;

// Note: don’t forget to implement GetEnumerator methods as shown in Figure 15.16.

foreach (var n in ordered) {

if (prev > n) {

faulty = true;

720 CHAPTER 15 Generic Types and Methods

FIGURE 15.17 Generic constraints are enforced at compile time.

break;

}

}

Console.WriteLine(!faulty);

The reason this code compiles fine is because the OrderedList<T> type is given a type
parameter, int, that obeys to the constraint of being IComparable<T>. However, if we try
to construct a generic OrderedList type given a type that doesn’t implement this inter-
face, the compiler will complain (see Figure 15.17).

MORE FUN WITH DATA STRUCTURES

The data-structure-savvy reader might find it an interesting exercise to implement a
more efficient OrderedList<T> type based on binary search trees. As you will see, the
BCL has such data structures out of the box, so consider this exercise a brainteaser
rather than a necessity.

As soon as we implement the IComparable<T> interface on Person, this code will start to
compile fine. This emphasizes how powerful generics are: We’ve essentially written what it
means to keep a list ordered just once, and it automatically works for every type that
supports comparison. For example, we could make a Person orderable by Age:

class Person : IComparable<Person> {

public Person(string name, int age) {

Name = name;

Age = age;

}

721Generic Constraints

FIGURE 15.18 Generic constraints survive in IL, making them work cross-language.

public string Name { get; private set; }

public int Age { get; private set; }

public int CompareTo(Person other) {

return this.Age - other.Age;

}

}

A DIFFERENT LOOK AT ORDERING

Our SortedList<T> follows the ordering semantics implemented on T by means of an
IComparable<T> implementation. For types like Person, it’s highly unlikely to see an
implementation of IComparable<T> because it would require to “prefer” a certain
ordering key over another. In the preceding example, we chose the Age property for the
natural order of Person objects, but there isn’t really a “natural” ordering defined here.
IComparable<T> usually makes much more sense for value types.

With LINQ, as you’ll see in Chapter 19, “Language Integrated Query Essentials,” query
operators will be layered on top of IEnumerable<T>, allowing arbitrary ordering keys to
be specified by the user, rather than the person who implemented (or forgot to do so)
the IComparable<T> interface on the objects in the collection to be sorted.

As you’ve seen in this example, the use of interfaces as constraints on type parameters is a
very useful feature. Once more, I want to emphasize the importance of the IL-level repre-
sentation because it provides the essential glue required to work with generic types across
multiple languages, without losing any of its expressive power. After all, if you define a
constrained generic type, you don’t want users of any language in the .NET arsenal to be
able to violate that constraint. So let’s see how the generic type carries along its
constraints by looking in ILDASM in Figure 15.18.

722 CHAPTER 15 Generic Types and Methods

It goes almost without saying that multiple constraints are allowed on a single generic
type parameter, just like a type can implement multiple interfaces. To express this, use a
comma-separated list of constraints on the same parameter:

class OrderedList<T> where T : IComparable<T>, ISerializable {

...

}

When dealing with multiple type parameters, each of those can have its own set of
constraints, requiring multiple uses of the where keyword:

class OrderedDictionary<K, T>

where K : IComparable<K>

where T : IComparable<T> {

...

}

In addition, it’s possible to express generic constraints that establish a relationship
between multiple type parameters (sometimes called a naked type constraint):

class Bar<TDerived, TBase> where TDerived : TBase {

...

}

This is much less common in practice than simple interface-based constraints, but it’s
good to know about the expressiveness of generic constraints.

HOW I WISH THERE WERE AN INTERFACE FOR...

Being able to express generic constraints based on interface types is one thing; having
enough widely used interfaces around is another. One place where the lack of an inter-
face-driven design tends to be problematic is when dealing with operator overloading.

As you’ve seen before, operator overloading on the .NET Framework is realized by using
static methods. As opposed to implementing operators by using some interface, this
allows a null reference as the left side for an operator. Also, the flexibility to overload
operators based on types makes a naïve interface-driven approach like the one shown
here not very appealing:

interface IMultiply<T> {

T Add(T left, T right);

}

For example, vector multiplication has various forms, allowing for multiplication with a
scalar but also between two vectors. In addition, the return type can also vary depend-
ing on the use of a dot product or a cross-product.

723Generic Constraints

Generic constraints are not expressive enough to express the requirement of an opera-
tor to be present on a generic type parameter. If we were to have interfaces as contain-
ers for operator contracts, generic constraints based on interfaces could be used.

The ability to constrain based on operators has been a longstanding request, but the
fear is this could turn into a black hole where the number of different constraint mech-
anisms keeps growing release after release. Only the future will tell whether there will
ever be enough motivation to design, implement, test, and document such a feature. If
you have a definite need for this, raise your voice loud and clear and make sure the
.NET language teams can hear it. In the meantime, make sure to look at F# as well,
where numeric data types get a somewhat different treatment, especially if you find
yourself back in the domain of scientific computing.

Base Class Constraints

Not just interfaces can be used to constrain a type parameter to only those types that
implement it; base classes can also be used to enforce a similar relationship. You can
constrain a type parameter such that only subclasses of a specified base class can be used
to instantiate the parameter:

class FruitMixer<T> where T : Fruit {

private T[] _ingredients;

public FruitMixer(params T[] ingredients) {

_ingredients = ingredients;

}

}

Enforcement of the constraint is similar to what we’ve seen with interfaces. The following
will work fine, for the obvious reason that every Jonagold is an Apple:

var appleMixer = new FruitMixer<Apple>(new Jonagold());

Notice that generics go hand in hand with the well-known capability to pass in an object
of a more-specific type where a less-specific type is expected. Even though the constructor
used to create the FruitMixer<Apple> instance will be typed to take in a params array of
Apples, we can put in elements of a more derived type, like Jonagold. However, when you
try to construct the generic type using a type that doesn’t derive from Fruit, you’ll get
into trouble at compile time:

var cementMixer = new CementMixer<Cement>();

Adding a constraint to the users of the generic type provides more guarantees for the party
declaring the generic type. Because we’re guaranteed to get only Fruit-derived types, we
can rely on the methods defined on the type Fruit:

724 CHAPTER 15 Generic Types and Methods

class FruitMixer<T> where T : Fruit {

private T[] _ingredients;

public FruitMixer(params T[] ingredients) {

_ingredients = ingredients;

}

public Juice MakeJuice() {

var juice = new Juice();

foreach (T ingredient in _ingredients)

juice += ingredient.Squeeze();

return juice;

}

}

Default Constructor Constraint

Besides generic constraints expressed based on interfaces or base classes, a few other tech-
niques are available. One is the new constraint, expressing the requirement to have a
default constructor available for a certain type parameter:

class Factory<T> where T : new() {

...

public T CreateInstance() {

return new T();

}

}

Obviously, the preceding Factory<T> type’s CreateInstance method doesn’t provide any
value over direct instantiation of an object from the outside. It’s merely a way to show
how the expected constructor syntax can be used in conjunction with a type parameter as
long as that parameter is properly constrained. From the outside, this type would be used
as follows:

var factory = new Factory<int>();

var zero = factory.CreateInstance();

It turns out the Int32 type has a default constructor (returning the default value 0), so this
works fine. In contrast, a type that doesn’t have a default constructor gets rejected for use
in place of the generic parameter T. Figure 15.19 shows the compile-time error that results
in that case.

725Generic Constraints

FIGURE 15.19 Violation against a default constructor constraint.

A place where a default constructor constraint comes in handy is when you need a way to
instantiate an object of a parameter type (for example, to provide default storage or to
reset items in some kind of storage). Consider a service object pool as an example of such
a situation. On the essential level, a pool could look like this:

class ServicePool<T> : IService where T : IService, new() {

private List<T> _objects;

public ServicePool(int min, int max) { /* TODO */ }

}

// Any IService interface would do, so we just give a simple example here.

interface IService

{

void TransferFunds(string sourceAccount, string targetAccount, decimal amount);

}

At the type level, a ServicePool<T> implements a certain service interface, exposing that
functionality to the outside world. To provide this service, it delegates all requests to
worker objects that implement the same interface. This explains the type definition and
its constraint:

class ServicePool<T>

: IService // expose the service to the outside

where T : IService, // need to be able to delegate to a worker

new() // need to be able to instantiate workers as needed

The pool is responsible for making sure a certain minimum number of workers are on
standby at any time. It does so by creating instances of the worker type, as specified
through the type parameter T, leveraging the default constructor constraint.

726 CHAPTER 15 Generic Types and Methods

Incoming Request1

Dispatch to Free Worker2

Worker Goes to Busy3

Worker Busy

IService

ServicePool<T>

Worker Asleep

Worker 1

IService

Worker 2

IService

Worker 4

IService

Worker 5

IService

Worker 3

IService

3

1

2

Client

FIGURE 15.20 Service pool interaction sequence.

Whenever a request on the pool’s service interface arrives, the request is forwarded to one
of the available workers, also marking that worker as occupied somehow. This implies that
a different, preferably thread-safe, data structure will have to be used to keep track of
workers who are either occupied or available (free). When the request finishes, the worker
can be returned to the free list, ready to serve other requests. Figure 15.20 shows an inter-
action sequence with a service pool.

It might be the case that a request arrives when no free workers are available. If the
threshold on the maximum number of workers hasn’t been reached yet, the pool can
choose to create more worker instances, again using the default constructor constraint.
This on-demand instantiation of workers is shown in Figure 15.21.

Other mechanisms can be implemented to keep the pool as efficient as possible (for
example, by dropping workers from the pool if the workload on the service pool drops).
This could be beneficial to reduce resource consumption (for example, when workers keep
a connection open to another machine serving requests). And by making a (reference
typed) object unreachable, it can be reclaimed from the managed heap, too.

727Generic Constraints

Incoming Request1

Create New Worker2

Dispatch to New Worker3

Worker Busy

New T()

IService

ServicePool<T>

Worker Asleep

Worker 1

IService

Worker 2

IService

Worker 4

IService

Worker 5

IService

Worker 6

IService

Worker 3

IService

1

3

Client

2

FIGURE 15.21 Service pool interaction sequence.

IMPACT OF GENERICS ON THE CLS

The Common Language Specification (CLS) is the key to .NET’s true cross-language
interoperability story. By having multiple languages adhere to a set of rules, it becomes
possible to get full-fidelity integration with regard to types and their use.

When the CLS was introduced back in the early .NET 1.0 days, a lot of languages
implemented the “CLS roles” (refer to Chapter 1, “Introducing the .NET Platform,” for
more information about this). To make generics in .NET 2.0 and beyond stand out as a
first-class .NET Framework feature, the CLS had to be extended with extra rules to
ensure cross-language interoperability when dealing with such types.

Given the huge benefit that generics provide, having to put an additional burden on lan-
guage implementers was considered a good tradeoff. Hooray!

Obviously, we all wonder how the new T() call is realized under the hood. First, notice the
generic constraint mechanism is enabled for cross-language use. This is shown in Figure
15.22, where the .ctor T part reveals the constraint made it through the compilation all
the way into metadata for other languages to inspect.

More interesting things go on at the place the new T() is compiled. In fact, my choice to
present a Factory<T> with a CreateInstance method wasn’t arbitrary because it acts as a
great starting point for our discussion of generic methods in a moment. Let’s take a look at
what’s going on inside CreateInstance, shown in Figure 15.23.

728 CHAPTER 15 Generic Types and Methods

FIGURE 15.23 Activator.CreateInstance<T> is a generic factory method in the BCL.

Don’t worry too much about the boilerplate code in here, emitted to provide different
treatment for reference type and value type parameters. What’s more worthwhile to take a
look at is how the new T() call ultimately results in a call to a BCL method on a type
called Activator, shown in Figure 15.24. Its role is to provide a one-stop shop for all
imaginable sorts of object activation calls, ultimately leading to the construction of an
object of a given type. Most overloads use reflection primitives, such as System.Type, as
you learn Chapter 21.

In .NET 2.0, a static generic method called CreateInstance<T> was added. We take a look
at generic methods shortly, but the essence is simply this: Methods by themselves can
have a list of type parameters, independent of the type in which they’re contained. In the
case of System.Activator, the class type itself is not generic, whereas CreateInstance is:

FIGURE 15.22 The default constructor constraint works cross-language.

729Generic Constraints

FIGURE 15.24 A look at System.Activator.

How CreateInstance performs its magic by calling into the depths of the CLR is beyond
the scope of this book. Nevertheless, full disclosure requires that I mention that the
machinery required to discover a default constructor dynamically at runtime is more
expensive than cases where the compiler knows statically what constructor to call.
Constructors are just methods at the IL level, and methods contain the name of the type
on which they are defined. Obviously, in case of a generic parameter, this information is
missing at the place where the new T() call is made, as T can be substituted for everything.

This requires the CLR’s reflection system to be used to discover the default constructor at
runtime. As the fourth frame in the call stack in Figure 15.25 reveals, reflection can put us
on a slower execution path. If you don’t see the gray-highlighted methods in the Call
Stack window, just right-click a line in the window and choose Show External Code.

Notice that, despite dynamic constructor discovery at runtime, languages understanding
generic constraints will prevent the generic type from being constructed using a type
parameter that violates the constraint. Or to put it another way, in languages such as C#
we’re statically guaranteed that this dynamic discovery will succeed at runtime.

class Activator {

public static T CreateInstance<T>() {

...

}

}

730 CHAPTER 15 Generic Types and Methods

FIGURE 15.25 CreateInstance invokes CLR machinery to discover a default constructor.

EVERYTHING IS RELATIVE...

Even though we’ve pointed out this little caveat on the hidden use of reflection-based
mechanisms, the chance of this becoming your application’s performance bottleneck is
rather slim. As usual with performance, establish a baseline and measure against it.
Use of generics often simplifies code significantly, which is definitely a more valuable
thing in the long run compared to wasting your time on premature optimizations.
Enhanced code readability reduces code maintenance costs. Unfortunately, code read-
ability is overseen as a potentially huge cost-saver way too often.

Taking a step back and looking at this alleged pitfall from a different angle, we can
make another conclusion: If CreateInstance becomes a real bottleneck due to the
rate at which it gets called, you likely are going to have other problems too. Don’t for-
get you’re instantiating objects and hence allocating memory. This is usually a cheap
operation on the managed heap unless you’re doing it so excessively that garbage col-
lection is triggered. Everything is relative.

While we’re at it, you might wonder whether the same caveat applies for interface-based
constraints: Do those result in reflection-based method lookups, as well? Lucky for us, the
answer is no. This is because calls on the target object can be made through the interface,
relying on low-level machinery in the CLR to dispatch the call efficiently. If you were to
analyze the Add method of our OrderedList<T> class in more depth at the IL level, you
would see something like this:

731Generic Constraints

ldloca.s V_1 // fetching array element “_elements[i]”

ldarg.1 // the method’s “value” parameter to compare to

constrained. !T

callvirt instance int32 class System.IComparable`1<!T>::CompareTo(!0)

ldc.i4.0 // load the constant 0

clt // and compare the CompareTo result was less than 0

On the fourth line, you can clearly see a method call made to the CompareTo method on
the interface, using the callvirt IL instruction. The constrained prefix on the line above
it was added to the IL instruction set in .NET 2.0 to allow compilers to simplify the code
emitted for method calls, regardless of whether the target object is a value type or a refer-
ence type. This became very desirable in the face of generic types because type parameters
can be filled up with either value types or reference types.

Restriction to Value Types or Reference Types

Talking about different treatment for value types and reference types, one more way to
constrain a generic type exists. Using the class and struct keywords, a type parameter can
be constrained to accept only reference types or value types, respectively:

class HasRef<T> where T : class {

private T _reference;

}

class HasVal<T> where T : struct {

private T _value;

}

For the reference type constraint, using the class keyword, any reference type can be
used, including classes, interfaces, and delegates. For value types, using the struct
keyword, you can use all value types but no nullable types.

Notice that based on the constraint, the compiler again rejects certain uses both at the
declaration site and use site. Compile-time checks carried out at the use site are
predictable: If you use a value type where a class constraint is used, the compiler will
complain (similarly in the other direction for a struct constraint). At the declaration site,
a struct constraint will reject uses of null references. For example:

class HasVal<T> where T : struct {

private T _value;

public bool IsNull() {

return _value == null; // Fails to compile

}

}

732 CHAPTER 15 Generic Types and Methods

REUSE OF KEYWORDS

Ever since the beginning, the C# language has reused keywords in various places,
often to mean fundamentally different things. Although the meaning should be clear
from the context in which the keyword occurs, sometimes this can cause a bit of confu-
sion. A few examples (omitting quite a few other examples) follow:

. In C# 1.0, the this keyword is used to refer to the current instance from within a
class or struct, to call one constructor from another, or to write an indexer.

. In C# 2.0, generic type declarations reuse the new, class, and struct keywords
to express generic constraints, as explained earlier.

. In C# 3.0, the this keyword gets reused for extension methods, the in keyword
appears in LINQ queries, and so does the where keyword for query filters.

. In C# 4.0, generic co- and contravariance (which is discussed in the section “Co-
and Contravariance,” later in this chapter) reuse the keywords in and out.

Being able to enumerate all the uses of a keyword is a good check of your language
skills.

One example where the restriction to value types is used inside the framework itself is the
definition of Nullable<T>:

public struct Nullable<T> where T : struct {

public bool HasValue { get { /* definition omitted */ } }

public T Value { get { /* definition omitted */ } }

public T GetValueOrDefault() { /* definition omitted */ }

public T GetValueOrDefault(T defaultValue) { /* definition omitted */ }

...

}

Generic Methods
Classes, structs, interfaces, and delegates (see Chapter 17) are not the only things that can
be declared using generics. Methods can make use of generics, too. A generic method is
simply a method that has one or more type parameters that can be used for its parameter
types or return type.

Syntactically, the type parameter list is put between angle brackets in between the name of
the method and the parameter list. A great source for generic method examples is in the
LINQ extension methods defined on the Enumerable type defined in the
System.Collection.Generic namespace. For example, here’s the Where method:

733Generic Methods

FIGURE 15.26 Calling a generic method.

static class Enumerable {

public static IEnumerable<T> Where<T>(this IEnumerable<T> source,

Func<T, bool> predicate) {

// See the chapter on LINQ to understand how this works inside

throw new NotImplementedException();

}

}

The method signature states that given a sequence of any element type T and a function
delegate from T to Boolean (to be explained in more detail in Chapter 17) the method can
give back a filtered sequence of that same element type T. Substitute the type parameter T
for any type that comes to mind to concretize this example.

Let’s take a sequence of integral numbers using the Int32 type. Given this sequence and a
function that says for each Int32 in the sequence whether it should pass the filter (that is,
the function defines a predicate), the result will be a filtered sequence of Int32 objects. The
following shows how to call this method, using simple static method invocation syntax:

IEnumerable<int> evens = Enumerable.Where<int>(new int[] { 1, 2, 3 },

(int x) => x % 2 == 0);

Ignore the second argument for the time being, which is a lambda expression that takes
any object in the input sequence to a Boolean expression denoting the filter’s result (in
our case expressing whether an integer value is even). To call the method, we’ve specified
a type parameter, which immediately shows up in the editor, as shown in Figure 15.26.

All occurrences of the type parameter T in the signature have been substituted for int, just
as if we had a specialized method at hand that was statically typed to take in both an
IEnumerable<int> sequence and a Func<int, bool> delegate, returning a sequence of the
same type as the input one.

However, there’s quite some redundancy in specifying the type for our generic method
call. We’ve said int no fewer than four times in the whole assignment statement:

IEnumerable<int> evens = Enumerable.Where<int>(new int[] { 1, 2, 3 },

(int x) => x % 2 == 0);

Can’t we reach the same effect with less noise? In fact, there’s plenty of opportunity for
the compiler to infer what we mean. Let’s start on the right, where we can take away the

734 CHAPTER 15 Generic Types and Methods

FIGURE 15.27 Type inference at work.

type on the parameter to the lambda expression, something you’ll have to believe my
word for until you’ve read Chapter 17:

IEnumerable<int> evens = Enumerable.Where<int>(new int[] { 1, 2, 3 },

x => x % 2 == 0);

The preceding code is still full of redundancy. Up until now, we’ve stated we want to call
a generic method Where specifying the type parameter explicitly. However, if the type of
the first parameter is known to be an IEnumerable of something, that same something
ought to be the generic parameter type of the method. Let’s see what happens if we try
the following:

IEnumerable<int> evens = Enumerable.Where(new int[] { 1, 2, 3 },

x => x % 2 == 0);

If you try to compile the preceding code, you’ll see it still succeeds. Here, we’re omitting
the generic type parameter altogether and leave it to the compiler to go and figure it out
for us. So whoever says that type inference is new to C# 3.0 and later is seriously
mistaken: This is a form of type inference starting from C# 2.0!

Starting with C# 3.0, we can go further, though. First, we can make the compiler
infer the type of the array for us based on the most common supertype of its
elements, also known as the implicitly typed array initializer feature:

IEnumerable<int> evens = Enumerable.Where(new[] { 1, 2, 3 }, x => x % 2 == 0);

We’re back to one single line now, and the compiler still knows precisely what we’re
talking about. Let’s prove this by hovering over the x parameter used in the lambda
expression. This is what we expect the compiler to have figured out: Because the array
contains elements of type Int32, and such an array implements IEnumerable<Int32>, the
generic type parameter to Where ought to be Int32. Hence, the second argument has to be
of type Func<Int32, bool>. Finally, x is used as the argument of that function, which is of
type Int32. Guess what, Figure 15.27 shows the compiler found this out, too.

Finally, local variable type inference, also introduced in C# 3.0, can be used to get rid of
the evens variable’s type, although that might start to become too unreadable for some
programmers:

var evens = Enumerable.Where(new[] { 1, 2, 3 }, x => x % 2 == 0);

735Generic Methods

Alternatively, but this is beyond the scope of generics, we can call the method in the
following way as it has been defined as an extension method. Internally, this translates back
to exactly the form shown earlier:

var evens = new[] { 1, 2, 3 }.Where(x => x % 2 == 0);

And to finish off our translation battle, the preceding code is exactly the same as the
following LINQ query expression, as you also see later:

var evens = from x in new[] { 1, 2, 3 }

where x % 2 == 0

select x;

Multiple type parameters can be used for generic methods, too. An example is the Select
method from LINQ:

static class Enumerable {

public static IEnumerable<R> Select<T, R>(this IEnumerable<T> source,

Func<T, R> project) {

// See the chapter on LINQ to understand how this works inside

throw new NotImplementedException(); }

}

A fully explicitly typed example is shown here, projecting a sequence of integer values
(hence T is of type Int32) to a sequence of string objects (making R of type String):

IEnumerable<string> numbers = Enumerable.Select<int, string>(

new int[] { 1, 2, 3 },

(int x) => x.ToString());

This should be intuitively fairly straightforward to understand: Given the integer numbers
1 through 3, each of those gets fed into a function that goes to the string representing that
number, obtained through a ToString call. All the results of those projections make up
the resulting sequence, which clearly consists of string-typed elements. The idea of this
query operator is illustrated in Figure 15.28.

Again, we can simplify things based on what the compiler already knows. The input array
can be implicitly typed, the lambda expression argument’s type can be inferred, and from
the array’s element type T can be identified with the type Int32. So far, so good—but there’s
more! Based on the ToString return value in the lambda expression’s body, R can be deter-
mined to be of type String. In other words, T and R can be left out without the compiler
complaining because it can infer the type on its own:

IEnumerable<string> numbers = Enumerable.Select(new[] { 1, 2, 3 },

x => x.ToString());

736 CHAPTER 15 Generic Types and Methods

FIGURE 15.29 When type inference can’t figure it out.

IEnumerable<int>

F
u
n
c
<
i
n
t
,
s
t
r
i
n
g
>

1 2 3 4 5 6 …

IEnumerable<string>

“1” “2” “3” “4” “5” “6” …

x

=
>

x
.
T
o
S
t
r
i
n
g
(
)

x

=
>

x
.
T
o
S
t
r
i
n
g
(
)

x

=
>

x
.
T
o
S
t
r
i
n
g
(
)

x

=
>

x
.
T
o
S
t
r
i
n
g
(
)

x

=
>

x
.
T
o
S
t
r
i
n
g
(
)

x

=
>

x
.
T
o
S
t
r
i
n
g
(
)

FIGURE 15.28 Select<int, string> applied to an input sequence an a projection function.

You can’t always omit the type parameters, though, for various reasons. For one thing,
there might not be enough type information around to do inference on. Suppose we have
a generic method defined like this:

T Identity<T>(T input) {

return input;

}

This isn’t useful at all, apart from wasting CPU cycles, but it is enough to show that no
magic happens when this is given a typeless expression like the null literal. Figure 15.29
shows the compile-time error that occurs when type inference fails.

Notice from this example how the type does not flow from the left side to the right side.
Given a null argument is all that matters for the compiler to decide it can’t find a type for
type parameter T.

737Generic Methods

Another case where inference of generic method type parameters is not possible is when
things get ambiguous. An example is LINQ’s Concat method, which is defined as follows:

static class Enumerable {

public static IEnumerable<T> Concat<T>(this IEnumerable<T> first,

IEnumerable<T> second) {

// See the chapter on LINQ to understand how this works inside

throw new NotImplementedException();

}

}

Given two sequences with the same element type, Concat returns a sequence with both
input sequence’s elements. For example, given sequences { 1, 2, 3 } and { 4, 5, 6 }, the
result will be a sequence that yields the numbers 1 through 6.

Now consider a simple class hierarchy with Fruit, Apple, and Lemon, using those types in
the following piece of code (using extension method syntax):

var fruits = new Apple[] { ... }.Concat(new Lemon[] { ... });

The concrete apple and lemon objects in both arrays do not matter for our discussion; all
that matters are the types of both sequences. For the “first” parameter, the compiler can
infer T to be Apple, whereas the “second” parameter T seems to be Lemon. Even though
both have a common supertype of Fruit, the compiler does not turn T into Fruit.

TAMING TYPE INFERENCE

This might seem odd but is a limitation introduced by well-intentioned design. Because
every two types have System.Object as a common supertype, silly mistakes would be
left unnoticed if the compiler were to decide on a type by walking the type hierarchy.

Also, constructed generic types can appear in error messages. When types get inferred
with seemingly flexible rules as the hypothetical one we’re discussing here, you will
start to see types appearing out of nowhere when analyzing error messages. For
example, consider the following code:

PrintAnimals(new Apple[] { ... }.Concat(new Lemon[] { ... }));

Assume for a moment the Concat method call expression’s return type has been
inferred as IEnumerable<Fruit> and PrintAnimals takes an IEnumerable<Animal>.
Clearly, overload resolution is going to fail, producing an error that may mention the
fact an IEnumerable<Fruit> was given while an IEnumerable<Animal> was
expected. Looking at the code, you don’t see any mention of Fruit at all.

In general, languages that rely heavily on type inference tend to produce very cryptic
error messages mentioning types coming out of nowhere. Typical examples include
functional languages such as Haskell and ML. With rules that seemingly take away flex-
ibility, the C# language tries to keep things more sane.

738 CHAPTER 15 Generic Types and Methods

FIGURE 15.31 Visual Studio 2010’s IntelliSense is smarter about generics.

FIGURE 15.30 Eager auto-completion by IntelliSense in Visual Studio 2008.

WHY SYNTACTICAL ORDERING MATTERS

Writing out generic methods that use one of their type parameters in the method’s
return type got a little messy in conjunction with existing IntelliSense engines. In some
sense, they didn’t intelligently sense the intent of the user. Because the generic
method’s type parameter list isn’t seen until it gets written, the editor tries to provide
meaningful IntelliSense as soon as the following is typed:

public static IEnumerable<T

In Visual Studio 2008, this resulted in the suggested IntelliSense shown in Figure 15.30.

If you were in a hurry and just continued typing, you got the following in return:

public static IEnumerable<ThreadStaticAttribute>

In Visual Studio 2010, the IntelliSense engine has gotten a lot smarter about the use
patterns with generics and makes a very reasonable guess of what you mean. Because
IEnumerable< indicates the user wants to write a generic type, and because that type
is defined with a type parameter T, that may be a good fit (see Figure 15.31).

Beware of the wording in the last section: may be a good fit; after all, the user might
want to use a different name for a type parameter. You’ve seen an example where this
is the case: The Select<T,R> query operator returns an IEnumerable<R>.

The bigger problem actually results from the syntactical order of type parameters in
relation to the return type. And the position of the return type is an inheritance from
the C-style language family. It’s not until the type parameters have been seen that

739Generic Methods

FIGURE 15.32 Anonymous types work fine with generics.

sense can be made of the return type if type parameters are used in there. In contrast,
Visual Basic has always put the return type at the end, which makes things better.

Function Where(Of T)(source As IEnumerable(Of T), ...) As IEnumerable(Of T)

So the next time you design a language, consider syntactical order!

Notice that sometimes type inference for type parameters is necessary when dealing with
anonymous types (for example, as commonly done with LINQ’s Select method):

var res = people.Select(p => new { p.Name, p.Age});

Here, we’re projecting all persons in the people collection to an anonymous object
containing their Name and Age properties. This anonymous type gets used for the type
parameter R on the Select method call. Besides the inference at the level of generic type
parameters, to refer to the projection’s result type, you must use local variable type infer-
ence, too. Here the type of res will be inferred based on the result of inferring type para-
meter R (that is, as IEnumerable<R> with R our anonymous type). Figure 15.32 shows how
the definition of an anonymous type shows up in IntelliSense when revealing generic
parameter mappings.

MUMBLE MUMBLE

Inference for generic type parameters is an all-or-nothing feature. If the compiler can’t
figure out any of the type parameters on its own, you’ll have to specify all of them your-
self. The hypothetical language feature of being able to have partial inference of type
parameters is sometimes referred to as mumble types. In essence, you would give the
compiler some hints about certain parameters, whereas the others can be inferred:

Bar<int, *, string>(...) // the * makes a mumbling sound

Bar<int, var, string>(...) // or the var keyword could be reused

Such a feature never made it into the language and would be useful only in rare cir-
cumstances.

Finally, we have to mention that generic methods can use the same set of constraints put
on type parameters, using the same where keyword.

740 CHAPTER 15 Generic Types and Methods

Co- and Contravariance
While most of the C# 4.0 set of language features deals with dynamic typing and
simplifying interoperability scenarios, one other feature made it in to the language.
Generic co- and contravariance is a powerful feature with a scary name. Luckily,

you won’t have to deal with it directly that often. Instead, this new feature makes working
with certain generic interfaces and delegates easier. Let’s have a look.

Annoyances with Generic Types

The mainstream .NET languages, C# and VB, introduced the concept of generic co- and
contravariance as part of the .NET 4 release. Even though the CLR has supported those
concepts ever since the introduction of generics, they never were exposed through the
various languages. However, with the advent of LINQ in .NET 3.5, the need became much
more apparent. Before explaining those concepts, let’s take a look at one of the little
annoyances that pop up when using LINQ:

IEnumerable<Apple> apples = ...;

var juice = MakeJuice(from apple in apples

where apple.Color == Color.Red

select apple);

In the preceding code, the query expression passed to MakeJuice will be inferred to be of
type IEnumerable<Apple>. Based on the translation of the query expression (which will be
explained later in Chapter 19, in the section, “Query Expression Syntax”) and your knowl-
edge of generic methods, this should be relatively easy to figure out:

IEnumerable<Apple> apples = ...;

var query = apples.Where<Apple>(apple => apple.Color == Color.Red);

var juice = MakeJuice(query);

Refer to the signature of the Where method discussed earlier in this chapter; you see that
the return type is IEnumerable<T>, where T was substituted for Apple.

So, what’s the problem with this? Up until this point, nothing really. But what if the
query object gets passed to a MakeJuice method defined like this?

Juice MakeJuice(IEnumerable<Fruit> fruits) {

var juice = new Juice();

foreach (var fruit in _ fruits)

juice += fruit.Squeeze();

return juice;

}

741Co- and Contravariance

FIGURE 15.33 Before .NET 4, IEnumerable<T> was invariant in T.

Notice we’re passing an IEnumerable<Apple> object where IEnumerable<Fruit> is
expected. Intuitively, you might say this should be fine because every Apple is a Fruit. It
turns out that this is safe, but before .NET 4, the compiler would reject this code because
it treated IEnumerable<T> as invariant. What this means will become clear in a just a
moment. For now, just take a look at Figure 15.33.

To understand why this code got rejected before C# 4.0, we need to take a tour through
the wonderful world of variance. While variance is deeply rooted in (scary sounding) cate-
gory theory and type theory, it has become an everyday concept now in the world of .NET
programming. This is not only the case for generic types but also for delegates, as you will
see during our coverage of delegates in Chapter 17.

In a nutshell, generic variance annotations relate subtyping on constructed types with
subtyping on the type arguments used to construct the type. For example, if we know that
every Apple is a Fruit, can we also say that every IEnumerable of Apple objects can be
treated safely as an IEnumerable of Fruit? The word safety is essential in this definition
because type safety is at stake. (The following section illustrates the dangers that come
from broken variance treatment.)

Broken Covariance for Array Types

Since the .NET Framework was released, arrays have been covariant. Going back to our
definition of variance annotations, there was a mention of “constructed types.” Array
types are such animals because any element type can be used to construct an array type.
For example, given the type int, we can construct an array that can hold integer values
(that is, which is of type int[]). And this by itself is a new type we can create an array
type out of, namely a jagged int[][] array.

Our next duty is to express a subtyping relationship between array types based on the
knowledge of a subtyping relationship between the element types. For example, if we

742 CHAPTER 15 Generic Types and Methods

Apple

Fruit

Apple[]

Fruit[]

Arraytype Construction

Covariant

T T[]

Arraytype Construction

T T[]

FIGURE 15.34 Arrays are covariant in .NET.

know that every Apple is a Fruit, can we treat every Apple[] as a Fruit[]? It turns out we
can because of .NET’s covariant treatment for arrays. This relationship between element
types and constructed array types is graphically illustrated in Figure 15.34.

Intuitively, when drawing a diagram as the one shown here, if the subtyping arrows on
both sides go in the same direction, we discuss covariance. In other words, when the type
construction (in here the use of [] on a type to construct an array type over it) preserves
the subtyping relationship, it is covariant. You can guess what contravariance will look
like, but ignore that for now.

But there’s a problem with the covariant treatment for array types. Do you recall the title
of this section? It implies somehow that array covariance is broken. What does this mean?
In short, there’s no compile-time safety when treating arrays as covariant, so the runtime
must introduce additional checks to ensure type safety. If it’s unsafe, the obvious concern
is where things can go wrong. Let’s see:

Apple[] apples = new Apple[] { apple1, apple2, apple3 };

// Because of array type covariance we can write the following.

Fruit[] fruits = apples;

// We’re putting a Coconut, which is a Fruit, in a Fruit array. This is fine.

fruits[2] = new Coconut();

The preceding code looks pretty innocent at first glance, but nothing is further from the
truth. In fact, we’re in an ideal position here to break type safety. First, let’s make a
drawing of how things look like in memory so far (see Figure 15.35). The key observation
to make here is that the fruits array is simply a reference that’s aliasing the original
apples array.

743Co- and Contravariance

Apple[] apples = new Apple[] { apple1, apple2, apple3 };

Fruit[] fruits = apples;

apples

fruits

Apple[]

fruits[2] = new Coconut();

apples

fruits

Apple[]

FIGURE 15.35 Not-so-innocent uses of array covariance.

Can you see what the problem is already? If not, here’s a hint. Look at the third element
of the array through the apples variable:

Apple[] apples = new Apple[] { apple1, apple2, apple3 };

// Because of array type covariance we can write the following.

Fruit[] fruits = apples;

// We’re putting a Coconut, which is a Fruit, in a Fruit-array. This is fine.

fruits[2] = new Coconut();

// An element of an Apple[] should be an Apple, right?

apples[2].Peel();

When obtaining the third element of the array on the last line, we’re getting it back as if
it were an Apple. The compiler is right about this because the apples array is typed with
the Apple type as the array’s element type. However, in reality, we got back a Coconut

744 CHAPTER 15 Generic Types and Methods

FIGURE 15.36 The CLR guards arrays against insertion of improperly typed elements.

instance. If we now call the Apple-specific Peel method, things will go wrong: Being able
to call a method on an object that doesn’t have that method available is a breach in the
type safety of the system. You don’t want to try to peel a coconut!

Where’s the problem? It seems that, at every step, the compiler was making the right
conclusions. The fundamental problem here is in allowing array types to be treated covari-
antly, as seen on the second line. Does this mean the CLR can be tricked to break type
safety? Luckily, no, because the designers were aware of this very problem and introduced
runtime checks to protect against it. The result is that the third line of code throws an
ArrayTypeMismatchException, as shown in Figure 15.36.

SO THEY KNEW?

If the designers knew about array covariance being an unsafe operation, why did they
permit it in the first place? As usual, knowing some history helps provide a good expla-
nation. Recall how the CLR was invented with cross-language interoperability in mind.
One popular language at the time of the creation of the CLR was Java, where broken
array covariance has been allowed for ages. To make it possible to run Java code on
the CLR (for example, using J#) without compile-time errors, it was decided to make
arrays covariant.

As you can imagine, this broken-by-design choice was a hot topic of debate within the
design groups, but in the end, the cross-language interoperability goal was deemed
important enough to motivate the introduction of array covariance. Luckily, generics do
much better on the variance front, as you see next.

Safety Guarantees

Co- and contravariance are means to add flexibility to the type system, ideally while
making sure type safety cannot be violated. The flexibility part is clear: being able to treat
an array of Apples as an array of Coconuts is more powerful than not being able to do so.

745Co- and Contravariance

But why is this example of array covariance unsafe? The true answer lies in the writable
characteristic of an array:

// We’re putting a Coconut, which is a Fruit, in a Fruit-array. This is

// actually not fine if the underlying array has a more specific element type.

fruits[2] = new Coconut();

If the fruits variable is referencing an array with an element type that’s more specific
than Fruit, the preceding code is not fine. The reason is someone might be looking at the
same array using a more specific element type (in our case, Apple), observing an object of
an incompatible type that has been put in. Covariance and input are enemies.

Assuming we have arrays from which we can only read elements (we don’t), covariance
could be permitted in a safe manner:

Apple[] apples = new Apple[] { apple1, apple2, apple3 };

// Because of array type covariance we can write the following.

readonly /* hypothetical keyword use */ Fruit[] fruits = apples;

// Reading from the array is a safe operation.

Fruit fruit1 = fruits[0];

// This wouldn’t compile anymore, because the array is read-only!

fruits[2] = new Coconut();

In fact, the ability to use covariance for arrays is not all bad. Think of the case where you
want to print an array of Fruit objects. If the user wouldn’t be able to hand you an array
of Apple objects, the well-intentioned method is not very useful. The reason this method
can be implemented safely is because it would only read from the input array. As you will
see, the use of IEnumerable<Fruit> as the argument type would be a better choice though
because this interface is safe for covariance.

Covariance is conceptually similar to the ability to treat the output of a function as a less-
derived type. For example, even though Console.ReadLine gives me back a string, it’s fine
for me to look at it as if it were nothing more than an object:

object input = Console.WriteLine();

Staying in the domain of method calls for a tiny bit longer, we can ask ourselves what
contravariance corresponds to. Intuitively, you can already guess it ought to be related to
input arguments. When a method expects an object of a certain type, it’s fine for you to
give it an object of a more-derived type. For example, a method taking in two Fruit
objects can safely be given an Apple and a Coconut:

Yogurt appleAndCocunut = CreateFruitYogurt(apple, coconut); // Yum?

746 CHAPTER 15 Generic Types and Methods

Generic Co- and Contravariance

Let’s take a closer look at co- and contravariance on generic interface types. At the start of
this chapter, you saw how the next piece of code didn’t compile in .NET 3.5, with the
assumption that MakeJuice takes in an IEnumerable<Fruit>:

IEnumerable<Apple> apples = ...;

var juice = MakeJuice(from apple in apples

where apple.Color == Color.Red

select apple);

The reason is that IEnumerable<T> was invariant in its type parameter T. Invariance simply
means that no typing relationship between the types IEnumerable<Base> and
IEnumerable<Derived> is established. They’re treated as unrelated to one another.

In .NET 4, IEnumerable<T> has been marked as covariant by putting the out keyword on
the type parameter T:

public interface IEnumerable<out T> : IEnumerable {

IEnumerator<T> GetEnumerator();

}

By using the out keyword, you promise the compiler to use the generic parameter only in
output positions. Using IEnumerable<T> as our example, this is the case because T is used
only in the return type of GetEnumerator. On its turn, IEnumerator<T> needs to be
declared as covariant:

public interface IEnumerator<out T> : IDisposable, IEnumerator {

T Current { get; }

}

Again, T occurs only in an output position, as the return type of a get-only property. On
the side of the users of the interface, the means IEnumerable<Derived> can be safely
assigned to an IEnumerable<Base>. For example, with Apples and Coconuts:

IEnumerable<Apple> apples = new Apple[] { apple1, apple2, apple3 };

// Because of IEnumerable<T>’s covariance we can write the following.

IEnumerable<Fruit> fruits = apples;

// There is no way to put a Coconut in an IEnumerable<Fruit>, hence this does

// not work anymore: fruits[2] = new Coconut();

If you mark a type parameter as covariant but use it in an input position like a method
parameter or for a property that’s not get-only, the compiler will complain (see Figure
15.37 for the variance violation error message):

747Co- and Contravariance

FIGURE 15.37 Violation against covariant-safe use of a generic type parameter.

interface IArray<out T> {

T this[int index] {

get; // This is fine

set; // Having a setter is not fine!

}

}

Contravariance is exactly the opposite of covariance but turns out to be less intuitive to
most people. Where a covariant type parameter can be used only in output positions, a
contravariant one can be used only in input positions, as indicated by the in keyword. A
good example can be found on the IComparer<T> interface:

public interface IComparable<in T> {

int CompareTo(T other);

}

Here, T is used only as an input parameter on the CompareTo method. From a user’s
perspective, contravariance allows the following to be written:

IComparable<Fruit> compareFruits = new CompareFruitBySize();

IComparable<Apple> compareApples = compareFruits;

If an object can compare two Fruit objects, it can be used where two Apple objects have
to be compared. Sure, we won’t be using any specific properties of an Apple to make the
comparison, but it’s safe to treat an Apple as a Fruit for comparison purposes. This is
completely analogous to what would be possible if a Fruit-based Compare method were
called with two Apple objects:

748 CHAPTER 15 Generic Types and Methods

public int Compare(Fruit first, Fruit last) {

return first.Size - second.Size;

}

...

int res = Compare(apple1, apple2); // Fine for method overload resolution

When marking a type parameter as contravariant, it’s a mistake to use it in an output posi-
tion, and the compiler will prevent you from making this mistake.

WHY VARIANCE ISN’T INFERRED AUTOMATICALLY

You might wonder why variance annotations using the in and out keywords have to be
provided explicitly when defining a generic interface or delegate type. (Variance is not
supported except for those two generic types.) After all, it seems the compiler would
be able to figure this out by itself: If a generic parameter is used only in input posi-
tions, it becomes contravariant (in), and when it only occurs in output positions, it
becomes covaraint (out).

The reason for this is that the generic type might still be evolving during development,
while other code may start to depend on the capability to use objects of the type in a
co- or contravariant manner. Once the type gets extended (for example, a method is
being added to an interface), the variance annotation may disappear silently because a
type parameter is now also used in an “opposite” position, making the type invariant.
This would cause code depending on the previously inferred variance to start to break.
For this reason, the language requires you to be explicit about the intended variance
annotation. If no variance modifier is present, the type parameter will be treated as
invariant (just as it was before C# 4.0).

A schematic overview of the relationship between the apparent subtyping and the use of
co- and contravariance are shown in Figure 15.38.

Under the Hood

Co- and contravariance for interface and delegate types has been supported by the CLR
since the introduction of generics back in the .NET 2.0 days. And being supported at the
runtime and IL level makes it amenable for cross-language support once more. Given the
following two types, let’s take a look under the hood:

interface IReadOnly<out T> {

T Give();

}

interface IWriteOnly<in T> {

void Take(T input);

}

749Co- and Contravariance

Apple

Fruit

IEnumerable<Apple>

IEnumerable<Fruit>

Covariant

T IEnumerable<T>

T IEnumerable<T>

Apple

Fruit

IComparer<Apple>

IComparer<Fruit>

Contravariant

T IComparer<T>

T IComparer<T>

Derived can be used where Base is expected.

L
eg

en
d

Derived

Base

Arrow
Flips

FIGURE 15.38 Co- and contravariance in pictures.

FIGURE 15.39 Co- and contravariance behind the scenes.

At the assembly-level as shown in Figure 15.39, covariance is indicated with a + symbol in
front of a type parameter, while contravariance is denoted with -.

Different syntactical notations have been considered for C# 4.0, but ultimately the in and
out modifiers were chosen because they seem to capture the meaning in a natural manner,
reflecting the restrictions on how a type parameter can be used within the type. One more
time: in means the type parameter can occur only in input positions, which causes

750 CHAPTER 15 Generic Types and Methods

contravariant treatment; whereas out restricts use of the type parameter to output posi-
tions only, leading to covariant treatment. From the perspective of the type’s consumer,
out means you’re getting something back, so you can treat it less derived; whereas in indi-
cates you’re putting something in, so it’s possible to give it something more derived.

Where to Use

The most important characteristic of co- and contravariance for generic interface and dele-
gate types is its definition site characteristic. In other words, as a user of such a generic type
you don’t have to do anything to get more (safe) flexibility in return. We’ve already seen
how a LINQ query can now be assigned to a variable of a more general IEnumerable<T>
type, where it couldn’t before.

In .NET 4, generic interfaces and delegates in the BCL have been improved by adding vari-
ance modifiers where applicable. The most important types are shown here:

// Used on collections and in LINQ.

interface IEnumerable<out T>;

interface IEnumerator<out T>;

interface IQueryable<out T>;

// New Reactive Framework interfaces (see next chapter).

interface IObservable<out T>;

interface IObserver<in T>;

// Comparer interfaces.

interface IComparer<in T>;

interface IEqualityComparer<in T>;

// Delegates (see next chapter); read intuitively as method signatures.

delegate void Action<in T>(T arg);

delegate void Action<in T1, in T2>(T1 arg1, T2 arg2);

...

delegate R Func<out R>();

delegate R Func<in T, out R>(T arg);

...

For an example of an interface that can’t have its type parameter marked with either vari-
ance modifier, take a look at ICollection<T>:

public interface ICollection<T> : IEnumerable<T> {

int Count { get; }

bool IsReadOnly { get; }

void Add(T item);

void Clear();

bool Contains(T item);

751Summary

void CopyTo(T[] array, int arrayIndex);

bool Remove(T item);

}

Although the IEnumerable<T> interface is contravariant in T, the derived interface can’t be
because it adds methods that use T in input positions.

Summary
Generics brought a great addition to the CLR’s type system, allowing for improved
compile-time type checking and for easier creation of highly reusable code. The core idea
is to parameterize types such as interfaces, classes, structs, and delegates (as well as indi-
vidual methods) on type parameters. As a result, the generically written code is applicable
regardless of the types supplied for the parameters.

In this chapter, we discussed how generics are exposed in the C# programming language.
First, we familiarized ourselves with the syntax used for generics at the declaration and use
sites for classes and methods. Next, we learned about the (limited set of) constraint mech-
anisms available for generic type parameters. Finally, we discussed the new C# 4.0 co- and
contravariance features.

In the next chapter, we put the theory to practice with exhaustive coverage of the various
collection types in the .NET Framework’s BCL, including many of the related interfaces.

This page intentionally left blank

CHAPTER 16

Collection Types

IN THIS CHAPTER

. Nongeneric Collection
Types 753

. Generic Collection Types 762

. Other Collection Types 775

No discussion of generic types is complete without a
journey through the BCL’s built-in collection types. Prior to
the introduction of generic in .NET 2.0, collection types
had to be defined using System.Object for element types
and whatnot. This caused quite a bit of grief and a poor
development experience.

In this chapter, we look at the various collection types that
come with the .NET Framework’s BCL, driving home the
points about generics made in the previous chapter. Having
a solid understanding of those collection types is invaluable
for every C# programmer.

Nongeneric Collection Types
Before delving into the generic collection types, it’s useful
to get an idea of the legacy collection types out there in the
System.Collections namespace. As you learned in the “Life
Without Generics” section in Chapter 15, “Generic Types
and Methods,” the only way you could create maximally
applicable types in the past was to use System.Object, the
mother type of all types, somewhere. The nongeneric
collection types do so for their storage and hence bubble up
System.Object to the type’s surface on methods like Add,
Remove, and so on. The main reason to learn about those
types is for survival purposes (when, for example, facing
code that was written before the introduction of generics).
For fresh code, generic collection types are the right choice.

754 CHAPTER 16 Collection Types

ArrayList

An ArrayList provides array-like access, using indexers, while having the capability to
grow dynamically as needed. The collection maintains the order in which items were added
and provides the ability to insert and remove items. The following are typical operations:

var lst = new ArrayList();

lst.Add(1); // { 1 }

lst.AddRange(new[] { 2, 3, 7, 6, 5, 4 }); // { 1, 2, 3, 7, 6, 5, 4 }

lst.Insert(index: 0, value: 0); // { 0, 1, 2, 3, 7, 6, 5, 4 }

lst.RemoveAt(index: 4); // { 0, 1, 2, 3, 6, 5, 4 }

lst.Remove(obj: 1); // { 0, 2, 3, 6, 5, 4 }

lst.RemoveRange(index: 2, count: 3); // { 0, 2, 4 }

lst.Reverse(); // { 4, 2, 0 }

lst.Sort(); // { 0, 2, 4 }

bool hasTwo = lst.Contains(2); // true

int two = (int)lst[1]; // 2

From a performance point of view, Add is a constant time operation unless the list’s capac-
ity is reached, at which point a new storage array needs to be allocated, copying the origi-
nal array’s elements over. If you know upfront what the capacity of the list is going to be,
use the constructor overload that allows specifying an initial capacity.

Because the internal storage is a plain array, lookup operations like Contains require
sequential scanning of the list (but also when an element needs to be found for removal),
which will pose a problem for larger collections.

Operations such as Insert and index-based Remove are linear in the size of the list as well
because elements have to be moved around in the array, shifting elements either to the
right for an Insert or to the left for a Remove.

BIG O

MSDN documentation for collections provides a Big O cost for every method. The Big O
notation is used in complexity theory to indicate an upper bound on the computational
resources required to execute the underlying algorithm. O(1) means constant time, O(n)
means linear in the size of the collection, and similar notations are used for quadratic
or logarithmic complexity in terms of the size of the collection. Obviously, constant time
is the best, followed by logarithmic time. When things get linear or quadratic, you might
be in for a problem if the collection size is getting high.

Let desired characteristics be your first guide when deciding what collection type to
use. If you need things to have a linear ordering, use some kind of list; if you need fast
lookups, a hash table is better; avoiding duplicates can be done using a set; and so
on. After you’ve determined your needs and candidates for the collection types that
have those characteristics, get some idea about the costs of the various operations.

755Nongeneric Collection Types

But again, premature optimizations are typically not a good idea. Measure before you
judge whether you have a problem. Just beware of large element counts, in which case
an informed decision about the right type of collection is most likely a good idea to
avoid too much hassle afterward. And to prepare for when you have to swap out a col-
lection type in favor of another one, use collection interfaces whenever exposing collec-
tions to the outside world. This is a general truth in the world of object orientation (OO),
but keep your public contract and implementation details separate from one another.

To iterate over a nongeneric collection, you can use the foreach keyword together with a
type for the iteration variable that’s more specific than System.Object:

foreach (int i in lst)

...

Remember that the foreach statement emits, if needed, a cast expression on the Current
property getter call. The following is roughly equivalent to the preceding code:

var enumerator = lst.GetEnumerator();

int i;

while (enumerator.MoveNext()) {

i = (int)enumerator.Current;

...

}

For heterogeneous nongeneric collections, this can cause an InvalidCastException when
the target type specified on the iteration variable conflicts with an item that was retrieved
by the Current call. And because the collection is not generic, the var keyword cannot be
used to infer the element type (it will instead resolve to System.Object):

foreach (var i in lst)

...

Yet another reason to go for generic collections wherever possible!

Hash Tables

A hash table provides key/value pairing with support for efficient lookup by key. Being
nongeneric, key and value are represented as System.Object. An exploratory example is
shown here:

var tbl = new Hashtable();

tbl.Add(“Bart”, 26);

tbl[“John”] = 62;

756 CHAPTER 16 Collection Types

bool bartIsKnown = tbl.ContainsKey(“Bart”);

bool someIsAged62 = tbl.ContainsValue(62);

foreach (string name in tbl.Keys)

Console.WriteLine(“Age of {0} is {1}”, name, tbl[name]);

tbl.Remove(“Bart”);

Internally, keys are hashed by use of the key type’s GetHashCode implementation. The idea
of a hash code is to provide an integer-valued identifier for an object with as good unique-
ness properties as possible. Whenever an entry is requested from the table by using a key,
the hash code of the supplied key gets computed. Based on that value, a fast lookup in the
underlying storage can be made as opposed to a sequential scan of the key/value pairs.
Characteristics of a hash code are as follows:

. For two objects that compare equal (by means of Object.Equals), the hash code
must be the same.

. As long as an object does not mutate its state, the hash code must remain the same.
This is important for hash tables to be able to find back an object based on its hash
code-based key.

. The more random the distribution of a hash code across all objects of the same type,
the better. For hash tables, this allows faster lookup times.

Because hash codes for different objects can be the same (preferably they are not), it’s
sometimes necessary to disambiguate between objects with the same hash code. This is
done by using the Equals method on the conflicting objects involved. Both Equals and
GetHashCode are defined on System.Object and can be overridden by your types:

class Person {

// Name and Age property + a constructor

public override bool Equals(object obj) {

var other = obj as Person;

if (other == null)

return false;

return other.Name == Name && other.Age == Age;

}

public override int GetHashCode() {

return (Name ?? ““).GetHashCode() ^ Age;

}

}

The Equals method checks to make sure the given object is of the Person type by using
the as keyword and a null check. If this is the case, all state is compared on the two
instanced. For GetHashCode, we leverage the hash code of the Name string and XOR it with

757Nongeneric Collection Types

FIGURE 16.1 GetHashCode being called by the Hashtable’s Insert code path.

the Age value. With those overridden methods in place, you can empirically observe the
use of GetHashCode when a Person instance is added to a Hashtable for use as a key. This
experiment is shown in Figure 16.1.

WHAT NOT TO USE HASH CODES FOR

Hash codes are used to make object lookup more efficient but don’t provide many (or
any) guarantees beyond that use. For example, given two equal hash codes, you cannot
conclude the two corresponding objects are equal. Don’t rely on hash codes to make
security decisions, as a replacement for object identity, or to find objects back in a
persistent store.

The reason not to use hash codes for persistency purposes (for example, in a data-
base) is that the default hash code implementation, as provided by System.Object,
can (and will) change between different releases of the .NET Framework. All that is
required from a hash code are the properties outlined earlier on, for the duration of a
program’s execution. More specifically, it’s even valid for an application to produce dif-
ferent hash codes for objects across runs.

Notice how the used Person type is immutable. That’s important when dealing with hash
tables unless you can make sure by static code analysis that key objects do not change
their state while being used in a hash table. The reason should be obvious. During inser-
tion, the hash code of the key object is used to put the object in a certain spot in the
storage. When a key is supplied for lookup (for example, through the indexer getter), the
hash code is calculated to locate the object in storage. If the recomputed hash code differs,
the item will not be found. Figure 16.2 shows such a case where Bart has aged and his
shoe size cannot be retrieved.

758 CHAPTER 16 Collection Types

FIGURE 16.2 The indexer returns null if the key is not found.

Peek! Who’s
in the font?

Head Tail

Dequeue Enqueue

FIGURE 16.3 Dequeue, Peek, and Enqueue operations on a queue data structure.

This concludes our look at the hash table collection. All knowledge you gained in this
section will be carried forward to the parallel world of generic collections, in particular the
Dictionary<TKey, TValue> type.

Queue

A queue is a first-in, first-out (FIFO) collection. Basic operations are Enqueue and Dequeue,
respectively, to add an element to the end of the queue and to retrieve the first element in
the queue. Compare this to a queue in the supermarket: If you’re in front, you’ll be served
first. Figure 16.3 illustrates the principle of a queue’s operation.

The following is a real-world example of a queue:

var postOffice = new Queue();

postOffice.Enqueue(new Person(“Bart”, 10));

postOffice.Enqueue(new Person(“Homer”, 38));

postOffice.Enqueue(new Person(“Ned”, 60));

var bart = (Person)postOffice.Dequeue();

var homer = (Person)postOffice.Peek(); // D’oh

int twoLeft = postOffice.Count;

759Nongeneric Collection Types

Peek! Who’s
at the top?

Top

Bottom

Pop Push

FIGURE 16.4 Operation of a stack data structure.

Because all collection types implement IEnumerable, you can enumerate over a queue, as
well, which will produce a head-to-tail enumeration order.

Queues are often used to queue up work items, such as order processing requests. Getting
work through Dequeue is a constant time operation, whereas Enqueue is constant time
unless the internal storage array has reached its capacity, at which point it becomes linear
in the size of the store.

INITIAL CAPACITY AND GROW FACTOR

Specialized constructor overloads can be used to supply an initial capacity and a grow
factor. The latter value, a float, is used to grow the queue’s internal storage when its
capacity has been reached. The more estimates you have about both the initial capaci-
ty and grow factor, the better. Of course, as usual with performance, don’t start tweak-
ing things just for the sake of it. Most other collection types have similar knobs to play
with when needed.

Stack

Everyone knows a stack by now, as seen with call stacks and evaluation stacks. Stacks are
last-in, first-out (LIFO) collections. Compare it to a stack of books where it’s (nearly)
impossible to get a book other than the one at the top without popping the books on top
of it off the stack first. The basic operations are called Push and Pop, and a Peek method
allows looking at the top element without popping it off. Figure 16.4 graphically depicts
the operation of a stack.

760 CHAPTER 16 Collection Types

To illustrate the use of a stack, take a look at the following code fragment:

var stack = new Stack();

stack.Push(1);

stack.Push(2);

stack.Push(3);

var three = (int)stack.Pop();

var two = (int)stack.Peek();

var twoLeft = stack.Count;

Similar to the Queue type, Stack is implemented using an array on the inside. Pop is a
constant time operation, whereas Push’s behavior depends on the available capacity. If free
storage is available, Push is O(1); otherwise, it gets linear due to the reallocation of the array.

BitArray

One final nongeneric collection type worth mentioning is the BitArray type, which
provides an efficient bit-vector implementation. Using an array of Booleans to keep track
of on/off flags for a bunch of entities in some system is not very efficient in terms of
storage, requiring a full byte per Boolean (not mentioning potential 32-bit alignment
caveats). If we can encode the flags on a bit basis, we’re much better off. That’s what the
BitArray type provides for:

const int N = 20;

var first = new BitArray(N, false);
for (int i = 0; i < first.Length; i += 2)

first[i] = true;

var second = new BitArray(N, false);
for (int i = 1; i < second.Length; i += 2)

second[i] = true;

Print(“First: “, first); // 10101010101010101010
Print(“Second: “, second); // 01010101010101010101
Print(“Xor: “, first.Xor(second)); // 11111111111111111111

Internally, a BitArray uses an array of integer numbers to encode the Boolean values as
single bits. Logical operators like And, Or, Xor, and Not are provided, and the whole bit
array can be iterated over as a sequence of Booleans:

private static void Print(string title, BitArray bitArray) {
Console.Write(title);
foreach (bool b in bitArray)

Console.Write(b ? “1” : “0”);
Console.WriteLine();

}

761Nongeneric Collection Types

FIGURE 16.5 Nongeneric collection types (members filtered).

Notice that the BitArray operations mutate the left side. For example, in the code shown
here the “first” array will be mutated in-place to have all flags set to 1 after applying the
Xor operations with the “second” array. This is done to make BitArray as efficient as
possible, which is usually the goal of using this type in the first place.

Summary

An overview of all nongeneric collection types is shown in Figure 16.5. Also notice the
implementation of interfaces like ICollection and IEnumerable.

Note that that the combination of IEnumerable and ICollection is enough to
enable the use of the C# 3.0 collection initializer language feature:

var lst = new ArrayList { 1, 2, 3 };

The preceding code is equivalent to the following:

ArrayList __t = new ArrayList();

__t.Add(1);

__t.Add(2);

__t.Add(3);

ArrayList lst = __t;

This illustrates how new languages’ features can make old APIs easier to use.

762 CHAPTER 16 Collection Types

WHY ICLONEABLE IS A JOKE

Well intentioned as it was, ICloneable really became quite useless because of the
missing specification of the intended cloning semantics. Object.MemberwiseClone is
defined to create a shallow copy: All fields get copied, but references are not fol-
lowed. (Just the reference is copied, but what it refers to isn’t cloned.) For deep
cloning, referenced objects would be cloned, too. ICloneable’s Clone method does
not specify what type of cloning is expected, and therefore it’s not usable as a solid
unambiguous contract.

Generic Collection Types
Now that we’ve looked at nongeneric collection types, it’s time to improve the static
typing of collections by using the generic collections in System.Collections.Generic. The
advantages of using generic collections were pointed out repeatedly in Chapter 15, includ-
ing compile-time detection of typing errors at the level of element types as well as
improved performance.

List<T>

The generic counterpart of the ArrayList type is the generic List<T> type, where the type
parameter T stands for, unsurprisingly, the element type. Available methods on List<T>
are pretty much the same as on ArrayList. We can even easily port our ArrayList
example to List<int>:

var lst = new List<int>();

lst.Add(1); // { 1 }

lst.AddRange(new[] { 2, 3, 7, 6, 5, 4 }); // { 1, 2, 3, 7, 6, 5, 4 }

lst.Insert(index: 0, item: 0); // { 0, 1, 2, 3, 7, 6, 5, 4 }

lst.RemoveAt(index: 4); // { 0, 1, 2, 3, 6, 5, 4 }

lst.Remove(item: 1); // { 0, 2, 3, 6, 5, 4 }

lst.RemoveRange(index: 2, count: 3); // { 0, 2, 4 }

lst.Reverse(); // { 4, 2, 0 }

lst.Sort(); // { 0, 2, 4 }

bool hasTwo = lst.Contains(2); // true

int two = lst[1]; // 2

NAMED PARAMETERS?

You might have noticed before in the examples of nongeneric collection types
that I’ve been using named parameters sometimes. This isn’t necessary to
make the preceding code compile but serves as a form of documentation for

the meaning of used parameters. In the past, I used to document certain parameters
by inline comments (using /* parameter name */) but I like named parameters better.

763Generic Collection Types

Also notice how certain parameter names differ from the ones on ArrayList (in partic-
ular, obj has been replaced by item) to provide more meaningful names for the API’s
users. Naming matters quite a bit in quality framework design!

List<T> has similar performance characteristics compared to ArrayList, based on the fact
the underlying array-based storage might have to grow upon element insertion. An initial
capacity can be set through a constructor overload.

Besides the familiar methods shown in the previous example, List<T> also has a wealth of
methods inspired by typical functional programming techniques to deal with collections
and data sequences. Most of those rely on delegates, which are covered in depth in
Chapter 17, “Delegates.” To illustrate those, we use lambda expression syntax, which
provides a shorthand way of passing a piece of code to a method (for example, to express
a filter condition):

var lst = new List<int> { 1, 2, 3, 4, 5, 6, 7 };

// Convert all elements and create a new list.

List<string> numbers = lst.ConvertAll(n => n.ToString());

// Condition holds for any element (Exists) or all elements (TrueForAll)?

bool hasLargerThanFive = lst.Exists(n => n > 5); // true

bool noElementIsThirtheen = lst.TrueForAll(n => n != 13); // true

// Find element(s) or indexes.

int firstEven = lst.Find(n => n % 2 == 0); // 2

int lastEven = lst.FindLast(n => n % 2 == 0); // 6

List<int> allOdds = lst.FindAll(n => n % 2 != 0); // { 1, 3, 5, 7 }

int indexOfFirstLargerThanThree = lst.FindIndex(n => n > 3); // 3

int indexOfLastLessThanFive = lst.FindLastIndex(n => n < 5); // 3

OVERLAP WITH LINQ

A lot of the methods shown here were generalized in LINQ as query operators,
originally referred to as sequence operators. The key difference is that the LINQ
query operators operate on sequences (that is, IEnumerable<T> objects), which

makes them more generally applicable than for List<T> alone.

However, there’s more: As you will see, most LINQ query operators are lazy. This
means the results of applying a query operator are not calculated until iteration over
the result. For example, List<T>’s FindAll method iterates over all elements on the
spot to produce a new list object with the filtered results, but LINQ’s Where method

764 CHAPTER 16 Collection Types

delays computation until one iterates over the resulting IEnumerable<T>. This can be
beneficial (for example, in the following case):

var fiveEvensLazy = lst.Where(n => n % 2 == 0).Take(5);

var fiveEvensEager = lst.FindAll(n => n % 2 == 0).Take(5);

In the latter case, a whole new intermediate List<int> for all even numbers gets
created, whereas the former line of code is evaluated lazily. This will become much
clearer when we discuss LINQ in more depth in Chapter 19, “Language Integrated
Query Essentials.” Once you’ve learned about LINQ, come back here and map the
List<T> methods on their query operator equivalents. (For example, FindAll corre-
sponds to Where.)

LinkedList<T>

LinkedList<T> is a doubly linked list, which implies navigation between consecutive
elements in both directions is possible in constant time. The individual elements in a
linked list are represented as LinkedListNode<T> objects, which look like the following:

// Illustrating the public contract of the class, omitting implementations.

public sealed class LinkedListNode<T> {

public LinkedList<T> List { get; }

public LinkedListNode<T> Next { get; }

public LinkedListNode<T> Previous { get; }

public T Value { get; set; }

}

Using Next and Previous, you can walk the list in both directions. For the containing list,
follow the List reference. A LinkedList<T> by itself provides access to the First and
Last elements:

// Illustrating the public contract of the class, omitting implementations.

public class LinkedList<T> {

public LinkedListNode<T> First { get; }

public LinkedListNode<T> Last { get; }

}

A schematic representation of all cross references between the list and its nodes is shown
in Figure 16.6.

Common operations on LinkedList<T> include adding elements to the head or the tail of
the list (using AddFirst and AndLast, respectively), inserting elements before or after a
given list node, and removal of the first, last, or any element in the list. Methods to find
an element in the list and return the corresponding list node are available as well and take
linear time because they have to walk the list.

765Generic Collection Types

LinkedList<T>

First

item 1 item 2

LinkedListNode<T>

Prev List

Value

Next

item N

Last

FIGURE 16.6 References in LinkedList<T> and LinkedListNode<T>.

An example of creating and manipulating a list is shown here:

var lst = new LinkedList<string>();

var elem1 = lst.AddFirst(“isn’t”);

var elem2 = lst.AddBefore(elem1, “This”);

var elem3 = lst.AddAfter(elem1, “a”);

var elem4 = lst.AddLast(“list”);

var elem5 = lst.AddBefore(elem4, “singly”);

var elem6 = lst.AddAfter(elem5, “linked”);

lst.Last.Previous.Previous.Value = “doubly”;

lst.First.Next.Value = “is”;

foreach (var word in lst)

Console.Write(word + “ “);

Console.WriteLine();

Notice all operations that manipulate the list take place through the LinkedList<T> type.
This enables the list to maintain the list structure in a consistent manner, keeping all Next
and Previous references in a good state. Similarly, adding an element in front of the first

766 CHAPTER 16 Collection Types

element requires the First reference to be updated to point at the new “head” of the list.
Adding an element after the last one requires an update of the Last reference.

When walking the list manually by following Next or Previous references, be aware that
the list is not circular. Null references indicate that the end or beginning of the list has
been reached. In other words, First.Previous and Last.Next will always return null.

THE CASE OF THE BROKEN COLLECTION INITIALIZER

LinkedList<T> doesn’t support the handy C# 3.0 collection initializer syntax.
Looking at the type’s interface implementation list, you might think it should;
after all, it implements the ICollection interface, which has an Add method on

it, right? However, this collection type implements that interface explicitly, thus making
the Add method private on the class itself. Therefore, the compiler doesn’t find an Add
method to call for the collection initializer’s use. The following works, though:

var lst = new LinkedList<string>();

((ICollection<string>)lst).Add(“Hello”); // calling through the interface

So the duck-typed nature of collection initializers with regard to discovering an Add
method sometimes (but rarely ever) works against the feature.

Dictionary<TKey, TValue>

To provide a generically typed alterative to Hashtable, the Dictionary<TKey, TValue>
type was invented. Where Hashtable uses System.Object for both its keys and values, the
generic dictionary allows static typing of keys and values. Let’s cross-translate our original
example again:

var tbl = new Dictionary<string, int>();

tbl.Add(“Bart”, 26);

tbl[“John”] = 62;

bool bartIsKnown = tbl.ContainsKey(“Bart”);

bool someIsAged62 = tbl.ContainsValue(62);

foreach (var name in tbl.Keys)

Console.WriteLine(“Age of {0} is {1}”, name, tbl[name]);

tbl.Remove(“Bart”);

The code still looks exactly the same, thanks to the mirrored API design compared to
Hashtable. This makes people with prior experience using Hashtable feel at home imme-
diately in the world of generic dictionaries. The obvious difference is you can’t make any
typing mistakes anymore. This is illustrated once more in Figure 16.7, also showing how
IntelliSense guides you in the right direction.

767Generic Collection Types

FIGURE 16.7 Stronger type checking enforced by generics.

FIGURE 16.8 Rich type information available at compile time.

Notice how the example uses an implicitly typed local variable for the foreach loop’s iter-
ation variable. Because all type information around generics is known at compile time, as
proven by the great IntelliSense experience, the compiler can infer statically what the loop
variable’s type ought to be. This is proven by code editor inspection in Figure 16.8.

While we’re at it, direct iteration over dictionary types (as opposed to going over keys or
values individually) is also possible. By looking at the definition of the generic type, you
can trace why this is the case:

public class Dictionary<TKey, TValue> : IDictionary<TKey, TValue>, ...

From here, we get into the IDictionary<TKey, TValue> generic interface, which in turn
leads us to an ICollection generic interface:

public interface IDictionary<TKey, TValue> :

ICollection<KeyValuePair<TKey, TValue>>

Here things start to get more interesting: The ICollection<T> interface is parameterized
with the KeyValuePair<TKey, TValue> generic type. But first, let’s finish our tracing of the
enumerable nature of a generic dictionary by following the ICollection<T> trail:

public interface ICollection<T> : IEnumerable<T>

768 CHAPTER 16 Collection Types

FIGURE 16.9 IDictionary<TKey, TValue> is IEnumerable<KeyValuePair<TKey, TValue>>.

To conclude this type-chasing exercise, we’ve discovered how each generic dictionary type
implements IEnumerable<T>, where T is substituted for a KeyValuePair generic
constructed type. KeyValuePair<TKey, TValue> is defined like this:

public struct KeyValuePair<TKey, TValue> {

public KeyValuePair(TKey key, TValue value);

public TKey Key { get; }

public TValue Value { get; }

}

Based on this observation, we can also loop over our dictionary as follows, extracting the
name and age values using Key and Value properties:

foreach (var entry in tbl)

Console.WriteLine(entry.Key + “ is “ + entry.Value);

Once more local variable type inference knows exactly what we’re talking about, as shown
in Figure 16.9.

IMPLICITLY TYPED LOCAL VARIABLES

Although implicitly typed local variables or local variable type inference, using
the var keyword, was introduced for use mainly in conjunction with anonymous
types, its use extends far beyond that. Generic (collection) types are one of the

places where type inference can prove tremendously useful in reducing code clutter.
With generic types, large type names can be constructed in no time:

Dictionary<string, List<int>> personLottoNumbers

= new Dictionary<string, List<int>>();

769Generic Collection Types

Simple object instantiation doesn’t even fit on one line anymore because the type has
to be stated twice. Even though some programmers have identified the var keyword as
the devil in disguise, it’s hard to deny the following is cleaner:

var personLottoNumbers = new Dictionary<string, List<int>>();

Have you lost track of type information? No. Is the code cleaner? Yes. That’s a win-win
situation if you ask me.

One final method we should examine when talking about this collection type is the
handy self-explanatory TryGetValue method:

int ageOfMarge;

if (tbl.TryGetValue(“Marge”, out ageOfMarge))

// Code if the key was found, with ageOfMarge set to the retrieved value.

The generic dictionary type is, just like the Hashtable type, based on hashing to provide
efficient lookup of entries by their keys. This implies the same caveats regarding providing
a good hash function on the key type and ensuring immutability of key values apply.

Where the Hashtable type uses the System.Object’s GetHashcode and Equals virtual
methods directly for key object storage, the generic dictionary type introduces one more
level of abstraction by means of an IEqualityComparer<T> interface:

public interface IEqualityComparer<in T> {

bool Equals(T x, T y);

int GetHashCode(T obj);

}

Although a custom equality comparer implementation can be provided to the generic
dictionary constructor, one typically relies on the default EqualityComparer<T> being
used. This one uses the System.Object virtual methods internally to be on par with the
default behavior used by the nongeneric Hashtable collection type. Use of a custom equal-
ity comparer can come in handy to override the key type’s default behavior with regard to
hash code calculation and equality checking (for example, to implement non-case-sensi-
tive key differentiation). This is already done by means of a StringComparer type in the
.NET Framework:

var ages = new Dictionary<string, int>(StringComparer.CurrentCultureIgnoreCase)

{

{ “Homer”, 38 },

{ ”Bart”, 10 }

};

Console.WriteLine(ages[”bart”]); // different casing, still works

770 CHAPTER 16 Collection Types

ADVANCED COLLECTION INITIALIZER SYNTAX

C# 3.0 collection initializer syntax works with any Add method overload it can
find on an object that implements IEnumerable. Because the generic dictionary
type has an Add method that takes in arguments for the key and the value, we

can have the initializer call it by writing the two arguments between curly braces. The
preceding code therefore corresponds to the following:

var __t = new Dictionary<string, int>(StringComparer.CurrentCultureIgnoreCase);

__t.Add(“Homer”, 38);

__t.Add(“Bart”, 10);

var ages = __t;

This allows concise syntax to initialize a collection as an expression, and therefore it
can be fed directly into a method expecting an instance of the collection type.

There’s one more level of indirection in the default equality comparer: If the specified type
parameter implements IEquatable<T>, it uses that implementation for its Equals method.
All of this additional abstraction adds a great amount of flexibility that you might want to
use on occasion. In the past, you would have had to mess around with subclassing collec-
tion types to realize such behavior.

SortedDictionary<TKey, TValue> and SortedList<TKey,

TValue>

To keep a dictionary sorted by its key objects, both SortedDictionary<TKey, TValue> and
SortedList<TKey, TValue> can be used. They differ in the performance profile of various
operations like insertion and deletion, as well as memory consumption. Both use a binary
search tree on the inside to make retrieval an O(log n) efficient operation. For more details
on the precise differences between both types on the performance front, refer to the
MSDN documentation.

The interface of both types is identical to that of the Dictionary<TKey, TValue> type
simply because they all implement the corresponding generic dictionary interface. The
only difference lies in the ordered characteristic of keys:

var ages = new SortedDictionary<string, int> {

{ “Homer”, 38 },

{ “Bart”, 10 }

};

foreach (string name in ages.Keys)

Console.WriteLine(name + “ is “ + ages[name]);

The preceding code will print Bart first, even though Homer was inserted first. All insert
and remove operations keep the keys sorted, which is visible both through key/value pair
enumeration and the Keys collection directly.

771Generic Collection Types

Just as with the nonsorted dictionary type, abstractions are implemented to make the
ordering semantics flexible through the implementation of IComparer<T>:

public interface IComparer<in T> {

int Compare(T x, T y);

}

If a comparer object is left unspecified through the constructor, a default one is used as
provided by Comparer<T>.Default. This implementation on its turn looks out for an
IComparable<T> implementation, which built-in types like int and string provide:

public interface IComparable<in T> {

int CompareTo(T other);

}

An example of a generic comparer that reverses order is shown here. It simply calls the
default comparer’s Compare method and negates the result. Remember that the sign of the
result indicates the relative order of the two parameters, with negative for less than and
positive for greater than:

class ReverseComparer<T> : IComparer<T> {

public int Compare(T x, T y) {

return -Comparer<T>.Default.Compare(x, y);

}

}

As an example, consider the following code, which will result in an ordered printout of
Marge, Homer, and Bart, a descending order by the string-valued keys:

var ages = new SortedDictionary<string, int>(new ReverseComparer<string>()) {

{ “Bart”, 10 },

{ “Marge”, 34 },

{ “Homer”, 38 }

};

ONE INTERFACE TOO MUCH?

At first, you might think there’s one interface too many to deal with flexible ordering.
Both serve their unique goals, though. The IComparable<T> interface gets imple-
mented on an object that wants to make itself comparable to any other object of the
same type. In other words, types can provide for comparability themselves.

IComparer<T> works outside the domain of a type itself: An outsider can define what it
means to compare two instances of a type T. This effectively provides a means to over-
rule what the type itself has defined as the meaning of comparison. That’s the property
collections make use of.

772 CHAPTER 16 Collection Types

Bart

Lisa
Homer

Marge

HashSet<Person>

Add
Lisa

#54

#78

#37

#37

1

2

1 Find bucket with Lisa‘s hash code 2 Search in bucket

FIGURE 16.10 Operation of a HashSet<T> for an addition operation.

HashSet<T>

While we’re in the mood to discuss hash codes, it’s appropriate to discuss another collection
type that relies on the same concept: HashSet<T>. A set is a collection that filters out dupli-
cate entries, which is determined based on equality between elements contained in the set.

Knowing the properties of a hash code, you can already guess why the use of a hash code
is beneficial for set implementation, too. Upon addition of an element to the set, its
uniqueness needs to be determined in relation to the elements that are already in the set.
This search can be narrowed down by use of a hash code before resorting to wholesale
equality checks. Without the facility of a hash code, insertion into a set would require the
new wannabe element to be compared for equality against all the set’s existing elements.
The conceptual internal organization of a hash-based set is shown in Figure 16.10, as used
during an addition operation.

An example of the use of a HashSet is shown here:

var people = new HashSet<Person>();

people.Add(new Person(“Bart”, 10));

people.Add(new Person(“Homer”, 38));

people.Add(new Person(“Lisa”, 8));

people.Add(new Person(“Marge”, 34));

people.Add(new Person(“Lisa”, 8)); // Duplicate will not be added.

int four = people.Count;

773Generic Collection Types

In this example, we assume the Person type has an overridden implementation for both
GetHashCode and Equals, as shown earlier in this chapter. The default System.Object
implementation for those methods will result in reference equality semantics, so the two
separate instances of a Person called Lisa with age 8 will be treated as different, resulting
in five elements in the set rather than four.

Additional element-based methods are illustrated in the following example. Notice the use
of the C# 3.0 collection initializer syntax once more:

var numbers = new HashSet<int> { 1, 2, 2, 3, 4, 5, 5 }; // { 1, 2, 3, 4, 5 }
numbers.Add(6); // { 1, 2, 3, 4, 5, 6 }
numbers.Remove(3); // { 1, 2, 4, 5, 6 }
numbers.RemoveWhere(n => n % 2 == 0); // { 1, 5 }
numbers.Clear(); // { }

foreach (int number in numbers)
Console.WriteLine(number);

Beside methods that operate at the level of individual elements, HashSet<T> exposes set-
level operations, too. Let’s define the following sets and illustrate each of those operations
using them:

var first = new HashSet<int> { 1, 2, 3, 5, 8, 13 };
var second = new HashSet<int> { 2, 3, 5, 7, 11 };

Figure 16.11 illustrates four common set-level operations graphically.

first.ExceptWith(second) first.SymmetricExceptWith(second)

first \ second

first.UnionWith(second) first.IntersectWith(second)

1
13 2 73

5 118

first second first second

(first second) \ (first second)

1
13 2 73

5 118

1
13 2 73

5 118

1
13 2 73

5 118

FIGURE 16.11 Set-level operations on HashSet<T>.

774 CHAPTER 16 Collection Types

A darker background indicates the first set’s contents after applying the operation to it. In
other words, all the set-level operations mutate the first set in place.

Besides those operations, various Boolean-valued checks exist, allowing membership
checks but also set-theoretic property checks such as SetEquals, Overlaps, IsSubsetOf,
IsSuperSetOf, IsProperSubsetOf, and IsProperSupersetOf.

Because HashSet<T> relies on GetHashCode and Equals, flexibility has been added in the
form of support for IEqualityComparer<T>, just as with the generic dictionary type we
saw before.

SortedSet<T>

The sorted counterpart of the HashSet<T> is found in SortedSet<T>. Besides the set prop-
erty of filtering out duplicate entries, it presents its contents in a sorted order. This order is
determined by the IComparer<T> that’s optionally provided to it through the constructor.
When omitted, the default comparer is used in an manner analogous to the sorted dictio-
nary types we discussed before. Not much more explanation is needed:

var sortedNumbers = new SortedSet<int> { 5, 2, 7, 11, 3 };

// Prints 2, 3, 5, 7, 11

foreach (int number in sortedNumbers)

Console.WriteLine(number);

Not shown in the preceding code, the Add method (hidden behind the collection initial-
izer syntax) returns a Boolean to indicate whether the element was added to the set. A
false value indicates a duplicate was already present. This remarks holds for the nonsorted
HashSet<T>, too. In addition, the SortedSet<T> provides a few members that deal with
ordering directly. The Reverse method returns an IEnumerable<T> that walks the sorted
set in reverse order. Two properties, Min and Max, are self-explanatory. And finally, a
method called GetViewBetween returns a set with elements that lie between two supplied
values in the original set.

Queue<T> and Stack<T>

To conclude our journey through the generic collection types, we meet again with the
queue and stack collections in a generic shape. Because their use is completely analogous
to the nongeneric counterparts, we’ll just go for a translation of the original example, now
with stronger type checking at compile time and making ugly casts go away:

var postOffice = new Queue<Person>();

postOffice.Enqueue(new Person(“Bart”, 10));

postOffice.Enqueue(new Person(“Homer”, 38));

postOffice.Enqueue(new Person(“Ned”, 60));

var bart = postOffice.Dequeue();

var homer = postOffice.Peek(); // D’oh

int twoLeft = postOffice.Count;

775Other Collection Types

And for a stack

var stack = new Stack<int>();

stack.Push(1);

stack.Push(2);

stack.Push(3);

var three = stack.Pop();

var two = stack.Peek();

var twoLeft = stack.Count;

Other Collection Types
Collections are the bread and butter for many library or application writers. Even though
the number of collection types we’ve already seen is quite big, even more collection types
are hiding out there. Because their use is more specialized, we limit ourselves to some
pointers as to where to find them:

. System.Collections.Specialized contains, as the name implies, specialized collec-
tions that aren’t used very frequently and typically provide solutions to specific
problems or performance challenges. Examples include a bit vector type, a hybrid
dictionary, and some remains from the nongeneric ages.

. System.Collections.ObjectModel provides the Collection<T> base class for generic
collections as well as the ReadOnlyCollection<T> used for read-only collections
(which can be obtained from regular ones by calling AsReadOnly). It also contains an
observable collection that raises events when elements are added, removed, inserted,
and so on. You’ll see that one back in Windows Presentation Foundation (WPF) later.

. System.Collections.Concurrent, covered separately when we discuss concurrent
programming, provides concurrency-safe collections.

Summary
Chapter 15 introduced the notion of generics from a language point of view. One of the
main motivations for the language and runtime feature’s introduction in the .NET 2.0 was
generic collection types. In this chapter we looked at the various collection types available
in the BCL.

After starting our exploration in the nongeneric worlds, we aimed our attention at the
generic collections, including stacks, queues, lists, dictionaries, and more. A solid knowl-
edge of how any of those types work and when to use them is essential to become a
successful .NET and C# developer.

This page intentionally left blank

CHAPTER 17

Delegates

IN THIS CHAPTER

. Functional Programming 777

. What Are Delegates? 782

. Delegate Types 782

. Delegate Instances 787

. Invoking Delegates 799

. Putting It Together: An
Extensible Calculator 803

. Case Study: Delegates Used in
LINQ to Objects 807

. Asynchronous Invocation 811

. Combining Delegates 824

In the previous chapters, you’ve seen how object-oriented
programming provides a good paradigm to tame the
complexity involved with the creation of applications.
Nevertheless, object orientation is not a silver bullet that
solves all problems. Different paradigms have emerged over
the years to deal with other complex aspects of application
development.

Functional programming is one such paradigm that got a
place in the .NET Framework and its languages, too.
Starting from the very first release of the .NET platform,
delegates have been around as ways to treat functions as
first-class citizens on the platform. On top of this, we find
the everyday concept of events used around the .NET
framework (for example, in UI frameworks such as
Windows Forms).

This chapter covers functional programming and shows how
it gets applied through use of delegates and various C#
language features like anonymous methods and, more
recently, lambda expressions. To illustrate matters, we look at
the use of delegates through the lenses of LINQ. In Chapter
18, “Events,” we continue our journey by explaining events
and applying them in the realm of UI programming.

Functional Programming
Over the years, different approaches have been created to
deal with complexities that arise from application develop-
ment. One of the oldest paradigms is, without doubt, func-
tional programming. We start by putting this paradigm in
some historical context and then follow up with an

778 CHAPTER 17 Delegates

Assembler

Structured

Procedural

Object-
oriented

FIGURE 17.1 Dealing with complexity, bottom up from assembler languages.

overview of its concepts. After covering functional programming from this more theoretic
angle, we apply the concept to the use of delegates in C#.

Historical Perspective

Object-oriented programming provides a means to tackle various aspects of complexity
that arise during the creation and maintenance of applications. It does so through various
means, such as encapsulation of state and polymorphism, stimulating reuse of existing
functionality through class hierarchies.

If we go one level up from object-oriented programming, we find ourselves back in the
world of procedural programming, where a different sort of complexity is dealt with. By
stimulating the use of procedures (methods) to reuse blocks of code, parameterized by
some inputs, excessive duplication of code is avoided.

We can continue our way up the chain, landing at structured programming, where the use
of low-level goto statements is strongly discouraged, in favor of control flow primitives
such as loops and conditional statements. Again, this deals with complexities that arise
from the creation and maintenance of nontrivial pieces of code.

Before we go any further with our discussion, you need to understand that the paradigms
mentioned are not mutually exclusive. Indeed, C# fits nicely in all of those camps. You
could go as far as saying that OO-languages derive from procedural languages, extending it
with the concept of classes and such. Similarly, procedural languages extend the function-
ality their structured parents have to offer by adding the concept of procedures.

While walking this inheritance chain of language paradigms, we’ve ended up close to the
hardware of the underlying machine. Structured programming languages essentially
provide abstractions over low-level machine primitives like branches, among others.
Going back to object-oriented programming, we see layers of abstraction are added to
continue to simplify the creation of applications of increasing complexity. You can
compare this to the rings of an onion, around low-level assembler languages, as shown in
Figure 17.1.

779Functional Programming

Machine

Mathematics

P
ro

ced
u

ral

F
u

n
ct

io
n

al

Functions

Assembler

LISP
ML

Haskell

C
Pascal
Fortran

C#, F#, …

FIGURE 17.2 Language evolution in a broader perspective.

This approach to dealing with complexity is not the only one that has emerged over the
years. Functional programming starts from a different perspective, going all the way back
to the concept of mathematical functions. Instead of adding layers of abstraction, one
peels off such layers to make things executable on real-world machines. Figure 17.2 illus-
trates how both worlds have evolved over the years.

The mention of mathematics in the very first sentence introducing the concept of func-
tional programming might make all of this sound rather scary. Believe me; it’s not that bad.

Programming with Functions

So what’s functional programming all about? Shockingly, it’s nothing more than the
concept of “programming with functions,” leaving us with the task of defining what we
consider to be a function. We can answer this question from different perspectives, one
more practically applicable than the other. First, we take a look at the fundamentalist
viewpoint, focusing on the concept of side effects. Next, we get closer to everyday reality
in the world of .NET and C# development.

Pure Functions Versus Side Effects
From the fundamentalist functional programming point of view, you should think of a
function in the pure mathematical sense. Rather than giving a formal definition, let’s just
concentrate on one of its essential properties: Every time you call a function with the
same arguments, it returns the same answer:

780 CHAPTER 17 Delegates

add 1 2 fi 3

add 1 2 fi 3

...

You might think that functions are synonymous with methods, but this is not really the
case. The underlying problem has to do with side effects that are not apparent from
looking at a method’s signature:

int Add(int a, int b)

Nothing in the signature tells us that the Add method will return the same answer every
time it’s given the same values for a and b. Furthermore, while calculating the result, side
effects might result: Maybe the method writes something to a file or launches the missiles.
To see why this could be a problem, consider the following fragment:

int res1 = Add(1,2);

// ...

int res2 = Add(1,2);

In the face of potential side effects, the compiler can’t optimize the preceding code to
avoid recomputing Add(1,2) because this might change the program’s behavior:

int res1 = Add(1,2);

// ...

int res2 = res1;

Assuming for the sake of illustration that Add prints some message to the screen, the first
fragment will print twice, while the second one will only print once. Clearly, the programs
are not equivalent anymore.

However, if guarantees were made about the absence of side effects when evaluating a
method, compilers would be able to optimize code without the risk of changing the
program’s meaning. This is one of the advantages pure functional programming has to
offer. In addition, evaluation of such programs can be parallelized more effectively because
you don’t have to care about the order in which side effects occur.

Does this mean we should ban all side effects from our programs? Clearly, side effects are
a good thing from time to time; without them, our programs wouldn’t be able to commu-
nicate with the outside world! What’s needed to make this work is a way to tame side
effects and make them apparent through the function signature. One language that does
so is Haskell.

The reality is that most mainstream languages (including C#) don’t go that far and allow
side effects everywhere. The future will tell whether the apparent benefits, such as simpler
parallelization of code, especially important in the age of many-core processors, are
considered worthwhile to overhaul languages and frameworks.

781Functional Programming

First-Class Functions
So it seems we need to take a step back and strip down our notion of functions a little bit
to get to more real-world functional programming in the broadest sense, as seen in
languages like C#. Here’s our second, more applicable, attempt at defining functional
programming languages.

In the world of functional programming, one treats functions as first-class citizens of the
language. But what does this mean precisely? In essence, it means you can store and pass
around functions just as you can do with other sorts of objects, such as numbers or strings.

For example, you could think of a general-purpose function that can filter a sequence of
objects (for example, natural numbers) based on a certain criterion (for example, is the
number even?). Instead of baking in the criterion to the filter function, we want to enable
the caller to feed in the criterion as a predicate function. This way, our filter function can
be reused for different sequences and criteria. Let’s illustrate this:

int[] numbers = new [] { 1, 2, 3, 4, 5 };

// Lambda expression syntax used below will be explained later in this chapter.

// Don’t worry about it for now, but it doesn’t hurt to think about the meaning

// of the “=>” token. Can you come up with a pronunciation of the syntax?

var evens = numbers.Where(/* is even? */ x => x % 2 == 0); // --> { 2, 4 }

var odds = numbers.Where(/* is odd? */ x => x % 2 != 0); // --> { 1, 3, 5 }

What we want to do in the preceding code is to pass the criterion function to the Where
method to apply the filter on the numbers sequence. In fact, the Where method shown is
defined as one of the standard query operators in LINQ:

IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> predicate);

How this method is implemented is irrelevant for the sake of the current discussion. The
essential part here is that the second argument is a function that “goes from T to bool.”
The .NET mechanism that allows us to represent a function as a first-class object is called a
delegate. Notice that in the preceding example a generic delegate type is used, which works
in exactly the same way as generic classes, methods, or interfaces, as we’ve seen before.

Don’t worry about the details for now; we get into those soon. What matters as the key
takeaway from this conceptual introduction is that you can pass functions around in
exactly the same way you can pass objects around.

FUNCTIONS ARE DATA!

Representing functions as objects is a deeply rooted concept, not just an oddity of
modern application development frameworks like .NET. A common way to speed up a
function’s evaluation is to implement it as a table lookup. For example, you could
implement a sine function in terms of an infinite sum using Taylor series, which is quite
intensive if done repeatedly. Alternatively, you could trade CPU cycles for memory
storage and keep evaluated results in a table for subsequent lookups. Tables are data
structures, so “functions as data” is not that far-fetched.

782 CHAPTER 17 Delegates

Unsurprisingly, this definition of functions in terms of table lookups requires the func-
tion to be pure in terms of side effects, but that’s a whole different story. Just remem-
ber that functions and data are closely related concepts.

What Are Delegates?
As briefly mentioned before, delegates are the .NET concept that enables you to represent
a function as an object. Because the concept of a mathematical function doesn’t really
exist in the world of .NET, this mechanism is implemented in terms of methods instead.
At the lowest level of the CLR, delegates are objects that contain a reference to some
method on some object.

This section looks at how you can declare delegate types, create instances of delegates,
and use them. Besides this, you look at the language-level support provided by C#, such
as anonymous methods and lambda expressions. While doing so, lots of examples are
presented, ultimately showing off LINQ in .NET 3.0 as one of the most recent applica-
tion programming interfaces (APIs) built around functional concepts with extensive use
of delegates.

Delegate Types
As you’ve seen repeatedly, the CLR provides type safety, making programs more robust
against errors introduced by programmers. It’s no surprise that delegates are no exception
to this rule. This immediately contrasts delegate types against raw function pointers as
seen in languages such as C and C++:

int add(int a, int b) {

return a + b;

}

void main() {

int (*fpAdd)(int, int);

fpAdd = &add;

int three = fpAdd(1, 2); // calls the add function through the pointer

}

Although the preceding fragment is well written, lots of opportunities exist to perform
unsafe operations. For example, you could trick fpAdd so that it points to a function that
takes arguments of types different from int (or a different number of arguments), without
any runtime protection whatsoever against this kind of mishap.

The preceding C fragment captures the essence of the function that matters to the user of
the function pointer: its signature. On the first line of main, using quite cumbersome C
syntax, a variable is created with a type that captures the target function’s signature.
Figure 17.3 shows a function pointer in C-style.

783Delegate Types

returns an int and takes in two ints

Points to a function that…

int (*fpAdd) (int, int);

FIGURE 17.3 C-style function pointer.

Delegates in .NET are similar to this but provide a type-safe means to do so, with compile-
time and runtime checking against violations. The preceding fragment would look like the
following in C#:

delegate int BinOp(int a, int b);

static class Program

{

static int Add(int a, int b) {

return a + b;

}

static void Main() {

BinOp add = new BinOp(Add);

int three = add(1, 2); // calls the Add method through the delegate

}

}

Notice a few differences compared to the C fragment. The use of a class, as well as static
methods, should come as no surprise. More substantial differences have to do with the
declaration of a delegate type, BinOp, and the way a delegate instance is created. Last but not
least, there’s the way to invoke the delegate.

Obviously, the preceding example is rather artificial, calling the Add method through a
level of indirection by using a delegate. Stay tuned for more practical examples later in
this chapter; for the time being, let’s focus on the essentials.

At the top of the C# fragment, we’ve declared a delegate type, which is basically the
description of a method signature with full type information available. Type safety will
ensure the delegate object can’t be used to refer to a method with a signature that’s not
compatible (to be explained later) with the one the delegate type is declared with.

Now, what does a delegate type consist of? Let’s peek under the hood in ILDASM for a
minute, as shown in Figure 17.4.

784 CHAPTER 17 Delegates

FIGURE 17.4 A delegate type under the hood.

As you can see, a delegate is just a class extending the MulticastDelegate base class, provid-
ing an Invoke method of the stated signature. It should be pretty straightforward to imagine
the way a delegate is being called: Under the hood, the Invoke method will be called

static void Main() {

BinOp add = new BinOp(Add);

int three = add(1, 2); // implemented as a call to add.Invoke(1, 2)

}

We confirm this hypothesis when talking about delegate instances next; just believe me
for the time being. Aside from the Invoke method, two other methods are generated to
facilitate asynchronous invocation scenarios: BeginInvoke and EndInvoke. This goes
beyond the scope of the discussion, so we ignore those two for now.

WHY MULTICASTDELEGATE?

The phrase multicast inside the delegate’s base type name might be a little surprising.
In fact, a single delegate instance can be used to refer to many methods (all with a
compatible signature of course) at a time. When invoking the delegate, all the referred
methods will be called after one another. You’ll see that this is important to realize the
concept of events where multiple handlers can be attached to the same event. In such
a case, raising the event should notify all the handlers.

Another question is how an instance of this type manages to call into the methods it refers
to. That answer can be inferred from looking at the constructor method .ctor, which
takes in an object and a native int. The former of those arguments is the instance on
which the target method has to be called. In our running example, this will be null
because the target method, Add, is a static method. The second argument is a reference to
the method that has to be called, conceptually comparable to a pointer in C.

Because I’ve taught you to be curious about how things work, without a doubt you’ll have
looked at the definition of both the .ctor and the Invoke method by now. If so, you will

785Delegate Types

FIGURE 17.5 Low-level plumbing is the common language runtime’s business.

be slightly disappointed to see there’s nothing of interest in there apart from a subtle hint
that the implementation of those methods is provided by the runtime. Figure 17.5 shows
the Invoke method definition from an ILDASM point of view.

AN ALTERNATIVE VIEW

If the concept of delegate types is a bit confusing at first, think of them slightly differ-
ently. Delegates are similar to interfaces with a single method inside them, correspond-
ing to the Invoke method we’ve seen in ILDASM. In fact, platforms such as Java that
have historically omitted delegates from the language specification realize similar capa-
bilities by means of one-method interfaces such as Runnable. With this analogy in
mind, creating a delegate instance is similar to implementing that single method on
the interface.

Delegate type declarations are similar to method declarations in their expressive power.
You can use ref and out parameters and params arrays, as shown here:

delegate string Foo(int a, ref double b, out long c, params DateTime[] ds);

The parameter list of a delegate type can be empty, and the return type of a delegate can
be void. Examples of such delegates can be found in the System.Threading namespace
and the System namespace:

delegate void ThreadStart(); // for Java folks: similar to Runnable.run

delegate void Action();

NOMINAL EQUIVALENCE

Delegate types in C# have so-called nominal equivalence, in contrast to so-called struc-
tural equivalence. This means that two delegate types with the same parameter list
and return type are considered different. In the preceding example, Action and
ThreadStart can refer to the same methods but are considered different types.

786 CHAPTER 17 Delegates

Delegate types can also be declared using generics, examples of which can be found in the
System namespace in the form of the Func and Action delegate types:

delegate TResult Func<out TResult>();

delegate TResult Func<in T1, out TResult>(T1 t1);

...

delegate TResult Func<in T1, ..., in T16, out TResult>(T1 t1, ..., T16 t16);

delegate void Action();

delegate void Action<in T1>(T1 t1);

...

delegate void Action<in T1, ..., in T16>(T1 t1, ..., T16 t16);

For example, to represent a function that takes in an integer value and produces a bool,
you could use the unary (that is, with one argument) generic Func delegate type; and to
create an integral sum function, the binary generic Func delegate type can be used:

Func<int, bool> isEven = new Func<int, bool>(IsEven);

Func<int, int, int> add = new Func<int, int, int>(Add);

GENERIC CO- AND CONTRAVARIANCE

Notice the use of the in and out modifiers on the generic parameters on the Func and
Action delegate types. During our discussion about generics, you learned about this
C# 4.0 feature called generic co- and contravariance. This feature enables the following
scenario that failed to compile before in C# 3.0:

Func<Fruit, string> printFruit = new Func<Fruit, string>(FruitPrinter);

Func<Apple, object> appleToObject = printFruit; // failed in C# 3.0

Before generic co- and contravariance, C# 2.0 already provided the notion of co- and
contravariance for creating a delegate from a method group that doesn’t have a signa-
ture that matches exactly with the target delegate’s signature:

// Assume the following definition: string PrintFruit(Fruit f);

Func<Apple, object> appleToObject = PrintFruit;

The compiler can prove this is safe to do because of the subtype relationships that
exist between Apple and Fruit and string and object. If we pass an Apple to
appleToObject, it’s fine for the PrintFruit target to treat it as a Fruit. For the
return type, it’s safe to treat the string that came back from PrintFruit as an object.

787Delegate Instances

FIGURE 17.6 IntelliSense for instantiation of a delegate type.

Delegate Instances
Although delegate types provide a type-safe way to refer to methods, instances concretize
this notion by referring to a particular method (optionally) on some object. In our
running example, we give a first example of instantiating a delegate instance:

static void Main() {

BinOp add = new BinOp(Add);

int three = add(1, 2); // calls the Add method through the delegate

}

This is one possible way to create a delegate instance that has been supported since the
early C# 1.0 days. As shown in Figure 17.6, Visual Studio hints at the required method
signature for the delegate target.

Since C# 2.0, the syntax for code in Figure 17.6 can be abbreviated a bit by using
the so-called method group conversion. This is a rather fancy name to say that
there is an implicit conversion from the name of a method to a compatible dele-

gate type. In other words, we can simplify the preceding code as follows:

static void Main() {

BinOp add = Add;

int three = add(1, 2); // calls the Add method through the delegate

}

METHOD GROUPS

Why does this C# 2.0 feature contain the words method and group in its name? Take a
look at what we’ve done in the preceding example: We assigned Add to an object of
type BinOp, a delegate type. Now assume multiple Add method overloads exist. It’s
clear that the lexical token Add in the source code doesn’t refer to a particular one of
them; instead, it refers to the group of methods with that name. Method groups don’t
have a type by themselves: Writing something (in C# 3.0) like var add = Add could be
ambiguous and can result in a compile-time error.

788 CHAPTER 17 Delegates

FIGURE 17.7 Delegate instantiation from an IL perspective.

Method group conversion refers to the capability of the compiler to figure out from con-
text what method from the group is meant, based on the delegate type the method
group gets assigned to. For more information, refer to the C# language specification,
where all rules for method group conversion are outlined.

The two previous code fragments are completely identical from an intermediate language
(IL) point of view, so it’s time to take a look at how delegate instantiation works behind
the scenes. Figure 17.7 illustrates this.

You’ve already seen the constructor function on the delegate type in the previous section,
so no surprises there. It takes two arguments, one of which denotes the object instance on
which to invoke the target method. Because we’re using a static method in our example,
there’s no instance, and hence the ldnull instruction is emitted. The way to refer to a
method is observed on the line following the ldnull instruction, using ldftn, which
results in a native int. It’s this native int value that points at the method and allows the
CLR to call into the method when requested to do so by means of delegate invocation.
Notice that I didn’t lie about how the delegate is getting called. Line IL_0011 clearly shows
a call to Invoke being emitted for the delegate invocation.

Based on the discussion here you will have guessed delegate instances can refer to instance
methods as well:

static void Main() {

var calc = new Calculator(); // with an Add instance method

BinOp add = calc.Add;

int three = add(1, 2); // calls the Add method on calc through the delegate

}

789Delegate Instances

FIGURE 17.8 Anonymous function expression generated target method.

EASIER THAN C-STYLE FUNCTION POINTERS

The ability to use the exact same delegate type to refer to either a static method or an
instance method is a blessing. Behind the scenes, the calls to the target methods are
quite different for both cases, due to the need for a “this pointer” when making an
instance method call. The CLR’s delegate system abstracts all those details away nice-
ly, which is great compared to the world of C-style function pointers, where this often
poses problems and frustration when calling conventions and such.

Anonymous Function Expressions

That’s a good start, but the need to create a method even for the tiniest of methods
to be used or passed as a delegate is quite cumbersome, too. Why do we need to
create a whole Add method with the appropriate signature if we just want to express

“add two numbers”? Can’t we just somehow declare the method “inline” and have the
compiler take care of creating a method under the hood that’s referred to by the delegate?
C# 2.0 introduced such a feature, called anonymous function expressions:

static void Main() {

BinOp add = delegate (int a, int b) { return a + b; };

int three = add(1, 2); // calls the anonymous method through the delegate

}

In the preceding code, we’re declaring an addition method inline by reusing the delegate
keyword. Under the hood, the compiler generates an anonymous method containing the
return a + b part and creates an instance of the BinOp delegate referring to the generated
method. This plumbing, taken care of by the compiler, is shown in Figure 17.8.

790 CHAPTER 17 Delegates

The code generated in the Main method to refer to the generated method roughly looks
like this:

static void Main() {

if (CS$<>9__CachedAnonymousMethodDelegate1 == null) {

CS$<>9__CachedAnonymousMethodDelegate1 = new BinOp(<Main>b__0);

}

BinOp add = CS$<>9__CachedAnonymousMethodDelegate1;

int three = add(1, 2); // calls the anonymous method through the delegate

}

Notice the little optimization by means of anonymous method delegate caching, so that
subsequent calls of the containing method would not have to create a new instance of the
delegate each time.

KEEP DEBUGGABILITY IN MIND

Although tool support for anonymous function expressions is great with full-fidelity
source code matching under the debugger (so you can just step through the inline
method declaration), things get a bit more obscure when you’re faced with an exception
call stack without a debugger nearby. Seeing a crash in a method like <Main>b__0
might not be incredibly helpful at first sight. Luckily, the name of the containing method
is still visible, but if you end up with huge inline method declarations, it might be time
to introduce a dedicated method with a proper name.

Personally, I tend to use anonymous function expressions (and lambda expressions) for
short inline method declarations not exceeding a handful of statements, typically even
just one single expression in case of lambdas.

Closures: Captured Outer Variables

Because of their capability to capture local variables from the outer scope, anony-
mous function expressions are much more powerful than would seem to be the
case at first glance. Let’s take a look at an example:

static void Main() {

int factor = 2;

BinOp addAndFactor = delegate (int a, int b) { return factor * (a + b); };

int six = addAndFactor(1, 2);

}

In the preceding code fragment, the local variable factor is captured inside the embedded
inline method declaration. This is a powerful capability that reduces plumbing signifi-
cantly. Imagine how you would communicate the factor value to a delegate if you could-

791Delegate Instances

n’t simply use an anonymous function expression. A more real-world example is in the
creation of a simple thread:

static void DoBackgroundWork(int nTimes, Action<int> doWork) {

new Thread(delegate () {

for (int i = 0; i < nTimes; i++)

doWork(i);

}).Start();

}

The preceding deserves some explanation. The Thread class in System.Threading takes in
a ThreadStart delegate to pass in the method that needs to be executed on the newly
created thread. Its signature has been shown earlier in this chapter: It returns void and
takes in no arguments. Our anonymous function expression reflects that signature.

Now inside the anonymous function expression, we loop nTimes. Here magic happens:
The nTimes variable is captured from the outer scope. Similarly, the doWork parameter
(which is a delegate by itself!) is also captured from the outer scope. Without this C# 2.0
feature, also known as closures, you would have to write a helper class to contain all the
state that has to be passed to the thread’s worker function:

internal class MyThread {

public MyThread(int ntimes, Action<int> doWork) {

_nTimes = nTimes;

_doWork = doWork;

}

public void Run() {

for (int i = 0; i < _nTimes; i++)

_doWork(i);

}

}

The use of this helper type in the DoBackgroundWork method would look as follows:

static void DoBackgroundWork(int nTimes, Action<int> doWork) {

new Thread(new MyThread(nTimes, doWork).Run).Start();

}

Quite a bit of overhead just to create a thread that accesses some local state, if you ask me.
In fact, the mechanism of closures implemented by the compiler does use a similar tech-
nique to capture outer variables: They get “hoisted” into a closure object, as illustrated in
Figure 17.9 for our running calculator example.

792 CHAPTER 17 Delegates

As you can see, the compiler generates a so-called display class that contains all the
captured state from the outer scope (in our example, the factor variable). Such state gets
exposed on the display class through public fields (not a bad thing in this case because it’s
only visible to the compiler and within the outer class), which are shared between the
anonymous function and the scope where they were captured.

LVAL CAPTURING

Closures in C# implement something known as lval-capturing semantics (where lval
stands for “left-side value”). What this means is that the variable gets captured, not
just its value at the point of the capture. For example, the following prints 2:

int i = 1;

Action print = delegate() { Console.WriteLine(i); };

i = 2;

print(); // print is called after i has been changed to 2

This has its advantages in many cases but can be the source of surprises from time to
time. A Dutch saying goes, “A warned man is worth double.”

WHY CLOSURES ARE HEAP ALLOCATED

People interested in the ins and outs of closures might be wondering why closures are
implemented using heap-allocated display classes. That’s a very good question indeed,
so let’s discuss this a bit more. To set the scene, assume for a minute closures could
somehow capture state that lives on the stack for the delegate to use. Now consider
the code fragment here:

static Action GetPrint(int number) {

return delegate() { Console.WriteLine(number); };

}

FIGURE 17.9 Capturing outer variables creates a display class.

793Delegate Instances

Here, we’re capturing the number variable that lives on the stack, passed as a formal
parameter to the GetPrint method. Assume we would keep that variable on the stack.
Recall that returning from a method can be thought of as popping stuff from the (evalu-
ation and call) stack. Thus, when we now return from GetPrint, we would have our
hands on a variable pointing at a location on the stack that no longer exists.

It’s clear that’s a dangerous and type-unsafe thing to do because at the point of calling
the returned Action delegate, that location might already have been overridden by
another stack-allocated object. Recall that you’ve seen a similar case when we dis-
cussed ref parameters on methods.

SCOPING OF LOOP VARIABLES

One common pitfall of closures occurs when capturing a for loop variable, as shown in
the next example:

for (int i = 0; i < 10; i++)

new Thread(delegate () { Console.WriteLine(i); }).Start();

This piece of code prints random results, depending on when the threads start to run
relative to the loop spawning new threads. Unexpected as this might seem, the expla-
nation should be obvious from the following expansion of the loop:

{

int i = 0;

while (i < 10)

{

new Thread(delegate () { Console.WriteLine(i); }).Start();

i++;

}

}

Only one loop variable exists, shared (and mutated) across different iterations of the
loop. All the threads refer to the same variable, which is being mutated by the thread
running the loop. One possible result is that all threads print value 10, which happens
if all the created threads start running after the loop completed.

To fix this issue, introduce an additional scope with its own copy of the variable:

for (int i = 0; i < 10; i++)

{

int j = i;

new Thread(delegate () { Console.WriteLine(j); }).Start();

}

Now every anonymous delegate gets its own copy of the loop variable, which isn’t
shared with any other party.

794 CHAPTER 17 Delegates

BEWARE OF SPACE LEAKS

Closures are implemented by lifting captured local variables into a heap-allocated
(class) object where those variables become fields. When multiple anonymous methods
have overlapping sets of captured local variables, the same “display class” (refer to
Figure 17.9) is used to put the anonymous methods in. This can cause managed
object “space leaks” in rather arcane circumstances. Here’s an example:

string s = “Foo”;

int i = 42;

Action a = delegate () { Console.WriteLine(i); };

Action b = delegate () { Console.WriteLine(s + “ “ + i); };

You’re welcome to compile this piece of code and have a look in ILDASM or .NET
Reflector to see the (single) generated class containing fields for variables s and i and
the two anonymous methods. This is roughly equivalent to

class Closure

{

public string s;

public int i;

public void a() { Console.WriteLine(i); }

public void b() { Console.WriteLine(s + “ “ + i); }

}

Closure __c = new Closure { s = “Foo”, i = 42 };

Action a = __c.a;

Action b = __c.b;

After executing this code, action delegates a and b refer to the corresponding methods
on the single shared display class instance. Now both delegates keep this display
class instance (which in turn holds on to s and i) alive from the garbage collector’s
point of view. So where does the space leak come in?

Notice how the code in action a doesn’t refer to s, though the code in action b does.
Assume there are no outstanding references to delegate b, the sole user of string s.
At this point, it seems logical that string s becomes unreachable and can be garbage
collected. Unfortunately, this is not the case if delegate a is still alive. As you can
see from the expanded code fragment just listed, delegate a refers to an instance
method on the closure object, so the whole closure object is kept alive, including the
field for string s.

This all seems pretty bad, but luckily the scenarios that give rise to this case are
rather rare. Having overlapping sets of captured local variables across multiple anony-
mous methods is one thing. Also having fundamentally different lifetimes for the dele-
gates makes this bad scenario less likely (but not completely unlikely). Beware of
space leaks!

795Delegate Instances

Lambda Expressions

With the advent of LINQ in C# 3.0 the use of functions as arguments to higher-
order query operator functions was to become a day-to-day activity for developers,
having to write query expressions like the following:

int[] numbers = new [] { 1, 2, 3, 4, 5 };

var evens = numbers.Where(delegate (int i) { return i % 2 == 0; });

var odds = numbers.Where(delegate (int i) { return i % 2 != 0; });

You will agree that the preceding code is still quite overloaded with syntactical noise that
comes from the use of anonymous function expressions: delegates, returns, curly braces.

NOTE

Simplified query expression syntax exists in C# 3.0, reducing the need to deal with the
query operator functions directly. However, in various cases, no such syntax exists,
requiring users to pass functions manually as shown earlier. This makes it a worthy
goal to make anonymous function expressions easier on the eye.

Lambda expressions are yet another simplification on top of delegate instantiation, also
allowing inline declaration of functions (with support for closures) but in a more compact
way. The two preceding calls can be simplified as follows:

int[] numbers = new [] { 1, 2, 3, 4, 5 };

var evens = numbers.Where((int i) => i % 2 == 0);

var odds = numbers.Where((int i) => i % 2 != 0);

The lambda arrow token => can be read as “goes to.” For example, “An integer value i
goes to the Boolean expressing whether the integer value is dividable by 2.” In fact, given
the signature of Where and the type of numbers, the compiler can infer the type of the
lambda argument:

IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> predicate);

Because source is an IEnumerable<int>, T has to be int, and therefore the input to the
predicate has to be of the same type. This allows us to simplify the syntax even further,
also dropping the parentheses around i:

int[] numbers = new [] { 1, 2, 3, 4, 5 };

var evens = numbers.Where(i => i % 2 == 0);

var odds = numbers.Where(i => i % 2 != 0);

796 CHAPTER 17 Delegates

GOING BACK IN TIME

It’s sometimes good to put things in perspective by going back to the early days of C#
to see how far we’ve come. Imagine an implementation of LINQ on C# 1.0 (assuming
we would have had generics for the sake of demonstration); what would the preceding
query look like? For every single use of a Where filter (or other query operators relying
on delegates as arguments), we would have to introduce yet another method to
express the function. Clearly, with all of its aspects spread out across many methods,
your query wouldn’t be readable anymore.

Lambda expressions in C# can contain not only expression bodies (the part on the right
side of the arrow token) but also statement bodies. An example is the use of lambda
syntax to create a ThreadStart delegate:

static void DoBackgroundWork(int nTimes, Action<int> doWork) {

new Thread(() => {

for (int i = 0; i < nTimes; i++)

doWork(i);

}).Start();

}

The empty parentheses pair is required in case an empty parameter list is to be passed to
the lambda body. What matters more in the preceding code is that we’re using a state-
ment inside the body of the lambda expression. The syntax shown here boils down to the
same IL code in case we’d use C# 2.0’s inline delegate syntax (using the delegate keyword
instead of the => token).

FUNCTIONAL TECHNIQUES IN C#: CURRYING

Functional languages typically provide a means of applying functions partially, one argu-
ment at a time. This technique is called currying, after the mathematician Haskell Curry
(after whom the Haskell programming language is named), although it really was
Schonfinkel who came up with the idea.

For example, in F#, you can write an addition function as follows:

let add a b = a + b

Besides the different syntax compared to method declaration in C#, this doesn’t look
very special: add is a function that given a and b returns the sum of those values.
(Notice the types for a, b, and the function result are inferred by the F#.) However, the
function can be called in different ways:

let three = add 1 2

let addFive = add 5

let seven = addFive 2

797Delegate Instances

The second line is what interests us: Here we’re calling the add function without a
second argument. The result of doing so is a function of a single argument that when
applied to an argument will add 5 to it. This is conceptually done by simple substitution
of a for 5 inside the add function’s body. Therefore, the previous code is equivalent to

let addFive =

fun b -> 5 + b (* lambda syntax in F# uses a fun keyword *)

let seven = addFive 2

In this setting of currying, every function takes one argument at a time. So the add
function doesn’t take a and b simultaneously but instead applies a to add first, result-
ing in “a remainder function” that will eat b. For example, the following pseudo-code
shows how 3 is evaluated step by step:

let three = (add 1) 2 (* application is left-associative *)

= (fun b -> 1 + b) 2

= 1 + 2 = 3

In other words, the signature of add in C# lingo isn’t as follows:

delegate int BinOp(int a, int b); // Same as Func<int, int, int>

Instead, it’s the following, using the Func generic delegate types:

Func<int, Func<int, int>>

The outer Func<T1, TResult> delegate type has int as an input (which will corre-
spond to the a parameter) and returns a Func<int, int> delegate. That will be the
remainder function that takes the b parameter into the final result.

How can we write this in C#? Using nested lambda expressions:

Func<int, Func<int, int>> add = a => b => a + b; // same as a => (b => a + b)

var three = add(1)(2); // add(1) returns (b => 1 + b) which gets called with 2

var addFive = add(5); // add(5) returns (b => 5 + b)

var seven = addFive(2); // addFive(2) returns 5 + 2 = 7

Beautiful, but rather verbose because of the generic delegate declarations. Don’t worry:
Most likely, you won’t ever have to write code like this.

Expression Trees

As mentioned before, lambda expressions were introduced as part of the C# 3.0
LINQ wave of languages features, but not just as a way to simplify the syntax used
to create anonymous functions. One of the key promises of LINQ is the capability

to express a query using the same language-integrated syntax no matter where it executes.
This means the query can target in-memory object graphs (with LINQ to Objects) as well
as remote data sources such as SQL databases (with LINQ to SQL or the Entity
Framework).

However, databases like SQL Server cannot be approached with IL code representing the
query to be executed (ignoring the concept of SQL CLR entirely here): They all speak their

798 CHAPTER 17 Delegates

own query languages. For SQL Server, that’s obviously T-SQL, while data sources like
SharePoint use a language called CAML, and yet other data stores like Amazon would use
some web service format. Quite a mess, if you ask me.

LINQ deals with this problem by providing the capability for query provider implementers
to inspect a query at runtime through the concept of expression trees. By doing so, the
library with the query provider can translate the LINQ expression tree, at runtime, into
the target query language.

Although we don’t cover expression trees in detail right here, and instead defer that
discussion until we cover LINQ in more depth in Chapter 20, “Language Integrated Query
Internals,” it suffices to say that lambda expressions are used as the syntactical means to
generate expression trees. To enable this, lambda expressions can be assigned to either a
delegate type or an expression tree type. In fact, lambda expressions don’t have a type by
themselves, as you can see here:

// Error: Cannot assign lambda expression to an implicitly-typed local variable

var add = (int a, int b) => a + b;

Instead, the code emitted for a lambda expression depends on the type of the variable it
gets assigned to. For the preceding example, two possibilities are shown here:

Func<int, int, int> addDelegate = (int a, int b) => a + b;

Expression<Func<int, int, int>> addExpr = (int a, int b) => a + b;

The code generated by the compiler in the first case is already known to us; it’s the same
as what would get generated for a C# 2.0-style anonymous method. However, the second
one gives rise to fundamentally different code:

ParameterExpression a = Expression.Parameter(typeof(int), “a”);

ParameterExpression b = Expression.Parameter(typeof(int), “b”);

Expression<Func<int, int, int>> addExpr =

Expression.Lambda<Func<int, int, int>>(Expression.Add(a, b), // a + b

a, b); // (a, b) =>

All this code generates an expression tree object representing the function as a data struc-
ture that can be inspected by libraries at runtime to take whatever action they see fit (for
example, to translate the expression tree into SQL statements). We take a closer look at
this when talking about reflection in Chapter 21, “Reflection,” dynamic programming in
Chapter 22, “Dynamic Programming,” and LINQ in Chapter 19, “Language Integrated
Query Essentials,” and Chapter 20, “Language Integrated Query Internals.”

799Invoking Delegates

FIGURE 17.10 Invoking a delegate feels like calling a method.

WHERE DOES THE NAME LAMBDA COME FROM?

You might wonder where all of a sudden, out of nowhere, a Greek letter is used to
name a new language feature. Lambda expressions are based on the concepts from
lambda calculus, a theory on mathematical computation created by Alonzo Church in
the 1920s. The first language to introduce a feature named after it was LISP (in 1958),
even with a LAMBDA keyword in its language to denote something similar to C#’s
lambda expressions nowadays.

This once more illustrates that all good ideas come from mathematics, although it
takes a while for them to appear in widely used programming languages.

Invoking Delegates
Creating delegate instances to refer to particular methods is a necessary step toward invok-
ing those methods through the delegate. In passing, we’ve shown the way to do such invo-
cations repeatedly: They just look like ordinary method calls. For example:

Func<int, int, int> add = (a, b) => a + b;

int three = add(1, 2);

IntelliSense in Visual Studio will obviously give the caller a hand by showing what argu-
ments are expected. Notice that names for those arguments come from the delegate type
that’s being used. In the preceding example, we’re using one of the generic Func types,
where arguments have names like arg1 and arg2. How this looks in Visual Studio is
shown in Figure 17.10.

When a delegate passes arguments either by reference or as outputs, the use of those
modifiers is required at the call site when specifying the arguments. This is completely
similar to the way such methods are invoked directly, as well:

// delegate string Foo(int a, ref double b, out long c, params DateTime[] ds);

Foo f = /* got it somehow */;

int a = 10;

double d = 12.34;

long c;

string res = f(a, ref d, out c, DateTime.Now);

800 CHAPTER 17 Delegates

C# 4.0 introduced the concept of named and optional parameters, as you saw
before when we discussed methods. Both features can be used in the context of
delegates, too. Let’s start by looking at named parameters:

Func<int, int, int> add = (a, b) => a + b;

int three = add(arg2: 2, arg1: 2);

Again, those names come from the parameter list of the delegate and not the method to
which the delegate refers. If you think about it for a while, this makes perfect sense because
the compiler cannot know for sure what the target method’s parameter list looks like:

static int Calculate(Func<int, int, int> op, int a, int b) {

return op(a, b);

}

static void Main() {

int three = Calculate((x, y) => x + y, 1, 2);

int eight = Calculate((l, r) => l * r, 2, 4);

}

In the preceding example, the operator op argument to Calculate is supplied with two
lambda expressions for an addition and a multiplication, each of which uses different
names for their parameters. At the point the delegate is called, it’s clear this information is
not known to the compiler.

DON’T RENAME PARAMETERS IN PUBLIC APIS

Just as for regular methods, the capability to pass parameters by their names means
that you shouldn’t rename parameters after shipping a public API to customers.
Changing the name of a parameter will break calls upon recompilation of their code:
“There was a parameter named x last time around, but now it’s gone.”

Without recompilation, existing code will continue to work because named parame-
ters are a compile-time-only thing. In the underlying generated IL code, parameters
are passed in the order in which they are expected by the destination of the call. In
other words, the runtime doesn’t care about how parameters are called: Only their
order matters.

Besides the use of named parameters at the invocation site of a delegate, delegates can be
declared to have optional parameters using the following familiar syntax:

delegate void Printer(string message = ““);

Using this, you can refer to any method that takes in a string-typed argument, but when
making the call through the delegate, you can omit the message parameter, effectively

801Invoking Delegates

FIGURE 17.11 Delegates can deal with optional parameters, too.

causing the compiler to supply the default value for it. Figure 17.11 shows a familiar-
looking tooltip when calling a delegate with an optional parameter in its signature.

In the sample code, we’re referring to the Console.WriteLine overload that takes a single
string argument through the Printer delegate instance. When writing an invocation
through this delegate, IntelliSense indicates the message argument can be omitted in favor
of a default empty string value to be passed.

NOTE

Use of optional parameters on delegate types does not change the methods that can
be targeted by the delegate. You might think Printer can be used to refer to a method
with no argument because it has an optional argument. This is not the case and in fact
would be an unsafe thing to implement in the language.

Assume we could refer to a method with no arguments as follows:

Printer p = () => Console.WriteLine();

Now the delegate’s user could call it, supplying a string argument as the delegate
allows it to be specified:

p (“Hello”);

Under the covers, the CLR would now try to invoke a method with an empty parameter
list while handing it a string object. This will cause an imbalance of the runtime evalua-
tion stack, which clearly is not a healthy situation.

Finally, note that exceptions thrown by the method getting called through the delegate
will bubble up through the delegate invocation site:

Action boom = () => { throw new InvalidOperationException(“Oops!”); };

try {

boom();

}

catch (InvalidOperationException ex) {

// Handle exception here.

}

802 CHAPTER 17 Delegates

FIGURE 17.12 Delegate invocation unraveled.

In the absence of checked exceptions (as seen in Java), it’s a good practice to document
the “exceptional contract” (if any is applicable) of a delegate. This allows callers to see
what exceptions they should be willing to handle, while the party that instantiates a dele-
gate should make sure to refer to a method that obeys those rules:

/// <summary>Implements an engine’s running procedure.</summary>

/// <exception cref=”OutOfFuelException”>Raised when fuel ran out.</exception>

delegate void EngineRunner();

A generic engine controller using an EngineRunner to run the engine’s procedure now
knows it should be willing to handle an OutOfFuelException appropriately, while the
manufacturer of an engine knows that particular exception type should be used when
signaling this particular exceptional error condition.

Under the covers, invocation of a delegate involved nothing more than a call to the
Invoke instance method. One particular exceptional condition that can arise from this is
having a null reference for the delegate object:

Action ouch = null;

ouch(); // throws NullReferenceException

In other words, use null checks (where appropriate) to guard against such conditions
unless you absolutely positively expect a non-null delegate instance to be present (for
example, because of null checks earlier on).

In Figure 17.12, the delegate invocation that occurs in the following method is shown,
illustrating the call to the underlying Invoke method:

static int Calculate(Func<int, int, int> op, int a, int b) {

return op(a, b);

}

803Putting It Together: An Extensible Calculator

USE THE GENERIC DELEGATE TYPES OR NOT?

So far, we’ve used handcrafted delegate types and the generic Func or Action dele-
gate types interchangeably. This raises the question of whether you should create your
own delegate types or just use the generic ones that have been in the System name-
space since .NET Framework 3.5.

There are various ways to look at this. First, specialized delegate types can have more
domain-specific documentation associated with them with regard to the semantics of
arguments being passed, exceptions being raised, and so on. This can be helpful
because naked method signatures don’t reveal everything. This stream of thinking
advocates the use of specialized delegate types as a means to help with the proper
documentation of code. Nevertheless, rules such as method group conversion make
delegate types less visible in the code, partially defeating this.

On the other hand, one could argue for using the generic types all over the place:
People get used to the Func and Action types, and they reduce the burden of the
manual declaration of delegate types. There’s an additional benefit, as well: Recall that
delegate types have nominal equivalence. Assume you have a BinOp operator and now
some API needs a Func<int, int, int>. Although their signatures are the same, C#
won’t allow you to write the following:

BinOp op = /* got it somehow */;

Func<int, int, int> f = op; // cannot convert BinOp to Func<int, int, int>

To make the preceding work, you must introduce an artificial intermediate lambda
expression:

Func<int, int, int> f = (a, b) => op(a, b);

Using the same generic delegate types everywhere eliminates the restrictions that
arise from nominal equivalence. Nominal equivalence is deeply rooted in the CLR and
extends beyond delegate types. Any two types that have the same physical representa-
tion (for example, a class with two Int32 fields) are not interchangeable. In other
words, there’s no accidental “type compatibility” based on structural equivalence.

In the end, it really depends on personal taste. Personally, I tend to use generic dele-
gate types as the default, rarely ever creating my own specialized delegate type unless
it’s beneficial to specify the intended contract of a delegate’s use in more detail using
XML documentation on a handcrafted delegate type.

Putting It Together: An Extensible Calculator
To recap everything learned about delegates so far, create a calculator that can be extended
by plugging in new operators. Although we don’t focus on the UI aspect, take a look at
Figure 17.13 to see what I have in mind.

804 CHAPTER 17 Delegates

FIGURE 17.13 An extensible calculator.

Besides typical arithmetic operations like add, subtract, multiply, divide, and modulo, four
additional programmable function keys are provided. The way the programming is done is
something you can dream about, but what’s more interesting is how to create a generic
calculator engine in which those custom operations can be plugged.

Let’s try to define a Calculator class to provide the core calculator engine:

class Calculator {

public int Add(int a, int b) { return a + b; }

public int Sub(int a, int b) { return a - b; }

public int Mul(int a, int b) { return a * b; }

public int Div(int a, int b) { return a / b; }

public int Mod(int a, int b) { return a % b; }

}

The problem with this first attempt is clear: It doesn’t allow for custom functions to be
plugged in, other than deriving from the Calculator class and providing methods for the
additional functions you want. That by itself causes a bigger problem, though: How can
the UI of the calculator discover those new operations easily?

Not only this, but given the preceding Calculator definition, how would you implement
an evaluator? Suppose the user enters the following key sequence:

1, 2, +, 3, 4, =

805Putting It Together: An Extensible Calculator

Based on the key chosen for the operation (+ in the example), the press to the evaluate
button = needs to call one of the built-in functions. In other words, you would have to
use some large multiway branch to invoke the right method (for example, Add).

You can do better than this and take a more functional approach. What if you implement
the calculator based on a dictionary that maps operation mnemonics (like +) onto the
corresponding function implementing them?

class Calculator {

private Dictionary<string, Func<int, int, int>> _ops =

new Dictionary<string, Func<int, int, int>> {

{ “Add”, (a, b) => a + b },

{ “Sub”, (a, b) => a - b },

{ “Mul”, (a, b) => a * b },

{ “Div”, (a, b) => a / b },

{ “Mod”, (a, b) => a % b }

};

public int Eval(int lhs, string op, int rhs) {

return _ops[op](lhs, rhs);

}

}

The _ops field is initialized, using a collection initializer, with key/value pairs mapping the
preprogrammed operators’ key names onto the functions used for the computation with
that operator. This table can be built very concisely using lambda expressions.

Now the Eval method becomes fairly trivial. Given the left side and right side operands,
as well as the operator’s friendly name, it looks up the implementation for the operator
through the dictionary’s indexer. After it has obtained the delegate to the implementation,
it invokes it using delegate invocation syntax. Figure 17.14 illustrates the step-by-step eval-
uation of the delegate lookup and invocation inside Eval.

To illustrate how the UI on top of this calculator could be realized, consider the following
console application code:

class CalculatorUI {

public static void Main() {

var calc = new Calculator();

while (true) {

Console.WriteLine(“Operand 1: “);

int lhs = int.Parse(Console.ReadLine());

Console.WriteLine(“Operator: “);

string op = Console.ReadLine();

806 CHAPTER 17 Delegates

Console.WriteLine(“Operand 2: “);

int rhs = int.Parse(Console.ReadLine());

Console.WriteLine(“{0}({1},{2}) = {3}”, op, lhs, rhs,

calc.Eval(lhs, op, rhs));

}

}

}

“Add”

“Sub”

“Mul”

“Div”

“Mod”

(a, b) => a + b

(a, b) => a – b

(a, b) => a * b

(a, b) => a / b

(a, b) => a % b

Eval(8, “Mod”, 3)

public int Eval(int lhs, string op, int rhs)

{

 return _ops[op](1hs, rhs);

}

8 % 3 = 2

Dictionary<string, Func<…>>_ops;

FIGURE 17.14 A table-driven lookup of operator delegate.

You are invited to make this code more bullet-proof to keep users from providing valid
integer numeric strings (tip: use TryParse) or operator names (tip: expose some
IsValidOperator method on Calculator, using the _ops dictionary inside).

The remaining question is how the calculator can now be easily extended from the
outside by a user of the class. The answer is fairly straightforward. We just need to provide
a way to add an entry to the operator’s dictionary that’s encapsulated inside the
Calculator:

class Calculator {

...

public void AddOperator(string name, Func<int, int, int> function) {

_ops[name] = function;

}

}

For example, the programming interface for the calculator (whatever that might look like)
could allow the user to create a custom function that’s bound to the F1 key:

807Case Study: Delegates Used in LINQ to Objects

Func<int, int, int> pyth = (a, b) => (int)Math.Sqrt(a * a + b * b);

calc.AddOperator(“F1”, pyth);

A call to Eval with arguments 3, F1, and 4 will now result in 5, the hypotenuse of a
rectangular triangle with sides of length 3 and 4, using the Pythagorean theorem.

PHILOSPHICAL THOUGHTS ON CALCULATOR PROGRAMMING

At the start of the discussion about the extensible calculator, we mentioned an alterna-
tive design using a base type Calculator with virtual methods for the function keys F1
through F4. Customizing the calculator would then involve the creation of a derived type,
supplying implementations for those virtual methods, and compiling the resulting type.

This technique can be compared to the use of programmable chips (such as an
erasable programmable read-only memory chip or EPROM). In this setting, the manufac-
turer of a fancy calculator takes our generic calculator chip and extends it by program-
ming the chip in the factory. This is an advanced task that cannot be done directly by
regular end users of the fancy calculator.

On the other hand, if you allow the calculator to store pieces of executable code to
realize custom functions, you no longer need to derive a custom calculator type and
compile it to create an advanced calculator. Instead, you provide a means for end users
of the generic calculator to extend its functionality by calling the AddOperator method.

Comparing this again with physical calculator devices, this corresponds to the use of a
chip with a programmable memory and a little language in which to express custom
functions. Now the end user of the calculator has all the flexibility to extend it without
the hassle of dealing with EPROM chips and whatnot.

To make your little calculator really extensible at runtime by your end users, you would
have to provide a mini-arithmetic language allowing the user to enter functions as
pieces of text such as (a, b) => a * a + b * b. Given this function definition as a
string, you would then go ahead and compile it at runtime into a delegate, which is
much more doable than having to derive a specialized Calculator subtype on the fly.
In Chapter 22, you learn how to use expression trees to generate delegates at runtime.

Case Study: Delegates Used in LINQ to Objects
Although we defer a more thorough discussion about LINQ until Chapter 19, I
think it’s worthwhile to spend a bit of time illustrating the use of delegates in the
context of LINQ. One of the built-in “providers” for Language Integrated Query

allows for querying over in-memory data sequences and is known as LINQ to Objects.

Various query operators are implemented as methods that take in an IEnumerable<T>
sequence as one of their inputs, typically returning a derived sequence as a result. Such
operators form the building blocks to build more complex queries from. In other words,
those query operators allow for rich composition, in large part because of their functionally
inspired nature. Let’s illustrate this schematically first in Figure 17.15.

808 CHAPTER 17 Delegates

filter x => x % 2 !=0

8, 3, 5, 1, 2, 7, 4

map

3, 5, 1, 7

4, 6, 2, 8

x => x + 1

FIGURE 17.15 Composition of query operators.

Given a sequence of objects (for example, integer numbers), we want to express a query
that first filters them based on a certain condition (for example, only allowing odd
numbers in the result) and subsequently maps the objects onto another object (for
example, adding 1 to each of them). Stated slightly differently, we want to compose the
filter operator with the map operator to construct a bigger query.

In imperative-style programming, we could write this as follows:

var input = new List<int> { 8, 3, 5, 1, 2, 7, 4 };

var result = new List<int>();

foreach (int x in input) {

if (x % 2 != 0) {

result.Add(x + 1);

}

}

Although this works, the intent of the code gets buried rather quickly under a heap of
imperative constructs like loops and ifs. For filtering and mapping, things aren’t too bad
just yet, but add other requirements such as ordering and grouping to the mix, and things
get messy in no time.

In the functional world, we would rather use higher-order functions that implement
generic filtering and mapping algorithms by taking in a function to express the filter’s
predicate and the mapping’s projection function. This is precisely what LINQ provides
through its wealth of standard query operators. With LINQ, you can express the preceding
as follows:

var res = input.Where(x => x % 2 != 0) // filter on predicate

.Select(x => x + 1); // map using projection

809Case Study: Delegates Used in LINQ to Objects

FIGURE 17.16 Querying LINQ’s query operators using...LINQ itself.

This style of programming makes code much more readable thanks to its declarative
nature, while opening up for easy query operator composition. For example, if you want
to sort the output sequence, you can “chain in” yet another operator:

var res = input.Where(x => x % 2 != 0) // filter on predicate

.OrderBy(x => x) // sort with key selector

.Select(x => x + 1); // map using projection

Most of those query operators take a delegate to specify the desired behavior of the opera-
tor. For example, to filter, you must provide a Boolean-valued filter function that’s able to
decide for each element whether it should be added to the resulting sequence. For
mapping, a projection function is used to express what an element needs to be mapped
to. And to realize an ordering, you must specify the key on which to order (for example,
given a Person object, order by its Age property). The latter is the trivial identity function in
our case because we’re ordering integers by their raw value.

To illustrate the richness of the set of available query operators, take a quick look at Figure
17.16, where a LINQ to Objects query is used to query the operators!

810 CHAPTER 17 Delegates

THE LANGUAGE INTEGRATED PART OF LINQ

Language Integrated Query is not just about the definition of query operators and a
provider model (allowing to target a whole bunch of different data sources) but also
about providing first-class language integration in both C# and Visual Basic.

In the previous LINQ examples, we haven’t used this syntactical language extension
just yet to show off the underlying method calls and lambda expressions used to glue
together the query. The C# 3.0 query expression syntax for the query shown earlier
looks like this:

var res = from x in input

where x % 2 != 0

orderby x

select x + 1;

This corresponds exactly to the form with the method calls and their lambda expres-
sion arguments we’ve presented so far. The main benefit of using this syntax is the
fact it looks less funky and feels much more like a query because of the specialized
keywords and reduced syntactical noise.

Don’t worry about the query shown in this figure just yet, but the essence of it is that it
uses reflection to get all the query operator methods that are defined on the Enumerable
type, followed by grouping, ordering, and projection operations on it. The result is a
sequence of pairs of query operator method names and the number of overloads for each
one. We take a look at those operators in more detail later.

Those operators are sometimes referred to as combinators because they provide the capabil-
ity to combine and transform input sequences into output sequences. An operator where
this becomes incredibly apparent is a join operator that somehow joins two sequences.

Without going into too much detail right now, let’s take a sneak peek at how some of the
simplest query operators really work behind the scenes. For example, Where takes in a dele-
gate to perform filtering of elements in the input sequence. How does it do that?

public static IEnumerable<T> Where<T>(this IEnumerable<T> source,

Func<T, bool> predicate) {

// Omitting input validation logic (trickier than you may think).

foreach (T item in source) {

if (predicate(item)) {

yield return item;

}

}

}

Ignore the foreign yield keyword for the time being; we discuss this feature, known as
iterators, in detail when talking about LINQ. The relevant bit for our discussion about

811Asynchronous Invocation

delegates is where the invocation of the predicate delegate happens, inside the foreach
loop. So for every element in the output sequence, the predicate is evaluated. If the func-
tion call returns true, the element is yielded to the consumer of the Where operator. The
result of this operator definition is a generally applicable filter construct that can be used
for sequences for any type of objects (due to the use of generics) and with a filter function
of choice (due to the use of delegates).

The Select map or projection function is defined in a similar way. Follow me through the
thinking for a minute. To define a maximally applicable mapping mechanism, we want to
be able to consume a sequence of any type of objects, hence the input should be an
IEnumerable<T>. Mapping of an element in the input sequence can be done by using a
projection function that takes in an instance of type T, returning an object of some other
type R (for example, for each integer in the source sequence, return its ToString represen-
tation, which is of type string). Collecting the results of the projection function calls on
every element, we get a sequence of results of type IEnumerable<R>:

public static IEnumerable<R> Select<T,R>(this IEnumerable<T> source,

Func<T, R> project) {

// Omitting input validation logic (trickier than you may think).

foreach (T item in source) {

// given an item of type T, project(item) returns something of type R

yield return project(item);

}

}

This finishes our sneak peek at LINQ for the time being. The key takeaway from this high-
level overview is that the use of functions is a great way to define general-purpose query
operators that can be composed easily. We detail the query expression syntax and the
wealth of available operators when talking about LINQ specifically.

Asynchronous Invocation
So far, you’ve seen delegates that return nearly instantaneously when they are being
invoked. For example:

Func<int, int, int> add = (a, b) => a + b;

int three = add(1, 2); // returns in nanoseconds

However, delegates can invoke long-running operations, too. If the method being referred
to takes a long while to complete, the invocation site of the delegate will be blocked until
the call returns. This is an important realization for APIs that accept as their input a dele-
gate that gets called subsequently: The API can’t know how the call will perform given
certain inputs. For example, in our calculator example, we could add the following
custom function:

812 CHAPTER 17 Delegates

calc.AddOperator(“F1”, (a, b) => {

Thread.Sleep(5000);

return a + b;

});

When the user of the calculator now uses the F1 function through the UI, the calculator
engine will issue a call to the function that was passed to AddOperator:

calc.Eval(1, “F1”, 2); // calls into the custom delegate

However, the added operator is quite evil because it will hang for five seconds before
returning the sum. If we blindly invoke the delegate in the calculator engine, this might
cause the user interface to appear hung. Or to say it in another way: While the custom
function is doing its “work” (which could be sleeping for five seconds!), no other useful
work can be done because we’re blocked until the call returns.

In fact, we shouldn’t even look for contrived examples like sleeping for five seconds; it’s
quite possible the programmed function is computing-intensive and takes a while to
return when faced with specific inputs. Such an example is a very naïve implementation
of a Fibonacci function based on recursion:

uint Fibonacci(uint n) {

return n <= 1 ? n : Fibonacci(n - 1) + Fibonacci(n - 2);

}

Assume for the sake of argument that our calculator supports not just binary functions but
also unary ones and uses uint (or even ulong or BigInteger) rather than int. By now, it
shouldn’t be a hard exercise for you to extend our Calculator class to support this.

SPEEDING UP FIBONACCI

A popular programming interview question is to ask for an implementation of an algo-
rithm calculating Fibonacci numbers. Candidates who come up with a recursive
approach tend to experience heavy sweating when the interviewer starts asking perfor-
mance-related questions. Let me share a few thoughts on this subject.

The problem with the recursive algorithm is the excessive recomputation of the inter-
mediate results. For example, take a look at the following expansion of calls:

Fibonacci(5) = Fibonacci(4) + Fibonacci(3)

= Fibonacci(3) + Fibonacci(2) + Fibonacci(3)

= ...

If you continue to expand those calls, you’ll soon come to the conclusion that lots of
wasteful recomputation is taking place. Although this makes this example ideal for the
discussion about long-running delegate invocations, it’s far from ideal in practice. You’ll
see how bad things get in a moment.

813Asynchronous Invocation

FIGURE 17.17 Performance of the recursive Fibonacci implementation.

So how do we speed up our Fibonacci implementation? One way is to employ a tech-
nique from the world of functional programming called memoization. People will imme-
diately recognize the word memory in this weird-sounding word. Indeed, memoization is
a way to cache the result of a function call so that subsequent calls with the same
arguments can immediately return the cached value. This poses a tradeoff: reducing
CPU cycles at the expense of adding memory pressure (to keep the cache). However, it
has the nice property that the Fibonacci computing algorithm can be kept in its
natural-looking recursive form. More information can be found by searching the Web
for this term.

An alternative, left to you as an exercise, is to create an imperative loop-based
implementation.

So let’s take a look at calling our Fibonacci method with an increasing value for the argu-
ment, measuring its performance using the Stopwatch class in System.Diagnostics:

for (uint n = 0; n <= 40; n++) {

var watch = new Stopwatch();

watch.Start();

uint result = Fibonacci(n);

watch.Stop();

Console.WriteLine(“Fib({0}) = {1} (in {2} ms)”,

n, result, watch.ElapsedMilliseconds);

}

A fragment of the last iteration’s output is shown in Figure 17.17. Notice how things start
to slow down exponentially as the input gets larger. The important bit here is that we
can’t do any useful work while the call to Fibonacci is in flight because we’re stuck
waiting for it to return.

814 CHAPTER 17 Delegates

THE GOLDEN RATIO

The Fibonacci series are more interesting than they seem at first, at least if you start
to approach them from a mathematical angle. For one thing, it can be proven that the
slowdown factor between fib(n) and fib(n + 1) for large values of n will get closer and
closer to (SQRT(5) + 1) / 2, which is approximately equal to 1.62. In fact, our stop-
watch results for Fib(40) and Fib(39) are already getting close to this ratio: 4,149 ms
divided by 2,642 ms is 1.57.

This seemingly arbitrary value is actually much more interesting than it seems at first,
to such an extent it has a name: the golden ratio. But why call one particular ratio
golden? It turns out that lots of ratios in nature (for example, the geometry of parts of
the human face) approximate this ratio. This has been a source of inspiration all the
way back to ancient Greece and for scientists and artists such as Pythagoras, Leonardo
Da Vinci, Kepler, and many others. It’s worth reading up on in your spare time!

So how can we run the expensive computation in the background, allowing us to do other
useful processing in the meantime while we’re waiting for the result to come back? The
answer is asynchronous invocation, which deserves whole books on its own and is part of
the larger domain of reactive programming. Let’s contrast this reactive concept against its
brother, known as interactive programming:

. In interactive programming, you actively send out requests for information to
some environment surrounding you. This could be as simple as calling some method
or as complex as sending a request to a web service on the other side of the globe.
The essential part is you’re in the driver seat and make a request, and then wait for
the response to come back.

. In reactive programming, the environment calls you at some point in time with
information for you to react to. Examples include the user clicking some user inter-
face element such as a button, over events raised by the local system (for example,
signaling the hard disk is almost full), or data coming in over the network. Now the
environment is in control, and your application needs to react when asked to do so.

Asynchronous calls can be categorized as a reactive technique: After initiating a request we
(optionally) go off and do other work until the environment signals the request has
completed and a response is available. At that point, we react to that signal and use the
result of the completed asynchronous computation in some way. Figure 17.18 contrasts
interactive and reactive programming.

It turns out delegates provide intrinsic support for asynchronous calls based on the so-
called IAsyncResult-pattern in .NET. You see other approaches for dealing with such asyn-
chronous programming scenarios as we get into coverage of .NET Framework APIs, such as
System.Threading in Chapter 29, “Threading and Synchronization,” and Reactive
Extensions. For now, we focus on the pattern exposed by delegates.

815Asynchronous Invocation

Interactive

Callback function
if (res)
 …

Environment

Our program

B
L

O
C

K
E

D

res = PlaceOrder()

if (res)
 …

Request

Response

Reactive

Environment

Our program

W
O

R
K

IN
G

PlaceOrder(callback)
// Useful work
// gets done
// during wait

Request

Response

FIGURE 17.18 Interactive versus reactive programming.

In our running Fibonacci example, we want to do some useful work while computing the
next number in our loop. To illustrate the essential point, we keep things simple and
print dots to the screen while the computation is in flight. This should suffice to convince
you we’re no longer blocked while the long-running call to our terrible Fibonacci func-
tion is crunching numbers. Let’s get started by creating a delegate that refers to the
Fibonacci function:

static void CalculateFib(uint n) {

Func<uint> fibN = () => Fibonacci(n);

// More to follow...

}

The CalculateFib function we’re starting to build will be responsible for calculating one
Fibonacci number, printing dots to the screen in the meantime to signal to the user the
application is not hanging. Notice how the fibN delegate creates a closure over the n para-
meter passed to the CalculateFib function. By doing so, we don’t have to pass it explic-
itly to the fibN delegate when making the invocation. This is just a matter of taste.

With this fibN in place, we haven’t solved any problem yet. Naïvely calling fibN will be a
blocking call, waiting until the computation returns:

fibN(); // if n is big, we’ll be blocked for a while

816 CHAPTER 17 Delegates

FIGURE 17.21 The AsyncCallback delegate.

FIGURE 17.20 Delegate’s BeginInvoke method.

FIGURE 17.19 Instance members on the generic Func<TResult> delegate type.

Discoverability of API capabilities in .NET is as simple as one keystroke: dot. Take a look at
the IntelliSense for fibN, shown in Figure 17.19.

We immediately recognize the Invoke method for which the delegate invocation syntax is
simply syntactical sugar. This corresponds to the synchronous invocation mechanism for
delegates, causing us to block until the target method returns. Looking a little further, we
immediately observe a pair of other methods that reveal they have to do something with
delegate invocation: BeginInvoke and EndInvoke. That’s exactly what we need to make
our delegate call in an asynchronous way. Let’s see how, but first take a look at the
BeginInvoke method signature, shown in Figure 17.20.

Two arguments are expected, the first of which is an AsyncCallback. This is a way to tell
the BeginInvoke method, “Hey, if the underlying method you’ll call returns, give me a call
back so that I can take the result and react on it.” What would a callback look like?
Obviously, we want to react to the completion event by executing some code. I bet you
can feel it coming by now: We’re passing a reference to a callback method to BeginInvoke,
which is done by means of the AsyncCallback delegate whose definition is revealed in
Figure 17.21.

817Asynchronous Invocation

FIGURE 17.22 IAsyncResult’s members.

FIGURE 17.23 Completing the asynchronous computation.

The signature of the expected callback function takes in an IAsyncResult and returns
nothing. We can declare such a method inline using an anonymous function expression
or a lambda expression, as we do in Figure 17.22. Inside the body of the lambda expres-
sion, we try to satisfy our curiosity by taking a look at the members of IAsyncResult, as
shown in the figure.

All of those members look incredibly interesting, but the most important piece of infor-
mation seems to be missing: Where’s the result of the completed asynchronous call?
That’s where EndInvoke comes in. In fact, an IAsyncResult can be compared to a ticket to
hold on to an asynchronous computation during its lifetime. Look back at the
BeginInvoke signature and observe how the IAsyncResult object is returned immediately
from the BeginInvoke call. This allows us to poll the asynchronous call’s state by repeat-
edly checking IsCompleted or to use a wait handle to wait explicitly for the call to return.
The concept of wait handles is discussed in Chapter 29. For another application of asyn-
chronous computations, refer to Chapter 28, “Working with I/O.”

That still doesn’t answer how IAsyncResult can be used to obtain the result of the call
when it has completed. Surprise, surprise, but the signature of EndInvoke takes in this
IAsyncResult object in return for the computation’s result. Figure 17.23 shows how to call
the EndInvoke method.

Gradually, one step at a time, things start to come together. So far, our code will start the
computation asynchronously by means of a call to BeginInvoke, telling it how to proceed
once the call finishes as specified by the callback function. Inside this callback function,
IAsyncResult is used to obtain the result of the completed call through a call to
EndInvoke. Now that we have the result, we can do whatever we want to do with it: Print
it to the screen, start another call, and so on.

818 CHAPTER 17 Delegates

Let’s complete the call to BeginInvoke first. Besides the AsyncCallback delegate, it also
expects an object argument referred to as the “state.” We can just leave that null for our
purposes. If you look back at the IAsyncResult members, you’ll see an AsyncState get-
only property. This is where the second parameter to BeginInvoke ultimately ends up. In
.NET 1.0, before language features such as closures, this was a convenient way to pass
some state to the asynchronous callback function that had to be defined in a separate
method. Today, with the use of closures, its usefulness has decreased a bit, so let’s not
discuss it any further.

Based on what you’ve learned so far, we can write something like this:

static void CalculateFib(uint n) {

Func<uint> fibN = () => Fibonacci(n);

var watch = new Stopwatch();

watch.Start();

fibN.BeginInvoke(asyncResult => {

watch.Stop();

uint result = fibN.EndInvoke(asyncResult);

Console.WriteLine(“Fib({0}) = {1} (in {2} ms)”,

n, result, watch.ElapsedMilliseconds);

}, null);

Console.WriteLine(“Computing Fib({0})...”, n);

}

This code still works like a charm, but how does it illustrate we’re not getting blocked
upon invoking the delegate? That’s what the Console.WriteLine call after BeginInvoke is
for. Because BeginInvoke returns immediately, this console output will appear on the
screen before the underlying delegate call even finishes. In other words, BeginInvoke
doesn’t block. To illustrate this, consider the following Main method:

static void Main() {

for (uint n = 1; n <= 20; n++) {

CalculateFib(n);

}

Console.ReadLine();

}

Because CalculateFib performs its heavy work asynchronously, we’ll see the 20 calls to the
function return immediately, heaving printed “Computing Fib(n)...” messages to the
screen. In the background, the computation for the 20 asynchronous calls will be going on,
each of which will eventually return by calling their callback function that will print the
result to the screen. On my machine, the results looked like those shown in Figure 17.24.

819Asynchronous Invocation

FIGURE 17.24 Asynchronous computation of Fibonacci numbers.

Results might be a bit surprising at first, but the key observation here is that the messages
that signal the computation of a Fibonacci number have started to cease to be printed
long before the computations of Fib(13) through Fib(20) finish. Or to say it another way,
we’ve scheduled the computation of 20 Fibonacci numbers asynchronously, causing our
main thread not to get blocked while waiting for results to come back.

Notice a very important detail in our Main method:

static void Main() {

for (uint n = 1; n <= 20; n++) {

CalculateFib(n);

}

Console.ReadLine();

}

Did you see it? The innocent-looking Console.ReadLine call is quite important to make
our example successful. Because the 20 calls to CalculateFib have returned in no time
while asynchronous background work is still going on, we reach the end of the Main
method very soon from the start of the program. Falling out of the bottom of Main causes
the program to terminate (read: the main thread finishes), so we wouldn’t see any results
being printed as the program quits immediately.

820 CHAPTER 17 Delegates

MESSAGE PUMPS TO THE RESCUE

This problem doesn’t really exist in UI applications based on Windows Forms or
Windows Presentation Foundation (WPF) because those have a message pump that
keeps the main thread occupied until an exit message is posted to the message
queue. Such an exit message arrives when the program’s main window is closed or
programmatic calls are made.

In our example, the Console.ReadLine call effectively blocks the main thread, waiting for
the user to press Enter to terminate the program. There are cleaner ways to deal with this
problem, though, and again the IAsyncResult objects returned by BeginInvoke provide
the key to success.

One of the properties on IAsyncResult is called AsyncWaitHandle and returns a so-called
wait handle that provides a way to wait for the background work to complete. For the Main
method to use those, we’ll return the wait handle from the method:

static WaitHandle CalculateFib(uint n) {

...

var asyncRes = fibN.BeginInvoke(asyncResult => {

...

uint result = fibN.EndInvoke(asyncResult);

...

}, null);

...

return asyncRes.AsyncWaitHandle;

}

Back in Main, we receive all of those WaitHandle objects, which we can collect in an array.
Based on this, we can express our desire to block until all the background work is done,
as follows:

static void Main() {

const int N = 20;

var waitHandles = new WaitHandle[N];

for (uint n = 1; n <= N; n++) {

waitHandles[n - 1] = CalculateFib(n);

}

WaitHandle.WaitAll(waitHandles);

}

WaitHandle.WaitAll basically tells the CLR to block until all the background threads asso-
ciated with the wait handles have finished.

821Asynchronous Invocation

NOTE

To be really honest, the preceding code isn’t completely right just yet. Even though
WaitAll will block and prevent the main thread from finishing until all asynchronous
invocations complete, this doesn’t take into account that the callback procedures (in
our case, responsible for printing the result to the console) can take some time to
complete. Therefore, it’s still possible for the main thread to terminate before all call-
backs have completed their jobs.

We won’t go into detail about how to fix this defect right now but defer discussion about
more thread synchronization primitives and techniques until Chapter 29. Nevertheless,
this proves that parallel computation isn’t a simple thing to get right under all circum-
stances. Rest assured, APIs have improved significantly over the years as parallel, asyn-
chronous, and reactive computing has become more and more important.

Refer to Figure 17.24 for a moment and observe some apparent oddities in the output.
One thing you’ll notice is that Fib(5) returned before Fib(4). Out-of-order arrival is
common when doing background processing because the runtime’s and operating system’s
thread-scheduling mechanisms are involved. An even more extreme case is visible with
Fib(7)’s completion message arriving after Fib(12)’s. Often, different background tasks
have very different performance profiles (for example, because of latency experienced
when making network calls and such).

For all of those reasons, you can’t expect in-order arrival of asynchronous calls. Even
more, every time you run the program you’ll see different patterns due to differences in
the “dynamics” of the system at the point the program runs. (Other threads in the OS
may be competing with your application’s threads.)

So what if we want to keep things in order somehow and print some progress to the
screen while a number is being computed, as we promised near the beginning of this
section? Using IAsyncResult’s IsCompleted property, we can also poll for the completion
of an asynchronous call:

static void CalculateFib(uint n) {

Func<uint> fibN = () => Fibonacci(n);

var asyncResult = fibN.BeginInvoke(_ => { }, null);

while (!asyncResult.IsCompleted) {

Console.Write(“.”);

Thread.Sleep(500);

}

Console.WriteLine();

uint result = fibN.EndInvoke(asyncResult);

Console.WriteLine(“Fib({0}) = {1}”, n, result);

}

822 CHAPTER 17 Delegates

This code deserves a detailed explanation. We already know how we created the fibN dele-
gate, so let’s skip that part. The first important difference is about the absence of a mean-
ingful callback function specified to BeginInvoke. Here we’re passing a funky-looking
lambda expression:

_ => { }

Recall that the expected argument is an AsyncCallback delegate, which takes in one of
those IAsyncResult objects and returns void. Because we don’t want to use a callback
procedure (we’re going to poll for completion status later), we don’t care about the argu-
ment passed in to that lambda expression. It turns out a plain underscore character is a
valid identifier in C#, so it’s a handy, compact way to express this: “I have a lambda
expression parameter here, but I don’t care about it.” And obviously, to create a delegate
that doesn’t do anything, we specify an empty body, hence the use of { }.

NOTE

Quite frankly, this _ => { } trick is not required for the preceding code because
BeginInvoke also accepts a null reference for its AsyncCallback argument. However,
I thought it was the ideal time and place to reveal this little trick that comes in handy
from time to time: _ is a valid C# identifier, and its use for a “don’t care” variable
name can prove useful in such situations.

Nevertheless, now that you know _ is a proper identifier, you shouldn’t go off and start
writing code like this:

(_, __, ___) => (_ + __) * ___;

No matter how aesthetically pleasing this may be to the trained (ASCII-art-savvy) eye,
it’s just asking for nonmaintainable and unreadable code! Also keep in mind that this is
nothing but a trick and not a proper language feature of its own (because you can’t
have multiple “don’t care” arguments with the same “_” name): To the compiler, it’s
just another variable name that may clash with other variables already in scope.

After starting the asynchronous call, we start polling for its completion status by checking
the IsCompleted property periodically in a while loop. Notice we sleep inside the loop
body for half a second (an interval that can be adjusted depending on the expected
performance profile of the call being polled for) before checking again. This avoids busy
waiting, which is a bad practice that drives your CPU to full utilization with no benefit
other than heating the chip. Every time we fail to see a completed status, we print an
additional dot to the screen. This signals to the user we’re still alive but waiting for the
operation to complete.

Figure 17.25 shows the result of restructuring our code with the polled-based waiting and
printing of “status dots.”

823Asynchronous Invocation

FIGURE 17.25 Asynchronous computation with status polling and reporting.

Notice that categorization of blocking versus nonblocking depends on your point of view
when looking at the code. First, from CalculateFib’s point of view, the call to the fibN
delegate is no longer blocking due to the use of BeginInvoke. However, when looking at
the CalculateFib method from Main’s point of view, that one is still blocking because it
doesn’t return before the result of the calculation is printed to the screen (by means of the
polling loop inside).

EXERCISE FOR THE READER

Figure 17.25 does not completely correspond to the code shown before because it still
reports the measured time for the calculation. Extending the sample code by enabling
it to report timing information accurately is left as an exercise for you.

Notice this is not as easy as it might seem at first: Because we’re sleeping 500
milliseconds at a time when polling for completion status, the naïve approach of wrap-
ping the loop in a StopWatch would always report multiples of 500 milliseconds
(approximately).

One little tip: Use the BeginInvoke callback procedure to stop the StopWatch as soon
as the asynchronous call finishes.

DON’T BLOCK THE MESSAGE LOOP

In reality, we would likely perform more useful work while we’re waiting for an asynchro-
nous operation to complete. If the result of the operation is not essential to continue
all further processing in the system, we can start doing other work in parallel.

But even if we really depend on the value to come back before we can do more mean-
ingful work, asynchronous computing is beneficial because we can keep the user
informed about the application not being fatally hung. I bet readers have seen the
scenery illustrated in Figure 17.26 far too often.

824 CHAPTER 17 Delegates

This application is poorly written because it blocks the UI thread while doing expensive
computation, thus preventing the application’s message loop (which ticks on the UI
thread) to process window messages. Window messages are used as a way to
dispatch work to an application (for example, to process keyboard or mouse input), to
restore focus, and even to repaint itself to the screen.

In Figure 17.26, the window is no longer capable of responding to the WM_PAINT
message when asked by the window manager to repaint itself because it is blocked
waiting for the Fibonacci number computation to come back. Windows detects the situ-
ation where an application no longer responds to window messages and indicates this
state by adding the infamous “Not Responding” note to the title bar. Starting from
Windows Vista, it also puts a misty cloud over the window’s client region to visually
indicate that the application is hung.

You’ll see how to deal with long-running operations in the context of UI development
frameworks like Windows Forms and WPF at a later stage. For now, just be aware of the
problems that can arise from making blocking calls.

Combining Delegates
In preparation for the discussion about events in the Chapter 18, I want to mention one
more thing about delegates: their capability to be used in a “multicast setting.” Earlier on,
you saw how delegate types in C# derive from a base class called MulticastDelegate.
Looking at that type’s information in Visual Studio, you see how that type by itself derives
from Delegate:

namespace System

{

public abstract class MulticastDelegate : Delegate

{

...

Looking a bit further at the members of the MulticastDelegate type, you’ll notice one
that reveals its true essential goal, allowing multiple target methods to be called as part of
the delegate’s invocation call. This is hinted at in Figure 17.27

FIGURE 17.26 Windows’ “Snow White effect” for hung applications.

825Combining Delegates

FIGURE 17.27 MulticastDelegate objects keep a list of Delegate objects inside.

If a Delegate object can refer to one method and a MulticastDelegate contains an array
(known as the invocation list) of Delegate objects, it’s clear that a MulticastDelegate can
refer to multiple methods. Hence, the invocation of such a delegate multicasts the argu-
ments passed in to all methods in the invocation list.

So far, we’ve always created delegates that point at one method at a time. For example, the
following defines three Action<string> delegates based on a lambda expression:

Action<string> sayHiEnglish = name => Console.WriteLine(“Hello “ + name);

Action<string> sayHiDutch = name => Console.WriteLine(“Hallo “ + name);

Action<string> sayHiFrench = name => Console.WriteLine(“Allo “ + name);

What if we’re given a name and want to call all the above to greet the incoming user in a
bunch of languages? Different approaches exist. Obviously, we could invoke all three dele-
gates one by one:

sayHiEnglish(name);

sayHiDutch(name);

sayHiFrench(name);

Code starts to get bloated if subsequently we’re asked to add another language to the mix,
requiring us to revisit the invocation site of those delegates. Furthermore, it might even be
the case we provide a means for the users of our greeting system to plug in other delegates
for different languages that we didn’t anticipate. Now we can no longer have a fixed
number of delegate invocations in our code.

826 CHAPTER 17 Delegates

FIGURE 17.28 Combining delegates through the Delegate API.

Let’s go down the route of supporting an unknown number of target methods by doing
the plumbing ourselves using a handcrafted invocation list:

var greetings = new List<Action<string>> {

name => Console.WriteLine(“Hello “ + name),

name => Console.WriteLine(“Hallo “ + name),

name => Console.WriteLine(“Allo “ + name)

};

Now we can provide the user with some ability to add a greeting delegate to this list (obvi-
ously using all the best practices learning in object-oriented programming, not exposing
this list directly) and invoke all of them by means of a loop:

void SendGreetings(string name) {

foreach (var greeting in greetings) {

greeting(name); // invokes the delegate

}

}

Ignoring the trivial implementation of this method with the loop, take a look at the
resulting method’s signature: It takes in a string and returns nothing. In other words, it
obeys the signature of an Action<string> target method. What we’ve effectively done
here is combine a series of delegates into one in a rather roundabout way. Why round-
about? MulticastDelegate precisely provides for this out of the box through a static
method called Combine, as shown in Figure 17.28.

Notice that the Combine method in fact is defined on the base type Delegate, so we could
have called it on Delegate instead, too. The result of applying Combine to a set of
Delegate objects is by itself a Delegate. As you might have guessed, System.Delegate is
the base type for all delegate objects. To make the preceding code as strongly typed as
possible, we can cast the result:

Action<string> sayHiEnglish = name => Console.WriteLine(“Hello “ + name);

Action<string> sayHiDutch = name => Console.WriteLine(“Hallo “ + name);

Action<string> sayHiFrench = name => Console.WriteLine(“Allo “ + name);

827Combining Delegates

var sendGreetings = (Action<string>)Delegate.Combine(sayHiEnglish, sayHiDutch,

sayHiFrench);

sendGreetings(“Bart”);

The result of invoking the resulting sendGreetings delegate is as you expect: All three greet-
ing messages get printed to the screen in the order they were specified in the call to Combine.

Although the preceding works, it’s a little rough on the eye due to the method call and
the required cast to put us back in a more strongly typed world. In addition, there’s no
compile-time checking possible based on the signature of Combine and the cast:

Action<string> sayHiEnglish = name => Console.WriteLine(“Hello “ + name);

Func<int, int> twiceAsNice = x => x * 2;

ThreadStart t = (ThreadStart)Delegate.Combine(sayHiEnglish, twiceAsNice);

t();

Although this will compile fine, it doesn’t make any sense at all because the delegates that
are getting combined here are not compatible with one another. In fact, the Delegate call
will fail at runtime because the incompatibility gets detected by the runtime. And even if
we got this part right using two compatible delegates (for example, sayHiEnglish and
sayHiDutch), the cast could fail, as well, if the target type (ThreadStart in the example) is
incompatible with the resulting delegate.

Luckily, C# provides language-level support for combining delegates using the very famil-
iar + operator. The sendGreetings delegate can be constructed like this:

Action<string> sayHiEnglish = name => Console.WriteLine(“Hello “ + name);

Action<string> sayHiDutch = name => Console.WriteLine(“Hallo “ + name);

Action<string> sayHiFrench = name => Console.WriteLine(“Allo “ + name);

var sendGreetings = sayHiEnglish + sayHiDutch + sayHiFrench;

sendGreetings(“Bart”);

The result of doing so is statically typed, so sendGreetings is correctly inferred to be of
type Action<string>, just like all the delegates from which it’s composed.

Being able to use the + operator, what about compound assignment using +=? This also
works:

var sendGreetings = sayHiEnglish + sayHiDutch;

sendGreetings += sayHiFrench;

WHY THIS SYNTAX MATTERS

In the discussion about events in Chapter 18, you’ll see how this compound assign-
ment will be used to attach event handlers to an event (although, as you can see, this
feature is really defined on delegates, not just for events).

828 CHAPTER 17 Delegates

FIGURE 17.29 Compile-time checking for delegate combination.

Because the compiler has all type information available about the delegate objects that are
“added together,” it can protect us against writing invalid combinations. Figure 17.29
shows such a mishap triggering a compile-time error.

The implementation of delegate combination using the + and += operators is no dark
magic at all. We just rely on the Delegate.Combine method under the hood, followed by a
cast to the destination type. Because of the compile-time checking for delegate compatibil-
ity, all the generated code is statically guaranteed to succeed.

What about combining delegates with a null reference? It turns out that Combine simply
allows null references to be used without blowing up the call. Those null references simply
don’t end up in the invocation list and are filtered out:

var sendGreetings = sayHiEnglish + sayHiForeign; // assume sayHiForeign is null

sendGreetings(“Bart”); // we still get here and this simply prints “Hello Bart”

Why does the null case matter that much? Well, there’s not just an addition operation
(combination, as we have called it) on multicast delegates: Removal exists, too. This is
illustrated in the following example:

Action<string> sendGreetings = null;

sendGreetings += sayHiEnglish;

sendGreetings += sayHiDutch;

sendGreetings(“Bart”); // Prints “Hello Bart” and “Hallo Bart”

sendGreetings -= sayHiEnglish;

sendGreetings += sayHiFrench;

sendGreetings(“John”); // Prints “Hallo John” and “Allo John”

Under the covers, removal of a delegate using either the binary operator or the compound
-= assignment is implemented by calling Delegate.Remove.

Adding and removing delegates from an invocation list is very important in the context of
events, as you will see shortly. In such a setting, it’s common to start off with an empty,

829Combining Delegates

null-valued invocation list just like sendGreetings starts its lifetime in the preceding
example. Once the first delegate is added, we’re really adding up a null delegate and the
newly supplied delegate instance. It doesn’t make sense to fail in such a case, which is
why null references are allowed without causing any failure.

Also when removing all delegates from a MulticastDelegate, a null reference results,
conceptually representing an empty invocation list. In a scenario where external parties
can add (attach) and remove (detach) delegates, this is a common situation. That said,
invoking a null reference delegate will result in a NullReferenceException, so we should be
cautious when invoking a delegate no matter what:

Action<string> sendGreetings = null;

...

// external party does: sendGreetings += sayHiEnglish;

...

sendGreetings(“Bart”); // Prints “Hello Bart”

...

// external party does: sendGreetings -= sayHiEnglish;

...

sendGreetings(“John”); // throws NullReferenceException

When talking about events, we’ll see that one should always check against null before
raising the event. Raising an event technically corresponds to invoking a delegate.

TREASURES IN THE SYSTEM.DELEGATE ATTIC

So far, we’ve demonstrated only the use of multicast delegates with target methods
that don’t return a value. The curious reader might wonder whether it’s possible to
combine delegates that return a value as well. Let’s give it a try:

Func<int, int, int> add = (a, b) => { Console.WriteLine(“+”); return a + b; };

Func<int, int, int> mul = (a, b) => { Console.WriteLine(“*”); return a * b; };

Func<int, int, int> all = add + mul;

Console.WriteLine(all(2, 3)); // What does it print? 5 or 6

The preceding works fine, maybe somewhat surprisingly. Both + and * are printed to
the screen, testifying to the fact that both add and mul delegates have been called
during the invocation of the combined multicast delegate. The value from the last
target method invocation (that is, mul) is retained, and the printed result therefore is 6.

In practice, I never have to rely on this behavior for a useful scenario. A more common
thing might be to collect the results from all the function calls and surface those
results in some output sequence. There’s no direct way to achieve this other than iter-
ating over the invocation list yourself and calling the functions one by one to collect
their results. I’ll leave this as an exercise for you.

830 CHAPTER 17 Delegates

To conclude, let’s talk a bit about exceptions raised by one of the target methods for a multi-
cast delegate. If one of the target methods throws an exception, that exception will bubble
up through the delegate invocation call. This is nothing special, it seems, as long as you
realize that this causes the target methods following the one that blew up not to execute:

Action good = () => { Console.WriteLine(“OK”); };

Action boom = () => { throw new Exception(“Boom!”); };

Action never = () => { Console.WriteLine(“Never printed”); };

Action all = good + boom + never;

all(); // Prints OK and throws an exception, without reaching a call to “never”

If, for some obscure reason, you need to reliably invoke all target methods in the face of
errors, you can do so by manual iteration over the invocation list. Doing so, you never
swallow all exceptions and only deal with error conditions you can deal with appropriately:

foreach (Action target in all.GetInvocationList()) {

try {

target();

}

catch (SomeException ex) {

// Handle SomeException appropriately

}

}

FOREACH’S HIDDEN CAST

In the preceding fragment, we’re using a handy feature of the foreach statement that
goes all the way back to C# 1.0 when generics weren’t invented yet. Assume you’re
given some nongeneric collection (or a weakly typed array) and you happen to know it
contains only strings. To give users easy iteration over the collection, C#’s foreach
loop automatically inserted a cast from the retrieved object to the type specified on the
loop variable:

object[] names = new string[] { “Bart”, “John” };

foreach (string name in names) {

// In reality, the enumerator’s Current property returned an object,

// so the compiler did emit code like:

// string name = (string)enumeratorOverNames.Current;

}

We’re making handy use of this feature in the preceding code, as GetInvocationList
returns a Delegate[], but we know the more specific type of each element in that
array because add was obtained by combining Action delegates. By making Action
the type for the target loop variable, we instruct the foreach loop to insert the cast on
our behalf. Handy!

831Summary

Summary
Delegates and events are crucial pieces that make the .NET Framework tick. Having a solid
understanding of both concepts will take you a long way in discovering framework func-
tionality and designing your own extensible APIs. This chapter looked at the concept of
delegates, which form the basis for events covered in the next chapter.

Although the concept of functional programming lies, at least conceptually, at the heart of
delegates, they can simply be seen as a strongly typed contract describing a single opera-
tion. One party acts as a consumer, invoking the delegate to reach out to the functionality
provided from the outside. The other party hands out a piece of code that adheres to the
delegate contract (its signature, if you will) by instantiating a delegate or using an anony-
mous function expression or lambda expression, with possible use of a closure to capture
outer variables. LINQ is one of the many APIs that’s designed for heavy use of delegates to
pass all sorts of little functions around (predicates, projections, key selectors, and so on).

With the knowledge of delegates under our belts, we put our gained knowledge to the test
by explaining events in terms of them in the next chapter. In Chapter 19, we revisit dele-
gates from another angle, this time to unravel the innards of LINQ.

This page intentionally left blank

CHAPTER 18

Events

IN THIS CHAPTER

. The Two Sides of
Delegates 834

. A Reactive Application 835

. How Events Work 843

. Raising Events, the Correct
Way 845

. Add and Remove
Accessors 847

. Detach Your Event
Handlers 852

. Recommended Event
Patterns 861

. Case Study:
INotifyProperty
Interfaces and UI
Programming 871

. Countdown, the GUI Way 882

. Modern Approaches to Reactive
Programming 888

Fully loaded with a bag of knowledge about delegates,
we’re now in a great position to start learning about one of
their direct applications: events. In Chapter 17, during our
examination of asynchronous delegate invocation, we
already hinted at the difference between interactive and
reactive programming. Events are clearly a good fit for the
latter category, where our application has to react to some
event being triggered elsewhere in the system (or even far
out on some server).

In this chapter, we discuss events from a C# language point
of view and their first-class citizenship in the .NET
Framework and the underlying runtime. As a matter of fact,
without realizing it just yet, you already know almost every-
thing there is to know about events solely by knowing how
delegates work. When faced with both concepts for the first
time, people tend to find things a bit confusing. To avoid
such situations, our discussion will introduce events by
defining them in terms of delegates, right from the start.

After you understand how events are declared and raised,
we focus on typical patterns for event-driven programming
and API design, putting our knowledge to the test by
looking at the Windows Forms UI framework, which relies
heavily on events. Finally, this chapter wouldn’t be
complete without a sneak peek at different approaches to
writing event-driven software as seen in the WPF and
Reactive Extensions (Rx).

834 CHAPTER 18 Events

Invocation
Site

Target Method 1
Call

Target Method 2
CallInvoke

Target Method N
Call

…

M
ulticast

D
elegate

FIGURE 18.1 Invoking a delegate is an interactive act.

Event
Source

Event Handler 1
Handle

Event Handler 2
Handle

Raise

Event Handler N
Handle

… M
ul

tic
as

t
D

el
eg

at
e

FIGURE 18.2 Event handling is a very reactive business.

The Two Sides of Delegates
Delegates really have two sides to them. One side defines one or more target methods
referred to by the (multicast) delegate; the other defines a way to invoke those methods
through the delegate. To keep things clear, let’s define a little bit of vocabulary here. We’ll
say a target method gets called, whereas a delegate is getting invoked. With those words in
place, we can sketch our current understanding of delegates as shown in Figure 18.1.

When we look at the picture from left to right, delegates look like very interactive beasts,
where the invocation site is in the driver seat: It actively invokes the delegate, triggering
the target methods to be called.

Now let’s flip the figure around, keeping shapes and arrows in place but performing a few
rename operations. For the verbs, to invoke becomes to raise and to call becomes to handle.
For the nouns, replace target method with event handler and invocation site with event source.
Now we get Figure 18.2.

Again, scanning the picture from left to right, things start to look quite different. Instead
of an outgoing Invoke arrow that interacts with the delegate, we now see a bunch of
incoming Handle arrows that allow us to react to an incoming event. If we follow those
arrows against the flow through the delegate, we end up at the event source on the right,
which raised an event.

835A Reactive Application

1.
2.
3.
4.

1.
2.
3.
4.

To set, rotate the top clockwise
To start, release the top half
As time elapses, it turns counterclockwise
As it reaches zero, the bell rings

User’s manual

Giga Egg
Timer

55 0 5 10

To set, turn the knob on the top
To start, press the knob down
As time elapses, the little arrow turns
As it reaches zero, it stays at “60”

User’s manual

Mega
Chrono

XII I

II
III

IV

VVIIVIII
IX

X

XI

60 10
20

3040
50

FIGURE 18.3 Two physical interfaces for a countdown mechanism.

All there is to understanding the fundamental principles of events is recognizing that
these two figures are just each other’s mirror images. So by knowing the “classic” use of
delegates, you already know how events work: Congratulations! Obviously, we won’t stop
here; there’s quite a bit to tell about the specifics of events and certain typical use
patterns, so let’s explore this piece-by-piece now.

A Reactive Application
Before we dive into the C# language feature called events, let’s see how far the observation
from the previous two figures brings us by using bare-bone delegates to create a reactive
application. To keep things simple, we continue our way in the good old world of console
applications to implement a countdown mechanism that’s operated as follows:

. The user sets the number of seconds to count down.

. The user instructs the countdown mechanism to start.

. The countdown raises a signal for every second that has elapsed.

. The countdown raises an event when the countdown has reached zero.

By looking at the predicate of the preceding sentences, you can decide whether the
described operational step is interactive or reactive. When the user does something, he or
she is interacting with the time. Every time the countdown raises an event, the user may be
reacting to it.

Notice how we left lots of details unspecified. We didn’t say how the user sets the number
of seconds, nor did we say how the countdown is started. All we’ve specified so far is a
generic countdown mechanism that can be provided with many interfaces, as shown in
Figure 18.3.

836 CHAPTER 18 Events

Assuming both the egg timer and the chronometer are implemented using the same
countdown mechanism on the inside, both the interactive parts and reactive parts are
surfaced quite differently. For example, starting the timer involves releasing the egg timer’s
rotating top half; the chronometer needs a button press. Those actions are “interactive.”
We’re in the driver’s seat and give a signal to start the countdown mechanism.

On the reactive side, things are also different. When the countdown reaches zero, the egg
timer reacts by ringing a bell. The chronometer, on the other hand, isn’t really interested
in this event because it doesn’t provide a special notification about reaching zero to the
user. Because no further time-elapsed events would be raised by the inner countdown
mechanism, the little arrow will keep pointing upward to the 60 (which equals 0 in clock
arithmetic, of course) indicator.

Our task is to provide a general-purpose countdown mechanism that can be embedded in
both an egg timer and a chronometer. (You’re invited to think about other uses.) And
guess what? To realize the reactive parts, we’ll use events. For now, we start by using
simple delegates and refine the solution toward the use of C# events later.

Using Delegates

To realize our countdown mechanism in code, let’s build a CountDown class that gets
initialized with the number of seconds to countdown. This part leads to the following
obvious skeleton code:

class CountDown {

private uint _seconds;

public CountDown(uint seconds) {

_seconds = seconds;

}

}

Next, we need to separate two concerns: the parts dealing with interactive user actions
versus the ones that have a reactive nature. We already know how to realize interactive
concepts by means of regular methods. In fact, we did so for the timer’s initialization by
the definition of a constructor (the method to be called to create a countdown). Besides
this, we need a method to start the countdown:

public void Start() {

uint n = _seconds;

while (n > 0u) {

// TODO: let the user know one second has ticked away

Thread.Sleep(1000);

}

// TODO: let the user know we’ve reached zero

}

837A Reactive Application

Ignore the “to do” notes for the time being. The preceding code realizes the core engine of
the countdown as a simple whole loop. There’s a problem, though: The Start method
blocks upon calling it, sitting in the while loop for the duration specified by the timer. It
would be more desirable for the Start call to be asynchronous, so let’s introduce a back-
ground thread on which the timer will tick:

public void Start() {

new Thread(() => {

uint n = _seconds;

while (n > 0u) {

// TODO: let the user know one second has ticked away

Thread.Sleep(1000);

n—;

}

// TODO: let the user know we’ve reached zero

}).Start();

}

Feel free to refactor the preceding code if you don’t like the use of a lambda expression
for substantial amounts of code, but that’s merely a matter of taste. What’s more impor-
tant is that the Start method now returns immediately, with the timer ticking on a sepa-
rate thread.

Now to the heart of our mission: how to fill in the gaps left by our “to do” notes, used to
inform the user about certain events. Because we want to keep our countdown mechanism
generic, we can’t hard code the actions to be taken whenever an event occurs. Instead,
we’ll have the user supply callback procedures, or with more appropriate wording, event
handlers, through delegates. To do so, let’s introduce two more properties of a delegate type:

public Action<uint> Tick { get; set; }

public Action Finished { get; set; }

With the preceding in place, you can use the CountDown class as follows:

var countDown = new CountDown(5);

// Hook up event handlers

countDown.Tick = currentSecond => Console.WriteLine(currentSecond);

countDown.Finished = () => Console.Beep();

countDown.Start();

The two property assignments, later to be replaced by event handler registrations, are the
means for the user to specify how a Tick event and a Finished event should be dealt with.

