
Programming C# 3.0
FIFTH EDITION

Jesse Liberty and Donald Xie

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Programming C# 3.0, Fifth Edition
by Jesse Liberty and Donald Xie

Copyright © 2008 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn
Developmental Editor: Brian MacDonald
Production Editor: Sumita Mukherji
Copyeditor: Audrey Doyle
Proofreader: Sumita Mukherji

Indexer: Angela Howard
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:

July 2001: First Edition.

February 2002: Second Edition.

May 2003: Third Edition.

February 2005: Fourth Edition.

December 2007: Fifth Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming C# 3.0, the image of an African crowned crane, and related trade
dress are trademarks of O’Reilly Media, Inc.

Java™ is a trademark of Sun Microsystems, Inc. Microsoft, MSDN, the .NET logo, Visual Basic, Visual
C++, Visual Studio, and Windows are registered trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-52743-8

ISBN-13: 978-0-596-52743-3

[M]

iii

Table of Contents

Preface . ix

Part I. The C# Language

1. C# 3.0 and .NET 3.5 . 3
The Evolution of C# 3
The C# Language 4
The .NET Platform 6

2. Getting Started: “Hello World” . 7
Classes, Objects, and Types 7
Developing “Hello World” 14
Using the Visual Studio 2008 Debugger 18

3. C# Language Fundamentals . 21
Types 21
Variables and Constants 25
Whitespace 33
Statements 33
Operators 49
Preprocessor Directives 59

4. Classes and Objects . 61
Defining Classes 62
Creating Objects 67
Using Static Members 75
Destroying Objects 79
Passing Parameters 83

iv | Table of Contents

Overloading Methods and Constructors 89
Encapsulating Data with Properties 92
readonly Fields 96

5. Inheritance and Polymorphism . 98
Specialization and Generalization 98
Inheritance 101
Polymorphism 102
Abstract Classes 109
The Root of All Types: Object 113
Nesting Classes 115

6. Operator Overloading . 118
Using the operator Keyword 118
Supporting Other .NET Languages 119
Creating Useful Operators 120
Logical Pairs 120
The Equality Operator 120
Conversion Operators 121
Putting Operators to Work 121

7. Structs . 127
Defining Structs 128
Creating Structs 129

8. Interfaces . 132
Defining and Implementing an Interface 132
Overriding Interface Implementations 147
Explicit Interface Implementation 151

9. Arrays, Indexers, and Collections . 156
Arrays 156
The foreach Statement 162
Indexers 177
Collection Interfaces 186
Constraints 190
List<T> 195
Queues 206
Stacks 208
Dictionaries 211

Table of Contents | v

10. Strings and Regular Expressions . 214
Strings 215
Regular Expressions 229

11. Exceptions . 241
Throwing and Catching Exceptions 242
Exception Objects 252

12. Delegates and Events . 256
Events 256
Events and Delegates 257
Anonymous Methods 271

Part II. C# and Data

13. Introducing LINQ . 279
Defining and Executing a Query 280
LINQ and C# 285
Anonymous Types 291
Implicitly Typed Local Variables 291
Extension Methods 292
Lambda Expressions in LINQ 297

14. Working with XML . 302
XML Basics (A Quick Review) 302
X Stands for eXtensible 304
Creating XML Documents 304
Searching in XML with XPath 311
Searching Using XPathNavigator 322
XML Serialization 329

15. Putting LINQ to Work . 337
Getting Set Up 338
LINQ to SQL Fundamentals 339
Using Visual Studio LINQ to SQL Designer 344
Retrieving Data 349
Updating Data Using LINQ to SQL 353
Deleting Relational Data 358
LINQ to XML 363

vi | Table of Contents

16. ADO.NET and Relational Databases . 368
Relational Databases and SQL 368
The ADO.NET Object Model 372
Getting Started with ADO.NET 374

Part III. Programming with C#

17. Programming ASP.NET Applications . 381
Web Forms Fundamentals 381
Creating a Web Form 385
Data Binding 391

18. Programming WPF Applications . 404
WPF in a Very Small Nutshell 404
Building the Application 406
What Have You Learned, Dorothy? 419

19. Programming Windows Forms Applications . 420
Creating the Application 420

Part IV. The CLR and the .NET Framework

20. Attributes and Reflection . 449
Attributes 449
Reflection 456

21. Threads and Synchronization . 465
Threads 466
Synchronization 474
Race Conditions and Deadlocks 485

22. Streams . 487
Files and Directories 488
Reading and Writing Data 499
Asynchronous I/O 506
Network I/O 511
Web Streams 527
Serialization 529
Isolated Storage 538

Table of Contents | vii

23. Programming .NET and COM . 542
Importing ActiveX Controls 542
P/Invoke 551
Pointers 554

C# Keywords . 561

Index . 569

ix

Preface1

In 2000, .NET revolutionized the way we create both web and Windows applica-
tions. .NET 2.0 was a dramatic incremental improvement over .NET 1.0. This book
covers C# 3.0 and .NET 3.5, and this time we are looking at an even more significant
set of changes.

C# 3.0 introduces a new generation of changes to a framework that takes an enor-
mous leap forward, revolutionizing the way we program Windows applications, web
services, and, to a lesser degree, web applications.

In 2000, I wrote in the first edition of this book that Microsoft had “bet the com-
pany” on .NET. It was a good bet. In 2007, I bet my career on .NET by joining
Microsoft as senior program manager in the Silverlight Development Division.

Because one way (my preferred way) to program Silverlight is with C#, I have the
opportunity to stay very current with this mature yet rapidly evolving language. It is
an exciting time for C#; version 3.0 adds a number of tremendously useful features,
and the newest edition of Visual Studio makes programming with these features eas-
ier than ever.

It is my goal that you’ll find Programming C# 3.0 to be of great use whether this is
your first exposure to .NET programming, or you’ve been at it for some time. I’ll
start with the fundamentals, and introduce new additions to the language not as
obscure add-ons, but as the integrated features that they are.

If you are already a C# 2.0 programmer, feel free to skim through the parts you
know. The new features are called out by appropriate headings; you won’t inadvert-
ently skip over them. But be sure to reread Chapter 12, and all of Parts II and III.

x | Preface

C# and .NET
The programming language of choice for .NET is C#, which builds on the lessons
learned from C (high performance), C++ (object-oriented structure), Java™ (gar-
bage collection, high security), and Visual Basic (rapid development) to create a
language ideally suited for developing component-based, n-tier, distributed Windows
client and web applications.

C# 3.0 brings greatly enhanced features and a powerful new development environ-
ment. It is the crowning achievement of Microsoft’s R&D investment. It is wicked
cool.

About This Book
This book is a tutorial, both on C# and on writing .NET applications with C#.

If you are a proficient C# 2.0 programmer, and all you want to know is what is new
in C# 3.0, put this book down, buy Programming .NET 3.5 by myself and Alex
Horovitz (O’Reilly), and then read a lot about Language-Integrated Query (LINQ).
You’ll get by.

If, on the other hand, you want to brush up on your C# skills, or you are proficient
in another programming language such as C++ or Java, or even if C# is your first
programming language, this book is for you.

Note that for this edition I have been joined by a second author: Donald Xie. Donald
and I have worked together on a number of books for the past decade. He is smart,
diligent, and careful, and much of the work of this book is his, but every word in this
book is mine. Donald wrote and rewrote much of the new material, but he did so
knowing that I would then rewrite it so that this book speaks with a single voice. I
think it is imperative for a tutorial such as this to speak from the mind of a single
developer (me) into the mind of another developer (you) with as little distortion as
possible.

What You Need to Use This Book
To make the best use of this book, please obtain the latest release of Visual Studio
2008. Any edition will do, including the Express edition for C#.

For Chapter 16, you will want to ensure that SQL Server or SQL Server Express is
installed (it is normally installed automatically with Visual Studio), and you’ll want
to install the (old) Northwind database that was created for SQL Server 2000, but
which works fine with the latest SQL Server editions.

To run the Windows Presentation Foundation (WPF) example in Chapter 18, you’ll
need to be running Vista, or you’ll need to download the .NET 3.5 runtime.

Preface | xi

All of this is available on the Microsoft web site, at no cost. Go to http://www.
microsoft.com and type “C# Express” into the search window. The first or second
link should take you to the download page.

The source code for every example in this book is available through the O’Reilly site,
http://www.oreilly.com/catalog/9780596527433, or through my portal site: http://
www.jesseliberty.com. Please scroll to and click on the book site, then click on Books
and scroll to this book, and you should find a link to the source code.

In addition, I provide a private, free support forum for all my writing, which you can
also access through the portal.

How This Book Is Organized
Part I focuses on the details of the language, Part II examines how C# supports inter-
acting with data, Part III discusses how to write .NET programs, and Part IV
describes how to use C# with the .NET Common Language Runtime (CLR) and
Framework Class Library (FCL).

Part I: The C# Language
Chapter 1, C# 3.0 and .NET 3.5

This chapter introduces you to the C# language and the .NET 3.5 platform.

Chapter 2, Getting Started: “Hello World”
This chapter demonstrates a simple program to provide a context for what
follows, and introduces you to the Visual Studio integrated development envi-
ronment (IDE) and a number of C# language concepts.

Chapter 3, C# Language Fundamentals
This chapter presents the basics of the language, from built-in datatypes to
keywords.

Chapter 4, Classes and Objects
Classes define new types and allow programmers to extend the language so that
they can better model the problems they’re trying to solve. This chapter explains
the components that form the heart and soul of C#.

Chapter 5, Inheritance and Polymorphism
Classes can be complex representations and abstractions of things in the real
world. This chapter discusses how classes relate and interact.

Chapter 6, Operator Overloading
This chapter teaches you how to add operators to your user-defined types.

Chapter 7, Structs
This chapter introduce structs, which are lightweight objects that are more
restricted than classes and that make fewer demands on the operating system
and on memory.

xii | Preface

Chapter 8, Interfaces
Interfaces, the subject of Chapter 8, are contracts: they describe how a class will
work so that other programmers can interact with your objects in well-defined
ways.

Chapter 9, Arrays, Indexers, and Collections
Object-oriented programs can create a great many objects. It is often convenient
to group these objects and manipulate them together, and C# provides extensive
support for collections. This chapter explores the collection classes provided by
the FCL, the new Generic collections, and how to create your own collection
types using Generics.

Chapter 10, Strings and Regular Expressions
This chapter discusses how you can use C# to manipulate text strings and regu-
lar expressions. Most Windows and web programs interact with the user, and
strings play a vital role in the user interface.

Chapter 11, Exceptions
This chapter explains how to deal with exceptions, which provide an object-
oriented mechanism for handling life’s little emergencies.

Chapter 12, Delegates and Events
Both Windows and web applications are event-driven. In C#, events are first-
class members of the language. This chapter focuses on how events are managed
and how delegates (object-oriented, type-safe callback mechanisms) are used to
support event handling.

Part II: C# and Data
Chapter 13, Introducing LINQ

This chapter introduces LINQ, a new technology in C# for interacting with data
from any data source, including relational databases, XML, files, and other non-
traditional data sources.

Chapter 14, Working with XML
This chapter is a brief tutorial on XML, the lingua franca of .NET programming.

Chapter 15, Putting LINQ to Work
This chapter returns to LINQ and dives deeper into interacting with SQL and
XML data in your C# programs.

Chapter 16, ADO.NET and Relational Databases
This chapter demonstrates the use of the .NET Framework’s ADO.NET object
model, designed to provide access to relational data from objects.

Preface | xiii

Part III: Programming with C#
On top of the .NET infrastructure sits a high-level abstraction of the operating sys-
tem, designed to facilitate object-oriented software development. This top tier
includes ASP.NET and Windows applications. ASP.NET (with AJAX) is one of the
world’s most popular ways to create web applications. Although C# is a standalone
programming language, it is my premise that the vast majority of the readers of this
book are learning C# to build .NET applications.

Chapter 17, Programming ASP.NET Applications
This chapter demonstrates how to build an ASP.NET application and use C# to
handle events.

Chapter 18, Programming WPF Applications
This chapter is a crash course in building a nontrivial WPF application, with a
focus on using C# to create event handlers.

Chapter 19, Programming Windows Forms Applications
This chapter demonstrates how to build a significant Windows Forms applica-
tion, again using C# for event handling.

Part IV: The CLR and the .NET Framework
Part IV of this book discusses the relationship of C# to the CLR and the FCL.

Chapter 20, Attributes and Reflection
.NET assemblies include extensive metadata about classes, methods, properties,
events, and so forth. This metadata is compiled into the program and retrieved
programmatically through reflection. This chapter explores how to add metadata
to your code, how to create custom attributes, and how to access this metadata
through reflection. It goes on to discuss dynamic invocation, in which methods
are invoked with late (runtime) binding.

Chapter 21, Threads and Synchronization
The FCL provides extensive support for asynchronous I/O and other classes that
make explicit manipulation of threads unnecessary. However, C# does provide
extensive support for threads and synchronization, discussed in this chapter.

Chapter 22, Streams
This chapter discusses streams, a mechanism not only for interacting with the
user, but also for retrieving data across the Internet. This chapter includes full
coverage of C# support for serialization: the ability to write an object graph to
disk and read it back again.

xiv | Preface

Chapter 23, Programming .NET and COM
This chapter explores interoperability: the ability to interact with COM compo-
nents that are created outside the managed environment of the .NET Framework.
It’s possible to call components from C# applications into COM, and to call com-
ponents from COM into C#. Chapter 23 describes how this is done.

The book concludes with a glossary of C# keywords first published in C# 3.0 in a
Nutshell by Joseph and Ben Albahari (O’Reilly). Whenever you encounter a key-
word that you don’t recognize in an example, turn first to the glossary and then to
the index for further information.

Who This Book Is For
Programming C# 3.0, Fifth Edition, was written for programmers who want to
develop applications for the .NET platform. No doubt many of you already have
experience in C++, Java, or Visual Basic (VB). Other readers may have experience
with other programming languages, and some readers may have no specific program-
ming experience but perhaps have been working with HTML and other web technol-
ogies. This book is written for all of you, though if you have no programming
experience at all, you may find some of it tough going.

For a deeper exploration of the more advanced C# language elements we introduce
in this book, especially LINQ, we recommend C# 3.0 in a Nutshell. C# 3.0 Cook-
book by Jay Hilyard and Steve Teilhet (O’Reilly) contains more than 250 C# 3.0
solutions to common programming tasks you’re likely to face on the job after you’ve
mastered this book.

If you prefer a more structured approach to the basics of C# programming, com-
plete with quizes and exercises to test your knowledge, I suggest you take a look at
Learning C# 2005, by myself and Brian MacDonald (O’Reilly).

Conventions Used in This Book
The following font conventions are used in this book:

Italic is used for:

• Pathnames, filenames, and program names

• Internet addresses, such as domain names and URLs

• New terms where they are defined

Constant Width is used for:

• Command lines and options that should be typed verbatim

• Names and keywords in program examples, including method names, variable
names, and class names

Preface | xv

Constant Width Italic is used for:

• Replaceable items, such as variables or optional elements, within syntax lines or
code

Constant Width Bold is used for:

• Emphasis within program code

Pay special attention to notes set apart from the text with the following icons:

This is a tip. It contains useful supplementary information about the
topic at hand.

This is a warning. It helps you solve and avoid annoying problems.

Support
As part of my responsibilities as an author, I provide ongoing support for everything
I write—here’s how.

From my portal site:

http://www.JesseLiberty.com

Please scroll down to my private web site (you’ll see the word Books circled). Click-
ing on that image will bring you either to LibertyAssociates.com or to jliberty.com
(same site). Click on Books and scroll to this book, where you will find (at a mini-
mum) the source code, the errata (if there are any), and a FAQ (if there is one!).

Back on my portal site, you’ll also find a link to my free, private support forum.
Please feel free to post questions about this book or any of my writings there. The
most effective way to get help is to ask a very precise question, or even to create a
small program that illustrates your area of concern or confusion. You may also want
to check the various newsgroups and discussion centers on the Internet. Microsoft
offers a wide array of newsgroups.

If you have questions about Silverlight, please use my portal to access Silverlight.net
or my Silverlight blog; if you have questions about my O’Reilly articles, please use
my portal to access my O’Reilly blog, and if you have questions or comments about
my politics, please use my portal to access my political blog. Keeping these things
separate keeps me sane and keeps my bosses happy.

—Jesse Liberty

xvi | Preface

We’d Like to Hear from You
We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mistakes!).
Please let us know about any errors you find, as well as your suggestions for future
editions, by writing to:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for the book that lists examples and any plans for future edi-
tions. You can access this information at:

http://www.oreilly.com/catalog/9780596527433

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, as well as additional technical articles and discussion on C# and
the .NET Framework, see the O’Reilly web site:

http://www.oreilly.com

and O’Reilly’s ONDotnet:

http://www.ondotnet.com

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming C# 3.0, Fifth Edition, by Jesse
Liberty and Donald Xie. Copyright 2008 O’Reilly Media, Inc., 978-0-596-52743-3.”

Preface | xvii

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

Acknowledgments

From Jesse Liberty
I want to thank the extraordinary technical editors who worked on this book: Joe
Albahari, Glyn Griffiths, Jay Hilyard, Robert McGovern, and Alex Turner. Special
thanks go to Ian Griffiths, who provided extensive technical editing and expertise,
and is one of the nicest and smartest people on the planet.

This is the fifth edition of Programming C#, and too many friends and readers have
helped me improve the book to possibly name them all. John Osborn signed me to
O’Reilly, for which I will forever be in his debt, and Tim O’Reilly continues to pro-
vide an amazing independent publishing house with some of the highest standards in
the industry.

And no, the authors don’t get to pick the animals on the cover.

A key player in making this book a far better one than the one I wrote was Brian
MacDonald; he is an amazingly talented editor and a preternaturally patient man.
Without his organizational skills, his unrelenting commitment to excellence, and his
unfailing good humor, this book literally would not have been possible. I must also
heartily thank my coauthor Donald Xie (who helped me discover that although
calling Australia by Skype may be free, calling direct for 30 minutes costs $150!),
without whom this edition would not have been on the shelves before C# 4.0!

Many have written in with errata large and small for previous editions, and for that I
am very grateful. We’ve worked hard to fix all of the mistakes, no matter how triv-
ial. We’ve scoured the book to ensure that no new errors were added, and that all the
code compiles and runs properly with Visual Studio 2008. With that said, if you do
find errors, please check the errata on my web site (http://www.JesseLiberty.com),
and if your error is new, please send me email at jliberty@jliberty.com.

Finally, in many of our examples, we use the name Douglas Adams as a tribute to and
with great respect for this wonderful man, who is the author of the incredible five-part
Hitchhiker’s Guide to the Galaxy trilogy (Del Rey), and many other wonderful books.

xviii | Preface

From Donald Xie
I really must thank Jesse for teaching me C++ 10 years ago, and for encouraging me
to write. It has been a tremendous pleasure working with Jesse. I would also like to
thank the dedicated people at O’Reilly: John Osborn, Brian MacDonald, Sumita
Mukherji, and the technical reviewers who have worked tirelessly to make this book
possible.

Dedications

From Jesse Liberty
This book is dedicated to those who come out, loud, and in your face and in the
most inappropriate places. We will look back at this time and shake our heads in
wonder. In 49 states, same-sex couples are denied the right to marry, though incar-
cerated felons are not. In 36 states, you can legally be denied housing just for being
queer. In more than half the states, there is no law protecting LGBT children from
harassment in school, and the suicide rate among queer teens is 400 percent higher
than among straight kids. And, we are still kicking gay heroes out of the military
despite the fact that the Israelis and our own NSA, CIA, and FBI are all successfully
integrated. So, yes, this dedication is to those of us who are out, full-time.

From Donald Xie
To my wife, Iris, and our two lovely daughters, Belinda and Clare, for your wonderful
support and understanding. I love you all.

PART I

I.The C# Language

Chapter 1, C# 3.0 and .NET 3.5

Chapter 2, Getting Started: “Hello World”

Chapter 3, C# Language Fundamentals

Chapter 4, Classes and Objects

Chapter 5, Inheritance and Polymorphism

Chapter 6, Operator Overloading

Chapter 7, Structs

Chapter 8, Interfaces

Chapter 9, Arrays, Indexers, and Collections

Chapter 10, Strings and Regular Expressions

Chapter 11, Exceptions

Chapter 12, Delegates and Events

3

Chapter 1 CHAPTER 1

C# 3.0 and .NET 3.51

The goal of C# 3.0 is to provide a simple, safe, modern, object-oriented, Internet-
centric, high-performance language for .NET development. C# is now a fully mature
language, and it draws on the lessons learned over the past three decades. In much
the same way that you can see in young children the features and personalities of
their parents and grandparents, you can easily see in C# the influence of Java, C++,
Visual Basic (VB), and other languages, but you can also see the lessons learned since
C# was first introduced.

The focus of this book is C# 3.0 and its use as a tool for programming on the .NET
platform, specifically and especially with Visual Studio .NET 2008.

Many of the programs in this book are written as console applications
(rather than as Windows or web applications) to facilitate concentrat-
ing on features of the language instead of being distracted by the
details of the user interface.

This chapter introduces both the C# language and the .NET platform, including the
.NET 3.5 Framework.

The Evolution of C#
Each generation of C# has brought significant additions to the language, with a few
standout features. Perhaps the most significant feature added to C# 2.0 was Gener-
ics (allowing for an enhancement to type safety when dealing with collections). If so, the
most significant addition to C# 3.0 must be the addition of the Language-Integrated
Query (LINQ) extensions, which add general-purpose data query extensions to C#;
though that is by no means the only enhancement to C#.

Other new features include:

• Lambda expressions (anonymous delegates on steroids)

• Extension methods

4 | Chapter 1: C# 3.0 and .NET 3.5

• Object initializers

• Anonymous types

• Implicitly typed local variables

• Implicitly typed arrays

• Expression trees

• Automatic properties (a small gem)

The C# Language
The fundamental C# language is disarmingly simple, with fewer than 100 keywords
and a dozen built-in datatypes, but it’s highly expressive when it comes to imple-
menting modern programming concepts. C# includes all the support for structured,
component-based, object-oriented programming that you expect of a modern lan-
guage built on the shoulders of C++ and Java. Version 3.0 has been extended in
three very important ways:

• Full support for LINQ—queries against data are now part of the language

• Full support for the declarative syntax of Windows Presentation Foundation
(WPF; for creating rich Windows applications), Work Flow (WF), and Silver-
light (for creating cross-platform, cross-browser Rich Internet Applications)

• Many convenient features added to aid programmer productivity and to work
and play well in Visual Studio 2008

A Tiny Bit of History
The C# language was originally developed by a small team led by two distinguished
Microsoft engineers, Anders Hejlsberg and Scott Wiltamuth. Hejlsberg is also known
for creating Turbo Pascal, a popular language for PC programming, and for leading
the team that designed Borland Delphi, one of the first successful integrated develop-
ment environments (IDEs) for client/server programming.

C# Features
At the heart of any object-oriented language is its support for defining and working
with classes. Classes define new types, allowing you to extend the language to better
model the problem you are trying to solve. C# contains keywords for declaring new
classes and their methods and properties, and for implementing encapsulation,
inheritance, and polymorphism, the three pillars of object-oriented programming.

In C#, everything pertaining to a class declaration is found in the declaration itself.
C# class definitions don’t require separate header files or Interface Definition

The C# Language | 5

Language (IDL) files. Moreover, C# supports inline documentation that simplifies
the creation of online and print reference documentation for an application.

C# also supports interfaces, a means of making a contract with a class for services
that the interface stipulates. In C#, a class can inherit from only a single parent, but
a class can implement multiple interfaces. When it implements an interface, a C#
class in effect promises to provide the functionality the interface specifies.

C# also provides support for structs, a concept whose meaning has changed
significantly from C++. In C#, a struct is a restricted, lightweight type that, when
instantiated, makes fewer demands on the operating system and on memory than a
conventional class does. A struct can’t inherit from a class or be inherited from, but a
struct can implement an interface. This book will demonstrate why I don’t consider
structs terribly important in the world of Generics. The truth is that I haven’t put a
struct in a program in five years, except to demonstrate how they are used.

C# provides full support of delegates: to provide invocation of methods through
indirection. In other languages, such as C++, you might find similar functionality (as
in pointers to member functions), but delegates are type-safe reference types that
encapsulate methods with specific signatures and return types. Delegates have been
extended greatly, first in C# 2.0 and again in C# 3.0, first with anonymous dele-
gates and now with Lambda expressions, laying the groundwork for LINQ. We will
cover this in depth in Chapters 13 and 15.

C# provides component-oriented features, such as properties, events, and declarative
constructs (such as attributes). Component-oriented programming is supported by
the storage of metadata with the code for the class. The metadata describes the class,
including its methods and properties, as well as its security needs and other attributes,
such as whether it can be serialized; the code contains the logic necessary to carry out
its functions. A compiled class is thus a self-contained unit. Therefore, a hosting
environment that knows how to read a class’ metadata and code needs no other infor-
mation to make use of it. Using C# and the Common Language Runtime (CLR), it is
possible to add custom metadata to a class by creating custom attributes. Likewise, it
is possible to read class metadata using CLR types that support reflection.

When you compile your code, you create an assembly. An assembly is a collection of
files that appear to the programmer to be a single dynamic link library (DLL) or exe-
cutable (EXE). In .NET, an assembly is the basic unit of reuse, versioning, security,
and deployment. The CLR provides a number of classes for manipulating assemblies.

A final note about C# is that it also provides support for:

• Directly accessing memory using C++-style pointers

• Keywords for bracketing such operations as unsafe

• Warning the CLR garbage collector not to collect objects referenced by pointers
until they are released

6 | Chapter 1: C# 3.0 and .NET 3.5

Here is the word on pointers: you can use them, but you don’t. They are like hand
grenades. You’ll know when you need them, and until you do, you should keep the
pin in them, put them in your footlocker, and try not to think about them. If you
find yourself taking one out, call a friend before you pull the pin; then, run for cover.

The .NET Platform
When Microsoft announced C# in July 2000, its unveiling was part of a much larger
event: the announcement of the .NET platform. The .NET platform was, in my view,
an object-oriented operating system in disguise, laid on top of the existing operating
system.

.NET 3.5 represents a further maturation of that framework and brings with it new
ways to create, well, just about everything, while making nothing you’ve learned
obsolete.

You can still create server-only web applications, but with AJAX, you can add client-
side controls (and AJAX provides support for much more, including automatic JSON
encoding and decoding). You can still create Windows Forms applications for Win-
dows applications, but you can also create richer Windows applications using WPF,
which uses a declarative syntax called XAML (explained in some detail in
Chapter 18). That same XAML is used in creating WF applications, which can be
used, among other things, as a business layer for your applications.

For a full exploration of the new .NET Framework, please see Pro-
gramming .NET 3.5 by Jesse Liberty and Alex Horowitz (O’Reilly).

In one of the more exciting additions to the Framework, you can now use that same
XAML to produce cross-platform (as of this writing, Windows, Mac, and Unix) and
cross-browser (Firefox and Safari) Rich Internet Applications using Microsoft’s
Silverlight.

For a full exploration of Silverlight, please see my blog at http://
silverlight.net/blogs/JesseLiberty, and watch for my book, Program-
ming Silverlight (O’Reilly), due in 2008.

All of these development technologies can use C# for the programming logic; C#
can be the core for all the programming you do across the board in the development
of .NET applications from the Web to the desktop, from thin clients to thick, from
Rich Internet Applications to web services.

7

Chapter 2 CHAPTER 2

Getting Started: “Hello World”2

It is a time-honored tradition to start a programming book with a “Hello World”
program. In this chapter, you’ll create, compile, and run a simple “Hello World”
program written in C#. The analysis of this brief program will introduce key fea-
tures of the C# language.

Example 2-1 illustrates the fundamental elements of a simple C# program.

Compiling and running this code displays the words “Hello World!” at the console.
Before you compile and run it, let’s first take a closer look at this simplest of programs.

Classes, Objects, and Types
The essence of object-oriented programming is the creation of new types. A type rep-
resents a thing. Sometimes, the thing is abstract, such as a data table or a thread;
sometimes it is more tangible, such as a button in a window. A type defines the
thing’s general properties and behaviors.

If your program uses three instances of a button type in a window—say, an OK, a
Cancel, and a Help button—each button will have a size, though the specific size of
each button may differ. Similarly, all the buttons will have the same behaviors (draw,
click), though how they actually implement these behaviors may vary. Thus, the
details might differ among the individual buttons, but they are all of the same type.

Example 2-1. A simple “Hello World” program in C#

 class Hello
 {
 static void Main(string[] args)
 {
 // Use the system console object
 System.Console.WriteLine("Hello World!");
 }
 }

8 | Chapter 2: Getting Started: “Hello World”

As in many object-oriented programming languages, in C#, a type is defined by a
class, and the individual instances of that class are known as objects. Later chapters
explain that there are other types in C# besides classes, including enums, structs,
and delegates, but for now, the focus is on classes.

The “Hello World” program declares a single type: the class. To define a C# type,
you declare it as a class using the class keyword, give it a name—in this case,
Hello—and then define its properties and behaviors. The property and behavior defi-
nitions of a C# class must be enclosed by opening and closing braces ({}).

Methods
A class has properties and behaviors. Behaviors are defined with member methods;
properties are discussed in Chapter 3.

A method (sometimes called a function) is a contained set of operations that are
owned by your class. The member methods define what your class can do or how it
behaves. Typically, methods are given action names, such as WriteLine() or
AddNumbers(). In the case shown here, however, the class method has a special name,
Main(), which doesn’t describe an action, but does designate to the CLR that this is
the main, or first method, for your class.

The CLR calls Main() when your program starts. Main() is the entry point for your
program, and every C# program must have a Main() method.*

Method declarations are a contract between the creator of the method and the con-
sumer (user) of the method. It is likely that the creator and consumer of the method
will be the same programmer, but this doesn’t have to be so: it is possible that one
member of a development team will create the method, and another programmer
will use it.

Programs consist of methods calling one another. When a method calls another it
can pass values to the method it calls. These values are called arguments or parame-
ters, and the called method can return a value to the method that called it; the value
returned is called (cleverly) the return value.

In fact, to declare a method, you specify a return value type followed by an identifier,
followed by a set of parentheses which are either empty or contain the parameters. For
example:

int myMethod(int size)

declares a method named myMethod() that takes one parameter: an integer that will
be referred to within the method as size.

* It’s technically possible to have multiple Main() methods in C#; in that case, you use the /main command-
line switch to tell C# which class contains the Main() method that should serve as the entry point to the
program. This is highly unusual and is put here to silence those who write in to point out edge cases, as well
as to convince sensible readers never to read footnotes.

Classes, Objects, and Types | 9

A parameter is a value passed into the method. Typically, that value will be manipu-
lated in the method, which may be useful either in that method, or to whomever
called the method. It is like handing your shirt, a button, and a needle to a tailor.
The needle helps the tailor do the sewing, but the needle is unchanged. If you are
lucky, however, the relationship between the button and the shirt is changed when
the tailor is done.

Actually, there are two ways to pass a parameter to a method: by value and by refer-
ence. If you pass a parameter by value, you pass a copy, and when the method is
done, the original value (in the calling method) is unchanged. In that case, what you
are saying to the tailor is “sew a button like this one to my shirt.”

If you pass a parameter by reference, you are effectively passing the button itself.
When the called method returns, the value you passed in may well be changed (it
may be attached to the shirt!).

A method can return a (single) value (“here’s your shirt back”). In the case of
myMethod, an integer is returned. The return value type tells the consumer of the
method what kind of data the method will return when it finishes running.

Some methods don’t return a value at all; these are said to return void, which is spec-
ified by the void keyword. For example:

void myVoidMethod();

declares a method that returns void and takes no parameters. In C#, you must
always declare a return type or void.

There are two ways to get around the limitation that you can return only one value.
The first is to pass in a number of objects by reference, let the method change them,
and hey! Presto! They’re changed in the calling method. This is covered in Chapter 3.

The second is to pass in one object, but make that object a collection (clever, eh?).
Collections are covered in Chapter 9.

Comments
A C# program can also contain comments. Take a look at the first line after the
opening brace of the main method shown earlier:

// Use the system console object

The text begins with two forward slash marks (//). These designate a comment. A
comment is a note to the programmer and doesn’t affect how the program runs. C#
supports three types of comments.

The first type, just shown, indicates that all text to the right of the comment mark is
to be considered a comment, until the end of that line. This is known as a C++-style
comment.

10 | Chapter 2: Getting Started: “Hello World”

The second type of comment, known as a C-style comment, begins with an open
comment mark (/*) and ends with a closed comment mark (*/). This allows
comments to span more than one line without having to have // characters at the
beginning of each comment line, as shown in Example 2-2.

Using C-style comments also lets you place a comment in the middle of “live” code,
as shown in Example 2-3.

The programmer’s goal here is to comment out the old code, but leave it in place for
convenience. This will compile, but it is a terrible practice; the code is very difficult
to read, and thus very likely to present maintenance problems down the road. The
same block of code would be far easier to read written like this:

class Hello
{
 static void Main()
 {
 /* ("Hello C# 2.0"); */

 System.Console.WriteLine ("Hello C# 3.0");
 }
}

with the commented code above (or below, or to the right of) the live code.

Although you can’t nest C++-style (//) comments, it is possible to nest C++-style
comments within C-style (/* */) comments. For this reason, it is common to use
C++-style comments whenever possible, and to reserve the C-style comments for
“commenting out” blocks of code.

Example 2-2. Illustrating multiline comments

class Hello
{
 static void Main()
 {
 /* Use the system console object
 as explained in the text */
 System.Console.WriteLine("Hello World");
 }
}

Example 2-3. A comment mid-code

class Hello
{
 static void Main()
 {
 System.Console.WriteLine /*("Hello C# 2.0")*/ ("Hello C# 3.0");
 }
}

Classes, Objects, and Types | 11

The third and final type of comment that C# supports is used to associate external
XML-based documentation with your code.

Console Applications
“Hello World” is an example of a console program. A console application typically
has no graphical user interface (GUI); there are no listboxes, buttons, windows, and
so forth. Text input and output are handled through the standard console (typically
a command or DOS window on your PC). Sticking to console applications for now
helps simplify the early examples in this book, and keeps the focus on the language
itself. In later chapters, we’ll turn our attention to Windows and web applications,
and at that time we’ll focus on the Visual Studio 2008 GUI design tools.

All that the Main() method does in this simple example is write the text “Hello
World” to the standard output (typically a command prompt window). Standard out-
put is managed by an object named Console. This Console object has a method called
WriteLine() that takes a string (a set of characters) and writes it to the standard out-
put. When you run this program, a command or DOS screen will display the words
“Hello World.”

You invoke a method with the dot operator (.). Thus, to call the Console WriteLine()
method, you write Console.WriteLine(...), filling in the string to be printed.

Namespaces
Console is only one of a tremendous number of useful types that are part of the .NET
Framework Class Library (FCL). Each class has a name, and thus the FCL contains
thousands of names, such as ArrayList, Hashtable, FileDialog, DataException,
EventArgs, and so on. There are hundreds, thousands, even tens of thousands of names.

This presents a problem. No developer can possibly memorize all the names that the
.NET Framework uses, and sooner or later you are likely to create an object and give
it a name that has already been used. What will happen if you purchase a Hashtable
class from another vendor, only to discover that it conflicts with the Hashtable class
that .NET provides? Remember, each class in C# must have a unique name, and you
typically can’t rename classes in a vendor’s code!

The solution to this problem is the use of namespaces. A namespace restricts a
name’s scope, making it meaningful only within the defined namespace.

Assume that I tell you that Jim is an engineer. The word “engineer” is used for many
things in English, and can cause confusion. Does he design buildings? Write soft-
ware? Run a train?*

* Apologies to our friends across the pond, where the person who drives a locomotive is called a “train driver”
rather than an “engineer.”

12 | Chapter 2: Getting Started: “Hello World”

In spoken English, I might clarify by saying “he’s a scientist,” or “he’s a train engi-
neer.” A C# programmer could tell you that Jim is a science.engineer rather than a
train.engineer. The namespace (in this case, science or train) restricts the scope of
the word that follows. It creates a “space” in which that name is meaningful.

Further, it might happen that Jim is not just any kind of science.engineer. Perhaps
Jim graduated from MIT with a degree in software engineering, not civil engineering
(are civil engineers especially polite?). Thus, the object that is Jim might be defined
more specifically as a science.software.engineer. This classification implies that the
namespace software is meaningful within the namespace science, and that engineer
in this context is meaningful within the namespace software. If later you learn that
Charlotte is a transportation.train.engineer, you will not be confused as to what
kind of engineer she is. The two uses of engineer can coexist, each within its own
namespace.

Similarly, if it turns out that .NET has a Hashtable class within its System.Collections
namespace, and that we have also created a Hashtable class within a ProgCSharp.
DataStructures namespace, there is no conflict because each exists in its own
namespace.

In Example 2-1, the Console class’s name is identified as being in the System
namespace by using the code:

System.Console.WriteLine();

The Dot Operator (.)
In Example 2-1 the dot operator (.) is used to access a method (and data) in a class
(in this case, the method WriteLine()), and to restrict the class name to a specific
namespace (in this case, to locate Console within the System namespace). This works
well because in both cases we are “drilling down” to find the exact thing we want.
The top level is the System namespace (which contains all the System objects that the
FCL provides); the Console type exists within that namespace, and the WriteLine()
method is a member function of the Console type.

In many cases, namespaces are hierarchical. For example, the System namespace con-
tains a number of subnamespaces such as Data, Configuration, Collections, and so
forth, and the Collections namespace itself is divided into multiple subnamespaces.

Namespaces can help you organize and compartmentalize your types. When you
write a complex C# program, you might want to create your own namespace hierar-
chy, and there is no limit to how deep this hierarchy can be. The goal of namespaces
is to help you divide and conquer the complexity of your object hierarchy.

Classes, Objects, and Types | 13

The using Directive
Rather than writing the word System before Console, you could specify that you will
be using types from the System namespace by writing the directive:

using System;

at the top of the listing, as shown in Example 2-4.

Notice that the using System directive is placed before the Hello class definition.
Visual Studio 2008 defaults to including four using statements in every console appli-
cation (System, System.Collections.Generic, System.Linq, and System.Text).

Although you can designate that you are using the System namespace, you can’t
designate that you are using the System.Console object, as you can with some lan-
guages. Example 2-5 won’t compile.

This generates the compile error:

A using namespace directive can only be applied
to namespaces; 'System.Console' is a type not a namespace

If you are using Visual Studio 2008, you will know that you’ve made a
mistake because when you type using System followed by the dot,
Visual Studio 2008 will provide a list of valid namespaces, and Console
won’t be among them.

The using directive can save a great deal of typing, but it can undermine the advan-
tages of namespaces by polluting the scope with many undifferentiated names. A

Example 2-4. The using directive

using System;
class Hello
{
 static void Main()
 {
 // Console from the System namespace
 Console.WriteLine("Hello World");
 }
}

Example 2-5. Code that doesn’t compile (not legal C#)

using System.Console;
class Hello
{
 static void Main()
 {
 WriteLine("Hello World");
 }
}

14 | Chapter 2: Getting Started: “Hello World”

common solution is to use the using directive with the built-in namespaces and with
your own corporate namespaces, but perhaps not with third-party components.

Case Sensitivity
C# is case-sensitive, which means that writeLine is not the same as WriteLine, which
in turn is not the same as WRITELINE. Unfortunately, unlike in VB, the C# develop-
ment environment will not fix your case mistakes; if you write the same word twice
with different cases, you might introduce a tricky-to-find bug into your program.

A handy trick is to hover over a name that is correct in all but case and
then to press Ctrl-Space. The AutoComplete feature of IntelliSense
will fix the case for you.

To prevent such a time-wasting and energy-depleting mistake, you should develop
conventions for naming your variables, functions, constants, and so on. The conven-
tion in this book is to name variables with camel notation (e.g., someVariableName),
and to name classes, namespaces, functions, constants, and properties with Pascal
notation (e.g., SomeFunction).

The only difference between camel and Pascal notation is that in Pas-
cal notation, names begin with an uppercase letter. Microsoft has
developed code style guidelines that make a very good starting point
(and often are all you need). You can download them from http://
msdn2.microsoft.com/en-us/library/ms229002(VS.90).aspx.

The static Keyword
The Main() method shown in Example 2-1 has one more designation. Just before the
return type declaration void (which, you will remember, indicates that the method
doesn’t return a value) you’ll find the keyword static:

static void Main()

The static keyword indicates that you can invoke Main() without first creating an
object of type Hello. This somewhat complex issue will be considered in much
greater detail in subsequent chapters. One of the problems with learning a new
computer language is you must use some of the advanced features before you fully
understand them. For now, you can treat the declaration of the Main() method as
tantamount to magic.

Developing “Hello World”
There are at least two ways to enter, compile, and run the programs in this book: use
the Visual Studio 2008 IDE, or use a text editor and a command-line compiler (along
with some additional command-line tools to be introduced later).

Developing “Hello World” | 15

Although you can develop software outside Visual Studio 2008, the IDE provides
enormous advantages. These include indentation support, IntelliSense word comple-
tion, color coding, and integration with the help files. Most important, the IDE
includes a powerful debugger and a wealth of other tools.

This book tacitly assumes that you’ll be using Visual Studio 2008. However, the
tutorials focus more on the language and the platform than on the tools. You can copy
all the examples into a text editor such as Windows Notepad or Emacs, save them as
text files with the extension .cs, and compile them with the C# command-line
compiler that is distributed with the .NET Framework SDK (or a .NET-compatible
development tool chain such as Mono or Microsoft’s Shared Source CLI). Note that
some examples in later chapters use Visual Studio 2008 tools for creating Windows
Forms and Web Forms, but even these you can write by hand in Notepad if you are
determined to do things the hard way.

Editing “Hello World”
To create the “Hello World” program in the IDE, select Visual Studio 2008 from
your Start menu or a desktop icon, and then choose File ➝ New ➝ Project from the
menu toolbar. This will invoke the New Project window. (If you are using Visual
Studio for the first time, the New Project window might appear without further
prompting.) Figure 2-1 shows the New Project window.

Figure 2-1. Creating a C# console application in Visual Studio 2008

16 | Chapter 2: Getting Started: “Hello World”

To open your application, select Visual C# in the “Project types” window, and choose
Console Application in the Templates window (if you use the Express Edition of Visual
C#, you don’t need to perform that first step; go directly to the console application).

You can now enter a name for the project (e.g., HelloWorld), and select a directory in
which to store your files. You may also enter the name of the solution containing the
project, and select whether you would like Visual Studio 2008 to create a directory
for the new solution for you. Click OK, and a new window will appear in which you
can enter the code in Example 2-1, as shown in Figure 2-2.

Notice that Visual Studio 2008 creates a namespace based on the project name
you’ve provided (Hello), and adds using directives for System, System.Collections.
Generic, System.Linq, and System.Text because nearly every program you write will
need types from those namespaces.

Visual Studio 2008 creates a class named Program, which you are free to rename.
When you rename the class, it’s a good idea to rename the file as well (Class1.cs). If
you rename the file, Visual Studio will automatically rename the class for you. To
reproduce Example 2-1, for instance, rename the Program.cs file (listed in the Solu-
tion Explorer window) to hello.cs and change the name of Program to Hello (if you do
this in the reverse order, Visual Studio will rename the class to hello).

To rename, click on the filename and wait a moment, or right-click
and choose Rename.

Figure 2-2. The editor, opened to your new project

Developing “Hello World” | 17

Finally, Visual Studio 2008 creates a program skeleton to get you started. To repro-
duce Example 2-1, remove the arguments (string[] args) from the Main() method.
Then, copy the following two lines into the body of Main():

// Use the system console object
System.Console.WriteLine("Hello World");

If you aren’t using Visual Studio 2008, open Notepad, type in the code from
Example 2-1, and save the file as a text file named hello.cs.

Compiling and Running “Hello World”
There are many ways to compile and run the “Hello World” program from within
Visual Studio. Typically, you can accomplish every task by choosing commands from
the Visual Studio menu toolbar, by using buttons, and, in many cases, by using key-
combination shortcuts.

You can set keyboard shortcuts by going to Tools ➝ Options ➝

Keyboard. This book assumes you have chosen the default settings.

For example, to compile the “Hello World” program, press Ctrl-Shift-B or choose
Build ➝ Build Solution. As an alternative, you can click the Build button on the Build
toolbar (you may need to right-click the toolbar to show the Build toolbar). The
Build toolbar is shown in Figure 2-3; the Build button is leftmost and highlighted.

To run the “Hello World” program without the debugger, you can press Ctrl-F5 on
your keyboard, choose Debug ➝ Start Without Debugging from the IDE menu tool-
bar, or press the Start Without Debugging button on the IDE Build toolbar, as
shown in Figure 2-4 (you may need to customize your toolbar to make this button
available). You can run the program without first explicitly building it; depending on
how your options are set (Tools ➝ Options), the IDE will save the file, build it, and
run it, possibly asking you for permission at each step.

Figure 2-3. Build toolbar

Figure 2-4. Start Without Debugging button

18 | Chapter 2: Getting Started: “Hello World”

We strongly recommend that you spend some time exploring the
Visual Studio 2008 development environment. This is your principal
tool as a .NET developer, and you want to learn to use it well. Time
invested up front in getting comfortable with Visual Studio will pay for
itself many times over in the coming months. Go ahead, put the book
down, and look at it. I’ll wait for you.

Using the Visual Studio 2008 Debugger
Arguably, the single most important tool in any development environment is the
debugger. The Visual Studio debugger is very powerful, and it will be well worth
whatever time you put in to learning how to use it well. With that said, the funda-
mentals of debugging are very simple. The three key skills are:

• How to set a breakpoint and how to run to that breakpoint

• How to step into and over method calls

• How to examine and modify the value of variables, member data, and so forth

This chapter doesn’t reiterate the entire debugger documentation, but these skills are
so fundamental that it does provide a crash (pardon the expression) course.

The debugger can accomplish the same thing in many ways, typically via menu
choices, buttons, and so forth.

For example, one wonderful debugging tool is a breakpoint: an instruction to the
debugger to run your application to a particular line in the code and then stop. The
simplest way to set a breakpoint is to click in the left margin. The IDE marks your
breakpoint with a red dot, as shown in Figure 2-5.

Discussing the debugger requires code examples. The code shown
here is from Chapter 5, and you aren’t expected to understand how it
works yet (though if you program in C++ or Java, you’ll probably get
the gist of it).

To run the debugger, you can choose Debug ➝ Start, or just press F5. The program
then compiles and runs to the breakpoint, at which time it stops, and a yellow arrow
indicates the next statement for execution, as in Figure 2-6.

Figure 2-5. A breakpoint

Using the Visual Studio 2008 Debugger | 19

After you’ve hit your breakpoint, it is easy to examine the values of various objects.
For example, you can find the value of the array just by putting the cursor over it and
waiting a moment, as shown in Figure 2-7.

The debugger IDE also provides a number of useful windows, such as a Locals win-
dow that displays the values of all the local variables (see Figure 2-8).

Intrinsic types such as integers simply show their value, but objects show their type
and have a plus (+) sign. You can expand these objects to see their internal data, as
shown in Figure 2-9. You’ll learn more about objects and their internal data in
upcoming chapters.

You can step into the next method by pressing F11. Doing so steps into the
DrawWindow() method of the Window class, as shown in Figure 2-10.

You can see that the next execution statement is now WriteLine() in DrawWindow().
The Autos window has updated to show the current state of the objects.

Figure 2-6. The breakpoint hit

Figure 2-7. Showing a value

Figure 2-8. Locals window

20 | Chapter 2: Getting Started: “Hello World”

There is much more to learn about the debugger, but this brief introduction should
get you started. You can answer many programming questions by writing short dem-
onstration programs and examining them in the debugger. A good debugger is, in
some ways, the single most powerful teaching tool for a programming language.

Figure 2-9. Locals window object expanded

Figure 2-10. Stepping into a method

21

Chapter 3 CHAPTER 3

C# Language Fundamentals3

Chapter 2 demonstrated a very simple C# program. Nonetheless, that little program
was complex enough that we had to skip some of the pertinent details. This chapter
illuminates these details by delving more deeply into the syntax and structure of the
C# language itself.

In this chapter, I discuss the type system in C#, covering built-in types such as int
and bool, and user-defined types (types you create) such as classes, structs, and inter-
faces. I also cover programming fundamentals, such as how to create and use
variables and constants. I’ll then introduce enumerations, strings, identifiers, expres-
sions, and statements.

In the second part of the chapter, I’ll explain and demonstrate the use of flow con-
trol statements, using the if, switch, while, do...while, for, and foreach statements.
You’ll also learn about operators, including the assignment, logical, relational, and
mathematical operators. I’ll finish up with a short tutorial on the C# preprocessor.

Although C# is principally concerned with the creation and manipulation of objects,
it is best to start with the fundamental building blocks: the elements from which
objects are created. These include the built-in types that are an intrinsic part of the
C# language as well as the syntactic elements of C#.

Types
Every variable and object in C# has a “type.” There are built-in types (e.g., int), and
you may create your own types (e.g., Employee).

When you create an object, you declare its type, and in a statically typed language
such as C#, the compiler will “enforce” that typing, giving you an error at compile
time (rather than runtime) if you violate the typing by (for example) trying to assign
an employee object to an integer variable. This is a good thing; it cuts down on bugs
and makes for more reliable code.

22 | Chapter 3: C# Language Fundamentals

In the vast majority of cases, C# is also “manifestly” typed—which means that you
explicitly declare the type of the object. There is one exception, which is the use of
the keyword var (covered in Chapter 13). In this case, C# is able to infer the type of
the object and thus, rather than being manifest, is actually implicit.

Finally, C# is strongly typed, which means that any operation you attempt on any
object or variable must be appropriate to that type, or it will cause a compiler error.
Once again, this is a good thing; it helps identify bugs reliably at compile time.

In summary, we can say that C# is statically, manifestly, and strongly typed when
using most types, except when using the keyword var, at which time it is statically,
implicitly, and strongly typed!

Key to all of this is that it is always statically and strongly typed, which means that
you must declare your types, and the compiler will then enforce that you use your
objects according to their declared types, and this is a good thing.

The Built-In Types
The C# language itself offers the usual cornucopia of intrinsic (built-in) types you
expect in a modern language, each of which maps to an underlying type supported
by the .NET CTS. Mapping the C# primitive types to the underlying .NET types
ensures that objects you create in C# can be used interchangeably with objects cre-
ated in any other language compliant with the .NET CTS, such as Visual Basic.

Each built-in type has a specific and unchanging size. Table 3-1 lists many of the
built-in types offered by C#.

Table 3-1. C# built-in value types

Type Size (in bytes) .NET type Description

Byte 1 Byte Unsigned (values 0 to 255)

Char 2 Char Unicode characters

Bool 1 Boolean True or false

Sbyte 1 SByte Signed values (–128 to 127)

Short 2 Int16 Signed short values (–32,768 to 32,767)

Ushort 2 UInt16 Unsigned short values (0 to 65,535)

Int 4 Int32 Signed integer values between –2,147,483,648 and 2,147,483,647

Uint 4 UInt32 Unsigned integer values between 0 and 4,294,967,295

Float 4 Single Floating-point number. Holds values from approximately +/–1.5 x 10-45 to
approximately +/–3.4 x 1038 with seven significant figures

Double 8 Double Double-precision floating-point. Holds values from approximately +/–5.0 x
10-324 to approximately +/–1.8 x 10308 with 15 to 16 significant figures

decimal 16 Decimal Fixed-precision value up to 28 digits and the position of the decimal point;
this is typically used in financial calculations; requires the suffix “m” or “M”

Types | 23

In addition to these primitive types, C# has two other value types: enum (which I’ll
explain later in this chapter) and struct (discussed in Chapter 4).

Choosing a built-in type

Typically, you decide which size integer to use (short, int, or long) based on the
magnitude of the value you want to store. For example, a ushort can only hold values
from 0 to 65,535, whereas a uint can hold values from 0 to 4,294,967,295.

With that said, memory is fairly cheap, and programmer time is increasingly expen-
sive; so, most of the time you’ll simply declare your variables to be of type int, unless
there is a good reason to do otherwise.

When you need to create numbers that represent noninteger values (e.g., 5.7), you’ll
choose among float, double, and decimal, depending on the size and degree of preci-
sion you need. For most small fractional numbers, float is fine.

Long 8 Int64 Signed integers from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Ulong 8 UInt64 Unsigned integers ranging from 0 to 0xffffffffffffffff

The Stack and the Heap
A stack is a data structure used to store items on a last-in first-out basis (like a stack of
dishes at the buffet line in a restaurant). The stack refers to an area of memory managed
by the processor, on which the local variables are stored.

The heap is an initially undifferentiated area of memory that can be referred to by items
placed on the stack.

Variables (discussed shortly), whose type is one of the intrinsic types, are usually
placed on the stack. Other variables, of types supplied by the Framework or of types
you define, are called objects, and are usually created on the heap and referred to by a
variable on the stack. For this reason, they are called reference types.

When a function is called, it is allocated a region of memory on the stack, known as a
stack frame. This is deallocated when the function returns, and objects that were in the
stack frame are said to “go out of scope” and are destroyed.

Objects on the heap are automatically destroyed (known as garbage collection) some-
time after the final reference to them is destroyed. Thus, if you create an instance of a
user-defined reference type, the variable that refers to it will be destroyed when the
stack frame goes away, and if that is the only reference to the object that was created
on the heap, it will be cleaned up by the garbage collector.

Table 3-1. C# built-in value types (continued)

Type Size (in bytes) .NET type Description

24 | Chapter 3: C# Language Fundamentals

The compiler assumes that any number with a decimal point is a dou-
ble unless you tell it otherwise. You must therefore use the f suffix for
a float, and the m for a decimal, but no other suffixes are required for
other types.

To create a float, follow the number with the letter f:

float someFloat = 57f;
;

The char type represents a Unicode character. char literals can be simple, Unicode,
or escape characters enclosed by single quote marks. For example, A is a simple
character, whereas \u0041 is a Unicode character. Escape characters are special two-
character tokens that have special meaning to the compiler in which the first character
is a backslash. For example, \t is a horizontal tab. Table 3-2 shows the common
escape characters.

Converting built-in types

Objects of one type can be converted into objects of another type either implicitly or
explicitly. Implicit conversions happen automatically; the compiler takes care of it
for you.

Implicit conversions happen when you assign a value to a variable of a different type,
and the conversion is guaranteed not to lose information. For example, you can
implicitly cast from a short (two bytes) to an int (four bytes) by assigning the value
in the former to a variable of the latter type. No matter what value is in the short, it
is not lost when converted to an int:

Create a variable of type short named x and initialize with the value 5
short x = 5;

Table 3-2. Common escape characters

Char Meaning

\' Single quote

\" Double quote

\\ Backslash

\0 Null

\a Alert

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

Variables and Constants | 25

// create an integer variable y and initialize with the value held in x
int y = x; // implicit conversion

If you convert the other way, however, you certainly can lose information. If the
value in the int is greater than 32,767, it will be truncated in the conversion. The
compiler will not perform an implicit conversion from int to short:

short x;
int y = 500;
x = y; // won't compile

Explicit conversions happen when you “cast” a value to a different type. The seman-
tics of an explicit conversion are “Hey! Compiler! I know what I’m doing.” This is
sometimes called “hitting it with the big hammer,” and can be very useful or very
painful, depending on whether your thumb is in the way of the nail. You must
explicitly convert using the cast operator (you place the type you want to convert to
in parentheses before the variable you’re converting):

short x;
int y = 500;
x = (short) y; // OK

All the intrinsic types define their own conversion rules.

At times, it is convenient to define conversion rules for your user-
defined types, as I discuss in Chapter 6.

Variables and Constants
A variable is a storage location within a method. In the preceding examples, both x
and y are variables. You can assign values to your variables, and you can change
those values programmatically.

You create a variable by declaring its type and then giving it a name. You can initial-
ize the variable with a value when you declare it, and you can assign a new value to
that variable at any time, changing the value held in the variable. Example 3-1 illus-
trates this.

Example 3-1. Initializing and assigning a value to a variable

using System;
using System.Collections.Generic;
using System.Text;

namespace InitializingVariables
{
 class Program
 {
 static void Main(string[] args)

26 | Chapter 3: C# Language Fundamentals

Visual Studio creates a namespace and using directive for every pro-
gram. To save space, I’ve omitted these from most of the code exam-
ples after this one.

Here, you initialize the variable myInt to the value 7, display that value, reassign the
variable with the value 5, and display it again.

VB 6 programmers take note: in C#, the datatype comes before the
variable name.

 {

 int myInt = 7;
 System.Console.WriteLine("Initialized, myInt: {0}",
 myInt);

 myInt = 5;
 System.Console.WriteLine("After assignment, myInt: {0}",
 myInt);

 }
 }
}

Output:
Initialized, myInt: 7
After assignment, myInt: 5

WriteLine()
The .NET Framework provides a useful method for writing output to the screen. The
details of this method, System.Console.WriteLine(), will become clearer as we
progress through the book, but the fundamentals are straightforward. Call the method
as shown in Example 3-1, passing in a string that you want printed to the console (the
command prompt or shell window) and, optionally, parameters that will be substi-
tuted. In the following example:

System.Console.WriteLine("After assignment, myInt: {0}", myInt);

the string "After assignment, myInt:" is printed as is, followed by the value in the vari-
able myInt. The location of the substitution placeholder {0} specifies where the value of
the first output variable, myInt, is displayed—in this case, at the end of the string. You’ll
see a great deal more about WriteLine() in coming chapters.

Example 3-1. Initializing and assigning a value to a variable (continued)

Variables and Constants | 27

Definite Assignment
C# requires definite assignment, and one of the consequences of this requirement is
that variables must be initialized or assigned to before they are used. To test this rule,
change the line that initializes myInt in Example 3-1 to:

int myInt;

and save the revised program shown in Example 3-2.

When you try to compile this listing, the C# compiler will display an error message,
as shown in Figure 3-1.

Double-clicking the error message will bring you to the problem in the code.

It isn’t legal to use an uninitialized variable in C#. Does this mean you must initial-
ize every variable in a program? In fact, no: you don’t actually need to initialize a
variable, but you must assign a value to it before you attempt to use it. Example 3-3
illustrates a correct program.

Example 3-2. Using an uninitialized variable

using System;

class UninitializedVariable
{
 static void Main(string[] args)
 {
 int myInt;
 System.Console.WriteLine("Uninitialized, myInt: {0}", myInt);
 myInt = 5;
 System.Console.WriteLine("Assigned, myInt: {0}", myInt);

 }
}

Figure 3-1. Error message resulting from using an unassigned variable

Example 3-3. Assigning without initializing

using System;

class AssigningWithoutInitializing
{
 static void Main(string[] args)
 {
 int myInt;
 myInt = 7;

28 | Chapter 3: C# Language Fundamentals

Constants
A constant is an object whose value can’t be changed. Variables are a powerful tool,
but there are times when you want to use a defined value, one whose value you want
to ensure remains constant. For example, you might need to work with the Fahrenheit
freezing and boiling points of water in a program simulating a chemistry experiment.
Your program will be clearer if you name the variables that store the values
FreezingPoint and BoilingPoint, but you don’t want to permit their values to be
reassigned. How do you prevent reassignment? The answer is to use a constant.

Constants come in three flavors: literals, symbolic constants, and enumerations. In
this assignment:

x = 32;

the value 32 is a literal constant. The value of 32 is always 32. You can’t assign a new
value to 32; you can’t make 32 represent the value 99 no matter how you might try.

Symbolic constants assign a name to a constant value. You declare a symbolic con-
stant using the const keyword and the following syntax:

const type identifier = value;

You must initialize a constant when you declare it, and once initialized, it can’t be
altered. For example:

const int FreezingPoint = 32;

In this declaration, 32 is a literal constant, and FreezingPoint is a symbolic constant
of type int. Example 3-4 illustrates the use of symbolic constants.

 System.Console.WriteLine("Assigned, myInt: {0}", myInt);
 myInt = 5;
 System.Console.WriteLine("Reassigned, myInt: {0}", myInt);

 }
}

Example 3-4. Using symbolic constants

using System;

namespace SymbolicConstants
{
 class SymbolicConstants
 {
 static void Main(string[] args)
 {
 const int FreezingPoint = 32; // degrees Fahrenheit
 const int BoilingPoint = 212;

Example 3-3. Assigning without initializing (continued)

Variables and Constants | 29

Example 3-4 creates two symbolic integer constants: FreezingPoint and BoilingPoint.
As a matter of style, constant names are typically written in Pascal notation or all caps,
but the language certainly does not require this (see the sidebar, “Camel and Pascal
Notation”).

These constants serve the same purpose as always using the literal values 32 and 212
for the freezing and boiling points of water in expressions that require them, but
because these constants have names, they convey far more meaning. Also, if you
decide to switch this program to Celsius, you can reinitialize these constants at com-
pile time, to 0 and 100, respectively; all the rest of the code ought to continue to work.

To prove to yourself that the constant can’t be reassigned, try to uncomment the last
line of the program (shown in bold). When you recompile, you should receive the
error shown in Figure 3-2.

 System.Console.WriteLine("Freezing point of water: {0}",
 FreezingPoint);
 System.Console.WriteLine("Boiling point of water: {0}",
 BoilingPoint);

 //BoilingPoint = 212;

 }
 }
}

Camel and Pascal Notation
Camel notation is so named because each word in the identifier is put together without
spaces, but with the first letter of each word capitalized, looking like the humps of a
camel. In camel notation, the first letter of the identifier is lowercase. Here is an example:

myCamelNotationIdentifier

Pascal notation is exactly like camel notation, except that the initial letter is uppercase.
Here is an example:

MyPascalNotationIdentifier

Figure 3-2. Warning that occurs when you try to reassign a constant

Example 3-4. Using symbolic constants (continued)

30 | Chapter 3: C# Language Fundamentals

Enumerations
Enumerations can provide a powerful alternative to constants. An enumeration is a
distinct value type, consisting of a set of named constants (called the enumerator
list).

In Example 3-4, you created two related constants:

const int FreezingPoint = 32;
const int BoilingPoint = 212;

You might wish to add a number of other useful constants to this list, such as:

const int LightJacketWeather = 60;
const int SwimmingWeather = 72;
const int WickedCold = 0;

This process is somewhat cumbersome, and there is no logical connection between
these various constants. C# provides the enumeration to solve these problems:

enum Temperatures
{
 WickedCold = 0,
 FreezingPoint = 32,
 LightJacketWeather = 60,
 SwimmingWeather = 72,
 BoilingPoint = 212,
}

Every enumeration has an underlying type, which can be any integral type (integer,
short, long, etc.) except for char. The technical definition of an enumeration is:

[attributes] [modifiers] enum identifier
 [:base-type] {enumerator-list};

We consider the optional attributes and modifiers later in this book. For now, just
focus on the rest of this declaration. An enumeration begins with the keyword enum,
which is generally followed by an identifier, such as:

enum Temperatures

The base type is the underlying type for the enumeration. If you leave out this
optional value (and often you will), it defaults to int, but you are free to use any of
the integral types (e.g., ushort, long) except for char. For example, the following frag-
ment declares an enumeration of unsigned integers (uint):

enum ServingSizes :uint
{
 Small = 1,
 Regular = 2,
 Large = 3
}

Notice that an enum declaration ends with the enumerator list. The enumerator list
contains the constant assignments for the enumeration, each separated by a comma.

Variables and Constants | 31

Example 3-5 rewrites Example 3-4 to use an enumeration.

As you can see, an enum must be qualified by its identifier (e.g., Temperatures.
WickedCold). By default, an enumeration value is displayed using its symbolic name
(such as BoilingPoint or FreezingPoint). When you want to display the value of an
enumerated constant, you must cast the constant to its underlying type (int). The
integer value is passed to WriteLine, and that value is displayed.

Each constant in an enumeration corresponds to a numerical value—in this case, an
integer. If you don’t specifically set it otherwise, the enumeration begins at 0, and
each subsequent value counts up from the previous one.

If you create the following enumeration:

enum SomeValues
{
 First,
 Second,
 Third = 20,
 Fourth
}

the value of First will be 0, Second will be 1, Third will be 20, and Fourth will be 21.

An explicit conversion is required to convert between an enum type and an integral
type.

Example 3-5. Using enumerations to simplify your code

using System;

namespace EnumeratedConstants
{
 class EnumeratedConstants
 {

 enum Temperatures
 {
 WickedCold = 0,
 FreezingPoint = 32,
 LightJacketWeather = 60,
 SwimmingWeather = 72,
 BoilingPoint = 212,
 }

 static void Main(string[] args)
 {
 System.Console.WriteLine("Freezing point of water: {0}",
 (int)Temperatures.FreezingPoint);
 System.Console.WriteLine("Boiling point of water: {0}",
 (int)Temperatures.BoilingPoint);
 }
 }
}

32 | Chapter 3: C# Language Fundamentals

Strings
It is nearly impossible to write a C# program without creating strings. A string object
holds a series of characters.

You declare a string variable using the string keyword much as you would create an
instance of any object:

string myString;

You create a string literal by placing double quotes around a string of letters:

"Hello World"

It is common to initialize a string variable with a string literal:

string myString = "Hello World";

We cover strings in much greater detail in Chapter 10.

Identifiers
An identifier is just the name the programmer chooses for the types, methods, vari-
ables, constants, objects, and so on in the program. An identifier must begin with a
letter or an underscore, and remember that identifiers are case-sensitive, so C# treats
someName and SomeName as two different identifiers.

It is normally not good programming practice to create two variables or
classes with names that are differentiated only by capitalization.
Although the compiler will not be confused, the programmer will be,
and the cost of attempting to maintain such a program can be very high.

The exception to this is the common practice of having a member vari-
able (explained in Chapter 4) and a property with the same name,
differentiated only by using camel notation for the former, and Pascal
notation for the latter.

The Microsoft naming conventions suggest using camel notation (initial lowercase,
such as someVariable) for variable names, and Pascal notation (initial uppercase,
such as SomeMethodOrProperty) for method names and most other identifiers.

Microsoft recommends against Hungarian notation (e.g., iSomeInteger)
and underscores (e.g., Some_Value). Microsoft’s Charles Simonyi (who
was born September 10, 1948, in Budapest) invented Hungarian nota-
tion, and it was very useful when languages were limited to a small
number of types.

Along with nearly 2 billion other interesting articles, Wikipedia (http://
en.wikipedia.org) provides extensive articles on Hungarian notation, on
Charles Simonyi, and on Richard Dawkins, who holds the Charles
Simonyi Chair for Public Understanding of Science at Oxford
University.

Statements | 33

Whitespace
In the C# language, spaces, tabs, and newlines are considered to be “whitespace” (so
named because you see only the white of the underlying “page”). Extra whitespace is
generally ignored in C# statements. You can write:

myVariable = 5;

or:

myVariable = 5;

and the compiler will treat the two statements as identical.

The key word in the preceding rule is “extra” whitespace. Some whitespace is not
extra; it is required to allow the compiler to differentiate one word from another.
Thus, if you were to enter:

int myVariable = 5; // no problem

or:

int myVariable=5; // no problem

both would compile, because the spaces between the identifier myVariable, the
assignment operator (=), and the literal value 5 are “extra.” If, however, you were to
enter:

intMyVariable=5; // error

you would receive a compiler error, because the space between the keyword int and
the identifier myVariable is not extra, it is required.

Another exception to the “whitespace is ignored” rule is within strings. If you write:

Console.WriteLine("Hello World");

each space between “Hello” and “World” is treated as another character in the
string.

Most of the time, the use of whitespace is intuitive. The key is to use whitespace to
make the program more readable to the programmer; the compiler is typically
indifferent.

VB programmers take note: in C# the end-of-line has no special signifi-
cance; you end statements with semicolons, not newline characters.
There is no line-continuation character because none is needed.

Statements
In C#, a complete program instruction is called a statement. Programs consist of
sequences of C# statements. Virtually every statement ends with a semicolon (;). For
example:

34 | Chapter 3: C# Language Fundamentals

int x; // a statement
x = 23; // another statement
int y = x; // yet another statement

C# statements are evaluated in order. The compiler starts at the beginning of a state-
ment list and makes its way to the end. This would be entirely straightforward, and
terribly limiting, were it not for branching. There are two types of branches in a C#
program: unconditional branches and conditional branches.

Program flow is also affected by looping and iteration statements, which are signaled
by the keywords for, while, do, in, and foreach. I discuss iteration later in this chap-
ter. For now, let’s consider some of the more basic methods of conditional and
unconditional branching.

Unconditional Branching Statements
You can create an unconditional branch in one of two ways. The first way is by
invoking a method. When the compiler encounters the name of a method, it stops
execution in the current method and branches to the newly “called” method. When
that method returns a value, execution picks up in the original method on the line
just below the method call. Example 3-6 illustrates.

Program flow begins in Main() and proceeds until SomeMethod() is invoked (invok-
ing a method is also referred to as “calling” the method). At that point, program flow

Example 3-6. Calling a method

using System;

namespace CallingAMethod
{
 class CallingAMethod
 {
 static void Main()
 {
 Console.WriteLine("In Main! Calling SomeMethod()...");
 SomeMethod();
 Console.WriteLine("Back in Main().");
 }
 static void SomeMethod()
 {
 Console.WriteLine("Greetings from SomeMethod!");
 }
 }
}
Output:
In Main! Calling SomeMethod()...
Greetings from SomeMethod!
Back in Main().

Statements | 35

branches to the method. When the method completes, program flow resumes at the
next line after the call to that method.

The second way to create an unconditional branch is with one of the unconditional
branch keywords: goto, break, continue, return, or throw. I provide additional
information about the first three jump statements later in this chapter. The return
statement returns control to the calling method. I discuss the final statement, throw,
in Chapter 11.

Conditional Branching Statements
A conditional branch is created by a conditional statement, which is signaled by a
keyword such as if, else, or switch. A conditional branch occurs only if the condi-
tion expression evaluates true.

C and C++ programmers take note: unlike C and C++, in which any
expression can be used in a conditional, C# requires that all condi-
tional expressions evaluate to a Boolean value.

if...else statements

if...else statements branch based on a condition. The condition is an expression,
tested in the head of the if statement. If the condition evaluates true, the statement
(or block of statements) in the body of the if statement is executed.

if statements may contain an optional else statement. The else statement is exe-
cuted only if the expression in the head of the if statement evaluates false:

if (expression)
statement1

[else
statement2]

This is the kind of if statement description you are likely to find in your compiler
documentation. It shows you that the if statement takes a Boolean expression (an
expression that evaluates true or false) in parentheses, and executes statement1 if the
expression evaluates true. Note that statement1 can actually be a block of statements
within braces.

You can also see that the else statement is optional, as it is enclosed in square brackets.

Square brackets are used in the documentation to indicate that the
expression is optional. Parentheses (in the if statement) are not part of
the documentation, they are actually required in the code.

Although this gives you the syntax of an if statement, an illustration will make its
use clear. See Example 3-7.

36 | Chapter 3: C# Language Fundamentals

In Example 3-7, the first if statement tests whether valueOne is greater than
valueTwo. The relational operators such as greater than (>), less than (<), and equal to
(==) are fairly intuitive to use.

The test of whether valueOne is greater than valueTwo evaluates false (because valueOne
is 10 and valueTwo is 20, so valueOne is not greater than valueTwo). The else statement
is invoked, printing the statement:

ValueTwo: 20 is larger than ValueOne: 10

Example 3-7. if...else statements

using System;
class Values
{
 static void Main()
 {
 int valueOne = 10;
 int valueTwo = 20;

 if (valueOne > valueTwo)
 {
 Console.WriteLine(
 "ValueOne: {0} larger than ValueTwo: {1}",
 valueOne, valueTwo);
 }
 else
 {
 Console.WriteLine(
 "ValueTwo: {0} larger than ValueOne: {1}",
 valueTwo,valueOne);
 }

 valueOne = 30; // set valueOne higher

 if (valueOne > valueTwo)
 {
 valueTwo = valueOne + 1;

 Console.WriteLine("\nSetting valueTwo to valueOne value, ");
 Console.WriteLine("and incrementing ValueOne.\n");
 Console.WriteLine("ValueOne: {0} ValueTwo: {1}",
 valueOne, valueTwo);
 }
 else
 {
 valueOne = valueTwo;
 Console.WriteLine("Setting them equal. ");
 Console.WriteLine("ValueOne: {0} ValueTwo: {1}",
 valueOne, valueTwo);
 }
 }
}

Statements | 37

The second if statement evaluates true and all the statements in the if block are
evaluated, causing two lines to print:

Setting valueTwo to valueOne value,
and incrementing ValueOne.

ValueOne: 31 ValueTwo: 30

Nested if statements

It is possible, and not uncommon, to nest if statements to handle complex condi-
tions. For example, suppose you need to write a program to evaluate the temperature,
and specifically to return the following types of information:

• If the temperature is 32 degrees or lower, the program should warn you about
ice on the road.

• If the temperature is exactly 32 degrees, the program should tell you that there
may be ice patches.

There are many good ways to write this program. Example 3-8 illustrates one
approach, using nested if statements.

Statement Blocks
You can substitute a statement block anywhere that C# expects a statement. A
statement block is a set of statements surrounded by braces.

Thus, where you might write:

if (someCondition)
 someStatement;

you can instead write:

if(someCondition)
{
 statementOne;
 statementTwo;
 statementThree;
}

Example 3-8. Nested if statements

using System;
using System.Collections.Generic;
using System.Text;

namespace NestedIf
{
 class NestedIf
 {

38 | Chapter 3: C# Language Fundamentals

The logic of Example 3-8 is that it tests whether the temperature is less than or equal
to 32. If so, it prints a warning:

if (temp <= 32)
{
 Console.WriteLine("Warning! Ice on road!");

The program then checks whether the temp is equal to 32 degrees. If so, it prints one
message; if not, the temp must be less than 32, and the program prints the second
message. Notice that this second if statement is nested within the first if, so the
logic of the else is “since it has been established that the temp is less than or equal to
32, and it isn’t equal to 32, it must be less than 32.”

switch statements: an alternative to nested ifs

Nested if statements can be hard to read, hard to get right, and hard to debug when
used to excess (do not operate heavy machinery when using more than six).

When you have a complex set of choices to make, the switch statement may be a
more readable alternative. The logic of a switch statement is “pick a matching value
and act accordingly”:

switch (expression)
{
case constant-expression:
statement
jump-statement

 [default: statement]
}

 static void Main()
 {
 int temp = 32;

 if (temp <= 32)
 {
 Console.WriteLine("Warning! Ice on road!");
 if (temp == 32)
 {
 Console.WriteLine(
 "Temp exactly freezing, beware of water.");
 }
 else
 {
 Console.WriteLine("Watch for black ice! Temp: {0}", temp);
 } // end else
 } // end if (temp <= 32)
 } // end main
 } // end class
} // end namespace

Example 3-8. Nested if statements (continued)

Statements | 39

As you can see, like an if statement, the expression is put in parentheses in the head
of the switch statement. Each case statement then requires a constant expression;
that is, a literal or symbolic constant or an enumeration. If a case is matched, the
statement(s) associated with that case is executed. This must be followed by a jump
statement. Typically, the jump statement is break, which transfers execution out of
the switch. An alternative is a goto statement, typically used to jump into another
case, as Example 3-9 illustrates.

All Operators Aren’t Created Equal
A closer examination of the second if statement in Example 3-8 reveals a common
potential problem. This if statement tests whether the temperature is equal to 32:

if (temp == 32)

In C and C++, there is an inherent danger in this kind of statement. It’s not uncommon
for novice programmers to use the assignment operator rather than the equals opera-
tor, instead creating the statement:

if (temp = 32)

This mistake would be difficult to notice, and the result would be that 32 was assigned
to temp, and 32 would be returned as the value of the assignment statement. Because
any nonzero value evaluates true in C and C++ the if statement would return true. The
side effect would be that temp would be assigned a value of 32 whether or not it origi-
nally had that value. This is a common bug that could easily be overlooked—if the
developers of C# had not anticipated it!

C# solves this problem by requiring if statements to accept only Boolean values. The
32 returned by the assignment is not Boolean (it is an integer) and, in C#, there is no
automatic conversion from 32 to true. Thus, this bug would be caught at compile time,
which is a very good thing and a significant improvement over C++, at the small cost
of not allowing implicit conversions from integers to Booleans!

C++ programmers take note: because the buggy assignment statement will be caught
at compile time, it is no longer necessary to use the counterintuitive syntax:

if (32 == temp)

that was C++’s solution to this problem.

Example 3-9. The switch statement

using System;
class SwitchStatement
{
 enum Party
 {
 Democrat,
 ConservativeRepublican,
 Republican,
 Libertarian,
 Liberal,

40 | Chapter 3: C# Language Fundamentals

In this whimsical example, we create constants for various political parties. We then
assign one value (Libertarian) to the variable myChoice and switch according to that
value. If myChoice is equal to Democrat, we print out a statement. Notice that this case
ends with break. break is a jump statement that takes us out of the switch statement
and down to the first line after the switch, on which we print, “Thank you for voting.”

VB 6 programmers take note: the equivalent of the C# switch state-
ment is the VB 6 Select Case statement. Also, whereas VB 6 allows you
to test a range of values using a single Case statement, C# syntax
doesn’t provide for this contingency. The following two Case state-
ments are syntactically correct in VB 6:

Case Is > 100
Case 50 to 60

However, these statements aren’t valid in C#. In C#, you can test only
a single constant expression. To test a range, you must test each value
independently and “fall through” to a common case block.

 Progressive,
 };
 static void Main(string[] args)
 {
 Party myChoice = Party.Libertarian;

 switch (myChoice)
 {
 case Party.Democrat:
 Console.WriteLine("You voted Democratic.\n");
 break;
 case Party.ConservativeRepublican: // fall through
 //Console.WriteLine(
 //"Conservative Republicans are voting Republican\n");
 case Party.Republican:
 Console.WriteLine("You voted Republican.\n");
 break;
 case Party.Liberal:
 Console.WriteLine(" Liberal is now Progressive");
 goto case Party.Progressive;
 case Party.Progressive:
 Console.WriteLine("You voted Progressive.\n");
 break;
 case Party.Libertarian:
 Console.WriteLine("Libertarians are voting Democratic");
 goto case Party.Democrat;
 default:
 Console.WriteLine("You did not pick a valid choice.\n");
 break;
 }

 Console.WriteLine("Thank you for voting.");
 }
}

Example 3-9. The switch statement (continued)

Statements | 41

The value ConservativeRepublican has no statement under it, and it “falls through”
to the next statement: Republican. If the value is ConservativeRepublican or
Republican, the Republican statements execute. You can “fall through” in this way
only if there is no body within the statement. If you uncomment WriteLine() under
LiberalRepublican, this program won’t compile.

C and C++ programmers take note: you can’t fall through to the next
case unless the case statement is empty. Thus, you can write this:

case 1: // fall through ok (no statement for case 1)
case 2:

You can’t, however, write this:

case 1:
 TakeSomeAction();
 // fall through not OK, case 1 not empty
case 2:

Here, case 1 has a statement in it, and you can’t fall through. If you
want case 1 to fall through to case 2, you must explicitly use goto:

case 1:
 TakeSomeAction();
 goto case 2; // explicit fall through
case 2:

If you do need a statement, but then you want to execute another case, you can use
the goto statement as shown in the Liberal case:

goto case Progressive;

It is not required that the goto take you to the next case statement. For instance, in
the next example, the Libertarian choice also has a goto, but this time it jumps all
the way back up to the Democrat case. Because our value was set to Libertarian, this
is just what occurs. We print out the Libertarian statement, go to the Democrat case,
print that statement, and then hit the break, taking us out of the switch and down to
the final statement. The output for all of this is:

Libertarians are voting Democrat now.
You voted Democrat.

Thank you for voting.

Note the default case, excerpted from Example 3-9:

default:
 Console.WriteLine(
 "You did not pick a valid choice.\n");

If none of the cases match, the default case will be invoked, warning the user of the
mistake.

42 | Chapter 3: C# Language Fundamentals

Switch on string statements

In the previous example, the switch value was an integral constant. C# offers the
ability to switch on a string, allowing you to write:

case "Libertarian":

If the strings match, the case statement is entered.

Iteration Statements
C# provides an extensive suite of iteration statements, including for, while, and do...
while loops, as well as foreach loops (new to the C family, but familiar to VB program-
mers). In addition, C# supports the goto, break, continue, and return jump state-
ments.

The goto statement

The goto statement is the seed from which all other iteration statements have been
germinated. Unfortunately, it is a semolina seed, producer of spaghetti code and end-
less confusion. Most experienced programmers properly shun the goto statement,
but in the interest of completeness, here’s how you use it:

1. Create a label.

2. goto that label.

The label is an identifier followed by a colon. The goto command is typically tied to a
condition, as Example 3-10 illustrates.

Example 3-10. Using goto

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace UsingGoTo
{
 class UsingGoTo
 {
 static void Main(string[] args)
 {
 int i = 0;
 repeat: // the label
 Console.WriteLine("i: {0}", i);
 i++;
 if (i < 10)

Statements | 43

If you were to try to draw the flow of control in a program that makes extensive use
of goto statements, the resulting morass of intersecting and overlapping lines might
look like a plate of spaghetti; hence the term “spaghetti code.” It was this phenome-
non that led to the creation of alternatives such as the while loop. Many programmers
feel that using goto in anything other than a trivial example creates confusion and
difficult-to-maintain code.

The while loop

The semantics of the while loop are “while this condition is true, do this work.” The
syntax is:

while (expression) statement

As usual, an expression is any statement that returns a value. While statements
require an expression that evaluates to a Boolean (true/false) value, and that state-
ment can, of course, be a block of statements. Example 3-11 updates Example 3-10,
using a while loop.

 goto repeat; // the dastardly deed
 return;
 }
 }
}

Example 3-11. Using a while loop

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace WhileLoop
{
 class WhileLoop
 {
 static void Main(string[] args)
 {
 int i = 0;
 while (i < 10)
 {
 Console.WriteLine("i: {0}", i);
 i++;
 }
 return;
 }
 }
}

Example 3-10. Using goto (continued)

44 | Chapter 3: C# Language Fundamentals

The code in Example 3-11 produces results identical to the code in Example 3-10, but
the logic is a bit clearer. The while statement is nicely self-contained, and it reads like
an English sentence: “while i is less than 10, print this message and increment i.”

Notice that the while loop tests the value of i before entering the loop. This ensures
that the loop will not run if the condition tested is false; thus, if i is initialized to 11,
the loop will never run.

The do...while loop

A while statement will never execute if the condition tested returns false. If you want
to ensure that your statement is run at least once, use a do...while loop:

do statement while (expression);

An expression is any statement that returns a value. Example 3-12 shows the do...
while loop.

Here, i is initialized to 11 and the while test fails, but only after the body of the loop
has run once.

The for loop

A careful examination of the while loop in Example 3-11 reveals a pattern often seen
in iterative statements: initialize a variable (i = 0), test the variable (i < 10), execute a

Example 3-12. The do...while loop

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace DoWhile
{
 class DoWhile
 {
 static int Main(string[] args)
 {
 int i = 11;
 do
 {
 Console.WriteLine("i: {0}", i);
 i++;
 } while (i < 10);
 return 0;
 }
 }
}

Statements | 45

series of statements, and increment the variable (i++). The for loop allows you to
combine all these steps in a single loop statement:

for ([initializers]; [expression]; [iterators]) statement

Example 3-13 illustrates the for loop.

This for loop makes use of the modulus operator described later in this chapter. The
value of i is printed until i is a multiple of 10:

if (i % 10 == 0)

A tab is then printed, followed by the value. Thus, the 10s (20, 30, 40, etc.) are called
out on the right side of the output.

Example 3-13. The for loop

using System;
using System.Collections.Generic;
using System.Text;

namespace ForLoop
{
 class ForLoop
 {
 static void Main(string[] args)
 {
 for (int i = 0; i < 100; i++)
 {
 Console.Write("{0} ", i);

 if (i % 10 == 0)
 {
 Console.WriteLine("\t{0}", i);
 }
 }
 return ;
 }
 }
}

Output:
0 0
1 2 3 4 5 6 7 8 9 10 10
11 12 13 14 15 16 17 18 19 20 20
21 22 23 24 25 26 27 28 29 30 30
31 32 33 34 35 36 37 38 39 40 40
41 42 43 44 45 46 47 48 49 50 50
51 52 53 54 55 56 57 58 59 60 60
61 62 63 64 65 66 67 68 69 70 70
71 72 73 74 75 76 77 78 79 80 80
81 82 83 84 85 86 87 88 89 90 90
91 92 93 94 95 96 97 98 99

46 | Chapter 3: C# Language Fundamentals

VB 6 programmers take note: in C#, looping variables are declared
within the header of the for or foreach statement (rather than before
the statement begins). This means that they are in scope only within
the block, and you can’t refer to them outside the loop. I cover the
foreach statement in detail in Chapter 9.

The individual values are printed using Console.Write(), which is much like
WriteLine(), but which doesn’t enter a newline, allowing the subsequent writes to
occur on the same line.

A few quick points to notice: in a for loop, the condition is tested before the state-
ments are executed. Thus, in the example, i is initialized to 0, and then it is tested to
see whether it is less than 100. Because i < 100 returns true, the statements within
the for loop are executed. After the execution, i is incremented (i++).

Note that the variable i is scoped to within the for loop (i.e., the variable i is visible
only within the for loop). Example 3-14 will not compile.

The line shown in bold fails, as the variable i is not available outside the scope of the
for loop itself.

Example 3-14. Scope of variables declared in a for loop

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace ForLoopScope
{
 class ForLoopScope
 {
 static void Main(string[] args)
 {
 for (int i = 0; i < 100; i++)
 {
 Console.Write("{0} ", i);

 if (i % 10 == 0)
 {
 Console.WriteLine("\t{0}", i);
 }
 }
 Console.WriteLine("\n Final value of i: {0}", i);
 }
 }
}

Statements | 47

The foreach statement

The foreach statement is new to the C family of languages; it is used for looping
through the elements of an array or a collection. I defer discussion of this incredibly
useful statement until Chapter 9.

The continue and break statements

There are times when you would like to return to the top of a loop without execut-
ing the remaining statements in the loop. The continue statement causes the loop to
skip the remaining steps in the loop.

The other side of that coin is the ability to break out of a loop and immediately end
all further work within the loop. For this purpose, the break statement exists.

Example 3-15 illustrates the mechanics of continue and break. This code, suggested
to us by one of our technical reviewers, is intended to create a traffic signal process-
ing system. The signals are simulated by entering numerals and uppercase characters
from the keyboard, using Console.ReadLine(), which reads a line of text from the
keyboard.

The algorithm is simple: receipt of a 0 (zero) means normal conditions, and no fur-
ther action is required except to log the event. (In this case, the program simply

Whitespace and Braces
There is much controversy about the use of whitespace in programming. For example,
this for loop:

for (int i=0;i<100;i++)
{
 if (i%10 == 0)
 {
 Console.WriteLine("\t{0}", i);
 }
}

can be written with more space between the operators:

for (int i = 0; i < 100; i++)
{
 if (i % 10 == 0)
 {
 Console.WriteLine("\t{0}", i);
 }
}

Much of this is a matter of personal taste. Visual Studio allows you to set your prefer-
ences for the use of whitespace by setting the various options under Tools ➝ Options ➝

TextEditor ➝ C# ➝ Formatting ➝ Spacing.

48 | Chapter 3: C# Language Fundamentals

writes a message to the console; a real application might enter a timestamped record
in a database.) On receipt of an abort signal (here simulated with an uppercase A),
the problem is logged and the process is ended. Finally, for any other event, an alarm
is raised, perhaps notifying the police. (Note that this sample doesn’t actually notify
the police, though it does print out a harrowing message to the console.) If the sig-
nal is X, the alarm is raised, but the while loop is also terminated.

Example 3-15. Using continue and break

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace ContinueBreak
{
 class ContinueBreak
 {
 static void Main(string[] args)
 {
 string signal = "0"; // initialize to neutral
 while (signal != "X") // X indicates stop
 {
 Console.Write("Enter a signal: ");
 signal = Console.ReadLine();

 // do some work here, no matter what signal you
 // receive
 Console.WriteLine("Received: {0}", signal);

 if (signal == "A")
 {
 // faulty - abort signal processing
 // Log the problem and abort.
 Console.WriteLine("Fault! Abort\n");
 break;
 }

 if (signal == "0")
 {
 // normal traffic condition
 // log and continue on
 Console.WriteLine("All is well.\n");
 continue;
 }

 // Problem. Take action and then log the problem
 // and then continue on

Operators | 49

The point of this exercise is that when the A signal is received, the action in the if
statement is taken, and then the program breaks out of the loop without raising the
alarm. When the signal is 0, it is also undesirable to raise the alarm, so the program
continues from the top of the loop.

Operators
An operator is a symbol that causes C# to take an action. The C# primitive types (e.g.,
int) support a number of operators such as assignment, increment, and so forth.

The Assignment Operator (=)
The = symbol causes the operand on the left side of the operator to have its value
changed to whatever is on the right side of the operator. Statements that evaluate to
a value are called expressions. You may be surprised how many statements do evalu-
ate to a value. For example, an assignment such as:

myVariable = 57;

is an expression; it evaluates to the value assigned, which, in this case, is 57.

Note that the preceding statement assigns the value 57 to the variable myVariable.
The assignment operator (=) doesn’t test equality; rather, it causes whatever is on the
right side (57) to be assigned to whatever is on the left side (myVariable).

VB programmers take note: C# distinguishes between equality (two
equals signs) and assignment (one equals sign).

 Console.WriteLine("{0} -- raise alarm!\n",
 signal);
 } // end while
 } // end main
 } // end class
} // end namespace

Output:
Enter a signal: 0
Received: 0
All is well.

Enter a signal: B
Received: B
B -- raise alarm!

Enter a signal: A
Received: A
Fault! Abort

Example 3-15. Using continue and break (continued)

50 | Chapter 3: C# Language Fundamentals

Because myVariable = 57 (read aloud as “assign the numeric value 57 to the variable
whose name is myVariable”) is an expression that evaluates to 57, it can be used as
part of another assignment operator, such as:

mySecondVariable = myVariable = 57;

In this statement, the literal value 57 is assigned to the variable myVariable. The value
of that assignment (57) is then assigned to the second variable, mySecondVariable.
Thus, the value 57 is assigned to both variables.

The value 57 is referred to as a literal value (as opposed to a symbolic
value). A symbolic value is one that is housed in a variable, a con-
stant, or an expression. A literal value is the value itself, written in the
conventional way.

You can therefore initialize any number of variables to the same value with one
statement:

a = b = c = d = e = 20;

Mathematical Operators
C# uses five mathematical operators: four for standard calculations, and a fifth to
return the remainder in integer division. The following sections consider the use of
these operators.

Simple arithmetical operators (+, -, *, /)

C# offers operators for simple arithmetic: the addition (+), subtraction (-), multipli-
cation (*), and division (/) operators work as you might expect, with the possible
exception of integer division.

When you divide two integers, C# divides like a child in fourth grade: it throws
away any fractional remainder. Thus, dividing 17 by 4 returns the value 4 (17/4 = 4,
with a remainder of 1). C# provides a special operator (modulus, %, which I describe
in the next section) to retrieve the remainder.

Note, however, that C# does return fractional answers when you divide floats, dou-
bles, and decimals.

The modulus operator (%) to return remainders

To find the remainder in integer division, use the modulus operator (%). For example,
the statement 17%4 returns 1 (the remainder after integer division).

The modulus operator turns out to be more useful than you might at first imagine.
When you perform modulus n on a number that is a multiple of n, the result is 0.
Thus, 80%10 = 0 because 80 is an exact multiple of 10. This fact allows you to set up

Operators | 51

loops in which you take an action every nth time through the loop by testing a
counter to see whether %n is equal to 0. This strategy comes in handy in the use of the
for loop, as I described earlier in this chapter. Example 3-16 illustrates the effects of
division on integers, floats, doubles, and decimals.

Example 3-16. Division and modulus

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace DivisionModulus
{
 class DivisionModulus
 {
 static void Main(string[] args)
 {
 int i1, i2;
 float f1, f2;
 double d1, d2;
 decimal dec1, dec2;

 i1 = 17;
 i2 = 4;
 f1 = 17f;
 f2 = 4f;
 d1 = 17;
 d2 = 4;
 dec1 = 17;
 dec2 = 4;
 Console.WriteLine("Integer:\t{0}\nfloat:\t\t{1}",
 i1 / i2, f1 / f2);
 Console.WriteLine("double:\t\t{0}\ndecimal:\t{1}",
 d1 / d2, dec1 / dec2);
 Console.WriteLine("\nModulus:\t{0}", i1 % i2);

 }
 }
}

Output:
Integer: 4
float: 4.25
double: 4.25
decimal: 4.25

Modulus: 1

52 | Chapter 3: C# Language Fundamentals

Now, consider this line from Example 3-16:

Console.WriteLine("Integer:\t{0}\nfloat:\t\t{1}",
 i1/i2, f1/f2);

It begins with a call to Console.WriteLine(), passing in this partial string:

"Integer:\t{0}\n

This will print the characters Integer: followed by a tab (\t), followed by the first
parameter ({0}), and then followed by a newline character (\n). The next string snippet:

float:\t\t{1}

is very similar. It prints float: followed by two tabs (to ensure alignment), the
contents of the second parameter ({1}), and then another newline. Notice the subse-
quent line, as well:

Console.WriteLine("\nModulus:\t{0}", i1%i2);

This time, the string begins with a newline character, which causes a line to be
skipped just before the string Modulus: is printed. You can see this effect in the output.

Increment and Decrement Operators
A common requirement is to add a value to a variable, subtract a value from a vari-
able, or otherwise change the mathematical value, and then to assign that new value
back to the same variable. You might even want to assign the result to another vari-
able altogether. The following two sections discuss these cases respectively.

Calculate and reassign operators

Suppose you want to increment the mySalary variable by 5,000. You can do this by
writing:

mySalary = mySalary + 5000;

The addition happens before the assignment, and it is perfectly legal to assign the
result back to the original variable. Thus, after this operation completes, mySalary
will have been incremented by 5,000. You can perform this kind of assignment with
any mathematical operator:

mySalary = mySalary * 5000;
mySalary = mySalary - 5000;

and so forth.

The need to increment and decrement variables is so common that C# includes special
operators for self-assignment. Among these operators are +=, -=, *=, /=, and %=, which,
respectively, combine addition, subtraction, multiplication, division, and modulus with
self-assignment. Thus, you can alternatively write the previous examples as:

mySalary += 5000;
mySalary *= 5000;
mySalary -= 5000;

Operators | 53

The effect of this is to increment mySalary by 5,000, multiply mySalary by 5,000, and
subtract 5,000 from the mySalary variable, respectively.

Because incrementing and decrementing by 1 is a very common need, C# (like C and
C++ before it) also provides two special operators. To increment by 1, you use the ++
operator, and to decrement by 1, you use the -- operator.

Thus, if you want to increment the variable myAge by 1, you can write:

myAge++;

The prefix and postfix operators

To complicate matters further, you might want to increment a variable and assign
the results to a second variable:

firstValue = secondValue++;

The question arises: do you want to assign before you increment the value, or after?
In other words, if secondValue starts out with the value 10, do you want to end with
firstValue and secondValue equal to 11, or do you want firstValue to be equal to 10
(the original value), and secondValue to be equal to 11?

C# (again, like C and C++) offers two flavors of the increment and decrement opera-
tors: prefix and postfix. Thus, you can write:

firstValue = secondValue++; // postfix

which will assign first, and then increment (firstValue=10, secondValue=11). You can
also write:

firstValue = ++secondValue; // prefix

which will increment first, and then assign (firstValue=11, secondValue=11).

It is important to understand the different effects of prefix and postfix, as illustrated
in Example 3-17.

Example 3-17. Prefix versus postfix increment

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace PrefixPostfix
{
 class PrefixPostfix
 {
 static void Main(string[] args)
 {
 int valueOne = 10;

54 | Chapter 3: C# Language Fundamentals

Relational Operators
Relational operators are used to compare two values, and then return a Boolean (true
or false). The greater-than operator (>), for example, returns true if the value on the
left of the operator is greater than the value on the right. Thus, 5 > 2 returns the value
true, whereas 2 > 5 returns the value false.

Table 3-3 shows the relational operators for C#. This table assumes two variables:
bigValue and smallValue, in which bigValue has been assigned the value 100 and
smallValue the value 50.

Each relational operator acts as you might expect. However, take note of the equals
operator (==), which is created by typing two equals signs (=) in a row (i.e., without
any space between them); the C# compiler treats the pair as a single operator.

 int valueTwo;
 valueTwo = valueOne++;
 Console.WriteLine("After postfix: {0}, {1}", valueOne,
 valueTwo);
 valueOne = 20;
 valueTwo = ++valueOne;
 Console.WriteLine("After prefix: {0}, {1}", valueOne,
 valueTwo);

 }
 }
}

Output:
After postfix: 11, 10
After prefix: 21, 21

Table 3-3. C# relational operators (assumes bigValue = 100 and smallValue = 50)

Name Operator Given this statement The expression evaluates to

Equals == bigValue == 100
bigValue == 80

true
false

Not equals != bigValue != 100
bigValue != 80

false
true

Greater than > bigValue > smallValue true

Greater than or equals >= bigValue >= smallValue
smallValue >= bigValue

true
false

Less than < bigValue < smallValue false

Less than or equals <= smallValue <= bigValue
bigValue <= smallValue

true
false

Example 3-17. Prefix versus postfix increment (continued)

Operators | 55

The C# equals operator (==) tests for equality between the objects on either side of
the operator. This operator evaluates to a Boolean value (true or false). Thus, the
expression:

myX == 5

evaluates to true if and only if myX is a variable whose value is 5.

Use of Logical Operators with Conditionals
If statements (discussed earlier in this chapter) test whether a condition is true.
Often, you will want to test whether two conditions are true, or whether only one is
true or none is true. C# provides a set of logical operators for this, as shown in
Table 3-4. This table assumes two variables, x and y, in which x has the value 5 and y
the value 7.

The and operator (&&) tests whether two statements are both true. The first line in
Table 3-4 includes an example that illustrates the use of the and operator:

(x == 3) && (y == 7)

The entire expression evaluates false because one side (x == 3) is false.

With the or operator (||), either or both sides must be true; the expression is false
only if both sides are false. So, in the case of the example in Table 3-4:

(x == 3) || (y == 7)

the entire expression evaluates true because one side (y==7) is true.

With a not operator (!), the statement is true if the expression is false, and vice versa.
So, in the accompanying example:

! (x == 3)

the entire expression is true because the tested expression (x==3) is false. (The logic is
“it is true that it is not true that x is equal to 3.”)

Operator Precedence
The compiler must know the order in which to evaluate a series of operators. For
example, if we write:

myVariable = 5 + 7 * 3;

Table 3-4. C# logical operators (assumes x = 5, y = 7)

Name Operator Given this statement The expression evaluates to

and && (x == 3) && (y == 7) false

or || (x == 3) || (y == 7) true

not ! ! (x == 3) true

56 | Chapter 3: C# Language Fundamentals

there are three operators for the compiler to evaluate (=, +, and *). It could, for exam-
ple, operate left to right, which would assign the value 5 to myVariable, then add 7 to
the 5 (12) and multiply by 3 (36)—but, of course, then it would throw that 36 away.
This is clearly not what is intended.

The rules of precedence tell the compiler which operators to evaluate first. As is the
case in algebra, multiplication has higher precedence than addition, so 5+7*3 is equal
to 26 rather than 36. Both addition and multiplication have higher precedence than
assignment, so the compiler will do the math, and then assign the result (26) to
myVariable only after the math is completed.

Short-Circuit Evaluation
Short-circuit evaluation allows you to test one-half of an expression and never evaluate
the second half if there is no logical way it can matter. In the case of an AND expres-
sion, the right half won’t be evaluated if the left half is false.

Consider the following code snippet:

if ((x != null) && (x.IsBigAndScary))

The entire if statement is in parentheses, as are the two conditions to be tested. Every-
thing within the outer parentheses must evaluate true for the entire expression to
evaluate true, and thus both of the inner expressions must be true for the entire expres-
sion to be true. But here is the kicker: the compiler guarantees that it will evaluate these
two inner expressions left to right. Thus, x will be tested for null first, and if it is null,
the second expression will never be tested (which is a good thing because accessing a
property on a null object will throw an exception).

This is just like writing:

If (x ! = null)
{
 if (x.IsBigAndScary)
 {
 // do something
 }
}

You can also accomplish short-circuit evaluation with an OR expression. In that case,
there is no need to test the righthand side if the lefthand side is true because the entire
expression evaluates true if either side is true. You can thus rewrite your test as follows:

if ((x == null) || (x.IsBigAndScary))

The logic of the first statement was “x must be non-null AND it must be Big and Scary,
so if it is null, stop evaluating and don’t execute the action.”

The logic of the second short-circuit statement is “x may be null or it may be Big and
Scary. If x is null we’re done, go ahead and execute. If it is not null, go see whether it
is Big and Scary, and if it is, execute.”

These tests are not quite identical (in the first, you never execute with a null x), but they
both protect you from evaluating whether x is Big and Scary if x is null.

Operators | 57

In C#, parentheses are also used to change the order of precedence much as they are
in algebra. Thus, you can change the result by writing:

myVariable = (5+7) * 3;

Grouping the elements of the assignment in this way causes the compiler to add 5+7,
multiply the result by 3, and then assign that value (36) to myVariable. Table 3-5
summarizes operator precedence in C#, listing the operators with the topmost lay-
ers being evaluated before the layers that come below.

In some complex equations, you might need to nest your parentheses to ensure the
proper order of operations. Let’s assume we want to know how many seconds a fic-
tional family wastes each morning. It turns out that the adults spend 20 minutes over
coffee each morning and 10 minutes reading the newspaper. The children waste 30
minutes dawdling and 10 minutes arguing.

Here’s our algorithm:

(((minDrinkingCoffee + minReadingNewspaper)* numAdults) +
((minDawdling + minArguing) * numChildren)) * secondsPerMinute)

Although this works, it is hard to read and get right. It’s much easier to use interim
variables:

wastedByEachAdult = minDrinkingCoffee + minReadingNewspaper;
wastedByAllAdults = wastedByEachAdult * numAdults;
wastedByEachKid = minDawdling + minArguing;
wastedByAllKids = wastedByEachKid * numChildren;

Table 3-5. Operator precedence

Category Operators

Primary (x) x.y x->y f(x) a[x] x++ x-- new typeof sizeof checked unchecked
stackalloc

Unary + - ! ~ ++x -- x (T)x *x &x

Multiplicative * / %

Additive + -

Shift << >>

Relational < > <= >= is as

Equality == !=

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

Conditional ?:

Assignment = *= /= %= += -= <<= >>= &= ^= |=

58 | Chapter 3: C# Language Fundamentals

wastedByFamily = wastedByAllAdults + wastedByAllKids;
totalSeconds = wastedByFamily * 60;

The latter example uses many more interim variables, but it is far easier to read, to
understand, and (most important) to debug. As you step through this program in
your debugger, you can see the interim values and make sure they are correct.

The Ternary Operator
Although most operators require one term (e.g., myValue++) or two terms (e.g., a+b),
there is one operator that has three: the ternary operator (?:):

conditional-expression ? expression1 : expression2

This operator evaluates a conditional expression (an expression that returns a value of
type bool), and then returns the value of either expression1 if the value returned from
the conditional expression is true, or expression2 if the value returned is false. The
logic is “if this is true, return the first; otherwise, return the second.” Example 3-18
illustrates.

In Example 3-18, the ternary operator is being used to test whether valueOne is
greater than valueTwo. If so, the value of valueOne is assigned to the integer variable
maxValue; otherwise, the value of valueTwo is assigned to maxValue.

Example 3-18. The ternary operator

using System;
using System.Collections.Generic;
using System.Text;

namespace TernaryOperator
{
 class TernaryOperator
 {
 static void Main(string[] args)
 {
 int valueOne = 10;
 int valueTwo = 20;

 int maxValue = valueOne > valueTwo ? valueOne : valueTwo;

 Console.WriteLine("ValueOne: {0}, valueTwo: {1}, maxValue: {2}",
 valueOne, valueTwo, maxValue);

 }
 }
}

Output:
ValueOne: 10, valueTwo: 20, maxValue: 20

Preprocessor Directives | 59

Preprocessor Directives
In the examples you’ve seen so far, you’ve compiled your entire program whenever
you compiled any of it. At times, however, you might want to compile only parts of
your program—for example, depending on whether you are debugging or building
your production code.

Before your code is compiled, another program called the preprocessor runs and
prepares your program for the compiler. The preprocessor examines your code for
special preprocessor directives, all of which begin with the pound sign (#). These
directives allow you to define identifiers and then test for their existence.

Defining Identifiers
#define DEBUG defines a preprocessor identifier, DEBUG. Although other preprocessor
directives can come anywhere in your code, identifiers must be defined before any
other code, including using statements.

C and C++ programmers take note: the C# preprocessor implements
only a subset of the C++ preprocessor and doesn’t support macros.

You can test whether DEBUG has been defined with the #if statement. Thus, you can
write:

#define DEBUG

//... some normal code - not affected by preprocessor

#if DEBUG
 // code to include if debugging
#else
 // code to include if not debugging
#endif

//... some normal code - not affected by preprocessor

When the preprocessor runs, it sees the #define statement and records the identifier
DEBUG. The preprocessor skips over your normal C# code, and then finds the #if -
#else - #endif block.

The #if statement tests for the identifier DEBUG, which does exist, and so the code
between #if and #else is compiled into your program—but the code between #else
and #endif is not compiled. That code doesn’t appear in your assembly at all; it is as
though it were left out of your source code.

Had the #if statement failed—that is, if you had tested for an identifier that did not
exist—the code between #if and #else would not be compiled, but the code
between #else and #endif would be compiled.

60 | Chapter 3: C# Language Fundamentals

Any code not surrounded by #if/#endif is not affected by the prepro-
cessor and is compiled into your program.

Undefining Identifiers
You undefine an identifier with #undef. The preprocessor works its way through the
code from top to bottom, so the identifier is defined from the #define statement until
the #undef statement, or until the program ends. Thus, if you write:

#define DEBUG

#if DEBUG
 // this code will be compiled
#endif

#undef DEBUG

#if DEBUG
 // this code will not be compiled
#endif

the first #if will succeed (DEBUG is defined), but the second will fail (DEBUG has been
undefined).

#if, #elif, #else, and #endif
There is no switch statement for the preprocessor, but the #elif and #else directives
provide great flexibility. The #elif directive allows the else-if logic of “if DEBUG then
action one, else if TEST then action two, else action three”:

#if DEBUG
 // compile this code if debug is defined
#elif TEST
 // compile this code if debug is not defined
 // but TEST is defined
#else
 // compile this code if neither DEBUG nor TEST
 // is defined
#endif

In this example, the preprocessor first tests to see whether the identifier DEBUG is
defined. If it is, the code between #if and #elif will be compiled, and the rest of the
code until #endif will not be compiled.

If (and only if) DEBUG is not defined, the preprocessor next checks to see whether TEST
is defined. Note that the preprocessor will not check for TEST unless DEBUG is not
defined. If TEST is defined, the code between the #elif and #else directives will be
compiled. If it turns out that neither DEBUG nor TEST is defined, the code between the
#else and the #endif statements will be compiled.

61

Chapter 4 CHAPTER 4

Classes and Objects4

In Chapter 3, I discussed the myriad types built into the C# language, such as int,
long, and char. The heart and soul of C#, however, is the ability to create new, com-
plex, programmer-defined types that map cleanly to the objects that make up the
problem you are trying to solve, and to use the programmer-defined types that
Microsoft has provided in the Framework to facilitate creating applications without
having to “reinvent the wheel” to accomplish common tasks such as interacting with
the user, databases, web sites, and so forth.

It is this ability to use and create powerful new types that characterizes an object-
oriented language. You specify a new type in C# by defining a class. (You can also
define types with interfaces, as you will see in Chapter 8.) Instances of a class are
called objects. Objects are created in memory when your program executes.

The difference between a class and an object is the same as the difference between
the concept of a dog and the particular dog who is sitting at your feet as you read
this. You can’t play fetch with the definition of a dog, only with an instance.

A Dog class describes what dogs are like: they have weight, height, eye color, hair color,
disposition, and so forth. They also have actions they can take, such as eat, walk, (eat),
bark, (eat some more), and sleep. A particular dog (such as Jesse’s dog Milo) has a
specific weight (68 pounds), height (22 inches), eye color (black), hair color (yellow),
disposition (angelic), and so forth. He is capable of all the actions of any dog (though if
you knew him you might imagine that eating is the only method he implements).

The huge advantage of classes in object-oriented programming is that they encapsu-
late the characteristics and capabilities of an entity in a single, self-contained, and
self-sustaining unit of code. When you want to sort the contents of an instance of a
Windows listbox control, for example, you tell the listbox to sort itself. How it does
so is of no concern to anyone but the person writing the listbox control; that the list-
box can be sorted is all any other programmer needs to know. Encapsulation (the idea
that an object is self-contained), along with polymorphism and inheritance (explained
in just a moment), are the three cardinal principles of object-oriented programming.

62 | Chapter 4: Classes and Objects

An old programming joke asks “how many object-oriented programmers does it take
to change a light bulb?” Answer: none, you just tell the light bulb to change itself.

This chapter explains the C# language features that are used to create new types by
creating classes. It will demonstrate how methods are used to define the behaviors of
the class, and how the state of the class is accessed through properties, which act like
methods to the developer of the class but look like fields to clients of the class. The
elements of the class—its behaviors and properties—are known collectively as its
class members.

Defining Classes
To create a new class, you first declare it, and then define its methods and fields. You
declare a class using the class keyword. The complete syntax is as follows:

[attributes] [access-modifiers] class identifier [:[base-class [,interface(s)]]
{class-body}

This is a formal definition diagram. Don’t let it intimidate you. The
items in square brackets are optional.

You read this as follows: “a class is defined by an optional set of
attributes followed by an optional set of access modifiers followed by
the (nonoptional) keyword class which is then followed by the (non-
optional) identifier (the class name).

“The identifier is optionally followed by the name of the base class, or
if there is no base class, by the name of the first interface (if any). If
there is a base class or an interface, the first of these will be preceded
by a colon. If there is a base class and an interface, they will be sepa-
rated by a comma, as will any subsequent interfaces.

“After all of these will be an open brace, the body of the class, and a
closing brace.”

Although this can be confusing, an example makes it all much simpler:

public class Dog : Mammal
{
 // class body here
}

In this little example, public is the access modifier, Dog is the identi-
fier, and Mammal is the base class.

Attributes are covered in Chapter 8; access modifiers are discussed in the next sec-
tion. (Typically, your classes will use the keyword public as an access modifier.) The
identifier is the name of the class that you provide. The optional base-class is dis-
cussed in Chapter 5. The member definitions that make up the class-body are
enclosed by open and closed curly braces ({}).

Defining Classes | 63

C and C++ programmers take note: a C# class definition does not end
with a semicolon, though if you add one, the program will still
compile.

In C#, everything happens within a class. So far, however, we’ve not created any
instances of that class.

When you make an instance of a class, you are said to instantiate the
class. The result of instantiating a class is the creation of an instance of
the class, known as an object.

What is the difference between a class and an instance of that class (an object)? To
answer that question, start with the distinction between the type int and a variable of
type int. Thus, although you would write:

int myInteger = 5;

you wouldn’t write:

int = 5; // won't compile

You can’t assign a value to a type; instead, you assign the value to an object of that
type (in this case, a variable of type int).

When you declare a new class, you define the properties of all objects of that class, as
well as their behaviors. For example, if you are creating a windowing environment,
you might want to create screen widgets (known as controls in Windows program-
ming) to simplify user interaction with your application. One control of interest
might be a listbox, which is very useful for presenting a list of choices to the user and
enabling the user to select from the list.

Listboxes have a variety of characteristics, called properties—for example, height,
width, location, and text color. Programmers have also come to expect certain
behaviors of listboxes, called methods: they can be opened, closed, sorted, and so on.

Object-oriented programming allows you to create a new type, ListBox, which
encapsulates these characteristics and capabilities. Such a class might have proper-
ties named Height, Width, Location, and TextColor, and member methods named
Sort(), Add(), Remove(), and so on.

You can’t assign data to the ListBox class. Instead, you must first create an object of
that type, as in the following code snippet:

ListBox myListBox; // instantiate a ListBox object

Once you create an instance of ListBox, you can assign data to it through its proper-
ties, and you can call its methods:

myListBox.Height = 50;
myListBox.TextColor = "Black";
myListBox.Sort();

64 | Chapter 4: Classes and Objects

Now, consider a class to keep track of and display the time of day. The internal state
of the class must be able to represent the current year, month, date, hour, minute, and
second. You probably would also like the class to display the time in a variety of for-
mats. You might implement such a class by defining a single method and six variables,
as shown in Example 4-1.

You will receive warnings when you compile this class that the mem-
ber variables of Time (Year, Month, etc.) are never used. Please ignore
these warnings for now (though it is generally not a good idea to
ignore warnings unless you are certain you understand what they are
and why you can ignore them). In this case, we are stubbing out the
Time class, and if this were a real class, we would make use of these
members in other methods.

Example 4-1. Simple Time class

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace TimeClass
{
 public class Time
 {
 // private variables
 int Year;
 int Month;
 int Date;
 int Hour;
 int Minute;
 int Second;

 // public methods
 public void DisplayCurrentTime()
 {
 Console.WriteLine(
 "stub for DisplayCurrentTime");
 }
 }

 public class Tester
 {
 static void Main()
 {
 Time t = new Time();
 t.DisplayCurrentTime();
 }
 }
}

Defining Classes | 65

The only method declared within the Time class definition is DisplayCurrentTime().
The body of the method is defined within the class definition itself. Unlike other lan-
guages (such as C++), C# doesn’t require that methods be declared before they are
defined, nor does the language support placing its declarations into one file and its
code into another. (C# has no header files.) All C# methods are defined inline as
shown in Example 4-1 with DisplayCurrentTime().

The DisplayCurrentTime() method is defined to return void; that is, it will not return
a value to a method that invokes it. For now, the body of this method has been
stubbed out. The Time class definition ends with the declaration of a number of
member variables: Year, Month, Date, Hour, Minute, and Second.

After the closing brace, a second class, Tester, is defined. Tester contains our now
familiar Main() method. In Main(), an instance of Time is created and its address is
assigned to object t. Because t is an instance of Time, Main() can make use of the
DisplayCurrentTime() method available with objects of that type and call it to display
the time:

t.DisplayCurrentTime();

Access Modifiers
An access modifier determines which class methods of other classes can see and use a
member variable or method within this class. Table 4-1 summarizes the C# access
modifiers.

It is generally desirable to designate the member variables of a class as private. This
means that only member methods of that class can access their value. Because private
is the default accessibility level, you don’t need to make it explicit, but I recommend
that you do so. Thus, in Example 4-1, the declarations of member variables should
have been written as follows:

// private variables
private int Year;
private int Month;

Table 4-1. Access modifiers

Access modifier Restrictions

public No restrictions. Members marked public are visible to any method of any class.

private The members in class A that are marked private are accessible only to methods of class A.

protected The members in class A that are marked protected are accessible to methods of class A and
to methods of classes derived from class A.

internal The members in class A that are marked internal are accessible to methods of any class in
A’s assembly.

protected internal The members in class A that are marked protected internal are accessible to methods of
class A, to methods of classes derived from class A, and to any class in A’s assembly. This is effec-
tively protected OR internal. (There is no concept of protected AND internal.)

66 | Chapter 4: Classes and Objects

private int Date;
private int Hour;
private int Minute;
private int Second;

The Tester class and DisplayCurrentTime() method are both declared public so that
any other class can make use of them.

It is good programming practice to explicitly set the accessibility of all
methods and members of your class. Although you can rely on the fact
that class members are declared private by default, making their
access explicit indicates a conscious decision and is self-documenting.

Method Arguments
Methods can take any number of parameters.* The parameter list follows the method
name and is enclosed in parentheses, with each parameter preceded by its type. For
example, the following declaration defines a method named MyMethod(), which
returns void (i.e., which returns no value at all), and which takes two parameters—
an integer and a button:

void MyMethod (int firstParam, Button secondParam)
{
 // ...
}

Within the body of the method, the parameters act as local variables, as though you
had declared them in the body of the method and initialized them with the values
passed in. Example 4-2 illustrates how you pass values into a method—in this case,
values of type int and float.

* The terms argument and parameter are often used interchangeably, though some programmers insist on dif-
ferentiating between the parameter declaration and the arguments passed in when the method is invoked.

Example 4-2. Passing values into SomeMethod()

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace PassingValues
{
 public class MyClass
 {
 public void SomeMethod(int firstParam, float secondParam)
 {

Creating Objects | 67

The method SomeMethod() takes an int and a float and displays them using Console.
WriteLine(). The parameters, which are named firstParam and secondParam, are
treated as local variables within SomeMethod().

VB 6 programmers take note: C# methods don’t allow you to declare
optional arguments. Instead, you have to use method overloading to
create methods that declare different combinations of arguments. For
more information, see the section “Overloading Methods and Con-
structors,” later in this chapter.

In the calling method (Main), two local variables (howManyPeople and pi) are created
and initialized. These variables are passed as the parameters to SomeMethod(). The
compiler maps howManyPeople to firstParam and pi to secondParam, based on their
relative positions in the parameter list.

Creating Objects
In Chapter 3, I drew a distinction between value types and reference types. The prim-
itive C# types (int, char, etc.) are value types and are created on the stack. Objects,
however, are reference types and are created on the heap, using the keyword new, as
in the following:

Time t = new Time();

t doesn’t actually contain the value for the Time object; it contains the address of that
(unnamed) object that is created on the heap. t itself is just a reference to that object.

Console.WriteLine(
 "Here are the parameters received: {0}, {1}",
 firstParam, secondParam);
 }
 }

 public class Tester
 {
 static void Main()
 {
 int howManyPeople = 5;
 float pi = 3.14f;

MyClass mc = new MyClass();
 mc.SomeMethod(howManyPeople, pi);
 }
 }
}

Example 4-2. Passing values into SomeMethod() (continued)

68 | Chapter 4: Classes and Objects

VB 6 programmers take note: although there is a performance penalty
in using the VB 6 keywords Dim and New on the same line, in C#, this
penalty has been removed. Thus, in C#, there is no drawback to using
the new keyword when declaring an object variable.

Constructors
In Example 4-1, notice that the statement that creates the Time object looks as
though it is invoking a method:

Time t = new Time();

In fact, a method is invoked whenever you instantiate an object. This method is
called a constructor, and you must either define one as part of your class definition,
or let the CLR provide one on your behalf. The job of a constructor is to create the
object specified by a class and to put it into a valid state. Before the constructor runs,
the object is undifferentiated memory; after the constructor completes, the memory
holds a valid instance of the class type.

The Time class of Example 4-1 doesn’t define a constructor. If a constructor is not
declared, the compiler provides one for you. The default constructor creates the
object, but takes no other action.

Member variables are initialized to innocuous values (integers to 0, strings to null,
etc.).* Table 4-2 lists the default values assigned to primitive types.

Typically, you’ll want to define your own constructor and provide it with arguments
so that the constructor can set the initial state for your object. In Example 4-1,
assume that you want to pass in the current year, month, date, and so forth so that
the object is created with meaningful data.

* When you write your own constructor, you’ll find that these values have been initialized before the construc-
tor runs. In a sense, there are two steps to building new objects—some CLR-level magic that zeros out all
the fields and does whatever else needs to be done to make the thing a valid object, and then the steps in the
constructor you create (if any).

Table 4-2. Primitive types and their default values

Type Default value

numeric (int, long, etc.) 0

bool false

char '\0' (null)

enum 0

reference null

Creating Objects | 69

To define a constructor, you declare a method whose name is the same as the class in
which it is declared. Constructors have no return type and are typically declared pub-
lic. If there are arguments to pass, you define an argument list just as you would for
any other method. Example 4-3 declares a constructor for the Time class that accepts
a single argument, an object of type DateTime.

Example 4-3. Declaring a constructor

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace DeclaringConstructor
{
 public class Time
 {

 // private member variables
 int Year;
 int Month;
 int Date;
 int Hour;
 int Minute;
 int Second;

 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 // constructor
 public Time(System.DateTime dt)
 {

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }
 }

 public class Tester
 {
 static void Main()
 {

70 | Chapter 4: Classes and Objects

In this example, the constructor takes a DateTime object and initializes all the mem-
ber variables based on values in that object. When the constructor finishes, the Time
object exists and the values have been initialized. When DisplayCurrentTime() is
called in Main(), the values are displayed.

Try commenting out one of the assignments and running the program again. You’ll
find that the member variable is initialized by the compiler to 0. Integer member vari-
ables are set to 0 if you don’t otherwise assign them. Remember, value types (e.g.,
integers) can’t be uninitialized; if you don’t tell the constructor what to do, it will try
for something innocuous.

In Example 4-3, the DateTime object is created in the Main() method of Tester. This
object, supplied by the System library, offers a number of public values—Year, Month,
Day, Hour, Minute, and Second—that correspond directly to the private member
variables of the Time object. In addition, the DateTime object offers a static member
property, Now, which is a reference to an instance of a DateTime object initialized with
the current time.

Examine the highlighted line in Main(), where the DateTime object is created by
calling the static property Now. Now creates a DateTime value which, in this case, gets
copied to the currentTime variable on the stack.

The currentTime variable is passed as a parameter to the Time constructor. The Time
constructor parameter, dt, is a copy of the DateTime object.

Initializers
It is possible to initialize the values of member variables in an initializer, instead of
having to do so in every constructor. You create an initializer by assigning an initial
value to a class member:

private int Second = 30; // initializer

Assume that the semantics of our Time object are such that no matter what time is
set, the seconds are always initialized to 30. You might rewrite the Time class to use
an initializer so that no matter which constructor is called, the value of Second is
always initialized, either explicitly by the constructor or implicitly by the initializer.
See Example 4-4.

 System.DateTime currentTime = System.DateTime.Now;
 Time t = new Time(currentTime);
 t.DisplayCurrentTime();
 }
 }
}

Output:
11/16/2007 16:21:40

Example 4-3. Declaring a constructor (continued)

Creating Objects | 71

Example 4-4 uses an overloaded constructor, which means that there
are two versions of the constructor that differ by the number and type
of parameters. I explain overloading constructors in detail later in this
chapter.

Example 4-4. Using an initializer

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace Initializer
{
 public class Time
 {
 // private member variables
 private int Year;
 private int Month;
 private int Date;
 private int Hour;
 private int Minute;
 private int Second = 30; // initializer

 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.DateTime now = System.DateTime.Now;
 System.Console.WriteLine(
 "\nDebug\t: {0}/{1}/{2} {3}:{4}:{5}",
 now.Month, now.Day, now.Year, now.Hour,
 now.Minute, now.Second);

 System.Console.WriteLine("Time\t: {0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 // constructors
 public Time(System.DateTime dt)
 {

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second; //explicit assignment

 }

72 | Chapter 4: Classes and Objects

If you don’t provide a specific initializer, the constructor will initialize each integer
member variable to zero (0). In the case shown, however, the Second member is
initialized to 30:

private int Second = 30; // initializer

If a value is not passed in for Second, its value will be set to 30 when t2 is created:

Time t2 = new Time(2007,11,18,11,45);
t2.DisplayCurrentTime();

However, if a value is assigned to Second, as is done in the constructor (which takes a
DateTime object, shown in bold), that value overrides the initialized value.

The first time we invoke DisplayCurrentTime(), we call the constructor that takes a
DateTime object, and the seconds are initialized to 54. The second time the method is
invoked, we explicitly set the time to 11:45 (not setting the seconds), and the initializer
takes over.

 public Time(int Year, int Month, int Date, int Hour, int Minute)
 {
 this.Year = Year;
 this.Month = Month;
 this.Date = Date;
 this.Hour = Hour;
 this.Minute = Minute;
 }

 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;

Time t = new Time(currentTime);
 t.DisplayCurrentTime();

Time t2 = new Time(2007, 11, 18, 11, 45);
 t2.DisplayCurrentTime();

 }
 }
}

Output:
Debug : 11/27/2007 7:52:54
Time : 11/27/2007 7:52:54

Debug : 11/27/2007 7:52:54
Time : 11/18/2007 11:45:30

Example 4-4. Using an initializer (continued)

Creating Objects | 73

If the program didn’t have an initializer, and did not otherwise assign a value to
Second, the value would be initialized by the CLR to 0.

C++ programmers take note: C# doesn’t have a copy constructor, and
the semantics of copying are accomplished by implementing the
ICloneable interface.

The ICloneable Interface
The .NET Framework defines an ICloneable interface to support the concept of a
copy constructor. (We cover interfaces in detail in Chapter 8.) This interface defines
a single method: Clone(). Classes that support the idea of a copy constructor should
implement ICloneable, and then should implement either a shallow copy (calling
MemberwiseClone) or a deep copy (e.g., by calling the copy constructor and hand-
copying all the members):

class SomeType: ICloneable
{
 public Object Clone()
 {
 return MemberwiseClone(); // shallow copy
 }
}

The this Keyword
The keyword this refers to the current instance of an object. The this reference
(sometimes referred to as a this pointer*) is a hidden reference passed to every non-
static method of a class. Each method can refer to the other methods and variables of
that object by way of the this reference.

The this reference is typically used in a number of ways. The first way is to qualify
instance members otherwise hidden by parameters, as in the following:

public void SomeMethod (int hour)
{
 this.hour = hour;
}

In this example, SomeMethod() takes a parameter (hour) with the same name as a
member variable of the class. The this reference is used to resolve the name ambigu-
ity. Whereas this.hour refers to the member variable, hour refers to the parameter.

* A pointer is a variable that holds the address of an object in memory. C# doesn’t use pointers with managed
objects. Some C++ programmers have become so used to talking about a this pointer that they’ve carried
the term over (incorrectly) to C#. We’ll refer to the this reference, and pay a 25-cent fine to charity each
time we forget.

74 | Chapter 4: Classes and Objects

The argument in favor of this style is that you pick the right variable name and then use
it for both the parameter and the member variable. The counter argument is that using
the same name for both the parameter and the member variable can be confusing.

The second use of the this reference is to pass the current object as a parameter to
another method. For instance:

class myClass
{
 public void Foo(OtherClass otherObject)
 {
 otherObject.Bar(this);
 }
}

Let’s unpack this example. Here, we have a method named myClass.Foo. In the body
of this method, you invoke the Bar method of the OtherClass instance, passing in a
reference to the current instance of myClass. This allows the Bar method to fiddle
with the public methods and members of the current instance of myClass.

The third use of this is with indexers, covered in Chapter 9.

The fourth use of the this reference is to call one overloaded constructor from
another, for example:

class myClass
{
 public myClass(int i) { //... }
 public myClass() : this(42) { //... }
}

In this example, the default constructor invokes the overloaded constructor that
takes an integer, by using the this keyword.

The final way that the this keyword is used is to explicitly invoke methods and
members of a class, as a form of documentation:

public void MyMethod(int y)
{
 int x = 0;
 x = 7; // assign to a local variable
 y = 8; // assign to a parameter
 this.z = 5; // assign to a member variable
 this.Draw(); // invoke member method
}

In the cases shown, the use of the this reference is superfluous, but it may make the
programmer’s intent clearer and does no harm (except, arguably, to clutter the code).

Using Static Members | 75

Using Static Members
The members of a class (variables, methods, events, indexers, etc.) can be either
instance members or static members. Instance members are associated with instances
of a type, whereas static members are considered to be part of the class. You access a
static member through the name of the class in which it is declared. For example,
suppose you have a class named Button, and have instantiated objects of that class
named btnUpdate and btnDelete.* Suppose as well that the Button class has a static
method SomeMethod(). To access the static method, you write:

Button.SomeMethod();

rather than:

btnUpdate.SomeMethod();

In C#, it is not legal to access a static method or member variable through an
instance, and trying to do so will generate a compiler error (C++ programmers take
note).

Some languages distinguish between class methods and other (global) methods that
are available outside the context of any class. In C#, there are no global methods,
only class methods, but you can achieve an analogous result by defining static meth-
ods within your class.

VB 6 programmers take note: don’t confuse the static keyword in C#
with the Static keyword in VB 6 and VB.NET. In VB, the Static key-
word declares a variable that is available only to the method in which it
was declared. In other words, the Static variable is not shared among
different objects of its class (i.e., each Static variable instance has its
own value). However, this variable exists for the life of the program,
which allows its value to persist from one method call to another.

In C#, the static keyword indicates a class member. In VB, the equiv-
alent keyword is Shared.

Static methods act more or less like global methods, in that you can invoke them
without actually having an instance of the object at hand. The advantage of static
methods over global, however, is that the name is scoped to the class in which it
occurs, and thus you don’t clutter up the global namespace with myriad function
names. This can help manage highly complex programs, and the name of the class
acts very much like a namespace for the static methods within it.

* As noted earlier, btnUpdate and btnDelete are actually variables that refer to the unnamed instances on the
heap. For simplicity, we’ll refer to these as the names of the objects, keeping in mind that this is just short-
hand for “the name of the variables that refer to the unnamed instances on the heap.”

76 | Chapter 4: Classes and Objects

In addition, static methods may be passed instance members as parameters (or may
create such instances themselves within the static method). Because they are scoped
to the class, instead of being scoped globally, they have access to the private mem-
bers of the instances.

Resist the temptation to create a single class in your program in which
you stash all your miscellaneous methods. It is possible, but not desir-
able, and it undermines the encapsulation of an object-oriented design.

Invoking Static Methods
The Main() method is static. Static methods are said to operate on the class, rather
than on an instance of the class. They don’t have a this reference, as there is no
instance to point to.

Java programmers take note: in C#, calling static methods through
instance variables is not permitted.

Static methods can’t directly access nonstatic members. For Main() to call a non-
static method, it must instantiate an object. Consider Example 4-2, shown earlier.

SomeMethod() is a nonstatic method of MyClass. For Main() to access this method, it
must first instantiate an object of type MyClass, and then invoke the method through
that object.

Using Static Constructors
If your class declares a static constructor, you are guaranteed that the static construc-
tor will run before any instance of your class is created.*

You can’t control exactly when a static constructor will run, but you
do know that it will be after the start of your program and before the
first instance is created. Because of this, you can’t assume (or deter-
mine) whether an instance is being created.

For example, you might add the following static constructor to the Time class from
Example 4-4:

* Actually, the CLR guarantees to start running the static constructor before anything else is done with your
class. However, it only guarantees to start running the static constructor; it doesn’t actually guarantee to fin-
ish running it. It is possible to concoct a pathological case where two classes have a circular dependency on
each other. Rather than deadlock, the CLR can run the constructors on different threads so that it meets the
minimal guarantee of at least starting to run both constructors in the right order.

Using Static Members | 77

static Time()
{
 Name = "Time";
}

Notice that there is no access modifier (e.g., public) before the static constructor.
Access modifiers aren’t allowed on static constructors. In addition, because this is a
static member method, you can’t access nonstatic member variables, and so Name
must be declared a static member variable:

private static string Name;

The final change is to add a line to DisplayCurrentTime(), as in the following:

public void DisplayCurrentTime()
{
 System.Console.WriteLine("Name: {0}", Name);
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
}

When all these changes are made, the output is:

Name: Time
11/27/2007 7:52:54
Name: Time
11/18/2007 11:45:30

(Your output will vary depending on the date and time you run this code.)

Although this code works, it isn’t necessary to create a static constructor to accom-
plish this goal. You can, instead, use an initializer:

private static string Name = "Time";

which accomplishes the same thing. Static constructors are useful, however, for
setup work that can’t be accomplished with an initializer and that needs to be done
only once.

Java programmers take note: in C#, a static constructor will serve
where a static initializer would be used in Java.