838 CHAPTER 18 Events

FIGURE 18.4 Use of the CountDown class with simple event handlers.

Inside the CountDown’s background thread, we’ll have to raise those events by invoking the
delegates in the appropriate places, as follows:

public void Start() {

new Thread(() => {

uint n = _seconds;

while (n > 0u) {

if (Tick != null)

Tick(n);

Thread.Sleep(1000);

n—;

}

if (Finished != null)

Finished();

}).Start();

}

Notice the use of null checks to make the code robust against users that did not specify one
or more event handler delegates. (For example, our chronometer won’t care about
Finished.) To be totally honest, the preceding code still has a defect with regard to how the
delegates are getting invoked. You’ll see why later in this chapter (hint: multithreading).

Based on the sample shown here, it’s clear that the use of delegates provides a nice way to
call back to the user: Raising an event is just a specialized application of invoking a dele-
gate. The result of a sample run is shown in Figure 18.4. Because the medium of printed
books doesn’t permit playing a sound when looking at an image, you will have to take my
word for it: Upon reaching zero, the computer produced a beep sound.

839A Reactive Application

AN ACCURATE TIMER?

Our countdown mechanism is not a very accurate timer for various reasons. One
reason is that the OS doesn’t make guarantees about the accuracy of thread sleeps.
Ultimately, many threads are competing for resources on the machine, and the thread
scheduler needs to be fair to all of them. This can result in our thread being woken up
later than we specified on the Sleep call. Improvements to this can be made using
high-resolution timers, but let’s not go there.

Another factor in inaccuracy is due solely to the way we wrote the code: The invocation
of the Tick delegate inside the loop has nonzero cost. This is not just due to the fact
we’re invoking a delegate (which has some cost, just like every other action that burns
CPU cycles), but even more so because we’re calling out to event handlers we don’t
know the characteristic of. For example, an egg timer’s mechanical subsystem may
take a few milliseconds to rotate the upper half of the device. Therefore, for every call
to Tick, we’re delaying the call to Thread.Sleep, causing the timer to start drifting.
One way to fix this deficiency is to use asynchronous delegate invocations.

A much better timer implementation exists in the System.Threading namespace,
which is based on an OS-level timer. For any serious timing business, that one should
be used rather than a home-brew loop-and-sleep-based timer.

Limitations on Plain Use of Delegates

The plain use of delegates for event-based programming seems promising, but there are a
few caveats that require a slightly ameliorated approach. As usual, when more than one
party is involved in making something work, there needs to be consensus as to how to do
things. The exposition of raw delegates is problematic for this reason, if the user of the
class does not behave politely. Let’s take a look.

First, multiple parties might want to listen for an event, assuming they all have access to
the type raising those events. In other words, we need a way for our users to hook up
more than one event handler. That’s easy. Just use multicast delegates with their handy +=
syntax for combination:

// Egg timer listening to the countdown

countDown.Tick += currentSecond => TurnSpindle(6 /* degrees */);

countDown.Finished += () => Ring();

// Chronometer listening to the same countdown

countDown.Tick += currentSecond => MoveHand(currentSecond);

In the preceding example, both listeners on the countdown are well behaved because they
all use the += compound assignment operator to add their own event handlers. But
because we’re exposing a delegate through a settable property, nothing prevents someone
from doing a plain assignment, thus replacing the whole multicast delegate. One could go

840 CHAPTER 18 Events

as far as stating that this allows a denial-of-service attack because one client can overwrite
all event handlers hooked up by other clients:

// Malicious chronometer overwriting the Tick delegate altogether

countDown.Tick = currentSecond => MoveHand(currentSecond);

This is not the only problem, though. Raising an event should really be a privileged opera-
tion that can be performed only by the event source. But by giving users a way to retrieve,
through the property getter, the multicast delegate containing the hooked event handlers,
everyone who can get a hold on it can raise the event:

// Egg timer listening to the countdown

countDown.Tick += currentSecond => TurnSpindle(6 /* degrees */);

countDown.Finished += () => Ring();

// Evil jealous chronometer that wants to take revenge on our nice egg timer

uint n = 0;

while (true) {

countDown.Tick(n); // Chronometer raises the event from the outside!

n = (n + 1) % 60;

}

In the preceding code fragment, an evil chronometer gets a hold of the Tick delegate to
which the egg timer has attached a handler. Evil as it is, it starts raising the Tick event by
invoking the delegate in a tight infinite loop. A little calculation shows that at a rate of
one Tick invocation every 20 nanoseconds (not unrealistic at all), our poor egg timer will
start rotating at a daunting speed of 833,333 rotations per second. You don’t want to be in
the same room as the egg timer under attack!

Both problems outlined here are at the level of trust between two parties: the event source
versus its consumers. One ill-behaved consumer can make life pretty bad for its peer
consumers as well as the event source. On the technical field, we can attribute this
problem to the fact we’re allowing unrestricted access to the multicast delegate used for
the event. In other words, our use of a property is not quite ideal.

All those reasons were among the key motivations why events were introduced as a first-
class concept in .NET in general and in the C# language specifically. Let’s take a look at
how the CountDown code would look if we use events instead.

Using .NET Events

Events are just delegates in disguise but provide additional levels of protection against the
attacks we’ve seen previously. Syntactically, very little has to change:

class CountDown {

private uint _seconds;

841A Reactive Application

FIGURE 18.5 Event handlers need to be added or removed using the right syntax.

public CountDown(uint seconds) {

_seconds = seconds;

}

public event Action<uint> Tick;

public event Action Finished;

public void Start() {

...

}

}

See the difference? Instead of Tick and Finished being declared as properties with a dele-
gate type, we now use the event keyword instead and drop the get and set property
accessors. (You’ll see later how events have optional accessors called add and remove.)

At the use site, we can no longer write the following:

var countDown = new CountDown(5);

// Hook up event handlers

countDown.Tick = currentSecond => Console.WriteLine(currentSecond);

countDown.Finished = () => Console.Beep();

countDown.Start();

The problem is that the innocent-looking assignment operations would allow any event
handler to swap out the whole existing invocation list for its own delegate, one of the
problems mentioned earlier. The complaint issued by the compiler is shown in Figure 18.5
and hints at the right solution: Use += to add a handler.

842 CHAPTER 18 Events

FIGURE 18.6 Events appear as lightning bolts.

The corrected code, therefore, looks like this:

var countDown = new CountDown(5);

// Hook up event handlers

countDown.Tick += currentSecond => Console.WriteLine(currentSecond);

countDown.Finished += () => Console.Beep();

countDown.Start();

In addition, notice in the IntelliSense how events have a different icon to distinguish
them from other sorts of members. Figure 18.6 shows how events look in IntelliSense.

TO RAISE OR TO FIRE?

The lightning bolt icon refers to the phrase “to fire off an event.” Because “to fire”
sounds too pejorative (nobody wants to lose his or her job by getting fired), the phrase
“to raise an event” is preferred. Oh, and for exceptions, you use the verb “to throw.”

Although the required use of += protects against malicious event hander assignments, we
still need to guard ourselves for external invocations. Events do so, too, allowing them to
be raised only from within the containing type. Therefore, our existing code in the back-
ground thread’s procedure still works fine using the delegate invocation syntax:

public void Start() {

new Thread(() => {

uint n = _seconds;

while (n > 0u) {

if (Tick != null)

Tick(n); // doesn’t change, an event is really a delegate!

...

}

However, from the outside, we won’t be able to raise the event any longer. Figure 18.7
proves this in terms of a compile-time error that occurs when this rule is violated.

843How Events Work

FIGURE 18.7 Raising an event is a privileged operation.

The example is functionally still the same as our earlier attempt but is so in a much safer
way. This finishes our illustration of events, putting us in a good position to take a closer
look at them from the language and runtime point of view.

How Events Work
Approaching events from a C# language angle, there’s not much to them. Events are
declared as members of a class or a struct, with the common set of available modifiers
such as the static keyword and the visibility modifiers. From a typing perspective, an
event must be declared with a delegate type. For example:

public event Action Finished;

As you will see, it’s a common recommended practice to use certain delegate types for
events to create a common experience across the board. For now, we’ll ignore this and
focus on the inner workings of events for a minute or two.

What do events consist of on the inside? Let’s make some informed guesses before taking
a closer look with ILDASM. First, events are a different sort of member that needs to be
discoverable through tools like Visual Studio’s IntelliSense. This first requirement
mandates metadata to be present to describe the event. Second, to prevent the problems
discussed in the previous section, we can never leak the underlying multicast delegate to
the outside. In other words, that delegate needs to be kept privately on the inside of the
containing type. But if that’s the case, adding and removing handlers using += and -=

syntax should have some level of indirection. A logical choice to realize this is to create
accessor methods that perform add and remove handler operations on the caller’s behalf.

Given our CountDown class, Figure 18.8 illustrates how events are implemented, starting by
taking a look at the metadata part.

844 CHAPTER 18 Events

FIGURE 18.8 Events as metadata entities.

If you double-click any of the events indicated in Figure 18.8, you’ll see something along
the following lines (slightly cleaned up):

.event Action Finished

{

.addon instance void Delegates.CountDown::add_Finished(class Action)

.removeon instance void Delegates.CountDown::remove_Finished(class Action)

}

In its bare essence, an event is nothing more than an association of a name with a type
and two (compiler-generated) methods: one to add an event handler and one to remove
an event handler. When using the += or -= syntax in C# to add or remove an event
handler, the compiler emits a call to one of those methods:

countDown.Finished += () => Console.Beep();

// Compiles into...

countDown.add_Finished(() => Console.Beep);

From this, it’s clear the multicast delegate for the event is never exposed to the users of
the event. Or to say it in true object-oriented terms, encapsulation is ensured. You can
already expect how those methods work on the inside: They use Delegate.Combine and
Delegate.Remove, respectively, acting on a private field that keeps the invocation list as a

845Raising Events, the Correct Way

multicast delegate. The code that gets generated for our Finished event looks roughly like
this:

private Action _finished;

public void add_Finished(Action value) {

_finished = (Action)Delegate.Combine(_finished, value);

}

public void remove_Finished(Action value) {

_finished = (Action)Delegate.Remove(_finished, value);

}

MULTITHREADING IS SUBTLE

The word roughly in the previous paragraph is all important. In harsh reality, the gener-
ated code is slightly more complicated due to multithreading concerns. If multiple
threads are adding or removing event handlers simultaneously, the door is wide open
for problems.

To understand why this is the case, see how the call to Combine is followed by an
assignment (similar for the Remove call). When a thread switch occurs between the call
to Combine and the assignment, it’s possible another thread messes with the multicast
delegate, too. After switching back to the original thread and doing the assignment, the
effects from the interrupting thread are overwritten: A race condition exists.

As a user of the language, you don’t have to worry about this, but it’s good to know
this protection is in place.

Raising Events, the Correct Way
In our CountDown example, you’ve seen how to raise events using this pattern:

if (MyEvent != null)

MyEvent(/* args */);

Looks right, doesn’t it? If nobody is listening for the event, MyEvent is null, and we should
not attempt to invoke the delegate because that will cause the runtime to yell at us with
an unfriendly NullReferenceException.

WHY IS NULL USED ANYWAY?

It might be surprising that the empty event handlers are being presented with null refer-
ences. This is really due to the way the Combine and Remove methods on Delegate
are implemented, but that just pushes the question further out: Why not just return a
MulticastDelegate with an empty invocation list?

846 CHAPTER 18 Events

TABLE 18.1 Multithreaded Interaction with Events

Thread 1 Thread 2 MyEvent Targets

1 if (MyEvent != null) A

2 MyEvent -= A; A fi null

3 MyEvent(/* args */); null

If we were to do that, the compiler should make sure every event starts its lifetime
with such an empty MulticastDelegate. In other words, all fields need to be assigned
with a delegate with an empty invocation list. That’s not really a problem, but think
about the memory this takes, especially in frameworks that are full of events. A good
example is Windows Forms, where the simplest Button type has no fewer than 68
events. Having multicast delegates with empty invocation lists takes up enough memo-
ry to be problematic. This is especially true because only a fraction of those events are
typically handled.

Unfortunately, the preceding code isn’t quite correct in the face of multithreading because
the null check and invocation are not done atomically. For example, assume one thread is
removing an event handler between the null check and the invocation that are done on
another thread. The sequence of interactions for both threads is described in Table 18.1.

On the last line, our program will crash because Thread 1 observes a null MyEvent delegate
due to the Thread 2 interleaved execution. To avoid this problem, an intermediate assign-
ment to a local variable can be used:

var evt = MyEvent;

if (evt != null)

evt(/* args */);

Recall that adding or removing an event handler does not simply tweak a multicast dele-
gate’s invocation list in place; instead, the call to Combine or Remove returns a new dele-
gate instance that contains the new invocation list. So by caching a reference to the
current delegate in a local variable, we have something we can rely on to remain stable.
Figure 18.9 illustrates this in more detail. Strictly speaking, this means we can lag behind
a bit on the event’s handlers being invoked: With the fix, the last line on the first thread
will still call A even though the second thread has already unhooked it. This shouldn’t
usually be a big deal.

847Add and Remove Accessors

A

Thread 1 Thread 2

var evt = MyEvent;
if (evt != null)

 evt(/* args */);

MyEvent -= A;

MyEvent

null

MyEvent

FIGURE 18.9 Safe multithreaded event handler interactions.

If you want to see the illustrated problem with your own eyes, it’s pretty easy to repro
using a tiny little bit of multithreaded code:

static event Action MyEvent;

static void Main() {

// Thread mimicking a client attaching and detaching handlers.

new Thread(() => {

while (true) {

Action a = () => Console.WriteLine(“Hi!”);

MyEvent += a;

MyEvent -= a;

}

}).Start();

// Main thread raises the event with too little protection.

while (true) {

if (MyEvent != null)

MyEvent();

}

}

Depending on how lucky you are, the number of “Hi!” messages printed to the screen will
vary. But sooner or later, the preceding code will bomb with a null reference on the main
thread. The fix, as we discussed, is to copy the MyEvent reference locally.

Add and Remove Accessors
With events based on a piece of metadata pointing at two methods, it shouldn’t be at all
surprising that C# provides a way to customize those methods in case you want to do so.

848 CHAPTER 18 Events

Auto-Implemented Properties

public int Foo { get; set; }

=
private int _foo;

public int Foo {

 get {

 return _foo;

 }

 set {

 _foo = vlaue;

 }

}

Events Without Accessors

(ignoring multithreading)

public event Action Foo;

=
private Action _foo;

public event Action Foo {

 add {

 _foo += value;

 }

 remove {

 _foo -= value;

 }

}

FIGURE 18.10 Symmetry between properties and events.

In the context of events (and properties), we refer to those methods as accessors. For
events, two accessors exist called add and remove. The syntax is predictable, being analog
to get and set for properties:

public event Finished {

add {

// Called when doing +=.

}

remove {

// Called when doing -=.

}

}

Inside those accessors, the right side of the += and -= operator is available using the value

keyword. This is similar to the way a property setter gets access to the value being
assigned to it.

Once we implement add and remove accessors, the compiler no longer generates a field
for the multicast delegate, leaving all plumbing to the developer. You can compare this
with the use of auto-implemented properties (which create a backing storage field for you)
versus manual implementation of a getter and a setter, as shown in Figure 18.10. It’s quite
surprising that we had to wait until C# 3.0 to get auto-implemented properties, whereas
events had both “auto-implemented” and “handcrafted” variants (using explicit accessors)
since the very first release of the language.

An example where this feature comes in handy is when implementing a more memory-
efficient event system. In the previous section’s sidebar, I mentioned one reason null is

849Add and Remove Accessors

used for multicast delegates with no target methods is to avoid heap allocations for every
empty event. There’s another side to this, as well: the field required for an event’s multi-
cast delegate object. For example, in 99.99% of cases, developers only handle the Click
event of a button control. For Windows Form’s Button, that’s 1 out of 68 events on the
control, which would lead to 67 null references that are a pure waste of memory. Manual
implementation of our own add and remove accessors comes to the rescue here.

Before going any further, note that this manual implementation of add and remove acces-
sors is something you’ll rarely have to do unless you plan on designing systems with a
very large number of events where memory footprint becomes very significant. To get an
idea of the scale of frameworks we’re talking about here, notice that the two concrete
implementations of such an idea I am aware of are Windows Forms and Windows
Presentation Foundation (WPF).

So let’s give it a try and design a little efficient event management system. Instead of
keeping storage fields for each multicast delegate, we’re going to store an object’s event
handlers in a dictionary. Each available event gets represented by a unique key. The value
associated with that key determines the event handler, while the absence of an entry in
the dictionary indicates no handlers are present for that event. Let’s keep things a bit
abstract for the sake of discussion and assume we have a class like this:

class Bar {

public event Action A1, A2, A3, A4, A5, A6, A7, A8;

}

Each instance of Bar has eight compiler-generated storage fields for Action delegates to
keep the handlers for A1 through A8 in. When no event handlers are attached, that’s eight
wasted references. For 10 instances of Bar, that adds up to a total of 80.

With a dictionary, we get the following picture:

class Bar {
static readonly object s_keyA1 = new object();
// ...
static readonly object s_keyA8 = new object();

private Dictionary<object, Delegate> _handlers = /* TODO */;

public event Action A1 {
add { /* TODO */ }
remove { /* TODO */ }

}
// ...
public event Action A8 {

add { /* TODO */ }
remove { /* TODO */ }

}
}

850 CHAPTER 18 Events

First, we have defined 8 symbolic constants that will act as keys in the _handlers dictio-
nary later. These are stored as static fields, adding up to 8 references for the initial over-
head. But now, for each instance we have just a single dictionary. With no single event
handler attached, we just pay the price of a reference to the dictionary for each instance.
For 10 instances of Bar, that’s at total of 10 dictionary references on top of the 8 fixed
references to the symbolic constants. That brings the total to 18, a huge saving compared
to the 80 references required before.

Obviously, we’ve ignored the memory occupied by the dictionary’s data structures, but
that constant cost quickly pays off if we have enough events on the type (assuming it’s
common for events to remain unhooked, as is typical for UI elements).

One remaining question is how to implement the add and remove accessors with this new
dictionary-driven infrastructure in place. The answer is shown here:

private void AddHandler(object evt, Delegate handler) {

_handlers[evt] = Delegate.Combine(GetHandler(evt), handler);

}

private void RemoveHandler(object evt, Delegate handler) {

var newHandler = Delegate.Remove(GetHandler(evt), handler);

if (newHandler == null && _handlers.ContainsKey(evt))

_handlers.Remove(evt);

else

_handlers[evt] = newHandler;

}

private Delegate GetHandler(object evt) {

Delegate handler = null;

_handlers.TryGetValue(evt, out handler);

return handler;

}

Those general-purpose methods are for shared use by all accessor methods. Given an event
identifier evt and a handler to attach or detach, they take care of maintaining entries in
the dictionary. Adding a handler ultimately calls into Delegate.Combine, whereas remov-
ing a delegate calls Delegate.Remove but also removes the event’s entry in the dictionary
if no handlers are left. Notice this code is inherently unsafe for use in a multithreaded
context. You are invited to think about possible solutions using appropriate synchroniza-
tion schemes and whatnot.

Wiring those up for a single event is fairly straightforward. Given the event’s identifier,
defined as a symbolic static field constant, we can call into the two methods:

static object s_keyA1 = new object();

public event Action A1 {

851Add and Remove Accessors

FIGURE 18.11 With custom accessors, the compiler can’t know the event’s delegate.

add { AddHandler(s_keyA1, value); }

remove { RemoveHandler(s_keyA1, value); }

}

One remaining question is how to raise the event. If you think it’s still as easy as calling
through the event’s apparent delegate, you’ve got it wrong. Figure 18.11 illustrates this.

The reason should be pretty obvious. Because the compiler no longer emits a private field
for the event’s delegate, it doesn’t know how to gain access to the delegate any longer.
Ultimately, the person implementing the add and remove accessors can have left the
event handler delegates anywhere, so it becomes your responsibility to implement a
mechanism to raise the event by hand.

For our running dictionary-based event handler storage example, we’ve already added a
GetHandler method, which can also be used for this purpose:

private void RaiseA1() {

Action a1 = (Action)GetHandler(s_keyA1);

if (a1 != null)

a1();

}

With this, we’ve seen a simple end-to-end implementation of an (thread-unsafe!) event
management system, conceptually just like the ones implemented in Windows Forms and
WPF. When we discuss WPF in more detail, you’ll see that designing a flexible event
system embodies more than just a well thought-out storage mechanism. In fact, WPF has
its own extension to the baseline .NET event concept, known as routed events.

852 CHAPTER 18 Events

Detach Your Event Handlers
If you would ask any number of .NET developers with a native programming background
about the biggest benefits of the platform, they’ll most likely bring up its automatic memory
management capabilities that relieve developers of the burden of manual bookkeeping.

As good as this might sound, there are still some caveats to be aware of. In particular,
event handlers tend to be common sources of memory leaks when they’re not maintained
correctly. What do I mean by “correct maintenance” of event handlers?

Consider the following piece of code:

static class SystemEvents {
public static event Action ShuttingDown;

}

class Handlers {
public void OnShutDown() {

// React to system shutting down
}

~Handlers() {
Console.WriteLine(“Handlers got collected.”);

}
}

class Program {
static void Main() {

var handlers = new Handlers();
SystemEvents.ShuttingDown += handlers.OnShutDown;

// Do more stuff here

// Not interested anymore in the handlers
handlers = null;

// Do more stuff here; when does handlers get reclaimed?
}

}

In the preceding code, we’ve abandoned our Handlers event sink instance by setting its
reference to null. At this point, it seems that no one refers to the handlers object
anymore, such that it becomes amenable for garbage collection. To prove or disprove this,
we’ve added a finalizer to the Handlers type:

~Handlers() {
Console.WriteLine(“Handlers got collected.”);

}

853Detach Your Event Handlers

DESTRUCTORS

I’ve said it before when talking about classes, but finalizers in C# got blessed with
an unfortunate syntax that mirrors the destructor syntax from C++. In fact, they even
get called destructors in the language specification. However, they have a totally
different behavior.

Finalizers get invoked when the object is collected by the garbage collector, which is
nondeterministic concerning timing. Destructors in C++, on the other hand, are useful
for determinist cleanup based on scoping of objects: When an object goes out of
scope, the destructor is called on the spot.

So it’s essential to keep this difference in mind. Besides that, finalizers force the
garbage collector to do more bookkeeping: Before memory can be reclaimed, the
object’s finalizer needs to be called. This involves keeping a queue for objects that
require finalization, which adds pressure to the system. Therefore, if you don’t need a
finalizer (as is usually the case for .NET objects that do not hold on to native
resources), don’t write one!

As the next part of our experiment, we’ll trigger a garbage collection and wait for the final-
izer to be called. To do this, add the following three lines to the end of the Main method:

GC.Collect();

GC.WaitForPendingFinalizers();

Console.ReadLine();

Use of Console.ReadLine is essential because we want to see whether the finalizer gets
called before the application terminates. Console.ReadLine prevents the application from
terminating, which would trigger finalizer runs anyway. To make things more concrete,
assume there’s much more relevant code after the call to GC.Collect and
GC.WaitForPendingFinalizers. All we’re doing is mimicking the situation in which the
garbage collector comes around during the execution of the application, to observe
whether the apparently abandoned handlers object is collected.

DON’T TELL THE GC WHAT TO DO

It’s considered bad practice to trigger garbage collections programmatically using
GC.Collect. The garbage collector is highly tuned to do the most efficient task possi-
ble on its own. Manually triggering collections can be a costly thing and should be
avoided at all costs. Let the GC do its job, and stay away from calling the GC.Collect
method unless you’re told to do so by a CLR memory expert after extensive investiga-
tion of an application’s misbehavior.

854 CHAPTER 18 Events

Time for the moment of truth! Run the application in its current form and observe the
handlers object’s finalizer doesn’t get called before the application terminates. But don’t
jump to hasty conclusions such as “the garbage collector is broken.” Let’s see why.

Recall that the garbage collector is based on reachability analysis: As long as an object can
be referred to by executing code (either through references on the stack, in static fields, or
things such as thread-local storage), it cannot be collected. If the GC is right about our
handlers object, something should be keeping it alive by holding on to a reference to it.
What’s that something? Take a look at the following line:

SystemEvents.ShuttingDown += handlers.OnShutDown;

The right side is using method group conversion for delegate types to create a delegate
referring to the OnShutDown method. Where’s that method located? Because it’s an
instance method, the handlers left side matters, too. In reality, code is getting generated
that looks roughly like this:

System.add_ShuttingDown(new Action(&handlers, OnShutDown));

The preceding code doesn’t compile, and is even invalid C# syntax, but illustrates the
point quite well: A delegate referring to a method on an instance holds on to two things.
One is information about the method being called (a method “token”), while the other
refers to the instance the method has to be called on upon invoking the delegate. That’s
where the keepalive reference to the handlers object comes from.

How can you prevent this leak? The answer is quite straightforward: by making sure you
remove an event handler when you’re done with it. In our example, the act of setting the
handlers reference to null does not suffice to unhook event handlers. In addition, we
should make sure to get rid of the event handlers, as follows:

class Program {

static void Main() {

var handlers = new Handlers();

SystemEvents.ShuttingDown += handlers.OnShutDown;

// Do more stuff here

// Not interested anymore in the handlers

SystemEvents.ShuttingDown -= handlers.OnShutDown;

handlers = null;

// Do more stuff here; when does handlers get reclaimed?

}

}

855Detach Your Event Handlers

Because you need the reference to handlers to refer to its OnShutDown method, this can be
done only as long as a reference to handlers exists. The line that removes the event
handler creates a new delegate instance referring to OnShutdown on handlers, which is
located in the multicast delegate’s invocation list by the Delegate.Remove method. In
short, don’t forget to unhook your event handlers.

If all this scares you to death, don’t worry too much. Although this problem exists (as our
example proves), it’s not all that common. The crux of the sketched problem is that we’re
handling the events on a separate object that does not own the objects that raise the
events. In our case, we’re even using a static event to construct a bad scenario. Why does
“ownership” of event sources matter? Well, consider the case of a Windows Forms form
shown here:

class LoginForm : Form {

private Button login;

public LoginForm() {

login = new Button { Text = “Log in” };

login.Click += login_Click;

}

private void login_Click(object sender, EventArgs e) { /* TODO */ }

}

Here, the form instance owns the login button object. The form attaches an event handler
for the button’s Click event, with the handler located on the form instance itself. In fact,
the third line of the constructor could be read as follows:

login.Click += this.login_Click;

So the “event sink” with the event handlers (the form) is the same as the owner of the
event source (the button). As soon as the form object becomes unreachable, so do all of its
controls and their event handlers. As shown in Figure 18.12, this makes it possible to
reclaim the form and its controls. On the other hand, the earlier example (shown at the
bottom of Figure 18.12) poses a problem, as explained earlier.

USING SOS TO TRACE LEAKS

The .NET Framework comes with a low-level debugger extension called SOS (for “Son of
Strike”) that can be loaded inside Visual Studio for advanced debugging. One of the
many things it can help with is locating the source of memory leaks.

A sample session debugging our memory leak is shown in Figure 18.13. On the first
line, the SOS extension is loaded from the folder where the .NET Framework lives.

Assuming we somehow already know that a Handlers instance is being leaked, we
issue the command !dumpheap to search the managed heap for objects of the speci-
fied type. We find exactly one instance of the type and wonder what keeps it alive.
Given its reported address, !GCRoot does the trick.

856 CHAPTER 18 Events

Program
handlers

Action

ActionCycle
Reclaimable

Keeps
Handlers Alive

Program
loginForm

Button
click

LoginForm
login

login_Click

SystemEvents
ShuttingDown

Handlers
onShutDown

Drop
Reference

Reachable

X

X

FIGURE 18.12 Ownership of event source objects can help a lot for event handler use.

The GCRoot command traces the path of references that keeps the object alive (that
is, proves how it can still be reached by code). For our suspect Handlers object, traces
look like System.Action fi Handlers. (Read the arrow as “references.”)

From this, we clearly see that an Action delegate still refers to the Handlers object.
In some cases, this is enough of a clue to start looking for places where the event
handlers should be removed but aren’t. If more information is needed, you could dump
the Action delegate to see what its target method is and so forth.

Search the Web for terms GCRoot, SOS, and event to learn more about the use of SOS
to debug object leaks like the one shown here.

Because this problem has been known as one of the main sources of memory issues in
.NET applications, WPF added the pattern of “weak events.” We won’t elaborate on this
right here, but when using WPF you may want to research this in more depth on MSDN.

Unhooking event handlers looks like a pretty straightforward business, simply
using the -= operator. Although this is true, a caveat exists due to the introduction
of anonymous function expressions in C# 2.0 and lambda expressions in C# 3.0.

Earlier on, we’ve seen code like this:

857Detach Your Event Handlers

FIGURE 18.13 Analyzing a memory leak with SOS.

var countDown = new CountDown(5);

// Hook up event handlers, using lambda expressions

countDown.Tick += currentSecond => Console.WriteLine(currentSecond);

countDown.Finished += () => Console.Beep();

countDown.Start();

In the light of our discussion about event handlers, we might want to unhook the Tick
and Finished event handlers as a matter of following best practices. The first question to
ask is when it’s appropriate to do so. Clearly, we shouldn’t unhook while the events can
still be raised, but we know not to expect further events after the Finished event has been
raised (though such a “protocol” should really be documented by the provider of the
CountDown type). This makes the code inside the Finished event handler a good place to
unhook the Tick event hander as well as itself. Now the more pressing question is how to
accomplish this.

858 CHAPTER 18 Events

To answer this accurately, let’s first take a step back. Because we know that events are
nothing but multicast delegates in disguise, we can use a plain multicast delegate as a petri
dish for some experimentation. Take a look at the following fragment of code, where we
use handy lambda expression syntax to make things concise:

Action evt = null;

evt += () => Console.WriteLine(“Hello”);

if (evt != null)

evt();

evt -= () => Console.WriteLine(“Hello”);

if (evt != null)

evt();

Pop quiz: How many times does it print Hello? If you say once, think twice; the answer is
two times. Although it looks like we’re adding and removing the same event handler on
lines two and four, those are not the same object. Recall what anonymous functions
compile into under the hood: compiler-generated methods containing the code specified
in the anonymous function expression:

Action evt = null;

evt += new Action(<>__AnonymousMethod1);

if (evt != null)

evt();

evt -= new Action(<>__AnonymousMethod2);

if (evt != null)

evt();

Two anonymous function expressions result in two distinct methods being cooked up by
the compiler, even though they have the same code inside them. The compiler could be
smarter about this, detecting “semantically identical” anonymous function expressions
and sharing the same object for them. However, this is a pretty tricky thing to implement,
and the compiler writers thought there were more important matters to tackle.

Because we have two distinct methods used when adding and removing delegates, the +=
and -= operations do not cancel each other out. The way to fix this issue is to use an
intermediate variable:

Action evt = null;

Action handler = () => Console.WriteLine(“Hello”);

evt += handler;

if (evt != null)

evt();

evt -= handler;

if (evt != null)

evt();

859Detach Your Event Handlers

FIGURE 18.14 Recursive lambda expressions make the compiler unhappy.

To be able to unhook our CountDown event handlers, we have to lift them into a local vari-
able, as just shown:

var countDown = new CountDown(5);

// Hook up event handlers

Action<uint> tickHandler = currentSecond => Console.WriteLine(currentSecond);

Action finishedHandler = () => {

Console.Beep();

// Finished has been called: we can unhook both Tick and Finished now.

countDown.Tick -= tickHandler;

countDown.Finished -= finishedHandler;

};

countDown.Tick += tickHandler;

countDown.Finished += finishedHandler;

countDown.Start();

The preceding code is almost right; it just doesn’t compile yet. Conceptually, everything
looks right, though: We create handler delegates of type Action first and hook them up
using regular += syntax later. Inside the event handler for Finished, we can unhook those
again based on our knowledge of the event protocol of CountDown.

The remaining issue (that prevents us from compiling the preceding code) is rather subtle.
Take a closer look at the finishedHandler lambda expression. While we’re defining it,
we’re using it inside its own body on the last line. In more technical terms, we’re defining
a recursive lambda expression, which is something the language doesn’t permit in this
syntactical form, as illustrated in Figure 18.14.

860 CHAPTER 18 Events

The reason the compiler complains here is because a combined variable declaration and
assignment decomposes into something along those lines:

Action finishedHandler; // this variable is unassigned!

Action __temp = () => {

Console.Beep();

// Finished has been called: we can unhook both Tick and Finished now.

countDown.Tick -= tickHandler;

countDown.Finished -= finishedHandler;

};

finishedHandler = __temp;

At the point the finishedHandler variable is used inside the lambda expression, it is still
unassigned. I’m explicitly presenting an intermediate variable here to emphasize the fact
that finishedHandler gets assigned to at the very last point in time, once the whole
lambda expression has been compiled. This is always the case for an assignment: First the
right side is evaluated (here, the lambda expression) before it gets assigned wholesale to
the left side (here, the finishedHandler variable).

The fix for this issue is surprisingly small: manual decomposition of declaration and
assignment, using an initial null reference:

Action finishedHandler = null; // now the variable is pre-assigned!

finishedHandler = () => {

Console.Beep();

// Finished has been called: we can unhook both Tick and Finished now.

countDown.Tick -= tickHandler;

countDown.Finished -= finishedHandler; // now the compiler is pleased...

};

THE WHY OF Y

There’s actually a functional programming technique to help solve the problem of defin-
ing an anonymous recursive lambda expression: It’s called a fixed-point combinator (or
fixpoint for short). It allows users to write recursive functions as one-liners without
requiring intermediate assignments as we’ve seen in C#. One such fixpoint combinator
is called the Y combinator (don’t ask me why).

For example, defining the factorial function would be done as follows, assuming the
presence of a Y combinator implementation in .NET:

// In the argument to Y, f stands for what will ultimately become the

// recursive factorial function. Y’s role is to “fix” the expression up

// so that really becomes the case. Dark magic of the highest standard!

Func<int, int> fac = Y(f => n => n == 0 ? 1 : n * f(n - 1));

861Recommended Event Patterns

Although I find such things incredibly fascinating, I am the first to admit it’s better not
to use such techniques for enterprise application development in C#. Even if you
understand this (tip: the Internet is full of “the why and how of Y”), don’t assume your
co-workers will. It’s definitely a good source for brainteasers.

I agree this is a very subtle point, but realistically you’re rather unlikely to write such a
recursive lambda expression in practice. But if you do, you know what to look out for.
One word of advice, though: Although lambda expressions provide a very concise way to
define delegates inline (with support for closures, as seen earlier), large lambda bodies tend
to bloat the containing method quickly. As soon as you see a lambda expression with a
statement body (that is, surrounded by curly braces), a bell should ring causing you to
wonder whether it’s time for a refactoring. Honestly, for the CountDown example, I would
seriously consider doing so once I get into the tricky unhooking business we saw earlier.
Doing so leads to slightly longer but arguably cleaner code:

private static CountDown s_countDown;

static void Main() {

s_countDown = new CountDown(5);

s_countDown.Tick += TickHandler;

s_countDown.Finished += FinishedHandler;

s_countDown.Start();

}

static void TickHandler(uint currentSecond) {

Console.WriteLine(currentSecond);

}

static void FinishedHandler() {

Console.Beep();

s_countDown.Tick -= TickHandler;

s_countDown.Finished -= FinishedHandler;

}

Recommended Event Patterns
To increase code maintainability and make users of your libraries feel comfortable, a few
best practices for using events can be formulated.

862 CHAPTER 18 Events

EventHandler and EventArgs

When designing frameworks, consistency is all important to make people feel at home
with new APIs quickly. For educational purposes, we’ve approached the concept of events
from their essential property: Events are nothing but delegates in disguise. In doing so, we
chose simple delegate types for our examples, as follows:

public event Action<uint> Tick;

public event Action Finished;

In practice, it’s more common to follow a certain pattern for events that makes their
handlers have a consistent shape. We’ve already seen such a case in passing, when
showing off an event handler for a button control’s Click event in Windows Forms:

private void login_Click(object sender, EventArgs e) { /* TODO */ }

From this signature, you can infer the type of the event’s delegate to be similar to an
Action<object, EventArgs>. In reality, though, events in Windows Forms are typically
using a different delegate type. For example:

class Control {

public event EventHandler Click;

public event KeyEventHandler KeyDown;

public event MouseEventHandler MouseMove;

// Many others

}

Suffixed with the word Handler, those delegates for use with events follow the pattern of
taking two arguments: One specifies the sender of the event (for example, the Button
instance where the Click event was triggered on), whereas the other provides event argu-
ments (for example, the mouse cursor position at the time the MouseMove event was
raised). The delegate definitions for the presented examples are shown here:

public delegate void EventHandler(object sender, EventArgs e);

public delegate void KeyEventHandler(object sender, KeyEventArgs e);

public delegate void MouseEventHandler(object sender, MouseEventArgs e);

The first question that comes to mind is this: Why do we care about a sender? After all,
aren’t we going to have specific event handlers on a per-object and per-event basis? Not
necessarily.

So far, we’ve always presented multicast delegates from one point of view: They allow
calling multiple targets through a single delegate invocation. That means we can have
multiple handlers associated with a single event source. For instance, multiple parties may
be interested in the Tick event of our CountDown so that a single instance of the count-
down mechanism can be used with different displays hooked to it.

863Recommended Event Patterns

AnyButton_Click

button2_Click

button1
click

button2
click

button3
click

“M
u

lti-h
an

d
le”

M
u

lt
ic

as
t

FIGURE 18.15 Multicast versus multihandle.

However, if you flip the picture around, it’s equally valid to use the same method as the
target for one or more event handlers. An example of this situation is to listen to events
that signal data in a form’s fields (for example, in text boxes) has changed to mark some
dirty bit, which gets used to signal the user of unsaved changes when quitting the form. It
makes sense to reuse that logic across all event handlers for all the controls that result in
such a change. An overview of the two views on events is presented in Figure18.15.

In the latter case, it might be useful to have the ability to distinguish between the sender
of the event. This way, all the common logic can still be shared, while decisions can be
made based on the sender of the event. Or if there’s a common type between all the
senders that share the same handler, you can correctly cast the sender argument (which is
of type System.Object) to the most common supertype and use that information:

private void AnyButton_Click(object sender, EventArgs e) {

MessageBox.Show(((Button)sender).Text + “ was clicked!”);

}

NAMING OF EVENT HANDLERS

A typical naming pattern for event handlers is to follow the source object’s name by an
underscore and the name of the event. It’s so commonly used that Visual Studio’s
code editor has this pattern baked in, as shown in Figure 18.16.

As far as I can recall, this pattern goes back to the pre-.NET days of Visual Basic,
which was one of the first mainstream languages that made events a first-class lan-
guage construct.

864 CHAPTER 18 Events

FIGURE 18.17 EventArgs form a class hierarchy.

FIGURE 18.16 Auto-completion for generating and adding an event handler.

Okay, so the use of the sender parameter seems useful, so what about the EventArgs para-
meter? In the running example from Windows Forms, we’ve seen three different
EventArgs types, as shown in Figure 18.17.

As the name implies, EventArg types represent an event’s arguments, which contain useful
information about the event that was raised.

Notice some exposed properties are not just get-only, such as the KeyEventArgs’s Handled
property. This allows a handler to communicate back to the event source about further
action to be taken. In case of keyboard input, this makes sense because key input is
usually to be processed by only a single entity in the system.

Besides the event’s data provider role played by EventArgs subtypes, there’s another
key aspect to them: The class hierarchy formed by EventArgs types yields some

865Recommended Event Patterns

interesting properties. Scary words like co- and contravariance enter the picture once
more, but don’t be afraid; it’s easier than it sounds. Assume the scenario where you want
to hook up a single event handler for different types of events. As an example, let’s handle
two events on a button: KeyDown and MouseMove. (Imagine the case where you want to
react to any input sent to a button, either by mouse interaction or the keyboard.) First,
take a look at both event declarations:

public event KeyEventHandler KeyDown;

public event MouseEventHandler MouseMove;

If we were to hook up two separate event handlers but want to share their logic, things
would look like this:

static void Main() {

Button sayHello = new Button { Text = “Greet me!” };

sayHello.MouseMove += new MouseEventHandler(sayHello_MouseMove);

sayHello.KeyDown += new KeyEventHandler(sayHello_KeyDown);

}

static void sayHello_MouseMove(object sender, MouseEventArgs e) {

sayHello_KeyDownOrClick(sender, e);

}

static void sayHello_KeyDown(object sender, KeyEventArgs e) {

sayHello_KeyDownOrClick(sender, e);

}

static void sayHello_KeyDownOrClick(object sender, EventArgs e) {

// Common logic goes here, for example, using (Button)sender

}

See what we’ve done to forward the event handler calls for either MouseMove or KeyDown to
a single method? Making a method call for sure, but there’s one more subtle thing going
on: We typed the sayHello_KeyDownOrClick’s last parameter with a common subtype of
both MouseEventArgs and KeyEventArgs. This is a natural rule everyone understands about
regular method calls: Given an object of a certain type, you can always pass that as an
argument to a method with a less specific type (that is, a supertype).

But we can do better than this. Thanks to contravariance for delegate parameter types, it’s
possible to write the following instead:

static void Main() {

Button sayHello = new Button { Text = “Greet me!” };

sayHello.MouseMove += sayHello_KeyDownOrClick;

sayHello.KeyDown += sayHello_KeyDownOrClick;

}

866 CHAPTER 18 Events

delegate void StringSender(arg);string

void Target (arg);

“Contra”

“Co”

objectC
o

n
tr

av
ar

ia
n

t
P

ar
am

et
er

 T
yp

es

delegate StringReceiver();object

“Derived can be used where Base is expected”

Target ();string

Derived

Base

C
o

va
ri

an
t

R
et

u
rn

 T
yp

es
L

eg
en

d

FIGURE 18.18 Co- and contravariance for delegate types.

static void sayHello_KeyDownOrClick(object sender, EventArgs e) {

// Common logic goes here, for example, using (Button)sender

}

Here we’re using the rules that relate to method group conversion, which take contravariance
into account. All this means is that it’s possible to create a delegate (here used as an event
handler) referring to method that has less-derived parameter types than the types that are
expected. For example, although MouseMove expects a delegate to a method with a second
argument typed as MouseEventArgs, it’s fine to pass it a delegate to a method that takes in
an EventArgs in the parameter position instead. To see why this is fine, simply think of
what happens when the delegate gets invoked by the event source, passing in a
MouseEventArgs. Through the delegate it will be passed on to the event handler method
that accepts the parameter as an EventArgs object, which is fine because every
MouseEventArgs is an EventArgs.

Where contravariance applies to parameter types, covariance applies to the return type but
is rarely used in the context of event handlers (because those typically have a void return
type). Co- and contravariance for delegate return types and parameter types is depicted in
Figure 18.18. It helps to keep in mind the Latin-originating meaning of the prefixes co
(with the flow) and contra (against the flow) when looking at the diagrams.

867Recommended Event Patterns

EventHandler<T>

Requiring (or strongly advising, for the sake of consistency) developers to create their
own EventArgs derived type is enough of a burden for them, but in the early days
of .NET even that wasn’t enough. One had to create a custom EventHandler dele-

gate with the typical object sender and MyEventArgs e signature.

Since the advent of .NET 2.0, with the introduction of generics, this was simplified a bit
through the introduction of EventHandler<T>:

public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e)

where TEventArgs : EventArgs;

The generic constraint put on the TEventArgs type argument enforces the correct use of
the event handler pattern. By requiring the second argument to be a type derived from
EventArgs, contravariance for delegate types and method group conversion keeps working
across all events.

As an example, let’s revamp our CountDown example by adhering to the event pattern
outlined earlier. First, we define an EventArgs subtype for the Tick event because we want
to provide the user with information about the time elapsed:

class TickEventArgs : EventArgs {

public TickEventArgs(uint seconds) {

this.Seconds = seconds;

}

public uint Seconds { get; private set; }

}

For the Finished event, we can simply use the EventArgs base class because we’re not
going to communicate any event-specific information.

Armed with our specialized EventArgs type, all that remains to be done is to change the
CountDown class to use the appropriate EventHandler types for the events. A scene from
the IDE when doing so is shown in Figure 18.19, illustrating the use of the generic
EventHandler<TEventArgs> delegate type, with IntelliSense revealing the constraint.

The new event declarations look like this:

public event EventHandler<TickEventArgs> Tick;

public event EventHandler Finished;

Raising the event has to be changed because the signature of the delegates has changed.
For the sender argument, we simply pass this. On the side of the EventArgs argument,
things vary a bit, but we’ll obviously use an instance of TickEventArgs in the Tick case.
To reduce memory use for a plain empty EventArgs used on the Finished event, we can

868 CHAPTER 18 Events

FIGURE 18.19 Using EventHandler<T>.

As you should expect by now, for static events a null value for the sender argument is to
be used.

Obviously, the use site needs to change, as well, to use the right signatures for the event
handler methods. In the Tick event handler, we use the event arguments to obtain the
number of elapsed seconds:

static void TickHandler(object sender, TickEventArgs e) {

Console.WriteLine(e.Seconds);

}

use the static read-only EventArgs.Empty field. All in all, the changes made to the Start
method with its embedded background thread procedure are fairly small:

public void Start() {

new Thread(() => {

uint n = _seconds;

while (n > 0u) {

var tick = Tick;

if (tick != null) {

tick(this, new TickEventArgs(n));

}

Thread.Sleep(1000);

n—;

}

var finished = Finished;

if (finished != null) {

finished(this, EventArgs.Empty);

}

}).Start();

}

869Recommended Event Patterns

static void FinishedHandler(object sender, EventArgs e) {

Console.Beep();

// Finished has been called: we can unhook both Tick and Finished now.

s_countDown.Tick -= TickHandler;

s_countDown.Finished -= FinishedHandler;

}

FXCOP ON NAMING

FxCop will trigger warnings if the naming for an event handler’s parameters is not fol-
lowed. As a matter of style, call the first argument sender and the second e. This is, in
fact, one of the rare places where a single-letter identifier is officially recommended.

Designing Events for Use by Derived Classes

What about extenders of our CountDown type? Assume we’ve designed our countdown
mechanism such that its core functionality can be overridden (for example, by marking
Start as virtual) or we simply haven’t sealed the class. The subtype might want to raise
any of our events as part of its extension. For example, a CountDown with an
EmergencyStop facility might want to call Finished before the timer reaches zero. I invite
you to think about more examples.

The key question is whether a subtype can raise an event declared on its base type. A little
bit of reasoning can help answer this question without having to loop in the compiler just
yet. You’ve seen how an event declaration leads to the creation of a private field contain-
ing the multicast delegate that keeps track of the event’s added event handlers. To raise
the event, that private field gets fetched, followed by a delegate invocation call. All of
those observations lead us to conclude that a subtype won’t be able to raise the events
defined on its base class because a private field is used.

As a confirmation, trying to compile the following code fails miserably on the line that
tries to obtain the Finished event’s delegate object:

class FancyCountDown : CountDown {

public void EmergencyStop() {

// Cause a stop somehow; requires more extensibility

// provided by the base class.

var finished = Finished; // this line fails to compile!

if (finished != null) {

finished(this, EventArgs.Empty);

}

}

}

870 CHAPTER 18 Events

Because the event itself has already been declared as public on the base class, it doesn’t
make sense to try marking it as protected (which would imply no visibility from the
outside) in an attempt to make the underlying field protected. So what’s the solution?

You should realize that the capability to raise an event is something that should be a
highly privileged operation. When defining events in terms of delegate-typed events, you
saw how improper exposure of the underlying delegate allows for spoofing attacks: anyone
on the outside of the object can raise the event. In the face of subtyping, care should be
taken, too. For this reason, you should explicitly design the type such that it allows an
event to be raised from outside the bounds of the class itself (for example, on a subtype).

This calls for another pattern, namely the protected virtual On* method pattern. Let’s take
a look at how the subtype would use it to raise an event first:

public void EmergencyStop() {

// Cause a stop somehow; requires more extensibility

// provided by the base class.

OnFinished(EventArgs.Empty);

}

To enable a subtype to raise an event, we’ve drilled a little hole in the form of a protected
method that contains the logic to raise the event. By making the method protected, only
derived types (and not complete external strangers) can cause the event to be raised.

Besides this, we can also make the On* methods virtual so that subtypes can override them
to provide additional steps to be taken when an event is raised (for example, to do some
logging). To make this useful, we need to keep ourselves honest in the base class as well.
(That is, we shouldn’t raise the event without making use of the On* methods.)

Adhering to those rules, our new CountDown class looks like this:

class CountDown {

private uint _seconds;

public CountDown(uint seconds) {

_seconds = seconds;

}

public event EventHandler<TickEventArgs> Tick;

public event EventHandler Finished;

public void Start() {

new Thread(() => {

uint n = _seconds;

while (n > 0u) {

OnTick(new TickEventArgs(n));

Thread.Sleep(1000);

871Case Study: INotifyProperty Interfaces and UI Programming

n—;

}

OnFinished(EventArgs.Empty);

}).Start();

}

protected virtual void OnTick(TickEventArgs e) {

var tick = Tick;

if (tick != null) {

tick(this, e);

}

}

protected virtual void OnFinished(EventArgs e) {

var finished = Finished;

if (finished != null) {

finished(this, e);

}

}

}

Case Study: INotifyProperty Interfaces and UI
Programming
The .NET Framework’s Base Class Library (BCL) comes with two interfaces that can be
used to keep track of changes to property values. Because an interface is the contract
between two parties, we should ask ourselves what those parties are and why they would
care. A typical example use case for those interfaces is in data binding scenarios for UI or
web programming: As soon as a property changes on the bound object, the display
needs to update to reflect the underlying change. In this particular case, the UI frame-
work (for example, WPF) consumes the interface and provides auto-update services for
objects that are bound to some control. To make this work, an object needs to notify the
UI framework about changes to any of its properties, which it does by implementing the
required interface.

Two such interfaces exist in the System.ComponentModel namespace. The first one notifies
about a property that’s about to change and is called INotifyPropertyChanging:

public interface INotifyPropertyChanging {

event PropertyChangingEventHandler PropertyChanging;

}

872 CHAPTER 18 Events

public delegate void PropertyChangingEventHandler(object sender,

PropertyChangingEventArgs e);

public class PropertyChangingEventArgs : EventArgs {

public PropertyChangingEventArgs(string propertyName);

public virtual string PropertyName { get; }

}

Its sister interface, INotifyPropertyChanged, is used to signal that a property’s value has
been changed:

public interface INotifyPropertyChanged {

event PropertyChangedEventHandler PropertyChanged;

}

public delegate void PropertyChangedEventHandler(object sender,

PropertyChangedEventArgs e);

public class PropertyChangedEventArgs : EventArgs {

public PropertyChangedEventArgs(string propertyName);

public virtual string PropertyName { get; }

}

Both interfaces are plain simple and specify a single event to be implemented. Most frame-
work components only care about the latter interface that signals a property change after
the fact. The former interface can sometimes be used to implement logic that guards a
property against changes that violate some contract (for example, validating certain busi-
ness logic rules).

For example, let’s ameliorate a plain old CLR object representing a Person with change
notifications:

class Person : INotifyPropertyChanging, INotifyPropertyChanged {

private string _name;

private int _age;

public Person(string name, int age) {

_name = name;

_age = age;

}

public event PropertyChangingEventHandler PropertyChanging;

public event PropertyChangedEventHandler PropertyChanged;

873Case Study: INotifyProperty Interfaces and UI Programming

public string Name {

get { return _name; }

set {

if (_name != value) {

OnPropertyChanging(“Name”);

_name = value;

OnPropertyChanged(“Name”);

}

}

}

// Same for Age

protected virtual void OnPropertyChanging(string propertyName) {

var propertyChanging = PropertyChanging;

if (propertyChanging != null) {

propertyChanging(this, new PropertyChangingEventArgs(propertyName));

}

}

protected virtual void OnPropertyChanged(string propertyName) {

var propertyChanged = PropertyChanged;

if (propertyChanged != null) {

propertyChanged(this, new PropertyChangedEventArgs(propertyName));

}

}

}

From the preceding code, you can also see the benefit of having centralized On* event
raising methods because it eliminates the duplication of the (thread-safe) null check and
invocation calls. To avoid false negatives when setting properties to their current values,
equality of the old and new value is checked in each property setter.

AUTO-IMPLEMENTED PROPERTIES

Because auto-implemented properties were added in C# 3.0, developers tend to want
more and more of such features. One of the most popular feature requests in this area
is the generation of INotifyProperty*-capable properties. The future will tell whether
we ever get such a feature.

In the meantime, it’s good to know about the handy “propfull” code snippet to generate
properties with backing fields. The expansion of this snippet acts as a good start to
building a “change-notifying property.” Figure 18.20 illustrates how the snippet expands.

874 CHAPTER 18 Events

FIGURE 18.21 A simple Person object editor in Windows Forms.

FIGURE 18.20 Using a code snippet to insert a property.

And if you always follow the same pattern for the definition of notifying properties with
regard to the On* methods it calls into, you can create your own snippet (available as a
Visual Studio extensibility feature) to reduce the burden of defining such properties.

To put our new little class to the test in an easy and straightforward manner, let’s create a
simple Windows Forms project in Visual Studio and use a PropertyGrid control to visual-
ize a Person object instance. In addition, drag and drop two TextBox and two Label
controls to the designer surface in an arrangement that looks like the one shown in
Figure 18.21. The meaning of all the controls should be straightforward.

Next, double-click an empty spot on the form to switch to the Load event handler for the
form. In there, add the following code:

875Case Study: INotifyProperty Interfaces and UI Programming

private void PersonEditor_Load(object sender, EventArgs e) {

_person = new Person(“Bart”, 26);

propertyGrid.DataBindings.Add(“SelectedObject”, _person, null);

txtName.DataBindings.Add(“Text”, _person, “Name”);

txtAge.DataBindings.Add(“Text”, _person, “Age”);

}

Also don’t forget to add a _person field of type Person. In the preceding code, we’re using
the data binding feature present in Windows Forms to wire up a few things. First, the
PropertyGrid control has a SelectedObject property that can be set to the object it needs
to visualize. Here we’re binding it to the _person instance and specifying null for the
dataMember argument. This means we want to visualize the whole object and not just a
specific property of it.

The next two lines establish bindings to the TextBox controls, which are named after the
data members they display. This time the binding targets the Text property of the control,
with the source being the Name and Age properties on _person.

RICHER DATA BINDING IN WPF

The Windows Presentation Foundation provides a data binding capability, as well, with
richer capabilities than the one seen in Windows Forms. Instead of trying to explain
all this in the context of a chapter on events, I refer you to a book devoted to the
subject of WPF.

That said, concepts on data binding are pretty much the same across both worlds: One
declares how things should be bound to one another, and the framework takes care of
the rest. Variations on the same pattern have to do with how the bindings are declared
(XAML would typically be used in case of WPF) and what the additional capabilities are
(for example, WPF has value converters).

Declaring the data bindings suffices to have the framework set up all plumbing on your
behalf. Data binding sources, as specified in the second parameter to the Add method, that
implement INotifyPropertyChanged will cause the framework to register an event
handler for the PropertyChanged event. The data binding logic reacts to this event by
checking whether the changed property (matched by its name) should cause a bound
control to update.

But this is only one half of the story because the established bindings are two-way. The
one way described earlier covers changes to the underlying object getting mirrored in the
user interface controls. However, when changes are made through the controls, those are
sent to the underlying object by invoking the corresponding property setter.

876 CHAPTER 18 Events

propertyGrid

txtName

txtAge

INotifyPropertyChanging
INotifyPropertyChanged

_person Affected
by Name Change

SelectedObject

Text

Text

_person

_person.Name

_person.Age

“
T
e
x
t
”

“
N
a
m
e
”

.
N
a
m
e

.
S
e
l
e
c
t
O
b
j
e
c
t

Data Bindings

5

5

2

4

1

3

FIGURE 18.22 INotifyPropertyChanged driving updates to the UI.

Figure 18.22 shows how a change to the Name text box triggers a cascade of events:

. A data binding for the Text property on the text box is located and found.

. The target of the binding, the Name property on _person, is updated.

. Our Person implementation triggers a PropertyChanged event for Name.

. Data binding logic has subscribed to the event and looks for update targets.

. Because _person changed, SelectedObject on propertyGrid gets updated.

The scenario illustrated here can easily be tested: Just enter a new name or age in any of
the two TextBox controls and make the control lose focus (for example, using Tab). At that
point, the data binding logic kicks in and the PropertyGrid control will reflect the update
made. Notice all of this also works in the other direction: An update to one of the proper-
ties displayed in the PropertyGrid will make its way to the underlying object, causing a
PropertyChanged event that will be picked up by the data binding layer. And that, in turn,
will cause the affected TextBox control to update, too. Sweet!

Events in UI Frameworks

While we’re at it, I want to emphasize the event-driven nature of UI frameworks. In the
preceding example, we’ve subscribed to a single event (that is, the Load event of the form
itself). We did so through the Windows Forms designer by double-clicking an empty

877Case Study: INotifyProperty Interfaces and UI Programming

FIGURE 18.23 Events declared through the Windows Forms designer.

region of the form, leaving all the boilerplate code being generated to the tools. Let’s take
a peek at how this is achieved precisely.

First, let’s go after the place where events are declared in the Windows Forms designer. In
Figure 18.23, spot the lightning bolt icon in the Properties window’s toolbar. In fact, the
control shown here in Visual Studio 2010 is the same PropertyGrid control as the one
we’re using inside our application, but with a few additional toolbar buttons. When the
Properties window is put in the events mode by clicking the lightning bolt, events avail-
able for the selected control (or form) are displayed. As you can see, our previous double-
click on the designer surface caused the Load event to be supplied.

The drop-down button on the right can be used to display all the methods that have been
defined and have a signature that’s compatible (through rules of co- and contravariance
for delegates and method groups) with the target event. “Default events” for a control can
get handlers attached simply by double-clicking them. For a Form, this event will be Load;
for a Button, it will be Click; and for a TextBox, it will be TextChanged. For all the other
events a control exposes (a lot!), the events display on Properties must be used. Typically,
you won’t have written a handler before attaching it to an event; instead, you want to
generate the handler on the spot. This can be achieved by double-clicking the empty cell
next to the event name in the property grid.

To jump to an event handler defined in the code behind the form, double-click its name
in the grid. Let’s do that for the Load event handler. This simply puts us back in the .cs file
where all the user-defined code for the form and its controls lives. Even though we’ve
been there before, it’s still worth a closer look (see Figure 18.24).

Starting at the top, the drop-down on the right provides a handy way to jump to some
method defined in the current type. This is particularly handy in UI programming circum-
stances because there’s a good chance to have a lot of event handlers.

878 CHAPTER 18 Events

FIGURE 18.24 Event handlers for our form and its controls.

CO-EVOLUTION “AVANT LES LETTRES”

Today, co-evolution between the mainstream .NET languages, Visual Basic and C#, is a
big deal. The target audiences for both languages are more or less the same, being
enterprise developers, so it makes sense to provide both with very similar language
features that make sense across the board. In particular, the .NET 4 wave of language
innovation with C# 4.0 and Visual Basic 10.0 highlights this desire to co-evolve the
languages: C# gets dynamic dispatch, VB gets things like automatic properties and
statement lambda expression (and more).

However, you don’t have to have .NET 4 to see co-evolution on another level, namely
developer tools. Visual Basic has historically been a great tool for UI design since its
very early days. That’s ultimately where the Visual part in its name comes from. One of
the biggest things in the early days of Visual Basic was the fact it abstracted away the
low-level plumbing of window messages required to handle events on controls. Instead
of hooking the BM_CLICK message, one would write an event handler as a procedure
following some naming convention:

Private Sub LoginButton_Click()

‘Code goes here

End Sub

Navigation to event handlers was arranged through the same concept of a drop-down at
the top of the code window, which later made it into a general concept to browse a
class’s methods.

Looking a bit further, notice some oddity on the class declaration for the form: What’s
that partial keyword used for? We’ll get to this in a minute, but because partial classes
allow for splitting parts of a class definition across multiple files, clearly something is
hidden for us. A bit further, we find our event handler defined as a regular method. But
where’s the handler being attached to the Load event? It seems we’re missing something.

879Case Study: INotifyProperty Interfaces and UI Programming

FIGURE 18.25 Code generated by the Windows Forms designer.

That something is what the InitializeComponent call in the constructor is used for: The
code generated to attach event handlers to controls (and the form) lives in a separate file
hidden from the user. Put the cursor on the InitializeComponent call, right-click it, and
choose Go To Definition (or press F12) to see what’s going on here. The result of those
steps is shown in Figure 18.25.

We find ourselves back in another file, called PersonEditor.Designer.cs, which acts as
the dumping ground for code generated by the Windows Forms designer. Exploring this
file a bit further, notice that it contains another part of the partial class definition for our
form, defining the InitializeComponent method as well as some IDisposable stuff. It also
contains the fields that contain the controls we’ve added to the form:

partial class PersonEditor {

private TextBox txtName;

...

private void InitializeComponent() {

// Initialize controls with configured properties

// Hook up event handlers

}

}

A stripped-down view of InitializeComponent is in order here to analyze what’s going on
a little further:

#region Windows Form Designer generated code

/// <summary>

/// Required method for Designer support - do not modify

880 CHAPTER 18 Events

/// the contents of this method with the code editor.

/// </summary>

private void InitializeComponent() {

// Instantiating controls

this.txtName = new System.Windows.Forms.TextBox();

...

// Setting control properties

this.txtName.Location = new System.Drawing.Point(70, 10);

this.txtName.Size = new System.Drawing.Size(146, 20);

...

// Adding controls to form

this.Controls.Add(this.txtName);

...

// Setting form properties

this.FormBorderStyle = System.Windows.Forms.FormBorderStyle.FixedDialog;

...

// Attaching event handlers

this.Load += new System.EventHandler(this.PersonEditor_Load);

...

}

...

#endregion

First, notice the warning in the XML comments for InitializeComponent asking
you not to touch the generated code. The reason is obvious: Your changes would
get lost upon regeneration of the code by the designer.

This used to be more of a problem before the introduction of partial classes in C# 2.0
because the generated code had to go in the same file where the user added custom logic
for event handlers and such. Not only did this make the likelihood for inappropriate edits
by the user higher, it also made the job of the code-generation tools harder because they
couldn’t just emit a wholesale file. Instead, those tools had to recognize the piece of code
they are responsible for, replacing it with the newly generated code as needed.

Before partial classes were invented, code was shielded from direct changes by the devel-
oper by putting it in a collapsible #region with the appropriate warnings added in
comments. Now, with partial classes, all the generated code can go in a separate file (with
“extended extension” .Designer.cs), which is somewhat hidden from the user in the IDE
through the Solution Explorer’s tree view. In the end, the only reason you should look at
those generated files is to satisfy your technical curiosity.

881Case Study: INotifyProperty Interfaces and UI Programming

Near the end of the InitializeComponent method, we find where the event handler for
the Load event is registered by the generated code. No surprises there either because the
already familiar += syntax is being used. In the very end, nothing is based on dark magic,
and everything boils down to language primitives.

A DECLARATIVE APPROACH TO EVENT HANDLERS IN VISUAL BASIC

Visual Basic has had an intimate relationship with event handlers since the very begin-
ning, as it targeted Rapid Application Development for, at the time, rich Win32 UI-
driven applications. To make registering event handlers as friction-free as possible, it
was decided to make event handler registration implicit (or, if you will, declarative)
simply by defining a method with the appropriate name, following the
controlName_Event pattern.

When Visual Basic .NET was designed, it was important to make people feel at home,
so the underscore syntax was preserved (which also became the pattern used in C#).
However, the CLR’s generalization of events in terms of multicast delegates made it
desirable to correlate method names with events in a more formal manner.

In C#, the += syntax was chosen because it feels kind of natural and fits nicely with
the supported operations on the underlying delegates. It has one drawback, though:
The place where an event handler is registered and defined is spread out. This can be
observed in Windows Forms, with the registration of the handler living in the
InitializeComponent method, and the handler being defined in a separate file. Other
than the conventional underscore-based naming pattern, there’s no way to correlate
back the event handler to the event it handles.

Visual Basic chose a different approach to preserve the pre-.NET style of event
handling a bit more, by introducing the Handles keyword that decorates a method with
the event it handles. For example, the following code is generated for a form’s Load
event in Visual Basic:

Private Sub Form1_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles MyBase.Load

‘Event handler code goes here

End Sub

The MyBase keyword refers to the base type of the type being defined (that is, the Form
base class), just like C#’s base keyword does. An event handler for a button with name
login looks like this:

Private Sub login_Click(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles login.Click

‘Event handler code goes here

End Sub

In fact, this makes the generated code for a Windows Forms application in Visual
Basic easier.

882 CHAPTER 18 Events

FIGURE 18.26 Countdown clock in Windows Forms.

THE “DEVELOPER-DESIGNER” MANTRA

The use of partial classes in Windows Forms 2.0 and later could be seen as the first
split between the developer’s and UI designer’s orthogonal concerns. If it were possible
to hand out the .Designer.cs file to a designer who could open this file in a fancy UI
designer tool to stylize the look and feel, that person would never have to see the
event handler code written by his colleague developer.

Unfortunately, the C# language is not an ideal way to express UI definitions, from the
designer’s point of view at least. Not just that, but this definition depends on the pro-
gramming language chosen by the developer: In a Visual Basic project, the Windows
Forms designer emits Visual Basic code for the second half of the partial class.
Specialized markup languages unify UI definitions back into a single language and are
perceived to be easier for use by designers. And that’s where XAML in WPF come in.

Countdown, the GUI Way
To put the icing on the cake for our running countdown example, let’s see what it takes to
hook it up to a graphical user interface using our basic knowledge of Windows Forms.

Exploration of the various available controls is beyond the scope of this chapter, so you’ll
have to take my word for it that appropriate controls are being used for the task at hand.
We’ll keep the user interface as simple as we can, with a NumericUpDown control to select
the number of seconds to countdown, a Button to start the timer, and a Label to display
the current time. When the countdown has finished, a message box appears. The user
interface definition is shown in Figure 18.26.

Time to write some code! Double-click the Start button to create and attach an event
handler for the button’s Click event. Here, we instantiate a CountDown object, set its

883Countdown, the GUI Way

number of seconds to the value specified in the NumericUpDown control, hook up event
handlers to the CountDown, and finally start the countdown:

public partial class CountDownClock : Form {

private CountDown _countDown;

public CountDownClock(){

InitializeComponent();

}

private void btnStart_Click(object sender, EventArgs e) {

nudSeconds.Enabled = false;

btnStart.Enabled = false;

_countDown = new CountDown((uint)nudSeconds.Value);

_countDown.Tick += new EventHandler<TickEventArgs>(_countDown_Tick);

_countDown.Finished += new EventHandler(_countDown_Finished);

_countDown.Start();

}

void _countDown_Tick(object sender, TickEventArgs e) {

lblTime.Text = string.Format(“{0} seconds left”, e.Seconds);

}

void _countDown_Finished(object sender, EventArgs e) {

MessageBox.Show(“Countdown finished!”, this.Text, MessageBoxButtons.OK,

MessageBoxIcon.Information);

_countDown.Tick -= _countDown_Tick;

_countDown.Finished -= _countDown_Finished;

lblTime.Text = ““;

nudSeconds.Enabled = true;

btnStart.Enabled = true;

}

}

HUNGARIAN NOTATION OR NOT?

Hungarian notation is a technique where an identifier is prefixed with the type of the
object it contains or refers to. In the world of C and C++, this is especially handy when
dealing with pointers to pointers to pointers (you can go on and on), allowing for easier
reasoning about pointer dereferences and such. Because of static typing, IntelliSense,
the absence of pointers, and so on, this technique is discouraged in the world of .NET.

884 CHAPTER 18 Events

FIGURE 18.27 Cross-thread access to UI controls is troublesome.

However, as a personal matter of taste, I still find this notation useful for UI program-
ming, prefixing controls with their types. For one thing, the fact that controls are
declared in a separate generated code file makes it more difficult to trace back the
type of a control when doing code inspections outside an IDE. Furthermore, it’s not
uncommon to get clashes between control names and local variables. (For example, a
seconds value needs to be assigned to a seconds control’s Text property.)

Now that looks easy enough, doesn’t it? In the Click handler, we first disable all controls
to avoid multiple countdowns being active at the same time. Next we create a CountDown
instance, casting the NumericUpDown’s decimal-typed Value property to uint (something
we know will succeed if the NumericUpDown control is configured correctly; that is, with
DecimalPlaces set to 0 and its Minimum property set to 0 or more). Two event handlers are
created, with help from Visual Studio upon typing +=, which causes the two methods to
be generated on the fly. Notice that the explicit delegate instance creation calls can be
trimmed away if you find that style clearer:

_countDown.Tick += _countDown_Tick;

_countDown.Finished += _countDown_Finished;

Code inside the handlers looks reasonable, as well, and should be self-explanatory. As you
can guess, there’s a little problem lurking around the corner, which is why I’m showing
this example. Let’s see what the problem is by simply running the program under the
debugger by pressing F5. Set the number of seconds to five or so, click Start, and watch
what happens. Figure 18.27 shows the result, which might not be quite as expected.

Can you guess what’s going wrong based on the message? Recall how our CountDown is
implemented by using a background thread. This was done to prevent the Start call from
being blocked. Raising the Tick event ultimately causes method calls to all the subscribed

885Countdown, the GUI Way

Win32 Window
Manager

A
p

p
lic

at
io

n
W

in
32

btnStart_Click

UI Thread
Message Loop

Button.Click

B
M

_
C

LI
C

K

Click

M
e

s
sa

ge

FIGURE 18.28 Window messages are dispatched through the message pump.

event handler methods, including _countDown_Tick, through the multicast delegate invo-
cation that’s going on under the covers. Those method calls happen on the background
thread where our countdown is ticking.

That doesn’t yet explain the problem itself, though. The bigger problem here is deeply
rooted in user interface programming, where one specific thread plays an important role:
The UI thread where a message pump is running to process messages coming from
various sources like the window manager. Figure 18.28 illustrates the key essence of the
message pump. In case you’re wondering, this message pump is started from the Main

method of Windows Forms application and is hidden behind the Application.Run call
that lives there.

static class Program {

[STAThread]

static void Main() {

Application.EnableVisualStyles();

Application.SetCompatibleTextRenderingDefault(false);

Application.Run(new Form1());

}

}

The STAThread attribute applied to the entry-point method is also part of the single-
threaded plot in UI-driven applications and means single-threaded apartment, a term that
goes back to the COM days. We won’t elaborate on this any further right here.

Looking at Figure 18.28, you can see that a window message is picked up by the message
loop that’s running on the UI thread and is getting dispatched to the button’s Click
event, which causes the event handler to execute. All of this action happens on the UI
thread. It’s typical for such event handlers to interact with UI controls (for example, by
changing certain properties):

886 CHAPTER 18 Events

private void btnStart_Click(object sender, EventArgs e) {

nudSeconds.Enabled = false;

btnStart.Enabled = false;

This works like a charm and is permitted because the controls are being touched on the
same thread, in particular the so-called UI thread, as where they were created. But in our
setting, we’re also interacting with controls from another thread (that is, the one that’s
making our countdown mechanism tick). The observed InvalidOperationException tells
us this is a really bad idea.

Luckily, there’s an escape valve to deal with this kind of situation, allowing us to run code
on the UI thread. In Windows Forms, an Invoke method is provided to do so; in WPF,
there’s a Dispatcher type that’s the central hub for operations that run on the UI thread.
Because we’re in Windows Forms, let’s take a look at this Invoke method:

namespace System.Windows.Forms {

class Control {

...

/// <summary>

/// Executes the specified delegate on the thread that owns the

/// control’s underlying window handle.

/// </summary>

public object Invoke(Delegate method);

public object Invoke(Delegate method, params object[] args);

...

}

}

The summary tells it all, with a few more Win32-specific words like window handle, but the
important bit is we got our solution to “jump” from the countdown’s thread to the UI
thread to touch UI controls. And guess what, the argument is of type Delegate, something
we’ve gotten utterly familiar with. The available overload allows for calling a delegate that
expects arguments, which get specified through the params array.

Because both Tick and Finished events are raised on the background thread, we need to
apply the trick of “thread jumping” in both places:

void _countDown_Tick(object sender, TickEventArgs e) {

this.Invoke(new Action(() => {

lblTime.Text = string.Format(“{0} seconds left”, e.Seconds);

}));

}

void _countDown_Finished(object sender, EventArgs e) {

this.Invoke(new Action(() => {

MessageBox.Show(“Countdown finished!”, this.Text, MessageBoxButtons.OK,

MessageBoxIcon.Information);

887Countdown, the GUI Way

_countDown.Tick -= _countDown_Tick;

_countDown.Finished -= _countDown_Finished;

lblTime.Text = ““;

nudSeconds.Enabled = true;

btnStart.Enabled = true;

}));

}

The use of Invoke makes our code work correctly, with the delegates running on the UI
thread. Did you see how we’ve made handy use of a closure in the Tick event handler, to
refer to the TickEventArgs object from inside the lambda expression’s body?

THE MYSTERIOUS SYSTEM.DELEGATE TYPE

In the preceding sample, we’ve seen how the Windows Forms folks typed the argument
of the Invoke method as System.Delegate, to allow for every single delegate type. At
the time of the first release of Windows Forms, with .NET 1.0, this was very beneficial
because no anonymous function expressions, and hence no closures, were present in
any of the languages targeting the framework. By supporting any delegate type, users
could create a delegate of their taste with the needed number of arguments.

One first mystery is how such a delegate can be invoked by the framework code if the
signature of the target method is totally unknown. The answer lies in the CLR’s support
for reflection again, with support for a DynamicInvoke method on Delegate:

/// <summary>

/// Dynamically invokes (late-bound) the method represented by the current

/// delegate.

/// </summary>

public object DynamicInvoke(params object[] args);

With that cleared up, you might ask the existential question of whether
System.Delegate itself is a delegate type through the eyes of the C# language. Even
though it’s the base type of all delegates, method group conversions to this type are
not permitted. For example:

Delegate d = Do;

...

void Do() { /* TODO */ }

The first line will fail to compile, resulting in the following message:

Cannot convert method group ‘Do’ to non-delegate type ‘System.Delegate’. Did

you intend to invoke the method?

That answers your question right there. An implication of this rule is that we need to
instantiate a delegate object explicitly when passing an argument to Invoke.

888 CHAPTER 18 Events

This is just one of the oddities of the type system in the CLR or C# with regard to base
types for certain categories of types. As another example, even though
System.ValueType is the base type for all value types, it’s a reference type by itself.

Finally, we should mention that this common problem of thread affinity has given rise to
built-in solutions in the .NET Framework, such as the BackgroundWorker class, which is
very useful in cases where an asynchronous operation needs to report through a user
interface. Once more, it’s event-driven by itself, making it familiar to people who are used
to event-based programming already. We cover the BackgroundWorker in Chapter 29,
“Threading and Synchronization,” in the section, “BackgroundWorker.”

Modern Approaches to Reactive Programming
To finish off this chapter, we take a brief look at recent evolutions in the space of reactive,
event-based programming. With distributed programs becoming more and more
omnipresent, the importance of reactive programming is steadily increasing. Think of
technologies such as AJAX, which emphasize the asynchronous nature of communications
to prevent keeping the user waiting for a network operation to complete. One of the most
typical AJAX examples is a dictionary suggest.

Although the concept of asynchronous distributed computing (a key part of future ways of
computing with regard to “the cloud”) is a great way to keep the user interface responsive,
it doesn’t come for free. Asynchronous programming tends to be hard, especially when
events need to be combined somehow. The example shown in Figure 18.29 looks perfectly
fine, but there’s quite a bit of room for disaster.

Here are a few examples to illustrate the madness we’re getting ourselves into by trying to
be polite to our users:

. What if the result of querying the dictionary services for re comes back after the
result for typing reactive comes back? If this happens, the results of reactive will get
overwritten by the results of re. Remember from your networking courses that in-
order responses to requests are not a guarantee on the Internet (it’s a jungle out
there, with packets getting dropped or eaten by evil monsters), so this is not very
far-fetched.

. How about a network error that manifests itself during the communication with the
dictionary service? Where and how will the error manifest itself as things are happen-
ing in an asynchronous manner? How do we hook the event of an error happening in
the system to show an error message to the user or to retry the operation?

. Recall the typical difficulties that arise from dealing with asynchronous work in a UI
framework context, as shown in Figure 18.27. Can’t we make the mandatory “thread
jumping” required to update the UI easier to get right?

889Modern Approaches to Reactive Programming

Results:

reactive (adjective)
Tending to be responsive or to
react to a stimulus.
Characterized by reaction.
Chemistry–tending to
participate in reactions.

1.

2.
3.

Results:

re (noun)
Music–syllable used for the second
tone of a diatonic scale

re (preposition)
in the case of

Re
Chemistry–symbol for Rhenium

Search: “re”

“r
ea

ct
iv

e”

re

Search: reactive

Request

Asynchronous Response

Dictionary
Service

Results for “r
e”

R
es

ul
ts

 fo
r “

re
ac

tiv
e”

FIGURE 18.29 Asynchronous distributed computing with AJAX.

Besides this, a typical dictionary suggest implementation is full of imperative-style code
that hooks events to start or cancel out asynchronous operations, spawn threads, wait for
results to come back, and so on. It gets quite messy quickly. But does it have to?

Step back for a second and look at the problem again. What we’re effectively trying to
accomplish here is to combine several events and retrieve results in the end. The events
getting combined are KeyPress events on the text box where the user enters the query and
events signaling the response of the asynchronous dictionary request. And in the end,
we’re just interested in the data produced by those operations.

Based on this observation, you might wonder whether .NET events are ideally suited to
provide an answer to the challenges encountered. The true answer is that you can get a
long way with .NET events, but once you want to stitch together different events, things
get quite tricky. One of the hardest parts of this has to do with proper unhooking of event
handlers when you’re done with them. And even if you succeed in getting all of this right,
your code will most likely look like spaghetti, with the various event handlers spread out
across the codebase.

890 CHAPTER 18 Events

Enter the Microsoft DevLabs project called Reactive Extensions (Rx), the source of new
approaches to reactive programming on the .NET platform. In this chapter, we cover this
new framework only briefly to whet your appetite for the things to come. Later, when
we’re talking about LINQ in Chapter 19, “Language Integrated Query Essentials,” the
query syntax used here will become clearer.

HOW TO GET IT?

At the time of this writing, Rx ships out of band from the .NET Framework itself, but
traces of it already appear in .NET 4, more specifically the IObservable<T> interface
(as you will see shortly).

To find more information about how to get it, use your favorite search engine and
search for the words Reactive Extensions combined with .NET and/or LINQ. One of the
shipping vehicles of it has been the Silverlight SDK, where it lives in an assembly
called System.Reactive.dll. Nowadays it also ships with Windows Phone 7 devices, in
the ROM, as a means to interact with the device’s sensors (for example, GPS or
accelerometers).

Where and how it will ultimately ship is not decided at this point, but rest assured it
will make its way to the masses as some point.

Events Revisited

Before getting back to our example, let’s reestablish the way we look at events. Recall
how the typical event pattern is based on EventHandler<T> as the signature of an event
and its handlers:

public delegate void EventHandler<TEventArgs>(object sender, TEventArgs e)

where TEventArgs : EventArgs;

Every time such an event is raised, we get some data that travels from the event source to
the listener, represented as an instance of the TEventArgs argument. In other words, it’s
fair to say that events are data sources. For example, in our CountDown example the event
source is really a data source producing decreasing values representing the number of
seconds that are left until the countdown finishes.

When someone says data they immediately think about querying (at least I do). So what
would it look like to filter the event source for only multiples of 60 seconds remaining?
This goes all the way back to our egg timer example, which so far (did you notice?) was
based on seconds rather than a more conventional minute-based approach. But because
we were given a great generic countdown mechanism, we need a way to filter down the
second-based events into minute-based events. With classic events, you could write such a
filter yourself:

var eggTimerCountDown = new CountDown(minutes * 60);

eggTimerCountDown.Tick += (sender, e) => {

if (e.Seconds % 60 == 0) {

891Modern Approaches to Reactive Programming

Source
src.Tick

1

2

3

Filter
n % 2 == 0

2 Handler
src_TickEven

FIGURE 18.30 Query operations applied to events.

// Update egg timer display, e.g. rotate upper half.

}

};

However, this is just the tip of the iceberg. Maybe you want multiple displays to listen to
the minute-based ticks. What to do then? Well, you could repeat the same filter in multi-
ple Tick event handlers, which is clearly suboptimal. Instead, it would be much nicer to
synthesize a new event source out of the original event source but with a filter applied to
the data it produces. A conceptual diagram is shown in Figure 18.30.

Can you do such a thing by hand using plain old .NET events? You could, but things get
rather messy when event handlers need to be removed. Assume the user unhooks an
event handler attached to the filtered event source, shown on the right in the picture. For
proper resource maintenance, this also needs to unhook the event handler that was
attached to the original source (shown on the far left) by the filter “operator.” To further
complicate matters, the event handler hooked to the source should be unhooked only if
no more event handlers are attached to the filtered event source. This kind of bookkeep-
ing tends to get tedious and is very error-prone.

And, obviously, filters are not the only things that make sense when dealing with events;
projection (for example, seconds to a string representation in hh:mm:ss format), grouping,
and so much more are applicable, too. Guess what? This starts to look and feel much like
Language Integrated Query, doesn’t it? So what if we could write our filter from seconds to
minutes as follows?

from n in src.Tick

where n % 60 == 0

select n

Now the question becomes what needs to change in the way events work for them to be
usable with query expressions? The key problem with .NET events is their lack of composi-
tionality, which makes it hard to properly unhook event handlers in a simple way. At the
very essence of this problem lies the fact we need to know the event handler method not
only to register it but also to unregister it:

src.Tick += filter.Tick;

// Lots of code can follow here, potentially calling into methods that

892 CHAPTER 18 Events

// don’t know about (or can’t access) filter.Tick to unsubscribe:

src.Tick -= filter.Tick;

So once we try to decouple the place of unregistering event handlers from the place where
the registration happens, we get into trouble. This relates back to the concept of handler
ownership discussed previously (for example, as in Windows Forms where handlers for
events on controls live on the form object that owns these controls). From those observa-
tions, it seems it would be handier to get rid of the delegate-based deregistration of event
handlers. Because the subscription phase already knows the event handler, we could hand
out some kind of “cookie” that can be used to unsubscribe. In fact, this gets quite familiar
to Win32 developers, where handles are used to close out a resource that has been
obtained using some API call:

HANDLE hFile = CreateFile(L”foo.txt”, ...);

// Use the file with Win32 file APIs

CloseHandle(hFile); // don’t need to know “foo.txt” here anymore!

To close out the file, we just keep track of the handle until the point we need to feed it to
CloseHandle. In other words, there’s no need to remember the name of the file that was
opened to close it.

To apply this principle to events, Rx introduces a new interface called IObservable<T>,
which actually ships with .NET 4 in the System namespace. Its name reflects the fact that
events provide the capability to observe data raised by them. On to the definition of the
interface now:

public interface IObservable<out T> {

IDisposable Subscribe(IObserver<T> observer);

}

Although events provide the ability to observe something, event handlers actually do
observe and can therefore be called observers. Using the Subscribe method, you can
supply an event handler that will be notified whenever the event is raised. In other words,
Subscribe is Rx’s counterpart to the += operator for event handler registration seen before.
The key difference is that there’s no unsubscribe operation. Instead, the Subscribe method
returns an IDisposable object that can be used to unregister the handler as follows:

var srcHandler = tickSource.Subscribe(observer /* TODO */);

// Lots of code can go here, while the source is raising events and letting

// our observer know about them.

srcHandler.Dispose(); // don’t need to know tickSource here anymore!

Whereas event handlers for classic .NET events are simply methods, those new observers
are complete objects implementing some IObserver<T> interface:

893Modern Approaches to Reactive Programming

public interface IObserver<in T> {

void OnCompleted();

void OnError(Exception error);

void OnNext(T value);

}

The last method is the most straightforward of all to understand and corresponds to our
classical notion of an event handler. Every time the event source raises an event, this
method gets called. Notice the use of generics throughout the interfaces to denote the
event’s arguments that carry the data that’s signaled by the event.

GENERIC CO- AND CONTRAVARIANCE (AGAIN)

Both the IObservable<T> and IObserver<T> interfaces use the new .NET 4 and C#
4.0 generic co- and contravariance annotations on their generic parameter T. We can
try to understand the annotations in two ways.

First, the mechanical way by looking at the code just like the compiler does. For
IObserver<T>, notice how T appears only in input positions, namely as an argument to
OnNext. Hence, the interface can be typed contravariant, using the in keyword. For
IObservable<T>, things are a bit trickier. Because IObserver<T> is used in an input
position on the Subscribe method, you might think it ought to be marked as
contravariant, too. This is where things start to become counterintuitive quickly. When
using a contravariant type in an input position, variance flips around: T now becomes
covariant on IObservable<T>. You can compare this to the double-negation rule in
Boolean logic.

An intuitive approach may work out better. It’s clear that data is fed into an
IObservable<T> object, and therefore it makes sense to mark it contravariant
because it will act as the receiver of data through input positions. An IObservable<T>,
on the other hand, produces data that it will feed into the observers. Producing is an
act of export or output, and therefore the type ought to be contravariant.

If all of this doesn’t resonate at first, don’t worry yet: Even the brightest language
designer minds occasionally experience trouble when wrapping their heads around this.

The OnError method is used to signal the observer that the event source experienced some
problem. This makes it much easier to handle an error occurring asynchronously (for
example, when a network error occurs when talking to a web service). In the world of
classic events, there was no direct channel to feed that information to the user, and things
got much more cumbersome to deal with such exceptional situations.

Finally, the OnCompleted method signals that the event source won’t produce any further
data (for example, because the underlying operation completed). This comes in handy
when you need to be sure about an event not producing anymore data (for example, to
unhook observers). Classic .NET events don’t raise such a notification.

894 CHAPTER 18 Events

IEnumerable<T>

G
etE

num
erator

IEnumerator<T>

Q: MoveNext?
A: Yes!

Current

foreach
loop

FIGURE 18.31 Enumerating a data source is based on an interactive dialog.

Pull Versus Push

The IObservable<T> and IObserver<T> interfaces might look at little weird at first, but
they are actually very closely related to the well-known System.Collections.Generic
interfaces IEnumerable<T> and IEnumerator<T>. In fact, they are mathematical duals. It’s
normal you perceive this as rather abstract, but it’s rather simple. Follow me.

From our discussion about statements, recall that IEnumerable<T>’s primary use is the
foreach loop statement. Collections implement this interface, allowing us to retrieve their
data by pulling it out one by one. In fact, the consumer is in control, which makes this an
interactive mechanism. To pull data from the source, the consumer asks the enumerator for
more data by calling MoveNext and Current:

IEnumerable<T> source = ...;

using (IEnumerator<T> sourceEnumerator = source.GetEnumerator()) {

while (sourceEnumerator.MoveNext()) { // Do you have more?

T item = sourceEnumerator.Current; // Give it to me!

// Do something with the item; could break out as well...

}

} // Calls Dispose, telling the source we’re done fetching data.

The IEnumerable<T> and IEnumerator<T>-based approach of consuming a data source is
shown in Figure 18.31.

895Modern Approaches to Reactive Programming

WARNING: Don’t try this at home.

Subscribe

O
n

N
ext

IObserver<T>

IObservable<T>

Rather implicit when reacting to a firing canon

Event…fire!

FIGURE 18.32 Observing an event source requires reaction by the observer.

Event sources are exactly the opposite and are based on a reactive approach. Now it’s the
source that tells the consumer that data is available and pushes it to the consumer. It’s the
role of the event handler, the observer, to react to the event of data coming in:

IObservable<T> source = ...;

using (source.Subscribe(item => { /* Do something with the item */ })) {

// While observing events, you can do other stuff.

// Or you could call the Dispose method in a different place later.

} // Calls Dispose, telling the source we’re done receiving events.

In the preceding code, I’m using an extension method on IObservable<T> that allows
feeding in an observer’s OnNext call as a lambda expression, eliminating the need to imple-
ment the IObserver<T> interface simply to register an event handler.

The IObservable<T> and Observer<T>-based approach of reacting to an event source is
shown in Figure 18.32.

To summarize, when retrieving data from an IEnumerable<T>, you actively get an enumer-
ator object and start a conversation that goes something like this: Do you have another
item for me? Yes! Please give it to me.... This is very interactive. With IObservable<T>,
you’re much more passive and say this: Whenever there’s an item available, allow me to
observe it by pushing it to me on this method.

Duality is a very deep property that yields many useful results. In mathematical terms,
having certain properties on one side of the duality necessarily implies that similar proper-
ties hold on the other side of the duality. One place where this becomes apparent for the

896 CHAPTER 18 Events

IObservable<T> versus IEnumerable<T> relationship is in the definition of combinators
over both domains. Simply stated, a combinator combines one or more input objects in
one domain into an output object in the same domain. And you might have guessed it by
now, but the standard query operators of LINQ are such combinators.

To illustrate this, consider the following LINQ to Object query operators, defined as exten-
sion methods on IEnumerable<T>. We elaborate on such operators in the chapters dedi-
cated to LINQ, especially Chapter 20, “Language Integrated Query Internals,” where there
is an entire section titled “Standard Query Operators.”

IEnumerable<T> Where<T>(this IEnumerable<T> source, Func<T, bool> predicate);

IEnumerable<R> Select<T, R>(this IEnumerable<T> source, Func<T, R> project);

As you can see, (most of) those operators take in an object in the IEnumerable “realm”
and produce another one of those in return. With the deep duality between both worlds,
we can translate the preceding signatures readily to IObservable<T>:

IObservable<T> Where<T>(this IObservable<T> source, Func<T, bool> predicate);

IObservable<R> Select<T, R>(this IObservable<T> source, Func<T, R> project);

Those make as much sense as the corresponding operators on IEnumerable<T>. For
example, given an event source that produces items of type T, you can apply a filter using
the Where operator to retrieve an event source with items that pass the filter’s condition. In
using those operators, the user doesn’t have to worry about all the implementation
details, including proper release of the IObserver<T> subscription.

WHERE ARE THE QUERY OPERATORS?

.NET 4 doesn’t come with the query operators for IObservable<T>. Due to various
release constraints, those ship out-of-band as part of Rx, which is still in a beta phase.
Nevertheless, the essential IObservable<T> and IObserver<T> interfaces are in avail-
able in .NET 4 so that components can start to rely on them.

If we were to implement IObservable<uint> on our CountDown class, we could make the
following mapping:

. The Tick event is realized by calling OnNext on subscribed observers.

. The Finished event corresponds to calling OnCompleted on those observers.

Once we do so, users can subscribe to the timer’s events as follows (using an extension
Subscribe method provided in Rx):

var countDown = new CountDown(5);

var unsubscribe = countDown.Subscribe(

seconds => { Console.WriteLine(seconds + “ seconds remaining.”); },

897Modern Approaches to Reactive Programming

exception => { /* an error occurred */ },

() => { Console.WriteLine(“Finished!”); });

Thanks to the LINQ implementation over IObservable<T>, you can filter those events to
get a minute-based countdown instead:

var countDown = new CountDown(5);

var inMinutes = from n in countDown

where n % 60 == 0

select n;

var unsubscribe = inMinutes.Subscribe(

minutes => { Console.WriteLine(minutes + “ minutes remaining.”); },

exception => { /* an error occurred */ },

() => { Console.WriteLine(“Finished!”); });

Achieving the same with regular .NET events is quite difficult to get right. And with this
example, we’ve only observed the tip of the iceberg.

WHAT ABOUT MY EXISTING .NET EVENTS?

You’ll wonder, “What about my existing .NET events? Should I throw everything away
and redo all event-providing objects using IObservable<T>?” Luckily, that’s not the
case because Rx provides bridges between both worlds: An existing classic .NET event
can be exposed as an IObservable<T>. Similarly, other constructs in the .NET
Framework, such as the IAsyncResult pattern (as you’ve seen with delegates), can be
lifted into the world of the Rx quite easily.

At the same time, note that classic .NET events are not going away. They remain
incredibly useful, and often they suffice for typical scenarios such as event handling in
UIs and whatnot. Look at Rx as an extension on top of this model that takes away bar-
riers toward richer event-driven systems without having to sacrifice existing invest-
ments made.

Dictionary Suggest Revisited

During the introduction of our discussion about reactive programming, I mentioned the
typical AJAX example of dictionary suggest. In doing so, we came to the conclusion there
are two event sources somehow. One is the user typing text in the Search box, causing
TextChanged events to be raised. Upon every such event, we want to start an asynchro-
nous call to a web service to get dictionary suggestions for words starting with the typed
term. This can be nicely expressed in LINQ as follows:

// True Rx code is only slightly more complicated, due to the need to bridge .NET

// events to IObservable<T> objects first. Consult the Rx documentation for more

// information on this.

var res = from input in searchBox.TextChanged

898 CHAPTER 18 Events

“re” … “reactive”
TextChanged

res

Second request

First request

Results:

reactive (adjective)
Tending to be responsive or to
react to a stimulus.
Characterized by reaction.
Chemistry–tending to
participate in reactions.

1.

2.
3.

Results:

re (noun)
Music–syllable used for the second
tone of a diatonic scale

re (preposition)
in the case of

Re
Chemistry–symbol for RheniumOut o

f o
rder d

elivery

FIGURE 18.33 Out-of-order delivery of asynchronous responses.

from suggestion in DictionaryService.Suggest(input)

select new { suggestion.Word, suggestion.Description };

res.Subscribe(result => { /* display in Results box */ });

Because we haven’t seen LINQ in much depth just yet, approach this query expression
with your gut feeling: For every TextChanged event raised (producing a string with what
the user types), fire off an asynchronous Suggest call on the dictionary service. This call
will come back with suggestions that are ultimately projected onto some anonymous type
exposing pairs of found words and their descriptions. Finally, we subscribe to the resulting
event source to do some UI stuff where the results get shown.

This very declarative style of dealing with events is hugely beneficial because it abstracts
away all the heavy lifting you would have to do manually otherwise: correctly releasing
the obtained observer objects, dealing with potentially multithreading issues, and so on.
This doesn’t mean, though, that your grandma can write asynchronous programs now:
There are still things to be aware of, most of which are intrinsic to the problem space of
asynchronous computing. In fact, the preceding query has a little problem. Do you
remember the first caveat I mentioned when I introduced the dictionary suggest sample?
Out-of-order delivery of responses to asynchronous operations can get quite disturbing, as
illustrated in Figure 18.33.

Luckily, this problem can be tackled by using another combinator in Rx, called
TakeUntil. The idea is to cancel out pending requests when a subsequent request has
already responded.

899Modern Approaches to Reactive Programming

“re” … “reactive”
TextChanged

res

Second request

First request

Results:

reactive (adjective)
Tending to be responsive or to
react to a stimulus.
Characterized by reaction.
Chemistry–tending to
participate in reactions.

1.

2.
3.

X X X X X

Unit cancels request

FIGURE 18.34 Out-of-order delivery of asynchronous responses.

var res = from input in searchBox.TextChanged

from suggestion in DictionaryService.Suggest(input)

.TakeUntil(searchBox.TextChanged)

select new { suggestion.Word, suggestion.Description };

res.Subscribe(result => { /* display in Results box */ });

In the preceding code, we’re listening for the Suggest call to come back until the user
types a new search key in the text box. At that point, the pending call is canceled out. Yes,
you still have to put in the TakeUntil call manually (because the out-of-order behavior
may be acceptable in some cases), but attempting to do the same with regular .NET events
would be far from trivial with asynchronous operation cancellations and so on. The
improved situation is shown in Figure 18.34.

TO BE REALLY CORRECT

There’s another little hidden caveat in the code shown for our dictionary suggest query
that is a bit more subtle. In fact, LINQ constructs are functional programming islands in
the world of .NET, which is otherwise imperative. Sometimes those two worlds are in
conflict with one another due to side effects.

The problem in the code shown here is that we’re subscribing multiple times to the
same event, which could cause duplication of side effects. To avoid this, it’s advisable
to use another Rx operator, called Publish:

900 CHAPTER 18 Events

var res = searchBox.TextChanged.Publish(textChanged =>

from input in textChanged

from suggestion in DictionaryService.Suggest(input)

.TakeUntil(textChanged)

select new { suggestion.Word, suggestion.Description });

res.Subscribe(result => { /* display in Results box */ });

This becomes a little funky, and we’ll omit further discussion about this because it gets
into specialist use of Rx. Maybe someday I’ll write a book on the topic. Who knows?

With this, we conclude our sneak peek at Rx, which every self-respecting .NET developer
should be looking forward to because reactive programming is gaining attention every day
due to the increased emphasis on distributed and cloud computing. One of the key
lessons learned is the pivotal role played by LINQ in enabling this kind of scenario in a
more declarative manner.

Summary
Delegates and events are crucial pieces that make the .NET Framework tick. Having a solid
understanding of both concepts will take you a long way in discovering framework func-
tionality and designing your own extensible APIs.

Although the concept of functional programming lies, at least conceptually, at the heart of
delegates, they can simply be seen as a strongly typed contract describing a single opera-
tion. One party acts as a consumer, invoking the delegate to reach out to the functionality
provided from the outside. The other party hands out a piece of code that adheres to the
delegate contract (its signature if you will) by instantiating a delegate or using an anony-
mous function expression or lambda expression, with possible use of a closure to capture
outer variables. LINQ is one of the many APIs that’s designed for heavy use of delegates to
pass all sorts of little functions around (predicates, projections, key selectors, and so on).

After covering delegates, we moved on to explain events in terms of multicast delegates.
The core idea of events is to provide a way to attach event handlers to an event source in
a more secure way than just exposing a delegate. This ensures that an event can be raised
only from the inside of the object on which it’s defined and also prevents clients from
messing with the list of event handlers. Again, two parties appear, similar to the ones seen
for delegates. On the one side, there’s the event source, which raises the event if it wants
to signal a certain condition. At the receiving end, one or more event handlers receive the
event to react on it in an appropriate manner.

With the knowledge of delegates and events under our belts, we’ll put our knowledge of
the former concept to the test by unraveling the innards of LINQ in the next chapter.

CHAPTER 19

Language Integrated
Query Essentials

IN THIS CHAPTER

. Life Without LINQ 902

. LINQ by Example 909

. Query Expression Syntax 920

Almost every enterprise application has to deal with data
it provides to the user to interact with. This data can come
from lots of different places, such as a relational database,
an XML file, some other source like a web service, or in fact
even just from in-memory data structures.

Before the introduction of Language Integrated Query in
.NET 3.5 and languages like C# 3.0 and Visual Basic 9.0,
this large variety of potential data sources was a common
source of developer pain for various reasons. For each data
domain, a different query language is used: Knowing how
to get data out of a relational database using SQL doesn’t
help in querying an XML file. Besides this, queries are typi-
cally buried in strings that are opaque to the compiler,
providing no compile-time checking: Writing a SQL query
that compares a numeric column against a string will go
unnoticed when compiling the code, resulting in a runtime
exception at best.

Language Integrated Query unifies the query experience
across all sorts of data domains, allowing developers to
learn a single query language that’s integrated with the C#
programming language (and others) itself. This not only
allows for code that’s easier to understand, reducing lots of
application programming interface (API) ceremony that was
needed before, but it also makes it possible for the compiler
to carry out certain checks.

In this chapter, we look at LINQ from a language point of
view: what the syntax looks like, what it translates into,
and how different LINQ providers plug in to this model.

902 CHAPTER 19 Language Integrated Query Essentials

Life Without LINQ
To see the benefits brought by LINQ, you must get a sense for the problems it solves. To
do so, we’ll demonstrate the hoops a developer has to jump through to query data from a
variety of different data sources. In doing so, we’ll work with different APIs and query
languages, and you’ll see how easy it is for people to mess up things without any compile-
time feedback about query correctness.

In-Memory Data

One of the most prominent sources of data is the computer’s own memory, though it’s often
overlooked as a true data source. In-memory collections are containers for series of objects
to which you might want to apply certain operations. For the sake of discussion, let’s
consider an in-memory list of products stored as .NET objects in a generic list collection:

var products = new List<Product> {

new Product { Name = “Chai”, Price = 18.00m },

new Product { Name = “Chang”, Price = 19.00m },

new Product { Name = “Aniseed Syrup”, Price = 10.00m },

new Product { Name = “Chef Anton’s Cajun Seasoning”, Price = 22.00m },

new Product { Name = “Chef Anton’s Gumbo Mix”, Price = 21.35m },

new Product { Name = “Grandma’s Boysenberry Spread”, Price = 25.00m },

new Product { Name = “Uncle Bob’s Organic Dried Pears”, Price = 30.00m },

new Product { Name = “Northwoods Cranberry Sauce”, Price = 40.00m },

new Product { Name = “Mishi Kobe Niku”, Price = 97.00m },

new Product { Name = “Ikura”, Price = 31.00m }

};

Now assume we want to perform various query operations on this data to filter it, order it,
group it, and so on. This turns out to be a very manual, imperative-style task, using loops,
conditions, intermediate collections, and so on. Let’s just show the code you could write
to filter all the products with a price lower than $25:

var cheap = new List<Product>();

foreach (var product in products) {

if (product.Price < 25)

cheap.Add(product);

}

This code is still pretty understandable, but as we start adding more query constructs to it,
things get obscure pretty quickly. For example, if we want to group products by price
range in multiples of 10, we could use a hash table or dictionary to build up those groups;
for example, a key of 10 means prices from 10.00 to 19.99:

903Life Without LINQ

FIGURE 19.1 A table in a relational database.

var priceGroups = new Dictionary<int, List<Product>>();

foreach (var product in products) {

int group = 10 * (int)(product.Price / 10);

List<Product> productsInGroup;

if (!priceGroups.TryGetValue(group, out productsInGroup))

priceGroups[group] = productsInGroup = new List<Product>();

productsInGroup.Add(product);

}

This code clearly doesn’t reveal the grouping characteristic anymore in an obvious way.
Moreover, we’ve only been showing one query operation at a time. “Just” adding filtering
to the preceding grouping code, maybe followed by sorting on the key and retaining only
the first 10 groups, clearly isn’t the simplest thing to do. Knowing how to do the query
operations each by themselves doesn’t suffice to mix them together. In other words,
composability is lacking.

Key disadvantages include the following:

. Imperative nature of the code, not revealing the intent of the user clearly

. Lots of manual plumbing needed for a seemingly simple task

. Not composable out of simple query operator primitives

Relational Databases

Relational databases serve as one of the most commonly used data sources in enterprise
applications. Querying them requires the use of a different language altogether, such as
the Structured Query Language (SQL). Let’s assume the same data as shown earlier exists
in a relational database (for example, stored in SQL Server). Figure 19.1 illustrates what the
records in a Products table might look like. Notice the presence of foreign keys in other
tables (for example, to relate a product to a category).

904 CHAPTER 19 Language Integrated Query Essentials

The command at the top of the screenshot is a SQL SELECT statement used to retrieve
data from the database. This is the kind of language you must speak to the database
server to get results. No matter how much API surface is being added to connect to the
database and run commands, everything ultimately boils down to executing SQL state-
ments like this. For example, to retrieve products with a price below $25, the following
query can be written:

SELECT * FROM Products WHERE UnitPrice < 25

To run this command, most likely parameterized by the upper-bound price to add more
flexibility, you typically uses APIs like System.Data.SqlClient that look like the following
from a user’s point of view:

var products = new List<Product>();

using (var conn = new SqlConnection(connectionString)) {

string sql = “SELECT * FROM Products WHERE UnitPrice < 25”;

using (var cmd = new SqlCommand(sql, conn)) {

conn.Open();

using (var reader = cmd.ExecuteReader()) {

while (reader.Read()) {

string name = (string)reader[“ProductName”];

decimal price = (decimal)reader[“UnitPrice”];

products.Add(new Product { Name = name, Price = price });

}

}

}

}

Even though the data has a structure similar to the in-memory data example, we have to
go through totally different hoops to get the data out in the desired shape, applying a
filter through a totally different language. In doing so, we’ve introduced many more
opportunities for mishaps.

First, we not only need to learn a totally different language with its own syntax and
semantics, we also have to know a different API. Although there is some unification in the
System.Data APIs, which allows targeting different servers (for example SQL, Oracle, DB2,
MySql) through various providers, there’s still a significant tax to pay with regard to the
learning curve of those. For example, notice the excessive use of using blocks to make
sure things like connections are closed properly.

Second, the fact we’ve buried the SQL statement in a string is a whole problem by itself.
Obviously, the compiler doesn’t have any meaningful interpretation for this island of
foreign code and therefore can’t show IntelliSense or catch problems during the compila-
tion of the code. Simple typos will go unnoticed until the code is run, resulting in a
runtime exception signaling the server didn’t understand the request. If you’re lucky, a
meaningful error message will be displayed, as shown in Figure 19.2, but matters can be a

905Life Without LINQ

FIGURE 19.2 No compile-time checking of query statements.

lot more cumbersome and unobvious when mistakes are made against types, database
schemas, or when dealing with complex join operations.

However, more problems come from using an opaque string as the input to the server.
Because the query command doesn’t get verified extensively before being sent to the
server, it’s susceptible to different types of attacks when the query string gets built improp-
erly. A typical source of errors is in the parameterization of queries:

string query = “SELECT * FROM Products WHERE Name=’” + name + “‘“;

If the name variable comes from an untrusted source, like the user providing direct input
through some UI, several problems can arise with the preceding code. What if the name
contains the following?

’ OR TRUE --

This results in a query that has a WHERE clause looking like this:

WHERE Name=’’ OR TRUE --’

The -- is SQL’s comment syntax, making the remainder of the line invisible to the query
execution engine. Clearly, the preceding query will return all results instead. This just
shows the tip of the iceberg of query attacks, with much more severe ones possible:

’; DROP DATABASE Northwind --

Oops, if the connection to the database server was made with an account that has the
right to drop a database, the user can delete the whole database by putting well-crafted
input in the “name” input field. This category of attacks is known as SQL injection attacks.

906 CHAPTER 19 Language Integrated Query Essentials

DON’T BLINDLESSLY PRINT EXCEPTION TEXT

Printing exception text in response to an error is not always a good idea. When a mali-
cious person tries to break into the system (for example, by leveraging some SQL injec-
tion vulnerability in your code), exception text can be very helpful to explore the
structure of the database. It may dump parts of the query that was sent to the server,
giving the enemy more information to craft even more malicious input when preparing
another break-in attempt.

This SQL injection attack can be mitigated by using yet different and more complex APIs
to parameterize the query, obscuring the meaning of code even further:

string sql = “SELECT * FROM Products WHERE UnitPrice < @Price”;

using (var cmd = new SqlCommand(sql, conn)) {

var maxPrice = cmd.Parameters.Add(“@Price”, SqlDbType.Decimal);

maxPrice.Value = /* get in from somewhere, e.g. user input */;

conn.Open();

using (var reader = cmd.ExecuteReader()) {

while (reader.Read()) {

string name = (string)reader[“ProductName”];

decimal price = (decimal)reader[“UnitPrice”];

products.Add(new Product { Name = name, Price = price });

}

}

}

But the list of problems goes on. Notice how the loop has to retrieve data out of the data
reader object using an indexer, getting a System.Object back. A cast to a compatible type
is needed to get the data out in a meaningful way. Solutions have been thought out for
this problem, in the form of object/relational (O/R) mappings, but those don’t address the
querying problem directly.

.NET has some notion of O/R mapping constructs in the form of the DataSet type, which
provides a way to map a data source onto an in-memory data structure (for example, on a
per-table basis). In conjunction with so-called data adapter objects, the DataSet object can
be used to update records in the database by manipulating the data contained in the
DataSet and by sending out an update to the server afterward. You can export the schema
of the database into a strongly typed DataSet, which is a form of O/R mapping. However,
this has its disadvantages, too. To make updates possible, you must deal (sometimes indi-
rectly through the use of designers) with other SQL commands for insert, update, and
delete. And the typical pattern of bringing large chunks of a database into the applica-
tion’s memory is not always desirable because you want to leave as much of the query

907Life Without LINQ

execution on the server as possible. That said, DataSet still plays an important role for use
in web services and offline scenarios.

In summary, the following issues plague the use of relational databases today:

. Must learn a totally different language to address the database engine.

. Different APIs are used to address different databases.

. Lots of possibilities to mess up, including the following:

. Syntactical errors in the target query language

. Introducing vulnerabilities by string concatenation

. Manual management of various objects needed to connect, and so on

. Improper data conversions, type mismatches in the query, and so on

. Need for separate O/R mapping technologies to make things slightly better.

XML

Another popular data storage format nowadays is XML, dealing with hierarchical data
structures. As you can guess by now, the story on querying this type of data source is
again fundamentally different from dealing with objects or relational data. To illustrate
this point, consider the following XML document for our familiar products catalog:

<Products>

<Product Name=”Chai” Price=”18.00” />

<Product Name=”Chang” Price=”19.00” />

<Product Name=”Aniseed Syrup” Price=”10.00” />

<Product Name=”Chef Anton’s Cajun Seasoning” Price=”22.00” />

<Product Name=”Chef Anton’s Gumbo Mix” Price=”21.35” />

<Product Name=”Grandma’s Boysenberry Spread” Price=”25.00” />

<Product Name=”Uncle Bob’s Organic Dried Pears” Price=”30.00” />

<Product Name=”Northwoods Cranberry Sauce” Price=”40.00” />

<Product Name=”Mishi Kobe Niku” Price=”97.00” />

<Product Name=”Ikura” Price=”31.00” />

</Products>

Again, focusing on our filtering query example, let’s try to select the products with a price
less than $25. Once more, we have to familiarize ourselves with another API, this time
under the System.Xml namespace.

908 CHAPTER 19 Language Integrated Query Essentials

DOM

System.Xml is an XML Document Object Model API that isn’t very easy to use. To cre-
ate XML documents, you must write very imperative-style code that calls the methods
CreateElement, InsertAfter, and so on. Although we’ll be loading a document from a
file in the following example, be aware of the bigger picture of the API being used. As
you’ll see later, the new System.Xml.Linq namespace makes the task of creating XML
documents (or fragments) easier, too.

XmlDocument doc = new XmlDocument();

doc.Load(\temp\products.xml”);

XmlNodeList res = doc.SelectNodes(“//Product[@Price<25]”);

var products = new List<Product>();

foreach (XmlNode node in res)

{

products.Add(new Product {

Name = node.Attributes[“Name”].Value,

Price = decimal.Parse(node.Attributes[“Price”].Value) }

);

}

Formulating the query takes yet another query language, this time using XPath passed as a
string to SelectNodes. Similar problems exist as for the relational database case, requiring
the use of foreign APIs and languages, the potential to mess up the query syntax in
various ways, the need to fight loose typing, and manual object/XML (O/X) mapping.

With XML’s popularity increasing due to its use in web services and for data storage in
certain cases, we clearly need a better approach to access XML data in a friction-free
manner. The same holds for other formats (such as JSON) that are emerging; all of which
would benefit from a unified query experience where you don’t have to learn entirely new
APIs or languages to be able to reach out.

The Birth of LINQ

We’ve looked at only three different data storage formats, but this should be sufficient to
appreciate the “jungle of data access,” ranging from highly imperative code to the use of
specialized APIs with domain-specific query languages. Dealing with all of this is not just
tedious but also very error prone. Furthermore, knowledge of one data and querying
domain doesn’t carry over to another. Tomorrow you’ll have to get data out of some
online web service where querying is done by specialized web service methods, and again
you’ll have to learn the specifics of the web service’s API.

This brings us to one of the problem statements identified by language and framework
designers in the .NET 3.5, C# 3.0, and Visual Basic 9.0 time frame, which led to the

909LINQ by Example

C# Visual Basic F# …

Objects DataSets …SQL Entities XML

Language Integrated Query

Query Operators Expression Trees

.NET Objects Relational Data XML Trees

<books>
…

</books>

FIGURE 19.3 LINQ general overview.

introduction of Language Integrated Query (LINQ). The core idea is to provide syntax for
query expressions right inside the language, which compile down to API calls that can be
targeted at various data sources. The high-level overview is shown in Figure 19.3.

LINQ by Example
Before we start investigating LINQ from a language and framework point of view, let’s
revisit our running example by reformulating the query in terms of LINQ for each of the
three data domains. You’ll see how the same syntactical language surface for query expres-
sions can be used against different domains, abstracting away the technicalities we had to
deal with manually before.

In-Memory Data

Starting from the same in-memory collection of products, we want to get rid of our imper-
ative code that obfuscated the meaning of our query before. Here, we’re using the LINQ to
Objects implementation, which implements the query pattern for objects that implement
IEnumerable<T>. Given the following data source, we want to express a query that will
give us back only the products with a price less than $25:

var products = new List<Product> {

new Product { Name = “Chai”, Price = 18.00m },

new Product { Name = “Chang”, Price = 19.00m },

new Product { Name = “Aniseed Syrup”, Price = 10.00m },

new Product { Name = “Chef Anton’s Cajun Seasoning”, Price = 22.00m },

new Product { Name = “Chef Anton’s Gumbo Mix”, Price = 21.35m },

new Product { Name = “Grandma’s Boysenberry Spread”, Price = 25.00m },

new Product { Name = “Uncle Bob’s Organic Dried Pears”, Price = 30.00m },

910 CHAPTER 19 Language Integrated Query Essentials

FIGURE 19.4 IntelliSense in a query expression.

new Product { Name = “Northwoods Cranberry Sauce”, Price = 40.00m },

new Product { Name = “Mishi Kobe Niku”, Price = 97.00m },

new Product { Name = “Ikura”, Price = 31.00m }

};

Instead of iterating over the elements ourselves, we can use a LINQ query expression and
simply declare our intent:

var cheap = from product in products

where product.Price < 25

select product;

Now we can enumerate over the “cheap” query result to see all the products that have a
price less than the specified upper bound. Notice that we get full support of IntelliSense
while writing this query, as shown in Figure 19.4.

We discuss this extensively in Chapter 20, “Language Integrated Query Internals,” in the
section, “Iterators,” but there’s another key difference between the use of LINQ query
expressions and the imperative code we saw before. In our manual attempt to query the
data, we created a new List<Product> collection in which to stick the query results. This
means the query executes on the spot. However, with LINQ, it’s not until you start iterat-
ing over the query expression object (cheap in the preceding code) that the query starts
running. To convince yourself about this lazy behavior, write the following:

decimal upperPrice = 25m;

var cheap = from product in products

where product.Price < upperPrice

select product;

// The upperPrice variable was captured in a closure (see later), hence we

// can change it and the query expression will “see” it.

upperPrice = 100m;

// Here the query executes, and not any earlier!

foreach (var product in cheap)

Console.WriteLine(product.Name);

911LINQ by Example

This prints all the products with a price lower than $100 rather than $25. And if we were
to change upperPrice later to 200 and reiterate over the cheap query result, the products
with a price lower than $200 would be shown next. This shows that LINQ query expres-
sions use lazy evaluation. We talk extensively about how this is realized and what the
implications are in Chapter 20.

The use of lazy evaluation is great in combination with query operator composability:
Given the preceding query, select just the first five results. In the imperative world, we
would have to tweak the loop we created to include a counter and whatnot, but in LINQ
we can just stick a Take(5) call on the query expression, and off we go:

var fiveCheap = (from product in products

where product.Price < upperPrice

select product).Take(5);

This code never persists all elements with a price below the specified upper bound; it just
goes through the products evaluating the where clause, but only yielding the first five hits
to the caller.

Finally, if we want to group the data by “price bucket” as we saw before, we no longer
have to mess around with dictionary objects ourselves but can do so declaratively:

var priceGroups = from product in products

group product by 10m * (int)(product.Price / 10);

foreach (var priceGroup in priceGroups) {

Console.WriteLine(“From {0} to {1}”, priceGroup.Key,

priceGroup.Key + 9.99m);

foreach (var product in priceGroup)

Console.WriteLine(“ {0} costs ${1}”, product.Name, product.Price);

}

Obviously, we can do much more besides a filter and a grouping. That’s where the idea of
standard query operators comes in, which we look at in Chapter 20, in the section,
“Standard Query Operators.” What we’ve shown here is that any of those operators can be
glued together easily, facilitating a declarative programming style where you simply say what
you want as opposed to how it needs to be done. By using a declarative approach to
querying, you also give the runtime more control over the precise mechanics of evaluating
your query, potentially taking benefit of multicore processors and whatnot.

Relational Databases

Now let’s try to retarget the same query to the Northwind database stored on a SQL Server
database server. If LINQ delivers on its promises, we ought to be able to use the same
query against the remote data source, having it take care of all the plumbing needed (such
as the generation of a SQL SELECT statement under the hood).

912 CHAPTER 19 Language Integrated Query Essentials

FIGURE 19.5 Object/relational mapping starts with a LINQ to SQL Classes item.

To try this, we first create a data context in our Visual Studio 2010 project, exporting the
metadata of the target database. This is the O/R part of the LINQ to SQL solution. After
we’ve done so, we can write LINQ queries against the data source. Notice that there’s also
the so-called Entity Framework, which is the big brother to LINQ to SQL and the preferred
way to query relational data today. We won’t cover Entity Framework in this book and
refer to specialized literature on the subject.

First, in Visual Studio 2010, we add a new item of type LINQ to SQL Classes to the current
project, as shown in Figure 19.5.

This brings up the Object Relational Designer, where we can use the Server Explorer to
connect to a SQL Server database and drag and drop data sources (like tables, views, and
stored procedures) to the designer surface. Doing so causes the designer to generate code
that will make it easy to reach out to the database from code. Figure 19.6 shows the result
after adding a few Northwind tables from the Server Explorer to the mapping surface.

REQUIREMENTS FOR LINQ TO SQL SAMPLES

To run the LINQ to SQL examples, you’ll need some SQL Server installation at your
service. If you don’t have such a server lying around, the free Express edition can be
downloaded and installed on your development computer.

For the examples, I’m using the familiar Northwind database that came with the SQL
Server product until version 2000. To install it on SQL Server 2005 or 2008, search
the Web for “SQL Northwind Sample” to download the database with install scripts
from the Microsoft download center. The installer merely unpacks the file into a folder
called SQL Server 2000 Sample Databases, leaving the rest of the installation to you.
Various approaches can be taken to execute the .sql file, one of which is the use of
the sqlcmd.exe tool that comes with SQL Server:

sqlcmd -S . -E -i Northwind.sql

913LINQ by Example

FIGURE 19.6 A simple mapping of tables to classes.

This runs the .sql install script with Windows integrated authentication (-E) on the local
server instance; the dot specified for -S means “local machine.” If you need to run the
script against a different server or instance, or with SQL authentication, refer to the
command-line help for sqlcmd.exe.

Back in Visual Studio 2010, the Server Explorer window has a button to connect to the
database, which simply prompts for the server name, credentials, and the name of the
database. An expanded database connection is shown in Figure 19.6 where tables are
made visible. The Server Explorer can be used to inspect the database structure,
retrieve data from it, and modify settings.

With the mapping in place, we now have a strongly typed way to talk to the database and
formulate queries. Everything starts from a DataContext object, named after the LINQ to
SQL Classes file (in our case, Northwind). From this context object, we can access the
tables we exported through the designer. Let’s take a look:

using (var ctx = new NorthwindDataContext()) {

var cheap = from product in ctx.Products

where product.UnitPrice < 25

select product;

foreach (var product in cheap)

Console.WriteLine(“{0} costs {1}”, product.ProductName,

product.UnitPrice);

}

We no longer have to deal with manual creation of a SQL SELECT statement and can use
LINQ syntax to express a query over a totally foreign data domain using the generated
objects. IntelliSense is present once more, as shown in Figure 19.7. Notice how we’ve used
the LINQ to SQL Classes designer to provide aliases for various columns (through the

914 CHAPTER 19 Language Integrated Query Essentials

FIGURE 19.7 Static typing revealed for the generated LINQ to SQL classes.

Property window). Instead of having to write UnitPrice, we can now write Price instead.
This mapping makes the consumption of data easier and more natural-looking if columns
turn out to have weird names.

Having statically typed objects available representing the table structure is a great
improvement because mistakes against types are avoided at compile time. Internally, the
query gets translated into a SQL statement at runtime by the LINQ to SQL APIs that are
getting called through the LINQ syntax. How this translation is facilitated by the various
language features is discussed in Chapter 20, in the section, “Expression Trees for Query
Expressions,” but let’s take a look at what gets generated. To do so, we turn on logging on
the data context object:

using (var ctx = new NorthwindDataContext()) {

ctx.Log = Console.Out;

...

}

In addition, set a breakpoint on the foreach keyword to illustrate that the query doesn’t get
translated and executed until the point we start the iteration over the query object. Again,
this proves that the query is executed lazily. Figure 19.8 shows the addition of the logging
code, followed by a breakpoint on foreach, ready for the experiment to confirm laziness.

Before you press F10 twice after hitting the breakpoint, nothing will happen. Doing the
two Step Over debugger actions will cause you to hit the GetEnumerator call on the cheap
object, which is where the query gets translated, at runtime, into a SQL SELECT statement
that’s then sent to the server for execution. Figure 19.9 shows the parameterized query
that was generated.

915LINQ by Example

FIGURE 19.8 Using logging to show the lazy evaluation of a LINQ to SQL query.

FIGURE 19.9 The logged generated SQL SELECT statement.

WHY TRANSLATION AT RUNTIME?

You might be surprised to see LINQ query expressions get translated to the target query
language at runtime as opposed to at compile time. The nice thing about LINQ is that it
separates different concerns: Validating a query’s structure is something that can be
done by the language compiler because of the tight language integration, allowing rich
type checking and such. On the other hand, it would be highly undesirable to enlighten
the compiler about other languages like SQL (and the many other ones out there that
might want to support LINQ). Instead, a model based on providers was put in place,
allowing those runtime libraries to turn the query into any target language it sees fit.

At the heart of this feature lies the C# 3.0 expression trees feature, which we discuss
in Chapter 20 when talking about IQueryable<T>. Expression trees capture a query
expression’s structure for the runtime library to analyze and translate (if possible) into
the target language of choice (for example, SQL).

LINQ to SQL can do much more than just query a database. The mapped objects can also
be used to update the database simply by changing properties to the settable properties,
followed by a call to SubmitChanges on the data context object. LINQ doesn’t provide
syntax for insert, update, or delete statements, primarily because the mainstream scenarios

916 CHAPTER 19 Language Integrated Query Essentials

involve making changes to retrieved data; for example, through some data visualization in
a UI control like a data grid. Similarly, records can be inserted into or deleted from the
database by manipulating the table objects through the data context:

ctx.Products.InsertOnSubmit(new Product() { ProductName = “Visual Studio”, ... });

// Deleting an object that was retrieved before, e.g. because the user

// deleted it from a grid control.

Product chai = /* retrieved somehow through a query */;

ctx.Products.DeleteOnSubmit(chai);

// Change tracking through INotifyPropertyChanged tells the context the

// object needs to be updated upon calling SubmitChanges.

Product chang = /* retrieved somehow through a query */;

chang.UnitPrice = chang.UnitPrice * 1.2;

ctx.SubmitChanges();

Finally, notice how the relational nature of the database is reflected in the generated
objects. You can easily write queries that traverse relationships; for example, querying
products by their categories:

var beverages = from product in ctx.Products

where product.Category.CategoryName == “Beverages”

select product;

The query generated for the preceding code involves quite a bit of domain-specific query
language knowledge on joins. Without the help of LINQ, the developer would have to
figure this out herself, with opportunity for mistakes to sneak in. (For example, the
preceding query would likely be parameterized on ”Beverages”, making plain string
concatenation an obvious, but dangerous, choice because of potential SQL injection
attacks.) Instead, LINQ to SQL takes care of all of this and generates the following:

SELECT [t0].[ProductID], [t0].[ProductName], [t0].[SupplierID],

[t0].[CategoryID], [t0].[QuantityPerUnit], [t0].[UnitPrice],

[t0].[UnitsInStock], [t0].[UnitsOnOrder], [t0].[ReorderLevel],

[t0].[Discontinued]

FROM [dbo].[Products] AS [t0]

LEFT OUTER JOIN [dbo].[Categories] AS [t1]

ON [t1].[CategoryID] = [t0].[CategoryID]

WHERE [t1].[CategoryName] = @p0

Notice the use of parameterization as way to hand over query parameters like ”Beverages”
in a safe manner so that the database can take care of input checking.

917LINQ by Example

WHAT ABOUT EFFICIENCY?

Some people raise concerns about the efficiency of the query generation and the
generated queries. Let’s demystify a couple of things about this.

Concerning the generation of queries at runtime, database access typically gets over-
shadowed by other costs, such as setting up network connections and transport of the
query and its results. The cost involved in generating the query is marginal compared
to those factors, and good query providers actually cache the query they’ve generated
for reexecution when needed. Notice how parameterization of queries also helps with
this: If the ”Beverages” parameter were stored in a local variable and got changed
between two iterations over the query, the same query string can be reused, just
supplying a different parameter.

What about the generated queries? Relational database vendors have spent decades
figuring out how to execute queries as efficiently as possible, optimizing any query that
gets thrown at their database product. I would rather trust those domain specialists to
optimize generated queries than I would trust the library writers to tweak queries on
behalf of the user and the server. Optimizing code is one thing, but doing so beyond
the point of correctness is a big no-no. Who better knows the optimization tricks for a
very specialized query language than the entity that will execute it (that is, the data-
base engine)?

A common argument is that the use of stored procedures makes querying more effi-
cient. Although there’s some truth to this, it doesn’t help when you want to run ad hoc
queries, something LINQ supports in a very direct manner. And stored procedures can
be used, as well, by importing them to the data context using the designer. What likely
pays off (regardless of the data access technology used) is having a good database
administrator who sets up indexes to optimize queries based on typical scenarios.
Such optimizations will prove more effective than trying to optimize generated queries
on behalf of the database engine.

Finally, notice in Figure 19.9 how the dump of the query mentions the version of the
target database server. Query providers can have some awareness of the version of
the server they’re targeting, so newer query language constructs can be emitted
when desired.

XML

Finally, we’ve arrived back with hierarchical data stored in the form of XML. The new
System.Xml.Linq APIs, also known as LINQ to XML, make dealing with XML data much
easier, too. In fact, LINQ to XML is LINQ to Objects in disguise, providing a way for XML
data to be represented using IEnumerable sequences. This is achieved by providing various
methods that enumerate over the XML data in different ways. For example, methods exist
that go over the children of a node, others go over elements or attributes only, and yet
other methods recursively visit all descendants.

918 CHAPTER 19 Language Integrated Query Essentials

Starting from the same XML document, we’ll formulate some queries using LINQ to show
how those methods are used to represent various enumeration strategies over the XML data:

<Products>

<Product Name=”Chai” Price=”18.00” />

<Product Name=”Chang” Price=”19.00” />

<Product Name=”Aniseed Syrup” Price=”10.00” />

<Product Name=”Chef Anton’s Cajun Seasoning” Price=”22.00” />

<Product Name=”Chef Anton’s Gumbo Mix” Price=”21.35” />

<Product Name=”Grandma’s Boysenberry Spread” Price=”25.00” />

<Product Name=”Uncle Bob’s Organic Dried Pears” Price=”30.00” />

<Product Name=”Northwoods Cranberry Sauce” Price=”40.00” />

<Product Name=”Mishi Kobe Niku” Price=”97.00” />

<Product Name=”Ikura” Price=”31.00” />

</Products>

Loading the document is achieved by a simple Load method on an XDocument class; LINQ
to XML APIs use the X prefix rather than Xml to disambiguate from the older System.Xml
DOM-based API. Once we have the document, we can start drilling into it by using
methods such as Element (to select a single element with a given name) and Elements (to
get all child elements of a given node):

var doc = XDocument.Load(\temp\Products.xml”);

var products = doc.Element(“Products”).Elements();

var cheap = from product in products

let name = product.Attribute(“Name”).Value

let price = decimal.Parse(product.Attribute(“Price”).Value)

where price < 25m

select new Product { Name = name, Price = price };

Because XML documents are untyped, properties like XAttribute.Value return a string
that can be turned into the expected type using the familiar Parse methods on the primi-
tive data types. To do so, we’re using a let clause in the query, which can be seen as a way
to introduce a new variable that’s available later in the query expression. However, the
structure of the query clearly reveals the user’s intent.

First we have the root element from the document, which is named ”Products”. From
there, we retrieve all the child elements on which we expect attributes Name and Price to
be present. After those attribute values have been extracted, we can start formulating rich
queries. Finally, we use object initializer syntax to project the result into a Product object
instance. The result of the whole query becomes an IEnumerable<Product> over which we
can enumerate to visualize the results.

919LINQ by Example

LINQ TO XSD

LINQ to XML remained untyped without an object/XML mapping technology next to it.
When dealing with schematized XML, using XSD schemas, the experience of formulat-
ing a query could be made easier as the structure of the document is known in much
detail. For example, the Price attribute could be surfaced as a well-typed property on a
Product class. And the Products node could be retrieved from the document directly as
an IEnumerable<Product>.

For some time during the early days of LINQ, there was an attempt to leverage XSD
schemas as a way to make queries over XML data using LINQ more pleasant to write.
However, this LINQ to XSD project ultimately got cancelled. Although this seemed quite
attractive, there are quite a few problems. For one thing, child elements and attributes
can have the same name, making the use of properties for both of them infeasible in
general because of potential name clashes. Besides this, it’s been a general industry
trend to omit XSD schemas for lots of XML documents, sometimes in favor of using
other formats, such as JSON or REST (for web services without a WSDL schema).

Finally, Visual Basic 9.0 went a slightly different direction to tackle the aesthetic prob-
lem of traversing into XML data. They added language support for so-called XML liter-
als, together with syntax to select attributes and such (.@). Internally, those constructs
compile into LINQ to XML API calls.

Much more complex queries can be written over XML documents, leveraging the same set
of query operators as available for other data domains like SQL and objects. What should
be remembered from this introductory discussion about LINQ to XML is how the technol-
ogy hides lots of complexities around the use of XPath and certain XML data traversal
patterns that would otherwise be written using imperative loop constructs.

Before concluding our first journey through the world of the LINQ to XML APIs, I want to
point out that this API is also very well suited for creating new XML elements using
constructor syntax:

var products = new XElement(“Products”,

new XElement(“Product”,

new XAttribute(“Name”, “Chai”),

new XAttribute(“Price”, 18.00m)

),

...

);

You can write whole XML documents (or XML fragments) simply by calling nested
constructors, ultimately resulting in an in-memory object tree representing the XML data.

920 CHAPTER 19 Language Integrated Query Essentials

This can then be serialized into a file or other destinations like streams. Before LINQ to
XML, building up XML data by hand was a cumbersome experience using the System.XML
DOM, which has a very imperative style to it.

Query Expression Syntax
In our example-driven exploration of LINQ, we’ve seen many query expressions. Now the
time has come to take a closer look at the “syntactical surface area” for writing query
expressions, as introduced in C# 3.0. During our discussion of query expressions through-
out this section, we’ll see examples for the various query constructs available. But first let’s
explain the role query expressions play in the bigger picture of LINQ.

Why Query Expressions?

LINQ is the concatenation of LIN and Q. Trivial as this might seem, it’s quite important to
understand those are the two core pieces of the puzzle being presented here. The latter
part is clear: We want provide a way to query data across different domains such as in-
memory, relational, and hierarchical, but also more. This mission can be separated from
the former part, which has to do with language integration to allow more natural ways to
express queries.

To set the scene, let’s take a look at a totally different language: Haskell, a pure functional
programming language. With a decreased emphasis on imperative-style code, programs
written in a functional style tend to make more operations data driven. For example,
instead of iterating over a list by obtaining an enumerator and calling some MoveNext
method repeatedly, functional programmers would pattern match over the list, extracting
the head element and the tail list (everything but the first element), performing some
operation on the head and recursively calling itself for the tail. As an example, consider
the following code, which sums a list of integers:

sum :: [Integer] -> Integer

sum [] = 0 -- sum of empty list is zero

sum (x:xs) = x + sum xs -- x is the head element, xs is the tail list

This function can now be called to sum a list as follows:

sum [1, 2, 3, 4, 5]

That’s quite neat. But now assume that we just want to sum the even numbers in the list.
To realize this, we could write a filter function that takes in a function with the filter pred-
icate and creates, recursively again, a new list that contains only elements that pass the
filter function:

921Query Expression Syntax

filter :: (a -> Bool) -> [a] -> [a]

filter _ [] = [] -- empty list stays empty

filter p (x:xs) | p x = x : filter p xs -- apply the filter to the head,

| otherwise = filter p xs -- keep the head if it passes

Don’t worry too much about this syntax (unless you want to learn Haskell as well). The
core idea is that the filter function takes in a predicate function that’s evaluated for each
element. Calling this on our list introduces a bit of “ceremony,” though:

let evens = filter (\n -> (mod n 2) == 0) nums

Although this clearly shows the filter function that’s being used, it’s quite verbose
syntax you have to stare at for every single filter you want to apply to a list. To mitigate
this, Haskell introduced list comprehension syntax, which provides a more concise way to
express the same:

let evens = [n | n <- nums , (mod n 2) == 0]

Believe me, to a Haskell developer this looks quite sexy. But the same observation holds
for LINQ: Although functions like filter (Where in LINQ) are all you need to express rich
queries, it gets aesthetically unpleasant pretty quickly. Having simplified syntax helps a lot
to make the code more understandable and feel more natural. Let’s build a similar query
in LINQ with and without the query expression syntax:

var nums = new List<int> { 1, 2, 3, 4, 5 };

// Without query expression syntax

var evens = nums.Where(n => n % 2 == 0);

// With query expression syntax

var evens = from n in nums

where n % 2 == 0

select n;

Although the former syntax is all you need, it looks quite funky due to the syntactical
noise that comes from dots, parentheses, and lambda arrows. The latter syntax means
exactly the same (and indeed, it gets compiled into the former syntax) but feels more
natural thanks to specialized keywords.

This example is still too trivial to see the true advantages of LINQ. As we proceed through
our exploration of query expression syntax, we’ll see cases where simple-looking queries
turn into quite a bit of nontrivial code underneath. Such code involves lots of lambda
expressions floating around in a sea of generic operator methods being called. Doing such
things by hand typically leads to queries that aren’t easy to understand, whereas query
expression syntax looks way more natural.

922 CHAPTER 19 Language Integrated Query Essentials

FIGURE 19.10 With the System.Linq namespace imported, the query operators appear.

WHY DID WE MENTION HASKELL AT ALL?

You’re right: We could have simply shown the C# syntax with and without query expres-
sions to illustrate the point. Yet we decided to put Haskell in the picture for not so
obvious reasons. Why?

First and foremost, Haskell’s been a true source of inspiration for the design of LINQ,
pushing list comprehensions to its limits in a mainstream language. Even more, LINQ
went beyond what Haskell provided, and now ideas are flowing in the opposite way, with
plans to ameliorate Haskell list comprehensions.

Besides this, Haskell is the true functional programming language on the planet today.
Realizing LINQ in .NET required making functional programming more accessible by
means of lambda expressions and such. By showing the definition of Haskell’s filter
function in the preceding discussion, you get a taste of how important functions are to
build very flexible operators. This is exactly what LINQ does, too.

Getting Started

All the examples shown here are based on LINQ to Objects over in-memory data stored in
collections. To make the LINQ functionality accessible, you need to make sure to have a
reference to System.Core in your project (which is the case by default if you’re targeting
.NET Framework 3.5 or later) and to have imported the System.Linq namespace in your
code file. To check whether those requirements are met, write the following piece of code:

using System.Linq;

...

var n = new [] { 1, 2, 3 }.Count();

When doing so, you should see IntelliSense come up when typing the dot preceding the
call to the Count method. Figure 19.10 illustrates what you should see if everything is
okay. Notice the extension method icon next to the Count method in the IntelliSense
autocompletion list.

923Query Expression Syntax

FIGURE 19.11 The type of a range variable gets inferred.

Source Selection Using a from Clause

Query expressions start by the use of a from clause, which has two tasks. First, it refers to
the source that’s getting queried, such as an in-memory collection or a reference to an
object representing a table in a database. Second, it establishes a name for the items in
that source, which is used subsequently to express filters, orderings, and so on. The follow-
ing is an example:

var nums = new List<int> { 1, 2, 3, 4, 5 };

from n in nums ...

Observe a few things here. On the second line, I’ve not assigned the query expression to a
variable to emphasize it’s an expression. You can use the whole query expression as a para-
meter to a method, assign it to a variable, or whatever else you’re allowed to do with an
expression.

Next, the from clause cannot stand by itself; it needs to be followed, as indicated by the
ellipsis, with other query operators such as projection or grouping, among others. Those
other query operators can refer to n whenever they want to express something for an
element in the specified source. (In this case, nums acts as the source.)

Because the range identifier n represents an element in the nums source, it had better have
the right type for use in the query expression. This type gets inferred from context, typi-
cally leveraging generics. In the preceding example, n will eventually be inferred to be of
type int. Figure 19.11 shows the code editor revealing the inferred type of the range vari-
able in our query expression.

GUESSWORK

In fact, the IntelliSense engine is merely making an informed guess here. The code
illustrated here doesn’t compile because the query expression isn’t complete and there
wouldn’t be enough information for the compiler to infer the type of n just yet. So to be
really precise, you shouldn’t believe the compiler gets the type of the element directly
from the generic type representing the source (for example, List<int>).

You’ll see later in this chapter, when we discuss the translation of various query
clauses into method calls, that n gets used as the parameter to lambda expressions
used in the various query expression clauses. That’s where the compiler infers the type
from, based solely on all its method overloading knowledge. For esoteric query
providers, the type of the range identifier can even change throughout the entire query
expression. Pretend you didn’t hear this because in all practical cases the type of the
range identifier simply corresponds to the type of elements in the queried data source.

924 CHAPTER 19 Language Integrated Query Essentials

This pinpoints how IntelliSense often applies heuristics to make an informed guess
about what the user is writing based on its knowledge of the typical use patterns (that
make up 99.99% of all uses).

Order Matters
Readers coming from a SQL background may find the order used in query expression
syntax rather weird. Why does C# choose to have the from clause come first, followed by
operations like select? In SQL, you would write the following:

SELECT Name, Price

FROM Products

But in LINQ, you would write the same as follows:

from product in products

select new { product.Name, product.Price }

It turns out LINQ’s design choice is better than SQL for one very important reason:
IntelliSense. No matter how hard they try, SQL query editors don’t have a crystal ball that
can predict what table or view you’re querying when you write:

SELECT Na

How is it supposed to autocomplete what you’re writing when it hasn’t seen the FROM
clause (here spelled all caps because we’re talking about SQL) just yet? Moreover, it doesn’t
make sense to write SELECT first because it’s the last thing that happens: Tell the source,
filter items, sort them, and so on. But projecting the result happens at the very end. So
why does it come syntactically first? I don’t know. If there’s a SQL language designer
reading this book, send me an email and enlighten me!

DON’T REPEAT MISTAKES

Assuming the SQL order of operations was a mistake (it is), it would be silly to repeat it
in today’s language design even if it were for consistency and familiarity with the SQL
language people may already know. In fact, Visual Basic 9.0 was in this camp for a
long while, going to great lengths to keep the Select clause (here using typical Visual
Basic spelling of the keyword) in front, with intractable and confusing code editor jumps
while typing a query. It went roughly like this, if I recall correctly:

. Type Select and press space; a From clause would be inserted below what you
already typed.

. The editor jumps to the From clause where you specify the source and range
identifier.

. When you’re done with the From clause, as observed by the code editor upon
pressing a space or Tab, you would go back to Select.

925Query Expression Syntax

. Back in the Select clause, you can now use the range identifier introduced in
the second step.

This was highly unintuitive, and the Visual Basic team eventually surrendered and made
the From clause come first. The fear people would dislike it because of its difference
from the already familiar SQL language has, as far as I know, never really materialized.

So, even if some SQL language designers would defend their design choices, the .NET
developer audience has shown that having the From clause first is much more intuitive
in the end.

Range Identifier Types
So far, we’ve assumed that the type of the elements in the data source can be inferred by
the compiler. This is the case for most LINQ providers (like LINQ to SQL) and for generic
collection types. However, you might want to use LINQ against a nongeneric collection,
too. Not that many developers know this is possible as follows:

var nums = new ArrayList { 1, 2, 3, 4, 5 };

from int n in nums ...

As alluded to earlier, query expressions are simply a form of syntactical sugar over method
calls. This is no different for the preceding expression, which is really the same as this:

from n in nums.Cast<int>() ...

For LINQ to Object, Cast<TSource> is defined as an extension method on the nongeneric
IEnumerable interface, returning an IEnumerable<TSource>, which returns the source’s
elements casted to TSource. Once you’ve learned about iterators in Chapter 20, you see
how such a query operator can be realized in C#. But to use it, you don’t have to worry
about its implementation, of course.

CONTEXTUAL GRAMMAR

Another nice effect that comes from putting the from clause first is the fact it helps
the compiler spot where a query expression begins just by looking out for a single
token from. All the way to the end of the query expression, the meaning of keywords
can be treated in a purely contextual manner.

This is important for backward compatibility because all the LINQ keywords were not
reserved before LINQ came around. For example, you may have a variable called
select. Just switching to a newer version of the language shouldn’t break that with a
message stating that select has now become a reserved word. For this reason, new
keywords in the language are made contextual such that they only get a special
meaning in a certain context. In the case of select, the context is a query expression.

Note that this isn’t anything new to C# 3.0. The same problem existed in C# 2.0, with
the introduction of keywords like where (for generic constraints), which is even being
reused in LINQ. Generics caused other challenges on the parser front in fact:

F(G<A,B>(4));

926 CHAPTER 19 Language Integrated Query Essentials

Because the < and > tokens were used only for comparison before, using them for
generic parameters had the potential to break things. Does the preceding code mean
that the user wants to call a method F with two parameters that result from comparing
G and A, and B and the constant 4? That’s plausible, but with generics the user may
have meant to call F with the result of calling generic method G using type parameters
A and B and an argument of 4. If this fascinates you, take a look at the language spec-
ification to get the answer on the language’s interpretation.

foreach Analogy
If you’re entirely new to LINQ, it helps to think about the from clause as if it were the
same as foreach. Ultimately, queries execute with some iterative feeling, and the syntacti-
cal analogy is striking (which isn’t a coincidence). For example:

var nums = new ArrayList { 1, 2, 3, 4, 5 };

from int n in nums ...

This is similar to the following:

var nums = new ArrayList { 1, 2, 3, 4, 5 };

foreach (int n in nums) {

...

}

From an operational point of view, this analogy holds to some extent, enough to help
people reason about the query. But there are quite a few differences. The foreach loop is a
statement and therefore doesn’t produce a value, whereas the query expression is, well, an
expression and therefore produces a value. Second, because the foreach loop is impera-
tive, it executes on the spot, whereas a LINQ query is evaluated lazily, as explained in
Chapter 20 in the section, “Iterators.”

Multiple Sources
More-complex queries often require more than one data source to query from at the same
time. If you reason aloud in terms of “for every element in the first source,” on to “for
every related element in the second source,” nested from clauses are what you need.
Making the comparison with the foreach statement is useful again because this looks
exactly like nested loops. Here’s an example:

from product in products

from order in product.Orders

...

Here we assume products is a source with Product objects, with an Orders property
defined on the Products class. Orders returns a collection of Order objects. In other
words, we’re querying the orders for every product.

927Query Expression Syntax

What this turns into internally is something discussed in much detail in Chapter 20 in the
section, “Projection,” but to convince you LINQ syntax always boils down to method
calls, here’s one possibility:

products.SelectMany(product => product.Orders, (product, order) => ...)

...

In fact, SelectMany is implemented using nested foreach loops. All that matters now is
that you can have multiple sources that are being used inside the query expression.
Conceptually, you can think of them as nested loops.

DIFFERENT SOURCES, DIFFERENT APPROACHES

Dealing with different data sources can be done in different ways. Maybe you want to
create the Cartesian product of two sources and execute the rest of the query for each
couple of elements from both sources. This is achievable through the use of multiple
from clauses, in particular when the sources are independent:

from x in xs

from y in ys // ys is not dependent on x

// can use x and y here

Sometimes the second source depends on the element that comes out of the first
one, as shown in the products and orders preceding example, which is quite different.

Finally, you might want to combine elements from two sources pair-wise. For example, if
you have { 1, 2 } and { 3, 4 }, you want to get with { (1,3), (2,4) }. This can be achieved
using the new .NET 4.0 standard query operator Zip, discussed in the next chapter in
the section, “Zip.”

Projection Using the Select Clause

Now that we’ve identified the query sources, we can start operating on the data they
provide. Although you might think of filtering and ordering as the first kind of operations
you want to perform, we’ll start from the end. Every query expression in C# needs to end
either by a select clause or a group by clause. The former operation is the simplest to
explain so we start from there.

Identity Projection
The most trivial projection possible doesn’t do any transformation on the input data and
is called the identity projection, after the identity function. An example is shown here:

var nums = new List<int> { 1, 2, 3, 4, 5 };

var res = from n in nums

select n;

928 CHAPTER 19 Language Integrated Query Essentials

This will produce a sequence with the same elements as the ones in the nums source and is
not very useful. However, there’s an observable effect in this transformation: The nums and
res objects are not the same. What happens is that the preceding form gets translated into
the following:

var res = nums.Select(n => n);

For LINQ to Objects, the Select method is defined in the System.Linq namespace as an
extension method for IEnumerable<T>:

public static IEnumerable<R> Select<T, R>(this IEnumerable<T> source,

Func<T, R> projection);

Notice this method returns nothing more specific than an IEnumerable<R>, where R is the
type parameter corresponding to the result of the projection. In this case, T and R are the
same, namely int, as inferred from the identity function lambda expression. You should
be able to figure this out quite easily yourself: The source is a List<int>, hence an
IEnumerable<int>. Thus, T is substituted for int, and therefore the input to the projection
function is an int. The project function simply returns its input, which should be an int
because of that. Because the output is typed as R, we find that R is also substituted for int.
Our query is turned into the following:

var res = Enumerable.Select<int, int>(nums, delegate (int n) { return n; });

Here we’ve used the knowledge that Select is defined as an extension method using the
static Enumerable class in System.Linq.

As a result, the input, which was a List<int>, became an IEnumerable<int> that hides the
original source. Therefore, it’s fine to hand out the result to any read-only consumer
without running the risk they cast it back to List<int> and manipulate the elements:

var evil = (List<int>)res; // this fails at runtime

evil.Add(0xBAD);

The way the original source is hidden by the Select method is something that will become
clear when we discuss iterators in Chapter 20, which act as the fuel for LINQ to Objects.

DIFFERENT LANGUAGES, SAME BEHAVIORS

The C# compiler doesn’t “compile away” identity projections if the query doesn’t
consist of anything but that (a “degenerate query expression”):

var res = from n in nums

select n;

The preceding will compile into a Select call that seems useless because it doesn’t
do anything useful, but the source-hiding property that was explained earlier is deemed
important. The requirement for the user to write a select clause reflects this more or

929Query Expression Syntax

less. In Visual Basic, you can omit the Select clause if it’s trivial, but to maintain the
source-hiding property, the compiler will inject the identity projection Select call:

Dim res = From n In nums

If there’s more than only a trivial select clause (for example, a filter preceding it), a
trivial select clause is compiled away, though. The reason is that the preceding opera-
tors, like a where clause, already cause the source to get hidden:

var res = from n in nums

where n % 2 == 0

select n;

In C#, the user is still required to write the select clause, but this time it gets
dropped at compile time, resulting in the following code:

var res = nums.Where(n => n % 2 == 0);

This illustrates how syntactical differences across C# and Visual Basic maintain the
(subtle) desired behavior of trivial projections when needed.

Stand-alone identity projections are not very useful other than for their source-hiding
properties. But because C# requires you to write a select clause (or a group by clause) to
terminate a query expression, you’ll encounter identity projections quite often:

var res = from n in nums

where n % 2 == 0

select n;

Nontrivial Projections
Of more interest are the nontrivial projections that really transform elements from the
input sequences into some result, possibly of another type. A simple example is shown here:

var twice = from n in nums

select n * 2;

The output of this query is an IEnumerable<int> whose produced elements contain the
original elements each multiplied by two. Internally, this translates into a Select method
call, as shown before, that looks like this:

var twice = nums.Select(n => n * 2);

In other words, Select takes in a function to execute on all the source’s elements, giving
back the output objects. The syntactical translation carried out by the compiler for a
select clause is shown in Figure 19.12. We’ll ignore the case where multiple range identi-
fiers are “in scope” for the time being.

930 CHAPTER 19 Language Integrated Query Essentials

from identifierrange variable in exprsource select exprproject

exprsource.Select(identifierrange variable => exprproject)

FIGURE 19.12 Translation of a select clause to a Standard Query Operator method call.

nums 1 2 3 4
IE<int>

twice
IE<int>

 2 4 6 8

n

=
>

n

*

2

nums 1 2 3 4
IE<int>

letters
IE<char>

 ‘a’‘b’‘c’‘d’

n

=
>

‘
a
’

+

n

FIGURE 19.13 A few sample projections.

Projections can also emit a different result type than the source’s element type. The
following example illustrates a “to char” operation on numbers, translating them to ASCII
characters:

var letters = from n in nums

select (char)(‘a’ + n - 1);

For example, a nums input sequence of { 1, 2, 2, 1 } will produce an output with the letters
{ ‘a’, ‘b’, ‘b’, ‘a’ }. Figure 19.13 shows the projection query operator in action for both
examples shown here.

Anonymous Types and Object Initializers
In most concrete cases, your data source won’t exist out of elements of some basic data
type but rather contain entity types like a Person or a Product. Projection is usually used
to select only a subset of properties (often corresponding to columns in tables in a rela-
tional database), possibly while performing some operation on any of those (for example,
to multiply a product’s Price property by a certain percentage).

An example that deals with an in-memory collection of products, selecting just a single
column, is shown here:

var names = from product in products /* an IEnumerable<Product> */

select product.Name;

931Query Expression Syntax

Here the result will be of type IEnumerable<string>, assuming a Product’s Name is of type
string. Knowing the signature of the underlying Select method reveals the output
sequence’s type immediately. Let’s do it one more time:

var names = products.Select(product => product.Name);

Given that products is of type IEnumerable<Product> and that the lambda function
returns a Product’s Name property that’s typed a string, the output cannot be anything else
but an IEnumerable<string>. In other words, T is inferred to be Product, and R is inferred
to be string in the generic Select method being called:

public static IEnumerable<R> Select<T, R>(this IEnumerable<T> source,

Func<T, R> projection);

Knowing that the underlying method call simply takes in a lambda expression means you
can provide any expression for the select clause. Refer to Figure 19.12 to see how the
select clause expression turns into a lambda expression body.

But we can do more than just select a single column; really, any expression will do for a
select clause projection, such as plain constants, constructor or method calls, use of
anonymous objects, and so on. As an exercise, infer the result type for all the following:

// Not incredibly useful but constants are expressions.

var oneForEveryProduct = from product in products

select 1;

// Using an anonymous type.

var nameAndPrice = from product in products

select new { product.Name, product.Price };

// Using a closure over an outer variable (refer to chapter on delegates).

decimal percent = 0.05m;

var productDiscounts = from p in products

select new { p.Name, Discount = p.Price * percent };

// Calling a method.

var pricingLabels = from p in products

select string.Format(“{0} costs ${1}”, p.Name, p.Price);

Anonymous types were a key feature introduced in C# 3.0 to make LINQ practical to use
because they allow defining a type on-the-fly, while creating an instance at the same time.
If every single projection would require you to create a whole type by yourself, things
would start to look cumbersome quickly:

932 CHAPTER 19 Language Integrated Query Essentials

FIGURE 19.14 Inferred IEnumerable<T> type where T is an anonymous type.

var nameAndPrice = from product in products

select new NameAndPrice(product.Name, product.Price);

...

class NameAndPrice {

public NameAndPrice(string name, decimal price) {

Name = name;

Price = price;

}

public string Name { get; private set; }

public decimal Price { get; private set; }

}

And if you really want to create a nominal type (the opposite of an anonymous type, if
you will), doing so is quite easy thanks to C# 3.0’s auto-implemented properties. One case
where this might be necessary is when you return the result of a query to the caller of a
method because anonymous types cannot “leak” the method body in a meaningful way.
Figure 19.14 illustrates the inferred type for the NameAndPrice query that makes use of an
anonymous type in the select clause.

If you’re consuming the data immediately from the method that defines the query, the
use of an anonymous type is fine. However, if you want to expose the resulting object to
the outside world, you won’t be able to specify the method’s return type:

public IEnumerable</* anonymous = can’t name it */> GetProductAndPrice() {

return from product in products

select new { product.Name, product.Price };

}

In this case, you must go back to a regular nominal type, which you can define by using
auto-implemented properties as explained in Chapter 11, “Fields, Properties, and Indexers.”

933Query Expression Syntax

Vertical Partitioning
Number of Columns Restricted

Name

Chai

Chang

Aniseed Syrup

Chef Anton’s Cajun Seasoning

Chef Anton’s Gumbo Mix

Price

18.00

19.00

10.00

22.00

21.35

1

2

3

4

5

UnitsInStock

39

17

13

53

0

ID

Name

Chai

Chang

Aniseed Syrup

Chef Anton’s Cajun Seasoning

Chef Anton’s Gumbo Mix

Price

18.00

19.00

10.00

22.00

21.35

FIGURE 19.15 Projection is vertical partitioning.

SIMPLER TYPE DECLARATIONS

It would be nice if one day we had a language feature that allows the creation of a
nominal type using lightweight syntax, as shown here:

class NameAndPrice(string Name, decimal Price) {}

Such a class with a “first-class constructor” could emit a class with two read-only prop-
erties and a constructor to initialize them. In addition, overrides for Equals,
GetHashCode, and ToString would be provided.

Alternatively (or additionally), having a refactoring to create a nominal type from an
anonymous type would come in handy, too.

Vertical Partitioning
Relational databases consist of tables, which are rectangular blocks of data, where each
element occupies a distinct row and all elements have an identical number of columns.
Use of the select clause to carry out a projection creates a vertical partition over that
data, as shown in Figure 19.15.

Filtering Using a where Clause

Filtering elements of a sequence based on a predicate is one of the most common query
operations performed. The query expression’s where clause facilitates this by use of a
Boolean-valued expression that’s evaluated for each element in the sequence:

934 CHAPTER 19 Language Integrated Query Essentials

from identifierrange variable in exprsource where exprfilter

exprsource.Where(identifierrange variable => exprfilter)

FIGURE 19.16 Translation of a where clause to a Standard Query Operator method call.

var nums = new List<int> { 1, 2, 3, 4, 5 };

var evens = from n in nums

where n % 2 == 0

select n;

Internally, the where clause translates into a class to a Where query operator method, as
shown here:

var evens = nums.Where(n => n % 2 == 0);

Figure 19.16 illustrates the syntactical translation that happens here, just as we did for the
select clause before. It’s important to emphasize query expressions are nothing but a
little syntactical veneer on top of regular method calls. You’ll see in Chapter 20, in the
section, “The Query Pattern,” how you can implement the query pattern as a way to make
objects LINQ capable (if they aren’t already by means of IEnumerable<T> for instance).

The LINQ to Objects signature for the Where method looks like this, illustrating the type of
the predicate function use:

public static IEnumerable<T> Where<T >(this IEnumerable<T> source,

Func<T, bool> predicate);

In the nums example, T is substituted for int. The predicate function then represents the
filter condition evaluated for each individual element. Elements that pass this filter end
up in the resulting sequence; others are dropped. Inside the filter range identifiers can be
used to express the predicate. An example using the products collection and a local vari-
able is illustrated here:

// Capturing an outer local variable in the predicate expression.

decimal maxPrice = 20.00m;

var cheapProducts = from p in products

where p.Price < maxPrice

select p;

Figure 19.17 illustrates the execution of the where clause for the even numbers example.

935Query Expression Syntax

nums 1 2 3 4
IE<int>

XX

evens
IE<int>

 2 4

n

=
>

n

%

2
=
=
0

FIGURE 19.17 Execution of a filter.

FIGURE 19.18 Lazy execution of a query expression.

Although I’ve made this general remark before, I should emphasize the lazy execution
nature of query expressions. It’s not until you start enumerating over the resulting query
object that the query executes. This can be illustrated by setting a breakpoint on the where
clause’s predicate expression and executing the code. You won’t see the breakpoint being
hit before you start iterating over the result.

See Figure 19.18 for this situation illustrated for the even numbers filter. Notice how the
in keyword in the foreach loop is highlighted, indicating we’re executing the loop, and as
a result of doing so the filter predicate gets evaluated. Hovering over n reveals the value
for which the filter is currently being evaluated. A similar experiment can be conducted
for a selection clause’s (nontrivial) projection expression.

Horizontal Partitioning
In contrast to the select clause’s vertical partitioning, the where clause’s filter applies a
form of horizontal partitioning, only retaining certain elements (rows) from the queried
data source. Figure 19.19 shows this on our well-known products table.

Ordering Using the orderby Keyword

Sorting elements by one or more criteria is another commonly used querying action,
which is supported through the orderby keyword. The basic idea is to specify a key selec-
tor function that selects an ordering key for each element in the input sequence. Upon
enumerating over the query result object, the ordering key is obtained for all elements and

936 CHAPTER 19 Language Integrated Query Essentials

Name

Chai

Chang

Aniseed Syrup

Chef Anton’s Cajun Seasoning

Chef Anton’s Gumbo Mix

Price
H

o
rizo

n
tal P

artitio
n

in
g

N
u

m
b

er o
f R

o
w

s R
estricted

18.00

19.00

10.00

22.00

21.35

Name

Chai

Chang

Aniseed Syrup

Price

18.00

19.00

10.00

FIGURE 19.19 Filtering is horizontal partitioning.

Besides doing just a single ordering (hence selecting just a single key), it’s possible to
specify secondary and n-ary orderings, too. For example, you might want to sort a list of
products first by price in a descending fashion, followed by an ordering by name in an
ascending fashion. This results in an ordering by name for all buckets of products with the
same price. You’ll see an example of this shortly.

The Identity Key Selector
If the elements of a sequence can be ordered by themselves (for example, because they are
of some basic data type), a trivial identity key selector function can be used. For example:

var nums = new List<int> { 3, 5, 4, 2, 1 };

var sorted = from n in nums

orderby n /* ascending */

select n;

Use of the ascending keyword is optional. Given an element n, we simply use n itself to
perform the ordering by. Internally, this turns into the following code:

var nums = new List<int> { 3, 5, 4, 2, 1 };

var sorted = nums.OrderBy(n => n);

From this, the use of the identity function becomes clear. The same identity function can
be used for a descending ordering, as shown here:

var nums = new List<int> { 3, 5, 4, 2, 1 };

var sortedDesc = from n in nums

orderby n descending

select n;

This gets translated to an OrderByDescending call that looks like this:

var nums = new List<int> { 3, 5, 4, 2, 1 };

var sortedDesc = nums.OrderByDescending(n => n);

used to sort the elements. Ordering by a key can be done either ascending (the default) or
descending, using the corresponding keywords.

937Query Expression Syntax

Unless specified otherwise, ordering is based, as you will see, on the default IComparer for
the element type, as obtained through IComparer<T>.Default. We discuss the concept of
comparers in Chapter 16, “Collection Types.”

SLIGHTLY MORE EAGER

To establish an ordering, all elements from the source sequence need to be known
before any element from the ordered sequence can be returned. Although the use of
an ordering in a query expression still keeps the entire query lazy, the effect of request-
ing the first element from the resulting sequence is quite an eager operation because
it “drains” the whole source sequence to establish the ordering.

Compare this to Where and Select, which just take enough elements out of the source
to produce one result sequence element at a time. For Select, this is a one-to-one
relationship: asking the next element from the result causes Select to fetch the next
element from the source and apply the projection function. Where is a bit greedier at
times because it needs to consume elements from the source until the filter function
evaluates true.

OrderBy can’t do anything but load all the elements in the source to perform a sort on
all of them. Notice we’re only talking about LINQ to Objects here, where this causes all
source elements to end up in an in-memory collection suitable for performing sorting
operations on. In case of remote LINQ execution (for example, using LINQ to SQL), the
ordering operation will be remoted to the server and execute there.

Nontrivial Orderings
As you can already guess by now, the orderby clause simply expects a valued expression that
produces the key value to order by. Any expression will do, from the absurd to the useful:

// Not incredibly useful but constants are expressions. Notice this doesn’t

// guarantee to return the products in the input order!

var orderByConstant = from product in products

orderby 1

select product;

// Expensive to cheap requires descending sort.

var decreasingPrice = from product in products

orderby product.Price descending

select product;

// Calling a method and using a closure over a captured local variable.

DateTime from = DateTime.Now - TimeSpan.FromDays(100);

var topSellers = from p in products

orderby p.GetNumberOfSalesSince(from) descending

select p;

938 CHAPTER 19 Language Integrated Query Essentials

Name

Chai

Chang

Aniseed Syrup

Chef Anton’s Cajun Seasoning

Chef Anton’s Gumbo Mix

Price

18.00

19.00

10.00

22.00

21.35

1

2

3

4

5

ID Key

12

24

38

79

7

 1 2 3 4 5

1

products
IE<Product>

 4 3 2 1 5topSeller
IE<Product>

1

Name

Chai

Chang

Aniseed Syrup

Chef Anton’s Cajun Seasoning

Chef Anton’s Gumbo Mix

Price

18.00

19.00

10.00

22.00

21.35

ID

1

2

3

4

5

Key

79

38

24

12

7

1

2

FIGURE 19.20 Execution of an ordering.

The sky (of expressions) is the limit. Just recall how the previous query expressions trans-
late into method calls with lambda expressions for the argument as you see where this
flexibility comes from. For example:

// Calling a method and using a closure over a captured local variable.

DateTime from = DateTime.Now - TimeSpan.FromDays(100);

var topSellers = products

.OrderByDescending(p => p.GetNumberOfSalesSince(from));

Figure 19.20 illustrates this query’s execution, starting with key selection at the top.

Secondary and n-ary Orderings
Use of an orderby clause with a single key selector expression creates just a primary order-
ing. Quite often, one wants to establish secondary and n-ary orderings on top of this, as
illustrated in Figure 19.21.

939Query Expression Syntax

Name

Sir Rodney’s Scones

Rod Kaviar

Aniseed Syrup

Zaanse koeken

Rogede sild

Longlife Tofu

Outback Lager

Price

10.00

15.00

10.00

9.50

9.50

10.00

15.00

Rogede sild

Zaanse koeken

Aniseed Syrup

Longlife Tofu

Sir Rodney’s Scones

Outback Lager

Rod Kaviar

OrderByPrice

Price

9.50

15.00

10.00

Th
en
By

Na
me

1

2

2

2

Name

Zaanse koeken

Rogede sild

Sir Rodney’s Scones

Aniseed Syrup

Longlife Tofu

Rod Kaviar

Outback Lager

Price

9.50

15.00

10.00

Name

¨

¨

¨

FIGURE 19.21 Establishing secondary and n-ary orderings.

Subsequent orderings are declared using a comma-separated list of key selectors, as
shown here:

var priceThenName = from product in products

orderby product.Price, product.Name

select product;

Obviously, each key selector can be suffixed with either ascending (optional keyword) or
descending (for example, to sort on Price descending and on Name ascending). The
preceding is not the same as the following, though:

var priceThenName = from product in products

orderby product.Price

orderby product.Name

select product;

This will first order by Price, establishing a primary ordering, and then order on Name,
reestablishing a primary ordering. This is semantically equivalent (ignoring possible side
effects that would occur by running the key selector expression product.Price) to the
following:

var priceThenName = from product in products

orderby product.Name

select product;

940 CHAPTER 19 Language Integrated Query Essentials

FIGURE 19.22 OrderBy and ThenBy query operators.

The way comma-separated key selectors in orderby clauses get translated is by using
separate methods: The primary (and possibly only) ordering results in an OrderBy or
OrderByDescending call, while n-ary orderings append ThenBy or ThenByDescending calls
to this. For example, the Name-then-Price ordering shown here gets turned into the
following equivalent code:

var priceThenName = products

.OrderBy(product => product.Price)

.ThenBy(product => product.Name);

Although the OrderBy method is defined for LINQ to Objects as an extension method on
the IEnumerable<T> interface, ThenBy isn’t. In fact, there’s another type in the play here to
make this work, as revealed by looking at the OrderBy signature:

public static IOrderedEnumerable<TSource> OrderBy<TSource, TKey>(

this IEnumerable<TSource> source, Func<TSource, TKey> keySelector);

The IOrderedEnumerable<T> is nothing more than a regular IEnumerable<T>, but its type
reveals a primary ordering has been established already. Extension methods on this interface
are provided to establish secondary and n-ary orderings, by means of the ThenBy methods:

public static IOrderedEnumerable<TSource> ThenBy<TSource, TKey>(

this IOrderedEnumerable<TSource> source, Func<TSource, TKey> keySelector);

Once ordered, always ordered: ThenBy starts from an IOrderedEnumerable<T> and returns
one of those by itself, allowing more ThenBy calls to follow. Figure 19.22 illustrates this as
a state machine of types (as nodes) and methods (as edges).

941Query Expression Syntax

from idrange var in exprsource orderby expr1st, expr2nd

exprsource.OrderBy(idrange var => expr1st)
.ThenBy (idrange var => expr2nd)

FIGURE 19.23 Translation of the orderby clause.

Query Pattern
The query expression’s translation for an orderby clause with one or more ordering key
selector expressions was shown in the preceding section. Let’s formalize it just as we did
for both the select and where clauses before, as shown in Figure 19.23. Again, lambda
expressions are used as the argument to the query operator methods that get called. For
descending orderings, the corresponding method with the Descending suffix is used.

The number of n-ary orderings is unbounded and simply results in more ThenBy calls
being added to the chain of method invocations.

Custom Orderings
The concept of ordering is formalized by means of the IComparer<T> interface that you
can find in the System.Collections.Generic namespace. In some cases, it makes sense to
override the default ordering behavior by implementing IComparer<T> with specialized
comparison semantics.

The OrderBy and ThenBy methods (and their descending variants) provide overloads that
accept an IComparer<TKey> object, where TKey stands for the key type that was used for
the key selector expression’s result.

public static IOrderedEnumerable<TSource> OrderBy<TSource, TKey>(

this IEnumerable<TSource> source, Func<TSource, TKey> keySelector,

IComparer<TKey> comparer

);

There’s no query expression syntax for this method overload because it’s deemed for quite
specialized use, so you’ll have to use method invocation syntax to use this.

QUERY SYNTAX = ALL OR NOTHING?

Some people believe query syntax is an all-or-nothing thing. This is not true. For example:

from product in products.OrderBy(p => p.Price) select product.Name

(from p in products where p.IsInStock select p).OrderBy(p => p.Price)

Query expressions are (and consist of) just expressions.

942 CHAPTER 19 Language Integrated Query Essentials

IGrouping<int, int> IGrouping<int, int> IGrouping<int, int

IEnumberable<IGrouping<int, int>>

IEnumberable<int> nums

3 7 1 5 0 8 0 4 2
from n in nums
group n by n % 3

3 0 0 7 1 4 5 8 23 0 0 7 1 4 5 8 2

0 1 2

Ke
y

Ke
y

Ke
y

V
a
l
u
e

V
a
l
u
e

V
a
l
u
e

n

=
>

n

%

3

FIGURE 19.24 Partitioning of an input sequence by a grouping key.

Grouping Using the group by Clause

Often data can be grouped into buckets based on certain criteria. For example, products
may be grouped by category, and people may be grouped by age range (for example, based
on modulo 10 division of the age). The group by clause enables you to group objects by a
key, resulting in a sequence of IGrouping objects.

Partitioning
The grouping query operator is best looked at as a partitioning mechanism where items
from the source sequence are grouped by matching key values. This key gets computed for
all elements in the source sequence to realize this grouping. For example, we could parti-
tion a sequence of integer numbers by their remainder after division by, say, three. To put
it in terms of grouping vocabulary, the key computed for every element is this remainder
value. All elements that have the same computed key value end up in the same group: the
elements that are divisible by three, the ones with a remainder of one, and the ones with
a remainder of two. This is shown in Figure 19.24.

In this example, starting from an input sequence of integer numbers, we get back a new
sequence of groups that associate a key value (an integer representing the modulo three
division result) with a sequence of values that belong to that group. Such a grouping is
represented by an IGrouping<TKey, TValue> generic object:

public interface IGrouping<out TKey, out TElement> : IEnumerable<TElement> {

TKey Key { get; }

}

943Query Expression Syntax

Key Values

0 3, 0, 0

1 7, 1, 4

2 5, 8, 2

FIGURE 19.25 Inferring the result type of a grouping operation.

Based on the definition shown here, let’s revisit this definition of a group: The Key prop-
erty, of generic parameter type TKey, indicates the key value that all the group’s elements
have in common. In our example, we have grouping objects with key type Int32 and
values of 0, 1, and 2. Each group is a container for elements belonging to that group, as
represented by the IEnumerable<TElement> interface implementation, where TElement is
the generic parameter type used for the element type.

Another way to look at this is by creating a table that associates a key value with all the
values that have that key in common. Each row here represents a group, which is repre-
sented by a Key property and is a sequence of its own, producing the elements in the group:

The running example can be written in LINQ syntax as follows:

var byMod3 = from n in new [] { 3, 7, 1, 5, 0, 8, 0, 4, 2 }

group n by n % 3;

foreach (var remainderGroup in byMod3) {

Console.WriteLine(“Remainder = “ + remainderGroup.Key);

foreach (var number in remainderGroup) {

Console.WriteLine(“ “ + number);

}

}

It’s good to play the type inference analysis by yourself to get an idea of how this works.
Start by the source of the query, an array of integer numbers, which clearly is an
IEnumerable<int>. The grouping clause now declares the key to be computed for all of
those source elements (that is, n % 3). With n representing a source element of type int,
the remainder after division by three, acting as the key, will also be an integer value. This
results in the following type for byMod3:

IEnumerable<IGrouping<int, int>> byMod3 = ...;

You gotta love type inference, don’t you? Figure 19.25 shows rich type inference.

944 CHAPTER 19 Language Integrated Query Essentials

IGrouping<TKey, TElement>

IEnumerable<TElement>

IEnumerable<IGrouping<int, int>> byMod3 = from n in …
group n by n % 3;

int int

int

foreach (IGrouping<int, int> remainderGroup in byMod3)

{

 …

 foreach (int number in remainderGroup)

 {

 …

 }

}

FIGURE 19.26 Type inference for foreach loops over sequences of groupings.

What we got back is an enumerable where each element is a grouping that maps a key
onto a set of values. Substituting the type parameters in the generic type definition for
IGrouping results in the following:

public interface IGrouping</* TKey */ int, /* TElement */ int>

: IEnumerable</* TElement */ int> {

/* TKey */ int Key { get; }

}

So the result of the grouping is an enumerable sequence of such objects. The outer loop
iterates over all the groups, each of which has a Key property available. Because groups can
iterate over their contained elements, the inner loop can do so to print the elements in
each group. Doing the type inference exercise a bit further results in the following
explicitly typed code:

List<int> numbers = new List<int> { 1, 2, 3, 4, 5 };

IEnumerable<IGrouping<int, int>> byMod3 = from n in numbers

group n by n % 3;

foreach (IGrouping<int, int> remainderGroup in byMod3) {

Console.WriteLine(“Remainder = “ + remainderGroup.Key);

foreach (int number in remainderGroup)

Console.WriteLine(“ “ + number);

}

Figure 19.26 shows how these types flow a bit more schematically. Intuitively, all you need
to know is that a foreach loop “unpacks” an IEnumerable<T> into a loop variable of type T.

945Query Expression Syntax

So far, key and element types have been the same, but shortly we’ll see examples where
this is no longer the case.

Computed Keys
Because the grouping key expression is just that, an expression, you can write anything in
there as long as it respects the typing restrictions that are mandated by the GroupBy
method signature. That is, if the key selector’s parameter, representing an element from
the input sequence, is used, its type has to be respected. Other than that, any sort of
expression can be used (for example, selecting a property or calling a method).

For example, given all products, we might want to group those based on the first letter of
the product name:

var byFirstLetterOfName = from product in products

group product by product.Name[0];

Here we’re using an indexer expression to select the key value to group by. In this case,
products Chai and Chang will end up in the same group, with ‘C’ as their shared key.
More complex expressions can be built of course, possibly capturing an outer variable:

var byNthLetterOfName = from product in products

group product by product.Name[n] - ‘a’;

Now we’re not only capturing an outer variable n (that could be a method parameter or so
as well), but we’re also using a subtraction to select the position of the letter in the alpha-
bet. For example, with n equal to 1, both Chai and Chang will end up in the same group
with the key being ’h’, ’a’, which equals 7. This example is a bit contrived and has a
problem with possible index out-of-range exceptions occurring during grouping key
computation. It merely illustrates the point that you can compute grouping keys with any
of the expression forms supported by the language.

Simple Key Selectors
Much more common is to group by a simple key, typically corresponding to a single
column in a table or a single property (or field) on an object. For example, assuming every
product in our running example has a Category property, we could group all the products
by their categories as follows:

var byCategory = from product in products

group product by product.Category;

The result of this will be an enumerable containing a group for beverages, one for food
items, and so on. In LINQ to SQL or in other LINQ providers targeting a relational data-
base, this will typically result in the use of a groupby construct in the SQL language.

Compound Keys
Sometimes it makes sense to group by a combination of multiple keys. For example, prod-
ucts could be grouped by their categories and suppliers, resulting in groups for every

946 CHAPTER 19 Language Integrated Query Essentials

combination of a category and a supplier that occurs in the products table. The way to put
the multiple keys together into a compound key is by using an anonymous type, which
really is just another sort of expression. Assume that every Product has both a Category
and Supplier property so that we can write the following grouping query expression:

var byCategoryAndSupplier = from product in products

group product by new { product.Category,

product.Supplier};

To make things a bit simpler for illustration purposes, let’s create a simple in-memory
table of employees, each having an ID, Name, and Age property. We want to group them by
Name and Age so that we can throw a party for all employees with the same name and age:

var personnel = new[] {

new { ID = 1, First = “Bart”, Age = 26 },

new { ID = 2, First = “John”, Age = 62 },

new { ID = 3, First = “Mike”, Age = 24 },

new { ID = 4, First = “John”, Age = 53 },

new { ID = 5, First = “Bart”, Age = 26 },

new { ID = 6, First = “Eric”, Age = 26 },

new { ID = 7, First = “John”, Age = 62 },

new { ID = 8, First = “Eric”, Age = 30 },

new { ID = 9, First = “Eric”, Age = 26 },

};

var byNameAndAge = from employee in personnel

group employee by new { employee.First,

employee.Age };

foreach (var group in byNameAndAge) {

Console.Write(group.Key + “: “);

foreach (var employee in group)

Console.Write(employee.ID + “ “);

Console.WriteLine();

}

This will print the following:

{ First = Bart, Age = 26 }: 1 5

{ First = John, Age = 62 }: 2 7

{ First = Mike, Age = 24 }: 3

{ First = John, Age = 53 }: 4

{ First = Eric, Age = 26 }: 6 9

{ First = Eric, Age = 30 }: 8

947Query Expression Syntax

FIGURE 19.27 Overrides for Equals, GetHashCode, and ToString.

To understand how this works, it’s advisable to take a look behind the scenes. During the
query’s execution, instances of the anonymous type representing the compound key with
name and age will be created. To create a grouping, a data structure has to be maintained
that maps key values onto all objects that share that key.

You will recall a good candidate collection type for this from our discussion about gener-
ics, namely a Dictionary<TKey, TValue>. Here, the type parameter for the key will
become the anonymous type, and the value will be some collection of objects that share
that key. For this to work, we should be able to check keys for equality, and to make the
internal dictionary storage perform well, a good hash code is advisable. So how does this
work for the anonymous type we’re using for our compound key?

The short answer is that anonymous types, which are classes generated by the compiler
based on the structure you specified, override the methods Equals, GetHashCode, and
ToString, defined on System.Object. In the output, we’ve already seen what the ToString
method looks like as it dumps the name-value pairs for properties:

// Prints { First = Bart, Age = 26 }

Console.WriteLine(new { First = “Bart”, Age = 26 });

Figure 19.27 shows the presence of those overridden methods through ILDASM. You are
invited to inspect those method implementations using more appropriate tools, such as
.NET Reflector, to see how the equality check and hash code computation are done. In
short, Equals uses the default equality comparer on the underlying data (in this case, both
the Age integer and First string), and GetHashCode computes and combines the hash
codes for the underlying data fields, mixing in a few (seemingly magical) constant
numbers to ensure good hash code properties.

948 CHAPTER 19 Language Integrated Query Essentials

FIGURE 19.28 An implicitly typed array of anonymous type elements.

To conclude this example’s discussion, take a look at the excessive use of type inference
for local variables. Use of compound keys gives rise to anonymous types, which, as the
name implies, cannot be referred to by name. Implicitly typed local variables have to be
used in such a scenario, both to refer to the result and to loop over the groups:

var personnel = new[] {

new { ID = 1, First = “Bart”, Age = 26 },

...

};

var byNameAndAge = from employee in personnel

group employee by new { employee.First,

employee.Age };

Furthermore, we used an implicitly typed array containing anonymous types as the source,
just for illustration purposes. It’s more likely you’ll have a named type for the employee
objects in the personnel table. However, by using anonymous types all over the place in
this example, you are in a unique position to test the understanding of grouping behavior
with regard to types. As usual, the editor will guide us through this exploratory exercise.

First, let’s take a look at the type inferred for the personnel array, as shown in Figure
19.28. Because the elements are instances of the same anonymous type, the type is
inferred to be an array of that anonymous type.

Given that the array’s elements are of this anonymous type, we can already infer a part of
the GroupBy resulting object’s type:

public static IEnumerable<IGrouping<TKey, TSource>> GroupBy<TSource, TKey>(

this IEnumerable<TSource> source, Func<TSource, TKey> keySelector);

Here, TSource ought to be the anonymous type used for the source elements (that is, the
one shown in Figure 19.28). The key selector function takes in one of those objects and
maps it onto the compound key object we’ve specified using another anonymous type.
This allows us to infer the TKey generic type parameter. And finally, from this we can infer
the resulting type of the GroupBy operation our LINQ query expression translated into.
Figure 19.29 shows the resulting type.

949Query Expression Syntax

FIGURE 19.29 Resulting type from a GroupBy operation with a compound key.

from idrange in exprsource group idrange by exprgroupKey

exprsource.GroupBy(idrange => exprgroupKey)

FIGURE 19.30 Query pattern translation for group by clause.

Here, ’a stands for the grouping’s key type, which contains a First and Age property, and
’b is exactly the same type as the one used for our source collection’s elements.

Query Pattern
The group by clause we’ve seen so far can be summarized in terms of its translation that
happens behind the scenes. As usual, LINQ query expression syntax turns into method
calls underneath, and that’s no different for group by. Figure 19.30 shows how this is
achieved for group by.

MORE COMPLEX GROUPING CLAUSES

The identifier specified right after the group and before the by keyword does not have to
be the same as one of the range identifiers. For example, you can write things like this:

from product in products

group product.Price by product.Category

This will result in groups with a category as the key and prices inside each of the
resulting groups. The translation for this form uses a different GroupBy overload that
takes in an additional lambda expression for the “element selector.”

Joining Using the join Clause

Data is often part of a bigger picture with many interrelated data sources, as seen in rela-
tional databases. In such a world, queries often target multiple data sources simultane-
ously, by joining those on a certain criterion. In relational database technologies, this is

950 CHAPTER 19 Language Integrated Query Essentials

FIGURE 19.31 A relationship between two tables in LINQ to SQL.

usually realized by giving data records a unique identifier, which is referred to as a primary
key. To refer to a data record from another table, a column is designated as a foreign key
referring to the related table’s primary key.

Figure 19.31 shows such a relationship, sometimes also referred to as an association, in the
context of LINQ to SQL. In this particular case, one category can have many products
associated with it, hence the OneToMany cardinality. To go from a Product to its Category,
the Parent Property is set to Category. In the opposite direction, you can get the products
in a given category through the Child Property named Products. At the bottom of the
Properties window, the underlying relationship is shown:

Category.CategoryID -> Product.CategoryID

On the left, we see the primary key that uniquely identifies a category using an ID, which
is referred to on the right as a foreign key in the Product table.

Because we’re currently focusing on LINQ to Objects to explain query operators and the
various clauses in the query expression syntax, we leave LINQ to SQL out of the picture
for the time being and cook up an example using in-memory data.