For example, assume you have an unmanaged bit of code in a legacy DLL. You want
to provide a class wrapper for this code. You can call LoadLibrary in your static
constructor and initialize the jump table in the static constructor. I discuss handling
legacy code and interoperating with unmanaged code in Chapter 22.

78 | Chapter 4: Classes and Objects

Static Classes
In C#, there are no global methods or constants. You might find yourself creating
small utility classes that exist only to hold static members. Setting aside whether this
is a good design, if you create such a class, you won’t want any instances created.
Mark your class Static to ensure that no instance of the class may be created. Static
classes are sealed, and thus you may not create derived types of a Static class. Note,
however, that static classes may not contain nonstatic members or have a constructor.

Using Static Fields
A common way to demonstrate the use of static member variables is to keep track of
the number of instances that currently exist for your class. Example 4-5 illustrates.

Example 4-5. Using static fields for instance counting

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace StaticFields
{
 public class Cat
 {

 private static int instances = 0;

 public Cat()
 {
 instances++;
 }

 public static void HowManyCats()
 {

Console.WriteLine("{0} cats adopted", instances);
 }
 }

 public class Tester
 {
 static void Main()
 {

Cat.HowManyCats();
Cat frisky = new Cat();
Cat.HowManyCats();
Cat whiskers = new Cat();
Cat.HowManyCats();

Destroying Objects | 79

The Cat class has been stripped to its absolute essentials. A static member variable
called instances is created and initialized to 0. Note that the static member is consid-
ered part of the class, not a member of an instance, and so it can’t be initialized by
the compiler on creation of an instance. Thus, if you want to initialize a static mem-
ber, you must provide an explicit initializer. When additional instances of Cats are
created (in a constructor), the count is incremented.

Destroying Objects
Because C# provides garbage collection, you never need to explicitly destroy your
objects. However, if your object controls unmanaged resources, you will need to
explicitly free those resources when you are done with them. Implicit control over
unmanaged resources is provided by a destructor, which will be called by the garbage
collector when your object is destroyed.

C and C++ programmers take note: a destructor is not necessarily called
when an object goes out of scope, but rather when it is garbage-collected
(which may happen much later). This is known as nondeterministic
finalization.

The destructor should only release resources that your object holds on to, and
should not reference other objects. Note that if you have only managed references,
you don’t need to and should not implement a destructor; you want this only for
handling unmanaged resources. Because there is some cost to having a destructor,
you ought to implement this only on methods that require it (i.e., methods that
consume valuable unmanaged resources).

 }
 }
}

Output:
0 cats adopted
1 cats adopted
2 cats adopted

Static Methods to Access Static Fields
It is undesirable to make member data public. This applies to static member variables
as well. One solution is to make the static member private, as we’ve done here with
instances. We have created a public accessor method, HowManyCats(), to provide
access to this private member.

Example 4-5. Using static fields for instance counting (continued)

80 | Chapter 4: Classes and Objects

You can’t call an object’s destructor directly. The garbage collector will call it for
you.

The C# Destructor
C#’s destructor looks, syntactically, much like a C++ destructor, but it behaves
quite differently. You declare a C# destructor with a tilde as follows:

~MyClass(){}

In C#, this syntax is simply a shortcut for declaring a Finalize() method that chains
up to its base class. Thus, when you write:

~MyClass()
{
 // do work here
}

the C# compiler translates it to:

protected override void Finalize()
{
 try
 {
 // do work here.
 }
 finally
 {
 base.Finalize();
 }
}

Destructors Versus Dispose
It is not legal to call a destructor explicitly. Your destructor will be called by the gar-
bage collector. If you do handle precious unmanaged resources (such as file handles)
that you want to close and dispose of as quickly as possible, you ought to implement

How Destructors Work
The garbage collector maintains a list of objects that have a destructor. This list is
updated every time such an object is created or destroyed.

When an object on this list is first collected, it is placed in a queue with other objects
waiting to be destroyed. After the destructor executes, the garbage collector collects
the object and updates the queue, as well as its list of destructible objects.

Destroying Objects | 81

the IDisposable interface.* (You will learn more about interfaces in Chapter 8.) The
IDisposable interface requires its implementers to define one method, named
Dispose(), to perform whatever cleanup you consider to be crucial. The availability
of Dispose() is a way for your clients to say, “Don’t wait for the destructor to be
called, do it right now.”

If you provide a Dispose() method, you should stop the garbage collector from call-
ing your object’s destructor. To do so, call the static method GC.SuppressFinalize(),
passing in the this pointer for your object. Your destructor can then call your
Dispose() method. Thus, you might write:

using System;
class Testing : IDisposable
{
 bool is_disposed = false;
 protected virtual void Dispose(bool disposing)
 {
 if (!is_disposed) // only dispose once!
 {
 if (disposing)
 {
 Console.WriteLine(
 "Not in destructor, OK to reference other objects");
 }
 // perform cleanup for this object
 Console.WriteLine("Disposing...");
 }
 this.is_disposed = true;
 }

 public void Dispose()
 {
 Dispose(true);
 // tell the GC not to finalize
 GC.SuppressFinalize(this);
 }

 ~Testing()
 {
 Dispose(false);
 Console.WriteLine("In destructor.");
 }
}

* Most of the time you will not write classes that deal with unmanaged resources such as raw handles directly.
You may, however, use wrapper classes such as FileStream and Socket, but these classes do implement
IDisposable, in which case you ought to have your class implement IDisposable (but not a finalizer). Your
Dispose method will call Dispose on any disposable resources that you’re using.

82 | Chapter 4: Classes and Objects

Implementing the Close() Method
For some objects, you may prefer to have your clients call a method named Close().
(For example, Close() may make more sense than Dispose() for file objects.) You
can implement this by creating a private Dispose() method and a public Close()
method, and having your Close() method invoke Dispose().

The using Statement
To make it easier for your clients to properly dispose of your objects, C# provides a
using statement that ensures that Dispose() will be called at the earliest possible
time. The idiom is to declare the objects you are using and then to create a scope for
these objects with curly braces. When the closing brace is reached, the Dispose()
method will be called on the object automatically, as illustrated in Example 4-6.

In the first part of this example, the Font object is created within the using statement.
When the using statement ends, Dispose() is called on the Font object.

Example 4-6. The using statement

#region Using directives

using System;
using System.Collections.Generic;
using System.Drawing;
using System.Text;

#endregion

namespace usingStatement
{
 class Tester
 {
 public static void Main()
 {
 using (Font theFont = new Font("Arial", 10.0f))
 {
 // use theFont

 } // compiler will call Dispose on theFont

Font anotherFont = new Font("Courier", 12.0f);

 using (anotherFont)
 {
 // use anotherFont

 } // compiler calls Dispose on anotherFont
 }
 }
}

Passing Parameters | 83

In the second part of the example, a Font object is created outside the using state-
ment. When we decide to use that font, we put it inside the using statement; when
that statement ends, Dispose() is called once again.

This second approach is fraught with danger. If an exception is thrown after the
object is created, but before the using block is begun, the object will not be dis-
posed. Second, the variable remains in scope after the using block ends, but if it is
accessed, it will fail.

The using statement also protects you against unanticipated exceptions. Regardless
of how control leaves the using statement, Dispose() is called. An implicit try-
finally block is created for you. (See Chapter 11 for details.)

Passing Parameters
By default, value types are passed into methods by value. (See the section “Method
Arguments,” earlier in this chapter.) This means that when a value object is passed to
a method, a temporary copy of the object is created within that method. Once the
method completes, the copy is discarded. Although passing by value is the normal
case, there are times when you will want to pass value objects by reference. C#
provides the ref parameter modifier for passing value objects into a method by refer-
ence, and the out modifier for those cases in which you want to pass in a ref variable
without first initializing it. C# also supports the params modifier, which allows a
method to accept a variable number of parameters. I discuss the params keyword in
Chapter 9.

Passing by Reference
Methods can return only a single value (though that value can be a collection of val-
ues). Let’s return to the Time class and add a GetTime() method, which returns the
hour, minutes, and seconds.

Java programmers take note: in C#, there’s no need for wrapper
classes for basic types such as int (integer). Instead, use reference
parameters.

Because you can’t return three values, perhaps you can pass in three parameters, let
the method modify the parameters, and examine the result in the calling method.
Example 4-7 shows a first attempt at this.

Example 4-7. Returning values in parameters

#region Using directives

using System;
using System.Collections.Generic;

84 | Chapter 4: Classes and Objects

using System.Text;

#endregion

namespace ReturningValuesInParams
{
 public class Time
 {
 // private member variables
 private int Year;
 private int Month;
 private int Date;
 private int Hour;
 private int Minute;
 private int Second;

 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 public int GetHour()
 {
 return Hour;
 }

 public void GetTime(int h, int m, int s)
 {
 h = Hour;
 m = Minute;
 s = Second;
 }

 // constructor
 public Time(System.DateTime dt)
 {

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }
 }

 public class Tester
 {
 static void Main()
 {

Example 4-7. Returning values in parameters (continued)

Passing Parameters | 85

Notice that the Current time in the output is 0:0:0. Clearly, this first attempt did not
work. The problem is with the parameters. You pass in three integer parameters to
GetTime(), and you modify the parameters in GetTime(), but when the values are
accessed back in Main(), they are unchanged. This is because integers are value
types, and so are passed by value; a copy is made in GetTime(). What you need is to
pass these values by reference.

Two small changes are required. First, change the parameters of the GetTime()
method to indicate that the parameters are ref (reference) parameters:

public void GetTime(ref int h, ref int m, ref int s)
{
 h = Hour;
 m = Minute;
 s = Second;
}

Second, modify the call to GetTime() to pass the arguments as references as well:

t.GetTime(ref theHour, ref theMinute, ref theSecond);

If you leave out the second step of marking the arguments with the keyword ref, the
compiler will complain that the argument can’t be converted from an int to a ref
int.

The results now show the correct time. By declaring these parameters to be ref
parameters, you instruct the compiler to pass them by reference. Instead of a copy
being made, the parameter in GetTime() is a reference to the same variable (theHour)
that is created in Main(). When you change these values in GetTime(), the change is
reflected in Main().

Keep in mind that ref parameters are references to the actual original value: it is as
though you said, “Here, work on this one.” Conversely, value parameters are copies:
it is as though you said, “Here, work on one just like this.”

 System.DateTime currentTime = System.DateTime.Now;
Time t = new Time(currentTime);

 t.DisplayCurrentTime();

 int theHour = 0;
 int theMinute = 0;
 int theSecond = 0;
 t.GetTime(theHour, theMinute, theSecond);
 System.Console.WriteLine("Current time: {0}:{1}:{2}",
 theHour, theMinute, theSecond);
 }
 }
}

Output:
11/17/2007 13:41:18
Current time: 0:0:0

Example 4-7. Returning values in parameters (continued)

86 | Chapter 4: Classes and Objects

Overcoming Definite Assignment with out Parameters
C# imposes definite assignment, which requires that all variables be assigned a value
before they are used. In Example 4-7, if you don’t initialize theHour, theMinute, and
theSecond before you pass them as parameters to GetTime(), the compiler will com-
plain. Yet, the initialization that is done merely sets their values to 0 before they are
passed to the method:

int theHour = 0;
int theMinute = 0;
int theSecond = 0;
t.GetTime(ref theHour, ref theMinute, ref theSecond);

It seems silly to initialize these values because you immediately pass them by refer-
ence into GetTime where they’ll be changed, but if you don’t, the following compiler
errors are reported:

Use of unassigned local variable 'theHour'
Use of unassigned local variable 'theMinute'
Use of unassigned local variable 'theSecond'

C# provides the out parameter modifier for this situation. The out modifier removes
the requirement that a reference parameter be initialized. The parameters to GetTime(),
for example, provide no information to the method; they are simply a mechanism for
getting information out of it. Thus, by marking all three as out parameters, you elimi-
nate the need to initialize them outside the method. Within the called method, the out
parameters must be assigned a value before the method returns. The following are the
altered parameter declarations for GetTime():

public void GetTime(out int h, out int m, out int s)
{
 h = Hour;
 m = Minute;
 s = Second;
}

And here is the new invocation of the method in Main():

t.GetTime(out theHour, out theMinute, out theSecond);

To summarize, value types are passed into methods by value. ref parameters are
used to pass value types into a method by reference. This allows you to retrieve their
modified values in the calling method. out parameters are used only to return infor-
mation from a method. Example 4-8 rewrites Example 4-7 to use all three.

Example 4-8. Using in, out, and ref parameters

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

Passing Parameters | 87

#endregion

namespace InOutRef
{
 public class Time
 {
 // private member variables
 private int Year;
 private int Month;
 private int Date;
 private int Hour;
 private int Minute;
 private int Second;

 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 public int GetHour()
 {
 return Hour;
 }

 public void SetTime(int hr, out int min, ref int sec)
 {
 // if the passed in time is >= 30
 // increment the minute and set second to 0
 // otherwise leave both alone
 if (sec >= 30)
 {
 Minute++;
 Second = 0;
 }
 Hour = hr; // set to value passed in

 // pass the minute and second back out
 min = Minute;
 sec = Second;
 }

 // constructor
 public Time(System.DateTime dt)
 {
 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;

Example 4-8. Using in, out, and ref parameters (continued)

88 | Chapter 4: Classes and Objects

SetTime is a bit contrived, but it illustrates the three types of parameters. theHour is
passed in as a value parameter; its entire job is to set the member variable Hour, and
no value is returned using this parameter.

The ref parameter theSecond is used to set a value in the method. If theSecond is
greater than or equal to 30, the member variable Second is reset to 0, and the member
variable Minute is incremented.

You must specify ref on the call and the destination when using refer-
ence parameters.

Finally, theMinute is passed into the method only to return the value of the member
variable Minute, and thus is marked as an out parameter.

 Second = dt.Second;
 }
 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;

Time t = new Time(currentTime);
 t.DisplayCurrentTime();

 int theHour = 3;
 int theMinute;
 int theSecond = 20;

 t.SetTime(theHour, out theMinute, ref theSecond);
 System.Console.WriteLine(
 "the Minute is now: {0} and {1} seconds",
 theMinute, theSecond);

 theSecond = 40;
 t.SetTime(theHour, out theMinute, ref theSecond);
 System.Console.WriteLine("the Minute is now: " +
 "{0} and {1} seconds", theMinute, theSecond);
 }
 }
}

Output:
11/17/2007 14:6:24
the Minute is now: 6 and 24 seconds
the Minute is now: 7 and 0 seconds

Example 4-8. Using in, out, and ref parameters (continued)

Overloading Methods and Constructors | 89

It makes perfect sense that theHour and theSecond must be initialized; their values are
needed and used. It is not necessary to initialize theMinute, as it is an out parameter
that exists only to return a value. What at first appeared to be arbitrary and capri-
cious rules now make sense; values are required to be initialized only when their
initial value is meaningful.

Overloading Methods and Constructors
Often, you’ll want to have more than one function with the same name. The most
common example of this is to have more than one constructor. In the examples
shown so far, the constructor has taken a single parameter: a DateTime object. It
would be convenient to be able to set new Time objects to an arbitrary time by pass-
ing in year, month, date, hour, minute, and second values. It would be even more
convenient if some clients could use one constructor, and other clients could use the
other constructor. Function overloading provides for exactly these contingencies.

The signature of a method is defined by its name and its parameter list. Two meth-
ods differ in their signatures if they have different names or different parameter lists.
Parameter lists can differ by having different numbers or types of parameters. For
example, in the following code, the first method differs from the second in the num-
ber of parameters, and the second differs from the third in the types of parameters:

void myMethod(int p1);
void myMethod(int p1, int p2);
void myMethod(int p1, string s1);

A class can have any number of methods, as long as each one’s signature differs from
that of all the others.

Example 4-9 illustrates the Time class with two constructors: one that takes a DateTime
object, and the other that takes six integers.

Example 4-9. Overloading the constructor

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace OverloadedConstructor
{
 public class Time
 {
 // private member variables
 private int Year;
 private int Month;
 private int Date;

90 | Chapter 4: Classes and Objects

 private int Hour;
 private int Minute;
 private int Second;

 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 // constructors
 public Time(System.DateTime dt)
 {
 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }

 public Time(int Year, int Month, int Date,
 int Hour, int Minute, int Second)
 {
 this.Year = Year;
 this.Month = Month;
 this.Date = Date;
 this.Hour = Hour;
 this.Minute = Minute;
 this.Second = Second;
 }
 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;

Time t1= new Time(currentTime);
 t.DisplayCurrentTime();

 Time t2 = new Time(2007, 11, 18, 11, 03, 30);
 t2.DisplayCurrentTime();

 }
 }
}

Example 4-9. Overloading the constructor (continued)

Overloading Methods and Constructors | 91

As you can see, the Time class in Example 4-9 has two constructors. If a function’s
signature consisted only of the function name, the compiler would not know which
constructors to call when constructing t1 and t2. However, because the signature
includes the function argument types, the compiler is able to match the constructor
call for t1 with the constructor whose signature requires a DateTime object. Likewise,
the compiler is able to associate the t2 constructor call with the constructor method
whose signature specifies six integer arguments.

When you overload a method, you must change the signature (i.e., the name, num-
ber, or type of the parameters). You are free, as well, to change the return type, but
this is optional. Changing only the return type doesn’t overload the method, and cre-
ating two methods with the same signature but differing return types will generate a
compile error, as you can see in Example 4-10.

Example 4-10. Varying the return type on overloaded methods

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace VaryingReturnType
{
 public class Tester
 {
 private int Triple(int val)
 {
 return 3 * val;
 }

 private long Triple(long val)
 {
 return 3 * val;
 }

 public void Test()
 {
 int x = 5;
 int y = Triple(x);
 System.Console.WriteLine("x: {0} y: {1}", x, y);

 long lx = 10;
 long ly = Triple(lx);
 System.Console.WriteLine("lx: {0} ly: {1}", lx, ly);

 }
 static void Main()
 {

92 | Chapter 4: Classes and Objects

In this example, the Tester class overloads the Triple() method, one to take an inte-
ger, the other to take a long. The return type for the two Triple() methods varies.
Although this is not required, it is very convenient in this case.

Encapsulating Data with Properties
Properties allow clients to access class state as though they were accessing member
fields directly, while actually implementing that access through a class method.

This is ideal. The client wants direct access to the state of the object and doesn’t
want to work with methods. The class designer, however, wants to hide the internal
state of his class in class members, and provide indirect access through a method.

By decoupling the class state from the method that accesses that state, the designer is
free to change the internal state of the object as needed. When the Time class is first
created, the Hour value might be stored as a member variable. When the class is rede-
signed, the Hour value might be computed or retrieved from a database. If the client
had direct access to the original Hour member variable, the change to computing the
value would break the client. By decoupling and forcing the client to go through a
method (or property), the Time class can change how it manages its internal state
without breaking client code.

Properties meet both goals: they provide a simple interface to the client, appearing to
be a member variable. They are implemented as methods, however, providing the
data-hiding required by good object-oriented design, as illustrated in Example 4-11.

Tester t = new Tester();
 t.Test();
 }
 }
}

Example 4-11. Using a property

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace UsingAProperty
{
 public class Time
 {
 // private member variables
 private int year;

Example 4-10. Varying the return type on overloaded methods (continued)

Encapsulating Data with Properties | 93

 private int month;
 private int date;
 private int hour;
 private int minute;
 private int second;

 // public accessor methods
 public void DisplayCurrentTime()
 {

 System.Console.WriteLine(
 "Time\t: {0}/{1}/{2} {3}:{4}:{5}",
 month, date, year, hour, minute, second);
 }

 // constructors
 public Time(System.DateTime dt)
 {
 year = dt.Year;
 month = dt.Month;
 date = dt.Day;
 hour = dt.Hour;
 minute = dt.Minute;
 second = dt.Second;
 }

 // create a property

 public int Hour
 {
 get
 {
 return hour;
 }

 set
 {
 hour = value;
 }
 }
 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;

Time t = new Time(currentTime);
 t.DisplayCurrentTime();

 int theHour = t.Hour;
 System.Console.WriteLine("\nRetrieved the hour: {0}\n",

Example 4-11. Using a property (continued)

94 | Chapter 4: Classes and Objects

To declare a property, write the property type and name followed by a pair of braces.
Within the braces you may declare get and set accessors. Neither of these has
explicit parameters, though the set(), accessor has an implicit parameter value, as
shown next.

In Example 4-11, Hour is a property. Its declaration creates two accessors: get and
set:

public int Hour
{
 get
 {
 return hour;
 }

 set
 {
 hour = value;
 }
}

Each accessor has an accessor body that does the work of retrieving and setting the
property value. The property value might be stored in a database (in which case the
accessor body would do whatever work is needed to interact with the database), or it
might just be stored in a private member variable:

private int hour;

The get Accessor
The body of the get accessor is similar to a class method that returns an object of the
type of the property. In the example, the accessor for Hour is similar to a method that
returns an int. It returns the value of the private member variable in which the value
of the property has been stored:

get
{
 return hour;
}

In this example, a local int member variable is returned, but you could just as easily
retrieve an integer value from a database, or compute it on the fly.

 theHour);
 theHour++;
 t.Hour = theHour;
 System.Console.WriteLine("Updated the hour: {0}\n", theHour);
 }
 }
}

Example 4-11. Using a property (continued)

Encapsulating Data with Properties | 95

Whenever you read the property, the get accessor is invoked:

Time t = new Time(currentTime);
int theHour = t.Hour;

In this example, the value of the Time object’s Hour property is retrieved, invoking the
get accessor to extract the property, which is then assigned to a local variable.

The set Accessor
The set accessor sets the value of a property and is similar to a method that returns
void. When you define a set accessor, you must use the value keyword to represent
the argument whose value is passed to and stored by the property:

set
{
 hour = value;
}

Here, again, a private member variable is used to store the value of the property, but
the set accessor could write to a database or update other member variables as
needed.

When you assign a value to the property, the set accessor is automatically invoked,
and the implicit parameter value is set to the value you assign:

theHour++;
t.Hour = theHour;

The two main advantages of this approach are that the client can interact with the
properties directly, without sacrificing the data-hiding and encapsulation sacrosanct
in good object-oriented design, and that the author of the property can ensure that
the data provided is valid.

Property Access Modifiers
It is possible to set an access modifier (protected, internal, private) to modify access
to either the get or set accessor. To do so, your property must have both a set and a
get accessor, and you may modify only one or the other. Also, the modifier must be
more restrictive than the accessibility level already on the property or the indexer
(thus, you may add protected to the get or set accessor of a public property, but not
to a private property):

public string MyString
{
 protected get { return myString; }
 set { myString = value; }
}

In this example, access to the get accessor is restricted to methods of this class and
classes derived from this class, whereas the set accessor is publicly visible.

96 | Chapter 4: Classes and Objects

Note that you may not put an access modifier on an interface (see
Chapter 8) or on explicit interface member implementation. In addi-
tion, if you are overriding a virtual property or index (as discussed next),
the access modifier must match the base property’s access modifier.

readonly Fields
You might want to create a version of the Time class that is responsible for providing
public static values representing the current time and date. Example 4-12 illustrates a
simple approach to this problem.

Example 4-12. Using static public constants

#region Using directives

using System;
using System.Collections.Generic;
using System.Text;

#endregion

namespace StaticPublicConstants
{
 public class RightNow
 {
 // public member variables
 public static int Year;
 public static int Month;
 public static int Date;
 public static int Hour;
 public static int Minute;
 public static int Second;

 static RightNow()
 {
 System.DateTime dt = System.DateTime.Now;
 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }
 }

 public class Tester
 {
 static void Main()
 {
 System.Console.WriteLine("This year: {0}",

readonly Fields | 97

This works well enough, until someone comes along and changes one of these val-
ues. As the example shows, the RightNow.Year value can be changed, for example, to
2008. This is clearly not what we’d like.

You’d like to mark the static values as constant, but that is not possible because you
don’t initialize them until the static constructor is executed. C# provides the
keyword readonly for exactly this purpose. If you change the class member variable
declarations as follows:

public static readonly int Year;
public static readonly int Month;
public static readonly int Date;
public static readonly int Hour;
public static readonly int Minute;
public static readonly int Second;

and then comment out the reassignment in Main():

// RightNow.Year = 2008; // error!

the program will compile and run as intended.

RightNow.Year.ToString());
RightNow.Year = 2008;

 System.Console.WriteLine("This year: {0}",
RightNow.Year.ToString());

 }
 }
}

Output:
This year: 2007
This year: 2008

Example 4-12. Using static public constants (continued)

98

Chapter 5CHAPTER 5

Inheritance and Polymorphism 5

The preceding chapter demonstrated how to create new types by declaring classes.
This chapter explores the relationship between objects in the real world and how to
model these relationships in your code. This chapter focuses on specialization, which
is implemented in C# through inheritance. This chapter also explains how instances
of more specialized types can be treated as though they were instances of more
general types, a process known as polymorphism. This chapter ends with a consider-
ation of sealed classes, which can’t be specialized; abstract classes, which exist only
to be specialized; and the root of all classes, the Object type.

VB 6 programmers take note: like VB.NET, C# provides full object-
oriented technology, including inheritance, polymorphism, and encap-
sulation. These are relatively new topics for VB 6 programmers. You
should study them carefully; they affect your class and application
design.

Specialization and Generalization
Classes and their instances (objects) don’t exist in a vacuum, but rather in a network
of interdependencies and relationships, just as we, as social animals, live in a world
of relationships and categories.

The is-a relationship is one of specialization. When we say that a dog is-a mammal,
we mean that the dog is a specialized kind of mammal. It has all the characteristics of
any mammal (it bears live young, nurses with milk, has hair), but it specializes these
characteristics to the familiar characteristics of Canis domesticus. A cat is also a
mammal. As such, we expect it to share certain characteristics with the dog that are
generalized in mammals, but to differ in those characteristics that are specialized in
cats.

Specialization and Generalization | 99

The specialization and generalization relationships are both reciprocal and hierarchi-
cal. They are reciprocal because specialization is the other side of the coin from
generalization. Thus, dog and cat specialize mammal, and mammal generalizes from
dog and cat.

These relationships are hierarchical because they create a relationship tree, with
specialized types branching off from more generalized types. As you move up the
hierarchy, you achieve greater generalization. You move up toward mammal to
generalize that dogs and cats and horses all bear live young. As you move down the
hierarchy, you specialize. Thus, the cat specializes mammal in having claws (a char-
acteristic) and purring (a behavior).

Similarly, when you say that ListBox and Button are Controls you indicate that there
are characteristics and behaviors of Controls that you expect to find in both of these
types, as illustrated in Figure 5-1. In other words, Control generalizes the shared
characteristics of both ListBox and Button, while each specializes its own particular
characteristics and behaviors.

About the Unified Modeling Language
The Unified Modeling Language (UML) is a standardized “language” for describing a
system or business. The part of the UML that is useful for the purposes of this chapter
is the set of diagrams used to document the relationships between classes.

In the UML, classes are represented as boxes. The name of the class appears at the top
of the box, and (optionally) methods and members can be listed in the sections within
the box. In the UML, you model (for example) specialization relationships as shown in
Figure 5-1. Note that the arrow points from the more specialized class up to the more
general class.

Figure 5-1. An is-a relationship

Button

Control

ListBox

100 | Chapter 5: Inheritance and Polymorphism

When developing an application, it is common to note that two classes share func-
tionality, and then to factor out these commonalities into a shared base class. This
provides you with easier-to-maintain code and greater reuse of common code. For
example, suppose you started out creating a series of objects as illustrated in
Figure 5-2.

After working with RadioButtons, CheckBoxes, and Command buttons for a while, you
realize that they share certain characteristics and behaviors that are more specialized
than Control, but more general than any of the three. You might factor these com-
mon traits and behaviors into a common base class, Button, and rearrange your
inheritance hierarchy as shown in Figure 5-3. This is an example of how generaliza-
tion is used in object-oriented development.

This UML diagram depicts the relationship between the factored classes and shows
that both ListBox and Button derive from Control, and that Button is in turn special-
ized into CheckBox and Command. Finally, RadioButton derives from CheckBox. You can
thus say that RadioButton is a CheckBox, which in turn is a Button, and that Buttons
are Controls.

Figure 5-2. Deriving from Control

Figure 5-3. A more factored hierarchy

RadioButton

Control

CheckBox Command ListBox

RadioButton

CheckBox Command

Button ListBox

Control

Inheritance | 101

This is not the only, or even necessarily the best, organization for these objects, but it
is a reasonable starting point for understanding how these types (classes) relate to
one another.

Actually, although this might reflect how some widget hierarchies are
organized, I’m very skeptical of any system in which the model doesn’t
reflect how we perceive reality. When I find myself saying that a
RadioButton is a CheckBox, I have to think long and hard about whether
that makes sense. I suppose a RadioButton is a kind of checkbox. It is a
checkbox that supports the idiom of mutually exclusive choices. With
that said, it is a bit of a stretch, and might be a sign of a shaky design.

Microsoft offers a better design in Windows Presentation Foundation,
in which ToggleButton serves as a base class for both CheckBox and
RadioButton. The ButtonBase class then serves as the common base for
Button and ToggleButton, thereby eliminating the artificial (and frankly
bizarre) inheritance of RadioButton deriving from CheckBox.

Inheritance
In C#, the specialization relationship is typically implemented using inheritance.
This is not the only way to implement specialization, but it is the most common and
most natural way to implement this relationship.

Saying that ListBox inherits from (or derives from) Control indicates that it special-
izes Control. Control is referred to as the base class, and ListBox is referred to as the
derived class. That is, ListBox derives its characteristics and behaviors from Control,
and then specializes to its own particular needs.

Implementing Inheritance
In C#, you create a derived class by adding a colon after the name of the derived
class, followed by the name of the base class:

public class ListBox : Control

This code declares a new class, ListBox, which derives from Control. You can read
the colon as “derives from.”

C++ programmers take note: C# has no private or protected inherit-
ance, and implements multiple inheritance only for interfaces, not for
multiple base types. After eight years of C++ and now eight years of
C#, I can honestly say that I see no disadvantage to this limitation.

The derived class inherits all the members of the base class, both member variables
and methods.

102 | Chapter 5: Inheritance and Polymorphism

Polymorphism
There are two powerful aspects to inheritance. One is code reuse. When you create a
ListBox class, you’re able to reuse some of the logic in the base (Control) class.

What is arguably more powerful, however, is the second aspect of inheritance: poly-
morphism. Poly means “many” and morph means “form.” Thus, polymorphism
refers to being able to use many forms of a type without regard to the details.

When the phone company sends your phone a ring signal, it doesn’t know what type
of phone is on the other end of the line. You might have an old-fashioned Western
Electric phone that energizes a motor to ring a bell, or you might have an electronic
phone that plays digital music.

As far as the phone company is concerned, it knows only about the “base type” Phone
and expects that any “instance” of this type knows how to ring. When the phone com-
pany tells your phone to ring, it simply expects the phone to “do the right thing.”
Thus, the phone company treats your phone polymorphically.

Creating Polymorphic Types
Because a ListBox is-a Control and a Button is-a Control, we expect to be able to use
either of these types in situations that call for a Control. For example, a form might
want to keep a collection of all the instances of Control it manages so that when the
form is opened, it can tell each of its Controls to draw itself. For this operation, the
form doesn’t want to know which elements are listboxes and which are buttons; it
just wants to tick through its collection and tell each to “draw.” In short, the form
wants to treat all its Control objects polymorphically.

Creating Polymorphic Methods
To create a method that supports polymorphism, you need only mark it as virtual in
its base class. For example, to indicate that the method DrawWindow() of class Control
in Example 5-1 is polymorphic, simply add the keyword virtual to its declaration as
follows:

public virtual void DrawWindow()

Now, each derived class is free to implement its own version of DrawWindow(). To do
so, simply override the base class virtual method by using the keyword override in
the derived class method definition, and then add the new code for that overridden
method.

In the following excerpt from Example 5-1 (which appears later in this section),
ListBox derives from Control and implements its own version of DrawWindow():

Polymorphism | 103

public override void DrawWindow()
{
 base.DrawWindow(); // invoke the base method
 Console.WriteLine ("Writing string to the listbox: {0}",
 listBoxContents);
}

The keyword override tells the compiler that this class has intentionally overridden
how DrawWindow() works. Similarly, you’ll override this method in another class,
Button, also derived from Control.

In the body of Example 5-1, you’ll first create three objects: a Control, a ListBox, and
a Button. You’ll then call DrawWindow() on each:

Control win = new Control(1,2);
ListBox lb = new ListBox(3,4,"Stand alone list box");
Button b = new Button(5,6);
win.DrawWindow();
lb.DrawWindow();
b.DrawWindow();

This works much as you might expect. The correct DrawWindow() object is called for
each. So far, nothing polymorphic has been done. The real magic starts when you
create an array of Control objects. (Arrays are simple collections, covered in
Chapter 9.) Because a ListBox is-a Control, you are free to place a ListBox into a
Control array. You can also place a Button into an array of Control objects because a
Button is also a Control:

Control[] winArray = new Control[3]; // declare an array of 3 Controls
winArray[0] = new Control(1,2);
winArray[1] = new ListBox(3,4,"List box in array");
winArray[2] = new Button(5,6);

What happens when you call DrawWindow() on each object?

for (int i = 0;i < 3; i++)
{
 winArray[i].DrawWindow();
}

All the compiler knows is that it has three Control objects, and that you’ve called
DrawWindow() on each. If you had not marked DrawWindow as virtual, Control’s
DrawWindow() method would be called three times. However, because you did mark
DrawWindow() as virtual, and because the derived classes override that method,
when you call DrawWindow() on the array, the compiler determines the runtime type
of the actual objects (a Control, a ListBox, and a Button), and calls the right method
on each. This is the essence of polymorphism. Example 5-1 shows the complete code
for this example.

104 | Chapter 5: Inheritance and Polymorphism

Example 5-1. Using virtual methods

using System;

namespace Using_virtual_methods
{
 public class Control
 {
 // these members are protected and thus visible
 // to derived class methods. We'll examine this
 // later in the chapter
// and then assign/refer to these as this.Top, this.Left in the rest of the code
 protected int Top { get; set; }
 protected int Left { get; set; }
 // constructor takes two integers to
 // fix location on the console
 public Control(int top, int left)
 {
 this.top = top;
 this.left = left;
 }

 // simulates drawing the window
 public virtual void DrawWindow()
 {
 Console.WriteLine("Control: drawing Control at {0}, {1}",
 top, left);
 }
 }

 // ListBox derives from Control
 public class ListBox : Control
 {
 private string listBoxContents; // new member variable

 // constructor adds a parameter
 public ListBox(
 int top,
 int left,
 string contents) :
 base(top, left) // call base constructor
 {

 listBoxContents = contents;
 }

 // an overridden version (note keyword) because in the
 // derived method we change the behavior
 public override void DrawWindow()
 {
 base.DrawWindow(); // invoke the base method
 Console.WriteLine("Writing string to the listbox: {0}",
 listBoxContents);
 }

Polymorphism | 105

 }

 public class Button : Control
 {
 public Button(
 int top,
 int left) :
 base(top, left)
 {
 }

 // an overridden version (note keyword) because in the
 // derived method we change the behavior
 public override void DrawWindow()
 {
 Console.WriteLine("Drawing a button at {0}, {1}\n",
 top, left);
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 Control win = new Control(1, 2);
 ListBox lb = new ListBox(3, 4, "Stand alone list box");
 Button b = new Button(5, 6);
 win.DrawWindow();
 lb.DrawWindow();
 b.DrawWindow();

 Control[] winArray = new Control[3];
 winArray[0] = new Control(1, 2);
 winArray[1] = new ListBox(3, 4, "List box in array");
 winArray[2] = new Button(5, 6);

 for (int i = 0; i < 3; i++)
 {
 winArray[i].DrawWindow();
 }
 }
 }
}

Output:
Control: drawing Control at 1, 2
Control: drawing Control at 3, 4
Writing string to the listbox: Stand alone list box
Drawing a button at 5, 6

Example 5-1. Using virtual methods (continued)

106 | Chapter 5: Inheritance and Polymorphism

Note that throughout this example we’ve marked the new overridden methods with
the keyword override:

public override void DrawWindow()

The compiler now knows to use the overridden method when treating these objects
polymorphically. The compiler is responsible for tracking the real type of the object
and for ensuring that it is ListBox.DrawWindow() that is called when the Control refer-
ence really points to a ListBox object.

C++ programmers take note: you must explicitly mark the declaration
of any method that overrides a virtual method with the keyword
override.

Calling Base Class Constructors
In Example 5-1, the new class ListBox derives from Control and has its own
constructor, which takes three parameters. The ListBox constructor invokes the con-
structor of its parent (Control) by placing a colon (:) after the parameter list and then
invoking the base class with the keyword base:

public ListBox(
 int theTop,
 int theLeft,
 string theContents):
 base(theTop, theLeft) // call base constructor

Because classes can’t inherit constructors, a derived class must implement its own
constructor and can only make use of the constructor of its base class by calling it
explicitly.

If the base class has an accessible (e.g., public) default constructor, the derived con-
structor is not required to invoke the base constructor explicitly; instead, the default
constructor is called implicitly. However, if the base class doesn’t have a default
constructor, every derived constructor must explicitly invoke one of the base class
constructors using the base keyword.

As discussed in Chapter 4, if you don’t declare a constructor of any
kind, the compiler will create a default constructor for you. Whether
you write it or you use the one provided “by default” by the compiler,
a default constructor is one that takes no parameters. Note, however,
that once you do create a constructor of any kind (with or without
parameters), the compiler doesn’t create a default constructor for you.

Control: drawing Control at 1, 2
Control: drawing Control at 3, 4
Writing string to the listbox: List box in array
Drawing a button at 5, 6

Example 5-1. Using virtual methods (continued)

Polymorphism | 107

Controlling Access
The visibility of a class and its members can be restricted through the use of access
modifiers, such as public, private, protected, internal, and protected internal. (See
Chapter 4 for a discussion of access modifiers.)

As you’ve seen, public allows a member to be accessed by the member methods of
other classes, and private indicates that the member is visible only to member meth-
ods of its own class. The protected keyword extends visibility to methods of derived
classes, whereas internal extends visibility to methods of any class in the same
assembly.

The internal protected keyword pair allows access to members of the same assem-
bly (internal) or derived classes (protected). You can think of this designation as
internal or protected.

Classes as well as their members can be designated with any of these accessibility lev-
els. If a class member has an access designation that is different from that of the class,
the more restricted access applies. Thus, if you define a class, myClass, as follows:

public class myClass
{
 // ...
 protected int myValue;
}

the accessibility for myValue is protected even though the class itself is public. A public
class is one that is visible to any other class that wishes to interact with it. Often, classes
are created that exist only to help other classes in an assembly, and these classes might
be marked internal rather than public (the default for classes is internal, but it is good
programming practice to make the accessibility explicit).

Versioning with the new and override Keywords
In C#, the programmer’s decision to override a virtual method is made explicit with
the override keyword. This helps you to release new versions of your code; changes
to the base class will not break existing code in the derived classes. The requirement
to use the keyword override helps prevent that problem.

Here’s how: assume for a moment that the Control base class of the preceding exam-
ple was written by Company A. Suppose also that the ListBox and RadioButton classes
were written by programmers from Company B using a purchased copy of the Com-
pany A Control class as a base. The programmers in Company B have little or no con-
trol over the design of the Control class, including future changes that Company A
might choose to make.

108 | Chapter 5: Inheritance and Polymorphism

Now, suppose that one of the programmers for Company B decides to add a Sort()
method to ListBox:

public class ListBox : Control
{
 public virtual void Sort() {...}
}

This presents no problems until Company A, the author of Control, releases version
2 of its Control class, and it turns out that the programmers in Company A have also
added a Sort() method to their public class Control:

public class Control
{
 // ...
 public virtual void Sort() {...}
}

In other object-oriented languages (such as C++), the new virtual Sort() method in
Control would now act as a base method for the virtual Sort() method in ListBox.
The compiler would call the Sort() method in ListBox when you intend to call the
Sort() in Control. In Java, if the Sort() in Control has a different return type, the
class loader would consider the Sort() in ListBox to be an invalid override and
would fail to load.

C# prevents this confusion. In C#, a virtual function is always considered to be the
root of virtual dispatch; that is, once C# finds a virtual method, it looks no further
up the inheritance hierarchy. If a new virtual Sort() function is introduced into
Control, the runtime behavior of ListBox is unchanged.

When ListBox is compiled again, however, the compiler generates a warning:

...\class1.cs(54,24): warning CS0114: 'ListBox.Sort()' hides
inherited member 'Control.Sort()'.
To make the current member override that implementation,
add the override keyword. Otherwise add the new keyword.

To remove the warning, the programmer must indicate what he intends. He can
mark the ListBox Sort() method with new, to indicate that it is not an override of the
virtual method in Control:

public class ListBox : Control
{
 public new virtual void Sort() {...}

This action removes the warning. If, on the other hand, the programmer does want
to override the method in Control, he need only use the override keyword to make
that intention explicit:

public class ListBox : Control
{
 public override void Sort() {...}

Abstract Classes | 109

To avoid this warning, it might be tempting to add the keyword new to
all your virtual methods. This is a bad idea. When new appears in the
code, it ought to document the versioning of code. It points a poten-
tial client to the base class to see what you aren’t overriding. Using new
scattershot undermines this documentation. Further, the warning
exists to help identify a real issue.

Abstract Classes
Every subclass of Control should implement its own DrawWindow() method—but
nothing requires that it do so. To require subclasses to implement a method of their
base, you need to designate that method as abstract.

An abstract method has no implementation. It creates a method name and signature
that must be implemented in all derived classes. Furthermore, making one or more
methods of any class abstract has the side effect of making the class abstract.

Abstract classes establish a base for derived classes, but it is not legal to instantiate
an object of an abstract class. Once you declare a method to be abstract, you pro-
hibit the creation of any instances of that class.

Thus, if you were to designate DrawWindow() as abstract in the Control class, you
could derive from Control, but you could not create any Control objects. Each
derived class would have to implement DrawWindow(). If the derived class failed to
implement the abstract method, that class would also be abstract, and again no
instances would be possible.

Designating a method as abstract is accomplished by placing the keyword abstract
at the beginning of the method definition, as follows:

abstract public void DrawWindow();

(Because the method can have no implementation, there are no braces; only a
semicolon.)

If one or more methods are abstract, the class definition must also be marked
abstract, as in the following:

abstract public class Control

Example 5-2 illustrates the creation of an abstract Control class and an abstract
DrawWindow() method.

Example 5-2. Using an abstract method and class

using System;

namespace abstract_method_and_class
{
 abstract public class Control
 {

110 | Chapter 5: Inheritance and Polymorphism

 protected int top;
 protected int left;

 // constructor takes two integers to
 // fix location on the console
 protected Control(int top, int left)
 {
 this.top = top;
 this.left = left;
 }

 // simulates drawing the window
 // notice: no implementation
 abstract public void DrawWindow();

 }

 // ListBox derives from Control
 public class ListBox : Control
 {
 private string listBoxContents; // new member variable

 // constructor adds a parameter
 public ListBox(
 int top,
 int left,
 string contents) :
 base(top, left) // call base constructor
 {

 listBoxContents = contents;
 }

 // an overridden version implementing the
 // abstract method

 public override void DrawWindow()
 {
 Console.WriteLine("Writing string to the listbox: {0}",
 listBoxContents);
 }

 }

 public class Button : Control
 {
 public Button(
 int top,
 int left) :
 base(top, left)
 {
 }

Example 5-2. Using an abstract method and class (continued)

Abstract Classes | 111

In Example 5-2, the Control class has been declared abstract and therefore can’t be
instantiated. If you replace the first array member:

winArray[0] = new ListBox(1,2,"First List Box");

with this code:

winArray[0] = new Control(1,2);

the program generates the following error:

Cannot create an instance of the abstract class or interface
'abstractmethods.Control'

You can instantiate the ListBox and Button objects because these classes override the
abstract method, thus making the classes concrete (i.e., not abstract).

Limitations of Abstract
Although designating DrawWindow() as abstract does force all the derived classes to
implement the method, this is a very limited solution to the problem. If we derive a
class from ListBox (e.g., DropDownListBox), nothing forces that derived class to imple-
ment its own DrawWindow() method.

 // implement the abstract method
 public override void DrawWindow()
 {
 Console.WriteLine("Drawing a button at {0}, {1}\n",
 top, left);
 }

 }

 class Program
 {
 static void Main(string[] args)
 {
 Control[] winArray = new Control[3];
 winArray[0] = new ListBox(1, 2, "First List Box");
 winArray[1] = new ListBox(3, 4, "Second List Box");
 winArray[2] = new Button(5, 6);

 for (int i = 0; i < 3; i++)
 {
 winArray[i].DrawWindow();
 }

 }
 }
}

Example 5-2. Using an abstract method and class (continued)

112 | Chapter 5: Inheritance and Polymorphism

C++ programmers take note: in C#, it is not possible for Control.
DrawWindow() to provide an implementation, so you can’t take advan-
tage of the common DrawWindow() routines that might otherwise be
shared by the derived classes.

Finally, abstract classes should not just be an implementation trick; they should
represent the idea of an abstraction that establishes a “contract” for all derived
classes. In other words, abstract classes describe the public methods of the classes
that will implement the abstraction.

The idea of an abstract Control class ought to lay out the common characteristics
and behaviors of all Controls, even if you never intend to instantiate the abstraction
Control itself.

The idea of an abstract class is implied in the word abstract. It serves to implement
the abstraction of “control” that will be manifest in the various concrete instances of
Control, such as browser window, frame, button, listbox, or drop-down menu. The
abstract class establishes what a Control is, even though you never intend to create a
control per se. An alternative to using abstract is to define an interface, as described
in Chapter 8.

Sealed Class
The obverse side of the design coin from abstract is sealed. Although an abstract class
is intended to be derived from and to provide a template for its subclasses to follow,
a sealed class doesn’t allow classes to derive from it at all. Placed before the class dec-
laration, the sealed keyword precludes derivation. Classes are most often marked
sealed to prevent accidental inheritance.

Java programmers take note: a sealed class in C# is the equivalent of a
final class in Java.

If you change the declaration of Control in Example 5-2 from abstract to sealed
(eliminating the abstract keyword from the DrawWindow() declaration as well), the
program will fail to compile. If you try to build this project, the compiler will return
the following error message:

'ListBox' cannot inherit from sealed class 'Control'

among many other complaints (such as that you can’t create a new protected mem-
ber in a sealed class).

The Root of All Types: Object | 113

The Root of All Types: Object
All C# classes, of any type, are treated as though they ultimately derive from System.
Object. Interestingly, this includes value types.

A base class is the immediate “parent” of a derived class. A derived class can be the
base to further derived classes, creating an inheritance “tree” or hierarchy. A root
class is the topmost class in an inheritance hierarchy.

In C#, the root class is Object. The nomenclature is a bit confusing until you imag-
ine an upside-down tree, with the root on top, and the derived classes below. Thus,
the base class is considered to be “above” the derived class.

C++ programmers take note: C# uses single inheritance with a mono-
lithic class hierarchy: every class inherits from a base class of Object,
and multiple inheritance is not possible. However, C# interfaces pro-
vide many of the benefits of multiple inheritance. (See Chapter 8 for
more information.)

Object provides a number of virtual methods that subclasses can and do override.
These include Equals() to determine whether two objects are the same; GetType(),
which returns the type of the object (discussed in Chapter 8); and ToString(), which
returns a string to represent the current object (discussed in Chapter 10). Table 5-1
summarizes the methods of Object.

Example 5-3 illustrates the use of the ToString() method inherited from Object, as
well as the fact that primitive datatypes such as int can be treated as though they
inherit from Object. Note that the DisplayValue method expects an object, but works
perfectly fine if you pass in an integer.

Table 5-1. The methods of Object

Method What it does

Equals() Evaluates whether two objects are equivalent

GetHashCode() Allows objects to provide their own hash function for use in collections (see Chapter 9)

GetType() Provides access to the type object

ToString() Provides a string representation of the object

Finalize() Cleans up unmanaged resources; implemented by a destructor (see Chapter 4)

MemberwiseClone() Creates copies of the object; should never be implemented by your type

ReferenceEquals() Evaluates whether two objects refer to the same instance

114 | Chapter 5: Inheritance and Polymorphism

The documentation for Object.ToString() reveals its signature:

public virtual string ToString();

Example 5-3. Inheriting from Object

using System;

namespace Inheriting_From_Object
{
 public class SomeClass
 {
 private int val;

 public SomeClass(int someVal)
 {
 val = someVal;
 }

 public override string ToString()
 {
 return val.ToString();
 }
 }

 class Program
 {
 static void DisplayValue(object o)
 {
 Console.WriteLine(
 "The value of the object passed in is {0}", o;
 }

 static void Main(string[] args)
 {

 int i = 5;
 Console.WriteLine("The value of i is: {0}", i.ToString());
 DisplayValue(i);

 SomeClass s = new SomeClass(7);
 Console.WriteLine("The value of s is {0}", s.ToString());
 DisplayValue(s);
 }
 }
}

Output:
The value of i is: 5
The value of the object passed in is 5
The value of s is 7
The value of the object passed in is 7

Nesting Classes | 115

It is a public virtual method that returns a string and that takes no parameters. All
the built-in types, such as int, derive from Object and so can invoke Object’s meth-
ods. The Write and WriteLine methods of Console will automagically invoke the
ToString() method on any object provided.

Example 5-3 overrides the virtual function for SomeClass, which is the usual case, so
that the class’s ToString() method will return a meaningful value. If you comment
out the overridden function, the base method will be invoked, which will change the
output to:

The value of s is SomeClass

Thus, the default behavior is to return a string with the name of the class itself.

Classes don’t need to explicitly declare that they derive from Object; the inheritance
is implicit.

Nesting Classes
Classes have members, and it is entirely possible for the member of a class to be
another user-defined type. Thus, a Button class might have a member of type
Location, and a Location class might contain members of type Point. Finally, Point
might contain members of type int.

At times, the contained class might exist only to serve the outer class, and there
might be no reason for it to be otherwise visible. (In short, the contained class acts as
a helper class.) You can define the helper class within the definition of the outer
class. The contained, inner class is called a nested class, and the class that contains it
is called, simply, the outer class.

Nested classes have the advantage of access to all the members of the outer class. A
method of a nested class can access private members of the outer class.

In addition, the nested class can be hidden from all other classes—that
is, it can be private to the outer class.

Finally, a nested class that is public is accessed within the scope of the outer class. If
Outer is the outer class, and Nested is the (public) inner class, refer to Nested as
Outer.Nested, with the outer class acting (more or less) as a namespace or scope.

Java programmers take note: nested classes are roughly equivalent to
static inner classes; there is no C# equivalent to Java’s nonstatic inner
classes.

116 | Chapter 5: Inheritance and Polymorphism

Example 5-4 features a nested class of Fraction named FractionArtist. The job of
FractionArtist is to render the fraction on the console. In this example, the render-
ing is handled by a pair of simple WriteLine() statements.

Example 5-4. Using a nested class

using System;

namespace Nested_Class
{
 public class Fraction
 {
 private int numerator;
 private int denominator;

 public Fraction(int numerator, int denominator)
 {
 this.numerator = numerator;
 this.denominator = denominator;
 }

 public override string ToString()
 {
 return String.Format("{0}/{1}",
 numerator, denominator);
 }

 internal class FractionArtist
 {
 public void Draw(Fraction f)
 {
 Console.WriteLine("Drawing the numerator: {0}",
 f.numerator);
 Console.WriteLine("Drawing the denominator: {0}",
 f.denominator);
 }
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 Fraction f1 = new Fraction(3, 4);
 Console.WriteLine("f1: {0}", f1.ToString());

 Fraction.FractionArtist fa = new Fraction.FractionArtist();
 fa.Draw(f1);

 }
 }
}

Nesting Classes | 117

The nested class is shown in bold. The FractionArtist class provides only a single
member, the Draw() method. What is particularly interesting is that Draw() has
access to the private data members f.numerator and f.denominator, to which it
wouldn’t have had access if it weren’t a nested class.

Notice in Main() that to declare an instance of this nested class, you must specify the
type name of the outer class:

Fraction.FractionArtist fa = new Fraction.FractionArtist();

FractionArtist is scoped to be within the Fraction class.

118

Chapter 6CHAPTER 6

Operator Overloading 6

It is a design goal of C# that user-defined classes can have all the functionality of
built-in types. For example, suppose you have defined a type to represent fractions.
Ensuring that this class has all the functionality of the built-in types means that you
must be able to perform arithmetic on instances of your fractions (e.g., add two frac-
tions, multiply, etc.) and convert fractions to and from built-in types such as integer
(int). You could, of course, implement methods for each operation and invoke them
by writing statements such as:

Fraction theSum = firstFraction.Add(secondFraction);

Although this will work, it is ugly, and is not how the built-in types are used. It
would be much better to write:

Fraction theSum = firstFraction + secondFraction;

Statements like this are intuitive and consistent with how built-in types, such as int,
are added.

In this chapter, you will learn techniques for adding standard operators to your user-
defined types. You will also learn how to add conversion operators so that your
user-defined types can be implicitly and explicitly converted to other types.

Using the operator Keyword
In C#, you implement operators by creating static methods whose return values rep-
resent the result of an operation and whose parameters are the operands. When you
create an operator for a class you say that you have “overloaded” that operator,
much as you might overload any member method. Thus, to overload the addition
operator (+), you would write:

public static Fraction operator+(Fraction lhs, Fraction rhs)

Supporting Other .NET Languages | 119

It is our convention to name the parameters lhs and rhs. The parame-
ter name lhs stands for “lefthand side,” and reminds us that the first
parameter represents the lefthand side of the operation. Similarly, rhs
stands for “righthand side.”

The C# syntax for overloading an operator is to write the word operator followed by
the operator to overload. The operator keyword is a method modifier. Thus, to over-
load the addition operator (+), you write operator+.

The operator then acts as a method, with the body of the operator method imple-
menting the action of the operator (e.g., doing the work of whatever it is you mean
by +).

When you write:

Fraction theSum = firstFraction + secondFraction;

the overloaded + operator is invoked, with the first Fraction passed as the first argu-
ment, and the second Fraction passed as the second argument. When the compiler
sees the expression:

firstFraction + secondFraction

it translates that expression into:

Fraction.operator+(firstFraction, secondFraction)

The result is that a new Fraction is returned, which in this case is assigned to the
Fraction object named theSum.

C++ programmers take note: it is not possible to create nonstatic oper-
ators, and thus binary operators must take two operands.

Supporting Other .NET Languages
C# provides the ability to overload operators for your classes, even though this is
not, strictly speaking, in the Common Language Specification (CLS). Other .NET
languages might not support operator overloading, and it is important to ensure that
your class supports the alternative methods that these other languages might call to
create the same effect.

Thus, if you overload the addition operator (+), you might also want to provide an
Add() method that does the same work. Operator overloading ought to be a syntac-
tic shortcut, not the only path for your objects to accomplish a given task.

120 | Chapter 6: Operator Overloading

Creating Useful Operators
Operator overloading can make your code more intuitive and enable it to act more
like the built-in types. It can also make your code unmanageable, complex, and
obtuse if you break the common idiom for the use of operators. Resist the tempta-
tion to use operators in new and idiosyncratic ways.

For example, although it might be tempting to overload the increment operator (++)
on an employee class to invoke a method incrementing the employee’s pay level, this
can create tremendous confusion for clients of your class. It is best to use operator
overloading sparingly, and only when its meaning is clear and consistent with how
the built-in classes operate.

Logical Pairs
It is quite common to overload the equality operator (==) to test whether two objects
are equal (however equality might be defined for your object). C# insists that if you
overload the equals (==) operator, you must also overload the not-equals operator
(!=). Similarly, the less-than (<) and greater-than (>) operators must be paired, as
must the less-than or equals (<=) and greater-than or equals (>=) operators.

The Equality Operator
If you overload the equality operator (==), it is recommended that you also override
the virtual Equals() method provided by Object and route its functionality back to
the equals operator. This allows your class to be polymorphic, and provides compati-
bility with other .NET languages that don’t overload operators (but do support
method overloading). The .NET Framework classes will not use the overloaded oper-
ators, but will expect your classes to implement the underlying methods. The Object
class implements the Equals() method with this signature:

public virtual bool Equals(object o)

By overriding this method, you allow your Fraction class to act polymorphically with
all other objects. Inside the body of Equals(), you will need to ensure that you are
comparing with another Fraction, and if so, you can pass the implementation along
to the equals operator definition that you’ve written:

public override bool Equals(object o)
{
 if (! (o is Fraction))
 {
 return false;
 }
 return this == (Fraction) o;
}

Putting Operators to Work | 121

The is operator is used to check whether the runtime type of an object is compatible
with the operand (in this case, Fraction). Thus, o is Fraction will evaluate true if o is
in fact a type compatible with Fraction.

The compiler will also expect you to override GetHashCode, as
explained shortly.

Conversion Operators
C# converts int to long implicitly, and allows you to convert long to int explicitly.
The conversion from int to long is implicit (it happens without requiring any special
syntax), and is safe because you know that any int will fit into the memory represen-
tation of a long. The reverse operation, from long to int, must be explicit (using a
cast operator) because it is possible to lose information in the conversion:

int myInt = 5;
long myLong;
myLong = myInt; // implicit
myInt = (int) myLong; // explicit

You will want to provide the same functionality for your fractions. Given an int, you
can support an implicit conversion to a fraction because any whole value is equal to
that value over 1 (e.g., 15==15/1).

Given a fraction, you might want to provide an explicit conversion back to an inte-
ger, understanding that some value might be lost. Thus, you might convert 9/4 to the
integer value 2.

When implementing your own conversions, the keyword implicit is used when the
conversion is guaranteed to succeed and no information will be lost; otherwise,
explicit is used.

Make sure to use implicit whenever you don’t use explicit!

Putting Operators to Work
Example 6-1 illustrates how you might implement implicit and explicit conversions, and
some of the operators of the Fraction class. (Although we’ve used Console.WriteLine()
to print messages illustrating which method we’re entering, the better way to pursue
this kind of trace is with the debugger. You can place a breakpoint on each test state-
ment, and then step into the code, watching the invocation of the constructors as they
occur.) When you compile this example, it will generate some warnings because
GetHashCode() is not implemented (see Chapter 9).

122 | Chapter 6: Operator Overloading

Example 6-1. Defining conversions and operators for the Fraction class

using System;

namespace Conversions
{

 public class Fraction
 {
 private int numerator;
 private int denominator;

 public Fraction(int numerator, int denominator)
 {
 Console.WriteLine("In Fraction Constructor(int, int)");
 this.numerator = numerator;
 this.denominator = denominator;
 }

 public Fraction(int wholeNumber)
 {
 Console.WriteLine("In Fraction Constructor(int)");
 numerator = wholeNumber;
 denominator = 1;
 }

 public static implicit operator Fraction(int theInt)
 {
 Console.WriteLine("In implicit conversion to Fraction");
 return new Fraction(theInt);
 }

 public static explicit operator int(Fraction theFraction)
 {
 Console.WriteLine("In explicit conversion to int");
 return theFraction.numerator / theFraction.denominator;
 }

 public static bool operator ==(Fraction lhs, Fraction rhs)
 {
 Console.WriteLine("In operator ==");
 if (lhs.denominator == rhs.denominator &&
 lhs.numerator == rhs.numerator)
 {
 return true;
 }
 // code here to handle unlike fractions
 return false;
 }

 public static bool operator !=(Fraction lhs, Fraction rhs)
 {
 Console.WriteLine("In operator !=");

Putting Operators to Work | 123

 return !(lhs == rhs);
 }

 public override bool Equals(object o)
 {
 Console.WriteLine("In method Equals");
 if (!(o is Fraction))
 {
 return false;
 }
 return this == (Fraction)o;
 }

 public static Fraction operator +(Fraction lhs, Fraction rhs)
 {
 Console.WriteLine("In operator+");
 if (lhs.denominator == rhs.denominator)
 {
 return new Fraction(lhs.numerator + rhs.numerator,
 lhs.denominator);
 }

 // simplistic solution for unlike fractions
 // 1/2 + 3/4 == (1*4) + (3*2) / (2*4) == 10/8
 int firstProduct = lhs.numerator * rhs.denominator;
 int secondProduct = rhs.numerator * lhs.denominator;
 return new Fraction(
 firstProduct + secondProduct,
 lhs.denominator * rhs.denominator
);
 }

 public override string ToString()
 {
 String s = numerator.ToString() + "/" +
 denominator.ToString();
 return s;
 }
 }

 class Program
 {
 static void Main(string[] args)
 {
 Fraction f1 = new Fraction(3, 4);
 Console.WriteLine("f1: {0}", f1.ToString());

 Fraction f2 = new Fraction(2, 4);
 Console.WriteLine("f2: {0}", f2.ToString());

 Fraction f3 = f1 + f2;
 Console.WriteLine("f1 + f2 = f3: {0}", f3.ToString());

Example 6-1. Defining conversions and operators for the Fraction class (continued)

124 | Chapter 6: Operator Overloading

The Fraction class begins with two constructors. One takes a numerator and denom-
inator, and the other takes a whole number. The constructors are followed by the
declaration of two conversion operators. The first conversion operator changes an
integer into a Fraction:

public static implicit operator Fraction(int theInt)
{
 return new Fraction(theInt);
}

This conversion is marked implicit because any whole number (int) can be con-
verted to a Fraction by setting the numerator to the int and the denominator to 1.
Delegate this responsibility to the constructor that takes an int.

The second conversion operator is for the explicit conversion of Fractions into integers:

public static explicit operator int(Fraction theFraction)
{
 return theFraction.numerator /
 theFraction.denominator;
}

Because this example uses integer division, it will truncate the value. Thus, if the
fraction is 15/16, the resulting integer value will be 0. A more sophisticated conver-
sion operator might accomplish rounding.

The conversion operators are followed by the equals operator (==) and the not equals
operator (!=). Remember that if you implement one of these equality operators, you
must implement the other.

Value equality has been defined for a Fraction such that the numerators and denomi-
nators must match. For this exercise, 3/4 and 6/8 aren’t considered equal. Again, a
more sophisticated implementation would reduce these fractions and notice the
equality.

 Fraction f4 = f3 + 5;
 Console.WriteLine("f3 + 5 = f4: {0}", f4.ToString());

 Fraction f5 = new Fraction(2, 4);
 if (f5 == f2)
 {
 Console.WriteLine("F5: {0} == F2: {1}",
 f5.ToString(),
 f2.ToString());
 }
 }
 }
}

Example 6-1. Defining conversions and operators for the Fraction class (continued)

Putting Operators to Work | 125

Include an override of the Object class’ Equals() method so that your Fraction
objects can be treated polymorphically with any other object. Your implementation
is to delegate the evaluation of equality to the equality operator.

A Fraction class would, no doubt, implement all the arithmetic operators (addition,
subtraction, multiplication, division). To keep the illustration simple, we’ll imple-
ment only addition, and even here we’ll simplify greatly. Check to see whether the
denominators are the same; if so, add the following numerators:

public static Fraction operator+(Fraction lhs, Fraction rhs)
{
 if (lhs.denominator == rhs.denominator)
 {
 return new Fraction(lhs.numerator+rhs.numerator,
 lhs.denominator);
 }

If the denominators aren’t the same, cross multiply:

int firstProduct = lhs.numerator * rhs.denominator;
int secondProduct = rhs.numerator * lhs.denominator;
return new Fraction(
 firstProduct + secondProduct,
 lhs.denominator * rhs.denominator
);

This code is best understood with an example. If you were adding 1/2 and 3/4, you
can multiply the first numerator (1) by the second denominator (4), and store the
result (4) in firstProduct. You can also multiply the second numerator (3) by the
first denominator (2) and store that result (6) in secondProduct. You add these prod-
ucts (6+4) to a sum of 10, which is the numerator for the answer. You then multiply
the two denominators (2*4) to generate the new denominator (8). The resulting frac-
tion (10/8) is the correct answer.

Finally, you override ToString() so that Fraction can return its value in the format
numerator/denominator:

public override string ToString()
{
 String s = numerator.ToString() + "/" +
 denominator.ToString();
 return s;
}

With your Fraction class in hand, you’re ready to test. Your first tests create simple
fractions, 3/4 and 2/4:

Fraction f1 = new Fraction(3,4);
Console.WriteLine("f1: {0}", f1.ToString());

Fraction f2 = new Fraction(2,4);
Console.WriteLine("f2: {0}", f2.ToString());

126 | Chapter 6: Operator Overloading

The output from this is what you would expect—the invocation of the constructors
and the value printed in WriteLine() looks like this:

In Fraction Constructor(int, int)
f1: 3/4
In Fraction Constructor(int, int)
f2: 2/4

The next line in Main() invokes the static operator+. The purpose of this operator is
to add two fractions and return the sum in a new fraction:

Fraction f3 = f1 + f2;
Console.WriteLine("f1 + f2 = f3: {0}", f3.ToString());

Examining the output reveals how operator+ works:

In operator+
In Fraction Constructor(int, int)
f1 + f2 = f3: 5/4

The operator+ is invoked, and then the constructor for f3, taking the two int values
representing the numerator and denominator of the resulting new fraction. The next
test in Main() adds an int to the Fraction f3, and assigns the resulting value to a new
Fraction, f4:

Fraction f4 = f3 + 5;
Console.WriteLine("f3 + 5: {0}", f4.ToString());

The output shows the steps for the various conversions:

In implicit conversion to Fraction
In Fraction Constructor(int)
In operator+
In Fraction Constructor(int, int)
f3 + 5 = f4: 25/4

Notice that the implicit conversion operator was invoked to convert 5 to a fraction.
In the return statement from the implicit conversion operator, the Fraction construc-
tor was called, creating the fraction 5/1. This new fraction was then passed along
with Fraction f3 to operator+, and the sum was passed to the constructor for f4. In
your final test, a new fraction (f5) is created. Test whether it is equal to f2. If so,
print their values:

Fraction f5 = new Fraction(2,4);
if (f5 == f2)
{
 Console.WriteLine("F5: {0} == F2: {1}",
 f5.ToString(),
 f2.ToString());
}

The output shows the creation of f5, and then the invocation of the overloaded
equals operator:

In Fraction Constructor(int, int)
In operator ==
F5: 2/4 == F2: 2/4

127

Chapter 7 CHAPTER 7

Structs7

A struct is a simple user-defined type, a lightweight alternative to a class. Structs are
similar to classes in that they may contain constructors, properties, methods, fields,
operators, nested types, and indexers (see Chapter 9).