The Base Class Library (BCL) is full of interesting sources of data, and members that return
a generic or nongeneric IEnumerable object are usable for querying. One such place is in
the System.Diagnostic’s Process class:

Process[] processes = Process.GetProcesses();

951Query Expression Syntax

Using this method, we can get information about all the processes currently running on
the machine. For example, using the query clauses we already know, we can retrieve an
ordered sequence of top memory-consuming processes:

const int MB = 1024 * 1024;

var heavyMemoryUsers = (from p in Process.GetProcesses()

where p.WorkingSet64 > 100 * MB

orderby p.WorkingSet64 descending

select new { Name = p.ProcessName,

Memory = p.WorkingSet64 / MB }

).Take(10);

foreach (var p in heavyMemoryUsers)

Console.WriteLine(p);

The call to Take(10) simply retrieves the first 10 objects of the query result. You’ll see this
and similar standard query operators in Chapter 20. On my machine, the preceding query
prints the following:

{ Name = devenv, Memory = 552 }

{ Name = devenv, Memory = 326 }

{ Name = iexplore, Memory = 279 }

{ Name = devenv, Memory = 230 }

{ Name = devenv, Memory = 229 }

{ Name = dwm, Memory = 199 }

{ Name = iexplore, Memory = 193 }

{ Name = sqlservr, Memory = 190 }

{ Name = svchost, Memory = 173 }

{ Name = WINWORD, Memory = 169 }

Although this is nice, it would be nicer to have friendly names for the processes. To realize
this, we can create a separate collection that maps process names on descriptions:

var processDescriptions = new [] {

new { Name = “devenv”, Description = “Microsoft Visual Studio” },

new { Name = “dwm”, Description = “Desktop Window Manager” },

new { Name = “iexplore”, Description = “Windows Internet Explorer” },

new { Name = “sqlservr”, Description = “Microsoft SQL Server” },

new { Name = “svchost”, Description = “Service Host” },

new { Name = “WINWORD”, Description = “Microsoft Office Word” }

};

Now both the collection with Process objects and the descriptions have something in
common: the process name. What remains to be done now is to join both sources based
on the equality of a key they have in common. This is shown in Figure 19.32.

952 CHAPTER 19 Language Integrated Query Essentials

Name

Microsoft Visual Studio

Windows Internet Explorer

Desktop Window Manager

Microsoft SQL Server

Service Host

Microsoft Office Word

…

MB

552

279

199

190

173

169

…

ProcessName

devenv

iexplore

dwm

sqlservr

svchost

winword

…

MB

552

279

199

190

173

169

…

Description

Microsoft Visual Studio

Windows Internet Explorer

Desktop Window Manager

Microsoft SQL Server

Service Host

Microsoft Office Word

…

Name

devenv

iexplore

dwm

sqlservr

svchost

winword

…

FIGURE 19.32 Joining two data sources based on a common key.

To join those two (in-memory) data sources for our example, we can use the following
query expression:

const int MB = 1024 * 1024;

var heavyMemoryUsers = (from p in Process.GetProcesses()

join d in processDescriptions on p.ProcessName

equals d.Name

where p.WorkingSet64 > 100 * MB

orderby p.WorkingSet64 descending

select new { Name = d.Description,

Memory = p.WorkingSet64 / MB }

).Take(10);

foreach (var p in heavyMemoryUsers)

Console.WriteLine(p);

Besides the use of the join clause to select a second source for use in the query, notice the
use of range identifier d in the select clause. Once the join has been established, you can
use both data sources anywhere in the query “downstream.” This is similar to the use of
multiple from clauses to select more than one data source, though the join clause differs
in its semantics. That’s what the on ... equals ... portion is responsible for, used to
extract a key from both sources to match for equality.

953Query Expression Syntax

In this particular example, we’re stating that the ProcessName as it appears in the first data
source, of Process objects, corresponds to the Name property in our descriptions collection
used as the second data source. Once we’ve established this relationship, we continue with
filtering operations and finally project the description of the process and the memory it
consumes in the select clause.

The use of the join clause doesn’t need to be paired with the from clauses that appear at
the top of the query expression. We could equally well have written the following:

var heavyMemoryUsers = (from p in Process.GetProcesses()

where p.WorkingSet64 > 100 * MB

orderby p.WorkingSet64 descending

join d in processDescriptions on p.ProcessName

equals d.Name

select new { Name = d.Description,

Memory = p.WorkingSet64 / MB }

).Take(10);

For LINQ to Objects scenarios, which execute in memory, reordering query operations can
be beneficial from an optimization point of view. For example, instead of ordering a
bunch of objects first and then filtering out only a fraction of them, you’re better off
filtering the first, using where, before performing an ordering operation using orderby.
Similarly, joining a filtered number of objects will be less expensive than joining all
objects and then filtering out specific ones.

OPTIMIZE WITH CARE AND BEWARE OF UNDESIRABLE SIDE EFFECTS

Although optimizations such as swapping filtering and sorting seem very reasonable,
you should pay lots of attention while doing so. You most certainly don’t want to
change the semantics of your query expression by reordering operations.

The nice thing about declarative queries is that the runtime can also carry out certain
optimizations on your behalf, though this is rather limited for LINQ to Objects. One of
the reasons has to do with side effects that can occur in parts of the query expression:

from x in xs // 3, 4, 2, 1

orderby x

where x.IsEvenAndPrint() ...

In the preceding code, the user wrote an IsEvenAndPrint (extension) method that will
check whether a number is even but will also print to the screen. If the relative order of
the orderby and where operations were to be swapped by the runtime, different
messages would be printed to the screen. The original query would print “1,2,3,4,”
whereas the optimized query (with the filter first) would print “3,4,2,1.”

As a rule of thumb, avoid side effects anywhere in a query expression. They tend to be
very difficult to reason about in a lazily evaluated context.

954 CHAPTER 19 Language Integrated Query Essentials

from x1 in e1 join x2 in e2 on k1 equals k2 select v

e1.Join(e2, x1 => k1, x2 => k2, (x1, x2) => v)

FIGURE 19.33 Query pattern translation for join clause.

The new more user-friendly output is shown here:

{ Name = Microsoft Visual Studio, Memory = 552 }

{ Name = Microsoft Visual Studio, Memory = 326 }

{ Name = Windows Internet Explorer, Memory = 279 }

{ Name = Microsoft Visual Studio, Memory = 230 }

{ Name = Microsoft Visual Studio, Memory = 229 }

{ Name = Desktop Window Manager, Memory = 199 }

{ Name = Windows Internet Explorer, Memory = 193 }

{ Name = Microsoft SQL Server, Memory = 190 }

{ Name = Service Host, Memory = 173 }

{ Name = Microsoft Office Word, Memory = 169 }

Query Pattern
Depending on the shape of the query, the join clause is translated into a specific query
operator method call. For an elaborate explanation of all possible translations, refer to the
C# language specification. However, to give you a feeling about the kind of translation
we’re talking about, Figure 19.33 sketches the translation of a join clause immediately
followed by a select clause.

The select clause was eaten by the Join method call and ended up in the last lambda
expression parameter. This effectively eliminates the range identifiers that are involved in
the query expression. However, if query expression clauses other than select follow the
join clause, the range identifiers cannot be eliminated just yet:

var query = from p in Process.GetProcesses()

join d in processDescriptions on p.ProcessName equals d.Name

where p.WorkingSet64 > 100 * MB

orderby p.WorkingSet64 descending

select new { Name = d.Description, Memory = p.WorkingSet64 / MB };

Here, p and d are both continued to be used in downstream query operators like where,
orderby, and select. When talking about the let clause, we see the technique carried out
by the compiler to deal with multiple range identifiers, as seen in the preceding example.

955Query Expression Syntax

Continuing a Query Expression Using the into Clause

Although most query expression clauses can be followed by others immediately, there are
a few notable exceptions. In particular, select and group by end a query expression
because of their projective characteristic. For example:

var query = from product in products

select new { product.Name, product.Price };

Once the projection has happened, the query expression produces objects of the type used
in the select clause. In this particular example, that’s an anonymous type with two prop-
erties: Name and Price. At this point, we don’t have an identifier anymore to refer to those
objects: If product would still be “in scope,” we could get access to properties other than
the ones that have been projected out. Or to put it another way, once there’s been a
projection, only the projected data should be accessible downstream.

A similar scenario exists with the use of group by. Once a grouping has happened, the
original objects have been put in groups and are not directly accessible anymore. For
example, consider the following:

var query = from product in products

group product by product.Category;

There’s no point in referring to the product range identifier anymore after the grouping
has occurred because they’ve been canned in separate groups already. What would it mean
to refer to product after the grouping? Any product in any of the groups? If that were to
be the case, you could equally well have written the additional query clause, referring to
product, before you did the grouping. In summary, once a grouping has been made, the
only things it makes sense to refer to are the groups themselves.

Sometimes you do want to continue a query expression after a projection or grouping has
occurred, referring to the objects or the groups, respectively. That’s where the into clause
comes into play.

Continuation After Projection
Projection using a select clause has the interesting property of restricting the number of
properties that are retained (vertical partitioning), but it has other useful properties too. It
can alias properties by more friendly names, through the use of an anonymous type, and
can transform data. Let’s focus on the former aliasing example:

var query = from product in products

select new { Name = product.ProductName, Price = product.UnitPrice };

Here, we’re faced with Product objects given to us, but with quite ugly property names,
such as ProductName and UnitPrice. To make things easier on the eye, we would like to
alias those by more friendly names like Name and Price. A projection can do so by making

956 CHAPTER 19 Language Integrated Query Essentials

FIGURE 19.34 Chaining query expressions.

use of an anonymous type defined on the fly. At the same time, we got rid of the proper-
ties we’re not interested in querying on.

Given this new shape of data, we want to start writing query expressions over it. One way
to do so is by use of an intermediate query expression. For example:

var products2 = from product in products

select new { Name = product.ProductName,

Price = product.UnitPrice };

Here, products2 is of type IEnumerable<T>, where T stands for the anonymous type used
in the projection. And where an enumerable sequence is available, you can use query
expressions:

var expensiveProducts = from product in products2

where product.Price > 100m

select product;

Here, the range identifier product refers to the objects in products2, which are of the
anonymous type created in the first query expression. You can clearly see this (as shown
in Figure 19.34) in the code editor when writing the where clause.

BEWARE OF LAZY EVALUATION

Keep in mind that LINQ queries are lazily evaluated; this will become much clearer
once we see how various LINQ providers work.

In the preceding example, products2 hasn’t been evaluated yet: only when someone
starts enumerating products2 will its evaluation start to happen. In this particular
example, it will be the expensiveProducts query that “pulls data out of” products2,
which in its turn pulls things out of products. As a result, enumerating over the
expensiveProduct query expression will cause products2 to evaluate.

This cascading effect of query expression evaluation might be surprising at first but is
essential to the way LINQ works. If this weren’t the case, lots of intermediate storage
would be required, possibly for things that will never be asked for. As an example, con-
sider that products2 would contain thousands of objects, while the

957Query Expression Syntax

FIGURE 19.35 The new range identifier refers to objects produced by the select clause.

from product in products

select new

into product

 where product.Price > 100m
 select product

{ Name = product.ProductName,
 Price = product.UnitPrice}

FIGURE 19.36 Use of into after a projection.

expensiveProducts query retains only a few tens of those. If products2 were to be
persisted in memory as an intermediate query result, lots of storage space is wasted
for no good reason.

Having to create intermediate query expressions to declare the query we’ve seen before
seems unnecessary. And indeed, using the into clause, this can be simplified:

var expensiveProducts = from product in products

select new { Name = product.ProductName,

Price = product.UnitPrice } into product

where product.Price > 100m

select product;

Figure 19.35 shows the look and feel when writing this query expression in the code
editor, where the new product identifier clearly refers to the anonymous typed object
created in the projection clause upstream.

Here, the into clause specifies a new range identifier used to represent the objects that
occur in the sequence to the left of it. We could be using a new range identifier or reuse
an existing one, as we’re doing here. Think about it just like you think about scopes for
variables anywhere else in the language: The innermost product identifier hides the outer
one, as shown in Figure 19.36.

958 CHAPTER 19 Language Integrated Query Essentials

from idrange in exprsource … select exprproject into idrange2

…

from idrange2 in (from idrange in exprsource … select exprproject)

FIGURE 19.37 Translation of the into clause.

It should come as no surprise that the into clause is based on nested query expressions,
just like we would do it manually by introducing our own intermediate expression. Figure
19.37 illustrates the translation carried out by the compiler when using the into clause.

Continuation After Grouping
Grouping is often just the start of a more complex data analysis task. For example, if
you’re asked to create sales statistics for products on a per-category basis, grouping will be
your friend. Similarly, to compute the average price of a product on a per-supplier basis,
grouping is the logical first step to take.

Once you have a sequence of the available groups, you need to take it one step further,
expressing operations on each of the created groups. To do so, you want to continue the
query just as we’ve done for projection. To create a bit of a variety in the examples given,
let’s consider reflection information this time. Although we discuss reflection in more
detail in Chapter 21, “Reflection,” the essence is simple: Using reflection, you can get
information about types at runtime:

typeof(Enumerable).GetMethods()

The preceding expression returns an array of MethodInfo objects describing the methods
available on the Enumerable type, which lives in System.Linq. It’s here all the LINQ to
Objects query operators are defined as methods, as detailed in Chapter 20. Arrays are
enumerable, and therefore we can write a LINQ query over them.

Because lots of query operator methods have overloads, the GetMethods call will return
different MethodInfo objects with the same name, one for each overload. For example,
there will be multiple entries for Where methods, corresponding to those overloads:

public static IEnumerable<TSource> Where<TSource>(

this IEnumerable<TSource> source, Func<TSource, bool> predicate);

public static IEnumerable<TSource> Where<TSource>(

this IEnumerable<TSource> source, Func<TSource, int, bool> predicate);

We discuss the meaning of the second overload when talking about the offering of query
operators in more detail, but in short, the int parameter to the predicate stands for the
index of the object being filtered in the input sequence.

959Query Expression Syntax

Now we want to define a query over the LINQ to Objects methods, showing distinct
method names together with the number of overloads they have. An obvious first step is
to group them by name:

var query = from m in typeof(Enumerable).GetMethods()

group m by m.Name;

As you know, this returns an IEnumerable<IGrouping<TKey, TValue>> object where the
generic TKey type parameter will be substituted for string (because we group by the
method’s Name property), and TSource will correspond to MethodInfo, the type of the
objects in the input sequence.

Without the into clause, our joyride would end here because we don’t have an identifier
to refer to each of the resulting group objects. To dump the number of overloads, we
could do something like this:

var queryOperators = from m in typeof(Enumerable).GetMethods()

group m by m.Name;

foreach (var queryOperator in queryOperators) {

int n = 0;

foreach (var overload in queryOperator)

n++;

Console.WriteLine(“{0} has {1} overload(s)”, queryOperator.Key, n);

}

This gets into a quite imperative style of coding, which feels unnatural in the world of
query expressions and LINQ. Counting the number of elements in a sequence is one
aggregation operator that’s natively supported by the query operators, allowing us to
simplify the above as follows:

var queryOperators = from m in typeof(Enumerable).GetMethods()

group m by m.Name;

foreach (var queryOperator in queryOperators) {

int n = queryOperator.Count();

Console.WriteLine(“{0} has {1} overload(s)”, queryOperator.Key, n);

}

But we can do better. What about expressing the Count() operator call inside the query
expression itself? To do so, we need to continue the existing query using into:

var queryOperators = from m in typeof(Enumerable).GetMethods()

group m by m.Name into queryOperator

select new { Name = queryOperator.Key,

Overloads = queryOperator.Count() };

960 CHAPTER 19 Language Integrated Query Essentials

FIGURE 19.38 The new range identifier represents a grouping object.

foreach (var queryOperator in queryOperators) {

Console.WriteLine(“{0} has {1} overload(s)”, queryOperator.Name,

queryOperator.Overloads);

}

Here, the new queryOperator range identifier stands for the groups created for each of the
operator methods (that is, IGrouping<string, MethodInfo> objects). Subsequently, we
apply a projection to rename the IGrouping’s Key property to Name and to count the
number of overloads using the Count() method, exposed through property Overloads.
Figure 19.38 shows such a grouping object through the eyes of IntelliSense.

The reason the Count() method, which is defined as an extension on IEnumerable<T>, is
available on the grouping object is because, as we’ve seen, every IGrouping<K, T> object
implements IEnumerable<T>. This allows arbitrary nesting of query expressions over
groups, too.

One of the most common operations carried out on grouping objects is aggregation, of
which Count is just one. Other popular aggregation operators include Min, Max, Sum, and
Average:

var categoryStats = from product in products

group product by product.Category into category

select new { Category = category.Key,

AvgPrice = category.Average(p => p.Price) };

The Average aggregation extension method takes in a lambda expression to map the
objects in the source on the value to compute the average over. Because the group maps a
category onto the products in that category, Average will iterate over all the products in
each of the groups, extracting the Price to compute the average for. As a result, the
preceding query produces an IEnumerable<T> with T the anonymous type containing the
category and the average price across all products in the category. Other aggregation oper-
ators are used in a similar fashion.

Because grouping objects are also sequences over their contained elements, query opera-
tors can also be used within groups (for example, using a nested query):

961Query Expression Syntax

var perCategory = from product in products

group product by product.Category into category

select new { Category = category.Key,

Products = from p in category

orderby p.Price descending

select new { p.Name, p.Price } };

This produces a sequence of anonymous typed objects with a Category as well as a
Products property of type IEnumerable<Product>.

Bindings with the let Clause

Often, you’ll find it handy to carry out intermediate computations within a query expres-
sion, binding the result to an identifier within the query expression. An example is worth
a thousand words:

var res = from i in Enumerable.Range(0, 10)

let square = i * i

where square % 2 == 0

let cube = i * square

let stars = new string(‘*’, i)

select new { Stars = stars, Cube = cube };

Starting from the source selection, we get a sequence of integral numbers 0 through 9 (the
parameter 10 indicates the count) from the Range method on Enumerable. Now we’re
asked to compute the square of the number, filter out even square values, compute the
cube, and so on.

In a typical imperative style, you would write this with intermediate variables containing
the results of partial computations. Thanks to the let clause, you can do a similar thing in
the context of a query expression. This proves particularly handy if you keep referring to
the same computed expression all over the place. Instead of duplicating the computation,
it simply gets stored in a let binding for future reference.

For example, in the preceding query, square is available anywhere downstream in the
query expression (ignoring into clauses which start a whole new “scope”), including the
where filter clause that immediately follows it, as well as other let bindings and other
clauses. If it helps you to think about this in a more imperative style, look at the preced-
ing example as the declarative variant of the following:

foreach (int i in Enumerable.Range(0, 10)) {

int square = i * i;

if (square % 2 == 0) {

int cube = i * square;

string stars = new string(‘*’, i);

// See further...

962 CHAPTER 19 Language Integrated Query Essentials

foreach item in res

Available Environment

i

i, square

i, square

i, square, cube

i, square, cube, stars

from

let

where

let

let

select

from

let

where

let

let

select

i in Enumerable.Range(0, 10)

square = i * i

square % 2 == 0

cube = i * square

stars = new string ('*', i)

new { Stars = stars, Cube = cube };

FIGURE 19.39 A query expression as a pipeline with intermediate environments.

// yield return new { Stars = stars, Cube = cube }

}

}

TYPE INFERENCE STRIKES AGAIN

The let clause in a LINQ query expression is another form of type inference: Based on
the expression assigned, the type is inferred. But just as with var, the type is statically
determined: Anywhere you perform operations on the object bound in a let clause,
you’ll see the compiler knows the type.

Why the use of the let keyword and not reusing the var keyword? The answer is that
both are subtly different. Not from a typing point of view, as we’ve discussed here, but
with regard to assignment. Where var is used for a variable that can be reassigned,
let is used for a binding of a value to an identifier, which cannot be changed later:
Bindings are not variable, and vice versa.

A Peek Behind the Scenes: Transparent Identifiers
Having seen many translation schemes for query expression clauses into query operator
methods, you might wonder how the let clause can do its work. Ultimately, query expres-
sions boil down to chains of method invocations, with lambda expressions used for the
arguments. There are no direct local variables in use, yet with let it feels like there should
be. How does this work?

The way to think about a LINQ query expression is like a pipeline that transforms an
input sequence into an output sequence. All state involved in this transformation needs to
flow through that pipeline somehow. Every clause in the query expression represents a
discrete step in this transformation. Figure 19.39 shows what state is available in our
sample query expression at every intermediate point.

963Query Expression Syntax

Concerning terminology, we refer to all the available identifiers (bounds to a specific well-
known static type) as the environment. The pipeline model of the query extends this envi-
ronment whenever a new source is introduced (through from or join) or when a let
clause is used. From that point on, the identifier is available later in the pipeline for query
operators to refer to it.

Intuitively, you can feel that all the available identifiers and their values need to be passed
between query operators, and one way to do so is by using the projection mechanism
offered by Select. For example, after the from clause has selected a source, the resulting
sequence contains integral values referred to by i. Next, the let clause introduces identi-
fier square, which should be available later. This can be done by wrapping both i and
square in an object that’s used by the remainder part of the query expression...and so on.

This is precisely what the compiler does on your behalf. It rewrites the query to fit in a
pure pipeline-based model of chained query operators, along the following lines:

var res = from i in Enumerable.Range(0, 10)

select new { i, square = i * i } into __x1

where __x1.square % 2 == 0

select new { __x1, cube = __x1.i * __x1.square } into __x2

select new { __x2, stars = new string(‘*’, __x2.__x1.i) } into __x3

select new { Stars = __x3.stars, Cube = __x3.__x2.cube };

Those weird-looking __x1, __x2, and __x3 identifiers are compiler-generated names known
as transparent identifiers. (In the C# spec, an asterisk is used to denote them.) In essence,
anonymous types are used to keep track of the environment, which is extended one iden-
tifier at a time. Everywhere a reference to an identifier occurs, the compiler maps it back
to a path of property getter calls on those intermediate anonymous objects in a fashion
transparent to the user.

EXPERIMENT: INSPECTING TRANSPARENT IDENTIFIERS

To satisfy your technical curiosity, we can call for Reflector’s assistance in showing the
transparent identifiers. In .NET Reflector, configure the optimization mode to .NET 2.0,
through the View, Options dialog under the Disassembler section. Now navigate to the
method where you wrote the preceding code and press the spacebar to disassemble it.
Now we’re seeing C# 3.0 LINQ code through the lens of a C# 2.0 decompiler that
doesn’t know about lambda expressions, LINQ, or transparent identifiers.

In Figure 19.40 you can clearly see the pipeline model that results from chaining query
operators methods together as part of the query expression translation. Also notice
the anonymous function syntax wherever lambda expressions were used. In this case,
(other than for use in expression trees, explained in Chapter 20 in the section,
“Expression Trees”), lambda expressions are semantically equivalent to C# 2.0 anony-
mous functions.

964 CHAPTER 19 Language Integrated Query Essentials

FIGURE 19.40 Pipeline model resulting from chaining query operators methods together as
part of the query expression translation.

Summary
With the introduction of Language Integrated Query in .NET 3.5 (and C# 3.0), data access
to a wide variety of domains has never been easier. Ranging from in-memory querying
over IEnumerable<T> collections, over hierarchical XML data, to all sorts of external data-
base formats, LINQ unifies querying over all those data domains. In doing so, it brings a
lot of desirable properties to the table:

. Better compile-time checking of queries

. Object-oriented mapping of entities being queried

. Security advantages (for example, protections against SQL injection attacks)

. Rich tooling support, ranging from IntelliSense to mapping tools

. Support for extensibility with custom providers

. No need to learn a plethora of query languages with obscure syntax

After exploring the various LINQ-capable querying targets and enabling technologies such
as LINQ to Objects, LINQ to XML, and LINQ to SQL, we started our study with the
language integration portion, focusing on query expression syntax. Covering all the C#
3.0 keywords used in query expressions, we also learned how query expressions are
nothing but syntactical sugar on top of other language constructs such as method calls,
lambda expressions, and so on.

Feel free to explore the transparent identifier objects more thoroughly on your own;
they’re just anonymous types generated by the compiler.

965Summary

In the next chapter, we take a look behind the scenes of LINQ. We focus on the query
pattern, how LINQ to Objects works using iterators, and how query expressions can be
turned into expression trees for runtime translation into domain-specific query
languages like SQL.

This page intentionally left blank

CHAPTER 20

Language Integrated
Query Internals

IN THIS CHAPTER

. How LINQ to Objects
Works 967

. Standard Query Operators 990

. The Query Pattern 1024

. Parallel LINQ 1027

. Expression Trees 1036

In the previous chapter, we learned how LINQ unifies the
programming experience for querying various domains of
data. We learned about the query expression syntax added
to C# to formulate rich queries using filters, projections,
joins, and so on. But how does LINQ work under the
hood? This question is answered in this chapter. First, we
look at LINQ to Objects, which uses C# 2.0 iterators to do
its job. Next, we cover the set of Standard Query Operators
present in the BCL. Finally, exploration of LINQ internals
brings us to expression trees and the concept of
IQueryable<T> query providers.

How LINQ to Objects Works
So far we’ve been looking at various query expression
clauses that enable us to express queries, no matter that
data domain we’re targeting. Even though most of our
examples assumed in-memory data collections, all those
queries would have worked equally well against, say, a rela-
tional database.

Because in-memory data is common, it makes sense for us
to delve a little deeper into how LINQ support for those
data collections is provided. The leads us to a discussion
about the IEnumerable and IEnumerator interfaces, itera-
tors, and LINQ to Objects. From this exploration, it will
become clear how query expressions are executed lazily and
what the implications of this execution model are.

968 CHAPTER 20 Language Integrated Query Internals

IEnumerable<T> and IEnumerator<T> Recap

To set the scene, we need to refresh our knowledge of the IEnumerable<T> interface and its
little brother, IEnumerator<T>. The LINQ to Objects standard query operators are imple-
mented as extension methods on the former interface, meaning that any query expres-
sions can target any enumerable sequence. Because collection types implement this
interface, this makes LINQ to Objects available for all of those (including arrays).

The IEnumerable<T> interface basically provides the capability to request an enumerator,
which acts like a cursor over a sequence of objects of type T. Multiple enumerators can be
active simultaneously, each with its own cursor into the underlying sequence:

interface IEnumerable<T> {

IEnumerator<T> GetEnumerator();

}

Each enumerator is represented by an instance of an IEnumerator<T> interface, which
keeps its own cursor. Because an enumerator may acquire resources to perform the task of
enumerating over data (for example, reading data from a network connection), it imple-
ments the IDisposable interface, as well:

interface IEnumerator<T> : IDisposable {

bool MoveNext();

T Current { get; }

void Reset();

}

MoveNext simply advances the cursor to the next object in the sequence, returning
whether such an object is available. The get-only Current property provides a way to
access the element the enumerator is currently at. Finally, the Reset method is of little use
because many sources don’t implement it (and neither do iterators, as discussed later).

Notice we’ve omitted the nongeneric interfaces from the discussion. Those are primarily
important for backward-compatibility scenarios with existing code. Because most
nongeneric enumerable sequences are homogenous concerning the objects they yield, a
common operation is to cast all elements to a specific type. LINQ provides such an opera-
tor, called Cast<T>, as we’ve seen before:

var lst = new ArrayList { 1, 2, 3 }; // Old-fashioned List<int>

// Two equivalent ways to provide stronger typing, using Cast<T>.

IEnumerable<int> lstInts1 = lst.Cast<int>();

IEnumerable<int> lstInts2 = from int i in lst select i;

969How LINQ to Objects Works

The important distinction between IEnumerable<T> and IEnumerator<T> is outlined in
Figure 20.1. As you’ve seen before, the foreach statement is essentially a piece of syntacti-
cal sugar on top of both those interfaces:

foreach (int num in nums)

// Do something

IEnumerable<int>

G
e
t
E
n
u
m
e
r
a
t
o
r

IEnumerator<int>

Current

MoveNext

(8 left)

IE<int>

 1 2 3 4 5 6 7 8 9

IEnumerator<int>

Current

MoveNext

(5 left)

FIGURE 20.1 IEnumerable<T> versus IEnumerator<T>.

The preceding is turned into the following equivalent form:

using (var e = nums.GetEnumerator()) {

while (e.MoveNext()) {

int num = e.Current;

// Do something

}

}

An important insight is that the sequence being enumerated doesn’t necessarily need to
be persisted, as in a collection object. One could just implement the IEnumerator<T> inter-
face manually, with MoveNext causing the computation of objects on the fly, which get
exposed through the Current property:

class Integers : IEnumerable<int> {

public IEnumerator<int> GetEnumerator() {

return new IntegerEnumerator();

}

970 CHAPTER 20 Language Integrated Query Internals

public IEnumerator IEnumerator.GetEnumerator() {

return /* non-generic archeaology */ GetEnumerator();

}

class IntegerEnumerator : IEnumerator<int> {

private int _n = 0;

public bool MoveNext() {

// There are always more integer values (ignoring overflow).

return true;

}

public int Current {

get { return _n++; }

}

public object IEnumerator.Current {

get { /* non-generic archeaology */ return Current; }

}

public void Reset() {

// Call GetEnumerator instead to start enumeration all over again.

throw new NotSupportedException();

}

public void Dispose() {}

}

}

Enumerating over an Integer instance will go on forever (because MoveNext returns true
all the time), until the consumer breaks from the loop. Multiple enumerators can be in
flight at the same time, all starting with 0 as the first integer they yield to the consumer.

Writing manual implementations of IEnumerable<T> and IEnumerator<T> is a very power-
ful pattern but can get quite tedious. For this reason, C# 2.0 introduced iterators, which are
discussed in the section, “Iterators.” The query operator methods in LINQ to Objects are
essentially implemented using iterators.

LINQ to Objects Extension Methods

From a language point of view, LINQ is nothing but the syntactical surface provided
through so-called query expressions, as we’ve seen before. Those map onto method calls
originating from the various translation schemes that we saw. For example:

var query = from x in xs

where x % 2 == 0

select x + 1;

971How LINQ to Objects Works

FIGURE 20.2 LINQ to Objects extension methods.

The preceding turns into the following:

xs.Where(x => x % 2 == 0).Select(x => x + 1)

This is all there is to LINQ from the language perspective. The methods targeted by the
query expressions are collectively known as the query pattern. Any type that somehow
exposes those methods obeys the query pattern and works with the query expression
syntax integrated in languages such as C# and Visual Basic.

For LINQ to Objects, the type representing a data sequence is IEnumerable<T>, where T
stands for the type of the individual data objects in the sequence. At the time of the intro-
duction of LINQ, in .NET 3.5, this was an existing interface. Therefore, adding methods
such as Where and Select was not an option because all collection types would have to
reimplement the interface. Moreover, all those query operators can be expressed on their
own, just using IEnumerable<T> functionality: If you can enumerate over data, you clearly
can filter it, sort it, project it, and whatnot.

All those arguments led to the introduction of extension methods as a way to extend the
existing IEnumerable<T> interface with query operators. This means all existing collection
types simply get LINQ enabled when the extension methods are available through an
import of the System.Linq namespace from the System.Core assembly:

using System.Linq;

You can readily see this from looking at the IntelliSense on any collection type object,
which shows all the extension methods, illustrated in Figure 20.2. If you omit the
System.Linq namespace, those methods go away.

All the extension methods for IEnumerable<T>, collectively referred to as LINQ to Objects,
are defined in a static class called Enumerable:

972 CHAPTER 20 Language Integrated Query Internals

TABLE 20.1 LINQ to Objects Query Operator Methods

Method # Method # Method #

Aggregate 3 GroupBy 8 SequenceEqual 2

All 1 GroupJoin 2 Single 2

Any 2 Intersect 2 SingleOrDefault 2

namespace System.Linq {

public static class Enumerable {

...

public static IEnumerable<R> Select<T, R>(this IEnumerable<T> source,

Func<T, R> selector);

public static IEnumerable<T> Where<T>(this IEnumerable<T> source,

Func<T, bool> predicate);

...

}

}

One important thing about those IEnumerable<T> extension methods is the fact they take
in generic Func delegate objects for certain parameters. In other words, things such as
filter clauses (from where) and selectors (from select) are represented as delegates that can
be invoked by the query operator to carry out certain jobs. For example, the Where
method will, as you will see when talking about iterators, iterate over the source’s objects
and evaluate the filter function for all of those using delegate invocation.

Knowing where to look for the extension methods gives you a direct ticket to further
exploration of the various query operators, simply by looking at the extension methods
defined in the Enumerable static class. Or we can run our grouping example we saw earlier,
to display all the Enumerable methods together with the overload count. Adding a few
more clauses to only show static methods (because extension methods are always static)
and to order operators alphabetically, we get to the following query:

var queryOperators = from m in typeof(Enumerable).GetMethods()

where m.IsStatic

group m by m.Name into queryOperator

orderby queryOperator.Key /* Key is method name m.Name */

select new { Name = queryOperator.Key,

Overloads = queryOperator.Count() };

foreach (var queryOperator in queryOperators) {

Console.WriteLine(“{0} has {1} overload(s)”, queryOperator.Name,

queryOperator.Overloads);

}

Viewing LINQ operators using LINQ, can it get any better? Either way, the result of this
query is shown in Table 20.1.

973How LINQ to Objects Works

TABLE 20.1 LINQ to Objects Query Operator Methods

Method # Method # Method #

AsEnumerable 1 Join 2 Skip 1

Average 20 Last 2 SkipWhile 2

Cast 1 LastOrDefault 2 Sum 20

Concat 1 LongCount 2 Take 1

Contains 2 Max 22 TakeWhile 2

Count 2 Min 22 ThenBy 2

DefaultIfEmpty 2 OfType 1 ThenByDescending 2

Distinct 2 OrderBy 2 ToArray 1

ElementAt 1 OrderByDescending 2 ToDictionary 4

ElementAtOrDefault 1 Range 1 ToList 1

Empty 1 Repeat 1 ToLookup 4

Except 2 Reverse 1 Union 2

First 2 Select 2 Where 2

FirstOrDefault 2 SelectMany 4 Zip 1

We discuss the query operator methods in more detail in the section, “Standard Query
Operators,” later in this chapter. First, let’s get a feeling for how they are implemented in a
way that makes them lazily executed.

EXTENSION METHODS PHILOSOPHY

Extension methods are not just a way to extend existing the interfaces with new
members (for example, because they were omitted when the interface was created).
They provide a whole new dimension to API design by themselves.

Because the CLR doesn’t provide a means to have nonvirtual methods on interfaces, it
becomes hard to expose common, centrally implemented functionality through an inter-
face. One way to stick default methods on a “contract” is by using abstract classes
instead. That works but is often undesirable because of the CLR’s single inheritance
model. You don’t want to sacrifice your single base class just because you want to
inherit some convenience methods that come with something that should have been an
interface. Querying functionality could be exposed like this:

abstract class QueryableEnumerable<T> : IEnumerable<T> {

...

public QueryableEnumerable<R> Select<T, R>(Func<T, R> selector) {

/* common implementation */

974 CHAPTER 20 Language Integrated Query Internals

}

public IEnumerable<T> Where<T>(Func<T, bool> predicate) {

/* common implementation */

}

...

abstract IEnumerator<T> GetEnumerator();

}

Now if you want to make existing collections queryable, you would have to make them
inherit from this new base type. Not only is this tedious, it’s often impossible because
they already have a base class for other legitimate reasons.

Extension methods effectively provide a means to layer default behavior on top of an
interface without changing it or having to rely on abstract base classes. Also, the fact
they can be imported through a namespace allows logical grouping of the orthogonal
interface features (for example, querying, serialization, and so forth). Although the inter-
face itself stays clean and simple, you can add centrally implemented functionality just
by importing an additional namespace.

Iterators

As a precursor to the LINQ feature set, C# 2.0 introduced the concept of iterators to
make the definition of IEnumerable<T> and IEnumerator<T> objects easier. You’ve
seen before how powerful custom implementations of those interfaces can be (for

example, to yield a sequence of numbers to a consumer, in an on-demand basis). All you
need to do is respond properly to MoveNext method and Current property getter calls.

Conceptually though, your task is even simpler: You just want to hand out objects to a
consumer when asked to do so. This feels quite a bit like returning data from a method, the
difference being you don’t just return a single object but a sequence of objects, one at a time.

Iterators precisely enable you to do this, using regular familiar control flow primitives. You
just write a method from which you can produce multiple objects, which gets translated
into an implementation of IEnumerator<T>. When the user calls MoveNext on the iterator,
either directly or through the foreach loop, code inside it ticks until the next object is
given back to the consumer.

An iterator is simply declared as a regular method, returning either IEnumerable<T> or
IEnumerator<T> as indicated in its signature. However, instead of using the regular return
keyword, one uses the yield return keyword. Our handcrafted Integers example can be
rewritten using an iterator as follows:

public IEnumerable<int> GetIntegers() {

int n = 0;

while (true)

yield return n++;

}

975How LINQ to Objects Works

FIGURE 20.3 An iterator executes piecemeal when someone enumerates over it.

The execution model of an iterator is intrinsically lazy. Just calling the GetIntegers
method returns an object that offers the potential to enumerate the data produced by the
iterator. It’s not until you start pulling data out of the iterator object by making calls to
the MoveNext method and Current property that any code inside the iterator starts to
execute. This can be visualized nicely under a debugger, as shown in Figure 20.3.

If you simply step through the Main method, you won’t see the breakpoint (or any other
code) in the GetIntegers iterator getting triggered before the foreach loop starts to pull
data out of the iterator.

For every call to MoveNext, the code in the iterator runs until the next yield return state-
ment is encountered. The expression to the right of the yield return keywords gets
computed and surfaced to the consumer through the Current property generated for the
IEnumerator<T> interface implementation. In this particular case, the iterator has an infi-
nite characteristic, never reaching the end of the iterator block. The compiler comes to
this conclusion itself by means of flow analysis (“can the iterator ever reach the end of the
block?”), resulting in a MoveNext method that always returns true to the caller.

To make this more digestible, we’ll write a simpler iterator and analyze how it executes
and gets turned into executable code by the compiler. Consider the following fragment:

public IEnumerator<int> CountDown() {

yield return 3;

yield return 2;

yield return 1;

yield return 0;

}

976 CHAPTER 20 Language Integrated Query Internals

Notice we’re using IEnumerator<int> for the return type this time. This will simplify our
analysis, but both the IEnumerable<T> and IEnumerator<T> interfaces can be used for the
return type of an iterator method. On the consumer side, things look like this:

var countDown = CountDown();

while (countDown.MoveNext())

Console.WriteLine(countDown.Current);

This loop will iterate four times, with the Current property surfacing values 3 through 0
subsequently, which will get printed to the screen. To make the iterator’s execution model
more explicit, let’s add diagnostic output to the iterator body itself:

public IEnumerator<int> CountDown() {

Console.WriteLine(“Before three”);

yield return 3;

Console.WriteLine(“After three”);

Console.WriteLine(“Before two”);

yield return 2;

Console.WriteLine(“After two”);

Console.WriteLine(“Before one”);

yield return 1;

Console.WriteLine(“After one”);

Console.WriteLine(“Before zero”);

yield return 0;

}

Consuming this iterator through the while loop, the following gets printed to the screen:

Before three

3

After three

Before two

2

After two

Before one

1

After one

Before zero

0

The plain numeric output is produced by the consuming loop, while the textual output
comes from the iterator’s code body. You see that things get interleaved because the

977How LINQ to Objects Works

Consumer Iterator (Producer)

var countDown = CountDown();

while (countDown.MoveNext()) {

 Console.WriteLine(

 countDown.Current);

}

MoveNext

 true, Current = 3

MoveNext

 true, Current = 2

MoveNext

 true, Current = 1

MoveNext

 true, Current = 0

MoveNext

 false

Console.WriteLine("Before three");
yield return 3;

public IEnumerator<int> CountDown()
{

=
=

Console.WriteLine("After three");
Console.WriteLine("Before two");
yield return 2;

=
=

Console.WriteLine("After two");
Console.WriteLine("Before one");
yield return 1;

Console.WriteLine("After one");
Console.WriteLine("Before zero");
yield return 0;

=

}

Pull Data Out

FIGURE 20.4 Piecemeal execution of an iterator’s code.

iterator runs piecemeal reacting to MoveNext calls. This is a true pull model because it’s the
consumer that drives the iterator’s execution while pulling out objects from it. A picture is
worth a thousand words, so take a look at Figure 20.4.

The yield return statement needs to specify an object of a type compatible with the one
specified in the iterator’s return type. In our running example, we’re creating an iterator
that produces integer values, hence yield return expects an int-typed object. This is similar
to a regular method’s return type.

Besides yield return there’s also yield break, which causes the iterator to terminate by
responding false to the consumer’s next call to MoveNext. This is conceptually similar to
jumping to the end of the iterator block, which also causes the iterator to finish. The
break keyword is intentionally chosen to mirror the consumer’s capability to break out of
the iterator by breaking from the loop.

978 CHAPTER 20 Language Integrated Query Internals

By creating iterators that consume other iterators, you can realize powerful operators that
apply on sequences of data. This is exactly what LINQ to Objects does with its standard
query operators, as discussed in the “Standard Query Operators” section. Let’s give a
simple example of such an operator implementation though, to commit the core concept
and execute model of iterators to your memory. The following code realizes a filter, ignor-
ing the code to validate arguments:

IEnumerable<T> Filter<T>(IEnumerable<T> source, Func<T, bool> filter) {

foreach (T item in source)

if (filter(item))

yield return item;

}

Given an enumerable of objects of type T (which can be realized using an iterator) and a
filter delegate, the Filter method can produce a new enumerable of T-typed objects with
only those objects that pass the filter. It’s important to realize that calling the Filter
method doesn’t trigger any execution yet. Only when the caller starts pulling data out of
the returned enumerable (iterator) object will the iterator start making progress. For
example, consider the following call:

var evens = Filter(new [] { 2, 5, 7, 4, 1, 9, 5, 8 }, n => n % 2 == 0);

Once the consumer gets an enumerator and starts calling MoveNext, the loop inside the
filter starts to tick. One call to MoveNext on the enumerator for evens will cause the loop
to run until the first even number is found, which happens to be the first element of the
input. However, the second call to MoveNext causes the inner loop to run a couple more
times until the next even number, 4, is found. And the third time, it takes even a bit
longer to yield an item back to the consumer, as the iterator’s loop has to run until 8 is
found in the input sequence. By making the filter delegate side effecting, you can see how
execution takes place:

var evens = Filter(new [] { 2, 5, 7, 4, 1, 9, 5, 8 }, n => {

Console.WriteLine(“Filtering “ + n);

return n % 2 == 0;

});

On the consuming side, consider a simple foreach loop that drains the whole iterator
until the very end:

foreach (int n in evens)

Console.WriteLine(n);

979How LINQ to Objects Works

This will produce the following output:

Filtering 2

2

Filtering 5

Filtering 7

Filtering 4

4

Filtering 1

Filtering 9

Filtering 5

Filtering 8

8

In other words, one MoveNext call on the resulting iterator object can cause multiple such
calls to take place on the input sequence, which can be an iterator itself. In the case of a
filter, the source is consulted until an object is found that passes the filter.

IENUMERABLE<T> HAS MANY FACES

The beauty of interfaces is how general-purpose they can be, by limiting the number of
promises they make between the implementer and user. The IEnumerable family of
interfaces is just like that, stating one should be able to enumerate over a sequence of
objects somehow.

What the effects of such an enumeration are, or where the data has to come from, is
left unspecified. For example, in a List<T>, the data will be persisted in memory while
another implementation of the interface could consult a database on the fly, pulling one
object over the wire at a time.

This sometimes makes interfaces two-edged swords: The guarantees provided to the
interface’s user are often very limited, while providing an immense amount of flexibility
to the implementers. Only good documentation can help document how an imple-
menter interpreted the interface with regard to various aspects.

The execution model of iterators can be summarized in a simple statement: Every call to
MoveNext on an iterator’s enumerator object causes the iterator to run until the next yield
statement is encountered. A yield return statement will cause MoveNext to return true,
with the Current property set to the specified return value, while reaching the end of the
iterator or encountering yield break causes it to return false.

As an exercise, step through the following chain of iterators either using raw brainpower
or with help of a debugger, assuming a consumer is iterating over it. Figure 20.5 shows the
interactions between the iterators for this example.

980 CHAPTER 20 Language Integrated Query Internals

foreach source

2

n => n % 3 != 0

MoveNext

true/Current

n => n % 2 == 0

1

2

3

4

5

6

7

8

9

4

MoveNext

true/Current

MoveNext

false

MoveNext

true/Current

8

1%2!=0

3%2!=0

5%2!=0

6%3==0

7%2!=0

9%2!=0

FIGURE 20.5 An iterator consuming another iterator.

var multiplesOfSix = Filter(

Filter(new [] { 1, 2, 3, 4, 5, 6, 7, 8, 9 }, n => n % 2 == 0),

n => n % 3 != 0

);

Filter is called Where in LINQ but is implemented essentially as shown here, modulo
additional argument validation code and the fact Where is an extension method, which
allows us to write the preceding example more fluently:

var multiplesOfSix = new [] { 1, 2, 3, 4, 5, 6, 7, 8, 9 }

.Where(n => n % 2 == 0)

.Where(n => n % 3 != 0);

Now code reads left to right, top down, which is much more natural than the deep
nesting we saw before. Internally, this chain of extension method calls turns into this:

var multiplesOfSix = Enumerable.Where(

Enumerable.Where(new [] { 1, 2, 3, 4, 5, 6, 7, 8, 9 }, n => n % 2 == 0),

n => n % 3 != 0

);

981How LINQ to Objects Works

Congratulations! You’ve just reverse-engineered the true essence of the query operators
using knowledge of iterators, lambda expressions, and extension methods. Other query
operators like Select are implemented in ways similar to the one shown here for the
Where filter operator.

Lazy Evaluation

Their piecemeal on-demand evaluation characteristic makes iterators an ideal construct to
express queries. Because the underlying data source can potentially change after you have
declared a query expression, delaying the execution is a much desirable feature:

var nums = new List<int> { 2, 5, 7, 4, 1, 9 };

var evens = from n in nums

where n % 2 == 0

select n;

// Shows 2, 4

foreach (var n in evens)

Console.WriteLine(n);

// Somehow the collection changes, e.g. because the user edits the data.

nums.Add(5);

nums.Add(8);

// Shows 2, 4, 8 - no need to redeclare the query

foreach (var n in evens)

Console.WriteLine(n);

The query expression used here is compiled into a call to the Where query operator we’ve
seen before. Because it’s realized using iterators, it’s only when we enumerate over the
query object that execution starts to take place. Because of this, a query expression is
nothing more than a declaration of the intent of the query.

That said, some query operators trigger immediate execution of the query, such as ToArray
and ToList. Those operators essentially drain the query expression’s iterator on the spot,
persisting the retrieved objects in an in-memory collection:

var nums = new List<int> { 2, 5, 7, 4, 1, 9 };

var evens = (from n in nums

where n % 2 == 0

select n).ToList();

// Shows 2, 4

foreach (var n in evens)

Console.WriteLine(n);

982 CHAPTER 20 Language Integrated Query Internals

// Somehow the collection changes, e.g. because the user edits the data.

nums.Add(5);

nums.Add(8);

// Still shows 2, 4 since ToList caused the query to execute on the spot,

// conceptually creating a snapshot of query results at that point in time.

foreach (var n in evens)

Console.WriteLine(n);

Lazy evaluation can be a little surprising for consumers of iterators. For example, the
following query expression projects, using the select clause, a series of numbers on their
inverse values:

var inverse = from n in nums

select 1 / n;

If nums contains 0, you expect a DivideByZeroException to be raised. However, because of
the delayed execution nature of the query expression (and hence its select clause), this
exception happens no earlier than the point where iteration happens:

try {

inverse = from n in nums

select 1 / n;

}

catch (DivideByZeroException) {

// Bug: you’ll never get here.

}

// But the following line can throw, since the query executes here!

foreach (var n in inverse)

Console.WriteLine(n);

To correct this code, you can do a few things. First, eliminate the 0 case (for example, by
filtering out zero values using a where clause). Another possibility is to turn the select
clause into a conditional, producing a dedicated value for the division-by-zero case.
Finally, you could perform the exception handling in the right spot (that is, around the
loop code). Keep in mind, though, that an exception raised by an iterator will terminate
the query as a whole.

Also when creating your own iterators, keep in mind the lazy execution nature, especially
when it comes to exception handling:

IEnumerable<T> Filter<T>(IEnumerable<T> source, Func<T, bool> filter) {

if (source == null)

throw new ArgumentNullException(“source”);

983How LINQ to Objects Works

if (filter == null)

throw new ArgumentNullException(“filter”);

foreach (T item in source)

if (filter(item))

yield return item;

}

Well-intentioned as this code looks, the timing of the exceptions is most likely not what
you want it to be. Everything inside the iterator block is delayed until the point of the
first MoveNext call. In other words, the ArgumentNullException will not be raised until the
user starts enumerating over the returned iterator. Iterators are contagious to the whole
method code block in which they’re defined.

To solve this problem, replace the entry-point method by a regular noniterator one,
calling into a separate iterator implementation:

IEnumerable<T> Filter<T>(IEnumerable<T> source, Func<T, bool> filter) {

if (source == null)

throw new ArgumentNullException(“source”);

if (filter == null)

throw new ArgumentNullException(“filter”);

return FilterInternal(source, filter);

}

IEnumerable<T> FilterInternal<T>(IEnumerable<T> source, Func<T, bool> filter) {

foreach (T item in source)

if (filter(item))

yield return item;

}

The reason this has the desired effect is because only methods with one or more yield
statements inside them are turned into iterators. In our example, the Filter<T> method is
a regular method, while FilterInternal<T> turns into an iterator.

NO ANONYMOUS ITERATORS

Unfortunately, C# doesn’t provide a means to create anonymous iterators, which could
be block-based constructs that can be used where an IEnumerable<T> or
IEnumerator<T> is expected. This would make it easier to reason about the island of
code that’s executed lazily. For example:

IEnumerable<T> Filter<T>(IEnumerable<T> source, Func<T, bool> filter) {

if (source == null)

throw new ArgumentNullException(“source”);

984 CHAPTER 20 Language Integrated Query Internals

if (filter == null)

throw new ArgumentNullException(“filter”);

// A hypothetical anonymous iterator (hence it won’t compile!)

return new IEnumerable<T> {

foreach (T item in source)

if (filter(item))

yield return item;

};

}

Such a feature would go quite nicely with object expressions or anonymous inner class-
es, which are in-place implementations for interfaces. For example, if you’re asked to
pass in an IDisposable object to an API function, you could provide an implementa-
tion of the interface in-place, potentially capturing outer local variables just as with
anonymous methods closures.

How Iterators Work

To wrap up our exploration of lazy execution related to iterators, let’s briefly look at how
the compiler realizes iterators. We already know an iterator is a syntactical way to imple-
ment IEnumerable<T> or IEnumerator<T> automatically. The key trick is to keep track of
the local state of the iterator across different calls to MoveNext.

As an example, consider the following sequence operator, which doesn’t come in LINQ
out of the box. Put its definition in a static class to use it on enumerable sequences:

public static IEnumerable<T> StartWith<T>(this IEnumerable<T> tail, T head) {

yield return head;

foreach (T item in tail)

yield return item;

}

This operator enables you to prepend an existing sequence with a single object, much like
a cons-cell in LISP does. No worries if you don’t know LISP; here is a concrete example of
what this does:

// { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

StartWith(

// { 1, 2, 3, 4, 5, 6, 7, 8, 9 }

StartWith(

// { 2, 3, 4, 5, 6, 7, 8, 9 }

Enumerable.Range(2, 8),

1),

0)

985How LINQ to Objects Works

Using the extension method instance-method-like calling syntax, we can rewrite this as
follows:

Enumerable.Range(2, 8).StartWith(1).StartWith(0)

AVOID EXTENSION METHODS ON AN UNCONSTRAINED GENERIC PARAMETER

The reason our StartWith method’s this extension method parameter is not the first
parameter “head,” but the IEnumerable<T> “tail” is because it’s not good practice to
put an extension method on a unconstrained generic parameter:

static IEnumerable<T> StartWith<T>(this T head, IEnumerable<T> tail)

This is really the same as putting an extension method on System.Object, which will
show up on any object there is. This gets quite noisy when looking at the IntelliSense.

The reason I chose this iterator as an illustration is because there are various states the iter-
ator can be in. Such states can be derived from flow analysis, simply by looking at the
layout of the code and where yield statements occur.

In this particular case, a first state represents the iterator hasn’t started to be consumed
yet. After this state, it moves on to the first yield return statement, outside the central
loop. Yet another MoveNext puts us inside the loop, where iterations produce objects one
at a time. Finally, we reach the end of the loop, reaching a final state where a call to
MoveNext returns false.

What’s described here is a finite state machine that conceptually keeps track of an instruc-
tion pointer in the iterator. Every time MoveNext is called, this state gets inspected to
decide what to do next, possibly causing the state to change in preparation for the subse-
quent call. Figure 20.6 illustrates the states our StartWith iterator goes through. The
numbers of the states reflect the ones used by the compiler, where the missing numbers
are used to indicate intermediate states, relevant to exceptional paths and such.

Calling StartWith returns an IEnumerable<T> implementation that’s in initial state -2:

static IEnumerable<T> StartWith<T>(this IEnumerable<T> tail, T head) {

return new StartWithIterator(-2) {

_tail = tail,

_head = head

};

}

The StartWithIterator is a compiler-generated implementation of the IEnumerable<T>

interface, implementing the state machine shown earlier. It stores the parameters passed to
the iterator as local fields. Being an IEnumerable<T>, it provides an implementation of the

986 CHAPTER 20 Language Integrated Query Internals

static IEnumerable<T> StartWith<T>(
 this IEnumerable<T> tail,
 T head)

{

 yield return head;

 foreach (T item in tail)

 {

 yield return item;

 }

}

IEnumerable<T>

Iterator

StartWith

IEnumerator<T>

-2

0

1

3

G
et

E
n

u
m

er
at

o
r

M
o

veN
ext

(tru
e)

MoveNext
(true)

MoveNext
(false)

FIGURE 20.6 States the StartWith iterator goes through.

GetEnumerator method. When called, the iterator advances to state 0. Different calls to
this method can result in the creation of new iterator objects, to ensure cross-thread safety:

public IEnumerator<T> GetEnumerator() {

if (_initialThreadId == Thread.CurrentThread.ManagedThreadId

&& _state == -2) {

// Move on to state 0.

_state = 0;

return this;

}

else {

// Cross-thread access or not in the initial state anymore:

// create a new iterator object that advances independently.

return new StartWithIterator(0) {

_tail = tail,

_head = head

};

}

}

The identifier for the current thread is stored in a field called _initialThreadId, which is
set by the constructor to Thread.CurrentThread.ManagedThreadId. This thread-affinity
check is something we’ll just skim over.

987How LINQ to Objects Works

Where things get really interesting is inside the MoveNext method, which implements a
switch based on the iterator’s current state. The first call to MoveNext corresponds to the
first line of code in the iterator, yield returning the first parameter:

bool MoveNext() {

try {

switch (_state) {

case 0:

_current = _head; // yield return head;

_state = 1;

return true; // we got an object in Current

...

}

}

fault {

// If something goes wrong, the iterator cleans up all the resources

// it has acquired. Notice the use of “fault”, which is not a typo:

// fault handlers are supported by the CLR and are transferred to when

// the protected block has quit because of an exception. C# doesn’t

// expose this feature, but the compiler emits it in this case.

Dispose();

}

}

This corresponds to the state transition to state 1, which indicates we’re about to start
executing the foreach loop, which corresponds to the following while loop:

IEnumerator<T> e = tail.GetEnumerator();

try {

while (e.MoveNext())

yield return e.Current;

}

finally {

if (e != null)

e.Dispose();

}

The exception-handling logic associated with a foreach loop, to ensure proper disposal,
makes the generated code quite interesting. The CLR’s block-based protection mechanism
for exception handling doesn’t work when the code to be protected gets sprinkled around
in different states of an iterator’s MoveNext method. Instead, it’s the job of the compiler to
ensure the Dispose call happens under all circumstances that can be encountered by the
iterator. The try...fault block in MoveNext is part of this.

988 CHAPTER 20 Language Integrated Query Internals

Instead of focusing on the exceptional case, let’s see how state 1 works. We’re sitting in
front of the foreach loop, so a next call to MoveNext has to enter that loop, potentially
yielding a single object back to the caller. It’s also possible the “tail” sequence is empty,
which should cause the MoveNext method to return false. Here’s what state 1 does:

bool MoveNext() {

try {

switch (_state) {

case 0:

...

case 1:

_enum = _tail.GetEnumerator();

while (_enum.MoveNext()) {

_current = _enum.Current; // yield return item;

_state = 3;

return true; // we got an object in Current

// Compiler writers can use goto-labels,

// see further...

Resume:

}

Finally();

break;

...

}

return false;

In reality, an additional state is added to the mix, but let’s ignore this for sake of clarity.
State 1 essentially causes the iterator to retrieve an enumerator for the tail sequence,
which is stored in a field so that subsequent calls to MoveNext can reuse that same
enumerator (which by itself contains a cursor in the tail sequence).

Next, the while loop simply occurs almost verbatim in the generated iterator code, to
retrieve the enumerator’s Current property value, which gets surfaces to the iterator’s
consumer through the _current field. But instead of looping until the tail sequence is at
the end, the iterator is suspended by putting it in state 3 and returning true.

If the call to MoveNext on the enumerator returns false, we fall out of the switch block.
This triggers a call to a helper method that ensures all the resources acquired by the itera-
tor get properly disposed. In practice, this will cause a call to Dispose on _enum. It goes
without saying that reaching the end of the tail sequence will cause the iterator to return
false to the consumer, indicating it has reached the end. However, if there are yield state-
ments after the iterator’s loop, we would advance to another state:

static IEnumerable<T> StartWith<T>(this IEnumerable<T> tail, T head) {

yield return head;

foreach (T item in tail)

yield return item;

989How LINQ to Objects Works

// If this would be here, there’d be an additional state.

yield return default(T);

}

Finally, we’ve ended up with state 3, which should correspond to retrieving the next
objects from the tail enumerator, exposing them to the iterator’s consumer. This is done
by a simple branch (goto) instruction jumping inside the loop from state 2:

bool MoveNext() {

try {

switch (_state) {

case 0:

...

case 1:

_enum = _tail.GetEnumerator();

while (_enum.MoveNext()) {

_current = _enum.Current; // yield return item;

_state = 3;

return true; // we got an object in Current

Resume:

}

Finally();

break;

case 3:

goto Resume;

}

return false;

This causes the while loop to reevaluate _enum.MoveNext(), possibly yielding a next object
by means of the same logic we saw before. If the call returned false, we get to the
Finally() cleanup call once more and break out of the switch statement, causing the iter-
ator to return false to the caller.

In short, iterators are not that frightening from the inside, though the compiler has to
tear apart the iterator block’s code quite a bit. Luckily, you don’t need to know much (or
anything) about this, but it still makes sense to get a feel for the plumbing required to
realize iterators because it clearly shows their execution model.

Feel free to dig a little deeper into the generated code using .NET Reflector, which you
should put in .NET 2.0 decompilation mode to clearly see the plumbing. Also try to
reverse-engineer a more complex iterator with more yield statements, nested loops, and
so on. The key takeaway message is that every yield statement needs to cause the iterator
to suspend by returning from the MoveNext method. And to resume at the proper point,
there needs to be enough captured state in the iterator object. Figure 20.7 shows the
innards of an iterator, where you can clearly see a switch-table to keep track of the next
operations to carry out upon a MoveNext call.

990 CHAPTER 20 Language Integrated Query Internals

FIGURE 20.7 An iterator unraveled.

Standard Query Operators
One of the core strengths of LINQ is the fact it unifies query operators across different
data domains, ranging from in-memory objects to relational databases. To do so, it not
only provides query syntax for mainstream languages like C# and Visual Basic, it also
establishes a set of commonly used query operators.

In this section, we take a look at all the standard query operators that ship with the .NET
Framework, including some of their less commonly used, but useful, overloads. Keep in
mind that some of those are exposed through language integrated query syntax, whereas
others aren’t. For the latter set of operators, you can just use method invocation syntax
to use them.

Source Generators

Source generators comprise our first big category of standard query operators. Although
different source objects can be LINQ-enabled (for example, by implementing
IEnumerable<T> for local query execution or by implementing IQueryable<T> for remote
query execution; for example, as used in LINQ to SQL), it sometimes makes sense to create
a sequence on the fly.

All the methods discussed here live on the Enumerable type and provide a means to gener-
ate a source without persisting it in memory, thanks to lazy evaluation. Obviously, you

991Standard Query Operators

can also use array, lists, or other collection types as in-memory data sources, but with
immediate memory-allocation needs.

Range

The first source generator is called Range and produces Int32 values starting from a
given number. Its second parameter is used to specify how many numbers to yield to
the consumer:

IEnumerable<int> firstTen = Enumerable.Range(0, 10); // { 0 .. 9 }

Although its use might seem limited, combined with other query operators it can produce
more useful objects (for example, characters):

IEnumerable<char> aToz = Enumerable.Range(0, 26).Select(i => (char)(‘a’ + i));

Also for simple query operator exploration, the use of Range provides a simple way to
create a sequence to experiment with.

Repeat

Given an element, it’s sometimes useful to repeat it multiple times to create a sequence
with a constant value. This can be achieved using the Repeat operator:

IEnumerable<string> heyHeyHey = Enumerable.Repeat(“Hey”, 3);

Notice how the type of the resulting sequence is inferred from the element specified as the
first parameter to Repeat.

Empty

In certain scenarios where an IEnumerable<T> is expected, you want to pass a default
sequence. Empty produces such a statically typed sequence with no elements in it:

IEnumerable<int> nothing = Enumerable.Empty<int>();

RETURN

A missing operator in the standard set of query operators is Return, or Singleton,
which would return a sequence with a single given element:

static IEnumerable<T> Return<T>(T element) {

yield return element;

}

This can easily be achieved by creating a single-element array instead, which as we
know implements IEnumerable<T>. This operator is interesting because the mathe-
matical foundation of query operators, called monads, is based on two essential opera-
tors: Bind and Return. The latter was just shown and has no presence in the LINQ
operators, but the former one is actually in there. It’s called SelectMany and provides
a way to combine sequences, as you will see in the “Projection” section, where we dis-
cuss this operator.

992 CHAPTER 20 Language Integrated Query Internals

DefaultIfEmpty

Where Empty sort of plays the role of a null reference, DefaultIfEmpty plays the role of
the null coalescing ?? operator. If the sequence given to this operator is empty, it yield
returns a single “default” element. This default element can either be specified explicitly
or inferred based on the sequence’s element type:

var src1 = Enumerable.Empty<int>();

var res1 = src1.DefaultIfEmpty(); // { 0 }

var res2 = src1.DefaultIfEmpty(99); // { 99 }

var src2 = Enumerable.Range(1, 9);

var res3 = src2.DefaultIfEmpty(); // { 1 .. 9 }

This operator has quite limited use, but it’s nevertheless good to know about.

Restriction

One of the most common query operations is obviously to filter out elements based on
certain conditions. Those conditions can either be on a per-element basis (such as with
the Where operator) or have a more global nature (as with Skip or Take). In essence, we’re
talking here about horizontal partitioning where a given number of objects in the input
sequence are filtered down to a subset. Those restriction operators don’t change the shape
of the data and preserve the type of the input sequence.

Where

The first restriction operator is one we’re already familiar with. The Where operator evalu-
ates a condition for each element in the input sequence, only retaining objects for which
the condition evaluated to true. Two overloads exist:

static IEnumerable<T> Where<T>(this IEnumerable<T> source,

Func<T, bool> predicate);

static IEnumerable<T> Where<T>(this IEnumerable<T> source,

Func<T, int, bool> predicate);

From our discussion about query expression syntax and iterators, we remember the first
one quite well. Iterating over the source parameter, the operator feeds every object in to
the predicate function. When that function evaluates to true, it yields the object into the
output sequence. Any Boolean-returning expression will do, no matter how complex you
make it. For illustration purposes, we keep the predicate function simple:

// { “Bart”, “Lisa” }

var res = new [] { “Bart”, “Homer”, “Lisa” }.Where(s => s.Length == 4);

993Standard Query Operators

The second overload feeds an additional argument to the predicate function, standing for
the zero-based index of the element in the input sequence. One example use is shown
here, retaining elements at even positions:

// { “Zero”, “Two” }

var res = new [] { “Zero”, “One”, “Two”, “Three” }.Where((s, i) => i % 2 == 0);

Here, s stands for the string objects in the input sequence, while i stands for the index of
the object in the input sequence. We’re not using s (though we obviously could) to do the
index-based filtering here.

Distinct

Sequences may contain duplicate objects, which can be undesirable. To get rid of those
duplicate entries, the Distinct operator can be used. Because this deals with equality
checks between objects, you can expect two overloads (one that uses the default comparer
for the element type and another that allows the use of a specific equality comparer):

static IEnumerable<T> Distinct<T>(this IEnumerable<T> source);

static IEnumerable<T> Distinct<T>(this IEnumerable<T> source,

IEqualityComparer<T> comparer);

Use is quite straightforward:

var nums = new [] { 5, 2, 1, 3, 1, 4, 5 }.Distinct(); // { 5, 2, 1, 3, 4 }

I leave the use of the more specialized overload to your imagination. For more informa-
tion about IEqualityComparer<T>, refer to our discussion about collection types in
Chapter 16, “Collection Types.” A sample use is to implement a comparer for Person
objects, only looking at the person’s identification number to determine whether objects
are equal. However, if those are the semantics for a Person object, you most likely already
have an overridden Equals method in place, which will be picked up by the default equal-
ity comparer for the Person type.

Skip and SkipWhile

To skip a number of elements from the beginning of a sequence, the Skip operator can be
used. Its more general-purpose SkipWhile brother can be used to skip elements as long as
a given condition holds true. A few examples tell it all:

var res1 = Enumerable.Range(0, 10).Skip(5); // { 5, 6, 7, 8, 9 }

var res2 = Enumerable.Range(0, 10).SkipWhile(n => n < 8); // { 8, 9 }

If the skip count is longer than the input sequence length, or if the predicate never flips to
false, the resulting sequence is empty. Notice SkipWhile is obviously not the same as a
simple Where:

var res1 = new [] { 1, 2, 3, 4, 3, 2, 1 }.SkipWhile(n => n < 4) // { 4, 3, 2, 1 }

var res2 = new [] { 1, 2, 3, 4, 3, 2, 1 }.Where(n => n >= 4) // { 4 }

994 CHAPTER 20 Language Integrated Query Internals

It’s left as an exercise for you to implement those operators by hand using your acquired
knowledge of iterators. You’ll find that query operators are often just a few lines of code
(ignoring input validation logic).

Take and TakeWhile

The opposite of “to skip” is “to take,” returning a sequence with elements from the begin-
ning of the input sequence, either based on a count or a condition. Take simply takes a
number of elements to yield, while TakeWhile expresses “yield as long as the condition
holds.” Examples are shown here:

var res1 = Enumerable.Range(0, 10).Take(5); // { 0, 1, 2, 3, 4 }

var res2 = Enumerable.Range(0, 10).TakeWhile(n => n < 8);

// { 0, 1, 2, 3, 4, 5, 6, 7 }

Notice certain invariant properties hold. We demonstrate those in the following example
using the Concat and SequenceEqual operators, which should be straightforward to under-
stand. Both methods should return true every time:

bool AssertSkipTake<T>(IEnumerable<T> source, int n) {

return source.SequenceEqual(source.Take(n).Concat(

source.Skip(n)));

}

bool AssertSkipTakeWhile<T>(IEnumerable<T> source, Func<T, bool> predicate) {

return source.SequenceEqual(source.TakeWhile(predicate).Concat(

source.SkipWhile(predicate));

}

PAGING USE SKIP AND TAKE

The combination of Skip and Take is useful for paging of data sources (for example, to
show elements ten at a time):

// For example, page 3 = Skip(30).Take(10)

var onePageOfData = source.Skip(page * pageSize).Take(pageSize);

This illustrates the power of gluing together different query operators.

First and FirstOrDefault

Very restrictive restriction operators return just a single element. First is one of those
operators, returning the first element of a sequence. If no element is present, it throws an
InvalidOperationException. You can use the FirstOrDefault operator to return the
default value for the sequence element type in case the input sequence is empty:

int first = new [] { 42, 24, 12, 123 }.First(); // 42

int zero = new int[0].FirstOrDefault();

995Standard Query Operators

Predicate-based overloads exist to retrieve a sequence’s first element that matches a certain
criterion. If no such element is found, an InvalidOperationException results, which can
again be mitigated by use of FirstOrDefault:

int first = new [] { 42, 24, 12, 123 }.First(n => n < 30); // 24

int zero = new [] { 42, 24, 12, 123 }.FirstOrDefault(n => n > 999);

Those handy overloads are often overlooked by beginning LINQ users, causing them to
use combinations of Where and First to achieve similar results.

Last and LastOrDefault

Completely analogous to First and FirstOrDefault are the Last and LastOrDefault

query operators. Instead of taking the first element, possibly based on a predicate or with
a default value fallback behavior, they take the last element:

int last = new [] { 42, 24, 12, 123 }.Last(); // 123

int zero = new int[0].LastOrDefault();

When a predicate is used, it gets evaluated for every element in the sequence, while
remembering the last element that positively evaluated the predicate:

int last = new [] { 42, 24, 12, 123 }.Last(n => n < 30); // 12

int zero = new [] { 42, 24, 12, 123 }.LastOrDefault(n => n > 999);

Notice that infinite sequences will cause Last (among various other query operators) to
get stuck forever. Luckily, the use of infinite sequences is quite uncommon in the world of
.NET, though iterators make the creation of such sequences possible. Just watch out for
such pathological cases if you rely on infinite iterators at some point.

Single and SingleOrDefault

In some cases, you expect only a single element to be present in a sequence or have only
one that matches a certain criterion. In such circumstances, the Single operator becomes
useful. Other than First and Last, it throws an InvalidOperationException when there’s
either no element or more than one element. Again, an OrDefault variant can be used to
override the exception-throwing behavior:

int oneAndOnly = new [] { 42 }.Single(); // 42

int zero = new [] { 1, 2, 3 }.SingleOrDefault(); // More than one element

Overloads with a predicate function are self-explanatory based on the discussion about
First and Last.

ElementAt and ElementAtOrDefault

The IEnumerable<T> and IEnumerator<T> interfaces lack index-based access, though their
sequential natures clearly allow for such retrieval operations. ElementAt provides this

996 CHAPTER 20 Language Integrated Query Internals

capability, with ArgumentOutOfRangeException thrown if the specified index is invalid.
The variant with the OrDefault suffix allows for an exception-free treatment once more:

var two = new [] { “Zero”, “One”, “Two”, “Three” }.ElementAt(2);

USE ORDEFAULT OPERATORS WITH CARE

Don’t use the OrDefault variants if you expect a first or last element to exist, the
sequence to contain only a single element, or a specific index to be valid. The gratu-
itous use of nonexception throwing operators is a great way to obfuscate bugs in your
code that would often reveal invalid assumptions. SingleOrDefault is especially dan-
gerous because it would not only cover up the case where the sequence was empty but
also the case where it contained too many elements than were expected.

OfType

Given a heterogeneous collection of objects, you sometimes want to filter on type, just
like the query shown here:

// { 42, 123 }

var src = new object[] { 42, “Bart”, DateTime.Now, 123 };

IEnumerable<object> res = src.Where(o => o is int);

Although the preceding query works just fine, it has the disadvantage of not performing a
cast over all the elements that passed the type check. We would prefer a way to get all the
integer values back typed as such:

// { 42, 123 }

IEnumerable<int> res = src.Where(o => o is int).Select(o => (int)o);

The OfType operator allows this in a much more concise manner, specifying the target
type as a generic parameter to the method call:

static IEnumerable<T> OfType<T>(this IEnumerable source);

Notice this operator consumes a nongeneric IEnumerable for its input (for example, for
use with an ArrayList). But every IEnumerable<T> is also a nongeneric IEnumerable, so
the operator can also be used to filter based on subtypes:

var res = new Animal[] { elephant, ant, giraffe }.OfType<Mammal>();

The OfType operator is not, in fact, just a restriction operator; it also transforms objects in
the input sequence by applying a cast. For this reason, we covered it as the last operator in
the category of restrictions, adjacent to the projection operators.

997Standard Query Operators

Projection

To transform objects in a sequence into corresponding objects in an output sequence,
projection operators are used. While those preserve the element count of the source
sequence, they transform each element, potentially realizing vertical partitioning. The
typical example from the database world is the selection of a subset of columns.

Select

The basic projection operator is Select, surfaced through the C# language using the
select clause we’ve seen before. Two overloads exist, one of which takes in an extra
integer argument to the selector delegate, representing the index of the element in the
sequence. Notice that the transformative characteristic surfaces through the presence of
two generic parameters (one to represent the type of the input sequence elements and one
to represent the type of the output sequence elements):

static IEnumerable<R> Select<T,R>(this IEnumerable<T> source,

Func<T, R> selector);

static IEnumerable<R> Select<T,R>(this IEnumerable<T> source,

Func<T, int, R> selector);

Although the Select method can transform the type of the input objects, it’s obvious this
is not a required use. For example:

IEnumerable<int> twice = Enumerable.Range(0, 10).Select(n => n * 2);

IEnumerable<string> s = Enumerable.Range(0, 10).Select(n => n.ToString());

Notice how generic type parameters are inferred from the lambda expression used as the
selector function. Although this is merely a convenience most of the time, it becomes a
necessity when anonymous types are used.

Finally, an example of the use of the index-supplying overload to create a numbered list of
items:

// { “0 is Zero”, “1 is One”, “2 is Two”, “3 is Three” }

IEnumerable<string> numbers = new [] { “Zero”, “One”, “Two”, “Three” }

.Select((s, i) => i + “ is “ + s);

Cast

The Cast operator is fairly similar to the OfType operator we saw before. It transforms
input elements in a similar way but doesn’t drop elements that aren’t compatible with the
specified target type. If such an element is encountered during enumeration, it will throw
an InvalidCastException instead:

foreach (int x in new object[] { 1, “2”, 3 }) {

// Will blow up on the second iteration.

}

998 CHAPTER 20 Language Integrated Query Internals

You can draw the analogy between Cast and the typical C# cast syntax, where OfType is
more along the lines of the C# as keyword combined with a null check.

This operator is defined on the nongeneric IEnumerable type for the source, just like
OfType, and therefore produces a way to make old nongeneric collection types LINQ
capable. A call to Cast is omitted when a query expression’s range variable has a type spec-
ified explicitly:

from int x in new ArrayList { 1, 2, 3 } ...

The preceding becomes this:

from x in new ArrayList { 1, 2, 3 }.Cast<int>() ...

SelectMany

Probably the most important operator in LINQ is SelectMany. But why? There are two
ways to answer this: One takes the theoretical route of monads, and another takes the
practical route of querying. Let’s start with the latter and make our way back to the former
after we have a solid understanding of what the operator does.

SelectMany is one of the core drips of glue that exist in LINQ, in that it allows for compo-
sition of queries that span many sources of data. In fact, the following query expression
with multiple from clauses translates in a use of the SelectMany operator:

from product in northwind.Products

from supplier in product.Suppliers

select new { product.Name, supplier.City }

What we’re doing here is selecting all the suppliers that go with each product that’s
defined in the database we’re querying. If you look closely, you can recognize two queries
that are interwoven: one to fetch products and one to fetch suppliers for each of the prod-
ucts that have been retrieved. This corresponds roughly to two nested foreach loops,
though a query can be executed remotely in its entirety and is, as you know by now,
executed lazily.

To see where SelectMany enters the picture, you can verify through .NET Reflector (or
by just reading the C# language specification) that the preceding form translates into
the following:

northwind.Products.SelectMany(

product => product.Suppliers,

(product, supplier) => new { product.Name, supplier.City }

)

999Standard Query Operators

The SelectMany overload that’s being used here is the following:

static IEnumerable<R> SelectMany<T,C,R>(

this IEnumerable<T> source,

Func<T, IEnumerable<C>> collectionSelector,

Func<T, C, R> resultSelector);

Three generic parameters are present. One represents the element type used in the source
sequence (T), while another represents the result element type (R). Right in the middle, we
find C to represent the intermediate element type. In the preceding example, T will be
substituted for some Product type, C stands for the Supplier type, and R stands for the
projected result type (an anonymous type with two strings, one for the product name and
one for the supplier’s city).

Other overloads are available, such as the one shown here:

static IEnumerable<R> SelectMany<T,R>(

this IEnumerable<T> source,

Func<T, IEnumerable<R>> resultSelector);

This one essentially flattens sequences that are obtained by applying the result selector to
the elements of the source sequence. The definition of the operator looks like this, using
an iterator:

static IEnumerable<R> SelectMany<T,R>(this IEnumerable<T> source,

Func<T, IEnumerable<R>> resultSelector)

{

foreach (T item in source)

foreach (R result in resultResultor(item))

yield return result;

}

It’s left as an exercise for you to come up with an implementation of SelectMany for the
overload we’ve shown before. Two other overloads exist that provide integer index values
to the selector functions, indicating the element’s position in the sequence, analogous to
similar overloads found on Where and Select.

LANGUAGE-INTEGRATED MONADS AND BIND IN DISGUISE

LINQ is based on the concept of monads, a term from category theory, introduced in
the world of functional programming by Philip Wadler in the context of Haskell. Because
of this, LINQ is not tied to querying operations alone and can be used for any type of
monadic computation.

It turns out that SelectMany has the signature of the monadic bind operation, allowing
for the composition of monadic computations. Because of query expressions, this

1000 CHAPTER 20 Language Integrated Query Internals

mysterious monadic bind is disguised behind the use of multiple from clauses in a
query expression, but what we really have here is language-integrated monads.

In this bigger picture, LINQ really is an implementation of a querying monad over
sequences (that live locally in memory or remotely in some data store). However, other
monads exist that aren’t directly provided for in the BCL but could be defined easily by
providing custom implementations of SelectMany (and other operators) over certain
types. An example is the hypothetical monad for computation with nullables, where one
hides the computational aspect of checking for nulls and propagating those, without
evaluating unused values:

from x in (int?)null

from y in (int)Console.ReadLine() // would never get called, because...

select x + y // ...SelectMany sees x is null and returns null immediately

One other monad implementation leveraging LINQ are the reactive extensions to the
.NET Framework, otherwise known as Rx or LINQ to Events. Using the nice syntax of
query expressions, you can query observable data supplied by event sources. What the
monadic computation here provides for is hiding all the complexity involving concurren-
cy and coordination of hooking up and receiving events and data. More theoretically, Rx
is the implementation of the continuation monad.

Zip

The only new query operator introduced in .NET 4 is Zip. It doesn’t have any query
expression syntactical surface (like many other operators don’t), but it definitely has
a place in a LINQ user’s toolbox. What Zip does is combine two input sequences in

an element-by-element pairwise way. Given two sequences (of possibly different element
types) and a function used to combine elements at corresponding positions, it produces an
output sequence with elements as long as both input sequences have remaining elements.

Figure 20.8 illustrates the operation of Zip in a shape comparable to the mechanical
device used in clothing, combining the teeth of two sides of a zipper.

By now, you should be able to infer a signature for query operators by reading a textual
definition as the one provided here. Two sequences of different element types, a combiner
function and a resulting sequence, ought to look like this:

static IEnumerable<R> Zip<T1,T2,R>(

this IEnumerable<T1> left,

IEnumerable<T2> right,

Func<T1, T2, R> resultSelector);

As soon as one of both sequences runs out of elements, the resulting sequence also termi-
nates, in a similar way to an asymmetric zipper on your jacket. Also, when one of the
inputs throws an exception, the resulting sequence will too, just like a broken tooth in a
zipper spoils the zipping process and leaves you in the cold.

1001Standard Query Operators

I
E
n
u
m
e
r
a
b
l
e
<

>

IEnumerable< >

Left

Zip

Right

I
E
n
u
m
e
r
a
b
l
e
<

>

FIGURE 20.8 Zip in action.

An example of the use of Zip on primitive types is shown here:

Enumerable.Range(0, 26).Zip(

from i in Enumerable.Range(0, 26) select (char)(i + ‘a’),

(n, c) => “The “ + n + “th character of the Latin alphabet is “ + c + “.”

);

Here, n will range over the left input (that is, the Range operator’s output in the first line),
while c will range over the right output that’s provided by the embedded query expression
on the second line.

NO QUERY EXPRESSION SYNTAX

Lots of standard query operators don’t have a corresponding query expression syntax
in C# and Visual Basic. This is often done to reduce unnecessary language surface
that ages the language for less commonly used operators. Zip is one of the operators
that don’t have query expression syntax at the time of this writing, but it’s still interest-
ing to think about what it could look like, as it gains more insight in the type-level
symmetry of the operator.

Assume C# got tuple types for a moment. Tuples are the generalization of pairs, triplets,
and so on, wrapping up a bunch of values. A commonly used syntax for tuples is to put
the values in between parentheses, in a comma-separated manner as shown here:

var person = (“Bart”, 27);

1002 CHAPTER 20 Language Integrated Query Internals

The preceding could be turned into a Tuple<string, int>, with properties that allow
you to get the respective values out (for example, item1 and Item2). Syntax for those
operations could be dreamed up, such as .1 and .2, and unpacking of a tuple could be
done by some new form of assignment:

(string name, int age) = person;

If we now assume we have tuples in the language and allow for use of generics on
them, we could write a Zip’s signature as follows:

static IEnumerable<(T1,T2)> Zip<T1,T2,R>(

(IEnumerable<T1>,IEnumerable<T2>) sources

);

Observe the big symmetry between the sources parameter, a tuple of sequences, and
the result type, a sequence of tuples. Used in a query expression, use of this syntax
could yield the following form:

from (name, age) in (names, ages) select name + “ is “ + age

Maybe tuples will make it into C# one day, and that would be a great time to think
about query expression syntax for Zip.

Ordering

One of the most commonly used query operations in the world of databases is applying
ordering to the elements or records. Obviously, LINQ provides for this, as well:

var memoryHungry = from process in Process.GetProcesses()

orderby process.ProcessName, process.WorkingSet64 descending

select process;

The preceding query expression translates into the use of two operators, OrderBy and
ThenByDescending. Their respective roles will become apparent in just a moment:

var memoryHungry = Process.GetProcesses()

.OrderBy(process => process.ProcessName)

.ThenByDescending(process => process.WorkingSet64);

OrderBy and OrderByDescending

A first set of operators start with OrderBy and establish a primary ordering. Within buckets
with the same ordering key, secondary and n-ary orderings can be established using the
ThenBy family of operators discussed next.

Two overloads for each of the OrderBy operators are available, with the most generic one
allowing one to specify a comparer implementation used to investigate the relative order
of elements:

1003Standard Query Operators

static IEnumerable<T> OrderBy<T,K>(

this IEnumerable<T> source,

Func<T, K> keySelector);

static IEnumerable<T> OrderBy<T,K>(

this IEnumerable<T> source,

Func<T, K> keySelector,

IComparer<K> comparer);

Their use should be self-explanatory. Notice, though, there’s no overload that omits the
use of a key selector function, but you can always use the identity function to achieve
that effect:

// Same as from x in new[] { 5, 2, 6, 3, 4, 1 }

// orderby x

// select x

var oneToSix = new[] { 5, 2, 6, 3, 4, 1 }.OrderBy(x => x) // { 1, 2, 3, 4, 5, 6 }

ThenBy and ThenByDescending

After establishing a primary ordering, further orderings can be established using the family
of ThenBy operators. In query expressions, the commas used in the comma-separated list
of ordering keys correspond to ThenBy or ThenByDescending calls.

Additional overloads with a comparer object are available, but they don’t have a query
expression syntax. The signatures are the same as the ones shown earlier for OrderBy
operators.

Grouping and Joining

Slightly more complex query functionality exists in the family of grouping and joining
operators. The number of overloads for those standard query operators may be frightening
at first, so let’s take a closer look.

GroupBy

To put elements in buckets with similar properties, grouping operations are used. No fewer
than eight overloads exist for the GroupBy operator, which by themselves can be grouped
into some categories. One set of overloads exposes a sequence containing IGrouping<K,T>
objects, which contain the grouping key and the elements that go with it (because each
grouping object is also an IEnumerable):

public interface IGrouping<TKey, TElement> : IEnumerable<TElement> {

TKey Key { get; }

}

1004 CHAPTER 20 Language Integrated Query Internals

Another set of overloads projects the obtained groups into result objects immediately,
using an extra function parameter. This proves particularly useful when performing analy-
sis tasks such as aggregations, where the elements of the group don’t matter but some
sum, count, average, or another aggregation over each group’s elements is what matters.

Within those categories of grouping operators, another taxonomy can be made based on
the presence of additional intermediate projections over the elements. There are also over-
loads that provide a generic key equality comparer.

The whole set of overloads that returns grouping objects is shown here, ordered by
increasing complexity:

static IEnumerable<IGrouping<K,T>> GroupBy<T,K>(

this IEnumerable<T> source,

Func<T, K> keySelector);

static IEnumerable<IGrouping<K,T>> GroupBy<T,K>(

this IEnumerable<T> source,

Func<T, K> keySelector,

IEqualityComparer<K> comparer);

static IEnumerable<IGrouping<K,E>> GroupBy<T,K,E>(

this IEnumerable<T> source,

Func<T, K> keySelector,

Func<T, E> elementSelector);

static IEnumerable<IGrouping<K,E>> GroupBy<T,K,E>(

this IEnumerable<T> source,

Func<T, K> keySelector,

Func<T, E> elementSelector,

IEqualityComparer<K> comparer);

Query expression syntax for grouping translates into the third or first overload, depending
on the expression used for the computation of the grouping value:

// Same as from x in new[] { 5, 2, 3, 5, 1, 1 }

// group x by x % 2 == 0

// ...

new[] { 5, 2, 3, 5, 1, 1 }

.GroupBy(x => x % 2 == 0) ...

In the preceding query, only a key selector is present, in particular a Boolean representing
the odd or even characteristic of the group’s values. However, we could also compute a
value in one go:

1005Standard Query Operators

// Same as from x in new[] { 5, 2, 3, 5, 1, 1 }

// group x.ToString() by x % 2 == 0

// ...

new[] { 5, 2, 3, 5, 1, 1 }

.GroupBy(x => x % 2 == 0, x => x.ToString()) ...

Here we want to build groups with string elements instead of the original integers, as spec-
ified by the element selector function. Because the standard query operator creates the
groups, this is the most convenient way to do such a projection within groups in an effi-
cient manner, at the point the group is created. You could achieve a similar effect by using
a select clause.

The set of operators that doesn’t return an IGrouping object but projects the group into
some related value (for example, using aggregation functions) can be derived easily from
the set of overloads shown earlier. In particular, we add a function for this projection and
change the return type to get rid of the IGrouping type:

static IEnumerable<R> GroupBy<T,K,R>(

this IEnumerable<T> source,

Func<T, K> keySelector,

Func<K, IEnumerable<T>, R> resultSelector);

static IEnumerable<R> GroupBy<T,K,R>(

this IEnumerable<T> source,

Func<T, K> keySelector,

IEqualityComparer<K> comparer,

Func<K, IEnumerable<T>, R> resultSelector);

static IEnumerable<R> GroupBy<T,K,E,R>(

this IEnumerable<T> source,

Func<T, K> keySelector,

Func<T, E> elementSelector,

Func<K, IEnumerable<T>, R> resultSelector);

static IEnumerable<R> GroupBy<T,K,E,R>(

this IEnumerable<T> source,

Func<T, K> keySelector,

Func<T, E> elementSelector,

IEqualityComparer<K> comparer,

Func<K, IEnumerable<T>, R> resultSelector);

1006 CHAPTER 20 Language Integrated Query Internals

GroupJoin

The use of the join clause in a query expression gives rise to a join operator in the gener-
ated code that calls into standard query operators. Depending on possible subsequent use
of an into clause for a query continuation, either a GroupJoin operator or a plain Join
operator is used.

When using an into continuation after a join clause, a GroupJoin operator call is emitted,
as shown here:

// from product in northwind.Products

// join order in northwind.Orders on product.ID equals order.Product into g

// select product.Name + “ has “ + g.Count() + “ orders”

northwind.Products.GroupJoin(

northwind.Orders,

product => product.ID, // role of “primary key”

order => order.Product, // role of “foreign key”

(product, g) => product.Name + “ has “ + g.Count() + “ orders”

)

If no subsequent select clause is used, a transparent identifier is used, as touched on
briefly before. In practice, this corresponds to the use of an intermediate Select call, pack-
aging up all identifiers that are “in scope” in an anonymous type object.

The reason the preceding form of joining carries grouping in its name is quite obvious:
Besides joining two data sources on some common key value, the values of the inner data
source (northwind.Orders in the preceding) are exposed as a group (g in the preceding) for
use later in the query (in this case to calculate the Count aggregate).

Two overloads for GroupBy exist, one of which provides an additional comparer used in
the comparison of extracted key values. The generic parameters O and I, respectively,
stand for “outer” and “inner” (in reality, TOuter and TInner):

static IEnumerable<R> GroupJoin<O,I,K,R>(

this IEnumerable<O> outer,

IEnumerable<I> inner,

Func<O, K> outerKeySelector,

Func<I, K> innerKeySelector,

Func<O, IEnumerable<I>, R> resultSelector);

static IEnumerable<R> GroupJoin<O,I,K,R>(

this IEnumerable<O> outer,

IEnumerable<I> inner,

Func<O, K> outerKeySelector,

Func<I, K> innerKeySelector,

Func<O, IEnumerable<I>, R> resultSelector,

IEqualityComparer<K> comparer);

1007Standard Query Operators

The first four parameters are what entail any kind of join, specifying the sources as well as
the way to extract key values from their elements. The grouping characteristic of this
particular join is reflected in the presence of the resultSelector, which takes in the outer
element with the corresponding inner elements, asking for a result value.

Join

Now that we’ve seen how a GroupJoin can combine a single outer element with all the
corresponding inner elements, it’s time to look at a more general kind of join that permits
the combination of individual outer and inner elements that share a common key. Two
overloads exist:

static IEnumerable<R> Join<O,I,K,R>(

this IEnumerable<O> outer,

IEnumerable<I> inner,

Func<O, K> outerKeySelector,

Func<I, K> innerKeySelector,

Func<O, I, R> resultSelector);

static IEnumerable<R> Join<O,I,K,R>(

this IEnumerable<O> outer,

IEnumerable<I> inner,

Func<O, K> outerKeySelector,

Func<I, K> innerKeySelector,

Func<O, I, R> resultSelector,

IEqualityComparer<K> comparer);

As stated already, the key difference lies in the fifth parameter, which no longer uses the
whole group of inner elements but takes in pairs of one outer and one associated inner
element, based on key equality.

In terms of query expressions, this corresponds to the use of a join clause but without an
into continuation following it. An example is shown here:

// from product in northwind.Products

// join order in northwind.Orders on product.ID equals order.Product

// select product.Name + “ is ordered by “ + order.Customer.Name

northwind.Products.Join(

northwind.Orders,

product => product.ID, // role of “primary key”

order => order.Product, // role of “foreign key”

(product, order) => product.Name + “ is ordered by “ + order.Customer.Name

)

1008 CHAPTER 20 Language Integrated Query Internals

Again, immediate use of select results in the projection function’s body to be embedded
in the last parameter’s selector function. As soon as other clauses follow the use of join,
transparent identifiers enter the picture:

from product in northwind.Products

join order in northwind.Orders on product.ID equals order.Product

where order.Quantity >= 10

select product.Name + “ is ordered by “ + order.Customer.Name

Here, product and order will be packaged up in an anonymous type so they can be
referred to (transparently to the user of query expression syntax) in query clauses down the
query expression. The preceding roughly translates into the following:

northwind.Products.Join(

northwind.Orders,

product => product.ID,

order => order.Product,

(product, order) => new { product, order }

).Where(

transparentId => transparentId.order.Quantity >= 10

).Select(

transparentId => transparentId.product.Name + “ is ordered by “

+ transparentId.order.Customer.Name

)

Luckily, as a user of query expression syntax, you don’t have to worry about all the hoops
you must jump through to thread objects around through the query.

A comparison between GroupJoin and Join is shown in Figure 20.9.

LEFT OUTER JOINS

Sometimes people look for left outer joins, where each outer (left) element is returned,
regardless of whether it has corresponding inner (right) elements. Although there’s no
direct operator for this, you can combine GroupJoin and DefaultIfEmpty to achieve
the same effect. Search MSDN for “LINQ left outer join” for more information.

Aggregation

Analytics of information often require a reduction of data volume, computing certain
statistics of the data involved. Those operations are called aggregations, which turn a
collection of objects into a singleton value, representing the original information that has
been combined in one form or another.

Because all aggregates are conceptually the same, we start by looking at the general-
purpose Aggregate operator and discuss more specific aggregation operators later.

1009Standard Query Operators

Name

Join

X
X
X
X
X

Chai

Chang

Aniseed Syrup

Chef Anton’s Cajun Seasoning

Chef Anton’s Gumbo Mix

ID

1

2

3

4

5

1

2

3

3

4

Customer

Bart

Lisa

Bart

Homer

Homer

Product

7

20

3

8

12

Qty

1 on 1 join

Name

GroupJoin

X
X
X

X

Chai

Chang

Aniseed Syrup

Chef Anton’s Cajun Seasoning

Chef Anton’s Gumbo Mix

ID

1

2

3

4

5

1

2

3

3

4

Customer

Bart

Lisa

Bart

Homer

Homer

Product

7

20

3

8

12

Qty

1 on n join

FIGURE 20.9 Types of join operations compared.

Aggregate

The Aggregate operator takes a sequence of elements of type T and turns them into a
single value of another type A, which stands for accumulated or aggregated depending on
your choice of vocab. But how can we transform any number of elements of type T into a
single value of another type? Let’s start with the simplest case where both types are the
same and look at how we would create the sum of a sequence of integer values, as illus-
trated in Figure 20.10.

Based on this, we can see we don’t need any fancy stuff to compute the sum of an
unknown number of integer values: All we need is a binary function that can add two
numbers. By reusing this function repeatedly, consuming one element in the input
sequence at a time (in a left-to-right fashion), we can compute the sum.

So far, we’ve stayed in the same domain of values for our input sequence and the result of
the aggregation, but in a more generalized world we want those types to differ. In fact, for
a sum we might want the sum of integer values to result in a long, to reduce the chance of
overflowing the 32-bit precision. More generally, we might want to do things like aggre-
gating a sequence of numbers into a string concatenating them. In that case it’s clear the
input type (a sequence of integers) differs from the aggregated output type (a single string).

1010 CHAPTER 20 Language Integrated Query Internals

3 + 7 + 1 + 5 + 0 + 8 + 0 + 4 + 2

Leveraging
left associative property of +

= 3 + 7
10 + 1

11 + 5
16 + 0

16 + 8
24 + 0

24 + 4
28 + 2

30

 3 7 1 5 0 8 0 4 2

FIGURE 20.10 A sum is a simple aggregation operation.

To make this work in general, we introduce two more changes to our first attempt at an
aggregation operation. In particular, we add a seed value to start the computation with and
generalize the aggregation function to take the aggregated value so far and the next
element to be aggregated. In C# terms with generics, it looks like this:

A Aggregate<T, A>(this IEnumerable<T> source,

A seed,

Func<A, T, A> accumulate);

For example, given a seed equal to the empty string ”” and a function that takes a string
and some element from the input, we can concatenate the aggregated string and the next
element to produce the new aggregated value.

LEFT FOLD

In functional programming languages, this form of aggregation is known as a left fold.
Given a sequence of elements, we fold them up one by one, starting from the left and
making our way to the end at the right. The opposite operation, a right fold, is not avail-
able directly in LINQ; however, you can express a right fold in terms of a left fold. (Tip:
The accumulation type will be a function.) In practice, though, left folds are generally
more useful and have a better memory profile because one doesn’t have to scan the
whole input sequence first before being able to combine values from the right end.

The example illustrated in Figure 20.11 can be written as follows in C#:

new[] { 3, 7, 1, 5, 0, 8, 0, 4, 2 }

. Aggregate(““, (s, n) => s + n.ToString())

1011Standard Query Operators

“3” + “7” + “1” + “5” + “0” + “8” + “0” + “4” + “2”

Seed value

= “” + 3.ToString()
“3” + 7.ToString()
“37” + 1.ToString()
“371” + 5.ToString()
“3715” + 0.ToString()
“37150” + 8.ToString()
“371508” + 0.ToString()
“3715080” + 4.ToString()
“37150804” + 2.ToString()
“371508042”

Binary accumulation
function (string concat)

 3 7 1 5 0 8 0 4 2

FIGURE 20.11 Aggregation with different element and accumulation types.

A Aggregate<T,A>(IEnumerable<T>source,A seed,Func<A,T,A>accumulate)

IEnumerable<T>

IEnumerable<T>

Seed Value for
Aggregation

Next Element
Is “Folded” In

Aggregate Has
“Compressed”
All Elements

+

Fold Left

FIGURE 20.12 Aggregation with different element and accumulation types.

In summary, the general schematic representation of the Aggregate operator is shown in
Figure 20.12.

1012 CHAPTER 20 Language Integrated Query Internals

Notice that the string concatenation example is very inefficient due to the allocation of
lots of intermediate strings for the partial results of the concatenation operation. It would
be much better to use a StringBuilder for this, which can also be done using Aggregate:

new[] { 3, 7, 1, 5, 0, 8, 0, 4, 2 }

. Aggregate(new StringBuilder(), (sb, n) => sb.Append(n.ToString()))

The StringBuilder type has an Append method that appends the given string to the end
of the buffer, returning the StringBuilder itself so one can continue appending things to
it in a fluent manner. This time, the aggregation type is a StringBuilder, meaning the
return type will be StringBuilder, too. Instead we likely want to transform this result into
a string, which can be done by calling ToString on the result. Alternatively, an overload
of Aggregate can be used to do this final transformation on the result:

R Aggregate<T, A, R>(this IEnumerable<T> source,

A seed,

Func<A, T, A> accumulate,

Func<A, R> resultSelector);

In our example, we can use this overload to specify the final step of turning the used
StringBuilder into a string:

new[] { 3, 7, 1, 5, 0, 8, 0, 4, 2 }

. Aggregate(new StringBuilder(),

(sb, n) => sb.Append(n.ToString()),

sb => sb.ToString())

Count and LongCount

One of the simplest aggregation operations is counting the number of elements that occur
in the source sequence. Count and LongCount do precisely that, respectively returning an
Int32 and Int64 value. The signatures are shown here:

int Count<T>(this IEnumerable<T> source);

long LongCount<T>(this IEnumerable<T> source);

Based on the earlier discussion about Aggregate, it should be clear that the same effect
can be achieved by relying on Aggregate, as follows:

source.Aggregate(0, (n, item) => n + 1)

The only slightly strange thing about this form of aggregation is that the elements from
the input sequence are not being used in the aggregation result.

1013Standard Query Operators

“DON’T CARE” PARAMETERS

Some functional languages provide a don’t care identifier that can be used to state
that a parameter to a function will not be used. Typically, the underscore character is
used. Because this is a valid identifier in C#, you can play the same trick:

source.Aggregate(0, (n, _) => n + 1)

Notice, though, an underscore is just an identifier like any other and therefore is sub-
ject to all rules that apply to identifiers, their declaration, and surrounding scopes. If
multiple parameters to a function can be ignored, you won’t be able to use an under-
score to express the “don’t care” characteristic on all of those. In functional lan-
guages, this “wildcard” syntax is really a special kind of identifier that allows such
uses, but in C# it’s an identifier like any other.

Additional overloads exist to compute the number of elements in a sequence that match a
certain predicate:

int Count<T>(this IEnumerable<T> source, Func<T, bool> predicate);

long LongCount<T>(this IEnumerable<T> source, Func<T, bool> predicate);

Use of those overloads is merely the same as using the Where operator in conjunction with
the simple form (without a predicate) of Count or LongCount.

Sum and Average

Sum and Average are closely related and compute what you expect them do. Lots of over-
loads exist for those aggregation operations, for all numeric primitives types and their
nullable variants. Let’s start by looking at Sum, illustrating the two overloads that are avail-
able for the various numeric types:

static int Sum(this IEnumerable<int> source);

static int Sum<TSource>(this IEnumerable<TSource> source,

Func<TSource, int> selector);

The first overload acts directly on a sequence of numeric values, whereas the latter carries
out a projection first. The second form can be written in terms of Select followed by the
first form of Sum, too.

When the result overflows the precision of the numeric type, an OverflowException is
generated. If this is not desired, you can always use the general Aggregate operator to
compute a sum manually, possibly returning a more precise type. An example to sum 32-
bit integer values into a 64-bit integer, without using the checked keyword, is shown here:

source.Aggregate(0L, (long sum, int item) => sum + item)

1014 CHAPTER 20 Language Integrated Query Internals

The nullable variants implicitly coalesce null values to the default value of the numeric
type being summed. This corresponds to typical database semantics for aggregation
operators like Sum:

static int? Sum(this IEnumerable<int> source);

static int? Sum<TSource>(this IEnumerable<TSource> source,

Func<TSource, int?> selector);

// Sample use:

new int?[] { 1, null, 2 }.Sum() == 3

If this null-coalescing is not desired, you can always use Aggregate to get different behav-
ior. For example:

new int?[] { 1, null, 2 }.Aggregate((int?)0, (sum, n) => sum + n) == null

Or if you want to throw an exception if a null value is encountered, it suffices to call the
Value property on the nullable element during aggregation:

new int?[] { 1, null, 2 }.Aggregate((int?)0, (sum, n) => sum + n.Value)

This clearly illustrates the power of having a general aggregation operator acting as an
escape valve if certain specialized aggregation operators don’t provide desired results.

Based on our coverage of various aggregation operators so far, Average should be quite
simple to understand, too. One thing to point out is that the Average operator is not the
equivalent of calling Sum() and dividing by Count() on the same sequence. There are a
couple of reasons this invariant doesn’t hold:

. The null-coalescing behavior of Sum will treat null values as zeros. Count will count null
values as proper elements, so null elements will be included in the denominator of the
division. Average on nullable sequences will only use non-null values in the count.

. Using Sum and Count separately would cause two iterations over the source sequence.
Because sequences are evaluated lazily, it’s possible two iterations yield different
results than a single iteration (for example, because of global or external state
changes). Also, if the input sequence is an iterator that exposes side effects, those
would get duplicated.

One final remark on the available Average overloads is that result types for averages on
integral values are in the floating-point domain. For example:

static double Average(this IEnumerable<int> source);

How would you achieve a different effect by applying Aggregate manually? Based on the
advice against using Count and Sum, we should think of a different way to carry out the
summation and element count hand in hand. One way to do so is by making the accumu-
lation value an anonymous type instance that has two properties for the sum and count,
respectively:

1015Standard Query Operators

new { 1, 2, 3 }.Aggregate(

new { Count = 0, Sum = 0 },

(acc, n) => new { Count = acc.Count + 1, Sum = acc.Sum + n },

acc => acc.Sum / acc.Count /* integral division */

)

The preceding illustrates the expressiveness introduced in the C# language thanks to both
anonymous types and lambda expressions. Notice how multiple uses of an anonymous
type with the same property names and types results in compatible types within the same
enclosing method. In particular, we’re using the same anonymous type for both the seed
and the result of the accumulation function.

STRUCTURAL TYPING

Anonymous types are a very weak form of structural typing in the language. As soon as
their shape is the same in terms of property names and their types, they are compati-
ble (within the scope of the enclosing method).

In the preceding example, the type inference on Aggregate has to come to conclude
that the type of seed and the return type of the accumulation function are compatible
with one another:

new { 1, 2, 3 }.Aggregate<int, <>__Anon`2, int>(...)

In a real structural type system (as seen in languages like Microsoft’s M modeling lan-
guage), the flexibility on compatibility between values would be bigger; for example,
stating that { X = 1, Y = 2 } and { X = 1, Y = 2, Z = 3} participate in a subtype relation-
ship (stating a certain compatibility between 2D and 3D points).

Min and Max

Minimum and maximum aggregations are easy to understand, too. A whole series of over-
loads for Min and Max provide functionality to compute numeric minimum and maximum
values over a sequence. For example

new[] { 1, 3, 2 }.Max() == 3

Overloads for nullable values exist, which ignore null values in the computation of a
minimum or maximum value. In addition to those, overloads that take an extra selector
function are available:

static T Min<T, R>(this IEnumerable<T> source, Func<T, R> selector);

For such overloads, the default comparer on type R is used to perform the comparison.
Unfortunately, no overload taking in an IComparer<R> is available. This non-numeric
operator is also available without a selector function:

static T Min<T>(this IEnumerable<T> source);

1016 CHAPTER 20 Language Integrated Query Internals

An example use for the Max brother to the operator above is shown here:

new[] { “Bart”, “Lisa”, “John” }.Max() == “Lisa”

MINBY, MAXBY?

A relatively often requested feature for aggregation operators are MinBy and MaxBy

operators that allow you to select a minimum or maximum element by specifying a key
extractor function (for example, to select a person with the lowest age):

people.MinBy(person => person.Age).Name

Creation of such an operator is a bit tricky in the face of generic comparers and what-
not. Although it’s a good exercise, the reactive extensions to .NET will most likely ship
such operators as part of the System.Interactive assembly. For more information,
search for “DevLabs Reactive Extensions” on MSDN.

Better Together: GroupBy and Aggregations
One of the most common uses of aggregation operators is found in conjunction with the
grouping operations. After grouping elements by a certain common property, one wants
to calculate statistics for all the elements within each group separately. An example is
shown here:

var procStats = from process in Process.GetProcesses()

group process by process.ProcessName into g

select new { Process = g.Key,

Count = g.Count(),

Memory = g.Sum(p => p.WorkingSet64) } into stat

where stat. Memory > 100 * 1024 * 1024

orderby stat.Memory descending

select stat;

Printing those statistics will show the groups of processes that use the same executable,
ordered by memory consumption in a descending manner and restricted to those that
collectively consume 100MB or more. Notice how the use of the Sum overload with the
selector function is very useful in such a scenario.

AGGREGATES IN VISUAL BASIC

The Visual Basic language has slightly more query expression exposure for standard
query operators compared to C#. One field where Visual Basic has additional built-in
keywords for querying operations is for aggregation:

From p In Process.GetProcesses()

Group p By p.ProcessName Into Memory = Sum(p.WorkingSet64), Count = Count()

Where Memory > 100 * 1024 * 1024

1017Standard Query Operators

Order By Memory Descending

Select ProcessName, Memory

Other operators, such as Take, Skip, and Distinct, also have syntactical language
integration in Visual Basic.

Predicates

In the world of LINQ, predicate operators express Boolean-valued truths about sequences
and their elements. Operators such as Any and All should sound familiar to those who’ve
learned basics of predicate logic. Other operators include SequenceEqual (to compare two
sequences) and Contains (to ask membership questions about elements in sequences).
Let’s take a look at all of those.

All and Any

All and Any evaluate a predicate for each of the elements in a given sequence. If all the
elements pass the predicate, All will return true. If some of the elements pass the predi-
cate, Any will also return true:

static bool All<T>(this IEnumerable<T> source, Func<T, bool> predicate);

static bool Any<T>(this IEnumerable<T> source);

static bool Any<T>(this IEnumerable<T> source, Func<T, bool> predicate);

The extra overload for Any checks whether a sequence has any elements, returning false
for an empty sequence. Some examples of the use of those operators are shown here:

var allEven = new[] { 2, 4, 6, 8, 10 }.All(x => x % 2 == 0); // true

var someOdd = new[] { 2, 3, 4, 5 }.Any(x => x % 2 == 1); // true

var anyElement = new int[] {}.Any(); // false, sequence empty

In fact, those operators also special forms of aggregation operations. For example, All can
be written in terms of an aggregation using &&. One subtle difference is that the All and
Any operators will stop iteration over the source sequence as soon as the result is known.
All will return false as soon as an element doesn’t match the predicate; Any will return
true as soon as an element does match the predicate:

var allEven = new[] { 1, 2, 3 }.Aggregate(true,

(all, x) => all && x % 2 == 0);

Contains

As the name implies, Contains performs a membership check for a given element in a
given sequence. Two overloads exist, one with and one without an equality comparer:

1018 CHAPTER 20 Language Integrated Query Internals

static bool Contains<T>(this IEnumerable<T> source, T value);

static bool Contains<T>(this IEnumerable<T> source, T value,

IEqualityComparer<T> comparer);

Use of this operator doesn’t require further explanation. One important remark is that the
operator will terminate iteration over the source sequence as soon as an element is found
that matches the equality check. Also notice there’s no In operator because that would
create an extension method on a generic parameter T, which would appear everywhere.

SequenceEqual

To compare whether two sequences have the same elements, a check carried out by means
of an equality test, the SequenceEqual operator can be used. Equality over a sequence is
defined in an element-by-element pairwise equality check, also requiring that both
sequences have the same number of elements:

static bool SequenceEqual<T>(this IEnumerable<T> first, IEnumerable<T> second);

static bool SequenceEqual<T>(this IEnumerable<T> first, IEnumerable<T> second,

IEqualityComparer<T> comparer);

A few examples illustrate the operator’s behavior:

var f = new[] { 1, 2, 3 }.SequenceEqual(new[] { 1 }); // false

var s = new[] { 1, 2, 3 }.SequenceEqual(new[] { 2, 3, 1 }); // false

var t = new[] { 1, 2, 3 }.SequenceEqual(new[] { 1, 2, 3 }); // true

Set Theoretical and Sequencing Operators

So far, we’ve always been talking about sequences as the sources of data which LINQ oper-
ates on. Even though the use of sequences implies an ordering of elements, it doesn’t
preclude certain set theoretical operations, such as intersection and union, to be defined.
Besides those, some operations that have an inherent affinity to sequences exist.

Intersect

The intersection of two sequences consists of all the elements that exist in both of the
sequences, where an existence check is based on an equality check:

static IEnumerable<T> Intersect<T>(this IEnumerable<T> first,

IEnumerable<T> second);

static IEnumerable<T> Intersect<T>(this IEnumerable<T> first,

IEnumerable<T> second,

IEqualityComparer<T> comparer);

1019Standard Query Operators

Union

To merge two sequences without retaining duplicates, the Union operator can be used. Just
like the Intersect operator, an equality check lies at the heart of membership tests:

static IEnumerable<T> Union<T>(this IEnumerable<T> first,

IEnumerable<T> second);

static IEnumerable<T> Union<T>(this IEnumerable<T> first,

IEnumerable<T> second,

IEqualityComparer<T> comparer);

Except

To retain all elements in a sequence that do not occur in another sequence, the Except
operator is your workhorse. Overloads are predictable once more:

static IEnumerable<T> Except<T>(this IEnumerable<T> first,

IEnumerable<T> second);

static IEnumerable<T> Except<T>(this IEnumerable<T> first,

IEnumerable<T> second,

IEqualityComparer<T> comparer);

A diagram of those three operators can be found in any textbook on set theory, using
Venn diagrams to represent sets.

Concat

Concatenation is a meaningful operation on any number of things that can be done in a
sequential manner. Sequences obviously have a sequential nature, so it shouldn’t be a
surprise to see LINQ providing a Concat operator:

static IEnumerable<T> Concat<T>(this IEnumerable<T> first,

IEnumerable<T> second);

BEWARE OF QUADRATIC EFFECTS

Although Concat is a great operator, its current use of iterators that foreach over both
sequences is a little pitfall that can come costly when lots of Concat operations are
strung together.

At the heart of this problem lies the fact the iterators in C# don’t provide for nested
iterators, sometimes referred to as “yield foreach.” Code generated for iterators is one
of the most complex things emitted by the C# compiler, and so far there has been little
incentive to introduce this optimization for yielding of entire sequences to the
consumer of the iterator (as Concat does).

1020 CHAPTER 20 Language Integrated Query Internals

Further details are outside the scope of this book. If you’re curious, however, just
search for the “Iterators revisited: proof rules and implementation” paper on the
Internet. Realistically, you are unlikely to face this problem unless you’re using opera-
tors like Concat very heavily.

Reverse

If a sequence has an order, it has an opposite order too. To reverse the order of a sequence,
you can use the Reverse operator. Be aware that this operator is very eager (as in “not
lazy”) because it needs to iterate over the whole sequence before it can yield the first result
element, which obviously is the last element of the input sequence:

static IEnumerable<T> Reverse<T>(this IEnumerable<T> source);

QUERY OPTIMIZATION

On a related note, LINQ to Objects does provide very little query optimization intelli-
gence for a variety of reasons. One example of an optimization one could dream of is
the elimination of two Reverse calls because the net effect would be the same as
retaining the original sequence. Yet other more complex optimizations could involve
various properties of ordering and filtering, based on the observation that some of
those query operations are seemingly commutative.

However, care must be taken in a stateful and effectful language like C#. Because
sequences built on iterators could exhibit certain side effects during iteration, the
slightest reordering of query logic would yield a different sequencing of those effects or
even eliminate some of them.

Query optimization for in-memory queries definitely could be done, and in fact technolo-
gies like Parallel LINQ do so in a rather brute-force manner by running portions of the
query in parallel, also dishonoring sequencing of possible side effects in favor of per-
formance. More intelligent query optimization, exploiting semantic properties of query
operators, could be done but is a highly specialized task. For one thing, you don’t want
the cost of optimizing a query at runtime to exceed the cost of just running the nonop-
timized query.

Sequence Persistence

The lazy nature of iterators and query operators defined over them is a very nice property
for a variety of reasons (as mentioned in passing). For example, it enables you to define a
query once and execute it multiple times, yet providing possibly different results every
time because the underlying data store might have changed. In addition to this, it allows
for query optimization and wholesale remoting of a query expression into some domain-
specific query language like SQL.

1021Standard Query Operators

However, sometimes you just want to trigger the execution of a query on the spot, storing
its results in an in-memory data structure. That’s what various persistence operators such
as ToArray and ToList are used for. Notice some other operators like First, Last, and
Single also trigger execution of the query:

static T First<T>(this IEnumerable<T> source);

This becomes immediately apparent from looking at the query operator’s signature, where
it’s clear that the sequence parameter is turned into a single object of type T, which by no
means is a type that exhibits some lazy characteristic.

ToArray and ToList

The simplest persistence operators are ToArray and ToList, which simply iterate over the
given sequence, putting the elements into an array or a (generic) list specifically. From
that point on, iterating over the resulting collection won’t trigger reexecution of the query
anymore. In fact, you’ve just created some kind of snapshot of the query results at the
point of making the call to ToArray or ToList.

Signatures of those operators are predictably easy, and their use is plain easy:

static TSource[] ToArray<TSource>(this IEnumerable<TSource> source);

static List<TSource> ToList<TSource>(this IEnumerable<TSource> source);

ToDictionary and ToLookup

Some sequences possess some key-value relationship in their elements, allowing for the
creation of collections that reflect this dictionary- or lookup-alike mapping. Both
ToDictionary and ToLookup can be used for such tasks. Overloads exist that take in various
selector functions, to extract the key and element values, together with an optional equal-
ity comparer used for key comparisons. The richest overloads are shown here:

static Dictionary<K, E> ToDictionary<T, K, E>(this IEnumerable<T> source,

Func<T, K> keySelector,

Func<T, E> elementSelector,

IEqualityComparer<K> comparer);

static ILookup<K, E> ToLookup<T, K, E>(this IEnumerable<T> source,

Func<T, K> keySelector,

Func<T, E> elementSelector,

IEqualityComparer<K> comparer);

The difference in the return types on both families of operators lies in the shape of the
returned data. A generic Dictionary is a well-known type by now because we covered it in
Chapter 15, “Generic Types and Methods.” As you’ll recall, such a dictionary only
provides room for one element per key. If that property exists on your source data, with

1022 CHAPTER 20 Language Integrated Query Internals

applying the supplied key and element selector functions, ToDictionary is usable.
However, if certain keys have multiple associated elements, you’re in trouble:

new[] { 1, 2, 3 }.ToDictionary(x => x % 2);

The preceding call will fail because there are two elements, 1 and 3, that share the same
key value (that is, 1). ToLookup, on the other hand, allows multiple elements per key
because the ILookup interface allows for this:

interface ILookup<TKey, TElement> : IEnumerable<IGrouping<TKey, TElement>>

{

int Count { get; }

IEnumerable<TElement> this[TKey key] { get; }

bool Contains(TKey key);

}

From the interfaces on ILookup, the relation of a lookup object and the grouping operators
becomes clear, too. You can state that ToLookup is to GroupBy as ToList is to a regular
sequence: Both To methods provide the persistent form of their corresponding data sources.

Here is an example of the use of ToLookup on a process list:

var procs = Process.GetProcesses().ToLookup(x => x.ProcessName);

foreach (var instance in procs[“notepad”])

Console.WriteLine(instance.Id);

MINLINQ AND THE ESSENCE OF LINQ

Now that we’ve discussed all the standard query operators, you might wonder what the
essence of LINQ is. Or to state it in another way, which operators are really essential,
and which ones can be derived from the core set of primitives?

I have written a blog post called “The Essence of LINQ” that elaborates on this ques-
tion and provides an answer in terms of an essential implementation of LINQ called
MinLINQ. For more information, see codeplex.com/LINQSQO.

Remote Versus Local with AsEnumerable

One final operator we need to take a look at is AsEnumerable. At first, it looks quite useless:

static IEnumerable<T> AsEnumerable<T>(this IEnumerable<T> source);

Looking at the implementation of the operator, this observation gets confirmed even
more because it doesn’t do anything but return the source parameter object. So what’s its
purpose? The answer is to be found in C#’s method resolution rules in the context of
extension methods.

1023Standard Query Operators

It’s clear that the AsEnumerable method will be available on every object that implements
the IEnumerable<T> interface (assuming the System.Linq namespace is imported, that is).
One more specialized interface that’s based on IEnumerable<T> is the IQueryable<T> inter-
face, which we discuss in the “Expression Trees” section:

interface IQueryable<T> : IEnumerable<T>

{

...

}

Now believe me, for each query operator that’s defined for IEnumerable<T>, as an exten-
sion method, a behaviorally equivalent operator is defined for IQueryable<T>. More
specifically, the Queryable type contains all of those operators as extension methods:

static IQueryable<T> Where<T>(this IQueryable<T> source,

Func<T, bool> predicate);

Because IQueryable<T> is more specific than IEnumerable<T>, the compiler will choose
the Queryable extension methods whenever you invoke a query operator on an object
that implements IQueryable<T>. An example of this is the Table<T> type in LINQ to SQL,
representing a table in the target database. The result of calling the IQueryable set of
query operators is remoting the query into the database server for execution over there.
How this works is explained in the “Expression Trees” section later in this chapter.

All of this is great until you need to use a certain query operator that’s not supported on
the target database server, perhaps because the underlying query language (like T-SQL)
doesn’t support the operator or its use. (For example, a filter predicate may contain a
complex function the server doesn’t know about.) Now the question is how to shake off
IQueryable<T> and cause the compiler to call IEnumerable<T> extension methods, which
will execute locally.

One answer is to insert a cast that tells the compiler to forget about the object’s specific
type and treat it as if it were nothing but an IEnumerable<T>:

((IEnumerable<Product>)from product in northwind.Products ... select product)

.Where(product => IsWithinMargins(product.Price))

Here the IsWithinMargins function is a complex function that can’t be executed on the
database server, so we want to execute it locally. However, the use of the cast sort of breaks
the left-to-right reading order of operations: The fact we transition to local execution
happens right after doing the projection remotely, yet we write this transition by inserting
a cast in front. AsEnumerable allows for a fluent approach:

(from product in northwind.Products ... select product).AsEnumerable()

.Where(product => IsWithinMargins(product.Price))

1024 CHAPTER 20 Language Integrated Query Internals

In fact, we could even use query expression syntax to get rid of the explicit Where
method call:

from product in

(from product in northwind.Products ... select product).AsEnumerable()

where IsWithinMargins(product.Price)

select product

So all that AsEnumerable does is trick the compiler into emitting calls against the
Enumerable set of extension methods because the return type of AsEnumerable is just an
IEnumerable<T> (and nothing more specific).

NO HIDING

AsEnumerable doesn’t mask its source object in any way or form. In particular

var xs = new[] { 1, 2, 3 };

var eq = object.ReferenceEquals(xs, xs.AsEnumerable()); // true

If you want to hide the identity of a sequence (for example, to prevent a user from cast-
ing it back to a more specific type [like a mutable array in the preceding example]), you
can use .Select(x => x). For this reason, an identity projection is not compiled away
if it’s the only operator in a query expression.

The Query Pattern
Now that you’ve seen the various standard query operators than come with LINQ and
their query expression counterparts (with varying mileage in C# and Visual Basic), we can
make a few more remarks about the query pattern.

The C# language specification refers to the concrete implementation of the querying oper-
ators that can be targeted by a query expression as the query pattern. Concretely, it means
that any set of objects that happens to have (some) operators such as SelectMany, Where,
Select, OrderBy, and so on can be addressed by using the query expression syntax.

All About Methods

One thing people often forget is that those query operator implementations are simply
found using the typical C# method resolution rules. In particular, instance methods are
considered before any extension methods are. It just so happens that the most typical
LINQ implementations, such as LINQ to Objects and the IQueryable query providers, use
extension methods on interfaces to define the query operators once and for all for all
targeted data sources.

In short, you should realize that keywords such as where, select, orderby, groupby, join,
and let all translate into “chains” of method calls, typically passing in lambda expres-
sions for functional arguments such as filters, projections, key selectors, and so on. Once a

1025The Query Pattern

query has been translated in this form, regular C# language rules for method lookup and
overload resolution apply. For example:

from p in products

where p.UnitPrice > 100m

orderby p.UnitPrice descending

select new { Name = p.ProductName, Price = p.UnitPrice }

The preceding query expression is first turned into the following expression consisting of
consecutive method calls using a fluent interface pattern:

products

.Where(p => p.UnitPrice > 100m)

.OrderByDescending(p => p.UnitPrice)

.Select(p => new { Name = p.ProductName, Price = p.UnitPrice })

Earlier, you saw this precise syntax-driven translation for the query operators in various
figures. It’s important to realize that at this point in the translation, the compiler hasn’t
picked any target methods yet and delays that resolution until the later phase.

Notice that besides the method calls, lambda expressions have been created out of the
different clauses that occurred in the original query expression. One of the benefits of
using query expression syntax is the fact you can forget about the functional concepts
that are leveraged behind the scenes, which makes the code easier on the eye.

As long as the compiler is able to find good matches for the method calls with the right
argument types (for example, Func delegates where the lambda expressions can be
assigned), things will work just fine.

Overloading Query Expression Syntax

All of this means that you can overload the query expression syntax by implementing the
right (sub)set of methods. For instance, if you have some type that’s filterable (maybe in a
more efficient manner than regular IEnumerable<T> objects), all it takes to enable the use
of the where keyword is to implement a well-suited Where method. Whether that method
is an instance method directly on the object being filtered or an extension method
defined elsewhere doesn’t matter.

This has pretty far-reaching implications, allowing quite different signatures for query
operator implementations. For example, the following example shows a method that will
get all the matches for a regular expression, given an input string, using the BCL support
for regular expressions in System.Text.RegularExpressions:

static IEnumerable<Match> GetMatches(this string input, Regex regex)

{

return regex.Matches(input).Cast<Match>();

}

1026 CHAPTER 20 Language Integrated Query Internals

You could argue that the preceding is a special kind of filtering operation, where the string
acts as the data source and the regular expression acts as the predicate. You should feel
free to disagree with this assessment, but if you’re in my camp, you might like the follow-
ing query expression syntax:

var query = from match in “Bart says \’Hallo\’”

where new Regex(“.a..”)

select match;

In fact, we can enable this use of the where clause simply by changing the signature of the
GetMatches method a bit and by renaming it to Where:

static IEnumerable<Match> Where(this string input, Func<object, Regex> regex)

{

return regex(null).Matches(input).Cast<Match>();

}

Notice we have to turn the second parameter into a unary function so that the first stage
of the query expression compilation phase is happy. Recall how our use of the where
clause results in the following chain of method calls:

”Bart says \’Hallo\’”

.Where(match => new Regex(“.a..”))

Notice that the trivial identity projection doesn’t remain in the translated form and is
nicely compiled away in this case.

A simple Regex-typed argument is not compatible with the lambda expression that gets
passed inside the translated query expression. So we apply a little (admittedly, rather dirty)
trick of lifting the Regex into a function result to make the compilation pass. To make this
work at runtime, we need to invoke the regex “constructor function,” but we really don’t
care about the parameter value that’s being passed to it, which is merely an artifact of the
query expression translation. Therefore, we simply pass null to this regex function and
out we’ll get the Regex object ready to call Matches on. We’ve built a simple LINQ to
Regular Expressions provider.

Although this is most likely a rather cumbersome LINQ provider, it illustrates the power of
query expression syntax; it’s not tied to enumerables or in-memory collection types what-
soever. I’ll leave it to your unbounded imagination to dream up all possible uses of query
syntax to express analysis over some kind of data.

1027Parallel LINQ

FIGURE 20.13 String objects are enumerables of characters.

STRINGS ARE IENUMERABLE

In fact, LINQ is readily available on plain string objects because every string is also an
IEnumerable<char>. Because of this, you can write things such as the following:

var vowels = new[] { ‘a’, ‘e’, ‘i’, ‘o’, ‘u’ };

var stats = from c in “Bart is sitting at Joey’s in Bellevue”

where vowels.Contains(c)

group c by c into g

select new { Vowel = g.Key, Count = g.Count() };

foreach (var stat in stats)

Console.WriteLine(stat);

Here, c is typed as char, which gets inferred through the query operator method reso-
lution, which involves generic parameters. In particular, Where<T>’s generic parameter T
gets inferred from the IEnumerable<T> source, which in this case is an
IEnumerable<char> because every string implements this interface.

You might now want to decypher the query expression syntax and turn it into regular
method calls, based on our discussion earlier in this chapter. Prior to Visual Studio
2010, the IEnumerable<char> based extension methods on a System.String object
didn’t show up for some reason, but now they do. Figure 20.13 proves this.

So if you ever wonder why you see those methods on a string, remember that enumer-
able sequences are lurking around every corner.

Parallel LINQ
The declarative nature of LINQ queries provides us with a great opportunity to yield more
control to the runtime. This is the case because we haven’t buried the meaning of our
querying intent under a bunch of imperative language constructs.

1028 CHAPTER 20 Language Integrated Query Internals

The Cost of Optimization

Imagine you were to write a query as follows:

var groups = new Dictionary<string, List<Process>>();

foreach (var proc in Process.GetProcesses())

{

if (proc.ProcessName.StartsWith(“d”))

{

List<Process> bucket;

if (groups.TryGetValue(proc.ProcessName, out bucket))

bucket.Add(proc);

else

groups[proc.ProcessName] = new List<Process>() { proc };

}

}

It’s most likely not immediately apparent to you this is carrying out a filtering operation
as well as a grouping operation, let alone that the runtime would be able to see our intent
from the rather complex preceding code. Also because you’ve prescribed the recipe to
execute your algorithm very precisely, you’ll most likely not want the runtime or compiler
to start messing with the code in an overly smart way.

One of the main concepts exploited in imperative programming languages is the use of
sequencing to control execution order or statements and elevation order of expressions.
Guarantees about such orderings are made by the language, which is great if you want to
reason precisely about an algorithm but hinders various forms of optimization.

However, with LINQ we do have more room for such optimizations because developers no
longer overspecify the solution to the problem at hand. In the world of query expressions,
you simply express your querying intent in a domain-specific language specialized for that
purpose. How precisely the results are obtained at runtime is left to various runtime
components, such as the query operator implementation in the BCL:

var query = from proc in Process.GetProcesses()

where proc.ProcessName.StartsWith(“d”)

group proc by proc.ProcessName;

Without the expressive nature of query expressions (or manual chaining of query opera-
tors through method calls), the user is forced into a mode where lots of decisions have to
be made early. For example, in the preceding example, one picks a generic dictionary type
to achieve grouping, whereas other strategies may be potentially more optimal.

AsParallel

In an age when every computer has multiple processor cores, the industry is hunting
for great opportunities to keep those cores busy (to make one’s computer purchase
pay off by improving processing times). One of the best understood domains of

1029Parallel LINQ

FIGURE 20.14 One core is sitting idle.

concurrency is in data processing, as testified by the long history of query optimization in
database management systems. For example, SQL Server can leverage huge numbers of cores
because of the embarrassingly parallel domain it operates on: relational databases.

Obviously, LINQ fishes in the same pond of data and query processing, so why can’t there
be a way to parallelize in-memory queries, as well? Introduced in .NET 4, PLINQ, or
Parallel LINQ, provides exactly this through a very simple API surface, almost entirely
consisting of a single method: AsParallel.

Let’s take a look at a data-intensive query, which may be used in a scientific context that
does some kind of number crunching. More concrete examples of this include image
processing, where a bitmap consists of rows and columns of pixels that can be analyzed
for purposes like pixel shading and whatnot. To keep things simple, consider the next
fragment of code using Enumerable.Range to generate a large input set:

var res = from x in Enumerable.Range(0, 10000)

from y in Enumerable.Range(0, 10000)

where x > y

select x + y;

var sw = new Stopwatch();

sw.Start();

res.ToList();

sw.Stop();

Console.WriteLine(sw.Elapsed);

Two from clauses, translating into a SelectMany call behind the scenes, are similar to
nested for loops, so from a complexity point of view the size of the input set presented to
the where clause is of the order 10,000 squared. That’s quite a bit of data, and it should
come as no surprise that this code takes a while to execute. On my machine with two
physical cores, this code took 18 seconds to run (on battery power), almost exclusively
hogging a single core. Figure 20.14 shows this clearly.

So what can we do to parallelize this code? Without LINQ, we would be in big trouble
because the preceding query would have been turned into excessively imperative code:

1030 CHAPTER 20 Language Integrated Query Internals

FIGURE 20.15 PLINQ puts both cores to work.

var lst = new List<int>();

foreach (var x in Enumerable.Range(0, 10000))
foreach (var y in Enumerable.Range(0, 10000))

if (x > y)
lst.Add(x + y);

Besides not being lazily evaluated, lots of issues with this code will prevent easy paral-
lelization. Let’s take a look.

One possible opportunity for parallelization is to split the input into separate partitions
and run the filtering operation in parallel. On a dual-core machine, your core could
process the first 5,000 values for x, while another could take care of the last half. This
requires applying some partitioning policy depending on the machine capabilities. If you
run the same code on a quad core, you likely want to create four partitions. Although this
seems easy using Environment.ProcessorCount, a static partitioning with equal-size parti-
tions might not be the right choice in general. It could be the case that the cost of apply-
ing querying operators varies from input to input, so that one partition is processed much
faster than another one. In that case, the core assigned to the partition with the least cost
will sit idle after a while.

Even if we come up with a good partitioning strategy, other remaining issues lurk around
the corner. In the preceding code, we’re adding results to an in-memory collection object,
which is generally not safe for concurrency and multithreading in particular. So we need
to use locks, which puts us in an error-prone situation and can cause adverse effects on
our intended performance optimization. I’ll leave the exercise of parallelizing this impera-
tive piece of code to the concurrency-savvy reader. Suffice to say, things get messy imme-
diately, and the intent of our code gets more blurry by the minute. With PLINQ, we can
simply write the following:

var res = from x in Enumerable.Range(0, 10000).AsParallel()
from y in Enumerable.Range(0, 10000)
where x > y
select x + y;

Now both cores are being put to work (as shown in Figure 20.15), and the total execution
time went down to 10 seconds, about half of the original time. All we did to achieve this
was to put the AsParallel call on the topmost (or outermost, depending on your mental
modal) data source in the query.

1031Parallel LINQ

LET MEASUREMENT BE YOUR GUIDE

It can’t be emphasized enough that measurement should be the guide to carrying out
optimizations. The first question to ask is whether the original code meets a certain
min-bar with regard to execution time. If it doesn’t, the next step is to look out for
possible optimizations.

Quantitative analysis is the key to successful evaluation of performance, especially in
core data processing tasks where the raw performance matters and is not directly
subject to user perception. In the world of UI programming, you most likely want to carry
out user-satisfaction studies to figure out whether your application is responsive enough.

One of the big benefits of PLINQ in particular, and the .NET 4 Task Parallel Library in
general, is the ease by which you can simply try to parallelize a piece of code (for
example, by sticking AsParallel on a query). In imperative programming, you’d be
faced with a complete overhaul of the code. Sadly, people often cross the barrier of
correctness when attempting to make their code run faster. The smallest mistake can
have disastrous impact on the code’s meaning, sometimes going unnoticed for a long
time due to the nondeterminism of parallel code execution. With technologies such as
PLINQ, the cost of trying out some parallelization is low, so evaluation of a certain opti-
mization strategy is cheap.

How PLINQ Works

We can approach the question of how PLINQ does its magic in two ways. We can look
behind the scenes and study various techniques used to partition input sequences effi-
ciently, to avoid locking when merging results together and to analyze the query whole-
sale to decide on certain parallelization strategies at runtime. Although all of this is
incredibly interesting, we would need a whole book to cover all of this. Alternatively (and
what we do here), we can ask ourselves how PLINQ gets a chance to analyze the query
expression for various forms of optimization at runtime. This is immediately related to the
query pattern we’ve seen before.

Let’s start by repeating the exercise of decomposing a query expression, this time with an
AsParallel call on one of its sources, into individual methods. The sample query shown
earlier translates into the following:

var res = Enumerable.Range(0, 10000).AsParallel()

.SelectMany(x => Enumerable.Range(0, 10000), (x, y) => new { x, y })

.Where(_ => _.x > _.y)

.Select(_ => _.x + _.y);

The precise mechanics of the SelectMany translation with transparent identifiers is irrele-
vant in this context. What matters more is the observation that AsParallel sits right in
front of the subsequent query operator calls.

Because of this, the return type of the AsParallel call will be essential in the further reso-
lution of the query operator methods following it. If you go to the definition of this

1032 CHAPTER 20 Language Integrated Query Internals

mysterious AsParallel method (simply by pressing F12 in Visual Studio), you’ll see it’s
defined as an extension method on IEnumerable<T>, living in ParallelEnumerable:

static ParallelQuery<T> AsParallel<T>(this IEnumerable<T> source);

The output type becomes a ParallelQuery<T>, which is defined as follows:

public class ParallelQuery<T> : ParallelQuery, IEnumerable<T>, IEnumerable

{

public virtual IEnumerator<TSource> GetEnumerator();

}

A ParallelQuery isn’t much more than a simple IEnumerable<T> with a customizable
virtual GetEnumerator method, which gets implemented by the runtime to execute the
query in parallel. The most important role is simply played by the identity of the type,
which forces the compiler into using the query operator methods that are defined as
extension methods on ParallelQuery<T>. Because ParallelQuery<T> is a better match
than IEnumerable<T>, extension methods over the former will be used.

The query expression shown earlier is turned into the following form if we go all the way
in expanding the extension methods into static method calls:

var res = ParallelQuery.Select(

ParallelQuery.Where(

ParallelQuery.SelectMany(

ParallelQuery.AsParallel(Enumerable.Range(0, 10000)),

x => Enumerable.Range(0, 10000), (x, y) => new { x, y }),

_ => _.x > _.y),

_ => _.x + _.y);

As those more specialized operators are being called, PLINQ gets to see the whole query
allowing it to apply the parallelization operations at runtime.

AsOrdered

One operator that’s specific to PLINQ is called AsOrdered. Although sequences have an
order for the contained elements, one often doesn’t care about preserving the original
sequencing throughout a query. When this is the case, PLINQ can make many more opti-
mizations than when it has to preserve the order of the original sequence.

Consider the following piece of classic LINQ to Objects code:

var res = from x in Enumerable.Range(0, 10000)

where x % 2 == 0

select x;

foreach (var x in res)

Console.WriteLine(x);

1033Parallel LINQ

FIGURE 20.16 PLINQ favors speedup over preservation of input sequence ordering.

This code returns the even numbers that appear in the source sequence, preserving the
input order. So 0 comes before 2, 2 before 4, and so on. However, as soon as we add
AsParallel to the query, this order is not guaranteed (unless we explicitly use an ordering
operator such as OrderBy or OrderByDescending):

var res = from x in Enumerable.Range(0, 10000).AsParallel()

where x % 2 == 0

select x;

foreach (var x in res)

Console.WriteLine(x);

Figure 20.16 illustrates an apparent artifact that can occur, caused by the introduced
concurrency of PLINQ.

If for some reason you want to restore the original ordering while still trying to achieve a
speedup, you can use the AsOrdered operator. However, realize this restricts the moving
space for PLINQ’s optimization logic and can result in higher memory footprint and
adverse affects on performance. Again, measurement will tell:

var res = from x in Enumerable.Range(0, 10000).AsParallel().AsOrdered()

where x % 2 == 0

select x;

foreach (var x in res)

Console.WriteLine(x);

Tweaking Parallel Querying Behavior

Various methods are available in PLINQ to control some aspects of the parallelization of
queries. Those methods start with the With prefix and control aspects such as the following:

. Degree of parallelism, specifying how many parallel workers be can running during
query execution

. Execution mode, allowing to force parallelism even if PLINQ concludes it’s not
worth the effort

1034 CHAPTER 20 Language Integrated Query Internals

…

partitioner
PLINQ

consumer
foreach

1
Worker

merger
PLINQ

…
6
2

 1 2 3 4 5 6 7 8 9

N
Worker

Producer-
Consumer

Buffer

FIGURE 20.17 Buffering involved with one consumer and multiple producers.

. Merge options, controlling query result buffering because the parallel producers and
the query consumer can move at their own paces

. Use of a cancellation token, allowing the executing query to be canceled without
waiting for all input to be consumed

Because those operations are meant for advanced users who thoroughly understand the
way the PLINQ query engine works, we forego a detailed discussion—refer to the MSDN
documentation for further information. The defaults that are used when all of those
options are omitted are reasonably tuned for the common PLINQ use scenarios.

Parallel Enumeration with ForAll

So far, we’ve been using a classic foreach loop in conjunction with a PLINQ-based query.
Although this is the most obvious and natural way to consume results of a query, we can
do better when we’re facing concurrency. Maybe the results of the query can be consumed
in parallel as well, which will allow for a higher throughput. You can see why this is the
case in Figure 20.17.

After the input sequence is partitioned (possibly in a dynamic manner), parallel workers
start executing the query (which by itself can have further decomposition in tasks). To
present all information to a foreach loop, the results from the various workers need to be
put together again in some producer-consumer collection so that the intrinsically single-
thread foreach loop can read the results one at a time.

1035Parallel LINQ

FIGURE 20.18 Two workers are pushing results into the ForAll action.

For example, the following piece of code will print the thread on which the WriteLine
method is being called with the received result:

var res = from x in Enumerable.Range(0, 10).AsParallel()

where x % 2 == 0

select x;

foreach (var x in res)

Console.WriteLine(Thread.CurrentThread.ManagedThreadId + “ -> “ + x);

This will always produce the same thread ID in front of the result value because foreach
operates in a single-threaded manner. However, when you can reasonably consume the
outputs in a parallel manner (which won’t be the case if you need to update some UI,
which is also intrinsically single-threaded), we can eliminate the contention caused by the
serialization of query results into the producer-consumer output buffer. PLINQ’s ForAll
operator precisely allows for this:

var res = from x in Enumerable.Range(0, 10).AsParallel()

where x % 2 == 0

select x;

res.ForAll(x =>

Console.WriteLine(Thread.CurrentThread.ManagedThreadId + “ -> “ + x)

);

Now the action delegate passed to ForAll takes in the received value to perform an action
with. Now we’ll potentially see that results are coming in on different threads, depending
on how the input set was partitioned by PLINQ. Figure 20.18 illustrates a run of this code
where two workers are calling the ForAll action to signal an available result.

Whether you can use the ForAll method will depend on the place where the output has
to be consumed. You’ll learn more about concurrency in Chapter 29, “Threading and
Synchronization,” and Chapter 30, “Task Parallelism and Data Parallelism.”

1036 CHAPTER 20 Language Integrated Query Internals

Expression Trees
Although the availability of extension methods, lambda expressions, and object initializers
seems to provide the essential building blocks for LINQ, we’re still missing one big piece
of the puzzle: How can we execute queries remotely? Let’s take a look at this essential
scenario next, enabling rich LINQ providers such as LINQ to SQL.

Query Expression Translation

To execute a query expression in a way other than in-memory processing of sequences
based on iterators, as done in LINQ to Objects, you must be able to make sense of the
querying intent specified by the user. While keeping unified query syntax across different
data domains, LINQ must provide for a rich extensibility story that allows third parties to
plug in to the query execution pipeline.

You’ve already seen the big-hammer approach to intercepting query expressions, simply
by providing an implementation of the query pattern over any type you see fit. For
example, to provide a LINQ-compatible object model over some domain-specific concept
like a Table<T> (which could represent a table in a relational database), you could stick a
whole set of query operator methods on that type:

class Table<T>

{

public Query<T> Where(Func<T, bool> predicate) { ... }

public Query<R> Select<R>(Func<T, R> selector) { ... }

public OrderedQuery<T> OrderBy<K>(Func<T, K> keySelector) { ... }

public OrderedQuery<T> OrderByDescending<K>(Func<T, K> keySelector) { ... }

...

}

class Query<T>

{

public Query<T> Where(Func<T, bool> predicate) { ... }

public Query<R> Select<R>(Func<T, R> selector) { ... }

public OrderedQuery<T> OrderBy<K>(Func<T, K> keySelector) { ... }

public OrderedQuery<T> OrderByDescending<K>(Func<T, K> keySelector) { ... }

...

}

class OrderedQuery<T> : Query<T>

{

public OrderedQuery<T> ThenBy<K>(Func<T, K> keySelector) { ... }

public OrderedQuery<T> ThenByDescending<K>(Func<T, K> keySelector) { ... }

}

1037Expression Trees

As you can understand from the preceding example, to allow composition of query opera-
tors ad infinitum, you have to build a carousel of related types, effectively creating a
Query<T> object by acquiring one additional query clause at a time.

Although this seems feasible as a way to create a query provider over some object model,
this approach suffers from many inherent limitations. First, the more query constructs are
supported, the more methods you must implement on a bunch of those types. Even
though the use of type hierarchies can help a lot, it still is a rather tedious process. But
that’s actually the least of our problems because we face much bigger issue: the various
functions passed to the query operator methods.

So what’s up with those functions? As you can see, they’ve been typed using simple
generic delegate types such as Func<T, bool> and Func<T, R>. Because of this, any assign-
ment to those parameters will result in the creation of a series of intermediate language
(IL) instructions that directly implement the lambda expression’s logic for local execution
upon invocation of the delegate. Given the preceding hypothetical API, let’s quickly trace
through the translation of the following query expression:

from x in new Table<int>(/* assume there’s some data */)

where x > 10

select x + 1

This is turned into the following equalent code, which ultimately returns a Query<int>
object:

new Table<int>(/* assume there’s some data */)

.Where(x => x > 10)

.Select(x => x + 1)

During the next stage of the compilation, the lambda expressions need to be assigned to
the parameters of the used methods. Because those parameters are typed with delegate
types, the result is equivalent to the following C# 2.0 fragment:

new Table<int>(/* assume there’s some data */)

.Where(delegate (int x) { return x > 10; })

.Select(delegate (int x) { return x + 1; })

You could take it one step further and turn the anonymous methods into named ones
(which is what the compiler does anyway), and it becomes clear that the functions used
for predicates, projections, and whatnot get turned into IL code bodies.

For a query provider to be able to make sense of the written query expression, producing
IL code is a bridge too far. Although you could dream up one way or another to decom-
pile, at runtime, the query expression and all functional clauses used therein, this defi-
nitely looks suboptimal. What if instead we can have the compiler generate a data

1038 CHAPTER 20 Language Integrated Query Internals

from x in source where x > 10 select x + 1
==

source.Where(x => x > 10).Select(x => x + 1)

source

>x

x 10

λ

Select

+x

x 1

λ
Where

Method Call
Expression

Lambda
Expression

Binary
Expression

Constant
Expression

Parameter
Expression

FIGURE 20.19 An expression tree representing a whole query expression.

structure that captures the query expression in terms of an object model? With such a
capability, query providers can simply analyze this so-called expression tree to take the
appropriate action to execute a query.

In such a world, the following query expression would be turned into the expression tree
representation shown in Figure 20.19:

from x in source

where x > 10

select x + 1

We’ll now start looking into the mechanics that cause this expression tree to be emitted
by the compiler, ultimately resulting in a discussion about the IQueryable<T> interface,
which is one of the typical ways to extend LINQ with new query providers. In fact,
providers such as LINQ to SQL and LINQ to SharePoint are built on top of IQueryable and
the expression tree APIs.

Homoiconicity for Dummies

Expression trees are a form of data. More specifically, they are the data representation of a
piece of code. It’s essential to see that expression trees do not contain the result of execut-
ing the code but capture the shape of the code itself. Compiler writers love and breathe
such tree representations of code, starting with abstract syntax trees (ASTs).

Although expression trees are much like ASTs, they contain more information than just
the syntax that lies at the origin of the expression tree. In addition, every node in an
expression tree has reflective information about its data type and the operations it’s

1039Expression Trees

representing (like the precise method overload being called or property being looked up).
All of this allows for rich analysis of the code that was written by the user.

One first key question to answer, though, is how expression trees are being generated.
What does the user have to do to create one of those animals? The answer is this: not
much, thanks to a property of the C# programming language (starting with version 3.0)
known in the literature as homoiconicity for lambda expressions. This property is often
attributed to LISP, where one can “quote” expressions to get their data representation. All it
means is that the same (homo) syntactical shape (icon) is used to capture lambda expres-
sions either as code (IL instructions) or as a data representation (expression trees). You can’t
tell how the lambda expression will be translated just by looking at the following code:

Calculate(x => x + 1, 42)

To get to see what route the compiler will take in translating this lambda expression, you
must peek at the type of the variable to which the lambda gets assigned. In this case, that
obviously is the first parameter of the Calculate method. Two possibilities exist, the first
of which should be familiar to those who have already studied delegates:

int Calculate(Func<int, int> op, int arg)

In this case, we’re simply assigning the lambda expression to a delegate typed variable,
causing the compiler to emit the equivalent of a C# 2.0 anonymous method:

Calculate(delegate (int x) { return x + 1; }, 42)

At the receiving end, the Calculate method can call the function by using the well-
known delegate invocation syntax, like this:

int Calculate(Func<int, int> op, int arg)

{

return op(arg);

}

However, if the assignment target for the lambda expression is not typed to be just a dele-
gate type but an Expression<TDelegate> (where TDelegate is a delegate type), the
compiler switches gears and emits an expression tree for the lambda. The following signa-
ture for Calculate will result in this situation:

int Calculate(Expression<Func<int, int>> op, int arg)

Here we’re using the generic Expression type found in System.Linq.Expressions, which
nowadays has a broader use than just LINQ. The dynamic language runtime also uses
expression trees, as you will see in Chapter 22, “Dynamic Programming.” Given this new
signature, our call to the Calculate method will result in the following equivalent code
being generated:

1040 CHAPTER 20 Language Integrated Query Internals

x => x + 1

x => x + 1

Func<int,int> f =

var f = new Func<int,int>(<>_Increment);
…
int <>_Increment(int x)
{
 return x + 1;
}

Expression<Func<int,int>> f =

var x = Expression.Parameter(typeof(int), "x");
var f = Expression.Lambda<…>(
 Expression.Add(
 x,
 Expression.Constant(1)
),
 x
);

+x
Data

x 1

λ

Code

IL code block

ldarg.0
idc.i4.1

add
ret

FIGURE 20.20 Lambda expressions represented as code or data.

var x = Expression.Parameter(typeof(int), “x”);

var f = Expression.Lambda<Func<int, int>>(

Expression.Add(

x,

Expression.Constant(1)

),

x

);

Calculate(f, 42);

Those factory method calls result in the creation of a data structure, at runtime, that
represents the code of the lambda expression the user wrote as the first argument to the
call to Calculate. In fact, this code could have been written manually in C# 2.0 (if the
expression tree API would have been available in the BCL at that time), but it’s clear you
don’t want to be involved in writing boilerplate code like this. Homoiconicity of lambda
expressions allows you to generate expression trees by using exactly the same syntax for
lambda expressions that can be used to create new delegate instances.

Figure 20.20 summarizes the call site effects when using lambda expressions in both their
code and data form.

Now that we’ve seen the effects of assigning a lambda expression to an expression tree
type, the obvious next question is what can we do with the expression tree object at
runtime? Because expression trees are just plain objects, we can investigate call methods
on them, investigate their properties, and so on. Figure 20.21 shows the IntelliSense over
the lambda expression tree node object in the expression tree received on Calculate.

1041Expression Trees

FIGURE 20.21 Investigating an expression tree by browsing its properties.

The goal of such code is to analyze what the intent of the user’s code is, to turn it to
execution somehow. In the calculation example, we might want to translate the expres-
sion into a specialized, highly efficient numeric processing language. In the world of
LINQ, we’ll take the expression tree and turn it into a domain-specific query language like
SQL that we can send to the (typically out of process) database engine.

Writing a meaningful implementation of our Calculate method that operates based on a
received expression tree would lead us too far. The essence of such code will be to visit all
nodes of the tree recursively to turn the original tree into some target language or to
execute it using interpretation. You learn more about expression trees in the context of
discussing the dynamic language runtime in Chapter 22, so we’ll defer further exploration
until then.

Expression Trees for Query Expressions

To turn entire query expressions into some kind of remote execution, the first trick that
has to be played by the LINQ providers is to get their hands on an expression tree with all
the required information about the querying intent. Because you now know about the
origin of expression trees, it should come as no surprise that the function arguments to a
variety of query operators need to be turned into Expression<TDelegate> ones.

If we were to rewrite our hypothetical Table<T> (and Query<T>) as shown here, query
expressions over the objects would trigger the generation of expression trees.

class Table<T>

{

public Query<T> Where(Expression<Func<T, bool>> predicate) { ... }

public Query<R> Select<R>(Expression<Func<T, R>> selector) { ... }

...

}

class Query<T>

{

public Query<T> Where(Expression<Func<T, bool>> predicate) { ... }

1042 CHAPTER 20 Language Integrated Query Internals

public Query<R> Select<R>(Expression<Func<T, R>> selector) { ... }

...

}

Given this new API, we can perform the translation for the following query again. This
time, the Table<T> object will represent a reference to some data that can be obtained
from some data source (for example, by storing the name of the underlying SQL table):

from x in new Table<int>(/* a reference to the data, e.g. in a SQL table */)

where x > 10

select x + 1

The first phrase of the translation is still the same, turning the query expression into a
chain of method calls, passing in lambda expressions:

new Table<int>(/* a reference to the data, e.g. in a SQL table */)

.Where(x => x > 10)

.Select(x => x + 1)

Thanks to homoiconicity, one doesn’t see any syntactical difference between the use of
lambda expressions as code versus data. Now that the compiler has found the Where and
Select methods, it comes to the conclusion the lambda expressions must be assigned to
expression trees, and therefore it generates such code:

var x = Expression.Parameter(typeof(int), “x”);

var f = Expression.Lambda<Func<int, bool>>(

Expression.GreaterThan(x, Expression.Constant(10)), x);

var s = Expression.Lambda<Func<int, int>>(

Expression.Add(x, Expression.Constant(1)), x);

new Table<int>(/* a reference to the data, e.g. in a SQL table */)

.Where(f)

.Select(s)

Now the Where method on Table<T> and the Select method on the returned Query<T>
object get to see their parameters as expression trees, ready for translation into some target
query language like SQL (for example, producing the following hypothetical code):

SELECT x + 1 FROM SomeTable WHERE x > 10

However, one remaining piece of the puzzle is missing. Even though query operator
methods now get to see their functional arguments as expression trees, this is not enough.
Because we want to remote the query wholesale (including the operators) and do so in a
deferred manner, triggering execution at the point of enumeration, we somehow need to
“stitch together” all those little expression trees. That’s what IQueryable<T> is used for on
query providers.

1043Expression Trees

IQueryable<T>

As you’ve seen before, LINQ to Objects operates on plain IEnumerable<T> objects, execut-
ing the query using the magic of iterators. All of this happens in memory in the same
process as where the collection object is living. The brother to IEnumerable<T> allowing
for remote execution of queries is called IQueryable<T> and is based on the concept of
expression trees.

Let’s first take a look at the interface to set the scene. As shown here, every type that
implements IQueryable<T> also implements IEnumerable<T>, which provides support to
enumerate over the object. It’s this enumeration that will trigger the query captured by
the queryable object to be translated and executed (for example, by sending a piece of
T-SQL to a database server or by making web services calls):

public interface IQueryable<out T> : IEnumerable<T>, IQueryable

{

}

public interface IQueryable : IEnumerable

{

Type ElementType { get; }

Expression Expression { get; }

IQueryProvider Provider { get; }

}

The question coming up immediately when looking at this interface is where the query
operators are defined. Just like IEnumerable<T> has no query operators by itself and relies
on extension methods to define those, IQueryable<T> does the same and defines query
operators as extension methods in a static class called Queryable:

public static class Queryable

{

...

public static IQueryable<T> Where<T>(this IQueryable<T> source,

Expression<Func<T, bool>> predicate);

public static IQueryable<R> Select<T, R>(this IQueryable<T> source,

Expression<Func<T, R>> selector);

...

}

Notice how all the functional parameters are using expression trees rather than plain old
delegates, such that the code gets captured as data. A remaining question is how those
methods that are implemented once and for all in the BCL cooperate with custom
implementations of the IQueryable<T> interface to build up a whole query expression as
an expression tree. As an example, the implementation of Queryable.Where roughly
looks like this:

1044 CHAPTER 20 Language Integrated Query Internals

public static IQueryable<T> Where<T>(this IQueryable<T> source,

Expression<Func<T, bool>> predicate)

{

var where =

Expression.Call(

MethodInfo.GetCurrentMethod(), // in reality more complex

source.Expression, // ask the source for its expression tree

predicate

);

return source.Provider.CreateQuery<T>(where);

}

Other operators are implemented in a similar way. The essence of this code is to stitch
together the expression tree that represents the source used for the operator (which by
itself can be the result of a query operator call preceding it) and all the arguments passed
to the operator. In this case, the only argument is a predicate lambda expression, which
gets passed in from the compiled query expression code that generates an expression tree.
After Queryable has stitched together all those expression trees into a bigger one, repre-
senting the method call to the operator method, it hands over the new tree to the
IQueryProvider object exposed on the IQueryable source object:

public interface IQueryProvider

{

IQueryable<TElement> CreateQuery<TElement>(Expression expression);

...

}

Figure 20.22 illustrates all the steps involved in constructing the expression tree for a
where clause in an IQueryable-based query expression.

This process continues until all query operators have been called at the declaration site of
a query. The end result is a single IQuerable object with an expression tree inside it,
capturing the whole query expression with all the used operators in the right order and
with information about the passed (potentially functional) arguments. Figure 20.23 illus-
trates the result of this runtime tree stitching on a whole query, assuming the source object
is an IQueryable<T> and the Queryable extension methods are getting called as a result.

Because every IQueryable object is also IEnumerable, the GetEnumerator method used by
a request to iterate over the results of the query (for example, using foreach) can inspect
this big expression tree and turn it into the query language targeted by the query provider.
How precisely this translation works requires deeper coverage of expression trees and is
beyond the scope of this book. For more information about the subject of writing your
own LINQ providers, search the Web on the topic.

1045Expression Trees

Runtime Call to
Extension Method

Code Generated
at Compile Time

Expression Tree
Built at Runtime

Fragments
Stitched
Together

Queryable.Where(source, x => x > 10) …

New IQueryable<int> containing the where clause

>x

x 10

λ

Queryable Expression
Tree Stitching

a. “Hey source, what’s your
 expression tree?”

source. Expression

b. Stitch expression trees for
 source and predicate using
 MethodCallExpression

c. Call the source’s query
 provider with the new tree

Provider.CreateQuery()

var x = Expression.Parameter(…, "x");
var f = Expression.Lambda<…>(
 Expression.Add(
 x, Expression.Constant(1)
), x
);

2

Where
3b

3c

4

source

3 1

3a

FIGURE 20.22 Expression tree stitching performed by Queryable methods.

Queryable.Select(

Queryable.Where(

source,

source

x => x > 10), x => x + 1)

+x

x 1

λ

>x

x 10

λ

Select

Where

FIGURE 20.23 Translating a bigger query expression creates deeper expression trees.

1046 CHAPTER 20 Language Integrated Query Internals

Now, when you’re using LINQ to SQL or other IQueryable<T>-based LINQ providers,
think of the nice interaction between compile-time expression tree generation and the
Queryable extension methods role in stitching those fragments together to provide a
wholesale query expression to the query provider underneath. A whole set of query
providers exist, many of which leverage this technique:

. LINQ to SQL, LINQ to Entities (in .NET 3.5 and later)

. LINQ to SharePoint (starting with Office 2010)

. LINQ to Amazon (the first IQueryable<T> provider I am aware of)

. LINQ to... Anything?

Summary
To understand how LINQ to Objects works for in-memory queries over collections, a solid
knowledge of C# 2.0 iterators is required. After introducing this language feature, we put it
into practice by implementing a few iterators that behave like query operators. One key
takeaway from the way iterators work is the concept of lazy evaluation.

Following the intermezzo on iterators, we explored the rich set of query operators in more
depth, examining the behavior of those operators. Collectively known as the standard
query operators, they form the heart of LINQ queries. Query expression syntax provided
by languages such as C# turns into calls to those operator methods.

Because one of the things that LINQ allows is the capability to put the runtime in control
over the way queries execute, we illustrated this powerful concept in a brief detour
through .NET 4’s Parallel LINQ implementation. The declarative nature of LINQ not only
results in more readable code, it also permits future optimizations carried out by frame-
work writers.

Finally, because one the goals of embedded querying capabilities is to span multiple data
domains, we studied the mechanics that allow queries to be translated into specialized
query languages at runtime. Starting with the essentials of expression trees, we ended up
in the world of IQueryable<T>, where query providers get to see a query expression in its
entirety, ready for customized handling at runtime.

CHAPTER 21

Reflection

IN THIS CHAPTER
. Typing Revisited, Static and

Otherwise 1048

. Reflection 1054

. Lightweight Code
Generation 1082

. Expression Trees 1091

So far, we’ve been looking at statically typed code for the
most part. In the world of static typing, it’s the compiler’s
task to resolve information about types at the point the
program is compiled. This provides various benefits related
to program checks for various forms of correctness,
improved tooling support thanks to IntelliSense, increased
runtime performance because operations are known unam-
biguously, and much more.

However, such static type information is not always avail-
able. And although the benefits mentioned should be
enough to convince people to get static typing wherever
possible, the harsh reality is there are many dynamically
typed pieces of code and data out there. In fact, we’ve seen
an increasing trend moving away from static typing for
various types of systems, such as web services (without a
WSDL definition, and using REST) and data formats like
XML (without XSD schema) or JSON.

In this chapter, we look at the facilities provided by the
common language runtime and the .NET Framework to
interoperate with objects lacking static type information.
This stretches reflection and on-the-fly code generation. In
the next chapter, we look at the dynamic keyword intro-
duced in C# 4.0, which in part builds on the services
explained in this chapter.

1048 CHAPTER 21 Reflection

Typing Revisited, Static and Otherwise
When introducing the CLR in this book, I emphasized a series of key characteristics of the
platform. One of those is the self-describing nature of assemblies and the types and
members they contain, in the form of metadata. It’s because of this rich metadata that
describes the functionality contained in an assembly that we get rich tool support and
compile-time checking of uses of the various types and members.

The Role of Metadata

Metadata plays a very important role in the world of .NET, providing both runtime and
tools with a plethora of information about your assemblies, the contained types, and
their members. Thanks to metadata, you have rich tooling such as IntelliSense helping
you find certain functionality exposed on types in a variety of contexts (for example,
with awareness of visibility). All information about what’s available and how it behaves is
kept in metadata.

But it goes way beyond that. Compilers leverage the same metadata to emit sound code
that drives your code at runtime. For example, method calls get resolved into the right
tokens in intermediate language (IL) referencing the target method. All the runtime then
has to do is make sure that types are loaded when needed, that code gets compiled into
efficient native code upon execution (using the JIT compiler or leveraging an NGEN
native image), some type safety checks are performed, and so on. The main thing the
runtime doesn’t have to care about is figuring out the intent of the code, which would
require it to apply overload resolution rules and whatnot. That task is mainly in the hands
of the compiler, which enforces certain language-specific rules to choose and pick invoca-
tion targets.

VIRTUAL METHODS

If you know a bit about object orientation, you might have noticed that this description
of compile-time resolution is a slight oversimplification, due to the existence of virtual
methods and the runtime dispatch operation that goes with it.

But even in the case of virtual method calls, the runtime knows a lot about the call to
be made already. In particular, it knows about the number of arguments and their types
and where to find the virtual method target. All that remains to be done is to look up
virtual dispatch tables at runtime to determine the ultimate receiving end of the call.

Again, it’s because of the early intervention of the compiler based on available metada-
ta that the runtime has a relatively easy job, with regard to invocation targets, that is.

As an example, consider the following few calls to Console.WriteLine, which use a differ-
ent argument type each time:

1049Typing Revisited, Static and Otherwise

Console.WriteLine(123);

Console.WriteLine(“Hello metadata”);

Console.WriteLine(new Foo());

Looking behind the scenes at the generated IL code, we recognize the static types on the
parameters from looking at the method call instructions:

ldc.i4.s 123

call void [mscorlib]Console::WriteLine(int32)

ldstr “Hello metadata”

call void [mscorlib]Console::WriteLine(string)

newobj instance void Foo::.ctor()

call void [mscorlib]Console::WriteLine(object)

This illustrates how the compiler has resolved the calls based on the statically available
type information for the used parameters and the available method overloads (as seen
through the lenses of metadata bundled with the mscorlib assembly). Notice that the
result of such overload resolution may be to use the most general System.Object type, but
the result is still statically typed: There’s no need for the runtime to discover which over-
load has to be called; all that work has been done at compile time.

The Multilanguage World

In addition to the rich metadata aspect of assemblies on the .NET platform, another key
characteristic is their multilanguage usability, which explains the common language part in
acronyms such as common language runtime (CLR) and Common Language Specification
(CLS). As a result of this, the representation of type info and the use thereof had to be
unified, too. This role is played by the Common Type System (CTS).

From this observation, it’s clear that typing is deeply baked into the runtime, leading to
great benefits in the area of cross-language interoperability, runtime performance, and so
on. Even though all of this sounds great, it was recognized early on that there had to be a
way to allow languages that want to live a less statically typed life on the platform. To
enable such scenarios, the runtime needs to provide a set of services, which we discuss now.

An initial thing to recognize is the distinction between compile-time typing and runtime
typing. The two are related but quite different at the same time. For one thing, every
object has a runtime type that’s known by the CLR when executing code that deals with
the object. It’s this type information that determines the runtime interactions that are
possible and allowed with the object. Having runtime type information available is of
utmost importance to a lot of runtime services such as the garbage collector (how big is
the object; what fields does it have that refer to other objects?) and the JIT compiler
(what’s the layout of the object; how do I find methods on it?). Although the runtime
type has to be known to the CLR to ensure type safety and such, the runtime type

1050 CHAPTER 21 Reflection

information is also available to the developer through code, by means of what’s known as
reflection. In particular, the System.Object base type has a GetType method that returns a
System.Type object, describing the object’s runtime type:

object o = “This is a string”;

Type t = o.GetType();

Console.WriteLine(t.FullName);

The preceding prints System.String as the type object o. Notice how the declared type is
different, though: Instead of assigning the string literal to a variable typed as a string, we
assigned it to a variable of the System.Object base type. Obviously, this is perfectly fine to
do because every string is an object. What this illustrates, though, is that a clear distinc-
tion exists between compile-time type information (“I tell you, dear compiler, that o is of
type System.Object”) and runtime type information. Although the C# compiler will verify
your claim that the string literal indeed is an object, thus making the assignment a valid
operation, you’ll be restricted to invoking only those operations that are defined on
System.Object:

// Fails to compile, there’s no ToUpper on every System.Object.

string upper = o.ToUpper();

// Does compile fine, as every System.Object has a ToString method.

string print = o.ToString();

It’s clear that the first line shouldn’t compile because compile-time type information avail-
able for variable o states it’s nothing but a System.Object. The compiler doesn’t care what
got assigned to o and, in fact, it might not even know where o comes from (for example,
when it’s a parameter or a field):

void DoSomething(object o)

{

string upper = o.ToUpper(); // Oops!

...

}

In other words, the compiler doesn’t make any assumptions about the type beyond what’s
stated in the code. Any operations it cannot prove positively to exist at runtime for all
instances of the stated type get rejected. That’s one of the characteristics of static typing.

Notice, however, that the absence of precise type information at compile time doesn’t
preclude dynamism at runtime. The use of virtual methods in object-oriented languages
makes it possible to dispatch a call at runtime to a more specific implementation of the
operation, based on the runtime type. One extreme case of this is the use of interfaces,
where the compiler knows what operations will be available at runtime but doesn’t have
any clue where those are defined physically:

1051Typing Revisited, Static and Otherwise

IComparable c = ...;

if (c.CompareTo(d) < 0)

Console.WriteLine(“c < d”);

Even though there’s this level of dynamism at runtime, static typing still provides firm
guarantees about the availability of the CompareTo method, by making sure no object that
doesn’t implement that interface can be assigned to c. Although you can try to lie about
an object’s type by using casts, type safety at the runtime level prevents such mishaps
from happening:

IComparable c = (IComparable)apple;

if (c.CompareTo(banana) < 0)

Console.WriteLine(“If you get here, you can compare apples with bananas?”);

Assume that apple doesn’t implement the nongeneric IComparable interface (it might
implement the IComparable<Apple> interface though because it makes sense to compare
apples with one another), you will get away with the compile-time upcast lie on the first
line. However, at runtime the incompatibility will be detected, and an exception will be
raised to prevent something bad from happening. If this weren’t the case, you would be
able to call a nonexistent CompareTo method on an object, pointing in no man’s land in
memory, which is clearly unsafe.

Taking Multilanguage to the Next Level

Although the infrastructure provided by the CLR to facilitate static typing accommodates
a lot of programming languages on the platform, it doesn’t suffice to satisfy the needs of
dynamically typed languages like JavaScript, Python, Ruby, and so many more.

From day one, the need for discovery of operations at runtime has been recognized, so
the CLR provides a variety of services that provide those facilities. At the heart of this
feature set lies reflection, or the ability to discover information about types and their
members at runtime. Reflection is not enough, though, to facilitate all the requirements
for dynamic programming languages. Let’s take a quick peek at common needs that such
languages have:

. Discovery of type and member information at runtime, as provided by runtime
services like reflection.

. Adding new members to types at runtime, a technique referred to as expando
objects. For example, in JavaScript, every object is a bag one can tag stuff onto.

. Invocation of all sorts of object members, requiring runtime resolution of overloads
and runtime type checking.

. Optimization of dynamic calls, typically by generation of dispatch code at runtime.

Over the years, the CLR and the .NET Framework have acquired more facilities that
provide answers to all the above. We discuss most of those in this chapter, starting with

1052 CHAPTER 21 Reflection

.NET 2.0 Layering

Common Language Runtime

Where do
dynamic

languages fit?

C# C#

IronRuby IronPython

VB

VB

F#

F#

…

…

…

Reflection

GC JIT Isolation

Type System Loader

Code gen …

Common Language Runtime

Reflection

GC JIT Isolation

Type System Loader

Code gen

.NET 4 Layering

Call Sites

Expression Trees

Dynamic Dispatch

…

Dynamic Language Runtime

FIGURE 21.1 Layering map of languages, the DLR and the CLR.

reflection, discussing lightweight code generation or LCG (added in .NET 2.0) and ulti-
mately the dynamic language runtime added in .NET 4. Figure 21.1 depicts the layering of
the dynamic language runtime as a library on top of the CLR.

How Does All of This Relate to C# Programming?

Notice how traditionally statically typed programming languages like C# can also
take advantage of the DLR infrastructure to reach out to the world of dynamic
typing where appropriate. This is precisely what the C# 4.0 dynamic feature is

about, which we get into later in this chapter.

When writing code as shown in the following fragment, one defers the discovery of the
member used in the method call until runtime. It should be said that this shouldn’t be
regarded as a substitute for static typing, but when no static type information is within
reach, the use of dynamic makes code much more readable than it would have been if you
had to do all the member discovery and dispatching yourself:

dynamic d = GetCalculator(); // Could come from Python or so

int res = d.Add(1, 2);

Console.WriteLine(res);

As you write the fragment of code in Visual Studio 2010, it will become clear you’re on
your own with regard to member selection. IntelliSense doesn’t show up simply because
dynamic indicates you want to defer lookup until runtime, as no useful type information
is available at design or compile time. Figure 21.2 shows how IntelliSense on a dynami-
cally typed variable looks.

1053Typing Revisited, Static and Otherwise

FIGURE 21.2 Dynamic expressions don’t provide IntelliSense because discovery is delayed.

Since the introduction of dynamic in C# 4.0, depending on the nature of the object being
targeted by the Add call, you had to write different code to achieve a dynamic call. If the
object were a CLR object for which you didn’t have a static type at compile time (because
you loaded it dynamically from an assembly given to you at runtime or so), you had to
use reflection:

object d = GetCalculator(); // From a dynamically loaded assembly

var res = (int)d.GetType().GetMethod(“Add”).Invoke(d, new object[] { 1, 2 });

Console.WriteLine(res);

Although you could learn the preceding plumbing techniques, it’s clear code readability is
hurt quite a bit by the use of reflection. Moreover, the code is prone to subtle issues such
as discovery of the right method based on the name. If overloads were to exist, the preced-
ing code would need to be bloated further to pick the right method for the call.

Assuming we get to know reflection inside out (we will later in this chapter), it still
doesn’t help us when we try to reach other to other object models that live outside the
realm of code running directly on the CLR. We might be faced with objects coming from
dynamic languages like Python, requiring us to find the invocation target method using
different plumbing APIs.

In addition to this, objects may really be dynamic, meaning they can acquire and even
drop members at runtime. For example, attributes on XML elements could be exposed as
properties in an object model. So far so good, but during manipulation of the object new
attributes could be added, so new properties have to be born at runtime. In a world where
schemas are declining in popularity, simpler ways to access such kinds of dynamic data
are appealing:

XmlElement person = GetPerson();

int age = int.Parse(person.Attributes[“Age”].Value);

versus

dynamic person = GetPerson();

int age = person.Age;

Where LINQ unified data programming across multiple data domains, the introduction of
the dynamic keyword in C# 4.0 brings unification of code invocation across multiple code
domains, such as dynamic languages or untyped data models.

1054 CHAPTER 21 Reflection

An Object Has a Type

Instance
“Hello Reflection”

Type
System.String

R
ef

le
ct

io
n

An Object Describing a Type

Instance
typeof(System.String)

Type
System.Type

Type
System.String

Type
System.Type

FIGURE 21.3 Reflecting on an object’s type produces an object of type System.Type.

Reflection
At the heart of dynamic programming facilities, we find various services provided by the
runtime, one of which is reflection. The goal of this service provided by the CLR and
exposed through the Base Class Library (BCL) is to allow you to inspect the characteristics
of types, their members, and their containers (assemblies and modules). As you will
see later, reflection has additional capabilities that have to do with code generation.
Figure 21.3 shows the relationship between instances, types, and the reflection data associ-
ated with a type.

System.Type

One of the main entry points to the reflection data is the System.Type type, which can be
obtained through a variety of ways, one of which is the typeof operator in C#:

var stringType = typeof(string);

var intType = typeof(int);

Both of those objects are of type System.Type (that is, you could substitute both uses of
var with Type) and contain information about the capabilities of the said type. The uses of
typeof in the preceding code translate into two instructions that map a token, which can
be seen as a type name the runtime can look up in various data structure, onto the
runtime object representing the type:

ldtoken [mscorlib]System.Int32

call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle(

valuetype [mscorlib] System.RuntimeTypeHandle)

Reflection allows us to learn more about a type at runtime using exactly the same
concepts one uses to program against any kind of object. To find out about the methods
that exist on a type, you simply call GetMethods on the Type object representing it.

1055Reflection

IN THE DATABASE WORLD...

Reflection might seem a little weird at first, but it’s a widespread concept throughout
many systems. Databases, in particular today’s relational ones, have had ways to
describe the structure of tables for ages. The way you get to information like this is by
simply writing a query over a system table (or a management view) that exposes it.
Because of this, you don’t have to learn different concepts to learn about the system.
Reuse of the same toolbox is a great benefit.

Properties Describing Types
Types have many properties describing them. Let’s take a look at most of them:

. Visibility can be inspected through various properties, such as the following:

. IsPublic indicates whether the type was declared to be public.

. IsNonPublic is essentially the opposite of the above.

. IsVisible reveals whether a type can be accessed outside the assembly it’s
defined in. For nested types, this can differ from IsPublic.

. Types have names, which can be broken up in different ways:

. Name is the name of the type as is was declared (for example, String).

. Namespace tells what namespace the type is in (for example, System).

. FullName combines the above, dot-separated (for example, System.String).

. AssemblyQualifiedName also includes the name of the assembly in which the
type lives (for example, System.String, mscorlib).

. To find out where types live, the following properties are handy:

. Assembly reveals the assembly defining the type.

. Module indicates the module within the type’s defining assembly.

. DeclaringType is usable for nested types, indicating the parent type. The prop-
erty IsNested is related to this in an obvious manner.

. Object orientation is deeply rooted in the CLR’s type system, as witnessed by the
following properties:

. BaseType, for the type’s immediate base type

. IsAbstract, indicating whether the type is abstract

. IsInterface, identifying interface types

. IsSealed, corresponding to the sealed keyword in C#

1056 CHAPTER 21 Reflection

. Types can be classified in various categories:

. IsPrimitive returns true for types considered primitive (such as int).

. IsArray indicates whether you are dealing with an array type.

. IsValueType distinguishes value types (like structs and enums).

. IsClass, IsInterface and IsEnum should be self-explanatory.

. IsCOMObject reveals the CLR’s integration facilities to deal with types from
the COM world.

. IsPointer reveals pointer types, used in unsafe code. Notice those are not the
same as reference types. For more information, read up on programming with
unsafe code in languages like C#.

. Since their introduction in .NET 2.0, generics have invaded most portions of the
CLR one way or another, including the reflection subsystem:

. IsGenericType tells whether a type is generic (for example, List<int>).

. IsGenericTypeDefinition indicates generic type definitions such as List<T>,
where T is not bound (the generic parameter is left “open”) to a type. In C#,
you can write typeof(List<>) to obtain such a type.

. ContainsGenericParameters will point out remaining “open” generic parame-
ters on a type (for example, if a List<T> doesn’t have its T substituted for a
specific type).

. IsGenericParameter will be true for Type objects retrieved from calls to obtain
the generic parameters on a generic type, such as the T in List<T>.

. GenericParameterPosition goes with the previous property, indicating the
zero-based position of the generic parameter. For example, in Dictionary<K,
T>, the Type object for T will have position index 1 while K will have a
GenericParameterPosition of 0.

. Other properties are a bit more obscure, so I’ll direct the interested reader to MSDN
documentation on the subject.

Discovering Types
Now that you know we can query lots of properties of types, we should briefly revisit how
we can obtain the Type objects themselves. There are three main ways to do so, the first of
which we’ve already covered: use of the typeof operator in C#. Although this way is the
most direct, it has little value in scenarios where you’re really about to find out about type
information you didn’t know about at compile time:

var stringType = typeof(string /* you did know the type name, didn’t you? */);

var intType = typeof(int /* same story here */);

1057Reflection

Because every object floating around in the CLR’s managed memory space has a type, it’s
obvious one should be able to obtain a System.Type instance from any object. Indeed, as
we’ve seen briefly in the introduction, there’s a method called GetType that does precisely
this. Because it’s defined on System.Object, you can use it on any object, except when
you’re dealing with a null reference, of course:

var someObject = “Reflect on me”;

var someType = someObject.GetType();

In this particular case, we already knew the object is a System.String (as we’re using a
literal that results in that type), but in most scenarios requiring reflection you’ll invoke
this operation on an object that was statically typed to be System.Object. Later in this
chapter, in the section “A Primer on Application Extensibility,” you’ll see an example of
the use of GetType to locate a method on a dynamically loaded object.

A third common way to find out about types is to start from their containers, typically an
assembly (because modules are used relatively little nowadays). Although we discuss
assemblies separately in Chapter 25, “Assemblies, and Application Domains,” let’s briefly
look at using them in the context of reflection. First, we’re going to obtain a reference to
the assembly defining the System.String type (that is, mscorlib) and then query it for all
the types it defines by calling GetTypes. Because this method returns a collection object,
we can use LINQ to write a query over it:

var res = from t in typeof(string).Assembly.GetTypes()

where t.Namespace == “System” && t.IsPrimitive

orderby t.Name

select t;

foreach (var t in res)

Console.WriteLine(t.Name);

Using the rich querying capabilities offered by LINQ, it’s often possible to locate types
with certain properties in a very straightforward way. If you’re looking for exactly one
type you got some information about, the GetType method on the Assembly type can be
used, as well:

var int32 = typeof(string).Assembly.GetType(“System.Int32”);

Obviously, the preceding code will make more sense if the string passed to GetType is
retrieved from someplace (for example, user input or a configuration file). In such a case,
you’ll likely want to load the containing assembly dynamically, as well, for example using
a file path. We discuss such scenarios in the section, “A Primer on Application
Extensibility.”

Instantiating Types
Suppose you just discovered some type (for example, through the use of configuration).
Although the ability to inspect the type for a variety of properties is a useful thing, you

1058 CHAPTER 21 Reflection

most likely want to operate on it. One common thing to do with types is to instantiate
them (assuming you’re not dealing with an interface or an abstract class).

To instantiate a type, a few techniques can be used. One is to obtain a constructor, also
through reflection, and invoke it. You see dynamic method invocation in the section, “A
Primer on Application Extensibility,” so let’s focus on the use of the Activator type
instead. This type, living in the System namespace, is the main utility to create an
instance of a type, either locally or (using .NET Remoting infrastructure) remotely. It has a
couple of overloads, some of which are generic, with the following one being most applic-
able when we’re working off a System.Type object:

var uri = (Uri)Activator.CreateInstance(typeof(Uri), “http://demo”);

Console.WriteLine(uri);

In the preceding example, we’re instantiating the Uri type, calling a constructor that takes
one parameter. It should go without saying that the preceding code is not something you
should write when all static type information is available. However, when types are
discovered and loaded dynamically, this provides one way to instantiate them.

DEALING WITH GENERIC TYPES

The Activator.CreateInstance technique will work for types that can be constructed
using a public constructor, given an optional (params) array of arguments. One other
requirement is that the type is concrete in various senses of the word. Obviously, you
can’t create an instance of an interface or an abstract class.

Since .NET 2.0, there’s another big category of types that are a little more complex to
deal with: generics. Generic type definitions provide the blueprint for other types, which
are created by substituting type parameters for “real” types. List<T> is a generic type
definition, whereas List<int> is closed because no type parameters remain unbound.
Only the latter types can be instantiated.

To go from a generic type definition to a generic type with its parameters substituted,
you use the sharp bracket syntax in statically typed C# code. However, when dealing
with dynamically loaded types, a reflection-based route has to be followed, using the
MakeGenericType method on System.Type:

var intList = typeof(List<>).MakeGenericType(typeof(int));

var res = (IEnumerable<int>)Activator.CreateInstance(intList, new[] { 1, 3 });

foreach (var item in res)

Console.WriteLine(item);

Again, the preceding should not be a substitute for cases where type information is
available statically. Notice one thing, though: When dynamically instantiating types,
some kind of compatibility is often expected and statically known. In the preceding
code, we might have discovered the collection type dynamically, but we still know, stati-
cally, that the result should implement the IEnumerable<int> interface. This possibili-
ty to combine dynamically loaded types with static type information lies at the heart of
the add-in framework, as you see next.

1059Reflection

Geometry
Assembly

“Hypotenuse for triangle
with sides 3 and 4?”

ICalculation

Implements

Discover Extensions

Load Assembly and
Instantiate Extension Type

ExtensiCalc
2010

Pythagoras

4

3

1

2

Extension Got
Loaded

Extension
Repository

FIGURE 21.4 Loading and using extensions using reflection techniques.

A Primer on Application Extensibility

Extensibility stories often add to the compelling value of an application. Seldom can an
application vendor provide all the bells and whistles in an application within the
constraints of the application’s development cycle. Or there might be whole scenarios that
cannot be envisioned today but may become the next big thing tomorrow. Having a rich
extensibility model for an application can therefore significantly add value to an applica-
tion. Lots of examples exist, ranging from office productivity suites and various browsers
to our good friend Visual Studio.

Because we’re discussing reflection and such applications typically rely on dynamic
loading of extensions, this is the ideal time to bring the theory about reflection into prac-
tice with a small example of an extensible application. Notice, though, higher-level frame-
works have been written to simplify this task, including the System.Addins namespace
and the (new in .NET 4) Managed Extensibility Framework (MEF). In this chapter, we’re
mainly interested in the bare-bones essentials of this use of reflection. At the same time,
we’ll point out shortcomings of our simple approach and explain how those other frame-
works provide answers to those.