There are also significant differences between classes and structs. For instance,
structs don’t support inheritance or destructors. More important, although a class is
a reference type, a struct is a value type. (See Chapter 3 for more information about
classes and types.) Thus, structs are useful for representing objects that don’t require
reference semantics.

The consensus view is that you ought to use structs only for types that are small, sim-
ple, and similar in their behavior and characteristics to built-in types.

C++ programmers take note: the meaning of C#’s struct construct is
very different from C++’s. In C++, a struct is exactly like a class,
except that the visibility (public versus private) is different by default.
In C#, structs are value types, whereas classes are reference types, and
C# structs have other limitations, as described in this chapter.

Structs are somewhat more efficient in their use of memory in arrays (see Chapter 9).
However, they can be less efficient when used in nongeneric collections. Collections
that take objects expect references, and structs must be boxed. There is overhead in
boxing and unboxing, and classes might be more efficient in some large collections.
This concern is greatly ameliorated by using generic collections (see Chapter 9), and
the truth is that many C# programmers go months at a time without using structs at
all.

On the other hand, if you have a class that has, as its member variables, 10 structs
instead of 10 objects, when that class is created on the heap, one big object is created
(the class with its 10 structs) rather than 11 objects. That allows the garbage collec-
tor to do much less work when your containing class is ready to be destroyed,

128 | Chapter 7: Structs

making your program more efficient. If you have a lot of classes like that, and you
create and destroy them frequently, the performance differences can begin to be
noticeable.

In this chapter, you will learn how to define and work with structs, and how to use
constructors to initialize their values.

Defining Structs
The syntax for declaring a struct is almost identical to that for a class:

[attributes] [access-modifiers] struct identifier [:interface-list]
{ struct-members }

Example 7-1 illustrates the definition of a struct. Location represents a point on a
two-dimensional surface. Notice that the struct Location is declared exactly as a class
would be, except for the use of the keyword struct. Also notice that the Location
constructor takes two integers and assigns their value to the instance members, xVal
and yVal. The x and y coordinates of Location are declared as properties.

Example 7-1. Creating a struct

using System;

namespace CreatingAStruct
{
 public struct Location
 {
 public int X { get; set; }
 public int Y { get; set; }

 public override string ToString()
 {
 return (String.Format("{0}, {1}", X, Y));
 }

 }

 public class Tester
 {
 public void myFunc(Location loc)
 {
 loc.X = 50;
 loc.Y = 100;
 Console.WriteLine("In MyFunc loc: {0}", loc);
 }
 static void Main()
 {
 Location loc1 = new Location();
 loc1.X = 200;
 loc1.Y = 300;
 Console.WriteLine("Loc1 location: {0}", loc1);

Creating Structs | 129

Unlike classes, structs don’t support inheritance. They implicitly derive from Object
(as do all types in C#, including the built-in types), but can’t inherit from any other
class or struct. Structs are also implicitly sealed (i.e., no class or struct can derive
from a struct). Like classes, however, structs can implement multiple interfaces.
Additional differences include the following:

No destructor or custom default constructor
Structs can’t have destructors, nor can they have a custom parameterless
(default) constructor; however, the CLR will initialize your structure and zero
out all the fields if your object is called as though it had a default constructor, as
shown in the example.

No initialization
You can’t initialize an instance field in a struct. Thus, it is illegal to write:

private int xVal = 50;
private int yVal = 100;

though that would have been fine had this been a class.

Structs are designed to be simple and lightweight. Although private member data
promotes data-hiding and encapsulation, some programmers feel it is overkill for
structs. They make the member data public, thus simplifying the implementation of
the struct. Other programmers feel that properties provide a clean and simple inter-
face, and that good programming practice demands data-hiding even with simple
lightweight objects.

Creating Structs
You create an instance of a struct by using the new keyword in an assignment state-
ment, just as you would for a class. In Example 7-1, the Tester class creates an
instance of Location as follows:

Location loc1 = new Location();

 Tester t = new Tester();
 t.myFunc(loc1);
 Console.WriteLine("Loc1 location: {0}", loc1);
 }
 }
}

Output:
Loc1 location: 200, 300
In MyFunc loc: 50, 100
Loc1 location: 200, 300

Example 7-1. Creating a struct (continued)

130 | Chapter 7: Structs

Here, the new instance is named loc1, and the fields are initialized to 0. The exam-
ple then uses the public properties to set the values of the fields to 200 and 300,
respectively.

Structs As Value Types
The definition of the Tester class in Example 7-1 includes a Location object* struct

(loc1) created with the values 200 and 300. This line of code calls the Location
constructor:

Location loc1 = new Location(200,300);

Then WriteLine() is called:

Console.WriteLine("Loc1 location: {0}", loc1);

WriteLine() is expecting an object, but of course, Location is a struct (a value type).
The compiler automatically wraps the struct in an object, a process called boxing (as
it would any value type), and it is the boxed object that is passed to WriteLine().
ToString() is called on the boxed object, and because the struct (implicitly) inherits
from object, it is able to respond polymorphically, overriding the method just as any
other object might:

Loc1 location: 200, 300

You can avoid this boxing by changing the preceding snippet to:

Console.WriteLine("Loc1 location: {0}",
 loc1.ToString());

You avoid the box operation by calling ToString directly on a variable
of a value type where the value type provides an override of ToString.

Structs are value objects, however, and when passed to a function, they are passed by
value—as seen in the next line of code, in which the loc1 object is passed to the
myFunc() method:

t.myFunc(loc1);

In myFunc(), new values are assigned to x and y, and these new values are printed:

Loc1 location: 50, 100

When you return to the calling function (Main()), and call WriteLine() again, the
values are unchanged:

Loc1 location: 200, 300

* Throughout this book, I use the term object to refer to reference and value types. There is some debate in the
object-oriented world about this, but I take solace in the fact that Microsoft has implemented the value types
as though they inherited from the root class Object (and thus, you may call all of Object’s methods on any
value type, including the built-in types such as int).

Creating Structs | 131

The struct was passed as a value object, and a copy was made in myFunc(). Try to
change the declaration to class:

public class Location

and run the test again. Here is the output:

Loc1 location: 200, 300
In MyFunc loc: 50, 100
Loc1 location: 50, 100

This time the Location object has reference semantics. Thus, when the values are
changed in myFunc(), they are changed on the actual object back in Main().*

* Another way to solve this problem is to use the keyword ref (as explained in the “Passing by Reference” sec-
tion in Chapter 4), which allows you to pass a value type by reference.

132

Chapter 8CHAPTER 8

Interfaces 8

An interface is a contract that guarantees to a client how a class or struct will behave
(I’ll just use the term class for the rest of this chapter, though everything I say will
apply to structs as well).

When a class implements an interface, it tells any potential client “I guarantee I’ll
support all the methods, properties, events, and indexers of the named interface.”
(See Chapter 4 for information about methods and properties, Chapter 12 for infor-
mation about events, and Chapter 9 for coverage of indexers.) See also the sidebar
“Abstract Class Versus Interface Versus Mix-Ins.”

These contracts are made manifest using the interface keyword, which declares a
reference type that encapsulates the contract.

When you define an interface, you may define methods, properties, indexers, and
events that will (and must!) be implemented by any class that implements the interface.

Java programmers take note: C# doesn’t support the use of constant
fields (member constants) in interfaces. The closest analog is the use of
enumerated constants (enums).

In this chapter, you will learn how to create, implement, and use interfaces. You’ll
learn how to implement multiple interfaces, and how to combine and extend inter-
faces, as well as how to test whether a class has implemented an interface.

Defining and Implementing an Interface
The syntax for defining an interface is as follows:

[attributes] [access-modifier] interface interface-name[:base-list]
{interface-body}

Don’t worry about attributes for now; I cover them in Chapter 20.

Defining and Implementing an Interface | 133

I discussed access modifiers, including public, private, protected, internal, and
protected internal, in Chapter 4.

The interface keyword is followed by the name of the interface. It is common (but
not required) to begin the name of your interface with a capital I (thus, IStorable,
ICloneable, IClaudius, etc.).

The base-list lists the interfaces that this interface extends (as described in the next
section, “Implementing More Than One Interface”).

The interface-body describes the methods, properties, and so forth that must be
implemented by the implementing class.

Suppose you wish to create an interface that describes the methods and properties a
class needs, to be stored to and retrieved from a database or other storage such as a
file. You decide to call this interface IStorable.

In this interface, you might specify two methods: Read() and Write(), which appear
in the interface-body:

interface IStorable
{

Abstract Class Versus Interface Versus Mix-Ins
An interface offers an alternative to an abstract class for creating contracts among
classes and their clients; the difference is that abstract classes serve as the top of an
inheritance hierarchy, whereas interfaces may add their contract to numerous inherit-
ance trees.

Thus, for example, you might have an interface named IPrintable (by convention,
interface names begin with a capital I, such as IPrintable, IStorable, IClaudius).
IPrintable defines all the methods, events, and so on that a class must implement to
be printable, and any number of classes (notes, documents, calendar items, email,
spreadsheet documents) might implement that interface without having to share a
common root element.

Further, because a subset of these IPrintable types might also be IStorable, using
interfaces rather than abstract classes keeps your inheritance tree much cleaner. This
allows inheritance to define the is-a relationship (a note is a document) rather than the
implements relationship (both notes and email implement IPrintable).

Historical Note of Interest to East Coast Geeks: In Somerville, Massachusetts, there
was, at one time, an ice cream parlor where you could have candies and other goodies
“mixed in” with your chosen ice cream flavor. This seemed like a good metaphor to
some of the object-oriented pioneers from nearby MIT who were working on the for-
tuitously named SCOOPS programming language. They appropriated the term mix-in
for classes that mixed in additional capabilities. These mix-in—or capability—classes
serve much the same role as interfaces do in C#.

134 | Chapter 8: Interfaces

 void Read();
 void Write(object);
}

The purpose of an interface is to define the capabilities you want to have available in
a class.

For example, you might create a class, Document. It turns out that Document types can
be stored in a database, so you decide to have Document implement the IStorable
interface.

To do so, use the same syntax as though the new Document class were inheriting from
IStorable—a colon (:), followed by the interface name:

public class Document : IStorable
{
 public void Read() {...}
 public void Write(object obj) {...}
 // ...
}

It is now your responsibility, as the author of the Document class, to provide a mean-
ingful implementation of the IStorable methods. Having designated Document as
implementing IStorable, you must implement all the IStorable methods, or you will
generate an error when you compile. I illustrate this in Example 8-1, in which the
Document class implements the IStorable interface.

Example 8-1. Using a simple interface

using System;

namespace SimpleInterface
{
 interface IStorable
 {
 // no access modifiers, methods are public
 // no implementation
 void Read();
 void Write(object obj);
 int Status { get; set; }

 }

 // create a class which implements the IStorable interface
 public class Document : IStorable
 {

 public Document(string s)
 {
 Console.WriteLine("Creating document with: {0}", s);
 }

Defining and Implementing an Interface | 135

Example 8-1 defines a simple interface, IStorable, with two methods (Read() and
Write()), and a property (Status) of type integer. Notice that the property declara-
tion doesn’t provide an implementation for get and set, but simply designates that
there is a get and a set:

int Status { get; set; }

Notice also that the IStorable method declarations don’t include access modifiers (e.g.,
public, protected, internal, private). In fact, providing an access modifier generates a
compile error. Interface methods are implicitly public because an interface is a contract

 // implement the Read method
 public void Read()
 {
 Console.WriteLine(
 "Implementing the Read Method for IStorable");
 }

 // implement the Write method
 public void Write(object o)
 {
 Console.WriteLine(
 "Implementing the Write Method for IStorable");
 }

 public int Status { get; set; }

 }

 // Take our interface out for a spin
 public class Tester
 {

 static void Main()
 {
 // access the methods in the Document object
 Document doc = new Document("Test Document");
 doc.Status = -1;
 doc.Read();
 Console.WriteLine("Document Status: {0}", doc.Status);
 }
 }
}

Output:
Creating document with: Test Document
Implementing the Read Method for IStorable
Document Status: -1

Example 8-1. Using a simple interface (continued)

136 | Chapter 8: Interfaces

meant to be used by other classes. You can’t create an instance of an interface; instead,
you instantiate a class that implements the interface.

The class implementing the interface must fulfill the contract exactly and com-
pletely. Document must provide both a Read() and a Write() method and the Status
property. How it fulfills these requirements, however, is entirely up to the Document
class. Although IStorable dictates that Document must have a Status property, it
doesn’t know or care whether Document stores the actual status as a member variable
or looks it up in a database. The details are up to the implementing class.

Implementing More Than One Interface
Classes can implement more than one interface. For example, if your Document class
can be stored and it also can be compressed, you might choose to implement both
the IStorable and ICompressible interfaces, shown here:

interface ICompressible
{
 void Compress();
 void Decompress();
}

To do so, change the declaration (in the base list) to indicate that both interfaces are
implemented, separating the two interfaces with commas:

public class Document : IStorable, ICompressible

Having done this, the Document class must also implement the methods specified by
the ICompressible interface:

public void Compress()
{
 Console.WriteLine("Implementing the Compress Method");
}

public void Decompress()
{
 Console.WriteLine("Implementing the Decompress Method");
}

Extending Interfaces
It is possible to extend an existing interface to add new methods or members, or to
modify how existing members work. For example, you might extend ICompressible
with a new interface, ILoggedCompressible, which extends the original interface with
methods to keep track of the bytes saved:

interface ILoggedCompressible : ICompressible
{
 void LogSavedBytes();
}

Defining and Implementing an Interface | 137

Effectively, by extending ICompressible in this way, you are saying that
anything that implements ILoggedCompressible must also implement
ICompressible.

Classes are now free to implement either ICompressible or ILoggedCompressible,
depending on whether they need the additional functionality. If a class does implement
ILoggedCompressible, it must implement all the methods of both ILoggedCompressible
and ICompressible. Objects of that type can be cast to ILoggedCompressible or to
ICompressible.

Combining Interfaces
Similarly, you can create new interfaces by combining existing interfaces and,
optionally, adding new methods or properties. For example, you might decide to cre-
ate IStorableCompressible. This interface would combine the methods of each of the
other two interfaces, but would also add a new method to store the original size of
the precompressed item:

interface IStorableCompressible : IStorable, ILoggedCompressible
{
 void LogOriginalSize();
}

Example 8-2 illustrates extending and combining interfaces.

Example 8-2. Extending and combining interfaces

using System;

namespace ExtendAndCombineInterface
{
 interface IStorable
 {
 void Read();
 void Write(object obj);
 int Status { get; set; }

 }

 // here's the new interface
 interface ICompressible
 {
 void Compress();
 void Decompress();
 }

 // Extend the interface
 interface ILoggedCompressible : ICompressible
 {
 void LogSavedBytes();
 }

138 | Chapter 8: Interfaces

 // Combine Interfaces
 interface IStorableCompressible : IStorable, ILoggedCompressible
 {
 void LogOriginalSize();
 }

 // yet another interface
 interface IEncryptable
 {
 void Encrypt();
 void Decrypt();
 }

 public class Document : IStorableCompressible, IEncryptable
 {

 // hold the data for IStorable's Status property
 private int status = 0;

 // the document constructor
 public Document(string s)
 {
 Console.WriteLine("Creating document with: {0}", s);

 }

 // implement IStorable
 public void Read()
 {
 Console.WriteLine(
 "Implementing the Read Method for IStorable");
 }

 public void Write(object o)
 {
 Console.WriteLine(
 "Implementing the Write Method for IStorable");
 }

 public int Status { get; set; }

 // implement ICompressible
 public void Compress()
 {
 Console.WriteLine("Implementing Compress");
 }

 public void Decompress()
 {
 Console.WriteLine("Implementing Decompress");
 }

Example 8-2. Extending and combining interfaces (continued)

Defining and Implementing an Interface | 139

 // implement ILoggedCompressible
 public void LogSavedBytes()
 {
 Console.WriteLine("Implementing LogSavedBytes");
 }

 // implement IStorableCompressible
 public void LogOriginalSize()
 {
 Console.WriteLine("Implementing LogOriginalSize");
 }

 // implement IEncryptable
 public void Encrypt()
 {
 Console.WriteLine("Implementing Encrypt");

 }

 public void Decrypt()
 {
 Console.WriteLine("Implementing Decrypt");

 }
 }

 public class Tester
 {

 static void Main()
 {
 // create a document object
 Document doc = new Document("Test Document");
 doc.Read();
 doc.Compress();
 doc.LogSavedBytes();
 doc.Compress();
 doc.LogOriginalSize();
 doc.LogSavedBytes();
 doc.Compress();
 doc.Read();
 doc.Encrypt();
 }
 }
}

Output
Creating document with: Test Document
Implementing the Read Method for IStorable
Implementing Compress
Implementing LogSavedBytes
Implementing Compress

Example 8-2. Extending and combining interfaces (continued)

140 | Chapter 8: Interfaces

Polymorphism with Interfaces
The problem with the approach we’ve taken so far is that you could well have a collec-
tion of Document objects, some implementing IStorable, some implementing
ICompressible, some implementing ILoggedCompressible, some implementing
IStorableCompressible, and some implementing IEncryptable. If you just call
methods from each interface, sooner or later you’re going to throw an exception.

Let’s build such an example slowly, because this problem is very real, very confus-
ing, and very likely to cause a nasty bug in your program if it isn’t fully understood.

Start by declaring the interfaces just as you did in the previous example (I won’t
repeat them here). Next, rather than declaring a simple Document class, let’s declare
an abstract Document class, and two derived Document classes:

public abstract class Document { }

public class BigDocument : Document, IStorableCompressible, IEncryptable
{
 //....
}

The implementation of BigDocument is identical to the implementation of Document in
the previous example. There’s no change whatsoever, except that the constructor
must be named BigDocument, and note that it now inherits from our abstract class.

Finally, let’s add a smaller type of Document:

class LittleDocument : Document, IEncryptable
{
 public LittleDocument(string s)
 {
 Console.WriteLine("Creating document with: {0}", s);

 }
 void IEncryptable.Encrypt()
 {
 Console.WriteLine("Implementing Encrypt");
 }

 void IEncryptable.Decrypt()
 {
 Console.WriteLine("Implementing Decrypt");
 }

}

Implementing LogOriginalSize
Implementing LogSavedBytes
Implementing Compress
Implementing the Read Method for IStorable
Implementing Encrypt

Example 8-2. Extending and combining interfaces (continued)

Defining and Implementing an Interface | 141

Notice that LittleDocument also inherits from Document, but it implements only one
interface: IEncryptable.

Let’s change Main, now to create a collection of Documents:

for (int i = 0; i < 5; i++)
{
 if (i % 2 == 0)
 {
 folder[i] = new BigDocument("Big Document # " + i);
 }
 else
 {
 folder[i] = new LittleDocument("Little Document # " + i);
 }
}

We create five documents, with the even-numbered ones being “big” and the odd-
numbered ones being “little.” If you now iterate through the “folder” (the array of
Document objects) and try to call various methods of the interface, you have a problem:

foreach (Document doc in folder)
{
 doc.Read();
 doc.Compress();
 doc.LogSavedBytes();
 doc.Compress();
 doc.LogOriginalSize();
 doc.LogSavedBytes();
 doc.Compress();
 doc.Read();
 doc.Encrypt();
}

This won’t compile—nor should it. The compiler cannot know which kind of
Document it has: a BigDocument (which can Read and Compress), or a LittleDocument
(which can’t).

To solve this problem, we need to see whether the Document in question implements
the interface we want to use, as shown in Example 8-3.

Example 8-3. Collections of Documents

using System;

namespace ExtendAndCombineInterface
{
 interface IStorable
 {
 void Read();
 void Write(object obj);
 int Status { get; set; }

 }

142 | Chapter 8: Interfaces

 // here's the new interface
 interface ICompressible
 {
 void Compress();
 void Decompress();
 }

 // Extend the interface
 interface ILoggedCompressible : ICompressible
 {
 void LogSavedBytes();
 }

 // Combine Interfaces
 interface IStorableCompressible : IStorable, ILoggedCompressible
 {
 void LogOriginalSize();
 }

 // yet another interface
 interface IEncryptable
 {
 void Encrypt();
 void Decrypt();
 }

 public abstract class Document { }

 public class BigDocument : Document, IStorableCompressible, IEncryptable
 {

 // hold the data for IStorable's Status property
 private int status = 0;

 // the document constructor
 public BigDocument(string s)
 {
 Console.WriteLine("Creating document with: {0}", s);

 }

 // implement IStorable
 public void Read()
 {
 Console.WriteLine(
 "Implementing the Read Method for IStorable");
 }

 public void Write(object o)
 {
 Console.WriteLine(
 "Implementing the Write Method for IStorable");

Example 8-3. Collections of Documents (continued)

Defining and Implementing an Interface | 143

 }

 public int Status { get; set; }

 // implement ICompressible
 public void Compress()
 {
 Console.WriteLine("Implementing Compress");
 }

 public void Decompress()
 {
 Console.WriteLine("Implementing Decompress");
 }

 // implement ILoggedCompressible
 public void LogSavedBytes()
 {
 Console.WriteLine("Implementing LogSavedBytes");
 }

 // implement IStorableCompressible
 public void LogOriginalSize()
 {
 Console.WriteLine("Implementing LogOriginalSize");
 }

 // implement IEncryptable
 public void Encrypt()
 {
 Console.WriteLine("Implementing Encrypt");

 }

 public void Decrypt()
 {
 Console.WriteLine("Implementing Decrypt");

 }
 }

 class LittleDocument : Document, IEncryptable
 {
 public LittleDocument(string s)
 {
 Console.WriteLine("Creating document with: {0}", s);

 }
 void IEncryptable.Encrypt()
 {
 Console.WriteLine("Implementing Encrypt");
 }

Example 8-3. Collections of Documents (continued)

144 | Chapter 8: Interfaces

 void IEncryptable.Decrypt()
 {
 Console.WriteLine("Implementing Decrypt");
 }

 }

 public class Tester
 {

 static void Main()
 {
 Document[] folder = new Document[5];
 for (int i = 0; i < 5; i++)
 {
 if (i % 2 == 0)
 {
 folder[i] = new BigDocument("Big Document # " + i);
 }
 else
 {
 folder[i] = new LittleDocument("Little Document # " + i);
 }
 }

 foreach (Document doc in folder)
 {
 // cast the document to the various interfaces
 IStorable isStorableDoc = doc as IStorable;
 if (isStorableDoc != null)
 {
 isStorableDoc.Read();
 }
 else
 Console.WriteLine("IStorable not supported");

 ICompressible icDoc = doc as ICompressible;
 if (icDoc != null)
 {
 icDoc.Compress();
 }
 else
 Console.WriteLine("Compressible not supported");

 ILoggedCompressible ilcDoc = doc as ILoggedCompressible;
 if (ilcDoc != null)
 {
 ilcDoc.LogSavedBytes();
 ilcDoc.Compress();
 // ilcDoc.Read();
 }

Example 8-3. Collections of Documents (continued)

Defining and Implementing an Interface | 145

 else
 Console.WriteLine("LoggedCompressible not supported");

 IStorableCompressible isc = doc as IStorableCompressible;
 if (isc != null)
 {
 isc.LogOriginalSize(); // IStorableCompressible
 isc.LogSavedBytes(); // ILoggedCompressible
 isc.Compress(); // ICompressible
 isc.Read(); // IStorable

 }
 else
 {
 Console.WriteLine("StorableCompressible not supported");
 }

 IEncryptable ie = doc as IEncryptable;
 if (ie != null)
 {
 ie.Encrypt();
 }
 else
 Console.WriteLine("Encryptable not supported");

 } // end for
 } // end main
 } // end class
} // end namespace

Output:

Creating document with: Big Document # 0
Creating document with: Little Document # 1
Creating document with: Big Document # 2
Creating document with: Little Document # 3
Creating document with: Big Document # 4
Implementing the Read Method for IStorable
Implementing Compress
Implementing LogSavedBytes
Implementing Compress
Implementing LogOriginalSize
Implementing LogSavedBytes
Implementing Compress
Implementing the Read Method for IStorable
Implementing Encrypt
IStorable not supported
Compressible not supported
LoggedCompressible not supported
StorableCompressible not supported
Implementing Encrypt
Implementing the Read Method for IStorable

Example 8-3. Collections of Documents (continued)

146 | Chapter 8: Interfaces

A quick examination of the output shows that we created three big documents and two
little ones; that in fact, three of the documents are able to implement the interfaces and
two are not; and that with the exception of Encrypt, all are able to implement, just as
we have every right to expect.

Interface Versus Abstract Class
Interfaces are very similar to abstract classes. In fact, you could change the declaration
of IStorable to be an abstract class:

abstract class Storable
{

Implementing Compress
Implementing LogSavedBytes
Implementing Compress
Implementing LogOriginalSize
Implementing LogSavedBytes
Implementing Compress
Implementing the Read Method for IStorable
Implementing Encrypt
IStorable not supported
Compressible not supported
LoggedCompressible not supported
StorableCompressible not supported
Implementing Encrypt
Implementing the Read Method for IStorable
Implementing Compress
Implementing LogSavedBytes
Implementing Compress
Implementing LogOriginalSize
Implementing LogSavedBytes
Implementing Compress
Implementing the Read Method for IStorable
Implementing Encrypt

as Operator
Example 8-3 makes use of the as operator to determine whether a document imple-
ments the interfaces required for its encryption. The as operator casts the left operand
to the type specified by the right operand and returns null if the cast fails.

The as operator is like two operators rolled into one. In Example 8-3, it’s used first to
check whether doc implements, for example, the IStorableCompressible interface, and
if it does, it converts doc to an instance of that type.

Otherwise, it returns null. It is a common programming practice to then check
whether the result, isc, is null before using it, as demonstrated in this example.

Example 8-3. Collections of Documents (continued)

Overriding Interface Implementations | 147

 abstract public void Read();
 abstract public void Write();
}

Document could now inherit from Storable, and there would not be much difference
from using the interface.

Suppose, however, that you purchase a List class from a third-party vendor whose
capabilities you wish to combine with those specified by Storable. In C++, you
could create a StorableList class and inherit from List and Storable. But in C#,
you’re stuck; you can’t inherit from the Storable abstract class and the List class
because C# doesn’t allow multiple inheritance with classes.

However, C# does allow you to implement any number of interfaces and derive from
one base class. Thus, by making Storable an interface, you can inherit from the List
class and from IStorable, as StorableList does in the following example:

public class StorableList : List, IStorable
{
 // List methods here ...
 public void Read() {...}
 public void Write(object obj) {...}
 // ...
}

Overriding Interface Implementations
An implementing class is free to mark any or all of the methods that implement the
interface as virtual. Derived classes can override these implementations to achieve
polymorphism. For example, a Document class might implement the IStorable inter-
face and mark the Read() and Write() methods as virtual. The Document might
Read() and Write() its contents to a File type. The developer might later derive new
types from Document, such as a Note or EmailMessage type, and he might decide that
Note will read and write to a database rather than to a file.

Example 8-4 strips down the complexity of Example 8-3 and illustrates overriding an
interface implementation. The Read() method is marked as virtual and is imple-
mented by Document. Read() is then overridden in a Note type that derives from
Document.

Example 8-4. Overriding an interface implementation

using System;

namespace overridingInterface
{
 interface IStorable
 {
 void Read();
 void Write();
 }

148 | Chapter 8: Interfaces

 // Simplify Document to implement only IStorable
 public class Document : IStorable
 {
 // the document constructor
 public Document(string s)
 {
 Console.WriteLine(
 "Creating document with: {0}", s);
 }

 // Make read virtual
 public virtual void Read()
 {
 Console.WriteLine(
 "Document Read Method for IStorable");
 }

 // NB: Not virtual!
 public void Write()
 {
 Console.WriteLine(
 "Document Write Method for IStorable");
 }
 }

 // Derive from Document
 public class Note : Document
 {
 public Note(string s) :
 base(s)
 {
 Console.WriteLine(
 "Creating note with: {0}", s);
 }

 // override the Read method

 public override void Read()
 {
 Console.WriteLine(
 "Overriding the Read method for Note!");
 }

 // implement my own Write method
 public new void Write()
 {
 Console.WriteLine(
 "Implementing the Write method for Note!");
 }
 }
 public class Tester
 {

 static void Main()

Example 8-4. Overriding an interface implementation (continued)

Overriding Interface Implementations | 149

 {
 // create a document reference to a Note object
 Document theNote = new Note("Test Note");
 IStorable isNote = theNote as IStorable;
 if (isNote != null)
 {
 isNote.Read();
 isNote.Write();
 }

 Console.WriteLine("\n");

 // direct call to the methods
 theNote.Read();
 theNote.Write();

 Console.WriteLine("\n");

 // create a note object
 Note note2 = new Note("Second Test");
 IStorable isNote2 = note2 as IStorable;
 if (isNote2 != null)
 {
 isNote2.Read();
 isNote2.Write();
 }

 Console.WriteLine("\n");

 // directly call the methods
 note2.Read();
 note2.Write();
 }
 }
}

Output:
Creating document with: Test Note
Creating note with: Test Note
Overriding the Read method for Note!
Document Write Method for IStorable

Overriding the Read method for Note!
Document Write Method for IStorable

Creating document with: Second Test
Creating note with: Second Test
Overriding the Read method for Note!
Document Write Method for IStorable

Overriding the Read method for Note!
Implementing the Write method for Note!

Example 8-4. Overriding an interface implementation (continued)

150 | Chapter 8: Interfaces

In this example, Document implements a simplified IStorable interface (simplified to
make the example clearer):

interface IStorable
{
 void Read();
 void Write();
}

The designer of Document has opted to make the Read() method virtual, but not to
make the Write() method virtual:

public virtual void Read()

In a real-world application, if you were to mark one as virtual, you would almost cer-
tainly mark both as virtual, but I’ve differentiated them to demonstrate that the
developer is free to pick and choose which methods are made virtual.

The Note class derives from Document:

public class Note : Document

It’s not necessary for Note to override Read(), but it is free to do so, and has in fact
done so here:

public override void Read()

In Tester, the Read and Write methods are called in four ways:

• Through the base class reference to a derived object

• Through an interface created from the base class reference to the derived object

• Through a derived object

• Through an interface created from the derived object

To accomplish the first two calls, a Document (base class) reference is created, and the
address of a new Note (derived) object created on the heap is assigned to the Document
reference:

Document theNote = new Note("Test Note");

An interface reference is created, and the as operator is used to cast the Document to
the IStorable reference:

IStorable isNote = theNote as IStorable;

You then invoke the Read() and Write() methods through that interface. The out-
put reveals that the Read() method is responded to polymorphically and the Write()
method is not, just as you would expect:

Overriding the Read method for Note!
Document Write Method for IStorable

The Read() and Write() methods are then called directly on the object itself:

theNote.Read();
theNote.Write();

Explicit Interface Implementation | 151

and once again you see the polymorphic implementation has worked:

Overriding the Read method for Note!
Document Write Method for IStorable

In both cases, the Read() method of Note is called and the Write() method of
Document is called.

To prove to yourself that this is a result of the overriding method, next create a sec-
ond Note object, this time assigning its address to a reference to a Note. This will be
used to illustrate the final cases (i.e., a call through a derived object, and a call
through an interface created from the derived object):

Note note2 = new Note("Second Test");

Once again, when you cast to a reference, the overridden Read() method is called.
However, when methods are called directly on the Note object:

note2.Read();
note2.Write();

the output reflects that you’ve called a Note and not an overridden Document:

Overriding the Read method for Note!
Implementing the Write method for Note!

Explicit Interface Implementation
In the implementation shown so far, the implementing class (in this case, Document)
creates a member method with the same signature and return type as the method
detailed in the interface. It is not necessary to explicitly state that this is an imple-
mentation of an interface; the compiler understands this implicitly.

What happens, however, if the class implements two interfaces, each of which has a
method with the same signature? Example 8-5 creates two interfaces: IStorable and
ITalk. The latter implements a Read() method that reads a book aloud. Unfortu-
nately, this conflicts with the Read() method in IStorable.

Because both IStorable and ITalk have a Read() method, the implementing Document
class must use explicit implementation for at least one of the methods. With explicit
implementation, the implementing class (Document) explicitly identifies the interface
for the method:

void ITalk.Read()

This resolves the conflict, but it creates a series of interesting side effects.

First, there is no need to use explicit implementation with the other method of Talk():

public void Talk()

Because there is no conflict, this can be declared as usual.

152 | Chapter 8: Interfaces

More important, the explicit implementation method can’t have an access modifier:

void ITalk.Read()

This method is implicitly public.

In fact, a method declared through explicit implementation can’t be declared with
the abstract, virtual, override, or new modifier.

Most important, you can’t access the explicitly implemented method through the
object itself. When you write:

theDoc.Read();

the compiler assumes you mean the implicitly implemented interface for IStorable.
The only way to access an explicitly implemented interface is through a cast to an
interface:

ITalk itDoc = theDoc;
itDoc.Read();

Example 8-5 demonstrates explicit implementation.

Example 8-5. Explicit implementation

using System;

namespace ExplicitImplementation
{
 interface IStorable
 {
 void Read();
 void Write();
 }

 interface ITalk
 {
 void Talk();
 void Read();
 }

 // Modify Document to implement IStorable and ITalk
 public class Document : IStorable, ITalk
 {
 // the document constructor
 public Document(string s)
 {
 Console.WriteLine("Creating document with: {0}", s);

 }

 // Make read virtual
 public virtual void Read()
 {
 Console.WriteLine("Implementing IStorable.Read");
 }

Explicit Interface Implementation | 153

Selectively Exposing Interface Methods
A class designer can take advantage of the fact that when an interface is imple-
mented through explicit implementation, the interface is not visible to clients of the
implementing class except through casting.

Suppose the semantics of your Document object dictate that it implement the
IStorable interface, but you don’t want the Read() and Write() methods to be part

 public void Write()
 {
 Console.WriteLine("Implementing IStorable.Write");

 }

 void ITalk.Read()
 {
 Console.WriteLine("Implementing ITalk.Read");
 }

 public void Talk()
 {
 Console.WriteLine("Implementing ITalk.Talk");
 }
 }

 public class Tester
 {

 static void Main()
 {
 // create a document object
 Document theDoc = new Document("Test Document");
 IStorable isDoc = theDoc;
 isDoc.Read();

 ITalk itDoc = theDoc;
 itDoc.Read();

 theDoc.Read();
 theDoc.Talk();
 }
 }
}

Output:
Creating document with: Test Document
Implementing IStorable.Read
Implementing ITalk.Read
Implementing IStorable.Read
Implementing ITalk.Talk

Example 8-5. Explicit implementation (continued)

154 | Chapter 8: Interfaces

of the public interface of your Document. You can use explicit implementation to
ensure that they aren’t available except through casting. This allows you to preserve
the public API of your Document class while still having it implement IStorable. If
your client wants an object that implements the IStorable interface, it can make a
cast, but when using your document as a Document, the API will not include Read()
and Write().

In fact, you can select which methods to make visible through explicit implementa-
tion so that you can expose some implementing methods as part of Document but not
others. In Example 8-5, the Document object exposes the Talk() method as a method
of Document, but the ITalk.Read() method can be obtained only through a cast. Even
if IStorable didn’t have a Read() method, you might choose to make Read() explic-
itly implemented so that you don’t expose Read() as a method of Document.

Note that because explicit interface implementation prevents the use of the virtual
keyword, a derived class would be forced to reimplement the method. Thus, if Note
derived from Document, it would be forced to reimplement ITalk.Read() because the
Document implementation of ITalk.Read() couldn’t be virtual.

Member Hiding
It is possible for an interface member to become hidden. For example, suppose you
have an interface IBase that has a property P:

interface IBase
{
 int P { get; set; }
}

Suppose you derive from that interface a new interface, IDerived, which hides the
property P with a new method P():

interface IDerived : IBase
{
 new int P();
}

Setting aside whether this is a good idea, you have now hidden the property P in the
base interface. An implementation of this derived interface will require at least one
explicit interface member. You can use explicit implementation for either the base
property or the derived method, or you can use explicit implementation for both.
Thus, any of the following three versions would be legal:

class myClass : IDerived
{
 // explicit implementation for the base property
 int IBase.P { get {...} }

 // implicit implementation of the derived method
 public int P() {...}
}

Explicit Interface Implementation | 155

class myClass : IDerived
{
 // implicit implementation for the base property
 public int P { get {...} }

 // explicit implementation of the derived method
 int IDerived.P() {...}
}

class myClass : IDerived
{
 // explicit implementation for the base property
 int IBase.P { get {...} }

 // explicit implementation of the derived method
 int IDerived.P() {...}
}

156

Chapter 9CHAPTER 9

Arrays, Indexers, and Collections 9

The .NET Framework provides a rich suite of collection classes. With the advent of
Generics in .NET 2.0, most of these collection classes are now type-safe, making for
a greatly enhanced programming experience. These classes include the Array, List,
Dictionary, Sorted Dictionary, Queue, and Stack.

The simplest collection is the Array, the only collection type for which C# provides
built-in support. In this chapter, you will learn to work with single, multidimen-
sional, and jagged arrays. Arrays have built-in indexers, allowing you to request the
nth member of the array. In this chapter, you will also be introduced to creating your
own indexers, a bit of C# syntactic sugar that makes it easier to access class proper-
ties as though the class were indexed like an array.

The .NET Framework provides a number of interfaces, such as IEnumerable and
ICollection, whose implementation provides you with standard ways to interact
with collections. In this chapter, you will see how to work with the most essential of
these. The chapter concludes with a tour of commonly used .NET collections,
including List, Dictionary, Queue, and Stack.

In previous versions of C#, the collection objects were not type-safe
(you could, for example, mix strings and integers in a Dictionary). The
nontype-safe versions of List (ArrayList), Dictionary, Queue, and
Stack are still available for backward compatibility, but we won’t
cover them in this book because their use is similar to the Generics-
based versions, and because they are obsolete and deprecated.

Arrays
An array is an indexed collection of objects, all of the same type. C# arrays are
somewhat different from arrays in C++ because they are objects. This provides them
with useful methods and properties.

Arrays | 157

C# provides native syntax for the declaration of Arrays. What is actually created,
however, is an object of type System.Array.* Arrays in C# thus provide you with the
best of both worlds: easy-to-use C-style syntax underpinned with an actual class defi-
nition so that instances of an array have access to the methods and properties of
System.Array. These appear in Table 9-1.

* Of course, when you create an array with int[] myArray = new int[5] what you actually create in the IL code
is an instance of System.int32[], but because this derives from the abstract base class System.Array, it is fair
to say you’ve created an instance of a System.Array.

Table 9-1. System.Array methods and properties

Method or property Purpose

AsReadOnly() Public static method that returns a read-only instance for a given array

BinarySearch() Overloaded public static method that searches a one-dimensional sorted array

Clear() Public static method that sets a range of elements in the array either to 0 or to a null reference

Clone() Public method that creates a deep copy of the current array

ConstrainedCopy() Public static method that copies a section of one array to another array; this method guarantees
that the destination array will be modified only if all specified elements are copied successfully

ConvertAll() Public static method that converts an array of one type into another type

Copy() Overloaded public static method that copies a section of one array to another array

CopyTo() Overloaded public method that copies all elements in the current array to another

CreateInstance() Overloaded public static method that instantiates a new instance of an array

Exists() Overloaded public static method that checks whether an array contains elements that match a
condition

Find() Public static method that finds the first element that matches a condition

FindAll() Public static method that finds all elements that match a condition

FindIndex() Overloaded public static method that returns the index of the first element that matches a
condition

FindLast() Public static method that finds the last element that matches a condition

FindLastIndex() Overloaded public static method that returns the index of the last element that matches a
condition

ForEach() Public static method that performs an action on all elements of an array

GetEnumerator() Public method that returns an IEnumerator

GetLength() Public method that returns the length of the specified dimension in the array

GetLongLength() Public method that returns the length of the specified dimension in the array as a 64-bit integer

GetLowerBound() Public method that returns the lower boundary of the specified dimension of the array

GetUpperBound() Public method that returns the upper boundary of the specified dimension of the array

GetValue() Overloaded public method that returns the value of an element of the array

IndexOf() Overloaded public static method that returns the index (offset) of the first instance of a value in a
one-dimensional array

158 | Chapter 9: Arrays, Indexers, and Collections

Declaring Arrays
You declare a C# array with the following syntax:

type[] array-name;

For example:

int[] myIntArray;

You aren’t actually declaring an array. Technically, you are declaring a
variable (myIntArray) that will hold a reference to an array of integers.
As always, we’ll use the shorthand and refer to myIntArray as the array,
knowing that we really mean a variable that holds a reference to an
(unnamed) array.

The square brackets ([]) tell the C# compiler that you are declaring an array, and
the type specifies the type of the elements it will contain. In the previous example,
myIntArray is an array of integers.

You instantiate an array by using the new keyword. For example:

myIntArray = new int[5];

Initialize() Initializes all values in a value type array by calling the default constructor for each value; with
reference arrays, all elements in the array are set to null

IsFixedSize Required because Array implements ICollection; with arrays, this will always return true
(all arrays are of a fixed size)

IsReadOnly Public property (required because Array implements IList) that returns a Boolean value
indicating whether the array is read-only

IsSynchronized Public property (required because Array implements ICollection) that returns a Boolean
value indicating whether the array is thread-safe

LastIndexOf() Overloaded public static method that returns the index of the last instance of a value in a one-
dimensional array

Length Public property that returns the length of the array

LongLength Public property that returns the length of the array as a 64-bit integer

Rank Public property that returns the number of dimensions of the array

Resize() Public static method that changes the size of an array

Reverse() Overloaded public static method that reverses the order of the elements in a one-dimensional
array

SetValue() Overloaded public method that sets the specified array elements to a value

Sort() Overloaded public static method that sorts the values in a one-dimensional array

SyncRoot Public property that returns an object that can be used to synchronize access to the array

TrueForAll() Public static method that checks whether all elements match a condition

Table 9-1. System.Array methods and properties (continued)

Method or property Purpose

Arrays | 159

This declaration creates and initializes an array of five integers, all of which are
initialized to the value 0.

VB 6 programmers take note: in C#, the value of the size of the array
marks the number of elements in the array, not the upper bound. In
fact, there is no way to set the upper or lower bound—with the excep-
tion that you can set the lower bounds in multidimensional arrays
(discussed later), but even that is not supported by the .NET Frame-
work class library.

Thus, the first element in an array is 0. The following C# statement
declares an array of 10 elements, with indexes 0 through 9:

string myArray[10];

The upper bound is 9, not 10, and you can’t change the size of the
array (i.e., there is no equivalent to the VB 6 Redim function).

It is important to distinguish between the array (which is a collection of elements)
and the elements of the array. myIntArray is the array (or, more accurately, the vari-
able that holds the reference to the array); its elements are the five integers it holds.

C# arrays are reference types, created on the heap. Thus, the array to which
myIntArray refers is allocated on the heap. The elements of an array are allocated
based on their own type. Because integers are value types, the elements in myIntArray
will be value types, not boxed integers, and thus all the elements will be created
inside the block of memory allocated for the array.

The block of memory allocated to an array of reference types will contain references to
the actual elements, which are themselves created on the heap in memory separate
from that allocated for the array.

Understanding Default Values
When you create an array of value types, each element initially contains the default
value for the type stored in the array (refer back to Table 4-2 in Chapter 4). The
statement:

myIntArray = new int[5];

creates an array of five integers, each whose value is set to 0, which is the default
value for integer types.

Unlike with arrays of value types, the reference types in an array aren’t initialized to
their default value. Instead, the references held in the array are initialized to null. If
you attempt to access an element in an array of reference types before you have
specifically initialized the elements, you will generate an exception.

Assume that you have created a Button class. You would declare an array of Button
objects with the following statement:

Button[] myButtonArray;

160 | Chapter 9: Arrays, Indexers, and Collections

and instantiate the actual array like this:

myButtonArray = new Button[3];

You can shorten this to:

Button[] myButtonArray = new Button[3];

This statement doesn’t create an array with references to three Button objects. Instead,
this creates the array myButtonArray with three null references. To use this array, you
must first construct and assign the Button objects for each reference in the array. You
can construct the objects in a loop that adds them one by one to the array.

Accessing Array Elements
You access the elements of an array using the index operator ([]). Arrays are zero-
based, which means that the index of the first element is always 0—in this case,
myArray[0].

As explained previously, arrays are objects and thus have properties. One of the
more useful of these is Length, which tells you how many objects are in an array.
Array objects can be indexed from 0 to Length-1. That is, if there are five elements in
an array, their indexes are 0, 1, 2, 3, 4.

Example 9-1 illustrates the array concepts covered so far. In this example, a class
named Tester creates an array of Employees and an array of integers, populates the
Employee array, and then prints the values of both.

Example 9-1. Working with an array

namespace Programming_CSharp
{
 // a simple class to store in the array
 public class Employee
 {
 public Employee(int empID)
 {
 this.empID = empID;
 }
 public override string ToString()
 {
 return empID.ToString();
 }
 private int empID;
 }
 public class Tester
 {
 static void Main()
 {

Arrays | 161

The example starts with the definition of an Employee class that implements a con-
structor that takes a single integer parameter. The ToString() method inherited from
Object is overridden to print the value of the Employee object’s employee ID.

The test method declares and then instantiates a pair of arrays. The integer array is
automatically filled with integers whose values are set to 0. The Employee array con-
tents must be constructed by hand.

Finally, the contents of the arrays are printed to ensure that they are filled as
intended. The five integers print their value first, followed by the three Employee
objects.

 int[] intArray;
 Employee[] empArray;
 intArray = new int[5];
 empArray = new Employee[3];

 // populate the array
 for (int i = 0; i < empArray.Length; i++)
 {
 empArray[i] = new Employee(i + 5);
 }

 for (int i = 0; i < intArray.Length; i++)
 {
 Console.WriteLine(intArray[i].ToString());
 }

 for (int i = 0; i < empArray.Length; i++)
 {
 Console.WriteLine(empArray[i].ToString());
 }
 }
 }
}

Output:
0
0
0
0
0
5
6
7

Example 9-1. Working with an array (continued)

162 | Chapter 9: Arrays, Indexers, and Collections

The foreach Statement
The foreach looping statement is new to the C family of languages, though it is
already well known to VB programmers. The foreach statement allows you to iterate
through all the items in an array or other collection, examining each item in turn.
The syntax for the foreach statement is:

foreach (type identifier in expression) statement

Thus, you might update Example 9-1 to replace the for statements that iterate over the
contents of the populated array with foreach statements, as shown in Example 9-2.

Example 9-2. Using foreach

using System;
using System.Collections.Generic;
using System.Text;

namespace UsingForEach
{
 // a simple class to store in the array
 public class Employee
 {
 // a simple class to store in the array
 public Employee(int empID)
 {
 this.empID = empID;
 }
 public override string ToString()
 {
 return empID.ToString();
 }
 private int empID;
 }
 public class Tester
 {
 static void Main()
 {
 int[] intArray;
 Employee[] empArray;
 intArray = new int[5];
 empArray = new Employee[3];

 // populate the array
 for (int i = 0; i < empArray.Length; i++)
 {
 empArray[i] = new Employee(i + 5);
 }

 foreach (int i in intArray)
 {

The foreach Statement | 163

The output for Example 9-2 is identical to Example 9-1. In Example 9-1, you created
a for statement that measured the size of the array and used a temporary counting
variable as an index into the array, as in the following:

for (int i = 0; i < empArray.Length; i++)
{
 Console.WriteLine(empArray[i].ToString());
}

In Example 9-2, you tried another approach: you iterated over the array with the
foreach loop, which automatically extracted the next item from within the array and
assigned it to the temporary object you created in the head of the statement:

foreach (Employee e in empArray)
{
 Console.WriteLine(e.ToString());
}

The object extracted from the array is of the appropriate type; thus, you may call any
public method on that object.

Initializing Array Elements
It is possible to initialize the contents of an array at the time it is instantiated by pro-
viding a list of values delimited by curly brackets ({}). C# provides a longer and a
shorter syntax:

int[] myIntArray = new int[5] { 2, 4, 6, 8, 10 }
int[] myIntArray = { 2, 4, 6, 8, 10 }

There is no practical difference between these two statements, and most program-
mers will use the shorter syntax, but see the note on syntaxes.

Both syntaxes exist because in some rare circumstances, you have to
use the longer syntax—specifically, if the C# compiler is unable to
infer the correct type for the array.

 Console.WriteLine(i.ToString());
 }

 foreach (Employee e in empArray)
 {
 Console.WriteLine(e.ToString());
 }
 }
 }
}

Example 9-2. Using foreach (continued)

164 | Chapter 9: Arrays, Indexers, and Collections

The params Keyword
You can create a method that displays any number of integers to the console by pass-
ing in an array of integers and then iterating over the array with a foreach loop.* The
params keyword allows you to pass in a variable number of parameters without nec-
essarily explicitly creating the array.

In the next example, you create a method, DisplayVals(), that takes a variable
number of integer arguments:

public void DisplayVals(params int[] intVals)

The method itself can treat the array as though an integer array were explicitly cre-
ated and passed in as a parameter. You are free to iterate over the array as you would
over any other array of integers:

foreach (int i in intVals)
{
 Console.WriteLine("DisplayVals {0}",i);
}

The calling method, however, need not explicitly create an array: it can simply pass
in integers, and the compiler will assemble the parameters into an array for the
DisplayVals() method:

t.DisplayVals(5,6,7,8);

You are free to pass in an array if you prefer:

int [] explicitArray = new int[5] {1,2,3,4,5};
t.DisplayVals(explicitArray);

Example 9-3 provides the complete source code illustrating the params keyword.

* The lifetime of objects declared in the header of a foreach loop is scoped outside the loop, much like the
objects declared in a for loop.

Example 9-3. Using the params keyword

using System;
using System.Collections.Generic;
using System.Text;

namespace UsingParams
{
 public class Tester
 {
 static void Main()
 {
 Tester t = new Tester();
 t.DisplayVals(5, 6, 7, 8);
 int[] explicitArray = new int[5] { 1, 2, 3, 4, 5 };
 t.DisplayVals(explicitArray);

The foreach Statement | 165

Multidimensional Arrays
You can think of an array as a long row of slots into which you can place values.
Once you have a picture of a row of slots, imagine 10 rows, one on top of another.
This is the classic two-dimensional array of rows and columns. The rows run across
the array and the columns run up and down the array.

A third dimension is possible, but somewhat harder to imagine. Make your arrays
three-dimensional, with new rows stacked atop the old two-dimensional array. OK,
now imagine four dimensions. Now imagine 10.

Those of you who aren’t string-theory physicists have probably given up, as have we.
Multidimensional arrays are useful, however, even if you can’t quite picture what
they would look like.

C# supports two types of multidimensional arrays: rectangular and jagged. In a rect-
angular array, every row is the same length. A jagged array, however, is an array of
arrays, each of which can be a different length.

Rectangular arrays

A rectangular array is an array of two (or more) dimensions. In the classic two-
dimensional array, the first dimension is the number of rows and the second dimension
is the number of columns.

 }

 public void DisplayVals(params int[] intVals)
 {
 foreach (int i in intVals)
 {
 Console.WriteLine("DisplayVals {0}", i);
 }
 }
 }
}
Output:
DisplayVals 5
DisplayVals 6
DisplayVals 7
DisplayVals 8
DisplayVals 1
DisplayVals 2
DisplayVals 3
DisplayVals 4
DisplayVals 5

Example 9-3. Using the params keyword (continued)

166 | Chapter 9: Arrays, Indexers, and Collections

Java programmers take note: rectangular arrays don’t exist in Java.

To declare a two-dimensional array, use the following syntax:

type [,] array-name

For example, to declare and instantiate a two-dimensional rectangular array named
myRectangularArray that contains two rows and three columns of integers, you would
write:

int [,] myRectangularArray = new int[2,3];

Example 9-4 declares, instantiates, initializes, and prints the contents of a two-
dimensional array. In this example, a for loop is used to initialize the elements of the
array.

Example 9-4. Rectangular array

using System;
using System.Collections.Generic;
using System.Text;

namespace RectangularArray
{
 public class Tester
 {
 static void Main()
 {
 const int rows = 4;
 const int columns = 3;

 // declare a 4x3 integer array
 int[,] rectangularArray = new int[rows, columns];

 // populate the array
 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < columns; j++)
 {
 rectangularArray[i, j] = i + j;
 }
 }

 // report the contents of the array
 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < columns; j++)
 {
 Console.WriteLine("rectangularArray[{0},{1}] = {2}",
 i, j, rectangularArray[i, j]);

The foreach Statement | 167

In this example, you declare a pair of constant values:

const int rows = 4;
const int columns = 3;

that are then used to dimension the array:

int[,] rectangularArray = new int[rows, columns];

Notice the syntax. The brackets in the int[,] declaration indicate that the type is an
array of integers, and the comma indicates that the array has two dimensions (two
commas would indicate three dimensions, etc.). The actual instantiation of
rectangularArray with new int[rows, columns] sets the size of each dimension. Here,
the declaration and instantiation have been combined.

The program fills the rectangle with a pair of for loops, iterating through each col-
umn in each row. Thus, the first element filled is rectangularArray[0,0], followed by
rectangularArray[0,1] and rectangularArray[0,2]. Once this is done, the program
moves on to the next rows: rectangularArray[1,0], rectangularArray[1,1],
rectangularArray[1,2], and so forth, until all the columns in all the rows are filled.

Just as you can initialize a one-dimensional array using bracketed lists of values, you
can initialize a two-dimensional array using similar syntax. Example 9-5 declares a
two-dimensional array (rectangularArray), initializes its elements using bracketed
lists of values, and then prints the contents.

 }
 }
 }
 }
}

Output:
rectangularArray[0,0] = 0
rectangularArray[0,1] = 1
rectangularArray[0,2] = 2
rectangularArray[1,0] = 1
rectangularArray[1,1] = 2
rectangularArray[1,2] = 3
rectangularArray[2,0] = 2
rectangularArray[2,1] = 3
rectangularArray[2,2] = 4
rectangularArray[3,0] = 3
rectangularArray[3,1] = 4
rectangularArray[3,2] = 5

Example 9-5. Initializing a multidimensional array

using System;
using System.Collections.Generic;
using System.Text;

Example 9-4. Rectangular array (continued)

168 | Chapter 9: Arrays, Indexers, and Collections

The preceding example is similar to Example 9-4, but this time you imply the exact
dimensions of the array by how you initialize it:

int[,] rectangularArrayrectangularArray =
{
 {0,1,2}, {3,4,5}, {6,7,8}, {9,10,11}
};

Assigning values in four bracketed lists, each consisting of three elements, implies a
4 × 3 array. Had you written this as:

namespace InitializingMultiDimensionalArray
{
 public class Tester
 {
 static void Main()
 {
 const int rows = 4;
 const int columns = 3;

 // imply a 4x3 array
 int[,] rectangularArray =
 {
 {0,1,2}, {3,4,5}, {6,7,8}, {9,10,11}
 };

 for (int i = 0; i < rows; i++)
 {
 for (int j = 0; j < columns; j++)
 {
 Console.WriteLine("rectangularArray[{0},{1}] = {2}",
 i, j, rectangularArray[i, j]);
 }
 }
 }
 }
}

Output:
rectangularArrayrectangularArray[0,0] = 0
rectangularArrayrectangularArray[0,1] = 1
rectangularArrayrectangularArray[0,2] = 2
rectangularArrayrectangularArray[1,0] = 3
rectangularArrayrectangularArray[1,1] = 4
rectangularArrayrectangularArray[1,2] = 5
rectangularArrayrectangularArray[2,0] = 6
rectangularArrayrectangularArray[2,1] = 7
rectangularArrayrectangularArray[2,2] = 8
rectangularArrayrectangularArray[3,0] = 9
rectangularArrayrectangularArray[3,1] = 10
rectangularArrayrectangularArray[3,2] = 11

Example 9-5. Initializing a multidimensional array (continued)

The foreach Statement | 169

int[,] rectangularArrayrectangularArray =
{
 {0,1,2,3}, {4,5,6,7}, {8,9,10,11}
};

you would instead have implied a 3 × 4 array.

You can see that the C# compiler understands the implications of your clustering
because it can access the objects with the appropriate offsets, as illustrated in the
output.

You might guess that because this is a 12-element array, you can just as easily access
an element at rectangularArray[0,3] (the fourth element in the first row) as at
rectangularArray[1,0] (the first element in the second row). This works in C++, but
if you try it in C#, you will run right into an exception:

Exception occurred: System.IndexOutOfRangeException:
Index was outside the bounds of the array.
at Programming_CSharp.Tester.Main() in
csharp\programming csharp\listing0703.cs:line 23

C# arrays are smart, and they keep track of their bounds. When you imply a 4 × 3
array, you must treat it as such.

Jagged arrays

A jagged array is an array of arrays. It is called “jagged” because each row need not
be the same size as all the others, and thus a graphical representation of the array
would not be square.

When you create a jagged array, you declare the number of rows in your array. Each
row will hold an array, which can be of any length. These arrays must each be
declared. You can then fill in the values for the elements in these “inner” arrays.

In a jagged array, each dimension is a one-dimensional array. To declare a jagged
array, use the following syntax, where the number of brackets indicates the number
of dimensions of the array:

type [] []...

For example, you would declare a two-dimensional jagged array of integers named
myJaggedArray as follows:

int [] [] myJaggedArray;

You access the fifth element of the third array by writing myJaggedArray[2][4].

Example 9-6 creates a jagged array named myJaggedArray, initializes its elements, and
then prints their content. To save space, the program takes advantage of the fact that
integer array elements are automatically initialized to 0, and it initializes the values of
only some of the elements.

170 | Chapter 9: Arrays, Indexers, and Collections

Example 9-6. Working with a jagged array

using System;
using System.Collections.Generic;
using System.Text;

namespace JaggedArray
{
 public class Tester
 {
 static void Main()
 {
 const int rows = 4;

 // declare the jagged array as 4 rows high
 int[][] jaggedArray = new int[rows][];

 // the first row has 5 elements
 jaggedArray[0] = new int[5];

 // a row with 2 elements
 jaggedArray[1] = new int[2];

 // a row with 3 elements
 jaggedArray[2] = new int[3];

 // the last row has 5 elements
 jaggedArray[3] = new int[5];

 // Fill some (but not all) elements of the rows
 jaggedArray[0][3] = 15;
 jaggedArray[1][1] = 12;
 jaggedArray[2][1] = 9;
 jaggedArray[2][2] = 99;
 jaggedArray[3][0] = 10;
 jaggedArray[3][1] = 11;
 jaggedArray[3][2] = 12;
 jaggedArray[3][3] = 13;
 jaggedArray[3][4] = 14;

 for (int i = 0; i < 5; i++)
 {
 Console.WriteLine("jaggedArray[0][{0}] = {1}",
 i, jaggedArray[0][i]);
 }

 for (int i = 0; i < 2; i++)
 {
 Console.WriteLine("jaggedArray[1][{0}] = {1}",
 i, jaggedArray[1][i]);
 }

 for (int i = 0; i < 3; i++)
 {

The foreach Statement | 171

In this example, a jagged array is created with four rows:

int[][] jaggedArray = new int[rows][];

Notice that the second dimension is not specified. This is set by creating a new array
for each row. Each array can have a different size:

// the first row has 5 elements
jaggedArray[0] = new int[5];

// a row with 2 elements
jaggedArray[1] = new int[2];

// a row with 3 elements
jaggedArray[2] = new int[3];

// the last row has 5 elements
jaggedArray[3] = new int[5];

Once an array is specified for each row, you need only populate the various mem-
bers of each array and then print their contents to ensure that all went as expected.

 Console.WriteLine("jaggedArray[2][{0}] = {1}",
 i, jaggedArray[2][i]);
 }
 for (int i = 0; i < 5; i++)
 {
 Console.WriteLine("jaggedArray[3][{0}] = {1}",
 i, jaggedArray[3][i]);
 }
 }
 }
}

Output:
jaggedArray[0][0] = 0
jaggedArray[0][1] = 0
jaggedArray[0][2] = 0
jaggedArray[0][3] = 15
jaggedArray[0][4] = 0
jaggedArray[1][0] = 0
jaggedArray[1][1] = 12
jaggedArray[2][0] = 0
jaggedArray[2][1] = 9
jaggedArray[2][2] = 99
jaggedArray[3][0] = 10
jaggedArray[3][1] = 11
jaggedArray[3][2] = 12
jaggedArray[3][3] = 13
jaggedArray[3][4] = 14

Example 9-6. Working with a jagged array (continued)

172 | Chapter 9: Arrays, Indexers, and Collections

Notice that when you access the members of a rectangular array, you put the indexes
all within one set of square brackets:

rectangularArrayrectangularArray[i,j]

whereas with a jagged array you need a pair of brackets:

jaggedArray[3][i]

You can keep this straight by thinking of the first array as a single array of more than
one dimension, and the jagged array as an array of arrays.

Array Bounds
The Array class can also be created by using the overloaded CreateInstance method.
One of the overloads allows you to specify the lower bounds (starting index) of each
dimension in a multidimensional array. This is a fairly obscure capability, not often
used.

Briefly, here is how you do it: you call the static method CreateInstance, which
returns an Array and which takes three parameters: an object of type Type (indicat-
ing the type of object to hold in the array), an array of integers indicating the length
of each dimension in the array, and a second array of integers indicating the lower
bound for each dimension. Note that the two arrays of integers must have the same
number of elements; that is, you must specify a lower bound for each dimension:

using System;
using System.Collections.Generic;
using System.Text;

namespace SettingArrayBounds
{
 public class SettingArrayBounds
 {
 public static void CreateArrayWithBounds()
 {
 // Creates and initializes a multidimensional
 // Array of type String.
 int[] lengthsArray = new int[2] { 3, 5 };
 int[] boundsArray = new int[2] { 2, 3 };
 Array multiDimensionalArray = Array.CreateInstance(
 typeof(String), lengthsArray, boundsArray);

 // Displays the lower bounds and the
 // upper bounds of each dimension.
 Console.WriteLine("Bounds:\tLower\tUpper");
 for (int i = 0; i < multiDimensionalArray.Rank; i++)
 Console.WriteLine("{0}:\t{1}\t{2}", i,
 multiDimensionalArray.GetLowerBound(i),
 multiDimensionalArray.GetUpperBound(i));
 }
 static void Main()
 {

The foreach Statement | 173

 SettingArrayBounds.CreateArrayWithBounds();
 }
 }
}

Array Conversions
You can convert one array into another, if the dimensions of the two arrays are
equal, and if a conversion is possible between the reference element types. An
implicit conversion can occur if the elements can be implicitly converted; otherwise,
an explicit conversion is required.

You can also convert an array of derived objects to an array of base objects.
Example 9-7 illustrates the conversion of an array of user-defined Employee types to
an array of objects.

Example 9-7. Converting arrays

using System;
using System.Collections.Generic;
using System.Text;

namespace ConvertingArrays
{
 // create an object we can
 // store in the array
 public class Employee
 {
 // a simple class to store in the array
 public Employee(int empID)
 {
 this.empID = empID;
 }
 public override string ToString()
 {
 return empID.ToString();
 }
 private int empID;
 }

 public class Tester
 {
 // This method takes an array of objects.
 // We'll pass in an array of Employees
 // and then an array of strings.
 // The conversion is implicit since both Employee
 // and string derive (ultimately) from object.
 public static void PrintArray(object[] theArray)
 {
 Console.WriteLine("Contents of the Array {0}",
 theArray.ToString());

174 | Chapter 9: Arrays, Indexers, and Collections

Example 9-7 begins by creating a simple Employee class, as seen earlier in the chap-
ter. The Tester class now contains a new static method, PrintArray(), that takes as a
parameter a one-dimensional array of Objects:

public static void PrintArray(object[] theArray)

Object is the implicit base class of every object in the .NET Framework, and so is the
base class of both String and Employee.

The PrintArray() method takes two actions. First, it calls the ToString() method on
the array itself:

 // walk through the array and print
 // the values.
 foreach (object obj in theArray)
 {
 Console.WriteLine("Value: {0}", obj);
 }
 }

 static void Main()
 {
 // make an array of Employee objects
 Employee[] myEmployeeArray = new Employee[3];

 // initialize each Employee's value
 for (int i = 0; i < 3; i++)
 {
 myEmployeeArray[i] = new Employee(i + 5);
 }

 // display the values
 PrintArray(myEmployeeArray);

 // create an array of two strings
 string[] array = {"hello", "world"};

 // print the value of the strings
 PrintArray(array);
 }
 }
}

Output:
Contents of the Array Programming_CSharp.Employee[]
Value: 5
Value: 6
Value: 7
Contents of the Array System.String[]
Value: hello
Value: world

Example 9-7. Converting arrays (continued)

The foreach Statement | 175

Console.WriteLine("Contents of the Array {0}",
 theArray.ToString());

System.Array overrides the ToString() method to your advantage, printing an identi-
fying name of the array:

Contents of the Array Programming_CSharp. Employee []
Contents of the Array System.String[]

PrintArray() then goes on to call ToString() on each element in the array it receives
as a parameter. Because ToString() is a virtual method in the base class Object, it is
guaranteed to be available in every derived class. You have overridden this method
appropriately in Employee so that the code works properly. Calling ToString() on a
String object might not be necessary, but it is harmless, and it allows you to treat
these objects polymorphically.

Sorting Arrays
Two useful static methods of Array are Sort() and Reverse(). These are fully sup-
ported for arrays of the built-in C# types such as string. Making them work with
your own classes is a bit trickier, as you must implement the IComparable interface
(see the section “Implementing IComparable,” later in this chapter). Example 9-8
demonstrates the use of these two methods to manipulate String objects.