Figure 21.4 illustrates the application we’re about to build, called ExtensiCalc, a simple
extensible calculator. For our scenario, assume we’ve written a great interface for a calcula-
tor, shipping with a few mathematical operations built in. However, as an application
vendor, we recognize that we can’t provide all operations people might want to use. To
win over those people to our application, we build a rich extensibility story so that third
parties can extend the calculator with custom operations.

In this setting, the ICalculation interface acts as the contract between the ExtensiCalc
application and each individual extension for it. At runtime, the application searches for

1060 CHAPTER 21 Reflection

assemblies that implement this interface throughout some repository, which could be a
folder on disk. The assemblies in there are inspected for extension implementations and
get loaded into the program’s memory. After adding the extension to the user interface of
the calculator, the application shows up, allowing the user to select a built-in calculation
or one of the extensions. When an extension is selected, the application calls into it
through the common ICalculation interface.

WHAT ABOUT ISOLATION?

The preceding paragraph contains a scary statement (that we’re going to load an arbi-
trary extension in the host application’s memory). This implies that a crash of the
extension will take down the whole application. Also, ways can be found (for example,
using reflection) to inspect state of the host that shouldn’t be seen by the extension.

In a more robust implementation of an extensible application, you will want to address
such issues by leveraging other CLR features, such as application domains (which are
discussed in Chapter 25). Luckily, the need for extensions by many applications has
led to the creation of various frameworks that help with the proper creation of them.
One example is System.Addins, where add-ins (the equivalent to what we call exten-
sions) can be loaded into separate application domains or even in a separate “add-in
host” process.

Defining the Interface
To kick off the development of ExtensiCalc with extensibility in mind, we create the inter-
face that will be used for the communication between the host application and its exten-
sions. To simplify matters, we’ll keep the interface as simple as possible:

interface ICalculation

{

int Calculate(int a, int b);

}

What matters more is where we define the interface. Two distinct parties will need to refer
to it, one of which is the ExtensiCalc host application, of course, which uses it to make
calls through it. On the other side of the curtain, we find all extension providers that need
to implement it.

Although we could put the interface in the executable assembly (.exe) of the host applica-
tion, this feels kind of strange because all the extension library assemblies (.dll) would
have to refer to the executable. Instead, we’ll do some nice refactoring and provide a sepa-
rate assembly for the extensibility interfaces and possible utilities that can be of use for
extension developers. For our entire example, including the host and one extension, this
results in the creation of three assemblies and hence three projects in Visual Studio:

. The host application, an executable Console Application, containing the user inter-
face and logic to locate and load extensions

. The extensibility assembly where we’ll put the ICalculation interface and which
could be used to provide shared utilities

1061Reflection

FIGURE 21.5 Project structure for an extensible application.

. One extension assembly, implementing the Pythagorean theorem’s formula to calcu-
late the hypotenuse of a triangle given its two sides

The project structure is shown in Figure 21.5, using the Solution Explorer in Visual Studio.
Notice the references to the Extensibility assembly in two places: the host and the
Geometry extension. In reality, the Geometry package would likely live in a totally differ-
ent solution on an extension developer’s computer. In that case, one would make a refer-
ence to the Extensibility.dll assembly file directly, which can be found in the application’s
installation folder or in some SDK that could ship with ExtensiCalc.

Built-In Operations
First, we define a couple of built-in operations and ignore the extensibility side of the
picture for a moment but use the same interface as we expose for extensions. One opera-
tion is shown here; I’ll leave the other three simple operations for you:

namespace ExtensiCalc

{

using Extensibility;

class Addition : ICalculation

{

public int Calculate(int a, int b)

{

return a + b;

}

}

}

1062 CHAPTER 21 Reflection

Here we’re already exercising the reference to the Extensibility assembly, which also
contains the Extensibility namespace. We discuss the conceptual differences between
assemblies and namespaces in Chapter 24, “Namespaces,” and Chapter 25. In this case,
the names collide as Visual Studio picks the assembly name as the default namespace for
types defined in the project. Once we add the ICalculation interface to the
Extensibility project, we’ll be faced with a code file that looks like this:

namespace Extensibility

{

public interface ICalculation

{

int Calculate(int a, int b); // We added this line.

}

}

The User Interface
Again, to keep things simple, we’re not developing a rich user interface but sticking with a
straightforward console application. Here, we need to provide the user with the various
supported operations, accept a selection of an operation, take parameters for the operation
as user input, call into the operation implementation, and print the result on the screen.

It should be clear that the user interface, which we define in Program.cs, will be able to do
all of its work given a list of ICalculation instances. So, we define an operation that
exposes an IEnumerable<ICalculation> as the input to the main user interface. Given
such a method, we can define the UI as follows:

static void Main()
{

Console.WriteLine(“ExtensiCalc - The world’s best calculator”);
Console.WriteLine();
var operations = GetOperations().ToList();

while (true)
{

int i = 1;
foreach (var op in operations)
{

Console.WriteLine(i++ + “. “ + op.GetType().Name);
}
Console.WriteLine();

int selectedOperation = -1;
while (selectedOperation < 0 || selectedOperation > operations.Count)
{

selectedOperation = ReadInt(“Enter selection: “);
}

1063Reflection

Console.WriteLine();

if (selectedOperation == 0)

break;

ICalculation operation = operations[selectedOperation - 1];

int a = ReadInt(“a: “);

int b = ReadInt(“b: “);

Console.WriteLine(“Result = “ + operation.Calculate(a, b));

Console.WriteLine();

Console.WriteLine();

}

}

Notice we’re printing all operations to the screen based on the type name of the class imple-
menting the operation. There are various ways by which we could provide more customiza-
tion of operation names (for example, by adding a get-only Name string property to our
interface). Later on, we’ll see another way to associate this kind of descriptive metadata to
an object, using custom attributes that are discovered through the reflection APIs, too.

In the preceding code, we’re using a small ReadInt helper function that reads an integer
value from the console, retrying as long as the user doesn’t provide a valid input:

static int ReadInt(string prompt)

{

int result = 0;

bool valid = false;

while (!valid)

{

Console.Write(prompt);

valid = int.TryParse(Console.ReadLine(), out result);

}

return result;

}

If we were to stick with built-in operations online, it would suffice to provide a list of built-
in operation instances from GetOperations (for example, as follows using an iterator):

static IEnumerable<ICalculation> GetOperations()

{

yield return new Addition();

yield return new Subtraction();

yield return new Multiplication();

yield return new Division();

// You can add other built-in operations here easily...

}

1064 CHAPTER 21 Reflection

FIGURE 21.6 Our extensible calculator without any extensions loaded.

Given this simple implementation, we already have a useful (admittedly simple) calcula-
tor, as shown in Figure 21.6.

Discovery and Loading of Extensions
Besides the built-in extensions, we also want to be able to load all the extensions provided
by third-party vendors. There are two contractual aspects to this: first, the requirement to
implement our ICalculation interface, and second, the need to put extension assemblies
in a place where the host application can find them (referred to as the “repository” in
Figure 21.4). We’ll assume extensions live in an Extensions folder alongside the applica-
tion executable.

Using reflection, we can now discover extension types in assemblies. There are two sides
to this: We first need to find all the assemblies and load them. After we’ve done this, we
then need to scan the assemblies for types implementing ICalculation and create an
instance of those. We’ll assume a default constructor is required for extensions.

DISCOVERY, SAFER AND SIMPLIFIED

This discovery process is of interest to us in the scope of this example because of its
use of reflection for various operations. However, a few limitations and drawbacks apply
when it’s implemented in the way shown here. For one thing, looking for assemblies
simply by searching .dll files and trying to load them through the reflection APIs is a
gross simplification of things. We might want to discover types not only based on a
directory containing assemblies, but look elsewhere, too.

Second, loading those assemblies can fail for a variety of reasons. Maybe the.dll file is
not an assembly but a native DLL or another kind of file that got disguised with a .dll
extensions for some reason.

Finally, assemblies cannot be unloaded unless the containing application domain gets
unloaded as a whole. Misbehaving assemblies or assemblies without any useful exten-
sion types will be loaded into the program’s memory.

Frameworks like System.Addins and the MEF help to avoid such issues.

1065Reflection

static IEnumerable<ICalculation> GetExtensions()

{

if (Directory.Exists(“Extensions”))

{

var icalc = typeof(ICalculation);

foreach (var file in Directory.EnumerateFiles(“Extensions”, “*.dll”))

{

// For isolation, one will like to use AppDomains...

var asm = Assembly.LoadFrom(file);

// “LINQ to Reflection” to the rescue.

var extTypes = from t in asm.GetTypes()

where t.GetInterfaces().Contains(icalc)

select t;

foreach (var ext in extTypes)

yield return (ICalculation)Activator.CreateInstance(ext);

}

}

}

In this piece of code, we find all .dll files in an Extension subfolder (relative to the
working directory; that is, the place where the application’s executable lives). After loading
the files through Assembly.LoadFrom (also in the System.Reflection namespace), we use
LINQ to filter the assembly’s types by those that implement the ICalculation interface.
To do so, we rely on the GetInterfaces method on System.Type.

Finally, after we’ve found all types that implement the ICalculation interface, we can
instantiate each of them, using the Activator.CreateInstance method we’ve seen before.
This assumes a default constructor is present.

Given the preceding method, we can now tweak the GetExtensions method to include
both the discovered and the built-in operations (again using a LINQ operator):

static IEnumerable<ICalculation> GetOperations()

{

return GetBuiltinOperations().Concat(GetExtensions());

}

static IEnumerable<ICalculation> GetBuiltinOperations()

{

// And seen earlier...

}

1066 CHAPTER 21 Reflection

static IEnumerable<ICalculation> GetExtensions()

{

// As seen above...

}

THOUGHTS ON CONSTRUCTORS AND STATE

The fact we’re reusing the same instance of an operation type for all calculations that
use it implies those types should be careful with state. If state from one use of the
calculation object sticks around and can influence subsequent operations, you may be
in trouble.

Alternatively, we could create new instances of the calculation objects each time we’re
going to reuse them. In such a configuration, you’ll still want to discover the types only
once but defer the instance creation calls until the point of every use.

This brings us to a further discussion about the implicit contract of requiring a specific
constructor (which cannot be captured in an interface) on extensions. Because we’re
taking all discovery tasks on ourselves, to the point of finding types that adhere to a
certain interface contract, we’re responsible for creating the instances.

Alternatively, you could think of using an interface with a single member
GetExtensions that every extension assembly needs to have for discovery purposes.
But all we’ve done then is put more burden on the extension provider, and we still need
to discover this hypothetical IExtensionProvider implementation, again with the need
to invoke some constructor.

Writing and Deploying an Extension
Development of an extension happens in a separate project, resulting in the creation of a
separate assembly, and is usually created by a third party. The definition of such an exten-
sion should be self-explanatory, given our simple interface. For example:

using Extensibility;

namespace Geometry

{

public class Pythagoras : ICalculation

{

public int Calculate(int a, int b)

{

return (int)Math.Sqrt(a * a + b * b);

}

}

}

Now we need to put the resulting file, Geometry.dll, in the Extensions subfolder where the
host application is looking to discover extensions. In a real-world scenario, some installer
will be used to facilitate this task when deploying extensions to end-user machines, but

1067Reflection

FIGURE 21.7 Configuration of a Post-build event to copy a built assembly file.

for demonstration (and development) purposes, we can simply copy it. The following
folder structure is required:

ExtensiCalc

- ExtensiCalc.exe

+ Extensions

- Geometry.dll

To simplify debugging of our own extensions, to be loaded by the host application, we
can configure the build process in Visual Studio with a post-build step on the Geometry
project. Figure 21.7 illustrates a configuration that will copy the built file to the appropri-
ate location using some relative paths. Because we’re building to the bin\Debug folder
underneath the Geometry folder, we need to go three levels up so that we can take a right
turn into the ExtensiCalc (host application) build folder. From here, we construct the path
to the Extensions subfolder alongside the ExtensiCalc executable, again under bin\Debug
(assuming you’re building in Debug configuration). The $(TargetPath) variable is provided
by MSBuild and contains the full path to the built assembly file. Such variables can be
discovered by using the Edit Post-build button.

Finally, when we run the application now, we should see a Pythagoras entry appear in the
operations menu, as shown in Figure 21.8.

Managed Extensibility Framework
One of the frameworks that helps with creating extensible applications on the .NET plat-
form is MEF. Although a thorough discussion about MEF is beyond the scope of this
chapter, a short introduction is warranted, especially because .NET 4 is the first version of
the framework to ship this new technology out of the box.

1068 CHAPTER 21 Reflection

FIGURE 21.8 An extension got loaded and shows up in the menu.

MEF is centered on three core concepts, the CCC of MEF:

. Contracts are interfaces annotated with some custom attribute that enables them for
use in composition.

. Catalogs act as the repositories that are searchable for extensions and abstract over
the discovery aspects of extensibility.

. Containers provide the playground for composition, where host and various exten-
sions are wired together.

In the world of composition, there are always two sides to the equation. One end acts as
the provider of some functionality, and the other end wants to receive services to interop-
erate with. In terms of MEF, the former exports functionality and the latter imports it. By
using custom attributes on types and members, the MEF composition engine can piece the
puzzle together and take care of various tasks on your behalf, such as loading extensions,
creating instances of extensions, and so on.

Using MEF, our extension would add a single attribute to the Pythagoras type, telling it
exports functionality associated with a certain contract:

[Export(typeof(ICalculation))]

public class Pythagoras : ICalculation

{

...

}

On the receiving end, inside the host application’s code, we want to import many of those
extensions based on the same shared contract:

class Calculator

{

[ImportMany(typeof(ICalculation))]

public List<ICalculation> Operations { get; set; }

}

Now, if MEF finds an object that exports the ICalculation contract, it will do all the work
to instantiate it and add the newly created instance to the place where the host asked to

1069Reflection

import it. You can compare the concept of composition with a bowl of soup containing
various ingredients that get bound together.

The missing pieces of this puzzle are the catalog and container aspects. In other words,
where does MEF find the extensions and what’s the stimulus for MEF to start the task of
composition. To handle discovery, various catalogs exist that perform some kind of lookup
task (for example, searching a directory or an assembly for extensions). To mimic the same
behavior as our manual discovery of extensions as well as the use of the built-in opera-
tions, we can write the following MEF code:

using (var builtIns = new AssemblyCatalog(typeof(Program).Assembly))

using (var extensions = new DirectoryCatalog(“Extensions”))

using (var catalog = new AggregateCatalog(builtIns, extensions))

using (var container = new CompositionContainer(catalog))

{

// ComposeParts is an extension method in System.ComponentModel.Composition.

// Don’t forget to import this namespace.

container.ComposeParts(calc);

}

The first three lines of code deal with catalogs. Here, the first one corresponds to our itera-
tor that yielded the instances of the built-in operations. This time, though, we’re asking
MEF to discover types that are amenable for composition in our own assembly. Following
this catalog, we have one that searches the Extensions folder, taking over all the plumbing
we had to do ourselves (with more robustness and safety). Finally, the combination of
both catalogs (the analog to our use of Concat before) is achieved by using the
AggregateCatalog type.

Besides the use of catalogs, the preceding fragment also reveals how composition is carried
out. The CompositionContainer type acts as a “bowl of soup” in which all ingredients for
the composition (known as parts in MEF) are thrown together. Here, calc is an instance of
the Calculator type, which receives all the discovered objects that are implementing the
ICalculation interface. Figure 21.9 shows how the MEF logo reflects the compositional
nature of parts.

FIGURE 21.9 The MEF logo, reflecting its compositional nature operating on blocks.

1070 CHAPTER 21 Reflection

LEARN MORE ABOUT MEF

Being at the heart of Visual Studio 2010 extensibility and likely many other future
extensibility models, MEF is definitely worth reading up on. Whereas the extensibility
examples we’ve shown in this chapter are pretty simple, allowing us to focus on the
core technology underpinning it, typical uses are much more involved.

One particularly appealing target for composition of extensions is found in the space of
UI programming, where third parties want to add functionality to the host’s UI. This is
precisely one of the areas where Visual Studio 2010 extensibility focuses, allowing tool
vendors to add items to menus, toolbars, the code editor, and many other parts of the
development environment.

Also, MEF has been developed under a shared source initiative and has gone through
many publicly visible preview iterations at http://mef.codeplex.com. To learn more
about MEF and to inspect the way it works, this link is a good starting point.

Reflection for Methods, Properties, Events, and More

Thus far, we’ve mainly focused on reflection to discover types and perform some opera-
tions based on those. Because types are containers for other concepts, we can descend the
ladder of reflection to discover more about those members, too. Expectedly, every
System.Type object exposes methods that allow you to inspect the type’s methods, proper-
ties, events, constructors, and fields. For example, to retrieve all the methods on
System.Int32 and make sense of the overloads by grouping them by name, we can write
the following code:

var res = from method in typeof(int).GetMethods()
group method by method.Name into g
select new { Name = g.Key, Overloads = g.Count() };

foreach (var method in res)
Console.WriteLine(method);

MethodInfo objects have a bunch of interesting properties, revealing more information
about a method’s visibility, return type, parameters, possible use of generics, and so on.

Late-Bound Invocation of Methods
Besides using reflection to learn more about their capabilities, you can also use reflection
to invoke a method:

class Foo
{

public void Bar(string message)
{

Console.WriteLine(message);
}

}

http://mef.codeplex.com

1071Reflection

class Program
{

static void Main()
{

var f = new Foo();

// Early-bound call
f.Bar(“Early-bound”);

// Late-bound call
f.GetType().GetMethod(“Bar”).Invoke(f, new object[] { “Late-bound” });

}
}

The second call locates a public instance method called Bar using reflection and makes a
call to it using the Invoke method. In this example, there’s no value in doing it this way
because the method can be resolved statically at compile time. However, if you’re dealing
with an object you got from somewhere but you don’t have a type to cast it to, you’ll
need to rely on some form of dynamic invocation. In C# 4.0, the preceding can be simpli-
fied using the new dynamic feature, as you learn in Chapter 22, “Dynamic Programming,”
allowing us to write the following:

// Late-bound call
dynamic d = f;
d.Bar(“Late-bound”);

Under the covers, this will use reflection to locate the Bar method with an appropriate
number of arguments to make the call.

PERFORMANCE AND OTHER IMPLICATIONS

Late-bound calls are much slower than early-bound calls because some of the opera-
tions otherwise carried out by the compiler have to be performed at runtime.

When using plain reflection to locate a method, lots of runtime infrastructure needs to
be looped in to produce the result. In addition, various optimizations cannot be
performed as the runtime simply sees calls to reflection APIs where members are
represented as strings like ”Bar”. Early bound code contains IL instructions that target
members directly, allowing for optimizations such as inlining. The DLR, as used by the
dynamic keyword, adds a series of optimizations such as call-site caching and code
generation for “fast invocation paths,” making this less of a problem. Nonetheless, you
shouldn’t use late binding if there’s no good reason for doing so.

One other reason early binding is much more advisable than late binding is the helpful
diagnostics carried out by the compiler in the former case. When relying on reflection,
you’re deferring all lookup operations until runtime, which can fail by throwing excep-
tions. In particular, using GetMethod will return a null reference if no match is found.

So let your motto be this: Static where possible, dynamic when (really) necessary.

1072 CHAPTER 21 Reflection

Properties and Indexers
Because indexers are implemented as properties with parameters, both those members
look the same at the level of the runtime. To access those, you can use methods such as
GetProperty and GetProperties. An example is shown here that will reveal two properties
on System.String:

foreach (var p in typeof(string).GetProperties())

Console.WriteLine(p);

The results look like this:

Char Chars [Int32]

Int32 Length

The first property that’s shown is called Chars and really is an indexer, recognizable by the
square brackets (enclosing the indexer’s parameters) in the ToString representation of the
PropertyInfo instance.

Properties are nothing but metadata citizens wrapping a (possibly partial) pair of methods
known as the getter and setter. Because there’s only a single concept of methods at the
runtime level, it shouldn’t surprise you that you can get the getter and setter methods
(any of which can be null) from a PropertyInfo object:

foreach (var p in typeof(string).GetProperties())

{

Console.WriteLine(p.Name);

if (p.CanRead)

Console.WriteLine(“get = “ + p.GetGetMethod());

if (p.CanWrite)

Console.WriteLine(“set = “ + p.GetSetMethod());

}

Because both of the retrieved members on System.String are get-only, only CanRead will
be true, so the output looks like this:

Chars

get = Char get_Chars(Int32)

Length

get = Int32 get_Length()

1073Reflection

REFLECTION AS A RELATIONAL DATABASE

The metadata exposed through reflection is very much like a relational database
consisting of a series of interrelated tables. For example, types can have many
members, and some of those members are related to one another (for example, a
getter referred to by a property).

Because of this data-intensive nature, one of the most natural ways to make sense of
the data exposed by reflection is to use query expressions, as you saw earlier when
learning about method overloads. When showing off LINQ to Objects, reflection is often
chosen as a great in-memory data source with which to illustrate various operators.

Late-Bound Property Access
Just as with methods, if necessary for one reason or another, you can access properties in a
late-bound fashion. Although the getter/setter methods could be used for this (using the
Invoke method), properties provide a direct way to get and set values:

var f = new Foo();

// Early-bound set (assume Foo has a Bar property defined)

f.Bar = 42;

// Late-bound get

var res = (int)f.GetType().GetProperty(“Bar”).GetValue(f, null /* indexer */);

Console.WriteLine(res);

THE MYTHICAL INFOOF OPERATOR

One of the top requested features for the C# language is some infoof (read: “info of”)
operator, similar to the typeof operator but operating on members. Although it’s signifi-
cantly close to the member lookup code we’ve been writing earlier, it would work quite
differently because it would use static type information to locate the member and emit
code to get the MemberInfo object for it. One of the places where this is useful is in
the creation of LINQ providers, where you must recognize certain operations carried out
in expression trees to provide a meaningful translation into a target query language.

Again, starting from C# 4.0, this can be simplified using dynamic:

dynamic f = new Foo() { Bar = 42 /* early bound set */ };

// Late-bound get

Console.WriteLine(f.Bar);

1074 CHAPTER 21 Reflection

Events
Just like properties, events are metadata constructs that tie together a series of methods (in
this case, for add and remove accessors). System.Type methods like GetEvent(s) can be
used to discover events on a given type:

var evt = typeof(Foo).GetEvent(“Event”);

Console.WriteLine(evt);

Console.WriteLine(evt.GetAddMethod());

Console.WriteLine(evt.GetRemoveMethod());

var f = new Foo();

EventHandler handler = (o, e) => { Console.WriteLine(“Raised!”); };

// Early-bound add

f.Event += handler;

f.Raise(); // Prints Raised!

// Late-bound remove

evt.RemoveEventHandler(f, handler);

f.Raise(); // Doesn’t print Raised! anymore

For this example, the following Foo type is used:

class Foo

{

public event EventHandler Event;

public void Raise()

{

var e = Event;

if (e != null)

e(this, EventArgs.Empty);

}

}

Once more, if the need for dynamic discovery of an event arises due to the lack of static
type information or a common interface, dynamic can be used to simplify the previous
code. We examine how dynamic works and its main uses in Chapter 22.

// Late-bound remove

dynamic d = f;

d.Event -= handler;

f.Raise(); // Doesn’t print Raised! anymore

1075Reflection

Fields and Use of BindingFlags
Yet another type of member is a field, which can also be detected through reflection. In
the following fragment, we try to find the fields on the DateTime struct:

foreach (var f in typeof(DateTime).GetFields())

Console.WriteLine(f);

Although this prints a few results (the static read-only MinValue and MaxValue fields, to be
precise), you might have expected more results. After all, a DateTime ought to store its
information about date and time somewhere, shouldn’t it? What we’re hitting here is a
restriction of visibility. By default, reflection APIs show only publicly visible things, but
this can be overridden by specifying another BindingFlags value:

foreach (var f in typeof(DateTime).GetFields(BindingFlags.NonPublic

| BindingFlags.Instance))

Console.WriteLine(f);

Here we’re retrieving all nonpublic instance fields on DateTime, now revealing the following:

UInt64 dateData

The use of BindingFlags provides much more flexibility than we’ve shown here, but an
exhaustive discussion about its values is beyond the scope of this chapter.

WHAT ABOUT SECURITY?

You might be a little worried when seeing the ability of reflection to get to nonpublic
members and even fields. Doesn’t this pose a security threat?

The answer to this question is to be found in another service provided by the CLR that
controls access to certain functionality. The runtime’s security subsystem deserves a
book on its own, but in essence it can be used to disallow the performance of certain
operations depending on the context where the code is run. Before .NET 4, the Code
Access Security (CAS) model was the main way to achieve this, but starting from .NET
4, a new security transparency model has been introduced.

More information about this topic in the context of reflection can be found on MSDN in
an article titled “Security Considerations for Reflection.” For those familiar with the
.NET security system but new to .NET 4, the “Security Changes in the .NET Framework
4” article is another recommended read.

Custom Attributes

All the reflection information we’ve seen so far is based on metadata that’s well known to
the runtime. One typical example of such metadata includes the visibility of types and
members. Early on in the design of the CLR, it was clear that an extensible metadata

1076 CHAPTER 21 Reflection

system would be a true added value to the new runtime. This ultimately resulted in the
creation of custom attributes that allow developers to define their own pieces of metadata
that can be tagged onto assemblies, types, and their members.

You’ve seen a couple of attributes earlier in this chapter when we were discussing MEF. In
the following code fragment, Export is an attribute:

[Export(typeof(ICalculation))]

public class Pythagoras : ICalculation

{

...

}

The goal of those attributes is to annotate runtime entities with extra data that can be
inspected by tools and libraries. In the case of MEF, the composition engine uses the
reflection APIs to find types and checks for the presence of the Export attribute to find
out which types are marked as usable for composition.

One of the earliest uses of attributes in the .NET Framework was in the development of
(classic, pre-WCF) web services. By simply sticking attributes like WebService and
WebMethod onto types and methods, those could be exposed through web services proto-
cols. Furthermore, to discover a service, an HTTP handler watches out for WSDL requests.
Upon receiving such a “metadata exchange” request, it reflects on the types and members
to build the XML document to hand back to the client.

In yet other places, assemblies are analyzed for the presence of certain attributes to gener-
ate other code. For example, to make a type serializable for different purposes, such as
communication or persistence, you can search for attributes that guide the serialization
process (such as NonSerialized on a field). Based on this information, tools could gener-
ate code that can serialize objects conform to the requirements that were specified using
custom attributes on the types involved.

Defining Custom Attributes
Custom attributes are defined as classes deriving from System.Attribute and contain
constructors and properties to specify the metadata they want to carry around. Because all
of this data has to be embedded in the metadata storage in an assembly, restrictions on
the usable types apply. Primitive types such as int, string, bool, and so on are valid, and
so is the use of a Type instance.

For the attribute to be usable, you must also apply an attribute to the type, indicating
what its target uses are and so on. This is done using the AttributeUsage attribute, which
enables you to specify AttributeTargets flags. When using the attribute, it will be
checked whether the attribute is applicable to the target to which it’s applied.
AttributeUsage also enables you to determine the behavior of attributes in the face of
inheritance: Does the use of an attribute on a type reflect itself when querying for attrib-
utes on any of its derived types? Finally, AttributeUsage can be used to allow or disallow
multiple uses of the attribute on the same target.

1077Reflection

FIGURE 21.10 Code snippet to declare a custom attribute.

Let’s take a look at an example of all of this:

[AttributeUsage(AttributeTargets.Class)]

public class ExtensionAttribute : Attribute

{

public ExtensionAttribute(string name)

{

Name = name;

}

public string Name { get; private set; }

}

Different patterns for declaration of attributes exist. Because some parameters on the
attribute may be optional, it’s often the case that one defines a single constructor that
takes all the required arguments in combination with a series of settable properties used
for the optional arguments. Required arguments are also referred to as “positional”
because they’re specified in the order they appear in the constructor, while the optional
ones are referred to as “named” because you specify them by property name.

To make the declaration of attributes easier, Visual Studio comes with a code snippet
called Attribute. To insert it, enter Attribute and press Tab twice. The result of this oper-
ation is shown in Figure 21.10.

Using Attributes
The use of custom attributes on applicable targets is done by using the square bracket
syntax shown earlier. In between the brackets, the name of the attribute is specified,
where the Attribute prefix on the type named can be omitted, followed by arguments in
between parentheses. The positional arguments come first and are comma-separated,
while named ones can be specified later by using the name = value syntax.

1078 CHAPTER 21 Reflection

FIGURE 21.11 Use of an attribute applied to a class definition.

As an example, consider the AttributeUsage attribute itself, which shows the IntelliSense
assistance in Visual Studio shown in Figure 21.11.

NAMED PARAMETERS SYNTAX

Evolving a programming language always brings up interesting challenges. One such
challenge is to keep existing programs compiling under newer versions of the
language. With named parameters, this is no different. First there were attributes,
where the specification of optional parameters was done within parentheses using
name-value pairs:

Bar(42, Optional = “Hi”)

In C# 3.0, object initializer expressions were added, with slightly different syntax
because the preceding form is ambiguous otherwise. (Did you mean to initialize
Optional as a property on the Bar instance, or did you want to call a constructor that
takes an integer and a string and assign to Optional as a side effect?)

new Foo(42) { Optional = “Hi” }

Finally, in C# 4.0, optional and named parameters were introduced on various forms of
invocation syntax (on constructors, methods, delegates), where you could write the
following if a constructor is to be called that has a parameter called optional:

new Foo(42, optional: “Hi”)

Once more, dedicated syntax, with the colon token, is needed to disambiguate from an
assignment expression that existed in previous versions of the language.

Although in hindsight it’s unfortunate to have that many syntaxes for related concepts,
that’s what language evolution (facing a high level of compatibility requirements)
brings with it.

How Are Custom Attributes Stored?
Being defined outside code blocks (which get represented as intermediate language, IL),
you might wonder how and where custom attributes get stored in an assembly. Again, the
answer can be found in ILDASM, also explaining some of the limitations around custom
attribute data. For example, why is it that only constant expressions can be used for the
data in a custom attribute? Let’s take a look based on the following piece of code:

1079Reflection

FIGURE 21.12 A custom attribute showing up in ILDASM.

[My(“Hello”, NamedInt=42)]

class Program

{

...

}

Looking in ILDASM, the first thing you can see is how the custom attribute is hidden
behind some .custom construct, as shown in Figure 21.12.

What you can already see from this is how the custom attribute is represented by a
sequence of bytes, which contain the constant data for it. In other words, there’s no way a
custom attribute can rely on the execution of code to compute its data values because all
data is serialized into a byte sequence. You can dig a little deeper and go to View,
MetaInfo, Show (Ctrl+M) to show type definitions and such in a textual format. In there,
the type definition for Program will reveal the following attribute:

TypeDef #2 (02000003)

TypDefName: Program (02000003)

...

CustomAttribute #1 (0c000006)

CustomAttribute Type: 06000001

CustomAttributeName: MyAttribute :: instance void .ctor(class String)

Length: 25

Value : 01 00 05 48 65 6c 6c 6f 01 00 54 08 08 4e 61 6d ...

ctor args: (“Hello_”)

Discovering Custom Attributes
Although most readers will likely just have to use custom attributes to use certain pieces of
the framework (like MEF, WCF, and so forth) or to use external libraries, it’s useful to know
how to declare and discover custom attributes. You’ve already seen how to declare them,
but how can your code now inspect a given assembly, type, or member and figure out
whether an attribute is applied? Again, the answer lies in reflection.

1080 CHAPTER 21 Reflection

To put things in practice, let’s extend the ExtensiCalc application by introducing the
following custom attribute in the Extensibility assembly:

[AttributeUsage(AttributeTargets.Class)]

public class CalculationOperationAttribute : Attribute

{

public CalculationOperationAttribute(string name, string infix)

{

Name = name;

Infix = infix;

}

public string Name { get; private set; }

public string Infix { get; private set; }

}

The goal of this attribute is to provide a friendly name for a calculation operation and
provide an infix operator notation for pretty printing. For example, the Addition class
could be decorated with the attribute as follows:

[CalculationOperation(“Add”, “+”)]

class Addition : ICalculation

{

public int Calculate(int a, int b)

{

return a + b;

}

}

With this information present, the host application can now look at the type of the opera-
tion and figure out whether this custom attribute is present. If so, additional “pretty print-
ing” can be carried out. The essence of the detection of a custom attribute and the
retrieval of information defined in it is shown here:

var add = typeof(Addition);

var opa = (CalculationOperationAttribute)Attribute.GetCustomAttribute(

add, typeof(CalculationOperationAttribute));

if (opa != null)

{

Console.WriteLine(“Extension: {0}”, add);

Console.WriteLine(“Name: {0}”, opa.Name);

Console.WriteLine(“Notation: a {0} b”, opa.Infix);

}

1081Reflection

FIGURE 21.13 Custom attributes for pretty printing of operator names and infix notation.

Given the operation type, the second line uses the GetCustomAttribute static method on
System.Attribute to detect a CalculationOperationAttribute on the add type.
Alternatively, you could use the GetCustomAttributes (plural) method on System.Type (or
another other reflection citizen such as MethodInfo) to detect custom attributes (again
plural) of a given type. LINQ operators can be useful in such a setting again:

var opa = add.GetCustomAttributes(false /* inherit */)

.OfType<CalculationOperationAttribute>()

.SingleOrDefault();

Here we find all custom attributes, filter out the ones of the specified type, and finally
retrieve the single one, or null if none is present. Either way, given the custom attribute
object, we can now inspect its properties, namely Name and Infix in this example.

I’ll leave it as an exercise for you to revamp the whole ExtensiCalc example with addi-
tional code that looks out for this custom attribute and presents a customized menu using
the Name properties of the discovered operations. Figure 21.13 shows a screenshot of the
output of a revamped version of the program.

CUSTOM ATTRIBUTES OR RICHER INTERFACES?

From the ExtensiCalc example it’s clear there are various ways to expose the rich meta-
data associated with a class in a variety of ways. Instead of using custom attributes,
we could have enriched our ICalculationOperation interface with extra properties,
too. Although this would work as well, interfaces tend to create a point of tension
between consumers and providers. Rich interfaces imply more work for the imple-
menter, which might not be desirable. The use of abstract classes to get out of this
issue is a possibility but poses other restrictions due to the single inheritance model.

Furthermore, custom attributes provide a richer story for metadata beyond just classes
because they can be applied to various members and even whole assemblies. So ask
yourself what metadata means in your particular use case, how you can deal with the
absence or presence of it, and what the best solution is in the end.

1082 CHAPTER 21 Reflection

Lightweight Code Generation
In the first generation of .NET, no facilities were provided to generate code at runtime,
despite the fact that some portions of the runtime could take advantage of such a thing.
For example, the object serialization stack has historically relied on the invocation of the
C# compiler at runtime to generate some helper assemblies based on the object types that
occur in the input. Although this works fine, the additional step of generating C# code
and feeding it through a compiler just to obtain an assembly seems largely redundant if
we have some common code representation based on IL already.

Starting with .NET 2.0, services to emit code at runtime (and save or execute it) have been
added to the framework. Known as lightweight code generation, or LCG, the APIs surfac-
ing this functionality can be found in System.Reflection.Emit. Although their use is
very specialized and requires a thorough understanding of the semantics of IL code, a
small discussion is in order because LCG is what expression trees and the DLR take advan-
tage of, too.

Hello LCG

The LCG Hello World example is shown here, simply printing “Hello LCG!” to the screen
based on a dynamically generated assembly:

// An assembly...

var asm = AppDomain.CurrentDomain.DefineDynamicAssembly(

new AssemblyName(“LCGDemo”),

AssemblyBuilderAccess.Run);

// ...contains a module...

var mod = asm.DefineDynamicModule(“MyModule”);

// ...contains a type...

var tpe = mod.DefineType(“Sample”);

// ...contains a method...

var mtd = tpe.DefineMethod(“SayHello”,

MethodAttributes.Public | MethodAttributes.Static);

// ...contains a code body...

var gen = mtd.GetILGenerator();

gen.Emit(OpCodes.Ldstr, “Hello LCG!”);

// The mythical infoof(Console.WriteLine(string))

gen.Emit(OpCodes.Call, typeof(Console).GetMethod(“WriteLine”,

new[] { typeof(string) }, null));

gen.Emit(OpCodes.Ret);

1083Lightweight Code Generation

// Makes the code ready to execute...

var res = tpe.CreateType();

res.GetMethod(“SayHello”).Invoke(null /* static */, null /* args */);

From this code, you can see all the layering surrounding code on the CLR. On the top
level, we find assemblies that are containers for one or more modules. Inside those
modules, we can define types that by themselves contain members. Notice methods can
also be declared outside types, as global methods, but this is not directly supported by
some languages like C#. The preceding code is the equivalent to the following code
compiled into an assembly called LCGDemo:

class Sample

{

public static void SayHello()

{

System.Console.WriteLine(“Hello LCG!”);

}

}

On the last lines of code, we concretize the type we just defined and get a Type object
back, which we can reflect on (for example, to retrieve the SayHello method and invoke it
through reflection once more). This infrastructure is ultimately what dynamic languages
on the CLR—such as IronPython and IronRuby—use to turn the code the user wrote into
execution by emitting IL code at runtime. This has various advantages over systems that
are based on interpretation because all the runtime’s optimizations for IL code can be used.

COLLECTIBLE ASSEMBLIES

One extension to LCG that was introduced in .NET 4 is the concept of collectible
assemblies. Prior to .NET 4, the only way to unload dynamically generated code
was to unload the entire application domain in which the code was loaded.

Notice how on the first line of our example we create a dynamic assembly starting from
an AppDomain object. You’ll learn more about AppDomains later, but suffice to say that
those are the rough equivalent to processes at the CLR level, providing various proper-
ties such as isolation of state. With the advent of dynamic languages hosted on the
CLR (through the DLR), the use of dynamically generated code is increasing signifi-
cantly, making the tight coupling with application domains for unload scenarios too
much of a stumbling block toward achieving great performance characteristics.

To tame the memory utilization originating from the code generation of lots of little frag-
ments that have a limited lifetime, garbage collection for generated code has been
introduced in .NET 4, known as “collectible assemblies.” This is yet another manifesta-
tion of the von Neumann machine architecture, where code and data are similar enti-
ties. Where data can be reclaimed using garbage collection, so can code.

1084 CHAPTER 21 Reflection

a b

Generated IL Code

LPAR, SYM(“a”), COMMA, SYM(“b”), RPAR, ARROW, …

ldarg.0
ldarg.1
add
ldc.i4.2
mul
ret

// a
// a, b
// a + b
// a + b, 2
// (a + b) * 2

*

+ 2

a b

λ

Syntax Tree

Token Stream

(a, b) => (a + b) * 2

Source Input

F
ro

n
t

E
n

d

B
ack E

n
d

FIGURE 21.14 Front end and back end of a compiler.

Collectible assemblies are subject to a number of restrictions documented on MSDN.
To enable collectible assemblies on your own manual uses of LCG, pass the
AssemblyBuilderAccess.RunAndCollect flag to the DefineDynamicAssembly call.

A Toy Compiler for Arithmetic Expressions

LCG can be an endless source of fun for those who are into writing compilers (toy or
otherwise). Although expression trees are the ideal abstraction for code generation nowa-
days (as you will see later in the “Expression Trees” section), use of raw LCG can be
instructive to see the essentials of code generation starting from an object model.

In this section, we examine a very simple toy compiler for arithmetic expressions, starting
from an object model for an abstract syntax tree with simple nodes such as constants,
parameters, and arithmetic operators. To create a real language on top, you would have to
build a lexer and a parser to turn textual input into such a tree format, which we won’t do
here. Figure 21.14 shows the separation between the front end and back end of a
compiler, of which we’ll only build the back end here.

1085Lightweight Code Generation

An Object Model for Expression Trees
We start by creating an object model for the expression trees our compiler can turn into IL
code. Later, when talking about expression trees, we’ll replace them with the tree types
built in to .NET 3.5 and later. To keep things simple, we support just constants, parame-
ters, and binary operators. An abstract base type called Expression provides for a single
virtual method that will be used for compilation:

abstract class Expression
{

public abstract void Compile(ILGenerator gen, Dictionary<Param, int> env);
}

In a true compiler, you would separate the compilation logic from the tree representation
and create a visitor over the tree object model. We’ll ignore this for the sake of clarity. In
the preceding code, ignore the signature for Compile because this will be explained later.
For now, focus on the data modeled by the various Expression subtypes to follow. First,
a parameter:

class Param : Expression
{

// Implementation of Compile will be added later.
}

Although we could give parameters a name by adding a property, we’ll omit this. In fact,
at the IL level, names for parameters are irrelevant because arguments are referred to by
means of a zero-based index.

Next, a constant has a slightly more complex representation as an expression tree node,
also having a Value property:

class Const : Expression
{

public int Value { get; set; }
// Implementation of Compile will be added later.

}

In the entire tree object model, Param and Const form the leaf nodes. As we climb up the
tree, we want ways to combine such leaf nodes into intermediate nodes. The only opera-
tions we’ll allow are binary arithmetic ones, as follows:

class Arithmetic : Expression
{

public Expression Left { get; set; }
public Expression Right { get; set; }
public Operation Operation { get; set; }
// Implementation of Compile will be added later.

}

1086 CHAPTER 21 Reflection

The Left and Right properties introduce a recursive structure on the type level, by which
subtrees can become parts of larger trees. This allows us to define arbitrarily nested expres-
sion trees within our limited arithmetic grammar. The Operation is based on an enum,
with four possible values:

enum Operation

{

Add,

Subtract,

Multiply,

Divide

}

Finally, a function acts as the root of our expression trees and has a code body together
with a bunch of parameters. This node is no longer derived from Expression because a
function is usable as the argument to an arithmetic operation. In fact, all the nodes in
our expression trees represent a value of the same type, which will be an Int32 after
compilation:

class Function

{

public List<Param> Parameters { get; set; }

public Expression Body { get; set; }

// Implementation of Compile will be added later.

}

With our object model in place, we can write down the expression tree illustrated in
Figure 21.14:

var a = new Param();

var b = new Param();

var f = new Function

{

Body = new Arithmetic

{

Left = new Arithmetic

{

Left = a,

Right = b,

Operation = Operation.Add

},

Right = new Const

{

Value = 2

},

Operation = Operation.Multiply

1087Lightweight Code Generation

},

Parameters = new List<Param> { a, b }

};

The expressiveness of C# object and collection initializers nicely reflects the structure of
the tree being represented here. I leave it to you to define constructors for all the expres-
sion tree types, which would be a better design as it can enforce non-null values for all
required connections in the tree.

The Compile Method Explained
On the Expression base class, we defined the following Compile method required to be
overridden by all subtypes:

public abstract void Compile(ILGenerator gen, Dictionary<Param, int> env);

But what does it mean? The idea is that every node in the expression tree recursively
compiles all of its children by calling this Compile method. For example, the tree node
representing (a + b) * 2 will have to ask the subtree a + b to compile itself, and in a similar
manner it should ask the (constant) subtree 2 to do the same.

All the nodes are required to emit IL code to the IL generator object that’s passed in
through the first parameter. One other piece of information we need to carry around
during the compilation is a so-called environment, which contains information about all
variables in scope. In our limited world, we only have parameters, but in a more powerful
compiler, you’ll also deal with local variables. In our case, the environment is a simple
mapping from expression tree parameter objects onto integers for the position of the para-
meter in the top-level function’s signature. This environment will be built up when the
compilation starts, looking like this for our sample expression:

a --> 0

b --> 1

All this means is that parameter a is the first parameter and b is the second. When the
recursive compilation reaches a Param leaf node, the Param’s Compile method will do a
lookup in the environment to map the parameter onto an ldarg instruction:

class Param : Expression

{

public override void Compile(ILGenerator gen, Dictionary<Param, int> env)

{

gen.Emit(OpCodes.Ldarg, env[this]); // load argument with index...

}

}

In this limited language, the environment is read-only for all nodes below the top-level
Function node. For more general compilations, this won’t be the case because local vari-
ables will get declared and fall out of scope within a code block.

1088 CHAPTER 21 Reflection

The compilation for the remaining leaf node is equally simple because it simply loads an
integer constant value. The ldc.i4 instruction is used for this, as shown here:

class Const : Expression

{

public int Value { get; set; }

public override void Compile(ILGenerator gen, Dictionary<Param, int> env)

{

gen.Emit(OpCodes.Ldc_I4, Value);

}

}

Finally, we take a look at the most complicated expression, the Arithmetic one. Here, we
need to visit the child subtrees first, in a left-to-right order, so that the code that’s respon-
sible for calculating the subexpressions gets evaluated first. Once those two calls have been
made, we can emit the IL instruction corresponding to the arithmetic operation, which
will, at runtime, pop the two values on the top of the stack and combine them using the
arithmetic operation:

class Arithmetic : Expression

{

public Expression Left { get; set; }

public Expression Right { get; set; }

public Operation Operation { get; set; }

public override void Compile(ILGenerator gen, Dictionary<Param, int> env)

{

Left.Compile(gen, env);

Right.Compile(gen, env);

switch (Operation)

{

case Operation.Add:

gen.Emit(OpCodes.Add);

break;

case Operation.Multiply:

gen.Emit(OpCodes.Mul);

break;

case Operation.Subtract:

gen.Emit(OpCodes.Sub);

break;

case Operation.Divide:

gen.Emit(OpCodes.Div);

break;

1089Lightweight Code Generation

}

}

}

Now that we have all the intermediate nodes, we still need to write the entry point to this
whole translation. Because the top-level construct is the Function, we provide a special-
ized Compile method on it with the following signature:

public T Compile<T>()

Here T is a delegate type that will be used for the result of the compilation so that the
caller can make a statically typed call to the compiled function. For example, our example
expression f could be compiled and executed as follows, using one of the built-in generic
delegate types:

var res = f.Compile<Func<int, int, int>>();

Console.WriteLine(res(2, 3)); // 10 = (2 + 3) * 2

The top-level Compile method is relatively straightforward and contains all the plumbing
to create a dynamic assembly, as we’ve seen before. Additional code takes care of establish-
ing the environment data structure, based on the number of parameters specified on the
Function instance:

public T Compile<T>()

{

var asm = AppDomain.CurrentDomain.DefineDynamicAssembly(

new AssemblyName(“LCG”),

AssemblyBuilderAccess.RunAndCollect);

var mod = asm.DefineDynamicModule(“Lightweight”);

var tpe = mod.DefineType(“Code”);

var mtd = tpe.DefineMethod(“Generation”,

MethodAttributes.Public | MethodAttributes.Static,

// Return type

typeof(int),

// Every of the Parameters.Count parameters is of type int as well

Enumerable.Repeat(typeof(int), this.Parameters.Count).ToArray()

);

// Establish environment; we could also use a List<T> and use IndexOf

// in the recursive compilation code to find the parameter’s index.

var env = new Dictionary<Param, int>();

int arg = 0;

foreach (var par in Parameters)

env[par] = arg++;

1090 CHAPTER 21 Reflection

a b

Environment
a -> 0
b -> 1

*

+ 2

a b

λ

a b

ldarg.0

*

+ 2

a b

λ

a b

ldarg.0
ldarg.1

*

+ 2

a b

λ

a b

ldarg.0
ldarg.1
add

*

+ 2

a b

λ

a b

ldarg.0
ldarg.1
add
ldc.i4.2

*

+ 2

a b

λ

a b

ldarg.0
ldarg.1
add
ldc.i4.2
mul

*

+ 2

a b

λ

FIGURE 21.15 Compilation of our expression tree, using a depth-first traversal.

// Compilation is requested for the Body, and a final “ret” instruction

// is added to the IL generator.

var gen = mtd.GetILGenerator();

this.Body.Compile(gen, env);

gen.Emit(OpCodes.Ret);

var res = tpe.CreateType();

// Create a delegate of the specified type, referring to the generated

// method which we always call “Generation” (see the DefineMethod call).

return (T)(object)Delegate.CreateDelegate(typeof(T),

res.GetMethod(“Generation”));

}

Because the recursive nature of the compilation may be a bit abstract to grasp at first,
some visualization can help. Figure 21.15 shows the compilation for our sample expres-
sion tree. The final step where the Compile call on Body returns is omitted from the
diagram but simply appends the final return instruction to the output. It’s worth tracing
through the compilation code under the debugger to see this tree traversal in action, too.

1091Expression Trees

WHY BOTHER?

As mentioned before, most readers will likely never have to deal with LCG directly.
However, the whole discussion earlier about the feature serves as a great basis for the
understanding of expression trees, which are discussed next. In fact, the compilation
feature for the built-in expression trees is based on the same technology and follows a
similar tree-traversal mechanism to drive compilation into IL code.

Saving the Assembly to Disk
One final remark about LCG is that it can save the compiled assembly to disk, instead of
just using it for immediate execution. This can be useful if you’re writing some kind of
compiler that needs to persist its results to disk:

var asm = AppDomain.CurrentDomain.DefineDynamicAssembly(

new AssemblyName(“LCG”), AssemblyBuilderAccess.RunAndSave);

...

asm.Save(fileName);

You are invited to try this out on our expression tree compiler. After the assembly has
been saved to disk, add it as a reference to a Visual Studio project and call the generated
method (whose name you likely want to change in the Compile method).

Expression Trees
In the C# 3.0 era, coinciding with the .NET Framework 3.5 release, the mission to solve
the impedance mismatch between object-oriented programming and various data models
required the ability to represent code as data. In Chapter20, “Language Integrated Query
Internals,” you saw how LINQ query expressions translate into chains of query operator
method calls. For query providers to be able to make sense of the querying intent specified
by the user, all information captured in the invocations of query operators needs to be
available in an object model at runtime. To solve this problem, expression trees were
introduced.

We now take a look at two sides spanned by expression trees. One is the generation of
expression trees by the compiler, as leveraged in the translation of query expressions that
target the IQueryable<T> interface (see Chapter20). The other is the runtime aspect of
expression trees, in particular the object model and auxiliary APIs that allow you to visit
the expression tree or to compile it into IL code. Finally, we also detail the evolution of
those expression trees into statement trees in .NET 4, which allows them to be used as the
core infrastructure for the DLR.

1092 CHAPTER 21 Reflection

Compiler-Generated Expression Trees

As mentioned in Chapter 20, lambda expressions have two representations. One is
the equivalent to anonymous methods, causing the lambda expression to be trans-
lated into a piece of IL code that allows direct execution of its logic:

Func<int, int, int> f = (a, b) => (a + b) * 2;

This is the same as the following C# 2.0 fragment:

Func<int, int, int> f = delegate (int a, int b) { return (a + b) * 2; };

The preceding can be translated into a separate method that’s being referred to by the
delegate:

Func<int, int, int> f = new Func<int, int, int>(MyExpression);

...

static int MyExpression(int a, int b) { return (a + b) * 2; }

However, when we assign the lambda expression to an Expression<T>, where T is a dele-
gate type, the compiler’s code generation path deviates and emits IL code that will
construct an expression tree representing the lambda expression at runtime. Expression
tree APIs are defined in the System.Linq.Expressions namespace, revealing their first use
and introduction in .NET 3.5:

Expression<Func<int, int, int>> f = (a, b) => (a + b) * 2;

Using .NET Reflector, it’s easy to see the code that gets generated for the line of preceding
code (assuming their decompiler doesn’t become smarter in future versions):

ParameterExpression a, b;

Expression<Func<int, int, int>> expression =

Expression.Lambda<Func<int, int, int>>(

Expression.Multiply(

Expression.Add(

a = Expression.Parameter(typeof(int), “a”),

b = Expression.Parameter(typeof(int), “b”)),

Expression.Constant(2, typeof(int))),

new [] { a, b });

}

Expression trees are generated whenever a lambda expression gets assigned to any kind of
variable (which can be a local, a parameter, or a field) that’s typed as Expression<T>.
Notice the use of the word expression. In particular, lambdas with statement bodies
cannot be turned into expression trees (because they require statement trees), as shown
in Figure 21.16.

1093Expression Trees

FIGURE 21.16 Expression trees support only lambdas with expression bodies.

EXPRESSIONS OR STATEMENTS

As you learned earlier, expressions are valued whereas statements aren’t. Because
lambdas always have a value, more specifically a function that is treated as a value,
they’re referred to as lambda expressions. However, the lambda expression contains
different language elements ranging from parameters to a body. This body can be
either an expression or a statement block. The correct term to refer to the latter ones
is lambda expression with a statement body. Those are the constructs that are not
convertible to expression trees by the compiler.

In .NET 3.5, this was the end of the story. There simply was no way to create an
expression tree that contained statements because the System.Linq.Expressions
API had no such types in its object model. However, starting with .NET 4, the name-
space also has types that can represent statements, such as conditional if state-
ments, loops, exception handling primitives around blocks, and so on.

Although .NET 4’s BCL has support for statement trees, the language compilers for C#
and VB haven’t been adapted to generate such code. One good reason this isn’t the
case is to make sure existing LINQ providers don’t get to see statement nodes in the
trees they’re provided (though that would require users to start writing statement
bodied lambdas in their query operator calls).

The extended .NET 4 API containing the statement tree node types is still called
System.Linq.Expressions, which collectively are referred to as expression trees. As
the arguably most useful type is LambdaExpression, which can be compiled into a del-
egate, it makes some sense to refer to all trees as expression trees because compil-
able trees will have a lambda expression as their root.

The Expression Tree API

The main purpose of expression trees is to allow the inspection of user-written code at
runtime, through the object model provided for them in System.Linq.Expressions. In
this section, we take a look at the API for those expressions.

Expression Base Class
At the root of the class hierarchy of the expression tree object model is the Expression
abstract base class. From a data point of view, it has a few properties:

. Type indicates the runtime type represented by the node in the tree. Every node in
an expression tree has a type that may be derived from its children. For example, if a

1094 CHAPTER 21 Reflection

and b are both Int32, the BinaryExpression representing the addition of a and b will
also be of type Int32.

. NodeType is of type ExpressionType, an enum that indicates the meaning of the
node in the tree. For example, for the UnaryExpression used to represent a Boolean
negation of some operand, the node type will be Not. This property is usually used
to switch on the node type to take some appropriate action.

. CanReduce is new in .NET 4 and is used to simplify expression trees. If this property
returns true, a Reduce method can be called to obtain a semantically equivalent but
simpler tree. This method is useful for language implementers on top of the dynamic
language runtime. You can find more information about it at http://dynamic lan-
guage runtime.codeplex.com.

On the operational field, the Expression type has two big buckets of methods. One set
consists of the factory methods used to create new expression tree nodes. Inside those
factory methods, checks are performed to make sure the created tree is sound from a
typing and semantic point of view. For example, to create a binary expression for the addi-
tion of two expressions, the types of the operands need to be compatible so that the oper-
ation can be carried out. Therefore, the following code will throw an exception because an
integer and a string cannot be added together:

var invalidAdd =

Expression.Add(Expression.Constant(42), Expression.Constant(“24”));

To make the preceding code work, you must be more specific about your intent by using
other expression tree nodes. One possibility is that you mean to call ToString on 42
before trying a string concatenation (which requires the use of a MethodCallExpression
because string concatenation is not an “addition” in the expression tree sense of the
word). It could equally well be the case that you want to add 42 and 24 as integers, requir-
ing a call to the Parse method on Int32 for the right side.

Besides the large number of factory methods, some instance methods exist:

. Reduce, ReduceAndCheck, and ReduceExtensions allow simplification of expression
trees and are related to the CanReduce property mentioned before. We won’t cover
this functionality here; for more information, just read up on the dynamic language
runtime documentation.

. ToString has been overridden to provide a friendly string representation of the
expression represented by an expression tree. The syntax emitted is neither C# nor
VB and is primarily useful for debugging and documentation in exception messages
and such. You’ll see other debugging enhancements in .NET 4 in Figure 21.23, too.

. Accept and VisitChildren are both used with the expression tree visitor that ships
with .NET 4. When extending the set of expression trees with your own “extension”
nodes, those methods can be overridden to participate in various operations per-
formed over expression trees. We won’t cover this extensibility feature in .NET 4
either (again, refer to DLR documentation for more information).

http://dynamiclanguageruntime.codeplex.com
http://dynamiclanguageruntime.codeplex.com

1095Expression Trees

FIGURE 21.17 Leaf nodes for expression trees.

Expression Tree Leaf Nodes
Some nodes in an expression tree can act only as leaf nodes because they don’t have any
properties that can contain a subtree. Although expressions like a + b are clearly not leaf
nodes (because the + operator has a left and right side), expressions representing a variable
or a constant clearly are. Figure 21.17 shows the leaf types in the API.

The various properties on those types (which can be set using the factory methods used to
create them) should be self-explanatory. Constants have values, parameters (for lambda
expressions, as you will see in the section, “Lambda Expressions, Delegate Invocation, and
Quotation”) have a name and either a by-value or by-reference calling behavior, and the
default(T) form in C# takes in a type as parameter, so the Expression base class’s Type
property can be used for that purpose. An example of creating a constant expression is
shown here:

var answer = Expression.Constant(42);

Unary and Binary Expressions
One way to combine different expression trees into a bigger one is the use of unary or
binary operators. Because every unary operator has the same shape (one child expression
tree to represent the operand) and so does every binary operator (two children for the left
and right operands, respectively), one type exists for both. To discriminate between the
various operators that can be represented with those types, the NodeType can be used:

. Binary operators include Add, And, Equal, LessThan, and so on.

. Unary operators include Not and unary arithmetic operations like Negate.

Figure 21.18 shows the most important properties on those expression tree node types. A
few properties that have to do with nullability (IsLifted, IsLiftedToNull) and the possi-
ble use of an operator overload method (Method) have been omitted. For more informa-
tion about them, refer to the MSDN documentation.

1096 CHAPTER 21 Reflection

FIGURE 21.18 Some binary and unary expression tree node types.

In addition to BinaryExpression and UnaryExpression, some related node types have
been included in the figure. TypeBinaryExpression is used for type-related operations
such as the TypeIs (is in C#) and TypeAs (as in C#) node types. Conversions are repre-
sented as regular unary expression with a Convert or ConvertCheck node type, which
correspond to operations like casts in C#. Finally, the ConditionalExpression is the equiv-
alent to C#’s conditional operator, which really is a ternary operator.

Instantiating Objects
Another operation that can be captured in expressions is the creation of objects. C# and
other languages have various ways to do this, ranging from plain constructor calls to the
use of initializer expressions, including the ones targeting collections. Figure 21.19 illus-
trates all the expression tree nodes that fall into the category of object instantiation.

The initializer forms are slightly more complicated than other expressions because they
capture additional reflection information about the members being initialized. For
example, if you write the following:

new Foo { Bar = x }

In this case, you’re calling the default constructor on Foo (but you could be calling
another one, too), followed by an assignment to the Bar property or field, using another
expression x. This MemberInitExpression decomposes into a NewExpression that captures
information about the constructor call, as well as a series of bindings that each contain
what expression is bound to what property. For anonymous types, things are slightly
different, where the NewExpression’s Members property is used to refer to the properties
that got initialized.

1097Expression Trees

FIGURE 21.19 Instantiation of objects, arrays, and collections.

FIGURE 21.20 Invocation of members.

The NewArrayExpression simply contains a list of expressions for all the elements added
to it, while the ListInitExpression again relies on a constructor call (captured by a
NewExpression that also refers to a ConstructorInfo) but has a list of element initializer
expressions to go with it.

Invoking and Accessing Members
Another big category of expression-based operations are invocation of methods and access
to properties and indexers. In Figure 21.20, all the relevant expression tree nodes types are
summarized. To refer to the targeted members, reflection objects are being used (such as
MethodInfo).

1098 CHAPTER 21 Reflection

The Hello World example in terms of expression trees is shown here. We’re using a
MethodCallExpression for the static Console.WriteLine method, so we don’t need to
specify an expression object for the instance used in the call:

var hello = Expression.Call(typeof(Console).GetMethod(“WriteLine”,

new[] { typeof(string) }, null),

Expression.Constant(“Hello World!”) /* first argument*/

);

WHAT ABOUT DYNAMIC LATE-BOUND OPERATIONS?

Because we’ve been dealing with early-bound statically typed operations throughout our
discussion about the expression tree APIs so far, you might wonder how .NET 4 sup-
port for late-bound and dynamically typed operations fits into this picture. Part of the
answer to this question is the introduction of a new expression tree node type called
DynamicExpression. To understand this, we first need to discuss the concept of
binders (which we do in Chapter 22).

Lambda Expressions, Delegate Invocation, and Quotation
One of the most important node types in the world of expression trees is the lambda
expression. Those nodes act as the entry point to expression trees that can be compiled at
runtime, resulting in a strongly typed delegate. In fact, the generic
Expression<TDelegate> type derives from the LambdaExpression base type immediately.

Closely related to the definition of delegates it the invocation of them. Obviously, the
expression tree APIs provide for such a tree node type, as well, in the form of the
InvocationExpression.

Last but not least, there’s a factory method called Expression.Quote that is used to
create a constant expression around a given Expression object. What this allows is to
reference an expression tree as a verbatim object (for example, if one represents a
method call to some method taking in an expression tree). For more information about
this node, refer to MSDN.

Figure 21.21 shows the nodes we’ve discussed here, also including the one used to repre-
sent a lambda expression parameter. Core properties on LambdaExpression are Body and
Parameters, which refer to the child nodes. Other ones, such as Name and TailCall (an
optimization technique used for recursive functions), have been introduced for use in the
DLR in .NET 4.

Given all the tree nodes we’ve seen so far, we can create an expression tree for the
example discussed earlier in the context of LCG. Instead of using our own expression tree
object model, we can now leverage the APIs provided in the System.Linq.Expressions
namespace. As stated earlier, the way to create new nodes is by calling the corresponding
factory methods:

1099Expression Trees

FIGURE 21.21 Lambda expressions and related expression tree node types.

Refer to the code we wrote earlier for our LCG example and notice the one-to-one corre-
spondence between the fragments. The main difference is we’re not using object initializ-
ers and constructors but instead rely on factory methods.

Although one of the most common uses of expression trees is to analyze them by means
of a visitor (as you will see in just a moment), another great use exists: compilation of
dynamically generated code at runtime. This is precisely why the DLR relies on those
expression trees—because they nicely hide the complexities of dealing with LCG directly.

In the following code, we’re compiling the LambdaExpression f by a call to Compile,
which hands back a delegate of the type that was specified on the factory method used to
create the lambda expression tree:

// Compiled at runtime (using f defined a moment ago)

var g = f.Compile();

Console.WriteLine(g(2, 3));

var a = Expression.Parameter(typeof(int), “a”);

var b = Expression.Parameter(typeof(int), “b”);

var f = Expression.Lambda<Func<int, int, int>>(

Expression.Multiply(

Expression.Add(a, b),

Expression.Constant(2)

),

a, b

);

1100 CHAPTER 21 Reflection

// Compiled at compile time

var h = new Func<int, int, int>((a, b) => (a + b) * 2);

Console.WriteLine(h(2, 3));

Because we recall the expression tree constructing code is the equivalent of having the
compiler do the hard work (thanks to homoiconicity), the preceding code is the same as
the following:

// Compiled at runtime

Expression<Func<int, int, int>> f = (a, b) => (a + b) * 2;

var g = f.Compile();

Console.WriteLine(g(2, 3));

// Compiled at compile time

Func<int, int, int> h = (a, b) => (a + b) * 2;

Console.WriteLine(h(2, 3));

If you ever need to generate code at runtime, expression trees are your best choice today
for lots of reasons: simplicity, expressiveness, performance, and so on.

WHAT ABOUT CODEDOM?

Readers who’ve been using .NET for a while might have heard of CodeDOM. This tech-
nology was introduced early in the .NET 1.0 days as a Document Object Model to repre-
sent code at the source code level. In particular, one object model is provided to serve
a wide variety of languages that provide a CodeDOM provider, such as C#, Visual Basic,
and even F#.

As with most technologies, CodeDOM has its advantages and disadvantages. First, if
the output of your code generation has to be in a textual format (for example, as part
of code generation in a tool or during a build process), CodeDOM is a pretty good
choice. Its language-agnostic approach allows you to emit code in a variety of
languages, which could be selected by the user. An example of the use of such an
approach shows up in the xsd.exe tool:

C:\> type test.xml

<Test />

C:\> xsd /nologo test.xml

Writing file ‘test.xsd’.

C:\> xsd /nologo /classes /language:CS test.xsd

Writing file ‘test.cs’.

The generated test.cs file will now contain C# code to statically represent an XML
document following the generated schema. In the header, you see this:

// <auto-generated>

// This code was generated by a tool.

// ...

// </auto-generated>

1101Expression Trees

This is the signature of CodeDOM at work. Although still useful, CodeDOM has some
limitations around the supported language features. Effectively, the technology is stuck
in the .NET 2.0 time frame, so it lacks support for things such as extension methods,
lambda expressions, and so on.

Statement Trees
Before moving on to the runtime analysis of expression trees, we should mention the
great additions to the API in .NET 4, stimulated by the advent of the DLR. Where
v3.5 expression trees supported only expression nodes, the enriched APIs now also

provide for statement nodes. Exhaustive coverage of them is beyond the scope of this
discussion, and unless you’re writing a compiler, you won’t be dealing with those directly.

DON’T FORGET ABOUT LINQ

One of the biggest advantages of LINQ is its extensibility story through various mecha-
nisms, one of which is IQueryable<T>. When dealing with this interface to implement
a custom query provider, you’ll have to use expression trees to turn the user-written
query expression into some target query language.

New expression tree nodes in .NET 4 used to represent statements are listed here:

. BlockExpression acts as the container for blocks that contain zero or more state-
ments. This roughly corresponds to curly brace surrounded blocks in C#, with state-
ments that get separated using semicolons (ignoring some corner cases where C# has
an optional nature for curly braces).

. GotoExpression is used for goto statements, which jump to a given label, also repre-
sented by an expression tree node. Although it’s often said that goto is an evil
instrument, this is not so much the case at the level of code generation. After all,
conditional statements and loops are nothing but jumps in disguise. In this respect,
the expression tree APIs are closer to the runtime’s language for code (IL) than to the
higher-level languages (like C#, VB). This is another place where expression trees
differ quite a bit from CodeDOM.

. LabelExpression goes pretty much together with GotoExpression and is used to
introduce jump targets in a block of code.

. LoopExpression models a loop in its easiest form, even without a terminating condi-
tion. Essentially, this expression node type encapsulates two labels, one to break
from the loop and one to continue the loop. Given those two jump targets, you can
model any other loop (for example, by adding a check for a certain condition at
either the beginning or the end of the loop).

. SwitchExpression is used to build the equivalent to a switch statement in C#,
which is slightly more advanced than the use of a series of if statements. Next to a
value expression to switch on, this node contains a series of SwitchCase objects as
well as a default case.

1102 CHAPTER 21 Reflection

. TryExpression acts as the one-stop shop for constructing exception-handling code
through the expression tree API. Besides a body expression, it takes an optional fault
and finally handler block, as well as an optional list of handlers (which are repre-
sented as CatchBlock objects, containing the handler code, the type of the exception
to catch, and an optional filter).

WHAT ABOUT TYPES?

Wait a minute...didn’t the Expression base type have a Type property? Didn’t you say
that expressions have a value but statements don’t? So, what’s the type on a state-
ment tree node all about?

You’re exactly right about this if you think inside the C# silo. However, quite a few
languages (especially dynamic and functional ones) treat many more language
constructs as valued expressions, including blocks. For example, in Ruby, the last
statement (or should we say expression, considering this sidebar) that gets executed in
a block will be used as the result value for the entire block. In case of an if state-
ment, this basically works like the conditional ternary operator we know from C#. For
loops, the value of the loop body during the last iteration will provide the valued result
of the loop.

Because expression trees form an essential piece of the DLR infrastructure, it should
be no surprise that this design was followed. However, this choice doesn’t prevent you
from capturing the C# semantics of nonvalued blocks in expression trees. The trick is
to type a block as System.Void, and that’s it. A pretty sweet design with generic use in
mind, isn’t it?

Besides the introduction of new tree node types, the ExpressionType enum has been
enriched with a bunch of new values. Some of those go with the new Expression
subtypes, whereas others are meant to be used together with existing stock tree nodes,
such as BinaryExpression. Most new enum values have to do with all sorts of assignments
such as Assign (for a = b forms), various compound assignments (like AddAssign for the a
+= b form), and increment or decrement operations (like PostIncrementAssign for well-
known and much beloved i++ forms).

As an example, the following piece of code will print the numbers 0 through 9 using
runtime generated code, taking advantage of various new expression tree features. The
inline comments illustrate the corresponding C# code:

var i = Expression.Variable(typeof(int), “i”);

var brk = Expression.Label(“Break”);

var a = Expression.Lambda<Action>(

Expression.Block(

new[] { i },

// int i = 0;

Expression.Assign(i, Expression.Constant(0)),

// while (true)

1103Expression Trees

FIGURE 21.22 The magnifier icon for the debugger visualizer shows up on DebugView.

Expression.Loop(

// {

Expression.Block(

// if

Expression.IfThen(

// (i == 10)

Expression.Equal(i, Expression.Constant(10)),

// break;

Expression.Goto(brk)

),

// Console.WriteLine(i);

Expression.Call(

typeof(Console).GetMethod(“WriteLine”, new[] { typeof(int) }),

i

),

// i++;

Expression.PostIncrementAssign(i)

),

brk

// }

)

)

);

var f = a.Compile();

f(); // Prints 0 to 9

Although all of this is quite beautiful if you need to generate code dynamically at runtime,
you might wonder about debugging support. There are two answers to this. First, the
factory methods will raise an exception for all semantic errors they can find, making sure
your trees are well formed. Second, a new debugger visualizer has been added to .NET 4
and Visual Studio 2010 to help inspect how the expression tree looks in a more compre-
hensible form. This proves particularly useful if you have a bunch of code that stitches
together a bigger tree. Figure 21.22 shows where the icon to open the visualizer shows up
when you hover over an expression tree object.

Figure 21.23 shows the visualization provided by this tool, showing a textual block-based
representation of the expression tree. From this, you can see many things. First, all nodes
clearly have a type; even the else branch of the If (which we never stated explicitly) has

1104 CHAPTER 21 Reflection

FIGURE 21.23 Our loop visualized in a more readable structure.

type void. Furthermore, we properly see the scoping taking place, and various expressions
have a readable form.

JEALOUS ABOUT DEBUGGER VISUALIZERS?

So you want to have a debugger visualizer on your own type? No worries, Visual Studio
provides a very simple way to create debugger visualizers in managed code, simply by
putting a custom attribute on the type being targeted. Alternative ways to associate a
visualizer with a type exist, too. For more information, search MSDN for “debugger
visualizer.”

LCG OR EXPRESSION TREES? ALL OR NOTHING?

You might wonder whether LCG is no longer useful in the presence of expression tree
APIs. Even though expression trees cover a lot of ground, they can’t express everything
yet. More specifically, they can’t express declarations of whole types but focus on code
blocks (and everything below) instead.

However, starting with .NET 4, there’s a “better together” story that integrates nicely
with LCG. Besides the Compile method on LambdaExpression we’ve been using here
extensively, there’s a new CompileToMethod method taking in a MethodBuilder from
the System.Reflection.Emit LCG namespace. In other words, you can now build
assemblies using LCG but leveraging the simpler model of expression trees to define
methods. This effectively eliminates the nastiest part of using LCG: the generation of
IL code, which required a deep understanding of the IL instruction set and various run-
time behaviors.

1105Expression Trees

Using the ExpressionTreeVisitor

As mentioned during our discussion about LINQ providers in Chapter 20, expression trees
are particularly useful in scenarios where the user’s intent must be interpreted at runtime;
for example, to translate query expressions. To achieve this, the compiler delivers on the
homoiconicity property for lambda expressions so that users don’t have to write expres-
sion trees by hand.

The other stakeholder in this whole picture of runtime interpretation of expression trees is
the library or application developer who wants to carry out this analysis of such an
expression tree at runtime. Due to the deeply recursive nature of expression trees, this
might seem like a frightening task. Luckily, however, it’s a task for which standard tools
can be provided quite easily. The main tool in the developer’s arsenal to analyze expres-
sion trees is the ExpressionVisitor type introduced in .NET.

Visitors are a well-known design pattern used to implement “strategies” for visiting nodes
in some data structure. In the case of ExpressionVisitor, a depth first traversal of the
expression tree is done. Upon visiting every node, a method call is made to expose the
node being visited to user code that knows how to deal with the task at hand. For
example, the use of a visitor in the creation of LINQ providers will realize the translation
for all the nodes into a target query language, such as SQL.

Earlier you saw traces of the built-in support for visitors, in the form of a couple of
methods on the Expression base type: VisitChildren and Accept. For background infor-
mation about those, refer to the MSDN documentation.

To create an expression tree visitor, a class is derived from the ExpressionVisitor base
class, overriding any of the specialized Visit methods that the visitor wants to deal with.
A simple example of a visitor is shown here, overriding VisitBinary to detect all uses of
an addition operation in a tree:

class FindAdditions : ExpressionVisitor

{

protected override Expression VisitBinary(BinaryExpression node)

{

if (node.NodeType == ExpressionType.Add)

Console.WriteLine(node.Left + “ added to “ + node.Right);

return base.VisitBinary(node);

}

}

Notice the use of the base call, which will carry out the recursion into the subtree’s left
and right sides. The following piece of code runs the FindAddtions visitor:

Expression<Func<int, int, int, int>> sum = (x, y, z) => x + y + z + 1;

var fa = new FindAdditions();

fa.Visit(sum);

1106 CHAPTER 21 Reflection

Three messages are printed to the screen. It’s left as an exercise to you to figure out those
messages. (Tip: Recall the associativity properties of the sum operator.)

Because visitors’ Visit methods return an Expression, they can be used to transform a
tree into a new tree (for example, to carry out optimizations). The default implementation
of the visitor base class simply returns a node that’s equivalent to the original one, while
still visiting all nodes in it. A more directly useful example is a Boolean logic optimizer
that tries to reduce the complexity of a Boolean expression while preserving semantics:

class BooleanLogicOptimizer : ExpressionVisitor

{

protected override Expression VisitUnary(UnaryExpression node)

{

// If we represent a ! operator...

if (node.NodeType == ExpressionType.Not)

{

// ...and the recursive visit to our operand...

var res = base.Visit(node.Operand);

// ...is also a ! operator...

if (res.NodeType == ExpressionType.Not)

{

// ...then we can forget about the double negation:

return ((UnaryExpression)res).Operand;

}

}

return base.VisitUnary(node);

}

}

In this example we’ve only implemented an optimizer for double negation, but we could
equally well extend it with more complex rules that apply to Boolean logic (such as De
Morgan’s law or ways to create some normal form consisting only of AND and NOT). For
the following, four redundant negations will get trimmed away:

Expression<Func<bool, bool>> bl = x => !!!!!x;

Console.WriteLine(bl);

var blo = new BooleanLogicOptimizer();

Console.WriteLine(blo.Visit(bl));

Here we’re relying on the ToString behavior for expression trees to print them to the
screen in a readable form, as shown in Figure 21.24.

1107Summary

!

!

!

2

1

!

!

X

!

!

!

X

!

X

!

XYou Are
Here

Recursive Visit

of Operand

Recursive…

I am “Not” and
operand is “Not”?

Return Operand’s

Operand

3

FIGURE 21.24 The Boolean expression optimizer at work.

NOT COMPLETELY RIGHT...

This optimizer is not completely sound. To see why, you must think of the operand
types that are allowed for the ! operator. You may say the only type you’re aware of is
Boolean, but operator overloading is another player. It might well be the case that the
double negation doesn’t hold in some custom domain for which operator overloading
has been used. Whether such use of operator overloading is a good thing is a discus-
sion we’ll restrain ourselves from here.

There are a variety of ways to ensure the optimizer doesn’t get off track and only opti-
mizes what’s safe to optimize. One way is to check the Type of the expression tree
nodes involved. Another technique that can help is to check for the Method property,
which will reveal the use of operator overloading.

Summary
Static type information is not always available. Objects may be obtained without static
type information, requiring discovery of type information at runtime. Exploration of
options to deal with such scenarios brought us to the wonderful world of reflection
provided by the common language runtime.

1108 CHAPTER 21 Reflection

After a brief detour through writing extensible applications, we approached dynamic
programming from the angle of dynamic code generation. Starting with the .NET 2.0
story using lightweight code generation, we gradually moved into newer APIs that facili-
tate this kind of metaprogramming. In particular, we looked at the expression tree APIs
that originate from LINQ in .NET 3.5 and have been extended in .NET 4 with support for
statement nodes.

In the next chapter, we bring all those pieces together, finding ourselves back in the world
of C# 4.0 dynamic, which leverages the dynamic language runtime.

CHAPTER 22

Dynamic Programming

IN THIS CHAPTER
. The dynamic Keyword in

C# 4.0 1109

. DLR Internals 1127

. Office and COM Interop 1150

In Chapter 21, we learned about different facilities that can
be used to deal with weakly typed scenarios. This includes
the use of reflection to inspect type information at runtime,
as well as different services to generate code at runtime.

Despite such services offered by the runtime, there are
many more scenarios of dealing with weakly typed object
that reach outside the scope of managed code. Examples
include XML without schemas, JSON objects, and so on.
Before the advent of .NET 4, reaching out to such dynamic
worlds was quite hard and required lots of plumbing.
Moreover, there was no unification whatsoever with regard
to how to make dynamic calls. For example, calling .NET
code using reflection requires a totally different application
programming interface (API) than does reaching out to
Ruby code or “dotting into” an XML document using
indexer calls and whatnot.

In this chapter, we look at dynamic programming in C#
before and after the introduction of the dynamic language
runtime in .NET 4, paired with C# 4.0’s dynamic keyword.

The dynamic Keyword in C# 4.0
One of the key features in .NET 4 is the support for
reaching out to dynamically typed code (and object
models representing data) from inside flagship

languages such as C# and Visual Basic. The single syntactical
presence of this feature in C# is the new dynamic keyword.
When an object is typed as dynamic, the compiler will emit
code that causes all binding and dispatch operations to be
deferred until runtime, instead of statically resolving them
at compile time.

1110 CHAPTER 22 Dynamic Programming

FIGURE 22.1 The C# 4.0 runtime binder.

So what’s binding and dispatching all about? Binding is essentially the act of figuring out
the meaning of the code with regard to intended method calls, uses of members, and so
on. To make this work at runtime, enough information about the intent of the user must
be communicated to whatever runtime library is involved in this binding operation. For
example, a member’s name, case sensitivity, parameter count, and so on are all relevant
pieces of information to consider. So far, we’ve only been using information that’s also
available at compile time. Where things start to differ is where runtime types (in the sense
of System.Type) are considered in those operations. For example, to pick a method out of
a set of available overloads, the types used for parameters matter.

Different languages have different binding semantics (that is, the way they pick overloads,
whether they care about casing, and so on), so each language in support of dynamic has
its own set of binder types. In the world of C# 4.0, those binders live in an assembly
called Microsoft.CSharp. Figure 22.1 shows this assembly in Reflector.

Once runtime binders have performed their job and identified (or bound to) the target to
be used (a method, property, indexer, operator, and so forth), the next task is to dispatch
to it. Lots of optimization can go in here, in the form of caching of the discovered
binding information and generation of code for specialized call sites.

The call site is where the dynamic operation occurs. Due to the dynamic nature of the
operation, it’s possible the same code path gets triggered for many different (runtime)
types of data, so that call site needs to be willing to deal with all of those. To speed up the
binding operations, call sites learn as they discover more call targets. For example:

1111The dynamic Keyword in C# 4.0

void PrintName(dynamic d)

{

Console.WriteLine(d.Name);

}

In the preceding, an obvious dynamic call site is the call to Name because the left side of
the operation is typed to be dynamic. As you will see later, Console.WriteLine gets turned
into a dynamic call as well because its argument is typed as dynamic here, too. However,
it’s possible to call the same method with objects of many different runtime types, such as
FileInfo, DirectoryInfo, MethodInfo, Person, and so on. Because all of those types
expose some Name property, the call will succeed.

Depending on the runtime type of d, a different call needs to be made, though; recall the
runtime itself uses strong typing. This is what call sites keep track of. Their core role is to
provide dispatching services, making sure inputs get routed to the correct call underneath.
All of this happens in concert with various DLR services, as detailed later.

The dynamic Type

Now that we’ve identified key terminology related to dynamic operations, let’s take a step
back and look at the “language surface” for the feature in C# 4.0. In essence, there’s just
the dynamic keyword, which indicates that discovery of operations need to be deferred
until runtime, relying on the (dynamic) runtime type rather than the (static) compile-time
type. For example, in the following piece of code, s is statically typed to be a string:

string s = “Hello world”;

Console.WriteLine(s.ToUpper());

The compiler does make sure it’s impossible to assign anything other than a string (or in
more general cases, anything that’s not compatible with the variable’s type) to s. Notice
that the use of casts may result in runtime exceptions:

string s = (string)GetObject(); // object GetObject();

Console.WriteLine(s.ToUpper());

However, the invariant we stated before still holds: You should never to be able to see
anything that’s not a string being held by variable s. The fact the runtime prevents you
from doing such an invalid thing is key to type safe and memory safety.

Because the variable is statically typed to System.String, the compiler knows precisely
which ToUpper method we’re talking about. This method’s return type is System.String,
and hence the overload of Console.WriteLine is statically determined, too. If you were to
look at the generated IL code, this would be immediately apparent.

Whereas we’ve been using a rather specific type in the preceding example, there’s another
end to the static typing spectrum, where we would be using the most common supertype

1112

FIGURE 22.2 The typing landscape viewed through the lenses of IntelliSense.

of all types on the platform: System.Object. Now we can’t write fancy things like
ToUpper anymore:

object s = GetObject(); // object GetObject();

Console.WriteLine(s.ToUpper() /* doesn’t compile */);

On the static side of typing in C# (which has been the only side until the fourth version
arrived), the compiler’s task is to ensure operations are valid from a typing point of view.
Because System.Object has no ToUpper method on it, the preceding is clearly invalid. Now,
with C# 4.0, we can effectively say not to bother about this compile time proof of validity
and defer all checking for operations until runtime. That’s what dynamic is used for:

dynamic s = GetObject(); // object GetObject();

Console.WriteLine(s.ToUpper() /* does compile again */);

Because there’s no assumption whatsoever about the type at compile time, IntelliSense
won’t provide any help for the dynamic operations, as shown in Figure 22.2. C# 4.0 fills
in the gap in the lower-right corner where resolution of operations happens at runtime
and the static compile-time type information about an object is low.

CHAPTER 22 Dynamic Programming

Dynamic Typing Is Contagious

Starting from C# 4.0, dynamic is one of the types built in to the language in the form of a
keyword. Everywhere other types can be used, you can use dynamic, too. For example,
variables can be declared to be dynamic, and they can appear as types for members and
their parameters. Yes, even generic parameters can be using dynamic.

1113

FIGURE 22.3 Use of dynamic inside an expression is contagious.

The dynamic Keyword in C# 4.0

One of the first things we should look at is the effect of using some dynamically typed
expression in a larger expression. To make this more concrete, look at the following
example. A multiplication of a dynamically typed object with a statically typed object is
made:

dynamic a = 3;

int b = 5;

var c = a * b;

The obvious question is what the inferred static type for c will be. Recall that all var does
is have the compiler infer the type from the right side of the assignment. So we’re really
asking what the result of multiplying a dynamic with an int is. Well, if we don’t yet know
the runtime type of a, how can we know how to multiply it with an int? Based on this
reasoning, the answer ought to be dynamic, too. In other words, the use of dynamic
inside an expression is contagious to the type of the expression as a whole. Figure 22.3
reveals this effect of dynamic typing using the Visual Studio code editor.

DIFFERENCE BETWEEN OBJECT, VAR, AND DYNAMIC

It’s essential to have a solid understanding of the difference between those three
concepts. The only thing they have in common is the coloring in the IDE because all of
them are proper keywords in C#. Notice, though, that object is a reserved word,
whereas the other two (which were introduced after the first version of the language)
are contextual keywords. So if you have some piece of code with a variable named
dynamic lying around, it will still compile in C# 4.0.

One key difference between the three is that only two of them are considered to be
types (object and dynamic); the third one (var) is just a way to infer a type from the
surrounding information available.

Seen from another angle, object and var are very statically typed, meaning all type
information is known at compile time, whereas dynamic is (what’s in a name?) dynami-
cally typed. Use of object clearly leads to a type known at compile time because it’s
an alias for System.Object. And although var is very different from object, it’s still
statically typed because the compiler can infer the type of the variable.

Static and dynamic typing are overloaded terms in certain contexts, so sometimes it’s
better to discuss compile-time and runtime types. In this picture, dynamic totally relies
on runtime types, whereas var is all about compile-time type information.

1114 CHAPTER 22 Dynamic Programming

Another example of this contagious property is dealing with method calls on an object
that’s typed as dynamic or with one or more parameters that are dynamic. For example,
consider the use of the Math.Max method, which has no fewer than 11 overloads for
various primitive numeric types. When we use a single dynamic object as a parameter to
the method, the compiler can’t resolve the overload anymore because it has no static type
information about that particular parameter:

dynamic a = 3;

int b = 5;

var c = Math.Max(a, b);

Again, c will be inferred to be dynamic. In all of those examples, it’s been clear that a will
be of type System.Int32 at runtime because the literal appears in the code snippet. Keep
in mind, though, this information is not considered at all by the compiler when it looks
up the type information for a. This becomes obvious in the following example, where a is
retrieved from somewhere else:

dynamic a = ReadInput();

int b = 5;

var c = Math.Max(a, b);

Deferred Overload Resolution

In the preceding example, things are getting more interesting at runtime. As you will see
later, a call site object is hiding behind the compiled code for the Math.Max call. Now it’s
totally possible this code path gets hit multiple times, with different runtime types for a.
One time, a may happen to be an Int32, so Math.Max really has two Int32 inputs. The
runtime magic of dynamic will figure out the best overload is Math.Max(int, int) and will
cause the call to be dispatched to that target method.

When another trip through the code is made with the runtime type of a being an Int64, the
call site is now faced with an Int32 and an Int64. Again, in concert with the runtime binder,
it will figure out the best overload for the call and dispatch to Math.Max(long, long).

To illustrate this behavior in practice, let’s cook our own Max methods and have fun with
some little experiments. Suppose you have a library with the following two Max overloads:

static int Max(int a, int b)

{

Console.WriteLine(MethodInfo.GetCurrentMethod());

return a > b ? a : b;

}

1115The dynamic Keyword in C# 4.0

static long Max(long a, long b)

{

Console.WriteLine(MethodInfo.GetCurrentMethod());

return a > b ? a : b;

}

A little bit of reflection is used to print the invoked method to reveal the method that was
chosen by overload resolution. This proves especially handy for the dynamic case because
the IDE won’t (and can’t) help us predict the outcome of a dynamic operation.

The following piece of code now contrasts static and dynamic uses of those methods.
Notice the use of cast expression syntax to treat a literal as a dynamic object, simply for
illustration purposes:

//

// Static typing - fully resolved at compile time

//

Max(3, 5);

Max(3, 5L); // the first parameter can be implicitly converted to long

Max(3L, 5L);

//

// Dynamic typing - same resolution at runtime, based on runtime types

//

Max((dynamic)3, 5);

Max(3, (dynamic)5L); // same as above, but discovered by the runtime binder

Max((dynamic)3L, (dynamic)5L);

Both the static and dynamic case will produce the same output, revealing the methods
that were called:

Int32 Max(Int32, Int32)

Int64 Max(Int64, Int64)

Int64 Max(Int64, Int64)

From this, you can clearly see how the same decisions are made about the best match for
the Max overload but being deferred until runtime in the latter case. Figure 22.4 shows the
call stack (with Show External Code turned on) for a call that was dispatched dynamically.
Hitting the same method through the static path will reveal an immediate call from the
Main method, illustrating the compile-time resolution that took place.

From Figure 22.4, you can already see the DLR getting involved. The [Lightweight
Function] entry on the call stack is in fact nothing but a function that was generated
through LCG, at runtime, to create a fast call path into the targeted Max method after
overload resolution took place. The frame right below this dynamically generated method
stems from the generated call site code, as you learn in the “DLR Internals” section.

1116 CHAPTER 22 Dynamic Programming

FIGURE 22.4 A dynamically dispatched call in flight.

WHY DYNAMIC IS A STATIC TYPE TOO

In fact, you can say that dynamic is a static type. Even though it has been added to
C#, we can continue to say the language is statically typed at its core. When typing
something as dynamic, you’re really telling the compiler it has to defer all binding deci-
sions until runtime. But in doing so, you’re telling it this type information in a rather
static manner. In this worldview, you are really statically typing something to be treated
dynamically.

This static treatment manifests itself through various aspects of the language. As
you’ve seen, the use of a dynamically typed object in an expression causes the whole
containing expression to be typed as dynamic. And that’s something the compiler is
doing based on the static type information it has available: Combine something with
dynamic, and you get back something else that’s typed dynamic.

Again, it’s probably better to discuss types known at compile time versus types known
at runtime. True dynamic languages typically omit all type information at compile (or
interpretation) time, so the compiler (or interpreter) doesn’t have to reason about types
at all. In C#, there’s still compile-time reasoning about types, where dynamic now can
be a type, too.

Finally, history has brought us to a point where the static and dynamic keywords in
the language have fundamentally different meanings. Although static is a modifier for
members and types (that stems from the C/C++ heritage), it has nothing to do with
static typing. Because those keywords deal with orthogonal concerns, you can have
them right next to each other, producing somewhat funny-sounding code:

static dynamic Foo() { ... }

What we have here is a static method (hence it doesn’t operate on an instance,
something that has little or nothing to do with typing) that returns something typed
as dynamic.

Besides method calls, other expression forms can be dynamically typed. Those include
access to properties and indexers (both for get and set operations), the use of fields, invo-
cation of overloaded operators, and dealing with events. One construct that doesn’t have
an equivalent in the dynamic world (exposed through the C# language) is the use of the

1117The dynamic Keyword in C# 4.0

new keyword to construct an object of a type that would be dynamically discovered at
runtime (based on its name). Some examples of permitted constructs are shown here:

dynamic d = ...;

d.Foo = d[0] * d.Bar; // Property set, indexer get, property get

d.Baz(“Hello”); // Method invocation

d.WhenHappened += new EventHandler(d_WhenHappened); // Event add

No System.Dynamic Type

C# has a bunch of aliases for BCL types in the form of reserved words, such as int, long,
bool, string, and object (among various others). You might rightfully wonder whether
the new dynamic type is also an alias for some BCL type. It turns out it is, but maybe not
what you expect it to be.

First, let me disappoint you. There is no such thing as a System.Dynamic type, which
would be the most logical guess. To understand why this is not the way things are done to
achieve the effects of the dynamic feature, you need to understand a few things:

. An object typed as dynamic can really be anything at runtime, so if there were a
specific type for everything typed as dynamic, it would better be compatible with all
types that are already supported by the runtime.

. Dynamic is merely an illusion created at compile time, guiding the compiler to emit
code that will perform binding and dispatch logic at runtime, assisted by various
runtime libraries and facilities.

. If there were a System.Dynamic type, what would its members look like? It’s good to
think for a while about what such a type could expose given it acts as a representa-
tive for all sorts of objects at runtime.

All of those points help to conclude we already have a perfectly usable type out there that
can be used to represent dynamically typed objects. To the runtime (by which we mean
the CLR in this context), everything derives from System.Object already, so that looks like
a good candidate. When making this choice, dynamic is really nothing more than a very
specialized policy for code generation carried out by various compilers that support
dynamic. Instead of resolving all operations at compile time, they need to emit code that
will do precisely that but deferred until runtime.

One thing is missing, though. If we were to substitute dynamic for object as the way to
represent dynamically typed objects, how can we distinguish something that has been
statically typed as object from something that was typed as dynamic? Once more, the
extensibility story around metadata in .NET assemblies comes to the rescue. Instead of
“just” typing a dynamic object as System.Object, it also gets an attribute applied to it that
reveals it has to be treated as such: dynamic.

1118 CHAPTER 22 Dynamic Programming

FIGURE 22.5 The dynamic type gets encoded as System.Object with some attribute.

For example, consider the following piece of code where dynamic is used in a variety of
places:

class Foo

{

public dynamic Twice(dynamic arg)

{

throw new NotImplementedException();

}

}

At the time of this writing, .NET Reflector hasn’t been enlightened yet about the existence
of C# 4.0 dynamic, so the decompiler simply sees the uses of dynamic as uses of object
with some funky Dynamic attribute in the proximity. Figure 22.5 shows this.

CUSTOM ATTRIBUTES, TAKE TWO

When discussing custom attributes in Chapter 21, “Reflection,” in the section,
“Custom Attributes”, we briefly mentioned how the AttributeUsage attribute is used
to specify the applicable targets for the custom attribute. Common targets include
classes and methods, but in fact most reflection entities support attributes on them.

The encoding of dynamic uses the DynamicAttribute applied to things such as para-
meters and return types. As you can see from Figure 22.5, syntax exists to apply an
attribute to those. For parameters, you just put the attribute enclosed in its square
brackets in front of the (type of the) parameter. When return types are targeted, the
attribute is applied to the method but with a return: prefix.

Note that the manual use of this syntax for DynamicAttribute (which by the way lives
in System.Runtime.CompilerServices) is not permitted by the C# compiler. Instead,
you should use the dynamic keyword. In fact, what’s shown here is merely an imple-
mentation detail of dynamic, which may or may not change in the future.

1119The dynamic Keyword in C# 4.0

Besides use of the return keyword as a prefix to a custom attribute, other such
prefixes exist. One is assembly, to apply an assembly-wide custom attribute. Good
examples of this are found in the AssemblyInfo.cs file, which can be found by expand-
ing the Properties node in Solution Explorer:

[assembly: AssemblyTitle(“CS40Dynamic”)]

You read more about assemblies in Chapter 25, “Assemblies, and Application
Domains.” Other attribute target specifiers include module (a part of an assembly),
field, event, property, method, param, and type (most of which are optional and
can be inferred from the context in which they occur).

When to Use dynamic: Case Study with IronPython

All powerful tools should be used with care, and dynamic is no different. By no means is
dynamic meant to be a substitute for static typing. Use of static typing provides many
benefits, such as compile-time checking, tooling advantages, a more beneficial perfor-
mance profile, and so on.

The main philosophy of .NET 4 dynamic is to make reaching out to dynamically typed
code and data simpler. Or to say it in another way: Why should someone be punished for
embracing some piece of dynamically typed code (for example, using some Python-based
library), when calling it from languages like C#? In short, C# 4.0 dynamic allows develop-
ers to “ease into” the domain of dynamic typing with minimum friction.

To this end, all examples of dynamic shown in this chapter so far have been violating the
rule of “static where possible, dynamic where necessary,” because you could have written
those simple examples in a statically typed manner. With the example presented here, we
use dynamic for what it’s really meant to be used for: building bridges to the dynamic world.

Getting IronPython
In this example, we call a Python object from inside C#, leveraging the dynamic feature.
Any DLR language would actually work to illustrate this kind of bridging, but Python
deserves a special treatment in introductory chapters on the subject because it’s the first
dynamic language citizen on the DLR. This implementation of the language on the DLR is
known as IronPython and is described as follows on the project’s website:

IronPython is an open-source implementation of the Python programming language which is

tightly integrated with the .NET Framework. IronPython can use the .NET Framework and

Python libraries, and other .NET languages can use Python code just as easily.

We illustrate both statements made in this description. One is to leverage the .NET
libraries from inside Python (with something as simple as operator overloads on BCL
types), and the other one, indicated in bold, is to call into Python code from C#.

The official IronPython home page is http://www.ironpython.net and provides links to
downloads hosted on Microsoft’s CodePlex website. The site also has an online interactive
Python in the browser playground, based on Silverlight.

http://www.ironpython.net

1120 CHAPTER 22 Dynamic Programming

FIGURE 22.6 The IronPython Console in action.

FIGURE 22.7 Strings and integers cannot be added together using +.

To run the example we show here, download and install the latest version of IronPython
suited for .NET 4. After the installation has completed, you’ll find an installation folder
under your Program Files folder, including the binaries, an interactive console, libraries,
documentation, and examples.

One great way to explore Python is by using the interactive IronPython Console, which
lives in ipy.exe; a Start menu entry should have been added. This read-eval-print loop
(REPL) enables you to enter little fragments of Python code and see the effects on the
screen immediately. A sample run is shown in Figure 22.6.

From the interactive session shown in Figure 22.6, it’s clear that IronPython is a first-class
citizen on the .NET Framework, being able to utilize the BCL types. Also, the + operator is
shown to be usable with quite a few operand types, which is what we have lifted into a
separate Add method on a Calc type we’ve defined. Here, the signature of Add is totally
dynamically typed because there are no static types in Python. Therefore, we can call Add
with any two arguments whatsoever at the risk of hitting a pair that cannot be added
together. Figure 22.7 shows this situation. Notice, though, how the type error is detected
inside the Add method, so there was nothing keeping us from attempting to make the call.
It just turned out the Add method couldn’t handle the input that was given to it.

1121The dynamic Keyword in C# 4.0

FIGURE 22.8 References needed for hosting IronPython inside a C# application.

REPL LOOPS EVERYWHERE?

REPLs are handy tools, as you can see from the preceding example. Often, people
believe, mistakenly, that REPLs exist only for dynamically typed languages. In fact,
shells like PowerShell are good examples of this because they have a very dynamic
characteristic, too. However, statically typed languages like F# have them too (using
type inference), and in some future release, C# may get a REPL as well (thanks to the
compiler-as-a-service work being done).

Hosting IronPython in C#
One of the essential capabilities of the dynamic languages (in the Iron* family with both
Python and Ruby available nowadays) is their capability to be hosted inside another appli-
cation through a library. Providing them the script, the library reads it at runtime (there’s
typically no distinct, offline, compile phase for dynamic languages), such that calls can be
made to the contained functionality. In fact, the REPL loop does this one line at a time.

To get started with this hosting inside C#, we have to add references to IronPython.dll and
the Microsoft.Scripting.dll assemblies that come with the IronPython installation. The
former contains the language-specifics for Python, including a compiler, various modules
with built-in functionality (such as mathematical functions that are part of what’s consid-
ered the core library that comes with Python distributions), binders to deal with various
operations, and the hosting entry point. What the Microsoft.Scripting assembly provides
for is the generic functionality for scripting languages, all of which share concepts that are
used to interpret and host script. In some sense, this assembly acts as the primary toolbox
for dynamic scripting languages provided on the DLR.

Figure 22.8 shows the inclusion of the two required assemblies and the resulting list of
required referenced assemblies, omitting the ones that aren’t required. Notice we use the
C# 4.0 runtime library, Microsoft.CSharp, to make use of the C# 4.0 dynamic capabilities.

1122 CHAPTER 22 Dynamic Programming

The essential code to set up the IronPython hosting is barely one line long:

var py = Python.CreateEngine();

Alternative code paths exist depending on how many runtime facilities you want to take
advantage of, but the preceding suffices for our purposes. Executing a single line of code
now gets as easy as the following:

Console.WriteLine(py.Execute(“27 + 15”));

If we look at the signature of Execute, we already see dynamic popping up in the return
type, as shown here:

public dynamic Execute(string expression);

Other overloads exist, including one that takes a generic parameter to specify the static
type of the object we expect back. If the returned object’s type isn’t assignable given the
specified type, a runtime exception will occur:

Console.WriteLine(py.Execute<string>(“27 + 15”)); // Boom! It’s not a string.

At this point, you already have a very powerful tool available to execute fragments of
Python code. Much more can be done, including the creation of a REPL using all the
shared functionality exposed in Microsoft.Scripting and auxiliary assemblies. Let’s just
focus on the interaction with C#, though.

A RETURN TICKET FROM STATIC TO DYNAMIC AND BACK

So far, you’ve mostly seen examples where we started from an object whose static type
we know and turned it into a dynamically typed one. This is the least useful direction
for dealing with dynamic, but it fits quite well in introductory explorations of the
dynamic feature:

dynamic d = 15; // Gosh, we’ve just thrown away type information.

In the opposite direction (as illustrated using IronPython), objects often don’t have a
static type to begin with. Hence they start their life dynamically typed and enter the C#
world in that manner. The Execute method’s return type illustrates this point very clearly.

The billion-dollar question now is whether we can turn a dynamic object back into a
statically typed one. Obviously, the answer is yes, but some caveats apply. Because
dynamic is an alias for object (with some attribute stuffed on top of it), we have to do
with an upcast scenario, which can fail at runtime (as it does in the following):

string s = d; // This may work but the runtime has the final call.

So simply assigning to a statically typed variable provides a way for users to break out
of dynamic at any time. Casting to a static type can be used, too. Effectively, it stops
the feature’s contagious propagation of dynamic typing.

1123The dynamic Keyword in C# 4.0

One alternative design considered during the creation of C# 4.0 was the use of a
construct similar to the checked and unchecked keywords when used in an expres-
sion context:

dynamic c = dynamic(a + b); // Hypothetical C# syntax that never made it.

With this hypothetical language feature, every operation inside a dynamic expression
would have been late bound, and one can cast back such an expression to a static
type, just as we did here before. However, now the dynamic use is no longer a property
of a variable or object. The language designers concluded that the design where
dynamic is treated as a first-class type allows for smoother use of such objects.
Contagiousness can be good, too.

Dealing with Python Types
To make our example a little more interesting than just executing single expressions, we
add a script file to the project and try to call into its functionality. Here is the definition of
a simple calculator in Python, as we saw before in the REPL example:

class Calc:

def Add(self, a, b):

return a + b

def GetCalc():

return Calc()

The addition of the last function will make it possible for us to create a new instance of
the Calc type from inside C# because there’s no syntax to instantiate objects through
dynamic. In fact, we could omit the GetCalc method and invoke a little expression Calc(),
which constructs a new instance, using methods like Evaluate.

Because we’ve obtained the calculator instance, we can invoke Add on it, with a wide
range of different parameter types, as we did interactively through the REPL, as shown in
Figure 22.6.

WHAT’S SELF?

In Python, instance methods on a class take a self parameter to represent the current
instance, just like this does in C#. In Ruby, another dynamic language, this self para-
meter isn’t needed to achieve this effect. In this example, we’re using a separate type
to illustrate the dynamic Add calls we’ll be making, but we could equally well have used
a plain top-level method defined outside a type. However, in typical scenarios, you’ll be
dealing with an existing library, where you might have to interact with existing types.

1124 CHAPTER 22 Dynamic Programming

FIGURE 22.9 Build configuration for the Calc.py script file.

Instead of using the Evaluate method as we did before, we now carry out a two-step
process by which we first import the script file and then call into it, using dynamic. The
first step is shown here:

var py = Python.CreateEngine();

dynamic script = py.ImportModule(“Calc”);

This will try to find the specified module by doing a file lookup for Calc.py in the working
folder (that is, next to the C# executable assembly). To automate the creation of a compli-
ant folder layout, you can add a file called Calc.py to the project and configure the Build
Action as Content in the Properties window. Also enable the Copy to Output Folder
setting to read “Copy if newer.” Those settings are shown in Figure 22.9.

So what does this ImportModule method look like? From what you’ve seen so far on the
Execute method, you might think it ought to return an object of type dynamic. This isn’t
the case, though, as proven by the following signature:

public static ScriptScope ImportModule(this ScriptEngine engine,

string moduleName);

Even though this method returns an object of type ScriptScope, we treat it as an object
typed to be dynamic. Every statically typed object can be assigned to (something typed to
be) dynamic, just as you can assign every object to something of type object. The obvious
question is how treating the returned ScriptScope object as dynamic helps in this particu-
lar case. Let’s take a look at this type, defined in the Microsoft.Scripting assembly, so it
can be shared across dynamic language implementations. The following fragment omits
some irrelevant details:

1125The dynamic Keyword in C# 4.0

public sealed class ScriptScope : IDynamicMetaObjectProvider

{

public bool ContainsVariable(string name);

public IEnumerable<KeyValuePair<string, object>> GetItems();

public dynamic GetVariable(string name);

public T GetVariable<T>(string name);

public IEnumerable<string> GetVariableNames();

public bool RemoveVariable(string name);

public void SetVariable(string name, object value);

public bool TryGetVariable(string name, out dynamic value);

public bool TryGetVariable<T>(string name, out T value);

...

}

From what we’ve seen so far in this chapter, treating some object as dynamic doesn’t
give us more capabilities other than deferring lookup of operations until runtime. So
does using a ScriptScope through dynamic only provide access to the methods that are
shown here? Luckily, this is not the case. Because this object implements an interface
called IDynamicMetaObjectProvider, it gets special treatment by the DLR in that it
participates in various binding operations. You’ll see how this works later in the “Custom
Dynamic Objects with DynamicObject” section, but in essence it allows us to write the
following code:

var py = Python.CreateEngine();

dynamic script = py.ImportModule(“Calc”);

dynamic calc = script.GetCalc();

Console.WriteLine(calc.Add(27, 15));

Console.WriteLine(calc.Add(3.14, 0.0015));

Console.WriteLine(calc.Add(“Hello, “, “Python!”));

Console.WriteLine(calc.Add(new DateTime(1983, 02, 11),

TimeSpan.FromDays(10227)));

The GetCalc method clearly doesn’t appear on ScriptScope. Because it’s a type that can
represent any “scope for script,” it obviously doesn’t have a crystal ball and envision all
operations that might ever occur in script. Instead, when treated as a dynamic object, lots
of machinery is put into action to resolve operations performed on it. The preceding code
produces the expected results, as shown in Figure 22.10.

FIGURE 22.10 Calling Python script functionality from C# using dynamic.

1126 CHAPTER 22 Dynamic Programming

If we didn’t have dynamic here, we would have to obtain the GetCalc method in a manual
way, much like classic use of .NET Reflection works. For example, the following piece of
code yields the same results:

var py = Python.CreateEngine();

var script = py.ImportModule(“Calc”);

// Gets a Python function object, returned as “dynamic”.

dynamic getCalc = script.GetVariable(“GetCalc”);

dynamic calc = getCalc();

Now we type the script variable statically as a ScriptScope and call the GetVariable
method to obtain the defined GetCalc function. In dynamic languages, all those top-level
constructs are simply treated in the same manner, so the GetCalc function can be
retrieved as a variable. This GetVariable method’s return type is dynamic once more (just
like the Execute method we saw earlier). In this case, we make a call to the retrieved
Python function object using delegate invocation syntax.

Because we’ve gotten rid of one layer of dynamic treatment, we’re increasingly losing code
clarity. All of a sudden, we need to call cryptic methods such as GetVariable, passing in
strings to communicate our intent. This is precisely what dynamic helps with: reducing
clutter needed to establish calls involving dynamic typing.

DYNAMIC TYPES ARE DYNAMIC: THEY CAN AND WILL CHANGE

One key aspect of dynamically typed scripting languages is that the (nonexisting) type
of variables can change over time. At one point, a variable may contain an integer, and
then it could be holding on to a string or even a function.

This effectively provides the same “flexibility” as typing an object using the least
specific type in a statically typed system (that is, System.Object). However, in a
static world, this is also the least useful type because few to no useful operations can
be done on it. In dynamic languages, you can apply any operation to anything, at the
cost of possible runtime errors when the lack of (or incompatibility of) an operation
gets detected.

In our running example, we can show how the GetCalc top-level variable can be
replaced from inside C#, using dynamic. Where the variable originally contained a
PythonFunction object, we replace it with a string. Obviously, this will cause further
use of the variable as if it were a function to fail because you can’t “invoke a string”:

// IronPython.Runtime.PythonFunction

Console.WriteLine(script.GetCalc.GetType());

// System.String

script.GetCalc = “Oops!”;

Console.WriteLine(script.GetCalc.GetType());

// Oops! Can’t invoke a string...

1127DLR Internals

dynamic calc = script.GetCalc();

Clearly, certain developers like the flexibility of dynamic languages despite the apparent
higher fragility because of errors that go unnoticed until very late during the execution
of a piece of code. An accidental replacement of an object with one of a totally other
“type” can cause errors at a later stage during the program’s execution when the
object gets used again.

That said, .NET 4.0 simply marries both camps nicely without making any value judg-
ment about the viability of dynamic typing versus static typing. If you have dynamic
code floating around, now you can bridge it in a friction-free manner.

True Cross-Language Interoperability
If you’re interested in the various dynamic languages, download other DLR languages
like IronRuby (http://ironruby.codeplex.com) and learn about their hosting capabilities.
After you’ve done so, try to paste together fragments of code defined in all of those
different languages.

What the CLR has traditionally enabled for cross-language interoperability between stati-
cally type languages, the DLR does for dynamically typed ones. Putting all this together
with C# 4.0 and Visual Basic 10.0 support for dynamic, you can now create true interoper-
ability stories across all of those static and dynamic languages.

One effect of this on the BCL is the introduction of auxiliary types such as Tuple and the
BigInteger numeric type.

DLR Internals
Having seen the use of dynamic in C# 4.0, you will wonder how the dynamic dispatch is
achieved at runtime. This is where the collaboration between language binders and the
dynamic language runtime infrastructure enters the picture.

In this section, we look at those components. You learn how the compiler emits call site
objects for every dynamic operation carried out. Those call sites act as the entry points
into the DLR and as places where the language binder (in C#, this corresponds to the
Microsoft.CSharp assembly) is looped in to help determine the right target of dynamic
operation invocations.

Because the DLR generates code for specialized high-performance dynamic call sites, the
existing (and extended) infrastructure around expression trees, and hence LCG, is reused.

You also learn how to develop custom dynamic objects that participate in the execution of
dynamic operations. The DynamicObject type acts as a base type for such custom objects
and relies on an interface IDynamicMetaObject that’s well known to the DLR.

http://ironruby.codeplex.com

1128 CHAPTER 22 Dynamic Programming

Dynamic Call Sites and Binders

Closest to the user-written code is the call site that represents a dynamic operation. For
instance, if the following code is written, two call sites result:

static void Add(dynamic a, dynamic b)

{

Console.WriteLine(a + b);

}

Why two? Because a and b are declared as dynamic, it’s obvious that a + b is a dynamic
operation. Multiple invocations of this method, with different arguments, can result in
the use of different + operators, defined for different types. The + operation requires a first
call site, as explained later.

So where’s the second call site? Because a + b is a dynamic operation, its result is also
typed as dynamic. This is the result of the contagious property of dynamic typing, so the
Console.WriteLine call must be resolved at runtime, too. If the result of a + b is a string
or some primitive type, chances are high there’s a specialized overload available for the
WriteLine operation.

Because runtime components now need to participate in the resolution of operations, it’s
quite obvious that the code generated for the call site needs to contain all information
about the operation that’s intended by the user. That’s where the language-specific binders
come into play, describing operations in terms of language primitives. For example, the
first call site (for the + operation) will contain the fact we’re dealing with a binary + opera-
tor; the second call site will carry information about the intent to call a method that’s
called WriteLine.

WHAT ABOUT DYNAMIC PARAMETERS?

Readers with eye for detail will wonder what happens if a method is called whose para-
meter is dynamic. For example, consider the following piece of code:

static void Main()

{

dynamic d = 5;

Do(d);

}

static void Do(dynamic d)

{

// Something goes here.

}

1129DLR Internals

FIGURE 22.11 Code generated for dynamic call sites.

Does this piece of code result in a direct call to Do, without a runtime-resolved call
site, or does it result in the creation of a call site? The latter is true because of the
simple rule that any operations containing a dynamic object will be deferred until
runtime. For the preceding example, there’s only one Do method, so this seems totally
redundant, but consistency matters.

As an exercise, think about what happens if we call Do(5) without using an intermedi-
ate variable.

Let’s look at the generated call sites right now. Figure 22.11 shows in Reflector the code
generated for our simple-looking Add method.

Has the C# compiler gone bananas? We can’t even see a + or Console.WriteLine call in
the generated code at first glance. Relax, though; this is what’s expected, and we take a
closer look at it right now.

Instead of staring at the screenshot, let’s paste in the decompiled C# code. Notice we’re
relying on Reflector not decompiling dynamic call sites quite yet, so this might not
continue to work for newer versions of the tool. Most likely, the View, Options menu will
still provide a way to decompile based on an older version of the language, which is ideal
to show how new language features got implemented:

private static void Add([Dynamic] object a, [Dynamic] object b)

{

if (<Add>o__SiteContainer0.<>p__Site1 == null)

1130 CHAPTER 22 Dynamic Programming

{

<Add>o__SiteContainer0.<>p__Site1 =

CallSite<Action<CallSite, Type, object>>.Create(

Binder.InvokeMember(

CSharpBinderFlags.ResultDiscarded,

“WriteLine”, null, typeof(Dyn),

new CSharpArgumentInfo[] {

CSharpArgumentInfo.Create(

CSharpArgumentInfoFlags.IsStaticType

| CSharpArgumentInfoFlags.UseCompileTimeType,

null),

CSharpArgumentInfo.Create(

CSharpArgumentInfoFlags.None, null)

}

)

);

}

if (<Add>o__SiteContainer0.<>p__Site2 == null)

{

<Add>o__SiteContainer0.<>p__Site2 =

CallSite<Func<CallSite, object, object, object>>.Create(

Binder.BinaryOperation(

CSharpBinderFlags.None,

ExpressionType.Add, typeof(Dyn),

new CSharpArgumentInfo[] {

CSharpArgumentInfo.Create(

CSharpArgumentInfoFlags.None, null),

CSharpArgumentInfo.Create(

CSharpArgumentInfoFlags.None, null)

}

)

);

}

<Add>o__SiteContainer0.<>p__Site1.Target(

<Add>o__SiteContainer0.<>p__Site1, typeof(Console),

<Add>o__SiteContainer0.<>p__Site2.Target(

<Add>o__SiteContainer0.<>p__Site2, a, b));

}

That’s a whole lot of code, isn’t it? In the generated code, two distinct phases can be seen,
the first of which creates new CallSite objects if they haven’t been created yet. Those
objects are kept on a generated type known as the site container. By making this object a
single instance (it’s a static type with a bunch of static fields on it), the call site can main-
tain state across method calls to the enclosing method. In our example, the Add method

1131DLR Internals

FIGURE 22.12 A generated call site container type.

will reuse its call site objects that have been created during a prior invocation, which
allows the call site to be self-learning. For example:

Add(27, 15); // Prints 42

Add(DateTime.Now, TimeSpan.FromDays(7)); // Prints next week’s date and time

Add(15, 27); // Prints 42 again

In the preceding code, the same call site objects will be reused across all method calls to
Add, which avoids the needs for a second discovery of how to perform a binary + opera-
tion on System.Int32 objects. During the first Add method call, it will learn how to carry
this out (as discussed later), and in the third call that knowledge will be reused.

Call site containers, as illustrated in Figure 22.12, are generated on a per-method basis
(whose name appears in the type name of the container).

Let’s analyze the two call site objects that have been generated. First, what does the
CallSite generic type look like?

public sealed class CallSite<T> : CallSite where T : class

{

public T Target { ... }

public T Update { get { ... } }

public static CallSite<T> Create(CallSiteBinder binder) { ... }

}

This type lives in the System.Runtime.CompilerServices namespace. Its generic T parame-
ter represents a delegate. (This restriction on bindings for T is not expressible using generic

1132 CHAPTER 22 Dynamic Programming

constraints, hence the use of where T : class, which is the strongest constraint possible
here because all delegate types are classes, too.)

It should be quite obvious why this call site object is parameterized on a delegate type:
After all, we’re building a construct that will enable us to dispatch a dynamic call at
runtime. Invocation of a delegate is an obvious choice because it will allow the runtime to
provide us with a specialized (runtime-generated) function that will do the dispatch in the
most optimal way possible.

In our running example, the two generated call sites are typed, as follows:

public static CallSite<Action<CallSite, Type, object>> <>p__Site1;

public static CallSite<Func<CallSite, object, object, object>> <>p__Site2;

At this level, we don’t care about the use of the dynamic type anymore, and things were
replaced by object. The second site object will be used to dispatch the binary + operator
call, while the first one is used for Console.WriteLine calls. Just by looking at the types of
the delegate parameters, this should become somewhat clear already. For example, the
second site produces an object (last parameter) and takes in two such objects, too. The
mystery why the CallSite is also passed to the delegate will become clear in a moment.

Continuing our exploration of the creation of a call site object, take another look at the
generated code for Add. After checking the static field on the call site container for null
(hence detecting whether the call site was already created by a prior invocation to Add),
the following code runs for the first call site’s creation:

<Add>o__SiteContainer0.<>p__Site1 =

CallSite<Action<CallSite, Type, object>>.Create(

Binder.InvokeMember(

CSharpBinderFlags.ResultDiscarded,

“WriteLine”, null, typeof(Dyn),

new CSharpArgumentInfo[] {

CSharpArgumentInfo.Create(

CSharpArgumentInfoFlags.IsStaticType

| CSharpArgumentInfoFlags.UseCompileTimeType,

null),

CSharpArgumentInfo.Create(

CSharpArgumentInfoFlags.None, null)

}

)

);

The CallSite<T>’s Create factory method takes in a CallSiteBinder object, which is an
abstract base class defined in System.Runtime.CompilerServices. Languages such as C#
provide an implementation of such binders in their runtime libraries. The language we
prefer is Microsoft.CSharp.dll. The goal of those binders is to represent the operations
supported by the language and provide runtime logic to execute them.

1133DLR Internals

(a + b)

Call Site for WriteLine

Console.WriteLine

Call Site for +

Action<CallSite, Type, object>

Func<CallSite, object, object, object>

FIGURE 22.13 Mapping generic delegates used in call sites.

In the code corresponding to the first call site, we were invoking the WriteLine method
on a static type Console. The invocation of a member is represented by the C# runtime
binder created through Binder.InvokeMember:

public static CallSiteBinder InvokeMember(

CSharpBinderFlags flags,

string name,

IEnumerable<Type> typeArguments,

Type context,

IEnumerable<CSharpArgumentInfo> argumentInfo);

For a member invocation operation, five pieces of information are needed. First, some
flags can be set to communicate intended use of the operation. In our Console.WriteLine
example, the ResultDiscarded flag is set, indicating the result value is not used after the
call (and therefore the binder can bind to a void-returning method).

The name parameter should be quite obvious, and so should the type arguments, which are
used for generic method calls. In our case, those are WriteLine and null. (The call is not
generic.) The fourth parameter captures the context in which the call is made so that the
binder can make decisions around visibility if needed.

Finally, the argumentInfo parameter contains information about the arguments used on
the call. Using another factory method inside the C# runtime binders library, properties of
the used arguments are communicated. This includes a parameter name (if one was speci-
fied) and properties such as by ref or out. Those parameters correspond to the type para-
meters on the CallSite’s target delegate. Figure 22.13 illustrates this mapping between the
original syntax and the CallSite’s target delegate generic parameters.

Sometimes the types used in call site delegates can be more specific than object—for
example, if only a arguments in an operation are typed as dynamic few (or a single argu-
ment, for that matter). If we had changed the type of b on Add to int, the corresponding
call site delegate type would have been Func<CallSite, object, int, object>.

1134 CHAPTER 22 Dynamic Programming

To wrap up our discussion about how call sites get created, let’s look at the other call site
that got generated for the binary addition operator:

<Add>o__SiteContainer0.<>p__Site2 =

CallSite<Func<CallSite, object, object, object>>.Create(

Binder.BinaryOperation(

CSharpBinderFlags.None,

ExpressionType.Add, typeof(Dyn),

new CSharpArgumentInfo[] {

CSharpArgumentInfo.Create(CSharpArgumentInfoFlags.None, null),

CSharpArgumentInfo.Create(CSharpArgumentInfoFlags.None, null)

}

)

);

From the factory method used on the C# Binder type, it’s clear we’re dealing with such
an operation. The ExpressionType parameter should look familiar to those who’ve
studied expression trees in Chapter 21, in the section, “Expression Trees.” If we had used
checked around our + operator use, we would have seen ExpressionType.AddChecked. The
argument information objects are relatively boring, given no special properties are attrib-
uted to them.

By now, it should be clear that call site objects, together with the language-specific binder
types, capture all information about the operation intended by the user (well, short of
precise static types, that is).

Dynamic Dispatch

Once the compiler has done its duty of generating code that will construct call site objects
at runtime, all remaining work is left to the runtime. We already discussed in detail how
call sites are built, but we haven’t yet discussed how the invocation of the dynamic opera-
tion is initiated. In the code that was generated for our running example, the dispatch can
be found at the end:

private static void Add([Dynamic] object a, [Dynamic] object b)

{

// Code to ensure the call site objects are instantiated.

<Add>o__SiteContainer0.<>p__Site1.Target(

<Add>o__SiteContainer0.<>p__Site1, typeof(Console),

<Add>o__SiteContainer0.<>p__Site2.Target(

<Add>o__SiteContainer0.<>p__Site2, a, b));

}

1135DLR Internals

This code might look a little overwhelming at first, so let’s abbreviate it a little by using
simpler names for the call site objects retrieved from the site container. Recall that the first
site corresponds to the WriteLine call, and the second takes care of the addition:

site1.Target(site1, typeof(Console), site2.Target(site2, a, b));

What’s this Target business all about? Recall the definition of CallSite<T> we saw in the
previous discussion:

public sealed class CallSite<T> : CallSite where T : class

{

public T Target;

public T Update { get; }

public static CallSite<T> Create(CallSiteBinder binder);

}

Target clearly is a public field, typed as T, which by itself is a delegate type. So what looks
like a method call to Target is really getting the delegate held by the Target field and
subsequently invoking it. The type of those Target delegates is specified through the
generic parameter on CallSite<T> and looks like this for both sites in our example:

// Call site for WriteLine: CallSite<Action<CallSite, Type, object>>

site1.Target(site1,

typeof(Console),

// Call site for +: CallSite<Func<CallSite, object, object, object>>

site2.Target(site2,

a, b

)

);

More specifically, this Target delegate is called the Level 0 cache. (Two more cache levels
exist, but we won’t elaborate on them here.) In conjunction with the fact that call sites are
kept in static fields across method calls, the role of this is to provide a fast dispatch path
based on the history of the call site use. Once the call site has been used for, say, a + oper-
ation on two Int32 arguments, subsequent such uses will go much faster because the site
has learned how to deal with this situation.

Thinking a bit more about this point, it should become apparent why the site is passed to
the Target delegate as the first argument. Because the site has to be self-learning upon
every use, the DLR needs to be able to update the Target delegate when more dispatch
techniques have been learned.

1136 CHAPTER 22 Dynamic Programming

POLYMORPHIC INLINE CACHE

The elite term for this caching mechanism that makes a call site self-learning and more
intelligent as it’s being used is polymorphic inline cache. First, it’s polymorphic because
it can have many forms depending on the runtime types of the objects involved in the
dynamic operation.

Second, it’s inline because the CallSite<T> object lives right at the place where the
call is made and not in some arcane corner of the runtime. The in situ updates applied
to the site strengthen the label of inline, too.

Last but not least, it’s a cache that remembers how dynamic operations have to be per-
formed, based on the runtime types of all objects involved in the operation (for exam-
ple, operands or method parameters).

So how does the CallSite delegate look inside, and how does it get created or updated?
As soon as a CallSite<T> object is created, its Target delegate is populated with a stub
implementation that looks roughly like this (using the + call site as an example):

(CallSite site, object a, object b) =>

{

return site.Update(site, a, b);

}

The idea is as follows. When a call is made to the call site through an invocation of the
dynamic operation it represents, that call gets redirected from the Target delegate (as
shown previously) to the site’s Update delegate:

public T Update { get; }

Behind this delegate, code lives to call into the binders to resolve an invocation target
based on all the runtime information available. For example, if we call Add with two Int32
parameters, all binding information (the fact we want to do a + binary operation) and the
runtime types are communicated to the binder. We can simulate this code path by using
the C# binder library directly, as shown here:

var add = Binder.BinaryOperation(CSharpBinderFlags.None,

ExpressionType.Add, typeof(Program),

new[] {

CSharpArgumentInfo.Create(CSharpArgumentInfoFlags.None, null),

CSharpArgumentInfo.Create(CSharpArgumentInfoFlags.None, null)

}

);

/* A skeleton Target delegate would look like this:

(CallSite site, object a, object b) => {

// Different dispatch cases go here.

1137DLR Internals

Return: // jump target to return

}

*/

var ret = Expression.Label(“Return”); // Return:

var a = Expression.Parameter(typeof(object)); // object a

var b = Expression.Parameter(typeof(object)); // object b

// Let’s ask the C# binder how 25 and 17 need to be added...

var res = add.Bind(

new object[] { 25, 17 },

new List<ParameterExpression> { a, b }.AsReadOnly(),

ret

);

// if (a is int && b is int) { return (int)a + (int)b; }

Console.WriteLine(res);

This code illustrates what happens at the border between the DLR and the runtime binder
for the language being used. When the Target delegate was executing, say to add two
numbers together, it immediately fell through to the Update delegate, which ultimately
called into the binder object’s Bind method. We’re mimicking this situation here by
calling Bind manually using two numbers. In addition to the parameters, the Bind method
takes the Target delegate’s parameters, which represent where data will be coming from
on subsequent calls. The return label is more of an implementation detail and will be used
to return the result of the operation from the Target delegate.

What matters more for our discussion is the return type of the Bind operation. As shown
before, it returns an Expression object. So what’s really going on here is a dialogue
between the DLR screaming for help (“I’ve got two Int32 objects and don’t know how to
add them together”) and the C# runtime binder handing back an expression tree with
code that does precisely this (“Relax, here’s how to do it”):

public abstract Expression Bind(

object[] args,

ReadOnlyCollection<ParameterExpression> parameters,

LabelTarget returnLabel);

Figure 22.14 shows what the C# binder answered to the runtime’s question about how to
add the two given objects, 25 and 17, together.

Now that the DLR got back a piece of code to detect and handle the case of two Int32
objects being added together, it goes ahead and “stitches” the code fragment into a new
version of the Target delegate, which now is equivalent to the following:

(CallSite site, object a, object b) =>

{

if (a is int && b is int) // This is the code

1138 CHAPTER 22 Dynamic Programming

FIGURE 22.15 An operator overload used to add a DateTime and a TimeSpan.

FIGURE 22.14 Code produced by the C# binder to add two Int32 objects together.

return (int)a + (int)b; // from Figure 22.14

return site.Update(site, a, b);

}

This is exactly why the call site needs to pass itself on invocation; it is the way for the
DLR to get to the Target delegate field and substitute it for a more specialized one each
time it learns more about invocation targets.

Given this new delegate, any subsequent call presenting two Int32 objects as the input
will result in the specialized code fragment being executed. This short-circuits all the logic
that lives in the C# binder. This logic is nontrivial; you should understand that the binder
in Microsoft.CSharp.dll has knowledge of the language-specific rules for overload resolu-
tion, implicit conversions, and so on. For example, if we throw an int and a long at the
binder, it will apply the C# rule that an Int32 can be implicitly converted into an Int64, so
that the addition can be carried out between two Int64s:

if (a is long && b is int)

return (long)a + (long)b;

Of course, this resolution for operations also incorporates lookups for things such as oper-
ator overloads, as shown in Figure 22.15, which shows a part of the expression tree
handed back by the C# runtime binder upon seeing DateTime and TimeSpan objects.

1139DLR Internals

(CallSite site, object a, object b) =>

{

 return site.Update(site, a, b);

}

(CallSite site, object a, object b) =>

{

 return site.Update(site, a, b);

}

(CallSite site, object a, object b) =>

{

 if (a is int && b is int)

 return (int)a + (int)b;

 return site.Update(site, a, b);

}

Ta
rg

et
Ta

rg
et

Ta
rg

et

if (a is int && b is int)
 return (int)a + (int)b;

if (a is DateTime && b is TimeSpan)
 return (DateTime)a + (TimeSpan)b;

DateTime.Now

17

TimeSpan)(…)

25

C# binder

25

How to add Int32 and Int32?

C# binder

DateTime and TimeSpan?

No Binder
Needed

Really calling
op_Addition

17

FIGURE 22.16 A call site getting updated upon feeding in new input types.

From this perspective, the essence of the DLR is to provide tree-stitching services for
expression tree fragments that are handed to it through language-specific binders. This
also explains why the expression tree API was enhanced to support statement tree nodes—
because call sites like those need conditional logic.

EXPRESSION TREES AS A NEW SWISS KNIFE

The use of expression trees is becoming more and more apparent with every release of
the .NET Framework. Initially meant as a way for LINQ providers to make sense of user
intent, they now act as the common back end of all sorts of compilation tasks at run-
time. Languages such as IronPython and IronRuby always turn code into expression
trees to execute the code efficiently through IL.

Figure 22.16 shows the states the Target delegate code behind our call site is going
through upon invocation using different combinations of argument types. It’s left as an
exercise to draw the corresponding expression/statement trees that are used to represent
this code before the dynamic language runtime compiles it.

The call site for the WriteLine call works in a similar way. In this case, the first argument
is statically determined as typeof(Console) because we specified this in the original C#

1140 CHAPTER 22 Dynamic Programming

FIGURE 22.17 A look at DynamicObject and IDynamicMetaObjectProvider.

code (Console.WriteLine). However, because the method argument varies from a runtime
typing perspective, different overloads for Console.WriteLine will be called. I leave it as
an exercise for you to create a C# binder for the InvokeMember operation, based on the
generated code for our running example. Hit the binder’s Bind method with a variety of
arguments, such as an int and a DateTime object. Generated expression trees should
roughly add up to the following:

(CallSite site, Type t, object a) =>

{ // t will always be typeof(Console); see the CSharpArgumentInfo flags

if (a is int)

Console.WriteLine((int)a);

if (a is DateTime)

Console.WriteLine(a); // System.Object argument overload

site.Update(site, a, b);

}

Custom Dynamic Objects with DynamicObject

So far, we haven’t had a chance to control any of the binding logic that happens at
runtime when invoking dynamic operations on an object. The flexible infrastructure of
the DLR provides a way to create objects that participate in those operations. To achieve
this, the simplest route is the use of System.Dynamic.DynamicObject, which is defined as
shown in Figure 22.17.

1141DLR Internals

As you can see, this base class contains Try methods for every dynamic operation that’s
supported by the DLR. The Binder objects passed as the first argument correspond to
those operations and contain information about the performed operation, based on the
code that got emitted by the front-end compiler.

When the DLR encounters an object that derives from DynamicObject, binding informa-
tion will be passed to this object’s methods first, giving it a chance to provide some
nonstandard meaning to those operations. As an example, consider the concept of a bag
type, which we’ll see as a dictionary mapping string keys onto object values. The typical
use of a dictionary object deals with strings, used on indexers. However, our bag imple-
mentation will allow us to “dot into” the object using C# syntax. The following code
example contrasts both approaches:

// Classic dictionary
var d = new Dictionary<string, object>();
d[“Name”] = “Bart”;
d[“Age”] = 27;
Console.WriteLine(d[“Name”].ToString() + “ is “ + d[“Age”].ToString());

// Bag using dynamic
dynamic bag = new Bag();
bag.Name = “Bart”;
bag.Age = 27;
Console.WriteLine(bag.Name + “ is “ + bag.Age);

It’s clear we won’t provide a Bag object with predefined Name and Age properties on it
because we want to (re)use the bag with any set of key-value pairs.

To achieve this effect, we derive Bag from DynamicObject and override a few of its
members to intercept the operations performed on the bag instance. In particular, we’re
interested in participating in the dynamic invocation of member get and set operations,
and therefore we override TryGetMember and TrySetMember:

class Bag : DynamicObject
{

private Dictionary<string, object> _bag = new Dictionary<string,object>();

public override bool TryGetMember(GetMemberBinder binder, out object res)
{

return _bag.TryGetValue(binder.Name, out res);
}

public override bool TrySetMember(SetMemberBinder binder, object value)
{

_bag[binder.Name] = value;
return true;

}
}

1142 CHAPTER 22 Dynamic Programming

FIGURE 22.18 Invocation of TryGetMember through a DLR code path.

The private state of the Bag consists of a classic dictionary, to which we provide simpler
access patterns. On the binder objects, we can figure out the name of the member that
was targeted by the user (for example, Name or Age), as well as other information, such as
case sensitivity of the language (which we ignore here). Figure 22.18 shows the call stack
when TryGetMember is hit. Notice the previous frames on the stack:

. Program.Main is where the generated call site object is obtained from the site
container and where a call is made to the Target delegate.

. The Target delegate by itself calls into the Update delegate pointing at a DLR func-
tion to update the call site and execute the operation. The arg0 parameter will be
the reference to the Bag object.

. The Lightweight Function contains the type check for DynamicObject and the subse-
quent invocation of TryGetMember.

The Boolean return value on the various Try methods on DynamicObject is used to signal
success or failure of the dynamic operation. When false is returned, fallback behavior will
kick in, looping in the runtime binder (in this case, C#’s), which will look for the targeted
operation on the Bag instance itself. For example:

1143DLR Internals

public int Count { get { return _bag.Keys.Count; } }

public override bool TryGetMember(GetMemberBinder binder, out object result)

{

// Count is never in the bag, so hand over to the C# binder (return false).

return _bag.TryGetValue(binder.Name, out result);

}

public override bool TrySetMember(SetMemberBinder binder, object value)

{

if (binder.Name == “Count”)

return false; // Attempt to set Count via the C# binder (will fail).

_bag[binder.Name] = value;

return true;

}

EXPANDO OBJECTS

In fact, the concept of objects that can acquire members at runtime is not very novel;
after all, dynamic languages such as JavaScript rely heavily on it. In such languages,
it’s even the case that every single object has those capabilities.

This concept is known as expando objects because they can expand their surface at
runtime. The Bag we just built actually exists (in a slightly more sophisticated way) in
the System.Dynamic namespace, where it’s called ExpandoObject. Additional function-
ality includes the implementation of INotifyPropertyChanged, as well as direct
dictionary access because the type implements IDictionary<string, object>, so it
can be used both as a dictionary (with change notification) and through the new
dynamic feature:

var exp = new ExpandoObject();

// Use as generic dictionary

var dct = (IDictionary<string, object>)exp;

dct[“Name”] = “Bart”;

// Use as dynamic bag

var bag = (dynamic)exp;

bag.Age = 27;

// Use as enumerable for KeyValuePair<string, object>

foreach (var item in dct)

Console.WriteLine(item);

People familiar with old-school COM programming will recognize the capabilities of the
IDispatchEx interface. No wonder this interface was introduced a long time ago to
support scripting languages such as VBScript and Jscript.

1144 CHAPTER 22 Dynamic Programming

FIGURE 22.19 Some debugging features with support for C# 4.0 dynamic.

One common question concerns debugging of dynamic objects. In environments where
static typing is the standard, you can simply see the object’s members while carrying out
debugging tasks. Fear not, as the GetDynamicMemberNames method is there for you to over-
ride to provide debugging information:

public override IEnumerable<string> GetDynamicMemberNames()

{

return _bag.Keys;

}

Visual Studio 2010 has been enlightened about objects that can provide a dynamic list of
member names, as shown in Figure 22.19. When expanding the list of members, a call is
made to the preceding method, followed by a series of calls to gain access to the value of
those members. Talking about debugging, it’s even possible to use the Immediate Window
to perform dynamic operations. Because of those features, debugging dynamically typed
code is relatively easy.

A Primer to DynamicMetaObject

As you saw earlier, the use of DynamicObject allows an object to participate in the binding
process for a wide variety of operations. This is actually aligned with a general design
philosophy in the DLR where objects get the first crack at defining meaning for binding
operations, before language-specific binders get around to assist.

One of the core benefits of such dynamic objects is they follow a protocol that allows them
to be used across different languages. Our self-written Bag object can therefore be used
from languages other than C# (for example, from IronPython, as shown in Figure 22.20).

This common protocol for interoperability with dynamic objects lives at a level lower than
the DynamicObject base type, though. Here the IDynamicMetaObjectProvider interface
and the auxiliary DynamicMetaObject type enter the picture. The definition of those two
types is shown in Figure 22.21.

1145DLR Internals

FIGURE 22.20 Using our Bag dynamic object in IronPython.

FIGURE 22.21 Types at the heart of dynamic object interoperability.

One of the key differences between DynamicObject and DynamincMetaObject is the differ-
ence in the signature of Bind operations, which correspond to the family of Try methods
in DynamicObject. Although those methods are also passed a Binder object, their argu-
ments and return types use DynamicMetaObject objects.

The essential piece of information contained by a DynamicMetaObject instance is an
expression tree that represents the code that has to be executed to compute its value. It’s
the DLR’s role to stitch together such expression trees to make up efficient call sites that
can get compiled into IL code at runtime. This is the place where the object is in total

1146 CHAPTER 22 Dynamic Programming

Te
st

s

public class DynamicMetaObject

{

 public BindingRestrictions Restrictions { get; }

 public Expression Expression { get; }

…

if ()
a

is

Int32 b

is

Int32

V
al

u
e

return ;

a Int32 b

+

Int32

Convert Convert

FIGURE 22.22 How restrictions and expressions relate to call sites.

control to define the semantics of the operation that will produce its value, which enables
it to emit highly efficient code.

Besides the expression tree kept in the Expression property, a DynamicMetaObject can also
have a set of binding restrictions that determine when binding to the object is permitted.
Such restrictions can be based on types, be written as an expression tree that will carry out
some check, or restrict validity for binding to a particular instance.

When we looked at call sites earlier, in this chapter’s “Dynamic Call Sites and Binders”
section, we saw that the code emitted for dynamic dispatch sites have the following form:

(CallSite site, object a, object b) =>

{

if (a is int && b is int)

return (int)a + (int)b;

if (a is DateTime && b is TimeSpan)

return (DateTime)a + (TimeSpan)b;

return site.Update(site, a, b);

}

Recall that the way this code got generated is based on the interaction between the
binders and the DLR. Once a pair of two Int32 values was encountered for a and b, the
DLR handed over the request to the C# runtime binder. If there would have been dynamic
objects (checked based on IDynamicMetaObjectProvider), the request would have been
handed over to the overridden BindBinaryOperation method. Figure 22.22 shows the rela-
tionship between binding restrictions and generated branch instructions.

1147DLR Internals

No matter what path was followed, under the covers this interoperability protocol is
followed, handing binding restrictions and expressions back to the DLR. In the case of the
C# runtime library helping out, it gave us binding restrictions and an expression to
compute the value back.

Given this information, the DLR can follow different strategies to optimize call sites,
which are known as different cache levels. We don’t discuss those implementation details
in detail and instead defer to DLR documentation at dlr.codeplex.com. Suffice to say,
manual implementation of DynamicMetaObject types will result in great flexibility on the
code that gets run when a dynamic operation is carried out.

One example of the use of efficient code generation is caching of result values that rarely
change. Immutable types form an extreme of this, where get member operations (and
even instance methods that compute values based on the immutable data kept in the
object) can be reduced to returning constant values. Although the first hit to operations
on the object can take a while to compute the result value, immutability guarantees it
won’t ever change, so the emitted expression tree can simply return a constant.

Elsewhere on the mutability spectrum are objects that rarely change. For them, the same
caching trick can be applied but in combination with some invalidation logic. To make
this work, the BindSetMember override would set some flag associated with the member’s
name to indicate the value has been invalidated. Code emitted for the BindGetMember will
include a check for the invalidation flag. Depending on its value, the constant-returning
expression will be restricted for use. When the flag is set, a path will be triggered that
recomputes the value.

Dynamic Operations

To finish off our overview of DynamicObject and DynamicMetaObject, we’ll take a quick
look at the various operations that can be specialized by overriding a method on those
base classes. Some of those operations have a C# notation, whereas others exist in
dynamic languages only.

. Binary operations, such as mathematical logical operators and (in)equality opera-
tors. For example, a + b, a > b, a && b.

. Unary operations, such as logical negation or complement or numeric minus or
plus. For example, -a, !a.

. Getting and setting members, which correspond to properties or fields in CLR
terms. For example, a.Foo or a.Bar = 5.

. Getting and setting indexes to index into objects such as collections, vectors, and
so on. For example, a[0] or vector[“x”] = 1.

. Conversion of objects to some specified type, either explicitly (as with cast syntax)
or implicitly. For example, (Hashtable)bag.

. Invocation of members, which correspond to methods in the CLR terms (for
example, a.Print(“Hello”)). Method call syntax in C# maps to this operation. In
some dynamic languages, there’s no such thing as invoking members, but instead all

1148 CHAPTER 22 Dynamic Programming

“methods” are encoded as gettable members that contain a function object. To
invoke those, the direct invocation operation is used, as explained next.

. Direct invocation on objects is similar to delegate invocation in C#. For example,
a(42). First-class dynamic functions can be driven by this operation.

. Creating instances in a dynamic fashion is not directly supported in C# but is in
various dynamic languages. For example, dynamic new Bag.

. Deleting members and indexes is another operation that lacks some syntactic sur-
face in C# but has been around in dynamic languages for a while. For example, in
Python, you would write del bag.Name.

For example, to handle the delete member operation, you could extend our Bag dynamic
object with an override for TryDeleteMember:

public override bool TryDeleteMember(DeleteMemberBinder binder)

{

return _bag.Remove(binder.Name);

}

To show this specialized operation in action, we can use the IronPython console once
more and even get into debugging by attaching the debugger to the ipy.exe process. After
starting the REPL loop, go to Tools, Attach to Process in Visual Studio 2010 and set a
breakpoint on the TryDeleteMember method. Now enter the following code in IronPython:

import sys

sys.path.append(r”c:\temp”) #wherever the Bag assembly lives

import clr

clr.AddReferenceToFile(“CS40Dynamic.exe”) #whatever the Bag assembly file is

from CS40Dynamic import * #the namespace containing Bag

person = Bag()

person.Name = “Lisa”

del person.Name

Figure 22.23 shows the debugger hit the breakpoint as soon as we use Python’s del
keyword to delete a member. This illustrates the power of the DLR’s power to unify
dynamic objects and dynamic operations in a cross-language manner.

Overall Architecture

To wrap up our discussion of DLR internals, let’s look at an overview diagram of the infra-
structure available. Figure 22.24 illustrates the DLR in the middle between languages that
are enabled for dynamic and target object domains.

1149DLR Internals

FIGURE 22.23 Invoking a delete member operation from Python.

IronPython

Expression Trees Call Site Caching
Dynamic

Object Interop

IronRuby C# VB.NET Others…

Dynamic Language Runtime

Object
Binder

JavaScript
Binder

Python
Binder

Ruby
Binder

COM
Binder

FIGURE 22.24 The DLR providing services to bridge languages and target domains.

As you’ve seen, it’s possible to use the DLR to invoke operations on .NET objects (some-
times referred to as POCOs for plain old CLR objects), replacing the plumbing code you
would have to write when dealing with the reflection APIs. Furthermore, the DLR enables
us to reach out to other domains, such as JavaScript in an HTML page containing a
Silverlight control, or whole Python or Ruby libraries. For the latter, the DLR also provides
auxiliary services to host scripting languages. This is where the IronPython and IronRuby
languages are coming in.

It’s important to distinguish the front-end languages from the binders. The reason there
are binders specific to languages is to help resolve operations according to required seman-
tics for that language, with regard to things such as method overload resolution. To partic-
ipate in the back end, it’s possible to implement custom dynamic objects with varying
degrees of complexity and flexibility, as we saw before.

1150 CHAPTER 22 Dynamic Programming

FIGURE 22.25 OLE, a precursor to COM, as a technology for the masses.

Right in the middle we find the DLR, which provides a bunch of services, such as the
creation and maintenance of efficient call sites based on the code object model that’s
provided by expression trees.

Finally, let’s wrap up this chapter by taking a look at Office (and more generally COM)
interop scenarios. For those scenarios, the COM binder enters the picture to resolve
dynamic operations.

Office and COM Interop
No matter how revolutionary a new runtime and framework may be, there’s always the
“old stuff” to interoperate with. One such artifact from the old pre-CLR days is the
Component Object Model (COM). At the point of its introduction in the early 1990s, the
core goals of COM included the capability to deal with objects across different languages.
For example, it enabled C or C++ developers to create COM components that could be
used from Visual Basic and other such languages.

COM originated out of a whole set of technologies that were introduced to deal with
cross-process integration scenarios, going all the way back to Dynamic Data Exchange
(DDE). Out of this grew object linking and embedding (OLE), which lies at the heart of
content embedding features in applications such as Office. With the use of OLE in Office,
it becomes possible to, say, include an Excel spreadsheet in a Word document. The Insert
Object dialog in Office, shown in Figure 22.25, is the visible side of this.

Extensions and enhancements to the OLE model were introduced in COM, with a wide
range of applications emerging. Lots of components in the Windows OS are based on
COM, allowing them to be used from many different languages. On the Web, ActiveX
controls that get integrated with the browser are also based on the same technology. In

1151Office and COM Interop

FIGURE 22.26 Visual Basic for Applications used to write a Word macro.

such scenarios, it’s important to allow dynamic languages such as VBScript and JScript to
communicate with COM components.

Probably one of the biggest pieces of software out there that continues to have a strong
affinity to COM is the Microsoft Office suite. One quite mainstream scenario for users of
the suite is the ability to automate certain tasks using macros, which are written in a
special version of Visual Basic called Visual Basic for Applications (VBA). To this very day,
Office ships with this feature and a (somewhat ancient-looking) development environ-
ment for VBA, as shown in Figure 22.26. The technology that makes this macro scripting
possible is none other than COM.

THE CLR, COM+, AND OTHER HISTORY

Cross-language interoperability, where did we hear that before? Indeed, the main
mission of COM and the CLR is similar. The way to achieve the interoperability goal is
quite different in both worlds, though.

Whereas COM is a technology centered on the concept of interfaces exposed by
components and callable by other, possibly remote, components, the CLR takes the
approach of defining a common instruction set (IL) with a common type and metadata
information to go with it. Other core differences include the handling of errors
(HRESULTs versus exception), the type system (IUnknown as the main interface versus
System.Object as a base class), memory maintenance (based on ref counting versus
garbage collected), component registration, and so on.

At the time the CLR project was started, two camps existed inside Microsoft. One
camp believed in advancing COM by adding new functionality to it. One big advantage
of that approach would have been the direct interoperability with existing technolo-
gies. The other camp believed in the creation of a completely new runtime, referred to
as the Common Object Runtime (which is where the COR in mscoree and mscorlib
comes from).

1152 CHAPTER 22 Dynamic Programming

The CLR didn’t throw away existing investments in COM, though, and provided for a rich
interoperability story from day one. Not only can we call COM components from inside
managed code applications, it’s also possible to expose managed types as COM
objects. For example, to extend Office applications, we can use managed code. To make
such tasks easier, reducing the amount of plumbing code needed, libraries and tools
have been created to assist in this (for example, the Visual Studio Tools for Office).

Partly in parallel with this (r)evolution, COM was extended with new services to deal
with transactions, events, and so on. Commonly referred to as COM+, those new facili-
ties are exposed in .NET under System.EnterpriseServices.

Given the large number of existing applications built on COM, you can hardly say that
COM is dead. Instead, to paraphrase Don Box, COM is done, and .NET is the new pro-
gramming model going forward.

Essentials of COM Interop

Interoperability with COM from inside managed code applications is based on a few
essential concepts:

. Dispatch services to reach out to COM component operations, allowing one to
make calls using (seemingly) regular .NET methods, properties, and so on. The CLR
and various auxiliary libraries make this possible. For COM gurus, this includes the
ability to obtain COM interfaces, deal with co-classes, and so on.

. Marshaling services solve the impedance mismatch between the type systems of the
CLR and COM, with regard to primitive data types, in/out/ref behavior when calling
methods, and so on. In addition to this, the interoperability layer also maps
HRESULTs onto exceptions.

. (Primary) Interop assemblies provide an entry point to a COM library using man-
aged code types that encapsulate the underlying library’s functionality. For example,
Office provides PIAs that .NET developers can use to reach out to Office functionali-
ty from inside any managed code language.

This concise summary is a gross simplification of the COM interop landscape that exists in
.NET. In fact, the subject deserves a book of its own, as testified by Adam Nathan’s book
titled .NET and COM: The Complete Interoperability Guide, a 1,500-pager that is really recom-
mended if you find yourself doing lots of COM interop.

Simplified COM Interop in .NET 4

Luckily for us, C# 4.0 and .NET 4 make the use of COM from inside managed
code applications much easier thanks to a lot of related features:

. Optional and named parameters are often used in COM APIs and have found their
way into the C# programming language to simplify such scenarios. It’s not uncom-
mon for COM APIs to expose methods with a whole bunch of parameters, most of
which are optional and meant to be called by specifying their names. The use of this
feature is not restricted to COM interoperability, though, so one can create methods
with optional parameters and call methods by specifying parameters by name.

1153Office and COM Interop

. Indexed properties allow properties to be called with additional parameters, much
like indexers work. Those are not a proper C# language feature and are restricted for
use in COM interop scenarios. The main difficulty with indexed properties as a
general language feature is the fact they don’t distinguish the act of property
retrieval and indexing into an object. For that reason, the .NET designers thought it
better to leave them out for managed code APIs (and they’re not part of the CLS
either). In C# 4.0, they’re allowed only for COM interop.

. Optional ref modifier when calling COM imported methods. Because the most
common calling convention used on COM APIs methods is to pass parameters by
reference, you can omit the ref modifier on such calls starting from C# 4.0. Again,
this is not a general language feature in C# and is limited to COM interop scenarios.
Recall that the philosophy of the ref modifier is to explicitly indicate, in the call
site, the intent of passing a parameter by reference.

. Mapping of object to dynamic when importing COM APIs. Because COM is quite a
dynamic experience from a typing point of view, lots of parameters and return types
are typed as IUnknown or IDispatch. Those interfaces form the roots of the interface
hierarchy in the world of COM and correspond roughly to .NET’s System.Object
base type. Up until .NET 4, importing COM libraries performed a mapping for such
types onto System.Object. Now that we have dynamic, this mapping has changed to
use the new dynamic type. This allows you to “dot into” lots of COM APIs directly.

. Embedding of interop types (“no PIA”) is a tooling feature, just like the one elabo-
rated on in the previous point. The use of interop assemblies has caused grief in the
past because of difficulties with deployment with applications that are using them.
One major problem with those PIAs is their size, which can go into the megabyte
range for interop assemblies like Word’s. Typically, you’re using just a fraction of the
types and functionality in the assembly, so this is a huge waste of space. In .NET 4,
used portions of PIAs can be embedded into your own assembly at build time.

We now discuss those features in more detail by means of a walkthrough where we use the
improved COM interop in .NET 4 to talk with Office libraries. Keep in mind that this
capability is not restricted to Office but provides value for all COM interop scenarios that
span a wide range of technologies (for example, lots of Windows APIs have exposure
through COM).

A NECESSARY EVIL?

New language features often get widely criticized upon their introduction. This is no
different with C# 4.0’s improved COM interop features or dynamic more generally. One
key question here is whether it’s good to extend a language simply for interoperability
enhancements.

When .NET was introduced, some people hoped for a quick disappearance of old tech-
nologies such as COM, in favor of managed code. History turned out quite different;
the use of COM is still prevalent.

1154 CHAPTER 22 Dynamic Programming

Smooth interoperability with such COM-based libraries has been hampered by the lack
of nice managed code wrappers. PIAs typically expose the APIs they target in a verba-
tim manner, doing a poor job at providing a true “managed code feeling” for the APIs
they interoperate with. As a result, managed code developers often don’t feel at home
when dealing with interoperability. This in turn has led to people technologies as a
whole, solely because of poor interoperability. The goal of making such scenarios
easier is definitely a good thing because “COM ain’t dead.”

Although every new language feature starts with a negative score (counting against the
introduction of the feature to avoid bloating the language), there have been plenty of
scoring points that motivate the introduction of C# 4.0 dynamic. The growing popularity
of dynamic languages and untyped APIs, as well as COM interoperability senarios, were
enough to go ahead and add dynamic to the language.

To limit aging the language unnecessarily, some of those features are restricted in use
to COM interop scenarios only, as mentioned previously. To conclude, you could say
those new features are “a necessary evil.”

Case Study: COM Interop with Excel and Word

To illustrate the improvements to COM interop in .NET 4, we start in the old world of
.NET 3.5 and show what the code for our scenario looked like back then. Based on this,
we gradually make the code simpler while porting it to C# 4.0, while looking at the indi-
vidual features that form the basis of those enhancements.

Walkthrough in .NET 3.5
The examples shown in this section assume you have a recent version of Office installed,
preferably version 2007 or later. In addition, make sure to have the PIA redistributable
installed, which you can find by searching the Web for “download Office PIA.” If every-
thing is correctly installed, you’ll find the Office interop assemblies in the Add Reference
dialog in Visual Studio, as shown in Figure 22.27. You can safely ignore the runtime
version on them because PIAs don’t really contain code and simply provide a set of inter-
operability interfaces (which can be seen as runtime neutral). Depending on the versions
of Office PIAs you have installed, you’ll see different entries. Office 2007 corresponds to
version 12.0.0.0 and Office 2010 (selected here) version 14.0.0.0.

To illustrate the situation in .NET 3.5, we use Visual Studio 2008. Alternatively, you can
use Visual Studio 2010 with the target framework of the project set to .NET Framework 3.5.

1155Office and COM Interop

FIGURE 22.27 Importing the Office PIAs.

WHAT ABOUT THE COM TAB?

When no PIAs are available, there’s always the COM tab to generate an interop assem-
bly for a selected COM library. Alternatively, command-line tools can be used to achieve
the same effect, in particular the tlbimp.exe one. TLB stands for type library.

When PIAs are available, it’s recommended to use them for a variety of reasons. As the
name implies, a PIA is the primary interop assembly for the target library provided by
some vendor. When different generated interop assemblies are mixed together, prob-
lems on type identity (pre .NET 4) can occur.

Once the two interop assemblies, Microsoft.Office.Interop.Word and a similarly named
one for Excel, have been referenced, we can start writing code. To avoid clashes in type
names if we were to import the namespaces as is, we use an alias for abbreviation:

using Word = Microsoft.Office.Interop.Word;

using Excel = Microsoft.Office.Interop.Excel;

The running example will be the creation of a Word document containing an Excel graph
showing memory utilization for processes on the current machine. This example has
been shown on various occasions introducing C# 4.0 and nicely illustrates all the applica-
ble features.

To get started with the Office automation model, we need to instantiate an application
object that serves as the entry point to an Office application such as Word or Excel. In
fact, this creates an out-of-process instance of the targeted application that we communi-
cate with cross-process through the magic of COM. In essence, our code is behind the
steering wheel of an entire Office application. This activation behavior isn’t the same for
all COM APIs: Some run in-process; others don’t.

1156 CHAPTER 22 Dynamic Programming

FIGURE 22.28 Instantiating an Excel application object.

Figure 22.28 shows how to create an instance of the Excel application. Notice we’re using
the new operator on an interface type (notice the icon next to the menu entry), which looks
kind of weird. This works because the compiler detects that the interface type corresponds
to a COM type. If we go to the definition of the Application interface (by using Go to
Definition or by pressing F12), we see the following:

[Guid(“000208D5-0000-0000-C000-000000000046”)]

[CoClass(typeof(ApplicationClass))]

public interface Application : _Application, AppEvents_Event

{

}

The attributes used here are all defined in System.Runtime.InteropServices. We don’t
have the space to elaborate on them, but what the compiler (up until version 3.5) did
with our code is turn it into a constructor call on the referred CoClass:

var excel = new Excel.ApplicationClass();

In C# 4.0, the generated code varies slightly, as you see later in the section called
“Walkthrough in .NET 4.” What matters more is we can now start writing code against the
automation model of Excel. We start by making the application visible by setting the
Visible property to true. This causes an Excel instance to show up. While we’re execut-
ing code, you’ll see changes getting reflected (live) in the automated application instance:

var excel = new Excel.Application();

excel.Visible = true;

Next, we ask Excel to create a new workbook. Obviously, methods exist to load an existing
workbook by specifying a filename. Here we’re simply creating a scratchpad on which to
generate a graph, ready to be exported to Word, so we don’t need any fancy calls to load
an existing file:

// New empty workbook

excel.Workbooks.Add(Type.Missing);

1157Office and COM Interop

Here things start to look a bit weird in .NET 3.5. Because C# didn’t have a way to deal
with optional parameters, we had to specify something for the single parameter on Add,
which is defined as follows (using Go to Definition):

[DispId(181)]

[LCIDConversion(1)]

Workbook Add(object Template);

Again, ignore the custom attributes that are used to make COM interop work at runtime.
The Type.Missing field is used in such scenarios to indicate the fact we’re omitting a value
for the corresponding parameter. You can already guess how code starts to look on
methods that have a whole bunch of optional parameters.

Next, we can start emitting data to the created workbook’s first sheet, using the code
shown here:

// Column headers

Excel.Worksheet sheet = (Excel.Worksheet)excel.ActiveSheet;

sheet.get_Range(“A1”, Type.Missing).Value2 = “Process”;

sheet.get_Range(“B1”, Type.Missing).Value2 = “Memory”;

Here we’re seeing two more issues with COM interop in the pre-v4 era. First, excessive
casts are often needed because COM APIs tend to “peter out” into dynamic land. When
we look at the definition of ActiveSheet, we see the PIA has typed this property as object
because no more specific type information was available in the Excel type library:

[DispId(307)]

object ActiveSheet { get; }

The second issue with the code we had to write in .NET 3.5 is seen on the last two lines,
where we have a use a method with a name that looks quite foreign in .NET. The reason
we had to use a get_Range method defined in the PIA is due to the absence of indexed
properties in C#. Instead, a get_ prefixed method has been generated. Also notice how
optional parameters strike again.

Now that we have the headers in our sheet, we can start populating the sheet with data
we can obtain through the use of LINQ to Objects run over System.Diagnostics.Process
objects. No new complaints about interop are added to the pile, although the code contin-
ues to look strange because of the excessive use of Type.Missing:

// Populate process list with 10 most expensive processes in terms of memory

var res = (from proc in Process.GetProcesses()

orderby proc.WorkingSet64 descending

select new {

Name = proc.ProcessName,

Memory = proc.WorkingSet64 / (1024 * 1024) /* in MB */

}

1158 CHAPTER 22 Dynamic Programming

).Take(10);

int i = 2;

foreach (var proc in res)

{

sheet.get_Range(“A” + i, Type.Missing).Value2 = proc.Name;

sheet.get_Range(“B” + i, Type.Missing).Value2 = proc.Memory;

i++;

}

Where things get really ugly is when methods have to be called where nearly all parame-
ters are optional, but we want to specify a few of those. The ChartWizard method does
precisely this, as shown here:

// Add new chart

Excel.Range range = sheet.get_Range(“A1”, Type.Missing);

Excel.Chart chart = (Excel.Chart)excel.ActiveWorkbook.Charts.Add(

Type.Missing,

sheet,

Type.Missing, Type.Missing);

chart.ChartWizard(

range.CurrentRegion, Type.Missing, Type.Missing, Type.Missing,

Type.Missing, Type.Missing, Type.Missing,

“Memory statistics”,

Type.Missing, Type.Missing, Type.Missing);

chart.CopyPicture(

Excel.XlPictureAppearance.xlScreen,

Excel.XlCopyPictureFormat.xlBitmap,

Excel.XlPictureAppearance.xlScreen);

When this code has run, a bitmap will be present on the Clipboard, allowing us to paste
the generated chart somewhere else. To illustrate other oddities of COM interop prior to
the use of C# 4.0, we’ll loop in Word as the target for our paste operation. Again, we start
by creating an application instance:

var word = new Word.Application();

word.Visible = true;

Creating a new document can be done by calling the Add method on the Documents
collection exposed as a property on the Word Application interface. Looking at this
method, we see something else that’s quite intrusive:

[DispId(14)]

Document Add(ref object Template, ref object NewTemplate,

ref object DocumentType, ref object Visible);

1159Office and COM Interop

FIGURE 22.29 Result of Office automation through C# 3.0.

More specifically, all parameters in this Word API are passed by reference. This is done in
quite a few COM-based APIs and is rather tedious to use from C#. To call this method,
again omitting concrete values for the parameters using Type.Missing, we have to write
the following code:

var missing = Type.Missing;

word.Documents.Add(ref missing, ref missing, ref missing, ref missing);

We even need to introduce a separate local variable because Type.Missing (luckily!) is a
static read-only field. Finally, we can paste the chart on our Clipboard into the Word
document, using surprisingly simple code:

word.Selection.Paste();

After all this hassle, the rewarding result is shown in Figure 22.29.

Walkthrough in .NET 4
Now let’s go ahead and rewrite the example in .NET 4 with C# 4.0. Before we go there,
it’s important to note that the existing COM interop code will simply continue to work
when compiled with the new tools in Visual Studio 2010. However, we can drastically
simplify the code.

1160 CHAPTER 22 Dynamic Programming

FIGURE 22.30 Optional parameters on a COM interop method.

First, we can get rid of the Type.Missing parameters because the optional characteristic of
parameters can now be leveraged from C#. Therefore, we can simply write
Workbooks.Add(), omitting all parameters:

var excel = new Excel.Application();

excel.Visible = true;

// New empty workbook

excel.Workbooks.Add();

IntelliSense actually shows optional parameters with their default values, as shown in
Figure 22.30.

One additional change that’s happening behind the scenes for the preceding code is the
way the interface gets instantiated. Although the specified CoClass was instantiated
before, the compiler now generates code to instantiate the object based on the specified
GUID that’s used for COM interop. The first line of code now translates into the following:

var excel = (Application)Activator.CreateInstance(

Type.GetTypeFromCLSID(new Guid(“00024500-0000-0000-C000-000000000046”)));

You’ve seen Activator.CreateInstance before when talking about reflection. In this case,
another helper method is used to locate the type based on a given class identifier. Later,
you’ll see this is related to the way PIAs get embedded in our assembly.

The next simplification involves indexed properties, as shown here. Use of indexed prop-
erty syntax is limited to COM interop scenarios. There is no way for developers to declare
an indexed property in C# 4.0:

// Column headers

Excel.Worksheet sheet = excel.ActiveSheet;

sheet.Range[“A1”].Value = “Process”;

sheet.Range[“B1”].Value = “Memory”;

1161Office and COM Interop

Looking at the definition of Range, we still see it showing up as a get_ method. All the
indexed property feature does is provide shorthand syntax to call such methods. If you
were to look at the generated IL code, you would see a call to the get_ method.

[DispId(197)]

Range get_Range(object Cell1, object Cell2 = Type.Missing);

If setters exist (methods prefixed with set_), they can be approached using indexed prop-
erty access syntax, too. The indexed property access applies only to types that were
defined as COM imported types in PIAs.

Another improvement that went almost unnoticed in the preceding code is that we got
away with assigning the ActiveSheet property to an Excel.Worksheet-typed object
without having to perform a cast first:

Excel.Worksheet sheet = excel.ActiveSheet;

The C# 4.0 COM interop feature that fuels this is the automatic replacement of object by
dynamic for types that appear in imported COM APIs. Use of Go to Definition again
reveals what’s going on here:

[DispId(307)]

dynamic ActiveSheet { get; }

At runtime, operations on ActiveSheet will be dispatched dynamically through the COM
binder that ships with the .NET Framework 4. In our case, the assignment of the dynami-
cally typed property to a statically typed sheet variable results in the creation of a dynamic
conversion operation.

CallSite<Func<CallSite, object, Excel.Worksheet>>.Create(

Binder.Convert(CSharpBinderFlags.None, typeof(WorkSheet), typeof(Program))

)

The code to populate the sheet based on the results of our LINQ query stays pretty much
the same, also eliminating the artificial use of get_Range in favor of indexed properties:

// Populate process list with 10 most expensive processes in terms of memory

var res = /* same query as shown earlier */

int i = 2;

foreach (var proc in res)

{

sheet.Range[“A” + i].Value = proc.Name;

sheet.Range[“B” + i].Value = proc.Memory;

i++;

}

1162 CHAPTER 22 Dynamic Programming

FIGURE 22.31 Specifying a parameter by name.

To wrap up the Excel API usage enhancements, we can leverage optional parameters for
our calls to the chart-creating functions. First, notice how Charts.Add again “peters out”
into dynamic typing, so we can omit the cast thanks to C# 4.0:

// Add new chart

Excel.Range range = sheet.Range[“A1”];

Excel.Chart chart = excel.ActiveWorkbook.Charts.Add(After: sheet);

On the method call itself, we’re specifying the second parameter, After, by referring to it
by name, as shown in Figure 22.31. Notice this parameter starts with an uppercase A,
which is not uncommon as a naming pattern in some COM APIs. Although this looks
unnatural to developers familiar with managed code casing conventions, it’s one of the
prices you have to pay for interoperability. Don’t forget C# is a case-sensitive language, so
you’ll have to spell After correctly.

This code will ultimately compile into a call to the Add method specifying the default
values for the unspecified parameters (that is, Missing.Value). In a similar manner, we can
simplify the call to ChartWizard, specifying the Title parameter by name and the first
parameter (referring to the range for the chart’s data) just positionally. Because all the
parameters on CopyPicture are optional and have default values, we can make this call
easier on the eye as well:

chart.ChartWizard(range.CurrentRegion, Title: “Memory statistics”);

chart.CopyPicture();

Finally, we can take a look at the code used to interoperate with Word. Here all the
optional by-ref passing of parameters is gone, too. Although this isn’t shown directly here,
you can omit the ref modifier on COM interop methods, causing the compiler to insert
them for you:

var word = new Word.Application();

word.Visible = true;

word.Documents.Add();

word.Selection.Paste();

The generated code for the Add method looks like this, where temporary variables are
introduced for the objects (here the default values) that are passed by reference:

1163Office and COM Interop

object <>r__ComRefCallLocal0 = Missing.Value;

object <>r__ComRefCallLocal1 = Missing.Value;

object <>r__ComRefCallLocal2 = Missing.Value;

object <>r__ComRefCallLocal3 = Missing.Value;

word.Documents.Add(ref <>r__ComRefCallLocal0, ref <>r__ComRefCallLocal1,

ref <>r__ComRefCallLocal2, ref <>r__ComRefCallLocal3);

Separate variables are needed because the API being called may overwrite them, which is
the essential characteristic of passing them by reference.

The resulting code in .NET 4 definitely looks much more like the code was intended to
look all along, reducing all sorts of clutter that was imposed on us before. And sure
enough, it still produces the same results as it did before.

SOME TIPS ON APPROACHING OFFICE AUTOMATION APIS

Some readers might wonder how to discover Office automation functionality given the
overwhelming number of methods and properties exposed in the APIs. The peter-out
characteristic of various operations, all of a sudden ending up in an untyped world, defi-
nitely doesn’t improve on this either.

Although MSDN documentation is a good starting point, it’s often easier to let the sys-
tem generate code for you. The support built in to Office for recording macros based on
user actions can help quite a bit with this. Just mimic the creation of a sheet, docu-
ment, and so on inside the Office program while recording a macro and take a look at
the resulting VBA code. Apart from the syntactical differences, the code being generat-
ed can be ported quite easily to C# 4.0.

Embedding of PIAs
One tooling and compiler feature we’ve ignored in the previous discussion is the so-called
No PIA. As mentioned during the introduction on improved COM interop, the use of PIAs
has drawbacks with regard to deployment size. Even though they don’t contain code,
quite a bit of metadata lives on the contained interfaces and defined operations. All of
that results in big assemblies, of which only a fraction of functionality is usually used by
an application.

To alleviate the need for big deployments, .NET 4 provides the option to embed used
interop types in your own assembly. Figure 22.32 shows where this gets enabled in the
Properties window for a selected PIA reference assembly.

Under the hood, this will cause the compiler /link flag to be passed, specifying the PIA as
its argument. Looking at our program’s assembly after compilation, we see only the used
interop types present and embedded in our own assembly. Figure 22.33 shows this embed-
ding in action.

If you were to look at the original PIA inside .NET Reflector, you would see hundreds of
types. It’s clear only the used subset got embedded in our assembly. But there’s more.
Because COM interfaces can be quite large, lots of redundant unused operations (and the
metadata defined on them) would get embedded for no good reason. The No PIA feature

1164 CHAPTER 22 Dynamic Programming

FIGURE 22.34 Reduction of operations on a COM imported interface type.

FIGURE 22.33 Embedded PIA types.

FIGURE 22.32 Enabling the No PIA feature for a reference assembly.

also operates on the level of operations inside a type, pruning out all the ones that aren’t
used. Figure 22.34 shows this for the Chart interface whose ChartWizard and CopyPicture

methods are the only ones we’ve touched.

1165Summary

Two tricks are used to make this work correctly at runtime. Details about them are beyond
the scope of this discussion, but a short overview is in order.

Vtable gap methods are inserted to maintain compatibility with the vtable used when
dispatching operations. The mysterious _VtblGap methods communicate how many
methods are omitted from the original interface. Calls to members on COM interfaces are
implemented by invoking code that’s found based on an offset computed from the start of
the interface virtual function table. If we are omitting methods in the embedded interface,
the runtime must be able to restore this counting, which it does based on the numbers
encoded in the gap method names.

The TypeIdentifier attribute on the interface indicates the type participates in type equiva-
lence relationships, in this case based on the GUID. If you have multiple assemblies that
are using the same PIA using No PIA, both will have their own customized, trimmed
copies of various interfaces. Because these will be different types to the CLR, there’s no
compatibility story for them. One may have methods A, B, and C embedded, whereas
another may have B and D. Using type equivalence, the type’s GUID tells the CLR the
types represent the same imported (COM) type, allowing casting between them. For more
information, see Type.IsEquivalentTo on MSDN.

Summary
Dynamic programming has established its position in the programming landscape for
modern applications. With the increasing popularity of dynamic languages and the trend
of taking weakly typed approaches to data (JSON, XML without XSD) and web services
(REST), it becomes increasingly important to provide a bridge between C# and “islands” of
dynamic code or data. In other words, a golden middle had to be found between the tradi-
tionally statically typed core of the C# language and the flexibility to deal with dynami-
cally typed code and data.

In this chapter, we built on the technological foundations for dynamic programming
introduced in the previous chapter. With mechanisms such as expression trees and
runtime code generation all working in concert, we ended up in the world of C# 4.0
dynamic, which leverages the dynamic language runtime.

After introducing the feature, we took a look at call sites, binders, and expression tree
compilation and how they relate to the C# 4.0 feature. All of this was illustrated with
examples showing the dynamic feature as a replacement for reflection and in conjunction
with other languages such as IronPython.

Finally, we talked about improved COM interop in .NET 4, thanks to the COM binder and
a series of C# 4.0 language enhancements. Combining all the C# 4.0 features (named and
optional parameters, dynamic typing, omission of ref, and so on), we learned how this
results in more flexibility when dealing with various (possibly old) code models such as
COM-based Office APIs.

This page intentionally left blank

CHAPTER 23

Exceptions

IN THIS CHAPTER
. Life Without Exceptions 1167

. Introducing Exceptions 1170

. Exception Handling 1172

. Throwing Exceptions 1188

. Defining Your Own Exception
Types 1190

. (In)famous Exception
Types 1193One of the biggest frustrations of development in older

styles, such as COM and Win32, was the poor support for
error handling. The need to deal with error codes manually,
introducing lots of checks for success states, was a grueling
experience that not only led to a decrease in productivity
but also caused program code to look like spaghetti. And to
“improve” on that, developers relied on the ultimate C
solution: macros, to deal with control flow for error-
handling paths and such.

With the introduction of Structured Exception Handling
(SEH) in the operating system, surfaced by language features
in C++, error handling could be done in a more structured
way, but retrofitting existing application programming
interfaces (APIs) was hardly ever done. The .NET Framework
designers were in a great position to improve on this situa-
tion by making exception handling a first-class citizen of
the platform and languages built upon it.

In this chapter, we study how exceptions are thrown and
caught, how they are entangled with the control flow of a
program, and where it’s appropriate to use them. As part of
this exploration, you’ll learn how to create your own excep-
tion types and how to debug in the face of exceptions using
the Visual Studio 2010 debugger.

Life Without Exceptions
To give you a feeling about the poor state of things before
the advent of exceptions, let’s take a look at some Win32-
and COM-based code with manual error handling.

1168 CHAPTER 23 Exceptions

Win32

In the world of Win32, integer values were used to indicate errors produced by functions.
This already introduces a problem: The meaning of a plain old integer is not very clear by
just looking at it. Instead, symbolic constants need to be introduced to make program
code look more meaningful. Furthermore, those error codes need to be queried for manu-
ally after failed function calls using the GetLastError function. An example of such a
function call, followed by error “handling,” is shown here:

HWND hWindow = CreateWindowEx(0, g_szClassName, L”Hello Win32”,

WS_OVERLAPPEDWINDOW, 100, 200, 300, 400,

NULL, NULL, hInstance, NULL);

if (NULL == hWindow) {

dwError = GetLastError();

// Analyze the error and handle appropriately or propagate to caller.

}

Combined with manual resource management, propagation of errors typically leads to the
use of goto statements to jump to an epilogue in the containing function where proper
release of acquired resources is done (for example, using CloseHandle and delete):

int ShowStartDialog() {

int dwError = 0;

// More code goes here

if (NULL == hWindow) {

dwError = GetLastError();

// Analyze the error and handle appropriately if possible.

goto Exit; // Too bad, couldn’t handle it meaningfully...

}

// More code goes here

Exit:

if (hSomeResource != NULL) {

CloseHandle(hSomeResource);

hSomeResource = NULL;

}

// Release other resources.

return dwError;

}

1169Life Without Exceptions

To propagate errors, it’s not atypical to sacrifice the function’s return value to contain the
error code, where 0 indicates success. Alternatively, in a more “natural” Win32 style, the
SetLastError function can be used, too. Regardless of the technique used here, propagat-
ing errors is an act of explicit checking against error values and making an appropriate
decision on the spot.

All of this leads to tedious checking against errors, introducing more complex control
flow, which may then lead to missed resource deallocation and so on. And even the most
innocent-looking function calls need to be checked for error conditions because low-level
system failures (such as out of memory) are reported through the same means.

COM

The situation didn’t get much better in the Component Object Model. Again, integral
values are used to report errors, now hidden behind a typedef called HRESULT (which origi-
nally stood for handle result). One thing we should grant COM is adding a tiny little bit
more structure to error handling by introducing style guidelines on the way functions
should report errors. In Win32, each function had its own habits, some of which returned
an error code as a return value, whereas others relied on GetLastError facilities. But guide-
lines are just that: guidelines. Occasionally, you will find COM APIs that don’t follow
those guidelines.

Because the typical COM API design is to have functions return an HRESULT, macros were
introduced to make code easier on the eye (easier in the C/C++ sense of the word, that is):

IBackgroundCopyManager* g_pbcm = NULL;

GUID JobId;

IBackgroundCopyJob* pJob = NULL;

HRESULT hr;

hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);

if (SUCCEEDED(hr)) {

hr = CoCreateInstance(__uuidof(BackgroundCopyManager), NULL,

CLSCTX_LOCAL_SERVER,

__uuidof(IBackgroundCopyManager),

(void**) &g_pbcm);

if (SUCCEEDED(hr)) {

hr = g_pbcm->CreateJob(L”MyJobName”, BG_JOB_TYPE_DOWNLOAD, &JobId,

&pJob);

if (SUCCEEDED(hr)) {

// Add files to the job.

}

}

}

1170 CHAPTER 23 Exceptions

Sacrificing the output value of a function for error reporting purposes, the excessive use of
output parameters to communicate back the result of function calls leads to less-readable
code. Depending on the error-checking style, either indentation grows out of control (as
seen in the preceding example, due to the repeated success checks) or the use of goto
statements becomes a necessity to centralize resource cleanup:

if (FAILED(hr)) {

// Maybe you can do something about it? If not...

goto Exit;

}

Alternatively, one often checks for known error conditions manually:

if (BG_E_NETWORK_DISCONNECTED == hr) {

// Ha! Know what to do here.

}

C and C++ developers have come up with more handcrafted macros to make this kind of
error handling less invasive throughout their code bases:

#define CKHR(hr) if (FAILED(hr)) goto Exit;

Although this “flattens” large blocks of code with sequential calls to various functions that
may fail, it comes at the cost of introducing hidden control flow. If a new developer on
the project starts using the CKHR macro shown here but omits an Exit label in the current
function body, a cryptic error message will result.

Lessons Learned

Common themes can be identified between Win32 and COM, including the need for
manual checking against error conditions, leading to a huge number of branches in code
bases. Furthermore, error codes are based on symbolic constants that can be hard to find,
often leading to forgotten cases of error handling. Mixing those disadvantages with the
need for manual resource handling in both cases only makes matters worse, often sacri-
ficing block-based structured programming in favor of goto statements to centralize
resource cleanup. Improper cleanup often leads to memory problems that can be hard to
track down.

Clearly, we can do better by introducing more structure to deal with exceptions. This is
where structured exception handling comes in, as you see next.

Introducing Exceptions
With exceptions entering the picture, you can separate error handling from the regular
flow of an application in a block-structured manner. For example, the following example
illustrates the use of the System.IO .NET Framework APIs to read a file from disk:

1171Introducing Exceptions

IEnumerable<Customer> ReadCustomersFrom(string file) {

try {

using (FileStream fs = File.OpenRead(file)) {

using (StreamReader sr = new StreamReader(fs)) {

// Read from the file, creating Customer instances to return...

}

}

}

catch (IOException ex) {

// If we handle this exception somehow, we can do it here.

}

}

Various methods used in the preceding code can throw an exception. Instead of getting an
error code back that needs to be checked on the spot, we declare an event handler using
the try-catch statement. Each exception we’re interested in handling can have its own
catch block. If an exception is left unhandled, it simply propagates to the caller of the
current method.

A structured approach to exceptions has various advantages, most of which are shown in
the preceding section. First, we didn’t have to sacrifice the return value of a method call in
favor of error codes. Code simply reads as it was intended to behave in regular circum-
stances: If the file is found, we get a FileStream object back. Next, we can create a
StreamReader and so on.

TWO RETURN VALUES AND CHECKED EXCEPTIONS

It might help to think about structured exception handling as a way to add a second
return “channel” to each function. The primary return channel is used to communicate
the answer of a function in response to a call and is used in regular circumstances. A
second return channel is monitored by the runtime for reported errors that signal less-
common exceptional circumstances.

In platforms with checked exceptions, like Java, this is made more visible by the use of
a throws clause on a method signature:

public String readLine() throws IOException;

.NET doesn’t have checked exceptions because they tend to lead to sloppy code where
people introduce irresponsible catch-all statements. In addition, some caveats apply to
versioning of code when new error conditions are introduced.

Second, propagation of exceptions that are left unhandled is a service provided by the
runtime. In fact, this changes defaults: In Win32 and COM, if you don’t do anything with
the error code you get back, your program will continue to run. In most cases, this proba-
bly is not the right thing to do because the behavior of a program that has failed silently
at some point in time is ill defined. At best, it will crash at some point in the future.

1172 CHAPTER 23 Exceptions

try
{
 // Do something.
 ThisCouldFail();
 // Do something else.
}
catch (SomeException ex)
{
 // Handle exception.
}
finally
{
 // Clean-up.
}

Throws
SomeException

Successful Execution Exceptional Execution

try
{
 // Do something.
 ThisCouldFail();
 // Do something else.
}
catch (SomeException ex)
{
 // Handle exception.
}
finally
{
 // Clean-up.
}

FIGURE 23.1 Flow of exceptions through a try-catch-finally statement.

At worst, it will produce incorrect results or expose weird behavior that may go unnoticed
for a long time, only making matters worse. When you use exceptions, if no one handles
the exception, your program will terminate its execution.

Contradictory as it might seem, making applications crash in the face of errors that are
not dealt with is a much better scenario. Although the reliability of a program that does
sloppy exception handling is lower, it’s without doubt more robust. Think about it this
way: The most correct program is the one that doesn’t do anything rather than the one
that continues its merry way, producing bad results.

MORE EXCEPTION HANDLING THAN YOU MAY THINK!

In the example shown here, there’s more hidden exception handling going on due to the
use of the using statement. Recall from Chapter 8, “Basics of Exceptions and
Resource Management,” that the using block gives rise to a try-finally statement,
ensuring proper disposal of the resource it acquired on the first line. Just as with excep-
tions, this results in a clear block-based structure of code, here to eliminate the need of
a manual approach to resource cleanup. This is structured programming at its best.

Exception Handling
We start our journey through the world of exceptions by taking a look at the most
common developer activity related to exceptions: structured handling of exceptions. The
key ingredient to this is the use of the try-catch-finally statement. But first, we’ll ensure
a proper understanding of the way exceptions flow in the system. Figure 23.1 shows the
execution flow depending on whether an exception occurred, which was illustrated earlier
in Chapter 8, “Basics of Exceptions and Resource Management,” Figure 8.19.

1173Exception Handling

FIGURE 23.2 Order of handlers matters.

The try block corresponds to a so-called protected region in the eyes of the CLR. A
protected region simply tells the CLR to look out for exceptions within that block of code
to transfer control to a potential handler or to ensure proper cleanup code gets run.
Handlers are declared by means of a catch block, whereas the finally block is used to add
code that’s executed regardless of the outcome of the try block.

In Figure 23.1, two possible execution paths are illustrated. On the left, a successful pass
through the code leads to the finally block being executed after the try block is left
somehow. This can be due to reaching the terminating curly brace or because of the use of
a return statement.

The runtime makes a guarantee that the finally block gets called no matter what
happens, including the situation on the right. If an exception occurs during the
ThisCouldFail call, a handler is looked for. Assuming there’s an applicable handler associ-
ated with the protected block, control is transferred to that block of code. No matter how
the handler exits (it could throw an exception by itself), the finally block gets called, too.

To decide whether a handler is applicable to deal with a certain exception that’s raised in a
protected block, the subtyping relationship is used, and handlers are scanned to find a
match. This implies that the declaration order of handlers matters, as shown in Figure 23.2

It’s essential to understand the order of operations involved in locating handlers, to get a
good idea about the control flow that will be observed during exception propagation. The
CLR does two passes over a call stack to figure out where and in what order all the
involved pieces of code need to be executed. In the first scan, the runtime searches the
call stack for a protected region that has an associated handler that can deal with the
exception being thrown. During this pass, filters may be executed, a feature that’s not
surfaced in the C# language, as explained in Chapter 8, “Basics of Exceptions and
Resource Management,” in the section, “Filters, but Not at the Language Level.” We’ll
ignore this here.

1174 CHAPTER 23 Exceptions

The scan of the call stack for an applicable handler happens from the point where the
exception was raised, making its way up the call stack. For every protected block, all
handlers are scanned in the order they appear until a suitable one is found. As shown
earlier, the “best” handler (in terms of subtyping) is not searched for. Instead, the first
applicable handler wins.

DON’T CATCH ALL!

I’ll say this many times throughout the chapter, but catching all exceptions is to be con-
sidered a crime. Whenever a catch (exception), or for that matter a catch block with no
specified exception type, is found, it will be used to handle the exception. The obvious
reason is that all exception types derive from this base type. Only handle exceptions
you can really handle appropriately.

The first pass over the call stack is illustrated in Figure 23.3. Notice how the handler in
Method1 wins over the more specific handler in Main. Not shown here is how handlers are
being scanned in lexical order within a method, but that should be quite obvious. The
same rule holds for nested try statements; scanning happens on an inside-out basis:

try {

try {

// Exception raised here.

}

catch (SomeException ex) { /* Considered first. */ }

}

catch (OtherException ex) { /* Considered next. */ }

Next, the stack is unwound, executing all finally handlers associated with protected
blocks encountered on the way out, ultimately reaching the handler that was found. The
same happens if no handler was found, at which point the exception propagates all the
way up to the Main method back to the point where the CLR started executing your
managed code. This terminates the application. Figure 23.4 shows the continuation of the
exception handling scenario of Figure 23.3.

EXCEPTIONS ARE COSTLY

All the scanning of the stack and control transfer logic is quite costly. This is not a
problem if exceptions are used as intended: to deal with exceptional circumstances.
Don’t rely on exceptions for your program’s regular flow control.

1175Exception Handling

Method2 try {
 Method3();
}
catch (My Exception ex) {
 // Handle exception.
}
finally {
 // Clean-up.
}

Method1 try {
 Method2();
}
catch (BaseException ex) {
 // Handle exception.
}

Main try {
 Method1();
}
catch (SomeException ex) {
 // Handle exception.
}

Method3 throw new SomeException();

FIGURE 23.3 First pass through the stack, looking for a proper handler.

Method2 try {
 Method3();
}
catch (My Exception ex) {
 // Handle exception.
}
finally {
 // Clean-up.
}

Method1 try {
 Method2();
}
catch (BaseException ex) {
 // Handle exception.
}

Main try {
 Method1();
}
catch (SomeException ex) {
 // Handle exception.
}

Method3 throw new SomeException();

FIGURE 23.4 Unwinding the stack, executing finally blocks on the way out.

1176 CHAPTER 23 Exceptions

try Statements

Block-based exception handling is one of the core features of structured exception
handling. The try statement in languages like C# reflects this. Associated with the try
block are catch handlers and/or a single finally block. All forms shown here are valid
based on those rules. First, a single handler:

try {

// Protected block.

}

catch (FirstException ex) {

// Handle the exception of the specified type.

}

Second, use of multiple handlers

try {

// Protected block.

}

catch (FirstException ex) {

// Handle the exception of the specified type.

}

catch (SecondException ex) {

// Handle the exception of the specified type.

}

All these can have a finally block at the bottom, but that block can also be used in the
absence of any catch blocks:

try {

// Protected block.

}

finally {

// This code will execute no matter how the try block is exited.

}

The use of a try statement with only a finally block is exactly what the using statement
translates into, to guarantee a call to the Dispose method on the acquired resource occurs
when the using block is left:

using (resource) {

// Code using the resource; may crash.

}

1177Exception Handling

The preceding is equivalent to this:

try {

// Code using the resource; may crash.

}

finally {

if (resource != null)

resource.Dispose();

}

Because the end of the try block is not guaranteed to be reached because of possible
control transfer due to exceptions, definite assignments or flow analysis may throw you
off at first. The compiler is very pessimistic when it comes to flow analysis:

int Bar() {

try {

return 1;

}

catch (SomeException ex) {

// Handle the exception of the specified type.

}

// The compiler concludes you may have ended up in the catch block.

}

Try statements have a much simpler form at the level of intermediate language (IL) code,
where each protected block can have only catch handlers or finally blocks associated
with it, but not both. More-complex try statements written in C# translate into nested
try statements at the IL level, as shown here:

try {

// Protected block.

}

catch (FirstException ex) {

// Handle the exception of the specified type.

}

catch (SecondException ex) {

// Handle the exception of the specified type.

}

finally {

// This code will execute no matter how the try block is exited.

}

1178 CHAPTER 23 Exceptions

This gets turned into the following equivalent form for the translation to IL:

try {

try {

// Protected block.

}

catch (FirstException ex) {

// Handle the exception of the specified type.

}

catch (SecondException ex) {

// Handle the exception of the specified type.

}

}

finally {

// This code will execute no matter how the try block is exited.

}

You will agree the C# syntax makes this code look much nicer, eliminating the increasing
number of indentation levels that would go with every nested try statement.

ETYMOLOGY: PROTECTED BLOCKS

It turns out the wording protected block fits the C# model of exception handling quite
nicely because try statements are based on blocks delimited by curly braces (which,
quite exceptionally for blocks, cannot be omitted on try, catch, or finally blocks,
even if they are single line).

Nevertheless, the concept of protected blocks comes from the Common Language
Infrastructure (CLI) glossary. Although IL code looks block-based, in reality it isn’t.
You’ve seen this before when we discussed various statements such as loop
constructs, which really turn into branches at the IL level. Looking in ILDASM, you will
see apparent blocks for exception-handling constructs, as shown in Figure 23.5.

Under the covers, things are done much more mechanically using some metadata con-
structs. Every method has an exception table that relates to a region of IL code (a
from-to range, if you will) that’s protected with a corresponding handler or finally
block. In other words, curly brace blocks are a language-level illusion.

First-Chance Exceptions

Sloppy code might be swallowing exceptions improperly without decent handling. When
you see source code that looks like this, you should start to shiver:

try {

// Exception raised here.

}

catch (SomeException) { }

1179Exception Handling

FIGURE 23.5 Block structure for exception handling in IL.

At the same time, consider yourself lucky you saw the code to begin with. Much more
likely you’re finding yourself back in a situation where you need to find out why the
program misbehaves under certain circumstances. Assuming the preceding code lies at the
heart of the observed misbehavior, the question becomes how to track it down. After all,
the exception might long have been swallowed, and the program may crash in some
different corner. Consider the following example:

static string s_Name;

static void Main() {

B();

A();

}

static void A() {

Console.WriteLine(s_Name.ToUpper());

}

static void B() {

try

{

C();

s_Name = “Joe”;

}

1180 CHAPTER 23 Exceptions

FIGURE 23.6 The Output window reveals a first-chance exception.

catch (SomeException) { }

}

static void C() {

throw new SomeException();

}

This example is simple enough to spot the problem by mental debugging, but assume
many more methods are involved. Let’s walk through the problem first to ensure we’re all
on the same page. B’s responsibility is to set the s_Name variable somehow but fails to do
so because C threw an exception that was swallowed by the try-catch block in the B
method. When A comes around, all traces of B and C are long gone, and the code crashes
on a NullReferenceException when trying to call ToUpper on s_Name.

Notice that matters could be even worse without the ToUpper call. When a null argument
is encountered, Console.WriteLine simply prints an empty line. This may go unnoticed
for a long time. Because of sloppy error handling, no potentially critical output is written
to the screen. It’s hard to call the program correct any longer.

Luckily, the debugger can help figure out where things went wrong. Figure 23.6 shows the
situation at the point the NullReferenceException is thrown. The Call Stack window
doesn’t show us much useful information because the root cause of the error has long
passed. However, the Output window provides more helpful information because it logs
first-chance exceptions. Besides the NullReferenceException that’s going on right now, there’s
also mention of the SomeException that occurred earlier. In reality, this might be way up in
the Output window, but in general, first-chance exceptions should be treated seriously.

We can do better than look at the Output window to spot first-chance exceptions. To
break the debugger as soon as an exception happens, the Debug, Exceptions menu can

1181Exception Handling

FIGURE 23.7 Enabling first-chance CLR exceptions.

come in handy. If you check the Thrown check box for the Common Language Runtime
Exceptions entry, the debugger will break at the point the exception gets thrown (see
Figure 23.7). Feel free to explore the dialog in more detail as you can filter on exception
types more granularly. In addition, other types of exceptions can be enabled for first-
chance visualization, mostly from the native world. This is useful if your code calls into
native APIs, especially when you’re doing mixed-mode debugging.

MDAS

This dialog also gives access to Managed Debugging Assistants (MDAs). They can be
thought of as debugger enhancements that know about various circumstances that are
indicative of common programming errors in the world of managed code.

When running the program again under the debugger, we see the original exception
under the debugger at the point it’s thrown (see Figure 23.8). Notice the different caption
of the pop-up, mentioning the exception “occurred” as opposed to the pop-up shown in
Figure 23.6 that says the exception was left “unhandled.”

While we’re in the debugger, a handy trick to inspect the current exception object is to
type $exception in any watch window. This proves particularly useful when looking at
first-chance exceptions or when you’re in a handler that didn’t declare a variable to refer
to the exception object. The result is shown in Figure 23.9.

SOS STRIKES AGAIN

SOS, the low-level native debugger extension that comes with the CLR, can deal with
exceptions, too. Although most readers won’t have an immediate need to use SOS for
their day-to-day development jobs, it sometimes proves handy on production systems
where no Visual Studio debugger is or can be installed. (I have yet to find a system
administrator who allows a full Visual Studio install on every server in the data center.)

1182 CHAPTER 23 Exceptions

FIGURE 23.9 Using $exception to visualize the exception object.

FIGURE 23.8 A first-chance exception shown in the debugger.

Three SOS commands to deal with managed exceptions come in handy:

. StopOnException, or soe, causes the debugger to break on a first-chance excep-
tion of the specified type (for example, soe MyException). A -derived flag can
be used to stop on an exception of the specified type or a subclass thereof.

. PrintException, abbreviated pe, prints the current exception, much like the
$exception trick in the Watch window. The resulting view is similar to a
DumpObject (do) call on a managed object. An additional -nested flag can be
supplied to show nested exceptions (that is, the situation that arises when a
catch block throws an exception by itself).

. Threads may be the most surprising of all, but because every thread has its own
evaluation stack and exceptions are closely related to the evaluation stack, this
command is in a good position to show for each thread what exception object (if
any) is floating around on it.

Don’t worry too much about SOS if you’re just starting to learn .NET development.
However, if you end up outside the comfort zone of Visual Studio (for example, debugging
a production system), know that the WinDbg and SOS tandem is a viable alternative.

1183Exception Handling

FIGURE 23.10 Configuring the new IntelliTrace feature.

Intermezzo on Historical Debugging with IntelliTrace

While we’re in the wonderful world of debugging managed code applications, we should
take a look at a new feature added to Visual Studio 2010: IntelliTrace. In the example
shown in the previous section, we were dealing with an exception that was swallowed
inappropriately long before the program started to fail. Wouldn’t it be handy to walk the
program’s execution back in time to investigate the program state outside the scope of the
current call stack? That’s exactly what IntelliTrace enables.

To play with this exciting new feature, we need to configure it first through the Tools,
Options dialog, under the IntelliTrace node in the tree view. Two modes are available;
the latter one, called Diagnostic Events and Call Information, is the most powerful.
Figure 23.10 shows the desired settings for the next experiment.

Disabling first-chance exceptions for the time being, we’ll execute the same program with
the Historical Debugging feature properly configured. At the point we crash on the
NullReference exception, make the IntelliTrace window visible (if it isn’t already) through
the Debug, IntelliTrace, Debug History Calls menu. This brings up the view shown in
Figure 23.11.

Observe a few things here. At this point, IntelliTrace pretty much shows the same infor-
mation you would see in the Call Stack window: The debugger was stopped at an excep-
tion in method A, with the Main method higher up the stack. However, from this view, we
can start doing time travel. Using the buttons in the margin of the code editor, it’s possi-
ble to go back to the previous event logged by the historical debugger. So far, nothing too
exciting; this will just bring us back to the Main method’s call to A.

Where the magic comes in is when we’re back on the call to B from the Main method;
now we can step into B based on the IntelliTrace information that has been collected. Not
only this, but the technology enables us to debug the call to B by replaying the events

1184 CHAPTER 23 Exceptions

FIGURE 23.12 Instead of just walking up the call stack, we can step into other paths.

FIGURE 23.11 Debug history at the point of the crash.

This new capability comes in very handy while debugging an application when you have
no clue where an invalid program state originated.

WHY LOGGING MATTERS

Using IntelliTrace should not be a reason to omit useful tracing and diagnostics in your
code (for example, by writing significant events during a program’s execution to a log
file) because one day or another you’ll face a live crash where IntelliTrace has not
been enabled.

When and What to Catch

Handling exceptions correctly is a huge responsibility for framework and application
developers. For that reason alone, it’s important to give some guidelines on when and
what to catch.

Let’s start with the latter question: what exceptions to catch. You first want to know
which exceptions can be thrown by the APIs being used; for this information, documenta-
tion proves invaluable. As an example, consider the System.IO.File.OpenRead API, where
the following exceptions are documented:

that were collected. Figure 23.12 shows the different options in the margin of the code
editor at the point of the call to B.

1185Exception Handling

. ArgumentException—The path is a zero-length string, contains only whitespace or
contains one or more invalid characters as defined by InvalidPathChars.

. ArgumentNullException—The path is null.

. PathTooLongException—The specified path, filename, or both exceed the system-
defined maximum length. For example, on Windows-based platforms, paths must be
fewer than 248 characters, and filenames must be fewer than 260 characters.

. DirectoryNotFoundException—The specified path is invalid (for example, it is on an
unmapped drive).

. UnauthorizedAccessException—The path specified a directory or the caller does not
have the required permission.

. FileNotFoundException—The file specified in path was not found.

. NotSupportedException—The path is in an invalid format.

The next step is to categorize the exceptions according to various criteria. One category
contains the exceptions that result from bugs in your code or improper input validation
higher up the call stack. For example, an ArgumentNullException is something you can
avoid by making sure a null reference is never fed into the relevant arguments. If the data
for those arguments is provided from the outside, proper input validation at the point the
data is received is the right thing to do. The execution should simply not get to this point.

Then there are the exceptions you can’t provide any meaningful recovery for. In the
preceding example, it’s unlikely you will be able to recover from an authorized access
exception because file system level settings are involved. Depending on where the call to
the OpenRead method lives, you might want to let this exception go, present an error
dialog to the user, or perform diagnostic logging.

Another category consists of exceptions you can try to prevent but can never eliminate
completely. A good example is the FileNotFoundException, where the outside world
will influence the outcome of the call. You may spontaneously come up with mitiga-
tions like this:

if (!File.Exists(file)) {

// Preventing the FileNotFoundException by proper action here?

}

var fs = File.OpenRead(file);

No matter how much you check for the file’s existence, you still have a race condition in
the preceding code. If it disappears between the time of checking and the time of attempt-
ing to open the file, you’ll still get the FileNotFoundException. If you’re in a good posi-
tion to handle the exception (for example, by informing the user), or if you have thought
out a fallback scheme to look for a file in another place, that’s the way to go; otherwise,
let the exception bubble up to the caller and document that’s the case.

1186 CHAPTER 23 Exceptions

Another category of exceptions has to do with situations you can’t do anything about no
matter how hard you try. The system might be out of memory; the call stack may over-
flow (which could indicate a bug in a recursive algorithm); or if things go really bad, the
execution engine might be in trouble. Those exceptions should not be handled under any
circumstance.

UNCATCHABLE!

The CLR contains a list of exception types it categorizes as uncatchable, meaning the
user cannot handle them. Examples include the OutOfMemoryException and
StackOverflowException types.

Finally, some poorly designed APIs require users to handle exceptions even for regular use.
Luckily, those APIs are rare and have typically been replaced or complemented by better
members. A good example is int.Parse in .NET 1.x:

int age = -1;

bool ageValid;

try {

age = int.Parse(userAge);

ageValid = true;

} catch (FormatException) {

ageValid = false;

}

if (!ageValid) {

// Take appropriate action; e.g. ask for input again.

}

API designers soon recognized that this was not a great way to check for valid input, so a
sister method called TryParse was introduced:

int age;

if (!int.TryParse(userAge, out age)) {

// Take appropriate action; e.g. ask for input again.

}

Never design APIs that require the user to catch an exception in regular circumstances;
doing so will not only lead to more cumbersome code, it will also degrade performance
and hinder debugging with first-chance exceptions enabled.

1187Exception Handling

DON’T CATCH ALL (AGAIN)

Based on the discussion in the previous section, you should be discouraged from
catching all exceptions already. Some simply cannot be caught, and others should be
propagated to the caller to take meaningful action, if possible. Very few exceptions to
this rule exist, and I won’t try to define such exceptions here.

Beyond Your Control

Catching exceptions using try statements works only if your code appears somewhere
higher up on the call stack. After all, a protected block protects only the code that runs
inside it. You don’t possess magical powers to stretch an exception handler around code
that is not yours, somewhere in an unrelated corner of the system.

A typical source of such practical issues is in UI programming, where a dispatcher is used
to run work on behalf of the user, on the right thread and with a specified right priority.
The code that dispatches work items that have been scheduled is beyond your control. For
example, in Windows Presentation Foundation (WPF), it’s the application’s Run method
that starts the dispatcher. We talk more about the dispatcher’s role when covering WPF in
more detail. For now, just focus on the following little example:

private void crash_Click(object sender, RoutedEventArgs e) {

Dispatcher.BeginInvoke(new Action(() => {

throw new Exception(“Oops!”); })

);

}

Here we’re scheduling background work through the dispatcher, allowing the event
handler for the crash button to return immediately. At some point in the future, this work
item will be picked up by the dispatcher, causing the delegate to be called. The call stack
at the point of the crash will look roughly like this:

WpfApplication1.exe!WpfApplication1.MainWindow.crash_Click.AnonymousMethod__0

...

WindowsBase.dll!System.Windows.Threading.Dispatcher.Run

...

PresentationFramework.dll!System.Windows.Application.Run

WpfApplication1.exe!WpfApplication1.App.Main

At the top, we see our anonymous method containing the code passed to BeginInvoke.
This was called by the dispatcher somehow, through all the machinery hidden behind the
Application.Run call made by the application’s Main method. There’s no apparent place to
handle such an exception.

One thing we can do is make sure the delegates posted through BeginInvoke do not crash
for avoidable reasons. This is by far the best solution. However, in some cases, it makes

1188 CHAPTER 23 Exceptions

sense to handle exceptions from the outside as a “last chance” to deal with a problem that
would otherwise take down the application. To accommodate such needs, there are often
global applicationwide exception-handler mechanisms. For WPF, there’s the
Dispatcher.UnhandledException event:

Dispatcher.UnhandledException += (sender, e) => {

// The e.Exception property contains the exception object.

// Set e.Handled to true to indicate the exception was handled; if it

// remains false, the application will terminate.

};

Throwing Exceptions
As mentioned before, exceptions should be kept for exceptional circumstances where the
executing piece of code cannot make any further meaningfully defined attempts to rectify
a problematic situation. Big categories of exception types to keep in mind here include
input validation and signaling of the inability (for various reasons) to process the call
successfully.

Throwing an exception is simply done by use of the throw statement in C#, specifying an
object that derives from System.Exception, specifying a meaningful message:

throw new InvalidOperationException(“The object is in an invalid state.”);

RUNTIMEWRAPPEDEXCEPTION

The CLR allows any managed object to be thrown as an exception, again for cross-
language interoperability reasons. For instance, C++ is a language where exceptions
can be any object. The only way such exceptions could be caught is by using the
following code:

try {

// May throw an object as an exception.

}

catch {

// But we can’t figure out what it was and we had to catch everything...

}

This is because C# doesn’t allow a catch block to use a type that doesn’t derive from
System.Exception. However, this problem was recognized, and the runtime wraps
them in a System.Runtime.CompilerServices.RuntimeWrappedException object.
So if you’re interoperating with other languages that may throw any object as an excep-
tion, be prepared to handle this exception. The original object can be retrieved from the
WrappedException property.

1189Throwing Exceptions

Another way to throw an exception is available inside a catch block. Sometimes during
exception handling, you may conclude that the caught exception cannot be dealt with
properly after all. In such a case, you want to rethrow the current exception:

catch (SomeException ex) {

if (/* some condition based on ex */)

throw;

...

}

If the SomeException type is under your control, the need to write code like that shown
here may indicate you need to come up with more specific exception types, allowing more
granular catch handlers to be written based on the exception type.

THE GOOD, THE BAD, AND THE UGLY ABOUT FILTERS AND RETHROW

One problem with the use of rethrow, as shown in the preceding example, is that the
original call stack information gets lost, as shown in the StackTrace property on the
exception. This can hinder debugging significantly, so it’s important to try to provide
very specific exception types that can be used to narrow down what’s caught by a
catch handler.

As an alternative to rethrow, the CLR supports the exception filters, surfaced through a
few managed code languages like Visual Basic. They look like this:

Try

DoSomething()

Catch ex As SomeException When ex.Bar = something

‘ Handler code goes here

End Try

C# doesn’t have filters because they can get quite hard to reason about. For reasons
of backward compatibility with the Windows Structured Exception Handling (SEH), the
CLR’s exception-handling mechanism employs a two-pass scan of the stack. In the first
pass, it looks for suitable exception handlers based on the exception type, as we’ve
seen before. When encountering a filter, the filtering condition’s code gets executed to
decide whether the handler is willing to (and able to) handle the exception.

As a result of this two-pass mechanism, filter code gets run in the context of the place
where the exception is thrown. In the preceding Visual Basic example, the bold expres-
sion executed at the point the SomeException is thrown, but because this code
depends on a variable called something, the outcome may be surprising. The reason is
that something might have changed from the point the try block was entered. In other
words, it becomes hard to reason about filters on a purely lexical basis.

1190 CHAPTER 23 Exceptions

In the absence of checked exceptions, documentation is essential to ensure that users of
your API can properly catch exceptions they can handle in a meaningful manner. If they
don’t know what to look out for, it’s impossible to be prepared:

/// <summary>Logs a message to the log file.</summary>

/// <exception cref=”ArgumentNullException”>

/// <paramref name=”message”/> is null.

/// </exception>

public void LogMessage(string message) {

if (message == null)

throw new ArgumentNullException(“message”);

...

}

Defining Your Own Exception Types
To signal application- or framework-specific error conditions, you should define your own
specialized exception types. Among the most important advantages of using exceptions
for error reporting and handling is their nominal nature: The type name contains invalu-
able information about the kind of error that occurred. Besides this, an exception object
can carry any information it wants, which distinguishes it significantly from the Win32
and COM approaches taken in the past. So you can provide much more context that
travels on the back of the exception object, ready for the handler to inspect.

Because it’s important for users of the .NET Framework to feel at home with any kind of
exception, guidelines have been created for the shape of an exception type. To ease into
these gradually, let’s take a look at the System.Exception base class first, shown in
Figure 23.13.

Notice the different constructors available here. Besides a default constructor, two over-
loads exist that take in a message and (optionally) an inner exception. The use of an inner
exception can prove useful when rethrowing exception objects, providing more context
about the original point of failure. Various methods are present to support the use of seri-
alization, when an exception needs to travel between application domains or across differ-
ent machines. This is quite important when an API gets used in the context of a
distributed system because you don’t want to lose information about the exception when
it gets transmitted to the caller over the wire.

The different properties are worth taking a closer look at, as well:

. Data provides a nongeneric dictionary to keep name/value pairs in with more infor-
mation about the exception. This property should be used with care because its
contents can be modified by catch blocks that catch and rethrow the exception. At
the same time, this provides a way for catch blocks to provide contextual informa-
tion about their handling of an exception. In subtypes, you typically want to add
more contextual information by means of get-only properties.

1191Defining Your Own Exception Types

FIGURE 23.13 The System.Exception base class.

. HelpLink is used to specify a URI where additional information can be found about
the exception. We need to emphasize this is an instance property, and therefore it
can provide a different URI for each instance of an exception type. After all, for
information about the exception type, XML documentation should be around some-
where. An example of a HelpLink use is for a ParserException that supplies a differ-
ent HelpLink for different parse failures (for example, pointing to documentation
about the specific grammar rule that was violated).

. HResult is important when the managed code component that’s throwing the excep-
tion is used from a COM-based client. An example where this is the case is when
writing Office add-ins. The managed exception can then be converted into an
HRESULT for the COM client to detect. In the opposite direction, a failure originat-
ing from a COM component gets surfaced as an exception that contains the
HRESULT of the failed call.

. InnerException allows wrapping exceptions into one another. When defining a
contract between multiple components in the system (for example, using interfaces),
you likely want to surface a whole set of known failures as one single exception
type. At the same time, different root causes may lie at the heart of the failure. This
is where InnerException comes in, providing a way to capture detailed exception
information.

. Message is easy to understand: It provides a message about what went wrong.
Internationalized applications should localize this property because it’s meant to be
used as a way to display meaningful information to the end user of an application.

1192 CHAPTER 23 Exceptions

FIGURE 23.14 The Exception snippet expanded.

. Source can be set to identify where an exception is coming from (for example, using
an identifier for an application component or an object). If not set, the name of the
assembly where the exception was raised is used.

. StackTrace contains the call stack at the point the exception was thrown and can be
used to debug an error condition even when no debugger is attached at the time of
the failure. In debug builds with a symbol file available, additional information such
as line numbers may be shown, too.

. TargetSite provides the reflection MethodBase object indicating the place where the
exception was thrown.

When defining your own exception type, it’s at least expected to provide a meaningful
Message property and an InnerException if that makes sense. In addition, serialization
support is highly desirable.

To help developers write correct exception types that conform to those requirements, a
code snippet exists in Visual Studio to generate the customizable template code. This
snippet is called Exception and can be inserted, like all code snippets, by typing its name
followed by two Tab keystrokes (see Figure 23.14).

Points of customization include the name of the exception, as a prefix to the common
suffix Exception, and the base class. Notice how support for serialization is provided out
of the box by means of the Serializable attribute and the protected constructor. For
more information about serialization, take a look at the MSDN documentation that you
can find starting from the System.Exception base class.

THE KEY TO WRITING GOOD CODE SNIPPETS

Good code snippets work correctly whenever they are inserted in appropriate places.
The Exception snippet was clearly designed with this guideline in mind: Namespaces
are expanded completely, and the global keyword is used to ensure the
Serializable custom attribute is found from the global namespace. Unfortunately,
this increases clutter that’s often irrelevant in the context where the snippet is insert-
ed. I typically clean up the code emitted by the snippet insertion. Feel free to do the
same whenever it’s safe to do so (for example, if there are no namespace clashes).

1193(In)famous Exception Types

Custom exception types have value for various reasons. Not only does the type-based
matching when locating applicable catch blocks provide an ideal way to do granular
exception handling, it also enables you to evolve the exception types over time either by
adding more properties to them or even by introducing new subtypes. Later we take a
closer look at various built-in exception types that are useful for reuse, but if you want to
describe an application- or library-specific error condition, it’s considered a best practice to
define your own custom exception types.

OVERENGINEERING FROM THE TRENCHES: APPLICATIONEXCEPTION

When exceptions were first designed, it was thought that introducing a separate class
hierarchy for CLR exceptions and application-defined exceptions was a good idea. This
gave rise to the definition of two classes derived from Exception. One is called
SystemException and is reserved for the CLR and core framework components to
signal an error condition. The other one, ApplicationException, was meant to be
used as the base class for application-defined exceptions.

This well-intentioned idea didn’t turn out to add much value, and because deriving from
Exception directly was not prevented, lots of applications and frameworks started to
use that as their base class of choice. It quickly turned into a design guideline to
derive directly from Exception and forget about ApplicationException. So the code
snippet is right to derive from Exception directly.

(In)famous Exception Types
The Base Class Library (BCL) comes with many exception types predefined. We now take a
look at the most important ones everyone should be aware of (not only to be prepared to
handle any of those, when it’s appropriate to do so, but also to throw them when they’re
meant to be used by applications directly).

DivideByZeroException

This exception occurs when a division by zero is carried out for integral or decimal values
and can be avoided by the application checking for a zero denominator upfront. Recall
that floating-point types have infinity and Not a Number (NaN) values defined that will
be used for the result of division-by-zero attempts.

The second and third lines here give rise to this exception, regardless of the use of a
checked context; the same holds for the other integral and decimal data types:

int n = 1, d = 0;

int div = n / d;

int rem = n % d;

1194 CHAPTER 23 Exceptions

OverflowException

Still in the domain of arithmetic, we find OverflowException, which occurs in a checked
context whenever an arithmetic operation, cast, or conversion overflows. For more infor-
mation about the checked context, see Chapter 5, “Expressions.”

Use of checked contexts is intended to make the application more robust against overflow
conditions that will produce incorrect results. By default, C# programs compile with
unchecked arithmetic, cast, and conversion operations. Visual Basic reverses this default,
which has the potential to negatively impact performance.

It’s not uncommon to leave this exception type unhandled when no overflow conditions
are expected, but checked contexts are used regardless to guard against incorrect results if
overflow ever occurs. This is typically the case in financial or scientific computing, though
it’s not uncommon to use different types (like BigInteger) altogether to remove limita-
tions on the precision and range of numeric values.

A few examples of overflows are shown here:

checked {

int tooHigh = int.MaxValue + 1; // add.ovf

int tooLow = int.MinValue - 1; // sub.ovf

byte b = 200;

sbyte s = (sbyte)b; // conv.ovf

}

NullReferenceException

For people coming from the native code land, NullReferenceException is your modern
access violation counterpart in the managed world. If your background lies somewhere
else, just remember this exception is something you never want to see in your code.

It’s too bad reference types by default permit the null reference, making this exception far
too common in improperly tested code. Failure to return a proper object is often signaled
by means of a null reference, giving callers a great opportunity to shoot themselves in the
foot by omitting a null check. So don’t fall into this trap yourself. Instead, check against
null values wherever necessary:

string s = GetStringMaybeNull();

string oops = s.ToUpper();

Another common source of NullReferenceException errors is the improper use of the as
keyword where a regular cast is more desirable:

object o = GetSomeObject();

string s = o as string; // No null check? Cast!

string oops = s.ToUpper();

1195(In)famous Exception Types

If you know o ought to be string, use a regular cast instead of an as expression. This will
result in an InvalidCastException, which gives you a better clue about what went wrong.
In other cases, where you’re legitimately using the as keyword, you should expect to see a
null check to check the result of the operation.

In an expression context, different ways of dealing with null references exist, as discussed
previously. One is the null-coalescing ?? operator, which enables you to provide a default
value to replace a null reference; another one is the use of the conditional operator with a
null check for the condition:

string s = GetStringMaybeNull();

string okay = s ?? “(empty)”;

string fine = s != null ? s.ToUpper() : “(empty)”;

Computer scientist Tony Hoare recently called the introduction of null references in
ALGOL (back in 1965) “his billion dollar mistake.” Don’t let them come and get you!

IndexOutOfRangeException

Another exception in the category of silly bug revealers is IndexOutOfRangeException,
which indicates an array is accessed outside its boundaries. “Off-by-one” errors are a
typical source of this exception:

int[] nums = new[] { 1, 2, 3 };

for (int i = 0; i <= nums.Length; i++)

nums[i]++;

Bounds checks have been a historical source of bugs, which often went unnoticed in the
world of native code, causing random program crashes because of memory corruption.
Consider yourself lucky that the CLR catches this class of problems using runtime checks
(to avoid its memory and type safety), but don’t write such bugs in the first place! Off-by-
one errors can be subtle, but with a little bit of extra thought, you should be able to avoid
seeing this exception ever again.

InvalidCastException

Being able to cast an object to an incompatible type would lead to a breach in the type
safety of the system, which clearly is to be avoided. InvalidCastException is the CLR’s
way to block every such attempt.

Nowadays, after the introduction of generic types, the use of casts should have become
much rarer than it used to be. Every time you have to cast an object to a more specific
type, ask yourself how you ended up in this situation in the first place. Maybe it has
something to do with generics. And if you find yourself performing a type-based switch
using is or as, perhaps using object-oriented virtual dispatch facilities is more appropriate.

1196 CHAPTER 23 Exceptions

Either way, if you do a cast, you had better darn well know what the target type ought to
be. In essence, you’re telling the compiler to believe you about the real type of an object,
something it seemingly can’t figure out on its own. If you don’t know the type yourself,
using casts is nothing but kamikaze programming, and you should instead use type
checks. For this reason, running into an InvalidCastException is inexcusable:

object o = 42;

string s = (string)o;

ArrayTypeMismatchException

Sometimes it’s not the developer’s fault. Instead, perhaps the runtime or framework
designers are to blame. Luckily, this doesn’t happen very often, but
ArrayTypeMismatchException shows that it does happen.

The introduction of covariant arrays, as discussed in Chapter 9, “Generics and
Collections,” was an unfortunate choice made in the early .NET 1.0 days (for very good
reasons back then). This exception catches a mishap in using covariant arrays at runtime
that should have instead been caught at compile time:

int[] nums = new[] { 1, 2, 3 };

object[] numsInDisguise = nums;

numsInDisguise[1] = “two”; // Ow!

To see why this is a problem and how this issue is avoided for generic types, refer to
Chapter 9. Luckily, arrays aren’t used often in this unsafe manner, and the problem disap-
pears when making use of generic collection types like List<T>.

TypeInitializationException

Throwing an exception from a static constructor is not considered good practice because
the exception can surface in totally unexpected places where the CLR decides to run the
static constructor. Keep in mind that static field initialization code ends up in the static
constructor as well, providing another potential source of exceptions.

The problem of a static constructor throwing an exception is illustrated in the following
example, and Figure 23.15 shows the result of running the code:

class Program {

static void Main(){

Console.WriteLine(StaticBoom.X);

}

}

1197(In)famous Exception Types

FIGURE 23.15 A static constructor blowing up.

FIGURE 23.16 The place where the static constructor gets called.

static class StaticBoom {

static int x = 0;

static int y = 1 / x;

public static int X { get { return x; } }

}

The InnerException of the TypeInitializationException contains the original exception
object (in our case, a DivideByZeroException caused by the initialization of the static field
y). To see the source of the exception with your own eyes, enable first-chance exceptions
and observe the exception being thrown on the line that initializes y. The call stack at this
point is most interesting, as shown in Figure 23.16.

1198 CHAPTER 23 Exceptions

The transitions back and forth between native and managed code indicate where the
runtime is coming around to ensure the static constructor has been run before the first
access to any of the type’s static fields.

BEFOREFIELDINIT

When a type is marked with the BeforeFieldInit type attribute, which can be seen in
ILDASM, the CLR is free to run the type initializer at or before the first access to a
static field defined for the type. The C# compiler emits this attribute under certain
circumstances, signaling the CLR it can be more relaxed about the timing of the static
constructor call. When this attribute is emitted is rather subtle: When a custom static
constructor is defined (even if it’s empty), the attribute is present; otherwise (for
example, if just static fields are being initialized), it’s not.

This makes the timing of the discussed exception also more “relaxed,” meaning you
can expect it at unexpected times. To avoid confusion, just make sure your static con-
structors don’t throw exceptions.

ObjectDisposedException

ObjectDisposedException typically indicates a bug in your program. Types implementing
the IDisposable interface throw an exception of this type to signal use of the object after
it has been disposed (for example, by use of a using statement):

FileStream fs = File.OpenRead(file);

using (fs) {

// Do some stuff.

}

// This call will fail with an ObjectDisposedException as Dispose has been

// called when the using block was exited.

var more = fs.ReadByte();

Correct use of the using statement will prevent use of the acquired resource after the
block has been left. The preceding exception wouldn’t have been possible if the code had
been written as follows instead:

using (FileStream fs = File.OpenRead(file)) {

// Do some stuff.

}

// Now this line doesn’t compile anymore since fs is not in scope.

var more = fs.ReadByte();

1199(In)famous Exception Types

This is because the using statement used here was turned into the following form during
compilation, introducing a new block to scope the fs variable:

{

FileStream fs = File.OpenRead(file)

try {

// Do some stuff.

}

finally {

if (fs != null)

fs.Dispose();

}

}

// Clearly, the fs variable above cannot be seen on the next line anymore:

var more = fs.ReadByte();

However, IDisposable objects are not always used in conjunction with the using state-
ment because they might have to be maintained in an object’s fields instead. In that case,
the containing type itself most likely needs to implement IDisposable by itself so that all
the resources on which it depends get properly disposed of, too. At that point, it becomes
the responsibility of the developer of the containing type to protect it against improper
use after disposal by using the ObjectDisposedException. The typical pattern for imple-
menting IDisposable is shown here:

class MixedResource : IDisposable {

// Native resource, e.g. a handle to a shared memory section

private IntPtr _native = ...;

// Managed resource, in practice a more specific type is used, e.g. Stream.

private IDisposable _managed = ...;

// Indicates whether we have been disposed.

private bool _disposed = false;

public void DoSomething() {

if (_disposed)

throw new ObjectDisposedException(/* add a message */);

// Do real work here.

}

public void Dispose() {

Dispose(true /* coming from Dispose */);

// Avoid second disposal caused by the garbage collector calling the

// finalizer method ~MixedResource.

1200 CHAPTER 23 Exceptions

GC.SuppressFinalize(this);

}

~MixedResource() {

Dispose(false /* coming from finalizer */);

}

private void Dispose(bool disposing) {

// Permit duplicate calls to Dispose without ObjectDisposedException.

if (!_disposed) {

// Managed resources get disposed on the spot when the containing

// object’s Dispose method is called. If we’ve gotten here through

// the finalizer, we should not be touching other managed objects!

if (disposing) {

_managed.Dispose();

}

// Clean up native resources next, e.g. using Win32 CloseHandle.

CloseHandle(_native);

_native = IntPtr.Zero;

// This flag will be used to throw ObjectDisposedException.

_disposed = true;

}

}

}

OutOfMemoryException

When the managed heap becomes full, the garbage collector will ask the operating system
for more virtual memory. When this request fails, the OutOfMemoryException is thrown.
This exception cannot be caught by application code and will terminate your program on
the spot. One reason you cannot catch the exception is that it takes immense powers to
deal with such an exception without allocating more memory while doing so. In addition,
no guarantees are made about the execution of finally blocks and finalizers in out-of-
memory conditions because they may allocate memory on their own. Luckily, outstanding
open handles to Win32 resources will be closed either way because the operating system
takes care of this upon program termination.

CER, INSUFFICIENTMEMORYEXCEPTION, AND SO ON

The CLR provides super-specialized means to deal with memory management for appli-
cations that require the highest reliability imaginable. One large set of such mecha-
nisms is found under System.Runtime.ConstrainedExecution (CER), which provides
ways to create high-reliability code by constraining the actions that can be carried out
in code. Writing CERs is a highly specialized task.

1201(In)famous Exception Types

One closely related mechanism is the InsufficientMemoryException that’s thrown by
a MemoryFailPoint object. This object acts as a memory gate, allowing code to check
whether enough memory will be available to carry out an operation. If not, the code can
catch this exception and throttle down its needs or perform actions that will decrease
the program’s memory use.

Finally, there are the CLR hosting APIs that are used to run managed code in an other-
wise native code process. A great example of this is SQL Server 2005 and later, where
the database can be extended using managed code (for example, with stored proce-
dures or user-defined functions). In such a setting, the host might want to have fine-
grained control over memory management by the CLR to prevent the runtime from
destabilizing the host process. With high reliability and performance guarantees made
by SQL Server, having tight control over memory management is a key requirement
addressed by the specialized CLR hosting APIs.

An exhaustive discussion of memory management at the operating system level is beyond
the scope of this discussion. Just be aware that virtual memory differs from physical
memory, and therefore this exception doesn’t necessarily mean that the machine has run
out of memory. All it means is that the application has exhausted its virtual memory
address space. An example of such a mishap is shown here:

var lst = new List<byte[]>();

while (true) {

lst.Add(new byte[1024 * 1024]);

}

Obviously, real-world issues will be more subtle than the preceding example. Nevertheless,
the presence of a garbage collector makes memory leaks much less likely, and the occur-
rence of an OutOfMemoryException generally points to a design flaw in your program (for
example, loading gigantic files all at once rather than piecemeal).

So that you understand the nonexistent relationship between the machine’s total physi-
cal memory consumption and the virtual memory exhaustion by a single program, see
Figure 23.17, which illustrates the memory situation at the point of the crash, broken in
the debugger.

Notice how physical memory consumption is at 53% at the point the Exceptions.exe
process crashes. Another piece of data that matters quite a bit here is the “bitness” of the
process. Because the application was compiled as an x86-specific application, its user
mode address space is (by default) limited to 2GB, which we’re getting close to at the
point of the crash. To show this, the Commit Size column was added to the Task Manager.

For more information about OS-level memory management techniques, virtual memory,
and page files, refer to books covering general operating system design or (more specifi-
cally) Windows internals.

1202 CHAPTER 23 Exceptions

FIGURE 23.17 OutOfMemoryException does not refer to physical memory.

StackOverflowException

Besides the heap memory, there’s another finite resource in an application: its stack used
to keep track of local variables, method calls, and evaluation of expressions. When this
resource gets exhausted, a StackOverflowException results. Again, this is one of the excep-
tion types that’s uncatchable because properly dealing with such a circumstance is far
from trivial. (You shouldn’t cause any further stack usage doing so.)

Typically, a StackOverflowException indicates an unbounded recursive algorithm in your
code (which is a bug) or the fact you’re processing “deep” recursive data structures. Let’s
take a look at a few examples:

void BlowUp() {

BlowUp();

}

Depending on the amount of state kept for every frame on the call stack (for example, the
use of local variables), the number of recursive method calls that can be made will vary. In
the preceding example, I managed to make about 16,000 calls before disaster struck.

Recognizing the source of a stack overflow is fairly straightforward: Look at the Call Stack
window at the point of the crash and spot the repeating call pattern. From there, try to
figure out why the recursion happens in the first place or why it doesn’t finish properly.
Figure 23.18 shows the Call Stack window revealing a stack overflow exception.

1203(In)famous Exception Types

FIGURE 23.18 Repetitive method calling pattern leading to stack overflow.

Recursive algorithms are typically data-driven (for example, visiting a data structure to
perform certain actions on individual parts of it). A good sample is a tree:

class TreeNode<T> {

public TreeNode<T> Left { get; set; }

public TreeNode<T> Right { get; set; }

public T Value { get; set; }

}

A recursive algorithm can be written to visit every node in the tree (for example, using a
“depth-first” traversal algorithm):

void Visit<T>(TreeNode<T> node) {

if (node.Left != null)

Visit(node.Left);

if (node.Right != null)

Visit(node.Right);

Console.WriteLine(node.Value);

}

The following piece of code will then write 1, 2, and 3 to the screen:

Visit(

new TreeNode<int> { Value = 3,

Left = new TreeNode<int> { Value = 1 },

Right = new TreeNode<int> { Value = 2 }

});

A deep tree may exhaust the evaluation stack due to the recursive Visit method diving
deeper and deeper into the tree data structure:

1204 CHAPTER 23 Exceptions

100,000

99,999

99,998

1

Root

Tr
ee

 D
ep

th

FIGURE 23.19 Deep tree data structure.

var t = new TreeNode<int> { Value = 1 };

for (int i = 0; i < 100000; i++)

t = new TreeNode<int> { Value = i, Left = t };

Visit(t);

The tree constructed iteratively here is shown in Figure 23.19. Empirically, I found out the
maximum tree depth that the algorithm can deal with to be around 25,000 nodes.

The main question to ask in situations such as these is whether such a big highly nested
data structure is realistic. (Perhaps it indicates a bug in the code that generates the data
structure in the first place.)

If it’s realistic for your application to deal with such data structures for one reason or
another, you might want to trade the recursive algorithm for one that emulates a stack by
using a stack collection (like Stack<T>). We won’t go into detail about this because it gets
quite specialized and is really a subject for a class on data structures and algorithms.

TAIL CALLS

Some recursive methods are really tail recursive, which means that recursive calls
happen all the way at the end of any execution path throughout the method. For example:

void CountUp(int n) {

Console.WriteLine(n);

CountUp(n + 1);

}

This piece of code will blow up on a stack overflow because of endless recursive calls
to CountUp. As a C# developer, you’ll say, “Why don’t you write this as a loop in the
first place?” That’s right, but a functional programmer will more likely think in terms of
recursion rather than imperative-style loops. In F#, the preceding code looks like this:

let rec countUp n =

printf “%d\n” n;

countUp (n + 1)

1205(In)famous Exception Types

In F#, this recursion won’t blow up because the compiler has detected the method to
be tail recursive, emitting code as if you had written the following C#-style code:

void countUp(int n) {

while (true) {

printf(“%d\n”, n);

n++;

}

}

If you like reasoning in terms of recursion and want compiler intelligence to take care
of figuring out how to make your recursive code work, F# is something for you to take a
closer look at.

In fact, the concept of tail recursion is known by the runtime, as well, with a tail call
instruction available. Tail calls work only when no further code needs to run after a
recursive call is made, allowing the runtime to reuse the same stack frame for the call.
The F# compiler can emit such calls when build settings allow it by means of a
tailcalls compiler flag. Because (this kind of) recursion is rarely used in C# pro-
grams, the C# compiler never emits the tail call instruction.

ExecutionEngineException

Congratulations, you found a bug in the CLR. If you ever see this exception type pop up,
make sure to let the CLR people at Microsoft know through channels like Connect. Not to
discourage you, but I have not seen a single occurrence of this exception in my 10 years of
experience with the platform.

Readers with a hacking mindset are invited to corrupt the process’s memory through some
native debugger to mimic an error condition in the execution engine. Chances are you’ll
cause it to throw this exception to acknowledge your disruptive interactions. Let’s move
on to something more realistic.

ArgumentException

Still in the proximity of the bug-indicating exceptions category, we’ve landed at exception
types you should be throwing yourself as well to indicate your API users are doing some-
thing silly or unexpected. ArgumentException is such an exception, signaling a parameter
has an unsupported value.

For example, the File.OpenRead method will throw this exception when:

path is a zero-length string, contains only white space, or contains one or more

invalid characters as defined by System.IO.Path.InvalidPathChars.

When accepting a path from some external source (such as the user), those requirements
can be checked before calling the API. Alternatively, you could catch the exception to
signal the mishap, but checks upfront are generally more desirable (for example, to reject
user input with direct feedback in the UI before any operation is attempted). However,

1206 CHAPTER 23 Exceptions

FIGURE 23.20 Documented exceptions for File.OpenRead.

this depends, case by case. In most instances, I treat the occurrence of this type of excep-
tion as a bug in my code.

Notice that the list of documented exceptions shows up in IntelliSense as soon as you type
the member name. Figure 23.20 shows this for the File.OpenRead method.

The most commonly used constructor overload for ArgumentException looks as follows:

public ArgumentException(string message, string paramName);

For the second parameter, specify the name of the parameter that received an invalid
value. This data can be retrieved again through the ParamName property.

ArgumentNullException

ArgumentNullException is the little, more specialized, brother of ArgumentException and
is used to signal an unexpected null reference supplied for a parameter. Again, it pinpoints
a missing null check in your code and should be treated seriously. Ask yourself how the
null reference got to that very place in the code to begin with.

Extinguish the evil null reference as close to its root possible (for example, an entry point
to the component you’re developing). And the way to do it is by throwing exactly this
exception. Constructors typically used for this purpose include the following:

public ArgumentNullException(string paramName);

public ArgumentNullException(string paramName, string message);

The first constructor often suffices because the meaning of a null argument doesn’t need
much more explanation other than its parameter.

THE API HALL OF SHAME AND FXCOP

If you choose to use the second overload, notice the little mess-up made by the frame-
work designers back in the early .NET days: The paramName and message parameters
are opposite compared to the ones on ArgumentException. As a band-aid, the FxCop
rule “Microsoft.Usage CA2208” was introduced, which detects swapped arguments on
the constructors of those exception types. It does so by inspecting the string passed to
the paramName parameter against all the method’s parameter names that are present.

1207(In)famous Exception Types

EXTENSION METHODS

A question that comes up sometimes is what exception type to use when an exten-
sion method’s this parameter receives a null reference. At the call site, it looks like
an instance method call, so a NullReferenceException may be the most natural
thing to expect:

var res = source.Where(n => n > 0); // LINQ’s Where operator

However, NullReferenceException should really be reserved for real attempts to
dereference a null reference, as detected by the runtime. This becomes especially
apparent when the extension method is written as a regular static method call:

var res = Enumerable.Where(source, n => n > 0);

Here you don’t expect a NullReferenceException at all.

ArgumentOutOfRangeException

Similar in spirit to the IndexOutOfRangeException for arrays, this exception type is used to
signal a supplied argument is outside some range. Once more, it typically indicates sloppy
input validation on the side of the caller, which should be avoidable in general.

Examples of the use of this exception type include the various collection data types in
System.Collections and its sub-namespaces:

var lst = new List<int> { 1, 2, 3 };

int thereIsNoThirdElement = lst[3];

Use of the exception type for your own APIs is straightforward using constructors similar
to the ones seen for ArgumentException (with the paramName coming first). As a little
reminder, keep in mind that argument and index are distinct concepts. Use of this type of
exception doesn’t imply any particular member type (like an indexer) or a specific data
type (like a numeric value) is to be used. It’s equally valid for a method to throw an excep-
tion of this type to signal its string argument was outside a range of acceptable values.

InvalidOperationException

When an operation is carried out on an object that’s not in a valid state to do so, this
exception type is raised. Sometimes this is due to not following a certain “protocol” that
may be documented informally in the documentation for the type. For example, an object
might need some kind of Initialize call before any other members can be called. As a
concrete example, consider the SqlConnection class from System.Data.SqlClient:

using (SqlConnection conn = new SqlConnection(connString)) {

Console.WriteLine(conn.ServerVersion);

}

Here the ServerVersion property getter will throw the discussed exception because the
connection hasn’t been opened yet by calling conn.Open().

1208 CHAPTER 23 Exceptions

FIGURE 23.21 Code generated by Visual Studio’s Implement Interface feature.

This exception is also commonly thrown when enumerating over a collection while it’s
being modified. This invalidates enumerator objects that are in use because all sorts of
things could have happened to the collection underneath. Although you might think all
collection change operations could be accounted for inside the enumerator, there are
quite a few interesting situations that can arise. For example, MoveNext may already have
said there’s still an element to follow, but a change happening immediately thereafter
might get rid of the element. This would break the contract that a MoveNext call returning
true ensures that the subsequent call to the Current method will succeed. For reasons
such as these, any further use of the enumerator after a collection modification is simply
disallowed:

var lst = new List<int> { 1, 2, 3 };

foreach (var n in lst)

lst.Add(n);

NotImplementedException

As the name pretty much implies, this exception results whenever a method or member is
not implemented. This can indicate you’re dealing with a stub for functionality that’s not
yet implemented. Visual Studio’s code editor Implement Interface feature uses this excep-
tion type for the method stubs it generates, as shown in Figure 23.21.

From a code-generation point of view, this is very beneficial because throwing an excep-
tion makes the compiler’s flow analysis happy as well: If a method has to return an object,
throwing an exception instead is the simplest way to make the generated code compile.

The use of NotImplementedException should be reserved to indicate missing functionality
as opposed to signaling an operation is not supported. The former exception type is more
often used for stubs, whereas the use of NotSupportedException indicates that a certain
interface member implementation doesn’t make sense in the context of the type that
implements it. We come back to this in a second.

1209(In)famous Exception Types

NotSupportedException

NotSupportedException doesn’t indicate an implementation of an operation is not
present; instead, it means the operation doesn’t make sense to implement. You might
wonder why the operation isn’t just omitted in such a case, but often you don’t have a
choice but to provide it when an interface is implemented or a base class has to be used.

Examples of the use of this exception type can be found in the System.IO namespace
when dealing with Stream objects that do not support certain operations, such as Seek. It’s
not uncommon for custom derived stream objects to support only a fraction of the base
class’s functionality, hence warranting the use of NotSupportedException to indicate the
missing functionality.

Another place where NotSupportedException occurs is in the code that gets emitted by the
C# compiler for the implementation of an iterator. As you remember from our discussion
about LINQ, iterators implement the IEnumerator<T> interface, which has a Reset method
on it. However, this method gets a stock implementation that throws this exception:

static IEnumerator<int> GetNumbers() {

int i = 0;

while (true)

yield return i++;

}

static void Main() {

var nums = GetNumbers();

if (nums.MoveNext())

Console.WriteLine(nums.Current);

// Oops, we advanced the enumerator too far. Let’s try to reset it...

nums.Reset(); // Throws a NotSupportedException.

if (nums.MoveNext())

Console.WriteLine(nums.Current);

}

The Reset method was a bit of overengineering back in the .NET 1.0 days, mainly present
for COM interop purposes (compare the IEnumVARIANT COM interface). Because the inter-
face specifies this method may throw the NotSupportedException, it’s not much worth as
an abstraction we can rely on in general. In addition, it never gets called by the code
emitted for foreach loops.

Because of all those reasons, Reset is mostly unused, and the C# iterator feature doesn’t
bother to support it either. Iterators are one of the most complex language features in
terms of code generation, so avoiding further complication for an additional marginally
useful Reset method was a welcome simplification. And if you really want to reset an iter-
ator, just request a new one (which is a cheap operation anyway):

1210 CHAPTER 23 Exceptions

static void Main() {

var nums = GetNumbers();

if (nums.MoveNext())

Console.WriteLine(nums.Current);

// Want to start with 0 again... Simply get a new iterator object.

nums = GetNumbers();

if (nums.MoveNext())

Console.WriteLine(nums.Current);

}

In general, seeing a NotSupportedException means your code is calling something it
shouldn’t reach out to. However, when calling through an abstraction like a Stream object
that’s handed in from the outside, things are a bit more complicated: Should you just call
the Seek method and be prepared to catch an exception, or what? It turns out the avail-
ability of the Seek method is paired with a CanSeek property one can check before
attempting to make the call.

This sample from the System.IO space should give you a good idea of how to deal with
API design that introduces an interface or base class with operations that are allowed to be
unsupported by implementers or subtypes. In such a case, it’s unreasonable for users of
the API to catch a NotSupportedException simply to figure out what they can do with the
object they received. Provide Can-prefixed properties instead, which should be imple-
mented or overridden to signal an operation’s availability.

FormatException

Quite often, string objects are used to accept inputs that have a certain structured form,
like a number’s string representation or a URI. In such a case, the String type does not
support enough validation of input by itself, and additional checking will be carried out
by the consumer of the string object. For example, a number consists of digits, possibly
with a decimal separator character, a sign character, or an exponent used in scientific nota-
tion. If this form is not respected for the string-based input, a FormatException is raised.

An example can be found on the static Parse methods on numeric types:

int invalid = int.Parse(“Hello”);

Notice that those methods provide additional parameters to regulate accepted input
formats (for example, when a hexadecimal format is used) and the culture to use. The
latter is important when dealing with localized user input where different characters are
used for various parts of a number (for example, for the decimal separator sign), depend-
ing on the culture:

var res = int.Parse(“1A”, NumberStyles.HexNumber,

NumberFormatInfo.InvariantInfo);

1211(In)famous Exception Types

FormatException can often be prevented by checking the input by using a TryParse
method provided on the same types.

Throw an exception of this type to signal invalid string input. While you’re at it, writing
the validation and parsing code, it’s often not much trouble to add a separate method that
does only the validation:

public static bool TryParse(string input, out MyData data) {

// Parse the input, e.g. using System.Text.RegularExpressions.

}

public static MyData Parse(string input) {

MyData res;

if (!TryParse(input, out res))

throw new FormatException(...);

return res;

}

AggregateException

Exceptions are dealt with on a per-thread basis. However, with an increased emphasis on
parallel computing, the situation of having multiple exceptions flowing on different
threads becomes a new challenge. When an API spawns parallel tasks and multiple excep-
tions are thrown from the different executing tasks, you don’t want to be able to analyze
all those from the outside, too.

A good example is the new System.Threading parallel constructs introduced in .NET 4,
including parallel loop constructs exposed on the Parallel static class:

Parallel.For(0, 10, i => {

if (i % 2 == 0)

throw new Exception(“Even number!”);

// Do meaningful work.

});

The preceding code spawns parallel tasks for each of the loop body executions, executing
the specified lambda expression with the loop iteration value as the input. The For call by
itself waits until all the parallel tasks finish. Inside the loop’s body, an exception can
occur, which needs to be surfaced somehow on the call to For. However, having parallel
tasks going on, it’s possible that any number of those fail.

1212 CHAPTER 23 Exceptions

Because only one exception can be thrown by the For method, all the tasks’ exceptions
are collected and thrown using a single AggregateException that exposes all of those
using an InnerExceptions property:

public class AggregateException : Exception {

...

public ReadOnlyCollection<Exception> InnerExceptions { get; }

}

When doing parallel programming, you’ll get used to dealing with this type of exception
if the individual parallel tasks may be throwing exceptions you are willing to handle from
the outside. A useful Handle method is available to analyze all the exceptions and to
handle them selectively:

public void Handle(Func<Exception, bool> predicate);

The predicate delegate gets called for all the exceptions in the AggregateException’s
InnerExceptions collection, one by one. If you answer true, indicating you did handle the
exception, for all of them, the method simply returns. If any exception was left unhan-
dled (that is, one or more of the delegate invocations returned false), the unhandled
exceptions are collected in an AggregateException, which is thrown from Handle.

Besides Handle, a Flatten method is available to flatten AggregateExceptions that are
contained in the InnerExceptions collection, into a single AggregateException. This
comes in handy when dealing with nested parallel calls, like two Parallel.For calls. The
inner Parallel.For call may throw an AggregateException, which will get wrapped in
another AggregateException by the outer Parallel.For. To get rid of the intermediate
aggregations, you can use Flatten.

Summary
In this chapter, you learned why exceptions are important and how to deal with them,
both from a consumer and producer perspective. You saw how to catch exceptions with
the try statement and learned about its associated catch and finally blocks. This
chapter also covered several best practices related to when and why (or why not) to catch
exceptions. With regard to producing exceptions, we discussed creating our own excep-
tion types.

We also covered some of the most essential often-used exception types that appear in the
.NET Framework’s BCL.

CHAPTER 24

Namespaces

IN THIS CHAPTER
. Organizing Types in

Namespaces 1213

. Declaring Namespaces 1219

. Importing Namespaces 1223

While proceeding with our study of the C# programming
language and the .NET platform, we’ve been combining
smaller constructs into larger ones. First, we studied what
expressions can do for us, followed by a chapter on state-
ments. Next, we grouped those code blocks into members
that get organized into types.

Finally, we’ve arrived at the topmost constructs, which
allow for the organization of types into a hierarchical
naming scheme and act as containers for deployment. The
first is a language construct known as namespaces, also
supporting cross-language scenarios. The second is assem-
blies, which are the CLR’s model for code, metadata, and
resource containers.

In this chapter, you learn how to organize your types in
namespaces and thus avoid name clashes and provide for a
logical organization of functionality. Besides declaring
namespaces, you also see how to import and use them,
including some more tricky scenarios with aliases and
extern aliases.

Organizing Types in Namespaces
Simply stated, namespaces provide a way to establish a hier-
archical naming scheme for types in .NET libraries and
applications. At the language level, it’s possible to declare
new namespaces containing various types. Besides provid-
ing namespaces, there’s also the act of using them, which is
based on the concept of importing them in code.

1214 CHAPTER 24 Namespaces

One level below the language, the runtime doesn’t really know much about namespaces
because types always are referred to by a fully qualified name. Where a full type name
looks like System.Collections.Generic.List<int>, you can simply write List<int> if the
containing namespace has been imported. In other words, using namespaces yields an
abbreviation of type names.

Once Upon a Time

In the world of Win32 and COM, there’s little support to organize code in logical units,
resulting in a flat application programming interface (API). Although C++ has a notion of
namespaces, lots of APIs originate from earlier times when the use of namespaces wasn’t
part of the design philosophy for those APIs.

For example, Win32 is basically an API consisting of functions and some data types, with
no object-oriented aspirations. All those functions live in a single “namespace,” and there-
fore it’s perfectly possible to run into situations where two functions with the same name
will clash. Such a problem manifests itself at compile time because the compiler (and in
C/C++, we should also mention the linker) can’t figure out what you mean. To reduce this
problem a bit, you can use header files to establish some organization, although problems
can still occur when multiple headers are included:

#include <windows.h>

void SaveData(__in LPCWSTR file)

{

HANDLE hFile = CreateFile(file,

GENERIC_WRITE,

0,

NULL,

CREATE_ALWAYS,

FILE_ATTRIBUTE_NORMAL,

NULL);

Besides the potential for name clashes, other problems exist with a flat declaration space.
One such problem has to do with discoverability of APIs. As you can imagine, the number
of functions or data types available can explode very quickly, especially when meaty
header files (such as windows.h) are included. Although various functions logically belong
together (for example, the ones dealing with file I/O), nothing reflects this.

Figure 24.1 illustrates just a tiny subset of all the functions that start with Create, creating
a huge search burden for developers unfamiliar with the APIs.

Although part of the issue stems from the lack of types to encapsulate state and bundle
it with functions operating on that state, things are still quite messy in the world of
COM, where interfaces provide a better logical organization. In some sense, all this buys

1215Organizing Types in Namespaces

FIGURE 24.1 Win32 functions live in a flat namespace.

Figure 24.2 shows the use of a COM API, where this time all interfaces get lumped
together in a flat declaration space, often improving on the situation a little bit by using
some prefix scheme for interface names.

Furthermore, now that we’ve introduced some level of typing in APIs, we get a “nice”
mix of top-level functions, interfaces, enums, and so on (all lumped together). This is
similar to having folders in a file system but sticking a whole bunch of files in the root
folder anyway.

Also notice the somewhat-related problems (elaborated on during our discussion of assem-
blies in Chapter 25, “Assemblies, and Application Domains”) of versioning, creating cryptic
type names with integer suffixes or Win32 functions with an Ex suffix (for extended).

us at the level of API structuring is reducing one level of clutter, while we’re still faced
with a challenge of finding interfaces and auxiliary types that typically live in one single
flat namespace:

HRESULT hr;

// The following interface is declared in a flat namespace.

IBackgroundCopyJob* pJob = ...;

hr = pJob->AddFile(L”http://foo/bar.txt”, L”c:\\temp\\bar.txt”);

if (SUCCEEDED(hr))

{

...

}

1216 CHAPTER 24 Namespaces

FIGURE 24.2 COM interfaces push the declaration space problem one level up.

HEADER NIGHTMARES

The use of headers in C and C++ is a notorious source of headaches. Various reasons
come to mind, including the problems with duplicate definitions (requiring use of
preprocessor tricks), the order of inclusion, and the separate notion of lib files that
have to be linked in for things to work.

In the world of .NET, assemblies are self-describing and also act as the means to refer
to a library during development time. Although reference assemblies are dehydrated
from a code perspective (hence they’re somewhat like very rich headers, including type
and member information), they don’t suffer from the problems related to headers.

It’s clear that the approaches taken by the C-influenced world of Win32, COM, and so on
have various drawbacks, such as the following:

. Discoverability of APIs is quite painful because all functions and types live in a
single flat namespace (which can also lead to name clashes).

. Tooling can’t help much with finding APIs, and providing decent IntelliSense
support is challenging.

. Building applications requires multiple references to libraries, including the use of
headers and a link-time reference to a library file.

Assemblies and Namespaces

Because several of the previously mentioned problems are related, it’s good to take a look
at them collectively. One central issue has to do with tooling, where the requirement of
headers describing binary libraries can be solved by bundling this metadata with the code
of the library. This is precisely what assemblies do, as shown in Figure 24.3.

1217Organizing Types in Namespaces

Assembly

Assembly contains type Calc
Type Calc contains method Twice
Method Twice is public
etc.

IL code

Metadata

Resources

.method void Twice(int a)
ldloc.0
ldc.i4.2
mul
ret

FIGURE 24.3 Assemblies contain code, metadata, and resources.

To solve the second issue, which involves avoidance of name clashes for types across
multiple libraries, the concept of namespaces has been introduced. Notice that this
problem does not directly affect methods because they are contained inside types.
Although global methods are supported at the CLR level, they’re not exposed by various
managed code languages (including C#).

By coming up with a naming scheme consisting (by convention) of a company name,
followed by a product name, and possibly a hierarchy of component names, you can
avoid name clashes when composing such libraries in a larger context (such as an applica-
tion). For example:

namespace Contoso.CashFlow.Client

{

public sealed class Terminal

{

...

}

}

Here we have created a hierarchy of three nested namespaces, abbreviated using the dot
notation to separate the parts. Now it’s perfectly fine for another company like the sample
company Fabrikam to have another class called Terminal or even to have a clash at a
namespace below the company level.

Inside the CLR, namespaces are essentially part of type names, which just get a whole lot
longer. At the language level, as you see later, you can avoid having to write those long
type names by importing the namespace. If multiple such namespaces are imported and a
type name is used that occurs in multiple of those (for example, Terminal, which was
defined by both companies), you will have to disambiguate the name (for example, by
using the full type name including the interface). Figure 24.4 shows the IL code emitted
for a method that constructs a Terminal object from Contoso’s CashFlow Client library. It
does so from a different assembly, referencing the one containing the Terminal type.

1218 CHAPTER 24 Namespaces

FIGURE 24.4 Namespaces are merely an illusion created by front-end languages.

On the first line of this C# fragment, we’re importing the namespace, such that we can
simply write Terminal rather than the long type name (including the namespace). At the
IL level, though, the full type name is used.

In front of the fully qualified type name Contoso.CashFlow.Client.Terminal, another
name is specified in between brackets. This corresponds to the name of the assembly
defining the type. Here we’ve compiled the Terminal type into an assembly with the
name ContosoCFClient. For the CLR to know where to find the type being referred to, it
needs to know what assembly to look in.

This brings us to a discussion about the difference between namespaces and assemblies. In
short, the two are mostly unrelated concepts. The name of an assembly doesn’t dictate
what namespaces can be defined inside it, nor does the name of a type (and its name-
space) pose restrictions on which assembly it can be defined in. The only real relationship
between both concepts is the fact that assemblies contain types and types live in name-
spaces, and therefore assemblies contain namespaces. In fact, the definition of a name-
space can be spread across multiple assemblies, as exemplified by the framework
assemblies System.dll (which, for instance, contains the System.Uri class) and mscorlib.dll
(containing types like System.String).

MSCORLIB VERSUS SYSTEM

Why are there multiple assemblies defining types of the Framework’s top-level System
namespace? The answer is partly historical and partly technical.

using Contoso.CashFlow.Client;

class Program

{

static void Main()

{

var t = new Terminal();

}

}

1219Declaring Namespaces

FIGURE 24.5 Default namespace configuration setting.

One of the more technical arguments is that mscorlib.dll has quite a few types that
aren’t just managed but make so-called internal calls into functionality that’s defined at
the CLR level. A good example of such a type is System.Object, which has many
runtime representations and relies on CLR code for some of its core operations (such
as GetType, which talks to metadata services).

When building applications in languages like C#, mscorlib will always be included by
default, and so will System.dll. You can easily get rid of the latter if you really want to
for some obscure reason, by dropping it from the referenced assembly list in Visual
Studio’s Solution Explorer. To exclude mscorlib.dll, you must dig a little deeper in the
Project properties, under Build, Advanced.

Declaring Namespaces
To declare a new namespace, use the namespace keyword in C#:

namespace Contoso.CashFlow.Client

{

// Classes, structs, interfaces, enums, delegates, etc. can go in here

}

The default namespace chosen for new code files in a Visual Studio project is based on a
setting specified for the project. This setting, shown in Figure 24.5, gets its default value
from the name of the project upon creation. The output assembly name follows this
default inferred value, too. It’s considered good practice to reflect the top-level namespace
for types defined in an assembly in the assembly’s name. For example, the System.Web
assembly (mostly) contains System.Web functionality.

Namespaces can be nested in a variety of ways. One is using the dot-separated notation
for namespace names, which really establishes a hierarchy of nested namespaces. As an
alternative, you can physically nest namespace declarations in one another:

1220 CHAPTER 24 Namespaces

FIGURE 24.6 Visual Studio reflects folder structure in namespace names.

namespace Contoso

{

namespace CashFlow

{

namespace Client

{

// Types could go here...

// ...as well as other subnamespaces

}

// More types could go here...

// ...as well as namespaces that are siblings to Client

}

// And so on...

}

The dot notation is usually preferred because it avoids large indentation levels in code
files, and it is better to avoid declaring multiple sibling namespaces in the same file.

It’s advisable to reflect the namespace and type structure in the project’s directory name
and filename structure. The root folder of the project corresponds to the top-level name-
space, subfolders to nested namespaces, and files to type names.

Visual Studio will infer the namespace for a new code file based on the folder in which it’s
located, as shown in Figure 24.6. The namespace name can always be changed in the code
itself, but following this folder and file pattern is usually beneficial in terms of finding
declarations quickly (especially if you’re doing so outside the IDE without the aid of tools
such as Class View or Object Explorer).

From a runtime and language compiler point of view, the physical location of a code file
doesn’t have any impact whatsoever. All that matters is what the code says about namespace
and type names. What the runtime sees are types with unique names within an assembly.

1221Declaring Namespaces

THE DIFFERENT JAVA LANDSCAPE

In the world of Java, things work out quite differently because .class files (the binaries
corresponding to type definitions) are structured in packages, whose hierarchical
names are reflected in folder names and filenames. In .NET, the unit of deployment is
an assembly rather than an individual type’s compilation binary. You learn in Chapter
25 how the runtime locates assemblies and types therein.

Naming Conventions

Concerning naming, the convention is to use the company name for the top-level name-
space name, followed by a product name, a series of (sub)component names, and finally
the types within those components. You can find examples of this in the .NET Framework
redistributable itself, where the Microsoft namespace is used for anything that isn’t part
of the core framework (see sidebar) (for example, Microsoft.Win32 for Win32 API wrap-
pers, such as Registry access).

THE HOLY SYSTEM NAMESPACE

Core parts of the assemblies that ship with the .NET Framework redistributable collec-
tively define the System namespace and its many subnamespaces. Use of this name-
space is reserved for Microsoft and the companies participating in the definition the
ECMA standard of the .NET Framework libraries.

Platform-specific APIs, such as Registry access, which only applies to the Microsoft
Windows platform, are defined outside the platform-neutral System namespace and fol-
low the Microsoft.* pattern.

The main reason to use the company name for the top-level namespace name is to avoid
name clashes across components delivered by different companies. Since C# 2.0, such an
ambiguity can also be resolved using extern aliases, as discussed later.

Visibility

Namespaces don’t have a notion of visibility. In C# terms, you could say namespaces are
implicitly declared as public because they can’t be used to restrict visibility of the types
defined within them. In other words, it’s up to the types (and members therein) to declare
their visibility.

Figure 24.7 illustrates how namespaces are totally compiled away into longer type names,
which is what the CLR sees. In other words, there’s no place in an assembly to put meta-
data (such as visibility) on a namespace declaration. What tools like ILDASM and .NET

1222 CHAPTER 24 Namespaces

FIGURE 24.7 Namespaces don’t survive compilation and become part of type names.

Reflector do is show types in their namespaces by analyzing the dot-separated pattern
followed for their naming. The fact there’s no such thing as metadata associated with a
namespace is reflected in the lack of a NamespaceInfo object in the reflection APIs.

Name Clashes Within Namespaces

The “construct” on which the C# compiler operates when turning code into an assembly
is called a compilation unit, which in practice maps to a code file. All of those units are
processed together, almost as if it were one large file containing all the declarations made
in the code.

Multiple occurrences of the same namespace are just fine. In more official terms, the
language considers namespaces open ended. Other compilation units processed by the
compiler are free to add more declarations to a namespace:

// File1.cs

namespace Contoso.CashFlow.Client

{

class A { ... }

}

// File2.cs

namespace Contoso.CashFlow.Client

{

class B { ... }

}

When multiple types with the same name are declared in the same namespace, it results
in an error, as illustrated in Figure 24.8. One good way to avoid such name clashes is to
adhere to a folder name and filename structure, as discussed earlier.

1223Importing Namespaces

FIGURE 24.8 Name clashes across multiple files don’t go unnoticed.

Importing Namespaces
In C#, the way to import namespaces is by means of the using directive. As a result,
instead of having to use fully qualified type names, you can refer to types by a shorter
name. Leveraging using directives simply affects the name resolution carried out by the
compiler. At runtime, types are always referred to by fully qualified names, as you saw
before in Figure 24.4.

Using directives are scoped to the immediately enclosing compilation unit (that is, code
file) or the namespace declaration in which they’re contained. For example, given the
following code, you can refer to types in the System namespace directly:

using System;

namespace Contoso.CashFlow.Client

{

class Program

{

static void Main()

{

DateTime d = DateTime.Now; // Instead of System.DateTime.

}

}

}

You can’t apply the using directive to partial namespace names, based on what has been
imported already. In other words, it’s not possible to write the following:

using System;

using Collections; // Error: this won’t refer to System.Collections

1224 CHAPTER 24 Namespaces

FIGURE 24.9 The Organize Usings feature in Visual Studio’s code editor.

Because of this, the order of using directives doesn’t matter semantically. They all stand
by themselves, also allowing for tooling to clean up and reorder directives, as shown in
Figure 24.9.

Similarly, you cannot abbreviate type names in piecemeal fashion. To fix the following
problem, you must either import System.Collections and refer to Arraylist without any
namespace name or use the fully qualified name in its entirety:

using System;

namespace Contoso.CashFlow.Client

{

class Program

{

static void Main()

{

Collections.ArrayList lst = ...; // Error: can’t find it

}

}

}

Within namespace declarations, it’s possible to import namespaces, too. Within a name-
space declaration, a bit more flexibility for imports exists, being able to refer to sibling or
parent namespaces. For example

namespace Contoso.CashFlow.Client.Security

{

using Client; // Refers to Contoso.CashFlow.Client parent

using UI; // Refers to Contoso.CashFlow.Client.UI sibling

...

}

1225Importing Namespaces

FIGURE 24.10 Resolving a type name in Visual Studio’s code editor.

FIGURE 24.11 Ambiguous type name requiring manual resolution.

Name Clashes Due to Imports

Because namespaces were invented to resolve name clashes in some flat global namespace
(for example, as seen in Win32), they allow for types with the same (short) name to exist
in different namespaces existing alongside each other. When multiple such namespaces
containing a type with the same name are imported, a conflict will occur when trying to
refer to that particular type.

For example, when adding references to both System.Drawing and WindowsBase (the
former of which is used by Windows Forms and the latter by Windows Presentation
Foundation [WPF]), multiple definitions of a Point type exist (among many others, such as
Size). Figure 24.10 shows the Resolve feature in Visual Studio that can be used to resolve a
type name if no using directive for a containing namespace has been specified (yet).

When carrying out the operation shown here, a using directive for System.Drawing will be
added to the top of the file, allowing us to refer to the Windows Forms Point type imme-
diately. However, if we also import the System.Windows namespace, we get a name clash
when referring to Point, as illustrated in Figure 24.11.

1226 CHAPTER 24 Namespaces

There are different ways to resolve this conflict, the most obvious of which is to refer to
the intended type by its full name. This can be done in a case-by-case manner, only for
those types that are subject to a conflict. In other words, there’s no need to back out a
namespace import because of a single issue:

var point = new System.Drawing.Point(3, 4);

Again, the Visual Studio feature to resolve names can help here. Other unambiguous
names can stay abbreviated. For example

// Only in the System.Windows namespace (defined in the WindowsBase assembly).

var vector = new Vector(3, 4);

Use of those long type names can hinder code readability, though, especially if several
such conflicts occur. To mitigate this issue, C# supports a way to define aliases for name-
space imports.

Using Aliases

The using directive can be extended with the definition of a named alias, acting as an
abbreviation for the namespace or type name on the right side. An example of this is
shown in Chapter 22, “Dynamic Programming,” when dealing with the Word and Excel
automation APIs. In this context, the Application type exists in both namespaces used for
Word and Excel interop. Use of an alias allowed us to abbreviate references to them:

using Word = Microsoft.Office.Interop.Word;

using Excel = Microsoft.Office.Interop.Excel;

Now we can write the following two lines of code, disambiguating a reference to the
Application interface:

var excel = new Excel.Application();

var word = new Word.Application();

Defined aliases are scoped within the containing compilation unit or the immediately
enclosing declaration of a namespace.

Aliases can also be used to refer to types, including generic ones as long as they’re closed
constructed types; that is, no generic parameters are omitted or remain unbound:

using WpfPoint = System.Windows.Point;

using IntList = System.Collections.Generic.List<int>;

This feature tends to be used to a lesser extent. Some C++ savvy readers may draw a paral-
lel with typedefs in some native languages. This analogy only holds to a limited degree.
For example, it’s not possible to have an alias defined in an assembly such that every user

1227Importing Namespaces

FIGURE 24.12 Referenced assemblies containing a conflicting type definition.

of the assembly gets it. This is simply because using directives are lexically scoped within
source code files and have no representation at runtime whatsoever. Even though the IL
assembler language has similar aliasing mechanisms, the runtime always operates on full
type names.

Extern Aliases

Despite the fact naming conventions for namespaces and types exist, it’s still possible
to end up with ambiguities across different assemblies. One more or less common
case is when multiple versions of an assembly need to be referenced (for example, for

compatibility scenarios). Those assemblies might have the same namespace and type names,
so a new ambiguity arises: Whose assembly’s namespace or type is being referred to?

Figure 24.12 shows what happens if both those assemblies contain the following name-
space and type, which we attempt to use from our code:

namespace Bar

{

public class Foo

{

}

}

C# 2.0 introduced the concept of extern aliases to alleviate this problem. To understand
this feature, it’s important to understand how reference assemblies are passed to the
compiler using the /reference flag. For example, compiling an assembly that’s referring to
System.Drawing and WindowsBase will result in a compiler invocation like this:

csc /r:System.Drawing.dll /r:WindowsBase.dll File1.cs File2.cs

1228 CHAPTER 24 Namespaces

FIGURE 24.13 Configuring extern aliases.

Starting with C# 2.0, it’s possible to specify an alias in front of an assembly passed to the
/reference (shorthand /r) flag. This is known as an extern alias:

csc /r:X=Assembly1.dll /r:Y=Assembly2.dll File1.cs File2.cs

In the preceding example, referring to namespaces and types inside Assembly1.dll can be
abbreviated using X, while those in Assembly2.dll are accessible using alias Y. Inside Visual
Studio, you can specify extern aliases from the Properties pane for a selected referenced
assembly. This is illustrated in Figure 24.13.

The default value for the Alias property is global, which has a corresponding keyword
allowing reference to it. To traverse an alias followed by a namespace name, you use the
:: operator, as shown here:

global::System.Collections.Generic.IEnumerable<int> numbers = ...;

Obviously, the global alias specification can be omitted unless we’re trying to resolve a
conflict. In our preceding example, we’re faced with a conflict for the Bar.Foo type across
two assemblies. Assuming we’ve configured the aliases as X and Y, we can now import
those aliases in a code file using the extern keyword:

extern alias X;

extern alias Y;

Given those two alias imports, we can write the following:

var fooFromX = new X::Bar.Foo();

var fooFromY = new Y::Bar.Foo();

1229Importing Namespaces

FIGURE 24.14 In IL code, types are always prefixed with the assembly in which they’re
defined.

Notice that assembly-qualified references to types are everyday business in IL code because
the runtime requires this form to locate referenced types. Figure 24.14 shows the compiled
IL code corresponding to the preceding fragment. All the extern alias feature in C#
provides for is syntax to carry out this disambiguation across assemblies containing a type
with the same name.

Use of :: is officially known as namespace alias qualification and can also be used to write
super-robust code in the face of potential future changes to code. For example, it’s possible
to have imported a namespace with an alias that starts to clash with a type name some-
where in the future:

// File1.cs

namespace Bar

{

using Foo = System.Drawing;

class Program

{

private Foo.Point point; // Refers to System.Drawing.Point

}

}

If we now introduce a Bar.Foo type somewhere else, the preceding code will break:

// File2.cs

namespace Bar

{

class Foo

{

...

}

}

1230 CHAPTER 24 Namespaces

FIGURE 24.15 An alias conflicting with a type.

The Foo.Point type specified for the field in the Program class now becomes a problem to
resolve, as illustrated in Figure 24.15.

One way to resolve this is by changing the alias being used. Alternatively, the use of
aliases can help here, too. In fact, the problem is of a syntactical nature, where the use of
the . operator has different meanings. One is to dot off a type name (for example, into
static members), whereas another is to dot into namespace hierarchies possibly using
aliases. Replacing the . with a namespace alias qualifier using :: will resolve the issue:

class Program

{

public Foo::Point point;

}

In short, namespaces help a lot with the logical organization of types in a hierarchical
manner, but you should be prepared to resolve some remaining clashes using a variety of
techniques as described here.

Extension Methods

As discussed in Chapter 10, “Methods,” in the section, “Extension Methods,”
extension methods piggyback on the using directive to be brought into scope. This
is quite special in the language because it makes the resolution of members depend

on namespaces, where the using directive only influenced types in the pre-C# 3.0 era. A
good example of the use of extension methods is found in LINQ:

using System.Linq;

class Program

1231Importing Namespaces

FIGURE 24.16 Visual Studio knows about the LINQ extension methods.

{

static void Main()

{

var rabbits = new[] { 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 };

var evenRes = rabbits.Where(x => x % 2 == 0);

...

}

}

Again, the use of using directives is a compile-time thing only because the above is turned
into a static Where method call, defined on the System.Linq.Enumerable static class,
which lives in the System.Core assembly:

var evenRes = Enumerable.Where(rabbits, x => x % 2 == 0);

The Where method becomes available for resolution once the System.Linq namespace gets
imported. Figure 24.16 illustrates that Visual Studio has special knowledge about the usage
pattern of extension methods when using query comprehension syntax.

In System.Core, the Where method is defined as follows, highlighting the essential bits
that comprise an extension method definition:

// Somewhere in System.Core

namespace System.Linq

{

public static class Enumerable

{

public static IEnumerable<T> Where<T>(this IEnumerable<T> source,

Func<T, bool> predicate) { ... }

}

}

Extension methods are resolved by searching for them in enclosing as well as imported
namespaces. Instance methods take precedence if an applicable overload is available,

1232 CHAPTER 24 Namespaces

preventing the search for extension methods from ever happening. For the full set of rules
applied to resolve (extension) methods, refer to the language specification.

Summary
Structuring applications into manageable pieces is a very important task for developers in
today’s world. As the complexity of applications and components grows, it’s ever more
important to be able to tame this complexity and find our way around code.

Those observations hold on different levels, ranging from structuring types in logical
containers, to runtime aspects where multiple components have to play in concert while
reducing risks to an application hosting them. In other words, we need facilities
provided by languages and tools to organize and explore types and members, but the
runtime also must participate, to realize goals of loading components and providing
isolation when needed.

In the camp of languages and tools, we find the notion of namespaces, which are merely
enlarged type names from the runtime’s point of view. Using a dot-separated naming
scheme, a type’s name is divided into the type’s “short name” and the namespace in
which it’s contained. When using types, you can import the namespace to abbreviate
those long names. However, when many libraries are used, name clashes may occur. In
such a case, you can fall back to the long name or introduce aliases. C#’s keywords expos-
ing those principles are namespace, to create a namespace, and using, to import one.

Focusing on the runtime aspect of taming the complexity of large components and appli-
cation, we explore the concept of assemblies and application domains in the next chapter.

CHAPTER 25

Assemblies and
Application Domains

IN THIS CHAPTER
. Assemblies 1233

. Application Domains 1277

After covering namespaces in the previous chapter, this
chapter covers assemblies in detail. We take a look at
various types of assemblies you can build from Visual
Studio and cover the various settings associated with them.
In terms of deployment, we study naming and versioning,
as well as the concept of strong names. This provides a
segue into the world of the Global Assembly Cache (GAC)
for centralized storage of assemblies and the native image
generation (NGEN) technology to create native images for
intermediate language (IL)-based assemblies. Finally, you’ll
see that assemblies are more than containers for IL code
and can also contain resources and so on.

To wrap up the chapter, we change our focus from the
deployment aspect of assemblies to runtime aspects. You’ll
see how assemblies get loaded and how the common
language runtime (CLR) establishes isolation using applica-
tion domains. We also briefly cover .NET Remoting, a low-
level communication mechanism between application
domains.

Assemblies
Assemblies are self-describing units of functionality, consist-
ing of code and metadata defining types and their
members. Figure 24.3 in Chapter 24, “Namespaces,” illus-
trates what makes up an assembly. In this part of the
chapter, we focus on a set of aspects associated with assem-
blies, ranging from build time to runtime. While exploring
assemblies, we discuss their naming and versioning, the
concept of strong naming and the Global Assembly Cache
(GAC), how they get loaded, visibility aspects, and more.

1234 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.1 Modules are included by assemblies.

Modules and Assemblies

Assemblies serve many roles, including the following:

. They serve as a typical unit for the deployment of code, associated metadata, and
embedded resources.

. They act as a means to stimulate code reuse by building libraries that can be reused
from different components or applications.

. They provide for a versioning story, resolving core issues that existed before in the
world of COM with the “DLL hell.”

. Scoping and visibility allow for “programming in the large,” where aspects of an
implementation can be hidden.

. Security decisions can be made based on an assembly’s identity, location, and so on,
as well as based on permissions configured on it.

From a deployment point of view, assemblies can consist of one or more files, although
it’s typical to use a single file nowadays. The parts that make up an assembly are known as
modules, sometimes referred to as netmodules. In fact, when using .NET Reflector, you’ve
already seen those modules. Figure 25.1 shows how the mscorlib and System assemblies
consist of a single module.

Although Visual Studio doesn’t provide facilities to build and bundle modules, command-
line compilers do. Here we’ll create an assembly consisting of two modules, each of which
is built using a different language.

1235Assemblies

FIGURE 25.2 Multiple modules referred to by a multifile assembly.

// Compile using: csc /t:module module1.cs

class CSharp

{

public void Bar() {}

}

// Compile using: vbc /t:module module2.vb

Class VisualBasic

Public Sub Bar()

End Sub

End Class

The preceding code will produce two files called module1.netmodule and
module2.netmodule, which can be linked together using a tool called al.exe for Assembly
Linker. Alternatively, both the C# and VB compilers have a flag called /addmodule that can
be used to link in modules.

With the following command, a multifile assembly is created, including both modules
that were created earlier. Figure 25.2 shows the resulting assembly in .NET Reflector:

al /target:library /out:sample.dll module1.netmodule module2.netmodule

1236 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.3 Output file types supported by the C# compiler.

Because assemblies typically consist of a single file, we won’t cover multifile assemblies
extensively in this book; see MSDN documentation for more information. It suffices to
know that assemblies are not the smallest unit of deployment supported by the CLR, but
the single-file assembly configuration is the most common case.

DO ASSEMBLIES NEED TO BE FILES?

Although most documentation mentions assemblies and (binary) files in the same
breath, it’s not the case that assemblies are tied to files. All that matters to the CLR is
to be given a sequence of bytes that follow a grammar that’s well specified in the
Common Language Infrastructure (CLI) specification.

One example where assemblies are not physically stored in a separate file on disk is
the CLR integration into SQL Server 2005 and later. Here, assemblies are stored in a
table and read as a byte sequence to be loaded into the runtime.

Types of Assemblies

Different types of assembly files can be created, depending on their roles. Executable
assemblies differentiate from others in that they have an entry-point method and are
referred to as applications. Library assemblies contain components that are used by other
libraries/applications.

On the Windows platform, executables are stored with an .exe extension and library bina-
ries are stored with a .dll extension. To the CLR, the extension is of little relevance and
isn’t part of the assembly’s name, as you see later. To make assemblies into proper code
binaries on the platform, they’re stored in Windows PE/COFF format, which stands for
Portable Executable, Common Object File Format. Command-line language compilers
reveal the output file types that can be generated, as specified through the /target flag, as
shown in Figure 25.3.

Those types correspond to Visual Studio project types and a flag in the resulting binary
PE/COFF file, indicating to the Windows loader how to treat the file:

. The exe target is used by console applications and marks the PE/COFF file to use the
CUI or Console UI subsystem.

1237Assemblies

FIGURE 25.4 Some assembly properties configurable in Visual Studio.

. The winexe target is used by Windows Forms and WPF applications and uses the
GUI subsystem so that no console window is shown.

. The library target creates a .dll file and is used whenever some kind of Class Library
project is used.

We saw the module target before and mentioned the fact that it’s not directly supported
through Visual Studio’s project system. The binary file format is also a PE/COFF file.

SHOWING THE BINARY FILE HEADERS

Geeks might be interested in the underlying file format used by .NET assemblies. On the
Visual Studio Command Prompt, use the dumpbin tool to inspect a binary file (for exam-
ple, using the /headers flag to show the PE/COFF headers). In the output of executable
file headers, you’ll find an “optional header” called subsystem, revealing CUI or GUI.

Assembly Properties

The configuration of an assembly’s properties is done through the project properties in
Visual Studio. Figure 25.4 shows the Application tab, which contains most of the relevant
properties.

Most settings should be self-explanatory. In the Startup Object drop-down, you can select
an entry point function if multiple candidates exist, which triggers the use of the /main
flag on the command-line compiler. The Resources section can be used to configure the

1238 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.5 Various configurable assembly properties.

FIGURE 25.6 Assembly-level metadata is contained in AssemblyInfo.cs.

application icon and a manifest, which contains additional information about the
executable as used by Windows (for example, to trigger User Account Control). For more
information about this feature, refer to the Visual Studio documentation and MSDN.

The Assembly Information button provides access to a bunch of other properties that are
specified using assembly-level custom attributes carrying metadata. Figure 25.5 shows
those properties.

We discuss the naming and versioning of assemblies in the next section. One thing to
notice, though, is the difference between an assembly version (which is what the CLR
cares about) and a file version (used by Windows and installers). The GUID and COM-
Visible settings near the bottom are for advanced scenarios where the managed code
assembly needs to be used from COM components.

Behind the scenes, those settings get persisted in a file called AssemblyInfo.cs, which can
be found by expanding the Properties entry for the project in Solution Explorer, as shown
in Figure 25.6. Extra information about various settings can be found in the emitted
comments in this code file.

1239Assemblies

FIGURE 25.7 Platform target setting.

I’ll leave it to you to inspect the assembly after compilation in a tool such as ILDASM or
.NET Reflector, tracing back the assembly-level attributes that get set here.

Extra assembly-level settings can be found under the project properties Build tab. One
setting of particular interest is the Platform target. This setting has historically proven to
be confusing, and in the latest release has introduced a bit of controversy. First, let’s
explain what it’s all about, with Figure 25.7 as a pointer to the location of the setting.

As you know by now, the CLR provides a hardware-independent virtual machine based on
an intermediate language called IL. This means code can be turned into native code at
runtime, a task performed by the Just-in-Time (JIT) compiler. .NET’s JIT compiler supports
to turn IL into x86, x64, or Itanium assembler.

The Platform target setting allows you to restrict what the emitted IL code can be turned
into at runtime. Notice this doesn’t by any means tell the compiler to go and emit native
code. Assemblies always ship IL code; in fact, compilers like C#’s don’t even know how to
emit native code.

So if the setting is set to, say, x86, the IL can only be translated into x86 assembler at
runtime. This doesn’t mean the code can’t run on an x64 platform, though, because 64-bit
Windows has a facility called WOW (for Windows on Windows), which allows 32-bit code
(which is referred to as x86 here) to run. However, if the Platform target were to be set to
x64, the code would run on only an x64 machine (because, obviously, a 32-bit machine
isn’t capable of running the bigger x64 instruction set).

Now, what has changed in Visual Studio 2010 that caused quite some controversy in the
beta days? In earlier versions, the default setting for the Platform target was Any CPU,
which means the IL would be turned into whatever the target machine is capable of.
Although this leverages most of the CLR’s’s flexibility, it has some drawbacks. Even though
x64 is the future (by all means), a number of limitations still apply:

. 64-bit programs tend to be a bit slower due to larger pointer sizes, and therefore use
more memory and have bigger impact on CPU caches.

. Interop with native code can be quite hard to get right when you must support
different processor architectures, requiring quite a bit of additional testing.

1240 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.8 An x86-targeting assembly running on an x64 system.

. Some features on the CLR and Visual Studio don’t fully support x64 yet (for exam-
ple, historical debugging and edit-and-continue).

Also the benefits of x64 start to pay off once we’re talking about applications that can
really take advantage of a huge address space above the 2GB user mode address space limit
(assuming a default machine configuration) posed by the 32-bit architecture. For all those
reasons, Visual Studio 2010 projects default to x86 for executable assemblies (like console
applications and Windows Forms or WPF applications).

It can’t be overemphasized that this doesn’t mean that executable assemblies configured to
target x86 won’t run on x64 platforms anymore. Figure 25.8 shows such an assembly
running on a 64-bit system using WOW64.

In today’s world, it’s up to the developer to decide whether it makes sense for a managed
application to take advantage of full-blown 64-bit, which may require a lot of additional
testing in case native interop is used. (For example, COM interop, as discussed before, may
cause some grief.)

Class Library projects still default to Any CPU because they’re loaded in a process and
have to adapt to whatever “bitness” that process is running under. In other words, it’s up
to the executable assembly to decide what architecture to target.

CHANGING THE TARGET PLATFORM OF AN ASSEMBLY

Besides reconfiguring the Platform target setting in Visual Studio and recompiling the
assembly, there’s another way to change the targeted architecture, even when the
assembly has already been compiled.

Using corflags.exe, you can change the CLR header of an assembly. For example:

corflags /32bit- sample.exe

The preceding command will remove the x86-only flag, which will cause the assembly to
be treated as Any CPU again.

Naming, Versioning, and Deployment

One of the key aspects of assemblies is found in their naming and versioning. Prior to the
introduction of .NET, versioning was quite painful due to the so-called DLL hell. In the
days of COM and use of “classic” DLLs, deployment of components involved registering

1241Assemblies

them for use at runtime. However, when multiple versions of a component existed, they
typically overwrote the binary/registrations, causing other programs to start using the new
version. If the new version is not completely backward compatible, chances are high
something breaks in other installed applications.

Early on in the design of .NET, it was determined that this problem had to be resolved.
This called for a new naming and versioning story on the new units of deployment (that
is, the assemblies). The first important change to the deployment story is the support for
xcopy deployment, allowing (library) assemblies to sit alongside application assemblies,
with no registration needed whatsoever. At the center of this feature lies the self-describ-
ing nature of assemblies, carrying all required metadata for type discovery with them.

To illustrate xcopy deployment in practice, let’s create an application with an assembly on
which it depends. You’ll see how to declare such dependencies in a Visual Studio solution
later, but for now we’ll go with plain command-line compilation. First, we create the
library consisting of the following C# code file:

// Calc.cs

public static class Calc

{

public static int Add(int a, int b)

{

return a + b;

}

}

To compile the library into a .dll assembly, invoke the following command:

csc /t:library calc.cs

Given the new calc.dll file, we now create an application that depends on it. To do so,
enter the following code in a new file:

// Program.cs

class Program

{

static void Main()

{

System.Console.WriteLine(Calc.Add(3, 4));

}

}

To establish the dependency between both assemblies, the compiler needs an additional
flag, as shown here. Notice that the default target type is exe, so we don’t need a /t flag:

csc /r:calc.dll program.cs

1242 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.9 Reference to external assemblies the application depends on.

The dependency of program.exe on calc.dll is declared in the executable assembly’s
manifest, as can be seen from ILDASM. Figure 25.9 illustrates the manifest for our
program.exe assembly.

Two extern assemblies are referenced, one of which is mscorlib. You learn shortly what the
magic word publickeytoken stands for. Right below the mscorlib reference we can see our
calc assembly being referenced.

A few things should be pointed out. First, at the level of the CLR there’s no such thing as
an extension on assembly names. When trying to find a dependent assembly, the CLR will
look in a variety of locations (as discussed later), appending .dll and .exe extensions when
it browses around for files. Second, notice how every extern assembly carries a version
number with it. Because we didn’t specify a version for calc, it defaults to a 0.0.0.0
version. Assemblies declare dependencies in a precise manner, so no future version of a
component can be loaded accidentally. You learn in the section called “The Global
Assembly Cache (GAC)” when precisely the CLR enforces version numbers to match when
loading dependencies.

REDIRECTING ASSEMBLY VERSION BINDING

You might wonder whether it’s possible to cause a managed application to use a later
version of a dependency without recompiling it against a later version of that assembly.
The answer is yes, using something known as publisher policy. By sticking a configura-
tion file alongside the executable, it’s possible to redirect a “dependent assembly” to a
new version.

It should be emphasized that the approach taken by the CLR is much the opposite of
what was done in earlier days, where the latest version of a component would win and
could affect existing applications on the machine.

1243Assemblies

FIGURE 25.10 Using xcopy deployment in practice.

To carry on with our xcopy deployment example, copy both calc.dll and program.exe to
another folder. This suffices to make the application work, without requiring any kind of
change to the Registry and whatnot. When the dependent assembly, calc.dll, gets dropped
(or renamed to an extension other than .dll or .exe), the CLR will throw an exception
when it tries to load the dependent assembly. Figure 25.10 illustrates the motions of xcopy
deployment.

You learn how the CLR locates assemblies for loading in the section, “How Assemblies Get
Loaded at Runtime.” For now, let’s focus on the naming and versioning aspect of assem-
blies. Starting with the latter, we’ve seen already how version numbers can be specified
through a project’s properties in Visual Studio. Behind the scenes, this is turned into an
assembly-level attribute that specifies the version number. For our experiment, let’s add
that manually to calc.cs:

// Calc.cs

using System.Reflection;

[assembly: AssemblyVersion(“1.0.0.0”)]

public static class Calc

{

public static int Add(int a, int b)

{

return a + b;

}

}

When we recompile the library assembly and look in ILDASM, we now see that the assem-
bly has a 1.0.0.0 version. At this point, we’re still deploying dependent assemblies next to

1244 CHAPTER 25 Assemblies and Application Domains

the application assembly, in which case versioning doesn’t matter much. In fact, the CLR
doesn’t enforce versions to match in this case. You’ll see that program.exe still runs fine,
despite the fact calc.dll has boosted its version number.

In xcopy deployment scenarios, it’s the application’s responsibility to make sure the local
application folder has a consistent mix of program and dependent assemblies. Because no
other applications will use those “private binaries,” matching up version numbers is not
required. However, when assemblies start to be shared across different applications or
other libraries, we’re entering the danger zone that previously led to DLL hell. To mitigate
this, strong naming was introduced, which is discussed next.

One final word on naming of assemblies: It’s considered good practice to make the name
of the assembly match the top-level (most-common prefix) namespace of the types
contained inside it. For our quick-and-dirty calculator example, we didn’t have such a
namespace, but for our earlier examples of Contoso.CashFlow.Client, that would have
been the perfect name for the assembly.

Strong Naming

Simple names like calc can lead to some ambiguity when assemblies are shared across
different applications. This is precisely what has been a critical issue in times of the DLL
hell, where components were overwritten by newer versions. For example, suppose that
SimpleCalc is an application that relies on calc.dll version 1.0, which is registered so that
it can be shared across programs. Later, SuperCalc comes around with version 2.0 of the
calc.dll library, which it also registers centrally. At this point, the later version wins and
overwrites the older one. Now things may go bad for SimpleCalc if the new version is not
(fully) backward compatible with the older one.

Strong naming was invented to resolve this issue. By making a name stronger than just a
simple name like calc, those ambiguities can be avoided. Strong names include the
following parts:

. A simple textual name, such as calc. This is what gets configured through the Visual
Studio project settings and in practice corresponds to the filename containing the
managed code assembly.

. A version number, consisting of four parts (major, minor, build, revision) to indicate
precisely which version of the assembly we’re talking about. This gets specified using
the AssemblyVersion attribute, as you saw before.

. A public key token, revealing the origin of the assembly. This corresponds to the
company that signed (using the corresponding private key) and published the
assembly. You learn more about signing (using various tools) later in the section,
“Creating and Using Strong-Name Keys.”

. An optional culture specification, indicating what user culture the assembly is meant
to be used for. This proves particularly useful when creating localized and globalized
applications.

So far, we’ve only seen the first two parts of assembly names. Let’s take a look at the
other ones now.

1245Assemblies

Assembly

Private Key

Public Key

CLR Header

RSA
IL Code

Metadata

Assembly Manifest

Signature

Hash

Key file

FIGURE 25.11 Strong-name signing.

Understanding Strong-Name Signing Keys
To carry out strong-name signing, a key must be used to sign the assembly during build.
In fact, there are two sides to this, so to be precise, we have to discuss a public and private
key pair. Without going into much detail on cryptography, the private key is meant to be
kept, well, private by the company signing the assembly, whereas the public key can be
shared with the world. Based on the public key, which gets embedded in the signed
assembly’s manifest, the CLR can verify that the assembly hasn’t been tampered with.
From the public key, a smaller public key token is derived that becomes part of the assem-
bly’s strong name.

Figure 25.11 shows the signing process:

. First, the initial compilation of the assembly, emitting code and metadata, is carried
out. This is the same as building weakly named assemblies.

. A hash is computed from the produced assembly’s bytes, using a hashing algorithm
such as SHA-1. This enables verification of the integrity of the assembly.

. The computed hash is signed using the RSA encryption algorithm, using the
company’s private key, producing a signature that gets embedded in the file.

. To allow the runtime to verify the signature, the public key gets embedded in the
assembly’s manifest.

In reality, things are a bit more complicated because the file being signed must change for
the generated signature to be embedded inside it. Doing so within the range of bytes that
got hashed would invalidate the hash, so the file format accommodates for a proper place
to store a hash.

1246 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.12 Specifying a strong-name key file for signing.

Creating and Using Strong-Name Keys
There are various ways to create a strong-name key, but the most convenient of all is to
use Visual Studio directly. In a project’s properties, go to the Signing tab and check the
Sign the Assembly option, as shown in Figure 25.12. In the drop-down box, you can select
an existing key file or create a new one. Because this key file also contains the private key,
the file can be protected using a password, which is strongly recommended because the
unauthorized use of the private key allows another party to sign an assembly in your
company’s name.

During build, the file is fed to the compiler using a /keyfile flag, causing the assembly to
get signed as described previously. In days before .NET 2.0, the key was specified using an
attribute called AssemblyKeyFile, which is no longer in use.

DELAYED SIGNING

Another option for signing is the use of delayed signing, which is useful in a few sce-
narios. Avoid sharing the private key with a lot of people inside your company because
any leak of the key should be avoided at all costs. Using delay signing, you can sign an
assembly using its public key only. We won’t cover this feature in detail here; for more
information, refer to the MSDN documentation.

Alternatively, a strong-name key can be created using the .NET Framework sn.exe tool,
which has a whole bunch of parameters. One is the /k flag, which is used to create a new
strong-name key, as shown in Figure 25.13. Using the /p flag, you can extract the public
key out of a key file, which subsequently can be visualized using /tp. This also shows the

1247Assemblies

FIGURE 25.13 Using the Strong Name Utility sn.exe.

FIGURE 25.14 The public key embedded in the assembly manifest.

public key token that will become part of the strong name of every assembly signed
using the key.

Using the created key.snk, we can now build and sign our calc.dll assembly as follows:

csc /t:library /keyfile:key.snk calc.cs

Inspecting a Strong-Named Assembly
The resulting assembly manifest, shown in Figure 25.14, is much larger because it includes
the public key. In addition, the hash algorithm that was used to compute the assembly’s
hash is revealed (SHA-1 is used by the C# compiler).

1248 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.15 Metadata referring to strong-named assemblies.

To continue our exploration, let’s rebuild our program.exe assembly as well, again by refer-
ring to the calc.dll as a referenced assembly:

csc /r:calc.dll program.cs

Notice that we’re not strong-name signing the program.exe assembly, though we could.
The philosophy of this example is that we are sharing the calc.dll library across multiple
applications, requiring that one to be strong-named signed.

It’s perfectly possible for a weakly named assembly (like program.exe) to refer to a strongly
named one, but not the other way around. In other words, if calc.dll were to depend on
other libraries, all of those would have to be strong-name signed, too. In some sense, this
establishes a trust boundary around strongly named assemblies. Assume a strong-named
assembly were able to refer to a weakly named one. In such a case, you’d be running into
the situation where you’re no longer provided with protection against DLL conflicts.

If we now look at the assembly manifest for program.exe, we see that not only the version
number but also the referenced assembly’s public key token is included in the .assembly
extern metadata entry. Figure 25.15 shows this.

Strong-Name Verification at Runtime
When strong-named assemblies are referenced, the CLR is put in a mode where it pays
extra attention to integrity of dependencies. When the runtime locates assemblies, it
makes sure the strong name matches exactly what the assembly manifest refers to. If not,
an exception is triggered.

As an exercise, change the version number of the calc.dll assembly by tweaking the
AssemblyVersion attribute and recompiling calc.dll:

// Calc.cs

using System.Reflection;

[assembly: AssemblyVersion(“2.0.0.0”)]

public static class Calc

{

1249Assemblies

FIGURE 25.16 The CLR detects version mismatches for strong-named assemblies.

public static int Add(int a, int b)

{

return a + b;

}

}

Don’t recompile program.exe and try to run it with the newer version of calc.dll sitting
next to it. Now the CLR will complain that the strong name of the referenced assembly
(having .ver 0:0:0:0) doesn’t match up with the actual calc.dll assembly’s name (having
.ver 1:0:0:0). Figure 25.16 shows the FileLoadException that indicates this mismatch.

During development, it’s possible to bypass such verifications by using sn.exe’s /Vr switch.
Use this with extreme caution; it poses a security threat on your machine.

The Global Assembly Cache

Loaded with knowledge of strong naming, we’re ready to tackle the Global Assembly
Cache (GAC), which provides a way to share assemblies across applications in a machine-
wide manner (hence the world global). For assemblies to be stored in the GAC, they have
to be strong name signed.

Up to now, we’ve always deployed assemblies privately in an application folder. As you
will see later in the section, “How Assemblies Get Loaded at Runtime,” there are different
places where the CLR looks for a referenced assembly, one of which is the current folder.
Both weak- and strong-named assemblies can be deployed privately, but only strong-
named assemblies can go in the GAC.

Inspecting the GAC
A good starting point for our exploration of the GAC is looking at it. Essentially, the GAC
is a central folder location where the CLR can go and look for assemblies. Prior to .NET 4,
this was an “assembly” subfolder of the Windows installation directory. In the latest
release, a new location has been introduced underneath the Microsoft.NET folder. The

1250 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.17 The .NET 4 GAC location.

main reason for this so-called GAC splitting is the fact CLR 2.0 and 4.0 can exist side by
side on the same machine, and the latter version should not pick up v2.0 targeting assem-
blies accidentally.

Figure 25.17 shows the top-level folder structure of the GAC used by .NET 4. The different
folders correspond to target platform architectures, where MSIL is used for the architec-
ture-neutral assemblies (Any CPU).

VIEWING THE PRE-.NET 4 GAC

Prior to .NET 4, the GAC lived underneath %windir%\assembly. In fact, .NET 4 keeps
native images (a concept explained later in the section “Native Image Generation
(NGEN)”) in there, too. Viewing this folder is slightly more difficult because a shell
extension is registered for the folder, presenting the GAC as a flat folder structure. This
shell extension can be disabled by adding a DWORD value called DisableCacheViewer
to HKLM\Software\Microsoft\Fusion, set to 1. Fusion used to be the code name of
assembly caching and loading features in the CLR.

Underneath those architecture folders, each shared assembly has a folder corresponding to
its simple textual name. For example, the System.Core assembly exists underneath the
GAC_MSIL folder. There’s one more level of indirection, though, with intermediate folders
containing the assembly version number and the public key token:

%windir%\Microsoft.NET\assembly

+ GAC_MSIL

+ System.Core

+ v4.0_4.0.0.0__b77a5c561934e089

- System.Core.dll

This intermediate folder is prefixed with the targeted runtime’s version. In case of the
.NET Framework System.Core assembly, that’s v4.0.

An alternative way to inspect the GAC is by using the gacutil.exe tool that can be used
from the Visual Studio command prompt. The following command lists all the assemblies

1251Assemblies

FIGURE 25.18 Using gacutil.exe to list assemblies in the GAC.

that are registered in the GAC. (On my machine, a total of 1,432 assemblies were found,
spread across .NET 2.0 and .NET 4.)

gacutil /l

By specifying a partial assembly name (for example, System.Core) to the /l flag, the tool
will show only matching entries, as illustrated in Figure 25.18.

The presence of .NET Framework assemblies in the GAC explains why there’s no need
(luckily!) to redistribute those alongside an application binary. Later, in the “How
Assemblies Get Loaded at Runtime” section, you see how the CLR locates assemblies refer-
enced by an application.

HOW INSTALLERS DEAL WITH GAC ASSEMBLIES

A more advanced gacutil.exe flag, /lr, displays references to GAC assemblies (for
example, put there by installers like the .NET Framework Redistributable). Various
installer technologies provide ways to install assemblies to the GAC, also putting
guards in place against their removal.

Installing an Assembly in the GAC
To install an assembly in the GAC, you can use the gacutil.exe tool with the /i flag, speci-
fying the filename of a strong-named assembly. This is illustrated in Figure 25.19. Let’s
give it a try on the calc.dll assembly we built before. To make this work, you need to run
from an elevated Visual Studio command prompt because we’re going to touch machine-
global state. After we install the assembly, we use /l to observe the assembly being added
to the GAC.

Based on the processor architecture of the assembly (which defaults to Any CPU or MSIL
for class libraries in Visual Studio), the file will get copied to the appropriate folder in the
GAC. After the installation has taken place, you should be able to locate the assembly file
in the following folder; the public key token portion will vary:

%windir%\Microsoft.NET\assembly\GAC_MSIL\calc\v4.0_2.0.0.0_a8e57b80678922f0

1252 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.19 Installing an assembly to the GAC.

WHEN AND HOW TO PROPERLY INSTALL GAC ASSEMBLIES

Before asking how to install GAC assemblies that go with a product of yours, the first
question to bring up is whether it’s appropriate to use the GAC for some of your
assemblies. In general, private deployment of assemblies is the way to go except when
you either have to share assemblies (supporting versioning) across different applica-
tions or other components on the system must be able to load it by an assembly
name. The latter situation can arise when you’re writing add-ins for various technolo-
gies, such as Internet Information Services (IIS) modules.

To install assemblies to the GAC in some installer, refer to the documentation of the
installer technology being used. For example, the Visual Studio Setup and Deployment
Projects enable the creation of Windows Installer packages, where adding assemblies
to the GAC is supported. One implication of choosing to use the GAC is that the
installer will need to run elevated.

Finally, it should be emphasized that simply copying an assembly into a GAC folder is
not a supported way to deploy assemblies to the GAC. Besides the folder structure
consulted by the CLR, other registration locations play a role. Use of either gacutil.exe
or one of the CLR “Fusion” APIs (as used by installers) is the way to go.

With the calc assembly deployed to the GAC, we can verify the CLR finds it there for use
by the program.exe application. To fully test this claim, delete the calc.dll file that’s still
sitting next to the executable binary and try to run program.exe. Even without a privately
deployed copy of calc.dll, the application works now. After removing the assembly from
the GAC (using the /u flag, specifying the assembly name; that is, with no file extension),
the application stops working. This is illustrated in Figure 25.20.

1253Assemblies

FIGURE 25.20 Illustration of an application loading a dependency from the GAC.

EASY TESTING OF GAC’ED ASSEMBLIES DURING DEVELOPMENT

When some application you’re developing and testing requires certain assemblies to
be deployed to the GAC, it can be a quite tedious to go through build, deploy, and
debug cycles over and over again. This tedious process disturbs the convenient F5
debugging experience quite a bit. Luckily, there’s an easy recipe to simplify life. On
the Visual Studio project’s property configuration, go to Build Events and add a post-
build command:

<pathToTools>\gacutil.exe -i $(TargetPath)

Here, substitute <pathToTools> with the location of gacutil.exe. (Tip: Use the where
gacutil command from a Visual Studio 2010 command prompt to find the full path.)
Now every compilation cycle will automatically deploy the built assembly to the GAC.

Referencing Assemblies

Going back to the Visual Studio development environment, we now focus on creating and
referencing assemblies. You’ve seen how this works plenty of times already, but some
things deserve some further attention.

1254 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.21 Add Reference dialog from the .NET tab.

Solutions Consist of Projects
First, we should highlight the difference between solutions, projects, and the topic at
hand: assemblies. The relationship between them is quite simple: Projects typically build a
single assembly, and multiple projects are bundled into a solution.

Solutions don’t have a runtime representation and are a Visual Studio-only concept, provid-
ing for a better development experience when building different assemblies in a group.

Depending on the type of the project, a different type of assembly will be built, such as a
class library (.dll), a console application, or a Windows UI-based application (both with a
.exe extension). Some projects have additional build logic beyond compilation; for
example, to wrap the binaries in a deployment unit (for example, a CAB file for
SharePoint extensions) or additional deployment manifests for things such as SQL Server
.NET assemblies (requiring registration using a series of T-SQL statements).

References Between Assemblies
As you learned earlier, assemblies can refer to other assemblies to utilize other functional-
ity. Various .NET Framework assemblies are typically referenced, but it’s obviously also a
good practice to factor your applications into different assemblies (for example, to separate
the UI from business logic and data access). To establish references between assemblies,
the Add Reference dialog is used, as shown in Figure 25.21. You can find this dialog by
right-clicking a project or the References node underneath it.

The five tabs visible on the Add Reference dialog allow you to refer to different kinds of
libraries, ranging from .NET assemblies to COM libraries (which result in the use of an
interop assembly). In Figure 25.21, the .NET tab is active, showing a set of .NET assem-
blies that can be referenced, together with their versions, the runtime they target (which
corresponds to the CLR version) and the path where the assembly lives on the devel-
oper’s machine.

1255Assemblies

WHERE THE .NET TAB’S ASSEMBLIES COME FROM

A popular misconception is the origin of the assemblies in the .NET tab in Visual
Studio. Some people believe this reflects the GAC on the developer’s machine, but this
isn’t the case.

The .NET tab collects assemblies from a series of reference assembly paths that are
specified in the Registry (search MSDN for details). Depending on the Visual Studio
version, the Registry location varies, mainly due to the introduction of multitargeting in
recent releases. Multitargeting allows the same Visual Studio tools to be used to write
applications targeting different versions of the framework.

On the Projects tab, you can refer to another project in the solution, which has a couple
of implications. First, it will result in the assembly having a runtime reference to the refer-
enced assembly. Besides this, there are tool-level implications with respect to build:

. When building a project, MSBuild will traverse into projects being referenced,
making sure the last built binary is not out of date with respect to the sources. If this
is the case, the assembly will be built again. This traversal of project references
continues until all dependencies are up to date.

. Executable projects will get a copy of the binaries built from referenced projects
alongside the executable binary. If you inspect the bin\Debug or bin\Release folder
of such a project with one or more references to other projects, you can notice this.
By doing so, the application can be run from the build output folder because the
runtime will locate dependent assemblies right next to the executable assembly.

DEVELOPMENT TIME VERSUS RUNTIME

Although the .NET tab of the Add Reference dialog mentions the assembly’s location on
the developer’s machine, this doesn’t have any impact on the runtime aspect of the
application. If you inspect the path of the assemblies in the dialog carefully, you’ll see
the majority lives in a folder called Reference Assemblies (which indicates their use):
for referencing during development. All that ends up in the built assembly are refer-
ences to other assemblies by their names.

The assembly loader is responsible for finding assemblies from various search loca-
tions, such as the GAC or the current working folder, as you will see in the next sec-
tion. In the case of reference assemblies, the corresponding runtime folder is usually
the GAC. For cross-referencing projects, one typically deploys the application such that
the referenced assemblies live in the same folder as the main executable, just as you
can see in the bin\Debug or bin\Release build output folders.

How Assemblies Get Loaded at Runtime

Now that you’ve seen how assemblies get referenced at development time, we can take a
look at how the runtime locates assemblies at runtime. Given an assembly that has refer-
ences to other assemblies, how does the runtime find them (and when)?

1256 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.22 A project referring to another project.

Xcopy Deployment
One of the early goals of the .NET Framework was to simplify the deployment model for
applications. This was known as the “xcopy deployment” vision, meaning one can just
copy an application’s binaries to some folder and run the application from that location as
is, without requiring any registration or so on. In the world of COM, there was a much
higher burden on installing and running applications because components typically
required registration in the Registry for the runtime to find them.

To illustrate matters, let’s create a new Visual Studio solution with two projects in it: a
console application that will result in the application’s main executable (containing the
UI) and a class library containing the logic of a calculator. The former refers to the latter,
using the Add Reference dialog’s Projects tab. The result should look like Figure 25.22,
highlighting the cross-project reference.

Feel free to add some Calculator type to the Calculator class library project and use it
from the CalculatorUI console application project. Because the default namespace for both
projects will differ, you must add a namespace import to refer to the class library’s
Calculator class.

What matters more than the application assemblies’ logic is the organization of the appli-
cation in terms of the different binary files, which we can inspect after compiling the
whole solution. Figure 25.23 shows the bin\Debug output folder for a debug build of the
CalculatorUI project. Ignoring the vshost executable, which is used for debugging
purposes when pressing F5 in Visual Studio, and debug symbol files (.PDBs), there are two
assemblies here. One is the CalculatorUI.exe file itself, and the other is the class library
Calculator.dll assembly it referred to.

1257Assemblies

FIGURE 25.23 Build output for the console application referring to a class library project.

FIGURE 25.24 References to other assemblies.

Just copying those two files to another folder will suffice to deploy the application and
make it run from another folder. That’s why this kind of deployment is referred to as
xcopy deployment.

Loading Referenced Assemblies
The next question to ask ourselves is how referenced assemblies get loaded. As you’ve seen
before in this chapter, references to assemblies live in an assembly’s metadata, which is
consulted by the runtime to locate types contained therein. Assuming you added some
code to our calculator example, exercising the use of a type cross-project, a .extern direc-
tive will appear in the CalculatorUI’s manifest. Figure 25.24 illustrates this.

Notice assemblies referenced by Visual Studio projects do not necessarily end up in the
metadata of the compiled assembly. Compare Figure 25.22’s list of references with the two
assemblies referenced in Figure 25.24. Only when types from an assembly are being used
will an .extern directive for the assembly appear in the resulting binary.

Given the information of referenced assemblies, when does the runtime trigger loading of
them? Due to the just-in-time compiled nature of code, the runtime is in a position where

1258 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.25 The referenced Calculator.dll assembly didn’t get loaded yet.

it can discover used types (and the assemblies in which they are contained) in quite a lazy
fashion, deferring loading of assemblies until the point they’re needed. We can see this by
using the debugger. First, we disable the Visual Studio hosting process, which loads more
assemblies than needed so our experiment would be off. To do so, go to the CalculatorUI’s
project properties and uncheck the Enable the Visual Studio Hosting Process setting on the
Debug tab. Now assume you have the following piece of code, leveraging a Calc type
that’s defined in the referenced Calculator class library:

static void Main(string[] args)

{

Bar();

}

static void Bar()

{

// Lives in the other assembly...

Calculator.Calc.Add(1, 2);

}

The important bit here is the fact we’re using the Calc type in the Bar method and not
directly in the Main method. As long as we don’t hit the Bar method during execution of
the program, there’s no need to load the assembly in which it’s contained. To visualize
that the runtime indeed defers loading of this assembly, set a breakpoint on the call to Bar
and press F5.

As shown in Figure 25.25 using the Modules window (which can be found through the
Debug, Windows menu), the referenced Calculator.dll file didn’t get loaded yet before a
call to Bar is made. However, once we enter Bar, references to types used in the method’s
code body need to be resolved. At that point, the Calculator.dll file gets loaded, which can
be observed in the Modules window again.

1259Assemblies

FIGURE 25.26 Configuring the Fusion Log Viewer.

How Assemblies Are Located
As shown in Figure 25.24, all a reference to an assembly consists of is its name (possibly
more than just a short name; that is, also including version and optional strong-name
info). In particular, there’s no file path information included in the assembly. And because
we are able to xcopy deploy the assemblies to some location on the file system, there’s no
such thing as a registration database that says “Hey, if you’re looking for an assembly
called Calculator, look for the file in that folder.”

This brings us to the question of how the runtime finds assemblies. The task of locating
and loading assemblies is what the loader is responsible for, otherwise known by its older
code name Fusion. When asked to locate an assembly given a name, it goes ahead and
searches a series of folders for a match. Folders considered in the search vary based on
configuration and the nature of the assembly. In particular, for strong-named assemblies,
it makes sense to look in the GAC, too.

For practical purposes, the most important bit to know is that assemblies can be found
alongside the assembly referencing it. This is precisely the technique used in our case and
illustrated in Figure 25.23: For CalculatorUI.exe to locate the Calculator assembly, the
loader will start by searching the working directory and find a matching DLL file right
next to the executable. One way to analyze assembly-loading failures is to use a tool called
fuslogvw.exe, which stands for Fusion Log Viewer. From a Visual Studio command
prompt, elevated using administrative credentials, launch the tool and go to Settings to
configure the logging as shown in Figure 25.26.

Locating and loading an assembly is referred to as binding. In Figure 25.26, we’ve enabled
logging for all binds, though you could also enable to log only failures. To illustrate this
tool in action, go to the bin\Debug folder we saw in Figure 25.23 and remove the required
Calculator.dll assembly (assuming CalculatorUI.exe is using functionality from it; for
example, as in our code fragment shown earlier). Now try to run the application, which

1260 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.28 Two log entries for assembly bindings.

will result in a FileNotFoundException because the referenced Calculator assembly could
not be located. Figure 25.27 shows this issue.

Notice once more the exception originates at the point the Bar method is entered as indi-
cated by the call stack. When you refresh the logger, you should now see two entries with
information about the binds carried out by the application. One is just about loading the
executable assembly, and the other contains information about the failure to load its refer-
enced Calculator assembly. Figure 25.28 shows those two entries.

By clicking View Log, details can be shown in a web page format, which is shown for the
second (failure) entry in Figure 25.29. After a dump of general information (or pre-bind
state) on where the application is running from and what’s being loaded, the log contin-
ues with the bind logging information:

LOG: This bind starts in default load context.

LOG: No application configuration file found.

LOG: Using host configuration file:

LOG: Using machine configuration file from

C:\Windows\Microsoft.NET\Framework\v4.0.30128\config\machine.config.

LOG: Policy not being applied to reference at this time.

LOG: Attempting download of new URL

file:///C:/Temp/CalculatorUI/CalculatorUI/bin/Debug/Calculator.DLL.

LOG: Attempting download of new URL

file:///C:/Temp/CalculatorUI/CalculatorUI/bin/Debug/Calculator/Calculator.DLL.

LOG: Attempting download of new URL

file:///C:/Temp/CalculatorUI/CalculatorUI/bin/Debug/Calculator.EXE.

FIGURE 25.27 Failure to load a referenced assembly.

1261Assemblies

FIGURE 25.29 An assembly load failure log dump.

LOG: Attempting download of new URL

file:///C:/Temp/CalculatorUI/CalculatorUI/bin/Debug/Calculator/Calculator.EXE.

LOG: All probing URLs attempted and failed.

A few things can be noticed here. First, configuration files can influence the loading
process. For more information about this, refer to MSDN documentation (because this is
not used that often). Second, notice the search order for “download attempts” to locate
assemblies. The CLR can load assemblies using a variety of protocols (including regular file
lookup) and does so in a sequence of paths based on the calling assembly’s location and
the requested assembly’s name. Also notice how the extension is not part of the assembly
name but is appended for searches (where .dll takes precedence over .exe). The whole
process of locating an assembly based on a name is called probing.

DIFFERENCE WITH JAVA

Readers familiar with Java will observe quite a few differences. In .NET, loading of a
type is based on finding its containing assembly, not on finding a .class file based on a
package name. Hence, there’s no such thing as a CLASSPATH either.

Native Image Generation (NGEN)

As you know by now, the CLR uses a JIT compilation strategy to turn IL code into instruc-
tions executable on the CPU architecture of the machine where the application is
running. This has several benefits, including code portability across different architectures.
It also simplifies the act of code generation by various front-end language compilers

1262 CHAPTER 25 Assemblies and Application Domains

because IL abstracts away from concrete machine aspects such as the use of registers. The
JIT compiler takes on the burden of analyzing the IL code to turn it into efficient proces-
sor instructions.

DUMPING IL AND JIT-GENERATED CODE

Curious readers might wonder what processor assembly code generated by the JIT
for a given method looks like. Using the SOS debugger extension, which you’ve seen
on various occasions in other sidebars already, we can get to know this. In the
following listing, a typical sequence of debugger commands is shown to trace this
information back:

.load c:\Windows\Microsoft.NET\Framework\v4.0.30128\SOS.dll

extension c:\windows\microsoft.net\framework\v4.0.30128\sos.dll loaded

!name2ee Calculator.dll!Calculator.Calc.Add

Module: 001438dc

Assembly: Calculator.dll

Token: 59acd57306000001

MethodDesc: 00143da8

Name: Calculator.Calc.Add(Int32, Int32)

JITTED Code Address: 00300110

!dumpil 00143da8

ilAddr = 00312050

IL_0000: ldarg.0

IL_0001: ldarg.1

IL_0002: add

IL_0003: ret

!U 00143da8

Normal JIT generated code

Calculator.Calc.Add(Int32, Int32)

Begin 00300110, size 4f

00300110 55 push ebp

00300111 8BEC mov ebp,esp

// Omitted much more x86 instructions, one of which is an “add” instruction...

0030015D 5D pop ebp

0030015E C3 ret

Obviously, you don’t have to know any of the JIT magic that’s going on behind the
scenes. However, if you want to satisfy your curiosity and can read x86 or x64 instruc-
tions fluently, looking at the JIT-produced code is a great new hobby.

The JIT terminology refers to the time when IL instructions are turned into architecture-
specific instructions, namely when a method is first hit for execution. The mechanism

1263Assemblies

ldc.i4.1
ldc.i4.2
call [Calculator]Calc::Add
…

ldarg.0
ldarg.1
add
ret

Main Method Add Method (IL)

JIT Thunk

JIT Thunk

JIT Compliler

ldc.i4.1
ldc.i4.2
call [Calculator]Calc::Add
…

Main Method

ldarg.0
ldarg.1
add
ret

Add Method (IL)

JIT Input

JIT Output

…
mov eax,dword ptr [ebp-3ch]
add eax,dword ptr [ebp-40h]
mov dword ptr [ebp-44h],eax
…

Add Method (x86)
Illustrated Steps of JIT Compilation

1. Call to Add is encountered.
2. Thunk triggers a call to the JIT.
3. JIT compiler emits x86 code.
4. Thunk patched to refer to x86 code.
5. Call to Add can be made
 (subsequent calls skip the JIT).

1

2

3

45

FIGURE 25.30 JIT compilation visualized.

that enables this technique is a so-called thunk that acts as a placeholder for not-yet-
compiled methods. When a call is made to such a method, the thunk calls the JIT
compiler, and the address of the compiled code is stored such that subsequent calls to the
same method don’t trigger recompilation. Note that all of this takes place in the memory
of the running process, and no permanent storage (like the file system) is used to stow
away compiled methods. In other words, when the process is restarted, JIT compilation
takes place again for the methods that get executed. This whole mechanism is illustrated
in Figure 25.30.

Despite all advantages of JIT compiler, it should be obvious that the JIT compilation itself
consumes CPU cycles, imposing an initial cost on the execution of IL code. For commonly
used functionality (for example, in the framework libraries), it doesn’t make sense to have
JIT compilation going on for every single application using those methods. One could say
that JIT compilation happens too late for those libraries. From a portability point of view,
we can’t ship x86 or x64 specific code, though. Putting all requirements together (that is,
avoiding redundant JIT compilation costs but still retaining portability), we need a way to
compile IL code into a processor-specific instruction set on the target machine but before
applications run.

This is where native image generation, or NGEN, enters the picture. You can safely regard
this runtime service as some kind of “offline JIT,” which turns IL-containing assemblies
into “native images,” in a wholesale fashion (rather than on a per-method basis).

1264 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.31 Use of ngen.exe to install an assembly and show its state.

Typically, this service gets invoked during the installation of an application or a frame-
work, which is exactly what the .NET Framework installer does for framework assemblies.
Because of this, the framework can continue to redistribute architecture-independent
assemblies while boosting runtime performance by compiling them into binaries with
processor-specific instructions during installation.

NO SILVER PERFORMANCE BULLET

One has to keep in mind that use of NGEN for an assembly doesn’t necessarily provide
a speed-up because there are many factors to the performance equation. For one thing,
native images tend to be larger, and hence load speeds differ from IL-based images.

To know when NGEN is right for your assemblies, performance measurements should
be carried out. Our discussion about NGEN has as its main goal to raise awareness of
the existence of the feature and not to provide exhaustive guidance for when it’s appro-
priate to use. Plenty of online resources, such as MSDN, go into much more detail
about using NGEN.

To create and install a native image for an assembly, you can use the ngen.exe tool that
comes with the .NET Framework. Figure 25.31 shows the use of the tool to create and
install a native image for our Calculator.dll assembly, followed by a display command to
show the assembly’s NGEN state. Feel free to experiment with the “ngen display”
command applied to one of the framework assemblies, which produces a much more
dense output with dependent assemblies.

Beside synchronous installation of assemblies to the NGEN cache, there are command-line
flags to queue up work at various priorities. A background service monitors the queue for
work and executes it at a good point in time (for example, when the computer has gone
idle for a while). This queuing option is usually used by installers to shorten the installa-
tion duration. An application’s functionality won’t be impaired by the lack of a native
image for one or more of its assemblies; it might just run slower. Because the NGEN
service (with executable name mscorsvw.exe) begins producing native images for queued
up assemblies, applications pick those up when the assemblies get loaded.

1265Assemblies

FIGURE 25.32 Native image for our Calculator assembly in the NGEN cache.

The NGEN cache lives underneath the Windows installation folder in a subfolder called
assembly\NativeImages_<version>_<architecture>. The version part matches the runtime
version, and the architecture part is either 32 or 64. Each assembly with an NGEN image
has a folder named after the assembly’s name, containing an additional subfolder used for
the cache’s internal organization. Figure 25.32 illustrates the folder containing the native
image for our assembly.

When loading our CalculatorUI.exe application assembly now, the loader will find the
reference to the Calculator assembly and find a native image for it, which will get loaded.
You can see this from inspecting the Modules list when running the application under the
debugger, with unmanaged code debugging enabled. Doing so will show the native image,
Calculcator.ni.dll, in the Modules list.

WHAT’S INSIDE A NATIVE IMAGE?

Native images contain the native code for an assembly. In addition to this, they contain
all the metadata describing the types and members defined in it. In fact, you can sim-
ply use ILDASM to look inside an assembly in the NGEN cache.

Visibility Aspects

Assemblies are not just the typically used unit of deployment for .NET code, they also
have a runtime impact with regard to protection. The internal visibility modifier embodies
precisely this in the C# language, restricting access to types or members to the current
assembly only.

REFLECTION AS AN ESCAPE VALVE?

Visibility is enforced by the runtime, as discussed later, such that it isn’t possible for
code to invoke methods or access members that it doesn’t have access to. However,
using reflection services, it’s possible to bypass visibility checks. To prevent this from
happening, other security measures have to be put in place with regard to partial trust
applications. Refer to MSDN for more about these code security facilities.

1266 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.33 A MethodAccessException thrown for a method call visibility violation.

Internal Visibility Revisited
To illustrate the internal visibility and how the runtime enforces access to types and
members across assemblies, let’s play around a little with our small example. Start by
declaring the Calc type in the Calculator assembly as public and compile the whole solu-
tion. The consuming CalculatorUI assembly works just fine when trying to access the Calc
type’s Add method because both the class and the method are public:

namespace Calculator

{

public class Calc

{

public static int Add(int a, int b)

{

return a + b;

}

}

}

Now let’s do something a bit more sneaky and mark the Add method as internal, thus
restricting access to the current assembly. Instead of recompiling the whole solution, just
recompile the Calculator project. If you’re attempting to recompile CalculatorUI, the
compiler would detect you’re trying to access the Add method, which has insufficient visi-
bility to be called across assemblies.

However, let’s see what the runtime thinks about it and put the updated Calculator.dll file
alongside the application executable. Figure 25.33 shows this operation being carried out,
followed by an invocation of the application. This triggers an invalid call to the Add
method, which should not be accessed from outside its defining assembly. The runtime
detects this pathological situation and throws a MethodAccessException in response to it.
Having assemblies that are outdated work with each other can result in such situations, so
it’s important to recognize such exception types. Other examples include other
AccessException types and the set of MissingException types.

1267Assemblies

The InternalsVisibleTo Attribute
Sometimes it makes sense for two assemblies to have some access to internally marked
types or members of another assembly. Doing so is a matter of trust and can be based on
different needs. Maybe there are circumstances where it makes sense to factor an applica-
tion component into multiple assemblies. Because the public access modifier means
exposing something to the entire world, that might not be the optimal choice. As you will
see, internal may help here. Another scenario has to do with testing, where test assemblies
might need access to some of the internal state of an application’s or library’s assembly.

Introduced in .NET 2.0, the InternalsVisibleToAttribute custom attribute defined in
the System.Runtime.CompilerServices namespace provides a way to declare the expo-
sure of internal types and members to a trusted assembly. It’s important to emphasize the
fact that an assembly must declare which other assemblies it allows to have access to its
internal state.

Here is an example of this attribute’s use in the context of our Calculator example, where
the Calculator class library assembly allows the CalculatorUI application executable
assembly to access internal types and members:

[assembly: System.Runtime.CompilerServices.InternalsVisibleTo(“CalculatorUI”)]

namespace Calculator

{

public class Calc

{

internal static int Add(int a, int b)

{

return a + b;

}

}

}

With this attribute in place, the application will work again, despite the fact the Add
method is declared to be internal. Notice, though, we’ve been using the weakest of
naming schemes to declare the friend assembly relationship. Any assembly that has the
name CalculatorUI will be able to access internal state of our Calculator assembly now.
Luckily, you can specify a stronger name by including the friend assembly’s public key
(that is, the full public key, not just the public key token).

Figure 25.34 illustrates how the language compilers are aware of this attribute, in this
example signaling the fact that no public key was specified in the friend assembly identi-
fier. To generate this error, strong-name sign the Calculator assembly using the project
properties Signing tab. For more information about how to specify a public key in an
InternalsVisibleTo attribute, refer to the MSDN documentation.

1268 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.34 InternalsVisibleTo used on a strong-name-signed assembly.

USE WITH CARE

Because InternalsVisibleTo exposes all internal functionality to all the friend
assemblies, it nearly moves one protection level for the entire assembly. When you now
see something marked with an internal access modifier, you no longer know the reach
of its visibility. In fact, internal by itself is already a bit of a hack that has no place in
the object-oriented paradigm.

It’s good to use this feature with extreme caution and consider carefully whether it’s
feasible to expose cross-assembly functionality really as public. The cross-assembly
use of certain types perhaps indicates improper factoring of functionality.

Embedded Resources

Besides acting as containers for code and metadata, assemblies can also store resources for
use at runtime. Visual Studio directly supports the creation of such assemblies by includ-
ing files in the project and marking their build action as embedded resource. This is illus-
trated in Figure 25.35 for a file that was added to the project using the Add, Add Existing
Item entry from the project’s context menu in Solution Explorer.

Now this stream can be accessed using the System.Reflection APIs on the Assembly type,
using the GetManifestResourceStream method. This method returns a Stream object,
which can be used to access the data by various Read operations. In our sample code,
we’re a bit more sophisticated and use .NET 4’s CopyTo method of the Stream class to copy
the data from one stream to another. As the target of the copy operation, we use a newly
created file:

1269Assemblies

FIGURE 25.35 Marking a file to be included as an embedded resource in the assembly.

Notice the use of using blocks to properly dispose the streams after their use. One thing to
be cleared out is the name of the embedded resource, which is prefixed with the name of
the containing assembly (it seems). This can be observed by looking at the assembly in
tools like .NET Reflector, as shown in Figure 25.36.

SATELLITE ASSEMBLIES AND MORE

This use of resources is only the tip of the iceberg of the .NET Framework’s built-in
capabilities to deal with resources at runtime. Besides binary streams, lots of other
types of resources exist, such as strings. The picture of resources is also a lot bigger
than simply accessing them; in real-world scenarios, the culture of the user must be
taken into account. With this, we enter the fascinating world of localization and global-
ization of applications.

One notion related to resources has to do with the redistribution of assemblies that
contain such resources for a particular culture, using a naming scheme that contains
the culture name (for example, en-US, nl-BE, or fr-FR). Because it makes sense to have
a separation between application logic and localizable resources (for example, to be
able to redistribute other supported application cultures simply as additional files to a
baseline installation), .NET came up with the notion of satellite assemblies.

using (var stream = typeof(Program).Assembly.GetManifestResourceStream(

“EmbeddedResourceSample.img0.jpg”))

using (var saveAs = File.Create(“img0.jpg”))

{

stream.CopyTo(saveAs);

}

1270 CHAPTER 25 Assemblies and Application Domains

A thorough discussion about satellite assemblies is beyond the scope of this book. In
essence, they are resource-only assemblies that get stored in a culture-specific folder
right next to the application’s executable assembly. At runtime, when resources are
queried for using APIs like System.Resources, the framework looks for the most
applicable satellite assembly based on the user’s culture and gets the requested
resource objects from there.

Localization and globalization are topics that deserve books of their own. For more
information, refer to MSDN.

FIGURE 25.36 An embedded resource’s name as shown through .NET Reflector.

Type Forwarding

When designing and evolving nontrivial frameworks, it’s often challenging to put types in
the right assembly. Although a certain spot may make lots of sense in a certain version of
the framework, that doesn’t necessarily remain the case in future releases. For reasons such
as architectural layering, it might be a good idea to relocate a type to some other assembly
(for example, to avoid the need for excessive references between assemblies).

Such a situation arose in the move from .NET 3.5 to .NET 4. In the former release, generic
delegate types such as System.Func<T, TResult> were introduced. Because this release of
the framework was layered on top of .NET 2.0 baseline assemblies, it was chosen not to
touch them for the addition of new types, and the set of Func and Action delegates
ended up in a newly crafted System.Core assembly. Since things have evolved, those
types are used more and more (for example, in the DLR introduced in .NET 4). It no
longer made sense for all DLR libraries and users thereof to have to refer to this
System.Core assembly to use things as trivial as Func and Action delegates. Their new
and better home was mscorlib.

1271Assemblies

However, a move of types from one assembly to another requires all users of those types
to recompile their assemblies, such that references to those types are patched up. Recall
that on the runtime level, types are referred to by their full name, which not only
includes the namespace and the type name but also the assembly. For example, use of the
generic Func<int, int> delegate is represented as follows in IL:

[System.Core]System.Func<int, int>

It’s clear that a move of the type to another assembly will result in a type not found
exception when the runtime fails to locate it. This is where type forwarding comes in, to
mitigate this very issue. Without the need for assemblies consuming the moved type to be
recompiled, this feature tells the runtime where a type has moved to.

To carry out a type-forwarding operation, you use the TypeForwardedToAttribute, which
lives in the System.Runtime.CompilerServices namespace. This assembly-level attribute
simply points to a type (using a System.Type object) that now lives elsewhere. For
example, the source code for System.Core in .NET 4 contains something like this:

[assembly: TypeForwardedTo(typeof(Func<,>))]

Recall the syntax to refer to an open generic type using typeof, omitting generic type
parameters and leaving the commas in. In addition to the preceding code, the generic
Func delegate’s definition has been moved to the mscorlib assembly source code. When
the System.Core assembly is compiled, the compiler finds the Func type in the referenced
mscorlib assembly and the preceding type-forwarding attribute gets compiled into a meta-
data entry in System.Core’s assembly manifest:

.class extern forwarder System.Func`2

{

.assembly extern mscorlib

}

Figure 25.37 illustrates some of the type forwarders in System.Core version 4. By putting
them in place, existing .NET applications that are retargeted to .NET 4 can continue to
find the Func and Action delegate types, even though they refer to their old home, the
System.Core assembly, internally.

In addition to TypeForwardedToAttribute, which is turned into an assembly-level meta-
data entry for use by the runtime, there’s a type-level TypeForwardedFromAttribute,
which (starting from .NET 4) has to be stuck on the type that has been moved:

[TypeForwardedFrom(“System.Core, Version=3.5.0.0, ...”)]

delegate TResult Func<T, TResult>(T arg);

This allows various other pieces of the framework and tools to reconstruct the entire
picture of the move. One service that benefits from this information is the serialization
infrastructure.

1272 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.37 Type forwarders in System.Core.

WHEN COMPATIBILITY IS A CORE REQUIREMENT

As usual, the use of a feature gives rise to a balancing act with architectural purity on
one side, compatibility on another side, and the burden of carrying out the fix to be
considered too. Type forwarders are no different and provide some kind of last-resort fix
when you have strong reasons to move a type and absolutely have to keep existing
assemblies work (without recompiling them). So if you’re working on something totally
new with no compatibility story to take care of, there’s no reason to complicate matters
by using type forwarders.

Reflection Flashback

When we discussed reflection in Chapter 21, “Reflection,” we focused on two main
concepts of the technology: discovery of types and members and invocation or interaction
with those (for example, to dynamically invoke a method). While we focused on types
and their members, we mostly omitted a discussion of reflection on assemblies. Although
you saw how to find types that belong to an assembly (a discovery feature), we didn’t pay
much attention to reflection operations targeting assemblies.

Earlier in this chapter, you saw one such assembly-level operation, which had to do with
the loading of embedded resources. But there’s more. In fact, we can load assemblies
through the reflection APIs, too. So far, you’ve seen that assemblies get loaded by the
runtime when a type or member is encountered that lives in an assembly that hasn’t yet
been loaded. In certain scenarios, such as add-ins, referenced assemblies are no longer a
known fact at compile time. Based on application configuration settings, we need to
discover and load assemblies dynamically.

1273Assemblies

What’s Running?
Before delving into the functionality that enables us to load assemblies dynamically at
runtime, we first explore some other functionality exposed on the Assembly class, allow-
ing us to discover what’s running:

. GetEntryAssembly retrieves the Assembly object representing the entry-point assem-
bly that started executing the application. As you see in the “Application Domains”
section later in this chapter, this correlates with the notion of application domains.
One typical use for this is to detect version information (using GetName().Version
on the Assembly object) for the entry-point assembly (for example, to display it in
some Help, About menu).

. GetExecutingAssembly will return an Assembly object for the assembly that’s
currently running. Called from a method, this will correspond to the assembly in
which that method was defined. This can be useful for diagnostic purposes, when
writing logging entries, or so on. Beyond just retrieving information about the
currently executing assembly, you can use things such as StackTrace in the
System.Diagnostics namespace.

. GetCallingAssembly figures out where the caller of the current method originates
from in terms of the defining assembly. For publicly visible methods, this can come
in handy to make decisions based on the context of the caller, although you should
use such trickery with care. One reason for this warning is that the name of an
assembly is easily spoofed, especially when no strong naming is used.

. GetAssembly correlates a given Type object to its containing assembly, just like the
Assembly property on the Type object will do. A commonly used trick to retrieve all
types defined in an assembly is to start from a type that’s known to be defined in
that assembly and get to its declaring assembly through the reflection APIs. Once
you’re there, it’s easy to call GetTypes to inspect the assembly.

When calling the first three methods from the Main method of an assembly, you should
get the same result back. One caveat applies, though, when doing debugging with the
default configuration in Visual Studio. When you press F5, your main assembly isn’t just
started regularly; instead, it gets loaded through a hosting process. Consider the following
piece of code to illustrate this:

namespace Hosting

{

class Program

{

static void Main()

{

Console.WriteLine(Assembly.GetCallingAssembly());

Console.WriteLine(Assembly.GetEntryAssembly());

1274 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.38 Setting enabling the Visual Studio hosting process (the default value is on).

Console.WriteLine(Assembly.GetExecutingAssembly());

Console.WriteLine(Assembly.GetAssembly(typeof(Program)));

}

}

}

Figure 25.38 shows the setting that enables the use of the hosting process. When turned
on, starting a debugging session will check whether such a hosting process is already
running. You can recognize this process by its vshost name before the .exe file extension.
If needed, the process is started. Either way, when the process is found, the debugger
attaches to it, and your application’s assembly gets loaded in that process. By doing so,
various debugging scenarios can be optimized. However, a few API calls, such as the first
one shown in the preceding code fragment, will be off:

Microsoft.VisualStudio.HostingProcess.Utilities, Version=10.0.0.0,

Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a

Hosting, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null

Hosting, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null

Hosting, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null

Loading Assemblies
Besides having a static reference to an assembly, introduced through the use of either the
/r compiler flag or the References node in a Visual Studio project, you can load assem-
blies dynamically at runtime. To do this, several static methods on the Assembly class
can be used.

Assembly.Load is the first method that’s available to carry out this job. Various overloads
are available, including the following:

. Accepting a byte[] containing the raw byte sequence of an assembly based on the
executable COFF format. In other words, if you were to stuff an assembly into a byte
array (for example, using System.IO functionality), you could use this method to

1275Assemblies

load it as an assembly. To the runtime, there’s no need for an assembly to live on
disk. In fact, other CLR hosts, such as SQL Server, can abstract over the loading
process for assemblies (for example, loading them from a database).

. Taking in an AssemblyName object that describes the assembly’s name, which
includes the short name as well as version info and a public key token. The loader
searches for the assembly in locations starting from the local folder and continues its
merry way, probing other locations based on the name. For strong-named assem-
blies, this includes the GAC.

. Using a string rather than an AssemblyName to specify the assembly’s full name (that
is, including the version, public key token, and the culture). The logic used to find
the assembly is the same as for the previous overload.

An example is shown here, using a hard-coded string literal. In more typical scenarios, you
will discover the assembly that needs to be loaded through configuration settings or so
on, truly emphasizing the dynamic nature of the assembly load. By showing the name in
the code, we can illustrate the format of an assembly’s full name.

var addIn = “AddIn, Version=1.2.3456.0, Culture=neutral, “ +

“PublicKeyToken=0123456789abcdef”;

var asm = Assembly.Load(addIn);

Additional overloads exist, some of which can be used to specify debugging symbols,
whereas others deal with security evidence used for Code Access Security (CAS). Since
.NET 4, the notion of CAS policy has been deprecated and so are the overloads. If you still
have code relying on those, it’s time to revisit your code.

Because the Load family of methods carries out an assembly load based on a name, using
the loader’s search logic to locate the assembly, there’s no room for a string-based overload
that will load an assembly given a file path. For this purpose, the LoadFile method exists:

var path = @”c:\temp\addin.dll”;

var asm = Assembly.LoadFile(path);

In reality, there are some deeper intricacies on the behavior of different load methods,
with respect to so-called load contexts. We won’t elaborate on this point; instead, refer to
MSDN for more thorough coverage. In addition to LoadFile, there’s LoadFrom, which can
perform loads based on a URI. It has several disadvantages over using Load but has some
applications; you can find more information at MSDN.

Finally, there’s the distinct scenario of loading assemblies just because you want to use
reflection APIs over their contents (for example, to write tools such as .NET Reflector). In
such a case, it doesn’t make sense to trigger the invocation of certain pieces of code
contained in the assembly. For this, there are two sister methods to Load and LoadFrom,
called ReflectionOnlyLoad and ReflectionOnlyLoadFrom, respectively. As an example, the
following code displays types in a given assembly but fails to instantiate a type:

1276 CHAPTER 25 Assemblies and Application Domains

var asm = Assembly.ReflectionOnlyLoadFrom(\temp\calc.dll”);

// Reflection is permitted.

foreach (var type in asm.GetTypes())

Console.WriteLine(type);

// But invoking operations, such as instantiation of types, is not.

try

{

dynamic calc = asm.CreateInstance(“Calc”);

Console.WriteLine(calc.Add(1, 2));

}

catch (ArgumentException)

{

Console.WriteLine(“Thrown due to reflection-only load.”);

}

var asm2 = Assembly.LoadFrom(\temp\calc.dll”);

foreach (var type in asm2.GetTypes())

Console.WriteLine(type);

// In the regular LoadFrom context, instantiation and invocation is permitted.

dynamic calc2 = asm2.CreateInstance(“Calc”);

Console.WriteLine(calc2.Add(1, 2));

One critical piece of knowledge about assembly loads, whether they are reflection only or
not, is that they cannot be undone. In other words, there’s no such thing as an Unload
method on an Assembly object that causes the assembly to disappear from memory. There
are many reasons for this. For example, other assemblies might have been loaded that
depend on the presence of another assembly. Or delegates might exist that refer to func-
tionality defined in an assembly.

Based on the previous statements, you will wonder whether the only way to get rid of an
assembly is to completely shut down the process. Luckily, that’s not the case; the CLR has
an intermediate notion of isolation called application domains. They can be loaded and
unloaded, as you see in the “Application Domains” section late.

In addition to application domains, the .NET 4 runtime’s System.Reflection.Emit APIs
enable you to create a dynamic assembly that’s marked as RunAndCollect. Subject to some
restrictions, those collectible assemblies can be unloaded without having to unload the
application domain in which they were created. The MSDN documentation outlines those
restrictions in an article titled “Collectible Assemblies for Dynamic Type Generation.”

1277Application Domains

OS Process

CLR

Application Domain

Assembly

Assembly

Assembly

Application Domain

Assembly

Assembly

Assembly

OS Process

CLR

Application Domain

Assembly

Assembly

Assembly

Application Domain

Assembly

Assembly

Assembly

CLR Isolation
Boundary

O
S

 Iso
latio

n
B

o
u

n
d

ary

FIGURE 25.39 Operating system processes, application domains, and assemblies.

Application Domains
Modern operating systems, runtimes, server software, and so on spend a lot of their efforts
on providing meaningful isolation boundaries between various users. At the operating
system level, such isolation doesn’t exist just to establish walls between user accounts, but
also exists at a much more fundamental level. In particular, processes provide an isolation
boundary between applications, ensuring that code running in one process cannot affect
code running in another one. Another point of view is to say that all the interaction
patterns between processes, to overcome the fundamental isolation provided by the oper-
ating system, have to be done very explicitly (for example, by making use of cross-process
communication facilities or shared memory sections).

The .NET runtime is no different in its desire to provide a foundation offering ways to
establish isolation boundaries. Such boundaries provide various benefits ranging from reli-
ability (for example, no accidental stepping on someone else’s memory) over security (for
example, one container for code execution is less trusted than another one) to control
over the loading and unloading of code. In the world of .NET, those isolated containers
are called application domains. Figure 25.39 shows the relationship between a process
hosting the CLR, containing one or more application domains, which act as containers for
loaded assemblies.

1278 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.40 Loading and unloading of assemblies is tied to an application domain.

Starting from .NET 4, multiple versions of the CLR can also be loaded in the same process,
also providing isolation between them. We won’t elaborate on this aspect because it’s
quite a specialized topic aimed at CLR host implementers. You can find more information
in the MSDN documentation.

Creating Application Domains

Every .NET application has at least one application domain, known as the default domain.
Additional domains can be created, either through managed code or from within hosting
code in case you’re writing a CLR host. We focus on the former scenario, where we want
to use application domains to isolate certain pieces of code from other pieces. Examples of
such use include loading of assemblies containing add-in code into a separate application
domain. This allows the hosting process to stay in control because it can unload the
whole add-in domain and all of its assemblies (for example, if the add-in functionality is
misbehaving). In addition, only certain communication patterns will be allowed such that
the loaded add-in cannot access data structures it shouldn’t have access to or invoke code
that’s privileged to be run by the add-in host only.

To create a new application domain, you use the CreateDomain factory method on the
AppDomain class. Different overloads exist, some of which deal with providing security
evidence. We don’t get in a thorough discussion about those security aspects and instead
focus on the aspects of creating application domains and running code in them. The
following code fragment creates a new domain and starts a .NET executable assembly (that
is, with a Main method entry point) inside it. Overloads of ExecuteAssembly allow for
specifying string arguments and retrieving the exit code.

var ad = AppDomain.CreateDomain(“App1”);

Console.WriteLine(ad.Id + “ “ + ad.FriendlyName);

ad.ExecuteAssembly(\temp\app1.exe”);

AppDomain.Unload(ad);

Under the debugger, we can clearly see the app1.exe assembly getting loaded when the
call to ExecuteAssembly is made. To see this, break under the debugger while the
executable is running. Once we unload the domain by calling AppDomain.Unload, all the
contained assemblies get unloaded, too. Figure 25.40 illustrates this by showing the
Modules list before and after the call to Unload.

1279Application Domains

Using the AppDomain.CurrentDomain static get-only property, you can inspect the
currently executing application domain. Various instance properties and methods exist
that give access to the list of assemblies in the domain, different search paths used when
assemblies are loaded or references are resolved, as well as various security-related settings.
To illustrate this property, put the following bit of code in the app1’s Main method and
observe how it sees the information about the domain in which it’s running. When invok-
ing the app1 program directly, it will print different information because it will be
running in the default domain.

var ad = AppDomain.CurrentDomain;

Console.WriteLine(ad.Id + “ “ + ad.FriendlyName);

The use of whole executable assemblies simply to invoke some code in an application
domain is often overkill. We often just want to load one or more assemblies and instanti-
ate types defined in those assemblies. To load assemblies into an application domain, the
Load method can be used, which looks an awful lot like the Assembly’s Load method.

Searching for assemblies will proceed from the application’s base folder. Additional paths
can be searched based on the application domain’s setup, which can be specified as an
AppDomainSetup-typed parameter passed to the CreateDomain call. In particular, properties
like ApplicationBase are of use.

Cross-Domain Communication

The ability to load assemblies in a domain is nice but not quite the functionality we need
to enable bigger scenarios. Of more use is the capability to create an object instance in the
target domain and invoke operations on it. To achieve this, some form of cross-domain
communication needs to be provided. As you might expect, all this is built in to the CLR.
In fact, different mechanisms exist, as you will see, but first we should take a look at the
APIs that allow us to create an object instance in a specified target application domain.

Creating Object Instances
To load an assembly and create an instance of one of the assembly’s types in a target
application domain, four methods exist. All of them start with the CreateInstance prefix
and vary in two orthogonal ways. First, there’s a distinction in the way the specified
assembly is located, analogous to Assembly’s Load and LoadFrom methods. Second, there’s
a variation in the behavior of how the instance is returned:

. CreateInstance looks for an assembly by its name and returns an ObjectHandle to
refer to the returned object.

. CreateInstanceAndUnwrap performs the same lookup for an assembly by name but
unwraps the object into a System.Object instance.

. CreateInstanceFrom locates an assembly by a given file path and returns an
ObjectHandle to refer to the returned object.

. CreateInstanceFromAndUnwrap also finds an assembly by its file path but unwraps
the object into a System.Object instance.

1280 CHAPTER 25 Assemblies and Application Domains

So what’s this mysterious ObjectHandle about? Basically, they are a communication primi-
tive used to refer to an object that has been created across domains. We ignore the intrica-
cies of them and use the Unwrap methods to avoid them altogether.

To illustrate the technique of creating an instance of a type in an application domain, we
start by creating a separate library assembly that will be what we load. To keep things
simple, let’s go for a calculator example once more:

using System;

public class Calc

{

public int Add(int a, int b)

{

Console.WriteLine(AppDomain.CurrentDomain);

return a + b;

}

}

Compile the preceding into a .dll assembly (for example, using a Class Library project).
Use calc.dll as the assembly’s name. To proceed, we create the host application, which
loads the assembly through CreateInstanceFromAndUnwrap:

class Program

{

static void Main()

{

var ad = AppDomain.CreateDomain(“AddIn”);

dynamic calc = ad.CreateInstanceFromAndUnwrap(“Calc.dll”, “Calc”);

Console.WriteLine(calc.Add(1, 2));

AppDomain.Unload(ad);

foreach (var asm in AppDomain.CurrentDomain.GetAssemblies())

Console.WriteLine(asm);

}

}

Note a few things about this example. First, CreateInstanceFromAndUnwrap returns an
object typed as System.Object. Because our host application doesn’t have a Calc type
handy to cast the returned object to, we need to apply other tricks to call the functionality
exposed by the object. For simplicity, we use C# 4.0’s dynamic feature here, but later, in
the section “Use of an Interface Contract,” you see how to structure a host and an add-in
properly, using a common interface to represent the contract. Second, after unloading the
application domain of the add-in, we’re printing all the assemblies in the default domain.

1281Application Domains

FIGURE 25.41 Failed to establish communication between application domains.

Point type

private int x, y;

public double Norm {
get { /* code*/ }
}

Point instance pt

Source Domain

int x = 3;
int y = 4;

Copy of Point pt

Target Domain

int x = 3;
int y = 4;

Serialization

Operates on
Local Copy

n = pt.Norm;

x = 3; y = 4;

Channel

FIGURE 25.42 Copy-by-value realization using serialization.

To run the host application, make sure to stick the calc.dll file next to the host’s
executable assembly such that the add-in assembly can be found. However, when you try
to run the host with the add-in at this point, an exception results, as shown in Figure
25.41. This provides us with a great starting point to explain the requirements on types
that are used across different application domains.

Before remedying this issue, we need to examine remoting facilities a bit more, to really
understand what the SerializationException is all about. Because those topics deserve
whole books by themselves, we limit ourselves to the essentials.

Flavors of Remoting
Passing objects across a boundary (in this case, an application domain) can be carried out
in two different ways. Either you pass them by value, through a mechanism called
serialization, or by reference. Figure 25.42 depicts the first mechanism, whereby an object
gets copied by value. When the target domain tries to obtain a point instance from the
first domain, the object’s data gets copied into the target domain. Obviously, both
domains need to know the structure of the Point type to accommodate this.

1282 CHAPTER 25 Assemblies and Application Domains

Person type

private int age;
private string name;

public void Pay(decimal amt) {
 /* code */
}

Person instance jo

Source Domain

int age = 62;
string name = “John”;

Proxy to Person jo

Target Domain

(Remote Object
Address)

Marshal-by-ref

Proxy
Type

Call Is Sent
Across Channel

jo.Pay(123.45m);

remote address

Channel

FIGURE 25.43 Marshal-by-reference realization using a proxy object.

Of critical importance in this whole story is how calls made on the Point object operate
against the local copy of the object. In this example, we’re simply computing the norm
(distance to origin), which happens entirely by running code in the target domain on the
local copy. The same would hold for mutating calls (for example, changing the value in
any of the fields): Changes would be applied only locally. To realize serialization semantics
for cross-domain use of objects, mark the type using the Serializable attribute:

[Serializable]

public class Point

{

...

}

Notice that the use of serialization can be applied to a reference type, such as our Point,
which is defined as a class. The main thing the attribute affects is how the object gets
marshaled across domain boundaries. Within the same domain, the object retains its refer-
ence type properties.

The alternative means to deal with objects across domain boundaries is to share and
access them by a cross-domain reference. as shown in Figure 25.43. Here, we have a
Person type that gets marshaled by reference (you see how in a minute) across the domain
boundaries.

1283Application Domains

In the target domain, we now don’t obtain a copy of the original object that lives in our
domain; instead, we get a (transparent) proxy object that looks just like the original object
from a member’s point of view. However, when we make a call on the object, the call gets
remoted to the target instance in the originating domain. The runtime takes care of
constructing this remoting proxy type on-the-fly, essentially capturing the data required to
make a call back to the original object. Various remoting channel types exist, some
dealing with communication between domains within the same process, while others
allow a call to be remoted over, for example, a TCP/IP network. That’s right, cross-applica-
tion domain communication can stretch multiple processes or even multiple machines.

A thorough discussion about .NET Remoting is beyond the scope of this book, and nowa-
days many other ways to communicate across domains exist, such as Windows
Communication Foundation (WCF). Suffice to say that one derives from
MarshalByRefObject to mark a type as marshal by ref:

public class Person : MarshalByRefObject

{

...

}

Notice that the creation of such a type imposes a big tax on the (single) inheritance axis
of the type because you must derive from a base class. In fact, this turns out to be a good
thing, as alluded to in the following sidebar.

A MUCH-NEEDED WARNING ABOUT LOCATION TRANSPARENCY

The use of marshal-by-ref objects realizes so-called location transparency, a wonderful
piece of technology leveraging one of the most fundamental computer scientist’s tools:
abstraction. Many frameworks have implemented such a means to establish remote
procedure calls (RPCs), such as Microsoft’s COM.

In all of those frameworks, many layers of abstraction hide all the technicalities associ-
ated with the creation of proxy objects (in fact, in .NET Remoting this is a whole
runtime service of its own), management of lifetimes (using the concept of a lease in
.NET Remoting), abstraction of networking layers (so-called channels), and serialization
formats (binary, XML, and so on).

However, with this huge amount of abstraction comes a big issue: The expense of
network calls is no longer made obvious in types and their operations. Consider our
Person example again. We already saw how the call to Pay got marshaled to the
remote object, which seems just fine. But imagine what happens if we had a bunch of
properties, such as Name and Age, exposed on the object. Without even knowing the
object is remote, you could simply “dot into” those properties from a remote domain,
causing network calls to happen for every single such operation. This if often referred
to as “chatty communication.”

1284 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.44 Transparent proxy type introduced by .NET Remoting.

For this reason (among others, such as access coordination to remote objects), the
industry has moved on to more service-oriented styles of programming, as exemplified
by technologies like web services. In such a setting, one makes calls to operations
defined on a (stateless) web service “façade,” serializing objects or unique identifiers
across. For example, paying our John person would be done by making some
Pay(8491, 123.45m) call, where 8491 is John’s unique identifier. The use of (static)
web service façade methods gives rise to a more chunky form of communication. Now
the transparency is limited to the operations defined on a web service proxy object and
doesn’t get entangled with whole object graphs.

A MarshalByRefObject Calculator Add-In
To continue our exploration of cross-domain communication between objects, let’s fix our
Calc type by making it marshal by ref. You should feel free to experiment with a serializ-
able object, as well, as explained before. Here is the adapted code that makes our Calc
type amenable for use across application domains:

using System;

public class Calc : MarshalByRefObject

{

public int Add(int a, int b)

{

Console.WriteLine(AppDomain.CurrentDomain);

return a + b;

}

}

Using our existing hosting code shown before, we can now get the calculator to work
without the exception displayed in Figure 25.41. The use of .NET Remoting becomes
apparent if we hover over the calc object and see its type, which reflects the use of a
transparent proxy. Figure 25.44 shows how the remote object’s type name is buried in a
series of indirections put in place by the .NET Remoting infrastructure.

Because our calculator’s Add method prints the application domain in which it’s executing,
we can see the call is taking place in the AddIn domain. Try executing the same host but

1285Application Domains

FIGURE 25.45 A remoting lease has expired, revealing the object’s remote address.

with the Calc type marked as Serializable and observe how the call will now be made
within the host’s application domain, as the object got copied by value.

If you take a while during the debugging session shown in Figure 25.44, you might get
to see the error shown in Figure 25.45. This indicates an expired lifetime lease for the
remote object. Without going into much more detail, the concept of a lease allows the
runtime’s remoting infrastructure to collect remote objects after a certain amount of
inactivity. In a distributed world where connections can fail, it makes a lot of sense to be
able to collect an unused object. To override the default lifetime control, you can over-
ride the MarshalByRefObject’s InitializeLifetimeService method. Returning a null
reference will cause leases not to expire at all. You can find more information in the
MSDN documentation.

Use of an Interface Contract
So far, we’ve been using C# 4.0’s dynamic feature to invoke the calculator object’s Add
method because we don’t want to refer to the add-in assembly statically, and therefore we
don’t have a type to cast the created remote object to. This decoupling between an add-in
host and the various add-ins is precisely our goal when creating extensible applications.

Instead of using dynamic, it makes sense to establish a firm contract between a host and
the add-ins by means of an interface. To illustrate this, we revamp our example by intro-
ducing an interface for an add-in operation:

public interface IBinaryOperation

{

int Compute(int a, int b);

string Name { get; }

}

1286 CHAPTER 25 Assemblies and Application Domains

FIGURE 25.46 Establishing a shared contract between host and add-ins.

With this interface in place, everyone can write a binary operator for the extensible calcu-
lator host application. For example:

public class Pythagorean : MarshalByRefObject, IBinaryOperation

{

public int Compute(int a, int b)

{

return (int)Math.Sqrt(a * a + b * b);

}

public string Name { get { return “Pythagorean”; } }

}

To make things as loosely coupled as possible, we introduce different assemblies for the
host, the contract interfaces, and any of the add-ins. Although the host and add-ins all
refer to the assembly containing the contract interfaces, there’s no direct connection
between the add-ins and the host. Figure 25.46 illustrates a typical organization in terms
of Visual Studio projects in a solution, revealing cross-project references.

Now we can adapt our host’s code to cast the instantiated add-in object to the common
interface, instead of relying on dynamic:

1287Application Domains

FIGURE 25.47 Unloading of the add-in domain.

var ad = AppDomain.CreateDomain(“AddIn”);

var calc = (IBinaryOperation)ad.CreateInstanceFromAndUnwrap(

“AddIn.dll”,

“Pythagorean”

);

Console.WriteLine(calc.Compute(3, 4));

In a more realistic extensible application, both the assembly name and type name of the
add-in will be loaded from some kind of configuration store.

With this separation between host and add-in put in place, we also see that unloading the
AddIn domain becomes very effective, causing the loaded add-in assembly to get unloaded
properly. The only remains of loading the add-in will be the shared interface assembly,
which belongs to our host’s circle of trust. In other words, it’s now possible to get rid of a
misbehaving add-in altogether by unloading the corresponding domain. This point is
proven in Figure 25.47.

The Managed Add-In Framework

Although .NET Remoting as a communication mechanism for distributed computing has
been largely superseded by service-oriented architecture (SOA) patterns (using either
classic web services in ASP.NET or the WCF stack), it still pays off in scenarios where the
most basic form of cross-domain communication is required. In particular, add-ins typi-
cally require strong isolation properties, which can be realized using application domains,
as we saw before.

Use of application domains doesn’t provide a silver bullet, though. Certain behaviors can
still have fatal consequences, such as an out-of-memory, stack-overflow, or other excep-
tions that corrupt the process state. To provide protection against those kinds of misbe-
havior caused by an add-in, a separate add-in process is required.

1288 CHAPTER 25 Assemblies and Application Domains

Isolation Is
Optional

Can Be in a
Separate Process

Add-in Application DomainHost Application Domain

ContractsHost Add-in

H
os

t V
ie

w

A
dd-in V

iewH
os

t-
S

id
e

A
da

pt
er

s

A
dd-in-S

ide
A

dapters

Allows for
Versioning

FIGURE 25.48 Overall architecture of the add-in framework.

Setting up this entire infrastructure is a rather tedious and repetitive task, with lots of
caveats related to providing resilience against various problems in configuration and
runtime behavior, as well as lifetime management. Moreover, complicating matters further,
add-in-driven applications are often plagued by versioning issues. Those arise when either
the host or an add-in has to evolve and can’t continue to obey to the shared contract
interface between them. Finally, there’s also a lot to worry about proper add-in discovery.

To take away all of this manual plumbing, the .NET Framework has a managed add-in
framework in the System.AddIn set of namespaces. Essentially, it abstracts away lots of the
complexities mentioned previously. Because of its general-purpose nature, the initial cost
in terms of different projects for an extensible application can be a bit overwhelming.
Nonetheless, having sufficient layers of abstraction in place allows you to develop an add-
in application that has proper add-in discovery, isolation, versioning, and so on.

Figure 25.48 shows the add-in framework architecture, which has a beautiful symmetry
between the host side and the add-in side. In the middle, we recognize the concept of a
contract, which again is realized using an interface that acts as the single shared notion
between both sides. Instead of connecting directly between both parties, the add-in frame-
work introduces the notion of views and adapters, which provide a versioning-capable
mapping between the host or add-in to the shared contracts.

Besides the pipeline facilities sketched here, the add-in framework also provides APIs to
discover add-ins and build up a so-called store. We don’t have the room to build up a
complete add-in framework example here; so, refer to the MSDN library for a sample
solution.

1289Summary

WHAT ABOUT MEF?

Starting from .NET 4, the Managed Extensibility Framework (MEF) ships out of the box
with the framework redistribution. At first sight, there’s quite a bit of overlap with the
goals of the add-in framework (because both deal with extensible applications). The
main difference lies in MEF’s focus on composition (wiring up add-in objects with their
consumers), whereas add-ins focus more on the isolation and versioning aspects (using
the architecture shown earlier).

From this point of view, both technologies can be thought as complementary. In fact,
both can be combined to leverage benefits of both frameworks.

Summary
In the previous chapter, we learned how to structure applications into manageable pieces
from a language point of view, using the concept of namespaces. Separate from this, the
runtime plays a role, too, to realize goals of loading components and providing isolation
when needed.

On the boundary between runtime, languages, and tools, we find the unit of deployment
for code and metadata on the .NET platform. Referred to as assemblies, they act as the
container for types, all metadata describing those types and their members, as well as
embedded resources. Visual Studio provides various project templates to create those
assemblies for different goals, such as a console or GUI application (an .exe file) or a class
library (a .dll file). Assemblies can refer to other assemblies they want to use. At runtime,
the CLR locates and loads assemblies from various locations. No registration is needed to
install or use an assembly, which is referred to as xcopy deployment. For general-purpose
assemblies, however, it’s not uncommon to register them to the GAC.

Various auxiliary services are provided to deal with assemblies and code they contain. One
is the capability to turn code into native instructions after deploying the assembly to a
user’s machine. This facility is called NGEN. Other services deal with naming (using
strong-name keys), loading assemblies at runtime through various APIs, the ability to
expose internal types and members to friend assemblies, and forwarding of relocated types
to another assembly.

Finally, during execution of an application, assemblies are tightly related to application
domains, which provide the basic unit of isolation in the runtime. Although assemblies
can be loaded into an application domain, they cannot be unloaded unless the contain-
ing domain gets unloaded as a whole. Security-related settings can be used to influence
the behavior of the application domain when loading and executing code. To communi-
cate between those isolation units, you typically need to pinch a hole between applica-
tion domains to invoke operations on objects in a different domain. The .NET Remoting
and type serialization infrastructure built in to the runtime helps out with this.
Abstractions over those APIs are provided for scenarios such as building extensible add-in-
driven applications.

This page intentionally left blank

CHAPTER 26

Base Class Library
Essentials

IN THIS CHAPTER
. The BCL: What, Where, and

How? 1293

. The Holy System Root
Namespace 1301

. Facilities to Work with
Text 1346

Now that you’ve been introduced to most of the day-to-
day C# language features used, we should say a word or two
about the Base Class Library (BCL) provided by .NET. Rarely,
other than for academic examples, can a program be
written without the use of a significant number of applica-
tion programming interfaces (APIs) and libraries. And that’s
a good thing, really. The relationship between the runtime,
various languages that build on it, and all the libraries
provided by the .NET Framework should be such that the
same language-level skills can be reused to reach out to
many of the libraries that are available.

Unless certain library-intensive patterns become very
common, there’s no good justification to taint the language
with new features that give a false impression of “integra-
tion” and cannot be taken out without breaking existing
code. Only the compelling scenarios that truly benefit from
language integration tend to make it, such as LINQ. One
common characteristic of such features is their generic
nature, allowing them to be used with wide range of
libraries. For example, LINQ’s query expressions can be used
to target any kind of data source, ranging from in-memory
object graphs, hierarchical data, and relational storage to
various other data models and stores.

As a result, the pace at which different layers of the frame-
work tend to evolve differs with many levels of magnitude.
Over the years, the set of APIs provided by the framework
has grown in quite a spectacular manner. All of this could
be achieved without making huge changes to the languages
or the framework. This observation becomes clear when
looking at various releases of the framework. For example,
all the 2.0, 3.0, and 3.5 “waves” were built on the same CLR

1292 CHAPTER 26 Base Class Library Essentials

2.0 runtime. And while certain versions of programming languages are in use, many more
framework libraries appear, some of which as part of out-of-band releases. For example,
the Managed Extensibility Framework (MEF) could do everything it had to without requir-
ing changes to the runtime, any of the languages, or even essential base class libraries.

Figure 26.1 shows a conceptual diagram of layering of runtimes, languages, and libraries.
Obviously, applications are written to make use of all of those, but the amount of library
features used significantly outnumbers the language features. This book tends to focus on
the two bottom layers of the diagram: mastering the C# programming language and
knowing fundamentals about the runtime that underpins language features (for example,
generics, DLR, reflection).

Good layers of abstraction supported by language features such as code patterns (for
example, foreach loops, using blocks, query syntax), object orientation, namespaces, and
so on provide a win-win situation in this jungle of libraries. From the library writer’s point
of view, an API can be given, by obeying good design principles, a natural feeling for users
in various languages. At the same time, users’ skill sets can be reused to target all those
libraries. Language design principles, such as static typing, together with runtime facilities,
such as rich metadata support, tend to aid users in exploring APIs. A good example of
tooling features leveraging this can be found in IntelliSense and the Object Browser
(which should really be called Type Browser).

Doing justice to all the framework libraries just by reviewing them in a shallow manner is
nearly impossible, so refer to specialized titles for deep coverage of things such as UI
programming (for example, using Windows Presentation Foundation [WPF]), targeting the
Web (for example, using ASP.NET and Silverlight), communication and services (for
example, using WCF), and so forth. Often, the number of auxiliary concepts introduced
by those technology pillars is way too high to familiarize you within a limited space.
Examples of this include configuration and installation aspects (for example, deploying a
web application), various designer tools (for example, designing a WPF application), and
specialized debugging (for example, when using T-SQL stored procedures in a database).

Instead, we focus on a common set of foundational libraries that can truly be regarded as
base class libraries and emphasize a couple of essential patterns that will help you explore
various libraries.

Libraries
UI, Data, Services, Web

Language
Features

Runtime
Facilities

O
ne-to-M

any R
elationships

Know to
explore

Master
those

Be aware
of them

FIGURE 26.1 Runtimes, languages, and libraries.

1293The BCL: What, Where, and How?

The BCL: What, Where, and How?
Our main goal in this chapter is to introduce you to the essential libraries that come with
the .NET Framework and tend to be used in a wide variety of scenarios. No matter
whether you’re writing a UI application, a web application, services, or even some kind of
cloud-based application, having a clue about libraries turns out to be very beneficial.
Although the term Base Class Library (BCL) has become harder to define over the years, I’ll
piggyback on this widely used acronym to introduce what I believe to be essential.

What Is Covered?

A significant number of namespaces that are part of the BCL are not covered here because
they’ve gotten attention already in the context of language feature discussion. For
example, while talking about generics, we covered the main uses of the feature, namely
collections. Similarly, the discussion about LINQ put us in a great spot to discuss essential
interfaces such as IEnumerable<T> and some APIs that are used to deal with specific data
models. During our dynamic programming exploration, things such as System.Reflection
and the DLR were covered in quite some detail as well.

Highlights of this chapter include coverage of namespaces (for example, the root System
namespace) and various children (for example, Diagnostics, IO, Text, and Threading). So
that you get a feel for the components and their installation, we’ll work through a simple
Windows Service example, covering System.ServiceProcess and System.Configuration.
From a scenario point of view, our emphasis is on themes, such as working with text, doing
I/O, and so on, instead of tackling specific domains like UI programming. To set realistic
expectations, don’t expect to master the covered namespaces in an end-to-end manner:
Lots of those APIs have different levels of complexity, ranging from the very simple to the
more involved scenarios that require tight control. Most of the time, we focus on the basics
and call out areas that may require deeper exploration if you’re interested.

Things I consider too specialized for meaningful coverage in the limited number of pages
available include APIs like DirectoryServices (to interact with Active Directory and LDAP-
based directory services), Messaging (exposing MSMQ message queuing to managed code),
Transactions (to deal with things such as distributed transactions), COM+ support in
ComponentServices, and many more hidden gems throughout the rich .NET Framework
set of APIs.

Default Project References

The assemblies that get referenced upon creation of a new project serve as a good starting
point for exploration of the BCL and commonly used APIs. Depending on the project
type, a different set of references is present. It should be obvious that building a Windows
Presentation Foundation (WPF) application requires different dependencies than the
creation of a WCF service library.

The most primitive set of references is likely to be found in our much beloved Console
Application template, so let’s take a look at it. Figure 26.2 shows the default set of refer-
ences displayed for such a project, targeting .NET Framework 4.

1294 CHAPTER 26 Base Class Library Essentials

This set of references might be a little surprising at first. Some functionality, like XML and
Data, doesn’t seem to be needed for a lot of scenarios. That’s a good observation; all the
default project templates do is introduce some commonly used functionality to ease their
discovery. Over the years, those default references have grown quite a bit. For example,
the .NET 3.5 tooling introduced references to LINQ assemblies.

REFERENCES ARE LOADED LAZILY

Despite the presence of references in the References section of a project in the
Solution Explorer, this doesn’t imply that all those assemblies will effectively get
loaded. Only the ones that are used at runtime, which can obviously depend on the
code path taken during execution, will get loaded. It’s the Just-in-Time (JIT) compiler’s
role to invoke the loader when a reference has to be chased to be able to run a certain
piece of code.

You are welcome to take a look at the references through the lenses of ILDASM as
well. In short, references specified in Visual Studio get propagated to the build sys-
tem, based on MSBuild nowadays, which invokes the C# compiler using the /r flag to
pass in references. Those references end up in the metadata of the compiled assem-
bly as extern references. For framework assemblies, a strong name is used to refer to
them. At runtime, the assembly will be found from the Global Assembly Cache (GAC,
as discussed Chapter 25, “Assemblies and Application Domains”), when it’s required
for execution.

Namespaces Versus Assemblies

An important distinction we drew in Chapter 25 is that between namespaces and assem-
blies. One way to approach this is by stating that namespaces provide a means to do
logical partitioning of functionality, whereas assemblies are physical containers for types
and members. A many-to-many mapping exists between both concepts: A single assembly
may contain different namespaces, and a single namespace may be spread across different
assemblies.

FIGURE 26.2 Default set of references added for a .NET 4 Console Application.

1295The BCL: What, Where, and How?

This configuration can sometimes lead to some confusion where one wonders what
happened to his or her favorite type. In such a circumstance, two things should be
checked. First of all, a using directive for the namespace containing the type might be
missing. This can easily be rectified using the Visual Studio’s “smart tag tip” that pops up
as shown in Figure 26.3. Ctrl+. (dot) can be used to make the menu appear if you don’t
like to use the mouse.

If the name of the type cannot be found in any of the referenced assemblies, this way of
adding a namespace import won’t help you. To track down the missing reference, a couple
of options exist. One is to use the Object Browser—just enter the type’s name and have
the tool search through a set of .NET Framework reference assemblies it knows about.
Figure 26.4 shows this in action.

After the type has been found in Object Browser, the Member Of link in the details pane
can be used to navigate to the corresponding namespace in the tree view, which will also
reveal the assembly the type is defined in. Figure 26.5 shows this.

FIGURE 26.3 Visual Studio editor support to resolve a namespace.

FIGURE 26.4 Using the Object Browser to find a type.

FIGURE 26.5 Navigating assemblies, namespaces, and types in Object Browser.

1296 CHAPTER 26 Base Class Library Essentials

An alternative path to hunt for the assembly defining the required type is to look in
MSDN documentation. Each type’s documentation entry includes the namespace and
assembly, as shown in Figure 26.6.

After the type has been found, the next step is to add a reference to the assembly if it’s not
there yet. The Add Reference dialog was discussed in Chapter 25 and shows all the .NET
assemblies that have been registered in file system locations where the IDE goes and looks
for reference assemblies.

The System and mscorlib Assemblies

Two of the most important assemblies for the majority of managed applications are
mscorlib and System. Rarely does any application not touch functionality defined in one
of those assemblies. The distinction between both is mostly a matter of logistics, reflecting
how the framework and runtime designers decided to split up things.

Notice that mscorlib doesn’t appear in the References section in Visual Studio, even
though it’s being referenced by the compiler. The philosophy behind this is that a whole
bunch of types defined in the System namespace live in mscorlib and are required to
write C# applications. For example, because System.Object is used as the base class for
every type, the compiler needs to be able to reference it in the generated intermediate
language (IL). And as you can guess, System.Object lives in mscorlib.dll.