Example 9-8. Using Array.Sort and Array.Reverse

using System;
using System.Collections.Generic;
using System.Text;

namespace ArraySortAndReverse
{
 public class Tester
 {
 public static void PrintMyArray(object[] theArray)
 {
 foreach (object obj in theArray)
 {
 Console.WriteLine("Value: {0}", obj);
 }
 Console.WriteLine("\n");
 }

 static void Main()
 {
 String[] myArray = {"Who", "is", "Douglas", "Adams"};

 PrintMyArray(myArray);
 Array.Reverse(myArray);
 PrintMyArray(myArray);

176 | Chapter 9: Arrays, Indexers, and Collections

The example begins by creating myArray, an array of strings with the words:

"Who", "is", "Douglas", "Adams"

This array is printed, and then is passed to the Array.Reverse() method, where it is
printed again to see that the array itself has been reversed:

Value: Adams
Value: Douglas
Value: is
Value: Who

 String[] myOtherArray =
 {
 "We", "Hold", "These", "Truths",
 "To", "Be", "Self","Evident",
 };

 PrintMyArray(myOtherArray);
 Array.Sort(myOtherArray);
 PrintMyArray(myOtherArray);
 }
 }
}

Output:
Value: Who
Value: is
Value: Douglas
Value: Adams

Value: Adams
Value: Douglas
Value: is
Value: Who

Value: We
Value: Hold
Value: These
Value: Truths
Value: To
Value: Be
Value: Self
Value: Evident

Value: Be
Value: Evident
Value: Hold
Value: Self
Value: These
Value: To
Value: Truths
Value: We

Example 9-8. Using Array.Sort and Array.Reverse (continued)

Indexers | 177

Similarly, the example creates a second array, myOtherArray, containing the words:

"We", "Hold", "These", "Truths",
"To", "Be", "Self", "Evident",

This is passed to the Array.Sort() method. Then Array.Sort() happily sorts them
alphabetically:

Value: Be
Value: Evident
Value: Hold
Value: Self
Value: These
Value: To
Value: Truths
Value: We

Indexers
Sometimes you may need to access a collection within a class as though the class
itself were an array. For example, suppose you create a listbox control named
myListBox that contains a list of strings stored in a one-dimensional array, a private
member variable named myStrings. A listbox control contains member properties
and methods in addition to its array of strings. However, it would be convenient to
be able to access the listbox array with an index, just as though the listbox were an
array.* For example, such a property would permit statements like the following:

string theFirstString = myListBox[0];
string theLastString = myListBox[Length-1];

An indexer is a C# construct that allows you to access collections contained by a
class using the familiar [] syntax of arrays. An indexer is a special kind of property,
and includes get and set accessors to specify its behavior.

You declare an indexer property within a class using the following syntax:

type this [type argument]{get; set;}

The return type determines the type of object that will be returned by the indexer,
whereas the type argument specifies what kind of argument will be used to index
into the collection that contains the target objects. Although it is common to use
integers as index values, you can index a collection on other types as well, including
strings. You can even provide an indexer with multiple parameters to create a multi-
dimensional array!

The this keyword is a reference to the object in which the indexer appears. As with a
normal property, you also must define get and set accessors, which determine how
the requested object is retrieved from or assigned to its collection.

* The actual ListBox control provided by Windows Forms and ASP.NET has a collection called Items, and it
is the Items collection that implements the indexer.

178 | Chapter 9: Arrays, Indexers, and Collections

Example 9-9 declares a listbox control (ListBoxTest) that contains a simple array
(myStrings) and a simple indexer for accessing its contents.

C++ programmers take note: the indexer serves much the same pur-
pose as overloading the C++ index operator ([]). The index operator
can’t be overloaded in C#, which provides the indexer in its place.

Example 9-9. Using a simple indexer

using System;
using System.Collections.Generic;
using System.Text;

namespace SimpleIndexer
{
 // a simplified ListBox control
 public class ListBoxTest
 {
 private string[] strings;
 private int ctr = 0;

 // initialize the listbox with strings
 public ListBoxTest(params string[] initialStrings)
 {
 // allocate space for the strings
 strings = new String[256];

 // copy the strings passed in to the constructor
 foreach (string s in initialStrings)
 {
 strings[ctr++] = s;
 }
 }

 // add a single string to the end of the listbox
 public void Add(string theString)
 {
 if (ctr >= strings.Length)
 {
 // handle bad index
 }
 else
 strings[ctr++] = theString;
 }

 // allow array-like access

 public string this[int index]
 {
 get
 {
 if (index < 0 || index >= strings.Length)
 {

Indexers | 179

 // handle bad index
 }
 return strings[index];
 }
 set
 {
 // add only through the add method
 if (index >= ctr)
 {
 // handle error
 }
 else
 strings[index] = value;
 }
 }

 // publish how many strings you hold
 public int GetNumEntries()
 {
 return ctr;
 }
 }

 public class Tester
 {
 static void Main()
 {
 // create a new listbox and initialize
 ListBoxTest lbt =
 new ListBoxTest("Hello", "World");

 // add a few strings
 lbt.Add("Who");
 lbt.Add("Is");
 lbt.Add("Douglas");
 lbt.Add("Adams");

 // test the access
 string subst = "Universe";
 lbt[1] = subst;

 // access all the strings
 for (int i = 0; i < lbt.GetNumEntries(); i++)
 {
 Console.WriteLine("lbt[{0}]: {1}", i, lbt[i]);
 }
 }
 }
}

Example 9-9. Using a simple indexer (continued)

180 | Chapter 9: Arrays, Indexers, and Collections

To keep Example 9-9 simple, we strip the listbox control down to the few features
we care about. The listing ignores everything having to do with being a user control
and focuses only on the list of strings the listbox maintains and methods for manipu-
lating them. In a real application, of course, these are a small fraction of the total
methods of a listbox, whose principal job is to display the strings and enable user
choice.

The first things to notice are the two private members:

private string[] strings;
private int ctr = 0;

In this program, the listbox maintains a simple array of strings: strings. Again, in a
real listbox, you might use a more complex and dynamic container, such as a hash
table (described later in this chapter). The member variable ctr will keep track of
how many strings have been added to this array.

Initialize the array in the constructor with the statement:

strings = new String[256];

The remainder of the constructor adds the parameters to the array. Again, for sim-
plicity, you add new strings to the array in the order received.

Because you can’t know how many strings will be added, you use the
keyword params, as described earlier in this chapter.

The Add() method of ListBoxTest does nothing more than append a new string to
the internal array.

The key method of ListBoxTest, however, is the indexer. An indexer is unnamed, so
use the this keyword:

public string this[int index]

The syntax of the indexer is very similar to that for properties. There is either a get()
method, a set() method, or both. In the case shown, the get() method endeavors to
implement rudimentary bounds-checking, and assuming the index requested is
acceptable, it returns the value requested:

Output:
lbt[0]: Hello
lbt[1]: Universe
lbt[2]: Who
lbt[3]: Is
lbt[4]: Douglas
lbt[5]: Adams

Example 9-9. Using a simple indexer (continued)

Indexers | 181

get
{
 if (index < 0 || index >= strings.Length)
 {
 // handle bad index
 }
 return strings[index];
}

The set() method checks to make sure that the index you are setting already has a
value in the listbox. If not, it treats the set as an error. (New elements can only be
added using Add with this approach.) The set accessor takes advantage of the implicit
parameter value that represents whatever is assigned using the index operator:

set
{
if (index >= ctr)
 {
 // handle error
 }
 else
 strings[index] = value;
}

Thus, if you write:

lbt[5] = "Hello World"

the compiler will call the indexer set() method on your object and pass in the string
Hello World as an implicit parameter named value.

Indexers and Assignment
In Example 9-9, you can’t assign to an index that doesn’t have a value. So, if you write:

lbt[10] = "wow!";

you will trigger the error handler in the set() method, which will note that the index
you’ve passed in (10) is larger than the counter (6).

Of course, you can use the set() method for assignment; you simply have to handle
the indexes you receive. To do so, you might change the set() method to check the
Length of the buffer rather than the current value of counter. If a value was entered
for an index that did not yet have a value, you would update ctr:

set
{
 // add only through the add method
 if (index >= strings.Length)
 {
 // handle error
 }
 else
 {

182 | Chapter 9: Arrays, Indexers, and Collections

 strings[index] = value;
 if (ctr < index+1)
 ctr = index+1;
 }
}

This code is kept simple and thus is not robust. There are any number
of other checks you’ll want to make on the value passed in (e.g.,
checking that you were not passed a negative index, and that it doesn’t
exceed the size of the underlying strings[] array).

This allows you to create a “sparse” array in which you can assign to offset 10 with-
out ever having assigned to offset 9. Thus, if you now write:

lbt[10] = "wow!";

the output will be:

lbt[0]: Hello
lbt[1]: Universe
lbt[2]: Who
lbt[3]: Is
lbt[4]: Douglas
lbt[5]: Adams
lbt[6]:
lbt[7]:
lbt[8]:
lbt[9]:
lbt[10]: wow!

In Main(), you create an instance of the ListBoxTest class named lbt and pass in two
strings as parameters:

ListBoxTest lbt = new ListBoxTest("Hello", "World");

Then, call Add() to add four more strings:

// add a few strings
lbt.Add("Who");
lbt.Add("Is");
lbt.Add("Douglas");
lbt.Add("Adams");

Before examining the values, modify the second value (at index 1):

string subst = "Universe";
lbt[1] = subst;

Finally, display each value in a loop:

for (int i = 0;i<lbt.GetNumEntries();i++)
{
 Console.WriteLine("lbt[{0}]: {1}",i,lbt[i]);
}

Indexers | 183

Indexing on Other Values
C# doesn’t require that you always use an integer value as the index to a collection.
When you create a custom collection class and create your indexer, you are free to
create indexers that index on strings and other types. In fact, the index value can be
overloaded so that a given collection can be indexed, for example, by an integer
value or by a string value, depending on the needs of the client.

In the case of your listbox, you might want to be able to index into the listbox based
on a string. Example 9-10 illustrates a string index. The indexer calls findString(),
which is a helper method that returns a record based on the value of the string pro-
vided. Notice that the overloaded indexer and the indexer from Example 9-9 are able
to coexist.

Example 9-10. Overloading an index

using System;
using System.Collections.Generic;
using System.Text;

namespace OverloadedIndexer
{
 // a simplified ListBox control
 public class ListBoxTest
 {
 private string[] strings;
 private int ctr = 0;

 // initialize the listbox with strings
 public ListBoxTest(params string[] initialStrings)
 {
 // allocate space for the strings
 strings = new String[256];

 // copy the strings passed in to the constructor
 foreach (string s in initialStrings)
 {
 strings[ctr++] = s;
 }
 }

 // add a single string to the end of the listbox
 public void Add(string theString)
 {
 strings[ctr] = theString;
 ctr++;
 }

 // allow array-like access
 public string this[int index]
 {

184 | Chapter 9: Arrays, Indexers, and Collections

 get
 {
 if (index < 0 || index >= strings.Length)
 {
 // handle bad index
 }
 return strings[index];
 }
 set
 {
 strings[index] = value;
 }
 }

 private int findString(string searchString)
 {
 for (int i = 0; i < strings.Length; i++)
 {
 if (strings[i].StartsWith(searchString))
 {
 return i;
 }
 }
 return -1;
 }

 // index on string
 public string this[string index]
 {
 get
 {
 if (index.Length == 0)
 {
 // handle bad index
 }

 return this[findString(index)];
 }
 set
 {
 strings[findString(index)] = value;
 }
 }

 // publish how many strings you hold
 public int GetNumEntries()
 {
 return ctr;
 }
 }

Example 9-10. Overloading an index (continued)

Indexers | 185

Example 9-10 is identical to Example 9-9 except for the addition of an overloaded
indexer, which can match a string, and the method findString, created to support
that index.

The findString method simply iterates through the strings held in myStrings until it
finds a string that starts with the target string you use in the index. If found, it
returns the index of that string; otherwise, it returns the value -1.

We see in Main() that the user passes in a string segment to the index, just as with an
integer:

lbt["Hel"] = "GoodBye";

 public class Tester
 {
 static void Main()
 {
 // create a new listbox and initialize
 ListBoxTest lbt =
 new ListBoxTest("Hello", "World");

 // add a few strings
 lbt.Add("Who");
 lbt.Add("Is");
 lbt.Add("Douglas");
 lbt.Add("Adams");

 // test the access
 string subst = "Universe";
 lbt[1] = subst;
 lbt["Hel"] = "GoodBye";
 // lbt["xyz"] = "oops";

 // access all the strings
 for (int i = 0; i < lbt.GetNumEntries(); i++)
 {
 Console.WriteLine("lbt[{0}]: {1}", i, lbt[i]);
 } // end for
 } // end main
 } // end tester
}

Output:
lbt[0]: GoodBye
lbt[1]: Universe
lbt[2]: Who
lbt[3]: Is
lbt[4]: Douglas
lbt[5]: Adams

Example 9-10. Overloading an index (continued)

186 | Chapter 9: Arrays, Indexers, and Collections

This calls the overloaded index, which does some rudimentary error-checking (in
this case, making sure the string passed in has at least one letter), and then passes the
value (Hel) to findString. It gets back an index and uses that index to index into
myStrings:

return this[findString(index)];

The set value works in the same way:

myStrings[findString(index)] = value;

The careful reader will note that if the string doesn’t match, a value of
-1 is returned, which is then used as an index into myStrings. This
action then generates an exception (System.NullReferenceException),
as you can see by uncommenting the following line in Main():

lbt["xyz"] = "oops";

The proper handling of not finding a string is, as they say, left as an
exercise for the reader. You might consider displaying an error mes-
sage or otherwise allowing the user to recover from the error.

Collection Interfaces
The .NET Framework provides two sets of standard interfaces for enumerating and
comparing collections: the traditional (nontype-safe) and the new generic type-safe
collections. This book focuses only on the new type-safe collection interfaces, as
these are far preferable.

You can declare an ICollection of any specific type by substituting the actual type
(e.g., int or string) for the generic type in the interface declaration (<T>).

C++ programmers take note: C# Generics are similar in syntax and
usage to C++ templates. However, because the generic types are
expanded to their specific type at runtime, the JIT compiler is able to
share code among different instances, dramatically reducing the code
bloat that you may see when using templates in C++.

Table 9-2 lists the key generic collection interfaces.*

* For backward compatibility, C# also provides nongeneric interfaces (e.g., ICollection, IEnumerator), but
they aren’t considered here because they are obsolete.

Table 9-2. Collection interfaces

Interface Purpose

ICollection<T> Base interface for generic collections

IEnumerator<T>
IEnumerable<T>

Enumerate through a collection using a foreach statement

Collection Interfaces | 187

The IEnumerable<T> Interface
You can support the foreach statement in ListBoxTest by implementing the
IEnumerable<T> interface (see Example 9-11). IEnumerable<T> has only one method,
GetEnumerator(), whose job is to return an implementation of IEnumerator<T>. The
C# language provides special help in creating the enumerator, using the new key-
word yield.

ICollection<T> Implemented by all collections to provide the CopyTo() method as well as the Count,
IsSynchronized, and SyncRoot properties

IComparer<T>
IComparable<T>

Compare two objects held in a collection so that the collection can be sorted

IList<T> Used by array-indexable collections

IDictionary<K,V> Used for key-/value-based collections such as Dictionary

Example 9-11. Making a ListBox an enumerable class

using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;

namespace Enumerable
{
 public class ListBoxTest : IEnumerable<string>
 {
 private string[] strings;
 private int ctr = 0;
 // Enumerable classes can return an enumerator
 public IEnumerator<string> GetEnumerator()
 {
 foreach (string s in strings)
 {
 yield return s;
 }
 }

 // Explicit interface implementation.
 IEnumerator IEnumerable.GetEnumerator()
 {
 return GetEnumerator();
 }

 // initialize the listbox with strings
 public ListBoxTest(params string[] initialStrings)
 {
 // allocate space for the strings
 strings = new String[8];

Table 9-2. Collection interfaces (continued)

Interface Purpose

188 | Chapter 9: Arrays, Indexers, and Collections

 // copy the strings passed in to the constructor
 foreach (string s in initialStrings)
 {
 strings[ctr++] = s;
 }
 }

 // add a single string to the end of the listbox
 public void Add(string theString)
 {
 strings[ctr] = theString;
 ctr++;
 }

 // allow array-like access
 public string this[int index]
 {
 get
 {
 if (index < 0 || index >= strings.Length)
 {
 // handle bad index
 }
 return strings[index];
 }
 set
 {
 strings[index] = value;
 }
 }

 // publish how many strings you hold
 public int GetNumEntries()
 {
 return ctr;
 }
 }

 public class Tester
 {
 static void Main()
 {
 // create a new listbox and initialize
 ListBoxTest lbt =
 new ListBoxTest("Hello", "World");

 // add a few strings
 lbt.Add("Who");
 lbt.Add("Is");

Example 9-11. Making a ListBox an enumerable class (continued)

Collection Interfaces | 189

The program begins in Main(), creating a new ListBoxTest object and passing two
strings to the constructor. When the object is created, an array of Strings is created
with enough room for eight strings. Four more strings are added using the Add
method, and the second string is updated, just as in the previous example.

The big change in this version of the program is that a foreach loop is called, retriev-
ing each string in the listbox. The foreach loop automatically uses the IEnumerable<T>
interface, invoking GetEnumerator().

The GetEnumerator method is declared to return an IEnumerator of string:

public IEnumerator<string> GetEnumerator()

The implementation iterates through the array of strings, yielding each in turn:

foreach (string s in strings)
{
 yield return s;
}

All the bookkeeping for keeping track of which element is next, resetting the itera-
tor, and so forth is provided for you by the Framework.

 lbt.Add("Douglas");
 lbt.Add("Adams");

 // test the access
 string subst = "Universe";
 lbt[1] = subst;

 // access all the strings
 foreach (string s in lbt)
 {
 Console.WriteLine("Value: {0}", s);
 }
 }
 }
}

Output:
Value: Hello
Value: Universe
Value: Who
Value: Is
Value: Douglas
Value: Adams
Value:
Value:

Example 9-11. Making a ListBox an enumerable class (continued)

190 | Chapter 9: Arrays, Indexers, and Collections

Constraints
There are times when you must ensure that the elements you add to a generic list
meet certain constraints (e.g., they derive from a given base class, or they implement
a specific interface). In the next example, you implement a simplified, singly linked,
sortable list. The list consists of Nodes, and each Node must be guaranteed that the
types added to it implement IComparer. You do so with the following statement:

 public class Node<T> :
 IComparable<Node<T>> where T : IComparable<T>

This defines a generic Node that holds a type, T. Node of T implements the
IComparable<T> interface, which means that two Nodes of T can be compared. The Node
class is constrained (where T : IComparable<T>) to hold only types that implement the
IComparable interface. Thus, you may substitute any type for T as long as that type
implements IComparable.

Example 9-12 illustrates the complete implementation, with analysis to follow.

Example 9-12. Using constraints

using System;
using System.Collections.Generic;

namespace UsingConstraints
{
 public class Employee : IComparable<Employee>
 {
 private string name;
 public Employee(string name)
 {
 this.name = name;
 }
 public override string ToString()
 {
 return this.name;
 }

 // implement the interface
 public int CompareTo(Employee rhs)
 {
 return this.name.CompareTo(rhs.name);
 }
 public bool Equals(Employee rhs)
 {
 return this.name == rhs.name;
 }
 }

 // node must implement IComparable of Node of T.
 // constrain Nodes to only take items that implement IComparable
 // by using the where keyword.

Constraints | 191

 public class Node<T> :
 IComparable<Node<T>> where T : IComparable<T>
 {
 // member fields
 private T data;
 private Node<T> next = null;
 private Node<T> prev = null;

 // constructor
 public Node(T data)
 {
 this.data = data;
 }

 // properties
 public T Data { get { return this.data; } }

 public Node<T> Next
 {
 get { return this.next; }
 }

 public int CompareTo(Node<T> rhs)
 {
 // this works because of the constraint
 return data.CompareTo(rhs.data);
 }

 public bool Equals(Node<T> rhs)
 {
 return this.data.Equals(rhs.data);
 }

 // methods
 public Node<T> Add(Node<T> newNode)
 {
 if (this.CompareTo(newNode) > 0) // goes before me
 {
 newNode.next = this; // new node points to me

 // if I have a previous, set it to point to
 // the new node as its next
 if (this.prev != null)
 {
 this.prev.next = newNode;
 newNode.prev = this.prev;
 }

 // set prev in current node to point to new node
 this.prev = newNode;

Example 9-12. Using constraints (continued)

192 | Chapter 9: Arrays, Indexers, and Collections

 // return the newNode in case it is the new head
 return newNode;
 }
 else // goes after me
 {
 // if I have a next, pass the new node along for
 // comparison
 if (this.next != null)
 {
 this.next.Add(newNode);
 }

 // I don't have a next so set the new node
 // to be my next and set its prev to point to me.
 else
 {
 this.next = newNode;
 newNode.prev = this;
 }

 return this;
 }
 }

 public override string ToString()
 {
 string output = data.ToString();

 if (next != null)
 {
 output += ", " + next.ToString();
 }

 return output;
 }
 } // end class

 public class LinkedList<T> where T : IComparable<T>
 {
 // member fields
 private Node<T> headNode = null;

 // properties

 // indexer
 public T this[int index]
 {
 get
 {
 int ctr = 0;
 Node<T> node = headNode;

Example 9-12. Using constraints (continued)

Constraints | 193

 while (node != null && ctr <= index)
 {
 if (ctr == index)
 {
 return node.Data;
 }
 else
 {
 node = node.Next;
 }

 ++ctr;
 } // end while
 throw new ArgumentOutOfRangeException();
 } // end get
 } // end indexer

 // constructor
 public LinkedList()
 {
 }

 // methods
 public void Add(T data)
 {
 if (headNode == null)
 {
 headNode = new Node<T>(data);
 }
 else
 {
 headNode = headNode.Add(new Node<T>(data));
 }
 }
 public override string ToString()
 {
 if (this.headNode != null)
 {
 return this.headNode.ToString();
 }
 else
 {
 return string.Empty;
 }
 }
 }

 // Test engine
 class Test
 {
 // entry point
 static void Main(string[] args)
 {

Example 9-12. Using constraints (continued)

194 | Chapter 9: Arrays, Indexers, and Collections

In this example, you begin by declaring a class that can be placed into the linked list:

public class Employee : IComparable<Employee>

This declaration indicates that Employee objects are comparable, and you see that the
Employee class implements the required methods (CompareTo and Equals). Note that
these methods are type-safe (they know that the parameter passed to them will be of
type Employee). The LinkedList itself is declared to hold only types that implement
IComparable:

public class LinkedList<T> where T : IComparable<T>

so you are guaranteed to be able to sort the list. The LinkedList holds an object of
type Node. Node also implements IComparable and requires that the objects it holds as
data themselves implement IComparable:

public class Node<T> :
 IComparable<Node<T>> where T : IComparable<T>

These constraints make it safe and simple to implement the CompareTo method of Node
because the Node knows it will be comparing other Nodes whose data is comparable:

 // make an instance, run the method
 Test t = new Test();
 t.Run();
 }

 public void Run()
 {
 LinkedList<int> myLinkedList = new LinkedList<int>();
 Random rand = new Random();
 Console.Write("Adding: ");

 for (int i = 0; i < 10; i++)
 {
 int nextInt = rand.Next(10);
 Console.Write("{0} ", nextInt);
 myLinkedList.Add(nextInt);
 }

 LinkedList<Employee> employees = new LinkedList<Employee>();
 employees.Add(new Employee("Douglas"));
 employees.Add(new Employee("Paul"));
 employees.Add(new Employee("George"));
 employees.Add(new Employee("Ringo"));

 Console.WriteLine("\nRetrieving collections...");

 Console.WriteLine("Integers: " + myLinkedList);
 Console.WriteLine("Employees: " + employees);
 }
 }
}

Example 9-12. Using constraints (continued)

List<T> | 195

public int CompareTo(Node<T> rhs)
{
 // this works because of the constraint
 return data.CompareTo(rhs.data);
}

Notice that you don’t have to test rhs to see whether it implements IComparable;
you’ve already constrained Node to hold only data that implements IComparable.

List<T>
The classic problem with the Array type is its fixed size. If you don’t know in advance
how many objects an array will hold, you run the risk of declaring either too small an
array (and running out of room), or too large an array (and wasting memory).

Your program might be asking the user for input, or gathering input from a web site.
As it finds objects (strings, books, values, etc.), you will add them to the array, but you
have no idea how many objects you’ll collect in any given session. The classic fixed-
size array is not a good choice, as you can’t predict how large an array you’ll need.

The List class is an array whose size is dynamically increased as required. Lists
provide a number of useful methods and properties for their manipulation. Table 9-3
shows some of the most important ones.

Table 9-3. List methods and properties

Method or property Purpose

Capacity Property to get or set the number of elements the List can contain; this value is increased auto-
matically if count exceeds capacity; you might set this value to reduce the number of reallocations,
and you may call Trim() to reduce this value to the actual Count

Count Property to get the number of elements currently in the array

Item() Gets or sets the element at the specified index; this is the indexer for the List classa

Add() Public method to add an object to the List

AddRange() Public method that adds the elements of an ICollection to the end of the List

AsReadOnly() Public method that returns a read-only instance of the current instance

BinarySearch() Overloaded public method that uses a binary search to locate a specific element in a sorted List

Clear() Removes all elements from the List

Contains() Determines whether an element is in the List

ConvertAll() Public method that converts all elements in the current list into another type

CopyTo() Overloaded public method that copies a List to a one-dimensional array

Exists() Determines whether an element is in the List

Find() Returns the first occurrence of the element in the List

FindAll() Returns all the specified elements in the List

FindIndex() Overloaded public method that returns the index of the first element that matches a condition

FindLast() Public method that finds the last element that matches a condition

196 | Chapter 9: Arrays, Indexers, and Collections

When you create a List, you don’t define how many objects it will contain. You add
to the List using the Add() method, and the list takes care of its own internal book-
keeping, as illustrated in Example 9-13.

FindLastIndex() Overloaded public method that returns the index of the last element that matches a condition

ForEach() Public static method that performs an action on all elements of an array

GetEnumerator() Overloaded public method that returns an enumerator to iterate through a List

GetRange() Copies a range of elements to a new List

IndexOf() Overloaded public method that returns the index of the first occurrence of a value

Insert() Inserts an element into the List

InsertRange() Inserts the elements of a collection into the List

LastIndexOf() Overloaded public method that returns the index of the last occurrence of a value in the List

Remove() Removes the first occurrence of a specific object

RemoveAll() Removes all elements that match a specific condition

RemoveAt() Removes the element at the specified index

RemoveRange() Removes a range of elements

Reverse() Reverses the order of elements in the List

Sort() Sorts the List

ToArray() Copies the elements of the List to a new array

TrimExcess() Reduce the current list’s capacity to the actual number of elements in the list

TrimToSize() Sets the capacity of the actual number of elements in the List

a The idiom in the FCL is to provide an Item element for collection classes that is implemented as an indexer in C#.

Example 9-13. Working with List

using System;
using System.Collections.Generic;
using System.Text;

namespace ListCollection
{
 // a simple class to store in the List
 public class Employee
 {
 public Employee(int empID)
 {
 this.EmpID = empID;
 }
 public override string ToString()
 {
 return EmpID.ToString();
 }
 public int EmpID { get; set; }

Table 9-3. List methods and properties (continued)

Method or property Purpose

List<T> | 197

With an Array class, you define how many objects the array will hold. If you try to
add more than that, the Array class will throw an exception. With a List, you don’t
declare how many objects the List will hold. The List has a property, Capacity,
which is the number of elements that the List is capable of storing:

public int Capacity { get; set; }

The default capacity is eight. When you add the 17th element, the capacity is auto-
matically doubled to 16. If you change the for loop to:

for (int i = 0;i < 9;i++)

 }
 public class Tester
 {
 static void Main()
 {
 List<Employee> empList = new List<Employee>();
 List<int> intList = new List<int>();

 // populate the List
 for (int i = 0; i < 5; i++)
 {
 empList.Add(new Employee(i + 100));
 intList.Add(i * 5);
 }

 // print all the contents
 for (int i = 0; i < intList.Count; i++)
 {
 Console.Write("{0} ", intList[i].ToString());
 }

 Console.WriteLine("\n");

 // print all the contents of the Employee List
 for (int i = 0; i < empList.Count; i++)
 {
 Console.Write("{0} ", empList[i].ToString());
 }

 Console.WriteLine("\n");
 Console.WriteLine("empList.Capacity: {0}",
 empList.Capacity);
 }
 }
}

Output:
0 5 10 15 20
100 101 102 103 104
empArray.Capacity: 8

Example 9-13. Working with List (continued)

198 | Chapter 9: Arrays, Indexers, and Collections

the output looks like this:

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
empArray.Capacity: 32

You can manually set the capacity to any number equal to or greater than the count.
If you set it to a number less than the count, the program will throw an exception of
type ArgumentOutOfRangeException.

Implementing IComparable
Like all collections, the List implements the Sort() method, which allows you to
sort any objects that implement IComparable. In the next example, you’ll modify the
Employee object to implement IComparable:

public class Employee : IComparable<Employee>

To implement the IComparable<Employee> interface, the Employee object must pro-
vide a CompareTo() method:

public int CompareTo(Employee rhs)
{
 return this.empID.CompareTo(rhs.empID);
}

The CompareTo() method takes an Employee as a parameter. You know this is an
Employee because this is a type-safe collection. The current Employee object must
compare itself to the Employee passed in as a parameter and return -1 if it is smaller
than the parameter, 1 if it is greater than the parameter, and 0 if it is equal to the
parameter. It is up to Employee to determine what smaller than, greater than, and
equal to mean. In this example, you delegate the comparison to the empId member.
The empId member is an int and uses the default CompareTo() method for integer
types, which will do an integer comparison of the two values.

The System.Int32 class implements IComparable<Int32>, so you may
delegate the comparison responsibility to integers.

You are now ready to sort the array list of employees, empList. To see whether the
sort is working, you’ll need to add integers and Employee instances to their respective
arrays with random values. To create the random values, you’ll instantiate an object
of class Random; to generate the random values, you’ll call the Next() method on the
Random object, which returns a pseudorandom number. The Next() method is over-
loaded; one version allows you to pass in an integer that represents the largest
random number you want. In this case, you’ll pass in the value 10 to generate a ran-
dom number between 0 and 10:

Random r = new Random();
r.Next(10);

List<T> | 199

Example 9-14 creates an integer array and an Employee array, populates them both
with random numbers, and prints their values. It then sorts both arrays and prints
the new values.

Example 9-14. Sorting an integer and an employee array

using System;
using System.Collections.Generic;
using System.Text;

namespace IComparable
{
 // a simple class to store in the array
 public class Employee : IComparable<Employee>
 {
 private int empID;

 public Employee(int empID)
 {
 this.empID = empID;
 }

 public override string ToString()
 {
 return empID.ToString();
 }

 public bool Equals(Employee other)
 {
 if (this.empID == other.empID)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

 // Comparer delegates back to Employee
 // Employee uses the integer's default
 // CompareTo method

 public int CompareTo(Employee rhs)
 {
 return this.empID.CompareTo(rhs.empID);
 }
 }
 public class Tester
 {
 static void Main()
 {
 List<Employee> empArray = new List<Employee>();
 List<Int32> intArray = new List<Int32>();

200 | Chapter 9: Arrays, Indexers, and Collections

 // generate random numbers for
 // both the integers and the
 // employee IDs

 Random r = new Random();

 // populate the array
 for (int i = 0; i < 5; i++)
 {
 // add a random employee id
 empArray.Add(new Employee(r.Next(10) + 100));

 // add a random integer
 intArray.Add(r.Next(10));
 }

 // display all the contents of the int array
 for (int i = 0; i < intArray.Count; i++)
 {
 Console.Write("{0} ", intArray[i].ToString());
 }
 Console.WriteLine("\n");

 // display all the contents of the Employee array
 for (int i = 0; i < empArray.Count; i++)
 {
 Console.Write("{0} ", empArray[i].ToString());
 }
 Console.WriteLine("\n");

 // sort and display the int array
 intArray.Sort();
 for (int i = 0; i < intArray.Count; i++)
 {
 Console.Write("{0} ", intArray[i].ToString());
 }
 Console.WriteLine("\n");

 // sort and display the employee array
 empArray.Sort();

 // display all the contents of the Employee array
 for (int i = 0; i < empArray.Count; i++)
 {
 Console.Write("{0} ", empArray[i].ToString());
 }
 Console.WriteLine("\n");
 }
 }
}

Example 9-14. Sorting an integer and an employee array (continued)

List<T> | 201

The output shows that the integer array and Employee array were generated with ran-
dom numbers. When sorted, the display shows the values have been ordered properly.

Implementing IComparer
When you call Sort() on the List, the default implementation of IComparer is called,
which uses QuickSort to call the IComparable implementation of CompareTo() on each
element in the List.

You are free to create your own implementation of IComparer, which you might want
to do if you need control over how the sort ordering is defined. In the next example,
you will add a second field to Employee, yearsOfSvc. You want to be able to sort the
Employee objects in the List on either field—empID or yearsOfSvc.

To accomplish this, create a custom implementation of IComparer that you pass to
the Sort() method of the List. This IComparer class, EmployeeComparer, knows about
Employee objects and knows how to sort them.

EmployeeComparer has the WhichComparison property, of type Employee.
EmployeeComparer.ComparisonType:

public Employee.EmployeeComparer.ComparisonType
 WhichComparison
{
 get{return whichComparison;}
 set{whichComparison = value;}
}

ComparisonType is an enumeration with two values, empID and yearsOfSvc (indicating
that you want to sort by employee ID or years of service, respectively):

public enum ComparisonType
{
 EmpID,
 YearsOfService
};

Before invoking Sort(), create an instance of EmployeeComparer, and set its
ComparisonType property:

Employee.EmployeeComparer c = Employee.GetComparer();
c.WhichComparison=Employee.EmployeeComparer.ComparisonType.EmpID;
empArray.Sort(c);

Output:
4 5 6 5 7
108 100 101 103 103
4 5 5 6 7
100 101 103 103 108

Example 9-14. Sorting an integer and an employee array (continued)

202 | Chapter 9: Arrays, Indexers, and Collections

When you invoke Sort(), the List calls the Compare method on the EmployeeComparer,
which in turn delegates the comparison to the Employee.CompareTo() method, passing
in its WhichComparison property:

public int Compare(Employee lhs, Employee rhs)
{
 return lhs.CompareTo(rhs, WhichComparison);
}

The Employee object must implement a custom version of CompareTo(), which takes
the comparison, and compares the objects accordingly:

public int CompareTo(
 Employee rhs,
 Employee.EmployeeComparer.ComparisonType which)
{
 switch (which)
 {
 case Employee.EmployeeComparer.ComparisonType.EmpID:
 return this.empID.CompareTo(rhs.empID);
 case Employee.EmployeeComparer.ComparisonType.Yrs:
 return this.yearsOfSvc.CompareTo(rhs.yearsOfSvc);
 }
 return 0;
}

Example 9-15 shows the complete source for this example. The integer array has
been removed to simplify the example and the output of the employee’s ToString()
method has been enhanced to enable you to see the effects of the sort.

Example 9-15. Sorting an array by employees’ IDs and years of service

using System;
using System.Collections.Generic;
using System.Text;

namespace IComparer
{
 public class Employee : IComparable<Employee>
 {
 private int empID;

 private int yearsOfSvc = 1;

 public Employee(int empID)
 {
 this.empID = empID;
 }

 public Employee(int empID, int yearsOfSvc)
 {
 this.empID = empID;
 this.yearsOfSvc = yearsOfSvc;
 }

List<T> | 203

 public override string ToString()
 {
 return "ID: " + empID.ToString() +
 ". Years of Svc: " + yearsOfSvc.ToString();
 }

 public bool Equals(Employee other)
 {
 if (this.empID == other.empID)
 {
 return true;
 }
 else
 {
 return false;
 }
 }

 // static method to get a Comparer object
 public static EmployeeComparer GetComparer()
 {
 return new Employee.EmployeeComparer();
 }

 // Comparer delegates back to Employee
 // Employee uses the integer's default
 // CompareTo method
 public int CompareTo(Employee rhs)
 {
 return this.empID.CompareTo(rhs.empID);
 }

 // Special implementation to be called by custom comparer
 public int CompareTo(Employee rhs,
 Employee.EmployeeComparer.ComparisonType which)
 {
 switch (which)
 {
 case Employee.EmployeeComparer.ComparisonType.EmpID:
 return this.empID.CompareTo(rhs.empID);
 case Employee.EmployeeComparer.ComparisonType.Yrs:
 return this.yearsOfSvc.CompareTo(rhs.yearsOfSvc);
 }
 return 0;

 }

 // nested class which implements IComparer
 public class EmployeeComparer : IComparer<Employee>
 {
 // enumeration of comparison types
 public enum ComparisonType

Example 9-15. Sorting an array by employees’ IDs and years of service (continued)

204 | Chapter 9: Arrays, Indexers, and Collections

 {
 EmpID,
 Yrs
 };

 public bool Equals(Employee lhs, Employee rhs)
 {
 return this.Compare(lhs, rhs) == 0;
 }

 public int GetHashCode(Employee e)
 {
 return e.GetHashCode();
 }

 // Tell the Employee objects to compare themselves
 public int Compare(Employee lhs, Employee rhs)
 {
 return lhs.CompareTo(rhs, WhichComparison);
 }

 public Employee.EmployeeComparer.ComparisonType
 WhichComparison {get; set;}
 }
 }
 public class Tester
 {
 static void Main()
 {
 List<Employee> empArray = new List<Employee>();

 // generate random numbers for
 // both the integers and the
 // employee IDs
 Random r = new Random();

 // populate the array
 for (int i = 0; i < 5; i++)
 {
 // add a random employee ID

 empArray.Add(
 new Employee(
 r.Next(10) + 100, r.Next(20)
)
);
 }

 // display all the contents of the Employee array
 for (int i = 0; i < empArray.Count; i++)
 {
 Console.Write("\n{0} ", empArray[i].ToString());

Example 9-15. Sorting an array by employees’ IDs and years of service (continued)

List<T> | 205

The first block of output shows the Employee objects as they are added to the List.
The employee ID values and the years of service are in random order. The second
block shows the results of sorting by the employee ID, and the third block shows the
results of sorting by years of service.

 }
 Console.WriteLine("\n");

 // sort and display the employee array
 Employee.EmployeeComparer c = Employee.GetComparer();
 c.WhichComparison =
 Employee.EmployeeComparer.ComparisonType.EmpID;
 empArray.Sort(c);

 // display all the contents of the Employee array
 for (int i = 0; i < empArray.Count; i++)
 {
 Console.Write("\n{0} ", empArray[i].ToString());
 }
 Console.WriteLine("\n");

 c.WhichComparison = Employee.EmployeeComparer.ComparisonType.Yrs;
 empArray.Sort(c);

 for (int i = 0; i < empArray.Count; i++)
 {
 Console.Write("\n{0} ", empArray[i].ToString());
 }
 Console.WriteLine("\n");
 }
 }
}

Output:
ID: 103. Years of Svc: 11
ID: 101. Years of Svc: 15
ID: 107. Years of Svc: 14
ID: 108. Years of Svc: 5
ID: 102. Years of Svc: 0

ID: 101. Years of Svc: 15
ID: 102. Years of Svc: 0
ID: 103. Years of Svc: 11
ID: 107. Years of Svc: 14
ID: 108. Years of Svc: 15
ID: 108. Years of Svc: 5

ID: 102. Years of Svc: 0
ID: 108. Years of Svc: 5
ID: 103. Years of Svc: 11
ID: 107. Years of Svc: 14
ID: 101. Years of Svc: 15

Example 9-15. Sorting an array by employees’ IDs and years of service (continued)

206 | Chapter 9: Arrays, Indexers, and Collections

If you are creating your own collection, as in Example 9-11, and wish
to implement IComparer, you may need to ensure that all the types
placed in the list implement IComparer (so that they may be sorted), by
using constraints, as described earlier. Note that in a production envi-
ronment, employee ID would always be nonrandom and unique.

Queues
A queue represents a first-in, first-out (FIFO) collection. The classic analogy is to a
line (or queue, if you are British) at a ticket window. The first person in line ought to
be the first person to come off the line to buy a ticket.

A queue is a good collection to use when you are managing a limited resource. For
example, you might want to send messages to a resource that can handle only one
message at a time. You would then create a message queue so that you can say to
your clients: “Your message is important to us. Messages are handled in the order in
which they are received.”

The Queue class has a number of member methods and properties, as shown in
Table 9-4.

You add elements to your queue with the Enqueue command, and take them off the
queue with Dequeue or by using an enumerator. Example 9-16 illustrates.

Table 9-4. Queue methods and properties

Method or property Purpose

Count Public property that gets the number of elements in the Queue

Clear() Removes all objects from the Queue

Contains() Determines whether an element is in the Queue

CopyTo() Copies the Queue elements to an existing one-dimensional array

Dequeue() Removes and returns the object at the beginning of the Queue

Enqueue() Adds an object to the end of the Queue

GetEnumerator() Returns an enumerator for the Queue

Peek() Returns the object at the beginning of the Queue without removing it

ToArray() Copies the elements to a new array

TrimExcess() Reduces the current queue’s capacity to the actual number of elements in the list

Example 9-16. Working with a queue

using System;
using System.Collections.Generic;
using System.Text;

Queues | 207

namespace Queue
{
 public class Tester
 {
 static void Main()
 {
 Queue<Int32> intQueue = new Queue<Int32>();

 // populate the array
 for (int i = 0; i < 5; i++)
 {
 intQueue.Enqueue(i * 5);
 }

 // Display the Queue.
 Console.Write("intQueue values:\t");
 PrintValues(intQueue);

 // Remove an element from the queue.
 Console.WriteLine(
 "\n(Dequeue)\t{0}", intQueue.Dequeue());

 // Display the Queue.
 Console.Write("intQueue values:\t");
 PrintValues(intQueue);

 // Remove another element from the queue.
 Console.WriteLine(
 "\n(Dequeue)\t{0}", intQueue.Dequeue());

 // Display the Queue.
 Console.Write("intQueue values:\t");
 PrintValues(intQueue);

 // View the first element in the
 // Queue but do not remove.
 Console.WriteLine(
 "\n(Peek) \t{0}", intQueue.Peek());

 // Display the Queue.
 Console.Write("intQueue values:\t");
 PrintValues(intQueue);
 }

 public static void PrintValues(IEnumerable<Int32> myCollection)
 {
 IEnumerator<Int32> myEnumerator =
 myCollection.GetEnumerator();
 while (myEnumerator.MoveNext())
 Console.Write("{0} ", myEnumerator.Current);
 Console.WriteLine();
 }

Example 9-16. Working with a queue (continued)

208 | Chapter 9: Arrays, Indexers, and Collections

In this example, the List is replaced by a Queue. We’ve dispensed with the Employee
class to save room, but of course, you can Enqueue user-defined objects as well.

The output shows that queuing objects adds them to the Queue, and calls to Dequeue
return the object as well as remove them from the Queue. The Queue class also pro-
vides a Peek() method that allows you to see, but not remove, the first element.

Because the Queue class is enumerable, you can pass it to the PrintValues method,
which is provided as an IEnumerable interface. The conversion is implicit. In the
PrintValues method, you call GetEnumerator, which you will remember is the single
method of all IEnumerable classes. This returns an IEnumerator, which you then use
to enumerate all the objects in the collection.

Stacks
A stack is a last-in, first-out (LIFO) collection, like a stack of dishes at a buffet table
or a stack of coins on your desk. An item added on top is the first item you take off
the stack.

The principal methods for adding to and removing from a stack are Push() and Pop();
Stack also offers a Peek() method, very much like Queue. Table 9-5 shows the signifi-
cant methods and properties for Stack.

 }
}

Output:
intQueue values: 0 5 10 15 20

(Dequeue) 0
intQueue values: 5 10 15 20

(Dequeue) 5
intQueue values: 10 15 20

(Peek) 10
intQueue values: 10 15 20

Table 9-5. Stack methods and properties

Method or property Purpose

Count Public property that gets the number of elements in the Stack

Clear() Removes all objects from the Stack

Contains() Determines whether an element is in the Stack

CopyTo() Copies the Stack elements to an existing one-dimensional array

GetEnumerator() Returns an enumerator for the Stack

Example 9-16. Working with a queue (continued)

Stacks | 209

The List, Queue, and Stack types contain overloaded CopyTo() and ToArray() meth-
ods for copying their elements to an array. In the case of a Stack, the CopyTo()
method will copy its elements to an existing one-dimensional array, overwriting the
contents of the array beginning at the index you specify. The ToArray() method
returns a new array with the contents of the stack’s elements. Example 9-17 illustrates.

Peek() Returns the object at the top of the Stack without removing it

Pop() Removes and returns the object at the top of the Stack

Push() Inserts an object at the top of the Stack

ToArray() Copies the elements to a new array

TrimExcess() If the number of elements in the current stack is less than 90 percent of its capacity,
reduces the current stack’s capacity to the actual number of elements in the stack

Example 9-17. Working with a stack

using System;
using System.Collections.Generic;
using System.Text;

namespace Stack
{
 public class Tester
 {
 static void Main()
 {
 Stack<Int32> intStack = new Stack<Int32>();

 // populate the array
 for (int i = 0; i < 8; i++)
 {
 intStack.Push(i * 5);
 }

 // Display the Stack.
 Console.Write("intStack values:\t");
 PrintValues(intStack);

 // Remove an element from the stack.
 Console.WriteLine("\n(Pop)\t{0}",
 intStack.Pop());

 // Display the Stack.
 Console.Write("intStack values:\t");
 PrintValues(intStack);

 // Remove another element from the stack.
 Console.WriteLine("\n(Pop)\t{0}",
 intStack.Pop());

Table 9-5. Stack methods and properties (continued)

Method or property Purpose

210 | Chapter 9: Arrays, Indexers, and Collections

 // Display the Stack.
 Console.Write("intStack values:\t");
 PrintValues(intStack);

 // View the first element in the
 // Stack but do not remove.
 Console.WriteLine("\n(Peek) \t{0}",
 intStack.Peek());

 // Display the Stack.
 Console.Write("intStack values:\t");
 PrintValues(intStack);

 // declare an array object which will
 // hold 12 integers
 int[] targetArray = new int[12];

 for (int i = 0; i < targetArray.Length; i++)
 {
 targetArray[i] = i * 100 + 100;
 }
 // Display the values of the target Array instance.
 Console.WriteLine("\nTarget array: ");
 PrintValues(targetArray);

 // Copy the entire source Stack to the
 // target Array instance, starting at index 6.
 intStack.CopyTo(targetArray, 6);

 // Display the values of the target Array instance.
 Console.WriteLine("\nTarget array after copy: ");
 PrintValues(targetArray);
 }

 public static void PrintValues(
 IEnumerable<Int32> myCollection)
 {
 IEnumerator<Int32> enumerator =
 myCollection.GetEnumerator();
 while (enumerator.MoveNext())
 Console.Write("{0} ", enumerator.Current);
 Console.WriteLine();
 }
 }
}

Output:
intStack values: 35 30 25 20 15 10 5 0

Example 9-17. Working with a stack (continued)

Dictionaries | 211

The output reflects that the items pushed onto the stack were popped in reverse
order.

You can see the effect of CopyTo() by examining the target array before and after calling
CopyTo(). The array elements are overwritten beginning with the index specified (6).

Dictionaries
A dictionary is a collection that associates a key to a value. A language dictionary,
such as Webster’s, associates a word (the key) with its definition (the value).

To see the value of dictionaries, start by imagining that you want to keep a list of the
state capitals. One approach might be to put them in an array:

string[] stateCapitals = new string[50];

The stateCapitals array will hold 50 state capitals. Each capital is accessed as an off-
set into the array. For example, to access the capital of Arkansas, you need to know
that Arkansas is the fourth state in alphabetical order:

string capitalOfArkansas = stateCapitals[3];

It is inconvenient, however, to access state capitals using array notation. After all, if
we need the capital of Massachusetts, there is no easy way for us to determine that
Massachusetts is the 21st state alphabetically.

It would be far more convenient to store the capital with the state name. A dictio-
nary allows you to store a value (in this case, the capital) with a key (in this case, the
name of the state).

A .NET Framework dictionary can associate any kind of key (string, integer, object,
etc.) with any kind of value (string, integer, object, etc.). Typically, of course, the key
is fairly short, the value fairly complex.

(Pop) 35
intStack values: 30 25 20 15 10 5 0

(Pop) 30
intStack values: 25 20 15 10 5 0

(Peek) 25
intStack values: 25 20 15 10 5 0

Target array:
100 200 300 400 500 600 700 800 900 1000 1100 1200

Target array after copy:
100 200 300 400 500 600 25 20 15 10 5 0

Example 9-17. Working with a stack (continued)

212 | Chapter 9: Arrays, Indexers, and Collections

The most important attributes of a good dictionary are that it is easy to add and
quick to retrieve values (see Table 9-6).

The key in a Dictionary can be a primitive type, or it can be an instance of a user-
defined type (an object). Objects used as keys for a Dictionary must implement
GetHashCode() as well as Equals. In most cases, you can simply use the inherited
implementation from Object.

IDictionary<K,V>
Dictionaries implement the IDictionary<K,V> interface (where K is the key type, and V
is the value type). IDictionary provides a public property, Item. The Item property
retrieves a value with the specified key. In C#, the declaration for the Item property is:

V[K key]
{get; set;}

The Item property is implemented in C# with the index operator ([]). Thus, you
access items in any Dictionary object using the offset syntax, as you would with an
array.

Example 9-18 demonstrates adding items to a Dictionary and then retrieving them
with the Item property.

Table 9-6. Dictionary methods and properties

Method or property Purpose

Count Public property that gets the number of elements in the Dictionary

Item() The indexer for the Dictionary

Keys Public property that gets a collection containing the keys in the Dictionary (see also
Values)

Values Public property that gets a collection containing the values in the Dictionary (see
also Keys)

Add() Adds an entry with a specified Key and Value

Clear() Removes all objects from the Dictionary

ContainsKey() Determines whether the Dictionary has a specified key

ContainsValue() Determines whether the Dictionary has a specified value

GetEnumerator() Returns an enumerator for the Dictionary

GetObjectData() Implements ISerializable and returns the data needed to serialize the
Dictionary

Remove() Removes the entry with the specified Key

TryGetValue() Gets the Value associated with the specified Key; if the Key does not exist, gets the
default value of the Value type

Dictionaries | 213

Example 9-18 begins by instantiating a new Dictionary. The type of the key and of
the value is declared to be string.

Add four key/value pairs. In this example, the Social Security number is tied to the
person’s full name. (Note that the Social Security numbers here are intentionally
bogus.)

Once the items are added, you access a specific entry in the dictionary using the
Social Security number as the key.

If you use a reference type as a key, and the type is mutable (strings are
immutable), you must not change the value of the key object once you
are using it in a dictionary.

If, for example, you use the Employee object as a key, changing the
employee ID creates problems if that property is used by the Equals or
GetHashCode method because the dictionary consults these methods.

Example 9-18. The Item property as offset operators

using System;
using System.Collections.Generic;

namespace Dictionary
{
 public class Tester
 {
 static void Main()
 {
 // Create and initialize a new Dictionary.
 Dictionary<string, string> Dictionary =
 new Dictionary<string, string>();
 Dictionary.Add("000440312", "Jesse Liberty");
 Dictionary.Add("000123933", "Stacey Liberty");
 Dictionary.Add("000145938", "Douglas Adams");
 Dictionary.Add("000773394", "Ayn Rand");

 // access a particular item
 Console.WriteLine("myDictionary[\"000145938\"]: {0}",
 Dictionary["000145938"]);
 }
 }
}

Output:
Dictionary["000145938"]: Douglas Adams

214

Chapter 10CHAPTER 10

Strings and Regular Expressions 10

There was a time when people thought of computers exclusively as manipulating
numeric values. Early computers were first used to calculate missile trajectories (though
recently declassified documents suggest that some were used for code-breaking as well).
In any case, there was a time that programming was taught in the math department of
major universities, and computer science was considered a discipline of mathematics.

Today, most programs are concerned more with strings of characters than with
strings of numbers. Typically, these strings are used for word processing, document
manipulation, and creation of web pages.

C# provides built-in support for a fully functional string type. More important, C#
treats strings as objects that encapsulate all the manipulation, sorting, and searching
methods normally applied to strings of characters.

C programmers take note: in C#, string is a first-class type, not an
array of characters.

Complex string manipulation and pattern-matching are aided by the use of regular
expressions. C# combines the power and complexity of regular expression syntax,
originally found only in string manipulation languages such as awk and Perl, with a
fully object-oriented design.

In this chapter, you will learn to work with the C# string type and the .NET Frame-
work System.String class that it aliases. You will see how to extract substrings,
manipulate and concatenate strings, and build new strings with the StringBuilder
class. In addition, you will learn how to use the RegEx class to match strings based on
complex regular expressions.

Strings | 215

Strings
C# treats strings as first-class types that are flexible, powerful, and easy to use.

In C# programming, you typically use the C# alias for a Framework
type (e.g., int for Int32), but you are always free to use the underlying
type. C# programmers thus use string (lowercase) and the underly-
ing Framework type String (uppercase) interchangeably.

The declaration of the String class is:

public sealed class String :
 IComparable, IComparable<String>, ICloneable, IConvertible,
 IEnumerable, IEnumerable<char>, IEquatable<String>

This declaration reveals that the class is sealed, meaning that it is not possible to
derive from the String class. The class also implements seven system interfaces—
IComparable, IComparable<String>, ICloneable, IConvertible, IEnumerable,
IEnumerable<String>, and IEquatable<String>—that dictate functionality that String
shares with other classes in the .NET Framework.

Each string object is an immutable sequence of Unicode characters.
The fact that String is immutable means that methods that appear to
change the string actually return a modified copy; the original string
remains intact in memory until it is garbage-collected. This may have
performance implications; if you plan to do significant repeated string
manipulation, use a StringBuilder (described later).

As explained in Chapter 9, the IComparable<String> interface is implemented by
types whose values can be ordered. Strings, for example, can be alphabetized; any
given string can be compared with another string to determine which should come
first in an ordered list.* IComparable classes implement the CompareTo method.
IEnumerable, also discussed in Chapter 9, lets you use the foreach construct to enu-
merate a string as a collection of chars.

ICloneable objects can create new instances with the same value as the original
instance. In this case, it is possible to clone a string to produce a new string with the
same values (characters) as the original. ICloneable classes implement the Clone()
method.

* Ordering the string is one of a number of lexical operations that act on the value of the string and take into
account culture-specific information based on the explicitly declared culture or the implicit current culture.
Therefore, if the current culture is U.S. English (as is assumed throughout this book), the Compare method
considers a less than A. CompareOrdinal performs an ordinal comparison, and thus regardless of culture, a is
greater than A.

216 | Chapter 10: Strings and Regular Expressions

Actually, because strings are immutable, the Clone() method on
String just returns a reference to the original string.

If you use that reference to make a change, a new string is created and
the reference created by Clone() now points to the new (changed)
string:

string s1 = "One Two Three Four";
string sx = (string)s1.Clone();Console.WriteLine(
 Object.ReferenceEquals(s1,sx));
sx += " Five";
Console.WriteLine(
 Object.ReferenceEquals(s1, sx));
Console.WriteLine(sx);

In this case, sx is created as a clone of s1. The first WriteLine state-
ment will print the word true; the two string variables refer to the
same string in memory. When you change sx, you actually create a
new string from the first, and when the ReferenceEquals method
returns false, the final WriteLine statement returns the contents of the
original string with the word Five appended.

IConvertible classes provide methods to facilitate conversion to other primitive types
such as ToInt32(), ToDouble(), ToDecimal(), and so on.

Creating Strings
The most common way to create a string is to assign a quoted string of characters,
known as a string literal, to a user-defined variable of type string:

string newString = "This is a string literal";

Quoted strings can include escape characters, such as \n or \t, which begin with a
backslash character (\). The two shown are used to indicate where line breaks or
tabs are to appear, respectively.

Because the backslash is the escape character, if you want to put a
backslash into a string (e.g., to create a path listing), you must quote
the backslash with a second backslash (\\).

Strings can also be created using verbatim string literals, which start with the at (@)
symbol. This tells the String constructor that the string should be used verbatim,
even if it spans multiple lines or includes escape characters. In a verbatim string
literal, backslashes and the characters that follow them are simply considered addi-
tional characters of the string. Thus, the following two definitions are equivalent:

string literalOne = "\\\\MySystem\\MyDirectory\\ProgrammingC#.cs";
string verbatimLiteralOne = @"\\MySystem\MyDirectory\ProgrammingC#.cs";

Strings | 217

In the first line, a nonverbatim string literal is used, and so the backslash character (\)
must be escaped. This means it must be preceded by a second backslash character. In
the second line, a verbatim literal string is used, so the extra backslash is not needed. A
second example illustrates multiline verbatim strings:

string literalTwo = "Line One\nLine Two";
string verbatimLiteralTwo = @"Line One
Line Two";

If you have double quotes within a verbatim string, you must escape
them (with double-double quotes) so that the compiler knows when
the verbatim string ends. For example:

String verbatim = @"This is a ""verbatim"" string"

will produce the output:

This is a "verbatim" string

Again, these declarations are interchangeable. Which one you use is a matter of con-
venience and personal style.

The ToString() Method
Another common way to create a string is to call the ToString() method on an
object and assign the result to a string variable. All the built-in types override this
method to simplify the task of converting a value (often a numeric value) to a string
representation of that value. In the following example, the ToString() method of an
integer type is called to store its value in a string:

int myInteger = 5;
string integerString = myInteger.ToString();

The call to myInteger.ToString() returns a String object, which is then assigned to
integerString.

The .NET String class provides a wealth of overloaded constructors that support a
variety of techniques for assigning string values to string types. Some of these con-
structors enable you to create a string by passing in a character array or character
pointer. Passing in a character array as a parameter to the constructor of the String
creates a CLR-compliant new instance of a string. Passing in a character pointer
requires the unsafe marker, as explained in Chapter 23.

Manipulating Strings
The string class provides a host of methods for comparing, searching, and manipu-
lating strings, the most important of which appear in Table 10-1.

218 | Chapter 10: Strings and Regular Expressions

Example 10-1 illustrates the use of some of these methods, including Compare(),
Concat() (and the overloaded + operator), Copy() (and the = operator), Insert(),
EndsWith(), and IndexOf().

Table 10-1. Methods and fields for the string class

Method or field Purpose

Chars The string indexer

Compare() Overloaded public static method that compares two strings

CompareTo() Compares this string with another

Concat() Overloaded public static method that creates a new string from one or more strings

Copy() Public static method that creates a new string by copying another

CopyTo() Copies the specified number of characters to an array of Unicode characters

Empty Public static field that represents the empty string

EndsWith() Indicates whether the specified string matches the end of this string

Equals() Overloaded public static and instance method that determines whether two strings have the same value

Format() Overloaded public static method that formats a string using a format specification

Join() Overloaded public static method that concatenates a specified string between each element of a string
array

Length The number of characters in the instance

Split() Returns the substrings delimited by the specified characters in a string array

StartsWith() Indicates whether the string starts with the specified characters

Substring() Retrieves a substring

ToUpper() Returns a copy of the string in uppercase

Trim() Removes all occurrences of a set of specified characters from the beginning and end of the string

TrimEnd() Behaves like Trim(), but only at the end

Example 10-1. Working with strings

using System;
using System.Collections.Generic;
using System.Text;

namespace WorkingWithStrings
{
 public static class StringTester
 {
 static void Main()
 {
 // create some strings to work with
 string s1 = "abcd";
 string s2 = "ABCD";
 string s3 = @"Liberty Associates, Inc.
 provides custom .NET development,
 on-site Training and Consulting";

Strings | 219

 int result; // hold the results of comparisons

 // compare two strings, case sensitive
 result = string.Compare(s1, s2);
 Console.WriteLine(
 "compare s1: {0}, s2: {1}, result: {2}\n", s1, s2, result);

 // overloaded compare, takes boolean "ignore case"
 //(true = ignore case)
 result = string.Compare(s1, s2, true);
 Console.WriteLine("compare insensitive\n");
 Console.WriteLine("s4: {0}, s2: {1}, result: {2}\n", s1, s2, result);

 // concatenation method
 string s6 = string.Concat(s1, s2);
 Console.WriteLine("s6 concatenated from s1 and s2: {0}", s6);

 // use the overloaded operator
 string s7 = s1 + s2;
 Console.WriteLine("s7 concatenated from s1 + s2: {0}", s7);

 // the string copy method
 string s8 = string.Copy(s7);
 Console.WriteLine("s8 copied from s7: {0}", s8);

 // use the overloaded operator
 string s9 = s8;
 Console.WriteLine("s9 = s8: {0}", s9);

 // three ways to compare.
 Console.WriteLine(
 "\nDoes s9.Equals(s8)?: {0}", s9.Equals(s8));
 Console.WriteLine("Does Equals(s9,s8)?: {0}", string.Equals(s9, s8));
 Console.WriteLine("Does s9==s8?: {0}", s9 == s8);

 // Two useful properties: the index and the length
 Console.WriteLine("\nString s9 is {0} characters long. ", s9.Length);
 Console.WriteLine("The 5th character is {0}\n", s9[4]);

 // test whether a string ends with a set of characters
 Console.WriteLine("s3:{0}\nEnds with Training?: {1}\n", s3,
 s3.EndsWith("Training"));
 Console.WriteLine("Ends with Consulting?: {0}",
 s3.EndsWith("Consulting"));

 // return the index of the substring
 Console.WriteLine("\nThe first occurrence of Training ");
 Console.WriteLine("in s3 is {0}\n", s3.IndexOf("Training"));

 // insert the word "excellent" before "training"
 string s10 = s3.Insert(101, "excellent ");
 Console.WriteLine("s10: {0}\n", s10);

Example 10-1. Working with strings (continued)

220 | Chapter 10: Strings and Regular Expressions

Example 10-1 begins by declaring three strings:

string s1 = "abcd";
string s2 = "ABCD";
string s3 = @"Liberty Associates, Inc.
 provides custom .NET development,
 on-site Training and Consulting";

 // you can combine the two as follows:
 string s11 = s3.Insert(s3.IndexOf("Training"), "excellent ");
 Console.WriteLine("s11: {0}\n", s11);
 }
 }
}

Output:
compare s1: abcd, s2: ABCD, result: -1

compare insensitive

s4: abcd, s2: ABCD, result: 0

s6 concatenated from s1 and s2: abcdABCD
s7 concatenated from s1 + s2: abcdABCD
s8 copied from s7: abcdABCD
s9 = s8: abcdABCD

Does s9.Equals(s8)?: True
Does Equals(s9,s8)?: True
Does s9==s8?: True

String s9 is 8 characters long.
The 5th character is A

s3:Liberty Associates, Inc.
 provides custom .NET development,
 on-site Training and Consulting
Ends with Training?: False

Ends with Consulting?: True

The first occurrence of Training
in s3 is 101

s10: Liberty Associates, Inc.
 provides custom .NET development,
 on-site excellent Training and Consulting

s11: Liberty Associates, Inc.
 provides custom .NET development,
 on-site excellent Training and Consulting

Example 10-1. Working with strings (continued)

Strings | 221

The first two are string literals, and the third is a verbatim string literal. You begin by
comparing s1 to s2. The Compare() method is a public static method of string, and it
is overloaded. The first overloaded version takes two strings and compares them:

// compare two strings, case sensitive
result = string.Compare(s1, s2);
Console.WriteLine("compare s1: {0}, s2: {1}, result: {2}\n",
 s1, s2, result);

This is a case-sensitive comparison and returns different values, depending on the
results of the comparison:

• A negative integer, if the first string is less than the second string

• 0, if the strings are equal

• A positive integer, if the first string is greater than the second string

In this case, the output properly indicates that s1 is “less than” s2. In Unicode (as in
ASCII), when evaluating for English, a lowercase letter has a smaller value than an
uppercase letter:

compare s1: abcd, s2: ABCD, result: -1

The second comparison uses an overloaded version of Compare() that takes a third,
Boolean parameter, whose value determines whether case should be ignored in the
comparison. If the value of this “ignore case” parameter is true, the comparison is
made without regard to case, as in the following:

result = string.Compare(s1,s2, true);
Console.WriteLine("compare insensitive");
Console.WriteLine("s4: {0}, s2: {1}, result: {2}\n", s1, s2, result);

The result is written with two WriteLine() statements to keep the lines
short enough to print properly in this book.

This time, the case is ignored and the result is 0, indicating that the two strings are
identical (without regard to case):

compare insensitive

s4: abcd, s2: ABCD, result: 0

Example 10-1 then concatenates some strings. There are a couple of ways to accom-
plish this. You can use the Concat() method, which is a static public method of
string:

string s6 = string.Concat(s1,s2);

or, you can simply use the overloaded concatenation (+) operator:

string s7 = s1 + s2;

222 | Chapter 10: Strings and Regular Expressions

In both cases, the output reflects that the concatenation was successful:

s6 concatenated from s1 and s2: abcdABCD
s7 concatenated from s1 + s2: abcdABCD

Similarly, you can create a new copy of a string in two ways. First, you can use the
static Copy() method:

string s8 = string.Copy(s7);

This actually creates two separate strings with the same values. Because strings are
immutable, this is wasteful. Better is to use either the overloaded assignment opera-
tor or the Clone method (mentioned earlier), both of which leave you with two
variables pointing to the same string in memory:

string s9 = s8;

The .NET String class provides three ways to test for the equality of two strings.
First, you can use the overloaded Equals() method and ask s9 directly whether s8 is
of equal value:

Console.WriteLine("\nDoes s9.Equals(s8)?: {0}", s9.Equals(s8));

A second technique is to pass both strings to String’s static method, Equals():

Console.WriteLine("Does Equals(s9,s8)?: {0}",
 string.Equals(s9,s8));

A final method is to use the equality operator (==) of String:

Console.WriteLine("Does s9==s8?: {0}", s9 == s8);

In each case, the returned result is a Boolean value, as shown in the output:

Does s9.Equals(s8)?: True
Does Equals(s9,s8)?: True
Does s9==s8?: True

The next several lines in Example 10-1 use the index operator ([]) to find a particu-
lar character within a string, and use the Length property to return the length of the
entire string:

Console.WriteLine("\nString s9 is {0} characters long.", s9.Length);
Console.WriteLine("The 5th character is {1}\n", s9.Length, s9[4]);

Here’s the output:

String s9 is 8 characters long.
The 5th character is A

The EndsWith() method asks a string whether a substring is found at the end of the
string. Thus, you might first ask s3 whether it ends with Training (which it doesn’t),
and then whether it ends with Consulting (which it does):

// test whether a string ends with a set of characters
Console.WriteLine("s3:{0}\nEnds with Training?: {1}\n",
 s3, s3.EndsWith("Training"));

Strings | 223

Console.WriteLine("Ends with Consulting?: {0}",
 s3.EndsWith("Consulting"));

The output reflects that the first test fails and the second succeeds:

s3:Liberty Associates, Inc.
 provides custom .NET development,
 on-site Training and Consulting
Ends with Training?: False
Ends with Consulting?: True

The IndexOf() method locates a substring within our string, and the Insert() method
inserts a new substring into a copy of the original string.

The following code locates the first occurrence of Training in s3:

Console.WriteLine("\nThe first occurrence of Training ");
Console.WriteLine ("in s3 is {0}\n", s3.IndexOf("Training"));

The output indicates that the offset is 101:

The first occurrence of Training in s3 is 101

You can then use that value to insert the word excellent, followed by a space, into
that string. Actually, the insertion is into a copy of the string returned by the Insert()
method and assigned to s10:

string s10 = s3.Insert(101,"excellent ");
Console.WriteLine("s10: {0}\n",s10);

Here’s the output:

s10: Liberty Associates, Inc.
 provides custom .NET development,
 on-site excellent Training and Consulting

Finally, you can combine these operations:

string s11 = s3.Insert(s3.IndexOf("Training"),"excellent ");
Console.WriteLine("s11: {0}\n",s11);

to obtain the identical output:

s11: Liberty Associates, Inc.
 provides custom .NET development,
 on-site excellent Training and Consulting

Finding Substrings
The String type provides an overloaded Substring() method for extracting sub-
strings from within strings. Both versions take an index indicating where to begin the
extraction, and one of the two versions takes a second index to indicate where to end
the operation. Example 10-2 illustrates the Substring() method.

224 | Chapter 10: Strings and Regular Expressions

Example 10-2. Using the Substring() method

using System;
using System.Collections.Generic;
using System.Text;

namespace SubString
{
 public class StringTester
 {
 static void Main()
 {
 // create some strings to work with
 string s1 = "One Two Three Four";

 int ix;

 // get the index of the last space
 ix = s1.LastIndexOf(" ");

 // get the last word.
 string s2 = s1.Substring(ix + 1);

 // set s1 to the substring starting at 0
 // and ending at ix (the start of the last word
 // thus s1 has one two three
 s1 = s1.Substring(0, ix);

 // find the last space in s1 (after two)
 ix = s1.LastIndexOf(" ");

 // set s3 to the substring starting at
 // ix, the space after "two" plus one more
 // thus s3 = "three"
 string s3 = s1.Substring(ix + 1);

 // reset s1 to the substring starting at 0
 // and ending at ix, thus the string "one two"
 s1 = s1.Substring(0, ix);

 // reset ix to the space between
 // "one" and "two"
 ix = s1.LastIndexOf(" ");

 // set s4 to the substring starting one
 // space after ix, thus the substring "two"
 string s4 = s1.Substring(ix + 1);

 // reset s1 to the substring starting at 0
 // and ending at ix, thus "one"
 s1 = s1.Substring(0, ix);

 // set ix to the last space, but there is
 // none, so ix now = -1
 ix = s1.LastIndexOf(" ");

Strings | 225

Example 10-2 is not an elegant solution to the problem of extracting words from a
string, but it is a good first approximation, and it illustrates a useful technique. The
example begins by creating a string, s1:

string s1 = "One Two Three Four";

Next, ix is assigned the value of the last space in the string:

ix=s1.LastIndexOf(" ");

Then, the substring that begins one space later is assigned to the new string, s2:

string s2 = s1.Substring(ix+1);

This extracts ix+1 to the end of the line, assigning to s2 the value Four. The next step
is to remove the word Four from s1. You can do this by assigning to s1 the substring
of s1, which begins at 0, and ends at ix:

s1 = s1.Substring(0,ix);

Reassign ix to the last (remaining) space, which points you to the beginning of the
word Three, which we then extract into string s3. Continue like this until s4 and s5
are populated. Finally, print the results:

s2: Four
s3: Three
s4: Two
s5: One

s1: One

This isn’t elegant, but it works, and it illustrates the use of Substring. This is not
unlike using pointer arithmetic in C++, but without the pointers and unsafe code.

 // set s5 to the substring at one past
 // the last space. There was no last space
 // so this sets s5 to the substring starting
 // at zero
 string s5 = s1.Substring(ix + 1);

 Console.WriteLine("s2: {0}\ns3: {1}", s2, s3);
 Console.WriteLine("s4: {0}\ns5: {1}\n", s4, s5);
 Console.WriteLine("s1: {0}\n", s1);
 }
 }
}

Output:
s2: Four
s3: Three
s4: Two
s5: One

s1: One

Example 10-2. Using the Substring() method (continued)

226 | Chapter 10: Strings and Regular Expressions

Splitting Strings
A more effective solution to the problem illustrated in Example 10-2 is to use the
Split() method of String, whose job is to parse a string into substrings. To use
Split(), pass in an array of delimiters (characters that will indicate a split in the
words), and the method returns an array of substrings. Example 10-3 illustrates.

Example 10-3. Using the Split() method

using System;
using System.Collections.Generic;
using System.Text;

namespace StringSplit
{
 public class StringTester
 {
 static void Main()
 {
 // create some strings to work with
 string s1 = "One,Two,Three Liberty Associates, Inc.";

 // constants for the space and comma characters
 const char Space = ' ';
 const char Comma = ',';

 // array of delimiters to split the sentence with
 char[] delimiters = new char[] {Space, Comma};

 string output = "";
 int ctr = 1;

 // split the string and then iterate over the
 // resulting array of strings
 foreach (string subString in s1.Split(delimiters))
 {
 output += ctr++;
 output += ": ";
 output += subString;
 output += "\n";
 }
 Console.WriteLine(output);
 }
 }
}
Output:
1: One
2: Two
3: Three
4: Liberty
5: Associates
6:
7: Inc.

Strings | 227

You start by creating a string to parse:

string s1 = "One,Two,Three Liberty Associates, Inc.";

The delimiters are set to the space and comma characters. You then call Split() on
this string, and pass the results to the foreach loop:

foreach (string subString in s1.Split(delimiters))

Because Split uses the params keyword, you can reduce your code to:

foreach (string subString in s1.Split(' ', ','))

This eliminates the declaration of the array entirely.

Start by initializing output to an empty string, and then build up the output string in
four steps. Concatenate the value of ctr. Next add the colon, then the substring
returned by Split(), then the newline. With each concatenation, a new copy of the
string is made, and all four steps are repeated for each substring found by Split().
This repeated copying of string is terribly inefficient.

The problem is that the string type is not designed for this kind of operation. What
you want is to create a new string by appending a formatted string each time through
the loop. The class you need is StringBuilder.

Manipulating Dynamic Strings
The System.Text.StringBuilder class is used for creating and modifying strings.
Table 10-2 summarizes the important members of StringBuilder.

Unlike String, StringBuilder is mutable. Example 10-4 replaces the String object in
Example 10-3 with a StringBuilder object.

Table 10-2. StringBuilder methods

Method Explanation

Chars The indexer

Length Retrieves or assigns the length of the StringBuilder

Append() Overloaded public method that appends a string of characters to the end of the current
StringBuilder

AppendFormat() Overloaded public method that replaces format specifiers with the formatted value of an object

Insert() Overloaded public method that inserts a string of characters at the specified position

Remove() Removes the specified characters

Replace() Overloaded public method that replaces all instances of specified characters with new characters

228 | Chapter 10: Strings and Regular Expressions

Only the last part of the program is modified. Instead of using the concatenation
operator to modify the string, use the AppendFormat() method of StringBuilder to
append new, formatted strings as you create them. This is more efficient. The out-
put is identical to that of Example 10-3:

1: One
2: Two
3: Three
4: Liberty
5: Associates
6:
7: Inc.

Example 10-4. Using a StringBuilder

using System;
using System.Collections.Generic;
using System.Text;

namespace UsingStringBuilder
{
 public class StringTester
 {
 static void Main()
 {
 // create some strings to work with
 string s1 = "One,Two,Three Liberty Associates, Inc.";

 // constants for the space and comma characters
 const char Space = ' ';
 const char Comma = ',';

 // array of delimiters to split the sentence with
 char[] delimiters = new char[] {Space, Comma};

 // use a StringBuilder class to build the
 // output string
 StringBuilder output = new StringBuilder();
 int ctr = 1;

 // split the string and then iterate over the
 // resulting array of strings
 foreach (string subString in s1.Split(delimiters))
 {
 // AppendFormat appends a formatted string
 output.AppendFormat("{0}: {1}\n", ctr++, subString);
 }
 Console.WriteLine(output);
 }
 }
}

Regular Expressions | 229

Regular Expressions
Regular expressions are a powerful language for describing and manipulating text. A
regular expression is applied to a string—that is, to a set of characters. Often, that
string is an entire text document.

The result of applying a regular expression to a string is one of the following:

• To find out whether the string matches the regular expression

• To return a substring

• To return a new string representing a modification of some part of the original
string

(Remember that strings are immutable, and so can’t be changed by the regular
expression.)

By applying a properly constructed regular expression to the following string:

One,Two,Three Liberty Associates, Inc.

you can return any or all of its substrings (e.g., Liberty or One), or modified versions
of its substrings (e.g., LIBeRtY or OnE). What the regular expression does is deter-
mined by the syntax of the regular expression itself.

A regular expression consists of two types of characters: literals and metacharacters.
A literal is a character you wish to match in the target string. A metacharacter is a
special symbol that acts as a command to the regular expression parser. The parser is
the engine responsible for understanding the regular expression. For example, if you
create a regular expression:

^(From|To|Subject|Date):

this will match any substring with the letters From, To, Subject, or Date, as long as
those letters start a new line (^) and end with a colon (:).

The caret (^) in this case indicates to the regular expression parser that the string
you’re searching for must begin a new line. The letters in From and To are literals, and
the left and right parentheses (()) and vertical bar (|) metacharacters are used to

Delimiter Limitations
Because you passed in delimiters of both comma and space, the space after the comma
between “Associates” and “Inc.” is returned as a word, numbered 6 as shown. That is
not what you want. To eliminate this, you need to tell split to match a comma (as
between One, Two, and Three), or a space (as between Liberty and Associates), or a comma
followed by a space. It is that last bit that is tricky, and regular expressions provide a ready
solution.

230 | Chapter 10: Strings and Regular Expressions

group sets of literals and indicate that any of the choices should match. (Note that ^
is a metacharacter as well, used to indicate the start of the line.)

Thus, you would read this line:

^(From|To|Subject|Date):

as follows: “Match any string that begins a new line followed by any of the four lit-
eral strings From, To, Subject, or Date followed by a colon.”

A full explanation of regular expressions is beyond the scope of this
book, but all the regular expressions used in the examples are
explained. For a complete understanding of regular expressions, I
highly recommend Mastering Regular Expressions by Jeffrey E. F. Friedl
(O’Reilly).

Using Regular Expressions: Regex
The .NET Framework provides an object-oriented approach to regular expression
matching and replacement.

C#’s regular expressions are based on Perl 5 regexp, including lazy
quantifiers (??, *?, +?, {n,m}?), positive and negative look ahead, and
conditional evaluation.

The namespace System.Text.RegularExpressions is the home to all the .NET Frame-
work objects associated with regular expressions. The central class for regular
expression support is Regex, which represents an immutable, compiled regular
expression. Although instances of Regex can be created, the class also provides a
number of useful static methods. Example 10-5 illustrates the use of Regex.

Example 10-5. Using the Regex class for regular expressions

using System;
using System.Collections.Generic;
using System.Text;
using System.Text.RegularExpressions;

namespace UsingRegEx
{
 public class Tester
 {
 static void Main()
 {
 string s1 = "One,Two,Three Liberty Associates, Inc.";
 Regex theRegex = new Regex(" |, |,");
 StringBuilder sBuilder = new StringBuilder();
 int id = 1;

 foreach (string subString in theRegex.Split(s1))

Regular Expressions | 231

Example 10-5 begins by creating a string, s1, which is identical to the string used in
Example 10-4:

string s1 = "One,Two,Three Liberty Associates, Inc.";

It also creates a regular expression, which will be used to search that string, match-
ing any space, comma, or comma followed by a space:

Regex theRegex = new Regex(" |,|, ");

One of the overloaded constructors for Regex takes a regular expression string as its
parameter. This is a bit confusing. In the context of a C# program, which is the regu-
lar expression? Is it the text passed in to the constructor, or the Regex object itself? It
is true that the text string passed to the constructor is a regular expression in the tra-
ditional sense of the term. From an object-oriented C# point of view, however, the
argument to the constructor is just a string of characters; it is theRegex that is the reg-
ular expression object.

The rest of the program proceeds like the earlier Example 10-4, except that instead of
calling Split() on string s1, the Split() method of Regex is called. Regex.Split()
acts in much the same way as String.Split(), returning an array of strings as a
result of matching the regular expression pattern within theRegex.

Regex.Split() is overloaded. The simplest version is called on an instance of Regex,
as shown in Example 10-5. There is also a static version of this method, which takes
a string to search and the pattern to search with, as illustrated in Example 10-6.

 {
 sBuilder.AppendFormat("{0}: {1}\n", id++, subString);
 }
 Console.WriteLine("{0}", sBuilder);
 }
 }
}

Output:
1: One
2: Two
3: Three
4: Liberty
5: Associates
6: Inc.

Example 10-6. Using static Regex.Split()

using System;
using System.Collections.Generic;
using System.Text;
using System.Text.RegularExpressions;

Example 10-5. Using the Regex class for regular expressions (continued)

232 | Chapter 10: Strings and Regular Expressions

Example 10-6 is identical to Example 10-5, except that the latter example doesn’t
instantiate an object of type Regex. Instead, Example 10-6 uses the static version of
Split(), which takes two arguments: a string to search for, and a regular expression
string that represents the pattern to match.

The instance method of Split() is also overloaded with versions that limit the num-
ber of times the split will occur as well as determine the position within the target
string where the search will begin.

Using Regex Match Collections
Two additional classes in the .NET RegularExpressions namespace allow you to
search a string repeatedly, and to return the results in a collection. The collection
returned is of type MatchCollection, which consists of zero or more Match objects.
Two important properties of a Match object are its length and its value, each of which
can be read as illustrated in Example 10-7.

namespace RegExSplit
{
 public class Tester
 {
 static void Main()
 {
 string s1 = "One,Two,Three Liberty Associates, Inc.";
 StringBuilder sBuilder = new StringBuilder();
 int id = 1;
 foreach (string subStr in Regex.Split(s1, " |, |,"))
 {
 sBuilder.AppendFormat("{0}: {1}\n", id++, subStr);
 }
 Console.WriteLine("{0}", sBuilder);
 }
 }
}

Example 10-7. Using MatchCollection and Match

using System;
using System.Collections.Generic;
using System.Text;
using System.Text.RegularExpressions;

namespace UsingMatchCollection
{
 class Test
 {
 public static void Main()
 {
 string string1 = "This is a test string";

Example 10-6. Using static Regex.Split() (continued)

Regular Expressions | 233

Example 10-7 creates a simple string to search:

string string1 = "This is a test string";

and a trivial regular expression to search it:

Regex theReg = new Regex(@"(\S+)\s");

The string \S finds nonwhitespace, and the plus sign indicates one or more. The
string \s (note lowercase) indicates whitespace. Thus, together, this string looks for
any nonwhitespace characters followed by whitespace.

Remember that the at (@) symbol before the string creates a verbatim
string, which avoids having to escape the backslash (\) character.

The output shows that the first four words were found. The final word wasn’t found
because it isn’t followed by a space. If you insert a space after the word string, and
before the closing quotation marks, this program finds that word as well.

 // find any nonwhitespace followed by whitespace
 Regex theReg = new Regex(@"(\S+)\s");

 // get the collection of matches
 MatchCollection theMatches = theReg.Matches(string1);

 // iterate through the collection
 foreach (Match theMatch in theMatches)
 {
 Console.WriteLine("theMatch.Length: {0}",
 theMatch.Length);

 if (theMatch.Length != 0)
 {
 Console.WriteLine("theMatch: {0}",
 theMatch.ToString());
 }
 }
 }
 }
}

Output:
theMatch.Length: 5
theMatch: This
theMatch.Length: 3
theMatch: is
theMatch.Length: 2
theMatch: a
theMatch.Length: 5
theMatch: test

Example 10-7. Using MatchCollection and Match (continued)

234 | Chapter 10: Strings and Regular Expressions

The length property is the length of the captured substring, and I discuss it in the
section “Using CaptureCollection” later in this chapter.

Using Regex Groups
It is often convenient to group subexpression matches together so that you can parse
out pieces of the matching string. For example, you might want to match on IP
addresses and group all IP addresses found anywhere within the string.

IP addresses are used to locate computers on a network, and typically
have the form x.x.x.x, where x is generally any digit between 0 and
255 (such as 192.168.0.1).

The Group class allows you to create groups of matches based on regular expression
syntax, and represents the results from a single grouping expression.

A grouping expression names a group and provides a regular expression; any sub-
string matching the regular expression will be added to the group. For example, to
create an ip group, you might write:

@"(?<ip>(\d|\.)+)\s"

The Match class derives from Group, and has a collection called Groups that contains
all the groups your Match finds.

Example 10-8 illustrates the creation and use of the Groups collection and Group
classes.

Example 10-8. Using the Group class

using System;
using System.Collections.Generic;
using System.Text;
using System.Text.RegularExpressions;

namespace RegExGroup
{
 class Test
 {
 public static void Main()
 {
 string string1 = "04:03:27 127.0.0.0 LibertyAssociates.com";

 // group time = one or more digits or colons followed by space
 Regex theReg = new Regex(@"(?<time>(\d|\:)+)\s" +
 // ip address = one or more digits or dots followed by space
 @"(?<ip>(\d|\.)+)\s" +
 // site = one or more characters
 @"(?<site>\S+)");

Regular Expressions | 235

Again, Example 10-8 begins by creating a string to search:

string string1 = "04:03:27 127.0.0.0 LibertyAssociates.com";

This string might be one of many recorded in a web server logfile or produced as the
result of a search of the database. In this simple example, there are three columns:
one for the time of the log entry, one for an IP address, and one for the site, each sep-
arated by spaces. Of course, in an example solving a real-life problem, you might
need to do more complex queries and choose to use other delimiters and more com-
plex searches.

In Example 10-8, we want to create a single Regex object to search strings of this type
and break them into three groups: time, ip address, and site. The regular expres-
sion string is fairly simple, so the example is easy to understand. However, keep in
mind that in a real search, you would probably use only a part of the source string
rather than the entire source string, as shown here:

// group time = one or more digits or colons
// followed by space
Regex theReg = new Regex(@"(?<time>(\d|\:)+)\s" +
// ip address = one or more digits or dots
// followed by space
@"(?<ip>(\d|\.)+)\s" +
// site = one or more characters
@"(?<site>\S+)");

Let’s focus on the characters that create the group:

(?<time>(\d|\:)+)

 // get the collection of matches
 MatchCollection theMatches = theReg.Matches(string1);

 // iterate through the collection
 foreach (Match theMatch in theMatches)
 {
 if (theMatch.Length != 0)
 {
 Console.WriteLine("\ntheMatch: {0}",
 theMatch.ToString());
 Console.WriteLine("time: {0}",
 theMatch.Groups["time"]);
 Console.WriteLine("ip: {0}",
 theMatch.Groups["ip"]);
 Console.WriteLine("site: {0}",
 theMatch.Groups["site"]);
 }
 }
 }
 }
}

Example 10-8. Using the Group class (continued)

236 | Chapter 10: Strings and Regular Expressions

The parentheses create a group. Everything between the opening parenthesis (just
before the question mark) and the closing parenthesis (in this case, after the + sign) is
a single unnamed group.

The string ?<time> names that group time, and the group is associated with the
matching text, which is the regular expression (\d|\:)+)\s. This regular expression
can be interpreted as “one or more digits or colons followed by a space.”

Similarly, the string ?<ip> names the ip group, and ?<site> names the site group. As
Example 10-7 does, Example 10-8 asks for a collection of all the matches:

MatchCollection theMatches = theReg.Matches(string1);

Example 10-8 iterates through the Matches collection, finding each Match object.

If the Length of the Match is greater than 0, a Match was found; it prints the entire
match:

Console.WriteLine("\ntheMatch: {0}",
 theMatch.ToString());

Here’s the output:

theMatch: 04:03:27 127.0.0.0 LibertyAssociates.com

It then gets the time group from the theMatch.Groups collection and prints that value:

Console.WriteLine("time: {0}",
 theMatch.Groups["time"]);

This produces the output:

time: 04:03:27

The code then obtains ip and site groups:

Console.WriteLine("ip: {0}",
 theMatch.Groups["ip"]);
Console.WriteLine("site: {0}",
 theMatch.Groups["site"]);

This produces the output:

ip: 127.0.0.0
site: LibertyAssociates.com

In Example 10-8, the Matches collection has only one Match. It is possible, however,
to match more than one expression within a string. To see this, modify string1 in
Example 10-8 to provide several logFile entries instead of one, as follows:

string string1 = "04:03:27 127.0.0.0 LibertyAssociates.com " +
"04:03:28 127.0.0.0 foo.com " +
"04:03:29 127.0.0.0 bar.com " ;

This creates three matches in the MatchCollection, called theMatches. Here’s the
resulting output:

Regular Expressions | 237

theMatch: 04:03:27 127.0.0.0 LibertyAssociates.com
time: 04:03:27
ip: 127.0.0.0
site: LibertyAssociates.com

theMatch: 04:03:28 127.0.0.0 foo.com
time: 04:03:28
ip: 127.0.0.0
site: foo.com

theMatch: 04:03:29 127.0.0.0 bar.com
time: 04:03:29
ip: 127.0.0.0
site: bar.com

In this example, theMatches contains three Match objects. Each time through the
outer foreach loop, we find the next Match in the collection and display its contents:

foreach (Match theMatch in theMatches)

For each Match item found, you can print the entire match, various groups, or both.

Using CaptureCollection
Please note that we are now venturing into advanced use of regular expressions,
which themselves are considered a black art by many programmers. Feel free to skip
over this section if it gives you a headache, and come back to it if you need it.

Each time a Regex object matches a subexpression, a Capture instance is created and
added to a CaptureCollection collection. Each Capture object represents a single
capture.

Each group has its own capture collection of the matches for the subexpression asso-
ciated with the group.

So, taking that apart, if you don’t create Groups, and you match only once, you end
up with one CaptureCollection with one Capture object. If you match five times, you
end up with one CaptureCollection with five Capture objects in it.

If you don’t create groups, but you match on three subexpressions, you will end up
with three CaptureCollections, each of which will have Capture objects for each
match for that subexpression.

Finally, if you do create groups (e.g., one group for IP addresses, one group for
machine names, one group for dates), and each group has a few capture expressions,
you’ll end up with a hierarchy: each group collection will have a number of capture
collections (one per subexpression to match), and each group’s capture collection
will have a capture object for each match found.

A key property of the Capture object is its length, which is the length of the captured
substring. When you ask Match for its length, it is Capture.Length that you retrieve
because Match derives from Group, which in turn derives from Capture.

238 | Chapter 10: Strings and Regular Expressions

The regular expression inheritance scheme in .NET allows Match to
include in its interface the methods and properties of these parent
classes. In a sense, a Group is-a capture: it is a capture that encapsu-
lates the idea of grouping subexpressions. A Match, in turn, is-a Group:
it is the encapsulation of all the groups of subexpressions making up
the entire match for this regular expression. (See Chapter 5 for more
about the is-a relationship and other relationships.)

Typically, you will find only a single Capture in a CaptureCollection, but that need
not be so. Consider what would happen if you were parsing a string in which the
company name might occur in either of two positions. To group these together in a
single match, create the ?<company> group in two places in your regular expression
pattern:

Regex theReg = new Regex(@"(?<time>(\d|\:)+)\s" +
@"(?<company>\S+)\s" +
@"(?<ip>(\d|\.)+)\s" +
@"(?<company>\S+)\s");

This regular expression group captures any matching string of characters that follows
time, as well as any matching string of characters that follows ip. Given this regular
expression, you are ready to parse the following string:

string string1 = "04:03:27 Jesse 0.0.0.127 Liberty ";

The string includes names in both of the positions specified. Here is the result:

theMatch: 04:03:27 Jesse 0.0.0.127 Liberty
time: 04:03:27
ip: 0.0.0.127
Company: Liberty

What happened? Why is the Company group showing Liberty? Where is the first term,
which also matched? The answer is that the second term overwrote the first. The
group, however, has captured both. Its Captures collection can demonstrate, as illus-
trated in Example 10-9.

Example 10-9. Examining the Captures collection

using System;
using System.Collections.Generic;
using System.Text;
using System.Text.RegularExpressions;

namespace CaptureCollection
{
 class Test
 {
 public static void Main()
 {
 // the string to parse
 // note that names appear in both

Regular Expressions | 239

 // searchable positions
 string string1 =
 "04:03:27 Jesse 0.0.0.127 Liberty ";

 // regular expression that groups company twice
 Regex theReg = new Regex(@"(?<time>(\d|\:)+)\s" +
 @"(?<company>\S+)\s" +
 @"(?<ip>(\d|\.)+)\s" +
 @"(?<company>\S+)\s");

 // get the collection of matches
 MatchCollection theMatches =
 theReg.Matches(string1);

 // iterate through the collection
 foreach (Match theMatch in theMatches)
 {
 if (theMatch.Length != 0)
 {
 Console.WriteLine("theMatch: {0}",
 theMatch.ToString());
 Console.WriteLine("time: {0}",
 theMatch.Groups["time"]);
 Console.WriteLine("ip: {0}",
 theMatch.Groups["ip"]);
 Console.WriteLine("Company: {0}",
 theMatch.Groups["company"]);

 // iterate over the captures collection
 // in the company group within the
 // groups collection in the match

 foreach (Capture cap in
 theMatch.Groups["company"].Captures)
 {
 Console.WriteLine("cap: {0}", cap.ToString());
 }
 }
 }
 }
 }
}

Output:
theMatch: 04:03:27 Jesse 0.0.0.127 Liberty
time: 04:03:27
ip: 0.0.0.127
Company: Liberty
cap: Jesse
cap: Liberty

Example 10-9. Examining the Captures collection (continued)

240 | Chapter 10: Strings and Regular Expressions

The code in bold iterates through the Captures collection for the Company group:

foreach (Capture cap in
 theMatch.Groups["company"].Captures)

Let’s review how this line is parsed. The compiler begins by finding the collection
that it will iterate over. theMatch is an object that has a collection named Groups. The
Groups collection has an indexer that takes a string and returns a single Group object.
Thus, the following line returns a single Group object:

theMatch.Groups["company"]

The Group object has a collection named Captures. Thus, the following line returns a
Captures collection for the Group stored at Groups["company"] within the theMatch
object:

theMatch.Groups["company"].Captures

The foreach loop iterates over the Captures collection, extracting each element in
turn and assigning it to the local variable cap, which is of type Capture. You can see
from the output that there are two capture elements: Jesse and Liberty. The second
one overwrites the first in the group, and so the displayed value is just Liberty. How-
ever, by examining the Captures collection, you can find both values that were
captured.

241

Chapter 11 CHAPTER 11

Exceptions11

Like many object-oriented languages, C# handles abnormal conditions with excep-
tions. An exception is an object that encapsulates information about an unusual
program occurrence.

It is important to distinguish between bugs, errors, and exceptions. A bug is a pro-
grammer mistake that should be fixed before the code is shipped. Exceptions aren’t a
protection against bugs. Although a bug might cause an exception to be thrown, you
should not rely on exceptions to handle your bugs. Rather, you should fix the bugs.

An error is caused by user action. For example, the user might enter a number where
a letter is expected. Once again, an error might cause an exception, but you can pre-
vent that by catching errors with validation code. Whenever possible, errors should
be anticipated and prevented.

Even if you remove all bugs and anticipate all user errors, you will still run into predict-
able but unpreventable problems, such as running out of memory or attempting to
open a file that no longer exists. You can’t prevent exceptions, but you can handle
them so that they don’t bring down your program.

When your program encounters an exceptional circumstance, such as running out of
memory, it throws (or “raises”) an exception. When an exception is thrown, execu-
tion of the current function halts, and the stack is unwound until an appropriate
exception handler is found (see the sidebar, “Unwinding the Stack”).

This means that if the currently running function doesn’t handle the exception, the
current function will terminate, and the calling function will get a chance to handle
the exception. If none of the calling functions handles it, the exception will
ultimately be handled by the CLR, which will abruptly terminate your program.

An exception handler is a block of code designed to handle the exception you’ve
thrown. Exception handlers are implemented as catch statements. Ideally, if the excep-
tion is caught and handled, the program can fix the problem and continue. Even if
your program can’t continue, by catching the exception, you have an opportunity to
print a meaningful error message and terminate gracefully.

242 | Chapter 11: Exceptions

If there is code in your function that must run regardless of whether an exception is
encountered (e.g., to release resources you’ve allocated), you can place that code in a
finally block, where it is certain to run, even in the presence of exceptions.

Throwing and Catching Exceptions
In C#, you can throw only objects of type System.Exception, or objects derived from
that type. The CLR System namespace includes a number of exception types that
your program can use. These exception types include ArgumentNullException,
InvalidCastException, and OverflowException, as well as many others.

C++ programmers take note: in C#, not just any object can be
thrown—it must be derived from System.Exception.

The throw Statement
To signal an abnormal condition in a C# class, you throw an exception. To do this,
use the keyword throw. This line of code creates a new instance of System.Exception
and then throws it:

throw new System.Exception();

Throwing an exception immediately halts execution of the current “thread” (see
Chapter 21 for a discussion of threads) while the CLR searches for an exception han-
dler. If an exception handler can’t be found in the current method, the runtime

Unwinding the Stack
When a method is called, an area is set aside on the stack, known as the stack frame,
which holds the return address of the next instruction in the calling method, the argu-
ments passed into the called method, and all the local variables in the called method.

Because MethodA can call MethodB which can call MethodC which can, in fact, call MethodA
(which can even call MethodA!), and so on, “unwinding the stack” refers to the process
of finding the return address of the calling method and returning to that method
peremptorily, looking for a catch block to handle the exception. The stack may have
to “unwind” through a number of called methods before it finds a handler. Ultimately,
if it unwinds all the way to main and no handler is found, a default handler is called,
and the program exits.

Assuming a handler is found, the program continues from the handler, not from where
the exception was thrown, or from the method that called the method in which the
exception was thrown (unless that method had the handler). Once unwound, the stack
frame is lost.

Throwing and Catching Exceptions | 243

unwinds the stack, popping up through the calling methods until a handler is found.
If the runtime returns all the way through Main() without finding a handler, it termi-
nates the program. Example 11-1 illustrates.

When you run this program in debug mode, an “Exception was unhandled” mes-
sage box comes up, as shown in Figure 11-1.

If you click View Detail, you find the details of the unhandled exception, as shown in
Figure 11-2.

This simple example writes to the console as it enters and exits each method. Main()
creates an instance of type Test and call Func1(). After printing out the Enter Func1
message, Func1() immediately calls Func2(). Func2() prints out the first message and
throws an object of type System.Exception.

Example 11-1. Throwing an exception

using System;

namespace Programming_CSharp
{
 public class Test
 {
 public static void Main()
 {
 Console.WriteLine("Enter Main...");
 Test t = new Test();
 t.Func1();
 Console.WriteLine("Exit Main...");
 }

 public void Func1()
 {
 Console.WriteLine("Enter Func1...");
 Func2();
 Console.WriteLine("Exit Func1...");
 }

 public void Func2()
 {
 Console.WriteLine("Enter Func2...");
 throw new System.ApplicationException();
 Console.WriteLine("Exit Func2...");
 }
 }
}

Output:
Enter Main...
Enter Func1...
Enter Func2...

244 | Chapter 11: Exceptions

Execution immediately shifts to handling the exceptions. The CLR looks to see
whether there is a handler in Func2(). There is not, and so the runtime unwinds the
stack (never printing the exit statement) to Func1(). Again, there is no handler, and
the runtime unwinds the stack back to Main(). With no exception handler there, the
default handler is called, which opens the exception message box.

The catch Statement
In C#, an exception handler is called a catch block and is created with the catch
keyword.

In Example 11-2, the throw statement is executed within a try block, and a catch
block is used to announce that the error has been handled.

Figure 11-1. Unhandled exception

Figure 11-2. Exception details

Throwing and Catching Exceptions | 245

Example 11-2. Catching an exception

using System;
using System.Collections.Generic;
using System.Text;

namespace CatchingAnException
{
 public class Test
 {
 public static void Main()
 {
 Console.WriteLine("Enter Main...");
 Test t = new Test();
 t.Func1();
 Console.WriteLine("Exit Main...");
 }

 public void Func1()
 {
 Console.WriteLine("Enter Func1...");
 Func2();
 Console.WriteLine("Exit Func1...");
 }

 public void Func2()
 {
 Console.WriteLine("Enter Func2...");

 try
 {
 Console.WriteLine("Entering try block...");
 throw new System.ApplicationException();
 Console.WriteLine("Exiting try block...");
 }
 catch
 {
 // simplified for this book; typically you would
 // correct (or at least log) the problem
 Console.WriteLine("Exception caught and handled.");
 }

 Console.WriteLine("Exit Func2...");
 }
 }
}

Output:
Enter Main...
Enter Func1...
Enter Func2...
Entering try block...
Exception caught and handled.

246 | Chapter 11: Exceptions

Example 11-2 is identical to Example 11-1 except that now the program includes a
try/catch block.

It is a common mistake to clutter your code with try/catch blocks that don’t actu-
ally do anything and don’t solve the problem that the exception is pointing out. It is
good programming practice to use a try/catch block only where your catch has the
opportunity to rectify the situation (with the exception of the topmost level where, at
a minimum, you want to fail reasonably gracefully).

An exception to this practice is to catch and log the exception, and then rethrow it
for it to be handled at a higher level, or to catch the exception, add context informa-
tion, and then nest that information bundled inside a new exception, as described
later in this chapter.

Catch statements can be generic, as shown in the previous example, or can be tar-
geted at specific exceptions, as shown later in this chapter.

Taking corrective action

One of the most important purposes of a catch statement is to take corrective action.
For example, if the user is trying to open a read-only file, you might invoke a method
that allows the user to change the attributes of the file. If the program has run out of
memory, you might give the user an opportunity to close other applications. If all
else fails, the catch block can log the error (or even send out email) so that you know
specifically where in your program you are having the problem.

Unwinding the call stack

Examine the output of Example 11-2 carefully. You see the code enter Main(),
Func1(), Func2(), and the try block. You never see it exit the try block, though it
does exit Func2(), Func1(), and Main(). What happened?

When the exception is thrown, the normal code path is halted immediately and con-
trol is handed to the catch block. It never returns to the original code path. It never
gets to the line that prints the exit statement for the try block. The catch block han-
dles the error, and then execution falls through to the code following catch.

Without catch, the call stack unwinds, but with catch, it doesn’t unwind, as a result
of the exception. The exception is now handled; there are no more problems, and
the program continues. This becomes a bit clearer if you move the try/catch blocks
up to Func1(), as shown in Example 11-3.

Exit Func2...
Exit Func1...
Exit Main...

Example 11-2. Catching an exception (continued)

Throwing and Catching Exceptions | 247

Example 11-3. Catch in a calling function

using System;

namespace CatchingExceptionInCallingFunc
{
 public class Test
 {
 public static void Main()
 {
 Console.WriteLine("Enter Main...");
 Test t = new Test();
 t.Func1();
 Console.WriteLine("Exit Main...");
 }

 public void Func1()
 {
 Console.WriteLine("Enter Func1...");

 try
 {
 Console.WriteLine("Entering try block...");
 Func2();
 Console.WriteLine("Exiting try block...");
 }
 catch
 {
 Console.WriteLine(
 "Unknown exception caught when calling Func 2.");
 }

 Console.WriteLine("Exit Func1...");
 }

 public void Func2()
 {
 Console.WriteLine("Enter Func2...");
 throw new System.ApplicationException();
 Console.WriteLine("Exit Func2...");
 }
 }
}

Output:
Enter Main...
Enter Func1...
Entering try block...
Enter Func2...
Unknown exception caught when calling Func 2.
Exit Func1...
Exit Main...

248 | Chapter 11: Exceptions

This time the exception is not handled in Func2(), it is handled in Func1(). When
Func2() is called, it prints the Enter statement, and then throws an exception. Execu-
tion halts and the runtime looks for a handler, but there isn’t one. The stack
unwinds, and the runtime finds a handler in Func1(). The catch statement is called,
and execution resumes immediately following the catch statement, printing the Exit
statement for Func1() and then for Main().

Make sure you are comfortable with why the Exiting Try Block statement and the
Exit Func2 statement aren’t printed. This is a classic case where putting the code into
a debugger and then stepping through it can make things very clear.

Try/Catch Best Practices
So far, you’ve been working only with generic catch statements. Best practices, how-
ever, dictate that you want, whenever possible, to create dedicated catch statements
that will handle only some exceptions and not others, based on the type of excep-
tion thrown. Example 11-4 illustrates how to specify which exception you’d like to
handle.

Example 11-4. Specifying the exception to catch

using System;

namespace SpecifyingCaughtException
{
 public class Test
 {
 public static void Main()
 {
 Test t = new Test();
 t.TestFunc();
 }

 // try to divide two numbers
 // handle possible exceptions
 public void TestFunc()
 {
 try
 {
 double a = 5;
 double b = 0;
 //double b = 2;
 Console.WriteLine("{0} / {1} = {2}",
 a, b, DoDivide(a, b));
 }

 // most derived exception type first
 catch (System.DivideByZeroException)
 {
 Console.WriteLine(
 "DivideByZeroException caught!");

Throwing and Catching Exceptions | 249

In this example, the DoDivide() method doesn’t let you divide 0 by another number,
nor does it let you divide a number by 0. It throws an instance of
DivideByZeroException if you try to divide by 0. If you try to divide 0 by another
number, there is no appropriate exception; dividing 0 by another number is a legal
mathematical operation, and shouldn’t throw an exception at all. For the sake of this
example, assume you don’t want 0 to be divided by any number and throw an
ArithmeticException.

When the exception is thrown, the runtime examines each exception handler in
order and matches the first one it can. When you run this with a=5 and b=7, the out-
put is:

5 / 7 = 0.7142857142857143

As you’d expect, no exception is thrown. However, when you change the value of a
to 0, the output is:

ArithmeticException caught!

 }
 catch (System.ArithmeticException)
 {
 Console.WriteLine(
 "ArithmeticException caught!);
 }

 // generic exception type last
 Catch (Exception e)
 {
 Console.Writeline("Log: " + e.ToString());
 }
 } // end Test function

 // do the division if legal
 public double DoDivide(double a, double b)
 {
 if (b == 0)
 throw new System.DivideByZeroException();
 if (a == 0)
 throw new System.ArithmeticException();
 // throw new ApplicationException();
 return a / b;
 }
 } // end class
} // end namespace

Output:
DivideByZeroException caught!

Example 11-4. Specifying the exception to catch (continued)

250 | Chapter 11: Exceptions

The exception is thrown, and the runtime examines the first exception,
DivideByZeroException. Because this doesn’t match, it goes on to the next handler,
ArithmeticException, which does match.

In a final pass through, suppose you change a to 7 and b to 0. This throws the
DivideByZeroException.

You have to be particularly careful with the order of the catch state-
ments because the DivideByZeroException is derived from
ArithmeticException. If you reverse the catch statements, the
DivideByZeroException matches the ArithmeticException handler, and
the exception won’t get to the DivideByZeroException handler. In fact,
if their order is reversed, it’s impossible for any exception to reach the
DivideByZeroException handler. The compiler recognizes that the
DivideByZeroException handler can’t be reached and reports a com-
pile error!

When catching the generic exception, it is often a good idea to at least log as much
about the exception as possible by calling ToString on the exception. To see this at
work, make three changes to the previous example:

• Change the declared value of b from 0 to 2.

• Uncomment the penultimate line of code.

• Comment out the final line of code (as it will now be unreachable).

The output will look something like this:

Log this: System.SystemException: System error.
at SpecifyingCaughtException.Test.DoDivide(Double a, Double b) in C:\...\Specified

Exception
s\Program.cs:line 53

Notice that among other things, the generic exception tells you the file, the method,
and the line number; this can save quite a bit of debugging time.

The finally Statement
In some instances, throwing an exception and unwinding the stack can create a
problem. For example, if you have opened a file or otherwise committed a resource,
you might need an opportunity to close the file or flush the buffer.

If there is some action you must take regardless of whether an exception is thrown
(such as closing a file), you have two strategies to choose from. One approach is to
enclose the dangerous action in a try block, and then to close the file in both the
catch and try blocks. However, this is an ugly duplication of code, and it’s error-
prone. C# provides a better alternative in the finally block.

Throwing and Catching Exceptions | 251

The code in the finally block is guaranteed to be executed regardless of whether an
exception is thrown. The TestFunc() method in Example 11-5 simulates opening a
file as its first action. The method undertakes some mathematical operations, and the
file is closed. It is possible that some time between opening and closing the file an
exception will be thrown.

Keep the code in your finally block simple. If an exception is thrown
from within your finally block, your finally block will not complete.

If this were to occur, it would be possible for the file to remain open. The developer
knows that no matter what happens, at the end of this method the file should be
closed, so the file close function call is moved to a finally block, where it will be
executed regardless of whether an exception is thrown.

Example 11-5. Using a finally block

using System;
using System.Collections.Generic;
using System.Text;

namespace UsingFinally
{
 public class Test
 {
 public static void Main()
 {
 Test t = new Test();
 t.TestFunc();
 }

 // try to divide two numbers
 // handle possible exceptions
 public void TestFunc()
 {
 try
 {
 Console.WriteLine("Open file here");
 double a = 5;
 double b = 0;
 Console.WriteLine("{0} / {1} = {2}",
 a, b, DoDivide(a, b));
 Console.WriteLine(
 "This line may or may not print");
 }

 // most derived exception type first
 catch (System.DivideByZeroException)
 {
 Console.WriteLine(
 "DivideByZeroException caught!");

252 | Chapter 11: Exceptions

In this example, one of the catch blocks is eliminated to save space, and a finally
block is added. Whether or not an exception is thrown, the finally block is exe-
cuted (in both output examples you see the message Close file here.).

You can create a finally block with or without catch blocks, but a
finally block requires a try block to execute. It is an error to exit a
finally block with break, continue, return, or goto.

Exception Objects
So far, you’ve been using the exception as a sentinel—that is, the presence of the
exception signals the error—but you haven’t touched or examined the Exception
object itself. The System.Exception object provides a number of useful methods and
properties. The Message property provides information about the exception, such as

 }
 catch
 {
 Console.WriteLine("Unknown exception caught");
 }
 finally
 {
 Console.WriteLine("Close file here.");
 }
 }

 // do the division if legal
 public double DoDivide(double a, double b)
 {
 if (b == 0)
 throw new System.DivideByZeroException();
 if (a == 0)
 throw new System.ArithmeticException();
 return a / b;
 }
 }
}

Output:
Open file here
DivideByZeroException caught!
Close file here.

Output when b = 12:
Open file here
5 / 12 = 0.416666666666667
This line may or may not print
Close file here.

Example 11-5. Using a finally block (continued)

Exception Objects | 253

why it was thrown. The Message property is read-only; the code throwing the excep-
tion can set the Message property as an argument to the exception constructor.

The HelpLink property provides a link to the help file associated with the exception.
This property is read/write.

VB 6 programmers take note: in C#, you need to be careful when
declaring and instantiating object variables on the same line of code. If
there is a possibility that an error could be thrown in the constructor
method, you might be tempted to put the variable declaration and
instantiation inside the try block. But, if you do that, the variable will
only be scoped within the try block, and it can’t be referenced within
the catch or finally blocks. The best approach is to declare the object
variable before the try block and instantiate it within the try block.

The StackTrace property is read-only and is set by the runtime. In Example 11-6, the
Exception.HelpLink property is set and retrieved to provide information to the user
about the DivideByZeroException. The StackTrace property of the exception can pro-
vide a stack trace for the error statement. A stack trace displays the call stack: the
series of method calls that lead to the method in which the exception was thrown.

Example 11-6. Working with an exception object

using System;

namespace ExceptionObject
{
 public class Test
 {
 public static void Main()
 {
 Test t = new Test();
 t.TestFunc();
 }

 // try to divide two numbers
 // handle possible exceptions
 public void TestFunc()
 {
 try
 {
 Console.WriteLine("Open file here");
 double a = 12;
 double b = 0;
 Console.WriteLine("{0} / {1} = {2}",
 a, b, DoDivide(a, b));
 Console.WriteLine(
 "This line may or may not print");
 }

254 | Chapter 11: Exceptions

 // most derived exception type first
 catch (System.DivideByZeroException e)
 {
 Console.WriteLine(
 "DivideByZeroException!" + e);
 }
 catch (System.Exception e)
 {
 Console.WriteLine(
 "Log" + e.Message);
 }
 finally
 {
 Console.WriteLine("Close file here.");
 }
 }

 // do the division if legal
 public double DoDivide(double a, double b)
 {
 if (b == 0)
 {
 DivideByZeroException e =
 new DivideByZeroException();
 e.HelpLink =
 "http://www.libertyassociates.com";
 throw e;
 }
 if (a == 0)
 throw new ArithmeticException();
 return a / b;
 }
 }
}

Output:
Open file here

DivideByZeroException! Msg: Attempted to divide by zero.

HelpLink: http://www.libertyassociates.com

Here's a stack trace:
at ExceptionObject.Test.DoDivide(Double a, Double b)
 in c:\...exception06.cs:line 56
at ExceptionObject.Test.TestFunc()
in...exception06.cs:line 22

Close file here.

Example 11-6. Working with an exception object (continued)

Exception Objects | 255

In the output, the stack trace lists the methods in the reverse order in which they
were called; that is, it shows that the error occurred in DoDivide(), which was called
by TestFunc(). When methods are deeply nested, the stack trace can help you under-
stand the order of method calls.

In this example, rather than simply throwing a DivideByZeroException, you create a
new instance of the exception:

DivideByZeroException e = new DivideByZeroException();

You don’t pass in a custom message, and so the default message will be printed:

DivideByZeroException! Msg: Attempted to divide by zero.

You can modify this line of code to pass in a default message:

new DivideByZeroException(
 "You tried to divide by zero, which is not meaningful");

In this case, the output message will reflect the custom message:

DivideByZeroException! Msg:
You tried to divide by zero, which is not meaningful

Before throwing the exception, set the HelpLink property:

e.HelpLink = "http://www.libertyassociates.com";

When this exception is caught, the program prints the message and the HelpLink:

catch (System.DivideByZeroException e)
{
 Console.WriteLine("\nDivideByZeroException! Msg: {0}",
 e.Message);
 Console.WriteLine("\nHelpLink: {0}", e.HelpLink);

This allows you to provide useful information to the user. In addition, it prints the
StackTrace by getting the StackTrace property of the exception object:

Console.WriteLine("\nHere's a stack trace: {0}\n",
 e.StackTrace);

The output of this call reflects a full StackTrace leading to the moment the exception
was thrown:

Here's a stack trace:
at ExceptionObject.Test.DoDivide(Double a, Double b)
 in c:\...exception06.cs:line 56
at ExceptionObject.Test.TestFunc()
in...exception06.cs:line 22

Note that we’ve abbreviated the pathnames, so your printout might look different.

256

Chapter 12CHAPTER 12

Delegates and Events 12

When a head of state dies, the president of the United States typically doesn’t have
time to attend the funeral personally. Instead, he dispatches a delegate. Often, this
delegate is the vice president, but sometimes the VP is unavailable, and the president
must send someone else, such as the secretary of state or even the first lady. He
doesn’t want to “hardwire” his delegated authority to a single person; he might dele-
gate this responsibility to anyone who is able to execute the correct international
protocol.

The president defines in advance what responsibility will be delegated (attend the
funeral), what parameters will be passed (condolences, kind words), and what value
he hopes to get back (good will). He then assigns a particular person to that dele-
gated responsibility at “runtime” as the course of his presidency progresses.

Events
In programming, you are often faced with situations where you need to execute a
particular action, but you don’t know in advance which method, or even which
object, you’ll want to call upon to execute it. The classic example of this is the
method called to handle a button press, a menu selection, or some other “event.”

An event, in event-driven programming (like Windows!), is when something hap-
pens—often as a result of user action, but at times as a result of a change in system
state or a result of a message begin received from outside the system (e.g., via the
Internet).

You must imagine that the person who creates a button (or listbox or other control)
will not necessarily be the programmer who uses the control. The control inventor
knows that when the button is clicked, the programmer using the button will want
something to happen, but the inventor can’t know what!

Events and Delegates | 257

The solution to this dilemma is for the creator of the button to say, in effect, “My
button publishes a series of events, such as click. My listbox has other events, such
as selection changed, entry added, and so on. You programmers who want to use my
controls, you can hook up whatever method you want to these events when you use
my controls.” You hook up to these events using delegates.

A delegate is an object that contains the address of a method. That makes them use-
ful for many purposes, but ideal for two:

• “Call this method when this event happens” (event handling).

• “Call this method when you’re done doing this work” (callbacks, discussed later
in this chapter).

In C#, delegates are first-class members of the language (to a C++ programmer, they
are Pointers To Member Functions on steroids!), and they are used to hook up an
event to a method that will handle that event. In fact, events are just a restricted kind
of delegate, as you’ll see later in this chapter.

Events and Delegates
In C#, delegates are fully supported by the language. Technically, a delegate is a ref-
erence type used to encapsulate a method with a specific signature and return type.*

You can encapsulate any matching method in that delegate.

You create a delegate with the delegate keyword, followed by a return type and the
signature of the methods that can be delegated to it, as in the following:

public delegate void ButtonClick(object sender, EventArgs e);

This declaration defines a delegate named ButtonClick, which will encapsulate any
method that takes an object of type Object (the base class for everything in C#) as its
first parameter and an object of type EventArgs (or anything derived from EventArgs)
as its second parameter. The method will return void. The delegate itself is public.

Once the delegate is defined, you can encapsulate a member method with that dele-
gate by instantiating the delegate, passing in a method that matches the return type
and signature.

For example, you might define this delegate:

public delegate void buttonPressedHandler(object sender, EventArgs e);

That delegate could encapsulate either of these two methods:

public void onButtonPressed(object sender, EventArgs e)
{
 MessageBox.Show("the button was pressed!");
}

* If the method is an instance method, the delegate encapsulates the target object as well.

258 | Chapter 12: Delegates and Events

or:

public void myFunkyMethod(object s, EventArgs x)
{
 MessageBoxShow("Ouch!");
}

As you’ll see later, it can even encapsulate both at the same time! The key is that
both methods return void and take two properties, an object and an EventArgs, as
specified by the delegate.

Indirect Invocation
As an alternative, you can use anonymous methods as described later. In either case,
the delegate can then be used to invoke that encapsulated method. In short,
delegates decouple the class that declares the delegate from the class that uses the del-
egate: that is, the creator of the Button does not need to know how the Button will be
used in every program that places a button on the page.

Publish and Subscribe/Observer
One very common “design pattern” in programming is that the creator of a control
(such as a button) “publishes” (documents) the events to which the button will
respond (such as click). Programmers who use the button (such as those who put a
button on their form) may choose to “subscribe” to one or more of the button’s
events. Thus, if you’re implementing a web form that uses a button, you might
choose to subscribe (be notified) when someone clicks the button, but not when a
mouse hovers over the button.

A closely related “pattern” is the observer pattern, in which the form is said to be the
observer, and the button is said to be observed.

In any case, the mechanism for publishing is to create a delegate. The mechanism for
subscribing is to create a method that matches the signature and return type of the
delegate and then to subscribe your matching method with the syntax shown in
Example 12-1.

The subscribing method is typically called an event handler, because it handles the
event raised by the publishing class. That is, the form might handle the “click” event
raised by the button.

By convention, event handlers in the .NET Framework return void and take two
parameters. The first parameter is the “source” of the event (i.e., the publishing
object). The second parameter is an object derived from EventArgs.

EventArgs is the base class for all event data. Other than its constructor, the
EventArgs class inherits all its methods from Object, though it does add a public

Events and Delegates | 259

static field named Empty, which represents an event with no state (to allow for the
efficient use of events with no state). The EventArgs derived class contains informa-
tion about the event.

To make this less theoretical and more concrete, let’s look at Example 12-1, and then
take it apart.

Example 12-1. Publish and subscribe with delegates

using System;
using System.Collections.Generic;
using System.Text;
using System.Threading;

namespace EventsWithDelegates
{
 // a class to hold the information about the event
 // in this case it will hold only information
 // available in the clock class, but could hold
 // additional state information
 public class TimeInfoEventArgs : EventArgs
 {
 public TimeInfoEventArgs(int hour, int minute, int second)
 {
 this.Hour = hour;
 this.Minute = minute;
 this.Second = second;
 }
 public readonly int Hour;
 public readonly int Minute;
 public readonly int Second;
 }

 // our subject -- it is this class that other classes
 // will observe. This class publishes one delegate:
 // OnSecondChange.
 public class Clock
 {
 private int hour;
 private int minute;
 private int second;

 // the delegate
 public delegate void SecondChangeHandler
 (
 object clock,
 TimeInfoEventArgs timeInformation
);

 // an instance of the delegate
 public SecondChangeHandler SecondChanged;

260 | Chapter 12: Delegates and Events

 protected virtual void OnSecondChanged(TimeInfoEventArgs e)
 {
 if (SecondChanged != null)
 {
 SecondChanged(this, e);
 }
 }

 // set the clock running
 // it will raise an event for each new second
 public void Run()
 {
 for (; ;)
 {
 // sleep 10 milliseconds
 Thread.Sleep(10);

 // get the current time
 System.DateTime dt = System.DateTime.Now;

 // if the second has changed
 // notify the subscribers
 if (dt.Second != second)
 {
 // create the TimeInfoEventArgs object
 // to pass to the subscriber
 TimeInfoEventArgs timeInformation =
 new TimeInfoEventArgs(
 dt.Hour, dt.Minute, dt.Second);
 OnSecondChanged(timeInformation);

 }

 // update the state
 this.second = dt.Second;
 this.minute = dt.Minute;
 this.hour = dt.Hour;
 }
 }
 }

 // an observer. DisplayClock subscribes to the
 // clock's events. The job of DisplayClock is
 // to display the current time
 public class DisplayClock
 {
 // given a clock, subscribe to
 // its SecondChangeHandler event
 public void Subscribe(Clock theClock)
 {

Example 12-1. Publish and subscribe with delegates (continued)

Events and Delegates | 261

 theClock.SecondChanged +=
 new Clock.SecondChangeHandler(TimeHasChanged);
 }

 // the method that implements the
 // delegated functionality
 public void TimeHasChanged(
 object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Current Time: {0}:{1}:{2}",
 ti.Hour.ToString(),
 ti.Minute.ToString(),
 ti.Second.ToString());
 }
 }

 // a second subscriber whose job is to write to a file
 public class LogCurrentTime
 {
 public void Subscribe(Clock theClock)
 {
 theClock.SecondChanged +=
 new Clock.SecondChangeHandler(WriteLogEntry);
 }

 // This method should write to a file.
 // We write to the console to see the effect.
 // This object keeps no state.
 public void WriteLogEntry(
 object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Logging to file: {0}:{1}:{2}",
 ti.Hour.ToString(),
 ti.Minute.ToString(),
 ti.Second.ToString());
 }
 }

 public class Test
 {
 public static void Main()
 {
 // create a new clock
 Clock theClock = new Clock();

 // create the display and tell it to
 // subscribe to the clock just created
 DisplayClock dc = new DisplayClock();
 dc.Subscribe(theClock);

 // create a Log object and tell it
 // to subscribe to the clock

Example 12-1. Publish and subscribe with delegates (continued)

262 | Chapter 12: Delegates and Events

The Publishing Class: Clock
The class that we will be observing is Clock. It publishes one event, SecondChanged. The
syntax for publishing that event is that it declares a delegate, SecondChangedHandler,
that must be subscribed to by anyone interested in being notified when the second
changes:

public delegate void SecondChangeHandler
(
 object clock,
 TimeInfoEventArgs timeInformation
);

As is typical for all event handlers in .NET, this delegate returns void and takes two
arguments: the first of type void, and the second of type EventArgs (or, as in this case,
of a type derived from EventArgs).

Let’s delay looking at TimeInfoEventArgs for just a bit and continue on.

The Clock class must then create an instance of this delegate, which it does on the
following line:

public SecondChangeHandler SecondChanged;

You read this as “The member variable SecondChanged is an instance of the delegate
SecondChangeHandler.”

 LogCurrentTime lct = new LogCurrentTime();
 lct.Subscribe(theClock);

 // Get the clock started
 theClock.Run();
 }
 }
}

Partial Output...
Current Time: 16:0:7
Logging to file: 16:0:7
Current Time: 16:0:8
Logging to file: 16:0:8
Current Time: 16:0:9
Logging to file: 16:0:9
Current Time: 16:0:10
Logging to file: 16:0:10
Current Time: 16:0:11
Logging to file: 16:0:11
Current Time: 16:0:12
Logging to file: 16:0:12

Example 12-1. Publish and subscribe with delegates (continued)

Events and Delegates | 263

The third thing that the Clock will do is to provide a protected method for invoking
its event. The event will be invoked only if there are subscribers (again, I’ll show how
other classes subscribe in just a moment):

protected virtual void OnSecondChanged(TimeInfoEventArgs e)
{
 if (SecondChanged != null)
 {
 SecondChanged(this, e);
 }
}

You can infer from this that if no one has subscribed, the instance SecondChanged will
be null, but if any other class has subscribed, it will not be null, and the method that
the other classes have registered will be invoked through the delegate by calling the
instance of the delegate and passing in the Clock (this) and the instance of
TimeInfoEventArgs that was passed into OnSecondChanged.

So, who calls OnSecondChanged?

It turns out that Clock has another method, Run, that keeps an eye on the clock, and
every time the seconds change, it makes a new instance of TimeInfoEventArgs and
calls OnSecondChanged:

public void Run()
{
 for (; ;)
 {
 // sleep 10 milliseconds
 Thread.Sleep(10);

 // get the current time
 System.DateTime dt = System.DateTime.Now;

 // if the second has changed
 // notify the subscribers
 if (dt.Second != second)
 {
 // create the TimeInfoEventArgs object
 // to pass to the subscriber
 TimeInfoEventArgs timeInformation =
 new TimeInfoEventArgs(
 dt.Hour, dt.Minute, dt.Second);

 OnSecondChanged(timeInformation);

 }

 // update the state
 this.second = dt.Second;
 this.minute = dt.Minute;
 this.hour = dt.Hour;
 }
}

264 | Chapter 12: Delegates and Events

Run consists of a “forever” loop (it never stops until you shut down the program). It
sleeps for 10 milliseconds (so as not to bring your computer to a complete halt), and
then checks the system time against the hour, minute, and second that it stores in
member variables. If there is a change, it creates a new instance of the TimeInfoEventArgs
object, and then invokes OnSecondChanged, passing in that object.

OK, here’s the definition of TimeInfoEventArgs:

public class TimeInfoEventArgs : EventArgs
{
 public readonly int Hour;
 public readonly int Minute;
 public readonly int Second;
 public TimeInfoEventArgs(int hour, int minute, int second)
 {
 this.Hour = hour;
 this.Minute = minute;
 this.Second = second;
 }

}

Registering to Be Notified
We’re almost ready to walk through the scenario, but we still don’t know how
classes register to be notified. To see this, we need to create two subscribers,
DisplayClock and LogCurrentTime.

DisplayClock, we’ll pretend, is a nice digital clock that sits on your desktop, and
LogCurrentTime is a nifty utility you can invoke when you want to log an error and
have it timestamped. Cool, eh? Wish we were really going to write that.

But we’re not:

public class DisplayClock
{
 public void Subscribe(Clock theClock)
 {
 theClock.SecondChanged +=
 new Clock.SecondChangeHandler(TimeHasChanged);
 }

 public void TimeHasChanged(
 object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Current Time: {0}:{1}:{2}",
 ti.Hour.ToString(),
 ti.Minute.ToString(),
 ti.Second.ToString());
 }
}

Events and Delegates | 265

You pass a Clock object into the Subscribe method of DisplayClock, and it registers
itself to be notified. How? It uses the += operator on the delegate it wants to register
with (secondChanged), creating a new instance of the delegate, passing to the con-
structor the name of a method within DisplayClock that matches the return value
(void) and the parameters (object, TimeEventArgs). DisplayClock just happens to
have such a method: TimeHasChanged.

This serendipitous method does not display the time nicely on your computer, but it
does display it, using the Hour, Minute, and Second it retrieves from the
TimeInfoEventArgs it gets back when notified that the time has changed!

The second subscriber is much more sophisticated:

public class LogCurrentTime
{
 public void Subscribe(Clock theClock)
 {
 theClock.SecondChanged +=
 new Clock.SecondChangeHandler(WriteLogEntry);
 }

 public void WriteLogEntry(
 object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Logging to file: {0}:{1}:{2}",
 ti.Hour.ToString(),
 ti.Minute.ToString(),
 ti.Second.ToString());
 }
}

Here, we pretend to write to a logfile the Hour, Minute, and Second that we get from
the TimeInfoEventArgs object, but we don’t really do that either; we just write it to
the screen.

So, how do our two subscribers get their clock instances? Easy—we pass the Clock
object in right after we create them, in Main():

public static void Main()
{
 // create a new clock
 Clock theClock = new Clock();

 // create the display and tell it to
 // subscribe to the clock just created
 DisplayClock dc = new DisplayClock();
 dc.Subscribe(theClock);

 // create a Log object and tell it
 // to subscribe to the clock
 LogCurrentTime lct = new LogCurrentTime();
 lct.Subscribe(theClock);

266 | Chapter 12: Delegates and Events

 // Get the clock started
 theClock.Run();
}

Sequence of Events
Here is the sequence of events (which, as you might suspect already, is the reverse
order of that in which I explained them!).

In Main(), we create a Clock, cleverly named theClock. A clock knows how to publish
the time, if anyone subscribes.

We then create an instance of a DisplayClock (named dc), which is quite good at sub-
scribing to the Clock, and we tell it to Subscribe, passing in our new Clock so that it
may do so.

We also create an instance of a LogCurrentTime class (lct), and tell it to Subscribe to
theClock, which it does.

Finally, now that two listeners are paying attention, we tell theClock to Run. Every sec-
ond, theClock realizes that a second has passed, so it creates a new TimeInfoEventArgs
object and calls OnSecondChanged. OnSecondChanged tests whether the delegate is null,
which it is not because two listeners have registered, so it fires the delegate:

SecondChanged(this, e);

This is exactly as though it had reached into DisplayClock and called TimeHasChanged,
passing in a copy of itself and a copy of the newly minted TimeInfoEventArgs, and
then reached into LogCurrentTime and called WriteLogEntry, passing in the same two
arguments!

The Danger with Delegates
There is a problem with Example 12-1, however. What if the LogCurrentTime class
was not so considerate, and it used the assignment operator (=) rather than the sub-
scribe operator (+=), as in the following:

public void Subscribe(Clock theClock)
{
 theClock.OnSecondChange =
 new Clock.SecondChangeHandler(WriteLogEntry);
}

If you make that one tiny change to the example, you’ll find that the Logger() method
is called, but the DisplayClock method is not called. The assignment operator replaced
the delegate held in the OnSecondChange multicast delegate. The technical term for this
is bad.

A second problem is that other methods can call SecondChangeHandler directly. For
example, you might add the following code to the Main() method of your Test class:

Events and Delegates | 267

Console.WriteLine("Calling the method directly!");
System.DateTime dt = System.DateTime.Now.AddHours(2);

TimeInfoEventArgs timeInformation =
 new TimeInfoEventArgs(
 dt.Hour,dt.Minute,dt.Second);

theClock.OnSecondChange(theClock, timeInformation);

Here, Main() has created its own TimeInfoEventArgs object and invoked
OnSecondChange directly. This runs fine, even though it is not what the designer of the
Clock class intended. Here is the output:

Calling the method directly!
Current Time: 18:36:7
Logging to file: 18:36:7
Current Time: 16:36:7
Logging to file: 16:36:7

The problem is that the designer of the Clock class intended the methods encapsu-
lated by the delegate to be invoked only when the event is fired. Here, Main() has
gone around through the back door and invoked those methods itself. What is more,
it has passed in bogus data (passing in a time construct set to two hours into the
future!).

How can you, as the designer of the Clock class, ensure that no one calls the delegated
method directly? You can make the delegate private, but then it won’t be possible for
clients to register with your delegate at all. What you need is a way to say, “This dele-
gate is designed for event handling: you may subscribe and unsubscribe, but you
may not invoke it directly.”

The event Keyword
The solution to this dilemma is to use the event keyword. The event keyword indi-
cates to the compiler that the delegate can be invoked only by the defining class, and
that other classes can only subscribe to and unsubscribe from the delegate using the
appropriate += and -= operators, respectively.