If for some advanced reason you want to omit a reference to mscorlib and define your
own System namespace (including things like Object, ValueType, Array, and so on) for
the compiler to target, there’s a truly advanced option to do so. Go to the project proper-
ties, click through to Build, and click the Advanced button. This allows you to enable the
Do Not Reference mscorlib.dll setting as shown in Figure 26.7.

FIGURE 26.6 Finding the assembly a type is defined in MSDN documentation.

1297The BCL: What, Where, and How?

FIGURE 26.7 Disabling the much-needed reference to mscorlib.dll.

As soon as you do this, the compiler will complain about essential types missing, in a way
similar to what’s shown in Figure 26.8. Now you’re responsible for defining a System
namespace with types such as Object and some 30 more. If you pass this challenge, you’ll
have an assembly that doesn’t depend on mscorlib.dll. In practice, though, there are very
few compelling scenarios where this comes in handy, so you can always rely on
mscorlib.dll being referenced. Visual Basic has a similar feature called runtime agility,
which allows the frequently used runtime library for the language to be dropped.

OTHER LANGUAGE DEPENDENCIES

Over the years, the C# language has become dependent on more framework APIs
against which to emit code. In C# 1.0, most dependencies were found in mscorlib
and included things such as System.IDisposable, System.Threading.Monitor, and
so on. I leave it as an exercise for you to relate those two example types to some of
the discussed C# language features.

FIGURE 26.8 Life without mscorlib.dll is painful but reveals language dependencies.

1298 CHAPTER 26 Base Class Library Essentials

New features introduced in C# 2.0 required more functionality to be present at the
framework API level. For example, iterators leverage the IEnumerable<T> and
IEnumerator<T> interfaces. The use of nullable types relies on methods defined by
the Nullable<T> struct (for example, HasValue).

Going one version further to C# 3.0, a few more dependencies were added to support
the set of LINQ-related language features, although most of them simply rely on
method signatures and names. For example, the language doesn’t take a dependency
on System.Linq.Enumerable or System.Linq.Queryable but simply binds against
methods such as Where and Select when translating query syntax. For the expression
tree representation of lambda expressions, though, a dependency on the types in
System.Linq.Expressions exists.

The latest version of C#, version 4.0, introduced something that hadn’t been seen
before for C#: a language-specific runtime library, just like Visual Basic had since its
very early days. This design decision was made to support the dynamic typing feature,
where a runtime library is needed to carry out overload resolution that follows the rules
of the C# language (but deferred until runtime rather than implemented by the compiler).

One implication of those dependencies is that certain language features can simply be
disabled by dropping references to certain framework assemblies. For example, if you
inexplicably dislike LINQ to Objects or IQuerable<T> forms of LINQ, it’s just a matter
of dropping System.Core or (less invasive) dropping the using directive for
System.Linq. To disable C# 4.0 dynamic, it suffices to omit a reference to
Microsoft.CSharp.dll. Whether those tricks will continue to work in the future (because
other functionality might and likely will end up in those assemblies) is something I
prefer not to make any judgment about.

It’s a good exercise to relate language features back to some of the framework APIs on
which they depend. Again, ILDASM is your best friend to uncover them. In fact, we’ve
done so for a whole bunch of language features discussed throughout the book.
Innocent-looking keywords such as lock, using, switch, and so on all rely (some-
times, for example, for switch) on certain framework types.

In summary, both mscorlib.dll and System.dll are your best friends to find a whole set of
frequently used APIs that define a significant portion of what we refer to as the BCL.
However, in .NET 3.5 (and hence, in the world of sub-obvious versioning schemes, C# 3.0),
another player entered the scene: System.Core.dll.

System.Core’s Story of Red Bits and Green Bits

After the initial release of the .NET Framework, the runtime, libraries, languages, and
tools started to evolve at quite a different pace. This confirms the observations we
made at the start of this chapter, with CLR 2.0 staying at the heart of the releases that

immediately followed it. In particular, .NET 3.0 and .NET 3.5 leveraged the same runtime. At
the same time, those releases brought service packs to lower layers of the system, including
the CLR and BCL libraries. Figure 26.9 attempts to bring some structure to this picture.

1299The BCL: What, Where, and How?

V
isu

al S
tu

d
io

 2008
C

3.0, V
B

 9.0

V
isu

al S
tu

d
io

 2005
w

ith E
xtensions

V
isu

al S
tu

d
io

 2005
C

2.0, V
B

 8.0

Red Bits

.N
E

T
 3

.5

.N
E

T
 3

.0

.N
E

T
 2

.0

Green
 Bits

Stuff in
System.Core

WCF++ WPF++ WF++

WCF WPF WF

LINQ …

…

Base Class Library Stuff
(mscorlib.dll, System.dll, etc.)

Common Lanuage Runtime 2.0
(Introduced Generics, Nullables, etc.)

S
er

vi
ce

 P
ac

k

S
er

vi
ce

 P
ac

k

FIGURE 26.9 Versioning of runtime, libraries, and tools.

One challenge faced in the .NET 3.5 era was how to ship service packs to the layers under-
neath while introducing new functionality. It’s not until a user installs a service pack to
.NET 3.0 or .NET 2.0 components that all of a sudden a whole bunch of new functionality
needs to become available. The reasoning behind this is just that service packs should
simply be containers for patches to existing functionality, also giving a maximum level of
backward compatibility.

The solution one came up with was to bucketize features and fixes into green bits and red
bits. The former category contains new functionality and should therefore not slip into a
user’s configuration if a service pack is applied to, say, .NET 2.0. As a result, those new
pieces of functionality must end up in a new assembly that didn’t exist before. This
became the role of System.Core.dll, which contains “new stuff” that could have been
BCL functionality if it had been introduced in an earlier version. In that respect, it can be
seen as a natural extension to System and mscorlib. Figure 26.10 shows that lots of func-
tionality was added to various “core” System namespaces. The most notable examples are
the HashSet<T> collection type, support for named pipes, and the whole LINQ feature set.

Other green bits assemblies exist, such as System.Windows.Presentation.dll for some of
the enhancements made to WPF, which weren’t just fixes. On the other hand, red bits
simply denote prior framework versions’ assemblies that have been subject to changes in
the .NET 3.5 release and were simply patched in-place.

This technique of separating out fixes from new functionality using physical separation of
assemblies, while keeping the logical structure of namespaces intact, illustrates why the
distinction between both concepts actually has a value. Other variables sometimes factor
into the decision of whether a new assembly has to be introduced. Examples include
performance concerns associated with loading big assemblies from the disk, if only a tiny
subset of the assembly’s functionality is leveraged by end users.

1300 CHAPTER 26 Base Class Library Essentials

FIGURE 26.11 Types forwarded from System.Core to mscorlib in .NET 4.

FIGURE 26.10 System.Core’s framework enrichment.

In .NET 4.0, the System.Core assembly was kept even though this latest version of the
framework supports a complete side-by-side installation alongside earlier versions of the
runtime and the libraries. Strictly speaking, the functionality in System.Core could have
been merged into traditional and historical BCL containers like the mscorlib and System

assemblies. For reasons of discovery of features (people have gotten used to associating,
say, LINQ with System.Core) and performance (size of core assemblies that are loaded by
every application), System.Core was kept.

A few commonly used types were relocated, though (for example, the Func delegate
types), as shown in Figure 26.11. This use of forwarding allows applications compiled
against the .NET 3.5 System.Core assembly to continue working even though some of the
types have been moved to mscorlib. Such a refactoring was deemed useful to avoid
having to load System.Core for other portions of the framework that depend on those
commonly used types.

In summary, when targeting .NET 3.5 or later, System.Core is the third big member of the
BCL assembly triad, alongside mscorlib and System. When looking for commonly used

1301The Holy System Root Namespace

functionality, include this assembly in your search. It should be no surprise that all project
templates targeting the latest versions of the .NET Framework include references to all of
those assemblies.

REFERENCE ASSEMBLIES

The installation of the .NET Framework and Visual Studio tools include so-called refer-
ence assemblies that live in the Program Files folder. Those are the ones that are used
by various tools. However, they’ve been stripped down and contain just the metadata
needed by those tools. In particular, the executable (IL) code has been removed from
them. At runtime, assemblies in the GAC are picked up by the loader.

The Holy System Root Namespace
From now on, we’ll ignore the diverse physical locations of BCL functionality and start
with the assumption all types can be found. The default configuration of references in a
newly created .NET 4 project will suffice. In places where it does not (for instance, an
assembly other than the ones referenced is needed), I mention this explicitly.

The framework’s core namespace is System. In this first section, we explore the root name-
space, looking at some of the types and members we skipped over in the preceding chap-
ters. This allows us to discuss some related concerns, such as dealing with formatting of
particular data types and so on.

Primitive Value Types

We have already seen all of the primitive value types supported by the C# language, using
suffixes for literals (for example, 123L for a long) and various operations defined on them.
However, some operations require use of static or instance members on those types. Let’s
take a look.

Parsing Strings
One rather common operation used to obtain a primitive value is to parse external
input, for example, coming from a database, directly from the user, or text-based stores
such as XML files. In such a case, parsing a textual representation of a value into a
proper value is needed.

Two methods exist on most primitive types that allow for precisely this: Parse and
TryParse. Their behavior differs in whether an exception gets thrown when parsing fails.
In fact, before .NET 2.0, the only available methods were Parse, requiring the user to write
exception-handling code for something that isn’t really an exceptional kind of failure. An
example of TryParse, which is more commonly used nowadays, is shown here. Use of the
Parse method is still a good idea if you don’t expect input to be malformed, hence
making a failure to parse truly exceptional:

1302 CHAPTER 26 Base Class Library Essentials

FIGURE 26.12 Values of the NumberStyles enum.

string ageString;

int age;

do

{

Console.Write(“Enter your age: “);

ageString = Console.ReadLine();

}

while (!int.TryParse(ageString, out age));

Console.WriteLine(“Your age is {0}.”, age);

In this piece of code, we’re also using the notion of format strings to print the obtained
age to the screen. We discuss this framework feature in much more detail later in the
“Formatting Text” section. For now, simply think of {0} as a place holder for the first
params array element passed to WriteLine.

Because today’s software landscape is subject to globalization, parsing values from text is
not something that will work in a uniform manner throughout the world. Textual forms
of values such as numbers, dates, and so on highly depend on the culture of the user.
Proper globalization of software is a topic of its own, with whole books devoted to the
subject, so we’ll restrict ourselves to a basic example of dealing with different numeric
styles. The core enumeration that’s used to work with numbers is called NumberStyles and
is defined in the System.Globalization namespace. It’s an enum that supports the use of
flags, so composite styles are possible. Figure 26.12 shows the enum’s values.

An example is the AllowThousands flag, which specifies that thousand separators can be
used. In conjunction with AllowDecimalPoint, the string 87,654.32 is a valid numeric
string in English. Some of the values in the enum simply combine flags into a handy

1303The Holy System Root Namespace

FIGURE 26.13 Using a culture to perform decimal string parsing.

shortcut. For example, the Numer style contains both flags that we’ve discussed here as well
as flags for leading and trailing signs and whitespace.

If you parsed the preceding paragraph carefully, it should be clear that one piece of the
puzzle is missing: How’s the target culture determined? In the example described previ-
ously, the string 87,654.32 will parse fine for English, but in the author’s native culture
(Belgian Dutch), the decimal point is written as a comma, and optional thousand group
separators use a point. The same number is now written as 87.654,32. This is where
another parameter to Parse and TryParse comes in.

Using the IFormatProvider parameter, you can specify the culture-specific formatting
that’s desired. Luckily, you don’t have to implement this interface to make use of this
feature: The CultureInfo class, also defined in System.Globalization, does so already. So
the remaining question is where to get such CultureInfo objects. Besides the ability to
new up such objects, static members on the class are often very useful. Figure 26.13 shows
the use of decimal.TryParse with a specific culture.

Some cultures are readily available, such as the current (UI) culture, which can be set in a
number of ways or can be obtained from the user’s profile settings (the default). The so-
called invariant culture is useful for storing and retrieving data in a culture that’s the same
on every machine, also regardless of specific settings. If left unspecified, the current info is
used, which can also be obtained from NumberFormatInfo.CurrentInfo, which is another
way to obtain an IFormatProvider. An example using cultures is shown here:

Console.Write(“Enter your culture: “);

string culture = Console.ReadLine();

string salaryString;

decimal salary;

do {

1304 CHAPTER 26 Base Class Library Essentials

Console.Write(“Enter your salary: “);

salaryString = Console.ReadLine();

}

while (!decimal.TryParse(salaryString, NumberStyles.Currency,

new CultureInfo(culture), out salary));

Console.WriteLine(“Your salary is {0}.”, salary);

Here is some sample input and output, clearly revealing failure to parse our input, depend-
ing on the culture:

Enter your culture: en-US

Enter your salary: 87,654.32

Your salary is 87654.32.

Enter your culture: en-US

Enter your salary: 87.654,32

Enter your salary:

Enter your culture: nl-BE

Enter your salary: 87.654,32

Your salary is 87654.32.

Notice how the output of all the WriteLine calls is the same. Later, you’ll see how we can
influence string formatting to follow specific culture settings. In fact, both parsing and
formatting can be considered more or less as inverse functions.

Special Values
Most primitive types have some special values intrinsically tied to the domain of the type.
For example, integer data types have a certain range whose boundaries can be retrieved
using constant fields like MinValue and MaxValue:

Console.WriteLine(“32-bit signed integers range from {0} to {1}.”,

int.MinValue, int.MaxValue);

For floating-point numbers, other characteristic values exist, such as the NaN (not-a-
number) values that result from things such as division by zero, and the infinity values as
defined in the IEEE specification of floating-point numbers:

Obviously, those fields are read-only or constant and filled in by the BCL and runtime.
Refer to the discussion about fields in Chapter 11, “Fields, Properties, and Indexers” for
more information about the distinction between const (for example, used for
int.MaxValue) and read-only (for example, used for DateTime.MinValue).

1305The Holy System Root Namespace

USE OF KEYWORDS OR TYPE NAMES?

In the preceding examples, we’ve been using the C# keywords for primitive types, like
int and decimal, to dot into static members. Alternatively, we could have used the
type names that correspond with them, such as Int32 and Decimal in the System
namespace. Which style to use is nothing more than a matter of user preference, and
both mean exactly the same thing.

This can be confusing at first for developers with a Java background, where int and
Integer have a different meaning: The former indicates a primitive value, whereas the
latter is used to refer to a “boxed” reference type wrapping such a value. In .NET, the
act of boxing is tied to the use of the values in relation to the object base type.

Working with Arrays

A commonly used family of types consists of arrays, which really are a form of type
constructors: given any type, you can construct an array type out of it. To facilitate certain
common operations, the System.Array type exists. All arrays derive from this type, giving
them some useful instance-level members and properties. For example, the rank of an
array denotes the number of dimensions:

var xs = new int[10];

var ys = new int[3,4];

var zs = new int[3][];

For the first array, the rank will be 1 because there’s only one dimension. The second one
has a rank of 2 because of the use of the multidimensional array feature. For the last one,
a jagged array, the rank of zs is still 1:

Console.WriteLine(xs.Rank); // 1

Console.WriteLine(ys.Rank); // 2

Console.WriteLine(zs.Rank); // 1

To find the range of valid indexes along the different dimensions of an array, methods
such as GetLowerBound and GetUpperBound can be used. In practice, they are rarely used,
in favor of for loops generating a range from zero to the array’s length minus one, or a
foreach loop that takes care of all the heavy lifting.

The static members on System.Array are of more interest in various circumstances. A
couple of examples are shown in the following code:

var rnd = new Random();

var xs = new int[20];

for (int i = 0; i < 10; i++)

xs[i] = rnd.Next(10);

1306 CHAPTER 26 Base Class Library Essentials

Array.Resize(ref xs, 10); // drop last ten, like LINQ’s Take

Array.Sort(xs); // in-place quicksort, like LINQ’s OrderBy

Array.Reverse(xs); // in-place reversal, like LINQ’s Reverse

var ys = new int[10];

Array.Copy(xs, ys, xs.Length); // more overloads available

Array.ForEach(ys, Console.WriteLine); // like a foreach-loop

int fiveAt = Array.BinarySearch(ys, 5); // -1 if not found

bool anyEven = Array.Exists(ys, i => i % 2 == 0); // like LINQ’s Any

// Other operations include:

// - TrueForAll (like LINQ’s All operator)

// - Find and FindAll (like LINQ’s Select operator)

// - Ways to find indexes for an element

Notice the high number of “like LINQ” remarks made in the code comments here. A
historical perspective definitely helps here because arrays have been in the framework
since the early days, whereas LINQ’s generalization of sequence operators was introduced
in .NET 3.5. For some of those operations, there’s quite a difference between using the
Array type’s static method and use of LINQ operators. In particular, lots of Array methods
operate on the data in an in-place manner, whereas LINQ to Objects produces new
sequences (based on IEnumerable<T>) without mutating the underlying data. It’s also the
case that the Array methods are heavily optimized based on the array-specific characteris-
tics, such as the capability to index efficiently and upfront knowledge of the array’s
bounds. Things such as BinarySearch and Sort can leverage those properties to provide
very efficient implementations.

Segments
A relatively little-known type related to arrays is ArraySegment<T>, which was added to
the framework in .NET 2.0. It basically allows bundling an array together with an offset
and a length. Users of the struct can consult this information (for example, to figure out
the part of an array they’re allowed to operate on):

var xs = new[] { 3, 7, 2, 5, 1, 4, 0, 9, 6, 8 };

// ^^^^^^^^^^^^^

var ys = new ArraySegment<int>(xs, 3, 5);

// Retrieving start and end elements in the segment

var fst = ys.Array[ys.Offset]; // 5

var lst = ys.Array[ys.Offset + ys.Count - 1]; // 9

A good exercise for readers interested in algorithms is to implement some recursive sort
algorithm where the bounds of a sort operation are communicated using an
ArraySegment value.

1307The Holy System Root Namespace

Buffers
Arrays are represented as contiguous blocks of memory that the CLR knows, based on the
array’s element type, how to index into. For example, an array holding Int32 values will
occupy 4 bytes per element. To access the fifth element, an offset of 16 bytes must be
skipped into the array’s memory to land on the element.

In the world of native code, developers often manipulate arrays in a low-level manner by
calculating offsets into the array’s memory. Such manipulations tend to cause lots of bugs
and can actually violate memory and type safety (for example, when reaching out of the
bounds of the array). To restore some of those lower-level manipulation techniques, the
Buffer type can be used, while preserving various forms of safety. For example, it’s not
possible to use Buffer operations over an array holding references because twiddling with
references is a dangerous act that should be kept to the garbage collector.

An example of a simple operation is to ask for an array’s byte size:

var xs = new[] { 3, 7, 2, 5, 1, 4, 0, 9, 6, 8 };

var len1 = Buffer.ByteLength(xs); // xs.Length * sizeof(int)

var len2 = xs.Length * sizeof(int);

Armed with such knowledge, you can do various kinds of manipulations on bytes that fall
within the bounds of the array. Obviously, this is a rather specialized task that requires the
user’s knowledge about how primitive types are laid out in memory. One such piece of
knowledge is the little-endian ordering of bytes. The following example plays a bit with
the bytes of a 32-bit signed integer stored in an array:

var xs = new[] { 3, 7, 2, 5, 1, 4, 0, 9, 6, 8 };

byte b1 = Buffer.GetByte(xs, 0); // 3 due to little-endian architecture

byte b2 = Buffer.GetByte(xs, 1); // 0

byte b3 = Buffer.GetByte(xs, 2); // 0

byte b4 = Buffer.GetByte(xs, 3); // 0

Console.WriteLine(“0x{0:X}”, xs[0]); // 0x00000003

Buffer.SetByte(xs, 1, 0x42); // ^^

Buffer.SetByte(xs, 3, 0x17); // ^^

Console.WriteLine(“0x{0:X}”, xs[0]); // 0x17004203

Here, the first 4 bytes on the array’s memory used for elements are occupied by the bytes
that comprise the 32-bit integer value of 3 used for the first element. By means of the
GetByte method, we can actually see those bytes in their raw form. The SetByte method
touches those bytes, making the manipulations highlighted on the right in the comments.
Notice the use of the {0:X} format string, which dumps the first params array argument to
WriteLine in hexadecimal format. Later, we’ll see the richness of string formatting illus-
trated more broadly. Suffice to say that formatting of strings offers lots of flexibility
beyond just punching and filling “holes” in strings.

1308 CHAPTER 26 Base Class Library Essentials

One more possible manipulation allowed by the Buffer class is to do a block-copy of one
array to another, possibly of another primitive data type. For example, in the preceding,
we have an array of 32-bit integers, all of which would actually fit in single byte values.
Using the Buffer’s BlockCopy method, we can copy elements into such an array:

var xs = new[] { 3, 7, 2, 5, 1, 4, 0, 9, 6, 8 };

// 3 0 0 0 7 0 0 0 ...

var ys = new byte[Buffer.ByteLength(xs)];

Buffer.BlockCopy(xs, 0, ys, 0, xs.Length);

In some circumstances, this can prove useful to convert an array of primitive types in a
very effective way, reducing user burden and runtime overhead that would come from
manual copying.

WHAT ABOUT UNSAFE CODE?

One thing I’ve deliberately omitted from this book altogether is C#’s capability to write
unsafe code, allowing manipulation of pointers and so on. As the name implies, this
kind of code is inherently unsafe with regard to type safety and usually is used only in
advanced interoperability scenarios. Often, it’s just better to use other languages, such
as C++/CLI, for such tasks.

The Math Class

Every self-respecting foundational API has facilities to deal with math. The BCL is no
different in this respect with the System.Math static class that provides a plethora of
handy mathematical operations on various numeric types. We don’t cover all of them in
detail, so let’s highlight the most important aspects.

Constants
Anyone with any background in math knows two of the most important constants used
in various applications. Those are e (2.71828...) and pi (3.14269...). Both of them are avail-
able as constants on the Math class, with double precision:

Console.WriteLine(Math.Pow(Math.E, Math.Log(5)));

Console.WriteLine(Math.PI * r * r);

In the first example, we’re taking the natural logarithm (Log) of 5 and using it as the expo-
nent with base e, which is the reverse power (Pow) operation. The result should be 5 again.
The second example shows one of the typical uses of pi to compute the surface of a circle
with radius equal to r.

Simple and Discrete Math
In the preceding examples, we’ve already seen a couple of interesting functions like Pow
and Log. Other such functions exist, briefly summarized here:

1309The Holy System Root Namespace

. Exp is the same as using Pow with the base equal to constant e. Log and Log10

compute the natural and 10-based logarithm, respectively. Sqrt takes the square root
of a number.

. Sign returns a value’s sign using negative or positive one (for example, -1 for int).
Abs computes the absolute value of a given number.

. Ceiling produces the smallest integral value larger than or equal to a fractional
number. Obviously, floor does exactly the opposite. Round rounds to the nearest
integral value. Truncate drops the nonintegral part of a fractional number.

. Max and Min speak for themselves. It’s worth pointing out all overloads for these
methods take only two parameters. LINQ operators on arrays, and more generally
sequences using IEnumerable<T>, can be used to compute minimum and maximum
over longer sequences.

Examples of those functions are listed here:

Console.WriteLine(Math.Sqrt(2)); // 1.4142135623731

Console.WriteLine(Math.Log10(1000)); // 3

Console.WriteLine(Math.Abs(-5)); // 5

Console.WriteLine(Math.Sign(-5)); // -1

Console.WriteLine(Math.Ceiling(Math.PI)); // 4

Console.WriteLine(Math.Floor(Math.E)); // 2

Console.WriteLine(Math.Round(Math.PI)); // 3

Console.WriteLine(Math.Round(Math.E)); // 3

Console.WriteLine(Math.Truncate(Math.PI)); // 3

Console.WriteLine(Math.Truncate(Math.E)); // 2

Another family of related functions deals with multiplication and division of integral
values beyond the regular capabilities provided by built-in operators. For example, the
multiplication of two 32-bit integers does fit in a 64-bit integer, but the built-in operator
for multiplication of those values produces an Int32:

int x = int.MaxValue;

int y = int.MaxValue;

var z = x * y;

Console.WriteLine(z);

This piece of code produces, to the surprise of many, the value 1. If you hover over the
var keyword used for implicit typing of variable z, you see the result of the multiplication
is typed to be an Int32 and the multiplication was carried out as a 32-bit one. Due to over-
flow, the seemingly incorrect result is produced, which can be guarded against (at the
expense of runtime checks) using the checked keyword:

1310 CHAPTER 26 Base Class Library Essentials

int x = int.MaxValue;

int y = int.MaxValue;

var z = checked(x * y);

Console.WriteLine(z);

One solution is to widen any of the two 32-bit integer values into a 64-bit long one (for
example, by using casting syntax on x or y). Alternatively, the Math.BigMul method can
be used:

int x = int.MaxValue;

int y = int.MaxValue;

var z = Math.BigMul(x, y); // Now z is an Int64 (or long)

Console.WriteLine(z);

To compute an integral division’s quotient as well as the remainder (as taught in elemen-
tary school math), the DivRem method can be used. It uses an output parameter to
communicate the remainder to the caller:

int num = 17;

int den = 5;

int rem;

int div = Math.DivRem(num, den, out rem);

Console.WriteLine(“{0} * {1} + {2} = {3}”, div, den, rem, num);

Trigonometry
One thing that cannot be missing from a basic math library is support for trigonometry
using functions like sine, cosine, tangent, and their hyperbolic brothers. Math’s set of
methods has all of those aboard, based on radian double-precision values for their input:

double angle = 45 * Math.PI / 180;

Console.WriteLine(Math.Sin(angle)); // Should be Math.Sqrt(2) / 2

Console.WriteLine(Math.Cos(angle)); // Should be Math.Sqrt(2) / 2, too

Console.WriteLine(Math.Tan(angle)); // Hence the division of those is 1

BigInteger: Beyond 32-bit and 64-bit Integers

Introduced in .NET 4 to support various functional and dynamic languages, the
BigInteger type provides unlimited-precision integral value math. Internally, it’s
based on bit-vectors on which operations are done by turning those into basic

math operations that the processor supports, including 32-bit and 64-bit arithmetic as well
as bit-level operations. Luckily, all of this plumbing is nicely abstracted away from the
user, and thanks to rich operator overloading the use of BigInteger is quite simple.

1311The Holy System Root Namespace

First of all, note that BigInteger lives outside the triad of BCL assemblies, namely in the
System.Numerics assembly. The namespace listening to the same name as this assembly
will have to be imported, too, for unqualified use of the struct’s name.

To create a new BigInteger value, numerous paths can be taken. One is to invoke a
constructor that can take a whole bunch of primitive numeric types, or a byte array that
contains the bytes that make up a big integer if you love to deal with low-level representa-
tions right from the start. Alternatively, implicit conversions can be used to turn numeric
values of primitive types into a BigInteger:

BigInteger x = new BigInteger(uint.MaxValue); // 2^32 - 1

BigInteger y = ulong.MaxValue; // 2^64 - 1

All expected math-related operators have been overloaded, allowing easy use of the
created big integer values. For example, we can simply multiply the preceding:

BigInteger z = x * y;

Console.WriteLine(z);

Console.WriteLine(BigInteger.Log(z, 2)); // 95.999 ~= 2^(32 + 64)

The use of BigInteger.Log illustrates the availability of Math-alike static methods for
various operations on big integer values. The reason they haven’t been moved to the Math
class is due to framework assembly layering. Adding a BigInteger overload to, say, the
Math.Log method would make Math’s assembly (mscorlib) dependent on the newly intro-
duced System.Numerics assembly. It would also be the case that references to the new
assembly are needed for compilers to have all the information needed to do proper over-
load resolution.

To illustrate a few other operators available, consider the following implementation of an
unlimited-precision factorial computation:

BigInteger n = 10000;

BigInteger fac = 1;

for (BigInteger i = 2; i < n; i++)

fac *= i;

Console.WriteLine(fac);

This produces a number of no fewer than 35,656 digits that one couldn’t even dream of
computing efficiently before .NET 4 without external libraries or a custom (and likely
error-prone) implementation of large integer arithmetic. It’s left as an exercise for you to
spot all the overloaded BigInteger operators used in the preceding code. (Tip: There is
more than a handful.)

Static methods on BigInteger include typical Parse and TryParse methods, as well as
functions similar to those on the Math class (except for things such as trigonometry). One
slightly unexpected method is GreatestCommonDivisor, which should speak for itself.

1312 CHAPTER 26 Base Class Library Essentials

NO C# LITERAL (YET?)

Unfortunately, it’s not possible to create a BigInteger value by writing a literal in C#
code unless it fits in a 64-bit integral, in which case you’re merely creating some primi-
tive value (for example, an Int32) that can be implicitly converted to BigInteger. I
would definitely love to see literal support for BigInteger values, which on the flip
side would obviously add another dependency to the language, needing a reference to
the System.Numerics assembly.

Without this support, you can either use the BigInteger.Parse method to write down
the value as a string literal or turn the big integer value into a byte array, which would
be more efficient (though, as usual, let measurements be your guide in deciding what
to optimize). If you want to go for the latter option, simply use the Parse method once,
call ToByteArray on the produced BigInteger value, and turn that byte array in a
piece of C# array initializer code:

var bs = BigInteger.Parse(“12345678901234567890”).ToByteArray();

Console.WriteLine(“new byte[] { “ + string.Join(“,”, bs) + “ }”);

This would be precisely the kind of code the C# compiler could generate (during
compile time) for the use of a BigInteger literal, passing the byte array to one of
the BigInteger constructors. For the output of the preceding, this would look like
the following:

var x = new BigInteger(new byte[] { 210, 10, 31, 235, 140, 169, 84, 171, 0 });

Console.WriteLine(x); // 12345678901234567890

If BigIntegers become popular in the C# community, maybe we’ll see direct support
for them in a future version of the language. Languages that aim more at the scientific
computation community, such as F#, do provide direct support today.

Complex Numbers

While the BCL teams were at it, adding System.Numerics with the BigInteger
type, they also added a complex number struct. Because most readers won’t have
to deal with complex numbers on a day-to-day basis, we restrict ourselves to a

small refresher on the concept of complex number in Figure 26.14, as well as a simple
code fragment.

Creation of a Complex value can be done in a number of ways. One is to specify real and
imaginary parts of the number to the constructor, both of which are typed using double
floating-point precision values. Math-savvy readers will recall there’s another representa-
tion of complex numbers, though, based on polar coordinates. Because this also involves
two doubles, one for the radius and one for the angle (in radians), it wasn’t possible to
provide another constructor because it would end up having the same signature. In lieu of
this, a static method called FromPolarCoordinates is provided. Besides those two ways of
constructing new complex values, three public read-only fields are provided with
commonly used complex numbers:

1313The Holy System Root Namespace

Im
ag

in
ary

Real

1 +
2

3
i

2

Radius of 1

cos(60°)=1/2

60°

sin(60°)=
 3/2

FIGURE 26.14 Brief recap of complex number theory.

var c1 = new Complex(3.0, 4.0);

var c2 = Complex.FromPolarCoordinates(1.0, Math.PI / 3 /* 60 degrees */);

var c3 = Complex.Zero;

var c4 = Complex.One;

var c5 = Complex.ImaginaryOne;

The ToString representation simply prints the real and imaginary parts as the default
textual form, also known as the Cartesian coordinates:

Console.WriteLine(c1); // (3, 4)

Console.WriteLine(c2); // (0.5, 0.866025403784439) - see Figure 26.14

Console.WriteLine(c3); // (0, 0)

Console.WriteLine(c4); // (1, 0)

Console.WriteLine(c5); // (0, 1)

Four instance-level properties are available on Complex values, allowing the two parts of
both representations to be queried. For example, the first complex number we wrote down
has a radius of five (known as the magnitude) and an angle (known as the phase) that can
be derived from the real and imaginary parts using the Atan function:

// Magnitude = Math.Sqrt(3.0 * 3.0 + 4.0 * 4.0) Phase = Math.Atan(4.0 / 3.0)

Console.WriteLine(“({0}, {1})”, c1.Magnitude, c1.Phase);

1314 CHAPTER 26 Base Class Library Essentials

All sorts of calculations can be done with Complex values, thanks to a whole lot of over-
loaded operators. Conversions exist from primitive number values (and even the
BigInteger struct) to complex numbers whose imaginary part will be set to zero. We
won’t go into detail on all those operations; instead, I encourage you to consult some
standard works on number theory if your knowledge of complex numbers has become a
bit dusty. Here are a few examples of working with complex numbers:

Console.WriteLine(c1);

Console.WriteLine(c2.Real); // Cosine of angle

Console.WriteLine(c3.Imaginary); // Sine of angle

Console.WriteLine(c4.Magnitude); // Radius of circle

Console.WriteLine(c5.Phase); // Angle in radians

Console.WriteLine(c1 + c2 * c3 - c4 / c5); // Standard arithmetic

Console.WriteLine(Complex.Pow(c1, c2)); // Refer to theory :-)

Console.WriteLine(Complex.Reciprocal(c3)); // 1 + 0i divided by c

Console.WriteLine(Complex.Negate(c4)); // Flip both signs

Console.WriteLine(Complex.Conjugate(c5)); // Flip imaginary sign

With this, we wrap up our discussion about complex numbers. One thing that’s worth
mentioning is that the introduction of those numbers as part of the BCL allows for true
interoperability between languages that provide them natively and others, like C#, that
want to consume such values.

Generating Random Numbers

A fairly common task is to generate random numbers (for example, to create a random
permutation of objects in a collection, to write a lottery application, to generate test input
sequences). The System namespace contains a Random class that’s designed for this
purpose, producing what’s known as a pseudo-random sequence.

SECURITY, SECURITY, SECURITY

It can’t be emphasized enough that the Random class is not well suited for use in a
security-critical context (for example, to provide cryptographic strength random
numbers) in part due to its pseudo-random (and hence predictable) nature.

For such uses, the System.Security.Cryptography namespace should be put into
action, with its RandomNumberGenerator base class and derive types. However, when
you find yourself creating such random numbers, it’s good to ask why you’re doing it in
the first place. If you happen to be implementing some kind of cryptographic algorithm
yourself, immediately stop doing so unless you’re a world authority in that field (in that
case, I’m incredibly pleased you’re reading this book).

Security and cryptography are things everyone should use when appropriate for the
task at hand. At the same time, it’s no good trying to implement such low-level facili-
ties yourself. You’ll find that the System.Security namespace and all of its children
contain plenty of well-tested and massively reviewed facilities you can readily leverage.

1315The Holy System Root Namespace

To generate random numbers, instantiate a new Random object, optionally with a generator
seed. If left unspecified, the system picks a seed, which is currently chosen from the
Environment.TickCount static property. Once a random number generator has been
created, any of its Next* methods can be used to return the next random number:

var r = new Random();

for (int i = 0; i < 5; i++)
Console.WriteLine(r.Next(0, 100)); // Within range [0, 100[

for (int i = 0; i < 5; i++)
Console.WriteLine(r.NextDouble()); // Always between 0.0 and 1.0

var bs = new byte[5];
r.NextBytes(bs); // Fills the given array with bytes
foreach (byte b in bs)

Console.WriteLine(b);

Following is a popular example of approximating the value of Pi by generating random
numbers and computing the number of them that fall within the unit circle. Obviously,
such a technique has only limited mileage, but nonetheless it’s an interesting curiosum.
Figure 26.15 shows the approach we’re taking. Basically, we generate random points in a
one-by-one square. Of those, we count the number that fall within the unit circle with
radius one. The proportion of hits and the total number of “shots” approximates one-
quarter of Pi.

The code performing this computation a number of times is shown here:

const int TOTAL = 1000000; // Number of shots per turn
var random = new Random();

for (int t = 0; t < 10; t++)
{

int within = 0;
for (int i = 0; i < TOTAL; i++)
{

double x = random.NextDouble();
double y = random.NextDouble();

double r = Math.Sqrt(x * x + y * y);
if (r < 1.0) // Within the circle

within++;
}

var approx = (double)within * 4 / TOTAL;
Console.WriteLine(approx);

}

1316 CHAPTER 26 Base Class Library Essentials

Generate Pairs
of Coordinates
in the Square

Number of Shots
in the Quarter Pie

Number of Shots
in the Square

Radius of 1

1
1

4

π
4

Surface of Quarter Pie

π 1

FIGURE 26.15 Approximating Pi using random numbers.

On my machine, the run of 10 approximations resulted in the following value approxima-
tions of Pi:

3.142252

3.140372

3.143872

3.143084

3.142656

3.143024

3.13976

3.139144

3.14488

3.141488

Don’t expect to see much better precision, though. Various factors influence how good of
an approximation we can get, and far better algorithms exist to compute Pi (contests even
exist for this popular math theme).

ONE AND ONLY ONE RANDOM NUMBER GENERATOR

A common mistake made by users encountering the Random class for the first time is
the creation of multiple instances without specifying a custom seed. If those creations
follow each other closely, the chosen seed value will be the same because it’s taken
from Environment.TickCount, which has only millisecond precision. In such a setting,

1317The Holy System Root Namespace

all the created random number generators will produce the same sequence. Often, it’s
just better to have a single random number generator stuffed somewhere in a static
field for reuse throughout various components.

Working with Date and Time

Date and time values are notoriously hard to work with for a variety of reasons, most of
which have to do with globalization. Different calendar systems exist, people live in differ-
ent time zones, representation of dates can be done in a number of ways, and so on. The
designers of the .NET Framework tried hard to accommodate all those needs using just a
handful of types. And quite frankly, they did quite a good job of it, with only one intro-
duction of a new type in .NET 2.0 to compensate for the lack of a good solution to time
offsets relative to UTC time.

Absolute Time and DateTime
The first notion we need is that of absolute time. DateTime is the struct that’s used to
represent such values, which consist of date and time information. At the same time, it
allows for various kinds of computations and conversions.

Here are some basic examples of creating a DateTime value using the constructor and the
DateTime.Now static property:

// January, 1st of 1 AC at midnight

var start = new DateTime();

Console.WriteLine(start);

// Ticks are measured in 100 nanoseconds, starting from 01/01/2001 12:00:00 AM

// Hence, the below corresponds to February, 1st of 1 AC at midnight

var fromTicks = new DateTime(

10L * 1000 * 1000 * // from 100ns to microsecond, millisecond and second

60 * 60 * 24 * // from second to minute, hour and day

31); // 31 days in January

Console.WriteLine(fromTicks);

// From year, month and day, at midnight

var birthday = new DateTime(1983, 2, 11);

Console.WriteLine(birthday);

// Month, day, hour, minute and second are all set to 11

var elfelfelf = new DateTime(2011, 11, 11, 11, 11, 11);

Console.WriteLine(elfelfelf);

// DateTime.Now gets the current time, up to tick precision

var now = DateTime.Now;

Console.WriteLine(now);

1318 CHAPTER 26 Base Class Library Essentials

It should be no surprise that all the components of a DateTime value can be accessed using
instance-level properties with predictable names. Of those, Ticks contains the total
number of ticks that represent the instance, and properties like Day and Hour are used to
access a particular component of the value.

Internally, a DateTime value is stored as a single ulong value that corresponds to the
number of ticks since .NET’s beginning. Access to various component value properties
involves quite some arithmetic to compute the requested value, taking things such as leap
years into account. Luckily, all of this complex arithmetic is hidden from the end user:

var now = DateTime.Now;

Console.WriteLine(now.Year);

Console.WriteLine(now.Month);

Console.WriteLine(now.Day);

Console.WriteLine(now.Hour);

Console.WriteLine(now.Minute);

Console.WriteLine(now.Second);

Console.WriteLine(now.Millisecond);

Later, we’ll see how to format DateTime values using format strings, which makes “pretty
printing” easier. Besides the components shown previously, other interesting data of the
value can be retrieved, such as the day of the week:

var birthday = new DateTime(1983, 2, 11);

Console.WriteLine(birthday.DayOfWeek); // Friday (a DayOfWeek enum value)

Console.WriteLine(birthday.DayOfYear); // 42 (31 days in January + 11)

It’s also possible to obtain the Date component of a DateTime value by using the Date
property. Similarly, the time of day can be retrieved using TimeOfDay, returning a TimeSpan
value (which is discussed later).

LEAP YEARS AND DAYS IN A MONTH

As you can imagine, the existence of leap years complicates all sorts of arithmetic that
has to be done with dates. Because the fact whether a year is a leap year can be com-
puted (divisible by four, modulo some exceptions to compensate for Mother Earth’s true
cycle around the sun), an IsLeapYear static method has been exposed to the users,
as well. Furthermore, the DaysInMonth method can be used to find the number of days
in a specified month of a given year.

Conversions
Historically, date and time values have had various representations. For example, a bunch
of Win32 APIs use a so-called FILETIME value. In that system, the timeline starts at 1
January 1601 rather than the year 1. Similar to .NET’s representation of time, the precision
of measurements is in 100ns.

1319The Holy System Root Namespace

Given a FILETIME value, you can create a DateTime value using the FromFileTime and
FromFileTimeUtc static methods. Conversely, a DateTime value can be turned into
FILETIME by means of the ToFileTime and ToFileTimeUtc instance methods:

var now = DateTime.Now;

long fileTime = now.ToFileTimeUtc();

DateTime aWhileAgo = DateTime.FromFileTimeUtc(fileTime);

Another representation is so-called binary, which can be used to restore a DateTime value
in an exact manner. This is not quite the same as just a tick count because date and time
values also contain a Kind flag. This flag is used to indicate whether the value is
measured based on UTC (universal coordinated time, so it ought to be spelled UCT) time
or represents a local time that’s offset by a time zone. We discuss time zones and the
DateTimeOffset struct in the section “What about Time Zones?” and beyond. For now, I
just want to draw attention to the use of the binary representation and associated
conversions:

var now = DateTime.Now; // Note: the Kind of DateTime.Now is “Local”.

long binary = now.ToBinary();

DateTime aWhileAgo = DateTime.FromBinary(binary);

One more foreign representation of DateTime values is as OLE Automation dates, which
are abbreviated OADate. We’ll ignore this representation here.

String Representations of DateTime Values
An obvious other representation of DateTime values is as a string. Conversions from and to
a string are supported through static Parse methods and various ToString-alike methods,
respectively.

Starting with the former one, a string can be converted to a DateTime using the Parse

method, optionally specifying a format provider (such as a CultureInfo object) or a flag’s
value of type DateTimeStyles. We omit a discussion about the various flags that are avail-
able and refer you to MSDN documentation for more information. Notice how the parame-
ters of all Parse methods on built-in essential value types follow the same kind of pattern.

The following example shows how a Belgian Dutch representation of my date of birth is
turned into a DateTime value. In my humble opinion, the order of the day in front of the
month is more logical than the en-US representation anyway:

var birthday = DateTime.Parse(“11/02/1983”, new CultureInfo(“nl-BE”));

Console.WriteLine(birthday);

Other string representations of the same date can be fed to the Parse method; for
example, using a textual form of the month (for example, februari in Dutch).

Besides just the Parse method, the framework also provides a ParseExact method that
works based on format strings. An array of format strings can be given to denote the

1320 CHAPTER 26 Base Class Library Essentials

acceptable shapes of the input. If an exact match is found, the corresponding value is
returned. If there isn’t a single exact match, an exception results:

var formats = new[] {

“dd/MM/yyyy”, “dd/M/yyyy”, “d/MM/yyyy”, “d/M/yyyy”,

“dd/MM/yy”, “dd/M/yy”, “d/MM/yy”, “d/M/yy”

};

var culture = new CultureInfo(“nl-BE”);

var birthday = DateTime.ParseExact(“11/2/83”, formats, culture,

DateTimeStyles.None);

Console.WriteLine(birthday);

In the preceding code, the sixth format string did produce a match for the given input,
which has two digits to denote the day, one for the month, and two for the year (which is
projected in the 20th century, resulting in 1983). This method can prove useful to deal
with systems where the storage format of a DateTime value follows a number of patterns
and you want to avoid random behavior when multiple formats match. Format strings are
discussed in more detail later when we talk about text in general (see the section titled
“Formatting Text”).

Besides the Parse and ParseExact methods, Boolean-returning variants prefixed with the
word Try exist. Instead of throwing an exception on invalid or ambiguous input, those
methods will return false or true to indicate success. Use of both methods is totally analo-
gous to similar methods on primitive types like Int32.

For the opposite direction of DateTime conversion (that is, to a string), various To methods
exist. ToString takes an optional format string or a format provider, but a few stock
conversion methods are provided out of the box as well:

// 11/02/1983

Console.WriteLine(birthday.ToString(“dd/MM/yyyy”));

// 11/02/1983 0:00:00 with 24-hour notation (no AM/PM designator)

Console.WriteLine(birthday.ToString(new CultureInfo(“nl-BE”)));

// Friday, February 11, 1983 - a similar method exists for time

Console.WriteLine(birthday.ToLongDateString());

// 2/11/1983 - a similar method exists for time

Console.WriteLine(birthday.ToShortDateString());

Calendar Systems
So far, we’ve ignored an important detail. While various examples have shown how to
deal with culture-specific string representations, there’s another axis to globalization treat-
ment of date and time, namely the use of different calendar systems. In fact, the DateTime
struct uses a representation that’s described as follows at MSDN:

1321The Holy System Root Namespace

Time values are measured in 100-nanosecond units called ticks, and a particular date is the

number of ticks since 12:00 midnight, January 1, 0001 Anno Domini (Common Era) in the

GregorianCalendar calendar.

The key takeaway from the preceding description is that a DateTime value’s representation
is based on the Gregorian calendar because it’s in much of the world. However, this
doesn’t imply that .NET can’t support other calendars. In fact, it does, and a glance at the
System.Globalization namespace immediately reveals the support for a whole series of
calendar systems (most of which I honestly have never heard about).

To be politically correct, we can either show all of them or none of them. Because we’ve
already mentioned the GregorianCalendar, we feel obliged to give the full list (as of
.NET 4) here:

. ChineseLunisolarCalendar

. EastAsianLunisolarCalendar

. GregorianCalendar

. HebrewCalendar

. HijriCalendar

. JapaneseCalendar

. JapaneseLunisolarCalendar

. JulianCalendar

. KoreanCalendar

. KoreanLunisolarCalendar

. PersianCalendar

. TaiwanCalendar

. TaiwanLunisolarCalendar

. ThaiBuddhistCalendar

. UmAlQuraCalendar

When creating a DateTime using any of the constructors, overloads exist that take in a
Calendar object. At that point, values passed for the components (like day and hour) are
subject to the calendar’s rules. Various methods exist on Calendar objects to obtain parts
of a DateTime value using the calendar’s rules and calendar-specific notions. For example,
the Chinese lunisolar system has notions of sexagenary year cycles (using a 60-year based
system) and leap days and months.

Because the art of writing correct globalized software is a specialist domain of its own, we
don’t go into further detail on it and refer you to books devoted to the subject, as well as
the MSDN documentation.

1322 CHAPTER 26 Base Class Library Essentials

What About Time Zones?
Yes, another complication in date and time notions is the concept of time zones. .NET’s
BCL provides intrinsic support for this, too. Two classes are available to work with time
zones: TimeZone and TimeZoneInfo. The latter is the most modern and flexible container
of time zone functionality, with support for multiple adjustment rules.

An adjustment rule basically reflects oddities associated with the time zone in question,
such as the daylight saving time period on a year-to-year basis (which could change over
time, making the use of a single adjustment rule inappropriate). Because there are a whole
bunch of complications when dealing with time zones (such as the notion of ambiguous
time, when DateTime values can be mapped to multiple UTC values), we’ll skim over the
TimeZone facilities by just giving a little taste:

var here = TimeZone.CurrentTimeZone;

Console.WriteLine(here.StandardName); // Pacific Standard Time

Console.WriteLine(here.GetUtcOffset(DateTime.Now)); // -07:00:00

Console.WriteLine(here.IsDaylightSavingTime(DateTime.Now));

The preceding code uses the classic TimeZone class to retrieve the computer’s current time
zone and print a few pieces of information about that zone.

Using the TimeZoneInfo class, we get more flexibility with regard to adjustment rules, and
for that reason it’s the recommended way to deal with time zones whenever your scenario
permits. Here I show how to enumerate all the time zones that deal with daylight savings
time and print some information associated with them:

var res = from zone in TimeZoneInfo.GetSystemTimeZones()

where zone.SupportsDaylightSavingTime

select new { zone.Id, zone.DisplayName,

Adjustments = zone.GetAdjustmentRules().Length };

foreach (var zoneInfo in res)

Console.WriteLine(zoneInfo);

To find a specific time zone (for example, based on its name), static methods exist.
Analogous to the TimeZone class, a static property called Local returns the object for the
local time zone. Using other static methods, conversions of DateTime values between
zones or with regard to UTC time are possible:

var brussels = TimeZoneInfo.FindSystemTimeZoneById(“Romance Standard Time”);

Console.WriteLine(TimeZoneInfo.ConvertTime(DateTime.Now, brussels));

Console.WriteLine(TimeZoneInfo.ConvertTimeToUtc(DateTime.Now));

Console.WriteLine(DateTime.UtcNow);

In this example, we obtain the time zone for Brussels (shared with Copenhagen, Madrid,
and Paris) and convert our local time, obtained using DateTime.Now, to the local time in

1323The Holy System Root Namespace

Brussels. Using ConvertTimeToUtc, you can convert time to UTC time. This also allows us
to illustrate the UtcNow static property on DateTime, which returns a DateTime value with
its Kind property set to Utc as opposed to Local.

After a brief detour through the notion of TimeSpan values, we’ll see how a DateTime can
be bundled with an offset, resulting in a DateTimeOffset value. When developing robust
globalized applications, the DateTimeOffset struct provides various advantages over the
classic DateTime struct.

Relative Time and TimeSpan
While DateTime is the primary notion of absolute time, TimeSpan acts as the primary
representation of relative time. It goes without saying that this has to be taken with a
grain of salt because, as you saw before, even DateTime is kept relative to a starting point
on the time axis (that is, January 1 of the year 1).

TimeSpan basically acts as a difference between date/time values. The creation of such a
value can be achieved in many ways, using constructors and various static methods. On
the constructor menu is one that’s based on ticks (again in 100 nanosecond units) and a
series of constructors that take in hours, minutes, and seconds, with optionally a number
of days/milliseconds too. For example

var bestTime = new TimeSpan(2, 3, 59); // 2 hours, 3 minutes and 59 seconds

var hundredDays = new TimeSpan(100, 0, 0, 0); // overload with days, h, m, s

The excessive number of zeros that must be passed to certain constructor overloads can be
grueling. To make such code look clearer, a number of From* static methods exist, too, as
shown here:

var hundredDays = TimeSpan.FromDays(100);

In fact, those static methods take in double values rather than integers and therefore can
be used to express code in a more natural way from time to time (for example, 0.5 days).
Because the TimeSpan struct provides overloads for additive operators (as well as compar-
isons), we can also write things as follows:

var bestTime = TimeSpan.FromHours(2) + TimeSpan.FromMinutes(3)

+ TimeSpan.FromSeconds(59);

Because relative time is merely a difference between absolute DateTime values, use of the
subtraction operator on such values also yields a TimeSpan. Conversely, the addition of a
DateTime and a TimeSpan results in a DateTime:

var startTime = new DateTime(2008, 9, 28, 8, 40, 25);

var endTime = new DateTime(2008, 9, 28, 10, 44, 24);

var elapsed = endTime - startTime;

Console.WriteLine(elapsed);

1324 CHAPTER 26 Base Class Library Essentials

var endTime2 = startTime + elapsed;

Console.WriteLine(endTime == endTime2);

Different metrics can be obtained from a TimeSpan value, including the components of the
value (milliseconds, seconds, minutes, hours, and days), as well as totals. Examples of both
are shown in the next example:

Console.WriteLine(elapsed.Hours + “:” + elapsed.Minutes);

Console.WriteLine(elapsed.TotalSeconds);

Nicer formatting can be obtained by using format strings. The default result produced by
the ToString method writes down hours, minutes, and seconds, each represented by two
digits and separated by colons. If nontrivial days or milliseconds values are stored by the
TimeSpan value, those are printed, as well. For example:

42.12:34:56.789 // 42 days, 12 hours, 34 minutes, 56 seconds, 789 milliseconds

Parse and TryParse methods are available, as well as their Exact variants, completely
analogous to the static methods on DateTime.

PERFORMANCE MEASUREMENTS

Certain people are keen on performance measurements of all sorts. Others are rather
skeptical about excessive practice of those when no red flags have been raised on an
application’s or library’s performance (yet). Either way, if you have to carry out such
measurements, do it in a correct way. Subtracting DateTime values doesn’t cut it due
to limited precision. Use of the Stopwatch class is the way to go, as you will see when
we discuss the System.Diagnostics namespace in Chapter 27, “Diagnostics and
Instrumentation.”

Arithmetic with DateTime Values
In the discussion about TimeSpan, you learned how the difference between two DateTime
values produces a TimeSpan. Adding a DateTime and a TimeSpan, on the other hand,
returns another DateTime value. For convenience, the DateTime struct also has a series of
Add methods that avoid the need to create a TimeSpan value first:

var hundredDaysFestival = DateTime.Now.AddDays(100);

A single Subtract method is provided to subtract a TimeSpan from a DateTime value,
mainly for use by languages that don’t have operator overloading support. This shows
how good API design accommodates for languages that may be missing some of the
conveniences that are present in C#. In fact, operator overloading support is not in the list
of Common Language Specification (CLS) compliance rules.

1325The Holy System Root Namespace

DateTimeOffset

With knowledge of DateTime and TimeSpan under our belt, we can wonder what it would
mean to combine both in a single value. This is precisely what DateTimeOffset does as a
way to overcome certain issues that existed with the DateTime’s simplistic approach to
local versus UTC time, as indicated by the Kind property.

DateTimeOffset contains both a DateTime and an offset of type TimeSpan. The offset is
meant to indicate the difference between the DateTime value and UTC time. This is not
completely the same as the use of time zones, though, because the latter also have a
notion of daylight saving time and adjustment rules.

Nowadays, use of DateTimeOffset is recommended over the use of plain old DateTime
because of various advantages. One big advantage is that date/time values represented by
the type unambiguously define a point in time. We don’t go into further detail about
when it’s appropriate to use a DateTimeOffset rather than DateTime. Instead, refer to
MSDN for more documentation on the subject. From a usage point of view, both structs
have a similar public contract, so you should immediately feel at ease in both worlds.

GUID Values

During the COM era, identification and mapping of interfaces was driven by unique iden-
tification numbers, known as GUIDs. Although this is just one of the many uses of glob-
ally unique identifiers, COM definitely is the one that jumps immediately to mind.

For COM interoperability as well as other uses, the .NET Framework has a struct to repre-
sent such identifiers: System.Guid. A GUID is basically nothing more than a “very
random” 128-bit integer that has a global uniqueness property. Global in this context
means that there’s a very low likelihood of two generated GUIDs (no matter where and
when that happens) being the same. For that reason, it’s safe to generate a GUID for some
use (for example, to identify a COM interface) and assume it won’t clash with other such
identifiers generated by other parties.

While a GUID can be used for other purposes than COM-related programming, one
should ask the question whether the globally unique property is needed for the problem
being solved. If that isn’t the case, a much smaller, say 32-bit, identifier is likely a better
choice. Not only does it have the advantage of being cheaper in terms of storage, it’s often
possible to generate those numbers in an incremental fashion, making identifiers easier to
memorize. For example, the cashier will be glad that tomatoes have an identifier of 42
rather than {5b8a5333-1bfd-494a-b73a-8812d254d89b}.

Creating a GUID from a known value can be done in many ways, using constructors as
well as Parse and TryParse methods. Because of the different textual representations used
for GUIDs, a family of Exact parse methods is provided as well. One of those string forms
of a GUID was just shown and can readily be used to create a new Guid value, as follows:

var myId = new Guid(“5b8a5333-1bfd-494a-b73a-8812d254d89b”);

1326 CHAPTER 26 Base Class Library Essentials

Whether curly braces are used around the GUID doesn’t matter here, and case does not
influence the outcome. The seemingly weird form of a GUID consisting of four unequal
segments is due to the typical internal representation of the identifier, which is also appar-
ent from other constructor overloads:

public Guid(int a, short b, short c, byte[] d);

public Guid(int a, short b, short c, byte d, byte e, byte f, byte g, byte h,

byte i, byte j, byte k);

public Guid(uint a, ushort b, ushort c, byte d, byte e, byte f, byte g, byte h,

byte i, byte j, byte k);

We won’t go into detail about the history behind GUIDs and their various byte-level
representations. Instead, refer to Win32 and COM documentation (if you’re interested).

In quite a few cases, you don’t have a predefined value of GUID to begin with, and you
need to generate one on the spot. That’s what the NewGuid static method can be used for,
which internally simply uses the CoCreateGuid COM API to generate such a new identifier:

Console.WriteLine(Guid.NewGuid());

If a specific textual output is needed, the ToString method can be used to pass in a
format string to influence the shape of the output. We discuss the concept of format
strings separately when talking about working with text, in particular in the section
“Formatting Text.”

LET THE SYSTEM DO ITS JOB

Some methods seem like pure magic. Guid.NewGuid certainly seems to be uttermost
magic, providing guarantees about providing globally unique values (with a very, very
low probability of failing at it).

Messing with the result of such an API is likely not a good idea because you might end
up defeating the function’s guarantees. There are true stories of people using the
GUID-creation APIs to generate what they believed to be unique identifiers. Turns out
those people took only part of the GUID’s 128 bits, thinking part of the GUID would still
have the same uniqueness guarantees of the GUID as a whole. Because some parts of
a generated GUID value are derived from the machine’s identity, you might end up pick-
ing a part that doesn’t exhibit global uniqueness properties. Be warned!

In quite a few scenarios, generating a new GUID is not a runtime thing but must be done
at development time (for example, to expose a .NET assembly and its types to the world of
COM). While the Guid.NewGuid method can be used for this purpose, tools that come
with various SDKs can be used as well. In particular, the uuidgen.exe tool comes in handy.
Inside Visual Studio, a UI-based version (known as guidgen.exe) is available through the
Tools menu’s Create GUID entry, shown in Figure 26.16.

1327The Holy System Root Namespace

FIGURE 26.16 Pick your GUID representation form.

Compared to previous versions, the guidgen.exe tool now has two new options (5 and 6)
to generate GuidAttribute notations in either C# or Visual Basic syntax. One uses this
attribute in COM interoperability scenarios.

Nullability Revisited Briefly

During our discussion about nullable value types, introduced in .NET 2.0, we mentioned
the syntactical sugar in C# to be an abbreviation for use of the Nullable<T> struct:

int? x = 42;

Nullable<int> y = null;

Both the int? and Nullable<int> types in the preceding example are therefore the same.
A few more things can be told about nullable types.

First of all, don’t forget the instance-level members available on any Nullable<T> object.
C# conveniently provides a more natural syntax to express those constructs, but it’s good
to know about their existence:

bool b = x.HasValue; // Same as: bool b = x == null;

int c = y.GetValueOrDefault(25); // Similar to: int c = y ?? 25;

int d = x.Value; // int d = (int)x;

Furthermore, a couple of static methods exist to deal with nullables. One used in combo
with reflection scenarios is GetUnderlyingType, which basically gets the Nullable<T>
generic argument T; for example, int? maps onto int.

Two other handy static methods are Equals and Compare, which can be used to carry out
equality checks and comparisons (à la IComparable, returning an integer value to indicate

1328 CHAPTER 26 Base Class Library Essentials

relative order) on any two nullable values of the same underlying type. This takes into
account the possibility for any of the two values to be null (HasValue set to false).
Examples of truths implemented by those methods include the following:

. null < non-null (for example, Nullable.Compare<int>(null, 42) < 0)

. null = null (for example, Nullable.Equal<int>(null, null) == 0)

. non-null > null (for example, Nullable.Compare<int>(42, null) > 0)

The Uri Type

In the world of massively connected systems, addressing of endpoints is quite common, so
it makes sense to have a built-in primitive for uniform resource identifiers (URIs). The Uri
class provided for this purpose supports both absolute and relative URIs and has a bunch
of properties to query the various parts of a URI. A basic example is shown here:

var url = new Uri(“http://bar:8080/foo/quz?answer=42”);

Console.WriteLine(url.Host); // bar

Console.WriteLine(url.Port); // 8080

Console.WriteLine(url.AbsolutePath); // /foo/quz

Console.WriteLine(url.Query); // ?answer=42

Lots of complexities exist with regard to escaping, security of hostnames, and so forth. This
is one of the reasons why Uri is an immutable type, so you can’t go and tweak parts of it
by touching the various properties. To create new Uri objects from parts, don’t use tech-
niques like string concatenation (which has many traps); use the UriBuilder class instead:

var builder = new UriBuilder();

builder.Scheme = Uri.UriSchemeFtp; // or use “ftp”

builder.Host = “localhost”;

builder.Port = 21; // this is the default and will be omitted

builder.Path = “downloads”;

builder.UserName = “bartde”;

Console.WriteLine(builder.Uri); // ftp://bartde@localhost/downloads

For security reasons, never trust input that’s coming from users blindly. If you’re dealing
with a URI, this is no different. Use the Uri class and its facilities to make sure you’ve
been handed valid input.

Interacting with the Environment

Today’s programs don’t stand on their own. They often have to interact with the outside
world in a variety of ways. While we explore I/O in Chapter 28, “Working with I/O,” one
form of interaction is covered here: talking to “the environment.”

The concept of an environment is hardwired in the operating system. Every program has
access to it, containing both global information as well as some information that’s specific

1329The Holy System Root Namespace

to the program’s invocation (such as the command line used). In .NET, all this informa-
tion is made available through the (static) class Environment.

Instead of giving a dump of what can be read in MSDN documentation, let’s limit
ourselves to a few examples. First of all, here’s some general information about both the
physical and virtual (as in CLR) machine we’re executing on:

Console.WriteLine(“Machine name: “ + Environment.MachineName);

Console.WriteLine(“Processor #: “ + Environment.ProcessorCount);

Console.WriteLine(“OS version: “ + Environment.OSVersion);

Console.WriteLine(“64-bit OS: “ + Environment.Is64BitOperatingSystem);

Console.WriteLine(“64-bit process: “ + Environment.Is64BitProcess);

Console.WriteLine(“Working set: “ + Environment.WorkingSet / 1024 + “MB”);

Console.WriteLine(“CLR version: “ + Environment.Version);

Console.WriteLine(“System32 at: “ + Environment.SystemDirectory);

Console.WriteLine(“Not a service: “ + Environment.UserInteractive);

Console.WriteLine(“User info: “ + Environment.UserDomainName + “\\”

+ Environment.UserName);

Console.WriteLine(“Boot time: “ + (DateTime.Now -

TimeSpan.FromMilliseconds(

Environment.TickCount)));

Some of those properties return primitive values, others provide richer information. For
example, the OSVersion property really returns an OperatingSystem instance that can be
queried for version numbers, service pack levels, and so forth. The CLR version property
(which simply reads Version), returns an object of type Version containing the four parts
such a number is composed from.

64-BIT ODDITIES

On my machine, the queried 64-bit flags return True for the OS but False for the
process. If you have been paying attention in previous chapters, you will recall that the
default architecture for managed code executables has been set to 32-bit starting from
Visual Studio 2010. As a result, the process is running in “Windows on Windows”
(WOW) 32-bit emulation mode.

Changing the flag to AnyCPU on the Build properties tab of the project settings will
cause the process to run 64-bit on a 64-bit machine, thus with both properties return-
ing True. Whether that’s an appropriate thing to do for your program depends on vari-
ous factors. When dealing with interoperability, you might shoot yourself in the foot
quickly if testing for any of the architectures isn’t carried out properly. After all, this was
one of the main reasons to toggle the 32-bit flag in the latest release of Visual Studio.

Besides machine-specific and user-specific information, we can also get information that’s
closer to our process. This includes environment variables (which our process in fact can
influence and will get inherited by child processes), the command-line that was used to
start the process, and so on.

1330 CHAPTER 26 Base Class Library Essentials

Tales About the Command Line
You might wonder why the Environment class even deals with providing command-line
access; isn’t that something Main already does? That’s true, but there are a variety of
circumstances where passing the array of arguments through the program is just too
inconvenient or even impossible (if you’re a component loaded in some process). That
said, some care has to be taken with command-line arguments. The various ways to obtain
them differ in subtle ways. An example

using System;

class Cmdline

{

static void Main(string[] args)

{

Console.WriteLine(“CommandLine:”);

Console.WriteLine(“ “ + Environment.CommandLine);

Console.WriteLine(“Main:”);

foreach (var arg in args)

Console.WriteLine(“ “ + arg);

Console.WriteLine(“CommandLineArgs:”);

foreach (var arg in Environment.GetCommandLineArgs())

Console.WriteLine(“ “ + arg);

}

}

From the three forms, the second one is the most meaningful in most cases. The first and
third differ from the second in that they include the (path to the) executable that’s used
to start the program. For example

C:\Windows> c:\temp\CmdLine.ExE “Hello, world!” 42

CommandLine:

c:\temp\CmdLine.ExE “Hello, world!” 42

Main:

Hello, world!

42

CommandLineArgs:

c:\temp\CmdLine.ExE

Hello, world!

42

The inclusion of this first entry in the command-line arguments may be unexpected and
stems from the way the underlying Win32 API behaves.

1331The Holy System Root Namespace

WHERE DOES MY APPLICATION RUN FROM?

Recently, a friend asked me this exact question. It turns out it isn’t quite as easy as
one might think. Using the “working directory” clearly isn’t a good idea because that
can change, and shortcuts can influence it, too. One of my first reactions was to use
the GetCommandLineArgs first element; however, that doesn’t necessarily contain the
full path because the user may simply be in the right directory, allowing the application
to be started without a qualified path.

The correct way to answer this question is by using the Assembly class and its
CodeBase property, which returns a URI in a string, typically with the file:// scheme.
Using the Uri class, this can be mapped back to a local path. The remaining question
is which assembly to use. The static GetEntryAssembly method on the Assembly
class is precisely what we need:

var from = new Uri(Assembly.GetEntryAssembly().CodeBase);

Console.WriteLine(from.LocalPath);

That same Assembly object can be used to query the version of the application, which
can come in handy to show command-line help or an About dialog.

Environment Variables
One of the simplest ways to communicate settings and machine or user characteristics
between applications is to use environment variables. Using the Environment class, they
can be read and modified easily. While lots of those environment variables are wrapped
one way or another, sometimes you must query the environment directly, given the name
of a variable:

var proc = Environment.GetEnvironmentVariable(“PROCESSOR_IDENTIFIER”);

A target enum value can be specified as an additional parameter to limit the search to the
user or machine environment or the environment block associated with the current
process. Other methods exist to enumerate the whole environment.

In some cases, one wants to expand environment variables, just like command-line
processors do. For example, given the string ”%WINDIR%\notepad.exe”, you might want to
get the expanded path. Notice though some I/O APIs can work with strings that haven’t
been expanded upfront, so this might not be needed depending on your scenario.
Nonetheless, here’s how to achieve expansion:

var notepad = Environment.ExpandEnvironmentVariables(@”%WINDIR%\notepad.exe”);

On my machine, this returns C:\Windows\notepad.exe. Notice, though, that code can
write to environment variables, too. Depending on the target, this setting gets persisted in
the process’s environment block, the user’s Registry hive, or the machine hive. Windows-
level security protection mechanisms are in place to prevent tampering with the machine

1332 CHAPTER 26 Base Class Library Essentials

FIGURE 26.17 Inheritance of the environment block.

settings if the user isn’t eligible to do so. However, because the process environment block
shadows settings that come from the user profile or the machine level, you must be careful:

Environment.SetEnvironmentVariable(“WINDIR”, “oops”);

The preceding creates a WINDIR environment variable in the process environment block, so
unqualified access to the variable without an environment target flag will cause this
setting to take precedence:

// Prints oops

Console.WriteLine(Environment.GetEnvironmentVariable(“WINDIR”));

To avoid this, qualification can be used:

Console.WriteLine(Environment.GetEnvironmentVariable(“WINDIR”,

EnvironmentVariableTarget.Machine));

One more thing to notice is that child processes inherit the process environment block
from their parent. Setting environment variables can be a handy way to influence a child
process that gets spawned by your application (for example, when creating automation for
installations). An example of this technique is shown here:

Environment.SetEnvironmentVariable(“MSG”, “Hello”);

System.Diagnostics.Process.Start(“cmd.exe”);

Figure 26.17 shows how the cmd.exe child process (which can outlive its parent but still
have the inherited environment block) sees the MSG variable that has been set.

Special Folders and Drives
Another piece of data exposed by the Environment class is path information for special
folders that deserve a special status by the shell. For example, the Start Menu is known as
a special folder, among many others. The SpecialFolder enumeration can be used to
specify such a folder and to retrieve its path by calling the GetFolderPath method:

var start = Environment.GetFolderPath(Environment.SpecialFolder.StartMenu);

1333The Holy System Root Namespace

To get an idea about the system drives available on the machine, you can use the
GetLogicalDrives method.

Exiting the Program
When it’s time to quit the application for some reason, different options exist to achieve
this task. One is to simply return from the Main method, with or without an exit code,
depending on the signature chosen. Sometimes it’s not convenient to get all the way back
to Main, though, and instead, termination needs to happen on the spot. Different options
are available for that case. Excluding an unhandled exception, we discuss those now.

One is to use Environment.Exit, passing in an exit code. Zero is usually used to mean
success. One thing to be aware of is that this is quite an abrupt way to exit the program
because things such as finally blocks won’t run. After all, the stack doesn’t get unwound.
For this reason, it might not be the best option. Notice, though, that various Win32
resources use handles to track down usage and detect when a resource can be reclaimed.
When a program quits, the operating system takes care of cleaning up the orphaned
resources. The following code shows the use of Exit, annotating its behavior:

try

{

Console.WriteLine(“About to exit...”);

Environment.Exit(0);

Console.WriteLine(“Can’t get here!”);

}

finally

{

Console.WriteLine(“Doesn’t happen either...”);

}

Another method is called FailFast and does precisely what you expect it to do. It causes
the process to be terminated immediately due to a failure, passing it a string as well as an
optional Exception object. The failure will be logged in the event log, and the error report-
ing service will be invoked (if no debuggers are configured, in which case the dialog from
Figure 26.18 shows up). Just like the Exit method, finally blocks won’t run, which is the
best thing to do in “panic mode” when the state of the application has been jeopardized.

FIGURE 26.18 A fatal error reported by FailFast.

1334 CHAPTER 26 Base Class Library Essentials

Leave the GC Alone (Most of the Time)

Automatic memory management has been one of the biggest features of the managed code
execution engine, relieving developers of the burden of writing error-prone pieces of code
to deal with proper cleanup of resources. That said, in some cases the garbage collector
(GC) needs a bit of your cooperation to do the right thing. But let’s not go too fast. Dealing
with the GC directly should be more of an exception than a rule. In fact, the collector
exhibits its best performance if it’s left alone to determine when and what to do by itself.

Philosophy of Generations
As discussed previously on various occasions, the managed memory heap maintained by
the CLR is divided into three generations, numbered 0 through 2. Objects start their life-
time in the smallest generation, generation 0. Upon a collection of objects in some gener-
ation, objects that survive the collection are promoted to the next generation. This process
continues until an object ends up in generation 2, the largest of all of them, where it stays
until it ultimately dies.

The philosophy of generations is that lots of objects in today’s programs tend to be short-
lived. Keeping the first generation, where objects start their life, small is a natural design
choice if this property holds. When that generation becomes full, a large number of
objects will be available for collection because they’re not in use anymore.

To trace down the objects that can be collected, the GC starts from a set of roots, which
are object references from certain locations, such as the stack, static fields, and thread-
local storage. From those roots, object references are followed recursively, to mark all the
objects that can still be reached. After this mark phase, a sweep phase is started, which
reclaims all the objects that haven’t been marked. Finally, the holes in the heap can be
cleaned up by compacting the heap.

WHY TYPE SAFETY IS ESSENTIAL

It can’t be emphasized enough that types and the various safety guarantees that go
with them are the bread and butter of managed code execution. Lots of runtime
services rely heavily on this type information being available. The GC is one such
service. When tracing objects during the mark phase, the collector has to figure out
where it can find references to other objects.

It all starts with roots. Assume we’re looking at stack locations. At any point in time, the
runtime needs to know exactly what type of object is occupied in what location on the
stack. This information is needed to determine which locations contain a reference into
the heap (everything but unboxed structs essentially) and which don’t. Those objects
are alive for sure and need to be marked. From the roots, the GC now needs to find
heap-allocated objects that are referenced by those objects. To do so, it needs to know
the field layout of the type on the heap. For example, given that the location contains a
Person, we know that the field at offset 12 contains a 4-byte reference to a string.

Other services in the runtime depend heavily on type information being available at run-
time. Obviously, the JIT has interest in this to emit correct code, and so do things like
interoperability layers. You gotta love static types!

1335The Holy System Root Namespace

In the first couple of chapters, we illustrated in a slightly simplified manner the way the
GC operates. We won’t revisit this here. If you want more information about memory
management in the world of managed code, you can find several CLR-centric works on
the subject.

Now let’s take a look at some statistics kept by the GC with regard to generations. Those
statistics are used for a variety of purposes, one of which is to tune the behavior of the GC
dynamically at runtime. Depending on the usage patterns of the managed heaps, the
collector tries to find an optimal strategy to perform its duties (for example, by dynami-
cally expanding certain generations). Because the CLR is a multilanguage platform, a wide
range of allocation patterns is not unheard of. For example, functional languages like F#
that promote immutable objects will see many more allocations because of the need to
create a new instance instead of mutating one that already exists. In C# and Visual Basic,
on the other hand, mutation of objects is common business. The following code shows
how many generations there are, how much memory has been allocated, and what the
collection count for different generations looks like:

static void Main()

{

long total = GC.GetTotalMemory(false /* don’t trigger collection */);

Console.WriteLine(total); // Some 60KB

int generations = GC.MaxGeneration + 1;

Console.WriteLine(generations); // 3 for 0 through 2

for (int i = 0; i < generations; i++) // most likely all print 0

Console.WriteLine(“Gen {0} = {1}”, i, GC.CollectionCount(i));

}

For a program as trivial as this one, it’s probably the case that no generations have
happened yet. It’s hard to imagine there’s enough code in the startup path, before our
Main method gets called, that causes generation 0 to be full. Nonetheless, this could defi-
nitely happen (for example, when static constructors are present). The following example
simply adds a static constructor to the Program class (containing Main), growing genera-
tion 0 with 2048 1KB arrays. Results may vary, but on my PC, this was sufficient to trigger
a single collection of generation 0:

static Program()

{

for (int i = 0; i < 2 * 1024; i++)

{

byte[] b = new byte[1024];

}

}

1336 CHAPTER 26 Base Class Library Essentials

To give you some feel for more detailed and empirical studies of the behavior of the GC,
let’s modify the simple fragment a bit by allocation memory from main after the user
presses Enter, using a straightforward loop. Notice that just like the preceding code, none
of the created objects survive a collection of generation 0 because they get abandoned
immediately after being allocated. To be really precise, one object allocated in the loop
may survive because a reference to it will be held by a local variable slot on the stack
while the allocation of a new array is triggering the collector to come in:

static void Main()

{

while (true)

{

long total = GC.GetTotalMemory(false);

Console.WriteLine(total);

for (int i = 0; i < 3; i++)

Console.WriteLine(“Gen {0} = {1}”, i, GC.CollectionCount(i));

Console.WriteLine(“Press ENTER to allocate more”);

Console.ReadLine();

for (int i = 0; i < 2 * 1024; i++)

{

byte[] b = new byte[1024];

}

}

}

In the output, you will see the amount of memory grow, also due to the way the CLR
(pre)allocates memory from the operating system when it notices more memory usage.
The amount of memory allocated is large enough to trigger quite a few generation 0
collections. With a bit of luck, you’ll also see a generation 1 collection coming in and total
memory shrinking. Figure 26.19 shows some of this behavior.

Don’t forget that other objects, besides our allocated arrays, will be alive because various
framework components have been loaded. Those add some memory pressure, too.

Instrumenting your code to gather statistics works only for small examples and doesn’t
really apply very well to production systems. Luckily, the CLR provides a whole lot of
performance counters that can be used to visualize the state of the runtime (such as the
GC) for any given process. Figure 26.20 shows some of the counters related to garbage
collection in the Performance Monitor MMC snap-in, which can be loaded from Start,
Run as perfmon.msc.

Analyzing those statistics often provides a good insight as to why your application has
certain issues. Hopefully, you won’t have to look at those statistics often, but in case you
do, you now know where to find them.

1337The Holy System Root Namespace

FIGURE 26.19 Memory growth and shrinkage.

FIGURE 26.20 Some performance counters related to CLR memory management.

STATIC THINGS DON’T MOVE

Beware of everything that’s static. From the explanation on the past few pages, it
should be clear that their treatment as GC roots makes static fields a common source
of managed memory leaks. Make sure to clear static fields that keep (large) object
graphs alive at an appropriate time (if permitted by your program).

1338 CHAPTER 26 Base Class Library Essentials

When Collections Take Place
As discussed earlier, collections take place when memory allocation fails due to a lack of
space on the heap. The GC does its best job to grow and shrink generations such that the
overhead of collection goes down. For completeness, we have to mention the fact that the
GC static class has a Collect method that can be used to trigger a garbage collection for
any (or all) of the generations on the spot.

We won’t give an example of using this method. If you ever have to use this method,
there’s likely some other problem in your program. Manually triggering a collection
should be done only as a last resort because it disturbs the GC’s regular rhythm of opera-
tion, where it decides on its own when it’s good to perform a collection. Because running
a collection requires a suspension of the execution engine, no user code can run, and your
program comes to a halt.

In short, use of the Collect method should be received with lots of skepticism. If you
believe you have a legitimate reason to call it, I strongly recommend talking to the CLR
folks through channels like Microsoft Connect or online forums. Either they pinpoint root
causes of your program’s behavior or welcome your suggestion to improve the GC, as it’s
one of those runtime services everyone benefits from when it gets improved.

Memory Pressure
The more information the GC has about the use of memory, the better. Most of this infor-
mation it can figure out on its own, but if native memory buffers get allocated in the
process space, the memory manager doesn’t have a crystal ball to get to know this. In such
a case, methods on the GC class can be used (with care) to let the GC know about this fact.

At the time of this writing, I am aware of one place in the framework where this facility is
used. When WPF calls into native APIs to allocate memory for media, it lets the GC know
there’s additional memory pressure added to the process, using the AddMemoryPressure
method. The opposite, RemoveMemoryPressure, gets called when this memory is released.
It’s absolutely critical to balance out the amounts passed to both methods to avoid giving
a wrong impression about memory usage to the memory manager.

Given the information about additional memory pressure, the GC can optimize its collec-
tion strategy. For more information about when and how to use those methods, refer to
the MSDN documentation on the subject.

Finalization
When dealing with native resources wrapped by managed objects, it’s quintessential to
properly dispose of those resources when no longer needed. We studied before how to use
the IDisposable pattern to allow deterministic cleanup of resources on the spot, which is
usually done with C#’s using statement (merely a wrapper around the use of try and
finally blocks). However, when the user is sloppy and forgets to properly call the Dispose
method when the object is no longer needed, the only possible rescue path is having the
GC take care of the cleanup. This is what finalizers were invented for, exposed to C#
programmers using (improperly named) destructor methods. For typical Win32 handle-
based resource wrapping, it’s recommended to use techniques like SafeHandle to avoid
implementation mishaps.

1339The Holy System Root Namespace

The use of finalizers puts quite a bit of pressure on the GC because it cannot reclaim
memory occupied by the managed object immediately. Instead, the object first must be
put on a finalization queue, which contains objects that need to have their Finalize
method called before being deallocated. Because the execution engine has come to a halt
for user code during a collection, those finalizer methods cannot be called as part of the
GC’s operation and have to be deferred until a next opportunity. Not only does this
enlarge the object’s lifetime further, it also makes the GC’s life harder. This is a cost you
don’t want to pay when the user has properly called the Dispose method, in which case
the finalization can be suppressed, allowing the GC to bypass this step:

public class WrappedResource : IDisposable

{

private IntPtr _handle;

private bool _disposed = false;

public WrappedResource(IntPtr handle)

{

_handle = handle;

}

public void Dispose()

{

Dispose(true);

GC.SuppressFinalize(this);

}

private void Dispose(bool disposing)

{

if (!_disposed) {

CloseHandle(_handle);

_handle = IntPtr.Zero;

}

_disposed = true;

}

~WrappedResource()

{

Dispose(false);

}

[System.Runtime.InteropServices.DllImport(“kernel32”)]

private extern static bool CloseHandle(IntPtr handle);

}

1340 CHAPTER 26 Base Class Library Essentials

Other methods on the GC class exist to deal with finalization. One such method is called
ReRegisterForFinalization to undo the effect of the SuppressFinalize call. This and
other methods that impact finalization have pretty narrow and rather specialized usage
scenarios. Once more, MSDN is your best landing place to find out more.

Weak References
One directly visible garbage collection feature we haven’t touched on yet is support for
what’s known as weak references. Up to this point, we’ve always said that objects are kept
alive by means of existent references to them, originating from other objects that are
alive. The mark phase of collection utilizes the property and principle to track down
objects that cannot be reclaimed during the sweep phase following it. To be more precise,
we should have said that those references are strong references.

Weak references, on the other hand, don’t keep an object alive. If no strong references to
an object exist, an object that only has weak references to it can be reclaimed during the
next GC cycle. In some sense, it’s a zombie object that still can be used, but nothing is
keeping the GC from taking it away.

Creation of a weak reference is done through the WeakReference class, which benefits
from special treatment by the runtime because of its use of GCHandle structs. The follow-
ing code shows how a weak reference is constructed:

var zombie = new WeakReference(person);

Assuming no strong references exist to the person object passed to the constructor, the
collector can take away that object when it sees fit to do so. However, while the object
hasn’t been collected yet, it can still be accessed through the Target property of the
weak reference:

var reborn = (Person)zombie.Target;

If the preceding code returns null, the object targeted by the weak reference has been
reclaimed and is gone for good. The IsAlive property on the WeakReference instance can
be used to detect this fact too.

BE CAREFUL WITH POWERFUL WEAPONS

Some people believe weak references to be the best thing since sliced bread if you’re
faced with a memory management issue. Although it has a certain appeal to it, use
extreme caution. Misuse of the feature may lead to the false impression a memory
leakage problem has been solved. In some cases, a bad bug has been covered up
badly by use of weak references where sudden disappearance of an object struck at
times the code wasn’t expecting it.

1341The Holy System Root Namespace

Certain portions of the .NET Framework (such as WPF) make heavy use of the concept
of weak references, for good reasons. Nonetheless, the introduction of new uses of the
technique should always raise some questions. For example, would you rather imple-
ment a data cache using weak references (as shown in the MSDN documentation for
the WeakReference class) or craft some cache policy mechanism yourself? No matter
what you choose, memory management-related business requires proper testing under
various load conditions.

Native Interop with IntPtr

The notion of references in managed code is morally equivalent to pointers, as known
from native code programming. There are a whole series of differences, though, which
have to do with type safety, the presence of a garbage collector, and the desire to build a
platform-independent runtime. The implications brought to us by type safety and the use
of a GC are closely related, as can be seen from the way the collector traces objects by
following references, requiring access to type information. But there’s more, the fact
objects can move in memory means that the object address captured in a reference can
and will change during the program’s lifetime.

Our previous discussion should be enough to understand already that there’s quite a world
of difference between pointers and managed references. Another difference comes from
managed code’s capability to target different platforms, where addressable memory differs
(for example, between x86 32-bit and x64 64-bit). Hence, native pointers must have the
right number of bits to allow correct addressing. For that reason, they can’t use the notion
of, say, an integer number (int) in C#. If you recall correctly, a C# int does correspond to
an Int32 struct underneath, which reveals the fixed length, regardless of the platform the
code happens to run on.

For managed code applications to interoperate with native components, it’s important
that there’s some notion of a “native pointer” that follows the addressing width used by
the platform on which the code is running. Notice this is a slight simplification due to the
existence of WOW64 32-bit emulation of a 64-bit operating system, where 32-bit address-
ing can still occur if running in emulation mode (for example, when the platform target
of a managed executable is set to x86 as opposed to AnyCPU).

This need for a native pointer representation in managed code is filled in by the IntPtr
struct in the System namespace. In pure managed code, you should never see this type
being used. However, when interoperability enters the picture, an IntPtr is the correct
way to let the CLR talk to native code and vice versa. The closest “type” for an IntPtr in
C/C++ code is void*. Being a weakly typed reference that can point at an object that’s
implemented in native code, there’s no business for the GC to deal with such objects.
Memory management of native resources is at the sole discretion of the underlying
libraries, possibly (and typically) requiring you to make certain API calls to trigger the
cleanup manually.

1342 CHAPTER 26 Base Class Library Essentials

An example of the use of an IntPtr can be seen in the definition of SafeFileHandle:

public sealed class SafeFileHandle : SafeHandleZeroOrMinusOneIsInvalid

{

private SafeFileHandle() { ... }

public SafeFileHandle(IntPtr preexistingHandle, bool ownsHandle) { ... }

protected override bool ReleaseHandle() { ... }

}

Here, a Win32 handle (which merely is an index into some table maintained by the oper-
ating system for your process) is represented by an IntPtr value. Nowadays, several of the
unmanaged resources, such as file handles, have been wrapped in specialized types for
interoperability. For example, SafeHandleZeroOrMinusOneIsInvalid acts as a base class for
handles that originate from certain APIs that signal failure using zero or minus one values.

SWISS CHEESE HEAPS

Notice it’s also possible to share managed objects out to native code. In such a case,
it’s important to make sure the GC doesn’t move the object in memory while native
code can manipulate it. Because of the opaque nature of an IntPtr, there’s no way
the GC can figure out an object is shared with some other world.

To prevent the collector from moving the object in memory, a mechanism called pinning
exists. Basically, the managed object gets marked as pinned, which prevents the collec-
tor from moving it in memory during a collection cycle. As all the readers who’ve been
involved in a furniture move know, working around some object that’s unmovable can
be quite hard and annoying. This is no different for the GC; pinned objects pose a chal-
lenge when the GC has to fit moving objects around the unmovable object.

When pinned objects don’t get unpinned properly, heap fragmentation can ensue, which
hampers performance because of harder collection cycles and can cause allocation
failures even though enough memory seems to be available. This is due to the heap
starting to look like Swiss cheese, full of holes, where no objects can be fit into
anymore during collection.

It’s clear that premature unpinning should never be done because it endangers the
most important property of your program: correctness. Also, you need to know what the
native API does with the object reference you’re handing it. It’s possible it doesn’t hold
on to it after an outgoing method call, making it possible to delimit the code area for
pinning quite nicely. But if the native code keeps the object it’s given in some table,
you’re in deeper waters. In short, interoperability can be tricky business. Luckily, lots of
standard native APIs, such as popular Win32 and COM functionality, have been
wrapped already.

Any more discussion about interoperability is beyond the scope of this book. For more
information about it, refer to various bibles on the subject, such as Adam Nathan’s
interop guide.

1343The Holy System Root Namespace

Lazy Initialization Using Lazy<T>

Introduced in .NET 4, the generic Lazy<T> class allows delayed initialization of
some data that might not be required during a program’s lifetime. If that’s the case,
it would be wasteful to precompute such a value in all circumstances.

The Lazy<T> class can be used in a number of ways, all of which require you to tell it how
to create a new instance of type T. One is by giving it a Func<T> delegate that acts as the
instance factory:

private Lazy<double> _pi = new Lazy<double>(() => {

return /* long running computation of PI */;

});

If you must obtain the value of the expensive computation, a simple call to the get-only
Value property or to the ToString method suffices. This will trigger the object’s initializa-
tion and store the obtained value for future reuse. That is, the factory can be run only once:

double area = _pi.Value * radius * radius; // Triggers computation of PI

double circumference = _pi.Value * 2 * radius; // Precomputed value of PI

However, to be precise, I should point out that parameters can be passed to control multi-
threaded behavior of lazy initialization values. In such cases, it might be that multiple
threads try to obtain the value, both triggering the invocation of a factory at the same
time. A LazyThreadSafetyMode enum value can be passed to specify the desired behavior if
this happens. We don’t detail this aspect here.

Other constructors to Lazy<T> exist that allow a different kind of factory to be used. If no
function delegate is specified, a default constructor in T is looked for, which will be called
through the Activator.CreateInstance<T> API behind the scenes. This overload is useful
when expensive logic exists in a constructor of an object that’s not always needed for the
program’s execution:

class Expensive

{

public Expensive()

{

/* lots of work goes in here */

}

}

...

var costly = new Lazy<Expensive>();

var expensive = costly.Value; // Will trigger execution

1344 CHAPTER 26 Base Class Library Essentials

If you can live without a lazily constructed object but you’d benefit from having it
around, the IsValueCreated property can be inspected to make a decision about what to
do in your code. In other words, if someone has already invested enough to make the
object, we’ll use it. However, if no one has bothered to do so, we could decide to go
without it:

// Lots of other code could run here...

if (costly.IsValueCreated)

{

// Great, let’s use it; we won’t trigger expensive initialization here!

var expensive = costly.Value;

...

}

else

{

// Live without costly.Value here; we don’t want to pay the price!

}

Tuple Types

Some languages provide a loosely structured way to combine multiple objects (for
example, to pass them around in an all-in-one fashion). This comes in handy to over-
come the typical single output channel of a method. Output parameters can be used

as an alternative to deal with such cases, but they’re more invasive at the method’s call site.
When using output parameters, you must introduce local variables and need to specify the
out keyword on all such parameters, which can be quite distracting when reading the code:

int res;

if (int.TryParse(“42”, out res))

...

Tuple types allow multiple objects to be passed around by just wrapping them in an object
with multiple (readonly) fields, exposed through properties. For example, with a two-tuple
(or pair if you will), the TryParse method could return a Tuple<bool, int>:

return new Tuple<bool, int>(true /* success */, 42);

Now the consumer can inspect the result by decomposing the tuple using properties
giving strongly typed access to the parts of it:

var res = FancyInt.TryParse(“42”);

if (res.Item1) // the Boolean success part

{

int value = res.Item2; // the int vaue part

...

}

1345The Holy System Root Namespace

You could say the preceding code is less convenient or uglier, and there’s truth in that.
However, languages with first-class tuple support offer pattern-matching capabilities to
obtain a tuple’s components using cleaner syntax. For example, in F#-alike syntax

(success, value) = FancyInt.TryParse(“42”)

SYNTACTICAL CONVENIENCE?

C# doesn’t have built-in syntax for tuples. It might happen in a future release, although
there are some challenges. Most likely, the feature would be considered incomplete if
no pattern-matching capabilities are added to the language. At least, with the unifica-
tion of tuple types across languages, tuple values can be constructed and consumed
from any language.

Tuples support the Equals, GetHashCode, and ToString methods in straightforward and
predictable ways. This takes away the burden of having to implement a separate class
every time a compose value has to be returned. However, in C# and Visual Basic, with no
decomposition syntax for tuples, usage is rather ugly with properties like Item5.

Because there are tuple types with up to seven values, you might think tuples with more
values cannot be represented. Nothing is further from the truth; the eighth tuple type has a
TRest generic parameter that can be used to do nesting. It’s recommended to use that one
to encode a tuple with arity higher than seven because overloads for methods like ToString

know about the TRest special treatment and will provide more meaningful results:

var t = new Tuple<int, int, int, int, int, int, int, Tuple<int, int>>(

1, 2, 3, 4, 5, 6, 7, new Tuple<int, int>(8, 9));

Console.WriteLine(t); // (1, 2, 3, 4, 5, 6, 7, 8, 9)

What truly matters for tuples in the BCL is having a unified representation for many
languages to talk about tuples.

CONVENIENCE OR LAZINESS?

The flip side of tuples is they can encourage laziness because you don’t have to
declare classes to wrap multiple values, also requiring overrides for methods like
Equals and GetHashCode.

Their ugly use in classic .NET languages like C# and Visual Basic should make you
think about API design. Personally, I see them as nothing but a cross-language interop-
erability story, with the occasional use within method bodies as wrappers around
related state. Even in that case, anonymous types are likely a better choice because
they provide meaningful names for their properties.

1346 CHAPTER 26 Base Class Library Essentials

As soon as a tuple is publicly exposed, it’s almost certainly a better idea to create a
specific wrapper type with meaningful property names. That said, nothing should
prevent developers from implementing them using a single tuple field inside, also
forwarding Equals and GetHashCode calls to the tuple underneath. However, think
about the maintainability of that class’s code, too. If the use of properties with names
Item1 to Item7 is sprinkled throughout your code, it will be hard to maintain a solid
understanding of the code. Even worse, chained accesses like Rest.Rest.Item5 for
deeply nested tuples might be needed. This is code obfuscation at its best. In such
cases, it’s better to just go through the burden of defining a custom type with Equals
and GetHashCode implementations yourself.

I personally hope to see the “ceremony” required to declare immutable objects with a
constructor, property getters, Equals, GetHashCode, and ToString overrides decrease
in the future. Wouldn’t it be great if the language allowed us to write things such as
the following?

class Person(string Name, int Age) { }

One can hope!

Facilities to Work with Text
Use of text is everywhere. It’s what the user often enters in input fields, what gets read
from files and various other data sources, and so on. Having means to convert back and
forth between text and other values is an essential API capability. In addition, rich format-
ting capabilities are most welcome, too, helping with localization of your applications. In
this section, we look at all of this, as well as at various other means to deal with text, such
as regular expressions and encoding schemes.

Formatting Text

One common operation is to represent objects in a textual form. By now, the first thought
that should come to mind is to use ToString. In the light of localization and the fact that
many types of objects can have different textual representations, the simple method
provided by System.Object does not always suffice, though:

public virtual string ToString();

In particular, the lack of one or more parameters to control the desired result makes this
overload not always applicable. MSDN defines the ToString method as follows:

This method returns a human-readable string that is culture-sensitive.

The IFormattable Interface
Also, the documentation states that other ToString methods can be provided through an
interface called IFormattable:

1347Facilities to Work with Text

public interface IFormattable

{

string ToString(string format, IFormatProvider formatProvider);

}

In fact, we’ve been looking at such methods on a number of occasions already when we
were covering lots of primitive types such as numeric values and DateTime. During this
discussion, we learned how the IFormatProvider interface is implemented by the
CultureInfo class in System.Globalization, allowing us to control the culture used for
the formatting of an object’s textual representation. For example:

Console.WriteLine(123.45.ToString(new CultureInfo(“en-US”)));

Console.WriteLine(123.45.ToString(new CultureInfo(“nl-BE”)));

In the preceding example, the first line prints 123.45, whereas the second one uses a
comma for the decimal separator character (printing 123,45). Notice this ToString over-
load doesn’t come from the IFormattable implementation but is a one-parameter shortcut
that omits the format parameter we talk about next.

Format Strings
Text formatting has been a traditional domain for mini-languages embedded in larger
general-purpose languages such as C, C++, C#, and Visual Basic. For example, developers
with a native code background will know printf’s format string syntax:

printf(“The value is %d”, 42);

.NET is no different in this respect, defining the concept of format strings that can be used
to control text formatting in value-to-text conversions. Let’s take a look at those features
by touching on some of the most commonly used formatting specifiers.

First of all, it’s important to realize every data type can define its own formatting styles,
which nicely align with the domain of the data. For example, for numeric fractional values,
it makes sense to define the concept of a decimal-point notation, while date and time
values can define formatting in terms of the value’s components (such as year and minute).
Because numbers are frequently used specimens in programs, we take a look at them first.
The following code shows the same number being formatted in a variety of ways:

var enUS = new CultureInfo(“en-US”);

var nlBE = new CultureInfo(“nl-BE”);

var jaJP = new CultureInfo(“ja-JP”);

double d = 123.456;

int i = 1234;

long l = 123456789;

1348 CHAPTER 26 Base Class Library Essentials

// Currency, usable for all numeric values

// Number of decimal digits determined from culture or explicitly

Console.WriteLine(d.ToString(“C”, enUS)); // $ 123.46

Console.WriteLine(d.ToString(“C”, nlBE)); // € 123,46

Console.WriteLine(d.ToString(“C”, jaJP)); // ¥ 123

Console.WriteLine(d.ToString(“C3”, enUS)); // $ 123.456

Console.WriteLine(d.ToString(“C0”, nlBE)); // € 123

Console.WriteLine(d.ToString(“C2”, jaJP)); // ¥ 123.46

// Decimal, usable for integral values only

// Number of digits controls left padding with zeros

Console.WriteLine(i.ToString(“D”, enUS)); // 1234

Console.WriteLine(i.ToString(“D5”, nlBE)); // 01234

// Scientific notation with exponent

// Default decimal precision is 6 but can be controlled

Console.WriteLine(l.ToString(“E”, enUS)); // 1.234568E+008

Console.WriteLine(l.ToString(“E3”, enUS)); // 1.235E+008

This should give you the hang of it. Lots of other numeric format strings exist, which are
richly documented on MSDN. A short overview is given here:

. C for currency

. D for decimal, used for integral values only

. E for scientific exponential notation

. F for fixed-point notation

. G for general; that is, the most compact notation (scientific or fixed point)

. N for number, with use of (thousand) group separators, decimal points, and so forth

. P for percent, which multiplies a number by hundred and adds a % sign

. R for round-trip, allowing back-and-forth conversion of a number to a string

. X for hexadecimal representation of integral values only

Standard format strings are not the only option, though. One can dine à la carte, too, by
using so-called custom format strings. Such strings allow very tight control over the value
being formatted, with things such as zero and digit placeholders, the ability to use group
and decimal separators, scaling, exponents, use of literal text, and so on. The following
code illustrates a few uses:

// Digit placeholders

// Doesn’t insert zeros if no digit appears at the given position

Console.WriteLine(i.ToString(“#####”, enUS)); // 1234

1349Facilities to Work with Text

// Zero placeholders

// Inserts zeros if no digit appears at the given position

Console.WriteLine(i.ToString(“00000”, enUS)); // 01234

// Decimal point

// Here mixed used with trailing zero padding

Console.WriteLine(d.ToString(“0###.##”, enUS)); // 0123.46

Other custom specifiers are available, whose documentation can be found on MSDN.
Some of them are very powerful, but as a result sometimes have rather cryptic syntax.

MINI-LANGUAGES

Unfortunately, format strings are one of those leftover mini-languages that tend to
invade frameworks. An unfortunate implication of this is the need for developers to
learn them separately from the programming languages being used. Also, the language
doesn’t care about those opaque strings and doesn’t perform any kind of compile-time
checking for them.

It has been a good trend to eliminate such magic strings; for example, by language
features such as LINQ (instead of using, say, T-SQL) and even C# 4.0 dynamic (instead
of specifying, say, a method as a string). First-class format specifiers would likely be
quite complicated but could work.

Until further notice, format strings are a necessary evil that can result in signaling of
runtime errors if unsupported specifiers are used, or when they’re used in an improper
fashion (for example, use of D on a fractional number).

Formatting doesn’t only apply to numbers. Lots of other types have a formatting story as
well. A few examples are shown here:

// Date patterns without time

// Others include date/time, UTC, year/month, roundtrip, etc.

var bd = new DateTime(1983, 2, 11);

Console.WriteLine(bd.ToString(“d”, nlBE)); // 11/02/1983

Console.WriteLine(bd.ToString(“D”, nlBE)); // vrijdag 11 februari 1983

// Custom date/time specifiers

// ddd = short day of week; dd = day of month; MM = month

Console.WriteLine(bd.ToString(“ddd dd/MM”, enUS)); // Fri 11/02

There’s no use in cloning the MSDN documentation here. What matters most is to have
gotten some familiarity with the richness of formatting, enough to encourage you to
explore format strings in more detail.

1350 CHAPTER 26 Base Class Library Essentials

One more thing we have to look at is the capability to format multiple values in one
string, at one time. This is known as composite formatting. On various occasions earlier in
this book, we skimmed over this when using one of the more advanced overloads of the
Console.WriteLine method:

Console.WriteLine(“{0} costs {1}”, product, price);

As you can guess, the {0} and {1} substrings act as placeholders for the values passed in
the subsequent arguments. The first argument here acts as a composite format string,
followed by a single params array:

public static void WriteLine(string format, params object[] arg) { ... }

Composite format strings can be used in a number of places, of which the WriteLine
method is just one. Likely, the most general purpose one is the static Format method on
the System.String class itself, with a signature similar to the one just shown.

LOCALIZABLE APPLICATIONS

Use of format strings should be in every self-respecting .NET developer’s genes because
it’s the main way to achieve localizability of applications. Simple string concat won’t cut
it because the order of words in a sentence often varies across different languages.

Obviously, one doesn’t keep the format strings in the compiled binary if they need to be
translated. Instead, localization tables are used, which can be loaded and queried
through BCL facilities we don’t elaborate on here. Make sure to check this out if you
need to write localizable software (who doesn’t nowadays?).

There’s more you can do beyond just filling in placeholders of a composite format string.
In addition, each so-called format item can have an optional format string to format the
corresponding argument value, as well as an optional alignment. Format items have the
following grammar:

{index[,alignment][:formatString] }

Of those, we’ve already seen the index (which is zero-based) and some of the format
strings that can be used for various objects. For example, combining the use of an index
with the C (for currency) format string, we can write the following:

Console.WriteLine(“{0} costs {1:C}”, “Chai”, 123.45m);

This prints the output shown here, relying on the current user’s culture (which can in fact
be tweaked programmatically through System.Globalization features):

Chai costs $123.45

1351Facilities to Work with Text

The Format method on System.String supports an extra IFormatProvider argument
(passed in as the first argument due to the use of a params array, which has to come at the
end), which, as we know, can be filled in by a CultureInfo object:

var description = string.Format(nlBE, “{0} costs {1:C}”, “Chai”, 123.45m);

Obviously, the preceding code picks up the Dutch Belgian notation for a price, which uses
the euro currency symbol rather than dollars.

MAGIC STRINGS REQUIRE ESCAPES

Whenever some extraordinary characters enter a string literal, people want a way to be
able to escape them. For example, in regular string literals, we need a means to
escape double quotes using the \ character. Due to the special status of \ in so-called
verbatim string literals (with the @ prefix), we need another escape for ”, simply by dou-
bling them. Format strings are no different in this respect, requiring a way to escape
the special-purpose curly braces. The way to do this is by, again, doubling them. For
example, ”{{ {0} + ({1} * {2}) }}”, where the outermost curly braces are
escaped and the inner three pairs of two curly braces denote format items.

Notice that the same index of a format item can occur multiple times in a format string if
the argument with that index has to be printed more than once. Each occurrence can
have a different format string or alignment option, though. It’s also the case that the order
of format items doesn’t have to follow the order of argument (after all, that’s what the use
of indexes is for):

var musicGroup = string.Format(“{1}{0}{0}{1}”, “B”, ‘A’); // Returns ABBA

What we haven’t discussed yet is the ability to specify an alignment to a format item. This
comes in handy when printing multiple rows of data, consisting of parts with a varying
length. In such a setting, numbers are typically right-aligned while texts are left-aligned.
In combination with standard numeric format strings that insert zeros in places where
digits are zero, this can produce some good-looking output.

The basic idea is this: An alignment specification is simply an integer number that’s used
to control the width occupied by the value inserted in the place of the format item. If the
text representation of that value exceeds the specified alignment width, it won’t truncate
the string but will instead ignore the alignment width. If truncation is desired, you can
use String methods to achieve this effect. Furthermore, the alignment width’s sign indi-
cates the alignment; negative indicates left alignment, positive for right alignment. Here is
an example printing a price list:

Console.WriteLine(“{0,-30} {1,8:C}”, “Product name”, “Price”);

Console.WriteLine(“{0,-30} {1,8:C}”, new string(‘-’, 30), new string(‘-’, 8));

1352 CHAPTER 26 Base Class Library Essentials

foreach (var product in products)

Console.WriteLine(“{0,-30} {1,8:C}”, product.Name, product.Price);

In the preceding example, we’re using 30 characters for the width of product names,
which get printed in a left-aligned manner. The price gets right-aligned with a maximum
width of eight characters (enough to fit a currency symbol, four digits for the nonfrac-
tional part of the price, a decimal point separator, and two more digits for the cents.). On
the first two lines, we also print a header with the same alignments and use the string
constructor to repeat a dash character a number of times. Consider the following input:

var products = new[] {

new { Name = “Chai”, Price = 1.25m },

new { Name = “Expensive lawn mower”, Price = 495.95m },

new { Name = “Chang”, Price = 5m },

};

With this products collection, the following is printed:

Product name Price

------------------------------ --------

Chai $1.25

Expensive lawn mower $495.95

Chang $5.00

This shows rich format items at work using the mandatory index, an alignment, and (for
the price) a format string. As you can see, a lot of formatting work can be done by the
framework on your behalf, while allowing for easier localization.

Parsing Text to Objects

Converting objects to a textual representation is one thing, dealing with user (or text file
and so on) input and turning it into rich objects is another thing. You’ve already seen a
whole set of Parse, TryParse, and Exact variants, but there are a few more things to note.

Sometimes going back and forth between objects and text is not a lossless conversion. In
such cases, the framework often provides a format string named R to emit a text represen-
tation that will restore the original value when using a Parse method. A good example is
floating-point numbers, whose decimal representation is not exact:

double value = 1.0 / 3.0;

string text = value.ToString();

Console.WriteLine(text); // 0.333333333333333

double res1 = double.Parse(text);

Console.WriteLine(res1);

Console.WriteLine(value == res1); // False

1353Facilities to Work with Text

string precise = value.ToString(“R”);

Console.WriteLine(precise); // 0.33333333333333331

double res2 = double.Parse(precise);

Console.WriteLine(res2);

Console.WriteLine(value == res2); // True

As you can see from the output for the preceding fragment, the precise ToString text does
contain additional digits that the default ToString output doesn’t have. Because of this,
round-tripping doesn’t produce the precise same value for the first example. When using
the R style, though, things work just fine. Whenever you need to persist data (in particu-
lar, floating-point numbers or a BigInteger) as text and expect to be able to read it back,
use the round-trip style.

Regular Expressions

Parsing of text into a primitive value is easy enough using the various kinds of Parse
methods. However, a more complex parsing task often needs to be accomplished. In that
case, the BCL’s support for regular expressions enters the picture. Because regular expres-
sions are a language of their own, we just touch on some of the capabilities, deferring a
thorough discussion to MSDN once more.

The first thing to make sure when working with regular expression facilities is to have a
using directive to import the System.Text.RegularExpressions namespace. When this is
done, you have unqualified access to the Regex class, which is the entry point of the API.
First, you create a new instance of this class, specifying the regular expression pattern and
an optional set of RegexOptions flags. Let’s ignore this detail for now and go with a plain
regular expression without special options:

var regex = new Regex(“0|([1-9][0-9]*)”);

while (true)

{

Console.Write(“> “);

string input = Console.ReadLine();

Match match = regex.Match(input);

if (match.Success)

Console.WriteLine(match.Value);

}

This read-eval-print loop (REPL) takes in a user input string and matches it against the
specified pattern. Upon success, the first match found within the user input string is
printed. Notice a match is the longest sequence in the input string that conforms to the
specified pattern. In this case, the pattern states that valid input is either 0 or (using a
vertical bar) a digit in the range 1 through 9 ([1-9]) followed by any number of digits in
the range 0 through 9 ([0-9]*).

1354 CHAPTER 26 Base Class Library Essentials

Here is sample output for a series of user input strings. Notice how Match simply returns
the first match and doesn’t require the whole input to be a match:

> 0

0

> 123a456

123

> abba123

123

Besides the Success and Value properties on the Match object, you can query for the index
of the match’s occurrence as well as its length. If multiple matches are searched for, you
can use the NextMatch method on the returned Match object or make use of the Matches
method instead:

var regex = new Regex(“0|([1-9][0-9]*)”);

while (true)

{

Console.Write(“> “);

string input = Console.ReadLine();

foreach (Match match in regex.Matches(input))

Console.WriteLine(“{0} @ {1}”, match.Value, match.Index);

}

For the same input as shown next, we now find two matches for the “123a456” string,
including the match indices:

> 0

0 @ 0

> 123a456

123 @ 0

456 @ 4

> abba123

123 @ 4

Finally, for simple matching scenarios, the IsMatch method can be used as well. This
method returns a Boolean indicating whether the start of the input string produces a valid
match. If the full input string needs to produce a match, you can carry out some simple
tricks like using Match and checking the length of the Value property to match the length
of the input.

1355Facilities to Work with Text

WHEN PERFORMANCE NEEDS IMPROVEMENT

Regular expressions lend themselves very well for precompilation. In fact, compiler
theory starts with this very fact, covering principles of lexing and parsing, which makes
heavy use of finite automata. A regular expression is nothing more than some kind of
textual representation of such an automaton. Using the Compiled flag on the Regex
constructor, you can ask the API to “compile” the regular expression such that it
performs very well.

Under the hood, the regular expression compiler emits code that gets turned into an
assembly that’s loaded into the current application domain. I leave it to your imagina-
tion to think about the infrastructure used to achieve this. Real geeks may even have
an attempt at using lightweight code generation or even the
System.Linq.Expressions namespace to build such a compiler themselves.

Obviously, a cost is associated with such a compilation phase, so its benefits likely
only outweigh the cost if you’re going to reuse the Regex object over and over again
(for example, when parsing a large input set of data).

Regular expressions can do more than just find matches for a given pattern; they can also
be used to capture what’s known as groups. A group is simply a part of a bigger regular
expression pattern that can be extracted from the match. For example, assume you expect
the user to enter a numeric range using the hyphen as a separator symbol. In that case,
you really want to capture both the from and to parts of the range during regular expres-
sion matching. That’s where groups come in handy:

var regex = new Regex(@”(?<from>0|([1-9][0-9]*))\-(?<to>0|([1-9][0-9]*))”);

while (true)

{

Console.Write(“> “);

string input = Console.ReadLine();

Match match = regex.Match(input);

if (match.Success)

Console.WriteLine(“from {0} to {1}”,

match.Groups[“from”].Value,

match.Groups[“to”].Value);

}

In the pattern used for the example, two groups are specified using the rather cryptic (as
not unusual for regular expressions) (?<group>pattern) syntax. The group part is a
friendly name for the group, which can be omitted, allowing access to it by index. The
pattern part speaks for itself and is a regular expression by itself. In this case, we use the

1356 CHAPTER 26 Base Class Library Essentials

same integer number matching pattern for both the from and to groups we want to
extract. Here is a sample session, illustrating the extraction of matches groups in action:

> 1-5

from 1 to 5

> 123-987

from 123 to 987

> 0-

> -9

With this, we conclude our journey through regular expressions and leave further research
to you. It should be mentioned that MSDN has plenty of content on the regular expres-
sion language and all its capabilities. Because crafting powerful and reusable regular
expressions can be an art, some people felt inspired to create whole websites with
commonly used ones (for example, for email addresses). Web searches can be of great help
when you’re in need of a regular expression that’s up to the task at hand.

VERBATIM STRINGS

In the preceding example, notice how the - symbol got escaped using a backslash. If
C# didn’t have the concept of verbatim string (you know, the ones prefixed with an @
sign), all regular expression escapes would need to be doubled. In fact, the syntax of
regular expressions and their escape characters was the main driver to introduce the
concept of verbatim string literals.

Commonly Used String Methods

Throughout this exploration of the framework’s rich functionality to deal with text, we
have barely spoken about the type it’s all about: System.String. Let’s spend a minute or
two pinpointing a few useful methods of this class.

STRINGS ARE CHARACTER SEQUENCES...

And because sequences are implemented using the IEnumerable<T> interface, guess
what? The whole set of query operators defined over IEnumerable<T>, here with T
substituted for char, shows up in the IntelliSense on a string object. This can be
perceived as annoying at times. In fact, prior to Visual Studio 2010, for some reason I
don’t understand, IntelliSense on string objects never showed the extension methods.

Obviously, this behavior can be suppressed by commenting out the System.Linq
using directive. Nonetheless, I still believe it’d be great for the Visual Studio tools to
provide an option to suppress display of extension methods or have a means of tog-
gling between both modes easily.

Various Checks
One often wants to check whether a string object obeys to certain expectations. Apart
from string equality, things such as StartsWith and EndsWith are useful means to analyze

1357Facilities to Work with Text

a string for a certain structure. Those two methods could be regarded as a way to do a
wildcard search, but Contains can, too. The following observations hold:

s.StartsWith(“B”) ~ s matches B*

s.EndsWith(“t”) ~ s matches *t

s.Contains(“a”) ~ s matches *a*

Other ways to achieve similar effects exist (for example, by leveraging IndexOf kind of
methods). Those return an index of the first (or last, for LastIndexOf) occurrence of a
given fragment in the string. A negative return value denotes failure and therefore can be
interpreted as a “doesn’t contain” condition. For tasks more sophisticated than the ones
discussed here, regular expressions likely provide a good angle of attack.

Mutation? Not So Much
You might recall the immutable nature of strings from our first encounter with this data
type. Contrary to a lot of unmanaged or native languages, managed strings do not permit
in-place mutation of the value (for example, by changing characters). Despite this intrinsic
limitation, lots of instance methods exist on System.String that seem to hint at possible
mutation. This isn’t the case, though, because all of those methods return an entirely new
string object.

A few examples are shown here:

string s = “world.”;

s.Insert(0, “Hello “);

s.Replace(‘.’, ‘!’);

Console.WriteLine(s); // Contrary to what you may expect, this prints “world.”

Why does this code print ”world.” as opposed to ”Hello world!”? If we had looked more
closely at the IntelliSense for Insert and Replace (or other methods, like Remove, for that
matter), we would have seen them return a System.String object themselves. That’s the
new object that contains the modified copy of the original string value. So to achieve the
expected effect, you would write the following:

string s = “world.”;

s = s.Insert(0, “Hello “);

s = s.Replace(‘.’, ‘!’);

Console.WriteLine(s); // Prints “Hello world!”

Notice, though, that this little piece of code has created no less than three copies of the
string value, all of which could be very large if we were dealing with input coming from
some file or another source that tends to be lengthy. It should be clear that this excessive
use of copying puts quite a bit of pressure on the GC. If this turns out to be a problem for
your application’s performance, a StringBuilder should be used (as discussed next).

1358 CHAPTER 26 Base Class Library Essentials

WHAT ABOUT +=?

Some people believe the += operator on strings to be magical. They think it’s using
secret tricks to append a value to an existing string without creating copies. This
simply is not the case either. The following fragment really deals with a total of three
string objects:

string s = “Hello”;

s += “ world!”;

Console.WriteLine(s);

The two literals will be embedded in the assembly and loaded from there, using the
ldstr instruction. The += operation is roughly turned into the following:

s = s + “ world!”;

This in its turn gets compiled into a String.Concat static method call, which will
indeed produce a third string object containing the concatenation of both. Now because
the two parts of the concatenation are known at compile time, you might think the
compiler is smart enough to perform the concatenation by itself. This isn’t the case,
though, for this particular example. However, for some uses of the + operator involving
string literals, the compiler can be smarter and perform such simple and straightfor-
ward optimizations. If we had written the following, such a trick would be carried out,
only having to load a single string object:

string s = “Hello” + “ world!”;

Console.WriteLine(s);

This may be surprising because the compiler is dealing with constants that can be fold-
ed at compile time. Similarly, when using lots of + operators to perform concatena-
tions, the knowledge of associativity of the operator can be leveraged to concatenate
the constant parts at compile time. A trip to ILDASM can be a good learning experience
from time to time.

Trimming and Padding
Two common operations are to rip off excessive or introduce desired padding. The Trim
and Pad methods are precisely what’s needed to achieve those goals. Similar to the
methods discussed earlier, they don’t mutate the string object in-place but create whole
new copies. As stated earlier, if this hurts performance because a lot of such operations are
done or big strings are involved, the StringBuilder methods can be a good alternative.
Having said that, the following code shows a few uses of those methods:

Console.Write(“Enter your name: “);

string input = Console.ReadLine();

string name = input.Trim(‘ ‘, ‘\t’);

Console.WriteLine(“Welcome {0}!”, name);

Here, the Trim method takes away any space or tab characters (specified using a params
array parameter) at the start or the end of the given string. If only one side of the string

1359Facilities to Work with Text

should be sanitized, the TrimStart and TrimEnd methods can be used. If no trim charac-
ters are specified, all whitespace characters are considered (defined in terms of the
char.IsWhiteSpace check).

The opposite operation of trimming is padding, where padding characters (typically plain
old spaces) are inserted either at the start or at the end of the string. The amount of
padding is computed from the desired total width of the string after padding takes place.
This effect is comparable to the use of the alignment specification in format items as
seen earlier:

string price = “$123.45”;

Console.WriteLine(price.PadLeft(10)); // Prints “ $123.45”

Console.WriteLine(“{0,10}”); // Prints “ $123.45” as well

Splitting and Joining
Another set of related operations is splitting and concatenation. The former takes a string
apart into pieces, based on a separator to look for, resulting in an array of strings. For the
latter operation, two variants exist. One is plain old concatenation, which glues a given
sequence of strings together without a separator in between adjacent parts. The join oper-
ation allows specification of a separator character, though:

Console.Write(“Enter a comma-separated list of entries: “);

string input = Console.ReadLine();

string[] parts = input.Split(‘,’);

string result = string.Join(“; “, parts);

Console.WriteLine(result);

Overloads exist to influence the behavior of splitting, in particular what to do when an
empty group is found (that is, due to two consecutive separator characters). For the Join
method, starting from .NET 4, you can specify IEnumerable sequences of objects to be
joined together, using their ToString method results. This allows LINQ to Objects to be
used in conjunction with joining or concatenating strings, something I use quite often.

The StringBuilder Class

As stated numerous times already, the immutable nature of strings can be a blessing and a
curse. The latter is especially true if lots of string manipulations have to be made, which
effectively results in the creation of lots of intermediary string objects. Although short-
lived objects are cleaned up pretty effectively by the garbage collector, having a lot of
those, each of which can be substantially big, is suboptimal too. This can often be avoided
by making use of the System.Text.StringBuilder class.

1360 CHAPTER 26 Base Class Library Essentials

DEFAULT USING DIRECTIVES

A few releases of Visual Studio ago, a using directive for the System.Text namespace
was added to the default template for newly created code files. An obvious reason for
its inclusion is the frequent use of StringBuilder as a highly recommended best prac-
tice. Notice that the presence of more using directives doesn’t have any impact whatso-
ever on the application’s performance, contrary to what some people believe. This same
remark holds for the default presence of various referenced assemblies, which will get
loaded only if functionality inside them is truly accessed from code being executed.

Introducing new default namespace imports is something the Visual Studio team
doesn’t go over too lightly. Each such addition might introduce naming conflicts.
Avoiding such conflicts is one of the main reasons why namespaces were invented in
the first place. In the limit, importing each and every namespace would bring us back
to the state of affairs in languages that lack namespaces. Luckily, lots of namespaces
that ship with the BCL have very few such conflicts.

One handy tip is the ability to customize default templates (and in fact, build your own
if you want). Take a look at the Visual Studio installation folder and browse to
Common7\IDE\ProjectTemplates\CSharp\Windows\1033 to locate a whole set of tem-
plates that appear in the New Project dialog for C# applications targeting the Windows
platform. The Zip files you find here simply contain the blueprint of new projects being
created. You can find more information about templates and ways to create those (in
fact from within Visual Studio) on MSDN.

Creation of a new StringBuilder is simply done using any of the class’s constructors. If
you happen to know a good estimate of the capacity required to fit the string being
created or manipulated, it’s beneficial to pass this to the capacity parameter. Doing so will
avoid the expense of reallocating the internal array used to store the string when its capac-
ity is exceeded (remember realloc from C?).

The operations on a StringBuilder object are fairly simple. Using various overloads of
Append, stuff can be added to the end of the current string that’s being represented by the
builder. The AppendLine method speaks for itself. AppendFormat can be used to leverage
format strings as part of an append operation, which is more efficient than using
string.Format first (which would require intermediate allocations). For example, the C#
compiler generates code that uses the Append methods for the implementation of an
anonymous type’s ToString method.

Manipulations of the string contained by the builder are provided through methods like
Insert, Replace, and Remove, which work similarly to the corresponding methods on the
System.String class. The big difference is the in-place modification of the data that
defines the string.

Talking about the representation of a string in a StringBuilder, it shouldn’t come as a
surprise that a builder is essentially a wrapper around an array of characters. The presence
of an indexer (with a getter as well as a setter) is direct evidence of this.

1361Facilities to Work with Text

STRING REPRESENTATION FOR INTEROP

Being effectively a mutable string, it should come as no surprise that the use of
StringBuilder is commonly seen in interoperability code. Because native code often
likes to modify strings in place, this type is the ideal candidate. More background on
those kinds of interoperability can be obtained from various online sources as well as
books devoted to the subject.

Finally, to get data out of a string builder, you use the ToString method. A common use
of those kinds of builder objects is to concatenate numerous data entries in an efficient
manner:

var sb = new StringBuilder();

foreach (var person in people)

sb.AppendFormat(“{0}\t{1}\r\n”, person.Name, person.Age);

return sb.ToString();

In addition, complex formatting tasks can benefit from the use of string builders. Often,
one single call to string.Format doesn’t suffice because conditional logic might be required
to omit optional parts of a textual representation. In such a situation, use of imperative
code to make decisions and perform calls to Append or AppendFormat is appropriate.

That said, always ask a few questions. One is whether the computed string is really needed
in its full form. For example, when visualizing data to the user, it might suffice to show
data in chunks or use UI controls that can show separate entries in some kind of listbox.
Another question is what you’re about to do with the resulting string. If the answer is to
write it to a file or any other kind of I/O system, you’re likely better off using Write or
WriteLine methods on TextWriter objects that are exposed by such I/O systems. We talk
about I/O next.

Text Encoding

One final important aspect of working with text is the plethora of representations that
exist out there when it comes to sending text across different (sub)systems. Although the
.NET platform as a whole—including languages, frameworks, runtime, and tools—has
standardized on Unicode as the representation of strings, plenty of systems deal with
other formats such as ASCII or different UTF representations.

The System.Text namespace supports various encoding schemes that can be used from the
Encoding class’s static properties. Including Unicode, ASCII, UTF7, and a few others, those
return objects of Encoding derivatives. Through those objects, you get access to encoder
and decoder objects, among various other encoding-related properties and facilities.

1362 CHAPTER 26 Base Class Library Essentials

For example, to turn a string into a byte sequence representation for a given encoding
scheme, the GetBytes method can be used. In the opposite direction, a byte array can be
passed to the GetString method to obtain a .NET string representation back:

var bytes = Encoding.ASCII.GetBytes(“Hello ASCII!”);

var hello = Encoding.ASCII.GetString(bytes);

Console.WriteLine(hello);

This trivial piece of code shows the round-tripping of a simple string through the ASCII
encoding scheme. For more complicated examples, refer to MSDN. The fact that some
people have made a living out of the creation of text stacks and all the intricacies is good
evidence of the depth of the topic. (I have seen plenty of text specialists within Microsoft
using Unicode books for their monitor stands.)

Summary
This chapter introduced essential capabilities offered by the BCL that ships with the .NET
Framework. This includes working with various primitive types, ranging from numerical
representations, dates, times and GUIDs, all the way to text. Because the BCL is a huge
collection of useful tools, it should come as no surprise that chapters covering the BCL’s
features feel a bit like potpourri. Nonetheless, we’ve tried hard to keep this chapter related
to working with simple data values and objects.

In the next chapters, we explore other facilities of the BCL, including diagnostics and
quality assurance for code, I/O mechanisms, and more.

CHAPTER 27

Diagnostics and
Instrumentation

IN THIS CHAPTER

. Ensuring Code Quality 1364

. Instrumentation 1378

. Controlling Processes 1386

Writing high-quality software should be a no-brainer. It’s
also common wisdom that catching bugs early during
development is beneficial to reduce cost and user frustra-
tion. Luckily, .NET comes armed with a whole series of
tools, built in to the framework and otherwise, that help
the developer achieve those goals.

In this chapter, we focus on code quality from different
angles. To start, we look at various development-time tools
and techniques that help keep up a high-quality standard.
Those include code analysis and FxCop, various Visual
Studio tools, and simple but effective techniques such as
writing code with asserts. Starting from .NET 4, code
contracts extend upon such tools, allowing developers to
write down, analyze, and enforce conditions the code
should obey.

One thing we don’t cover here is the extended tooling
available in Visual Studio to do test-driven development
(TDD). Although I’m a firm believer in taking such an
approach, having some continuous monitoring of potential
code regressions and code coverage, we simply don’t have
the space to do the subject justice. (You can find any
numbers of books devoted to TDD and the use of Visual
Studio tools to achieve this.)

Being able to catch problems early is one thing, but there
will always be cases where deployed and running software
needs to be checked for mishaps and debugged accordingly.
Various classes that can be found in the
System.Diagnostics namespace help to build better code
that’s instrumented to make such production analysis easier
to accomplish. In particular, we talk about event logging,

1364 CHAPTER 27 Diagnostics and Instrumentation

use of the performance counter infrastructure in Windows, and various ways to interact
with a debugger from code.

Finally, as a little extra, we cover the Process class, which can be used to spawn processes
and query them for various properties. The common thread between this class and most
of the other topics covered in this chapter is the System.Diagnostics namespace, which
we consider to be an integral part of the Base Class Library (BCL).

Ensuring Code Quality
Getting code quality to high levels right from the start of development is a very valuable
thing to do. Issues uncovered later in the development cycle of a product tend to have
exponentially higher costs compared to issues discovered early on. Different tools can be
leveraged to ensure high levels of code quality.

Focusing on facilities in the BCL, our exposition of code quality tools and techniques
doesn’t include a praise of unit testing virtues, a good development process, and so on. I
strongly recommend enterprise-class developers invest their time in learning about those
aspects, too. Keywords such as test driven development (TDD) and software development in
teams jump to mind immediately. Unfortunately, we don’t have the room to dive into
those aspects. Books dedicated to those subjects, also focusing on tools like Visual Studio
Team System, are highly recommended.

Code Analysis

One of the biggest merits of good framework design is to have common patterns and
conventions that make developers feel at home when discovering your application
programming interface (API). It should be no surprise that tools have been written to
enforce those goals by means of static, compile-time analysis of code. It turns out such
tools can also be used to point out a plethora of common bugs or suboptimal develop-
ment practices.

Collectively known as “code analysis” in Visual Studio, all those static compile-time
checks provide a great means to be vigilant about certain aspects of code quality in a
continuous manner. Starting with Visual Studio 2010, code analysis rules have been
grouped in so-called rule sets, which control the amount of “noise” you can tolerate.

I recommend turning on code analysis as shown in Figure 27.1 early in the development
cycle of an application, library, or whatnot. This is also the ideal time to study rule sets
and determine which one is best for you. In addition to enabling the build-time code
analysis, it also might be a good idea to check the Build flag to treat errors as warnings. If
someone introduces a new violation, one is required to tackle the problem (either by
fixing it or by suppressing it) before checking in code. In fact, such rules can be enforced
in Team Foundation Server, as well.

1365Ensuring Code Quality

FIGURE 27.1 Enabling code analysis with the minimum recommended set of rules.

A thorough discussion of all the rules implemented in this feature is beyond the scope of
this discussion. The best way to familiarize yourself with the rules is to just run the code
analysis tools, with the maximum rule set, on a non-trivial-sized project that didn’t have
the feature turned on previously. Doing so will be an eye-opener and reveal a whole lot of
potential defects you might want to examine.

HOW RULES ARE WRITTEN

Rules are basically implementations of some IRule interface that gets a chance to
look at compiled code by means of an expression tree format. Those trees are built
from the compiled intermediate language (IL) code and provided by a framework known
as CCI, or the Common Compiler Infrastructure, which can be downloaded from
CodePlex. One key difference with the System.Linq.Expressions trees is the origin of
the trees. Whereas the LINQ ones are crafted at compile time, CCI extracts them from
already compiled code.

Recommended corrective actions can be found by highlighting the warning in Visual
Studio’s Errors and Warnings pane and pressing F1 to open Help. After studying this guid-
ance, you may still decide the error is a false positive or you have good reasons to dismiss
the advice. In such a case, errors can be suppressed, as shown in Figure 27.2.

Suppressions should be used with care and be based on good justification. All a suppres-
sion does is insert a custom attribute from the System.Diagnostics.CodeAnalysis name-
space in the place you indicate, either on top of the member or in a GlobalSuppressions.cs
file. Tools use this information to suppress messages in subsequent runs.

1366 CHAPTER 27 Diagnostics and Instrumentation

FIGURE 27.2 Use of suppressions to disable a warning.

Asserts and Contracts

Statically discovering typical code defects is a big convenience, but it isn’t a silver bullet.
Lots of conditions are intrinsic to the algorithms you’re coding up and simply cannot be
detected by tools without particular knowledge of the developer’s intent.

To communicate intent, various mechanisms have been created over the years. The oldest
and simplest one is to use asserts, which are pieces of code that perform a logical check,
typically only in special builds of your software. If the check fails, the developer is notified
and invited to break in the debugger to analyze what’s going wrong. Maybe the condition
makes a false assumption about code invariants, or you’ve just caught a problem on the
spot before it can do further damage.

Code contracts were introduced in .NET 4 based on a Microsoft Research project that was
run in the years before the release. Contracts allow a more declarative approach to stating
the code’s intent, also communicating various conditions and expected code invariants to
tools. Examples include pre- and post-conditions of methods, exception behavior, and
assumed absence of null references. Based on this knowledge, tools can try to detect prob-
lems statically, by theorem provers that reason about your code. Alternatively, runtime
checks can be generated.

Before we delve into both of those approaches, it’s useful to contrast both models and
relate them to the use of runtime checks. First of all, asserts are typically used as a tool to
be leveraged at (extended) development time only. The reason we mention extended in
this definition is that so-called checked builds may be used in tests or sometimes even in
preproduction to uncover issues. Nonetheless, the excessive number of checks that could
arise from asserts is likely not a price you want to pay at runtime, especially if you’re
dealing with internal implementation details that should never be violated unless a bug
exists in your code. This is different from issues that can arise from unexpected or even
malicious user input, which should always be checked at runtime.

1367Ensuring Code Quality

This choice between development time and runtime checking of conditions has been
quite black and white in the past. Runtime checks use exceptions, while asserts get
compiled away in release builds and trigger developer alerts when violated during debug-
ging. With the advent of code contracts, this choice can be controlled more tightly. In
fact, you can balance between compile-time checks and runtime checks by leveraging
post-build tools that essentially rewrite assemblies to omit or insert runtime checks.

Developing with Asserts
Asserts are a code-driven way to document invariants that should hold in your code (for
example, the fact a reference should not be null in nonpublic code or an integer denoting
an index should be within valid bounds). Formulating an assert is simply done using a
Boolean-valued expression passed to the Debug.Assert method, which is defined in the
System.Diagnostics namespace. For example:

private static void Sort<T>(T[] values, int from, int to)

{

Debug.Assert(from <= to, “Expected from to be less than to.”);

...

}

I’ll leave it to you to implement a sort algorithm that divides the input array in two halves
and recursively calls the Sort method to sort the halves. Doing so implies the need to
compute indices in preparation of a recursive call. Those kinds of calculations are prone to
subtle off-by-one errors and such. The goal of the assert is to catch such issues. Also when
implementing the Sort method, think of other assumptions you’re making with regard to
the input (and that therefore warrant the declaration of additional asserts).

A publicly exposed Sort method will simply wrap this, passing in the bounds of the entire
array, effectively causing the whole array to be sorted if the private recursive Sort method
is implemented correctly:

public static void Sort<T>(this T[] values)

{

if (values == null)

throw new ArgumentNullException(“values”);

Sort(values, 0, values.Length - 1);

}

You should observe that for private calls, we don’t use exceptions here to signal invalid
inputs. Instead, asserts are used to catch issues where asserts are broken. Because the
private Sort method with sorting bounds is really an implementation detail, it’s our sole
responsibility to ensure we’re calling the method in an appropriate manner. Using excep-
tions is an option but introduces an unnecessary runtime checking cost simply to guard
for mistakes that we should have caught during development.

1368 CHAPTER 27 Diagnostics and Instrumentation

FIGURE 27.3 An assert failure dialog during debugging.

Instead of doing nothing to check valid input, an assert helps you understand the intent
of the code and will signal a problem earlier. Assume, for example, that you end up with
some piece of code that iterates over the chunk of the array to sort based on the from and
to parameter values. It shouldn’t be difficult to see that such a loop would silently break if
from is larger than to:

for (int i = from; i < to; i++)

...

An assert would spot the discrepancy in the input, whereas blindly going with the input
tends to lead to much more fragile code where a fatal mistake could go unnoticed for a
while (maybe parts of the array could remain unsorted). Therefore, it’s a good practice to
document assertions by means of Debug.Assert, which should hold in your code.

So what happens if an assert fails? The answer depends on the flavor of the build of the
code. If you’re building ”Debug”, the asserts will be left in place and wired up to produce a
dialog box as shown in Figure 27.3. If you’re building ”Release”, the calls to Assert are
compiled away completely, thanks to the conditional attribute that’s put on top of it. You
can see this by pressing F12, for Go to Definition, with the cursor on the Assert method:

[Conditional(“DEBUG”)]

public static void Assert(bool condition, string message);

In other words, if you’re building without DEBUG defined (which is done through the build
settings for the “Debug” flavor in Visual Studio), calls to Assert are simply stripped out,
and you don’t pay any runtime price whatsoever. This is what makes an assert quite differ-
ent from an if check followed by an exception, which isn’t compiled away in a condi-
tional manner unless you use #if yourself. You will agree this is much more invasive in
the code than the use of a simple call to Assert:

1369Ensuring Code Quality

private static void Sort<T>(T[] values, int from, int to)

{

#if DEBUG

if (from <= to)

throw new ArgumentException(“Expected from to be less than to.”);

#endif

...

}

The failure dialog, as shown in Figure 27.3, has three buttons in the title bar. In particular,
the Retry button is (somewhat counterintuitively) hooked up to break in the debugger,
allowing investigation of the failure. When no debugger is attached, the developer gets a
chance to attach a debugger at this point. We look at the ways you can communicate with
the debugger from code in the next sections titled “Diagnostic Debugger Output” and
“Controlling the Debugger”.

To summarize asserts, they’re a very simple yet effective way to identify problems in your
code on the spot, instead of having to figure out why something fails much further down
in a call stack. Programming with asserts takes some training, but always ask yourself
whether you’re making assumptions about state in your code. If so, that spot might be a
good candidate to inject an assert call.

A Primer to Using Code Contracts
Asserts and exceptions are a world of difference with regard to their behavior and their
impact on the compiled code. Previously, we emphasized when to use which technique.
With the introduction of code contracts in .NET 4, the world has become less black and
white. Code contracts allow you to state invariants that can either remain in the code and
act as runtime checks (throwing exceptions on violations) or be stripped out.

Furthermore, the expressiveness of code contracts is much higher than a plain Boolean
expression. This also allows tools to reason about code (for example, to generate tests in
an automated fashion; search for Microsoft Research Pex on the Web).

The API for code contracts also lives under the System.Diagnostics namespace but in a
dedicated subnamespace called Contracts. The Contract static class acts as the one-stop
shop to express contracts in code. This is shown in Figure 27.4, highlighting just one of
the methods that’s quite different from a simple Debug.Assert call. The Ensures method
basically formulates a post-condition, which is a condition that should hold true after the
containing method exits. In case of an exceptional return, there may still be conditions
that should hold true (for example, proper cleanup of state), which can be stated as a
contract using EnsuresOnThrow.

Similarly, preconditions can be formulated. Using the Exists and ForAll methods, you
can express predicates that should hold (for example, for any or all of an array’s elements).
Other useful tidbits include the ability to refer to an old value of some variable (for
instance, before a piece of code runs) and express conditions that should hold by compar-
ing it to the new value. All of this goes far beyond what the Debug class has to offer and
enables you to take a declarative approach to state a lot of invariants (that is, without

1370 CHAPTER 27 Diagnostics and Instrumentation

FIGURE 27.4 Code contracts methods to express various conditions.

The interesting thing about code contracts is they don’t get enforced by default, and the
use of separate tools is required to rewrite the code, injecting checks in all the places
needed. This shouldn’t come as a big surprise because code contracts look like plain old
method calls to the compiler but often express something of a global nature:

public int Count

{

get

{

Contract.Ensures(Contract.Result<int>() >= 0);

// Implementation goes here...

}

}

In the preceding snippet, a contract is used to state that the getter ensures that the int
values result is larger than or equal to zero. However, how can those calls perform checks
to see this is really the case? In fact, there might even be multiple paths in the implemen-
tation of the getter that do return a value to the caller. What really needs to happen is
that the code gets checked statically, using advanced tools like theorem provers, to ensure
there cannot be a single code path that violates the formulated constraints. Alternatively,
this piece of code needs to be rewritten such that prior to any return, a check is carried
out to ensure the contract holds.

Logic to rewrite contract method calls into advanced checks is not built in to compilers
like C#’s and Visual Basic’s. It was chosen to implement code contracts as a library rather
than an extension to all the .NET language compilers, such that any language that’s
capable of making method calls (which one isn’t?) can benefit from contracts. To perform
analysis based on contracts, or to inject runtime checks, separate tools can be downloaded
from MSDN DevLabs at http://msdn.microsoft.com/en-us/devlabs. Those tools integrate
with Visual Studio 2010 and allow for a smooth integration with your product’s build.

To wrap up our primer to code contracts, I highly recommend that you check out the
code contracts API and it’s very expressive nature. Samples that can be found on the afore-
mentioned website should be a good guide to understand code contracts. By adding more

having to resort to a bunch of #if conditional imperative code). For more information
about the expressive power of code contracts, refer to MSDN.

http://msdn.microsoft.com/en-us/devlabs

1371Ensuring Code Quality

information about your code’s intent, rich tooling can be enabled to check whether the
stated invariants hold true under all circumstances. If static checking at build time is not
possible, you can resort to runtime checks that ensure contracts do not get violated,
signaling exceptions otherwise.

Diagnostic Debugger Output

Another capability of the System.Diagnostics namespace is to interact with a debugger
from inside your code. Samples include emitting diagnostic information about what your
code is doing, which can be visualized in a debugger’s output window. Let’s take a look at
some of those capabilities.

Revisiting the Debug class, notice the presence of Write and WriteLine methods. Using
them, you can write information to the debugger. Just as with Assert calls, the calls to
those methods are omitted from the assembly if it isn’t built using the DEBUG flag, so
there’s no runtime overhead in release build binaries. An example is shown here:

private void ContactPaymentService(string account, decimal amount)

{

Debug.WriteLine(“Connecting to payment service”);

try

{

// More code goes here...

}

catch (IOException ex)

{

Debug.WriteLine(“Failure to communicate: “ + ex.Message);

// Production code to handle the exception...

}

}

CONDITIONAL DEBUGGER OUTPUT

Variants on Write and WriteLine exist, with an If suffix. Besides the message to be
emitted, they also take a Boolean-valued condition that controls whether output is
written to the debugger.

This is different from using an if statement together with a Write or WriteLine call,
due to the conditional compiled nature. You don’t want the if check to remain in the
release build’s assembly code but the Write(Line) call to be omitted from the result-
ing assembly code. Combining both the condition and the output in one single call
allows all the effects of the check and the output to be stripped away in case of a non-
debug build.

In fact, this is the ideal place to point out some of the dangers of conditionally
compiled code in imperative languages like C#, where side effects are part of common
programming practice. Consider the following code fragment:

1372 CHAPTER 27 Diagnostics and Instrumentation

FIGURE 27.5 Debugger’s Output window showing output from Debug.WriteLine.

[Conditional(“DEBUG”)]

static void Bar(int i) { }

static void Main()

{

int i = 0;

Bar(i++);

Console.WriteLine(i);

}

Bar is much like Debug.WriteLine in that it gets omitted from the compiled code if
the DEBUG symbol is not defined. What do you think the code prints in Debug versus
Release mode? Let me tell you: 1 versus 0. The reason is because the compiler takes
away the whole call site to Bar, including evaluation of parameters (here using the
post-increment operator on i) in case DEBUG is not defined. To make a long story short:
Don’t have side effects in calls to methods such as Debug.WriteLine!

Figure 27.5 shows the output of a Debug.WriteLine call in the Output window in the Visual
Studio 2010 IDE. If this window doesn’t show up, go to Debug, Windows to enable it.

Other features exposed by the Debug class include the ability to control the indentation of
output, which is useful to emit a tree-shape debug output trace. The indentation can be
used to reveal the depth of a call. Using the following code, you will see the WriteLine
calls made inside the Bar call to be indented relative to the part stack frame. Obviously,
you should make sure the Indent and Unindent calls are balanced properly. Notice that an
exception in the commented-out section will spoil the indentation level, so ideally a
finally block is used to make sure the Unindent call happens:

static void Bar()

{

Debug.Indent();

Debug.WriteLine(“Bar - Begin”);

1373Ensuring Code Quality

// Code goes here

Debug.WriteLine(“Bar - End”);

Debug.Unindent();

}

Debugger output can be sent to many listeners, known as trace listeners, which are simply
objects derived from the TraceListener class in System.Diagnostics. Code used to emit
debugger output can be kept in place, but its underlying trace listeners can be switched
out for others (for example, in a preproduction scenario). By doing so, you gain an easy
mechanism to analyze what code is doing if problems arise, without the need to even
attach a debugger. This can be done through the use of configuration files, as shown here;
more information can be found on MSDN:

<configuration>

<system.diagnostics>

<trace autoflush=”false” indentsize=”4”>

<listeners>

<add name=”myListener”

type=”System.Diagnostics.TextWriterTraceListener”

initializeData=”TextWriterOutput.log” />

<remove name=”Default” />

</listeners>

</trace>

</system.diagnostics>

</configuration>

Finally, the Debug.Fail method is pretty much the same as a failed assert triggered by a
call to Debug.Assert(false), but it also prints a message—including the stack trace of the
point of failure—to the trace listeners. For all those diagnostic debugger output logging
mechanisms, keep in mind their conditionally compiled nature. If you need to provide
diagnostics that are available in production, other mechanisms, such as direct use of the
Windows event log, come in handy. We discuss them later in this chapter in the “Using
Event Logs” section.

Controlling the Debugger

Besides the Debug class, the System.Diagnostics namespace has a Debugger class, whose
static methods are used to control the debugger. Arguably, the most useful of all its
methods is Break, which causes the code to break in the debugger at the point of the call.
This functionality is often used to debug a program’s startup path, in cases where it’s
rather inconvenient to have a debugger attached already. For example, some other process
may launch your program without leaving you a chance to attach a debugger.

1374 CHAPTER 27 Diagnostics and Instrumentation

FIGURE 27.6 Result of a call to Debugger.Break without a debugger attached.

IMAGE FILE EXECUTION OPTIONS

In fact, the problem of debugging a startup path has been around since the early days
of Windows. It’s not really a problem, though. The designers of the loader that is used
to run executables on Windows envisioned this problem (or likely hit the difficulty them-
selves plenty of times).

To make such debugger scenarios more appealing, they put in a grand hack called
Image File Execution Options, which is a Registry-based setting that can be specified
on a per-program basis. You can find it under the Local Machine hive of the Registry at
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Image File Execution
Options. Each executable whose process creation should be subject to tweaks applied
by the loader has a subkey that specifies such options. For example, settings affecting
process creation for notepad.exe executable images live under a subkey called
notepad.exe.

The Debugger setting enables you to cause the loader to start a specified program
rather than the original executable. The original executable’s path is passed to the
“debugger” executable as the first command-line argument. This way, a debugger can
be configured to intercept any creation of a process for a given executable.

An example of the use of Break is shown here:

static void Main()

{

Debugger.Break();

// More code goes here...

}

The code’s behavior depends on the presence of an attached debugger. If that’s the case,
our call to Break simply causes us to break into the debugger at the line of the call. If no
debugger is attached yet, a dialog displays, as shown in Figure 27.6.

Depending on the machine’s configuration (that is, whether a debugger has been set up),
the dialog’s look will vary. In any case, you can now attach a debugger to the process
that has triggered a Break call, and doing so puts you straight on the line where the

1375Ensuring Code Quality

Break call was made. From that point, state can be analyzed and, if desired, execution
can be resumed.

One key difference with the Debug class’s methods lies in the fact that the Debugger
methods are not conditionally compiled. In other words, things such as Debugger.Break
also causes a “release” binary to break at the point of the call.

THE CASE OF DEBUGGER-DEPENDENT BEHAVIOR

Some people love to use the Debugger.IsAttached get-only property to check for the
presence of an attached debugger and make code exhibit different behavior based on
this condition. Uses of this trick exist in UI frameworks (for example, to be peskier
about cross-thread violations in user code during development). The presence of a
debugger is a good indication of “development.”

Although this conditional execution of logic may be justified in certain cases to ease
the use of a library during development time, it should be clear that it can also be the
utmost source of frustration when debugging the library itself. (I have personally experi-
enced this.)

Logging Stack Traces

From a debugging developer’s point of view, the most precious treasure to tackle a
problem is most likely a stack trace. Having this information available answers the ques-
tion about what the code is doing at a certain point in time. While this piece of informa-
tion is readily available in a debugger, it’s sometimes useful to log a stack trace in code.

Here the StackTrace class in System.Diagnostics comes up as the hero of the day. The
creation of a new instance of this class captures the stack trace of the current thread. A
few constructor overloads exist to extract a stack trace from an Exception object, to skip a
specified number of frames, and so forth. A silly example is shown here:

static void Bar()

{

var trace = new StackTrace();

Console.WriteLine(trace);

}

static void Main()

{

Bar();

}

1376 CHAPTER 27 Diagnostics and Instrumentation

The StackTrace object can be printed by means of its ToString method (here implicitly
called by the use of WriteLine) or can be decomposed into individual stack frames by
using the GetFrame and GetFrames methods. The preceding snippet prints this:

at Program.Bar()

at Program.Main()

SEEING A LARGER STACK TRACE?

It’s possible, and in fact very likely, that you’ll see a larger stack trace when trying to
run this example. This is due to the Visual Studio hosting process, which is used to
enable certain debugging scenarios and by itself is a managed application that sits
higher up the call stack.

You can recognize such a call stack by the presence of a frame that reveals a call to
RunUsersAssembly in Microsoft.VisualStudio.HostingProcess.HostProc. While
the hosting process has certain well-documented benefits, it sometimes can be consid-
ered harmful because some global properties differ. For example, inspection of things
such as the application domains, the native command line, and so forth will differ.

By passing true to the constructor, file info can be obtained as well, given a symbol file
(with extension .pdb) is found. Note that this process is rather slow, so use of stack trace
logging is better avoided in performance-critical code paths. Also keep in mind that excep-
tions do have a stack trace out of the box, so there’s no need to have explicit code to
capture such a trace. You can still use the StackTrace class to inspect the stack trace in
more detail from code (for example, on the level of individual frames).

Measuring Performance Using StopWatch

Performance measurement of pieces of code should be done using a precise-enough time
to have any value whatsoever. Just subtracting DateTime values doesn’t cut it because of
the relatively low resolution of DateTime values. To prove this point, enter the following
piece of code, which computes 50 factorial a number of times:

for (int j = 0; j < 10; j++)

{

var start = DateTime.Now;

var n = 1L;

for (int i = 2; i < 50; i++)

n *= i;

var end = DateTime.Now;

Console.WriteLine(end - start);

}

1377Ensuring Code Quality

Feel free to increase the outer loop’s iteration count. In any case, the output shouldn’t
make much sense because some of the factorial calculations turn out to take no time (that
is, printing 00:00:00), whereas others take 1 or more milliseconds. Obviously, there’s
always a chance of having some noise (for example, because of triggering a lazy initializa-
tion code path in the framework that takes time on the first call, or because of the garbage
collector pausing your code temporarily). Nonetheless, a zero-time calculation doesn’t
make sense. Instead of dumping the raw TimeSpan value computed from subtracting the
two DateTime values, try to print its Ticks value:

for (int j = 0; j < 10; j++)

{

var start = DateTime.Now;

...

var end = DateTime.Now;

Console.WriteLine((end - start).Ticks);

}

Again, zero values come up. If you recall correctly from our discussion about DateTime
values, their maximum precision is 100 nanoseconds. This can obviously explain the zero
values, as we might be below this threshold value, so the two DateTime.Now evaluations
resulted in the same value even though time has elapsed. It’s also good to put things in
perspective a bit. With today’s processors ticking at several gigahertz, the order of magni-
tude for a single instruction’s execution is 10 power –9 seconds. Count down in orders of
three: milli, micro, nano.

Luckily, Windows has provided means to get more accurate timing values through an API
known as QueryPerformanceFrequency and QueryPerformanceCounter. Both of those are
wrapped by the managed code StopWatch class. Lots of little caveats apply because this
functionality relies on the goodwill of the processor itself, the BIOS, as well as the Hardware
Abstraction Layer (HAL), some of which have issues on older systems. In any case,
StopWatch is your best friend if you need high-precision measurements of performance:

for (int j = 0; j < 10; j++)

{

var sw = new Stopwatch();

sw.Start();

var n = 1L;

for (int i = 2; i < 50; i++)

n *= i;

sw.Stop();

Console.WriteLine(sw.Elapsed);

}

1378 CHAPTER 27 Diagnostics and Instrumentation

As shown here, its use is fairly straightforward with Start and Stop methods and a property
called Elapsed to return the measurement. Other methods exist that enable you to reset or
restart the stopwatch. Read-only fields called Frequency and IsHighResolution can be used
to reveal what can be expected from the stopwatch with regard to its overall precision.

With the preceding change made to our code, meaningful results show up. On my
machine, each computation of the factorial of 50 took a few elapsed ticks, with a very low
degree of variance among the measurements.

PERFORMANCE ANALYSIS WISDOM

It can’t be stressed enough that performance measurements should be taken with a
grain of salt, especially the micro-benchmarking kind. While you might be able to beat
the hell out of a particular code path’s performance, all that matters is whether that
code has true impact on the application’s or library’s overall performance.

Always make sure to start by identifying the “hot path” of your code (that is, the one
that’s the least performing in certain important user scenarios) using performance
analysis tools as found in higher-end Visual Studio editions. Only after you’ve done your
work on identifying a possible culprit should you undertake further detailed measure-
ments to narrow down your search for a performance killer.

It should also be clear that performance responsibilities vary a lot based on the usage
scenarios of the code. Libraries with essential functionality such as math operations or
collections have a huge impact on a lot of consumers and should be designed with lots
of care. For example, the BCL’s collection types have a good amount of documentation
on the algorithmic complexity (expressed in so-called big-O notation) of various opera-
tions such as element insertion, retrieval, and so on.

Finally, be sure not to optimize your code beyond the point of correctness. It should be
obvious this is the case, but far too often this happens in practice. A solid set of unit
tests and regression tests can help a lot, but thoughtless code changes should be
avoided at all costs.

Instrumentation
In the System.Diagnostics namespace’s functionality discussed thus far, we’ve concerned
ourselves with development-time utilities. Examples included the ability to log diagnostic
debugger output, develop with asserts, and so on. An equally important aspect to high-
quality software is maintainability. It’s the (sad) truth that software tends to fail in produc-
tion at the most inconvenient times. Asking the IT administration department to attach a
debugger to a server that’s producing revenue for your company usually will not be well
received. Instead, having diagnostic logging, and more generally other kinds of instrumen-
tation, built in will do a lot to help you figure out what’s going on.

Although a whole realm of manageability techniques can be built in to software, we just
discuss a few common ones that in fact have been supported by the framework since the

1379Instrumentation

early days. In particular, we discuss how to write to Windows event logs and how to
provide performance counters to trace statistics of the running code.

Using Event Logs

Event logs are a centralized means in the Windows platform to keep track of diagnostic
information about running software components in the system. Both the operating
system and its services and third-party applications can plug in to it. The designers of the
.NET Framework deemed it useful to have a managed wrapper around the APIs used to
communicate with the event logging component of Win32.

The EventLog class in System.Diagnostics is the wrapper class for event logs exposed to
managed code. Various static methods are available to create what’s known as an event
source, basically an identifier to correlate an event log entry with its origin. In addition,
methods such as WriteEntry and WriteEvent are available to write to a specified event log.
To limit the need to specify an event log’s name as well as a source, you can create an
instance of the EventLog class and use instance members to perform various actions. This
includes the ability to query an event log for various properties such as its size, retention
policies, overflow action when the log reaches it capacity, and so forth.

Log entries need to have a source, which is a distinct identifier for the origin of the log
entry. Creating such a source requires administrative privileges and can be carried out in a
configuration utility used to configure your application, thus avoiding the need (and
general bad practice) to run your application as an administrator all the time. The follow-
ing code shows how to check for the existence of a source, followed by the creation
thereof in case it’s found to be missing:

const string SOURCE = “Chapter27”;

const string APPLICATION = “Application”;

if (!EventLog.SourceExists(SOURCE))

EventLog.CreateEventSource(SOURCE, APPLICATION);

Once a unique event source has been established for our application, we can use it to
write to the log file. Various flags can be passed to a log entry, including the type of the
entry (informational message, warning, error, security audit record, and so on), numeric
identifiers to denote application-specific states, as well as a byte array for “raw data” with
more information about the entry (for instance, the serialized form of an object). Use of
unique status codes has various advantages as it makes searching for corrective actions
easier (for example, “Source Chapter27 error code 1234”), while message strings can be
subject to localization. The following code shows how to log an informational message
with a few application-defined status codes. The dot (.) parameter to the EventLog
constructor is used to refer to the local computer.

const int STARTED = 1001;

const short LIFECYCLE = 1;

1380 CHAPTER 27 Diagnostics and Instrumentation

FIGURE 27.7 An event log entry written by the EventLog class.

using (var log = new EventLog(APPLICATION, “.”, SOURCE))

{

log.WriteEntry(“Application started.”, EventLogEntryType.Information,

STARTED, LIFECYCLE);

}

Because the EventLog class implements IDisposable, use of a using block is highly recom-
mended to ensure proper cleanup of the native resources it holds on to. Figure 27.7 shows
the Application log (shown through Event Viewer, an MMC snap-in available from
Administrative Tools or by running eventvwr.msc) after the call to WriteEntry.

Another way to deal with event logs is to create a component, as shown in Figure 27.8.

Components are just classes that derive from a common component base class, which
provides a few benefits. One is the ability to remote such objects through .NET Remoting;
another is the design-time story in the Visual Studio IDE. We’ll ignore the first aspect and
just show the use of the component designer in Figure 27.9.

Using the log can be done now by exposing the private field created for the EventLog
instance (for example, through a property) or by providing specialized wrappers. Other
parts of your application leverage the component (which can be remoted, allowing it to
support more-complex application architectures) to do all sorts of instrumentation
actions, such as logging. Various settings of the EventLog component object can be config-
ured with the Properties window, as shown in Figure 27.9.

1381Instrumentation

FIGURE 27.8 Creating a new component class.

FIGURE 27.9 An event log in the designer of a component.

With regard to what we’ve discussed here, we’ve assumed the use of the local computer’s
event log, despite the fact that the API has support to communicate with logs on other
machines. Notice that event logs are subject to various security settings and policies, so
this kind of communication with another machine can have certain complications.
Running in a Windows domain avoids some of those complexities, for sure.

Also notice that the event log facilities in Windows do have rich capabilities from an
administrator’s point of view, including the ability to view logs remotely, associate tasks
with entries, and so forth. If you end up using event logs heavily, make sure you are aware
of all the features they support. This will prevent you from cloning features that are
natively supported by the system and allow you to benefit from the many man-years of
development, debugging, and tuning.

1382 CHAPTER 27 Diagnostics and Instrumentation

Monitoring with Performance Counters

Using event logs is a great way to log discrete messages that can be used to trace the flow
of execution for a given application or its individual components. However, in many
cases, it’s more valuable to monitor the dynamism of an application, which typically has a
numeric nature. Examples include tracing the number of user requests a service is
handling, object allocation rates, resource pool utilization, and so on. For such scenarios,
the use of performance counters comes in handy.

Just like event logging, the concept of performance counters is rooted in the operating
system’s facilities. A whole bunch of counter types exist, which indicate their numeric
nature. Examples include time-based counters (for example, elapsed times for some opera-
tion), increment-based counters (for example, number of requests), fractional values (for
example, for some utilization percentage), and many more. A full discussion of all those
types would be a waste of paper, so let’s move on and discuss the essentials.

The first thing to do, just as with event logs, is to set up counters by means of a “counter
category.” For those of you who’ve looked into performance counters through
Performance Monitor before, examples of such categories are Processor, Memory, and so
on. Within such categories, a series of counters can be added. For example, the Processor
category built in to Windows has tens of counters that log idle time, user time, power
state transitions, and so on. Finally, counters can be single instance or multiple instance.
In the case of our running Processor counter category example, on a multiprocessor
machine counters will exist for any CPU in the system. For CLR-related counters, one
instance can exist per managed application running on the machine.

The following code fragment shows how to create a counter category with a friendly
description as well as a number of counters. The order in which the counters added to the
category appear sometimes matters, depending on the counter type. In this example, this
is the case for the average counter, which needs to be followed by a base counter. The
reason for this shouldn’t be too hard to see. Because an individual counter is used to
represent a single value, and because an average is computed out of two values (using a
numerator and denominator), two such counters are needed:

const string SOURCE = “Chapter27”;

const string DESCRIPTION = “Sample counters”;

const string TXCOUNT = “# of transactions”;

const string PROCRATE = “Processing rate”;

const string PROCRATEBASE = “Processing rate base”;

if (!PerformanceCounterCategory.Exists(SOURCE))

{

PerformanceCounterCategory.Create(SOURCE, DESCRIPTION,

PerformanceCounterCategoryType.SingleInstance,

new CounterCreationDataCollection

{

1383Instrumentation

new CounterCreationData(TXCOUNT,

“Keeps track of number of bank transfers”,

PerformanceCounterType.NumberOfItems32),

new CounterCreationData(PROCRATE,

“Average transaction processing rate”,

PerformanceCounterType.AverageCount64),

new CounterCreationData(PROCRATEBASE,

“Denominator for processing rate counter”,

PerformanceCounterType.AverageBase),

}

);

}

In this example, we settle for a single instance counter, assuming there will only be one
“Chapter27 server application” running at a time. From the vocab used to name the differ-
ent counters, you can infer we’re mimicking a (bank) transaction processor. While you’re
at it, explore the other static methods on PerformanceCounterCategory, such as Delete.

Next, assuming the counters are set up, let’s write a piece of code that obtains all the
counter objects. The false parameter passed to the constructor disables read-only use,
allowing us to modify the counter’s value from our code:

var txCount = new PerformanceCounter(SOURCE, TXCOUNT, false);

var procRate = new PerformanceCounter(SOURCE, PROCRATE, false);

var procRateBase = new PerformanceCounter(SOURCE, PROCRATEBASE, false);

Given those three counter objects, we can now cook up some simple sample program that
queues up transaction requests, monitored by the txCount counter. Another part of the
program dequeues those requests and processes them. To demonstrate this queuing and
processing behavior, we’ll use two threads and .NET 4’s ConcurrenctQueue<T> generic
collection type. In Chapter 29, “Threading and Synchronization,” and Chapter 30, “Task
Parallelism and Data Parallelism,” we cover the notion of concurrency in more detail.

Console.WriteLine(“Press ENTER to start processing...”);

Console.ReadLine();

var rand = new Random();

var queue = new ConcurrentQueue<int>();

new Thread(() =>

{

while (true)

{

Thread.Sleep(rand.Next(1000, 5000));

1384 CHAPTER 27 Diagnostics and Instrumentation

int n = 0;

int tx;

while (queue.TryDequeue(out tx))

{

Console.WriteLine(“Processing transaction {0}”, tx);

Thread.Sleep(rand.Next(0, 100));

txCount.Decrement();

n++;

}

procRate.IncrementBy(n);

procRateBase.Increment();

}

}).Start();

for (int tx = 0; true; tx++)

{

Console.WriteLine(“Requesting transaction {0}”, tx);

queue.Enqueue(tx);

txCount.Increment();

Thread.Sleep(rand.Next(0, 200));

}

The background thread basically wakes up every 1 to 5 seconds, based on a random sleep
duration value. At that point, it continues dequeuing all the transactions that are waiting
to be processed. Processing is mimicked by small delays of 0 to 100 milliseconds. Finally,
the rate counter is incremented with the number of transactions that have been processed,
and the base counter is incremented by one, indicating a batch has been processed. The
performance counter infrastructure will only expose the former counter to the user,
computing an average based on the delta of the procRate counter between two successive
increments of the corresponding base. In our case, this simply acts as a measure for the
amount of work done per iteration of the processor thread.

In the main thread, we enqueue work with an arrival rate throttled between 0 and 200
milliseconds per request. To see the behavior of the application through performance
counters, start the program and wait for the Console.WriteLine-based prompt to come
up. At that point, open the performance counters MMC snap-in from Administrative Tools
(or by using perfmon.msc in Start, Run) and add the Chapter27 counters as shown in
Figure 27.10.

I encourage you to experiment with multi-instance counters, as well, which will reveal a
nontrivial value in the Instance column for each instance. The managed API to work with
multiple instances is pretty straightforward. Examples of such use include the case where
multiple instances of a service are running and each of them benefits from individual
statistics. Notice that the Performance Counters snap-in has support to aggregate values

1385Instrumentation

FIGURE 27.10 Adding our performance counters to the display.

from multiple instances by selecting a fake instance called Total. If you have a multicore
machine, the Processor counters reveal this capability nicely, allowing a processor utiliza-
tion breakdown on a per-CPU basis (the instances) and a roll-up value across all CPUs.

Once the counters are added to the display, press Enter in the running transaction process-
ing sample application to start its work. Figure 27.11 shows the program, which has been
running for a few minutes. The red line indicates the queue depth as logged by the
txCount counter’s Increment and Decrement calls. Periodically, a green spike appears,
which indicates a batch has been processed as logged by procRateBase and its numerator
value counter procRate. Based on this information, queuing theory savvy developers can
draw conclusions about the processing speed of transactions and the impact it has on
users (for example, how long it takes for a transaction to be processed). Much more
sophisticated counters could be devised to permit the analysis of a running transaction
processor system, but this should give you a good idea about the possibilities to code up
such support.

Other Manageability Frameworks

Other manageability techniques vary in difficulty and are often used only in specialized
scenarios. For example, full-blown server products likely want rich instrumentation that
can be used to analyze a running system but also to send commands to it. The Windows
platform has built-in facilities for this in the form of Windows Management
Instrumentation (WMI) and, more recently, Windows PowerShell.

1386 CHAPTER 27 Diagnostics and Instrumentation

Writing providers for those technologies is a specialized task for which we refer to online
documentation and books devoted to the subject. Suffice to say, a managed code story
for them exists, so as a C# developer you shouldn’t feel left out. Whether you need to
spend time and money learning about them depends quite a bit on the kind of applica-
tions you’re building. Typically, servers and services benefit quite a bit from such invest-
ments, allowing IT administrators to perform maintenance routines without developer
intervention.

Controlling Processes
It’s not uncommon for an application to need to interact with other programs on the
same machine. This includes spawning other processes, monitoring them, and so on. The
System.Diagnostics namespace contains functionality that enables those scenarios from
managed code.

Querying Process Information

The Process class is the central abstraction to deal with processes. A series of static
methods enables you to obtain Process instances by name, process ID, or unfiltered. We
used this capability earlier in this book when discussing LINQ because the process list is a
nice nontrivial data source that speaks to the imagination of many readers (at least, I
think so). The following code shows this, also emphasizing the availability of many prop-
erties on Process objects:

FIGURE 27.11 Analyzing runtime behavior of our sample application.

1387Controlling Processes

var memoryHogs = from p in Process.GetProcesses()

where p.WorkingSet64 > 50 * 1024 * 1024 /* 50 MB */

select p;

foreach (var memoryHog in memoryHogs)

Console.WriteLine(memoryHog);

The WorkingSet64 property exposes the memory working set size as an Int64 (long) value
(and hence the 64 suffix). Many other properties are available on instances of the Process
class, including processor utilization time, information about loaded modules (such as
DLL files), threads running in the process, and so on. I leave it to you to explore this data,
maybe by building a little Task Manager (or Process Explorer) clone based on it.

Starting Processes

Spawning another process is simple using the Process.Start method. The easiest way to
achieve the task at hand is to specify an executable filename. Overloads exist that take in
more information, such as arguments and/or user credentials, to perform a “run as” execu-
tion. Let’s keep things simple and start cmd.exe as shown here. Notice that we don’t
specify a full path and rely on the environment settings to resolve the path automatically:

var cmd = Process.Start(“cmd.exe”);

SHELL EXECUTE BEHAVIOR

The managed Process API is a wrapper around the CreateProcess Win32 API as well
as the ShellExecute API provided by the Windows Shell. Depending on the use of the
API, either of the two is chosen. For example, when passing an HTTP address to the
Process.Start method, ShellExecute will launch a browser.

The returned object is a Process instance that can be used to monitor the process. Because
starting a process is an asynchronous act, we can continue execution while the process is
running. One common task is to synchronize with another process’s termination and grab
its exit code. This can be done using the WaitForExit method:

cmd.WaitForExit();

When this blocking method returns, the target process will have terminated, and the exit
status will be available through the HasExited, ExitCode, and ExitTime properties. For
example, write down the following piece of code and run it:

var cmd = Process.Start(“cmd.exe”);

Console.WriteLine(“We’re not blocked while cmd.exe is running...”);

cmd.WaitForExit();

Console.WriteLine(cmd.ExitCode);

1388 CHAPTER 27 Diagnostics and Instrumentation

In the command prompt instance that shows up, enter exit 5 to exit the prompt with
exit code 5. Our application should observe this through the ExitCode property. In some
cases, you can’t afford to block the parent process while waiting for the child process to
terminate. Instead, the use of an event seems more appealing. This too is possible, as
shown here:

var cmd = new Process

{

EnableRaisingEvents = true,

StartInfo = new ProcessStartInfo(“cmd.exe”)

};

cmd.Exited += (o, e) => Console.WriteLine(cmd.ExitCode);

cmd.Start();

while (true)

{

Thread.Sleep(500);

Console.Write(“.”);

}

Here we’re using the ProcessStartInfo object in conjunction with the Process class’s
constructor. This is done to avoid a race condition that would exist if we were to use
Process.Start, in which case it’s possible the process exits before we get a chance to
attach an event handler to the Exited event. Running the preceding code prints dots to
the screen, even while the child process is running. If the child process terminates, the
event handler code (here specified using a lambda expression) is executed. Although print-
ing dots is not the most appealing application, it clearly shows the asynchronous nature
that’s realized through the use of an event.

ProcessStartInfo has plenty of other rich capabilities, such as the capability to control
how the spawn process’s window looks or even to hide it to avoid distracting pop-ups
seen by the user. The following example shows a useful trick to redirect a process’s “stan-
dard output” to our process (for example, to log what another process is doing in a UI of
ours). Similarly, we could interact with the process’s standard input or error output:

var tlist = new Process

{

StartInfo = new ProcessStartInfo(“tasklist.exe”)

{

RedirectStandardOutput = true,

UseShellExecute = false

}

};

tlist.Start();

Console.WriteLine(tlist.StandardOutput.ReadToEnd());

1389Summary

In the next chapter, you learn more about I/O types such as StreamReader, which is used
here as the type of StandardOutput. An important aspect to point out is the required
setting of UseShellExecute to false to guide the Process class to use the CreateProcess
Win32 API, rather than ShellExecute, which doesn’t support redirection of input/output.
This piece of code simply blocks until the StandardOutput is completely read into a string
object, printing it to the screen. As a result, it prints the process listing in a text format as
received by the tasklist.exe command.

Summary
In this chapter, we briefly looked at the System.Diagnostics namespace, highlighting its
main features. Those include ways to instrument code to ease debugging as well as the
monitoring of production software. We also learned about the introduction of the code
contracts API in .NET 4, which allows you to go beyond the expressiveness of simple
debug asserts by expressing more invariants about your code.

Finally, we also examined a common operation for programs: the ability to interact with
other processes on the system. This functionality, too, finds its home in the same
System.Diagnostics namespace.

This page intentionally left blank

CHAPTER 28

Working with I/O

IN THIS CHAPTER
. Files and Directories 1392

. Monitoring File System
Activity 1400

. Readers and Writers 1401

. Streams: The Bread and
Butter of I/O 1408

. A Primer to (Named)
Pipes 1423

. Memory-Mapped Files in a
Nutshell 1426

. Overview of Other I/O
Capabilities 1429

Almost every application must deal with input and
output. I/O is an incredibly broad term that could apply to
user interaction all the way to making calls over a network.
From a narrower point of view, file operations are
commonly referred to as I/O operations.

In this chapter, we look at what the Base Class Library
(BCL) classifies as I/O by means of the System.IO name-
space, which mostly deals with operations on files and
directories. This chapter also introduces the notions of
streams, readers, and writers, which are used by other parts
of the framework to expose I/O. We also cover the essential
operations on those types to achieve synchronous and
asynchronous I/O operations.

Other System.IO capabilities are discussed as well, ranging
from file system watchers to more recent features, including
the use of named pipes to establish communication
between processes or different components of a system.
Finally, memory-mapped I/O was introduced in .NET 4 and
is touched on briefly in this chapter.

The key takeaway of this chapter isn’t to understand all the
I/O capabilities in the framework. Such an exhaustive
understanding would require us to cover things such as
networking sockets as well, for which we don’t have room.
Instead, we focus on the key concepts that can be applied
over and over again to deal with I/O in various application
programming interfaces (APIs).

1392 CHAPTER 28 Working with I/O

Files and Directories
Probably the most obvious I/O capability is to interact with the file system. Before getting
into details about creating or modifying a file, we discuss the API surface to list files and
directories. This will also include macroscopic file- and directory-level operations, such as
making copies or deleting files. The main classes exposing this kind of functionality are
DriveInfo, DirectoryInfo, and FileInfo, all of which live in the System.IO namespace.

Listing Drives

Querying the computer’s drive letters and related information is achieved through the use
of the DriveInfo class. To create instances of this type, either use the constructor that
takes a drive letter (such as A, B:, or C:\), or use the GetDrives static method to get an
array of all the drives on the machine.

Each DriveInfo object provides access to information about the drive represented by the
object. This includes things such as the drive type (fixed disk, DVD, and so on), volume
labels, free space, and so forth. The following example shows some of this information for
all the drives on the machine:

static void Main()

{

foreach (var drive in DriveInfo.GetDrives())

{

Console.WriteLine(“{0} - {1}”, drive.Name, drive.DriveType);

if (drive.IsReady)

{

Console.WriteLine(drive.DriveFormat);

Console.WriteLine(string.IsNullOrEmpty(drive.VolumeLabel)

? “(no label)”

: drive.VolumeLabel);

Console.WriteLine(“{0} free of {1}”,

GetSize(drive.TotalFreeSpace),

GetSize(drive.TotalSize));

}

else

{

Console.WriteLine(“(No disk present)”);

}

Console.WriteLine();

}

}

static string GetSize(double size)

{

var prefixes = new[] { “bytes”, “KB”, “MB”, “GB”, “TB”, “PB”, “EB” };

1393Files and Directories

int i;

for (i = 0; size > 1000; i++)

{

size /= 1024;

}

return string.Format(“{0:##0.##} {1}”, size, prefixes[i]);

}

ASTRONOMIC STORAGE SIZES

Readers with an eye for detail may remark that the GetSize method can hit an array
out-of-bounds exception when exceeding the exabyte range. Although this is unlikely, I
encourage you to compute the number of bytes that fit in 1024 exabytes and compare
this with the range of a signed long integer.

This piece of code prints the following on my laptop:

C:\ - Fixed

NTFS

(no label)

0.99 GB free of 74.43 GB

D:\ - Fixed

NTFS

Backup

215.29 GB free of 465.76 GB

E:\ - CDRom

UDF

HET_EILAND_DVD_2

0 bytes free of 6.24 GB

Y:\ - CDRom

(No disk present)

Other drive types can show up, such as connected network drives, removable storage, and
RAM disks. Be aware that some operations on a DriveInfo object can signal errors by
throwing an exception when access is denied, the drive is not ready, and so on. Refer to
the MSDN documentation for more information about the types of exceptions than can
be thrown under various circumstances.

1394 CHAPTER 28 Working with I/O

THE SUBST COMMAND

Multiple drives can show up for the same underlying storage volume because of the
way the operating system allows mapping different letters to the same storage. This
can occur if you use the Disk Management MMC snap-in or even the command-line
subst command. For example, running subst T: C:\temp will map drive letter T: to
the C:\temp folder. The .NET DriveInfo API will actually see the T: drive with exactly
the same information as the C: drive that holds the data.

The ideal bridge to our subsequent discussion of DirectoryInfo objects is DriveInfo’s
RootDirectory property. This property gives access to the root directory of a ready drive
(for example, C:\ for the C: drive). As you may already expect, this allows us to enumerate
the file system on the drive. Finally, notice the DriveInfo object does not expose any kind
of lifecycle operations, such as creating drive letters.

Working with Directories

As you know, directories are containers for files and other directories and thus provide a
hierarchical means of organizing data. This is almost accurate because there are ways to
create cycles on a file system. Ignoring this detail, you should already have an idea about
what the DirectoryInfo will expose. Let’s take a look by means of an example:

Console.Write(“Enter path: “);
var path = Console.ReadLine();
Console.WriteLine();

var folder = new DirectoryInfo(path);
if (folder.Exists)
{

Console.WriteLine(“Full name: “ + folder.FullName);
Console.WriteLine(“Name: “ + folder.Name);
Console.WriteLine(“Created: “ + folder.CreationTime);
Console.WriteLine(“Parent: “ + folder.Parent.FullName);
Console.WriteLine(“Root: “ + folder.Root);

}

This little piece of code shows a few interesting properties of directories, including a way
to navigate to a folder’s parent and (drive) root folder DirectoryInfo object. An example
of the output looks like this:

Enter path: c:\windows\system32

Full name: c:\windows\system32
Name: system32
Created: 7/13/2009 8:20:14 PM
Parent: c:\windows
Root: c:\

1395Files and Directories

Richer navigation can obviously be achieved, using various methods. Two approaches
exist, both of which we cover now. The first is to use the Get methods that enable you to
retrieve files and directories immediately contained by the directory. Three of those
methods exist: GetFiles, GetDirectories, and GetFileSystemInfos. The last one may be
surprising but reveals a common base class for both DirectoryInfo and FileInfo, with
common properties such as name, attributes, time stamps, and so on. An example of a
simple dir command is shown here:

var folder = new DirectoryInfo(path);

if (folder.Exists)

{

foreach (var child in folder.GetFileSystemInfos())

Console.WriteLine(“{0} {1}”, child is FileInfo ? “ “ : “D”, child);

}

Here we use a type check to determine whether a child object is a directory or a file.

Another way to enumerate directories and files is to use the Enumerate methods. The
difference is that these methods allow the specification of a search pattern as well as a
search scope (for example, to search all subdirectories). An example is shown here:

var folder = new DirectoryInfo(path);

if (folder.Exists)

{

foreach (var exe in folder.EnumerateFiles(“*.exe”,

SearchOption.AllDirectories))

Console.WriteLine(exe.FullName);

}

Exceptions can occur because of unauthorized access, so be sure to handle this condition
appropriately (for example, if the search path is taken from some [user] input).

JUNCTIONS IN THE SEARCH ROAD

Enumerating files and folders recursively is always a dangerous business because
cycles can occur due to the operating system’s support for so-called junctions. For
example, a cycle can be created as follows:

C:\Temp>mklink /J Self C:\Temp

Junction created for Self <<===>> C:\Temp

Now enumerating the C:\Temp folder recursively will actually result in an infinite loop
because the C:\Temp\Self junction refers to its parent. Unfortunately, the built-in APIs
traverse such junctions, which can lead to this kind of pathological scenario.

1396 CHAPTER 28 Working with I/O

I encourage you to create a recursive enumeration that’s not prone to this kind of
issue. This is harder than you might think because state needs to be kept and compar-
ison of paths is also not very easy. In the end, I suggest that you not use in-depth enu-
meration methods if the target path is an unknown nontrusted location (for instance,
coming from user input). Lucky for us, for a lot of scenarios it suffices to descend a
single folder level at a time (for example, in directory browsing dialogs).

Retrieving properties of directories is one thing; in lots of cases, you also want to carry out
manipulations of directories. Methods to accomplish those operations exist, too, on the
DirectoryInfo class. A few examples are shown here:

var folder = new DirectoryInfo(path);

if (!folder.Exists)

folder.Create();

var subfolder = folder.CreateSubdirectory(“Bar”);

Console.WriteLine(subfolder.CreationTime);

subfolder.Delete(/* can specify to recurse into subdirectories */);

Console.WriteLine(subfolder.Exists);

subfolder.Refresh();

Console.WriteLine(subfolder.Exists);

Most of these are self-explanatory, but Refresh may need some explanation. The various
classes in System.IO that represent files and directories don’t always hit the operating
system APIs to retrieve data, which speeds up operations. In the preceding code, calling
Exists returns false even though the folder has been deleted already. Beware of this quirk
(which is by design, no need to file bugs), and use the Refresh method if you’re keeping
those info objects around for requerying.

IF IT EXISTS, IT MIGHT BE GONE

The use of properties such as Exists has limited value. In the world of multitasking
and multithreading, it may be the case that others are changing the (file) system’s
state without your knowledge, invalidating your existence check:

if (file.Exists)

{ // What if other code is scheduled here, removing the file?

file.Delete();

}

Only one reliable way exists to check for a shared object’s existence, including files and
directories: Don’t perform a check at all! Instead, just take an action on the object. In
other words, even if you have lots of Exists checks, always be prepared for code oper-
ating under such an assumption to fail. That is, exception handling (of course, without
swallowing caught exceptions) is the way forward.

1397Files and Directories

Finally, if you really need lots of file-related operations to fail or succeed together in a
transactional manner, you might want to look at Windows Vista’s (and later) support for
Transactional NTFS, abbreviated TxF. At this point, there are no built-in wrappers in .NET
to support this, but people have had successes at building such wrappers using (lots
of) P/Invoke.

A few operations we haven’t mentioned include the capability to move whole directories
using MoveTo and means to deal with the directory object’s security descriptor. The latter
is a rather specialized undertaking, benefiting from an intimate knowledge of the
Windows NT security subsystem and access control lists (ACLs) in particular. To get or set
the ACL, the GetAccesControl and SetAccesControl methods are provided, using types
from the System.Security.AccessControl namespace. I leave an exploration of those
APIs to you and recommend that you study MSDN thoroughly before tackling security-
related business.

Working with Paths

In the previous examples, we’ve been dealing with user input to specify a path. If a path
contains invalid characters, constructors like DirectoryInfo’s will throw an exception to
signal such an issue.

Often, developers need to go beyond just taking a prepared path. While paths are just
string values, manipulating them as such (for example, using plain old concatenation)
isn’t a particularly good idea, especially when user input is involved. The chance of build-
ing an invalid path exists, so it’s better to let specialized functions do the job. For this
purpose, the static methods on the Path class were introduced as wrappers around a set of
APIs available in Win32.

One set of methods deals with breaking up a path in its constituents, such as the file or
directory name, the extension, and so on. Other methods that deal with analyzing paths
enable you to detect invalid characters, check whether a path is absolute or relative, and
so on. Examples of some of those methods are shown here:

var path = @”c:\temp\test.txt”;

Console.WriteLine(“Absolute: “ + Path.IsPathRooted(path));

Console.WriteLine(“Root: “ + Path.GetPathRoot(path));

Console.WriteLine(“Directory: “ + Path.GetDirectoryName(path));

Console.WriteLine(“File name: “ + Path.GetFileName(path));

if (Path.HasExtension(path))

Console.WriteLine(“Extension: “ + Path.GetExtension(path));

Console.WriteLine(“Full path: “ + Path.GetFullPath(“test.txt”));

1398 CHAPTER 28 Working with I/O

Output of all methods should be predictable, maybe with the exception of the last. The
use of GetFullPath allows a relative path to be turned into an absolute one, using the
current working directory.

Other methods on the Path API allow modification and manipulation of paths, such as
changing an extension or combining path fragments with path separators (typically a \
character). For example:

var path = Path.Combine(\”, “temp”, “test.txt”);

var back = Path.ChangeExtension(path, “.bak”);

Console.WriteLine(back);

Finally, some handy methods exist to obtain the temporary folder, generate a random file-
name, and physically create a temporary file. This last capability is the sole API on the
Path class that creates a file, while the others only perform string manipulations:

Console.WriteLine(Path.GetTempPath());

Console.WriteLine(Path.GetRandomFileName());

// Creates an empty file on disk under the %TEMP% location.

Console.WriteLine(Path.GetTempFileName());

This piece of code produces the following output on my machine. As mentioned earlier,
the last line contains the full path to a (zero-byte) temporary file that can be used by the
application as a scratchpad and whatnot. It’s considered polite to remove such a tempo-
rary file when you’re done with it, using methods like File.Delete:

C:\Users\bartde\AppData\Local\Temp\

noqh02b4.yik

C:\Users\bartde\AppData\Local\Temp\tmp4A41.tmp

The FileInfo Class

To top off the set of Info classes, there’s FileInfo. This is most likely the one you’ll be
dealing with quite often if you want to pass around an object representing a file, its loca-
tion, and its various attributes. The members on the type shouldn’t come as a big surprise
because we all know common file-level operations.

One thing that sets it apart from the discussed Info classes so far is the capability to get to
and manipulate the contents of an individual file. We ignore this aspect right now and
come back to it later when discussing file I/O.

A few examples illustrating the properties of a FileInfo object are shown here:

Console.Write(“Enter path: “);

var path = Console.ReadLine();

Console.WriteLine();

1399Files and Directories

var file = new FileInfo(path);

if (file.Exists)

{

Console.WriteLine(“Created: “ + file.CreationTime);

Console.WriteLine(“Accessed: “ + file.LastAccessTime); // Bogus...

Console.WriteLine(“Modified: “ + file.LastWriteTime);

Console.WriteLine(“Directory: “ + file.Directory.FullName);

Console.WriteLine(“Read-only: “ + file.IsReadOnly);

Console.WriteLine(“Attributes: “ + file.Attributes);

Console.WriteLine(“Size: “ + GetSize(file.Length));

}

In this example, we’re using the GetSize “pretty printing” helper defined earlier in the
example of drive information listing. The Attributes property returns a flags enum that
enables you to check for flags such as hidden, system, compression, encryption, read-only,
and so on. Because checking for read-only is a fairly common operation, a dedicated prop-
erty for the task was introduced.

LAST ACCESS TIME

Notice our polite comment on the LastAccessTime property in the preceding example.
This property doesn’t provide much meaningful information because the file system
delays the update of this time stamp (for NTFS up to one hour). In fact, in recent ver-
sions of the operating system, such as Windows 7, updating the last access time is
disabled by default, which increases performance. You can check this setting by run-
ning fsutil query DisableLastAccess.

Just as for the DirectoryInfo class, various file-level operations are exposed on this class
as instance methods. Examples include MoveTo to move a file to another location (also
allowing a rename operation), Replace to overwrite it with another file, and Delete for
obvious purposes.

Access control methods are present too but require the reader’s further self-study of
Windows NT security, as mentioned earlier. One security-related easy-to-use pair of
methods is Encrypt and Decrypt, available on NTFS volumes. They leverage the EFS
(Encrypting File System) feature of the file system. When encrypting a file using this
mechanism, it will only be decryptable by the account that encrypted it originally, ignor-
ing the existence of recovery agents. (Refer to TechNet for more information about the
configuration and management of EFS.)

1400 CHAPTER 28 Working with I/O

FIGURE 28.1 Using the FileSystemWatcher component.

Monitoring File System Activity
Before getting into ways to create and manipulate files, let’s look at how we can monitor
file system activity. Such activity includes the creation, removal, renaming, and modifica-
tion of files by any party using the file system. Far too often, people resort to polling tech-
niques to check for the presence of a file instead of using some kind of monitoring API to
observe file creation. Polling the file system isn’t cheap and involves excessive I/O.

Luckily, .NET exposes low-level file system APIs that enable you to watch activity. The
component class used for this purpose is called FileSystemWatcher. Because this class is
defined as a component (as discussed briefly in the preceding chapter), we can use it from
the Toolbox and drag it onto a designer, such as a Component designer, as shown in
Figure 28.1.

To observe any changes through the events exposed by the object, it’s essential for the
EnableRaisingEvents property to be enabled. Other configuration settings to be supplied
include a filter (by default set to *.*), the path to monitor for changes, and whether
subdirectories should be monitored (defaults to false). The flags set on the NotifyFilter
property allow specification of what changes will trigger a Changed event. Other events,
such as Created, Deleted, and Renamed, are not impacted by those flags. To hook up event
handlers, go to the events display in the Properties window and double-click the events
you’re interested in. This generates event handler methods on your behalf, as shown in
Figure 28.2.

In the event handler, the event arguments can be inspected to obtain the full path to the
file that was affected. For the Changed event, the type of the change can be checked as
well. Instead of showing the use of a component class with a designer (which is easy to
get working), we use the FileSystemWatcher directly from code to illustrate its power:

1401Readers and Writers

FIGURE 28.2 Configuring an event handler for a FileSystemWatcher object.

using (var watcher = new FileSystemWatcher(Path.GetTempPath(), “*.*”))

{

watcher.Created += (o, e) =>

{

Console.WriteLine(“Created: “ + e.FullPath);

};

watcher.EnableRaisingEvents = true;

Console.WriteLine(“Monitoring... Press ENTER to exit.”);

Console.Read();

}

To see the event handler getting called, opening an instance of Internet Explorer or an
Office tool such as Word should do the trick because those programs write files to
%TEMP%, using APIs similar to Path.GetTempFileName.

Readers and Writers
At the heart of .NET’s input/output model sits the concept of streams. Before we go there,
let’s look at the layer right above them. There we find the concept of readers (for the I in
I/O) and writers (the O in I/O), both of which make use of streams easier. In fact, the file
and directory APIs directly exposed those.

The File Class

Alongside the FileInfo class, the System.IO namespace provides a home for a static class
called File. Whereas one typically uses a FileInfo to pass around information about a file
as an object, the File class provides a series of static methods that expose file system func-
tionality. In fact, some of FileInfo’s instance methods simply call into some of the static
methods provided on file.

1402 CHAPTER 28 Working with I/O

A first set of methods that deal with files on a wholesale basis is omitted from our discus-
sion here because we’ve seen similar methods like Delete on FileInfo. Instead, we focus
on methods that provide access to the contents of a file, which brings us to the concept of
readers and writers quite directly.

DIRECTORY VERSUS DIRECTORYINFO

As you might expect by now, the DirectoryInfo class also has a sibling called
Directory, which is a static class exposing various directory-level operations. The phi-
losophy is similar: The static class provides a flat API that’s close to Win32 functions
with similar functionality. The DirectoryInfo class, on the other hand, represents a
single directory and has instance-level methods.

Convenient File Read Methods
Let’s start by showing how to read a whole text file, as shown here:

using System;

using System.IO;

class Program

{

static void Main()

{

string[] lines = File.ReadAllLines(@”..\..\Program.cs”);

foreach (var line in lines)

Console.WriteLine(line);

}

}

Assuming this code is written in a typical Console Application project, a simple press of
Ctrl+F5 starts the program from the compilation target folder bin\Debug. The use of a rela-
tive path two levels up brings us to the folder containing the source files, referring to
Program.cs. In summary, the preceding, when executed from Visual Studio, will print itself.

The ReadAllLines method is nothing but a convenience method around lower-level func-
tionality. In fact, initial versions of the .NET Framework omitted such methods, being one
of the main customer feedback items for the BCL team. A similar method called
ReadAllText exists, which doesn’t return a string array but rather one string containing all
the file’s text (hence containing \r\n or \n characters). Both of them have overloads that
take in an Encoding object to guide the read operation and the conversion to text.

Another similar method is ReadAllBytes, returning a byte array. Although all of them are
helpful methods, they should be used with some care when potentially big files are
involved. For one thing, all the methods are synchronous and therefore block until the
whole file is read. You’ll learn in the section “Asynchronous Read and Write Operations”
how to do asynchronous file I/O operations. It’s also the case that you don’t often need

1403Readers and Writers

the whole file contents, allowing for more fine-grained access patterns, as discussed in the
section “Working with Files: Take Two.”

Convenient File Write Methods
Mirror images of the ReadAll methods exist to allow similar write operations. It speaks for
itself that they are prefixed with WriteAll. These methods create a new file, write the
specified contents to it, and close the file.

For example, the following code combines the ReadLines and WriteAllLines methods,
using an overload for the latter method that takes in an IEnumerable<string>. Before
.NET 4, only overloads taking in an array of strings existed, which made the use of LINQ
on conjunction with the API a rather suboptimal experience. In this little example, we
copy a file but remove leading whitespace:

using System;

using System.Linq;

using System.IO;

class Program

{

static void Main()

{

File.WriteAllLines(

@”..\..\Program.bak”,

from line in File.ReadLines(@”..\..\Program.cs”)

where !string.IsNullOrWhiteSpace(line)

select line.TrimStart()

);

}

}

Besides the WriteAll methods, there’s also AppendAllLines and AppendAllText, which
allow appending to an existing file (or creating one if the file doesn’t exist yet). In
contrast, the WriteAll methods create a new file, possibly overwriting existing ones.

You might have noticed this example uses a method called ReadLines rather than the
ReadAllLines method discussed earlier. What’s the difference? The answer lies in the
return type, with ReadLines returning an IEnumerable<string>. Internally, this method is
implemented as an iterator, and therefore a single line can be read at a time in response to
a MoveNext call on an acquired enumerator. For example, because of the lazy nature of the
various LINQ query operators, the following has to read only the first three lines of input:

using System;

using System.Linq;

using System.IO;

1404 CHAPTER 28 Working with I/O

class Program

{

static void Main()

{

File.WriteAllLines(

@”..\..\Program.bak”,

File.ReadLines(@”..\..\Program.cs”).Take(3)

);

}

}

In contrast, the use of ReadAllLines would drain the whole file contents into an in-
memory array. If you’d be enumerating that array and break from the loop before reach-
ing the end (which is more or less what Take does), you’d have (pre)fetched way too much
useless data from the file.

Exposing Files with Readers and Writers
The set of Read, Write, and Append methods we’ve discussed thus far all rely on lower-level
constructs in the I/O APIs to achieve their goals. It’s quite obvious that you can use those
primitives directly as well (for example, using other methods exposed by the File class).

Methods such as AppendText, CreateText, and OpenText are precisely what I’m referring to
here. Instead of consuming or exposing string sequences such as arrays, the concept of
StreamReader and StreamWriter objects is used. For example, using CreateText, you
obtain a StreamWriter, which can be used to write to the underlying file:

using (StreamWriter sw = File.CreateText(“log.txt”))

{

sw.WriteLine(“{0} - Started”, DateTime.Now);

// Do work

sw.WriteLine(“{0} - Stopped”, DateTime.Now);

}

As mentioned before, the Create method differs from Append in the way it deals with
existing files, so the preceding code will overwrite a log.txt file (in the working directory)
if it already exists. Notice the use of a using block to close the file under all circumstances,
including the possibility of an exception occurring. If you don’t do so, a file handle will
remain open, causing the file to appear locked, as shown in Figure 28.3, where an attempt
to delete the file is made while the file is still opened.

Notice the size of the file is also still 0 bytes. Indeed, when opening the file before it gets
closed, there’s no guarantee about the contents you’ll be able to see. The reason this mani-
fests itself is because of the lack of automatic flushing in the default configuration, which
enables you to improve performance of file I/O. If you really need and want such flushing
behavior (despite the impact it has on the file system), you can set the AutoFlush property
on the StreamWriter:

1405Readers and Writers

FIGURE 28.3 Improper disposal can cause grief.

using (StreamWriter sw = File.CreateText(“log.txt”))

{

sw.AutoFlush = true;

sw.WriteLine(“{0} - Started”, DateTime.Now);

// Do work

sw.WriteLine(“{0} - Stopped”, DateTime.Now);

}

Doing so will cause every write call on the writer to cause a flush operation. A better
approach is to call the Flush method manually in places where you absolutely want the
data to be flushed to disk (for instance, because you need readers to be able to see the
contents of a file immediately after some critical work has been performed).

Besides the WriteLine method, a Write method with a whole bunch of overloads exists,
allowing values of primitive types to be written. As the name implies, they don’t get
followed by a newline character. Speaking of which, the newline character used by the
stream writer can be configured through the NewLine property. It really isn’t a single char-
acter but rather a string, which defaults to ”\r\n”.

The opposite of writing is reading, as accommodated by the StreamReader class. In the
following example, we basically do what ReadAllLines does internally:

using (StreamReader sr = File.OpenText(@”..\..\Program.cs”))

{

while (!sr.EndOfStream)

Console.WriteLine(sr.ReadLine());

}

1406 CHAPTER 28 Working with I/O

Other loops are often seen to read text, such as one that repeatedly calls the ReadLine
method and checks for null to detect whether the end of the file has been reached. As
expected, other methods, such as Read, ReadToEnd, and ReadBlock, can be found, all of
which allow reading at different levels of granularity. For example, the Read method has
two overloads, one of which returns a single character, whereas another takes in an array
of characters to be populated:

using (StreamReader sr = File.OpenText(@”..\..\Program.cs”))

{

var buffer = new char[1024];

int read = sr.Read(buffer, 0, buffer.Length);

Console.WriteLine(“{0} characters read”, read);

}

Before studying the File class’s capabilities any further, it’s time to take a closer look at
the concept of readers and writers, which find use outside file I/O as well.

TextReader and TextWriter

The two classes we briefly encountered in the previous examples are subclasses of the
TextReader and TextWriter classes. Using object-oriented programming at its best, these
base classes offer virtual methods for a series of operations that can be applied in more
than just the context of file I/O. In fact, on our much beloved Console class, you can find
static properties called In and Out that expose a TextReader and a TextWriter:

string line = Console.In.ReadLine();

Console.Out.WriteLine(line);

Console directly offers access to those common operations by providing shortcut methods
on the class itself, but in reality a pair of reader and writer objects provides access to the
Win32 console. In fact, those readers and writers can be substituted by means of Set
methods, such as SetIn. This is quite handy when you’re writing a console application
that can receive input directly from the console (through user interaction) or from a file
(for example, as specified through a command-line flag). Using the SetIn method, you
can simply continue writing code against methods like Console.ReadLine while input is
being redirected from another reader:

static void Main(string[] args)

{

if (args.Length == 1)

{

Console.SetIn(File.OpenText(args[0]));

}

string line;

while ((line = Console.ReadLine()) != null)

1407Readers and Writers

{

// Process input

}

}

As you can see, the abstraction level introduced by TextReader is quite handy. As an
example of a place where a TextWriter object is used, take a look at the LINQ to SQL base
class for data contexts, known as DataContext. To log generated T-SQL statements that are
sent to the server in response to enumerating over a LINQ query, the Log property on
DataContext enables you to set a TextWriter. Although a file could be used, one often
assigns Console.Out to it:

var ctx = new NorthwindDataContext();

ctx.Log = Console.Out;

var res = from p in ctx.Products where p.UnitPrice > 100m select p;

foreach (var p in res /* here a T-SQL statement will be built and logged */)

Console.WriteLine(p.ProductName);

StringReader and StringWriter

Besides StreamReader and StreamWriter deriving from the TextReader and TextWriter

base classes, other derived types exist. StringReader and StringWriter are such classes,
allowing reading from and writing to string objects. Because strings are immutable, this is
a bit of a lie because the StringWriter uses a StringBuilder to write (and append) to.

An example of the use of these two types is shown here:

StringBuilder sb = new StringBuilder();

TextWriter writer = new StringWriter(sb);

string input = Console.ReadLine();

writer.WriteLine(input);

TextReader reader = new StringReader(sb.ToString());

string line = reader.ReadLine();

Console.WriteLine(line);

This is just a very roundabout way of taking input and writing it back to the console, but
it shows the typing relationships of the various classes involved and how the
StringBuilder acts as an intermediary StringWriter target.

On to Streams
Our discussion of StreamReader and StreamWriter classes is the ideal way to transition to
the subject of streams. In fact, StreamReader and StreamWriter are slight misnomers

1408 CHAPTER 28 Working with I/O

FIGURE 28.4 The Stream class seen through Object Browser.

because they operate with textual data, whereas a stream is more general. What a stream
really represents is a stream of bytes allowing read, write, and seek operations.

The StreamReader and StreamWriter classes clearly operate on streams but expose them as
characters or strings, which is quite logical given their base classes but rather illogical
given their naming. Without skipping too much ahead, suffice to say the Base Class
Library (BCL) has readers and writers for streams that operate on binary data as well. They
are called BinaryReader and BinaryWriter. We discuss those two types as part of our
discussion of streams in the next section.

Streams: The Bread and Butter of I/O
The notion of a stream is the lowest you can go in terms of .NET’s managed code I/O
system. Figure 28.4 shows an overview of the members of the Stream class.

First of all, let’s discuss a stream’s potentially supported capabilities, which include the
capability to read from and write to a stream and also the capability to seek. A seek opera-
tion basically moves a cursor—as seen through the Position property—that indicates
where the next read or write operation will take place. Another capability is whether an
operation on a stream is subject to timeout.

Capabilities are queryable through a set of Is* properties, which is of importance if you
deal directly with Stream objects. Because a Stream acts as the base class for a wide range

1409Streams: The Bread and Butter of I/O

of data streams, some operations might not be supported by all of them. For example, the
Null stream (exposed through the public read-only Null field on Stream) doesn’t support
timeout, so don’t expect settings like ReadTimeout to have effect. To prevent exceptions
from being thrown in highly polymorphic code operating on a wide range of possible
streams, check those Is* properties before carrying out certain operations.

As you can see from the Read and Write methods, stream objects deal directly with byte
values rather than characters, numbers, and so on. Let’s take a look at a couple of stream
object examples.

Memory Streams

To emphasize I/O is much more than just files, let’s start by using streams to look at in-
memory data. The following code uses a byte array as an in-memory storage for data that
gets surfaced through two memory streams. Each stream has an offset in the array and can
be marked as read-only. In some sense, a stream acts as a “view” of the underlying raw data.

var bs = new byte[20];

var ms1 = new MemoryStream(bs, index: 5, count: 10, writable: true);

var ms2 = new MemoryStream(bs, index: 10, count: 10, writable: false);

ms1.Seek(5, SeekOrigin.Begin); // @ relative = 5, absolute = 15

ms1.Write(new byte[] { 9, 8, 7 }, 0, 3);

Console.WriteLine(bs[10]); // 0x09 @ absolute = 10

Console.WriteLine(ms2.ReadByte()); // 0x09 @ relative = 0, absolute = 10

Console.WriteLine(ms2.ReadByte()); // 0x08 @ relative = 1, absolute = 11

Console.WriteLine(ms2.ReadByte()); // 0x07 @ relative = 2, absolute = 12

bs[18] = 1; // 0x01 @ absolute = 18

ms2.Seek(5, SeekOrigin.Current);

Console.WriteLine(ms2.ReadByte()); // 0x01 @ relative = 8, absolute = 18

Figure 28.5 shows how things are laid out in memory. Each stream has a position that is
automatically updated by operations, such as ReadByte. Because of this, you can see subse-
quent calls to ms2 print values from consecutive cells of array memory. Various Seek oper-
ations are used to move the position in the stream, either relative to the start of the
stream or to the current position. The three ReadByte calls on ms2 have moved the cursor
by three positions, so adding another 5 relative from the current position (as seen on the
second to last line) puts us at a total of 8 bytes away from the start of the stream. That’s
precisely where 0x01 was written to the underlying array, and thus we see that value being
surfaced by the next ReadByte call.

1410 CHAPTER 28 Working with I/O
P

h
ys

ic
al

L
o

g
ic

al

byte[] bs

0 1 2 3 4 5 6 7 8 9 10

9 8 7

9 18 7

1

11 12 13 14 15 16 17 18 19

MemoryStream ms1

MemoryStream ms2

0

Seek(5, Current)ReadByte() x 3

1 2 3 4 5 6 7 8 9

9 8 7

0

Seek(5, Begin)

1 2 3 4 5 6 7 8 9

FIGURE 28.5 Physical storage with logical views using MemoryStream objects.

The use of MemoryStream can prove handy when different subsystems need to work
together in populating or reading data stored in in-memory data structures. Each such
system has a view on the area of data it’s responsible for or can read from. This kind of in-
memory stream can also be used as an offline “composition surface” for data that’s subse-
quently written to another stream using the WriteTo method.

Working with Files: Take Two

Where the use of StreamReader and StreamWriter are great to deal with text files, they fall
short in providing byte-level access to a file. Other methods on the File class used to
open or create files expose FileStream objects, which allow for richer manipulation of the
data contained in a file. For example:

using (FileStream fs = File.OpenRead(\windows\system32\notepad.exe”))

{

var m = (char)fs.ReadByte();

var z = (char)fs.ReadByte();

Console.WriteLine(“{0}{1}”, m, z);

}

This trivial example shows how to obtain a FileStream object that can read from the spec-
ified file. It uses the ReadByte method two times to read the first 2 bytes of an executable
file, which are always MZ, after the creator of the executable file format, Mark Zbikowski.
Although this is plain old ASCII text, you can see we’re simply reading the data as bytes
and interpreting them as characters. Looking further in the file, you would obviously see
data that doesn’t look very meaningful when interpreted as textual data (such as the
executable’s assembly code).

The OpenRead method is just one of the many Open methods available. It controls the
operations allowed on the obtained FileStream, in the case of OpenRead being set to

1411Streams: The Bread and Butter of I/O

read-only. The most generic method is Open, which can be passed a number of flags,
including the file mode, file access, and file sharing:

. FileMode indicates the actions implied by opening a file. This includes the capabil-
ity to create a file with or without overwriting behavior, to append to an existing
file, and so on.

. FileAccess is simply read, write, or a combination of both. The flags enum has a
convenient ReadWrite combo available.

. FileShare controls what others can do with the file while the FileStream is used.
For example, you can allow others to read the file while it’s in use but disallow
simultaneous writes.

File.Create and File.OpenRead are shortcuts into this most generic Open method. An
example of using the Open method is shown here:

using (var fs = File.Open(path, FileMode.Open, FileAccess.Read,

FileShare.ReadWrite))

With those specified flags, the file specified by path will be opened for read access, throw-
ing an exception when the file does not exist. The ReadWrite sharing allows any other
party to open the file allowing those actions. Therefore, this is one of the most permissive
opening modes.

BinaryReader and BinaryWriter

To go beyond raw byte sequences when dealing with I/O data, the BCL designers invented
the BinaryReader and BinaryWriter classes. Just as StreamReader and StreamWriter can
be constructed by passing in a Stream object to a constructor, this abstraction simplifies
the use of streams by providing additional methods. For example, where StreamReader
concerns itself with the notion of textual data and provides a ReadLine method, the
BinaryReader class exposes Read methods for various primitive multibyte data types.

Let’s look at an example, again using binary files:

using (var fs = File.OpenRead(\windows\system32\notepad.exe”))

using (var br = new BinaryReader(fs))

{

br.BaseStream.Position = 0x3c;

int offset = br.ReadInt32();

br.BaseStream.Position = offset;

char[] signature = br.ReadChars(2);

Console.WriteLine(new string(signature));

}

1412 CHAPTER 28 Working with I/O

First of all, notice the use of using blocks to ensure proper disposal of the reader that’s
sitting on top of a stream, as well as the stream itself. It’s considered good practice to
make sure all such IDisposable-capable I/O resources are cleaned up deterministically
using this pattern.

The create BinaryReader is just a view over the underlying file stream object, which can
now be consumed more easily. A binary reader object by itself doesn’t have ways to
change the position in the stream but does expose the underlying stream through the
BaseStream property. In our example, we use the stream’s Position property to jump to
the position at offset 0x3c in the executable file.

Reading data from the selected position using some primitive type is where the use of a
BinaryReader comes in handy. For example, to get an Int32 value from the current
stream’s position, we can use ReadInt32. This reads 4 bytes and stuffs them into a signed
32-bit integer in a little-endian format.

BIG OR LITTLE ENDIAN?

Windows is one of the operating systems that chose the use of “little-endian” byte
ordering within larger words (such as a 32-bit, 4-byte integer). The endian-ness concept
was introduced in a paper by Danny Cohen titled “On Holy Wars and a Plea for Peace,”
in which he was inspired by Gulliver’s Travels (Jonathan Swift). In Swift’s book, religious
sects called the Lilliputians had a dispute about how to crack open boiled eggs. One
camp said to start from the “little end,” whereas the opponents said to start from the
“big end.” Cohen used this for an analogy with byte ordering: Should the representation
of words in memory start with the little end (that is, least significant byte) or the other
way around?

In a little-endian architecture, as used by Windows and therefore .NET’s BCL sitting on
top of it, the least significant bytes of a (quad, double, single) word come first. For
example, the double word (or a 32-bit integer) with value 0x12345678 is really stored
as the sequence 0x78, 0x56, 0x34, 0x12. ReadInt32 applies this rule when comput-
ing a 32-bit integer value out of the 4 bytes it acquired from the stream (that is, it
“reverses” the bytes to build up the 4-byte 32-bit integer).

Now that we’ve read the signed 32-bit integer representing some kind of offset (see the
next sidebar to reveal the mystery of this magic offset), we set the underlying stream’s
position to the retrieved value. In fact, it’s worth pointing out that the call to ReadInt32
by itself caused the BaseStream’s position to have increased by 4 as it read that many
bytes from the stream. We’re disregarding this automatic position update, which would
allow us to continue calling ReadInt32 to read consecutive groups of 4 bytes, each of
which denotes a 32-bit integer. Instead, we just use the setter of Position to advance the
cursor to where we want.

At the new position, we use yet another specialized Read method on BinaryReader, this
time to read a specified number of characters into an array. The two characters read are

1413Streams: The Bread and Butter of I/O

finally printed to the console by using one of the System.String constructor overloads
that constructs a string out of a character array. The result of this piece of code should
read PE, no matter what executable file you give it.

PE/COFF FILES

So what’s all the magic in this example about? Executable files on Windows are known
as Portable Executable files, or PE files. The acronym COFF is mentioned quite often,
too. It stands for Common Object File Format. You can download the specification of
those files’ layout from the Microsoft website (search for PE/COFF).

If you’re a true geek and decide to look up this specification, you’ll find that executable
files exist of a DOS header, which nowadays prints “This program cannot be run in DOS
mode” if you try to run a modern application on, say, MS-DOS or some emulator.
However, the old DOS stub is still used by the loader because it does contain a file
offset pointing at the location where the “modern” PE/COFF header lives. All of this bit-
twiddling is a matter of maintaining compatibility. As you can guess by now, this offset
lives at location 0x3c.

After we adjust the position in the file stream object to 0x3c, we can read the
PE/COFF header, which starts with 4 bytes containing P, E, \0, \0. In our example, we
simply read the first two of those. The bit-twiddling type of readers are most welcome
to take the PE/COFF specification and implement a C#-based tool to extract much
more information from an executable (up to and including the executable code byte
sequences in there).

Asynchronous Read and Write Operations

All the I/O operations explained in the previous sections have been of the synchronous
kind, meaning the caller is blocked until the data becomes available. Sometimes it’s more
appropriate to read or write data asynchronously and get notified when the action has
been completed. The Stream class has intrinsic support for this modus operandi.

The essence of this feature is found in Begin/End method pairs, such as BeginRead and
EndRead. Where Read is a blocking operation waiting for data to be read and bubbled up to
the application, the BeginRead method immediately returns. However, it doesn’t have the
requested data available right away. Instead, it will call you back after it has completed. To
do so, a callback procedure is passed to the BeginRead method. As we all know, passing
around a reference to a method is accomplished with a delegate.

Let’s explore this asynchronous method pattern and start by looking at the BeginRead
method signature:

IAsyncResult BeginRead(byte[] array, int offset, int numBytes,

AsyncCallback userCallback, object stateObject);

1414 CHAPTER 28 Working with I/O

This signature is pretty much the same as Read apart from the return type and the two
additional parameters at the end. Those are what make the operation asynchronous. On
to the AsyncCallback parameter type, which (as the name implies) is a delegate type:

delegate void AsyncCallback(IAsyncResult ar);

The role of this delegate is to point at a method that accepts the result of the operation, as
represented by an IAsyncResult. Such an object by itself doesn’t contain the data that has
been received. Instead, upon the completion callback, you should feed the object to the
corresponding EndRead method to gain access to the information computed asynchronously.

An example of calling the Begin method is shown here, using a lambda expression to
declare the callback procedure. Notice we pass null for the stateObject for a reason
explained later:

using (var fs = File.OpenRead(\windows\system32\write.exe”))

{

var buffer = new byte[1024 * 1024]; // 1 MB buffer

IAsyncResult iar = fs.BeginRead(buffer, 0, buffer.Length, result =>

{

// This code will be called upon completion.

int count = fs.EndRead(result);

Console.WriteLine(“{0} bytes read”, count);

}, null);

Console.Write(“Read operation started”);

while (!iar.IsCompleted)

{

Console.Write(“.”); // Here we could be doing other useful work.

}

Console.ReadLine();

}

The result of running this code will immediately show “Read operation started” while the
I/O operation is in progress in the background. This proves the BeginRead method
returned immediately. At some point in the future, the callback procedure (specified here
using a lambda expression) is called. In the meantime, the main thread’s code can
continue to execute, in this case for the very useful purpose of printing dots while the I/O
is in flight. If we want to, we can also check for completion state using the IsCompleted
property on IAsyncResult.

Figure 28.6 shows the background worker thread calling the callback procedure, which
happens while the main thread is doing its job. In this case, the main thread has already
reached the end of the dot-printing loop where it checked for completion. In many cases
though, the main thread will still be ticking away, doing other useful stuff (for example,

1415Streams: The Bread and Butter of I/O

FIGURE 28.6 Asynchronous completion on a worker thread.

IAsyncResult BeginRead(byte[] array, int offset, int numBytes,
AsyncCallback userCallback, object stateObject);

 int EndRead(IAsyncResult asyncResult);

int Read(byte[] array, int offset, int numBytes);
+

FIGURE 28.7 The asynchronous method pattern adds a few intermediaries.

pumping messages for a user interface framework such as Windows Forms or Windows
Presentation Foundation [WPF]).

BEWARE OF CACHING

Running this example multiple times could produce quite different timing behavior, due
to the operating system’s caching of data retrieved through I/O operations and even
hardware-level caches.

Notice what the EndRead method on FileStreams looks like. It basically accepts the asyn-
chronous result object and returns the operation’s result, which in the case of file read is
the number of bytes read and written to the buffer. Figure 28.7 shows how this pair of
Begin/End methods corresponds to the synchronous counterpart. The bold text indicates
portions of signatures that are introduced by the asynchronous pattern.

1416 CHAPTER 28 Working with I/O

Main Thread

Read from Buffer

FileStream
Object

Disk I/O

Invoke Callback

Worker Thread

R
un W

orker

S
tart/I/O

I/O
 D

one

f
s
.
E
n
d
R
e
a
d
(
r
e
s
u
l
t
)

fs.BeginRead(buffer, …, OnReadCompleted)

0 1 2 N…

P
erform

 other w
ork w

hile I/O
 is in progress…

4

0

IAsyncResult
request “ticket”

AsyncCallback

void OnReadCompleted(IAsyncResult result)
{
 int n = fs.EndRead(result);
 for (int i = 0; i < n; i++)
 Console.WriteLine(buffer[i]);
}

6

2
1

5

3

8

7

Return Ticket

Buffer Being Filled

FIGURE 28.8 Summary of asynchronous method calls.

There are various ways to receive the data, but all of them involve calling the EndRead
method with the IAsyncResult object retrieved. Often this is done inside the callback
procedure using its parameter, but sometimes you use the BeginRead’s return value for this
particular purpose, often combined with a null callback:

IAsyncResult iar = fs.BeginRead(buffer, 0, buffer.Length, null, null);

// Do some work for which the data is not needed yet...

// But at some point we need it, so we call EndRead to block till we got it:

int count = fs.EndRead(iar);

In this particular sample code fragment, EndRead immediately returns if the data became
available while we were doing other work after calling BeginRead. If that’s not the case,
though, EndRead will block until the data eventually arrives.

How Asynchronous Methods Work
To summarize the operational nature of asynchronous methods, callback procedures and
the use of worker threads, look at Figure 28.8. At some point at time 0, some thread (say,
the main thread) decides to start an asynchronous call for a file I/O read operation. It does
so by preparing an empty buffer and an AsyncCallback delegate, which it passes to
BeginRead. This causes the FileStream class to prepare a “ticket” of type IAsyncResult
that represents the operation that will be run. Before it returns this to the caller, it spawns
a worker thread that will do the I/O.

1417Streams: The Bread and Butter of I/O

From this time on, the main thread is free to do whatever it wants while the file read is
being taken care of by the worker thread, using interop with the operating system’s I/O
subsystem. The main thread’s freedom is indicated by the rectangular area on the main
thread. This code could also use the IAsyncResult ticket to poll for completion status or
even decide to block for the data to become available as mentioned before. We assume the
main thread doesn’t perform such an action.

While the main thread is plowing along happily, the worker thread in collaboration with
the operating system is filling the buffer. At some point, the worker thread will be notified
by the operating system about the I/O completion. In response to this, the worker invokes
the callback function specified by the user during the BeginRead call. For the callback to
be able to correlate the completion with the request that was made, the IAsyncResult
object is passed to it. (Contrast this with the AsyncCallback delegate signature as illus-
trated in the figure.) This allows a call to EndRead to look up the return value of the opera-
tion, in this case the number of bytes read. We haven’t shown where this value is stored
and how it’s retrieved by EndRead, but that’s the beauty of interfaces and the encapsula-
tion provided by object-oriented frameworks.

Finally, the callback procedure can use the retrieved byte count to read from the buffer it
passed in initially, now populated with the requested data. All of this happens while the
main thread can continue its other activities. As you will see in Chapter 29, “Threading
and Synchronization,” use of worker threads (and more generally the notion of concur-
rency) brings with it some responsibilities. For example, it wouldn’t be safe for the main
thread to read from (or write to, Heaven forbid) the buffer before the worker thread has
done its job.

What About the State Parameter?
As touched on briefly in our example, the Begin method of an asynchronous method
pattern pair takes in an AsyncCallback as well as a state object. What’s that for? Because
asynchronous methods were introduced as early as .NET 1.0, there wasn’t a rich way to
work with delegates yet in languages such as C#. Recall that anonymous methods were
added in C# 2.0, followed by the shorter lambda expression syntax in C# 3.0. So in the
early days, you had to write the following:

void Bar(string path)

{

using (FileStream fs = File.OpenRead(path))

{

byte[] buffer = new byte[1024 * 1024];

IAsyncResult iar = fs.BeginRead(buffer, 0, buffer.Length,

new AsyncCallback(OnReadCompleted), null);

// Here we could be doing other useful work.

}

}

1418 CHAPTER 28 Working with I/O

void OnReadCompleted(IAsyncResult result)

{

// Where to get the FileStream from? What about the byte[] buffer?

}

In this setting, the OnReadCompleted callback method requires a way to gain access to the
FileStream object to call EndRead on it, passing the IAsyncResult object in. Furthermore,
the buffer will need to be consulted, as well, for the written bytes to be read in.

Although it’s quite typical for resources like the FileStream object to be owned by some
object encapsulating it, putting the byte[] in a field as well solely for the purpose of
sharing it between two methods seems kind of dangerous. Other parts of the class’s code
could touch this unexpectedly (for example, while an asynchronous operation is in flight),
causing threading issues. This is where the state parameter comes in, allowing some object
to be passed between the BeginRead and EndRead call. For example:

class LogAnalyzer : IDisposable

{

private FileStream _fs;

public LogAnalyzer(string path)

{

_fs = File.OpenRead(path);

}

public void StartRead()

{

byte[] buffer = new byte[1024 * 1024];

IAsyncResult iar = _fs.BeginRead(buffer, 0, buffer.Length,

new AsyncCallback(OnReadCompleted), buffer);

}

private void OnReadCompleted(IAsyncResult result)

{

int n = _fs.EndRead(result);

byte[] buffer = (byte[])result.AsyncState;

// Do something with the populated buffer contents

}

public void Dispose()

{

// Left as an exercise. Think about what you want to clean up here, and

// what effects this may have (tip: stuff is going on in the background).

}

}

1419Streams: The Bread and Butter of I/O

The state parameter is accessible inside the callback method through the AsyncState prop-
erty exposed by IAsyncResult. Obviously, if you want to share more than just a single
object, an object array or a wrapping class could be created (or, in .NET 4 and later, the
Tuple types could be leveraged).

However, due to the introduction of anonymous methods and lambda expressions in later
stages of the framework’s and languages’ development, the use of such a “state-threading”
mechanism has become largely redundant. Recall how we wrote the initial asynchronous
file read example earlier:

using (var fs = File.OpenRead(path))

{

var buffer = new byte[1024 * 1024];

IAsyncResult iar = fs.BeginRead(buffer, 0, buffer.Length, result =>

{

int count = fs.EndRead(result);

for (int i = 0; i < count; i++)

Console.WriteLine(buffer[i]);

}, null);

...

}

As you will recall, anonymous methods and their shorthand lambda expression syntax
allow capturing variables from the enclosing scope. In this case, the lambda expression
used for the callback “closes over” both the fs and buffer variables. This causes the
compiler to cook up so-called display classes containing fields to hold those objects for
them to be shared across the declaring method and the callback lambda. This is illustrated
in Figure 28.9 through .NET Reflector.

As you can see, the lambda expression gave rise to an anonymous method referred to by
the AsyncCallback delegate passed to BeginRead. The <Main>b__0 method is what you had
to write manually prior to C# 2.0 and 3.0. Inside this method, access to fs and buffer

variables that were declared in the Main method is achieved by using fields on what’s
known as a “display class.” In fact, two of them have been generated, one per captured
outer variable, all of them chained together. Both the Main method and the callback
method use them to share information between each other.

We conclude our detour through anonymous methods and closures here and refer to
Chapter 17, “Delegates,” for more information. Suffice to say that C# makes the use of
asynchronous method calls slightly easier thanks to the availability of closures on anony-
mous methods. This effectively makes the original intended use of the state parameter on
asynchronous method calls redundant in most (if not all) cases.

1420 CHAPTER 28 Working with I/O

FIGURE 28.9 Summary of asynchronous method calls.

ASYNCHRONOUS DELEGATE INVOCATION

Remember that it’s possible to invoke any delegate asynchronously using the
BeginInvoke method. To retrieve the result of the computation, you use the corre-
sponding EndInvoke method, which obviously takes in an IAsyncResult. For example:

Func<int, int> twice = x => x * 2;

int n = 21;

twice.BeginInvoke(n, iar =>

{

int res = twice.EndInvoke(iar);

Console.WriteLine(“And the answer to ({0} * 2) is {1}!”, n, res);

}, null /* the dreaded state parameter */);

Console.WriteLine(“Please wait while we’re computing ({0} * 2)...”, n);

Although this is a contrived example, it clearly shows the use of asynchronous meth-
ods in a context other than (file) I/O. Nothing here should come as a surprise because
the pattern that’s followed is exactly the same as the one you learned about on the
FileStream API. As you explore the .NET Framework BCL, you’ll find many more places
where this pattern is applied.

Beware of Lifetime Issues
Performing work asynchronously implies the introduction of concurrency. After all, if the
initiator of an asynchronous operation wants to continue work without being blocked for
the result to come, clearly some other unit of execution needs to take on the task of

1421Streams: The Bread and Butter of I/O

computing the result in the meantime. This is where the use of worker threads enters the
picture (refer to Figure 28.8).

We discuss threading in more detail in Chapter 29, but I want to warn you now about
some potential complications. In particular, when writing code, keep in mind the lifetime
of objects required by the callback procedure. Based on our original example of an asyn-
chronous file read, can you spot a flaw in the following piece of code?

using (var fs = File.OpenRead(\windows\system32\write.exe”))

{

var buffer = new byte[1024 * 1024];

fs.BeginRead(buffer, 0, buffer.Length, result =>

{

int count = fs.EndRead(result);

for (int i = 0; i < count; i++)

Console.WriteLine(buffer[i]);

}, null);

}

Console.ReadLine();

Figure 28.10 shows what happens if you try to execute this code. So what’s going on here?
Notice the gray background on which Console.ReadLine() is rendered, which is indica-
tive of where the main thread is right now, while the callback is happening on a worker
thread. But wait a second; hasn’t the main thread already left the using block? Indeed,
because the FileStream resource was disposed already by the main thread, the worker
thread hits an exception when it tries to use the FileStream object to call the EndRead
method on it. The fix is to make sure not to dispose the FileStream so early. One suitable
spot may be the callback procedure itself, after the call to EndRead.

This kind of resource lifetime management can be quite a challenge to get right under all
circumstances. It’s the unfortunate nature of parallel code that one has to keep such issues
in mind. Making sure that objects have a proper owner and do not leak between bound-
aries of abstraction is always a good practice. For example, imagine how much worse
things could get if the FileStream object could be accessed by other code as well (for
example, disposing it at unpredictable times)?

REACTIVE EXTENSIONS FOR .NET

Very recently, I have been involved in the development of the Reactive Extensions (Rx)
for .NET, which is a framework to help simplify asynchronous programming. You can find
more information about it on the Web by searching for “DevLabs Reactive Extensions.”
One of the things it does is provide a wrapper around asynchronous method pairs,
exposing them as IObservable<T> objects. Because of the abstraction provided by
IObservable<T>, a rich set of operators can be used on them. Also, dealing with error
cases becomes easier.

1422 CHAPTER 28 Working with I/O

FIGURE 28.10 Make sure not to dispose of objects too early.

Streams Are Everywhere

Streams are a very useful abstraction that’s used far beyond just file I/O operations. As you
explore the .NET Framework, you’ll find plenty of places where streams are used.
Examples include the NetworkStream class in System.Net.Sockets, which represents the
data coming from or being sent to a socket, using protocols such as TCP or UDP. Yet
another place where sockets are used is in low-level data access (for example, for what’s
known as file streams in SQL Server 2008 and later). Exposing them to managed code uses
the concept of a SqlFileStream, which encapsulates the communication with the server
over the Tabular Data Stream (TDS) protocol.

Often, streams are also used “over” other streams. An example is compression, as seen in
the System.IO.Compression namespace. Given any stream (for example, coming from a
file), you can wrap it in a compression stream such as GZipStream. An example of this is
shown here, reading the Program.cs itself (using a relative path “trick” explained earlier)
and copying it to a compressed stream that writes to another file:

const string SRC = @”..\..\Program.cs”;

const string TGT = @”..\..\Program.gz”;

using (var zipped = File.Create(TGT))

using (var compress = new GZipStream(zipped, CompressionMode.Compress))

using (var source = File.OpenRead(SRC))

{

source.CopyTo(compress);

}

1423A Primer to (Named) Pipes

source

using System;
…

CopyTo zipped

i1/2 ` I-%&/mÊ{0 JõJxà…

GZipStream

FIGURE 28.11 GZipStream operates on other streams.

Console.WriteLine(“Source length = “ + new FileInfo(SRC).Length);

Console.WriteLine(“Zipped length = “ + new FileInfo(TGT).Length);

Notice how the GZipStream object is constructed to sit on top of a destination stream to
write the compressed data to. The source file stream is then copied using CopyTo method,
which causes the GZipStream to write the data through to the underlying target stream
after compressing the data. Figure 28.11 shows this.

I leave it to you to cook up the opposite composition of GZipStream to achieve decom-
pression. In that case, the .gz file needs to become the input, and the GZipStream needs to
be written to the uncompressed destination file. Essentially, this is just the mirror image of
what’s shown in Figure 28.11.

A Primer to (Named) Pipes
To reinforce your knowledge of streams acquired in the previous section, let’s
explore another System.IO capability that was added a few .NET Framework
versions ago: (named) pipes. The concept of a named pipe is to provide an efficient

interprocess communication mechanism that’s natively supported by the operating
system. Although you won’t likely use such a low-level mechanism—in favor of higher
abstraction levels as provided by Windows Communication Foundation (WCF), for
example—it acts as a good sample of working with streams.

A total of five Stream subclasses exist in the System.IO.Pipes namespace, one of which
acts as an intermediate base class for the other four. Let’s not go into too much detail
about the additional facilities provided by this PipeStream class over its base class. Figure
28.12 shows a class diagram of the relevant types in this namespace.

Two different communication mechanisms can be used that are collectively referred to as
pipes. One is a named pipe, which is more flexible in its functionality compared to the
concept of an anonymous pipe. For example, the former supports communication over a
network to another computer, whereas the latter typically is used to exchange data
between parent and child processes.

The simple application we’ll write here does nothing but send a single text message from a
server to a client using a named pipe. To do so, we’ll write just one executable that can
operate as a client or a server depending on the command-line input. Inside the imple-
mentation, we use the NamedPipeClientStream and NamedPipeServerStream classes, touch-
ing briefly on the concept of connecting pipes. To make our lives easier with regard to

1424 CHAPTER 28 Working with I/O

FIGURE 28.12 PipeStream and derived classes.

sending and receiving information to and from the pipe, we use the StreamReader and
StreamWriter classes. In short, everything we learned thus far is used in concert here. Let’s
take a look at the code now:

const string PIPE = “PipeSample”;

static void Main(string[] args)

{

if (args.Length == 1)

Client(args[0]);

else

Server();

}

private static void Client(string server)

{

using (var client = new NamedPipeClientStream(server, PIPE,

PipeDirection.In))

{

Console.Write(“Connecting to {0}... “, server);

client.Connect();

Console.WriteLine(“Connected”);

using (var reader = new StreamReader(client))

{

var message = reader.ReadLine();

Console.WriteLine(“Received message: “ + message);

}

}

}

private static void Server()

1425A Primer to (Named) Pipes

{

using (var server = new NamedPipeServerStream(PIPE, PipeDirection.Out))

{

Console.Write(“Waiting for connection... “);

server.WaitForConnection();

Console.WriteLine(“Connected”);

using (var writer = new StreamWriter(server))

{

Console.Write(“Enter message: “);

var message = Console.ReadLine();

writer.WriteLine(message);

}

}

}

The Client method takes in a computer name where the named pipe server lives and uses
the NamedPipeClient stream to set up communication. Although pipes can be set up for
bidirectional communication, we make the client read-only using PipeDirection.In. To
connect to the server, we call the Connect method, which could also take in a timeout
value. Note also that more advanced constructor overloads exist, which allow control over
pipe options, security aspects, and so on.

Once the client is connected, we establish a StreamReader over the stream to receive a
single line of text. It’s worth thinking for a moment about how the general-purpose
stream reader can read a line of text from any kind of stream, keeping in mind that
streams only have byte-level read and write operations.

The server is a mirror image to the client and differs in that no computer name has to be
specified (after all, the machine itself is the server) on the NamedPipeServerStream
constructor. As data is sent to the client, we configure the pipe direction for outbound
traffic only. Another difference is the way we establish a connection, which now waits for
a client to arrive. Overloads to the constructor of NamedPipeServerStream allow you to
specify how many connections can be established, but we assume just one here. I leave it
to you to discover asynchronous methods that can be used to spawn a worker thread as a
client connects to the server (tip: it starts with Begin...).

How we write data from the server to the client should be obvious given the mirrored
nature of both parts. This time we use a StreamWriter and its WriteLine method to send
data across the pipe. Figure 28.13 shows two command prompt instances running the
server and client component of this application.

Again, I leave it to you to envision a true chat application using named pipes, although
easier techniques through WCF exist. One typically uses pipes to interact with existing
software components that leverage them already. Notice that communication stacks such
as .NET Remoting and WCF can leverage (named) pipes themselves in one of their
“channel” implementations. Pipes provide an efficient way to send data across two or

1426 CHAPTER 28 Working with I/O

FIGURE 28.13 Messaging through named pipes in action.

Memory-Mapped Files in a Nutshell
Introduced in .NET 4, memory-mapped files is yet another exposure of Win32
power to managed code developers. With memory-mapped files, you can achieve a
number of things. One is to set up interprocess communication once more, this

time using shared memory that’s identified with a “map name.” Multiple processes can
read from and write to the shared memory. For this to work properly, some kind of
synchronization will be needed, which goes beyond what we can cover in this book.

Another capability is closer to everyday development, though: the ability to work with
extremely large files by mapping them into the memory address space and accessing them
as if it were in-memory data. This includes the ability to do random accesses (without a
need to seek through a file; for example, by means of a stream), create views over the file,
and so on. For a thorough description of memory-mapped I/O capabilities, refer to MSDN.
We have a little sampler here, though.

Consider again an executable file that we somehow want to inspect for data. You’ve seen
before how to retrieve the PE/COFF header magic string using regular stream-based opera-
tions. This time around we try to achieve the same (and a bit more) using memory-
mapped files:

using (var file = MemoryMappedFile.CreateFromFile(\Temp\Notepad.exe”))

{

using (var accessor = file.CreateViewAccessor())

{

int offset = accessor.ReadInt32(0x3c);

Header header;

accessor.Read<Header>(offset + 4, out header);

more Windows processes and are a good choice in such a setting. What frameworks like
.NET Remoting and WCF give you is a higher level of abstraction where whole objects can
be sent, method calls can be made, and so on.

1427Memory-Mapped Files in a Nutshell

// Print header fields of interest

}

}

Here two essential notions are shown. The first is the creation of a memory-mapped file
object from a path. Lots of options can be specified, but CreateFromFile is always used to
refer to a physical file. Other factory methods exist that can be used to create shared
memory sections. We’re operating on a copy of Notepad.exe because the file will be opened
for read/write access when using this factory method with a minimal number of parame-
ters. Typically, mapping a file is used to manipulate the file anyway, so this makes sense.

The second key aspect is that of a view accessor. This is a way to obtain a view over a part
of the file or the entire file. Here we go for the latter, but you can imagine using a multigi-
gabyte file and only mapping a few bytes at an offset several megabytes away from the
start. This would never need to load the entire file from disk because the operating system
keeps track of the “mapping” between the view’s address space and the part of the under-
lying file that’s being mapped. This is what sets memory-mapped files apart from dealing
with regular file streams.

Using the obtained accessor we now retrieve, as explained in an earlier example, the offset
value stored at location 0x3c. After that, we do something very nice and neat. We use the
generic Read method to map a portion of the view’s data into a struct that we have
defined, as follows:

[StructLayout(LayoutKind.Explicit)]

struct Header

{

[FieldOffset(0)]

public Machine Machine;

[FieldOffset(2)]

public ushort NumberOfSections;

[FieldOffset(18)]

public Characteristics Characteristics;

}

This corresponds to (parts of) a table that can be found in the PE/COFF spec referred to
earlier. Figure 28.14 shows an excerpt from this specification.

The reason we jump 4 bytes ahead of the offset we read in before is to skip over the magic
“PE\0\0” string of 4 bytes. Next, we map the data using Read<Header> into a struct value
where explicit layout is used to specify offsets conform the table. For both the Machine
and Characteristics fields, we define an enum (only part of the values is shown here to
conserve space, see the specification for the full list):

1428 CHAPTER 28 Working with I/O

FIGURE 28.14 COFF header of an executable file.

enum Machine : ushort

{

Amd64 = 0x8664,

I386 = 0x14c,

IA64 = 0x200,

// Most other documented machine architectures are extinct (e.g. MIPS16)

}

[Flags]

enum Characteristics : ushort

{

ExecutableImage = 0x2,

LargeAddressAware = 0x20,

Machine32Bit = 0x100,

// Lots of other flags exist, see specification.

}

On my 64-bit machine, the 64-bit version of Notepad returns the values shown in Figure
28.15 after reading the COFF header using the mapped file APIs. You can compare those
values to the output of dumpbin.exe /headers notepad.exe, running from a Visual Studio
command prompt. The dumpbin.exe tool is an SDK tool that does precisely this, albeit
from native code.

Although I haven’t shown the true power of memory-mapped files to deal with large files
or shared memory sections, you’ve seen how random access can be achieved using views.

1429Overview of Other I/O Capabilities

FIGURE 28.15 Some executable header values for 64-bit Notepad.exe on Windows 7.

Note that this mechanism is pretty similar to our use of MemoryStream objects before, as
shown in Figure 28.5. The difference is we’re now looking at a file through virtual
memory addresses, nicely abstracted away by the new .NET 4 APIs for managed code
developers. If you ever need to deal with large files and can’t afford to load them
completely from disk, have lots of seeks, and so on, this is something to look into.

Overview of Other I/O Capabilities
The .NET Framework has a rich I/O story, of which you saw only the tip of the iceberg
here. Other capabilities not discussed here include the following:

. Isolated storage, a way to store data in a sandbox where it’s associated with an appli-
cation, typically running in partial trust. Examples include web downloads that are
isolated for use by the application (and user) that downloaded it. By erecting an
isolation boundary, potentially malicious partial trust applications can do very little
harm and can’t disturb other applications’ data. Look at the
System.IO.IsolatedStoreage namespace if this sounds interesting.

. Support for packaging of multiple files in a single container, based on the Open
Packaging Convention (OPC) standard as used by various file formats, including XPS
and the new XML-based Office formats. Containers for such packages are typically
ZIP files and consist of what’s referred to as “parts.” See the System.IO.Packaging
namespace for more information.

. Serial port communication is available through System.IO.Ports’s SerialPort class.
Simple Read and Write methods are all that’s needed to communicate with other
hardware connected to a serial port. The constructor of the class has support for a
variety of settings, such as baud rate, parity bits, and so on. Because the class is
implemented as a component, it can be dragged to designer surfaces.

. For very specialized use, the .NET Framework has a wrapper around the Common
Log File System (CLFS) that was introduced in Windows Vista and Windows Server
2008. This can be used to implement specialized components such as transaction
processors. You can find more information in the MSDN documentation for
System.IO.Logging.

1430 CHAPTER 28 Working with I/O

Summary
In this chapter, you learned about the rich I/O capabilities offered through the System.IO
namespace. Although file I/O operations are the most common kind, we focused on the
generic functionality introduced by concepts such as streams, readers, and writers.

With regard to file system capabilities, we started by taking a look at the various Info
classes that provide information about drives, directory hierarchies, and files. Leaving the
macroscopic world of files as black boxes, we dove into various ways to read from and
write to files. Such facilities span a wide gamma of techniques that balances ease of use
with low-level control. For example, methods such as ReadToEnd are of incredible conve-
nience, while BinaryReader-based I/O offers significant flexibility.

While discussing the functionality exposed by Stream objects, we also introduced the
notion of asynchronous methods with a couple of concrete samples. This technique is
useful to avoid blocking an application’s capability to do useful work while I/O is
performed in the background. Using this pattern requires a good understanding of dele-
gates and, to a lesser extent, threading infrastructure. The latter is discussed more thor-
oughly in the next chapter.

Finally, we looked at some recent additions to System.IO, including interprocess commu-
nication using pipes and memory-mapped I/O.

CHAPTER 29

Threading and
Synchronization

IN THIS CHAPTER

. Using Threads 1432

. Thread Pools 1463

. Synchronization
Primitives 1471

Today’s computers have tremendous processing power.
Not only does this get reflected in clock speeds (which seem
to have reached a ceiling due to heat dissipation chal-
lenges), but the number of processing cores in machines is
ever increasing too. This trend toward many-core machines
poses an ongoing challenge as to how to write software that
can take advantage of these computing resources.

Writing concurrent programs isn’t anything new, though.
Operating systems, such as Windows NT, introduced sched-
uling mechanisms that allowed programs to run multiple
threads of execution at the same time. While such parallel
execution wasn’t truly achievable on single-processor
machines, preemptive scheduling certainly gave programs
(and hence users) the impression they could accomplish
multiple tasks at the same time.

Unfortunately, the use of constructs like threads is a neces-
sary evil in relation to certain frameworks, in particular the
user interface (UI) kind, where a dedicated thread of execu-
tion is responsible for dispatching messages. Because of this
historical fact, lots of readers will have encountered multi-
threading the hard way, as illustrated in Figure 29.1.

Nonetheless, mastering the art of writing scalable but
correct code that keeps on performing better as computing
resources are being added is a tremendous asset in today’s
developer’s mindset. Although this art can be quite hard to
master due to the inherent complexities of synchronization
and such, this chapter introduces core notions and things
to be aware of.

1432 CHAPTER 29 Threading and Synchronization

FIGURE 29.1 Cross-threading violations are an inconvenient truth in UI programming.

As a quick overview, let’s start by exploring threading as it’s known to the operating
system and the CLR built on top of it. We then explore CLR-specific notions associated
with threads and introduce the Thread and ThreadPool classes. From there, we enter the
minefield of synchronization worries and explore the various primitives that help us out.
Finally, we dive into the .NET 4 aspects of parallel programming using the Task Parallel
Library (TPL) and its related technologies, such as PLINQ.

Using Threads
Before we delve into specifics of multithreaded programming in managed code, we should
spend a few minutes talking about the general notion of threading and how it’s achieved
at the operating system and CLR level.

Explaining the Concept of Threads

Processes executing on Windows can have multiple threads inside them. Threads are
where code is executed, and multiple threads can carry out different tasks at the same
time. This is achieved by running code on different cores or creating a multicore illusion
using (preemptive) operating system scheduling. The operating system kernel is responsi-
ble for scheduling threads according to a policy that consists of various factors. For
example, threads can have relative priorities, causing the scheduler to favor one thread
over another. Threads can get boosted when certain events occur; for example, when
clunky user interaction is to be avoided. Furthermore, threads can get blocked because
they’re waiting for resources to become available, thus allowing the scheduler to let
another thread run and make progress.

From this slightly simplified description, it should be clear that processes are merely some
collection of threads and some associated data structures, but threads are really what gets
scheduled and run by the operating system. Scheduling involves a number of low-level
techniques, such as swapping out the processor registers such that threads can resume
where they left off. That is, when the scheduler decides to take away a thread from a
processor on which it’s running, it stores away the thread’s state so that it can be

1433Using Threads

Thread 1 (Running)
Instructions
…
7714f1bc mov r9d,r8d
7714f1bf mov r8d,edx
7714f1c2 mov dx,word ptr [rcx]
7714f1c5 mov rcx,qword ptr [rcx+8]
7714f1c9 mov eax,1
…

Restore Thread 2’s State

Save Thread 1’s State

Thread 2 (Ready)
Instructions
…
7714ff9b nop dword ptr [rax+rax]
7714ffa0 mov r10,rcx
7714ffa3 mov eax,0Ch
7714ffa8 syscall
7714ffaa ret
…

Where did I leave off?
eax = 0203f1d8

 eip = 7714ff9b

Thread 2 (Running)
Instructions
…
7714ff9b nop dword ptr [rax+rax]
7714ffa0 mov r10,rcx
7714ffa3 mov eax,0Ch
7714ffa8 syscall
7714ffaa ret
…

Where did I leave off?
eax = fffdd000

 eip = 7714f1bc

3

4 =

=

CPU Running
Thread 1’s Code

1
CPU Running

Thread 2’s Code

5
Scheduler says

“Thread 1’s time is up!”

2

 Registers
 eax = fffdd000
eip = 7714f1bc

 Registers
 eax = 0203f1d8
eip = 7714ff92

Thread 1 (Ready)
Instructions
…
7714f1bc mov r9d,r8d
7714f1bf mov r8d,edx
7714f1c2 mov dx,word ptr [rcx]
7714f1c5 mov rcx,qword ptr [rcx+8]
7714f1c9 mov eax,1
…

FIGURE 29.2 Context switching carried out by the scheduler to give threads a turn.

rehydrated when the thread is assigned to a processor for execution again. Figure 29.2
shows this mechanism in a conceptual manner.

Note that in a preemptive operating system like (modern) Windows, a single thread (and
hence the process to which it belongs) cannot monopolize the system. Each thread gets a
“quantum” of CPU clock ticks it can consume before being taken away from the processor
forcefully by the kernel’s scheduler, in favor of another thread (if such a thread that’s
ready to execute exists). The length of the quantum varies based on Windows configura-
tion settings (in particular, whether you’re running a client or server workload). In other
words, threads get their turns to execute. Threads should really be thought of as “virtual
processors” that can act as if they have a processor of their own. However, because one
can have more threads than physical processors, a third party—the operating system and
its scheduler—needs to coordinate use of the physical resource.

CONTEXT SWITCHES, FIBERS, AND USER MODE SCHEDULING

The mechanism of storing one thread’s state and restoring another one’s to give the
latter a chance to execute is known as a context switch. These are fairly expensive, and
for highly scalable systems you try to avoid this cost by means of various techniques.

1434 CHAPTER 29 Threading and Synchronization

Thread 1 (Running)
Instructions
…
child.MoveTo(Garden);
…

CPU 1 Running
Thread 1’s Code

CPU 2 Running
Thread 2’s Code

Thread 2 (Running)
Instructions
…
child.MoveTo(child.Room)
…

FIGURE 29.3 Race condition for two threads accessing shared state.

One is to avoid getting the kernel’s scheduler involved, which is where most of the cost
comes from. This led to the invention of things such as “user mode scheduling,” first
exercised by the SQL Server operating system (a low-level layer that sits immediately
on top of the real operating system) and later introduced in Windows 7 and Windows
Server 2008 R2. Another technique is to use fibers, which can be regarded as light-
weight threads but suffer from quite a few limitations (for example, thread-local storage
becomes problematic). In fact, at some point an attempt was made to make the CLR
support fiber mode scheduling, but this never materialized because of technical chal-
lenges encountered.

As you will see, even in the world of managed code there are synchronization primitives
and other notions that avoid taking large performance hits by doing “smarter” things.
Such things include thread pooling, use of “slim” versions of wait events, and so on.
Stay tuned to learn more.

Prior to the introduction of multiprocessor or multicore systems, there was only a single
CPU, and therefore preemptive scheduling was the only way to mimic simultaneous
execution of different programs and their threads. The idea of preemption is that the
scheduler can preempt a thread’s execution in favor of another one, as explained earlier
and illustrated in Figure 29.2.

Today, true parallel execution is pretty much the standard with the omnipresence of
multicore machines. Although this allows for higher throughput when using well-written
software, it also unveils lots of potential problems with regard to synchronization when
shared resources are being used by multiple threads truly at the same time (from different
CPUs). Figure 29.3 shows this pictorially.

The Managed Code Story

Processes running managed code are no different with respect to execution and can have
multiple threads. In fact, the common language runtime itself creates a number of threads
(for example, for finalization and garbage collection). Threads running managed code are

1435Using Threads

Windows NT scheduler operates on native threads.

Native Application
(e.g., Notepad.exe)

User Mode

Kernel Mode

UI I/O …

Managed Application M
an

ag
ed

N
ative

WPF
Dispatcher

GC …

Common Language RuntimeCommon Language RuntimeCommon Language Runtime

Work
Item

Queue
…

Thread Pool

FIGURE 29.4 Native and managed threads coexisting.

typically referred to as managed threads, while others are called native threads. Not only
can the CLR create native threads; often interoperability with native libraries within a
managed code process is responsible for the creation of new threads as well. In fact, some
.NET Framework libraries do so, and hybrid managed/native applications, such as Visual
Studio 2010, have a rich collection of threads plowing away.

Managed threads happen to be backed by native threads on which the CLR piggybacks,
allowing the operating system’s threading facilities to offer their benefits. However, the
CLR adds a bunch of facilities on top of raw native threads. The essential thing here to
realize is that each (native or managed) thread has its own call stack. To support features
like exception handling, the CLR controls certain data that’s kept on the stack for it to be
able to find managed method call frames and so on. Garbage collection, too, needs
support from CLR-specific notions interwoven with a managed thread’s state. Recall one
of the phases of garbage collection needs to scan for “roots” on all thread stacks.

All in all, the CLR is just another native component that leverages native threads. It just
turns out that the managed code runtime does a lot of bookkeeping to allow managed
code to run on those native threads. In summary, you could state that the CLR adds its
own policies and some mechanisms to the underlying threading infrastructure on which
it relies. This can go as far as reusing native threads for multiple pieces of work that are
executed by managed code, a mechanism known as thread pooling. And as soon as
managed components keep their own list of work to be executed, it’s fair to say that
component is also taking over part of the scheduling.

Figure 29.4 shows a simplified picture of this. Native applications have only native
threads, which are totally managed by the operating system scheduler. The managed
application shown on the right has plenty of native threads, some of which are solely
used by the CLR’s execution engine itself. Others are used as a managed thread running
user code, with the CLR’s involvement for various aspects of state management. Finally,
thread pools can exist that use a limited number of native threads but allow user code to
post work to a queue. This realizes a kind of multiplexing mechanism by which the CLR
reduces the number of native threads and performs its own kind of scheduling policies
(for example, by draining the work item queue and assigning a thread to do the work). We
return to many of the points made here later.

1436 CHAPTER 29 Threading and Synchronization

.NET Framework 4 adds another level of abstraction to the notion of running work in a
parallel manner. This is realized by the Task Parallel Library (TPL), exposed through addi-
tions to the System.Threading namespace. This new library has its own notion of task
schedulers, which employ interesting techniques to make sure multiple cores are lever-
aged in an optimized manner. We discuss some of this as well, focusing on the Task<T>

class and explaining how this new scheduling infrastructures does something known as
work stealing.

Where It All Starts: The Thread Class

The closest you can get to a “raw thread” is using the Thread class, which lives in the
System.Threading namespace that will be the topic of this chapter. By “raw thread” we
mean a native (as all of them ultimately are) thread that can run managed code but isn’t
subject to lots of additional management by the CLR or any library. In particular, no tech-
niques such as pooling or specialized scheduling are employed.

Creating Threads
Use of the Thread class is pretty simple. We start by looking at the instance members
defined on the Thread class, so we need to create an instance first. All a thread object
needs to know about is what code it has to run. As you should infer by now, the idea of
delegating execution of code is where delegates enter the picture. It shouldn’t come as a
surprise that the constructors of Thread take in delegate-typed objects:

public Thread(ParameterizedThreadStart start);

public Thread(ThreadStart start);

Overloads exist that can control the maximum stack size the newly created thread can
use, but we omit this detail from our discussion. From the two constructors, we can pick
one with the most convenient delegate type. Let’s start by looking at the second one,
which is the simpler of the two:

public delegate void ThreadStart();

In fact, this is nothing but the Action delegate (which was introduced at a later point,
hence the apparent duplication): It takes no parameters and doesn’t return anything.

SINGLE-METHOD INTERFACES AND JAVA’S RUNNABLE

As mentioned earlier in this book, the frequent occurrence of single-method interfaces
in lots of frameworks is exactly what warrants the introduction of a concept like dele-
gates. Other frameworks, such as Java, have traditionally gone with a more pure object-
oriented approach, where the act of passing a single piece of code around involves
implementing an interface.

1437Using Threads

For the creation of a thread in Java, one therefore uses the Runnable interface, which
has exactly one method called run. To reduce the burden of having to go and declare a
class implementing the interface, the Java language introduced the notion of anony-
mous inner classes, allowing inline implementation of an interface. Although such a
feature could come in handy from time to time, it mostly covers up for the lack of dele-
gates. I don’t really miss the days of implementing a plethora of “listener” interfaces to
perform simple event-handling tasks.

The simplest example of creating a thread using this constructor overload is shown here,
using lambda expression syntax to declare the thread’s code:

var work = new Thread(() => {

Console.WriteLine(“Doing work!”);

});

Obviously, we explore more useful thread jobs in a while. Notice at this point that the
thread isn’t running yet. In a few moments, we start talking about a thread’s life cycle,
including the ability to start it (which is pretty much the only thing you should ever do
with a thread).

Besides the constructor taking in a ThreadStart, there’s also one that allows passing a
parameter to the thread’s code body using a ParameterizedThreadStart:

public delegate void ParameterizedThreadStart(object obj);

The sole difference with the ThreadStart delegate is the presence of the object-typed para-
meter. The fact both ThreadStart delegates return void shouldn’t come as a surprise. After
all, the act of starting a thread will introduce asynchrony, where another piece of code
starts running in the background. Waiting for that code’s result would imply some kind of
blocking. In Chapter 30, “Task Parallelism and Data Parallelism,” you see how the .NET 4
class Task<T> can produce a value. Using the constructor with the
ParameterizedThreadStart looks as follows:

var processRequest = new Thread(req => {

var request = (WebRequest)req;

// Process the request, e.g. by loading a file from the disk and sending

// it back to the client over an HTTP/TCP socket.

});

Because the parameter is statically typed to be of type System.Object, you must use a cast
to view the object through the expected type. If generics had been part of the first version
of the .NET Framework, most likely the Thread class would have been generic in the type
of the input parameter. And similarly, the ParameterizedThreadStart delegate could be
replaced by an Action<T> delegate, such that the parameter would be strongly typed.
Where the thread’s parameter comes from (that is, how it gets passed to the lambda

1438 CHAPTER 29 Threading and Synchronization

expression) will be answered in the next section, “Starting Threads,” when we meet the
Start method.

CLOSURES STRIKE AGAIN

Today, all this API bloat for thread parameterization is mostly a redundant historical arti-
fact. Ever since C# 2.0 introduced closures, it has been possible to capture one or
more outer variables for use within the thread. Be careful, though:

var user = “Alice”;

var work = new Thread(() => {

// The variable user is really an implicit parameter to the thread...

Console.WriteLine(“Processing user “ + user);

});

user = “Bob”;

work.Start(); // See later, but what will the thread print?

user = “Carol”;

Closures effectively introduce shared state between the thread creator and the thread
itself. The preceding code definitely won’t print Alice because the user variable gets
assigned Bob before the thread starts. However, depending on the timing of the birth of
the new thread, it might or might not see Carol being assigned to user. Whether
you’re using closures or not, any kind of shared state should be treated carefully.

Whether to use anonymous methods or lambda expressions to declare the body of a
thread’s code inline depends mostly on stylistic factors. If the thread’s body tends to be large
(and typically it is; for example, running a request processing loop or so), it’s often better to
declare a separate worker method and have the ThreadStart delegate refer to that one:

void OnRequestReceived(WebRequest request)

{

var processRequest = new Thread(ProcessRequest);

processRequest.Start(); // See later

}

void ProcessRequest(object req)

{

var request = (WebRequest)req;

// Process the request, e.g. by loading a file from the disk and sending

// it back to the client over an HTTP/TCP socket.

}

Starting Threads
Now that you’ve seen how Thread objects can be created, let’s look at the life cycle of
threads. Instantiation of the Thread class doesn’t cause a thread to start its execution
immediately; instead, you must trigger the thread’s start manually by calling the Start
method on it. At that point, the thread can be scheduled for execution, which obviously

1439Using Threads

involves running the code inside it. Let’s show a complete but still trivial example of
creating and starting a thread:

using System;

using System.Threading;

class Program

{

static void Main()

{

var worker = new Thread(() =>

{

Console.WriteLine(“Worker thread - Hello!”);

});

Console.WriteLine(“Main thread - Press ENTER to start worker”);

Console.ReadLine();

worker.Start();

Console.WriteLine(“Main thread - Worker started”);

Console.WriteLine(“Main thread - Press ENTER to quit”);

Console.ReadLine();

}

}

Some explanation of behavior is required here. Because the thread we designate as a
worker isn’t started immediately, the main thread will first print the message that prompts
the user to press Enter to start the worker thread. Until that very point, the output of the
program should be quite predictable. However, after the thread is started, things can vary
from run to run. Figure 29.5 shows possible interleaving of both threads that are now
competing to be scheduled.

SHARED STATE LURKING AROUND MANY CORNERS

Readers with an eye for detail will notice that our code could be prone to shared-state
issues because the console output is really used by both threads, potentially at the same
time. This could very well cause issues, depending on how the console I/O subsystem
treats the situation of simultaneous access by multiple threads. We don’t digress here,
and instead save this concept for later coverage in the section titled “Synchronization
Primitives,” named after the constructs used to safeguard shared access.

This figure simplifies matters a lot and omits several possible relative orders of the threads
executing code. For one thing, on multicore machines (as most of them are today) it’s
perfectly possible for multiple threads to be truly doing stuff at the same time. Figure 29.5
shows only two possible execution orders, with only one single thread active at a time.
We’ve also omitted a number of possible states that threads can be in. For example,

1440 CHAPTER 29 Threading and Synchronization

One Interleaving
The main thread runs until it gets blocked by Console.ReadLine; then the worker runs.

Main Worker

…
worker.Start();

Console.WriteLine(“Worker started“);
Console.WriteLine(“Press ENTER to quit“);
Console.ReadLine();

Console.WriteLine(“Hello!“);

Console.WriteLine(“Hello!“);

X
Another Interleaving
The main thread gets preempted after Console.WriteLine; then the worker runs.

Main

…
worker.Start();

Console.WriteLine(“Worker started“);

Console.WriteLine(“Press ENTER to quit“);
Console.ReadLine();

Worker

X

FIGURE 29.5 Threads can run independently from each other with different interleaving.

Parameterized threads are also started using the Start method, albeit with an overload
that accepts the parameter object that’s to be passed to the thread’s code. The little code
example here should make this clear immediately:

var worker = new Thread(message =>

{

Console.WriteLine(“Worker thread - {0}”, message);

});

Console.Write(“Main thread - Enter message to send to worker: “);

var input = Console.ReadLine();

worker.Start(input);

As stated before, the use of the ParameterizedThreadStart can often be replaced by the
use of closures with anonymous methods or lambda expressions. Even for simple scenar-
ios, this can prove beneficial, in particular when multiple parameters have to be passed to
the thread’s code. Without closures, you would have to declare a class to wrap all the para-
meters to be passed or use one of the Tuple types in .NET 4. The use of closures doesn’t
preclude factoring out the thread’s body into a separate method though, as shown here:

string message = ...;

int repeat = ...;

var worker = new Thread(() => PrintMessage(message, repeat));

worker.Start();

Console.ReadLine really blocks the thread somehow until user input becomes available.
We haven’t indicated such a special “waiting for I/O to complete” state in the figure.

1441Using Threads

Here, we capture both the message and repeat variables in the lambda expression body,
causing the creation of a closure. The compiler is really taking over the burden of creating
a wrapper class with fields for message and repeat values to be passed from the main
thread to the worker. If we were to use a ParameterizedThreadStart delegate, we’d be
responsible for parameter packing and unpacking, typically with ugly casts and whatnot,
ourselves. An example is using arrays, here fully expanded in C# 1.0 code:

string message = ...;

int repeat = ...;

Thread worker = new Thread(new ParameterizedThreadStart(PrintMessage));

worker.Start(new object[] { message, repeat });

The PrintMessage method now would have to conform the delegate with its weakly
typed parameter:

void PrintMessage(object args)

{

string message = (string)((object[])args)[0]; // Magic indexes

int repeat = (int)((object[])args)[1]; // Casts and (un)boxing

...

More About a Thread’s Life Cycle

So far, we’ve seen three states a thread can be in. You should be able to recite at least two
of them. First of all, each new Thread instance represents a thread in a state where it
hasn’t been started yet. Upon calling the Start method, the thread can enter the running
state, where it’s executing code. A third state might not be immediately obvious because
we haven’t talked about it much: A thread can be waiting for some operation to be
completed, which is often referred to as being blocked.

BLOCKING IS HARD

True blocking of threads is quite uncommon in the world of managed code. Because of
the deep support for COM interoperability, the managed runtime has to make sure that
threads can continue to dispatch messages required by the COM runtime. We don’t
have the room to explain all the intricacies of this here, but suffice to say a thread
being blocked can be quite an overstatement in the context of managed code.
However, it is the case that certain operations that deal with I/O can appear as block-
ing the thread waiting for the operation to complete. Recall, though, that the CLR ulti-
mately manages a lot of the thread’s behavior and is always free to create certain
illusions to managed code running. This is just some manifestation of the powerful
concept of layering and abstraction.

1442 CHAPTER 29 Threading and Synchronization

Besides those states that are pretty much under the control of the developer, a bunch of
other internal states exist that are managed by the runtime. We don’t talk much about
them because they’re merely implementation details. One that should sound familiar is
the suspended state, where the CLR has decided a thread cannot continue to execute
managed code because a garbage collection has to take place. Because such a collection
requires patching up references because of objects moving around, it is unsafe for threads
to continue running while memory is changing underneath them. This is just one
example where the runtime enforces its own policy about thread life cycles that goes
beyond what the operating system natively knows about.

Let’s ignore the internal states and move on to the ones that can be influenced directly by
writing code against the Thread application programming interface (API).

How to Stop a Thread
A logical question is how to stop a thread. There are a number of ways to do so, but the
most convenient one by far is to let the thread exit by itself. That is, when the thread
returns from its entry-point method (which is what gets passed by means of a delegate), it
ultimately dies. This is merely a sketch of the managed story for threads because the CLR
performs cleanup work after a thread quits. In case of thread pool threads, which are
covered in the “Thread Pools” section, the underlying native thread doesn’t necessarily
die; instead, it can be returned to the pool to run other work in the future.

Letting a thread die by natural causes (that is, exiting from its entry-point method) is by
far the most humane thing to do. This also means that to stop a thread it’s a good practice
to make a thread check for some “request to stop” flag and let it perform necessary
cleanup by itself, granting the stop request as soon as it sees fit. An example of this
common technique is shown here:

var stopped = false;

var clock = new Thread(() =>

{

while (!stopped)

{

Console.WriteLine(“Tick - “ + DateTime.Now);

Thread.Sleep(1000);

}

});

clock.Start();

Console.WriteLine(“Press ENTER to stop the clock...”);

Console.ReadLine();

stopped = true;

clock.Join();

1443Using Threads

Main

User Pressed ENTER

Clock Thread Joined

{
 …
 clock.Start();

 Console.WriteLine(“Press ENTER to stop“);
 Console.ReadLine();

Clock

 stopped = true;
 clock.Join();

}

{
 while (!stopped){
 Console.WriteLine(“Tick - “+ DateTime.Now);
 Thread.Sleep(1000);
 }

 while (!stopped){
 Console.WriteLine(“Tick - “+ DateTime.Now);
 Thread.Sleep(1000);
 }

 while (!stopped){
 …
 }
}

X
X

1 Second

false

false

true
1 Second

FIGURE 29.6 Threads waiting, sleeping, and joining.

There’s quite a bit of magic waiting to be explained. What should be well understood by
now is the creation of a new thread, here using a lambda expression for syntactical conve-
nience. Also, the closure over the stopped variable creates a piece of shared state that will
be read by the thread to check for a request to stop doing work.

Inside the thread’s logic, we use Thread.Sleep to suspend the thread for a specified time,
which is passed in milliseconds. As a result, the thread prints a time message every 1 second.

DRIFTING TIMERS

This is a bad way to create a timer because the 1,000 milliseconds is not a firm
number that can always be granted by the operating system. Because it might take
several more milliseconds to see the thread being resumed, and because the thread
itself is doing nontrivial work (that is, a WriteLine call) that takes time, too, we can
and will see the timer drifting over time.

A much better way to build this kind of clock is by using specialized timers, one of
which is defined in System.Threading and appropriately called Timer. Although the
interval might not be granted precisely (because the underlying operating system is not
a real-time one), drift is being taken care of. For our explanation of stopping a thread,
this sample is fine.

When the main thread decides the block thread is no longer needed and can stop doing
its duties, it sets the stopped flag to true. At some point in the future, the clock thread
will pick this up and quit the loop, causing it to stop. To wait for this to happen, the main
thread calls Join on the clock thread. As a result, the main thread gets blocked until the
clock thread quits. Figure 29.6 shows the life cycle of both threads.

1444 CHAPTER 29 Threading and Synchronization

In the “Synchronization Primitives” section you learn how events (not as in “C# event”
but as in “some synchronization primitive”) can be used to block and wake up a thread in
an imperative manner.

NEVER ABORT THREADS

Let’s try to be crystal clear about this: Although the Thread class has an instance
method called Abort, you should never use it. (I was tempted to write “unless...” but
was able to resist.) But why is this?

First, the behavior of Abort should be explained. Upon calling Abort, the CLR will
throw a ThreadAbortException in the target thread. This is often referred to as an
asynchronous exception because it can occur at any point in the target thread. Every
chance the CLR sees to throw the exception can be used (for example, before any
method call is made; yes, even on a nop instruction).

Although this all seems fine, lots of bad things can happen (more than I care to list
here). In short, because of the possibility of dealing with corrupt state, give up on the
application domain that ran the thread being aborted. Instead, to stop a thread, make
sure you can do so in a cooperative manner using a flag or some other technique.

Waiting for a Thread to Complete
As you can see from Figure 29.6, it’s possible for the main thread to be waiting a while for
the join to occur because the other thread can’t immediately grant the stop request. In
this particular case, it can take up to a second for the clock thread to wake up, observe the
stopped flag being set, break from the loop, and ultimately quit the thread’s method.

We could also use a Join overload that accepts a timeout duration, which returns a
Boolean to indicate whether the thread joined within the timeframe allotted. In some
cases, such a strategy is worthwhile (for example, to interleave some useful work with
waits for other threads to terminate):

while (!clock.Join(250))

Console.WriteLine(“Waiting for clock to stop...”);

Why Suspend and Resume Are Deprecated
Besides start and stop, one would expect to find other life cycle management methods on
the Thread class. In fact, some such methods indeed exist, but most of them have been
deprecated or their use is discouraged. Two particular ones are Suspend and Resume. The
reason for the deprecation (as early as .NET 2.0) of Suspend and Resume lies in the inability
for code requesting a thread’s suspension to know what that target thread is doing.
Because of this, one could easily deadlock the entire program in a variety of ways. Such
bugs are notoriously hard to track down and resolve.

In short, never use Suspend or Resume on threads. Instead, to synchronize threads, use
primitives such as events, mutexes, semaphores, monitors, and so on (as discussed later in
this chapter; see the section titled “Synchronization Primitives”).

1445Using Threads

Yielding to Others
When a thread has run out of juice, it can voluntarily yield its turn for code execution to
others. This is most likely the closest you can get to native thread control from the .NET
Framework, because this function corresponds closely to an equivalent Win32 API with
the same purpose.

As you can guess, the method to realize a yield is called Yield. Like most methods for
threading, it’s a static method that applies to the current thread. In other words, you can
yield your own turn to execute code but not some other thread’s:

// Have done some work, but can take a nap now...

Thread.Yield();

// At some point, we’ll be scheduled again and end up here...

When a yield operation occurs, another thread that’s ready to execute will be picked by
the operating system scheduler to run. It should be emphasized that yielding is an act
that’s carried out explicitly by a thread.

Threads can be switched out in favor of others for multiple reasons that are beyond the
direct control of the thread. For example, a thread can become blocked waiting for I/O to
complete, or a thread’s quantum can be expired. Context switches as a result of such situa-
tions are under the control of the OS scheduler directly (although one can argue that
issuing an I/O operation is more or less “asking” to be scheduled away in case of the
occurrence of blocking).

COOPERATIVE SCHEDULING

Yielding is a weak form of cooperative scheduling. Today’s common operating systems
employ preemptive scheduling to switch out a thread if the thread’s quantum expires.
The operating system scheduler plays the role of a big brother that’s watching every-
thing that happens on the system and always has the power, by piggybacking on clock
interrupts, to switch between threads.

Prior to preemptive scheduling, applications had to be well behaved to yield execution
time to one another in an explicit manner. It goes without saying that relying on the
kindness of others is not evident. More often than not, a single program could run
away and monopolize the system for itself. That said, some systems still employ coop-
erative scheduling for good reasons. One example is the SQL Server OS, where the
user mode scheduler relies on the cooperation of various parts of the system to avoid
blocking and expensive context switching.

Thread.Yield could be argued to be a weak form of cooperative scheduling in that a
thread can decide not to use its full quantum, which gets enforced by the OS’s pre-
emptive scheduler. Although a thread can yield, it doesn’t pose any problem if it does-
n’t because the preemptive scheduler is there to pause a thread if it has run for long
enough.

1446 CHAPTER 29 Threading and Synchronization

Interrupting a Blocked Thread
Another life cycle method available for the control of threads is Interrupt, which is an
instance method. It can be used to interrupt a thread that’s in a so-called WaitSleepJoin
state. This state characterized being blocked because of a wait due to the use of the lock
keyword (or the underlying Monitor class), a thread sleep, or the use of the Join method
discussed before.

When calling Interrupt on a thread that’s currently in any of the aforementioned states,
a ThreadInterruptedException will occur in the target thread. As usual, if the exception
goes unhandled, the target thread will die. Working with this interrupt mechanism there-
fore requires threads to be prepared to be interrupted, which can work well in a controlled
environment.

As with the Abort method, the occurrence of an exception in a target thread at some
unexpected point of execution is quite unnatural. Personally, I use Interrupt rarely. If its
goal is to wake up threads from a blocked state to shut down an application in its entirety,
gentler techniques are often available. Although we haven’t talked about (synchroniza-
tion) events yet, you should have no trouble understanding that waking up a thread that’s
waiting for an event can be accomplished by signaling that event. However, a signal typi-
cally indicates a resource being available for use, which won’t be the case if the event is
signaled simply to unblock the thread:

sharedFile.WaitOne(); // See later for a discussion of WaitOne.

// When some thread sets the sharedFile event, we’ll execute this code.

A similar example could be given using the lock keyword. Possible ways to discover why
the event was signaled include a check for some “stopping” flag (that’s set before signaling
the event in case of setting the event to unblock the thread) or the use of multiple events
and the WaitAny construct (discussed in the section, “Synchronization Primitives”). In
short, Interrupt has its use (although rather seldom).

Managed Thread Characteristics

Being layered on top of native threads, managed threads are in some sense richer than just
native threads. For example, the state a managed thread can be in introduces a number of
managed code–specific states, such as WaitSleepJoin discussed in the previous section.
Besides those differences, a whole lot of properties on Thread reveal a lot of useful informa-
tion about threads. Some of those thread settings can also be set to control their behavior.

Background Versus Foreground
A first useful property of managed threads is whether they are foreground threads or back-
ground threads. The difference between both concepts is minimal. The only altered
behavior of a background thread is that it won’t keep the process from being terminated
after all foreground threads have quit. In other words, a foreground thread can keep a
process alive until it exits, whereas a background thread can’t. For example, consider the
following fragment of code where two threads are running, one of which has been
configured as a background thread. The other thread uses the default setting for
IsBackground, which is set to false:

1447Using Threads

static void Main()

{

var t1 = new Thread(() =>

{

for (int i = 0; i < 10; i++)

{

Console.WriteLine(“Background says {0}”, i);

Thread.Sleep(500);

}

}) { IsBackground = true };

var t2 = new Thread(() =>

{

for (int i = 0; i < 10; i++)

{

Console.WriteLine(“Foreground says {0}”, i);

Thread.Sleep(100);

}

});

t1.Start();

t2.Start();

}

This code prints all the messages from the foreground thread, which is keeping the process
alive. However, when the foreground thread completes in about 1 second, the background
thread won’t have a chance to execute further because the sole thread that kept the
process alive has exited.

Notice there are three threads in this example: the two that have been created using our
code, and one for the main thread. Can you infer whether the main thread is foreground
or background? Observe how the Main method can finish without taking down the
process. Why is that? Because some foreground thread keeps the process alive.

What happens if the main thread is still going but all other threads in the program have
finished? Clearly, you don’t want your program’s main thread to be terminated abruptly
because some of your other threads have finished their duties. In other words, the main
thread needs to keep the process alive as well, having a chance to reach its end. That’s
exactly what it means to be a foreground thread:

static void Main(string[] args)

{

// Prints false

Console.WriteLine(Thread.CurrentThread.IsBackground);

}

1448 CHAPTER 29 Threading and Synchronization

Typically, background threads are used to monitor the state of some component or other
process. Such activities don’t need to keep the program alive and are typically just meant
to support the rest of the program. Marking such threads as background is a good practice.

You learn later, in the “Thread Pools” section, that thread pool threads are background
threads. Similarly, advanced scenarios where native code creates threads will also cause
them to be marked as background threads right from the start. Concerning exception
behavior, no difference exists between background and foreground threads: Unhandled
exceptions in either of them terminate the entire process. We cover exceptions in the
“Dealing with Exceptions” section.

Giving Threads a Name
Debugging applications with a lot of threads can be a painful undertaking, especially if a
lot of those threads are doing similar activities (for instance, processing user requests
coming in from the network). Giving threads a friendly name definitely helps you see the
forest for the trees. For this purpose, the string-valued Name property can be used:

var monitor1 = new Thread(() =>

{

while (true)

{

Console.WriteLine(“Monitor 1 heartbeat”);

// Do something more useful every second...

Thread.Sleep(1000);

}

}) { IsBackground = true, Name = “Monitoring thread 1” };

// ...

monitor1.Start();

// Prevent the main thread from exiting for the sample...

Console.ReadLine();

The preceding example shows how to tag the monitoring thread with a friendly name. This
name shows up in the Threads window in Visual Studio, as shown in Figure 29.7. The addi-
tional threads that show up in this display are due to the use of the Visual Studio hosting
process for debugging. Feel free to compare the outcome with and without the hosting
process enabled. To disable the hosting process, see the project properties Debug tab.

Also notice how the code window marks where a thread currently is by using a gray back-
ground. In this particular snapshot of the process execution, one of the monitoring
threads is in the Thread.Sleep call, as indicated in gray.

To make threads more explicit in the debugger, you can right-click anywhere in the
Threads window and enable the Show Threads in Source option. Figure 29.8 shows threads
being identified in the source by a threads icon in the margin.

1449Using Threads

FIGURE 29.7 Threads with friendly names.

FIGURE 29.8 Thread identification in the code window.

Notice the text of the tooltip accommodating for the plural of thread. It’s obviously possi-
ble for more than one thread to be executing in the same method at the same time. The
call stack for both threads may differ in many ways, though. For example, multiple user
requests may be executing the same authentication method at the same time, likely with
different parameters. To switch focus of the debugger view to a particular thread, double-
click the thread’s entry in the Threads window. Observe how the Call Stack window
(among others) changes to reflect the selected thread’s state.

Thread IDs
Threads have multiple identities. Figure 29.7 shows two of those identities: the native
thread ID (in the ID column) and the managed thread ID (in the Managed ID column).

1450 CHAPTER 29 Threading and Synchronization

The native thread ID is assigned by the operating system and is primarily of interest for
hardcore debugging where a mix of managed and native code is executing in an applica-
tion. Managed thread IDs are under control of the common language runtime and do not
vary over time. Using this ID can come in handy for purposes of logging:

s_log.WriteLine(“{0} @ {1} - Diagnostic message”,

Thread.CurrentThread.ManagedThreadId,

DateTime.Now);

A Quick Look at Threading Apartments
The concept of threading apartments is an inheritance from the (good) old days of COM.
We don’t detail this aspect of managed threads because it’s mostly relevant for users who
have to deal with COM components, but illustrate the notion of threading apartments
based on some common manifestations of the feature.

Those who’ve been using .NET for a while might have seen Main entry-point methods
with the custom STAThread attribute applied to it, as shown here:

class Program

{

[STAThread]

static void Main()

{

...

In fact, if you create a new Windows Forms project and check out the Program.cs file,
you’ll see an entry-point declared as shown here. This attribute causes the application to
use COM with a single-threaded apartment, which affects COM components.

The same use of the STAThread attribute can be found (albeit with some more effort) for
Windows Presentation Foundation (WPF) applications. To do so, enable the Show All Files
option in Solution Explorer and look for the App.g.i.cs file in the obj\x86\Debug folder.
You might need to build the solution for this file to show up because it get generated by
the WPF build system and the XAML compiler. Figure 29.9 shows a WPF application’s
Main method decorated with the STAThread attribute.

If you try to create a WPF application from scratch, manually creating an Application
instance and one or more Window instances, you might forget to specify the attribute on
the Main method, resulting in the error shown in Figure 29.10. This error message also
reveals why this attribute is required, but further discussion requires a thorough explana-
tion of the COM runtime and its intricacies.

1451Using Threads

FIGURE 29.9 The STAThread attribute emitted on the Main entry-point method for WPF.

FIGURE 29.10 Many UI components require a single-threaded apartment.

Other than using the STAThread and MTAThread attributes on entry-point methods, you
can also specify the apartment state using the SetApartmentState method on a Thread
instance. For further information, consult the MSDN documentation.

Dealing with Exceptions

Unhandled exceptions occurring on any thread cause the application to be terminated by
the common language runtime. Because of this, it’s essential to guard your thread entry-
point methods against unhandled exceptions if specific types of exceptions are tolerable.
For example, threads handling user requests should not be able to take down the entire
web or application server unless something really exceptional happens (such as memory
corruption, out-of-memory situations, stack overflows, and so on).

This does not imply you should use the “catch-all” technique because this could silence
way too many exceptions that could cause damage later during the application’s execution
(for example, because of broken invariants). In other words, one should know what’s safe
to catch rather than be lazy. Also, if you decide to put in place a last-resort top-level catch
in a thread’s entry-point method, it’s generally a good idea to put logging in place as well,
so you can analyze failure modes you might need to address in a more disciplined way.

1452 CHAPTER 29 Threading and Synchronization

The following example illustrates an application that will be terminated after approxi-
mately 1 second due to an unhandled exception in some thread. Obviously, the call stack
where the exception originates in the failing thread may be much deeper:

class Program

{

static void Main()

{

new Thread(() =>

{

Thread.Sleep(1000);

throw new InvalidOperationException(“Oops!”);

}).Start();

while (true)

{

Console.Write(“.”);

Thread.Sleep(100);

}

}

}

Prior to .NET 2.0, unhandled exception behavior for threads was quite different. In lieu of
terminating the process, an unhandled exception simply resulted in a printout of the
exception stack trace on the console. For thread pool threads, the worker thread was
simply returned to the pool. Regular threads simply terminated without taking down the
rest of the process. Finally, exceptions on the finalizer thread also got silently muted.

If an application needs to restore the .NET 1.0 and 1.1 behavior for compatibility reasons,
you can add a setting to the application configuration file. This should be a last-resort
option, for use while porting applications to .NET 2.0 or later:

<legacyUnhandledExceptionPolicy enabled=”1”/>

Thread-Specific State

We already know that each thread has its own call stack; hence, stack-allocated data is
state-specific to a particular thread (for example, local variables and parameters that are
being passed to methods). In the “Synchronization Primitives” section we discuss how to
share state between threads, preferably in a safe manner. For now, let’s focus on other
forms of thread-specific state.

The ThreadStatic Attribute
Static state is isolated on a per-application domain basis. Because multiple threads can be
executing in the same application domain, such static state is shared across those threads.
This behavior can be changed by applying the ThreadStatic attribute to a static field. First,
let’s show multiple threads accessing a static field without marking it as thread specific:

1453Using Threads

class Program

{

static int s_i;

static void Main()

{

new Thread(() =>

{

while (true)

{

s_i++;

}

}).Start();

while (true)

{

Thread.Sleep(1000);

Console.WriteLine(s_i);

}

}

}

In this program, the main thread acts as a reader while the other thread acts as a writer
and updates the static field. It’s evident that both operate on the same state because the
printed value of s_i varies every time the main thread polls it.

THE POWER OF ESTIMATING

Although the preceding example is trivial, it’s a good exercise to learn making esti-
mates of processing power. On my PC, the deltas between consecutive s_i values that
get printed to the console are about 700 million. Although this reflects the number of
increment operations done in 1 second, don’t forget about the loop’s cost itself. Feel
free to do some hardcore debugging on a fragment as simple as the one shown and
analyze the generated native code. Doing so provides good insights in Just-in-Time (JIT)
compilation and more.

By marking the s_i static field as ThreadStatic, we see that each thread has its own copy
of the field. Because of this, you won’t see the increments made by the writer (to its own
copy). Therefore, the reader will print zero values all the time:

class Program

{

[ThreadStatic]

static int s_i;

1454 CHAPTER 29 Threading and Synchronization

static void Main()

{

new Thread(() =>

{

while (true)

{

s_i++;

}

}).Start();

while (true)

{

Thread.Sleep(1000);

Console.WriteLine(s_i);

}

}

}

The ThreadStatic attribute comes in handy when you want to avoid static state being
shared across threads (for example, if multiple workers need to have their own copy of
this state).

One caveat should be pointed out: Initialization of a field marked as thread static is not a
good idea because the initialization code that assigns to the field lives in the (static) class
constructor, which runs only once per application domain. The following code prints 42
and 0 because the static constructor for the class was executed on the main thread. The
same initialization code wasn’t run for the other thread.

class Program

{

[ThreadStatic]

static int s_i = 42;

static void Main()

{

Console.WriteLine(s_i); // Prints 42 :-)

new Thread(() => Console.WriteLine(s_i)).Start(); // Prints 0 :-(

Console.ReadLine();

}

}

Instead of relying on initialization code, which behaves in a flaky manner (as shown
here), you should rely on the default value being set to the static field. Code can check
against this value to perform one-time initialization. An example of a use of thread-static
fields I’ve used recently is the allocation of thread-specific loggers. In such a case, synchro-

1455Using Threads

nization is unnecessary when doing diagnostic logging because each thread gets its dedi-
cated logger instance:

class Program

{

[ThreadStatic]

static TextWriter s_logger;

static void Main()

{

new Thread(() =>

{

EnsureLog();

// Some thread that’s responsible for some I/O operation.

// At various times, it writes to the log, as shown here:

s_logger.WriteLine(“{0} - Performed some action”, DateTime.Now);

// Much more code is executed on this thread...

}) { Name = “Lazy writer” }

.Start();

// Others threads could be created, each of which has to call

// the EnsureLog method to have its s_logger field set up properly.

}

static void EnsureLog()

{

string name = Thread.CurrentThread.Name

?? Thread.CurrentThread.ManagedThreadId.ToString();

// More complicated initialization logic could be dreamed up.

// What matters is the fact this method will run multiple times

// on different threads, initializing that thread’s logger.

s_logger = File.CreateText(name + “.log”);

}

}

Notice the use of the Name property of the current thread to initialize the log filename.
From the code in Main, it might not be obvious this value gets set before the thread can
see it. After all, we’re using an object initializer that sets the thread’s Name before the code
(here specified in the lambda expression body) is run due to the call to Start. Once more,
this reflects the nature of delegates in facilitating lazy execution of code in places other
than where it’s specified.

1456 CHAPTER 29 Threading and Synchronization

The ThreadLocal<T> Class
Closely related to the Lazy<T> class, the ThreadLocal<T> class was introduced in
.NET 4. Essentially, this type addresses the shortcomings of the ThreadStatic
attribute when initialization code is required for the per-thread state. The

ThreadLocal<T> class acts as a factory for per-thread state, using a Func<T> delegate that’s
invoked once per thread upon calling the Value property. This pattern should be familiar;
after all, the same pattern is used for Lazy<T>.

For instance, consider the code example from the previous section. Rewriting this
example using the ThreadLocal<T> type (with T substituted for TextWriter) results in the
following code:

class Program

{

static void Main()

{

new Thread(() =>

{

// Some thread that’s responsible for some I/O operation.

// At various times, it writes to the log, as shown here:

s_log.Value.WriteLine(“{0} - Performed some action”, DateTime.Now);

// Much more code is executed on this thread...

}) { Name = “Lazy writer” }

.Start();

// Others threads could be created

Console.ReadLine();

}

static ThreadLocal<TextWriter> s_log = new ThreadLocal<TextWriter>(() =>

{

string name = Thread.CurrentThread.Name

?? Thread.CurrentThread.ManagedThreadId.ToString();

// More complicated initialization logic could be dreamed up.

// What matters is the fact this method will run multiple times

// on different threads, initializing that thread’s logger.

return File.CreateText(name + “.log”);

});

}

Two key differences are the absence of the ThreadStatic attribute on the s_log field and
the use of the Value property to retrieve the thread-local state. In addition, an
IsValueCreated property exists to check whether the initialization delegate (or factory, if

1457Using Threads

FIGURE 29.11 A closure over local variable i results in a field.

you like) has been run for the current thread already. This, too, follows the pattern seen
on Lazy<T> before.

One advantage of the ThreadLocal<T> type is the ability to use it without the need for
fields to tag the ThreadLocal attribute to. This proves particularly useful if you don’t have
control over such fields yourself (for example, when using closures). As you learned during
our discussion of delegates, closures over local variables result in fields created on a
“display class,” which is totally under the control of the compiler. For example, look at
the following code. To remind you about closures, Figure 29.11 shows the result of
compiling this example.

static void Main()

{

int i = 0;

new Thread(() =>

{

while (true)

i++;

}).Start();

while (true)

{

Thread.Sleep(1000);

Console.WriteLine(i);

}

}

This is pretty much the same code as our multithreaded reader/writer counter example
shown before, the sole difference being the use of a local variable for the counter rather
than using a field ourselves. Because there’s no syntactical way in C# to apply attributes to
local variables, we can’t use ThreadStatic here. In other words, the field generated due to
the closure over the local variable cannot be influenced by the user.

1458 CHAPTER 29 Threading and Synchronization

However, ThreadLocal<T> can be used without any problem. As the use of lambda expres-
sions (and hence closures) becomes more common, this is a great gift brought to us in
.NET 4. In Chapter 30, you see uses of other .NET 4 constructs, such as Parallel.For,
where the use of lambdas is very convenient. The introduction of those made the need for
a ThreadLocal<T> construct more pressing. The following code shows how to make the
counter variable thread local, just as we did before for the similar example with the
ThreadStatic attribute. Recall this changes the behavior of the code, causing the reader to
print its own private copy of the i, always set zero:

static void Main()

{

var i = new ThreadLocal<int>();

new Thread(() =>

{

while (true)

i.Value++;

}).Start();

while (true)

{

Thread.Sleep(1000);

Console.WriteLine(i.Value);

}

}

A WORD ON THREAD SAFETY

Thus far, we haven’t mentioned thread safety (something we discuss more fully as we
cover synchronization primitives later in this chapter). In particular, we avoided a discus-
sion about thread safety in the context of both our counter examples by having only
one writer thread. However, if multiple parties were to attempt to write to a shared (that
is, nonthread-local) counter, we’d need to stand still and think about ensuring thread
safety. In the last counter example using ThreadLocal<T>, a pretty clear multithreading
issue exists if there would be multiple writers. Take a look at the following line of code:

i.Value++;

This seemingly innocent line of code does quite a lot of things, things that cause the
increment operation not to be atomic. First, the Value property is read using a getter
call. Then the local copy of the retrieved value is incremented. Finally, the incremented
value is assigned by using the Value setter. This is far from thread safe if multiple writ-
ers are updating the counter. More on this in a moment.

Thread-Local Storage
We’ve kept the “most native” way of establishing thread-local state for last because
ThreadStatic and ThreadLocal<T> are the recommended ways to achieve this effect.
Nonetheless, there is a third way to do thread-local storage.

1459Using Threads

The managed code abstraction that sits the closest to operating system primitives for
thread-local storage is known as data slots. Management of data slots is done in a way that
feels quite native, due to the Allocate/Free methods that are used:

var slot = Thread.AllocateNamedDataSlot(“logger”);

// Use the slot throughout the program with GetData and SetData calls.

Thread.FreeNamedDataSlot(“logger”);

As a result of calling AllocateNamedDataSlot, we get a LocalDataStoreSlot object that
acts as a handle to access the data contained in the slot. This is achieved by means of the
static GetData and SetData methods on the Thread class. Instead of holding on to the slot
object, it can also be retrieved by means of its name:

// Initialization code.

var slot = Thread.AllocateNamedDataSlot(“logger”);

Thread.SetData(slot, new Logger() /* type definition omitted for brevity */);

Assuming the slot was allocated here, we can now use the GetData method to obtain the
logger object. Each thread will have its own slot (requiring per-thread initialization as
shown earlier), resulting in a separate logger per thread. This technique is typically used to
avoid synchronization code for fundamental activities such as logging:

var slot = Thread.GetNamedDataSlot(“logger”);

var logger = (Logger)Thread.GetData(slot);

logger.WriteLine(“Diagnostic message”);

With this, we conclude our discussion of techniques that can be used to allocate per-
thread state.

SHALLOW VERSUS DEEP

Beware of a false sense of security when using thread-local storage techniques. It’s not
because you’re differentiating state on a per-thread basis (for example, to avoid
synchronization issues) that all the associated state is partitioned as well.

For example, you might have multiple threads, each of which has its own logger object.
But if those logger instances happen to contain a reference to the same underlying
resource (by means of aliasing of object references), you’re still in trouble. All you’ve
done is segregated state on a shallow basis (such as the top-level logger), forgetting
about the deep object graph underneath.

Moral of the story: Beware of any kind of shared state. If multiple parties need to
access that state, you better read up on synchronization primitives.

1460 CHAPTER 29 Threading and Synchronization

Essential Threading Debugging Techniques

Debugging multithreaded programs can be a true challenge. After all, different parts of the
program are running simultaneously, each of which can be changing state. The lack of
proper synchronization around shared resources will make things go really bad, posing a
true debugging challenge.

When Threads Are Frozen
Debuggers pause a program’s threads when you’re inspecting program state from the
debugger, and resuming the program unfreezes all threads again. The notion of resuming
should be understood in the broadest sense possible, including single-stepping (using F10).
To illustrate this effect, consider the following piece of code:

class Program

{

static void Main()

{

// Background thread.

new Thread(() =>

{

while (true)

{

Thread.Sleep(30);

Console.WriteLine(“{0} - {1:hh:mm:ss:fff}”,

Thread.CurrentThread.ManagedThreadId,

DateTime.Now);

}

}).Start();

// Main thread’s code.

while (true)

{

Thread.Sleep(100);

Console.WriteLine(“{0} - {1:hh:mm:ss:fff}”,

Thread.CurrentThread.ManagedThreadId,

DateTime.Now);

}

}

}

Set a breakpoint on the main thread’s Console.WriteLine call. By the time we hit this
breakpoint, the background thread will (likely) have printed some messages already. Once
you’re broken in the debugger, notice how all threads have been frozen. The background
thread doesn’t get a chance to make progress at this point. This is a good thing. Think
about what would happen when you’re analyzing state in the debugger while other
threads can still modify things.

1461Using Threads

FIGURE 29.12 Analyzing debugger behavior with regard to thread execution.

To see the effect of resuming execution, press F10 to single-step from the point where we
hit the breakpoint. This moves the main thread to the closing curly brace on its for loop.
Notice, though, the background thread also got unfrozen, and there’s a chance (because
you’re dealing with timing, there are no certainties) the background thread made progress
while execution was resumed for the very short time it took to single-step over the
Console.WriteLine call. Figure 29.12 shows this effect, where it’s clear the background
thread made progress during the single-stepping we’ve done.

Why do I consider this to clearly be the case? Just look at the time deltas in the output for
the thread with ID 9. From this, you can see that I stayed in the debugger for about 14
seconds after hitting the breakpoint. During that time, the background thread didn’t make
any progress. However, upon hitting F10, this background thread had a chance to run and
printed another message. This all happened while the debugger was waiting for the main
thread (with ID 8) to complete the single-stepping, which took us beyond the
Console.WriteLine call, explaining the last message.

Freeze and Thaw
While debugging multithreaded issues, you often want to do some “what if” analysis to
get to the bottom of the observed behavior. Suppose, for example, that a whole bunch of
threads are dealing with the same underlying resource and you observe that resource
going bad one way or another. To pinpoint the source of the problem, you want to narrow
down the problem to the thread that’s improperly doing its synchronization duties.

Although there’s no perfect way to do such analysis, I want to point out some tools that
can help. One is the debugger’s capability to freeze and thaw threads. When you freeze a
thread, it remains suspended until you issue the thaw command on the thread, which
enables you to eliminate a thread from the global picture you’re trying to get of the
misbehaving program. If the problem you’re debugging suddenly disappears, that can be a
pretty good indication of the frozen thread being at fault.

1462 CHAPTER 29 Threading and Synchronization

FIGURE 29.13 Freeze and Thaw options for a thread.

Another reason to freeze a thread is to reduce debugging noise. For example, if you have
some thread sitting around to perform periodic maintenance activities, you might want to
freeze that thread temporarily while you’re performing your analysis. This is especially
true if you’ve set a breakpoint in code that’s run by multiple threads but you want to
break into the debugger only when a relevant thread hits that code path. Although alter-
native techniques exist (for example, using a conditional breakpoint based on the thread
ID property), the use of freeze and thaw can be appropriate here.

Figure 29.13 shows the use of the Freeze option from the context menu in the Threads
window. Using the example from the previous section, we’re about to freeze the thread
that prints a message every 30 milliseconds. Pressing F10 to single-step the main thread
will no longer permit the background thread from making progress, as long as Thaw isn’t
used on it to “unfreeze” it.

Yet another scenario is when you want to freeze a thread that will only make matters
worse. Basically, you might want to prevent the program from accepting more work that
causes more concurrency, thus making the analysis of program state harder. As usual,
debugging a minimum repro of an issue is much more convenient than having to dissect a
more complex problem state—for example, due to many concurrent users in the system.
An example of this scenario is to block the thread that runs a procedure to receive work,
such as a listener, to accept incoming calls from the network. Freezing that thread prevents
more request workers (typically run on separate threads) from entering the picture.

1463Thread Pools

Thread Pools
Creation of new threads is a fairly expensive operation. The reason for this goes all the
way down to the operating system tasks that have to be performed to make the creation
of a new thread happen. This includes the allocation of the thread’s stack and various data
structures (such as KTHREAD at the kernel mode level) to maintain the thread’s state. Also,
the thread needs to become eligible for scheduling, requiring the scheduler database to be
updated to gain knowledge about the thread’s existence.

KERNEL MODE VERSUS USER MODE

Threads are the unit of code execution on the Windows operating system. This means
that threads get scheduled and can deal with synchronization. Because the concept of
preemptive scheduling requires low-level support from the hardware (based on timer-
based interrupts and whatnot), it shouldn’t come as a surprise that threads are kernel-
mode constructs. After all, the kernel’s role is to provide an abstraction over the
hardware and mimic a machine that can run lots of stuff in parallel, even though the
hardware might have limited parallelism.

The cost of the kernel being involved in the creation of threads has resulted in the
creation of abstractions higher up the software stack. A good example includes the
concept of user mode scheduling (UMS) used by Microsoft’s SQL Server to reduce
context switching between threads. Windows 7 also includes a UMS mechanism.

Conceptually, such UMS mechanisms play pretty much the same abstraction role the
kernel plays for the hardware. The kernel abstracts away certain limitations of the hard-
ware: Although you might have only a handful of processor cores, it enables you to run
thousands of threads. User mode schedulers, however, limit the parallelism created at
the kernel level (to reduce costs associated with it), while allowing applications to
create much more work under the impression it can and will be run concurrently.

Essentially, the layered cake formed by the user mode, kernel mode, virtualization tech-
nologies (such as Hyper-V’s hypervisor), and hardware is nothing but a fancy multiplex-
ing organization. Higher layers of the stack provide the impression that lower layers
have more capabilities than they really have.

.NET’s thread pool could be seen as a user mode scheduler. It accepts units of work
that will be multiplexed onto real operating system threads, the number of which is con-
trolled to reduce costs. Nothing beyond some engineering challenges prevents the com-
mon language runtime from leveraging things such as Windows 7’s UMS in the future.

Whenever the creation of a resource is deemed expensive, the technique of pooling
quickly enters the picture. Another example outside the realm of threading is the use of a
connection pool to a database server, reducing the cost that would result from going over
the network to set up a connection with the server.

The concept of a resource pool involves pre-allocating a set of resources that will be reused
throughout an application’s lifetime. This pool of resources can grow or shrink dynami-
cally based on demand of resources.

1464 CHAPTER 29 Threading and Synchronization

Application

Work Item Queue

Q
ue

ue

D
ispatch

Thread Pool

Operating System

FIGURE 29.14 The .NET thread pool multiplexes work items onto system threads.

.NET’s Thread Pool

In the case of threading, pools have been created to reuse operating system threads. This
observation holds at different levels; the operating system itself has this notion for various
of its components. Of more interest to us is the concept of the .NET thread pool.

Typical use of the thread pool is to deal with relatively short-lived work items that need to
execute in the background. For example, suppose you got a user request on a web service
coming in. On the Web, you shouldn’t be taking tens of seconds to provide a response for
a web request. Users simply won’t buy it and will navigate away from your website. In
other words, the logic to provide a response for the user’s request should be relatively
short-lived. It should also be clear that processing the user request shouldn’t prevent the
server from accepting new requests in the meantime. In other words, you need to intro-
duce concurrency for multiple simultaneous requests.

Adding up the two constraints posed by the preceding example, we should have each
request run in parallel, but each such request should take only a small amount of time.
Spawning a whole new thread to handle the request would be inefficient. There’s not just
the cost of creating and disposing (upon its completion) of the thread. Overall stress put
on the system should be accounted for as well. To reduce the impact of thread creation,
use of the thread pool is recommended in such a scenario.

In summary, thread pools typically come in handy when relatively short units of work
have to be run, reusing physical operating system threads. Another good indicator for the
use of thread pools is when the amount of work to be carried out is dependent on
dynamic factors (for example, based on requests coming in to a web server).

Figure 29.14 shows the .NET thread pool in a slightly simplified manner.

1465Thread Pools

The QueueUserWorkItem Method
An exhaustive coverage of the ins and outs of the .NET thread pool is beyond the scope of
this book. In what follows, we simply consider it to be a service provided by the runtime
that allocates a number of threads within certain (configurable) boundaries.

Work items in the form of delegates are queued by library and application code to be
executed sometime in the future, asynchronously from the caller’s point of view. The
method that enables this queuing is called QueueUserWorkItem and lives on the ThreadPool
class in System.Threading. Both overloads accept a WaitCallback delegate object, option-
ally specifying a piece of state to be passed between the caller and the work item. As
explained earlier in this chapter, use of such a state object has become largely redundant
thanks to the introduction of closures in C# 2.0.

An example of queuing work is shown here. Notice the call to ReadLine to prevent the
program from quitting prematurely. Thread pool threads don’t keep the process alive; they
are background threads, as explained earlier in this chapter:

static void Main()

{

ThreadPool.QueueUserWorkItem(_ /* state object we don’t care about */ =>

{

Console.WriteLine(“Work item executed.”);

});

Console.ReadLine();

}

Basically, there isn’t much more to the thread pool’s usage than what is shown here.
Instead of creating a new thread, just use QueueUserWorkItem instead. To illustrate the
huge difference in terms of the number of threads required to execute work items, let’s
write a simple test:

static void Main()

{

Console.Write(“Press ENTER to start... “);

Console.ReadLine();

Console.WriteLine(“Scheduling work...”);

for (int i = 0; i < 1000; i++)

{

ThreadPool.QueueUserWorkItem(_ =>

{

Thread.Sleep(100);

});

1466 CHAPTER 29 Threading and Synchronization

FIGURE 29.15 The thread pool’s use of threads.

}

Console.ReadLine();

}

This piece of code executes 1,000 units of work, each of which simply performs a sleep of
one tenth of a second. Don’t forget the act of scheduling is asynchronous, so we won’t see
the program block until all work is carried out.

Figure 29.15 reveals how many threads are running in the process (from the operating
system’s point of view, that is). The number can vary slightly, but you should definitely
see far fewer than 1,000 threads being run.

The minimum and maximum number of threads used by the thread pool can be tweaked
through various methods on the ThreadPool class. We won’t elaborate on this, and
instead I refer you to the MSDN documentation for more information (look for
SetMinThreads and SetMaxThreads).

Repeat the exercise, substituting the QueueUserWorkItem call for the code to create and
start a new thread. This time, you see many more threads being allocated:

new Thread(_ =>

{

Thread.Sleep(100);

}).Start();

You can also play with the sleep duration to emphasize the difference. The higher you
make this number, the more visible the difference will be in Task Manager. Why is this? In

1467Thread Pools

case of raw use of thread objects, we allocate as many threads as we can cope with, each of
which will be blocked for the sleep duration. Literally thousands of threads can be sleep-
ing at the same time. When using the thread pool, we’re merely blocking the threads from
the pool, which are limited in their number. In other words, not all work items get a
chance to start sleeping at the same time.

Performance Characteristics
This brings us to another important point: Use of the thread pool reduces the stress put
on the operating system, but in doing so the degree of parallelism is reduced. In the
example discussed here, quite a difference exists in behavior between use of the thread
pool versus use of plain threads. When using the thread pool for our thousand parallel
sleeping actions, they are not overlapped because only a limited number of work items is
assigned to a physical thread at the same time. As a result, sleeping for 100 milliseconds in
parallel will take much longer than 100 milliseconds in total. However, when using plain
threads, the thousand sleeps can be going on at the same time, depending on the mood of
the operating system scheduler.

Using the CountdownEvent synchronization primitive introduced in .NET 4, we can illustrate
this behavior. We discuss such primitives later in the “Synchronization Primitives” section.

static void Main()

{

const int N = 1000;

var evt = new CountdownEvent(N);

Console.WriteLine(“Scheduling work...”);

var sw = new Stopwatch();

sw.Start();

for (int i = 0; i < N; i++)

{

new Thread(_ =>

{

Thread.Sleep(100);

evt.Signal();

}).Start();

}

evt.Wait();

sw.Stop();

Console.WriteLine(sw.ElapsedMilliseconds);

}

1468 CHAPTER 29 Threading and Synchronization

1000 Parallel ThreadsSleeping for 100 ms

T
h

re
ad

s
T

h
re

ad
 P

o
o

l

To
ta

l T
im

e
To

ta
l T

im
e

10
0

m
s

100 m
s

Number of Thread
Pool Threads

Degree of Parallelism

10
0

m
s

Number of Thread
Pool Threads

10
0

m
s

Number of Thread
Pool Threads

First “Batch”

Second “Batch”

Last “Batch”

•
•
•

FIGURE 29.16 Effects of the thread pool’s degree of parallelism.

What’s going on here? The main thread allocates a countdown event that starts with an
initial value of 1000. A stopwatch is used to measure the time it will take for this counter
to go down to 0. Each of the workers running in parallel (here using plain old threads)
performs its sleep first and then signals the counter, which makes it go down with one.
The main thread is blocked waiting for the event to drop to the zero state, caused by all
workers having signaled the event. Then the stopwatch is stopped and the elapsed time is
printed to the console.

If you run this experiment with plain thread-creation calls, the total time for all workers
to complete will be around the same order of magnitude as 100 milliseconds. On my
machine, the result was about 400 milliseconds. Although this is still four times more
than the sleep of each parallel thread, it’s not a world of difference. The delta is due to the
cost of creating the threads themselves (this takes time, too!), overhead induced by sched-
uling, and possible competition of our threads with other applications running on the
machine at the same time.

But what if you run the code using the thread pool instead? This time it will take much
longer for the counter to reach zero because only a limited number of worker threads is
sleeping at the same time. Stated otherwise, the sleeps are serialized to some extent. If the
maximum number of threads in the pool were to be set to just one, the total time would
be no less than 100 seconds (1,000 times 100 milliseconds). When running the test on my
machine, it took about 10 seconds to complete all the sleeps. A quick calculation shows
that the number of parallel threads performing the work should have been around 10. We
sometimes call this number the degree of parallelism.

Figure 29.16 contrasts the use of the thread pool with the use of dedicated threads.

Although this behavior might sound undesirable at first, don’t forget about the contrived
nature of the example shown here. For one thing, relying on firm timing is never a good

1469Thread Pools

idea, especially when dealing with concurrency. You’re not running on a real-time operat-
ing system after all. Second, work items as simple as performing some sleep are not realis-
tic either. In a real application, work items will be processing useful work, such as reading
from files or interacting with web services. This typically results in blocking while waiting
for resources (for example, I/O) to become available.

What the thread pool is really good at is making sure a potentially unbounded amount of
work entered in the system doesn’t crash the system. It does so by taking care of the
mapping of logical work onto physical workers (in this case, threads). So when you’re
building some kind of service accepting user requests, consider using the thread pool to
be a good citizen for the application, the runtime, the operating system, and the machine
as a whole.

ABSTRACTING CONCURRENCY AND SCHEDULING

The framework contains many ways to introduce concurrency. In this section, we’ve
seen two of them: starting “raw” threads and using the thread pool. Plenty of others
exist, such as the WPF dispatcher used in UI programming.

But what does concurrency really mean? Concurrency is all about where things run. For
the thread pool, this is any of the threads in the pool. When using the concept of a
dispatcher in WPF or Windows Forms, this is some dedicated thread that pumps
window messages.

A related notion is scheduling. This concept is all about the act of adding work to the
system, which could give rise to the creation of additional concurrency or the reuse of
existing concurrency. For example, a new thread could be started, but when using
things such as dispatchers, work will be scheduled on an existing thread.

What would it mean to abstract over both those notions? How could we establish some
kind of interface that can be shared across all kinds of schedulers? Let’s look at one
common piece across all the scheduling mechanisms we’ve covered thus far. No
matter whether we want to run work on a new thread or we want to use the thread
pool, we must pass the unit of work (the “work item”) around one way or another. For
threads, this is done using the ThreadStart delegate, while the ThreadPool’s
QueueUserWorkItem uses a WaitCallback delegate. Both have a similar signature in
fact. If we ignore the state parameter (which is largely redundant due to the existence
of closures, as mentioned already), all that remains is pretty much an Action delegate.

The Reactive Extensions for .NET library contains the abstraction of a scheduler based
on this observation. IScheduler looks like this (slightly simplified):

interface IScheduler

{

IDisposable Schedule(Action action);

}

This interface is really just about receiving work in the form of an action and running it
at some point in the future, subject to the implementation’s underlying resources (such
as a pool of threads). The returned IDisposable is used to cancel out work if it hasn’t
been started yet.

1470 CHAPTER 29 Threading and Synchronization

Beware of Per-Thread State
When using the thread pool, beware of the notion of per-thread state being just what it is:
state kept on a per-thread basis. However, because threads are reused across different work
items, such state will appear to all the work items that happen to run on that thread. An
example to illustrate this behavior is shown here:

static void Main()

{

var state = new ThreadLocal<int>();

for (int i = 0; i < 100; i++)

{

ThreadPool.QueueUserWorkItem(_ =>

{

Console.WriteLine(“{0} @ {1}”,

state.Value++,

Thread.CurrentThread.ManagedThreadId

);

});

}

Console.ReadLine();

}

Here, we use the ThreadLocal<T> class introduced in .NET 4 and explained earlier in this
chapter. If every scheduled work item were to run on its own thread, we would expect the
printed state to be equal to zero every time around. However, because the underlying
threads from the pool are getting reused, we see things like this instead:

0 @ 5

0 @ 4

0 @ 3

0 @ 6

0 @ 9

1 @ 9

2 @ 9

Results vary, but you should see different threads being used and reused to run the work
items that have been queued up.

Despite this caveat, thread-local state has its value even when using thread pools. In most
cases, people use this technique to reduce the need for synchronization by having a per-
thread resource. A good example is logging, having a dedicated logger for each thread.
This technique still applies in combination with the thread pool. Because threads are
where concurrent execution takes place, having an exclusive resource on a per-thread basis
will do the trick. However, logging output of multiple work items will end up in the same
log file. So although the physical use of the resource is properly protected, it might not be

1471Synchronization Primitives

Intersections are shared
resources and require

synchronization

FIGURE 29.17 Synchronization of shared resource use is critical.

the right thing to do from a logical point of view. If you truly want each and every work
item (for example, corresponding to processing for a user request) to have its own dedi-
cated logger, you have to pass one around through the work item code being scheduled.

Synchronization Primitives
In daily life, there’s a lot of concurrency. Everyone is doing his or her own thing at a
personal pace. Although this provides absolute freedom, sometimes different parties need
to work together to accomplish something. To do so, rules must be established to prevent
the participating individuals from stepping on each other’s toes.

Examples of this abound. Just think of traffic. Although lots of people can drive vehicles at
the same time, traffic signs are put in place to prevent bad things (such as collisions) from
happening. Thus, the degree of concurrency of all the parties involved might have to be
decreased. For example, a road intersection is a shared resource used for vehicles coming
from different directions. To make sure no two conflicting cars share the intersection at the
same time, concurrency is reduced by allowing only nonconflicting uses of the resource.

Figure 29.17 shows two uses of a road intersection as a shared resource. This figure
contrasts one good use with a bad use. Preventing the bad case requires reducing the
amount of concurrent traffic by blocking cars from one direction.

Notice, however, that it might be possible to devise a finer-grained synchronization
scheme that still allows for a good amount of concurrency while mishaps are still
prevented in all circumstances. This is where the art of synchronization comes in. Surely,
prevention of car collisions in an intersection could be done by allowing only one car to
cross the intersection at any given time. In other words, we’re serializing access to the
shared resource, which can be seen as a reduction of the degree of parallelism to one.

However, this slows down traffic immensely and, in fact, unnecessarily. Can’t we just
make the intersection safe but still allow for a good degree of parallelism? Surely, more
intelligent synchronization is possible, as shown in Figure 29.17 on the left. Here two car

1472 CHAPTER 29 Threading and Synchronization

directions are allowed to be exercised simultaneously, while still being safe. Devising an
efficient yet safe use of shared resources is the art of synchronization.

Atomicity (or Lack Thereof) Illustrated

To give a programming-related example of the need for synchronization, let’s keep things
as simple as we can and take a look at a shared counter. None of the following code
should be hard to understand at this point. We simply create and start a new thread to
increment the counter repeatedly. In the meantime, the main thread performs its duties,
decrementing the same counter value. Finally, we join the incrementing thread (called up)
with the main thread and print the result.

static void Main()
{

int n = 0;

var up = new Thread(() =>
{

for (int i = 0; i < 1000000; i++)
n++;

});

up.Start();

for (int i = 0; i < 1000000; i++)
n—;

up.Join();
Console.WriteLine(n);

}

The obvious question is what the preceding code fragment prints. In fact, I don’t know,
and you shouldn’t be able to tell either. Why? Because serious synchronization issues are
going on here. Running the code over and over again, you get different values, probably
all of which are different from zero. Yet both threads perform an equal number of incre-
ments and decrements. What’s going on?

To answer this question, we need to analyze how the shared resource is being used. But
what’s the shared resource in the first place? It’s none other than local variable n, which is
being “closed over” by the incrementing thread. Through the powers of C# closures, this
variable got “hoisted” into a heap-allocated object. It’s really as if we wrote a little class
containing a single integer field:

class Closure
{

public int n;

public void ThreadProc()

1473Synchronization Primitives

{

for (int i = 0; i < 1000000; i++)

this.n = this.n + 1;

}

}

Now we can rewrite the Main method as follows:

static void Main()

{

var c = new Closure();

var up = new Thread(c.ThreadProc);

up.Start();

for (int i = 0; i < 1000000; i++)

c.n = c.n - 1;

up.Join();

Console.WriteLine(n);

}

Did you see what went on here? Seemingly simple code, such as n++ and n—, just got
turned into the lookup of a field, performing a computation on the obtained value and
storing the updated value back into the field. Don’t just take my word for it; take a look in
ILDASM or .NET Reflector to see this is the case.

Figure 29.18 shows the code that corresponds to the post-increment operation in the
second thread. Finding the post-decrement operation’s code used in the main thread is left
as an exercise but differs only in the use of a subinstruction rather than add.

FIGURE 29.18 Innocent-looking post-increment code decompiled.

1474 CHAPTER 29 Threading and Synchronization

Slightly simplified, both threads are really performing three actions, each of which can be
run in parallel. So although it looks like n++ and n— are each done in a single step, there’s
really much more machinery going on to read a field, do a computation, and store the
result. To be really precise, we should continue our analysis down the path of generated
native code instructions, but that’d be quite a detour. What we focus on instead is our
observation of the lack of atomic updates and how to remedy this.

Figure 29.19 shows two different execution interleaving schemes for the three steps taken
by both threads that update the shared counter.

Recall the interleaving of threads is largely beyond the developer’s control because of the
way the operating system scheduler works. Obviously, our task is to prevent mistakes by
taming the possible interleaving schemes by using synchronization mechanisms. In this
particular case, we want to make sure the update operation of the shared state, n, is done
atomically. That is, no partial updates should be visible by other threads. (In some sense,
this is all about isolation, too.)

Monitors and the lock Keyword

One fundamental synchronization primitive is the concept of a monitor, as exposed
through the Monitor class in System.Threading. In most cases, the use of a monitor is
hidden because of the use of the lock keyword in C#, which leverages this primitive under
the covers.

For our running example of a shared counter, we can make the following changes to
prevent the two threads from updating the state simultaneously:

static void Main()

{

object gate = new object();

int n = 0;

var up = new Thread(() =>

{

for (int i = 0; i < 1000000; i++)

lock (gate)

n++;

});

up.Start();

for (int i = 0; i < 1000000; i++)

lock (gate)

n—;

up.Join();

Console.WriteLine(n);

}

1475Synchronization Primitives
S

eq
u

en
ti

al
 U

p
d

at
es

Up

int i = c.n;

i = i + 1;

c.n = i;

int i = c.n;

i = i – 1;

c.n = i;

int i = c.n;

i = i – 1;

int i = c.n;

i = i +1;

c.n = i;

c.n = i;

Downn = 0

n = 0

n = 0

n = 1

n = 1

n = -1

i = 0

i = 1

i = 1

C
o

n
fl

ic
ti

n
g

 U
p

d
at

es

i = 0

i = 1

i = 1

i = 1

i = -1

i = -1

i = 0

i = 0

i = 0

Up Down

FIGURE 29.19 Different relative execution orders yield different results.

No matter how many times you run this code, the outcome should always be zero (as we
expected in the first place). The way this works is by the monitor’s guarantee that no two
threads can be operating under the lock at the same time.

Monitors use an object as the “cookie” to perform the synchronization with, which relates
to the way the common language runtime provides this service. (Objects have a SyncBlock
associated with them.) It’s typical to simply allocate a dummy object and use it around
the code blocks that shouldn’t run at the same time from different threads.

Use of the lock keyword turns into a try-finally statement, where the try block
contains the code to enter the monitor and the finally block takes care of exiting the
monitor. For example, consider the following piece of code:

1476 CHAPTER 29 Threading and Synchronization

object gate = new object();

lock (gate)

{

// Do stuff...

}

THE EVIL LOCK SNIPPET

Visual Studio comes with a code snippet for a “lock block.” By default, this lock is
taken on the this object, highlighted for substitution by some other object. You should
really make this substitution because locking on this is considered evil:

// Don’t do this at home!

lock (this)

// Do work under the lock

Why? When you lock on an instance of your class that’s shared with other code,
someone else can take a lock on the object without you knowing about it. This can
easily cause your program to become locked endlessly.

The core of this issue is sharing state—in this case this or the object itself—associ-
ated with an implementation detail (locking to make the code behave well), which
should always be considered evil. Check out vssnippets.codeplex.com, a project of this
book’s reviewer, for some great code snippets to help you deal with concurrent pro-
gramming (and more).

This is roughly turned into the following piece of code. Notice, however, that you should-
n’t write this code by hand but should use the lock keyword instead. Over the years, the
C# compiler has tweaked the code emitted for locks, taking care of tricky edge cases.

object gate = new object();

bool __lockTaken = false;

try

{

Monitor.Enter(gate, ref __lockTaken);

// Do stuff...

}

finally

{

if (__lockTaken)

Monitor.Exit(gate);

}

The overload passing a Boolean “lock taken” flag by reference was added in .NET 4 and is
what the C# compiler emits code against. Ignore this flag for now, though. The basic idea
of a monitor’s Enter method is to block until no more (other) threads are inside the lock.

1477Synchronization Primitives

When the method returns, the code can proceed to run code that won’t be influenced by
other code using the same lock object. In summary, this means that the acquired lock is
exclusive: Only one thread can be operating under the lock at any given point in time.

BEWARE OF BOXING

Don’t use a value for the object to lock on because this results in boxing. Each time
you use the lock keyword with a value (even if it’s the same), a different (heap-allocat-
ed) boxed object is created. Because the monitor deals with objects on the heap, dif-
ferent boxed objects result in different locks. So you would end up with different
nonexclusive locks, voiding the protection you thought you created.

Use of the Boolean flag to determine whether the lock was taken was introduced in the
latest version of the .NET Framework to protect against certain exceptional cases. The lock
should only be released, by calling Monitor.Exit, if the lock was acquired. If an exception
occurred while attempting to acquire the lock, we would end up in the finally block, and
the check for the “lock taken” flag reveals the lock shouldn’t be released. Such a situation
can happen when Interrupt is called on the blocked thread, which causes a
ThreadInterruptedException to be thrown from the Enter call.

More functionality is defined on the Monitor class through static methods. For more infor-
mation, refer to the MSDN documentation.

Mutexes

Mutual exclusion of code executing simultaneously is the essential idea to tame the
concurrency monster. In fact, the concept of a mutex got its name from it. Semaphores are
the generalization of mutexes and are discussed in the next section.

Using a mutex, we could make our running example thread safe as follows. This piece of
code illustrates the two main operations invoked with a mutex.

static void Main()

{

var mutex = new Mutex();

int n = 0;

var up = new Thread(() =>

{

for (int i = 0; i < 1000000; i++)

{

mutex.WaitOne();

n++;

mutex.ReleaseMutex();

}

});

1478 CHAPTER 29 Threading and Synchronization

Step 1
London train driver picks up the flag

Paris train driver has to wait for the flag (WaitOne)

P
ar

is

L
o

n
d

o
n

London

Paris

Step 2
London train driver carries the flag

Paris train driver still waits for the flag (WaitOne)

P
ar

is

L
o

n
d

o
n

London

Paris

Step 3
London train driver drops off the flag(ReleaseMutex)

Paris train driver can now grab the flag

P
ar

is

L
o

n
d

o
n

London

Paris

FIGURE 29.20 Mutexes applied in railway traffic.

up.Start();

for (int i = 0; i < 1000000; i++)

{

mutex.WaitOne();

n--;

mutex.ReleaseMutex();

}

up.Join();

Console.WriteLine(n);

}

Again, the code will be guaranteed to print zero as a result. The basic idea is to use the
WaitOne method to wait for the mutex to be released by another thread. When this call
returns, we’ve grabbed the mutex and can run with it. When we’re done, we release the
mutex, allowing another thread to grab it. No two threads can have acquired the mutex at
the same time. This technique is often used in real life, too. For example, if trains have to
share the same track in opposite directions, a driver’s protocol may be set up to avoid
crashes. One such protocol is to require a driver to carry a stick before he or she is allowed
to drive over the shared track. Figure 29.20 shows this in practice with train drivers carry-
ing a flag (the mutex).

1479Synchronization Primitives

FIGURE 29.21 Mutexes coordinating resource access across processes.

So why would we use mutexes instead of taking the lock-based approach? Although the
concept of a monitor sits at the level of the common language runtime, mutexes are a
lower-level operating system primitive. Different constructors and static methods on the
Mutex class illustrate this fact. In particular, mutexes can be named and used from differ-
ent processes. This allows coordination of resource access across a set of different compo-
nents of a bigger system.

As an example, consider the following code fragment. Here, the Main method takes in a
name of an event to wait on. The application then tries to grab the mutex by calling
WaitOne, after which it blocks waiting for user input to release the mutex. Running two
instances of the application will clearly show how both instances can be waiting for one
another:

static void Main(string[] args)

{

var createdNew = false;

var mutex = new Mutex(/* start as owned */ false, args[0], out createdNew);

Console.WriteLine(“Mutex {0} - Created = {1}”, args[0], createdNew);

Console.Write(“Waiting... “);

mutex.WaitOne();

Console.WriteLine(“Acquired.”, DateTime.Now);

Console.Write(“Press ENTER to release... “);

Console.ReadLine();

mutex.ReleaseMutex();

}

Figure 29.21 shows this example in practice, where one instance of the application is
waiting for the other instance to release the shared mutex. All we had to do to obtain the
mutex is create an instance of Mutex passing in the common mutex name. The output
parameter createdNew reveals whether an existing mutex was found. Alternatively, the
Mutex.OpenExisting method can be used.

1480 CHAPTER 29 Threading and Synchronization

FIGURE 29.22 Mutexes are an operating system-level facility, known as mutants.

One caveat to point out is this: If you try to morph the lock-based counter solution into
the form using mutexes, you see a significant performance difference that favors the use
of locks. The difference can be as large as a 100x factor.

The reason for the weaker performance of mutexes is their very low-level nature by which a
thread becomes blocked at the operating system scheduler level, causing the thread to tran-
sition into another state and causing context switches. Monitors, on the other hand, are a
common language runtime facility that sits much higher on the stack and are not as costly.

On the flip side, mutexes are the way to go if you need cross-process synchronization,
where the use of monitors falls short. To prove that mutexes are low-level primitives, you
can use the SysInternals Process Explorer tool and look at a process’s resources, as shown
in Figure 29.22. Mutexes are known as “mutants” in the operating system, and therefore
they appear as such in the tool.

Semaphores

Semaphores are a generalization of mutexes. Maybe it’s better to state the opposite:
Mutexes are a special case of the semaphore primitive invented by the Dutch computer
scientist Dijkstra. The name semaphore was inspired by synchronization mechanisms used
in railways; they are the equivalent to roadside traffic lights.

Before getting into details about the Semaphore class and its properties, let’s take a look at
a railway semaphore. Figure 29.23 shows states a semaphore can be in, which are used to
communicate actions to train drivers. I’m not an expert in railway design, but the basic
idea is simple. One sign indicates the train has to stop, and another indicates it’s safe to
pass. An intermediate state sometimes exists, too, indicating another train is in the next
segment, allowing the driver to proceed with caution. Nowadays, such signs have largely
been replaced with traffic lights.

Dijkstra defined the concept of a semaphore in terms of two operations, P and V. The
former stands for prolaag, a made-up Dutch word of probeer verlaag or “try to decrease.” V,
on the other hand, stands for the existing Dutch word verhoog, which means “to increase.”

1481Synchronization Primitives

Stop Caution Pass

FIGURE 29.23 Railway semaphores synchronize access to a railway.

From a managed code point of view, semaphores are exposed through the Semaphore class,
which is constructed with two integer values, one for an initial count and one for the
maximum count. The idea is this: The maximum count indicates the number of concur-
rent entries that are possible to code protected by the semaphore. Using the railway sema-
phore as an analogy, this count would be two because two trains can be on the railway
segment at the same time (one of which has to proceed with caution):

var railwaySemaphore = new Semaphore(2, 2);

The first parameter for initial count indicates how many parties are initially allowed to
“run with” the semaphore. In the preceding, we set this number to 2, which means the
railway semaphore was erected when no trains were on the segment that the device is
about to protect. In other words, two trains are allowed to pass the semaphore right after
it’s taken in use by the railway company.

Two key operations exist on a semaphore (ignoring overloads), as shown here. The
Release methods are used to decrement the value of the semaphore, either by one or by
the specified count. The WaitOne methods are inherited from a WaitHandle base class
(which is discussed in the “Signaling with Events” section) and increment the semaphore’s
value. If the semaphore has reached its maximum count, the WaitOne method blocks until
the value gets decreased by Release calls:

public int Release();

public int Release(int releaseCount);

public virtual bool WaitOne();

// More WaitOne method overloads...

Multiple threads can be waiting on the semaphore at the same time. Which thread will
get a chance to run after the WaitOne operation succeeds is unpredictable and depends on
the operating system scheduler’s mood. Unless the release count is more than one, no two
threads will be able to return from the WaitOne operation. After all, primitives such as
semaphores provide firm guarantees about their protection facilities. In case of a sema-
phore, it should never be possible to have more than the specified maximum uses of the
semaphore at the same time.

1482 CHAPTER 29 Threading and Synchronization

An example with trains is shown here. Obviously, this simple example doesn’t protect a
shared resource for real (just an imaginary railway segment). True use of semaphores
includes protecting a shared resource pool with an upper bound on the number of uses
that are permitted simultaneously. Such an example is shown on MSDN.

var rnd = new Random();

var railwaySemaphore = new Semaphore(2, 2);

for (int i = 0; i < 10; i++)

{

new Thread(() =>

{

// Time to leave the railway station.

Thread.Sleep(rnd.Next(500, 8000));

Console.WriteLine(Thread.CurrentThread.Name + “ departing.”);

// Time to reach the semaphore next to the track.

Thread.Sleep(rnd.Next(100, 5000));

Console.WriteLine(Thread.CurrentThread.Name + “ at signal.”);

// Waiting for the first signal.

// The train is allowed to pass if no two trains are in the segment.

railwaySemaphore.WaitOne();

Console.WriteLine(Thread.CurrentThread.Name + “ passed signal.”);

// Time to reach the end of the protected railway segment.

Thread.Sleep(rnd.Next(2000, 4000));

Console.WriteLine(Thread.CurrentThread.Name + “ exited segment.”);

railwaySemaphore.Release();

}) { Name = “Train “ + i }.Start();

}

If the semaphore works correctly (it does), you shouldn’t see more than two messages
about a train passing the signal without a train exiting the segment first. It’s left as an
exercise for UI-savvy readers to implement a graphical visualization of the track, the
signal, and the different trains driving over the railway.

Just like mutexes, semaphores are a built-in operating system primitives exposed to
managed code. In the code shown here, we’ve been using a local semaphore without a
name. However, constructor overloads exist, as well as a static OpenExisting method, to
work with named semaphores. Such semaphore objects can be used across several
processes to coordinate use of a shared resource pool, for instance.

Because of their impact on the scheduling of operating system threads (putting them in a
waiting blocked state while acquiring the semaphore through WaitOne), you need to
account for a certain overhead. To reduce this overhead in particular scenarios, a new type

1483Synchronization Primitives

has been introduced in .NET 4 called SemaphoreSlim. This one doesn’t rely on the operat-
ing system-level concept of a semaphore and is less expensive. It’s especially well suited
when only a single process needs protection for a shared resource because this class
supports only local unnamed semaphores. In other words, it’s a feature that sits at the
common language runtime level without the operating system’s knowledge of it.

One API-level difference is the Wait method rather than the WaitOne method. In fact,
WaitOne is an inheritance (literally) from the WaitHandle base class used for various oper-
ating system-level synchronization primitive wrappers. The SemaphoreSlim not being such
a primitive, it doesn’t derive from this class. However, if a wait operation using a
WaitHandle is desirable, the AvailableWaitHandle property can be used. We don’t elabo-
rate on the concept of wait handles just yet; they’re discussed in more detail during our
discussion in the “Signaling with Events” section.

Finally, where the Semaphore class doesn’t expose the current count of the semaphore, the
SemaphoreSlim class does through a CurrentCount property.

More Advanced Locks

Added in .NET 3.5 and .NET 4, respectively, the ReaderWriterLockSlim and SpinLock

primitives are often useful, too. Their use is fairly specialized, so we’ll limit ourselves to a
basic discussion.

ReaderWriterLock(Slim)

The essential problem of various concurrency and synchronization problems boils down
to simultaneous reader and writer accesses on a shared resource. Often, the presence of
multiple readers is allowed, while writers should be protected from one another to prevent
harm. Therefore, the classic monitor-based lock is often too coarse-grained because it can’t
differentiate from reader and writer accesses.

ReaderWriterLock and ReaderWriterLockSlim accommodate for such scenarios. The latter
was introduced in .NET 3.5 and is recommended. Use of reader/writer locks is restricted to
the current process only, and the lock doesn’t wrap functionality provided by the operat-
ing system. In such a case, the slogan “the slimmer, the better” definitely holds, hence the
advice to use ReaderWriterLockSlim nowadays. We only talk about this class to give you
an idea about the lock’s use.

In its very essence, ReaderWriterLockSlim exposes pairs of Enter and Exit methods for
different kinds of accesses, as follows:

. Read mode: Any number of threads can be reading at the same time; in other
words, sharing is allowed.

. Write mode: Only one thread can have this exclusive write access. Being in this
mode prevents others from entering the lock due to its exclusive nature.

. Upgradeable mode is a special read mode: At some point in the future, the read-
er thread may decide to upgrade the lock to gain writer access.

1484 CHAPTER 29 Threading and Synchronization

The precise behavior of attempts to acquire the lock depends on the current state the lock
is in. This is detailed in a table on MSDN. In short, the idea is to allow for many readers
and to prevent writers from messing up state. To do so, writers block everyone else who
attempts to access the lock in any mode. Readers, on the other hand, permit more readers
to enter, unless a writer is waiting to gain access. An attempt to gain write access blocks
until everyone else has left the lock.

It should be mentioned that two families of enter methods exist. One set of methods is of
the form Enter followed by the desired access level. Those methods block until the
requested access is permitted. The TryEnter set of methods returns a Boolean value to
indicate whether the request (with an optional timeout) to enter the lock succeeded.

A trivial example of reader/writer locks is shown in the following code fragment:

var @lock = new ReaderWriterLockSlim();

int counter = 0;

new Thread(() =>

{

while (true)

{

@lock.EnterWriteLock();

counter++;

counter--;

@lock.ExitWriteLock();

}

}).Start();

while (true)

{

Thread.Sleep(100);

@lock.EnterReadLock();

Console.WriteLine(counter);

@lock.ExitReadLock();

}

The main thread here acts as a monitor of some counter. Many such monitors could be
observing the counter value simultaneously without doing any harm. However, some
background thread is updating the counter constantly. Such updates should never be
observable in an intermediate nonatomic state. Because of this, we need locks.

Try taking out any of the locks to see the counter invariant being broken. In particular,
the counter should never read a value other than zero because the increment and decre-
ment operations should remain balanced. You’re also encouraged to add more reader and
writer threads to the mix to show the reader/writer lock properly protects read and write
accesses to the counter. Messing up the access level associated with a piece of code (for

1485Synchronization Primitives

example, requesting read access but yet performing an update) should be sufficient to
illustrate thread-safety issues by means of a nonzero counter value.

For further information about the meaning of upgradeable locks and so-called lock recur-
sion policy, refer to the MSDN documentation on the subject. More realistic examples of
protecting collections against update conflicts are also shown there.

THE DANGER OF EXPOSED LOCKS

Locks of any kind have quite a few drawbacks but are often a necessary evil to enable
proper synchronization. One of the main issues with locks is their lack of composition
and the need for careful acquisition of locks. For example, if locks are not acquired in
a consistent order across different components in the system, it’s possible to run into
(hard-to-debug) deadlocks. Such deadlocks occur when multiple parties are in a
deadly embrace, waiting for one another to release some lock. The simplest case is
shown here:

// Thread 1 // Thread 2

lock (a) lock (b)

lock (b) lock (a)

/* Do stuff */ /* Do other stuff */

If the first thread moves beyond acquiring the lock on a, and the second thread then
moves on to acquire the lock on b, we’re set up for disaster. Thread 1 now has to wait
for the lock on b, while thread 2 is stuck waiting for the lock on a. This deadly
embrace cannot be resolved, and both threads are stuck forever (ignoring the use of
Interrupt or Abort).

When lock objects are publicly exposed, it’s clear that all parties that make use of
the locks must coordinate among themselves to agree on a proper locking scheme.
This is where composition of software components breaks down quickly in the pres-
ence of locks.

Therefore, it’s best to keep locks as implementation details properly encapsulated
within classes or larger components with a good internal organization. Historically,
sharing of locks has been done in a number of scenarios, often resulting in people
shooting themselves in the foot. A good example is the nongeneric collections in .NET,
such as ArrayList, which expose a SyncRoot object. It suffices for one sole party to
hold on to a lock on the object to prevent others from making enumeration progress:

var lst = new ArrayList { 1, 2, 3 };

// Some bad guy got access to lst’s SyncRoot object :-(

new Thread(() =>

{

Monitor.Enter(lst.SyncRoot);

Thread.Sleep(Timeout.Infinite);

}).Start();

1486 CHAPTER 29 Threading and Synchronization

foreach (int x in lst) // Stuck forever!

Console.WriteLine(x);

This is just one example of a denial-of-service attack using locks. Other issues can
arise when multiple resources are used improperly, causing deadlocks. Imagine the
debugging nightmare this can get you into. Hopefully, horror stories like these suffice to
motivate you to keep care of your locks!

SpinLock

The SpinLock struct was added in .NET 4 to facilitate high-performance scenarios where
use of classic locks using the Monitor class is infeasible. Drawbacks related to classic locks
include the need to allocate an object on the heap, adding more garbage collector and
memory pressure. It should be clear that cases where this is a concern are highly special-
ized and shouldn’t be considered the default.

Spinlocks operate by spinning in a tight loop until the lock becomes available. In other
words, a spinlock simply burns CPU cycles while waiting for the lock to be freed to be
entered by the requester. Such spinning is expensive unless it takes only a little while, so
it’s mainly suited for small locks. In other words, there’s a point at which the cost of a
spinlock outweighs the cost of a classic lock. To make a decision on which lock to use,
performance measurement should be your guide.

The pattern for using a spinlock is totally analogous to using a classic lock, using a
try...finally statement to ensure the lock is properly exited:

var @lock = new SpinLock();

var lockTaken = false;

@lock.Enter(ref lockTaken);

try

{

// Do work...

}

finally

{

if (lockTaken)

@lock.Exit();

}

For more information and guidance about using spinlocks, take a look at MSDN. The
documentation also includes advice as to how to decide between a classic lock and a spin-
lock, including the use of profiling tools in Visual Studio 2010.

Signaling with Events

Coordination of access to shared resources is just one (data-centric) concern of writing
multithreaded applications. Another is to coordinate different pieces of an algorithm or a

1487Synchronization Primitives

Orchestrator

Player 2

Waiting for
the event

Signals
the event

Player 1

Player 2Player 1

Orchestrator

FIGURE 29.24 Use of manual reset events in a symphonic orchestra.

set of components to coordinate among themselves. This is where events (in the threading
sense of the word, not as in the C# construct) enter the picture.

The primitive operations associated with an event are setting (or signaling) the event or
waiting on it. You can compare this to a symphonic orchestra, where different players can
be waiting for the orchestra conductor to give a signal to start playing their part of the
symphony. No wonder that the word orchestration is often used in this context.

Two kinds of events exist. They differ in the way they react upon succeeding a wait opera-
tion. This deserves a bit more explanation. The example of the orchestra is analogous to a
manual reset event. Multiple players, say the violinists, are waiting for a signal from the
conductor. When the signal is given, they all start playing until the conductor resets the
event. This operation is a manual action; it’s not because a single player started playing
upon the signal being given that the others still have to wait. In other words, multiple
players can wake up as a result of the event being set. This is shown in Figure 29.24.
Notice the orchestra conductor is named the “orchestrator” in this figure, using more
common computer science terminology.

Autoreset events, on the other hand, allow only one thread that’s waiting for the event to
be awakened and start running. In other words, an effect of a thread succeeding its wait
operation is to atomically reset the event. Real-life examples of this signaling use are
harder to find.

Because events are typically used to signal the availability of some state produced by a
thread, the difference between both kinds of events impacts the consuming threads that
are waiting for the state to become available. In case of the manual reset event, all the

1488 CHAPTER 29 Threading and Synchronization

consuming threads waiting for the resource can proceed as soon as the event gets signaled.
In case of the autoreset event, a single thread wakes up and performs its duties with the
available state.

Both kinds of events explained here are directly built atop Win32 primitives and have an
effect on a thread’s scheduling due to the low-level blocking that occurs. To reduce costs
associated with this, the manual reset event has a slim variant introduced since .NET 4,
called ManualResetEventSlim.

Running an Orchestra with ManualResetEvent
To illustrate the use of ManualResetEvent signaling, we build a larger version of the
orchestra shown in Figure 29.24 in code now:

var conductorSignalsViolins = new ManualResetEvent(false);
var conductorSignalsTrumpetists = new ManualResetEvent(false);

for (int i = 0; i < 5; i++)
{

new Thread(() =>
{

conductorSignalsViolins.WaitOne();
for (int j = 0; j < 20; j++)
{

Console.Write(Thread.CurrentThread.Name + “ “);
Thread.Sleep(100);

}
}) { Name = “V” + i }.Start();

}

for (int i = 0; i < 3; i++)
{

new Thread(() =>
{

conductorSignalsTrumpetists.WaitOne();
for (int j = 0; j < 20; j++)
{

Console.Write(Thread.CurrentThread.Name + “ “);
Thread.Sleep(150);

}
}) { Name = “T” + i }.Start();

}

Thread.Sleep(1000); // Time for the trumpets
conductorSignalsTrumpetists.Set();

Thread.Sleep(2000); // Time for the violins
conductorSignalsViolins.Set();

1489Synchronization Primitives

In this example, two events are used to signal multiple parties in the play. All the violins
wait for their event, while all the trumpets do the same on their event. Once the conduc-
tor sets the event at the time he wants them to start, they can proceed with their work.

Music-savvy readers will notice there are a couple of things missing here. How does the
conductor know that all the players are ready to receive the event? Most likely, all of the
players will be ready by the time the event gets set because their respective threads have
been started for a while already. However, proper synchronization might need to be
crafted more carefully, which we discuss in just a moment.

The CountDownEvent

Introduced in .NET 4, the countdown event allows for multiple parties to synchronize
among themselves based on a count. That is, the event becomes set only if the total count
reaches zero. Each call to Signal decrements the value by one or a specified amount.
Upon construction, an initial count can be set. When the count reaches zero, a thread
waiting for the event can continue from its Wait call.

In case of our orchestra, this mechanism could be used as an initial handshake. To limit
the size of the code listing, we simplify things a bit and show just the handshake part,
where the conductor is waiting for all players to signal they’re ready:

var start = new CountdownEvent(8);

var conductorSignalsViolins = new ManualResetEvent(false);

var conductorSignalsTrumpetists = new ManualResetEvent(false);

for (int i = 0; i < 5; i++)

{

new Thread(() =>

{

Console.WriteLine(Thread.CurrentThread.Name + “ takes a seat.”);

start.Signal();

conductorSignalsViolins.WaitOne();

// Code to play my part...

}) { Name = “V” + i }.Start();

}

for (int i = 0; i < 3; i++)

{

new Thread(() =>

{

Console.WriteLine(Thread.CurrentThread.Name + “ takes a seat.”);

start.Signal();

conductorSignalsTrumpetists.WaitOne();

// Code to play my part...

}) { Name = “T” + i }.Start();

1490 CHAPTER 29 Threading and Synchronization

FIGURE 29.25 The WaitHandle class hierarchy.

}

start.Wait();

// Orchestrator logic to set various events...

Now all the players have to move beyond the phase of taking a seat before the conductor
can continue to send signals for them to play their parts at the desired times. A series of
other methods exist to manipulate the count.

Dealing with WaitHandle
Thus far, we’ve only been dealing with simple waits for a single event. In the preceding
discussion, we mentioned (in passing) the WaitHandle base type. This class acts as the base
class for a plethora of synchronization primitives. Figure 29.25 shows the class hierarchy
of WaitHandle.

WaitHandle instances represent the encapsulation of the operating system-level concept of
a wait handle. This explains its properties with the word Handle in the name. It should
also be obvious why the “slim” set of synchronization primitives doesn’t derive from this
class because the operating system is not involved in the operation of those slim primi-
tives. As a result, those slim variants cannot be used across processes but have a better
performance characteristic in scenarios where they’re applicable.

In our presentation of the various synchronization primitives, we’ve focused on the use of
the derived WaitOne method to perform a blocking wait. Various overloads of this method
exist, which allow the specification of timeout values and whatnot.

1491Synchronization Primitives

What’s equally interesting, though, is the existence of two groups of static methods, called
WaitAny and WaitAll. Their role is to provide for synchronization involving multiple wait
handles. In our orchestra example, all the players are waiting for the single conductor to
tell them to start playing. However, imagine what would happen if the conductor never
signals them to start playing? They would be stuck forever. Such a situation can arise
when the fire alarm in the theater goes off. Clearly, you don’t want the players to be stuck.

How do we fix issues such as the one described in the preceding paragraph? What we
want to do here is to wait for any of two events to occur: One is the orchestra conductor,
and another is the emergency “run for your life” case. In a more programming-related
example, such a technique could be used to wait for an event or a cancellation signal. It
should be clear that depending on which wait handle made the wait operation succeed, a
different action should be taken. Let’s zoom in on the code of an individual violinist to
show how to perform a WaitAny:

var conductorSignalsViolins = new ManualResetEvent(false);

var emergencyAlarm = new ManualResetEvent(false);

for (int i = 0; i < 5; i++)

{

new Thread(() =>

{

int res = WaitHandle.WaitAny(new[] { conductorSignalsViolins,

emergencyAlarm });

if (res == 0)

// Code to play my part...

else

// Just quitting from the thread would suffice, but let’s be

// a bit more illustrative here...

Environment.FailFast(“Run for your life!”);

}) { Name = “V” + i }.Start();

}

// The orchestra conductor could signal to start playing - or -

// someone could set off the fire alarm.

The WaitAny method returns the array index of the wait handle that caused the wait oper-
ation to succeed. Based on this value, different code can be executed.

We omit the WaitAll method from our exploration of wait handles, but the operation is
similar: An array of handles is passed in, but this time the wait succeeds only if all the
handles have been signaled. This comes in handy when multiple parties have to signal
readiness before another party can move on with its work.

Behind the scenes, those methods use the Win32 [Msg]WaitForMultipleObjects[Ex]
functions. This explains why operating system handles are required to perform those
advanced wait operations; that’s all the operating system knows about. Some of the slim

1492 CHAPTER 29 Threading and Synchronization

variants include the capability to still acquire a WaitHandle by “upgrading” the object to
have a Win32 handle. In doing so, however, they lose part of their “slim” nature.

Interlocked Helpers

Looking back at our counter example, recall the core issue that made synchronization
required to produce the right result. Some essential operations, such as increment and
decrement of an integer value, didn’t run atomically, which might have surprised many
readers. Why is it that those simple operations can cause tremendous grief? The answer
lies in their definition from a C# language point of view.

In particular, i++ is merely a shortcut for i += 1, which on its turn is shorthand syntax
for i = i + 1. Notice how we ignore the capability of such an increment expression to be
used, well, as an expression. But the fundamental fact remains that such expressions are
shorthand syntax for a sequence of mutation operations. This is where the runtime and
the operating system get their flexibility to interleave different threads at places that are
undesirable, leading to the problems we discussed.

Increment and Decrement
But does it have to be the case that fundamental operations like increment by one aren’t
atomic? It turns out the answer is no, thanks to the instruction set of platforms the code
is running on (or better, JIT compiled to). Such instructions are exposed to managed code
developers through the Interlocked class. Using static methods on Interlocked, we could
rewrite our counter example as follows:

static void Main()

{

int n = 0;

var up = new Thread(() =>

{

for (int i = 0; i < 1000000; i++)

Interlocked.Increment(ref n);

});

up.Start();

for (int i = 0; i < 1000000; i++)

Interlocked.Decrement(ref n);

up.Join();

Console.WriteLine(n);

}

The Increment and Decrement methods take in the value to be mutated using a ref- para-
meter. The guarantee provided by those methods is that the operation is done in an

1493Synchronization Primitives

atomic fashion, so no other thread can observe intermediate states. The solution to the
counter synchronization issue presented here is by far the most efficient one.

In some sense, this is a pathological case of mutual exclusion of code executing on multi-
ple threads, where we’re very lucky the operations can be done in an interlocked manner.
If this isn’t the case, a lock or a mutex will have to be used. Some other simple operations
have an interlocked equivalent, such as adding (or subtracting) a value, as exposed
through the Add method. However, calling whole methods from different threads in a
mutual exclusive manner requires use of locks.

(Compare and) Exchange
Lots of performance-critical multithreaded code (as can be found in operating system
kernels and whatnot) can take advantage of a few specialized interlocked operations. A
common operation is to swap the contents of two memory locations atomically, with or
without a condition associated with it.

Let’s take a look at the simpler of the two first: the “interlocked exchange” operation
exposed through Interlocked.Exchange method overloads. The overload used with 32-bit
integer values is shown here:

public static int Exchange(ref int location1, int value);

Here, the location1 parameter refers to the value to be mutated by assigning it the value
specified in the second parameter. The original value read from location1 is returned
from the method:

int value = 24;

Console.WriteLine(value); // Prints 24

Console.WriteLine(Interlocked.Exchange(ref value, 42)); // Prints 24

Console.WriteLine(value); // Now prints 42

This primitive operation comes in handy in a variety of circumstances. In the MSDN
documentation, a simple lock implemented using the Exchange method is shown. Refer to
this documentation for more information.

A related operation is called “compare and exchange” and does slightly more work than the
exchange operation we just looked at. One overload for use with integer values is shown:

public static int CompareExchange(ref int location1, int value, int comparand);

The idea is this: Before exchanging the value in location1 with the value specified in the
second parameter, the original value in location1 is compared to the comparand. If both
are equal, the exchange operation is performed; if not, nothing happens. Either way, the
method returns the original value read from location1.

One place where this method proves to be useful is when we want to perform exchange of
values when the state is what we expect it to be. The idea is that when another thread gets
a chance to mutate the state before our thread gets a chance to perform the exchange, we
want to do a check and the exchange operation atomically. Use of an if statement won’t

1494 CHAPTER 29 Threading and Synchronization

work here because other threads can tweak state in between the check and the if state-
ment’s body:

int value = 24;

if (value == 24)

// If another thread can see “value”, it could have changed here.

Interlocked.Exchange(ref value, 42);

In fact, a simple counter example using CompareExchange is shown on MSDN for the
documentation of this method. I kindly refer you to this example.

UNEXPECTED LIMITS OF 64-BIT ADDRESSING

Here’s a story for you: 64-bit addressing by modern processors gives access to a huge
address space of no less than 16 petabytes. Although this should suffice for a long
time to come (but never say never when it comes to memory use), it’s been a theoreti-
cal limit because of various practical issues.

One thing to keep in mind is that 64-bit addressing requires each reference, such as
the address of a reference object, to be 64 bits, which obviously takes twice the space
compared to a 32-bit address. Use of 64-bit architectures therefore boosts the memory
usage by itself.

A rather unexpected limitation Windows had to deal with in the early days of 64-bit
architectures was the lack of a compare-and-exchange instruction that could deal with
two 64-bit addresses (for the original value and the target value). Obviously, such an
instruction requires 128 bits of operands (two 64-bit addresses), which wasn’t
supported by all targeted architectures for a while. Primitive kernel data structures,
such as a linked list (KLIST), rely on this operation for safe manipulation from different
CPUs running code simultaneously.

Because of the limitations on the maximum operand size for this instruction, Windows
had to reduce its maximum addressable space to be less than the full 64 bits
promised by the architecture of the machine. This wasn’t much of a problem, though,
because the amount of RAM that fits in machines is way below the amount a 64-bit
machine could theoretically address.

More Synchronization Mechanisms

A number of other synchronization mechanisms, which have yet to be discussed, exist in
the .NET Framework. We limit ourselves to a brief overview of those constructs and their
uses, referring to MSDN for more thorough coverage:

. Barriers have been added in .NET 4 and allow a number of parallel tasks to work
hand in hand through some algorithm. The idea is that each such task signals arrival
at a phase, at which point all the tasks block until each of them has arrived at the
same phase. When that condition is met, they can all proceed from there, making
their way to the next phase.

1495Synchronization Primitives

FIGURE 29.26 A BackgroundWorker component used in Windows Forms.

. SynchronizationContext is a concept mainly added for proper synchronization on
UI threads, as seen in Windows Forms and WPF. However, other providers of syn-
chronization models can be built, deriving from this base class. The idea is that a
synchronization context can accept work by means of Send or Post calls that take in
a delegate. This delegate then gets run in the right context as encapsulated by the
SynchronizationContext object (for example, a message loop for the UI thread).

Choosing the right tool for the synchronization job at hand is a matter of learning. Start
by identifying different parties that have to work with one another. Next, figure out how
those parties depend on each other, requiring signals to be sent between them. When
different actors have to manipulate the same data, locks might be required.

BackgroundWorker

Before concluding this chapter, we explore one more concept that’s closely related to
synchronization and leverages the thread pool: the BackgroundWorker. What makes it
different from the other mechanisms we’ve explored up to now is its place outside the
System.Threading namespace. Instead, it’s defined in System.ComponentModel. One of the
reasons for this is to reflect its use, typically related to UI programming.

The goal of BackgroundWorker is to make asynchrony easier to deal with. In many cases,
background work has to be carried out without blocking the party that requested the work
to be done in the first place. The requester and the worker move at their own paces, and
therefore asynchrony results. However, this shouldn’t preclude the requester from being
able to receive progress updates of the background work or even to cancel it if there’s no
further interest in the result.

To set the scene for our brief exploration of the BackgroundWorker, look at Figure 29.26,
where a Windows Forms application form is shown with this component added to it.
Notice properties that have changed from their default values, indicated in bold. Those
include WorkerReportsProgress and WorkerSupportsCancellation.

1496 CHAPTER 29 Threading and Synchronization

FIGURE 29.27 Events on a BackgroundWorker component.

FIGURE 29.28 Our asynchronous file copy tool in action.

To make the worker do some useful job, events have to be implemented. There are three
such events in total, as shown in Figure 29.27. We implement all three of them, serving
the following roles:

. DoWork is triggered when someone calls RunWorkerAsync. The DoWork event handler
will be run on a thread different from the one that called the RunWorkerAsync
method, resulting in asynchrony.

. ProgressChanged is called every time the worker updates its progress from code
running under the DoWork handler. This event handler is invoked on the synchro-
nization context of the requester, in this case the UI thread. In other words, one can
safely update the user interface from this handler.

. RunWorkerCompleted is similar to the ProgressChanged event with regard to where it
gets run. It’s triggered by the worker thread signaling completion.

Using the BackgroundWorker component, we now create an asynchronous block-based file
copy tool. It simply uses two FileStream objects to read from and write to the source and
destination files, respectively. All the copying logic is done from the DoWork event handler,
which takes place in the background, relative to the UI thread where the user triggers the
copy command. We omit a discussion of UI design and refer to Figure 29.28 for a possible
interface including a few labels, text boxes, buttons, a numeric up/down control, and a
progress bar.

1497Synchronization Primitives

In the Click handler of the button used to start the copy operation, we put the following
piece of code (ignoring obligatory input handling, left as an exercise):

private void btnCopy_Click(object sender, EventArgs e)

{

// TODO: Disable parts of the UI while the copy is in progress.

worker.RunWorkerAsync(new CopyInfo

{

From = txtFrom.Text,

To = txtTo.Text,

BlockSize = (int)blockSize.Value

});

}

The definition of CopyInfo isn’t rocket science; it consiss of three properties to hold the
From and To paths and the block size. We use such an object to pass the copy operation
info between the UI thread and the worker because the DoWork handler should not touch
any UI control. Doing so would result in a cross-thread violation.

Calling RunWorkerAsync causes the DoWork handler of the worker component to be
executed on a background thread:

private void worker_DoWork(object sender, DoWorkEventArgs e)

{

var info = (CopyInfo)e.Argument;

using (FileStream from = File.OpenRead(info.From))

using (FileStream to = File.OpenWrite(info.To))

{

byte[] buffer = new byte[info.BlockSize];

long total = from.Length, current = 0;

while (!worker.CancellationPending)

{

int n = from.Read(buffer, 0, buffer.Length);

to.Write(buffer, 0, n);

current += n;

worker.ReportProgress(

(int)(current / (total / 100)), // Trick to avoid overflow...

string.Format(“{0}MB / {1}MB copied”, current / MB, total / MB)

);

if (n < buffer.Length)

break;

}

1498 CHAPTER 29 Threading and Synchronization

if (worker.CancellationPending)

{

e.Cancel = true;

// TODO: clean-up, e.g. deleting the target file.

}

}

}

Here we run a loop reading the source file in blocks of the specified size and writing those
blocks to the destination file. We check for cancellation requests each time around the
loop using the CancellationPending property on the worker. If no request to cancel exists,
we move on and report progress using ReportProgress using a progress percentage value
and an (optional) user state object (here a simple message string).

Progress reports are presented to the UI thread through the worker’s ProgressChanged
event, where we can update the interface by touching controls safely. This is shown in the
following fragment:

private void worker_ProgressChanged(object sender, ProgressChangedEventArgs e)

{

progressBar.Value = e.ProgressPercentage;

lblProgress.Text = (string)e.UserState;

}

private void worker_RunWorkerCompleted(object sender,

RunWorkerCompletedEventArgs e)

{

if (e.Cancelled)

MessageBox.Show(“File copy cancelled.”, this.Text,

MessageBoxButtons.OK, MessageBoxIcon.Warning);

else if (e.Error != null)

MessageBox.Show(e.Error.Message, this.Text,

MessageBoxButtons.OK, MessageBoxIcon.Error);

else

MessageBox.Show(“File copy completed.”, this.Text,

MessageBoxButtons.OK, MessageBoxIcon.Information);

// TODO: restore UI controls, or close dialog, or ...?

}

The second method shown here handles the RunWorkerCompleted event, which gets trig-
gered when DoWork reaches the end. This could also be due to an exception, which gets
propagated through the event arguments as the Error property. Cancellation is also
communicated across the background worker and the UI thread. With this, we finish up
our brief exploration of the BackgroundWorker component.

1499Summary

Summary
Writing concurrent applications is becoming the standard because of the increased
number of processor cores in today’s machines. Having a solid understanding of mecha-
nisms to run multiple units of work in parallel and to synchronize between them is an
essential piece of knowledge for the modern programmer.

In this chapter, we learned about threads and thread pools to run work in parallel. We also
explored how to use various locking and synchronization primitives to coordinate among
those workers. In the next chapter, we look at task and data parallelism.

This page intentionally left blank

CHAPTER 30

Task Parallelism and
Data Parallelism

IN THIS CHAPTER

. Pros and Cons of
Threads 1502

. The Task Parallel Library 1503

. Task Parallelism 1508

. Data Parallelism 1529

In Chapter 29, “Threading and Synchronization,” we
looked at parallel programming from a rather low level,
focusing on the concept of threads and a whole set of
synchronization primitives. We also learned about the cost
of various operating system facilities, giving rise to the
creation of thread pools and lightweight synchronization
tools for managed code.

Today’s computing landscape has radically shifted toward a
higher need for parallel programming to speed up
programs. In the previous decades, a slow-running program
or library wasn’t too big of a deal. It was only a matter of
time for processor clock speeds to increase enough to make
the program run sufficiently faster. Things have changed,
though. Although the density of transistors that fit on a
chip is still growing at a rapid pace (conforming to Moore’s
law), we’ve hit a wall with regard to clock speeds. Instead of
getting faster and faster processors, we get more such
processor “cores” on a single chip.

Because of this change at the hardware level, we as software
folks need to adapt to the standard being multicore
machines. It should be clear that this kind of programming
requires different tools and (more important) a different
mindset to “reason concurrently.”

This chapter presents some of the recent work done in the
field of parallel programming, starting with the .NET 4 BCL.
You learn how low-level concepts such as threads fall short
in the changing landscape for a few reasons. During our
discussion, we introduce two ways to think about parallel
programming: task-oriented versus data-oriented.

1502 CHAPTER 30 Task Parallelism and Data Parallelism

CPU Usage CPU History

FIGURE 30.1 Keeping processors busy with an ideal number of threads.

Pros and Cons of Threads
As you learned in Chapter 29, threads are the scheduling unit known by the Windows
operating system kernel. Processes can have multiple threads which allow the process to
process many of its tasks in parallel. Examples include running a message pump for a UI
thread while background threads are used for computations or I/O operations that should-
n’t block the UI.

Cutting Costs

The best way to think about threads is as virtual processors. They provide a level of
abstraction on top of physical processors, and it’s the operating system’s task to switch
between different threads such that all of them can make progress. The mechanism by
which a thread is swapped out for another one to run is known as a context switch.

Context switches are expensive, and so is thread creation. So why would one create a
plethora of threads as a means to run things in parallel? This question was exactly the
motivation for introducing pools of threads. This way, the number of threads can be
limited, reducing context switching. Pooling also allows for reuse of threads to carry out
different work items drawn from a work item queue.

So is there anything good about threads, per se? The truth is, we can’t live without them
because they form the main mechanism to do work in parallel. Other such mechanisms
exist, but they all have their own pros and cons. Examples include fibers (which the
CLR doesn’t support) and User Mode Scheduling, or UMS (which is more complicated to
deal with).

An Ideal Number of Threads?

Based on those observations, what is an ideal number of threads? If we have too many
threads competing for processor time, we face the costs of swapping back and forth
between them. If we have too few, we’re underutilizing the cores we have at our service.
Figure 30.1 shows how a well-tuned parallel program could go about optimizing the
number of threads by having work queues associated with each processor core available.

1503The Task Parallel Library

FIGURE 30.2 Keeping processors busy with an ideal number of threads.

In fact, this is pretty close to various pooling architectures, one of which we look at in this
chapter. Now a key question becomes how to properly divide work into chunks that can
run on different “worker threads.”

The Task Parallel Library
.NET Framework 4 introduces the Task Parallel Library (TPL) as the new way to go about
writing parallel programs. Key benefits of the TPL include the following:

. Efficient utilization of the cores available in the machine

. Intuitive programming model, leveraging lambda expressions and generics

. Support for task-oriented parallelism based on the notion of Task<T>

. Data-oriented parallelism with parallel iteration and PLINQ queries

. Composition of asynchronous computations

So you might wonder why we bothered talking about classic threading in Chapter 29 at
all, if the TPL is all you need. There are a couple of answers to this question. First, it’s
good to know about the primitives that underpin higher levels of abstraction, such as the
one provided by the TPL. Second, you’ll most likely encounter existing code bases you
have to maintain using classic threading. And finally, a lot of the facts pointed out in the
preceding chapter hold true for every kind of parallel programming. For example, touch-
ing shared mutable state is fine as long as you have a proper and well-thought-out
synchronization scheme in place.

Architecture

The architecture of the .NET 4 parallel programming facilities is shown in Figure 30.2,
which can also be found on MSDN. It clearly pinpoints the layering of the individual
components out of which the framework is built.

1504 CHAPTER 30 Task Parallelism and Data Parallelism

Notice how the TPL is only a small building block of a bigger story. In our coverage of task
and data parallelism in this chapter, we focus on the TPL but also PLINQ, which, strictly
speaking, is a different component. Let’s talk about the layering a bit more.

At the bottom of the diagram, you can see a number of threads that correspond to the
processors (or cores) in the machine. The allocation of those threads follows the ideas
pointed out before and illustrated in Figure 30.2. In other words, the framework tries its
best to avoid introducing more concurrency than the machine can handle, but also tries
to provide as much concurrency as is tolerable. Obviously, the introduction of concur-
rency is primarily triggered by components higher up the stack requesting more computa-
tion resources.

One level higher up, we find two parallel components: the Task Parallel Library and the
Data Structures for Coordination. The former of those is where the notion of tasks is
defined. We detail this concept in a moment, but for now simply think of a task as a unit
of work that can be run in parallel with other such tasks. The latter of the two embodies
all sorts of data structures used in a parallel computing context. This ranges from concur-
rency-safe collection types in System.Collections.Concurrent to synchronization primi-
tives, some of which were discussed in the Chapter 29. We don’t go into detail on those
data structures here. In what follows, we abbreviate this component as CDS to stand for
coordination data structures.

The bottom layers of the architecture form a fabric for computation on which a lot of
applications can build. This is illustrated in the diagram by the arrow denoted with the
word Algorithms. Any application can use the publicly exposed application programming
interfaces (APIs) to do parallel programming, no matter what .NET language the developer
prefers. However, it turns out the parallel programming libraries in .NET 4 can make direct
use of the TPL and CDS. One prominent example is the PLINQ Execution Engine, which
allows LINQ to Objects (and hence LINQ to XML) queries to be parallelized in an easy
declarative manner. We look briefly at PLINQ, assuming prior knowledge of LINQ gained
earlier in this book.

Declarative Versus Imperative

An important aspect to point out about parallel programming is the way you express your
intent in code. Historically, parallel programming has been mostly in the ballpark of an
imperative approach. Most popular languages have imperative roots, including the C#
language, which derives from C and C++. In those languages, you basically have to hold
the hand of the machine and state explicitly what you want it to do.

Imperative languages are all about how you want things to be carried out. Essentially,
you’re sitting pretty close to the bare metal of the machine, manipulating instruction
pointers through control flow, manipulating memory through assignment, and so on.
As a result, there’s little the machine, some runtime, or a language compiler can do to

1505The Task Parallel Library

magically improve your code. There’s little room to wiggle with the code you wrote. For
example, consider the following loop:

foreach (var x in xs)

ProcessItem(x);

Agreed, a smart compiler will do its best to make the loop go as efficiently as possible, but
it won’t violate some essential assumptions of the programming language in which you’ve
written this code. One such assumption has a small syntactical footprint in the code, but
has far-reaching implications. What I’m talking about is the single semicolon inside the
loop body. You should read this innocent token in the code as sequencing. Boiling this
down to its very essence, look at the following code:

A();

B();

All this means is to call A, and then call B. Similarly, for the foreach loop shown just a
moment ago, the assumption is that ProcessItem is called for the elements of the
sequence in the order over which they are iterated. That is, there’s no room for parallel
evaluation here.

FUNDAMENTALIST FUNCTIONAL PROGRAMMING

One reason automatic parallelization of code is a red herring in today’s programming
languages and runtimes is the lack of “purity.” Side-effects pop up around every
corner in programs, including the slightest bits of I/O. Let’s illustrate this with an inno-
cent example:

var now = new Tuple<DateTime, DateTime>(DateTime.Now, DateTime.Now);

Here, we create a tuple with both components set to the same DateTime.Now value.
Or not? Reading the clock is an I/O operation that costs time, too. Hence, between
evaluating the first DateTime.Now call and evaluating the second one, time will have
elapsed. Both components of the tuple won’t be the same!

Optimizing this code to eliminate the duplicate evaluation of DateTime.Now will
produce different results. Now the two components of the tuple will always be the
same. Because of the change in the code’s semantics, such optimizations simply
cannot be made. Even evaluating both DateTime.Now expressions in parallel is a big
no-no. What if the two evaluations run on different processors, really at the same time?
(Remember, clocks do have limited precision.)

As can be seen from the example shown here, imperative programming ties together
the hands of the compiler, runtime, and machine, disallowing it from making certain
optimizations. Although this can be said to be a contrived scenario, just imagine what
would happen if DateTime.Now were not just about input but also about output. Any
optimization would eliminate the duplicate output operation.

1506 CHAPTER 30 Task Parallelism and Data Parallelism

Unfortunately, this also leaves out any room for legitimate safe optimizations. An
example of such code is shown next:

var zeroes = new Tuple<double, double>(Math.Sin(0), Math.Sin(0));

The sine of zero isn’t going to change. Now we could perfectly eliminate the common
Math.Sin(0) subexpression and prevent wasting computation time, but there’s nothing
telling the compiler or the runtime this is okay to do.

In the world of fundamentalist pure functional programming, all side effects must be
made explicit in types using so-called monads. As a result, evaluation order of a side
effect–free portion of code can be done in any way the compiler or runtime sees fit.
Imperative languages still have to learn a lot.

In a declarative world, things are quite different. In such a world, you just state what you
want the code to produce as a result. The way the language, runtime, libraries, and ulti-
mately the machine make this happen is irrelevant to you. All you care about are the
results to be produced by the code. LINQ queries are a perfect example of declarative
constructs:

var xs = Enumerable.Range(0, 1000);

var res = from x in xs

where x % 2 == 0

select x + 1;

foreach (var x in res)

Console.WriteLine(x);

Nothing here prevents the query processor from splitting up the input sequence xs into
multiple portions to run the filtering and projection code in parallel over them, merging
results afterward. It turns out this is an almost true statement because you have to deco-
rate the query with a little hint to make it run in parallel using PLINQ. We discussed this
in Chapter 20, “Language Integrated Query Internals,” in the section, “Parallel LINQ.”

Parallel APIs in .NET 4 facilitate both ways of writing parallel programs. Primitives
provided by the TPL are closer to imperative programming, whereas frameworks like
PLINQ definitely are far more declarative. Some constructs are in the center of both
approaches, making imperative constructs a bit more declarative. For example:

Parallel.ForEach(xs, x =>

ProcessItem(x)

);

In this piece of code, we’re still writing what looks like an imperative foreach loop, but
now we’re giving the framework a bit more flexibility. By using the Parallel class to
formulate a foreach loop, we give the framework the freedom to run the loop body in

1507The Task Parallel Library

parallel for each of the iterations. Notice the use of C# lambda expressions here, which
make the code look as if there were a “parallel foreach” construct in the language.

SYNCHRONIZE, SYNCHRONIZE, SYNCHRONIZE!

You might be tempted to sprinkle the parallel loop shown in our discussion all around
your existing code base. Extreme caution should be taken, though. First, you don’t have
any guarantee anymore about the order in which things will run. Because of this,
results might appear in an order you don’t expect. For example, if the loop writes to a
file or makes calls to a web service, those output operations will be shuffled around
because of the parallel execution.

Second, our discussion about output-order complications pinpoints a potentially bigger
problem. By now, whenever you hear the words input, output, or state mentioned in the
same sentence as parallel or concurrent, a red flag should be raised. Our parallel
foreach loop may run much faster, but why would you care if it no longer produces
correct and safe results?

The important word is synchronization once more. Constructs introduced in .NET 4’s
parallel programming libraries don’t have a crystal ball that allows them to inspect
your code and see it’s thread safe. Proper synchronization continues to be your
responsibility.

What Are Tasks?

You can think about tasks in a variety of ways. One is to start from the notion of a thread
and state that tasks are like lightweight threads, running on top of a pool of low-level
operating system threads. This is quite an implementation-oriented definition that starts
from machine-level mechanics and builds an abstraction out of it.

A better way to think about tasks is to see them as representations of future values that get
computed by means of a function. As such, tasks are sources of asynchrony in your code:
While the task is running, you can do other useful work, until the point you want to
await the task’s result. Furthermore, tasks can be composed in a variety of ways.

In the definition in the preceding paragraph, the word future is used intentionally:
Computer science literature often refers to this mechanism as futures (“in the future, there
will be a value”) or promises (“the tasks promise to compute a value”). Contrast the data-
oriented nature of tasks with regular threads to see the difference:

// Using threads, there’s no convenient way to return data.

var a = 42;

new Thread(() => {

var res = ComputeResult(a); // Using a closure, see Chapter 17, “Delegates”

// How can we return res?

}).Start();

1508 CHAPTER 30 Task Parallelism and Data Parallelism

// Using tasks, data just flows.

var t = Task<int>.Factory.StartNew(() => ComputeResult(a));

// Do other work...

Console.WriteLine(t.Result);

We detail how to work with tasks in the next section, “Task Parallelism,” but suffice to say
that tasks provide a much nicer abstraction to perform computation in the background,
allowing the result to be obtained in a variety of manners at a later point in time.