To fix your program, change your definition of OnSecondChange from:

public SecondChangeHandler OnSecondChange;

to the following:

public event SecondChangeHandler OnSecondChange;

Adding the event keyword fixes both problems. Classes can no longer attempt to
subscribe to the event using the assignment operator (=), as they could previously,
nor can they invoke the event directly, as was done in Main() in the preceding exam-
ple. Either of these attempts will now generate a compile error:

268 | Chapter 12: Delegates and Events

The event 'Programming_CSharp.Clock.OnSecondChange' can only appear on
the left hand side of += or -= (except when used from within the type
'Programming_CSharp.Clock')

There are two ways to look at OnSecondChange now that you’ve modified it. In one
sense, it is simply a delegate instance to which you’ve restricted access using the
keyword event. In another, more important sense, OnSecondChange is an event, imple-
mented by a delegate of type SecondChangeHandler. These two statements mean the
same thing, but the latter is a more object-oriented way to look at it and better
reflects the intent of this keyword: to create an event that your object can raise, and
to which other objects can respond.

Example 12-2 shows the complete source, modified to use the event rather than the
unrestricted delegate.

Example 12-2. Using the event keyword

using System;
using System.Collections.Generic;
using System.Text;
using System.Threading;

namespace EventsWithDelegates
{
 public class TimeInfoEventArgs : EventArgs
 {
 public readonly int Hour;
 public readonly int Minute;
 public readonly int Second;
 public TimeInfoEventArgs(int hour, int minute, int second)
 {
 this.Hour = hour;
 this.Minute = minute;
 this.Second = second;
 }
 }

 public class Clock
 {
 private int hour;
 private int minute;
 private int second;

 public delegate void SecondChangeHandler
 (
 object clock,
 TimeInfoEventArgs timeInformation
);

 // public SecondChangeHandler SecondChanged;
 public event SecondChangeHandler SecondChanged;

Events and Delegates | 269

 protected virtual void OnSecondChanged(TimeInfoEventArgs e)
 {
 if (SecondChanged != null)
 {
 SecondChanged(this, e);
 }
 }

 public void Run()
 {
 for (; ;)
 {
 Thread.Sleep(10);

 System.DateTime dt = System.DateTime.Now;

 if (dt.Second != second)
 {
 TimeInfoEventArgs timeInformation =
 new TimeInfoEventArgs(
 dt.Hour, dt.Minute, dt.Second);
 OnSecondChanged(timeInformation);
 }

 this.second = dt.Second;
 this.minute = dt.Minute;
 this.hour = dt.Hour;
 }
 }
 }

 public class DisplayClock
 {
 public void Subscribe(Clock theClock)
 {
 theClock.SecondChanged +=
 new Clock.SecondChangeHandler(TimeHasChanged);
 }

 public void TimeHasChanged(
 object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Current Time: {0}:{1}:{2}",
 ti.Hour.ToString(),
 ti.Minute.ToString(),
 ti.Second.ToString());
 }
 }

 public class LogCurrentTime
 {

Example 12-2. Using the event keyword (continued)

270 | Chapter 12: Delegates and Events

 public void Subscribe(Clock theClock)
 {
 //theClock.SecondChanged =
 // new Clock.SecondChangeHandler(WriteLogEntry);

 theClock.SecondChanged +=
 new Clock.SecondChangeHandler(WriteLogEntry);

 }

 public void WriteLogEntry(
 object theClock, TimeInfoEventArgs ti)
 {
 Console.WriteLine("Logging to file: {0}:{1}:{2}",
 ti.Hour.ToString(),
 ti.Minute.ToString(),
 ti.Second.ToString());
 }
 }

 public class Test
 {
 public static void Main()
 {
 Clock theClock = new Clock();

 DisplayClock dc = new DisplayClock();
 dc.Subscribe(theClock);

 LogCurrentTime lct = new LogCurrentTime();
 lct.Subscribe(theClock);

 //Console.WriteLine("Calling the method directly!");
 //System.DateTime dt = System.DateTime.Now.AddHours(2);

 //TimeInfoEventArgs timeInformation =
 // new TimeInfoEventArgs(
 // dt.Hour, dt.Minute, dt.Second);

 //theClock.SecondChanged(theClock, timeInformation);

 theClock.Run();
 }
 }
}

Example 12-2. Using the event keyword (continued)

Anonymous Methods | 271

Anonymous Methods
In the preceding example, you subscribed to the event by invoking a new instance of
the delegate, passing in the name of a method that implements the event:

theClock.OnSecondChange +=
 new Clock.SecondChangeHandler(TimeHasChanged);

You can also assign this delegate by writing the shortened version:

theClock.OnSecondChange += TimeHasChanged;

Later in the code, you must define TimeHasChanged as a method that matches the sig-
nature of the SecondChangeHandler delegate:

public void TimeHasChanged(object theClock, TimeInfoEventArgs ti)
{

Console.WriteLine("Current Time: {0}:{1}:{2}",
 ti.Hour.ToString(),
 ti.Minute.ToString(),
 ti.=Second.ToString());
}

C# offers anonymous methods that allow you to pass a code block rather than the
name of the method. This can make for more efficient and easier-to-maintain code,
and the anonymous method has access to the variables in the scope in which they are
defined:

clock.OnSecondChange += delegate(object theClock, TimeInfoEventArgs ti)
{

Console.WriteLine("Current Time: {0}:{1}:{2}",
 ti.Hour.ToString(),
 ti.Minute.ToString(),
 ti.Second.ToString());
};

Overused, this can also make for cut-and-paste code that is harder to
maintain.

Notice that instead of registering an instance of a delegate, you use the keyword
delegate, followed by the parameters that would be passed to your method, fol-
lowed by the body of your method encased in braces and terminated by a semicolon.

This “method” has no name; hence, it is anonymous. You can invoke the method
only through the delegate, but that is exactly what you want.

Lambda Expressions
C# 3.0 extends the concept of anonymous methods and introduces lambda expres-
sions, which are more powerful and flexible than anonymous methods.

272 | Chapter 12: Delegates and Events

Lambda expressions are designed to provide not only inline delegate
definitions, but also a framework for Language-Integrated Query
(LINQ). We discuss LINQ in detail in Chapters 13 and 15.

You define a lambda expression using this syntax:

(input parameters) => {expression or statement block};

The lambda operator, =>, is newly introduced in C# 3.0 and is read as “goes to.” The
left operand is a list of zero or more input parameters, and the right operand is the
body of the lambda expression.

You can thus rewrite the delegate definition as follows:

theClock.OnSecondChange +=
 (aClock, ti) =>
 {
 Console.WriteLine("Current Time: {0}:{1}:{2}",
 ti.hour.ToString(),
 ti.minute.ToString(),
 ti.second.ToString());
 };

You read this as “theClock’s OnSecondChange delegate adds an anonymous delegate
defined by this lambda expression. The two parameters, aClock and ti, go to the
WriteLine expression that writes out the hour and minute and second from ti.”

The two input parameters, aClock and ti, are of type Clock and TimeInfoEventArgs,
respectively. Their types are not specified because the C# compiler infers their types
from the OnSecondChange delegate definition. If the compiler is unable to infer the
types of your operands, you may specify them explicitly:

(Clock aClock, TimeInfoEventArgs ti) => {...};

If there is no input parameter, you write a pair of empty parentheses:

() => {expression or statement block};

If there is only one input parameter, the parentheses can be omitted:

n => n * n;

Callback Methods
The second classic use for a delegate is a callback. When you go to your favorite res-
taurant at 8 p.m. on a Saturday, the wait may be quite long. You give your name and
they give you a pager. When your table is ready, they dial a number that buzzes your
pager, and that signals you that your table is ready. Callbacks work the same way,
only this time, the table is your data, the pager is a method, and the phone number
they call to make the pager buzz is a delegate!

Anonymous Methods | 273

Let’s say you reach a place in your program where you need to get data from a web
service (a program running on another computer that you do not control, and that is
out there on the Internet “somewhere”). You can’t know how long it will take to get
your data, but it might be a very long time, a second or more. Rather than having
your program wait in the crowded lobby, listening to annoying muzak, you hand
over a delegate to the method that should be called when your table (excuse me,
when your data) is ready. When the web service returns with the data, your delegate
is invoked, and because it has the address of your method, the method is called,
which takes action on the data returned.

You implement callbacks with the AsyncCallback delegate, which allows the main
work of your program to continue until “your table is ready”:

[Serializable]
public delegate void AsyncCallback
(
 IAsyncResult ar
);

The attribute (Serializable) is covered in Chapter 22. You can see here, however,
that AsyncCallback is a delegate for a method that returns void and takes a single
argument, an object of type IAsyncResult. The Framework defines this interface, and
the CLR will be calling your method with an object that implements IAsyncResult, so
you don’t need to know the details of the interface; you can just use the object pro-
vided to you.

Here’s how it works. You will ask the delegate for its invocation list, and you will call
BeginInvoke on each delegate in that list. BeginInvoke will take two parameters. The
first will be a delegate of type AsyncCallback, and the second will be your own dele-
gate that invokes the method you want to call:

del.BeginInvoke(new AsyncCallback(ResultsReturned),del);

In the preceding line of code, you are calling the method encapsulated by del (e.g.,
DisplayCounter), and when that method completes, you want to be notified via your
method ResultsReturned.

The method to be called back (ResultsReturned) must match the return type and sig-
nature of the AsyncCallback delegate: it must return void, and must take an object of
type IAsyncResult:

private void ResultsReturned(IAsyncResult iar)
{

When that method is called back, the .NET Framework passes in the IAsyncResult
object. The second parameter to BeginInvoke is your delegate, and that delegate is
stashed away for you in the AsyncState property of the IAsyncResult as an Object.
Inside the ResultsReturned callback method, you can extract that Object and cast it
to its original type:

DelegateThatReturnsInt del = (DelegateThatReturnsInt)iar.AsyncState;

274 | Chapter 12: Delegates and Events

You can now use that delegate to call the EndInvoke() method, passing in the
IAsyncResult object you received as a parameter:

int result = del.EndInvoke(iar);

EndInvoke() returns the value of the called (and now completed) method, which you
assign to a local variable named result, and which you are now free to display to the
user.

The net effect is that in Run(), you get each registered method in turn (first
FirstSubscriber.DisplayCounter and then SecondSubscriber.Doubler), and you
invoke each asynchronously. There is no delay between the call to the first and the call
to the second, as you aren’t waiting for DisplayCounter to return.

When DisplayCounter (or Doubler) has results, your callback method (ResultsReturned)
is invoked, and you use the IAsyncResult object provided as a parameter to get the actual
results back from these methods. Example 12-3 shows the complete implementation.

Example 12-3. Asynchronous invocation of delegates

using System;
using System.Collections.Generic;
using System.Text;
using System.Threading;

namespace AsyncDelegates
{
 public class ClassWithDelegate
 {
 // a multicast delegate that encapsulates a method
 // that returns an int
 public delegate int DelegateThatReturnsInt();
 public DelegateThatReturnsInt theDelegate;

 public void Run()
 {
 for (; ;)
 {
 // sleep for a half second
 Thread.Sleep(500);

 if (theDelegate != null)
 {
 // explicitly invoke each delegated method
 foreach (
 DelegateThatReturnsInt del in
 theDelegate.GetInvocationList())
 {
 // invoke asynchronously
 // pass the delegate in as a state object
 del.BeginInvoke(new AsyncCallback(ResultsReturned),
 del);

Anonymous Methods | 275

 } // end foreach
 } // end if
 } // end for ;;
 } // end run

 // callback method to capture results
 private void ResultsReturned(IAsyncResult iar)
 {
 // cast the state object back to the delegate type
 DelegateThatReturnsInt del =
 (DelegateThatReturnsInt)iar.AsyncState;

 // call EndInvoke on the delegate to get the results
 int result = del.EndInvoke(iar);

 // display the results
 Console.WriteLine("Delegate returned result: {0}", result);
 }
 } // end class

 public class FirstSubscriber
 {
 private int myCounter = 0;

 public void Subscribe(ClassWithDelegate theClassWithDelegate)
 {
 theClassWithDelegate.theDelegate +=
 new ClassWithDelegate.DelegateThatReturnsInt(DisplayCounter);
 }

 public int DisplayCounter()
 {
 Console.WriteLine("Busy in DisplayCounter...");
 Thread.Sleep(10000);
 Console.WriteLine("Done with work in DisplayCounter...");
 return ++myCounter;
 }
 }

 public class SecondSubscriber
 {
 private int myCounter = 0;

 public void Subscribe(ClassWithDelegate theClassWithDelegate)
 {
 theClassWithDelegate.theDelegate +=
 new ClassWithDelegate.DelegateThatReturnsInt(Doubler);
 }

 public int Doubler()
 {
 return myCounter += 2;

Example 12-3. Asynchronous invocation of delegates (continued)

276 | Chapter 12: Delegates and Events

 }
 }

 public class Test
 {
 public static void Main()
 {
 ClassWithDelegate theClassWithDelegate =
 new ClassWithDelegate();

 FirstSubscriber fs = new FirstSubscriber();
 fs.Subscribe(theClassWithDelegate);

 SecondSubscriber ss = new SecondSubscriber();
 ss.Subscribe(theClassWithDelegate);

 theClassWithDelegate.Run();
 }
 }
}

Example 12-3. Asynchronous invocation of delegates (continued)

PART II

II.C# and Data

Chapter 13, Introducing LINQ

Chapter 14, Working with XML

Chapter 15, Putting LINQ to Work

Chapter 16, ADO.NET and Relational Databases

279

Chapter 13 CHAPTER 13

Introducing LINQ13

One of the common programming tasks C# programmers perform every day is find-
ing and retrieving objects in memory, a database, or an XML file. For example, you
may be developing a cell phone customer support system that will allow a customer
to see how much each member of the family has spent in phone calls. To do so,
you’ll need to retrieve records from various sources (phone company records online,
phone books kept locally, etc.), filtered by various criteria (by name or by month),
and sorted in various ways (e.g., by date, by family member).

One way you might have implemented this in the past would be to search a database
by address, returning all the records to the user, perhaps presenting them in a listbox.
The user would pick the name she was interested in and the data of interest (e.g., the
number of ringtones downloaded in the past three months), and you would go back to
the database (or perhaps to a different database) and retrieve that information, using
the chosen family member’s unique ID as a key, retrieving the required data.

Although C# provides support for in-memory searches such as finding a name in a
collection, traditionally, you were required to turn to another technology (such as
ADO.NET) to retrieve data from a database. Although ADO.NET made this fairly easy,
a sharp distinction was drawn between retrieving data from in-memory collections and
retrieving data from persistent storage.

In-memory searches lacked the powerful and flexible query capabilities of SQL,
whereas ADO.NET was not integrated into C#, and SQL itself was not object-
oriented (in fact, the point of ADO.NET was to bridge the object-to-relational
model). LINQ is an integrated feature of C# 3.0 itself, and thus (at long last) brings
an object-oriented bridge over the impedance mismatch between object-oriented
languages and relational databases.

The goal of LINQ (Language-INtegrated Query) is to integrate extensive query capa-
bilities into the C# language, to make SQL-like capabilities part of the language, and
to remove the distinctions among searching a database, an XML document, or an
in-memory data collection.

280 | Chapter 13: Introducing LINQ

This chapter will introduce LINQ and show how it fits into C# and into your pro-
gramming. Subsequent chapters will dive into the details of using LINQ to retrieve
and manipulate data in databases and in other data repositories. You’ll learn about
ADO.NET in Chapter 16.

Defining and Executing a Query
In previous versions of C#, if you wanted to find an object in a database you had to
leave C# and turn to the Framework (most often ADO.NET). With LINQ, you can
stay within C#, and thus within a fully class-based perspective.

Many books start with anonymous methods, then introduce Lambda
expressions, and finally introduce LINQ. It is my experience that it is
far easier to understand each of these concepts by going in the opposite
direction, starting with queries and introducing Lambda expressions for
what they are: enabling technologies. Each of these topics will, how-
ever, be covered here and in subsequent chapters.

Let’s start simply by searching a collection for objects that match a given criterion, as
demonstrated in Example 13-1.

Example 13-1. A simple LINQ query

using System;
using System.Collections.Generic;
using System.Linq;
namespace Programming_CSharp
{
 // Simple customer class
 public class Customer
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string EmailAddress { get; set; }

 // Overrides the Object.ToString() to provide a
 // string representation of the object properties.
 public override string ToString()
 {
 return string.Format("{0} {1}\nEmail: {2}",
 FirstName, LastName, EmailAddress);
 }
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();

Defining and Executing a Query | 281

 // Find customer by first name
IEnumerable<Customer> result =
 from customer in customers
where customer.FirstName == "Donna"
select customer;

Console.WriteLine("FirstName == \"Donna\"");
 foreach (Customer customer in result)
 Console.WriteLine(customer.ToString());

 customers[3].FirstName = "Donna";
 Console.WriteLine("FirstName == \"Donna\" (take two)");
 foreach (Customer customer in result)
 Console.WriteLine(customer.ToString());
 }

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()
 {
 List<Customer> customers = new List<Customer>
 {
 new Customer { FirstName = "Orlando",
 LastName = "Gee",
 EmailAddress = "orlando0@adventure-works.com"},
 new Customer { FirstName = "Keith",
 LastName = "Harris",
 EmailAddress = "keith0@adventure-works.com" },
 new Customer { FirstName = "Donna",
 LastName = "Carreras",
 EmailAddress = "donna0@adventure-works.com" },
 new Customer { FirstName = "Janet",
 LastName = "Gates",
 EmailAddress = "janet1@adventure-works.com" },
 new Customer { FirstName = "Lucy",
 LastName = "Harrington",
 EmailAddress = "lucy0@adventure-works.com" }
 };
 return customers;
 }
 }
}

Output:
FirstName == "Donna"
Donna Carreras
Email: donna0@adventure-works.com
FirstName == "Donna" (take two)
Donna Carreras
Email: donna0@adventure-works.com
Donna Gates
Email: janet1@adventure-works.com

Example 13-1. A simple LINQ query (continued)

282 | Chapter 13: Introducing LINQ

Example 13-1 defines a simple Customer class with three properties: FirstName,
LastName, and EmailAddress. It overrides the Object.ToString() method to provide a
string representation of its instances.

Creating the Query
The program starts by creating a customer list with some sample data, taking advan-
tage of object initialization as discussed in Chapter 4. Once the list of customers is
created, Example 13-1 defines a LINQ query:

IEnumerable<Customer> result =
 from customer in customers
 where customer.FirstName == "Donna"
 select customer;

The result variable is initialized with a query expression. In this example, the query
will retrieve all Customer objects whose first name is “Donna” from the customer list.
The result of such a query is a collection that implements IEnumerable<T>, where T is
the type of the result object. In this example, because the query result is a set of
Customer objects, the type of the result variable is IEnumerable<Customer>.

Let’s dissect the query and look at each part in more detail.

The from clause

The first part of a LINQ query is the from clause:

from customer in customers

The generator of a LINQ query specifies the data source and a range variable. A
LINQ data source can be any collection that implements the System.Collections.
Generic.IEnumerable<T> interface. In this example, the data source is customers, an
instance of List<Customer> that implements IEnumerable<T>.

You’ll see how to do the same query against a SQL database in
Chapter 15.

A LINQ range variable is like an iteration variable in a foreach loop, iterating over
the data source. Because the data source implements IEnumerable<T>, the C# com-
piler can infer the type of the range variable from the data source. In this example,
because the type of the data source is List<Customer>, the range variable customer is
of type Customer.

Filtering

The second part of this LINQ query is the where clause, which is also called a filter.
This portion of the clause is optional:

where customer.FirstName == "Donna"

Defining and Executing a Query | 283

The filter is a Boolean expression. It is common to use the range variable in a where
clause to filter the objects in the data source. Because customer in this example is of
type Customer, you use one of its properties, in this case FirstName, to apply the filter
for your query.

Of course, you may use any Boolean expression as your filter. For instance, you can
invoke the String.StartsWith() method to filter customers by the first letter of their
last name:

where customer.LastName.StartsWith("G")

You can also use composite expressions to construct more complex queries. In addi-
tion, you can use nested queries where the result of one query (the inner query) is
used to filter another query (the outer query).

Projection (or select)

The last part of a LINQ query is the select clause (known to database geeks as the
“projection”), which defines (or projects) the results:

select customer;

In this example, the query returns the customer objects that satisfy the query condi-
tion. You may constrain which fields you project, much as you would with SQL. For
instance, you can return only the qualified customers’ email addresses only:

 select customer.EmailAddress;

Deferred Query Evaluation
LINQ implements deferred query evaluation, meaning that the declaration and ini-
tialization of a query expression do not actually execute the query. Instead, a LINQ
query is executed, or evaluated, when you iterate through the query result:

foreach (Customer customer in result)
 Console.WriteLine(customer.ToString());

Because the query returns a collection of Customer objects, the iteration variable is an
instance of the Customer class. You can use it as you would any Customer object. This
example simply calls each Customer object’s ToString() method to output its
property values to the console.

Each time you iterate through this foreach loop, the query will be reevaluated. If the
data source has changed between executions, the result will be different. This is dem-
onstrated in the next code section:

customers[3].FirstName = "Donna";

Here, you modify the first name of the customer “Janet Gates” to “Donna” and then
iterate through the result again:

Console.WriteLine("FirstName == \"Donna\" (take two)");

284 | Chapter 13: Introducing LINQ

foreach (Customer customer in result)
 Console.WriteLine(customer.ToString());

As shown in the sample output, you can see that the result now includes Donna
Gates as well.

In most situations, deferred query evaluation is desired because you want to obtain
the most recent data in the data source each time you run the query. However, if you
want to cache the result so that it can be processed later without having to reexecute
the query, you can call either the ToList() or the ToArray() method to save a copy of
the result. Example 13-2 demonstrates this technique as well.

Example 13-2. A simple LINQ query with cached results

using System;
using System.Collections.Generic;
using System.Linq;
namespace Programming_CSharp
{
 // Simple customer class
 public class Customer
 {
 // Same as in Example 13-1
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();

 // Find customer by first name
 IEnumerable<Customer> result =
 from customer in customers
 where customer.FirstName == "Donna"
 select customer;
 List<Customer> cachedResult = result.ToList<Customer>();

 Console.WriteLine("FirstName == \"Donna\"");
 foreach (Customer customer in cachedResult)
 Console.WriteLine(customer.ToString());

 customers[3].FirstName = "Donna";
 Console.WriteLine("FirstName == \"Donna\" (take two)");
 foreach (Customer customer in cachedResult)
 Console.WriteLine(customer.ToString());
 }

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()
 {
 // Same as in Example 13-1

LINQ and C# | 285

In this example, you call the ToList<T> method of the result collection to cache the
result. Note that calling this method causes the query to be evaluated immediately. If
the data source is changed after this, the change will not be reflected in the cached
result. You can see from the output that there is no Donna Gates in the result.

One interesting point here is that the ToList<T> and ToArray<T> methods are not
actually methods of IEnumerable; that is, if you look in the documentation for
IEnumerable, you will not see them in the methods list. They are actually extension
methods provided by LINQ. We will look at extension methods in more detail later
in this chapter.

If you are familiar with SQL, you will notice a striking similarity between LINQ and
SQL, at least in their syntax. The only odd-one-out at this stage is that the select
statement in LINQ appears at the end of LINQ query expressions, instead of at the
beginning, as in SQL. Because the generator, or the from clause, defines the range
variable, it must be stated first. Therefore, the projection part is pushed back.

LINQ and C#
LINQ provides many of the common SQL operations, such as join queries, grouping,
aggregation, and sorting of results. In addition, it allows you to use the object-
oriented features of C# in query expressions and processing, such as hierarchical
query results.

Joining
You will often want to search for objects from more than one data source. LINQ pro-
vides the join clause that offers the ability to join many data sources, not all of which
need be databases. Suppose you have a list of customers containing customer names
and email addresses, and a list of customer home addresses. You can use LINQ to
combine both lists to produce a list of customers, with access to both their email and
home addresses:

 from customer in customers
 join address in addresses on

 }
 }
}

Output:
FirstName == "Donna"
Donna Carreras
Email: donna0@adventure-works.com
FirstName == "Donna" (take two)
Donna Carreras
Email: donna0@adventure-works.com

Example 13-2. A simple LINQ query with cached results (continued)

286 | Chapter 13: Introducing LINQ

 customer.Name equals address.Name
 ...

The join condition is specified in the on subclause, similar to SQL, except that the
objects joined need not be tables or views in a database. The join class syntax is:

 [data source 1] join [data source 2] on [join condition]

Here, we are joining two data sources, customers and addresses, based on the cus-
tomer name properties in each object. In fact, you can join more than two data
sources using a combination of join clauses:

from customer in customers
 join address in addresses on
 customer.Name equals address.Name
 join invoice in invoices on
 customer.Id equals invoice.CustomerId
 join invoiceItem in invoiceItems on
 invoice.Id equals invoiceItem.invoiceId

A LINQ join clause returns a result only when objects satisfying the join condition exist
in all data sources. For instance, if a customer has no invoice, the query will not return
anything for that customer, not even her name and email address. This is the equiva-
lent of a SQL inner join clause.

LINQ cannot perform an outer join (which returns a result if either of
the data sources contains objects that meet the join condition).

Ordering and the var Keyword
You can also specify the sort order in LINQ queries with the orderby clause:

from customer in Customers
 orderby customer.LastName
 select customer;

This sorts the result by customer last name in ascending order. Example 13-3 shows
how you can sort the results of a join query.

Example 13-3. A sorted join query

using System;
using System.Collections.Generic;
using System.Linq;

namespace Programming_CSharp
{
 // Simple customer class
 public class Customer
 {
 // Same as in Example 13-1
 }

LINQ and C# | 287

 // Customer address class
 public class Address
 {
 public string Name { get; set; }
 public string Street { get; set; }
 public string City { get; set; }

 // Overrides the Object.ToString() to provide a
 // string representation of the object properties.
 public override string ToString()
 {
 return string.Format("{0}, {1}", Street, City);
 }
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();
 List<Address> addresses = CreateAddressList();

 // Find all addresses of a customer
 var result =
 from customer in customers
 join address in addresses on
 string.Format("{0} {1}", customer.FirstName,
 customer.LastName)
 equals address.Name
 orderby customer.LastName, address.Street descending
 select new { Customer = customer, Address = address };

 foreach (var ca in result)
 {
 Console.WriteLine(string.Format("{0}\nAddress: {1}",
 ca.Customer, ca.Address));
 }
 }

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()
 {
 // Same as in Example 13-1
 }

 // Create a customer list with sample data
 private static List<Address> CreateAddressList()
 {
 List<Address> addresses = new List<Address>
 {

Example 13-3. A sorted join query (continued)

288 | Chapter 13: Introducing LINQ

The Customer class is identical to the one used in Example 13-1. The address is also
very simple, with a customer name field containing customer names in the <first
name> <last name> form, and the street and city of customer addresses.

The CreateCustomerList() and CreateAddressList() methods are just helper func-
tions to create sample data for this example. This example also uses the new C#
object and collection initializers, as explained in Chapter 4.

The query definition, however, looks quite different from the last example:

var result =
 from customer in customers
 join address in addresses on
 string.Format("{0} {1}", customer.FirstName, customer.LastName)
 equals address.Name

 new Address { Name = "Janet Gates",
 Street = "165 North Main",
 City = "Austin" },
 new Address { Name = "Keith Harris",
 Street = "3207 S Grady Way",
 City = "Renton" },
 new Address { Name = "Janet Gates",
 Street = "800 Interchange Blvd.",
 City = "Austin" },
 new Address { Name = "Keith Harris",
 Street = "7943 Walnut Ave",
 City = "Renton" },
 new Address { Name = "Orlando Gee",
 Street = "2251 Elliot Avenue",
 City = "Seattle" }
 };
 return addresses;
 }
 }
}

Output:
Janet Gates
Email: janet1@adventure-works.com
Address: 800 Interchange Blvd., Austin
Janet Gates
Email: janet1@adventure-works.com
Address: 165 North Main, Austin
Orlando Gee
Email: orlando0@adventure-works.com
Address: 2251 Elliot Avenue, Seattle
Keith Harris
Email: keith0@adventure-works.com
Address: 7943 Walnut Ave, Renton
Keith Harris
Email: keith0@adventure-works.com
Address: 3207 S Grady Way, Renton

Example 13-3. A sorted join query (continued)

LINQ and C# | 289

 orderby customer.LastName, address.Street descending
 select new { Customer = customer, Address = address.Street };

The first difference is the declaration of the result. Instead of declaring the result as
an explicitly typed IEnumerable<Customer> instance, this example declares the result
as an implicitly typed variable using the new var keyword. We will leave this for just
a moment, and jump to the query definition itself.

The generator now contains a join clause to signify that the query is to be operated
on two data sources: customers and addresses. Because the customer name property
in the Address class is a concatenation of customer first and last names, you con-
struct the names in Customer objects to the same format:

string.Format("{0} {1}", customer.FirstName, customer.LastName)

The dynamically constructed customer full name is then compared with the
customer name property in the Address objects using the equals operator:

string.Format("{0} {1}", customer.FirstName, customer.LastName)
equals address.Name

The orderby clause indicates the order in which the result should be sorted:

 orderby customer.LastName, address.Street descending

In the example, the result will be sorted first by customer last name in ascending
order, then by street address in descending order.

The combined customer name, email address, and home address are returned. Here
you have a problem—LINQ can return a collection of objects of any type, but it can’t
return multiple objects of different types in the same query, unless they are encapsu-
lated in one type. For instance, you can select either an instance of the Customer class
or an instance of the Address class, but you cannot select both, like this:

 select customer, address

The solution is to define a new type containing both objects. An obvious way is to
define a CustomerAddress class:

 public class CustomerAddress
 {
 public Customer Customer { get; set; }
 public Address Address { get; set; }
 }

You can then return customers and their addresses from the query in a collection of
CustomerAddress objects:

var result =
 from customer in customers
 join address in addresses on
 string.Format("{0} {1}", customer.FirstName, customer.LastName)
 equals address.Name
 orderby customer.LastName, address.Street descending
 Select new CustomerAddress { Customer = customer, Address = address };

290 | Chapter 13: Introducing LINQ

Grouping and the group Keyword
Another powerful feature of LINQ, commonly used by SQL programmers but now
integrated into the language itself, is grouping, as shown in Example 13-4.

Example 13-4. A group query

using System;
using System.Collections.Generic;
using System.Linq;

namespace Programming_CSharp
{
 // Customer address class
 public class Address
 {
 // Same as in Example 13-3
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Address> addresses = CreateAddressList();

// Find addresses grouped by customer name
 var result =
 from address in addresses
 group address by address.Name;
 foreach (var group in result)
 {
 Console.WriteLine("{0}", group.Key);
 foreach (var a in group)
 Console.WriteLine("\t{0}", a);
 }
 }

 // Create a customer list with sample data
 private static List<Address> CreateAddressList()
 {
 // Same as in Example 13-3
 }
 }
}

Output:
Janet Gates
 165 North Main, Austin
 800 Interchange Blvd., Austin
Keith Harris
 3207 S Grady Way, Renton
 7943 Walnut Ave, Renton
Orlando Gee
 2251 Elliot Avenue, Seattle

Implicitly Typed Local Variables | 291

Example 13-4 makes use of the group keyword, a query operator that splits a sequence
into a group given a key value—in this case, customer name (address.Name). The
result is a collection of groups, and you’ll need to enumerate each group to get the
objects belonging to it.

Anonymous Types
Often, you do not want to create a new class just for storing the result of a query. C#
3.0 provides anonymous types that allow us to declare both an anonymous class and
an instance of that class using object initializers. For instance, we can initialize an
anonymous customer address object:

new { Customer = customer, Address = address }

This declares an anonymous class with two properties, Customer and Address, and
initializes it with an instance of the Customer class and an instance of the Address
class. The C# compiler can infer the property types with the types of assigned
values, so here, the Customer property type is the Customer class, and the Address
property type is the Address class. As a normal, named class, anonymous classes can
have properties of any type.

Behind the scenes, the C# compiler generates a unique name for the new type. This
name cannot be referenced in application code; therefore, it is considered nameless.

Implicitly Typed Local Variables
Now, let’s go back to the declaration of query results where you declare the result as
type var:

var result = ...

Because the select clause returns an instance of an anonymous type, you cannot
define an explicit type IEnumerable<T>. Fortunately, C# 3.0 provides another fea-
ture—implicitly typed local variables—that solves this problem.

You can declare an implicitly typed local variable by specifying its type as var:

var id = 1;
var name = "Keith";
var customers = new List<Customer>();
var person = new {FirstName = "Donna", LastName = "Gates", Phone="123-456-7890" };

The C# compiler infers the type of an implicitly typed local variable from its initial-
ized value. Therefore, you must initialize such a variable when you declare it. In the
preceding code snippet, the type of id will be set as an integer, the type of name as a
string, and the type of customers as a strongly typed List<T> of Customer objects. The
type of the last variable, person, is an anonymous type containing three properties:
FirstName, LastName, and Phone. Although this type has no name in our code, the C#

292 | Chapter 13: Introducing LINQ

compiler secretly assigns it one and keeps track of its instances. In fact, the Visual
Studio IDE IntelliSense is also aware of anonymous types, as shown in Figure 13-1.

Back in Example 13-3, result is an instance of the constructed IEnumerable<T> that
contains query results, where the type of the argument T is the anonymous type that
contains two properties: Customer and Address.

Now that the query is defined, the next statement executes it using the foreach loop:

foreach (var ca in result)
{
 Console.WriteLine(string.Format("{0}\nAddress: {1}",
 ca.Customer, ca.Address));
}

As the result is an implicitly typed IEnumerable<T> of the anonymous class {Customer,
Address}, the iteration variable is also implicitly typed to the same class. For each
object in the result list, this example simply prints its properties.

Extension Methods
If you already know a little SQL, the query expressions introduced in previous sec-
tions are quite intuitive and easy to understand because LINQ is similar to SQL. As
C# code is ultimately executed by the .NET CLR, the C# compiler has to translate
query expressions to the format understandable by .NET. Because the .NET runtime
understands method calls that can be executed, the LINQ query expressions written
in C# are translated into a series of method calls. Such methods are called extension
methods, and they are defined in a slightly different way than normal methods.

Example 13-5 is identical to Example 13-1 except it uses query operator extension
methods instead of query expressions. The parts of the code that have not changed
are omitted for brevity.

Figure 13-1. Visual Studio IntelliSense recognizes anonymous types

Example 13-5. Using query operator extension methods

using System;
using System.Collections.Generic;
using System.Linq;
namespace Programming_CSharp

Extension Methods | 293

Example 13-5 searches for customers whose first name is “Donna” using a query
expression with a where clause. Here’s the original code from Example 13-1:

IEnumerable<Customer> result =
 from customer in customers
 where customer.FirstName == "Donna"
 select customer;

Here is the extension Where() method:

IEnumerable<Customer> result =
 customers.Where(customer => customer.FirstName == "Donna");

You may have noticed that the select clause seems to have vanished in this exam-
ple. For details on this, please see the sidebar, “Whither the select Clause?” (And try
to remember, as Chico Marx reminded us, “There ain’t no such thing as a Sanity
Clause.”)

{
 // Simple customer class
 public class Customer
 {
 // Same as in Example 13-1
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();

 // Find customer by first name
 IEnumerable<Customer> result =
 customers.Where(customer => customer.FirstName == "Donna");
 Console.WriteLine("FirstName == \"Donna\"");
 foreach (Customer customer in result)
 Console.WriteLine(customer.ToString());
 }

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()
 {
 // Same as in Example 13-1
 }
 }
}

Output:
(Same as in Example 13-1)

Example 13-5. Using query operator extension methods (continued)

294 | Chapter 13: Introducing LINQ

Recall that Customers is of type List<Customer>, which might lead you to think that
List<T> must have implemented the Where method to support LINQ. It does not. The
Where method is called an extension method because it extends an existing type.
Before we go into more details in this example, let’s take a closer look at extension
methods.

Defining and Using Extension Methods
C# 3.0 introduces extension methods that provide the ability for programmers to add
methods to existing types. For instance, System.String does not provide a Right()
function that returns the rightmost n characters of a string. If you use this functional-
ity a lot in your application, you may have considered building and adding it to your
library. However, System.String is defined as sealed, so you can’t subclass it. It is not
a partial class, so you can’t extend it using that feature.

Of course, you can’t modify the .NET core library directly either. Therefore, you
would have to define your own helper method outside of System.String and call it
with syntax such as this:

MyHelperClass.GetRight(aString, n)

This is not exactly intuitive. With C# 3.0, however, there is a more elegant solution.
You can actually add a method to the System.String class; in other words, you can
extend the System.String class without having to modify the class itself. Such a
method is called an extension method. Example 13-6 demonstrates how to define
and use an extension method.

Whither the select Clause?
The select is omitted because we use the resulting customer object without projecting
it into a different form. Therefore, the Where() method from Example 13-4 is the same
as this:

IEnumerable<Customer> result =
 customers.Where(customer => customer.FirstName ==
 "Donna").Select(customer => customer);

If a projection of results is required, you will need to use the Select method. For
instance, if you want to retrieve Donna’s email address instead of the whole customer
object, you can use the following statement:

 IEnumerable<string> result =
 customers.Where(customer => customer.FirstName ==
 "Donna")
 .Select(customer => customer.EmailAddress);

Extension Methods | 295

The first parameter of an extension method is always the target type, which is the
string class in this example. Therefore, this example effectively defines a Right()
function for the string class. You want to be able to call this method on any string,
just like calling a normal System.String member method:

aString.Right(n)

In C#, an extension method must be defined as a static method in a static class.
Therefore, this example defines a static class, ExtensionMethods, and a static method
in this class:

public static string Right(this string s, int n)
{
 if (n < 0 || n > s.Length)

Example 13-6. Defining and using extension methods

using System;

namespace Programming_CSharp_Extensions
{
 // Container class for extension methods.
 public static class ExtensionMethods
 {
 // Returns a substring containing the rightmost
 // n characters in a specific string.
 public static string Right(this string s, int n)
 {
 if (n < 0 || n > s.Length)
 return s;
 else
 return s.Substring(s.Length - n);
 }
 }

 public class Tester
 {
 public static void Main()
 {
 string hello = "Hello";
 Console.WriteLine("hello.Right(-1) = {0}", hello.Right(-1));
 Console.WriteLine("hello.Right(0) = {0}", hello.Right(0));
 Console.WriteLine("hello.Right(3) = {0}", hello.Right(3));
 Console.WriteLine("hello.Right(5) = {0}", hello.Right(5));
 Console.WriteLine("hello.Right(6) = {0}", hello.Right(6));
 }
 }
}

Output:
hello.Right(-1) = Hello
hello.Right(0) =
hello.Right(3) = llo
hello.Right(5) = Hello
hello.Right(6) = Hello

296 | Chapter 13: Introducing LINQ

 return s;
 else
 return s.Substring(s.Length - n);
}

Compared to a regular method, the only notable difference is that the first parame-
ter of an extension method always consists of the this keyword, followed by the
target type, and finally an instance of the target type:

this string s

The subsequent parameters are just normal parameters of the extension method. The
method body has no special treatment compared to regular methods either. Here,
this function simply returns the desired substring or, if the length argument n is
invalid, the original string.

To use an extension method, it must be in the same scope as the client code. If the
extension method is defined in another namespace, you should add a “using” direc-
tive to import the namespace where the extension method is defined. You can’t use
fully qualified extension method names as you do with a normal method. The use of
extension methods is otherwise identical to any built-in methods of the target type.
In this example, you simply call it like a regular System.String method:

hello.Right(3)

Extension Method Restrictions
It is worth mentioning, however, that extension methods are somewhat more restric-
tive than regular member methods—extension methods can only access public
members of target types. This prevents the breach of encapsulation of the target
types.

Another restriction is that if an extension method conflicts with a member method in
the target class, the member method is always used instead of the extension method,
as you can see in Example 13-7.

Example 13-7. Conflicting extension methods

using System;

namespace Programming_CSharp_Extensions
{
 // Container class for extension methods.
 public static class ExtensionMethods
 {
 // Returns a substring between the specific
 // start and end index of a string.
 public static string Substring(this string s, int startIndex, int endIndex)
 {
 if (startIndex >= 0 && startIndex <= endIndex && endIndex < s.Length)
 return s.Substring(startIndex, endIndex - startIndex);

Lambda Expressions in LINQ | 297

The Substring() extension method in this example has exactly the same signature as
the built-in String.Substring(int startIndex, int length) method. As you can see
from the output, it is the built-in Substring() method that is executed in this exam-
ple. Now, we’ll go back to Example 13-4, where we used the LINQ extension
method, Where, to search a customer list:

IEnumerable<Customer> result =
 customers.Where(customer => customer.FirstName == "Donna");

This method takes a predicate as an input argument.

In C# and LINQ, a predicate is a delegate that examines certain condi-
tions and returns a Boolean value indicating whether the conditions
are met.

The predicate performs a filtering operation on queries. The argument to this
method is quite different from a normal method argument. In fact, it’s a lambda
expression, which I introduced in Chapter 12.

Lambda Expressions in LINQ
In Chapter 12, I mentioned that you can use lambda expressions to define inline dele-
gate definitions. In the following expression:

customer => customer.FirstName == "Donna"

the left operand, customer, is the input parameter. The right operand is the lambda
expression that checks whether the customer’s FirstName property is equal to
“Donna.” Therefore, for a given customer object, you’re checking whether its first

 else
 return s;
 }
 }

 public class Tester
 {
 public static void Main()
 {
 string hello = "Hello";
 Console.WriteLine("hello.Substring(2, 3) = {0}",
 hello.Substring(2, 3));
 }
 }
}

Output:
hello.Substring(2, 3) = llo

Example 13-7. Conflicting extension methods (continued)

298 | Chapter 13: Introducing LINQ

name is Donna. This lambda expression is then passed into the Where method to
perform this comparison operation on each customer in the customer list.

Queries defined using extension methods are called method-based queries. Although
the query and method syntaxes are different, they are semantically identical, and the
compiler translates them into the same IL code. You can use either of them based on
your preference.

Let’s start with a very simple query, as shown in Example 13-8.

The statement names.Where is shorthand for:

System.Linq.Enumerable.Where(names,n=>n.StartsWith("D"));

Where is an extension method and so you can leave out the object (names) as the first
argument, and by including the namespace System.Linq, you can call upon Where
directly on the names object rather than through Enumerable.

Further, the type of dNames is Ienumerable<string>; we are using the new ability of
the compiler to infer this by using the keyword var. This does not undermine type-
safety, however, because var is compiled into the type Ienumerable<string> through
that inference.

Thus, you can read this line:

var dNames = names.Where(n => n.StartsWith("D"));

Example 13-8. A simple method-based query

using System;
using System.Linq;

namespace SimpleLamda
{
 class Program
 {
 static void Main(string[] args)
 {

 string[] names = { "Jesse", "Donald", "Douglas" };
 var dNames = names.Where(n => n.StartsWith("D"));
 foreach (string foundName in dNames)
 {
 Console.WriteLine("Found: " + foundName);
 }

 }
 }
}
Output:
Found: Donald
Found: Douglas

Lambda Expressions in LINQ | 299

as “fill the IEnumerable collection dNames from the collection names with each
member where the member starts with the letter D.”

As the method syntax is closer to how the C# compiler processes queries, it is worth
spending a little more time to look at how a more complex query is expressed to gain
a better understanding of LINQ. Let’s translate Example 13-3 into a method-based
query to see how it would look (see Example 13-9).

Example 13-9. Complex query in method syntax

namespace Programming_CSharp
{
 // Simple customer class
 public class Customer
 {
 // Same as in Example 13-1
 }

 // Customer address class
 public class Address
 {
 // Same as in Example 13-3
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();
 List<Address> addresses = CreateAddressList();

 var result = customers.Join(addresses,
 customer => string.Format("{0} {1}", customer.FirstName,
 customer.LastName),
 address => address.Name,
 (customer, address) => new { Customer = customer, Address =
 address })
 .OrderBy(ca => ca.Customer.LastName)
 .ThenByDescending(ca => ca.Address.Street);

 foreach (var ca in result)
 {
 Console.WriteLine(string.Format("{0}\nAddress: {1}",
 ca.Customer, ca.Address));
 }
 }

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()
 {
 // Same as in Example 13-3
 }

300 | Chapter 13: Introducing LINQ

In Example 13-3, the query is written in query syntax:

var result =
 from customer in customers
 join address in addresses on
 string.Format("{0} {1}", customer.FirstName, customer.LastName)
 equals address.Name
 orderby customer.LastName, address.Street descending
 select new { Customer = customer, Address = address.Street };

It is translated into the method syntax:

var result = customers.Join(addresses,
 customer => string.Format("{0} {1}", customer.FirstName,
 customer.LastName),
 address => address.Name,
 (customer, address) => new { Customer = customer, Address = address })
 .OrderBy(ca => ca.Customer.LastName)
 .ThenByDescending(ca => ca.Address.Street);

The lambda expression takes some getting used to. Start with the OrderBy clause; you
read that as “Order in this way: for each customerAddress, get the Customer’s
LastName.” You read the entire statement as, “start with customers and join to
addresses as follows, for customers concatenate the First.Name and Last.Name, and
then for address fetch each Address.Name and join the two, then for the resulting
record create a CustomerAddress object where the customer matches the Customer and
the address matches the Address; now order these first by each customer’s LastName
and then by each Address’ Street name.”

 // Create a customer list with sample data
 private static List<Address> CreateAddressList()
 {
 // Same as in Example 13-3
 }
 }
}

Output:
Janet Gates
Email: janet1@adventure-works.com
Address: 800 Interchange Blvd., Austin
Janet Gates
Email: janet1@adventure-works.com
Address: 165 North Main, Austin
Orlando Gee
Email: orlando0@adventure-works.com
Address: 2251 Elliot Avenue, Seattle
Keith Harris
Email: keith0@adventure-works.com
Address: 7943 Walnut Ave, Renton
Keith Harris
Email: keith0@adventure-works.com
Address: 3207 S Grady Way, Renton

Example 13-9. Complex query in method syntax (continued)

Lambda Expressions in LINQ | 301

The main data source, the customers collection, is still the main target object. The
extension method, Join(), is applied to it to perform the join operation. Its first
argument is the second data source, addresses. The next two arguments are join
condition fields in each data source. The final argument is the result of the join con-
dition, which is in fact the select clause in the query.

The OrderBy clauses in the query expression indicate that you want to order by the
customers’ last name in ascending order, and then by their street address in descend-
ing order. In the method syntax, you must specify this preference by using the
OrderBy and the ThenBy methods.

You can just call OrderBy methods in sequence, but the methods must be in reverse
order. That is, you must invoke the method to order the last field in the query
OrderBy list first, and order the first field in the query OrderBy list last. In this exam-
ple, you will need to invoke the order by street method first, followed by the order by
name method:

var result = customers.Join(addresses,
 customer => string.Format("{0} {1}", customer.FirstName,
 customer.LastName),
 address => address.Name,
 (customer, address) => new { Customer = customer, Address = address })
 .OrderByDescending(ca => ca.Address.Street)
 .OrderBy(ca => ca.Customer.LastName);

As you can see from the result, the results for both examples are identical. There-
fore, you can choose either based on your own preference.

Ian Griffiths, one of the smarter C# programmers on Earth, who blogs
at IanG on Tap (http://www.interact-sw.co.uk/iangblog/), makes the
following point, which I will illustrate in Chapter 15, but which I did
not want to leave hanging here: “You can use exactly these same two
syntaxes on a variety of different sources, but the behavior isn’t always
the same. The meaning of a lambda expression varies according to the
signature of the function it is passed to. In these examples, it’s a suc-
cinct syntax for a delegate. But if you were to use exactly the same
form of queries against a SQL data source, the lambda expression is
turned into something else.”

All the LINQ extension methods—Join, Select, Where, and so on—
have multiple implementations, each with different target types. Here,
we’re looking at the ones that operate over IEnumerable. The ones that
operate over IQueryable are subtly different. Rather than taking dele-
gates for the join, projection, where, and other clauses, they take
expressions. Those are wonderful and magical things that enable the
C# source code to be transformed into an equivalent SQL query.

302

Chapter 14CHAPTER 14

Working with XML 14

XML, or eXtensible Markup Language, provides an industry-standard method for
encoding information so that it is easily understandable by different software applica-
tions. It contains data and the description of data, which enables software applications
to interpret and process that data.

XML specifications are defined and maintained by the World Wide Web Consor-
tium (W3C). The latest version is XML 1.1 (Second Edition). However, XML 1.0
(currently in its fourth edition) is the most popular version, and is supported by all
XML parsers. W3C states that:

You are encouraged to create or generate XML 1.0 documents if you do not need the
new features in XML 1.1; XML Parsers are expected to understand both XML 1.0 and
XML 1.1.*

This chapter will introduce XML 1.0 only, and in fact, will focus on just the most
commonly used XML features. I’ll introduce you to the XMLDocument and XMLElement
classes first, and you’ll learn how to create and manipulate XML documents.

Of course, once you have a large document, you’ll want to be able to find substrings,
and I’ll show you two different ways to do that, using XPath and XPath Navigator.
XML also forms a key component of the Service Oriented Architecture (SOA), which
allows you to access remote objects across applications and platforms. The .NET
Framework allows you to serialize your objects as XML, and deserialize them at their
destination. I’ll cover those methods at the end of the chapter.

XML Basics (A Quick Review)
XML is a markup language, not unlike HTML, except that it is extensible—that is,
the user of XML can (and does!) create new elements and properties.

* http://www.w3.org/XML/Core/#Publications

XML Basics (A Quick Review) | 303

Elements
In XML, a document is composed of a hierarchy of elements. An element is defined
by a pair of tags, called the start and end tags. In the following example, FirstName is
an element:

<FirstName>Orlando</FirstName>

A start tag is composed of the element name surrounded by a pair of angle brackets:

<FirstName>

An end tag is similar to the start tag, except that the element name is preceded by a
forward slash:

</FirstName>

The content between the start and end tags is the element text, which may consist of
a set of child elements. The FirstName element’s text is simply a string. On the other
hand, the Customer element has three child elements:

 <Customer>
 <FirstName>Orlando</FirstName>
 <LastName>Gee</LastName>
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
 </Customer>

The top-level element in an XML document is called its root element. Every docu-
ment has exactly one root element.

An element can have zero or more child elements, and (except for the root element)
every element has exactly one parent element. Elements with the same parent ele-
ment are called sibling elements.

In this example, Customers (plural) is the root. The children of the root element,
Customers, are the three Customer (singular) elements:

<Customers>
 <Customer>
 ...
 </Customer>
 <Customer>
 ...
 </Customer>
 <Customer>
 ...
 </Customer>
</Customers>

Each Customer has one parent (Customers) and three children (FirstName, LastName,
and EmailAddress). Each of these, in turn, has one parent (Customer) and zero children.

304 | Chapter 14: Working with XML

XHTML
XHTML is an enhanced standard of HTML that follows the stricter rules of XML
validity. The two most important (and most often overlooked) rules follow:

• No elements may overlap, though they may nest. Thus:
<element 1>
 <element2>
 <...>
 </element 2>
</element 1>

You may not write:
<element 1>
 <element2>
 <...>
 </element 1>
</element 2>

because in the latter case, element2 overlaps element1 rather than being neatly
nested within it.

• Every element must be closed, which means that for each opened element, you
must have a closing tag (or the element tag must be self-closing). Thus, for those
of you who cut your teeth on forgiving browsers, it is time to stop writing:

and replace it with:

X Stands for eXtensible
The key point of XML is to provide an extensible markup language. An incredibly
short pop-history lesson: HTML was derived from the Structured Query Markup
Language (SQML). HTML has many wonderful attributes (pardon), but if you want
to add a new element to HTML, you have two choices: apply to the W3C and wait
awhile, or strike out on your own and be “nonstandard.”

There was a strong need for the ability for two organizations to get together and
specify tags that they could use for data exchange. Hey! Presto! XML was born as a
more general-purpose markup language that allows users to define their own tags.
This last point is the critical distinction of XML.

Creating XML Documents
Because XML documents are structured text documents, you can create them using a
text editor and process them using string manipulation functions. To paraphrase
David Platt, you can also have an appendectomy through your mouth, but it takes
longer and hurts more.

Creating XML Documents | 305

To make the job easier, .NET implements a collection of classes and utilities that
provide XML functionality, including the streaming XML APIs (which support
XmlReader and XmlWriter), and another set of XML APIs that use the XML Docu-
ment Object Model (DOM).

In Chapter 13, we used a list of customers in our examples. We will use the same
customer list in this chapter, starting with Example 14-1, in which we’ll write the list
of customers to an XML document.

Example 14-1. Creating an XML document

using System;
using System.Collections.Generic;
using System.Xml;

namespace Programming_CSharp
{
 // Simple customer class
 public class Customer
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string EmailAddress { get; set; }

 // Overrides the Object.ToString() to provide a
 // string representation of the object properties.
 public override string ToString()
 {
 return string.Format("{0} {1}\nEmail: {2}",
 FirstName, LastName, EmailAddress);
 }
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();

 XmlDocument customerXml = new XmlDocument();
 XmlElement rootElem = customerXml.CreateElement("Customers");
 customerXml.AppendChild(rootElem);
 foreach (Customer customer in customers)
 {
 // Create new element representing the customer object.
 XmlElement customerElem = customerXml.CreateElement("Customer");

 // Add element representing the FirstName property
 // to the customer element.
 XmlElement firstNameElem = customerXml.CreateElement("FirstName");
 firstNameElem.InnerText = customer.FirstName;
 customerElem.AppendChild(firstNameElem);

306 | Chapter 14: Working with XML

I’ve formatted the output here to make it easier to read; your actual
format will be in a continuous string:

 // Add element representing the LastName property
 // to the customer element.
 XmlElement lastNameElem = customerXml.CreateElement("LastName");
 lastNameElem.InnerText = customer.LastName;
 customerElem.AppendChild(lastNameElem);

 // Add element representing the EmailAddress property
 // to the customer element.
 XmlElement emailAddress =
 customerXml.CreateElement("EmailAddress");
 emailAddress.InnerText = customer.EmailAddress;
 customerElem.AppendChild(emailAddress);

 // Finally add the customer element to the XML document
 rootElem.AppendChild(customerElem);
 }

 Console.WriteLine(customerXml.OuterXml);
 Console.Read();
 }

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()
 {
 List<Customer> customers = new List<Customer>
 {
 new Customer { FirstName = "Orlando",
 LastName = "Gee",
 EmailAddress = "orlando0@hotmail.com"},
 new Customer { FirstName = "Keith",
 LastName = "Harris",
 EmailAddress = "keith0@hotmail.com" },
 new Customer { FirstName = "Donna",
 LastName = "Carreras",
 EmailAddress = "donna0@hotmail.com" },
 new Customer { FirstName = "Janet",
 LastName = "Gates",
 EmailAddress = "janet1@hotmail.com" },
 new Customer { FirstName = "Lucy",
 LastName = "Harrington",
 EmailAddress = "lucy0@hotmail.com" }
 };
 return customers;
 }
 }
}

Example 14-1. Creating an XML document (continued)

Creating XML Documents | 307

Output:
<Customers>
 <Customer>
 <FirstName>Orlando</FirstName>
 <LastName>Gee</LastName>
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
 </Customer>
 <Customer>
 <FirstName>Keith</FirstName>
 <LastName>Harris</LastName>
 <EmailAddress>keith0@hotmail.com</EmailAddress>
 </Customer>
 <Customer>
 <FirstName>Donna</FirstName>
 <LastName>Carreras</LastName>
 <EmailAddress>donna0@hotmail.com</EmailAddress>
 </Customer>
 <Customer>
 <FirstName>Janet</FirstName>
 <LastName>Gates</LastName>
 <EmailAddress>janet1@hotmail.com</EmailAddress>
 </Customer>
 <Customer>
 <FirstName>Lucy</FirstName>
 <LastName>Harrington</LastName>
 <EmailAddress>lucy0@hotmail.com</EmailAddress>
 </Customer>
</Customers>

We could rewrite this example with less code using LINQ to XML,
which I cover in Chapter 15.

In .NET, the System.Xml namespace contains all XML-related classes that provide
support to creating and processing XML documents. It is convenient to add a using
directive to any code files that use classes from this namespace.

The Customer class and the CreateCustomerList function in the main Tester class are
identical to those used in Chapter 13, so I will not go over them again here.

The main attraction in this example is the XML creation in the main function. First, a
new XML document object is created:

XmlDocument customerXml = new XmlDocument();

Next, you create the root element:

XmlElement rootElem = customerXml.CreateElement("Customers");
customerXml.AppendChild(rootElem);

Creating XML elements and other objects in the XML DOM is slightly different from
conventional object instantiation. The idiom is to call the CreateElement method of

308 | Chapter 14: Working with XML

the XML document object to create a new element in the document, and then call its
parent element’s AppendChild method to attach it to the parent. After these two oper-
ations, the customerXML document will contain an empty element:

<Customers></Customers>

or:

<Customers />

In the XML DOM, the root element is also called the document element. You can
access it through the DocumentElement property of the document object:

XmlElement rootElem = customerXml.DocumentElement;

XML Elements
With the root element in hand, you can add each customer as a child node:

foreach (Customer customer in customers)
{
 // Create new element representing the customer object.
 XmlElement customerElem = customerXml.CreateElement("Customer");

In this example, you make each property of the customer object a child element of
the customer element:

 // Add element representing the FirstName property to the customer element.
 XmlElement firstNameElem = customerXml.CreateElement("FirstName");
 firstNameElem.InnerText = customer.FirstName;
 cstomerElem.AppendChild(firstNameElem);

This adds the FirstName child element and assigns the customer’s first name to its
InnerText property. The result will look like this:

<FirstName>Orlando</FirstName>

The other two properties, LastName and EmailAddress, are added to the customer ele-
ment in exactly the same way. Here’s an example of the complete customer element:

<Customer>
 <FirstName>Orlando</FirstName>
 <LastName>Gee</LastName>
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
</Customer>

Finally, the newly created customer element is added to the XML document as a
child of the root element:

 // Finally add the customer element to the XML document
 rootElem.AppendChild(customerElem);
}

Once all customer elements are created, this example prints the XML document:

Console.WriteLine(customerXml.OuterXml);

Creating XML Documents | 309

When you run the code, the result is just a long string containing the whole XML
document and its elements. You can import it into an XML editor and format it into
a more human-readable form, as in the example output shown earlier. Visual Studio
includes an XML editor, so you can just paste the string into an XML file, and open
it in Visual Studio. You can then use the “Format the whole document” command
on the XML Editor toolbar to format the string, as shown in Figure 14-1.

XML Attributes
An XML element may have a set of attributes, which store additional information
about the element. An attribute is a key/value pair contained in the start tag of an
XML element:

<Customer FirstName="Orlando" LastName="Gee"></Customer>

The next example demonstrates how you can mix the use of child elements and
attributes. This example creates customer elements with the customer’s name stored
in attributes and the email address stored as a child element:

<Customer FirstName="Orlando" LastName="Gee">
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
</Customer>

The only difference between this and Example 14-1 is that you store the FirstName
and LastName properties as attributes to the customer elements here:

// Add an attribute representing the FirstName property
// to the customer element.
XmlAttribute firstNameAttr = customerXml.CreateAttribute("FirstName");
firstNameAttr.Value = customer.FirstName;
customerElem.Attributes.Append(firstNameAttr);

Similar to creating an element, you call the document object’s CreateAttribute
method to create an XmlAttribute object in the document. Assigning the value to an
attribute is a little more intuitive than assigning the element text because an attribute
has no child nodes; therefore, you can simply assign a value to its Value property. For
attributes, the Value property is identical to the InnerText property.

You will also need to append the attribute to an element’s Attributes
property, which represents a collection of all attributes of the element.
Unlike adding child elements, you cannot call the AppendChild func-
tion of elements to add attributes.

Figure 14-1. Formatting the XML document in Visual Studio

310 | Chapter 14: Working with XML

Example 14-2 shows the sample code and output.

Example 14-2. Creating an XML document containing elements and attributes

using System;
using System.Collections.Generic;
using System.IO;
using System.Xml;

namespace Programming_CSharp
{
 // Simple customer class
 public class Customer
 {
 // Same as in Example 14-1
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 List<Customer> customers = CreateCustomerList();

 XmlDocument customerXml = new XmlDocument();
 XmlElement rootElem = customerXml.CreateElement("Customers");
 customerXml.AppendChild(rootElem);
 foreach (Customer customer in customers)
 {
 // Create new element representing the customer object.
 XmlElement customerElem = customerXml.CreateElement("Customer");

 // Add an attribute representing the FirstName property
 // to the customer element.
 XmlAttribute firstNameAttr =
 customerXml.CreateAttribute("FirstName");
 firstNameAttr.Value = customer.FirstName;
 customerElem.Attributes.Append(firstNameAttr);

 // Add an attribute representing the LastName property
 // to the customer element.
 XmlAttribute lastNameAttr =
 customerXml.CreateAttribute("LastName");
 lastNameAttr.Value = customer.LastName;
 customerElem.Attributes.Append(lastNameAttr);

 // Add element representing the EmailAddress property
 // to the customer element.
 XmlElement emailAddress =
 customerXml.CreateElement("EmailAddress");
 emailAddress.InnerText = customer.EmailAddress;
 customerElem.AppendChild(emailAddress);

Searching in XML with XPath | 311

Being able to create XML documents to store data to be processed or exchanged is
great, but it would not be of much use if you could not find information in them eas-
ily. The System.Xml.XPath namespace contains classes and utilities that provide XPath
(search) support to C# programmers.

Searching in XML with XPath
In its simplest form, XPath may look similar to directory file paths. Here’s an exam-
ple using the XML document containing a customer list. This document is shown in
Example 14-2 and is reproduced here for convenience:

<Customers>
 <Customer FirstName="Orlando" LastName="Gee">
 <EmailAddress>orlando0@hotmail.com</EmailAddress>

 // Finally add the customer element to the XML document
 rootElem.AppendChild(customerElem);
 }

 Console.WriteLine(customerXml.OuterXml);
 Console.Read();
 }

 // Create a customer list with sample data
 private static List<Customer> CreateCustomerList()
 {
 // Same as in Example 14-1
 }
 }
}

Output:
<Customers>
 <Customer FirstName="Orlando" LastName="Gee">
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
 </Customer>
 <Customer FirstName="Keith" LastName="Harris">
 <EmailAddress>keith0@hotmail.com</EmailAddress>
 </Customer>
 <Customer FirstName="Donna" LastName="Carreras">
 <EmailAddress>donna0@hotmail.com</EmailAddress>
 </Customer>
 <Customer FirstName="Janet" LastName="Gates">
 <EmailAddress>janet1@hotmail.com</EmailAddress>
 </Customer>
 <Customer FirstName="Lucy" LastName="Harrington">
 <EmailAddress>lucy0@hotmail.com</EmailAddress>
 </Customer>
</Customers>

Example 14-2. Creating an XML document containing elements and attributes (continued)

312 | Chapter 14: Working with XML

 </Customer>
 <Customer FirstName="Keith" LastName="Harris">
 <EmailAddress>keith0@hotmail.com</EmailAddress>
 </Customer>
 <Customer FirstName="Donna" LastName="Carreras">
 <EmailAddress>donna0@hotmail.com</EmailAddress>
 </Customer>
 <Customer FirstName="Janet" LastName="Gates">
 <EmailAddress>janet1@hotmail.com</EmailAddress>
 </Customer>
 <Customer FirstName="Lucy" LastName="Harrington">
 <EmailAddress>lucy0@hotmail.com</EmailAddress>
 </Customer>
</Customers>

Example 14-3 lists the code for the example.