TASK IS THE NEW THREAD (POOL)

Tasks should really be thought of as the new threads. Chapter 29 mentioned a number
of disadvantages inherent to threads, including their cost to create. You also learned
how the thread pool is used to reduce such costs and even to avoid excessive context
switching by multiplexing multiple units of work onto the same physical operating
system threads that get reused.

The introduction of tasks makes direct use of threads largely obsolete because they
can be used for both long-running work and for short-lived operations. The latter case
clearly is where you would have been using the thread pool before, although it suffers
from limitations such as the ability to return values and compose operations. Tasks are
a much better abstraction.

Using the thread pool for long-running work used to be problematic because you were
stealing away a worker in the thread pool for a long time. The engineering done to the
task infrastructure (and the underlying revamped thread pool on top of which it’s built)
means that tasks can now be used for long-running work, too.

Task Parallelism
Two specific types of parallelism can be distinguished: task versus data parallelism. The
former concentrates on ways to run parallel tasks, or units of work, to process some opera-
tion. This is the closest to the notion of threads. Data parallelism creates parallel units of
work by means of applying operations to chunks of data, which can originate from a
partitioning operation of a sequence. We first cover task parallelism.

Creating and Starting Tasks

The Task Parallel Library (TPL) lives in the System.Threading.Tasks namespace, and we’ll
assume this namespace to be imported in the code examples that follow. To create a new
task, first think about the work you want to run and whether it returns a value. If so, your
goal is to create a Task<TResult> instance. Here, the generic parameter is substituted for
the return type of the operation. If no data has to be returned, a nongeneric Task object
can be created.

1509Task Parallelism

Using the Task Constructor
One way to create a new task is by using the Task<TResult> or Task constructor, where
you pass in a delegate to the operation that has to be carried out. (Obviously, anonymous
method expressions or lambda expressions can be used for this very purpose.)

var task = new Task<int>(() => {

// Do lots of work here, computing int value “res”.

return res;

});

Notice how a Task<TResult> is conceptually similar to a Func<TResult>. The main differ-
ence between them is the invocation of the function taking place somewhere else, from a
concurrency point of view. This is where a task’s asynchrony comes into play.

The way we instantiated a task here doesn’t trigger its immediate execution. Just like
threads, tasks have a life cycle of different states they can go through. When created using
the constructor, the task is in the Created state. For it to start running, you call the Start
method on it, which causes it to go into the WaitingForActivation state, where it can get
picked up by the scheduler to start running (after going through the WaitingToRun state,
to be precise).

task.Start();

Ultimately, the task can run to completion (indicated by the RanToCompletion status) or
terminate in another way, such as an error or due to cancellation.

We detail some of the constructor parameters in the “Task Creation Options” section, later
in this chapter.

Using the Task Factory
Quite often, though, the first thing you’re going to do with a task is to start it anyway. In
such a case, it’s highly recommended to create the task and start it immediately by using
the StartNew method on a TaskFactory. The pattern to do this is shown here:

var task = Task<int>.Factory.StartNew(() => {

// Do lots of work here, computing int value “res”.

return res;

});

Notice the generic parameter on Task can be omitted because it can be inferred from the
lambda expression’s return value. I’ve left it in for clarity, though.

1510 CHAPTER 30 Task Parallelism and Data Parallelism

THE EXTENDED ROLE OF TASKFACTORY

The TaskFactory class has many more methods than just StartNew. For most of
them, refer to the MSDN documentation. One series of methods I want to point out
explicitly, however, is called FromAsync. They enable you to bridge with the Begin/End
asynchronous method pair pattern that occurs in quite a few places of the .NET
Framework. An example of its use is shown here:

var file = File.OpenRead(“c:\\temp\\demo.txt”);

var buff = new byte[1024];

var task = Task.Factory.FromAsync<byte[], int, int, int>(

file.BeginRead, file.EndRead, buff, 0, buff.Length, null);

The FromAsync factory method overloads take in generic parameters that match the
Begin method parameter types and the End method return type. From this, the
AsyncCallback and state parameters are omitted because they’re always the same in
this well-known pattern.

As a result, we get a Task<TResult>, where TResult matches the result type of the
imported End method in the asynchronous method pair. The parameters passed to the
FromAsync method include delegates to Begin and End methods and the parameters
passed to the Begin method. From this point on, the invocation to the asynchronous
method is represented as Task<TResult>, which means it can be used in any way the
TPL allows.

Task-Creation Options
Some of the task’s constructor overloads and factory’s StartNew overloads take in a flags
enumeration value of type TaskCreationOptions. Three nontrivial options exist:

. LongRunning acts as a hint to the scheduler that the task will be long running.
Based on this hint, the scheduler can decide to allocate more worker threads for ad
hoc parallelism because the long-running task is there to stay anyway. If this hint is
not specified, it takes the scheduler some time to figure out the long-running
nature of your task.

. AttachedToParent allows for the creation of hierarchical tasks where a parent task
can’t complete until all of its attached child tasks also complete.

. PreferFairness influences scheduling, such that tasks scheduled sooner execute
sooner and tasks scheduled later execute later (which is said to be fairer).

Let’s focus on the AttachedToParent option for a moment. Here’s an example of how a
child task can spawn from inside another parent task:

var t = Task.Factory.StartNew(() => {

var s = Task.Factory.StartNew(() => {

Console.Write(“Task “ + Task.CurrentId + “ waiting for input... “);

return Console.ReadLine();

1511Task Parallelism

}, TaskCreationOptions.AttachedToParent);

// Do work and return.

});

When we wait for task t to complete (see the “Retrieving a Task’s Result” section) or use
another means to specify a continuation (see the “Continuations” section), we cannot
continue to execute until all of its attached children complete. In other words, a hierarchy
of tasks has been created. In the example shown here, the child task is blocked for user
input (just for the sake of illustration), and it will take until the user enters the requested
input before the task completes. Because of the child task’s AttachedToParent option, the
parent task cannot complete until this happens, too.

Retrieving a Task’s Result

Because tasks can return a value as the result of background computation, an obvious
question is how to retrieve the result. This section examines one way, which leaves the
Task<TResult>-based world of asynchrony and blocks until the result is available. Later in
this chapter, we discuss how to schedule more work based on a task’s result, using the
concept of continuations (see the “Continuations” section).

Here’s how to retrieve a task’s result: Just call the Result property. This causes the receiv-
ing thread to block until the result is available:

var task = new Task<int>(() => {

// Do lots of work here, computing int value “res”.

return res;

});

// Do other useful work until you can’t but wait and block for the task’s

// result to become available.

Console.WriteLine(task.Result);

The most important part of the sample code shown here is, likely, the comment before we
call the Result property. Because you introduced the task to run asynchronously from the
caller’s point of view in the first place, it doesn’t make sense to sit and wait for the task to
complete right after creating it. Waiting for a task’s completion is a synchronous act that
you should do only if you absolutely need the value.

Different ways to wait for a task exist. Because tasks can also be nonvalues (using an
Action delegate to specify the work they represent), the Result property makes sense only
for the Task<TResult> kind. However, Task<TResult> also derives from the nongeneric
Task base class, which also has a Wait method to wait for the task to run to completion.
One benefit of using Wait is that you can specify a timeout:

1512 CHAPTER 30 Task Parallelism and Data Parallelism

var task = new Task<int>(() => {

// Do lots of work here, computing int value “res”.

return res;

});

// Do other useful work until you can’t but wait and block for the task’s

// result to become available. However, while waiting using Wait, we can still

// report some progress.

while (!task.Wait(1000)) // Could also use task.IsCompleted

Console.Write(“.”);

Console.WriteLine(“ Done!”);

Console.WriteLine(task.Result);

In this example, we print progress dots while waiting for the task to complete for just 1
second at a time. The Boolean return value of Wait on the timeout-based overload indi-
cates whether the task completed. Now, the task.Result call won’t block because we do it
after we succeeded a wait operation on the task.

Other overloads to Wait take in a so-called CancellationToken. This concept is explained
in the “Cancellation of Tasks” section, later in this chapter. The basic idea of such a token
is to unify all the cancellation needs in the framework, especially in context of parallel
and asynchronous programming. A simple example of this is shown here:

var task = new Task<int>(() => {

// Do lots of work here, computing int value “res”.

return res;

});

Console.Write(“Waiting for task result...”);

var cts = new CancellationTokenSource();

try

{

task.Wait(cts.Token);

Console.WriteLine(task.Result);

}

catch (OperationCanceledException)

{

Console.WriteLine(“Cancelled!”);

}

The only piece missing from the preceding code is a call to cts.Cancel based on user
input that can be processed during the wait operation (for example, on a UI thread). Such
a call causes the OperationCanceledException to be thrown from Wait.

1513Task Parallelism

FIGURE 30.3 An AggregateException when waiting for a failed task.

Dealing with Errors

Tasks can execute arbitrary code, which obviously can also fail. How do exceptions thrown
on tasks manifest themselves if they remain unhandled? Before discussing that, let’s
review what happens when regular threads are used:

new Thread(() => {

throw new InvalidOperationException(“Oops!”);

}).Start();

This causes the process to terminate because of the unhandled exception, ignoring the
behavior in .NET 1.0 where this wasn’t the case. When working with threads, you must
protect your threads against unhandled exceptions right inside the thread’s logic (of
course, subject to the desired scrutiny): Don’t handle what you can’t deal with!

What you should remember from this is where a thread’s exceptions can be caught: only
on the inside. In other words, there’s no way to observe the exception from the outside or
to declare what must continue to happen in response to such an exception. (To understand
the phrase continue to used here, see the “Continuations” section, later in this chapter.)

With tasks, the situation differs significantly. Although you can still harden your task’s
code against catchable exceptions from the inside (and you should if it makes sense), such
an exception can also be observed on the outside. One such place where a task’s exception
pops out is when calling the Result property or the Wait method:

var t = Task<int>.Factory.StartNew(() => {

throw new InvalidOperationException(“Oops!”);

});

var res = t.Result; // Oops, this will throw

What might be unexpected at first is the type of exception that results from such a wait
operation. The original exception got wrapped in an AggregateException, as shown in
Figure 30.3. What’s up with this?

Because tasks can be attached to a parent, it might be the case that multiple child tasks
threw an exception. When waiting for the parent task, you should have a way to see all of
the child tasks’ exceptions. This is where the AggregateException type comes in.

1514 CHAPTER 30 Task Parallelism and Data Parallelism

Exploring AggregateException

There isn’t much to the AggregateException type. Basically, it’s an exception type whose
instances can wrap multiple exceptions in a property called InnerExceptions, exposed as
a ReadOnlyCollection<Exception>.

Even though you can simply inspect the collection’s elements to handle exceptions you
know how to handle, there’s a more convenient way to go about this using a method
called Handle. This method takes in a function mapping each inner exception onto a
Boolean to indicate whether it got handled. Think of this as the equivalent of LINQ’s
Where query operator method, filtering out the inner exceptions that got handled:

try

{

var res = t.Result; // Oops, this will throw

}

catch (AggregateException ae)

{

ae.Handle(ex => {

var ioe = ex as InvalidOperationException;

if (ioe != null)

{

// Handle the exception here and return true when succeeded.

return true;

}

return false;

});

}

Inside the Handle lambda parameter, you typically perform a type-based switch on the
exception object received. If you successfully handle the exception, return true. If not,
false has to be returned. Upon completion of the Handle call, nothing happens if all the
exceptions got handled. If some exceptions remain unhandled (as indicated by a false
return value), a new AggregateException is thrown with the remaining exceptions
wrapped inside it.

The astute reader will think of one more case, though: What if an AggregateException
contains another such AggregateException inside it? Do we need to type-switch on this
type and recursively handle exceptions wrapped inside it? Lucky for us, the answer is no
when using the Flatten method. This method unwraps nested AggregateException (at
any depth in the tree of exceptions) into a flat AggregateException with all exceptions
directly inside its InnerExceptions:

try

{

var res = t.Result; // Oops, this will throw

}

catch (AggregateException ae)

1515Task Parallelism

{

ae.Flatten().Handle(ex => /* handler logic here */);

}

A First Taste of Exception Continuations
Continuations, explained in the suitably named “Continuations” section later in this
chapter, allow a declarative specification of work to do upon completion of a task. We
discuss the ContinueWith method in all its glory in the aforementioned section, but here’s
a simple example:

var t = Task<int>.Factory.StartNew(() => {

throw new InvalidOperationException(“Oops!”);

});

t.ContinueWith(t_ => {

var ex = t_.Exception;

// Handle the AggregateException here (using Handle).

}, TaskContinuationOptions.OnlyOnFaulted);

// A success continuation (using OnlyOnNotFaulted) could be specified too.

A continuation is a piece of work done after completion of a task, receiving the task as the
parameter to the lambda expression. Different TaskContinuationOptions flags can be used
to control the behavior of the continuation (for example, to call it only upon a failure
case). Similarly, cancellation and success cases can have their own continuation. We
explore this concept in the “Continuations” section.

(Truly) Unhandled Exceptions
What if we never obtain the Result property of a valued task, never call Wait on a void-
resulting task, or never execute a continuation function upon the task’s (erroneous)
completion? Where does the exception go then? Clearly, unhandled exceptions should
never be dropped on the floor. Invariants in your code might no longer hold, making
further work a dangerous business.

In short, the best thing to do is never to abandon a task object without ever observing its
result or taking appropriate error handling measures. After all, why did you start a task if
you are never going to look at its result? Nonetheless, cases exist where a task gets aban-
doned or just exists to cause a side-effect (especially in case of nongeneric tasks that lack a
result value).

When a faulted task is abandoned, the TPL does the best thing it can do to surface the
exception, although (admittedly) it’s not the prettiest thing: Exceptions come out on the
finalizer of the task. As you recall from Chapter 12, “Constructors and Finalizers,” it’s the

1516 CHAPTER 30 Task Parallelism and Data Parallelism

FIGURE 30.4 The finalizer of an abandoned task propagates its exception.

garbage collector’s responsibility to call a finalizer before it reclaims memory for a dead
object that implements such a method. Here’s a simple example to reproduce this behavior:

Task.Factory.StartNew(() => { throw new Exception(“Oops!”); });

Console.ReadLine();

GC.Collect(); // Don’t try this at home!

In the preceding code, the exception comes out when the GC.Collect method is called,
here only used for illustrative purposes. (You should call this method only as a last resort.)
An alternative sample is shown next, emphasizing the timing when the exception pops
out and takes down your application:

Task.Factory.StartNew(() => { throw new Exception(“Oops!”); });

int i = 0;

while (true) {

var bs = new byte[1024 * 1024]; // Stressing the GC for our own education.

Console.WriteLine(i++);

}

Figure 30.4 shows the result of running this code, which allocates 1MB arrays that get
abandoned instantaneously, causing the garbage collector to kick in at some point when a
new allocation fails because of a full generation.

As you know from Chapter 12, the finalizer thread kicks in after the garbage collector has
resumed execution of the virtual machine, because finalizers run managed code. So at
some point after the garbage collector detected the task object as being dead (hence no

1517Task Parallelism

one can ever observe its exception using TPL APIs), it gets dequeued from the finalization
queue and the finalizer is invoked. At that point, the TPL surfaces the exception that was
unhandled. Figure 30.4 clearly shows the exception message, which explains this design.
Quite soon after this happens, the application is torn down as a whole. Clearly, the best
thing to do is to ensure you set up a good exception-handling strategy where applicable,
avoiding these kinds of sudden crashes.

To emphasize the point we’re making here, this behavior occurs only when the task object
is abandoned and no user code can ever observe the faulted state of the task. A simple
change to the sample code illustrates this behavior clearly:

var t = Task.Factory.StartNew(() => { throw new Exception(“Oops!”); });

int i = 0;

while (true) {

var bs = new byte[1024 * 1024]; // Stressing the GC for our own education.

Console.WriteLine(i++);

}

You might wonder how assigning the task to a temporary variable changes matters quite
substantially in our sample. The answer is simple: As long as the task is assigned to a local
variable (in a live stackframe), the garbage collector sees it as reachable, and hence the
object never ends up on the finalization queue. Of course, if we assign null to variable t,
or quit from the method without retaining the reference to the task (either by returning,
assigning it to a field, or whatnot), the task is unreachable again, and the behavior from
Figure 30.4 comes back.

In short, if you can handle exceptions meaningfully, never forget to put in place code that
does so, either by waiting for the task or setting up a continuation.

UNOBSERVEDTASKEXCEPTION

In fact, there’s another way to deal with unhandled task exceptions at a global level.
The TaskScheduler type, which represents the default scheduler used by the TPL,
exposes a static event called UnobservedTaskException, where you can still handle
such exceptions as a last resort:

TaskScheduler.UnobservedTaskException += (sender, e) => {

e.Exception.Flatten().Handle(ex => {

// Try to handle the exception, returning true or false.

});

// If we get here, we can tell the TPL not to “escalate” on the finalizer.

e.SetObserved();

};

1518 CHAPTER 30 Task Parallelism and Data Parallelism

Personally, I believe it’s rather unlikely and superhuman if you can meaningfully recover
from unhandled exceptions without knowing the bigger context of from where the error
originates. If you think you can, this event might prove useful, though.

Continuations

One advantage of using tasks is their better composition compared to lower-level
constructs such as threads. As mentioned at the beginning of the “Task Parallelism”
section, earlier in this chapter, tasks can produce a result of some type. Taking some
further action based on the result (which also could be an error or even a cancellation) is a
common thing to do. This is where continuations come in.

The Basic Concept
Although they sound scary, continuations are really simple constructs. Before going into
the specifics of their use in conjunction with tasks, let’s explore them from a conceptual
point of view. Consider the following piece of imperative sequential synchronous code:

int c = Add(a, b);

Console.WriteLine(c);

This piece of code calls a method Add, which at some point returns the sum of a and b,
which we receive and can use to continue to use (for example, to print it to the screen).
Let’s examine a few things about this code.

First, notice how sequencing plays an important role in the code: The call to the
Console.WriteLine method cannot take place until Add returns. The semicolon syntax in
languages such as C# makes the sequential execution nature explicit syntactically.

Second, and related to the previous point, this code is inherently synchronous: You can’t
do anything but sit and wait for Add to come back before other work can be done.
Although this seems tied to the notion of sequencing, we can still have sequencing
without being synchronous. This is where continuations come in.

In continuation passing style (CPS), the preceding code fragment is rewritten in the
following style, which at first might look a little weird:

Add(a, b, c => {

Console.WriteLine(c);

});

Now we call some method Add, which not only takes in its two inputs, it also accepts a
callback parameter that receives the result of the computation. This is where execution
continues after Add’s computation finishes (and hence the name continuation). Here’s how
the Add method is implemented:

1519Task Parallelism

static void Add(int a, int b, Action<int> continueWith)

{

continueWith(a + b);

}

Notice we still have sequencing of operations going on: First, a and b are added together
to be fed into the continuation function, which then runs after the addition takes place.
Those operations are still sequential in nature. However, this is no longer the semicolon
kind of sequencing we’re used to from languages such as C#. Now all the remaining code
to execute after the addition sits in a lambda expression.

One essential difference that’s become visible after making this transformation is the
change in Add’s return type. Now, the Add method returns void. It’s not that we have lost
the result of the addition, though; the result will be fed into the continuation.

So far, we haven’t done anything truly different from the synchrony point of view. This
code is still intrinsically synchronous: Calling Add computes the sum of its first two argu-
ments, followed by a call to the continuation function. However, now we could easily
introduce concurrency in the Add method to compute the sum of a and b without block-
ing the caller to Add. As soon as that value is available, the continuation function can be
called, still on a different thread. In the world of CPS, the introduction of asynchrony
becomes quite easy:

static void Add(int a, int b, Action<int> continueWith)

{

new Thread(() => continueWith(a + b)).Start();

}

Now the Add method is an asynchronous method from the caller’s point of view. At the
point this method returns, work is going on in the background without blocking the
caller. When the sum value is available, the continuation will be called in the future.

Hidden Continuations in the .NET Framework
Continuations have been prominent in the .NET Framework without them being called
such. Probably the best example of them is the asynchronous method invocation pattern,
which we can illustrate using BeginInvoke and EndInvoke on delegates:

Func<int, int, int> add = (a, b) => a + b;

add.BeginInvoke(3, 4, iar => {

int c = add.EndInvoke(iar);

Console.WriteLine(c);

}, /* state */ null);

// The main thread can continue asynchronous while the delegate is being

// invoked. At some point the AsyncCallback continuation will be called.

1520 CHAPTER 30 Task Parallelism and Data Parallelism

This is nothing but CPS entrenched in the .NET Framework, with some noise due to the
BeginInvoke and EndInvoke methods, the IAsyncResult dragon, the AsyncCallback dele-
gate, and a largely redundant state parameter. Other than this, we’re dealing with a
continuation here.

Continuations on Tasks
The concept of continuations is exposed on Task and Task<TResult> in the form of the
ContinueWith method. The function passed to this method gets called when the task
completes. Typically, the continuation function results in the creation of a new task that
runs the continuation code. All of this allows sequencing of asynchronous operations in a
one-at-a-time fashion. Here’s an example:

Task<int> first = new Task<int>(() => {
// Do lots of work here. For simplicity’s sake, let’s return 42 verbatim.
return 42;

});

Task<string> second = first.ContinueWith(t => {
// Compute based on the first task’s result. By trivial example:
return t.Result.ToString();

});

Console.WriteLine(second.Result);

Notice how a continuation gives rise to a new Task or Task<TResult>, where the type of
the returned data can differ from the original task. In fact, ContinueWith is a form of func-
tion composition on steroids, in the context of asynchronous computation.

The previous code fragment is rather incomplete, though. It assumes the first task did
complete successfully because it just dots into the Result property to do its work. To be
more robust against failures, various properties on the “antecedent task” (which is the
previous task that was run before the continuation is invoked) can be used to inspect the
situation we’re dealing with. For example, the IsFaulted property will reveal there was an
exception, which in turn can be retrieved from the Exception property.

Specifying Continuation Options
There are different ways to define continuations, reducing a lot of the typical clutter
inside the ContinueWith lambda expression to deal with checking for faulted state or
cancellation (explained in the section “Cancellation of Tasks”). Enter
TaskContinuationOptions.

Before we list those options, it should be mentioned that a task can have more than just a
single continuation:

var answer = Task<int>.Factory.StartNew(() => 42);

answer.ContinueWith(t => Console.WriteLine(“C1 “ + t.Result));

answer.ContinueWith(t => Console.WriteLine(“C2 “ + t.Result));

Console.ReadLine();

1521Task Parallelism

Sequencing

Parallelism

Task 1

Task 1

Task 2 Task 2

Task 3

Task 3

Task<int>.Factory.StartNew(() => i)
 .ContinueWith(t1 => f1(t))
 .ContinueWith(t2 => f2(t));

f1
f1

;

var t = Task<int>.Factory.StartNew(() => i);
t.ContinueWith(t1 => f1(t)); // Task 2
t.ContinueWith(t2 => f2(t)); // Task 3

f2

f2

;

FIGURE 30.5 Sequencing versus parallel continuations.

If there’s just a single continuation, as shown in the preceding section’s example, it’s quite
common to use a fluent interface pattern of dotting sequenced continuations together as a
long chain:

Task<int>.Factory.StartNew(() => 42)

.ContinueWith(t => t.Result / 2)

.ContinueWith(t => t.Result.ToString())

.ContinueWith(t => Console.WriteLine(“42 / 2 = “ + t.Result));

This works nicely if you put all error-handling or cancellation-handling logic inside the
continuation functions. However, if you want to take distinct continuation actions for the
different states a task can complete in, you must use the first style of assigning tasks to
temporary variables to specify multiple continuations. Those two styles are contrasted in
Figure 30.5.

So here are some of the continuation option flags that can be specified when creating a
new continuation:

. NotOn* flags prevent the continuation from running if the specified state is true for
the antecedent task. Suffixes for this family of flags include Faulted, Canceled, and
RanToCompletion.

. OnlyOn* flags, for the same three states as specified in the previous bullet point,
cause the continuation to be called only if the antecedent task finished in the speci-
fied state.

. ExecuteSynchronously causes the continuation to run synchronously on the thread
where the antecedent task completed. This option should be used only when the
continuation is short running.

Other continuation options are the same as for the TaskCreationOptions, allowing for the
specification of fairness preference, the long-running hint, or to attach the task to its parent.

An example of a task with two continuations, one for success and one for failure, is shown
in the following code fragment:

var answer = Task<int>.Factory.StartNew(() => {

// Left to the reader: Compute a value “res”; may throw.

1522 CHAPTER 30 Task Parallelism and Data Parallelism

return res;

});

answer.ContinueWith(t => {

// Will only be called in success cases.

Console.WriteLine(t.Result);

}, TaskContinuationOptions.OnlyOnRanToCompletion);

answer.ContinueWith(t => {

// Will only be called in error cases. Handle any exception we can handle.

t.Exception.Flatten().Handle(ex => {

// See section “Exploring AggregateException” for more information.

return false;

});

}, TaskContinuationOptions.OnlyOnFaulted);

THE FUTURE OF C# (AND VISUAL BASIC)

One feature that’s most likely going to end up in a future release of C# is support for
writing sequential-looking imperative-style asynchronous code. Continuations on tasks
form the low-level machinery that allows chaining together asynchronous calls. Due to
their low-level nature based on callbacks, code tends to be turned inside out, ending
up in continuation lambdas with lots of error-checking code.

The new proposed async feature in C# 5.0 and VB 11.0 allows writing imperative-
looking code based on a new expression called await:

public async Task<int> CountWords(string url)

{

string text = await DownloadStringAsync(url);

return text.Split().Length;

}

Here, the DownloadStringAsync method is assumed to return a Task<string>. By
performing an await operation on this task, the compiler turns the remainder code in
the method into a continuation on this task. This just shows the tip of the iceberg of
what’s possible: All imperative constructs, such as branching and loops, can be used in
an asynchronous method. Under the hood, the compiler generates a state machine of
continuations, much like iterators do in C# 2.0 and later.

For more information, search the Web for “Visual Studio Async CTP.”

In summary, continuations are used to chain together asynchronous computations. As
discussed in the next section, it’s also possible to cancel continuations. Given this option,
and the ability to handle exceptions, continuations provide for sequencing points in
chains of asynchronous computations.

1523Task Parallelism

CancellationTokenSource Call Cancel

.To
ken

Task object

// Do some work
ct.ThrowIfCancellationRequested();
// Do more work

3

4

1

2

Lightweight struct
(copy by value)

CancellationToken

pass to

Task constructor

Cooperative
cancellation

OperationCanceledException

FIGURE 30.6 Cancellation of a task.

Cancellation of Tasks

One thing that has been notoriously difficult in the world of asynchronous code (among
other things, such as other threading and synchronization constructs) is the means to
cancel an operation. Starting with .NET 4, cancellation has been unified in terms of two
concepts: CancellationToken and CancellationTokenSource.

We don’t elaborate on the intricacies of the mechanism here but instead focus on the
essentials of the feature. Figure 30.6 summarizes the basic interactions with constructs for
cancellation.

The first key notion is that of a CancellationTokenSource. This class is where a request for
cancellation comes in by means of a call to Cancel. The operation being cancelled can
check for this situation through a so-called CancellationToken struct, which can be
obtained from the token source using the Token get-only property. This lightweight object
can be passed in a variety of places across the TPL and System.Threading APIs starting
from .NET 4. In the section “Retrieving a Task’s Result,” earlier in this chapter, you saw
how the Wait method on a Task accepts a CancellationToken, allowing for cancellation of
this operation.

Note that cancellation for tasks is done in a cooperative manner. In contrast to the
Thread.Abort method, which throws an asynchronous ThreadAbortException, a cancella-
tion token merely represents a flag the task should check periodically to quit the task’s
code when it sees a request for cancellation. It can do so either by using the
IsCancellationRequested property or by invoking ThrowIfCancellationRequested, both
on the token value. The latter method throws an OperationCanceledException that takes
down the task. Obviously, this error can be observed when waiting for the task or from
within continuation functions.

When wait operations occur in a task, the same token should be passed to those such that
the cancellation can also unblock such wait operations. Because of the cooperative nature

1524 CHAPTER 30 Task Parallelism and Data Parallelism

of cancellation, it can take a while before a cancellation is granted. This also assumes the
task’s code checks for cancellation on a regular-enough basis.

An example of cancellation support in tasks is shown here:

var cts = new CancellationTokenSource();

var ct = cts.Token;

Task.Factory.StartNew(() =>

{

while (true)

{

// Alternatively, ThrowIfCancellationRequested could be used,

// requiring the caller to handle this case.

if (ct.IsCancellationRequested)

return;

Console.WriteLine(DateTime.Now);

Thread.Sleep(1000);

}

}, ct);

Console.WriteLine(“Press ENTER to stop the clock...”);

Console.ReadLine();

cts.Cancel();

Console.WriteLine(“Clock stopped”);

Console.ReadLine();

In this piece of code, we use the IsCancellationRequested property to check for such a
request, which we handle by stopping the task. Using this technique, the task’s status
doesn’t transition into Canceled but ends up in RanToCompletion because it terminated
gracefully. This often suffices. However, if it makes sense for the owner of the task or for
continuations to check the canceled state, an OperationCanceledException is the way to
go. An example of this pattern is shown here:

if (ct.IsCancellationRequested)

{

// Do cleanup if necessary (if none, the if-check can be omitted).

ct.ThrowIfCancellationRequested();

}

1525Task Parallelism

Parallel Invocation

Invoking a single task suffices in many cases, but it often makes sense to achieve paral-
lelism by running multiple tasks. Although we can simply create multiple tasks, some
higher levels of abstraction exist in the TPL. One such abstraction is Parallel.Invoke,
which takes an array of Action delegates to invoke in parallel. You can think of each such
action resulting in a task being created. Only when all the tasks complete, the
Parallel.Invoke call returns. This said, Parallel.Invoke makes no guarantees that the
actions really run in parallel because of the way scheduling works. (The same worker
might pick up all the actions, causing them to run sequentially.)

A sample of Parallel.Invoke is shown here:

Parallel.Invoke(

() => Console.WriteLine(“First task”),

() => Console.WriteLine(“Second task”),

() => Console.WriteLine(“Third task”)

);

Another overload to the Invoke method takes in a first ParallelOptions parameter, which
can be used to specify a number of flags. One is the degree of parallelism, used to limit the
maximum number of parallel workers that get spawn to run the work. Yet another flag is a
cancellation token, whose role should be self-explanatory.

In fact, the Parallel class is where task and data parallelism meet. This section covers
only the Invoke method, which is much closer to task parallelism than it is to data paral-
lelism. In the “Data Parallelism” section, later in this chapter, we examine parallel loop
constructs exposed as static methods on the Parallel class.

Concerning the case of errors occurring in one or more tasks, you can probably guess how
those errors get surfaced to the caller of Parallel.Invoke. AggregateException is your
best friend once more. Similarly, cancellation of parallel invocation work can result in an
OperationCanceledException wrapped inside an AggregateException.

Waiting for Multiple Tasks

The Parallel.Invoke method shown in the preceding section brings us to an interesting
facility in the TPL. Did you see the one single most important difference compared to
regular tasks? Here it is: Although the individual pieces of work passed to
Parallel.Invoke can run in parallel using asynchronous tasks, the sum of the parts is
synchronous. That is, Parallel.Invoke doesn’t return until all of its actions have been
executed (or some error or cancellation has occurred).

If you read Chapter 29 carefully, you might immediately think of a way to achieve this
kind of synchronizing behavior across multiple parallel actions. What about using events
such as ManualResetEvent or even the (new in .NET 4) concept of a CountDownEvent?

1526 CHAPTER 30 Task Parallelism and Data Parallelism

Although such a technique will work, it’s rather difficult to get right (in particular when
errors and cancellation enter the mix). Moreover, if not done carefully, you might induce
expensive context switches because of the low-level nature of some of those wait primi-
tives layered on top of Win32 synchronization facilities.

Luckily, the TPL provides for WaitAll and WaitAny constructs that enable us to wait for
the completion of many tasks (either waiting for all of them to complete or for at least
one to complete). An example of a simple Parallel.Invoke clone is shown here:

static void Main()

{

var cts = new CancellationTokenSource();

ParallelInvoke(cts.Token,

() => Console.WriteLine(“First task”),

() => Console.WriteLine(“Second task”),

() => Console.WriteLine(“Third task”)

);

}

static void ParallelInvoke(CancellationToken ct, params Action[] actions)

{

var tasks = (from action in actions

select Task.Factory.StartNew(action, ct))

.ToArray();

Task.WaitAll(tasks, ct);

}

For fun, I’ve included a means to thread a cancellation token throughout the WaitAll call
and all the StartNew calls that spawn the tasks. This shows one of the overloads of the
WaitAll method on Task.

Other overloads of WaitAll allow specification of a timeout, and use of a cancellation
token is optional (as usual). Errors in any of the child tasks appear collectively in an
AggregateException thrown from the WaitAll call.

The WaitAny methods should be quite self-explanatory, as well, especially if you’ve had
prior exposure to the equivalent method on WaitHandle. Those methods return an integer
value indicating the index of the task in the array that completed. Overloads exist that
accept a timeout value or a cancellation token. The presence of the cancellation tokens
throughout the TPL API is one of the key differences with classic means to synchronize
using WaitHandle objects. It was not uncommon before to see dummy events being passed
to Wait methods to allow them to be unblocked:

WaitHandle cancel = new ManualResetEvent(false);

// Assume other events exist

1527Task Parallelism

FIGURE 30.7 Custom TaskScheduler implementations can be provided.

int i = WaitHandle.WaitAny(new[] { cancel, event1, event2 });

if (i == 0)

// Indicates the cancellation event was signaled.

Although this pattern works well in practice, it adds unnecessary burden to your code. In
other places where cancellation was desired (for instance, cooperatively inside a thread),
yet a different mechanism was needed (for example, using a cancellation Boolean flag). In
the world of TPL, all cancellation scenarios are unified using cancellation tokens.

How the Task Scheduler Works

A thorough discussion of scheduling is beyond the scope of this discussion, but a basic
understanding of task scheduling in the TPL is good to have. For more in-depth informa-
tion, refer to MSDN documentation.

First, note that scheduling in the TPL is extensible because you can create your own
subtype of TaskScheduler. In fact, a scheduler is fairly easy to create by implementing just
three methods. Figure 30.7 shows the class diagram for the abstract base class used to
implement schedulers. Italicized methods indicate abstract ones. The QueueTask method is
the most essential one, allowing a new Task object to be scheduled for execution. TPL
abstractions call into this method to spawn work.

We do not cover how to go about such a scheduler implementation, but we do continue
to sketch how the default TPL scheduler does its work.

1528 CHAPTER 30 Task Parallelism and Data Parallelism

.NET 4 Thread Pool Essentials
The default TaskScheduler in the TPL gets passed to all sorts of APIs (including task
creation, Parallel methods, among others) if no custom scheduler is specified. The way
this scheduler works is by queuing work on the .NET thread pool, which we already
discussed from a user’s point of view in Chapter 29.

Compared to earlier versions of .NET and the CLR, the thread pool has been improved a
lot to enable higher scalability and throughput. In particular, the thread pool’s queue of
work items is now implemented using a data structure known as a ConcurrentQueue, also
available in the System.Collections.Concurrent namespace. This queue uses lock-free
algorithms to reduce the time needed to enqueue and dequeue work items. This benefits
all users of the ThreadPool class, as well. So even if you don’t upgrade your code to use
the TPL just yet, existing .NET code that uses the QueueUserWorkItem method to schedule
background work automatically becomes faster when running it on the .NET 4 platform.

Thus far, we’ve referred to the thread pool as if there’s only one such pool. Nothing is
further from the truth, for a couple of reasons. First, each application domain has its own
thread pool for reasons of isolation: It shouldn’t be possible to leak delegates across appli-
cation domains where they can do harm to other parts of the system.

Second, and more relevant to our discussion, local queues associated with each worker
thread are used to run queued work items. Those queues are used to schedule child tasks
created in the context of another (parent) task. By doing so, thread locality is preferred to
execute those child tasks whenever possible. This tends to have positive effects all the way
down to increased processor cache hits. One reason is that parent and child tasks typically
manipulate the shared data structures (mutable or not). The technical argument that
running related work on the same thread has this positive effect is based on the reasoning
that the operating system scheduler tries to avoid migrating a thread across CPUs, thus
increasing the likelihood of CPU cache hits when accessing memory.

Figure 30.8 shows how top-level tasks (step 1) get queued in the global queue, while child
tasks (step 3) get queued in the local queue of their parent. In step 2, a worker thread
that’s currently idle is woken up to grab work from the global queue and start executing it.

If local queues of workers have work in it, but another worker is sitting idle, the schedul-
ing infrastructure can employ work stealing. This mechanism enables an idle worker to
steal work from another worker’s queue to maximize the throughput of the system (“keep
your many cores busy”). Heuristics are applied to determine whether stealing work from
another queue is worth it, and if so the work gets stolen from the queue in first-in, first-
out (FIFO) order.

You can find more information about work stealing and more advanced concepts such as
task inlining in the MSDN documentation related to TPL.

1529Data Parallelism

Roughly one worker
thread per CPU

Global Queue Local Queue Local Queue

static void Main()
{
 Task.Factory.StartNew(() =>
 {
 // Parent task
 Task.Factory.StartNew(() => {
 // Child task
 });
 });
}

3

3

2

1

FIGURE 30.8 Global and local queues used to schedule and execute tasks.

Data Parallelism
We’re now ready to look at data parallelism. This means of achieving parallel computing
exploits the capability to process large data sets by partitioning them into chunks, each of
which gets processed in parallel. Such techniques have existed for a long time in database
query processor engines but apply equally well in the context of a general-purpose
programming language. This is where TPL’s data parallelism comes in, which can be found
in the System.Threading.Tasks.Parallel class.

Parallel For Loops

One first form of data parallelism is exposed by the Parallel.For set of methods, which
provide a parallel for loop. The idea of a parallel for loop is to run the iterations of the
loop in parallel, followed by a wait operation for all the iterations to complete. This is
similar to the Parallel.Invoke construct we looked at in the “Parallel Invocation”
section, earlier in this chapter.

An example of one of the simplest overloads of Parallel.For is shown here. Notice how
similar this loop looks to a regular C# for loop, thanks to the concise syntax of lambda
expressions:

double[,] xs = GetMatrix(300, 400);

double[,] ys = GetMatrix(400, 500);

double[,] zs = new double[300, 500];

var sw = Stopwatch.StartNew();

Parallel.For(0, zs.GetLength(0), i =>

{

1530 CHAPTER 30 Task Parallelism and Data Parallelism

One worker per row

3X23X4

4X2

FIGURE 30.9 Data parallelism for matrix multiplication.

for (int j = 0; j < zs.GetLength(1); j++)

{

zs[i, j] = 0.0;

for (int k = 0; k < xs.GetLength(1); k++)

{

zs[i, j] += xs[i, k] * ys[k, j];

}

}

});

sw.Stop();

Console.WriteLine(sw.Elapsed);

This typical example of the parallel for loop is used to perform a matrix multiplication
where each of the rows in the resulting matrix is computed in parallel. Although we’re
dealing with a shared result array, there are no clashes in accessing it because each of the
cells can be computed independently of each other. Figure 30.9 shows the parallel parti-
tioning of work in a schematic way.

The use of the Stopwatch class from the System.Diagnostics namespace enables us to
measure the time it takes to perform this operation using data parallelism. Testing the
same code with a regular sequential for loop is equally simple:

sw.Restart();

for (int i = 0; i < zs.GetLength(0); i++)

{

for (int j = 0; j < zs.GetLength(1); j++)

{

zs[i, j] = 0.0;

for (int k = 0; k < xs.GetLength(1); k++)

{

zs[i, j] += xs[i, k] * ys[k, j];

}

}

1531Data Parallelism

}

sw.Stop();

Console.WriteLine(sw.Elapsed);

On my machine, the parallel code completed in 751 milliseconds, whereas the sequential
code took a stunning 2364 milliseconds, about three times slower. This run was done on
an eight-core machine. Although there’s a substantial speedup going on here, don’t expect
a linear scaling in terms of the number of cores available. There’s still overhead associated
with spawning and scheduling work, too.

WHAT ABOUT USING THREADS?

It’s a good exercise to try to parallelize the matrix multiplication using plain old
threads, using one thread for each resulting row. In our example, this allocates no
fewer than 300 threads. The cost of creating (in terms of CPU cycles and the memory
impact due to allocations of each thread’s stack) and starting those threads and all the
context switching will be nontrivial.

Simple Overloads
The simplest of overloads to For take in three parameters: an inclusive lower bound, an
exclusive upper bound, and a delegate representing the loop body. Two families of For
loop methods exist, one based on Int32 (C# int) values and another based on Int64 (C#
long) values:

static ParallelLoopResult For(int fromInclusive, int toExclusive,

Action<int> body);

static ParallelLoopResult For(long fromInclusive, long toExclusive,

Action<long> body);

The resulting ParallelLoopResult struct is explained in the next section. In many cases,
this value is simply disregarded.

Using ParallelLoopState

A second group of overloads just extends the loop body delegate with an additional para-
meter of type ParallelLoopState:

static ParallelLoopResult For(int fromInclusive, int toExclusive,

Action<int, ParallelLoopState> body);

static ParallelLoopResult For(long fromInclusive, long toExclusive,

Action<long, ParallelLoopState> body);

The use case for a ParallelLoopState is to break prematurely from the loop in a variety of
ways. To see why this has to be done this way, consider the following regular for loop
constructor first:

1532 CHAPTER 30 Task Parallelism and Data Parallelism

for (int i = 0; i < 1000; i++)

{

if (shouldStop(i))

break;

// Do work otherwise.

}

Here the break statement is used to quit from the loop based on some condition that can
(but doesn’t have to) depend on the loop iteration variable. The way break statements
work is by emitting a branch instruction to jump beyond the entire for loop. This kind of
control flow doesn’t work in the same way inside lambda expressions, though. Although
you can break outside a loop contained inside such a function, you can’t jump out of the
lambda expression, which after all is nothing more than an anonymous method. We say
that a nonlocal jump is not possible using a break statement.

To alleviate this, the ParallelLoopState class was introduced. It’s used to communicate
from inside the loop that a stop of the loop is requested:

Parallel.For(0, 1000, (i, state) =>

{

if (shouldStop(i))

{

state.Break();

return;

}

// Do work otherwise.

});

By calling Break, the Parallel.For code ceases to spawn new tasks for the iterations
beyond the current point where the break was requested. For example, if shouldStop eval-
uates true in iteration 10, the call to Break will cause no iterations beyond the 10th to get
scheduled. This said, it might be the case (due to the parallel execution nature) that itera-
tions beyond the current iteration are already in flight. Those can’t be prevented from
running anymore, so breaking is a best-effort service.

One invariant that Break ensures is that all the iterations before the point the Break call is
issued will get executed. In the running example of breaking from the loop at the 10th
iteration, this ensures that the iterations before the 10th are scheduled and get run. This
mimics the behavior of a C# break statement as closely as possible: All iterations before
the break call can execute, but iterations beyond the point are (to the extent possible)
prevented from running.

An alternative way to stop a parallel loop is by calling Stop on the ParallelLoopState
object. The sole difference compared to Break is that there’s no guarantee that work before
the current iteration will get run. In our example, calling Stop during the 10th iteration
provides no guarantees that the preceding 9 iterations get executed.

1533Data Parallelism

The ParallelLoopState class contains a few other instance members that occasionally
come in handy. They include properties to check whether a stop is requested and which
iteration this happened in. For example, ShouldExitCurrentIteration can be checked to
return from the loop iteration code prematurely because a request to terminate the loop
was issued. Similarly, the IsStopped property can be checked for a stop request. You can
find more information on MSDN.

One final thing we should mention is the role of the return type on the For methods,
which is ParallelLoopResult. This class exposes two instance properties that enable the
caller to check whether the loop completed in its entirety (IsCompleted) and what the
lowest break iteration was if the loop didn’t run to completion (LowestBreakIteration).

Use of ParallelOptions
Other overloads to Parallel.For take in a ParallelOptions object, which can configure
up to three settings:

public class ParallelOptions

{

public CancellationToken CancellationToken { get; set; }

public int MaxDegreeOfParallelism { get; set; }

public TaskScheduler TaskScheduler { get; set; }

}

The first one allows the specification of a cancellation token that can be used to cancel
the loop from executing further, causing an OperationCanceledException to be thrown
from the Parallel.For code.

Using the MaxDegreeOfParallelism property, the number of parallel workers used to
process the loop iterations can be limited. You should exercise caution when using this
flag because you might be needlessly reducing the scalability of your application, espe-
cially if you use magic constant values here. This flag can be used when you happen to
know about competing resources and want to divide parallel resources in one way or
another. Typically, such calculations depend on the number of cores, which can be
obtained through the System.Environment class.

Finally, the TaskScheduler property can be used to pass in your own scheduler. The MSDN
documentation shows how to implement such a beast if you really have to (if the default
scheduler lets you down for some reason).

Using Thread-Local Data
One final set of overloads provides for thread-local data that can be manipulated safely
inside the loop body. (Only one thread can be accessing the data at a time.) A separate
action is invoked to aggregate the thread-local states (manipulated by the workers from
the loop’s iterations) into a global result. An example will make this clearer, but let’s show
one of the overloads first:

1534 CHAPTER 30 Task Parallelism and Data Parallelism

static ParallelLoopResult For<TLocal>(int fromInclusive, int toExclusive,

Func<TLocal> localInit,

Func<int, ParallelLoopState, TLocal, TLocal> body,

Action<TLocal> localFinally);

The first function parameter, called localInit, is used to initialize thread-local state. Each
body invocation receives the loop variable and the ParallelLoopState (explained in the
preceding section) and the current thread-local value. In those overloads, the body is no
longer an action but has become a function that returns the updated thread-local state
because of the iteration’s execution. The final parameter is executed once for every thread-
local that was initialized during the execution of the loop and is used to aggregate those
results when the loop completes.

Here’s an example, also shown on MSDN:

var xs = Enumerable.Range(0, 1000000).ToArray();

long total = 0;

Parallel.For<long>(0, xs.Length,

() => 0,

(j, loop, subtotal) => {

subtotal += xs[j];

return subtotal;

},

subtotal => Interlocked.Add(ref total, subtotal)

);

Console.WriteLine(“The total is {0}”, total);

For each unique worker thread that’s involved in executing the parallel for loop, the func-
tion for local state initialization (here simply returning 0) will be called. From this point
on, the initialized data is stored in thread-local storage that’s fed to the loop body function
every time the worker processes a new iteration. The updated subtotal is then returned
from the loop body, to be stored in the worker thread’s thread-local storage again. When
all the workers have completed all their work for the loop, the aggregation function is
called, where we sum up (in a thread-safe manner) the subtotals into a global total.

I recommend carrying out the debugger experiment illustrated in Figure 30.10. First, you’ll
see a relatively small number of calls to the initialization function, more or less propor-
tional to the number of processor cores (or the degree of parallelism if specified) available.
This is due to the initialization happening only once per worker, which is nothing but a
thread that gets reused across multiple work items.

After all the loop bodies have executed on the active workers, the subtotals that live in the
workers’ thread-local state will be aggregated through the finally function that will get
called once per worker.

1535Data Parallelism

FIGURE 30.10 Observing function calls during a parallel loop with thread-local state.

Using the thread-local state option of a parallel for loop means that you don’t have to
manage such state yourself (which can be rather error-prone otherwise). Typically, this
technique is used when the resulting loop has to compute some kind of aggregation value.

AggregateException Strikes Again
It should be quite obvious that all the overloads of parallel loop constructs (and the
Parallel.Invoke method discussed in the “Parallel Invocation” section) can throw an
AggregateException that collects all the exceptions that happened on the parallel tasks
that got spawned by the data parallel construct.

Parallel Foreach Loops

Just as the Parallel.For method resembles a C# for loop, the Parallel.ForEach method
is designed to mirror the C# foreach loop. Given an enumerable sequence, the ForEach
method allows for the parallel execution of a loop body for each of the elements in the
given sequence.

Most of the concepts discussed in our coverage of For carry over to the ForEach case as
well, including the use of ParallelLoopOptions, the ParallelLoopState with Break and
Stop methods, and the ParallelLoopResult. Similarly, thread-local state can be associated
with the workers that carry out the loop’s work.

In what follows, we focus on the additional concepts introduced for the Foreach loop that
are unique to this kind of loop. But first, let’s consider a simple example of the use of this
data parallel operation with one of the most extensive overloads:

var xs = Enumerable.Range(0, 1000000);

long total = 0;

Parallel.ForEach(xs,

() => 0L,

(x, loop, subtotal) => {

subtotal += x;

return subtotal;

},

1536 CHAPTER 30 Task Parallelism and Data Parallelism

subtotal => Interlocked.Add(ref total, subtotal)

);

Console.WriteLine(“The total is {0}”, total);

Here we’re iterating over the enumerable sequence with parallel loop body executions.
Again, we’re using a long-valued thread-local state to compute subtotals of the sum of the
sequence’s elements, which get aggregated into the final sum.

The Role of Partitioners
To run operations on the elements of a sequence in parallel, the sequence needs to be
partitioned into chunks of work. This is where the concept of partitioners enters the
picture. They play a crucial role in the PLINQ implementation, too (see the section
“Parallel LINQ” in Chapter 20).

The idea of a partitioner is to let the workers that execute the loop body process more
than just individual elements one at a time. For example, if you have 100 elements and
four cores, it makes sense to have each core take care of the work for 25 elements. Such a
common partitioning scheme is called range partitioning, where the input sequence size has
to be known upfront to create index-based ranges for each worker. This scheme has a
disadvantage, though: If one worker completes way before other workers are done with
their part of the work, the idle worker cannot steal work.

Another way to partition a sequence is chunk partitioning, where chunks of a given size are
processed by workers. This differs from range partitioning in that the split-up of the work
is not statically based on the number of workers. For example, given 100 elements and a
chunk size of 5, we get 20 units of work. If there are, say, four cores with a worker allo-
cated for each core, they will on average execute five chunks each. This isn’t static alloca-
tion of chunks to workers, though; if a worker is presented with a chunk, it can process
much faster than another worker can process its chunk, and it can readily move on to the
next chunk. Overall, the throughput of the system is higher. Load-balancing partitioning is
another name for the use of dynamic chunk-based partitioning.

You can create a partitioner by using the Partitioner.Create factory methods. A set of
overloads is based on from and to bounds, combined with range sizes, creating a parti-
tioner that employs range partitioning. Other overloads can take in an array or an
IList<T> object, whose length is known immediately. Depending on a Boolean flag
named loadBalance, the resulting partitioner uses range partitioning or load-balancing
chunk partitioning.

For more information about the use of partitioners and the creation of custom partition-
ers, refer to the MSDN documentation about the subject.

1537Summary

Summary
Taking advantage of multicore machines is becoming increasingly important. From a
programmer’s point of view, the new features in .NET 4’s System.Threading libraries make
it easier to do so.

In this chapter, we explored the notion of task parallelism centered around the Task and
Task<TResult> types. We discussed how to create tasks, await their results, work with
continues, and deal with various aspects such as errors and cancellation. In summary,
tasks are the new means to perform work asynchronously, whether it’s long running
(where you’d have used threads before) or more ad hoc short-lived computations (using
thread pools before). We also discussed how the task scheduler works, layered atop of the
improved thread pool, employing techniques such as work stealing.

We finished our discussion of modern .NET 4 approaches to parallelism with a tour through
data parallelism, exposed through the Parallel class’s loop methods. During our discus-
sion, you learned about loop state, parallelization options, partitioning schemes, and more.

This page intentionally left blank

Index

SYMBOLS
. (period), 335

; (semicolons), 217

#region directive, 497

$exception, applying, 1182

+ operator, 260

, (commas), trailing, 558

- operator, 260

. (dot) parameter, 1379

; (semicolons), 355

| operator, 565

~ == operator, overloading, 624-626

NUMERICS
64-bit

addressing, 1494

environments, 1329

programs, 1239

A
aborting threads, 1444

absolute time, 1317-1318

abstract classes, 683-685

abstract keyword, 656

abstract syntax trees. See ASTs

abstraction

concurrency, 1469

levels, 6

stacks, 644

Accept method, 1094

access control lists. See ACLs

AccessException types, 1266

accessing

CAS, 1275

control systems, 488

cross-thread, 884

elements, 347-349

fields, 335, 546-549

generics, 336-337

indexers, 349

late-bound property, 1073

members, 335-338, 486, 1097

protected accessibility, 669-670

static members, 549

types, 24

accessors

add, 847-851

get, 573, 649

properties, 571

remove, 847-851

set, 573, 649

accumulation, types, 1011

accuracy of timers, 839

ACID (atomicity, consistency, isolation, and
durability), 461-462

ACLs (access control lists), 1397

Action delegate, 856

actions, ForAll, 1034-1035

Activator.CreateInstance<T> method, 728

Active Server Pages. See ASPs

Active Template Library, 7

add accessor, 847-851

add function, 73

add keyword, overflow, 262

Add method, 28, 334, 340, 516, 701, 780,
1266

Add New Item dialog box, 532

add.ovf instruction, 263

Add Reference dialog box, 1312

adding

libraries, 102

members, 1051

performance counters, 1385

add-ins

MarshalByRefObject calculator, 1284-1285

.NET Framework, 1287-1289

addition on the binary level, 260

addressing, 64-bit, 1494

ADO.NET, 161-163

advanced locks, 1483-1486

agents, isolation of state, 97

Aggregate operator, 267, 1009

AggregateException, 1211-1212, 1513-1515

aggregation

GroupBy method, 1016

operators, 1008-1017

AJAX, 888, 897

algorithms

parallel, 96

recursive, 1203

aliases, 208-209, 326, 506

BCL, 1117

conflicts, 1230

namespaces, 1226-1227

reference types, 185

All operator, 1017

allocating

heaps, 792

memory, 43, 470, 475

objects, 44

abstract keyword1540

ambiguous type names, 1225

analysis

code, 117, 543-544, 1364-1365

memory leaks, 857

performance, 1378

runtime behavior, 1386

threads, debugging, 1461

AND operator, 274, 276

anonymous function expressions, 789-790

anonymous iterators, 983

anonymous methods, 344-346

anonymous types, 66, 386

generics, 739

object initializers, 930-933

Any operator, 1017

apartments, threads, 1450-921

APIs (application programming interfaces),
6, 60, 1291

Delegate, 826

discoverability of, 1216

exception handling, 415

expression trees, 1093-1104

generics, 699

inheritance, blocking, 665

LINQ, 64, 901

namespaces, 1214

.NET Framework versions, 100

parallelism, 1506

parameters, renaming, 800

string concatenation, 269

System.Data.SqlClient, 904

System.Xml.Linq, 917

APL, 15

Append method, 1404

application programming interfaces. See APIs

ApplicationException, 1193

How can we make this index more useful? Email us at indexes@samspublishing.com

applications

ASP.NET, 124

automation, 1159

building, 1216

with COM interop, 1154-1165

compiling, 175-176

Console Application, 124

deployment, 10

domains, 37-39, 1233, 1277-1289,
1278-1279

entry points, 171-172

extensibility, 1059-1070

ExtensiCalc, 1059

Hello World, 110

localizing, 1350-1352

native, 1435

.NET, 109-116

reactive, 835-843, 888-900

running, 175-176

types, 10

Visual Studio 2010, 124-169

Windows Forms Application, 124

WPF, 124

applying

arrays, 1305-1310

attributes, 1077-1078

delegates, 836-839

directories, 1394-1397

dynamic keyword, 1119-1127

event logs, 1379-1381

ExpressionTreeVisitor, 1105-1107

extensions, 527-528, 1059

gacutil.exe, 1251

generic types, 708-709

lightweight code generation, 1104

mutexes, 1477-1480

paths, 1397-1398

applying 1541

properties, 569-572

semaphores, 1480-1483

strong-name keys, 1246-1247

task constructor, 1509

TaskFactory, 1509-1510

thread-local data, 1533-1535

threads, 1432-1462

approximating Pi, 1316

arbitrary precision arithmetic, 187

architecture

add-ins, 1288

DLR, 1148-1150

TPL, 1503-1504

ArgumentException, 412, 1185, 1205

ArgumentNullException, 240, 419, 983, 1185,
1206

ArgumentOutOfRangeException, 1207

arguments, 505

command-line, debugging, 421

passing, 506-507

arithmetic

with DateTime values, 1324

expressions, compilers, 1084-1091

operators, 253, 255-265

characters, 259

decimals, 258

floating-point, 255-257

integers, 255-256

nullables, 265

arity of operators, 248

ArrayList, 754

arrays, 228-236, 333

applying, 1305-1310

element access, 348

initializers, 231-233

internal representation, 228

jagged, 233-235

LINQ, 1306

manual array indexing, 295

multidimensional, 235-236

parameters, 510-512

single-dimensional, 229-231

types, covariance, 741-744

ArrayTypeMismatchException, 1196

as keyword, 631

as operator, 311-315

ascending keyword, 936

AsEnumerable operator, 1022-1024

AsOrdered operator, 1032-1033

AsParallel method, 1028-1031

ASP.NET, 10, 39, 124, 151-154, 1292

ASPs (Active Server Pages), 8

assemblers

IL code, 291

languages, 778

assemblies, 1217, 1233-1276, 1277

application domains, 38

BCL, 1294-1298

bindings, 1260

collections, 1083

default values, 514

deployment, 1240-1244

files, 1236

GACs, 36, 108, 1233, 1242, 1249-1253.
See also GACs

inspecting, 112-116

installing, 36

loading, 35-36, 1274-1276, 1278

locating, 1259-1261

manifests, 26-27

modules, 1234-1236

mscorlib, 1296-1298

naming, 1240-1244

navigating, 1295

applying1542

.NET, 15-17

NGEN, 42

properties, 1237-1240

references, 1253-1255, 1301

reflection, flashback, 1272-1274

resources, embedding, 1268-1270

runtime, loading, 1255-1261

satellite, 1269

saving, 1091

searching, 1255, 1296

services, loading, 11

strong naming, 1244-1249

System, 1296-1298

System.Interactive, 1016

testing, 1253

types, 1236-1237

definitions, 1227

forwarding, 1270-1272

unloading, 37, 1278

versioning, 1240-1244

visibility, 1265-1268

Assembly property, 1055

AssemblyInfo.cs file, 1238

AssemblyName object, 1275

AssemblyQualifiedName property, 1055

AssemblyVersion attribute, 1248

asserts, 1366-1365, 1367-1369

assignment

compound, 287-290, 611

constants to variables, 252

definite, 290-294

local variables, 212-213

operators, 285-297

redundancy, 293

simple, declaration versus, 285-287

statements, 354-355

How can we make this index more useful? Email us at indexes@samspublishing.com

values

to members, 559-560

parameters, 507

associations, statements, 360

associativity

binary operators, 250

null-coalescing operators, 283

operators, 248-250

result types, 282

simple assignment, 286

ASTs (abstract syntax trees), 1038

AsyncCallback delegate, 816

asynchronous

computation of Fibonacci numbers, 818

distributed computing, 889

invocation, 811-824

methods, 1416

programming, 95

read and write operations, 1413-1421

atomicity, 458, 1472-1474

attacks, injection, 906

attributes

AssemblyVersion, 1248

AttributeUsage, 1118

BeforeFieldInit type, 1198

customizing, 1075-1081

InternalsVisibleTo, 1267-1268

serialization, 1282

STAThread, 885

StructLayout, 596

ThreadStatic, 1452

AttributeUsage attribute, 1118

authentication, Windows integrated
authentication (-E), 913

auto-completion, 738

event handlers, naming, 864

auto-completion 1543

auto-implemented properties, 74-75, 572-573,
873-875

automation

memory management, 43-46

numbering, 559

Office, 1159

parallelization, 1505. See also parallelism

Average aggregation, 960

Average operator, 1013

Axum, 97

B
backgrounds

mode, NGEN, 42

threads, 1446-1448

BackgroundWorker component, 1495-1498

backing fields, 571

backward compatibility, 6, 59

Bag dynamic object, 1145

Bar method, 480, 508, 645, 1260

base calls, 682

Base Class Library. See BCL

base classes

constraints, 723-724

constructors, 659

Expression, 1093-1094

members, hiding, 666-669

base keyword, 656, 659

BaseType property, 1055

BASIC, 7

BCL (Base Class Library), 10, 14, 30, 51-53

Activator.CreateInstance<T> method, 728

aliases, 1117

assemblies, 1294-1298

default project references, 1293-1294

exception types, 1193-1212

GACs, 36

interfaces, 871

join clause, 950

multiple interfaces, 664

namespaces, 1293

output parameters, 508-510

overview of, 1291

references, 1294-1298

statements, 353

System root namespace, 1301-1346

System.Core.dll, 1298-1301

text, 1346-1362

WeakReference, 715

BeforeFieldInit type attribute, 1198

BeginInvoke method, 816

behavior

CLR, 39

debugger-dependent, 1375

methods, refactoring, 540

runtime analysis, 1386

shell execution, 1387

big endians, 1412-1413

Big O notation, 754-755

BigInteger type, 1310-1312

binary

expressions, 1095-1096

notation, 188

operators, 248. See also operators

associativity, 250

as lifted operators, 607

BinaryReader class, 1411-1412

BinaryWriter class, 1411-1412

Bind operation, 1137

binders, 1128-1134, 1138

auto-implemented properties1544

BindingFlags, 1075

bindings

assemblies, 1260

assembly versions, redirecting, 1242-1244

dynamic keyword, 1110

let clauses, 961-964

bits, floating-point numbers, 193

black boxes, 92

BlockExpression statement, 1101

blocking

inheritance, 665-666

message loops, 823

threads, 1441, 1446

blocks, 351

catch, 414

finally, executing, 1175

protected, 1178

statements, 356-357

switch statements, 371

try, 414

using, 597

Body property, 73

Boolean

expressions, 358

logical operators, 275-277

values, 196-197, 353

Boolean expressions, 1107

bootstrapping at runtime, 33-35

boxing, 700

conversions, 631

equality operators, implementing, 616

generic types, 710-712

types, 478-479

branching operations, 362

break statements, 366, 378-380

breakOuter method, 379

How can we make this index more useful? Email us at indexes@samspublishing.com

breakpoints, debugging, 137

Breakpoints window, 137

broken arrow covariance, 630-631

buffers, 1307-1308

build support, 130-135

building applications, 1216

built-in

conversions, 627-631

operations, 1061-1062

types

languages, 185-209

reserved words, 197

C
C

control flow/stack maintenance abstrac-
tions, 644

runtime, heaps, 44

Win32 programming in, 6

C-style function pointers, 783

C++, 10

abstraction levels, 6

classes, 590

caches, 1415

GACs, 36, 108, 1233, 1242, 1249-1253.
See also GACs

polymorphism, 1136

Calculate method, 22, 1039

calculateFib method, 823

calculating

code metrics, 538

integral type precision, 187

CalculatorUI.exe, 1259

calendar systems, 1320-1321

Call Information mode, 1183

Call Information mode 1545

Call Stack pane, 136

Call Stack window, 1183

calls

asynchronous methods, 1416

base, 682

constructors, 328

Debugger.Break, 1374

delegates, 342

dynamic

call sites, 1128-1134

languages, 81-83

optimization, 1051

finalizers, 592

generic methods, 733

instance members, 491

methods, 340, 353-354, 1042

nonvirtual, 679

OrderByDescending, 936

reverse extension method, 529

stacks, 254, 406, 416, 471

Standard Query Operator method, 934

virtual, 679

callvirt method, 340

camel casing, 546

cancellation of tasks, 1523

CancellationPending property, 1498

CanReduce property, 1094

captured outer variables, 790-793

Cartesian coordinates, 632, 634

CAS (Code Access Security), 11, 47-49, 254,
1075, 1275

case sensitivity, 172, 189

cast expressions, 300-306

Cast operator, 997

Cast<T> operator, 968

catch blocks, 414

catching exceptions, 428, 1174, 1184-1187

causes of exceptions, 412-415

CCI (Common Compiler Infrastructure), 1365

CCR (Concurrency Coordination Runtime), 97

CDS (Coordination Data Structures), 96

cells, nonblocking, 95

CER (System.Runtime.ConstrainedExecution),
1200

chaining

method calls, 1042

query expressions, 956

ChangeIt method, 472

char parameter, 326

characters

arithmetic operators, 259

literals, 189-190

sequences, 1356

Unicode, 189, 327

checked contexts, 352

checked exceptions, 422, 1171. See also excep-
tions

checked keyword, 628

checking

enumeration flags, 275

for flags, 566-567

overflow, 260-265

query statements, 905

timestamps, 135

types, 286, 767

violations, 783

Church, Alonzo, 70, 347

CIL (Common Intermediate Language), 12, 16

CKHR macro, 1170

Class Library, 124

classes, 465

abstract, 683-685

base, constraints, 723-724

BCL. See BCL

Call Stack pane1546

BinaryReader, 1411-1412

BinaryWriter, 1411-1412

C++, 590

Counter, 649

Debug, 1371

declaring, 393

derived, designing events for use by,
869-871

Directory, 1402

DirectoryInfo, 1402

Environment, 1329

File, 1401

FileInfo, 1398-1399

functions, 781. See also functions

hierarchies, 864

inheritance for, 657-669

instances, 579. See also instances

languages, 184-185

Lazy<T>, 1343-1344

mapping, 913

Math, 1308

.NET, 19-20

OOP, 656

ParallelLoopState, 1533

PipeStream, 1424

single inheritance for, 661-663

static, 589

Stream, 1408

StringBuilder, 1359-1361

StringReader, 1407

StringWriter, 1407

structs, comparing, 466-486

System.Console, 291

System.Exception base, 1191

System.GC, 713

TextReader, 1406-1407

TextWriter, 1406-1407

How can we make this index more useful? Email us at indexes@samspublishing.com

Thread, 791, 1436-1441

ThreadLocal<T>, 1456-1458

WaitHandle, 1490

clauses

finally, 432-433

from, 923, 1029

group by, 942-949

into, 955-961

join, 949-954

let, 918, 961-964

orderby, translation, 941

Select, 924, 927-933, 955

WHERE, 534

where, 71, 933-936, 1029

cleanup, deterministic resource, 438-447

CLFS (Common Log File System), 1429

CLI (Common Language Infrastructure), 12-14,
56, 112, 1178

single inheritance for classes, 661

zero-initialization, 585

Click handler, 1497

Client Profile (.NET 3.5), 106

cloning, deep, 762

Close methods, 434

closures, local variables, 1457

CLR (Common Language Runtime), 11, 16, 30,
1233

array type covariance, 744

behavior, 39

entry points, 33, 176-177

errors, 18

exception handling, 431

fields, 550

hosts, 39

managed code, 1435

memory

allocating, 43

management, 292

CLR (Common Language Runtime) 1547

multilanguage usability, 1049

namespaces, 1217

.NET Framework, 102

overview of, 32-51

processes, 1278

protected accessibility, 670

runtime, shims, 106

strong-named assemblies, 1249

types, 17-24

CLS (Common Language Specification), 13

compliance, 202-208

compliant types, 19

generics, 727-729

multilanguage usability, 1049

role of, 23-24

co- and contravariance, generic, 786

COBOL, 12, 15

code

analysis, 117, 543-544, 1364-1365

binders, 1138

compiling, 59

contracts, 1369-1371

cross-language interoperability, 12

defects, 412-415

dynamic call sites, 1129

editors, 128-130

hash, 755-758

IL, 24, 27-29, 72. See also IL code

insight features, 139-143

interoperability, 11, 1240

IronPython, 1122

iterator, 977

Just My Code, 424

lightweight generation, 1082-1091

lock statements, 456-458

managed, 24-32, 1434-1436

manipulation, 93

metrics, calculating, 538

navigating, 116

.NET

compiling, 111-112

running, 112

writing, 110-111

NGEN, 42-43

paths, 503

quality, 1364-1378

return statements, 407

reuse, 649

Show External Code, 1115

snippets, 490

exceptions, 1192

writing, 1192

types, 180-182

Windows Forms designer, 879

wrappers, 595

writing, 1052-1053

Code Access Security. See CAS

Code Analysis, 311, 354

Code Document Object Model (CodeDOM), 93,
1100-1101

Code Metrics, 539

CodePlex, 77, 169, 1365

co-evolution of languages, 878

collections, 1338

assemblies, 1083

generic types, 61

initializers, 333-335, 701-702

in-memory, 902

syntax, 766, 770-771

types, 389, 753, 775

generic, 762-775

generics, 697-699

nongeneric, 753-762

CLR (Common Language Runtime)1548

COM (Component Object Model), 7, 10, 50

exceptions, 1169-1170

interfaces, 1164

interoperability, 83-86, 1150-1165

managed code, 1152-1154

namespaces, 1216

overview of, 1152

tabs, 1155

Combine method, 826, 845

combining delegates, 824-830

COMEFROM, 403

command-line, 109, 1330-1331

arguments, debugging, 421

MSBuild, 135

commands. See also functions

Dec, 648

GCRoot, 856

Inc, 648

prompts, Visual Studio 2010, 121

SOS, 1182-1188

subst, 1394

commas (,), trailing, 558

comments

delimited, 223-224

documentation, 224-228

single-line, 220-221

Common Compiler Infrastructure (CCI), 1365

Common Intermediate Language. See CIL

Common Language Infrastructure. See CLI

Common Language Runtime. See CLR

Common Language Specification. See CLS

Common Log File System. See CLFS

Common Object Runtime. See COR

Common Type System. See CTS

How can we make this index more useful? Email us at indexes@samspublishing.com

communication

cross-domain, 1279-1287

serial port, 1429

WCF, 1283

commutativity, 619

Compact Framework, 10

compacting heaps, 45

Compare method, 771, 1493

CompareTo method, 719

comparison operators, 271

compatibility

backward, 6, 59

forwarders, 1272

types, 18

Compile method, 1087-1091

compilers, 25

arithmetic expressions, 1084-1091

base class members, hiding, 667

expression trees, 1092-1093

extension methods, 529-532

as services, 92-94

compiling

applications, 175-176

code, 59

compile-time participation, 94

.dll assemblies, 1241

generic constraints, 720

IL code, 31

iterators, 984-989

JIT, 39-41, 1263

.NET, 111-112

query statements, checking, 905

regular expressions, 1355

complex numbers, 1312-1314

complexity, 778

compliance, CLS, 202-208

Component Object Model. See COM

Component Object Model 1549

Component Object Runtime Execution Engine,
33

Component Object Runtime Workstation, 34

components

BackgroundWorker, 1495-1498

event logs, 1381

FileSystemWatcher, 1400

compound assignments, 267, 287-290, 611

compound keys, 945-949

computed keys, 945

computing prime numbers, 394

Concat method, 737

Concat operator, 1019

concatenation

LINQ, 920

strings, 266-270

concrete types, 324-325

ConcRT, 96

concurrency, 91, 94-97

abstracting, 1469

loops, 400-401

Concurrency Coordination Runtime. See CCR

conditional debugger output, 1371-1373

conditional operators, 278-281, 611-615

conditions, code contracts, 1370

configuring

assembly properties, 1237-1240

event handlers, 1401

extern aliases, 1228

Fusion Log Viewers, 1259

IDEs, 121

IntelliTrace, 1183

platform targets, 1239

post-build events, 1067

strong-name keys, 1246-1247

Windows settings, 1433

conflicts, aliases, 1230

Console Application, 124

console user interfaces. See CUIs

Console.WriteLine method, 291

const keyword, 213, 358

constants, 1308

concatenation, 267

fields, 555-557

floating-point, 194

local variables, 213-214

variables, assigning, 252

constituent types, 572

constraints

base classes, 723-724

default constructor, 724-731

generics, 716-732

interfaces, 717-723

constructing

generic types, 702, 708

objects, 702

constructors, 22, 324, 325-328, 579

abstract representations of, 182

base class, 659

default constraints, 724-731

fields, initializing, 552

inheritance, 658

initializers, 585-586

instances, 579-580

naming, 581

state, 1066

static, 586-589, 1197

structs, implementing on, 583

tasks, applying, 1509

constructs, loops, 400

contagious properties, dynamic typing,
1112-1114

containers, types, 1131

Contains operator, 1017

Component Object Runtime Execution Engine1550

ContainsGenericParameters property, 1056

Content property, 305

context

grammar, 925

keywords, 59, 178-179

switching, 1433-1434

continuation

after grouping, 958

into clauses, 955-961

exceptions, 1515

options, 1520-1522

tasks, 1518-1522

continuation passing style (CPS), 1518

continue statements, 379

ContinueWith method, 1520

contracts

code, 1366-1365, 1369-1371

interfaces, 689, 1285-1287

contravariance, 87-89, 740-751

delegates, 866

generics, 746-749, 893

controlling

debuggers, 1373-1375

processes, 1386-1389

controls, flow, 644

conventions. See naming, conventions

conversions, 603, 628-641

boxing, 631

built-in, 627-631

dates and time, 1318

enumerations, 628

explicit, 628, 632

implicit, 299-317, 520, 628, 632

integral values, 563

MSDN documentation, 638-641

narrowing, 628

nullable, 628

How can we make this index more useful? Email us at indexes@samspublishing.com

numeric, 627-628

references, 629-630

strings to enum values, 563-564

unboxing, 631

user-defined, 631-637

widening, 628

cooperative scheduling, 1445

coordinates

Cartesian, 632, 634

X-coordinate, 634

Coordination Data Structures (CDS), 96

copy tool, 1496

deployment, 1256-1257

copy-by-value realization, 1281

CopyTo method, 1268, 1423

COR (Common Object Runtime), 1151

_CorExeMain function, 33

costs

of exceptions, 1174

of threads, 1502

Count get-only property, 648

Count operator, 1012

Count property, 669

CountDownEvent, 1467, 1489

countdowns

GUIs, 882-888

mechanisms, 835

Counter class, 649

counters, monitoring performance, 1337,
1382-1386

covariance, 87-89, 740-751

broken arrow, 630-631

delegates, 866

generics, 705, 746-749, 893

safety, 744-745

CPS (continuation passing style), 1518

crashes, debugging, 1184

crashes, debugging 1551

Create method, 1404

CreateDomain method, 1278

CreateInstance method, 724

CreateInstance<T> method, 728

CreateJobObject method, 596

creating. See formatting

cross-domain communication, 1279-1287

cross-language

inheritance, 31

interoperability, 12, 1127, 1137

use, generic constraints, 727

cross-thread access, 884

cryptography, 1245

CTS (Common Type System), 13, 56

multilanguage usability, 1049

CUIs (console user interfaces), 176

curly braces, 357, 361

exception handling, 424

Current property, 974

currying, 796

customizing

accessors, 851

attributes, reflection, 1075-1081

interfaces, 123

ordering, 941

D
data binding, WPF, 875-876

data filtering, 401

data parallelism, 1529-1536

Data property, 1190

data representations, dynamic typing, 337

data structures, 704, 720

Data Structures for Coordination, 1504

data types, 180-182

databases

mappers, 157-163

relational, 61

LINQ, 903-907, 911-917

reflection, 1073

DataSet, 157-159

dates, 1317-1325

DateTime type, 19, 1317-1318

DateTime.Now static property, 1317

DCOM (Distributed COM), 7

DDE (Dynamic Data Exchange), 1137

deallocation

memory, 470, 476

objects, 444

Debug class, 1371

Debug toolbar, 137

Debug.Assert method, 1367

Debug.Fail method, 1373

debuggers, controlling, 1373-1375

debugging

anonymous function expressions, 790

asserts, 1368

command-line arguments, 421

diagnostics, 1371-1373

exception handling, 417

extensions, 1067

history, 1184

IntelliTrace, 1183-1184

MDAs, 1181

support, 134, 136-138

threads, 1460-1462

types, 18

visualizers, 1104

Visual Studio 2010, 117

DebugView, 1103

Dec command, 648

Create method1552

decimals

arithmetic operators, 258

types, 194-196

declaration statements, 351, 357-358

declarative languages, 90, 1504-1507

declarative programming, 92

declaring

classes, 393

events, 877

extern methods, 536-538

fields, 546

generic types, 703-708, 732

handlers, 427

implicitly typed local variables, 215-220

instance constructors, 580

local variables, 209

Main method, 490

namespaces, 1219-1223

pairwise declaration, 615

properties, 569-572

versus simple assignment, 285-287

types, 933

values, 555

variables, 285

virtual members, 675-676

DeclaringType property, 1055

decomposing types, 465

Decrement method, 1493

decrement operators, 294-297, 355, 610-611

deep cloning, 762

deep tree data structures, 1204

DefaultIfEmpty source generator, 992

defaults

constructor constraints, 724-731

keyword, 714

namespace configuration settings, 1219

project references, 1293-1294

How can we make this index more useful? Email us at indexes@samspublishing.com

(T) expression, 715

values

expressions, 320-323

optional parameters, 514

type parameters, 714-716

defects, code, 412-415

deferred overload resolution, 1114-1117

DefineOperation method, 342

defining

classes with constructors, 580

custom attributes, 1076-1077

exception types, 1190-1193

extension methods, 524-526

finalizers, 591

flags enum values, 565

indexers, 575-576

interfaces, 686-688, 1060-1061

methods, 501-502, 517-518

operators, 604-605

private instance constructors, 525

definite assignment, 290-294, 510

delayed signing, 1246

delegates, 777

Action, 856

anonymous function expressions, 789-790

applying, 836-839

AsyncCallback, 816

asynchronous invocation, 811-824, 1420

captured outer variables, 790-793

combining, 824-830

contravariance, 866

covariance, 866

events, 834-835

expression trees, 797-799

extensible calculators, creating, 802-807

functional programming, 777-782

generics, mapping, 1133

delegates 1553

instances, 343-344, 787-797

invoking, 341-344, 799-803, 1098

keywords, 341, 797

lambda expressions, 795-797, 825

limitations of, 839-840

method groups, 518

MultiCastDelegate, 784

.NET, 21-22

optional parameters, 801

overview of, 782

Target, 1135, 1142

types, 782-786

Func<int, int>, 1271

Func<TResult>, 816

Update, 1137

used in LINQ to objects, 807-811

delete operator, 591

delimited comments, 223-224

Delphi, 15

denial-of-service attacks, locks, 1486

denominators, checking, 256

dependencies

assemblies, 1241

languages, 1297-1298

tracking, 135

types, 348

deployment

applications, 10

assemblies, 1240-1244

copy, 1256-1257

extensions, 1066-1068

.NET assemblies, 16

xcopy, 1241, 1243

derived classes, 1424

events, designing for use by, 869-871

design

APIs, 60

evolution of C#, 58

interfaces, 688-690

nullable types, 61-62

runtime, 24

designers

Visual Studio 2010, 144-155

Windows Forms, 498

destructors, 589-601, 853

IDisposable interface, 595-601

detecting typos, 130

deterministic ordering, 250. See also
precedence

deterministic resource cleanup, 438-447

development

asserts, 1367-1369

code in multiple languages, 32

managed code, 56-58

team, 167-169

usage-first, 496

Diagnostic Events mode, 1183

diagnostics, 1363

debugging, 1371-1373

dialog boxes

Add New Item, 532

Add Reference, 1312

New Project, 124-125

diamond problem, 661

dictionaries, 897-900

Dictionary<TKey, TValue> type, 766

Dijkstra, Edsger, 402

directives

.extern, 1257

.maxstack, 115

#pragma, 405

preprocessing, 221-222

delegates1554

#region, 497

using, 1223, 1231, 1295

directories

I/O, 1392-1399

navigating, 1394-1397

Directory class, 1402

DirectoryInfo class, 1394, 1402

DirectoryNotFoundException, 1185

disabling

Just My Code, 424

mscorlib.dll, 1297

warnings, 1366

disassembler tool (ildasm.exe), IL, 25

disassembling Main methods, 114

Disassembly window, 137

disasters, runtime, 412, 415-418

discovery

of APIs, 1216

custom attributes, 1079

extensions, 1064-1066

types, 1056-1057

discrete math, 1308-1310

dispatching

dynamic, 1134-1140

operators, 623

disposal objects, 439-441

Dispose method, 440, 599, 686, 1176

_disposed field, 445

Distance method, 665

Distinct operator, 993

Distributed COM. See DCOM

DivideByZeroException, 255, 1193

division

floating-point arithmetic operators, 256

by zeros, 255

.dll assemblies, compiling, 1241

DLLs (dynamic-link libraries), 7, 16, 27

How can we make this index more useful? Email us at indexes@samspublishing.com

DLR (Dynamic Language Runtime), 338

architecture, 1148-1150

dynamic call sites and binders, 1128-1134

dynamic dispatch, 1134-1140

dynamic operations, 1147-1149

DynamicMetaObject, 1144-1147

DynamicObject, 1140-1144

internals, 1127-1150

DNA (Windows Distributed interNet Applications
Architecture), 8

do...while statements, 380-381

docking panels, 123

documents

comments, 224-228

MSDN, 1296

XML, 907. See also XML

domain-specific languages (DSLs), 92

domains

applications, 37-39, 1233, 1277-1289,
1278-1279

cross-domain communication, 1279-1287

isolation of state, 97

reasoning, 503

dot (.) parameter, 1379

DotGNU, 12

downloading IronPython, 1119-1120

DownloadStringAsync method, 1522

DoWork event handler, 1496

doWork parameter, 791

drives

listing, 1392-1393

special, 1332

DSLs (domain-specific languages), 92

dumping IL code, 1262-1264

dynamic calls

optimization, 1051

sites, 1128-1134

dynamic calls 1555

Dynamic Data Exchange (DDE), 1137

dynamic dispatch, 1134-1140

dynamic keyword, 80-81, 1109-1127

deferred overload resolution, 1114-1117

dynamic typing, 1112-1114

IronPython, 1119-1127

System.Dynamic type, 1117-1119

types, 1111-1112

Dynamic Language Runtime. See DLR

dynamic languages, 16, 76-89. See also
languages

calls, 81-83

dynamic late-bound operations, 1098

dynamic-link libraries. See DLLs

dynamic operations, 1147-1149

dynamic parameters, 1128

dynamic programming, 1109

dynamic typing, 201-202, 310, 337-338

DynamicMetaObject, 1144-1147

DynamicObject, 1140-1144

E
editions, Visual Studio 2010, 117-118. See also

versions

editors

code, 128-130

XML, 133

effects

quadratic, 1019

side, 353

while statements, 376-380

efficiency

as operators, 311

of query generation, 917

EFS (Encrypting File System), 1399

elements

access, 347-349

Import, 133

embedding

metadata, 33

PIAs, 1163-1165

resources, 1268-1270

Empty source generator, 991

empty statements, 355-356

EnableRaisingEvents property, 1400

enabling

Code Analysis, 312, 1365

first-chance exceptions, 425

MDAs, 1181

No PIA feature, 1164

encapsulation, OOP, 647-648

encoding text, 1361

Encrypting File System. See EFS

endians, big/little, 1412-1413

EndInvoke method, 816

Ensures method, 1369

entry points

CLR, 33

languages, 171-177

enumerables, 387

enumerations, 387

conversions, 628

.NET, 19-20

NodeType, 317

operators, 274-275

switch statements, 369

_enum.MoveNext() method, 989

enums, 558-569

flags, 564-567

overview of, 558

string conversions, 563-564

switch statements, 568

Dynamic Data Exchange (DDE)1556

System.Enum type, 561-564

underlying types, 559

Environment class, 1329

Environment.TickCount static property, 1315

environments

error conditions, 418-422

interacting with, 1328-1333

variables, 1331-1332

EPROM (erasable programmable read-only
memory) chip, 807

epsilon-delta definitions, 256-257

equality operators, 272-273, 607

implementation, 615-626

pairwise declaration, 615

EqualityComparer<T> type, 769

Equals method, 273, 547, 616, 756

overriding, 617-619

properties, 619

on System.Object, 622-624

erasable programmable read-only memory
(EPROM) chip, 807

Erlang, 90

Error List pane, 132

errors, 410. See also exceptions

abstract classes, 684

CLR, 18

environment conditions, 418-422

tasks, 1513-1518

Treat Warnings as Errors, 404

Win32, 1168

estimating processing power, 1453

Evaluate method, 614

evaluating

Boolean expressions, 358

expressions, 251

lazy, 915, 956

left-to-right, 353

How can we make this index more useful? Email us at indexes@samspublishing.com

LINQ, 981-984

REPL, 1121, 1353

stacks, 28, 251-254, 471

subexpressions, 250

switch statements, 371-376

EventArgs, 862-869

EventHandler, 862-869

Eventhandler<T>, 867-869

events, 22, 336, 833

add/remove accessors, 847-851

countdown GUI, 882-888

declaring, 877

delegates, 834-835

derived classes, designing for use by,
869-871

extensions, 530

Finished, 838

garbage collection, 853-856

handlers, configuring, 1401

handling, 834, 852-861

INotifyProperty interface case study,
871-882

logs, 1379-1381

manual reset, 1487

multithreading, 845, 846

.NET, 840-843

overview of, 843-845

patterns, 861-871

properties, symmetry between, 427

queries, 891

raising, 842, 845-847

reactive applications, 835-843, 888-900

reflection, 1074

signaling with, 1486-1492

sources, 895

Tick, 838

in UI frameworks, 876-882

events 1557

Excel with COM interop, 1154-1165. See also
applications

Except operator, 1019

exceptions, 409, 1167, 1170-1172

AggregateException, 1211-1212,
1513-1515

ApplicationException, 1193

ArgumentException, 412, 1185, 1205

ArgumentNullException, 240, 419, 983,
1185, 1206

ArgumentOutOfRangeException, 1207

ArrayTypeMismatchException, 1196

catching, 428, 1174, 1184-1187

causes of, 412-415

checked, 422

code snippet, 1192

COM, 1169-1170

continuations, 1515

DirectoryNotFoundException, 1185

DivideByZeroException, 255, 1193

ExecutionEngineException, 415, 1205

File.ReadAllLines, 419

FileNotFoundException, 420, 1185, 1260

first-chance, 425, 1178-1182

FormatException, 413, 1210-1211

handling, 11, 46-47, 409-437, 1172-1188

filters, 431-432

foreach loops, 987

statements, 352

IndexOutOfRangeException, 412, 1195

inner, 437

InsufficientMemoryException, 1200

IntelliTrace, 1183-1184

InvalidCastException, 304, 315, 630, 699,
755, 1195

InvalidOperationException, 629, 886, 1207

MethodAccessException, 1266

NotImplementedException, 1208

NotSupportedException, 1185, 1208

NullReferenceException, 239, 315, 412,
802, 1180, 1194

ObjectDisposedException, 1198

as objects, 411

OutOfMemoryException, 412, 415, 418,
1188

OverflowException, 263, 628, 1194

PathTooLongException, 1185

PrintException, 1182

propagating, 49

properties, 572

rethrowing, 429-431

RuntimeWrappedException, 429,
1188-1190

StackOverflowException, 415, 1202

StopOnException, 1182

System.Exception base class, 1191

tasks, 1513

ThreadAbortException, 412, 457

threads, 1451-1452

throwing, 423, 1188-1190, 1208

TypeInitializationException, 588, 1196

types, 1190-1193, 1212

UnauthorizedAccessException, 1185

unhandled, 1515-1517

UnobservedTaskException, 1517

Win32, 1168-1170

Exchange method, 1493

exclusive OR (XOR) operator, 274

ExCop, 517

exe targets, 1236

executable projects, 1255

ExecuteAssembly, 1278

Excel with COM interop1558

ExecuteSynchronously flag, 1521

executing. See also starting

filters, 935

finally blocks, 1175

flow with finally clauses, 436

IL code, 28

image files, 1374

iterators, 976

managed code, 24-32

ordering, 938

parallel execution, 1434

simultaneous, 452

threads, 451

ExecutionEngineException, 415, 1205

ExitCode property, 1388

exiting programs, 1333

expando objects, 531-532, 1143-1144

experimentation, 110

explicit conversions, 299-317, 628, 632

explicit interface implementation, 691

explicit types, 66

explicitly typed iteration variables, 385

exposing files with readers and writers,
1404-1406

Expression base class, 1093-1094

Expression Blend, 498

expressions, 247

anonymous function, 789-790

arithmetic compilers, 1084-1091

binary, 1095-1096

Boolean, 358, 1107

cast, 300-306

compound assignment, 288

default (T), 715

default values, 320-323

dynamic keywords, 1113

How can we make this index more useful? Email us at indexes@samspublishing.com

evaluating, 251

initializers, 67-68

invocation, 339-347

lambda, 22, 70-71, 346-347, 1098

anonymous function syntax, 963

delegates, 795-797, 825

IL code, 1039

operators, 267

recursive, 859

threads, 1438

object initializers, 329

overview of, 247-250

queries, 330, 796

chaining, 956

into clauses, 955-961

overloading syntax, 1025-1027

syntax, 920-964, 1001

translation, 1036-1038

regular, 1353-1356

statements, 351, 353-355

trees, 71-74, 797-799, 1036-1046,
1139-1140

APIs, 1093-1104

compilers, 1092-1093

leaf nodes, 1095

object models for, 1085-1087

for query expressions, 1041-1046

reflection, 1091-1107

unary, 1095-1096

Visual Studio 2010, 119

ExpressionTreeVisitor, applying, 1105-1107

Ext method, 342

extenders, 24

extensibility, 72, 117, 538

applications, 1059-1070

MEF, 1059, 1067-1070, 1289, 1292

extensibility 1559

extensible calculators, creating, 802-807

Extensible Markup Language. See XML

ExtensiCalc, 1059

ExtensionAttribute, 529

extensions

applying, 1059

debugging, 1067

deployment, 1066-1068

discovery, 1064-1066

loading, 1059, 1064-1066

members, 531-532

methods, 68-69, 336, 522-532, 1207

applying, 527-528

compilers, 529-532

LINQ objects, 970-974

namespaces, 1231-1232

OOP, 656

writing, 1066-1068

extern aliases, namespaces, 1227-1230

.extern directive, 1257

extern methods, 536-538

external assembly references, 1242

extracting methods, 541

F
F#, 15, 78, 90

type safety, 18

factory methods, 183, 365

failures

asserts, 1368

Debug.Fail method, 1373

false operators, 614

features, languages, 59-63

fibers, 1433-1434

Fibonacci numbers

asynchronous computation of, 818

functions, 812

fields, 22, 336, 545-558

accessing, 335, 546-549

backing, 571

constants, 555-557

declaring, 546

_disposed, 445

extensions, 530

initializing, 549-553

naming conventions, 546

non-atomic post-increment on, 450

properties, 332

reflection, 1075

volatile, 558

FIFO (first-in, first-out), 758

File class, 1401

file systems, monitoring, 1400-1401

File.ReadAllLines exceptions, 419

FileInfo class, 1398-1399

FileNotFoundException, 420, 1185, 1260

files

assemblies, 16, 1236. See also assemblies

AssemblyInfo.cs, 1238

Hello.cs, 110

I/O, 1392-1399

image execution options, 1374

marking, 1269

memory-mapped, 1426-1429

MSBuild, 132

multiple, packaging, 1429

PDB, 134, 214

PE/COFF, 33, 1236, 1413, 1426

project definition, 132

read methods, 1402-1403

streams, 1410-1411

extensible calculators, creating1560

write methods, 1403-1404

XML documentation, 227

FileSystemWatcher component, 1400

filter function, 921

Filter type, 518

FilterBool struct, 613

filtering

data, 401

exception handling, 431-432

queries, 807

where clauses, 933-936

finalization, 1338

Finalize method, 594

finalizers, 22, 579

defining, 591

implementation, 594

running, 591-594

finally blocks, executing, 1175

finally clauses, 432-433

finally keyword, 389

finding operators, 605-606

Finished event, 838

First operator, 994

first-chance exceptions, 425, 1178-1182

first-in, first-out (FIFO), 758

FirstOrDefault operator, 994

fixed-point combinators, 860

flags

checking for, 566-567

enumerations, 275

enums, 564-567

event logs, 1379

ExecuteSynchronously, 1521

/keyfile, 1246

_ _ lockTaken, 458

NotOn*, 1521

How can we make this index more useful? Email us at indexes@samspublishing.com

OnlyOn*, 1521

x86, 1240

flashback, reflection, 1272-1274

floating-point

arithmetic operators, 255-257

numbers, 272, 632

types, 190-194

flow control, 644

folders

projects, 496

special, 1332

Visual Studio namespaces, 1220

folds left, 1010

Foo method, 508

for loops, parallelism, 1529-1535

for statements, 381-383

ForAll action, 1034-1035

foreach keyword, 755, 915

foreach loops, 295, 483, 926, 935, 1292, 1505

exception handling, 987

ForAll method, 1034-1035

grouping, 944

LINQ, 974

parallelism, 1535-1536

foreach statements, 384-393, 830

foreground threads, 1446-1448

foreign languages, 375

FormatException, 413, 1210-1211

formatting, 1394-1397

application domains, 1278-1279

generics, 699-703

instances, 1279-1281

objects, 323-335

paths, 1397-1398

strings, 1347-1350

tasks, 1508-1511

formatting 1561

text, 1346-1352

threads, 1436-1438

forms, Windows Forms Application, 124

forwarding types, 1270-1272, 1300

Framework (.NET)

add-ins, 1287-1289

continuations, 1519

frameworks, 24

manageability, 1385

MEF, 100, 1059, 1067-1070, 1289, 1292

nontrivial, 1270

System.Core.dll, 1300

versions, 27

FreeBSD, 12

Freeze option, 1462

from clauses, 923, 1029

FromAsync factory method, 1510

FullName property, 1055

Func<int, int> delegate type, 1271

Func<T1, TResult> delegate type, 797

Func<TResult> delegate type, 816

functional programming, 90

functionality, 464

delegates, 777-782

history of, 778-779

functions

add, 73

anonymous function expressions, 789-790

C-style function pointers, 783

_CorExeMain, 33

Fibonacci, 812

filter, 921

GetLastError, 1168

Hypotenuse, 346

identity key selector, 936

Lightweight Function, 1115, 1142

pointers, 344

programming with, 779-782

projection, 736

SetLastError, 1169

WIN32 namespaces, 1215

Fusion, 1259

FxCop, 93, 361, 1206

naming, 869

G
GACs (Global Assembly Caches), 36, 108, 1233,

1242, 1249-1253, 1294

testing, 1253

gacutil.exe, 1251

garbage collection, 438-439

destructors, 589. See also destructors

events, 853-856

finalizers, 592. See also finalizers

generic types, 714

garbage collectors. See GCs

GCRoot command, 856

GCs (garbage collectors), 11, 34, 43-46, 268,
1334-1341

heap allocation, 476

managed code, 1435

generating

lightweight code, 1082-1091

random numbers, 1314-1317

XML documentation files, 226

generators, sources, 990-992

GenericParameterPosition property, 1056

generics, 60-61

access, 336-337

anonymous types, 739

APIs, 699

CLS, 727-729

co- and contravariance, 786

formatting1562

conditional operators, 280

constraints, 716-732

contravariance, 746-749, 893

covariance, 705, 746-749, 893

creating, 699-703

data structures, 720

delegates, mapping, 1133

LINQ, 740-741

methods, 502, 521, 732-739

.NET, 23

overview of, 697-700

performance, 699

System.Object, 699

types, 304-306, 320-322, 483

applying, 708-709

boxing, 710-712

checking, 767

collection, 697-699, 762-775

declaring, 703-708

delegates, 802

garbage collection, 714

instantiation, 700

methods, 697

modifiers, 705-708

performance, 709-714

templates, 705

typeof, 320

get accessors, 573, 649

GetAlternativeDefault() method, 283

GetAssembly, 1273

GetCallingAssembly, 1273

GetDefault() methods, 283

GetDefaultValue method, 283

GetEntryAssembly, 1273

GetEnumerator method, 390, 392

GetExecuteAssembly, 1273

GetExtensions method, 1065

How can we make this index more useful? Email us at indexes@samspublishing.com

GetHandler method, 851

GetHashCode method, 619, 757

GetLastError function, 1168

GetLowerBound method, 1305

GetPrint method, 793

getters, 348

GetType method, 672, 1050

GetUpperBound method, 1305

Global Assembly Caches. See GACs

global queues, 1529

globally unique identifiers. See GUIDs

Golde, Peter, 57

goto statements, 378, 380, 402-405, 1168

GotoExpression statement, 1101

grammar, contextual, 925

graphical user interfaces. See GUIs

green bits, 101

group by clause, 942-949

GroupBy method, aggregation, 1016

GroupBy operator, 1003

grouping, 942-949

continuation after, 958

foreach loops, 944

methods, 518-519, 787-788

objects, 960

operators, 1003-1008

partitioning, 942

GroupJoin operator, 1006

growth, memory, 1337

GUIDs (globally unique identifiers) values,
1325-1327

GUIs (graphical user interfaces), 6, 176

countdown, 882-888

.NET tools, 109

Gunnerson, Eric, 57

Gyro, 60, 702-703

GZipStream object, 1423

GZipStream object 1563

H
HAL (Hardware Abstraction Layer), 1377

handle.exe, 433-436

handlers

declaring, 427

events, configuring, 1401

_handlers dictionary, 850

handling

events, 834, 852-861

exceptions, 11, 46-47, 409-437,
1172-1188. See also exceptions

filters, 431-432

foreach loops, 987

statements, 352

hard casts, 308-310

Hardware Abstraction Layer. See HAL

hash tables, 755-758

HashSet<T>, 772-774

Haskell, 90, 780, 921-922

Haskell’s call-by-need semantics, 281

headers

methods, 502

PE/COFF, 34

heaps, 44, 326, 580, 1342

allocation, 792

LOH, 478

memory allocation, 475

.NET, 507

stacks, comparing, 470-478, 584

Hejlsberg, Anders, 57

Hello World application, 110

Hello.cs file, 110

help, Manage Help Settings utility, 144

Help Library (Visual Studio 2010), 120

HelpLink property, 1191

hexidecimal display for variables, 271

hiding base class members, 666-669

hierarchies

classes, 864

GAC, 36

nested namespaces, 1217

polymorphism, 655

result types, 281

types, 199, 309

highlighting syntax, 179-180

history, 5-9

of COM interop, 1137

debugging, 1184

of functional programming, 778-779

of OOP, 643-647

holes, 705

homoiconicity, 73, 1038-1041

horizontal partitioning, 936

hosting

CLR, 39

IronPython in C#, 1121-1123

hot paths of code, 1378

HRESULT, 264-265, 410, 1169

HResult property, 1191

Huginin, Jim, 76

Hungarian notation, 209, 883

Hyper-V, 1463

Hypotenuse function, 346

I
IAsyncResult-pattern, 815

ICalculation interface, 1060

ICollection interface, 766

IComparable<T> interface, 771

IComparer interface, 87

IComparer<T> interface, 747

icons, 1103

HAL (Hardware Abstraction Layer)1564

identifiers

naming, 358

ranges, 925, 957

transparent, 962-964

identity

key selector function, 936

projection, 927-928

IDEs (integrated development environments), 7,
116, 121

IDisposable interface, 440, 595-601, 663, 686

IDisposable types, implementation, 443-447

IDs, threads, 1449

IEnumerable interfaces, 387, 390, 393

IEnumerable<T> interfaces, 69, 87, 335, 390,
525, 693, 968-970, 1293

generic types, 705

iterators, 979-981

IEnumerable<T> types, 932

IEnumerator<T> interfaces, 968-970

IEnumerator<T> types, 388

IEqualityComparer<T> interfaces, 622-623

IEquatable<T> types, 770

IExtensionProvider implementation, 1066

if statements, 197, 311, 356, 358-363, 503

IFormattable interface, 1346

IIS (Internet Information Services), 39

IL (intermediate language) code, 24, 27-29, 72,
1233

assemblers, 291

COM interop, 1151

constants, 555

constructed generic types, 708

direct method invocation, 340

disassembler tool (ildasm.exe), 25

dumping, 1262-1264

evaluation stacks, 251-254

exception handling, 427

floating-point constants, 194

How can we make this index more useful? Email us at indexes@samspublishing.com

generic constraints, 721

if statements, 361

indexers, accessing, 349

JIT compilation, 39-41

lambda expressions, 1039

LCG, 93

lock statements, 458

OOP, 645

.s suffix, 363

stacks, 471

try statements, 1177

types, defining, 1229

virtual dispatch, 678

ILASM tool, 26

ILDASM, 214

custom attributes, 1079

generic types, 704

nullable value types, 243

ildasm.exe, 121

IList<T> interface, 687

Image type dependency, 365

images

accessibility in, 670

file execution options, 1374

NGEN, 42-43

types in, 656-657

Immediate window, 137

immutability, 95, 486, 626

imperative languages, 1504-1507

imperative-style programming, 808

Implement Interface feature, 1208

implementation

abstract members, 685

auto-implemented properties, 572-573,
873-875

constructors on structs, 583

implementation 1565

equality operators, 615-626

Fibonacci, 812

finalizers, 594

GetHashCode method, 619

IDisposable types, 443-447

IExtensionProvider, 1066

indexers, 577-578

interfaces, 690-694

monads, 999

types, 464

virtual members, overriding, 673

implicit conversions, 299-317, 520, 628, 632

implicit interface implementation, 691

implicitly typed local variables, 215-220,
768-769

Import element, 133

importing

namespaces, 130, 386, 528, 1223-1232

Office PIAs, 1155

in keyword, 747

inappropriate use of IDisposable, 446-447

Inc command, 648

Increment method, 1493

increment operators, 294-297, 355, 610-611

indexers, 22, 545, 574-578

access, 349

ArrayList, 754

defining, 575-576

element access, 348

extensions, 530

hash tables, 758

implementation, 577-578

manual array indexing, 295

reflection, 1072-1073

types, 304

IndexOutOfRangeException, 412, 1195

inferences

grouping, 943

range variables, 923

types, 66, 734, 737

let clauses, 962

local variables, 357

infix ?? operator, 283

infoof operator, 1073

inheritance, 14

blocking, 665-666

for classes, 657-669

constructors, 658

cross-language, 31

members, 660

OOP, 648-653

single, 656

structs, 664

initializers

anonymous types, 930-933

arrays, 231-233

collections, 333-335, 701-702, 766,
770-771

constructors, 585-586

expressions, 67-68

objects, 67, 328-332

initializing

fields, 549-553

zeros, 585

injection attacks, 906

inline caches, polymorphism, 1136

in-memory, 902-903, 909-911, 952

InnerException property, 1191

inner exceptions, 437

InnerScope method, 210

INotifyProperty interface case study, 871-882

input/output. See I/O

input validation, 412-415

implementation1566

inspecting

assemblies, 112-116

GACs, 1249-1251

strong-named assemblies, 1247

transparent identifiers, 962-964

installers

GAC assemblies, 1251

.NET, running, 106

installing

assemblies, 36, 1249-1253

.NET Framework, 99-109

Visual Studio 2010, 119-120

instances

constructors, 579-580

delegates, 343-344, 787-797

objects, creating, 1279-1281

references, accessing static members, 549

reflection information, retrieving, 319

types, 182-183, 490-496

instantiation

Excel application objects, 1156

generic types, 700

IntelliSense, delegates, 787

objects, 1096-1097

references, 327

types, 1057-1058

instrumentation, 1363, 1378-1386

InsufficientMemoryException, 1200

int operands, 607

Int32

operands, 252

values, 711

integers

arithmetic operators, 255-256

BigInteger type, 1310-1312

nullable, 242

How can we make this index more useful? Email us at indexes@samspublishing.com

integral

literals, 187

numbers, 466

types, 186-190

value conversions, 563

integral bitwise logical operators, 273-274

integrated development environments. See IDEs

integration

LINQ, 901. See also LINQ

operating systems, 100

Windows integrated authentication (-E), 913

WPF, 123

intellectual property. See IP

IntelliSense, 16, 329

auto-completion, 738

code, 129

delegate instantiation, 787

dynamic typing, 1112

extension methods, 525

generic constraints, 719

initializer lists, 332

in-memory data, 910

member access, 336

methods, defining overloads, 517

named parameters, 515

optional parameters, 514

parameters, naming, 706

polymorphism, 676

static typing, 337

IntelliTrace, 1183-1184

interacting with environments, 1328-1333

interactive mode, NGEN, 42

interactive programming, 814

interface keyword, 686

interfaces

APIs, 6, 60, 415

BCL, 871

interfaces 1567

COM, 10, 1164, 1216

constraints, 717-723

contracts, 689, 1285-1287

countdown, 835, 882-888

CUIs, 176

customizing, 123

defining, 686-688, 1060-1061

design, 688-690

ExtensiCalc, 1062-1064

generic constraints, 722

GUIs, 6, 176

ICalculation, 1060

ICollection, 766

IComparable<T>, 771

IComparer, 87

IComparer<T>, 747

IDisposable, 440, 595-601, 663, 686

IEnumerable, 387, 390, 393

IEnumerable<T>, 69, 87, 335, 390, 525,
693, 968-970, 1293

generic types, 705

iterators, 979-981

IEnumerator<T>, 968-970

IEqualityComparer<T>, 622-623

IFormattable, 1346

IList<T>, 687

implementing, 690-694

IObservable<T>, 890, 894-897

IObserver<T>, 894-897

IQueryable<T>, 69

multiple inheritance, 663-665

.NET, 20

Object Browser, 139

OOP, 656, 686-694

Runnable, 1437

single-method, 688, 1436

versions, 688

Visual Studio 2010, 123

zero-method, 688

interleaving threads, 1474

intermediate language. See IL code

internal representation

arrays, 228

floating-point types, 191-192

nullable value types, 242

internals

DLR, 1127-1150

GAC, 36

LINQ, 967

visibility, 1266

InternalsVisibleTo attribute, 1267-1268

Internet Information Services. See IIS

interning strings, 626

interoperability, 10, 49-51, 1435

code, 11, 12

COM, 83-86, 1150-1165

cross-language, 1127, 1137

dynamic object, 1145

with Excel and Word, 1154-1165

IntPtr, 1341-1342

native code, 1240

interrupting blocked threads, 1446

Intersect operator, 1018

into clauses, 955-961

IntPtr, 1341-1342

InvalidCastException, 304, 315, 630, 699, 755,
1195

InvalidOperationException, 629, 886, 1207

Invoke method, 342, 784, 816, 886

invoking

asynchronous delegates, 1420

asynchronous invocation, 811-824

delegates, 341-344, 799-803, 834, 1098

expressions, 339-347

members, 1051, 1097

interfaces1568

methods, 339-340

parallelism, 1525

I/O (input/output), 1391

directories, 1392-1399

file systems, monitoring, 1400-1401

files, 1392-1399

memory-mapped files, 1426-1429

overview of capabilities, 1429

pipes, 1424

readers, 1401-1408

streams, 1407-1423

writers, 1401-1408

IObservable<T> interface, 890, 894-897

IObserver<T> interface, 894-897

IP (intellectual property), 29

IQueryable<T> interface, 69, 1043-1046

IronPython, 15, 1145

dynamic keyword, 1119-1127

IronRuby, 15, 77, 1127

is keyword, 631

is operator, 306-307, 311

IsAbstract property, 1055

IsArray property, 1056

IsClass property, 1056

IsCOMObject property, 1056

IsCompleted property, 822

IsDefined method, 563

IsEnum property, 1056

IsEvenAndPrint method, 953

IsGenericType property, 1056

IsGenericTypeDefintion property, 1056

isinst instruction, 307

IsInterface property, 1055-1056

IsNested property, 1055

IsNonPublic property, 1055

isolation, 1060

application domains, 39

How can we make this index more useful? Email us at indexes@samspublishing.com

of state, 97

storage, 1429

IsPointer property, 1056

IsPrimitive property, 1056

IsPublic property, 1055

IsSealed property, 1055

IsValidOperator method, 806

IsValueType property, 1056

IsVisibile property, 1055

ItemGroups, 133

iteration

statements, 352, 376-392

variables, read-only treatment of, 391

iterators, 62-63, 392-400

anonymous, 983

compiling, 984-989

IEnumerable<T> interface, 979-981

LINQ, 974-981

queries, 399

while loops, 976

J
J++, 8

jagged arrays, 233-235

Java, 8, 478

assemblies, 1261

namespaces, 1221

Java Virtual Machines. See JVMs

JavaScript, 201

JIT (Just-in-Time), 708

assemblies, 1239

compilation, 11, 39-41, 254

compiling, 1263

dumping, 1262-1264

OOP, 645

JIT (Just-in-Time) 1569

join clause, 949-954

Join operator, 1007

joining, 1359

operators, 1003-1008

threads, 1443

jumps

instructions, 33

labels, 366-368

junctions, directories, 1395

Just My Code, 424

Just-in-Time. See JIT

JVMs (Java Virtual Machines), 8, 76

K
Kennedy, Andrew, 60, 703

kernels, threads, 1463

/keyfile flags, 1246

keys

compound, 945-949

computed, 945

public

assemblies, 1247

tokens, 1244

simple key selectors, 945

sources, joining, 952

strong-name, 1245-1247

Keys property, 384

keywords, 1305

abstract, 656

add, overflow, 262

as, 631

ascending, 936

base, 656, 659

checked, 628

const, 213, 358

contextual, 59, 178-179

default, 714

delegate, 341, 797

dynamic, 80-81, 1109-1127. See also
dynamic keywords

extern, 537

finally, 389

foreach, 755, 915

in, 747

interface, 686

is, 631

languages, 177-180

let, 962

lock, 1474-1477

new, 182, 493, 647, 656, 668

Of, 703

operator, 604, 633

orderby, 935-941

override, 594, 656, 673

public, 647

ref, 508

return, 346, 502

reuse of, 732

sealed, 656, 665, 676

select, 330

Shared, 490

static, 493, 586, 647

this, 210, 524, 546, 660, 732

try, 389

unchecked, 264-265

using, 528

value, 59, 570

var, 66, 77, 324, 385

virtual, 655, 672

where, 59, 397, 739

yield, 63, 810

yield return, 974

join clause1570

Kleene closer operators, 243

Knuth, Donald, 402

L
LabelExpression statement, 1101

labels, jump, 366-368

lambda expressions, 22, 70-71, 346-347, 1098

anonymous function syntax, 963

delegates, 795-797, 825

IL code, 1039

operators, 267

recursive, 859

threads, 1438

Language Integrated Query. See LINQ

language-shaping forces, 91-92

languages, 171, 220-175, 1292

arrays, 228-236

assembler, 778

built-in types, 185-209

classes, 184-185

co-evolution, 878

comments, 220-228

cross-language interoperability, 1127, 1137

declarative, 90, 1504-1507

defaults, 652

dependencies, 1297-1298

dynamic, 76-89. See also dynamic lan-
guages

dynamic typing, 201-202

entry points, 171-177

features, 59-63

foreign, 375

Haskell, 780

identity projection, 928

imperative, 1504-1507

How can we make this index more useful? Email us at indexes@samspublishing.com

instances, 182-183

keywords, 177-180

local variables, 209-220

mixing, 30-32

multilanguage aspect of .NET, 14-15

null references, 237-240

nullable value types, 240-246

objects, 182-183, 198-201

relationships between, 14

specification, 290

types, 180-185

variables, 183-184

whitespace sensitivity, 361

Large Object Heap. See LOH

Last operator, 995

last-in, first-out (LIFO), 759

LastOrDefault operator, 995

late-bound

methods, 1071

property access, 1073

lazy evaluation, 915, 956

LINQ, 981-984

Lazy<T> class, 1343-1344

Lazy<T>.Value property, 571

LCG (Lightweight Code Generation), 93,
1082-1084

ldc, 253

ldnull instruction, 788

ldstr instruction, 267

leaf nodes, 1095

leaks, tracing, 855-860

leap years, 1318

left folds, 1010

left outer joins, 1008

left-to-right evaluation, 353

let clauses, 918, 961-964

lexical scoping, 210. See also scope

lexical scoping 1571

libraries, 1292

Class Library, 124

COM, 50

Help Library (Visual Studio 2010), 120

managed code development, 56

runtime, 93

statements, 353

TPL, 96, 1503-1508

versioning, 1299

life cycles, threads, 1441-1446

lifetime issues, avoiding, 1420-1421

LIFO (last-in, first-out), 759

lifted operators, 273, 606-609

Lightning, 9. See also .NET

Lightweight Code Generation. See LCG

Lightweight Function, 1115, 1142

limitations

of 64-bit addressing, 1494

of delegates, 839-840

LinkedList<T> type, 764

LINQ (Language Integrated Query), 22, 27,
64-66, 102

arrays, 1306

collection types, generics, 763-775

Concat method, 737

dictionaries, 897-900

examples of, 909-920

expression trees, 797

extension methods, 522, 530, 1231

foreach loops, 974

generics, 740-741

in-memory data, 902-903, 909-911

internals, 967

iterators, 396, 974-981

lazy evaluation, 981-984

mapping, 912

MinLINQ, 1022

object initializer expressions, 330, 334

objects, 967-990

delegates used in, 807-811

extension methods, 970-974

operators, 973

partial methods, 532

PLINQ. See PLINQ

providers, 72

queries

code translation, 541

expression syntax, 920-964

relational databases, 903-907, 911-917

Reverse operator, 525

to SQL, 159-161

standard query operators, 990-1024

translation, 915

XML, 907-908, 917-920

to XSD, 919

List<int> type, 333

List<T> type, 762

collections, 68

parameters, 304, 320

listing drives, 1392-1393

literals, 1312

characters, 189-190

concatenation, 267

integral, 187

null, 237, 630

runtime conversions, 301

strings, 197

little endians, 1412-1413

live objects, 477

Load method, 918, 1275

loading

assemblies, 35-36, 1255-1261,
1274-1276, 1278

extensions, 1059, 1064-1066

floating-point constants, 194

referenced assemblies, 1257

libraries1572

references, 1294

runtime, versions, 34

local queues, 1529

local storage, threads, 1458-1459

local variables, 209-220

closures, 1457

implicitly typed, 768-769

type inferences, 66, 259, 357

localizing applications, 1350-1352

Locals pane, 136

locating

assemblies, 1259-1261

streams, 1422-1423

Location property, 467

lock keyword, 1474-1477

locks, 352, 1436-1494

advanced, 1483-1486

interlocked helpers, 1492-1494

objects, 447-462

statements, 452-456

_ _ lockTaken flag, 458

logging

events, 1379-1381

SELECT statements, 915

stack traces, 1375-1376

logic programming, 90

logical operators, 273-278, 611-615

Log Viewers (Fusion), 1259

LOH (Large Object Heap), 46, 478

LongCount operator, 1012

LoopExpression statement, 1101

loops

concurrency, 400-401

for, parallelism, 1529-1535

foreach, 295, 483, 926, 935, 1292, 1505

exception handling, 987

ForAll method, 1034-1035

How can we make this index more useful? Email us at indexes@samspublishing.com

grouping, 944

LINQ, 974

parallelism, 1535-1536

goto statements, 380

messages, blocking, 823

parallel, 401, 1507

REPL, 1121, 1353

while, iterators, 976

wrapping, 823

low-level manipulation, 644

lval-capturing semantics, 792

M
macros

CKHR, 1170

Word, 1151

Main method, 25, 111, 490, 501

disassembling, 114

maintenance

dynamic languages, 78

OOP, 644

manageability frameworks, 1385

Managed Debugging Assistants. See MDAs

Managed Extensibility Framework. See MEF

managing

automatic memory, 43-46

EFS, 1399

heaps, 44

managed code, 1434-1436

COM (Component Object Model),
1152-1154

development, 56-58

executing, 24-32

wrappers, 595

managed threads, 1446-1451

managing 1573

memory, 292

projects, 117

resource, 352, 409

types in namespaces, 1213-1219

mandatory lists of operators, 610

manifests, assemblies, 26-27

manipulating code, 93

manual

array indexing, 295

parallelization, 65

reset events, 1487

resolution, 521

ManualResetEvent, 1488

mappers, databases, 157-163

mapping

classes, 913

generic delegates, 1133

LINQ, 912

memory-mapped files, 1426-1429

O/X, 908

tables, 913

marking

files, 1269

objects, 477

marshal-by-reference realization, 1282

MarshalByRefObject calculator add-in,
1284-1285

Math class, 1308

Math.Abs method, 519

matrix multiplication, 1530

Max methods, 1114

Max operator, 1015

MaxBy operator, 1016

.maxstack directive, 115

MDAs (Managed Debugging Assistants), 1181

Measure method, 712

measuring

performance, 712-714, 1376-1377

PLINQ, 1031

MEF (Managed Extensibility Framework), 100,
1059, 1067-1070, 1289, 1292

members

accessing, 335-338, 486, 549, 1097

adding, 1051

base class, hiding, 666-669

discovery, 1051

encapsulation, 647

extensions, 531-532

inheritance, 660

invoking, 1051, 1097

.NET, 22

types, 486-499

values, assigning, 559-560

virtual

declaring, 675-676

overriding, 673-675

polymorphism, 670-682

visibility, 488-489

memory

allocation, 470, 475

automatic memory management, 43-46

CLR, allocating, 43

deallocation, 476

floating-point numbers, 193

foreach statements, 387

growth and shrinkage, 1337

heaps, 326, 583

in-memory data, 902-903, 909-911

join clauses, 951

leaks, 857

management, 292

pressure, 1338

reducing, 37

managing1574

STM, 95, 461

streams, 1409-1410

string concatenation, 268

Memory window, 137

memory-mapped files, 1426-1429

Message property, 1191

messages

loops, blocking, 823

pipes, 1426

pumps, 819

metadata, 29-30, 33, 115, 464, 1217

assemblies, 1238

DynamicMetaObject, 1144-1147

embedding, 33

events, 844. See also events

operators, 626

properties, 573

reflection, 1048-1053

strong-named assemblies, 1248

TypeForwardedToAttribute, 1271

Metadata Exchange, 689

meta-programming, 73, 91, 93

Method property, 1107

MethodAccessException, 1266

methods, 18, 336, 501

Accept, 1094

Activator.CreateInstance<T>, 728

Add, 28, 334, 340, 516, 701, 780, 1266

anonymous, 344-346

Append, 1404

AsParallel, 1028-1031

Bar, 480, 508, 645, 1260

BeginInvoke, 816

breakOuter, 379

Calculate, 22, 1039

calculateFib, 823

How can we make this index more useful? Email us at indexes@samspublishing.com

calls, 340, 353-354

callvirt, 340

chaining, 1042

ChangeIt, 472

Close, 434

code analysis, 543-544

Combine, 826, 845

Compare, 771, 1493

CompareTo, 719

Compile, 1087-1091

Concat, 737

Console.WriteLine, 291

constructors, 579. See also constructors

ContinueWith, 1520

CopyTo, 1268, 1423

Create, 1404

CreateDomain, 1278

CreateInstance, 724

CreateInstance<T>, 728

CreateJobObject, 596

Debug.Assert, 1367

Debug.Fail, 1373

Decrement, 1493

DefineOperation, 342

defining, 501-502

Dispose, 440, 599, 686, 1176

Distance, 665

DownloadStringAsync, 1522

EndInvoke, 816

Ensures, 1369

_enum.MoveNext(), 989

enums, 562. See also enums

Equals, 273, 547, 616, 756

overriding, 617-619

properties, 619

on System.Object, 622-624

methods 1575

error codes, 410

Evaluate, 614

Exchange, 1493

Ext, 342

extension, 336

extensions, 68-69, 522-532, 1207

applying, 527-528

compilers, 529-532

LINQ objects, 970-974

namespaces, 1231-1232

extern, 536-538

extracting, 541

factory, 183, 365

Finalize, 594

Foo, 508

ForAll, 1034-1035

FromAsync factory, 1510

generics, 502, 697, 732-739

GetAlternativeDefault(), 283

GetDefault(), 283

GetDefaultValue, 283

GetEnumerator, 390, 392

GetExtensions, 1065

GetHandler, 851

GetHashCode, 619

GetLowerBound, 1305

GetPrint, 793

GetType, 672, 1050

GetUpperBound, 1305

GroupBy, 1016

groups, 518-519, 787-788

headers, 502

IL code, 28

Increment, 1493

InnerScope, 210

invocation, 339-340

Invoke, 342, 784, 816, 886

IsDefined, 563

IsEvenAndPrint, 953

IsValidOperator, 806

Load, 918, 1275

Main, 25, 111, 114, 490, 501

Math.Abs, 519

Max, 1114

Measure, 712

MoveNext, 920, 968

naming, 517

Object.ReferenceEquals, 273

On*, 870

OnCompleted, 893

OnError, 893

OpenRead, 1411

op_Explicit, 634

op_Implicit, 636

OrderBy, 940

overloading, 512, 516-522

parameters, 504-516

Parse, 918

partial, 499, 532-536

Partitioner.Create factory, 1536

Peek, 759

PLINQ, 1033

Pop, 759

precedence, 526

PrintFile, 424

PrintGCStats, 713

PrintMessage, 1441

Push, 759

query operators, 1024-1025

QueueUserWorkItem, 1465-1467

Read, 1404

ReadAllLines, 424, 1402

ReadByte, 1410

ReadLine, 413

Reduce, 1094

methods1576

ReduceAndCheck, 1094

ReduceExtensions, 1094

refactoring, 537-543

ReferenceEquals, 622-624

reflection, 1070-1071

Remove, 845

Reset, 322, 1209

results, 353

Resume, 1444

return type, 502-504

Reverse, 68, 522

SayHello, 1083

Select, 1042

signatures, 172-173, 540

single-method interfaces, 1436

Sort, 1367

Start, 837

StartWith, 985

static, 69

strings, 1356-1361

SuppressFinalize, 601

Suspend, 1444

ThenBy, 940

ToString, 340, 671, 674, 1094

TryParse, 509, 517, 1186

Update, 331

UserBlackListed, 277

virtual, 1048-1049

VisitChildren, 1094

void-returning, 407

WaitAny, 1491

WaitForExit, 1387

Where, 781, 1042

where, 397

Write, 129, 1371, 1404

WriteLine, 111, 517, 678, 1371

How can we make this index more useful? Email us at indexes@samspublishing.com

metrics, calculating, 538

MFCs (Microsoft Foundation Classes), 6

Microsoft Foundation Classes. See MFCs

Microsoft Research, 60

Min operator, 1015

MinBy operator, 1016

MinLINQ, 1022

mixing languages, 30-32

model-driven software, 93

models

objects, 1085

pipeline, 964

modes

NGEN, 42

Release, 214

modifiers

generic types, 705-708

variance, 750

modifying target platforms, 1240

Module property, 1055

modules, assemblies, 1234-1236

monads, 999

monitoring

collection count, 594

file systems, 1400-1401

performance counters, 1382-1386

Mono, 12

months, leap years, 1318

Moonlight, 12

Moore, Gordon E., 94

MoveNext method, 920, 968

MSBuild, 112, 132

command line, 135

projects, 1255

mscoree.dll (Component Object Runtime
Execution Engine), 33

mscorlib, 37, 1218-1219, 1296-1298

mscorlib 1577

mscorwks.dll (Component Object Runtime
Workstation), 34

MSDN documentation, 638-641, 1296

MultiCastDelegate, 784, 824

multicasting, 863

multidimensional arrays, 235-236

multihandling, 863

multilanguage

aspect of .NET, 14-15

usability, 1049-1052

multiparadigms, 89-91

multiple files, packaging, 1429

multiple inheritance, 14. See also inheritance

for interfaces, 663-665

multiple language support, 10

multiple modules, 1235

multiple sources, 926

multiple tasks, 1525-984

multithreading, 845, 846

mutable value types, 483-486

mutation, 1357

mutexes, 1477-1480

N
n-ary orderings, 938-940

Name property, 582, 1055

named parameters, 512-516, 566, 762-763,
1078

Namespace property, 1055

namespaces, 1213

aliases, 1226-1227

BCL, 51, 1293

CLR, 1217

COM interfaces, 1216

declaring, 1219-1223

extern aliases, 1227-1230

hierarchies, 1217

importing, 130, 386, 528, 1223-1232

Java, 1221

method extensions, 1230-1232

name clashes within, 1222, 1225-1226

naming conventions, 1221

nested, 1219

System, 110, 1223

System root, 1301-1346

System.Collections, 333

System.Collections.Generic, 61

System.ComponentModel, 871

System.Diagnostics, 1391

System.IO, 275, 418

System.IO.Pipes, 1423

System.Linq, 922

System.Threading, 456, 469

System.Threading.Tasks, 1508

System.Xml, 907

tools, 1216

types, managing, 1213-1219

visibility, 1221

Visual Studio, 1220

WIN32 functions, 1215

naming

aliasing. See aliases

assemblies, 1240-1244

case sensitivity, 172

constructors, 581

conventions

fields, 546

methods, 517

namespaces, 1221

properties, 573

event handlers, 863-866

FxCop, 869

mscorwks.dll (Component Object Runtime Workstation)1578

identifiers, 358

methods, 517

parameters, 331-332, 1162

strong naming, 1244-1249

styles, 209

threads, 1448-1449

type parameters, 706

types, 1225, 1305

variables, 115

NaN (not a number), 256

narrowing conversions, 628

Nathan, Adam, 596

native applications, 1435

native code interoperability, 1240, 1341-1342

native image generation. See NGEN

navigating

assemblies, 1295

code, 116

directories, 1394-1397

paths, 1397-1398

Visual Studio 2010, 120-123

nested namespaces, 1217, 1219

nesting

types, 488

UI controls, 498

.NET, 6

Add Reference dialog box, 1312

applications, 109-116

array type covariance, 742

assemblies, 15-17, 1237. See also assem-
blies

CLI, 12-14

code

compiling, 111-112

running, 112

writing, 110-111

How can we make this index more useful? Email us at indexes@samspublishing.com

delegates, 21-22, 782

events, 840-843

Framework

4.0, 103-106

add-ins, 1287-1289

continuations, 1519

installing, 99-109

source code, 139

type hierarchies, 199

version history, 27

versions, 99-106

GAC locations, 1250

generics, 23

heaps, 507

IAsyncResult-pattern, 815

installers, running, 106

interfaces, 20

members, 22

multilanguage aspect of, 14-15

overview of, 9-12

Reflector, inspecting assemblies, 112-116

remoting, 1283

thread pools, 1436-1467

tools, 109

types, 17-24

new keyword, 182, 493, 647, 656, 668

new operator, 323-335, 590

New Project dialog box, 124-125

newobj instruction, 327, 581

NGEN (native image generation), 42-43, 1233,
1250, 1261-1265

No PIA feature, enabling, 1164

nodes

leaf, 1095

Team Explorer tree, 167

nodes 1579

NodeType

enumeration, 317

property, 1094

nominal equivalence, 785, 803

non-atomic post-increment on fields, 450

nonblocking cells, 95

non-case-sensitive suffixes, 189

nongeneric collection types, 753-762

nonprivate visibility, 546

non-short-circuiting logical operators, 614

nontrivial frameworks, 1270

nontrivial orderings, 937-938

nontrivial projections, 929-930

not a number (NaN), 256

notation

Big O, 754-755

binary, 188

Hungarian, 209, 883

octal, 188

Notepad, 109

Notepad, writing code, 110-112

NotImplementedException, 1208

NotOn* flag, 1521

NotSupportedException, 1185, 1208

null, 272

checks, 622

literals, 630

references, 237-240

null-coalescing operators, 282-285

nullability, 606-609, 1327-1328

nullables

arithmetic operators, 265

Boolean logic, 277

conversions, 628

types, 61-62

value types, 177-246

Nullable<T>, 245

NullReferenceException, 239, 315, 802, 1180,
1194

NullReferenceExceptions, 412

numbers

automatic numbering, 559

BigInteger type, 1310-1312

complex, 1312-1314

Fibonacci, 812

floating-point, 272, 632

integral, 466

prime, computing, 394

random, generating, 1314-1317

numeric conversions, 627-628

O
Object Browser, 139, 1295

Object Linking and Embedding. See OLE

object-oriented programming. See OOP

Object.ReferenceEquals method, 273

object/relational (O/R), 91

object/XML (O/X) mapping, 908

ObjectDisposedException, 1198

objects, 198-201, 299

allocating, 44, 439

AssemblyName, 1275

constructing, 702

COR, 1151

creating, 323-335

deallocation, 444

disposal, 439-441

dynamic keywords, 1113

dynamic typing, 337

DynamicMetaObject, 1144-1147

DynamicObject, 1140-1144

exceptions as, 411

expando, 1143-1144

NodeType1580

finalizers, 593

grouping, 960

initializers, 67, 328-332, 930-933

instances, creating, 1279-1281

instantiation, 1096-1097

LINQ, 967-990

delegates used in, 807-811

extension methods, 970-974

live, 477

locking, 447-462

marking, 477

models, 1085

orientation, 1055

ParallelOptions, 1533

proxy, transparent, 1283

references, 45

reflection, 1054. See also reflection

SafeHandle, 601

strings, 1027

Table<T>, 1042

text, parsing, 1352

types, 182-183, 463, 716. See also types

octal notation, 188

Of keyword, 703

Office. See also applications

automation, 1159

COM interop, 1150-1165

PIAs, importing, 1155

OfType operator, 996

OLE (object linking and embedding), 7, 1137

On* method, 870

on-the-fly construct types, 66

OnCompleted method, 893

OnError method, 893

OnlyOn* flag, 1521

OOP (object-oriented programming), 6, 10, 90,
199, 469, 502, 643, 755

How can we make this index more useful? Email us at indexes@samspublishing.com

abstract classes, 683-685

classes, inheritance for, 657-669

encapsulation, 647-648

history of, 643-647

inheritance, 648-653

interfaces, 686-694

overview of, 643-657

polymorphism, 654-656, 670-682

protected accessibility, 669-670

types in pictures, 656-657

op_Explicit method, 634

op_Implicit method, 636

open types, reflection, 320

OpenRead method, 1411

operands

expressions. See expressions

int, 607

Int32, 252

operating systems

integration, 100

processes, 1277

operations

dynamic late-bound, 1098

on type parameters, 714-716

operator keyword, 604, 633

operators, 247

AND, 274, 276

as, 311-315

+, 260

-, 260

Aggregate, 267, 1009

aggregation, 1008-1017

All, 1017

Any, 1017

arithmetic, 253, 255-265. See also
arithmetic operators

arity of, 248

operators 1581

AsEnumerable, 1022-1024

AsOrdered, 1032-1033

assignment, 285-297

associativity, 248-250

Average, 1013

binary, 607

Boolean logical, 275-277

Cast, 997

Cast<T>, 968

comparison, 271

compound assignment, 611

Concat, 1019

conditional, 278-281, 611-615

Contains, 1017

Count, 1012

decrement, 294-297, 355, 610-611

defining, 604-605

delete, 591

dispatching, 623

Distinct, 993

enumerations, 274-275

equality, 272-273, 607, 615-626

Except, 1019

expressions. See expressions

false, 614

finding, 605-606

First, 994

FirstOrDefault, 994

GroupBy, 1003

grouping, 1003-1008

GroupJoin, 1006

increment, 294-297, 355, 610-611

infix ??, 283

infoof, 1073

integral bitwise logical, 273-274

Intersect, 1018

is, 306-307, 311

Join, 1007

joining, 1003-1008

Kleene closer, 243

Last, 995

LastOrDefault, 995

lifted, 273, 606-609

LINQ, 973

logical, 273-278, 611-615

LongCount, 1012

Max, 1015

MaxBy, 1016

Min, 1015

MinBy, 1016

new, 323-335, 590

non-short-circuiting logical, 614

null-coalescing, 282-285

OfType, 996

optimization, 252-254

OR, 274, 276

OrDefault, 996

OrderBy, 1002

OrderByDescending, 1002

ordering, 1002-1003

overflow checking, 260-265

overloading, 603-627, 609-616, 722, 1138

postfix, 294-297

precedence, 248-250

predicates, 1017-1018

prefix, 294-297

projection, 997-1002

queries, 807

relational, 271-273

result types, 281-282

Reverse, 525, 1020

Select, 997

operators1582

SelectMany, 998

SequenceEqual, 1018

sequences, 1018-1022

set theoretical, 1018-1020

shift, 270-271

Single, 995

SingleOrDefault, 995

Skip, 993

SkipWhile, 993

standard query, 990-1024

subexpressions, 250

Sum, 1013

Take, 994

TakeWhile, 994

ThenBy, 1003

ThenByDescending, 1003

ToArray, 1021

ToList, 1021

translating, 626-627

true, 614

typeof, 317-320

unary, 260, 607

Union, 1019

Where, 992-993

XOR, 274, 621, 757

Zip, 562, 1000

_ops field, 805

optimizing

binding operations, 1110

code quality, 1364-1378

conditional operators, 279

dynamic calls, 1051

join clauses, 953

operators, 252-254

PLINQ, 1028-1031

queries, 1020

How can we make this index more useful? Email us at indexes@samspublishing.com

optional parameters, 512-516

options

continuations, 1520-1522

Freeze, 1462

ParallelOptions object, 1533

Thaw, 1462

Visual Studio 2010 installation, 119

O/R (object/relational), 91

OR operators, 274, 276

OrDefault operators, 996

orderby clauses, translation, 941

orderby keyword, 935-941

OrderBy method, 940

OrderBy operator, 1002

OrderByDescending operator, 936, 1002

OrderedList<T> type, 718

ordering, 250. See also precedence

from clause, 924

customizing, 941

evaluation, 254

exception handlers, 428, 1173

generic constraints, 721-723

lock acquisitions, 460

n-ary, 938-940

nontrivial, 937-938

operators, 1002-1003

orderby keyword, 935-941

secondary, 938-940

syntax, 738

Organize Usings feature, 1224

orientation, objects, 1055

out modifier, 705

out-of-order delivery of asynchronous responses,
898

outer joins, left, 1008

OutOfMemoryException, 412, 415, 418, 1188

OutOfMemoryException 1583

output

debugging, 1371-1373

parameters, 508-510

Output window, 1180

overflow

checking, 260-265

stacks, 609, 1203

OverflowException, 263, 628, 1194

overloading

constructors, 329

deferred resolution, 1114-1117

for loops, 1529, 1531-1533

methods, 512, 516-522, 526-527

operators, 603-627, 722, 1138

==, 624-626

identifying operators that can be
overloaded, 609-616

query expression syntax, 1025-1027

task constructors, 1510

override keyword, 594, 656, 673

overriding

Equals method, 617-619

v-tables, 681

virtual members, 673-675

O/X (object/XML) mapping, 908

P
packaging multiple files, 1429

padding, 1358

pairwise declaration, 615

panels, docking, 123

Parallel LINQ. See PLINQ

parallel stacks, 452

parallelism, 65, 1501

algorithms, 96

data, 1529-1536

effects of thread pools on, 1468

execution, 1434

for loops, 1529-1535

foreach loops, 1535-1536

invoking, 1525

stacks, 452

threads, 1502-1503

TPL, 1503-1508

parallelization, 90, 95, 401

ParallelLoopState class, 1533

ParallelOptions object, 1533

ParallelQuery<T>, 1032

parameterization, 916

parameters

arrays, 510-512

char, 326

COM interop, 1160

dot (.), 1379

doWork, 791

dynamic, 1128

methods, 504-516

named, 512-516, 566, 762-763, 1078

naming, 331-332, 1162

output, 508-510

references, 508

renaming, 800

state, 1417-1420

threads, 1438

types, 714-716

generics, 699

naming, 706

values, 505-508

Parse method, 918

parsing

strings, 1301-1304

text to objects, 1352

partial methods, 499, 532-536

output1584

partial types, 496-499

Partitioner.Create factory methods, 1536

partitioners, 1536

partitioning

grouping, 942

horizontal, 936

vertical, 933. See also projection

Pascal, 15, 546

passing

arguments, 506, 507

reference-typed objects, 506

values, 473

paths

code, 503

navigating, 1397-1398

return statements, 407

PathTooLongException, 1185

patterns

events, 861-871

queries, 941, 949, 954, 1024-1027

PDB (Program Database) files, 134, 214

PE/COFF (Portable Executable, Common Object
File Format), 33, 1236, 1413, 1426

Peek method, 759

performance

analysis, 1378

Code Analysis, 313

code quality, 1364-1378

counters, 1337

dynamic languages, 78

generics, 699, 709-714

late-bound calls, 1071

measurements, 1376-1377

measuring, 712-714

monitoring, 1382-1386

NGEN, 1264-1265

regular expressions, 1355

threads, 1467-1469

How can we make this index more useful? Email us at indexes@samspublishing.com

period (.), 335

persistence, sequences, 1020-1022

Pex (Program Exploration), 166

philosophy of generations, 1334-1337

Pi

approximating, 1316

value of, 556

PIAs (primary interop assemblies), 50, 86

embedding, 1163-1165

Office, importing, 1155

pictures

accessibility in, 670

types in, 656-657

pinning, 327

P/Invoke, 49, 269, 536, 1397

signatures, 596

pipeline models, 964

pipes, 1423-1426

PipeStream class, 1424

placeholders, 705

platform version history, .NET, 100

platforms, configuring targets, 1239

PLINQ (Parallel LINQ), 96, 1027-1035

measurements, 1031

methods, 1033

optimization, 1028-1031

overview of, 1031-1033

Point type, 467

Point value, 583

pointers

C-style function, 783

functions, 344

policies, CAS, 1275

polling, 822

polymorphism, 663, 702-703

inline caches, 1136

OOP, 654-656, 670-682

polymorphism 1585

pools, threads, 1463-1471, 1528

Pop method, 759

populating .NET Reflector assembly lists, 113

portability of NGEN, 1263

Portable Executable, Common Object File
Format. See PE/COFF

ports, serial communication, 1429

post-build event configuration, 1067

postfix operators, 294-297

#pragma directive, 405

precedence

methods, 526

operators, 248-250

predicates, operators, 1017-1018

preemptive scheduling, 1445

prefixes

naming conventions, 546

operators, 294-297

preprocessing directives, 221-222

pressure, memory, 1338

primary interop assemblies. See PIAs

prime numbers, 63

primitives

immutability, 486

synchronization, 65, 1471-1498, 1504

types, 19

value types, 1301-1305

PrintException, 1182

PrintFile method, 424

PrintFile.exe, 433

PrintGCStats method, 713

printing, REPL, 1121, 1353

PrintMessage method, 1441

private access modifier, 489

private fields, 546. See also fields

procedural programming, 90

processes, 38

controlling, 1386-1389

information queries, 1386

operating systems, 1277

SIPs, 38

starting, 1387-1389

processing power, estimating, 1453

profiles, Client Profile (.NET 3.5), 106

Program Database files. See PDB files

Program Exploration. See Pex

Program.Main, 1142

programming. See also code

asynchronous, 95

COM, 50

declarative, 92

dynamic, 1109. See also dynamic
programming

functional, 90, 777-782

with functions, 779-782

GUIs, 6

imperative-style, 808

interactive, 814

logic, 90

meta-programming, 73, 91, 93

OOP, 6, 90, 199, 469, 502. See also OOP

procedural, 90

reactive, 814

reactive applications, 888-900

Show External Code, 1115

side-effect-free, 95

UI, 871-882

Win32 in C, 6

programs

causes of termination, 413

exiting, 1333

ProgressChanged event handler, 1496

Project tag, 132

pools, threads1586

projection

continuation after, 955

functions, 736

identity, 927-928

nontrivial, 929-930

operators, 997-1002

Select clause, 927-933

projects, 1254

default project references, 1293-1294

folders, 496

management, 117

MSBuild, 1255

properties, 127

Projects tab, 1255

propagating exceptions, 49, 1172

properties, 22, 336, 545, 569-574

accessors, 571

assemblies, 1237-1240

auto-implemented, 74-75, 572-573,
873-875

Body, 73

Content, 305

Count, 669

Count get-only, 648

Current, 974

declaring, 569-572

Equals method, 619

events, symmetry between, 427

ExitCode, 1388

expression trees, 1041

extensions, 530

fields, 332

indexers, 578. See also indexers

IsCompleted, 822

Keys, 384

How can we make this index more useful? Email us at indexes@samspublishing.com

late-bound property access, 1073

Location, 467

Method, 1107

Name, 582

projects, 127

reflection, 1072-1073

Service, 493

System.DateTime, 319

trivial, 74

types, 1055-1056

Visible, 331

PropertyGroups, 132

protected accessibility, 669-670

protecting. See also security

blocks, 1178

IP (intellectual property), 29

prototyping, 110

providers, LINQ, 72

proxy objects, transparent, 1283

public constants, 555. See also constants

public keys

assemblies, 1247

tokens, 1244

public keywords, 647

pumps, messages, 819

Push method, 759

Python, 76, 201, 337

types, 1123-1127

Q
quadratic effects, 1019

quality, code, 1364-1378

quantification, universal, 702-703

quantification, universal 1587

queries

events, 891

expressions, 330, 796

chaining, 956

into clauses, 955-961

overloading syntax, 1025-1027

syntax, 920-964, 1001

translation, 1036-1038

filters, 807

iterators, 399

LINQ, 65, 901. See also LINQ

operators, 807

optimization, 1020

patterns, 941, 949, 954, 1024-1027

process information, 1386

standard query operators, 990-1024

statements, checking, 905

Queue<T>, 774

queues, 758-759, 1529

QueueUserWorkItem method, 1465-1467

quotations, 73, 1098

R
RAD (Rapid Application Development), 7

raising events, 842, 845-847. See also events

random numbers, generating, 1314-1317

Random object, 1315

Range source generator, 991

ranges

identifiers, 925, 957

variables, inferences, 923

Rapid Application Development. See RAD

reachable objects, finding, 45

reactive applications, 835-843, 888-900

Reactive Extensions (Rx), 890, 1469

reactive programming, 814

Read method, 1404

Read mode, 1483

read-eval-print-loop. See REPLs

read-only fields, 547, 553-555. See also fields

read-only treatment of iteration variables, 391

ReadAllLines method, 424, 1402

ReadByte method, 1410

readers, I/O, 1401-1408

ReaderWriterLockSlim, 1468

ReadLine method, 413

real values, literals, 194

realization, marshal-by-reference, 1282

recursion, 472

algorithms, 1203

Fibonacci implementations, 813

lambda expressions, 859

red bits, 101

Red Gate, 112

redirecting assembly version binding,
1242-1244

Reduce method, 1094

ReduceAndCheck method, 1094

ReduceExtensions method, 1094

reducing memory, 37

redundancy

assignments, 293

cast expressions, 301

ref keyword, 508

refactoring

engines, 93

methods, 537-543

support, 116

ReferenceEquals method, 622

on System.Object, 622-624

queries1588

references

assemblies, 1253-1255, 1301

BCL, 1294-1298

conversions, 629-630

default project, 1293-1294

external assemblies, 1242

generic collection types, 765

IronPython, hosting, 1121

loading, 1294

null, 237-240

NullReferenceException, 1180

objects, 45

output parameters, 509

parameters, 508

types, 470, 731-732

aliasing, 185

instantiation, 327

values, comparing, 466-470

weak, 715-716, 1340-1341

reflection, 317-320, 1047, 1054-1081

arithmetic expressions, 1084-1091

custom attributes, 1075-1081

events, 1074

expression trees, 1091-1107

extensions

applying, 1059

loading, 1059

fields, 1075

flashback, 1272-1274

indexers, 1072-1073

late-bound property access, 1073

lightweight code generation, 1082-1091

MEF, 1067-1070

metadata, 1048-1053

methods, 1070-1071

multilanguage usability, 1049-1052

How can we make this index more useful? Email us at indexes@samspublishing.com

properties, 1072-1073

relational databases, 1073

System.Type, 1054-1055

types, 479-483, 716

visibility, 1265

Reflector, 486, 664

binding, 1110

.NET, inspecting assemblies, 112-116

Reflector (.NET), compiler-generated expression
trees, 1092

reflexivity, 619

Refractor, 539

regions, 497

regular expressions, 1353-1356

relational databases, 61

LINQ, 903-907, 911-917

reflection, 1073

relational operators, 271-273

pairwise declaration, 615

relationships

joining, 949-954

between languages, 14

types, 464

relative time, 1323-1324

Release build, 363

Release mode, 214

releases. See versions

remote procedure calls. See RPCs

remoting, 1281-1285

remove accessor, 847-851

Remove method, 845

renaming parameters, 800

Repeat source generator, 991

repeating disposal, 599

REPLs (read-eval-print-loops), 78, 93, 1121,
1353

reporting, 822

reporting 1589

representations, strings, 561-562

reserved words, 1117

aliasing, 208

built-in types, 197

Reset method, 322, 1209

resolution

deferred overload, 1114-1117

method overloads, 519-522

resolving

namespaces, 1295

type names, 1225

resources, 1217

deterministic cleanup, 438-447

embedding, 1268-1270

management, 352, 409

synchronization, 1471

restrictions

query operators, 992-996

types, 731-732

Result property, 1515

results

methods, 353

tasks, retrieving, 1511-1512

types, operators, 281-282

Resume method, 1444

rethrowing exceptions, 429-431

retrieving task results, 1511-1512

return keyword, 346, 502

Return source generator, 991

return statements, 406-407, 503

return type, 502-504

reuse

code, 649

of keywords, 732

tools, 103

reverse extension method call, 529

Reverse method, 68, 522

Reverse operator, 1020

LINQ, 525

rewriting contract method calls, 1370

rich type information, 767

right side (rhs), 285

robustness of dynamic languages, 78

roles

of assemblies, 1234-1236

of CLS, 23-24

of metadata, 1048-1053

of partitioners, 1536

Rotor, 12

RPCs (remote procedure calls), 1283

Ruby, 201, 337

Ruby on Rails, 15, 76

rules

CLS, 24

code analysis, 544

for code analysis, 1365

types, 17-18. See also types

Runnable interface, 1437

running

applications, 175-176

finalizers, 591-594

.NET

code, 112

installers, 106

runtime, 1292. See also CLR

assemblies, loading, 1255-1261

behavior analysis, 1386

binders, 1110

bootstrapping, 33-35

cast expressions, 300-306

CCR, 97

checks, 1367

concatenation, 267

COR, 1151

design, 24

representations, strings1590

disasters, 412, 415-418

dynamic languages, 81-83

extension methods, 529

extern methods, 538

is operator, 306-307

LCG, 93

libraries, 93

LINQ translation, 915

members, adding, 1051

read-only fields, 556

shims, 106

strong named assemblies, verifying, 1248

versioning, 34, 1299

RuntimeWrappedException, 429, 1188-1190

RunWorkerCompleted event handler, 1496

Rx (Reactive Extensions), 890

S
s_ prefix, 494

.s suffix, 363

SafeHandle objects, 601

safety

covariance, 744-745

multithreading, 847

threads, 651, 1458

types, 17-18, 1334

satellite assemblies, 1269

saving assemblies, 1091

SayHello method, 1083

scalability, 78

scheduling

abstracting, 1469

cooperative, 1445

preemptive, 1445

How can we make this index more useful? Email us at indexes@samspublishing.com

Task Schedulers, 1527-1528

UMS, 1463

user mode, 1433-1434

Schonfinkel, Haskell Curry, 796

scope, 1234

local variables, 210-212

SDKs (software development kits), 14

sealed keyword, 656, 665, 676

searching

assemblies, 1255, 1259-1261, 1296

junctions, 1395

streams, 1422-1423

types, 1295

wildcard searches, 1357

secondary orderings, 938-940

security

assemblies, 1234

CAS, 47-49, 254, 1075, 1275

injection attacks, 906

IP (intellectual property), 29

.NET, 11

tokens, 11

segments, 1306

SEH (Structured Exception Handling), 1167,
1189

Select Case, 375

select clauses, 924

projection, 927-933, 955

select keyword, 330

Select method, 1042

Select operator, 997

SELECT statements, 904, 911, 915

selection

sources, 923-927

statements, 352, 358-376

selection 1591

SelectMany operator, 998

semantics

binding, 1110

lval-capturing, 792

operators, 613

semaphores, 1480-1483

semicolons (;), 217, 355

sensitivity, whitespace, 361

SequenceEqual operator, 1018

sequences

characters, 1356

expressions. See expressions

foreach loops, 944

operators, 1018-1020

versus parallel continuations, 1521

partitioning, 1536

persistence, 1020-1022

service pools, 726

serial port communication, 1429

serialization

attributes, 1282

copy-by-value realization, 1281

Server Explorer, 155-157

servers, SQL Server, 1434

ServerVersion property, 1207

Service property, 493

service-oriented architecture. See SOA

ServicePool<T> type, 725

services

compilers as, 92-94

pools, sequences, 726

Web services, 11

set accessors, 573, 649

set theoretical operators, 1018-1020

SetLastError function, 1169

setters, 348

Shared keyword, 490

Shared Source CLI. See SSCLI

shared-state, troubleshooting, 1439

sharing resources, synchronization, 1471

shells

execution behavior, 1387

Visual Studio 2010, 118

shift operators, 270-271

shims

runtime, 106

sizing, 34

short-circuiting operators, 611-615. See also
operators

Show External Code, 1115

shrinkage, memory, 1337

side effects, 353

side-effect-free programming, 95

while statements, 376-380

signaling with events, 1486-1492

signatures

entry points, 173-175

methods, 172-173, 540

P/Invoke, 596

signing

processes, assemblies, 1245

strong-name, 1245

Silverlight, 10, 12, 112, 498, 1292

simple assignment, declaration versus, 285-287

simple key selectors, 945

simple math, 1308-1310

Simple Object Access Protocol. See SOAP

simultaneous execution, 452

single inheritance, 656. See also inheritance

for classes, 661-663

Single operator, 995

single-dimensional arrays, 229-231

single-line comments, 220-221

single-method interfaces, 688, 1436

SelectMany operator1592

SingleOrDefault operator, 995

singularity, 38

SIPs (software isolated processes), 38

sizing shims, 34

Skip operator, 993

SkipWhile operator, 993

sleeping, threads, 1443

Smalltalk, 15

snippets, code, 490

exceptions, 1192

writing, 1192

Snow White effect, 822

SOA (service-oriented architecture), 1287

SOAP (Simple Object Access Protocol), 11

soft casts, 308-310

software development kits. See SDKs

software isolated processes. See SIPs

software transactional memory. See STM

Sollich, Peter, 57

Solution Explorer, 126-127

solutions, 1254

SomeException type, 1189

Son of Strike. See SOS

Sort method, 1367

SortedList<T>, 721

SortedSet<T>, 774

SOS (Son of Strike), 417

commands, 1182-1188

leaks, tracing, 855-860

source code, 116. See also code

.NET Framework, 139

Source property, 1192

sources

control, Visual Studio 2010, 169

events, 895

generators, 990-992

How can we make this index more useful? Email us at indexes@samspublishing.com

keys, joining, 952

multiple, 926

selection, 923-927

special drives, 1332

special folders, 1332

special values, 1304-1305

specifying strong names, 1246

SpinLock struct, 1486

splash screens, Visual Studio 2010

splitting, 108, 1359

SQL (Structured Query Language)

expression trees, 797

injection attacks, 906

LINQ to, 159-161

relational databases, 903-907, 911-917

SQL Server, 39, 1434

SSCLI (Shared Source CLI), 12

Stack<T>, 774

StackOverflowException, 415, 1202

stacks, 759-761

abstraction, OOP, 644

calls, 254, 406, 471

evaluation, 251-254, 471

heaps, comparing, 470-478, 584

overflow, 609, 1203

overflowing, 416

software, 38-39

traces, logging, 1375-1376

transitions, evaluating, 28

unwinding, 1175

walking, 49

Stacktrace property, 1192

stand-alone identity projections, 929

Standard Query Operator method call, 934

standard query operators, 990-1024

standardization, CLI, 12

Start method, 837

Start method 1593

starting

processes, 1387-1389

tasks, 1508-1511

threads, 1438-1441

Startup Object, 1238

StartWith method, 985

state

constructors, 1066

isolation of, 97

parameters, 1417-1420

per-thread state, 1470-1471

threads, 1452-1458

statements, 89

assignments, 354-355

blocks, 356-357

break, 366, 378-380

continue, 379

declaration, 351, 357-358

do...while, 380-381

empty, 355-356

expressions, 351, 353-355

for, 381-383

foreach, 384-393, 830

goto, 378, 380, 402-405, 1168

if, 197, 311, 356, 358-363, 503

iteration, 352, 376-392

lock, 452-456

overview of, 351-353

queries, checking, 905

return, 406-407, 503

SELECT, 904, 911, 915

selection, 352, 358-376

switch, 315-317, 363-376, 568, 1101

trees, 1101-1104

try, 1176-1179

try-catch, 1171

try-catch-finally, 1172

try-finally, 1172

UPDATE, 534

using, 435, 441-443, 1172

while, 376-380

STAThread attribute, 885

static

classes, 589

constructors, 586-589, 1197

helper methods, creating, 68

keyword, 493, 586, 647

members, 337, 549. See also members

method, 69

modifiers, 490-496

types

checking, 701

dynamic keywords, 1116-1117

typing, 61, 914

stitching expression trees, 1045

stloc, 253

STM (software transactional memory), 95, 461

StopOnException, 1182

stopping threads, 1442-1444

StopWatch, 1376-1377

storage

custom attributes, 1068

isolation, 1429

local storage, threads, 1458-1459

Stream class, 1408

streams

asynchronous read and write operations,
1413-1421

files, 1410-1411

I/O, 1407-1423

memory, 1409-1410

searching, 1422-1423

String type, 19

starting1594

StringBuilder class, 1359-1361

StringReader class, 1407

strings

concatenation, 266-270

DateTime values, 1319-1320

enum conversions, 563-564

formatting, 1347-1350

interning, 626

literals, 197

methods, 1356-1361

objects, 1027

parsing, 1301-1304

representation, 561-562

types, 197-198

verbatim, 1356

StringWriter class, 1407

Strong Name Utility sn.exe, 1247

strong naming, assemblies, 1244-1249

StructLayout attribute, 596

structs, 465, 583

classes, comparing, 466-486

FilterBool, 613

inheritance, 664

values, nullability, 606

structural typing, 1015

Structured Exception Handling. See SEH

structures

data, 704

generics. See also generics

.NET, 19-20

StyleCop, 362, 517

styles, naming, 209

subexpressions. See also expressions

evaluating, 250

left-to-right evaluation, 353

How can we make this index more useful? Email us at indexes@samspublishing.com

subst command, 1394

subtypes, 680

suffixes

decimal types, 196

non-case-sensitive, 189

.s, 363

Sum operator, 1013

supersets, 102

support

build, 130-135

debugging, 134, 136-138

multiple languages, 10

refactoring, 116

tools, 11, 78

Suppress Warnings list, 405

SuppressFinalize method, 601

suppressions, disabling warnings, 1366

Suspend method, 1444

sweeping heaps, 45

switch statements, 315-317, 363-376, 1101

enums, 568

evaluation, 371-376

SwitchExpression statement, 1101

switching context, 1433-1434

Syme, Don, 60, 703

synchronization, 1431

primitives, 65, 1471-1498, 1504

TPL, 1507

SynchronizationContext, 1495

syntax

ASTs, 1038

cast expressions, 301-304

collection initializers, 766, 770-771

contextual grammar, 925

delegates, combining, 827-829

syntax 1595

highlighting, 179-180

IDisposable types, 444

named parameters, 1078

operators, 613

ordering, 738

query expressions, 920-964, 1001,
1025-1027

Visual Basic, generic types, 703-705

System assembly, 1296-1298

System namespace, 110, 1223

System root namespace, 1301-1346

System.Collections namespace, 333

System.Collections.Concurrent, 775

System.Collections.Generic namespace, 61

System.Collections.ObjectModel, 775

System.Collections.Specialized, 775

System.ComponentModel namespace, 871

System.Console class, 291

System.Core, 1271

System.Core assemblies, 1250

System.Core.dll, 1298-1301

System.Data.SqlClient API, 904

System.DateTime, 318

System.Delegate, 829, 887

System.Diagnostics, 712, 1391

System.Dynamic type, 1117-1119

System.Enum type, 561-564

System.Exception base class, 1191

System.GC class, 713

System.Interactive assembly, 1016

System.IO namespace, 275, 418

System.IO.Pipes namespace, 1423

System.Linq namespace, 922

System.Object, 201. See also objects

Equals method on, 622-624

generics, 699

ReferenceEquals method on, 622-624

reflection, 1050

System.Reflection, 319

System.Runtime.ConstrainedExecution (CER),
1200

System.String type, 69

System.Text.StringBuilder, 269

System.Threading namespace, 456, 469

System.Threading.Parallel, 400

System.Threading.Tasks namespace, 1508

System.Type, 318, 1054-1055

System.ValueType, 664

System.Xml.Linq APIs, 917

System.Xml namespace, 907

T
Table<T> object, 1042

tables

hash, 755-758

joining, 949-954

mapping, 913

relational databases, 903

tabs

COM, 1155

.NET assemblies, 1255

Projects, 1255

Tabular Data Stream. See TDS

Take operator, 994

TakeWhile operator, 994

Target delegate, 1135, 1142

targets, 82

platforms, configuring, 1239

types of assemblies, 1236

TargetSite property, 1192

Task Parallel Library. See TPL

Task Schedulers, 1527-1528

TaskFactory, applying, 1509-1510

syntax1596

tasks, 1507-1508

cancellation of, 1523

constructors, applying, 1509

continuations, 1518-1522

errors, 1513-1518

formatting, 1508-1511

multiple, 1525-984

results, retrieving, 1511-1512

starting, 1508-1511

TDD (test driven development), 1364

TDS (Tabular Data Stream), 1422

team development, 167-169

Team Foundation Server. See TFS

TechNet, 1399

templates, generic types, 705

ternary operators, 248. See also operators

test driven development (TDD), 1364

testing

assemblies, 1253

unit, 163-167

text, 1346-1362

encoding, 1361

formatting, 1346-1352

objects, parsing, 1352

string methods, 1356-1361

TextReader class, 1406-1407

TextWriter class, 1406-1407

TFS (Team Foundation Server), 11, 118, 134,
167

Thaw option, 1462

ThenBy method, 940

ThenBy operator, 1003

ThenByDescending operator, 1003

theories, complex numbers, 1313

this keyword, 210, 524, 546, 660, 732

ThreadAbortException, 412, 457

Thread class, 791, 1436-1441

How can we make this index more useful? Email us at indexes@samspublishing.com

Thread.CurrentThread.ManagedThreadId, 986

thread-local data, applying, 1533-1535

ThreadLocal<T> class, 1456-1458

threads, 1431

aborting, 1444

apartments, 1450

applying, 1432-1462

background, 1446-1448

blocking, 1441, 1446

concepts of, 1432-1434

costs of, 1502

cross-thread access, 884

debugging, 1460-1462

exceptions, 1451-1452

execution, 451

foreground, 1446-1448

formatting, 1436-1438

ideal number of, 1502-1503

IDs, 1449

interleaving, 1474

kernels, 1463

life cycles, 1441-1446

local storage, 1458-1459

managed, 1446-1451

multithreading, 845-846

naming, 1448-1449

parallelism, 1502-1503

parameters, 1438

performance, 1467-1469

per-thread state, 1470-1471

pools, 1463-1471, 1528

safety, 651, 1458

starting, 1438-1441

state, 1452-1458

stopping, 1442-1444

user mode, 1463

waiting, 1444

yielding, 1445

threads 1597

Threads window, 138

ThreadStatic attribute, 1452

throwing

exceptions, 47, 423, 1188-1190, 1208.
See also exceptions

tasks, 1513

Tick event, 838

time, 1317-1325

absolute, 1317-1318

relative, 1323-1324

zones, 1322-1323

timers

accuracy of, 839

threads, 1443

TimeSpan, 1323-1324

timestamps, checking, 135

ToArray operator, 1021

tokens

public key, 1244

security, 11

ToList operator, 1021

tools

Code Analysis, 311

copy, 1496

debugging, 138

disassembler (ildasm.exe), 25

FileSystemWatcher component, 1400

gacutil.exe, 1251

ILASM, 26

Manage Help Settings utility, 144

namespaces, 1216

.NET, 109

NGEN, 42. See also NGEN

Object Browser, 1295

P/Invoke Interop Assistant, 49

Reflector, 486

reuse, 103

Strong Name Utility sn.exe, 1247

support, 11, 78

versioning, 1299

Visual Studio, 16, 120

ToString method, 340, 671, 1094

virtual dispatch of, 674

TPL (Task Parallel Library), 96, 1503-1508

architecture, 1503-1504

tracing

leaks, 855-860

stacks, logging, 1375-1376

tracking dependencies, 135

trailing commas, 558

transfers, unboxing, 482

transitions, evaluating stacks, 28

transitivity, 619

translating

LINQ, 915

operators, 626-627

orderby clauses, 941

query expressions, 1036-1038, 1045

where clauses, 934

transparency

identifiers, 962-964

proxy objects, 1283

traversing junctions, 1395

Treat Warnings as Errors, 404

trees

ASTs, 1038

deep tree data structures, 1204

expressions, 71-74, 797-799, 1036-1046

APIs, 1093-1104

compilers, 1092-1093

leaf nodes, 1095

Threads window1598

object models for, 1085-1087

for query expressions, 1041-1046

reflection, 1091-1107

statements, 1101-1104

trigonometry, 1310

trimming, 1358

trivial properties, 74

troubleshooting

asserts, 1368

debugging, 1184

injection attacks, 906

Manage Help Settings utility, 144

tasks, 1513-1518

true operators, 614

truth tables, nullable Boolean logic, 277

try blocks, 414

try keyword, 389

try statements, 1176-1179

try-catch statements, 1171

try-catch-finally statements, 1172

try-finally statements, 1172

TryExpression statement, 1102

TryParse method, 509, 517, 1186

Tuple types, 320

tuples, 1344-1346

Type Library Exporter (tblexp.exe), 50

Type Library Importer (tblimp.exe), 50

Type property, 1094

TypeInitializationException, 588, 1196

typeof operator, 317-320

types, 299, 463

accessing, 24

accumulation, 1011

anonymous, 66, 386

generics, 739

object initializers, 930-933

How can we make this index more useful? Email us at indexes@samspublishing.com

applications, 10

arrays, covariance, 741-744

assemblies, 1236-1237

BigInteger, 1310-1312

Boolean values, 196-197

boxing, 478-479

built-in, 185-209

checking, 286, 767

classes versus structs, 466-486

CLR, 17-24

code, 180-182

collection, 389, 753. See also collection
types

concrete, 324-325

constituent, 572

containers, 1131

data, 180-182

decimals, 194-196

declaring, 933

decomposing, 465

delegates, 782-786

Func<int, int>, 1271

Func<TResult>, 816

dependent, 348

Dictionary<TKey, TValue>, 766

discovery, 1051, 1056-1057

dynamic keyword, 1111-1112

EqualityComparer<T>, 769

exceptions, 1190-1193, 1212

explicit, 66

Filter, 518

floating-point, 190-194

forwarding, 1270-1272, 1300

generics, 304-306, 320-322, 483

applying, 708-709

types 1599

boxing, 710-712

collection, 61

declaring, 703-708

delegates, 802

garbage collection, 714

instantiation, 700

LINQ, 740-741

methods, 697

modifiers, 705-708

performance, 709-714

templates, 705

typeof, 320

hierarchies, 199

identifiers, ranges, 925

IDisposable implementation, 443-447

IEnumerable<T>, 932

IEnumerator<T>, 388

IEquatable<T>, 770

implicitly typed local variable declarations,
215-220

implicit versus explicit conversions,
299-317

inferences, 66, 734, 737

let clauses, 962

local variables, 357

instances, 182-183, 490-496

instantiation, 1057-1058

integral, 186-190

of joins, 1009

languages, 180-185

LinkedList<T>, 764

List<int>, 333

List<T>, 762

members, 486-499

of members, 336

MulticastDelegate, 824

mutable value, 483-486

namespaces, managing, 1213-1219

naming, 1225, 1305

nesting, 488

nullables, 61-62, 240-246

objects, 182-183

of operators, 249

on-the-fly construct, 66

overview of, 463-465

parameters, 714-716

generics, 699

naming, 706

partial, 496-499

in pictures, 656-657

primitive, 19, 1301-1305

properties, 1055-1056

Python, 1123-1127

references, 470, 731-732

aliasing, 185

instantiation, 327

reflection, 479-483, 716

relationships, 464

reserved words, 197

result, operators, 281-282

return, 502-504

safety, 17-18, 1334

searching, 1295

ServicePool<T>, 725

SomeException, 1189

static

dynamic keywords, 1116-1117

modifiers, 490-496

strings, 197-198

System.Delegate, 887

System.Dynamic, 1117-1119

System.Enum, 561-564

System.String, 69

tuples, 1344-1346

types1600

underlying, 559

union, 241

Uri, 1328

v-tables, 680

values, 325, 470-471, 731-732

visibility, 486-488

typing, 1015

typos, detecting, 130

U
UI (user interface)

controls, nesting, 498

ExtensiCalc, 1062-1064

frameworks, 876-882

programming, 871-882

Visual Studio 2010, 123

UMS (user mode scheduling), 1463

unary expressions, 1095-1096

unary operators, 260

as lifted operators, 607

UnauthorizedAccessException, 1185

unboxing, 483, 700. See also boxing

conversions, 631

unchecked contexts, 352

unchecked keyword, 264-265

underlying types, 559

unhandled exceptions, 1515-1517

Unicode characters, 189, 259, 327. See also
characters

unified runtime infrastructures, 10

uniform resource identifiers. See URIs

Union operator, 1019

union types, 241

unit testing, 163-167

universal quantification, 702-703

How can we make this index more useful? Email us at indexes@samspublishing.com

unloading assemblies, 37, 1278

UnobservedTaskException, 1517

unwinding stacks, 1175

Update delegate, 1137

Update method, 331

UPDATE statement, 534

Upgradeable mode, 1483

URIs (uniform resource identifiers), 1328

Uri type, 1328

usage-first development, 496

User Account Control, 1238

user mode

scheduling, 1433-1434

threads, 1463

user-defined conversions, 631-637

UserBlackListed method, 277

using block, 597

using directive, 1223, 1231, 1295

using keyword, 528

using statements, 435, 441-443, 1172

V
v-tables, 680

validation, input, 412-415

values

BigInteger type, 1311

Boolean, 196-197, 353

constants, 556

declaring, 555

default

expressions, 320-323

type parameters, 714-716

GUIDs, 1325-1327

Int32, 711

values 1601

integral conversions, 563

keywords, 59, 570

members, assigning, 559-560

null, 61

nullable value types, 240-246

parameters, 505-508

passing, 473

Pi, approximating, 1316

Point, 583

primitive types, 1301-1305

references, comparing, 466-470

special, 1304-1305

structs, nullability, 606

types, 325, 470-471, 731-732

unboxing, 482

var keyword, 66, 77, 324, 385

variables

captured outer, 790-793

constants, assigning, 252

declaration, 285

dynamic keywords, 1113

environments, 1331-1332

explicitly typed iteration, 385

hexidecimal display for, 271

iteration, read-only treatment of, 391

languages, 183-184

local, 209-220

closures, 1457

implicitly typed, 768-769

type inferences, 66, 259, 357

naming, 115

range inferences, 923

variance modifiers, 750

VBA (Visual Basic for Applications), 1137

Vector object, 348

vectors, zero-length, 609

verbatim strings, 1356

verifying strong named assemblies, 1248

versions

assemblies, 1240-1244

extension methods, 527

frameworks, 27

GAC, 36

interfaces, 688

.NET Framework, 99-106

runtime, 34, 267, 1299

vertical partitioning, 933. See also projection

VES (Virtual Execution System), 12

viewing

event sources, 895

first-chance exceptions, 1180

LINQ operators, 973

Object Browser, 139

pre-.NET 4 GACs, 1250

Show External Code, 1115

Visual Studio 2010 installation compo-
nents, 120

views, DebugView, 1103

violations

checking, 783

covariant-safe use of generic type parame-
ters, 747

default constructor constraints, 725

virtual dispatch, 678-681

Virtual Execution System. See VES

virtual keyword, 655, 672

virtual members

declaring, 675-676

overriding, 673-675

polymorphism, 670-682

virtual methods, 1048-1049

virtualization, 1463

visibility, 486-489, 1234

assemblies, 1265-1268

constituent types, 572

values1602

fields, naming conventions, 546

members, 488-489

namespaces, 1221

types, 486-488

Visible property, 331

VisitChildren method, 1094

Visual Basic, 7, 10, 13, 15

generic types, 703-705

Visual Basic for Applications. See VBA

Visual Blend, 498

Visual Studio, 11

assembly properties, configuring,
1237-1240

Code Analysis, 311, 354

constructed generic types, 708

delegates, 787

generics, 738

methods

defining overloads, 517

extensions, 1231

namespaces, 1220

.NET assemblies, 16

optional parameters, 514

Organize Usings feature, 1224

syntax highlighting, 179-180

types, resolving names, 1225

usage-first development, 496

Visual Studio 2010, 116-123

applications, 124-169

designers, 144-155

expressions, 119

installing, 119-120

interfaces, 123

Manage Help Settings utility, 144

navigating, 120-123

Solution Explorer, 126-127

source control, 169

How can we make this index more useful? Email us at indexes@samspublishing.com

Visual Studio for Applications. See VSTA

Visual Studio Team System. See VSTS

Visual Studio Tools for Office. See VSTO

void

return type, 504

void-returning methods, 407

volatile fields, 558

von Neumann machine model, 342

vshost.exe, 433-436

VSTA (Visual Studio for Applications), 118

VSTO (Visual Studio Tools for Office),
118, 154-155

VSTS (Visual Studio Team System), 167

W
Wadler, Philip, 999

WaitAny method, 1491

WaitForExit method, 1387

WaitHandle class, 1490

waiting, threads, 1443-1444

walking stacks, 49

warnings, 404

code analysis, 543

disabling, 1366

WCF (Windows Communication Foundation),
10, 27, 53, 689, 1283, 1423

weak references, 715-716, 1340-1341

Web services, 11

WF (Windows Workflow Foundation), 27, 53

WFCs (Windows Foundation Classes), 8

WHERE clause, 534

where clauses, 71, 933-936, 1029

where keyword, 59, 397, 739

Where method, 397, 781, 1042

Where operator, 992-993

Where operator 1603

while loops, iterators, 976

while statements, 376-380

whitespace, sensitivity, 361

widening conversions, 628

wildcard searches, 1357

Wiltamuth, Scott, 57

Win32

C, programming in, 6

exceptions, 1168-1170

function namespaces, 1215

WinDbg, 417

windows

Call Stack, 1183

Output, 1180

Windows Communication Foundation. See WCF

Windows Distributed interNet Applications
Architecture. See DNA

Windows Forms, 10, 124, 144-147, 1495

countdown clocks, 882

designer, 498

Windows Foundation Classes. See WFCs

Windows Management Instrumentation. See
WMI

Windows on Windows (WOW), 1239

Windows operating system

configuration settings, 1433

integrated authentication (-E), 913

Windows Presentation Foundation. See WPF

Windows Workflow Foundation. See WF; WWF

winexe, 176, 1237

WMI (Windows Management Instrumentation),
1385

Word. See also applications

with COM interop, 1154-1165

macros, 1151

words, reserved, 1117

WOW (Windows on Windows), 1239

WPF (Windows Presentation Foundation), 10,
53, 147-150, 305, 498, 775, 1187, 1292

applications, 124

data binding, 875-876

integration, 123

Visual Studio 2010, 119

wrappers, code, 595

wrapping, loops, 823

Write method, 129, 1371, 1404

Write mode, 1483

WriteLine method, 111, 517, 678, 1371

writers, I/O, 1401-1408

writing

code, 1052-1053

.NET, 110-111

snippets, 1192

contract method calls, 1370

documentation comments, 225

event logs, 1380

extensions, 1066-1068

WWF (Windows Workflow Foundation), 150-100

X
X-coordinate, 634

x64 platforms, 1240

x86 platforms, 1240

XAML, 497-499

xcopy, deployment, 1241, 1243

XML (Extensible Markup Language), 11

documentation files, 227

editors, 133

LINQ, 907-908, 917-920

XOR (exclusive OR) operator, 274, 621, 757

XPath, 908

XSD, LINQ to, 919

while loops, iterators1604

Y
Y combinators, 860-861

years, leap, 1318

yield keyword, 63, 810

yield return keyword, 974

yielding to other threads, 1445

Z
zeros

division by, 255

heap memory, 580

initialization, 585

zero-length vectors, 609

zero-method interfaces, 688

Zip operator, 562, 1000

zones, time, 1322-1323

How can we make this index more useful? Email us at indexes@samspublishing.com

zones, time 1605

This page intentionally left blank

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

www.informit.com/safaritrial

Register the Addison-Wesley, Exam

Cram, Prentice Hall, Que, and

Sams products you own to unlock

great benefits.

To begin the registration process,

simply go to informit.com/register
to sign in or create an account.

You will then be prompted to enter

the 10- or 13-digit ISBN that appears

on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS

Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock

the following benefits:

• Access to supplemental content,

including bonus chapters,

source code, or project files.

• A coupon to be used on your

next purchase.

Registration benefits vary by product.

Benefits will be listed on your Account

page under Registered Products.

informit.com/register

THIS PRODUCT

InformIT is a brand of Pearson and the online presence

for the world’s leading technology publishers. It’s your source

for reliable and qualified content and knowledge, providing

access to the top brands, authors, and contributors from

the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-

ing timely and relevant information and tutorials? Looking for expert opin-

ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by

subscribing to a wide variety of newsletters.

Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at

informit.com/articles.

• Access thousands of books and videos in the Safari Books

Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the

hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?

Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

OTHER UNLEASHED TITLES

Microsoft Dynamics

CRM 4 Integration

Unleashed

ISBN-13: 9780672330544

Microsoft Exchange

Server 2010 Unleashed

ISBN-13: 9780672330469

WPF Control Development

Unleashed

ISBN-13: 9780672330339

Microsoft SQL Server

2008 Reporting Services

Unleashed

ISBN-13: 9780672330261

ASP.NET MVC Framework

Unleashed

ISBN-13: 9780672329982

SAP Implementation

Unleashed

ISBN-13: 9780672330049

Microsoft XNA Game

Studio 3.0 Unleashed

ISBN-13: 9780672330223

Microsoft SQL Server

2008 Integration Services

Unleashed

ISBN-13: 9780672330322

IronRuby Unleashed

ISBN-13: 9780672330780

Microsoft SQL Server

2008 Integration Services

Unleashed

ISBN-13: 9780672330322

Microsoft SQL Server

2008 Analysis Services

Unleashed

ISBN-13: 9780672330018

ASP.NET 3.5 AJAX

Unleashed

ISBN-13: 9780672329739

Windows PowerShell

Unleashed

ISBN-13: 9780672329883

Windows Small Business

Server 2008 Unleashed

ISBN-13: 9780672329579

Microsoft Visual Studio

2010 Unleashed

ISBN-13: 9780672330810

Visual Basic 2010

Unleashed

ISBN-13: 9780672331008

Unleashed takes you beyond the basics, providing
an exhaustive, technically sophisticated reference
for professionals who need to exploit a technology
to its fullest potential. It’s the best resource for
practical advice from the experts and the most
in-depth coverage of the latest technologies.

informit.com/unleashed

informit.com/sams

UNLEASHED

WPF 4 Unleashed

ISBN-13: 9780672331190

ASP.NET 4.0 Unleashed

ISBN-13: 9780672331121

Silverlight 4 Unleashed

ISBN-13: 9780672333361

Your purchase of C# 4.0 Unleashed includes access to a free online edition for 45
days through the Safari Books Online subscription service. Nearly every Sams book
is available online through Safari Books Online, along with more than 5,000 other
technical books and videos from publishers such as Addison-Wesley Professional,
Cisco Press, Exam Cram, IBM Press, O’Reilly, Prentice Hall, and Que.

SAFARI BOOKS ONLINE allows you to search for a specific answer, cut and paste
code, download chapters, and stay current with emerging technologies.

Activate your FREE Online Edition at
www.informit.com/safarifree

STEP 1: Enter the coupon code: HAHEHBI.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have difficulty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

FREE Online
Edition

www.informit.com/safarifree

	Table of Contents
	Introduction
	Who Should Read This Book?
	What You Need to Know Before You Read This Book
	How This Book Is Organized
	Part I: Introduction
	1 Introducing the .NET Platform
	A Historical Perspective
	A 10,000-Feet View of the .NET Platform
	The Common Language Infrastructure
	The Multilanguage Aspect of .NET
	Introducing .NET Assemblies
	The Common Type System Explained
	Executing Managed Code
	Diving into the Common Language Runtime
	The Base Class Library
	Summary

	2 Introducing the C# Programming Language
	The Evolution of C#
	A Sneak Peek at the Future
	Summary

	3 Getting Started with .NET Development Using C#
	Installing the .NET Framework
	Your First Application: Take One
	Visual Studio 2010
	Your First Application: Take Two
	Summary

	Part II: C#—The Language
	4 Language Essentials
	The Entry Point
	Keywords
	A Primer on Types
	Built-In Types
	Local Variables
	Intermezzo on Comments
	Arrays
	The Null Reference
	Nullable Value Types
	Summary

	5 Expressions and Operators
	What Are Expressions?
	The Evaluation Stack
	Arithmetic Operators
	String Concatenation
	Shift Operators
	Relational Operators
	Logical Operators
	Conditional Operators
	An Operator’s Result Type
	Null-Coalescing Operator
	Assignment
	Summary

	6 A Primer on Types and Objects
	Implicit Versus Explicit Conversions
	The typeof Operator: A Sneak Peek at Reflection
	Default Value Expression
	Creating Objects with the new Operator
	Member Access
	Invocation Expressions
	Element Access
	Summary

	7 Simple Control Flow
	What Are Statements, Anyway?
	Expression Statements
	The Empty Statement
	Blocks
	Declarations
	Selection Statements
	Iteration Statements
	A Peek at Iterators
	Loops in the Age of Concurrency
	The goto Statement
	The return Statement
	Summary

	8 Basics of Exceptions and Resource Management
	Exception Handling
	Deterministic Resource Cleanup
	Locking on Objects
	Summary

	9 Introducing Types
	Types Revisited
	Classes Versus Structs
	Type Members
	Summary

	10 Methods
	Defining Methods
	Return Type
	Parameters
	Overloading
	Extension Methods
	Partial Methods
	Extern Methods
	Refactoring
	Code Analysis
	Summary

	11 Fields, Properties, and Indexers
	Fields
	An Intermezzo About Enums
	Properties
	Indexers
	Summary

	12 Constructors and Finalizers
	Constructors
	Static Constructors
	Destructors (Poorly Named Finalizers)
	Summary

	13 Operator Overloading and Conversions
	Operators
	Conversions
	Summary

	14 Object-Oriented Programming
	The Cornerstones of Object Orientation
	Inheritance for Classes
	Protected Accessibility
	Polymorphism and Virtual Members
	Abstract Classes
	Interfaces
	Summary

	15 Generic Types and Methods
	Life Without Generics
	Getting Started with Generics
	Declaring Generic Types
	Using Generic Types
	Performance Intermezzo
	Operations on Type Parameters
	Generic Constraints
	Generic Methods
	Co- and Contravariance
	Summary

	16 Collection Types
	Nongeneric Collection Types
	Generic Collection Types
	Other Collection Types
	Summary

	17 Delegates
	Functional Programming
	What Are Delegates?
	Delegate Types
	Delegate Instances
	Invoking Delegates
	Putting It Together: An Extensible Calculator
	Case Study: Delegates Used in LINQ to Objects
	Asynchronous Invocation
	Combining Delegates
	Summary

	18 Events
	The Two Sides of Delegates
	A Reactive Application
	How Events Work
	Raising Events, the Correct Way
	Add and Remove Accessors
	Detach Your Event Handlers
	Recommended Event Patterns
	Case Study: INotifyProperty Interfaces and UI Programming
	Countdown, the GUI Way
	Modern Approaches to Reactive Programming
	Summary

	19 Language Integrated Query Essentials
	Life Without LINQ
	LINQ by Example
	Query Expression Syntax
	Summary

	20 Language Integrated Query Internals
	How LINQ to Objects Works
	Standard Query Operators
	The Query Pattern
	Parallel LINQ
	Expression Trees
	Summary

	21 Reflection
	Typing Revisited, Static and Otherwise
	Reflection
	Lightweight Code Generation
	Expression Trees
	Summary

	22 Dynamic Programming
	The dynamic Keyword in C# 4.0
	DLR Internals
	Office and COM Interop
	Summary

	23 Exceptions
	Life Without Exceptions
	Introducing Exceptions
	Exception Handling
	Throwing Exceptions
	Defining Your Own Exception Types
	(In)famous Exception Types
	Summary

	24 Namespaces
	Organizing Types in Namespaces
	Declaring Namespaces
	Importing Namespaces
	Summary

	25 Assemblies and Application Domains
	Assemblies
	Application Domains
	Summary

	Part III: Working with Base Class Libraries
	26 Base Class Library Essentials
	The BCL: What, Where, and How?
	The Holy System Root Namespace
	Facilities to Work with Text
	Summary

	27 Diagnostics and Instrumentation
	Ensuring Code Quality
	Instrumentation
	Controlling Processes
	Summary

	28 Working with I/O
	Files and Directories
	Monitoring File System Activity
	Readers and Writers
	Streams: The Bread and Butter of I/O
	A Primer to (Named) Pipes
	Memory-Mapped Files in a Nutshell
	Overview of Other I/O Capabilities
	Summary

	29 Threading and Synchronization
	Using Threads
	Thread Pools
	Synchronization Primitives
	Summary

	30 Task Parallelism and Data Parallelism
	Pros and Cons of Threads
	The Task Parallel Library
	Task Parallelism
	Data Parallelism
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