Example 14-3. Searching an XML document using XPath

using System;
using System.Collections.Generic;
using System.Xml;

namespace Programming_CSharp
{
 public class Customer
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string EmailAddress { get; set; }

 // Overrides the Object.ToString() to provide a
 // string representation of the object properties.
 public override string ToString()
 {
 return string.Format("{0} {1}\nEmail: {2}",
 FirstName, LastName, EmailAddress);
 }
 }

 public class Tester
 {
 private static XmlDocument CreateCustomerListXml()
 {
 List<Customer> customers = CreateCustomerList();
 XmlDocument customerXml = new XmlDocument();
 XmlElement rootElem = customerXml.CreateElement("Customers");
 customerXml.AppendChild(rootElem);
 foreach (Customer customer in customers)
 {
 XmlElement customerElem = customerXml.CreateElement("Customer");

 XmlAttribute firstNameAttr =
 customerXml.CreateAttribute("FirstName");

Searching in XML with XPath | 313

 firstNameAttr.Value = customer.FirstName;
 customerElem.Attributes.Append(firstNameAttr);

 XmlAttribute lastNameAttr =
 customerXml.CreateAttribute("LastName");
 lastNameAttr.Value = customer.LastName;
 customerElem.Attributes.Append(lastNameAttr);

 XmlElement emailAddress =
 customerXml.CreateElement("EmailAddress");
 emailAddress.InnerText = customer.EmailAddress;
 customerElem.AppendChild(emailAddress);

 rootElem.AppendChild(customerElem);
 }

 return customerXml;
 }

 private static List<Customer> CreateCustomerList()
 {
 List<Customer> customers = new List<Customer>
 {
 new Customer {FirstName = "Douglas",
 LastName = "Adams",
 EmailAddress = "dAdams@foo.com"},
 new Customer {FirstName = "Richard",
 LastName = "Dawkins",
 EmailAddress = "rDawkins@foo.com"},
 new Customer {FirstName = "Kenji",
 LastName = "Yoshino",
 EmailAddress = "kYoshino@foo.com"},
 new Customer {FirstName = "Ian",
 LastName = "McEwan",
 EmailAddress = "iMcEwan@foo.com"},
 new Customer {FirstName = "Neal",
 LastName = "Stephenson",
 EmailAddress = "nStephenson@foo.com"},
 new Customer {FirstName = "Randy",
 LastName = "Shilts",
 EmailAddress = "rShilts@foo.com"},
 new Customer {FirstName = "Michelangelo",
 LastName = "Signorile ",
 EmailAddress = "mSignorile@foo.com"},
 new Customer {FirstName = "Larry",
 LastName = "Kramer",
 EmailAddress = "lKramer@foo.com"},
 new Customer {FirstName = "Jennifer",
 LastName = "Baumgardner",
 EmailAddress = "jBaumgardner@foo.com"}
 };
 return customers;

Example 14-3. Searching an XML document using XPath (continued)

314 | Chapter 14: Working with XML

 }

 static void Main()
 {
 XmlDocument customerXml = CreateCustomerListXml();

 Console.WriteLine("Search for single node...");
 string xPath = "/Customers/Customer[@FirstName='Douglas']";
 XmlNode oneCustomer = customerXml.SelectSingleNode(xPath);

 Console.WriteLine("\nSelectSingleNode(\"{0}\")...", xPath);
 if (oneCustomer != null)
 {
 Console.WriteLine(oneCustomer.OuterXml);
 }
 else
 {
 Console.WriteLine("Not found");
 }

 Console.WriteLine("\nSearch for a single element... ");
 xPath = "/Customers/Customer[@FirstName='Douglas']";
 XmlElement customerElem = customerXml.SelectSingleNode(xPath)
 as XmlElement;

 Console.WriteLine("\nSelectSingleNode(\"{0}\")...", xPath);
 if (customerElem != null)
 {
 Console.WriteLine(customerElem.OuterXml);
 Console.WriteLine("customerElem.HasAttributes = {0}",
 customerElem.HasAttributes);
 }
 else
 {
 Console.WriteLine("Not found");
 }

 Console.WriteLine("\nSearch using descendant axis... ");
 xPath = "descendant::Customer[@FirstName='Douglas']";
 oneCustomer = customerXml.SelectSingleNode(xPath);
 Console.WriteLine("\nSelectSingleNode(\"{0}\")...", xPath);
 if (oneCustomer != null)
 {
 Console.WriteLine(oneCustomer.OuterXml);
 }
 else
 {
 Console.WriteLine("Not found");
 }

 xPath = "descendant::Customer[attribute::FirstName='Douglas']";
 oneCustomer = customerXml.SelectSingleNode(xPath);

Example 14-3. Searching an XML document using XPath (continued)

Searching in XML with XPath | 315

 Console.WriteLine("\nSelectSingleNode(\"{0}\")...", xPath);
 if (oneCustomer != null)
 {
 Console.WriteLine(oneCustomer.OuterXml);
 }
 else
 {
 Console.WriteLine("Not found");
 }

 Console.WriteLine("\nSearch using node values... ");
 xPath = "descendant::EmailAddress[text()='dAdams@foo.com']";
 XmlNode oneEmail = customerXml.SelectSingleNode(xPath);
 Console.WriteLine("\nSelectSingleNode(\"{0}\")...", xPath);
 if (oneEmail != null)
 {
 Console.WriteLine(oneEmail.OuterXml);
 }
 else
 {
 Console.WriteLine("Not found");
 }

 xPath = "descendant::Customer[EmailAddress ='dAdams@foo.com']";
 oneCustomer = customerXml.SelectSingleNode(xPath);
 Console.WriteLine("\nSelectSingleNode(\"{0}\")...", xPath);
 if (oneCustomer != null)
 {
 Console.WriteLine(oneCustomer.OuterXml);
 }
 else
 {
 Console.WriteLine("Not found");
 }
 Console.WriteLine("\nSearch using XPath Functions... ");
 xPath = "descendant::Customer[contains(EmailAddress, 'foo.com')]";
 XmlNodeList customers = customerXml.SelectNodes(xPath);
 Console.WriteLine("\nSelectNodes(\"{0}\")...", xPath);
 if (customers != null)
 {
 foreach (XmlNode customer in customers)
 Console.WriteLine(customer.OuterXml);
 }
 else
 {
 Console.WriteLine("Not found");
 }

 xPath = "descendant::Customer[starts-with(@LastName, 'A') " +
 "and contains(EmailAddress, 'foo.com')]";
 customers = customerXml.SelectNodes(xPath);
 Console.WriteLine("\nSelectNodes(\"{0}\")...", xPath);
 if (customers != null)

Example 14-3. Searching an XML document using XPath (continued)

316 | Chapter 14: Working with XML

 {
 foreach (XmlNode customer in customers)
 Console.WriteLine(customer.OuterXml);
 }
 else
 {
 Console.WriteLine("Not found");
 } // end else
 } // end main
 } // end class
} // end namespace

Output:
Search for single node...

SelectSingleNode("/Customers/Customer[@FirstName='Douglas']")...
<Customer FirstName="Douglas" LastName="Adams">
<EmailAddress>dAdams@foo.com</EmailAddress></Customer>

Search for a single element...

SelectSingleNode("/Customers/Customer[@FirstName='Douglas']")...
<Customer FirstName="Douglas" LastName="Adams">
<EmailAddress>dAdams@foo.com</EmailAddress></Customer>
customerElem.HasAttributes = True

Search using descendant axis...

SelectSingleNode("descendant::Customer[@FirstName='Douglas']")...
<Customer FirstName="Douglas" LastName="Adams">
<EmailAddress>dAdams@foo.com</EmailAddress></Customer>

SelectSingleNode("descendant::Customer[attribute::FirstName='Douglas']")...
<Customer FirstName="Douglas" LastName="Adams">
<EmailAddress>dAdams@foo.com</EmailAddress></Customer>

Search using node values...

SelectSingleNode("descendant::EmailAddress[text()='dAdams@foo.com']")...
<EmailAddress>dAdams@foo.com</EmailAddress>

SelectSingleNode("descendant::EmailAddress[text()='dAdams@foo.com']")...
<EmailAddress>dAdams@foo.com</EmailAddress>

Search using XPath Functions...

SelectNodes("descendant::Customer[contains(EmailAddress, 'foo.com')]")...
<Customer FirstName="Douglas" LastName="Adams">
<EmailAddress>dAdams@foo.com</EmailAddress></Customer>

<Customer FirstName="Richard" LastName="Dawkins">
<EmailAddress>rDawkins@foo.com</EmailAddress></Customer>

Example 14-3. Searching an XML document using XPath (continued)

Searching in XML with XPath | 317

This example refactors Example 14-2 by extracting the creation of the sample cus-
tomer list XML document into the CreateCustomerListXml() method. You can now
simply call this function in the main() function to create the XML document.

There are a couple of things to notice about this code. The first is that
although most of the code in this book has what I would consider
excessive commenting, I took the liberty™ of stripping this one listing
down to the level of commenting that I use in my own code: that is,
“next to none.” I believe in commenting only when the code can’t
speak for itself, and when it can’t I take that as a failure, typically a
failure of variable or method naming, often a failure of structure.
That’s not to say I never comment; just that I do so a lot less than
other folks (except when I’m writing books!).

The second thing to note is that I’ve placed a lot more output state-
ments whose entire purpose is to help you understand what you are
seeing in the output; this is the kind of commenting that I think actu-
ally is helpful, and was the only kind of debugging available before the
days of IDEs and breakpoints. It is good to get back to our roots.

Finally, note that for this example, I changed the names in the listing
to some of my favorite writers. I did this as a tribute to them, and I
hope that you will note their names and run out and buy everything
they’ve written.

<Customer FirstName="Kenji" LastName="Yoshino">
<EmailAddress>kYoshino@foo.com</EmailAddress></Customer>

<Customer FirstName="Ian" LastName="McEwan">
<EmailAddress>iMcEwan@foo.com</EmailAddress></Customer>

<Customer FirstName="Neal" LastName="Stephenson">
<EmailAddress>nStephenson@foo.com</EmailAddress></Customer>

<Customer FirstName="Randy" LastName="Shilts">
<EmailAddress>rShilts@foo.com</EmailAddress></Customer>

<Customer FirstName="Michelangelo" LastName="Signorile ">
<EmailAddress>mSignorile@foo.com</EmailAddress></Customer>

<Customer FirstName="Larry" LastName="Kramer">
<EmailAddress>lKramer@foo.com</EmailAddress></Customer>

<Customer FirstName="Jennifer" LastName="Baumgardner">
<EmailAddress>jBaumgardner@foo.com</EmailAddress></Customer>

<Customer FirstName="Jennifer" LastName="Baumgardner">
<EmailAddress>jBaumgardner@foo.com</EmailAddress></Customer>

SelectNodes("descendant::Customer[starts-with(@LastName, 'A')
and contains(EmailAddress, 'foo.com')]")...
<Customer FirstName="Douglas" LastName="Adams">
<EmailAddress>dAdams@foo.com</EmailAddress></Customer>

Example 14-3. Searching an XML document using XPath (continued)

318 | Chapter 14: Working with XML

Searching for a Single Node
The first search is to find a customer whose first name is “Douglas”:

string xPath = "/Customers/Customer[@FirstName='Douglas']";
XmlNode oneCustomer = customerXml.SelectSingleNode(xPath);
Console.WriteLine("\nSelectSingleNode(\"{0}\")...", xPath);
if (oneCustomer != null)
{
 Console.WriteLine(oneCustomer.OuterXml);
}
else
{
 Console.WriteLine("Not found");
}

In general, you will have some ideas about the structure of XML documents you are
going to process; otherwise, it will be difficult to find the information you want. Here
we know the node we are looking for sits just one level below the root element. This
makes it quite easy to construct the XPath using the absolute path:

/Customers/Customer[@FirstName='Douglas']

The beginning forward slash / indicates that the search should start from the top of
the document. You then specify the top-level element, which is always the root ele-
ment if you start from the top of the document, as in this case. Next, the target
element, Customer, is specified. If the target element is a few more levels down, you can
just specify the full path including all those levels, much like you do with filesystems.

Once the target element is reached, you specify the search conditions, or predicates,
which are always enclosed in a pair of square brackets. In this case, you want to
search for the value of the FirstName attribute, which is represented in XPath as
@FirstName, where the @ prefix denotes that it is an attribute instead of an element.
The value is then given to complete the condition expression.

There are many ways to execute an XPath in .NET. Here, you start with the
SelectSingleNode method from the XmlDocument class. I cover other execution meth-
ods later in this example and in the next example:

XmlNode oneCustomer = customerXml.SelectSingleNode(xPath);

The SelectSingleNode method searches for nodes starting from the context node,
which is the node from which the call is initiated. In this case, the context node is the
XmlDocument itself, customerXml. If this method finds a node that satisfies the search
condition, it returns an instance of XmlNode. In the XML DOM, XmlNode is the base
class representing any nodes in XML document hierarchy. Specialized node classes
such as XmlElement and XmlAttribute are all derived from this class. Even the
XmlDocument itself is derived from XmlNode, because it just happens to be the top node.

Searching in XML with XPath | 319

If the method fails to find any node, it returns a null object. Therefore, you should
always test the result against null before attempt to use it:

if (oneCustomer != null)
 Console.WriteLine(oneCustomer.OuterXml);
else
 Console.WriteLine("Not found");

In this example, the method is successful, and the resulting element is displayed.
Because XmlNode is a base class, you can access common properties such as Name,
Value, InnerXml, OuterXml, and ParentNode, and methods such as AppendChild. If you
need to access more specialized properties such as XmlAttribute.Specified, or meth-
ods such as XmlElement.RemoveAttribute, you should cast the result to the appropri-
ate specialized type. In such cases, you can combine the testing and casting of search
results to save yourself a little bit of typing using the C# as operator:

xPath = "/Customers/Customer[@FirstName='Douglas']";
XmlElement customerElem =
 customerXml.SelectSingleNode(xPath) as XmlElement;
Console.WriteLine("\nSelectSingleNode(\"{0}\")...", xPath);
if (customerElem != null)
{
 Console.WriteLine(customerElem.OuterXml);
 Console.WriteLine("customerElem.HasAttributes = {0}",
 customerElem.HasAttributes);
}
else
 Console.WriteLine("Not found");

Because the result here is cased into an instance of XmlElement, you can check its
HasAttributes property which is not available through XmlNode.

Searching Using Axes
In practice, you don’t always know the absolute path at design time. In such cases,
you will need to use one of the XPath axes (pronounced as the plural of axis), which
specify the relationship between the context node and the search target nodes.

Because you call the SelectSingleNode method through the XML document, the
target nodes are the children of the document. You should therefore use the descen-
dant axis, which specifies the immediate children and their children, and their
children’s children, and so on:

xPath = "descendant::Customer[@FirstName='Douglas']";
oneCustomer = customerXml.SelectSingleNode(xPath);
Console.WriteLine("\nSelectSingleNode(\"{0}\")...", xPath);
if (oneCustomer != null)
 Console.WriteLine(oneCustomer.OuterXml);
else
 Console.WriteLine("Not found");

320 | Chapter 14: Working with XML

The descendant axis in this XPath expression means that the SelectSingleNode
method will search for nodes anywhere, not just those on a specific level, in the doc-
ument. The result is the same in this case. You can also use a shorthand notation, //,
for the descendant axis. For instance, in the preceding example, you can also use:

 xPath = "//Customer[@FirstName='Douglas']";

In addition to the descendant axis explained earlier, other types of axes are defined
in XPath. You can find more details in the XPath references at http://www.w3.org/TR/
xpath#axes.

Predicates
The condition expression in XPath expressions is called a predicate. When an XPath
search is performed, the predicate is evaluated against each node. In this example,
each node is evaluated according to the specific predicate defined in the XPath. Here,
the @ prefix is used to indicate that the evaluation will be against an attribute. This is
actually an abbreviated form of the attribute axis. For instance, the following XPath
expression is semantically identical to the predicate mentioned earlier, and produces
the same search result:

xPath = "descendant::Customer[attribute::FirstName='Douglas']";
oneCustomer = customerXml.SelectSingleNode(xPath);
Console.WriteLine("\nSelectSingleNode(\"{0}\")...", xPath);
if (oneCustomer != null)
 Console.WriteLine(oneCustomer.OuterXml);
else
 Console.WriteLine("Not found");

If no axis is specified, XPath defaults to the element. Therefore, the following code
snippet finds the customer who has a specific email address:

xPath = "descendant::Customer[EmailAddress ='dAdams@foo.com']";
oneCustomer = customerXml.SelectSingleNode(xPath);
Console.WriteLine("\nSelectSingleNode(\"{0}\")...", xPath);
if (oneCustomer != null)
{
 Console.WriteLine(oneCustomer.OuterXml);
}
else
{
 Console.WriteLine("Not found");
}

What if you want to find a node with specific text—for instance, instead of finding
the customer element containing a given email address, we want to find the email
address element itself? Unfortunately, because XPath and the XML DOM are sepa-
rate standards, they don’t always provide the same features in the same manner. For
instance, InnerText or InnerXml defined in the XML DOM cannot be used in XPath
predicates. Instead, the text of an element is returned with the XPath text()
function:

Searching in XML with XPath | 321

xPath = "descendant::EmailAddress[text()='dAdams@foo.com']";
XmlNode oneEmail = customerXml.SelectSingleNode(xPath);
Console.WriteLine("\nSelectSingleNode(\"{0}\")...", xPath);
if (oneEmail != null)
 Console.WriteLine(oneEmail.OuterXml);
else
 Console.WriteLine("Not found");

XPath provides a comprehensive list of functions, including string, numeric, and
Boolean functions, which you can use to build your queries. So, be sure to read the
documentation to understand what they can do for you.

So far, all the queries return a single node, but often, the search result contains a col-
lection of nodes. Therefore, instead of using the SelectSingleNode method, you
could use the SelectNodes method:

xPath = "descendant::Customer[contains(EmailAddress, 'foo.com')]";
XmlNodeList customers = customerXml.SelectNodes(xPath);
Console.WriteLine("\nSelectNodes(\"{0}\")...", xPath);
if (customers != null)
{
 foreach (XmlNode customer in customers)
 Console.WriteLine(customer.OuterXml);
}
else
 Console.WriteLine("Not found");

This query finds all customers whose email address is from the same domain. As you
would expect, this method returns a collection of XmlNode objects, which is contained
in an instance of the XmlNodeList collection. You can iterate the result collection to
see all nodes returned.

XPath Functions
The next code block shows a more complex predicate to find customers whose last
name starts with A and whose email is from the same domain:

xPath = "descendant::Customer[starts-with(@LastName, 'A') " +
 "and contains(EmailAddress, 'foo.com')]";
customers = customerXml.SelectNodes(xPath);
Console.WriteLine("\nSelectNodes(\"{0}\")...", xPath);
if (customers != null)
{
 foreach (XmlNode customer in customers)
 Console.WriteLine(customer.OuterXml);
}
else
 Console.WriteLine("Not found");

The predicate here is composed of evaluation against attributes and child elements. The
first part checks whether the LastName attribute value starts with the letter A using the
XPath starts-with(string1, string2) function, which checks whether string1 starts
with string2. The two parts of the predicate are joined using the XPath and operator.

322 | Chapter 14: Working with XML

Many functions are defined in XPath; you can obtain a complete list of XPath func-
tions from http://www.w3.org/TR/xpath#corelib.

Searching Using XPathNavigator
Another way to query XML documents using XPath is to use the .NET
XPathNavigator class, which is defined in the System.Xml.XPath namespace. This
namespace contains a set of classes that provide optimized operations for searching
and iterating XML data using XPath.

To demonstrate the use of these functions, we will use the same set of customer data
as in the previous examples, as shown in Example 14-4.

Example 14-4. Searching an XML document using XPathNavigator

using System;
using System.Collections.Generic;
using System.IO;
using System.Xml;
using System.Xml.XPath;

namespace Programming_CSharp
{
 public class Customer
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string EmailAddress { get; set; }

 // Overrides the Object.ToString() to provide a
 // string representation of the object properties.
 public override string ToString()
 {
 return string.Format("{0} {1}\nEmail: {2}",
 FirstName, LastName, EmailAddress);
 }
 }
 // Main program
 public class Tester
 {
 static void Main()
 {
 XmlDocument customerXml = CreateCustomerXml();
 XPathNavigator nav = customerXml.CreateNavigator();

 string xPath = "descendant::Customer[@FirstName='Douglas']";
 XPathNavigator navNode = nav.SelectSingleNode(xPath);
 Console.WriteLine("\nSelectSingleNode(\"{0}\")...", xPath);
 if (navNode != null)
 {
 Console.WriteLine(navNode.OuterXml);

Searching Using XPathNavigator | 323

 XmlElement elem = navNode.UnderlyingObject as XmlElement;
 if (elem != null)
 Console.WriteLine(elem.OuterXml);
 else
 Console.WriteLine("Found the wrong node!");
 }
 else
 Console.WriteLine("Customer not found");

 xPath = "descendant::Customer[starts-with(@LastName, 'A') " +
 "and contains(EmailAddress, 'foo.com')]";
 Console.WriteLine("\nSelect(\"{0}\")...", xPath);
 XPathNodeIterator iter = nav.Select(xPath);
 if (iter.Count > 0)
 {
 while (iter.MoveNext())
 Console.WriteLine(iter.Current.OuterXml);
 }
 else
 Console.WriteLine("Customer not found");

 Console.WriteLine("\nNow sort by FirstName...");
 XPathExpression expr = nav.Compile(xPath);
 expr.AddSort("@FirstName", Comparer<String>.Default);
 iter = nav.Select(expr);
 while (iter.MoveNext())
 Console.WriteLine(iter.Current.OuterXml);

 XPathExpression expr2 = nav.Compile(xPath);
 Console.WriteLine("\nAnd again...");
 expr2.AddSort("@FirstName", XmlSortOrder.Ascending,
 XmlCaseOrder.None, string.Empty, XmlDataType.Text);
 iter = nav.Select(expr2);
 while (iter.MoveNext())
 Console.WriteLine(iter.Current.OuterXml);
 }

 // Create an XML document containing a customer list.
 private static XmlDocument CreateCustomerXml()
 {

 List<Customer> customers = CreateCustomerList();
 XmlDocument customerXml = new XmlDocument();
 XmlElement rootElem = customerXml.CreateElement("Customers");
 customerXml.AppendChild(rootElem);
 foreach (Customer customer in customers)
 {
 XmlElement customerElem = customerXml.CreateElement("Customer");

 XmlAttribute firstNameAttr =
 customerXml.CreateAttribute("FirstName");
 firstNameAttr.Value = customer.FirstName;
 customerElem.Attributes.Append(firstNameAttr);

Example 14-4. Searching an XML document using XPathNavigator (continued)

324 | Chapter 14: Working with XML

 XmlAttribute lastNameAttr =
 customerXml.CreateAttribute("LastName");
 lastNameAttr.Value = customer.LastName;
 customerElem.Attributes.Append(lastNameAttr);

 XmlElement emailAddress =
 customerXml.CreateElement("EmailAddress");
 emailAddress.InnerText = customer.EmailAddress;
 customerElem.AppendChild(emailAddress);

 rootElem.AppendChild(customerElem);
 }

 return customerXml;
 }
 private static List<Customer> CreateCustomerList()
 {
 List<Customer> customers = new List<Customer>
 {
 new Customer { FirstName = "Douglas",
 LastName = "Adams",
 EmailAddress = "dAdams@foo.com"},
 new Customer { FirstName = "Richard",
 LastName = "Adawkins",
 EmailAddress = "rDawkins@foo.com" },
 new Customer { FirstName = "Kenji",
 LastName = "Ayoshino",
 EmailAddress = "kYoshino@foo.com" },
 new Customer { FirstName = "Ian",
 LastName = "AmcEwan",
 EmailAddress = "iMcEwan@foo.com" },
 new Customer { FirstName = "Neal",
 LastName = "Astephenson",
 EmailAddress = "nStephenson@foo.com" },
 new Customer { FirstName = "Randy",
 LastName = "Ashilts",
 EmailAddress = "rShilts@foo.com" },
 new Customer { FirstName = "Michelangelo",
 LastName = "Asignorile ",
 EmailAddress = "mSignorile@foo.com" },
 new Customer { FirstName = "Larry",
 LastName = "Akramer",
 EmailAddress = "lKramer@foo.com" },
 new Customer { FirstName = "Jennifer",
 LastName = "Abaumgardner",
 EmailAddress = "jBaumgardner@foo.com" }

 };
 return customers;
 }
 }
}

Example 14-4. Searching an XML document using XPathNavigator (continued)

Searching Using XPathNavigator | 325

Output:

<Customer FirstName="Kenji" LastName="Ayoshino">
 <EmailAddress>kYoshino@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Ian" LastName="AmcEwan">
 <EmailAddress>iMcEwan@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Neal" LastName="Astephenson">
 <EmailAddress>nStephenson@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Randy" LastName="Ashilts">
 <EmailAddress>rShilts@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Michelangelo" LastName="Asignorile ">
 <EmailAddress>mSignorile@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Larry" LastName="Akramer">
 <EmailAddress>lKramer@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Jennifer" LastName="Abaumgardner">
 <EmailAddress>jBaumgardner@foo.com</EmailAddress>
</Customer>

Now sort by FirstName...
<Customer FirstName="Douglas" LastName="Adams">
 <EmailAddress>dAdams@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Ian" LastName="AmcEwan">
 <EmailAddress>iMcEwan@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Jennifer" LastName="Abaumgardner">
 <EmailAddress>jBaumgardner@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Kenji" LastName="Ayoshino">
 <EmailAddress>kYoshino@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Larry" LastName="Akramer">
 <EmailAddress>lKramer@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Michelangelo" LastName="Asignorile ">
 <EmailAddress>mSignorile@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Neal" LastName="Astephenson">
 <EmailAddress>nStephenson@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Randy" LastName="Ashilts">
 <EmailAddress>rShilts@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Richard" LastName="Adawkins">
 <EmailAddress>rDawkins@foo.com</EmailAddress>
</Customer>

Example 14-4. Searching an XML document using XPathNavigator (continued)

326 | Chapter 14: Working with XML

We had to take some horrible liberties with the last names of some
wonderful writers to get this example to work. For that, I apologize.

This example added the using System.Xml.XPath directive to include the required
classes. The customer XML document is created in the same way as in previous
examples:

XmlDocument customerXml = CreateCustomerXml();
XPathNavigator nav = customerXml.CreateNavigator();

Here, it also creates an instance of the XPathNavigator class, which you can create
only by calling the CreateNavigator method of the target XmlDocument instance.
Instead of calling the methods of the XML document, you now use the navigator
object to execute queries:

string xPath = "descendant::Customer[@FirstName='Donna']";
XPathNavigator navNode = nav.SelectSingleNode(xPath);

The SelectSingleNode() method also returns a single node. However, it returns
another XPathNavigator object from which you can query further.

And again...
<Customer FirstName="Douglas" LastName="Adams">
 <EmailAddress>dAdams@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Ian" LastName="AmcEwan">
 <EmailAddress>iMcEwan@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Jennifer" LastName="Abaumgardner">
 <EmailAddress>jBaumgardner@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Kenji" LastName="Ayoshino">
 <EmailAddress>kYoshino@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Larry" LastName="Akramer">
 <EmailAddress>lKramer@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Michelangelo" LastName="Asignorile ">
 <EmailAddress>mSignorile@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Neal" LastName="Astephenson">
 <EmailAddress>nStephenson@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Randy" LastName="Ashilts">
 <EmailAddress>rShilts@foo.com</EmailAddress>
</Customer>
<Customer FirstName="Richard" LastName="Adawkins">
 <EmailAddress>rDawkins@foo.com</EmailAddress>
</Customer>

Example 14-4. Searching an XML document using XPathNavigator (continued)

Searching Using XPathNavigator | 327

You can access many of the node properties, such as InnerXml, from the navigator
object. However, if you need to access properties or methods of the specific node
type, you should retrieve the underlying node using the UnderlyingObject property of
XPathNavigator:

Console.WriteLine("\nSelectSingleNode(\"{0}\")...", xPath);
if (navNode != null)
{
 Console.WriteLine(navNode.OuterXml);

 XmlElement elem = navNode.UnderlyingObject as XmlElement;
 if (elem != null)
 Console.WriteLine(elem.OuterXml);
 else
 Console.WriteLine("Found the wrong node!");
}
else
 Console.WriteLine("Customer not found");

Using XPathNodeIterator
For queries that may return more than one node, you should call the Select method
of the XPathNavigator class:

xPath = "descendant::Customer[starts-with(@LastName, 'A') " +
 "and contains(EmailAddress, 'foo.com')]";
Console.WriteLine("\nSelect(\"{0}\")...", xPath);
XPathNodeIterator iter = nav.Select(xPath);
if (iter.Count > 0)
{
 while (iter.MoveNext())
 Console.WriteLine(iter.Current.OuterXml);
}
else
{
 Console.WriteLine("Customer not found");
}

The Select method returns an XPathNodeIterator instance, which allows you to iter-
ate through the results. One important feature of this approach is that the query is
not executed on this line:

XPathNodeIterator iter = nav.Select(xPath);

The query is executed only when you go through the result by calling the iterator’s
MoveNext() method. This reduces the initial hit, especially when the document is
large. This is one of the performance advantages you gain by using XPathNavigator
instead of searching through the XmlDocument directly.

This delayed query execution means that it’s not always a good idea to access the
iterator’s Count property because this causes the query to be executed. Therefore, the

328 | Chapter 14: Working with XML

code in this example is not very efficient, especially if the document or the result is
large. However, it is useful when checking whether the query returns anything.

Using XPathExpression
Although the SelectNodes and SelectSingleNode methods of the XmlDocument and
XPathNavigator classes accept an XPath expression as plain text, they actually com-
pile the input expression into a state in which the XML query engine can execute it
before the query is actually executed. If you call any of the SelectXXX methods with
the same XPath expression again, the expression is compiled again.

If you anticipate that you may run the same query many times, it would be benefi-
cial to compile the XPath expression yourself and use the compiled form whenever
needed. In XPath, you can do this by calling the XPathNavigator’s Compile method.
The result is an XPathExpression object that can be cached for later use:

XPathExpression expr = nav.Compile(xPath);
iter = nav.Select(expr);

An additional benefit of creating a compiled expression is that you can use it to sort
the query results. You can add a sort condition to a compiled expression using its
AddSort method:

expr.AddSort("@FirstName", Comparer<String>.Default);

The first argument is the sort key, and the second is an instance of a comparer class
that implements IComparer. The .NET Framework provides a predefined generic
Comparer<T> class using the singleton pattern. Therefore, if the sort key is a string, as
in this example, you can use default string comparison by passing in the singleton
Comparer<String>.Default instance to the AddSort method. You can also indicate a
case-insensitive comparison using the System.Collections.CaseInsensitiveComparer
class.

The AddSort method is overloaded, with the second version taking more arguments
to specify detailed sorting requirements and to perform either a numeric or a text
comparison:

expr2.AddSort(sortKey, sortOrder, caseOrder, language, dataType);

You can decide to sort in ascending or descending order, whether the lowercase or
uppercase should come first, the language to use for comparison, and whether it
should be a numeric or a text search:

expr2.AddSort("@FirstName", XmlSortOrder.Ascending,
 XmlCaseOrder.None, string.Empty, XmlDataType.Text);

After adding the sort condition in this example, you can see from the preceding
result that the returned nodes are now ordered by their FirstName attribute.

XML Serialization | 329

XML Serialization
So far, you have constructed the XML representing the Customer objects by hand. As
XML is becoming popular, especially with the acceptance of web services as a cen-
tral component of the SOA, it is increasingly common to serialize objects into XML,
transmit them across process and application boundaries, and deserialize them back
into conventional objects.

For more information about SOA, see Programming WCF Services by
Juval Löwy (O’Reilly).

It is therefore natural for the .NET Framework to provide a built-in serialization
mechanism, as a part of the Windows Communication Foundation (WCF), to
reduce the coding efforts by application developers. The System.Xml.Serialization
namespace defines the classes and utilities that implement methods required for seri-
alizing and deserializing objects. Example 14-5 illustrates this.

Example 14-5. Simple XML serialization and deserialization

using System;
using System.IO;
using System.Xml.Serialization;

namespace Programming_CSharp
{
 // Simple customer class
 public class Customer
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string EmailAddress { get; set; }

 // Overrides the Object.ToString() to provide a
 // string representation of the object properties.
 public override string ToString()
 {
 return string.Format("{0} {1}\nEmail: {2}",
 FirstName, LastName, EmailAddress);
 }
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 Customer c1 = new Customer
 {
 FirstName = "Orlando",

330 | Chapter 14: Working with XML

To serialize an object using .NET XML serialization, you need to create an
XmlSerializer object:

XmlSerializer serializer = new XmlSerializer(typeof(Customer));

You must pass in the type of the object to be serialized to the XmlSerializer
constructor. If you don’t know the object type at design time, you can discover it by
calling its GetType() method:

XmlSerializer serializer = new XmlSerializer(c1.GetType());

You also need to decide where the serialized XML document should be stored. In
this example, you simply send it to a StringWriter:

StringWriter writer = new StringWriter();

serializer.Serialize(writer, c1);
string xml = writer.ToString();
Console.WriteLine("Customer in XML:\n{0}\n", xml);

 LastName = "Gee",
 EmailAddress = "orlando0@hotmail.com"
 };

 XmlSerializer serializer = new XmlSerializer(typeof(Customer));
 StringWriter writer = new StringWriter();

 serializer.Serialize(writer, c1);
 string xml = writer.ToString();
 Console.WriteLine("Customer in XML:\n{0}\n", xml);

 Customer c2 = serializer.Deserialize(new StringReader(xml))
 as Customer;
 Console.WriteLine("Customer in Object:\n{0}", c2.ToString());

 Console.ReadKey();
 }
 }
}

Output:
Customer in XML:
<?xml version="1.0" encoding="utf-16"?>
<Customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <FirstName>Orlando</FirstName>
 <LastName>Gee</LastName>
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
</Customer>

Customer in Object:
Orlando Gee
Email: orlando0@hotmail.com

Example 14-5. Simple XML serialization and deserialization (continued)

XML Serialization | 331

The resulting XML string is then displayed on the console:

<?xml version="1.0" encoding="utf-16"?>
<Customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://
www.w3.org/2001/XMLSchema">
 <FirstName>Orlando</FirstName>
 <LastName>Gee</LastName>
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
</Customer>

The first line is an XML declaration. This is to let the consumers (human users and
software applications) of this document know that this is an XML file, the official
version to which this file conforms, and the encoding format used. This is optional in
XML, but it is generated by .NET XML Serialization.

The root element is the Customer element, with each property represented as a child
element. The xmlns:xsi and xmlns:xsd attributes specify the XML schema definition
used by this document. They are optional, so I will not explain them further. If you
are interested, please read the XML specification or other documentation, such as
the MSDN Library, for more details.

Aside from those optional parts, this XML representation of the Customer object is
identical to the one created in Example 14-1. However, instead of writing tens of
lines of code, you need only three lines using .NET XML Serialization classes.

Furthermore, it is just as easy to reconstruct an object from its XML form:

Customer c2 = serializer.Deserialize(new StringReader(xml))
 as Customer;
Console.WriteLine("Customer in Object:\n{0}", c2.ToString());

All it needs is to call the XmlSerializer.Deserialize method. It has several over-
loaded versions, one of which takes a TextReader instance as an input parameter.
Because StringReader is derived from TextReader, you just pass an instance of
StringReader to read from the XML string. The Deserialize method returns an
object, so it is necessary to cast it to the correct type.

Customizing XML Serialization Using Attributes
By default, all public read/write properties are serialized as child elements. You can
customize your classes by specifying the type of XML node you want for each of your
public properties, as shown in Example 14-6.

Example 14-6. Customizing XML serialization with attributes

using System;
using System.IO;
using System.Xml.Serialization;

namespace Programming_CSharp
{

332 | Chapter 14: Working with XML

 // Simple customer class
 public class Customer
 {
 [XmlAttribute()]
 public string FirstName { get; set; }

 [XmlIgnore()]
 public string LastName { get; set; }

 public string EmailAddress { get; set; }

 // Overrides the Object.ToString() to provide a
 // string representation of the object properties.
 public override string ToString()
 {
 return string.Format("{0} {1}\nEmail: {2}",
 FirstName, LastName, EmailAddress);
 }
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 Customer c1 = new Customer
 {
 FirstName = "Orlando",
 LastName = "Gee",
 EmailAddress = "orlando0@hotmail.com"
 };

 //XmlSerializer serializer = new XmlSerializer(c1.GetType());
 XmlSerializer serializer = new XmlSerializer(typeof(Customer));
 StringWriter writer = new StringWriter();

 serializer.Serialize(writer, c1);
 string xml = writer.ToString();
 Console.WriteLine("Customer in XML:\n{0}\n", xml);

 Customer c2 = serializer.Deserialize(new StringReader(xml)) as
 Customer;
 Console.WriteLine("Customer in Object:\n{0}", c2.ToString());

 Console.ReadKey();
 }
 }
}

Output:
Customer in XML:
<?xml version="1.0" encoding="utf-16"?>

Example 14-6. Customizing XML serialization with attributes (continued)

XML Serialization | 333

The only changes in this example are a couple of added XML serialization attributes
in the Customer class:

[XmlAttribute()]
public string FirstName { get; set; }

The first change is to specify that you want to serialize the FirstName property into an
attribute of the Customer element by adding the XmlAttributeAttribute to the property:

[XmlIgnore()]
public string LastName { get; set; }

The other change is to tell XML serialization that you in fact do not want the LastName
property to be serialized at all. You do this by adding the XmlIgnoreAttribute to the
property. As you can see from the sample output, the Customer object is serialized
exactly as we asked.

However, you have probably noticed that when the object is deserialized, its
LastName property is lost. Because it is not serialized, the XmlSerializer is unable to
assign it any value. Therefore, its value is left as the default, which is an empty string.

The goal is to exclude from serialization only those properties you don’t need or can
compute or can retrieve in other ways.

Runtime XML Serialization Customization
Sometimes it may be necessary to customize the serialization of objects at runtime.
For instance, your class may contain an instance of another class. The contained
class may be serialized with all its properties as child elements. However, you may
want to have them serialized into attributes to save some space. Example 14-7 illus-
trates how you can achieve this.

<Customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 FirstName="Orlando">
 <EmailAddress>orlando0@hotmail.com</EmailAddress>
</Customer>

Customer in Object:
Orlando
Email: orlando0@hotmail.com

Example 14-7. Customizing XML serialization at runtime

using System;
using System.IO;
using System.Reflection;
using System.Xml.Serialization;

Example 14-6. Customizing XML serialization with attributes (continued)

334 | Chapter 14: Working with XML

namespace Programming_CSharp
{
 // Simple customer class
 public class Customer
 {
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string EmailAddress { get; set; }

 // Overrides the Object.ToString() to provide a
 // string representation of the object properties.
 public override string ToString()
 {
 return string.Format("{0} {1}\nEmail: {2}",
 FirstName, LastName, EmailAddress);
 }
 }

 // Main program
 public class Tester
 {
 static void Main()
 {
 Customer c1 = new Customer
 {
 FirstName = "Orlando",
 LastName = "Gee",
 EmailAddress = "orlando0@hotmail.com"
 };

 Type customerType = typeof(Customer);
 XmlAttributeOverrides overrides = new XmlAttributeOverrides();
 foreach (PropertyInfo prop in customerType.GetProperties())
 {
 XmlAttributes attrs = new XmlAttributes();
 attrs.XmlAttribute = new XmlAttributeAttribute();
 overrides.Add(customerType, prop.Name, attrs);
 }

 XmlSerializer serializer = new XmlSerializer(customerType, overrides);
 StringWriter writer = new StringWriter();

 serializer.Serialize(writer, c1);
 string xml = writer.ToString();
 Console.WriteLine("Customer in XML:\n{0}\n", xml);

 Customer c2 = serializer.Deserialize(new StringReader(xml)) as
 Customer;
 Console.WriteLine("Customer in Object:\n{0}", c2.ToString());

Example 14-7. Customizing XML serialization at runtime (continued)

XML Serialization | 335

The Customer class in this example has no custom XML serialization attributes.
Therefore, all its properties are serialized into child elements, as you have seen in
previous examples. When an instance of it is serialized at runtime in the main func-
tion, we use a combination of reflection and advanced serialization techniques to
ensure that the properties are serialized into attributes instead.

In .NET XML serialization, you instruct the serialization engine to override its
default behavior with your custom requirements. Because you are going to use the
Customer type a lot, you store it locally so that it you can use it later:

Type customerType = typeof(Customer);

To specify your custom requirements, you use the XmlAttributeOverrides class:

XmlAttributeOverrides overrides = new XmlAttributeOverrides();
foreach (PropertyInfo prop in customerType.GetProperties())
{
 XmlAttributes attrs = new XmlAttributes();
 attrs.XmlAttribute = new XmlAttributeAttribute();
 overrides.Add(customerType, prop.Name, attrs);
}

The first step is to create a new XmlAttributeOverrides instance. You can now use .
NET reflection to go through all the properties of the target class, using its
GetProperties method. For each property, you override its default serialization behav-
ior by adding an XmlAttributes object to the XmlAttributeOverrides object. To spec-
ify that you want to serialize the property as an attribute, you assign an
XmlAttributeAttribute object to the XmlAttributes.XmlAttribute property. This is
the equivalent of adding the XmlAttributeAttribute to a property at design time, as
you did in the last example.

The XmlAttributeOverrides.Add method takes three input parameters. The first is the
type of the object, the second is the name of the property, and the last is the cus-
tomer serialization behavior.

 Console.ReadKey();
 }
 }
}

Output:
Customer in XML:
<?xml version="1.0" encoding="utf-16"?>
<Customer xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" FirstName="
Orlando" LastName="Gee" EmailAddress="orlando0@hotmail.com" />

Customer in Object:
Orlando Gee
Email: orlando0@hotmail.com

Example 14-7. Customizing XML serialization at runtime (continued)

336 | Chapter 14: Working with XML

To ensure that the XML serializer use the customer serialization overrides, you must
pass in the overrides object to its constructor:

XmlSerializer serializer = new XmlSerializer(customerType, overrides);

The rest of this example stays unchanged from the last example. You can see from
the sample output that all the properties are indeed serialized into attributes instead
of child elements. When the object is deserialized, the customer overrides are also
recognized and the object is reconstructed correctly.

337

Chapter 15 CHAPTER 15

Putting LINQ to Work15

LINQ may be the most anticipated, most exciting (and to some, most feared) feature
in C# 3.0. The previous two chapters were, in large measure, a necessary introduc-
tion, an appetizer to whet your appetite and get you ready for the main meal: using
LINQ to retrieve meaningful data in production applications.

Before we begin, let’s be clear: your DBA is terrified of LINQ, and not just as a mat-
ter of job security. Improperly used, LINQ has the ability to put queries into the
hands of inexperienced, untrained goofballs (us) who know little or nothing about
writing efficient queries, and who will bring carefully honed data-intensive enterprise
systems to their knees (fun, eh?). OK, I said it out loud, so let’s all stop panicking.

As with all programming, the trick is to write the program, get it working, and then
optimize. It may be that after you have your program up and working (and profiled),
you’ll discover that there are some places that you’ve used LINQ that you’d be bet-
ter off using stored procedures running within your database (that’s what databases
do for a living), but we don’t know that a priori, and the advantages of LINQ are so
tremendous (e.g., the ability to use an object-oriented unified syntax to access all
your data regardless of source) that it cries out for a “code now, optimize later if
needed” approach.

The two most common sources you’ll use LINQ with are, no doubt, SQL and XML,
but they are certainly not the only sources of data. You may well find yourself retriev-
ing data from:

• Files

• Flat databases

• Mail messages

• Web services

• Legacy systems

• In memory data structures

338 | Chapter 15: Putting LINQ to Work

And most exciting are sources you haven’t anticipated yet. With the understanding
of LINQ fundamentals you gained in Chapter 13, and the grounding in XML you
gained in Chapter 14, you are now just about ready to dig in and put LINQ to work.

Getting Set Up
Examples in this section use the SQL Server 2005 Adventure Works LT sample data-
base. To set up this database, download it from:

http://www.codeplex.com/MSFTDBProdSamples/Release/ProjectReleases.
aspx?ReleaseId=4004

Please note that although this database is a simplified version of the more
comprehensive AdventureWorks, the two are quite different, and the
examples in this chapter will not work with the full AdventureWorks
database. Please select the AdventureWorksLT MSI package applicable
for your platform—32-bit, x64, or IA64. If SQL Server is installed in the
default directory, install the sample database to C:\Program Files\
Microsoft SQL Server\MSSQL.1\MSSQL\Data\. Otherwise, install the
database to the Data subdirectory under its installation directory.

If you are using SQL Server Express included in Visual Studio 2008, you will need to
enable the Named Pipes protocol:

1. Open SQL Server Configuration Manager under Start ➝ All Programs ➝

Microsoft SQL Server 2005 ➝ Configuration Tools ➝ SQL Server Configuration
Manager.

2. In the left pane, select SQL Server Configuration Manager (Local) ➝ SQL Server
2005 Network Configuration ➝ Protocols for SQLEXPRESS.

3. In the right pane, right-click the Named Pipes protocol and select Enable, as
shown in Figure 15-1.

4. In the left pane, select SQL Server 2005 Services, then right-click SQL Server
(SQLEXPRESS), and select Restart to restart SQL Server, as shown in Figure 15-2.

5. Attach the sample database to SQL Server Express using one of the following
methods:

a. If you already have SQL Server Client tools installed, open SQL Server
Management Studio under Start ➝ All Programs ➝ Microsoft SQL Server
2005 ➝ SQL Server Management Studio and connect to the local SQL Server
Express database.

LINQ to SQL Fundamentals | 339

b. Download SQL Server Express Management Studio from the Microsoft SQL
Server Express page (http://msdn2.microsoft.com/en-us/express/bb410792.
aspx), and install it on your machine. Then, open it and connect to the local
SQL Server Express database.

6. In the left pane, right-click Databases and select Attach (see Figure 15-3).

7. On the Attach Databases dialog click Add.

8. Click OK to close this dialog, and OK again to close the Attach Database dialog.

LINQ to SQL Fundamentals
To begin, open Visual Studio, and create a new application named “Simple Linq to
SQL” as a console application. Once the IDE is open, click on View, and open the
Server Explorer and make a connection to the AdventureWorksLT database, and test
that connection.

Figure 15-1. Enabling the Named Pipes protocol in SQL Server 2005 Express

Figure 15-2. Restarting SQL Server 2005 Express

340 | Chapter 15: Putting LINQ to Work

With that in place, you are ready to create a program that uses LINQ to connect
your SQL database. You’ll need to include the System.Data.Linq namespace in the
references for your project as shown in Figure 15-4 so that the last two using state-
ments will compile.

This will also create the mapping between each class property and the correspond-
ing database column:

public class Customer
 {

Figure 15-3. Attaching the database to SQL Server 2005 Express

LINQ to SQL Fundamentals | 341

[Column] public string FirstName { get; set; }
[Column] public string LastName { get; set; }
[Column] public string EmailAddress { get; set; }

Complete analysis follows Example 15-1.

Figure 15-4. Adding a reference to System.Data.Linq

Example 15-1. Simple LINQ to SQL

using System;
using System.Data.Linq;
using System.Data.Linq.Mapping;
using System.Linq;

namespace Simple_Linq_to_SQL
{
 // customer class
 [Table(Name="SalesLT.Customer")]
 public class Customer
 {
 [Column] public string FirstName { get; set; }
 [Column] public string LastName { get; set; }
 [Column] public string EmailAddress { get; set; }

 // Overrides the Object.ToString() to provide a
 // string representation of the object properties.
 public override string ToString()

342 | Chapter 15: Putting LINQ to Work

The key to this program is in the first line of Main(), where you define db to be of
type DataContext. A DataContext object is the entry point for the LINQ to SQL frame-
work, providing a bridge between the application code and database-specific
commands. Its job is to translate high-level C# LINQ to SQL code to corresponding
database commands and execute them behind the scenes. It maintains a connection
to the underlying database, fetches data from the database when requested, tracks
changes made to every entity retrieved from the database, and updates the database
as needed. It maintains an “identity cache” to guarantee that if you retrieve an entity
more than once, all duplicate retrievals will be represented by the same object
instance (thereby preventing database corruption; for more information, see the
“Database Corruption” sidebar).

Once the DataContext is instantiated, you can access the objects contained in the
underlying database. This example uses the Customer table in the AdventureWorksLT
database using the DataContext’s GetTable() function:

 Table<Customer> customers = db.GetTable<Customer>();

 {
 return string.Format("{0} {1}\nEmail: {2}",
 FirstName, LastName, EmailAddress);
 }
 }

 public class Tester
 {
 static void Main()
 {
 DataContext db = new DataContext(
 @"Data Source=.\SqlExpress;
 Initial Catalog=AdventureWorksLT;
 Integrated Security=True");

 Table<Customer> customers = db.GetTable<Customer>();
 var query =
 from customer in customers
 where customer.FirstName == "Donna"
 select customer;

 foreach(var c in query)
 Console.WriteLine(c.ToString());

 Console.ReadKey();
 }
 }
}

Output:
Donna Carreras
Email: donna0@adventure-works.com

Example 15-1. Simple LINQ to SQL (continued)

LINQ to SQL Fundamentals | 343

This function is a generic function so that you can specify that the table should be
mapped to a collection of Customer objects.

DataContext has a great many methods and properties, one of which is a Log. This
property allows you to specify the destination where it logs the SQL queries and
commands executed. By redirecting it to where you can access it, you can see how
LINQ does its magic. For instance, you can redirect the Log to Console.Out so that
you can see the output on the system console:

Output:
SELECT [t0].[FirstName], [t0].[LastName], [t0].[EmailAddress]
FROM [SalesLT].[Customer] AS [t0]
WHERE [t0].[FirstName] = @p0
-- @p0: Input String (Size = 5; Prec = 0; Scale = 0) [Donna]
-- Context: SqlProvider(Sql2005) Model: AttributedMetaModel Build: 3.5.20706.1

Database Corruption
The data in a large database can be “corrupted” in many ways—that is, the data can
inadvertently come to misrepresent the information you hoped to keep accurate.

A typical scenario would be this: you have data representing the books in your store
and how many are available. When you make a query about a book, the data is
retrieved from the database into a temporary record (or object) that is no longer con-
nected to the database until you “write it back”—any changes to the database are not
reflected in the record you are looking at unless you refresh the data (this is necessary
to keep a busy database responsive).

Suppose that Joe takes a call asking how many copies of Programming C# are on hand.
He calls up the record in his database and finds to his horror that they are down to a
single copy. While he is talking with his customer, Jane, a second seller, takes a call
looking for the same book. She sees one book available and sells it to her customer,
while Joe is discussing the merits of the book with his customer. Joe’s customer decides
to make the purchase, but by the time he does it is too late; Jane has already sold the
last copy. Joe tries to put the sale through, but the book that quite clearly is showing
as available is no longer there. You now have one very unhappy customer and a sales-
person that has been made to look like an idiot. Oops.

I mention in the text that LINQ ensures that multiple retrievals of a database record
are represented by the same object instance; this makes it much harder for the afore-
mentioned scenario to occur, as both Joe and Jane are working on the same record in
memory; thus, if Jane were to change the “number on hand,” that would be reflected
in Joe’s representation of the object—they are looking at the same data, not at inde-
pendent snapshots.

344 | Chapter 15: Putting LINQ to Work

Using Visual Studio LINQ to SQL Designer
Rather than working out the data relationships in the underlying database and map-
ping them in the DataContext manually, you can use the designer built into Visual
Studio. This is a very powerful mechanism that makes working with LINQ painfully
simple. To see how this works, first open the AdventureWorksLT database in SQL
Server Management Studio Express and examine the Customer, CustomerAddress,
and Address tables so that you feel comfortable you understand their relationship, as
illustrated by the Entity-Relationship diagram shown in Figure 15-5.

Create a new Visual Studio console application called AdventureWorksDBML. Make
sure the Server Explorer is visible and you have a connection to AdventureWorksLT,
as shown in Figure 15-6. If the connection is not available, follow the instructions
mentioned earlier to create it.

Figure 15-5. AdventureWorksLT database diagram

Using Visual Studio LINQ to SQL Designer | 345

To create your LINQ to SQL classes, right-click on the project, and choose Add ➝

New Item, as shown in Figure 15-7.

When the New Item dialog opens, choose LINQ to SQL Classes. You can use the
default name (probably DataClasses1), or replace it with a more meaningful name. In
this case, replace it with AdventureWorksAddress, and click Add. The name you select
will become the name of your DataContext object with the word DataContext appended.
Therefore, the data context name in this case will be AdventureWorksAddressDataContext.

The center window shows changes to the Object Relational Designer. You can now
drag tables from Server Explorer or Toolbox to the designer. Drag the Address, Cus-
tomer, and CustomerAddress tables from the Server Explorer onto this space, as
shown in Figure 15-8.

In the image, two tables have been dragged on, and the third is about to be dropped.
Once your tables are dropped, Visual Studio 2008 automatically retrieves and
displays the relationship between the tables. You can arrange them to ensure that the
relationships between the tables are displayed clearly.

Figure 15-6. Server Explorer window

346 | Chapter 15: Putting LINQ to Work

Once you’ve done that, two new files have been created: AdventureWorksAddress.dbml.
layout and AdventureWorksAddress.designer.cs. The former has the XML representa-
tion of the tables you’ve put on the surface, a short segment of which is shown here:

<?xml version="1.0" encoding="utf-8"?>
<ordesignerObjectsDiagram dslVersion="1.0.0.0" absoluteBounds="0, 0, 11, 8.5"
name="AdventureWorksAddress">
 <DataContextMoniker Name="/AdventureWorksAddressDataContext" />
 <nestedChildShapes>
 <classShape Id="4a893188-c5cd-44db-a114-0444cced4057" absoluteBounds="1.125,
1.375, 2, 2.5401025390625">
 <DataClassMoniker Name="/AdventureWorksAddressDataContext/Address" />
 <nestedChildShapes>
 <elementListCompartment Id="d59f1bc4-752e-41db-a940-4a9938014ca7"
absoluteBounds="1.1400000000000001, 1.835, 1.9700000000000002, 1.9801025390625"
name="DataPropertiesCompartment" titleTextColor="Black" itemTextColor="Black" />
 </nestedChildShapes>
 </classShape>
 <classShape Id="c432968b-f644-4ca3-b26b-61dfe4292884" absoluteBounds="5.875, 1,
2, 3.6939111328124996">
 <DataClassMoniker Name="/AdventureWorksAddressDataContext/Customer" />
 <nestedChildShapes>
 <elementListCompartment Id="c240ad98-f162-4921-927a-c87781db6ac4"
absoluteBounds="5.8900000000000006, 1.46, 1.9700000000000002, 3.1339111328125"
name="DataPropertiesCompartment" titleTextColor="Black" itemTextColor="Black" />

Figure 15-7. Selecting Add→New Item

Using Visual Studio LINQ to SQL Designer | 347

 </nestedChildShapes>
 </classShape>

The .cs file has the code to handle all the LINQ to SQL calls that you otherwise
would have to write by hand. Like all machine-generated code, it is terribly verbose;
here is a very brief excerpt:

public Address()
{
 OnCreated();
 this._CustomerAddresses = new EntitySet<CustomerAddress>(new
 Action<CustomerAddress>(this.attach_CustomerAddresses),
 new Action<CustomerAddress>(this.detach_CustomerAddresses));
}

[Column(Storage="_AddressID", AutoSync=AutoSync.OnInsert,
DbType="Int NOT NULL IDENTITY", IsPrimaryKey=true, IsDbGenerated=true)]
public int AddressID
{
 get
 {
 return this._AddressID;
 }
 set
 {

Figure 15-8. Dragging tables onto the work surface

348 | Chapter 15: Putting LINQ to Work

 if ((this._AddressID != value))
 {
 this.OnAddressIDChanging(value);
 this.SendPropertyChanging();
 this._AddressID = value;
 this.SendPropertyChanged("AddressID");
 this.OnAddressIDChanged();
 }
 }
}

The classes that are generated are strongly typed, and a class is generated for each
table you place in the designer.

For a review of strongly typed versus loosely typed classes, see
Chapter 9, particularly the section on Generics.

The DataContext class exposes each table as a property, and the relationships
between the tables are represented by properties of the classes representing data
records. For example, the CustomerAddress table is mapped to the CustomerAddresses
property, which is a strongly typed collection (LINQ table) of CustomerAddress objects.
You can access the parent Customer and Address objects of a CustomerAddress object
through its Customer and Address properties, respectively. This makes it quite easy to
write the code to retrieve data.

Appending a Method to a Generated Class
One of the wonderful things about the partial class keyword added in C# 2.0 is that
you can add a method to the classes generated by the designer. In this case, we are over-
riding the ToString method of the Customer class to have it display all its members in a
relatively easy-to-read manner:

public partial class Customer
{
 public override string ToString()
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendFormat("{0} {1} {2}",
 FirstName, LastName, EmailAddress);
 foreach (CustomerAddress ca in CustomerAddresses)
 {
 sb.AppendFormat("\n\t{0}, {1}",
 ca.Address.AddressLine1,
 ca.Address.City);
 }
 sb.AppendLine();
 return sb.ToString();
 }
}

Retrieving Data | 349

Retrieving Data
Replace the contents of Program.cs with the code shown in Example 15-2 to use the
generated LINQ to SQL code to retrieve data from the three tables you’ve mapped using
the designer.

Example 15-2. Using LINQ to SQL designer-generated classes

using System;
using System.Linq;
using System.Text;

namespace AdventureWorksDBML
{
 // Main program
 public class Tester
 {
 static void Main()
 {
 AdventureWorksAddressDataContext dc = new
 AdventureWorksAddressDataContext();
 // Uncomment the statement below to show the
 // SQL statement generated by LINQ to SQL.
 // dc.Log = Console.Out;

 // Find one customer record.
 Customer donna = dc.Customers.Single(c => c.FirstName == "Donna");");
 Console.WriteLine(donna);

 // Find a list of customer records.
 var customerDs =
 from customer in dc.Customers
 where customer.FirstName.StartsWith("D")
 orderby customer.FirstName, customer.LastName
 select customer;

 foreach (Customer customer in customerDs)
 {
 Console.WriteLine(customer);
 }
 }
 }

 // Add a method to the generated Customer class to
 // show formatted customer properties.
 public partial class Customer
 {
 public override string ToString()
 {
 StringBuilder sb = new StringBuilder();
 sb.AppendFormat("{0} {1} {2}",
 FirstName, LastName, EmailAddress);
 foreach (CustomerAddress ca in CustomerAddresses)

350 | Chapter 15: Putting LINQ to Work

Creating Properties for Each Table
As you can see, you begin by creating an instance of the DataContext object you
asked the tool to generate:

AdventureWorksAddressDataContext dc = new AdventureWorksAddressDataContext();

When you use the designer, one of the things it does, besides creating the
DataContext class, is define a property for each table you’ve placed in the designer (in
this case, Customer, Address, and CustomerAddress). It names those properties by
making them plural. Therefore, the properties of AdventureWorksAddressDataContext
include Customers, Addresses, and CustomerAddresses.

One side effect of this convention is that it would be a good idea to
name your database tables in singular form to avoid potential confu-
sion in your code. By default, the LINQ to SQL designer names the
generated data classes the same as the table names. If you use plural
table names, the class names will be the same as the DataContext
property names. Therefore, you will need to manually modify the gen-
erated class names to avoid such naming conflicts.

 {
 sb.AppendFormat("\n\t{0}, {1}",
 ca.Address.AddressLine1,
 ca.Address.City);
 }
 sb.AppendLine();
 return sb.ToString();
 }
 }
}

Output:
Donna Carreras donna0@adventure-works.com
 12345 Sterling Avenue, Irving

(only showing the first 5 customers):
Daniel Blanco daniel0@adventure-works.com
 Suite 800 2530 Slater Street, Ottawa
Daniel Thompson daniel2@adventure-works.com
 755 Nw Grandstand, Issaquah
Danielle Johnson danielle1@adventure-works.com
 955 Green Valley Crescent, Ottawa
Darrell Banks darrell0@adventure-works.com
 Norwalk Square, Norwalk
Darren Gehring darren0@adventure-works.com
 509 Nafta Boulevard, Laredo

Example 15-2. Using LINQ to SQL designer-generated classes (continued)

Retrieving Data | 351

You can access these properties through the DataContext instance:

dc.Customers

These properties are themselves table objects that implement the IQueryable inter-
face, which itself has a number of very useful methods that allow you to filter,
traverse, and project operations over the data in a LINQ table.

Most of these methods are extension methods of the LINQ types, which means they
can be called just as though they were instance methods of the object that imple-
ments IQueryable<T> (in this case, the tables in the DataContext). Therefore, because
Single is a method of IQueryable that returns the only element in a collection that
meets a given set of criteria, we’ll use that to find the one customer whose first name
is Donna. If there is more than one customer with that specific first name, only the
first customer record is returned:

Customer donna = dc.Customers.Single(c => c.FirstName == "Donna");

Let’s unpack this line of code.

You begin by getting the Customers property of the DataContext instance, dc:

dc.Customers

What you get back is a Customer table object, which implements IQueryable. You can
therefore call the method Single on this object:

dc.Customers.Single(condition);

The result will be to return a Customer object, which you can assign to a local vari-
able of type Customer:

Customer donna = dc.Customers.Single(condition);

Notice that everything we are doing here is strongly typed. This is
goodness.

Inside the parentheses, you must place the expression that will filter for the one
record we need, and this is a great opportunity to use lambda expressions:

c => c.FirstName == "Donna"

You read this as “c goes to c.FirstName where c.FirstName equals
Donna.”

In this notation, c is an implicitly typed variable (of type Customer). LINQ to SQL
translates this expression into a SQL statement similar to the following:

Select * from Customer where FirstName = ‘Donna’;

352 | Chapter 15: Putting LINQ to Work

Please note that this is just an arbitrary sample SQL. You can see the exact SQL as
generated by LINQ to SQL by redirecting the DataContext log and examining the
output, as described earlier in this chapter.

This SQL statement is executed when the Single method is executed:

Customer donna = dc.Customers.Single(c => c.FirstName == "Donna");

This Customer object (donna) is then printed to the console:

Console.WriteLine(donna);

The output is:

Donna Carreras donna0@adventure-works.com
 12345 Sterling Avenue, Irving,

Note that although you searched only by first name, what you retrieved was a com-
plete record, including the address information. Also note that the output is created
just by passing in the object, using the overridden method we created for the tool-
generated class (see the earlier sidebar, “Appending a Method to a Generated Class”).

A LINQ Query
The next block uses the new-to-C# 3.0 keyword var to declare a variable customerDS
which is implicitly typed by the compiler, based on the information returned by the
LINQ query:

 var customerDs =
 from customer in dc.Customers
 where customer.FirstName.StartsWith("D")
 orderby customer.FirstName, customer.LastName
 select customer;

This query is similar to a SQL query (as noted in the previous chapter), and as you
can see, you are selecting from the DataContext Customers property (e.g., the Cus-
tomer table) each customer whose FirstName property (e.g., the FirstName column)
begins with D. You are ordering by FirstName and then LastName, and returning all of
the results into customerDs, whose implicit type is a TypedCollection of Customers.

With that in hand, you can iterate through the collection and print the data about
these customers to the console, treating them as Customer objects rather than as data
records:

foreach (Customer customer in customerDs)
{
 Console.WriteLine(customer);
}

This is reflected in this excerpt of the output:

Delia Toone delia0@adventure-works.com
 755 Columbia Ctr Blvd, Kennewick

Updating Data Using LINQ to SQL | 353

Della Demott Jr della0@adventure-works.com
 25575 The Queensway, Etobicoke

Denean Ison denean0@adventure-works.com
 586 Fulham Road,, London

Denise Maccietto denise1@adventure-works.com
 Port Huron, Port Huron

Derek Graham derek0@adventure-works.com
 655-4th Ave S.W., Calgary

Derik Stenerson derik0@adventure-works.com
 Factory Merchants, Branson

Diane Glimp diane3@adventure-works.com
 4400 March Road, Kanata

Updating Data Using LINQ to SQL
To add or modify data to the database using LINQ, you interact with objects in C#,
make your changes, and then tell the DataContext to SubmitChanges, allowing LINQ
to take care of the details. This is an extremely object-oriented way to approach data
storage. Your code remains strongly typed and yet decoupled from the underlying
persistence mechanism.

If you want to add new data to the database, you instantiate a new object and then
save it. If you want to modify data already persisted (stored) in the database, you
retrieve the object, modify it, and then store it. The key to Example 15-3 is that from
a C# perspective, you are interacting with objects and letting LINQ worry about the
details of interacting with SQL Server.

Example 15-3. Modifying data using LINQ to SQL

using System;
using System.Collections.Generic;
using System.Data.Linq;
using System.Data.Linq.Mapping;
using System.Linq;
using System.Text;

namespace Modifying_Data_Using_Linq_To_SQL
{
 // Main program
 public class Tester
 {
 static void Main()
 {
 AddCustomer();
 UpdateCustomer();
 Console.ReadKey();

354 | Chapter 15: Putting LINQ to Work

 }

 private static void AddCustomer()
 {
 Console.WriteLine("Adding a new customer...");
 AdventureWorksDataContext dc = new AdventureWorksDataContext();
 // Uncomment the statement below to show the
 // SQL statement generated by LINQ to SQL.
 // dc.Log = Console.Out;

 // Add a new customer with address
 Customer douglas = new Customer();
 douglas.FirstName = "Douglas";
 douglas.LastName = "Adams";
 douglas.EmailAddress = "douglas0@adventureworks.com";
 douglas.PasswordHash = "fake";
 douglas.PasswordSalt = "fake";
 douglas.ModifiedDate = DateTime.Today;
 douglas.rowguid = Guid.NewGuid();

 Address addr = new Address();
 addr.AddressLine1 = "1c Sharp Way";
 addr.City = "Seattle";
 addr.PostalCode = "98011";
 addr.StateProvince = "Washington";
 addr.CountryRegion = "United States";
 addr.ModifiedDate = DateTime.Today;
 addr.rowguid = Guid.NewGuid();

 CustomerAddress ca = new CustomerAddress();
 ca.AddressType = "Main Office";
 ca.Address = addr;
 ca.Customer = douglas;
 ca.ModifiedDate = DateTime.Today;
 ca.rowguid = Guid.NewGuid();

 dc.Customers.Add(douglas);
 dc.SubmitChanges();

 ShowCustomersByFirstName("Douglas");
 }

 // Update a customer record
 private static void UpdateCustomer()
 {
 Console.WriteLine("Updating a customer...");
 AdventureWorksDataContext dc = new AdventureWorksDataContext();
 // Uncomment the statement below to show the
 // SQL statement generated by LINQ to SQL.
 //dc.Log = Console.Out;

Example 15-3. Modifying data using LINQ to SQL (continued)

Updating Data Using LINQ to SQL | 355

 Customer dAdams = dc.Customers.Single(
 c => (c.FirstName == "Douglas" && c.LastName == "Adams"));
 Console.WriteLine("Before:\n{0}", dAdams);

 dAdams.Title = "Mr.";

 // Add a new shipping address
 Address addr = new Address();
 addr.AddressLine1 = "1 Warehouse Place";
 addr.City = "Los Angeles";
 addr.PostalCode = "30210";
 addr.StateProvince = "California";
 addr.CountryRegion = "United States";
 addr.ModifiedDate = DateTime.Today;
 addr.rowguid = Guid.NewGuid();

 CustomerAddress ca = new CustomerAddress();
 ca.AddressType = "Shipping";
 ca.Address = addr;
 ca.Customer = dAdams;
 ca.ModifiedDate = DateTime.Today;
 ca.rowguid = Guid.NewGuid();

 dc.SubmitChanges();

 Customer dAdams1 = dc.Customers.Single(
 c => (c.FirstName == "Douglas" && c.LastName == "Adams"));
 Console.WriteLine("After:\n{0}", dAdams);
 }

 // Find a list of customer records with a specific first name.
 private static void ShowCustomersByFirstName(string firstName)
 {
 AdventureWorksDataContext dc = new AdventureWorksDataContext();
 var customers =
 from customer in dc.Customers
 where customer.FirstName == "Douglas"
 orderby customer.FirstName, customer.LastName
 select customer;

 Console.WriteLine("Customers whose first name is {0}:", firstName);
 foreach (Customer customer in customers)
 Console.WriteLine(customer);
 }
 }

 // Add a method to the generated Customer class to
 // show formatted customer properties.
 public partial class Customer
 {
 public override string ToString()
 {

Example 15-3. Modifying data using LINQ to SQL (continued)

356 | Chapter 15: Putting LINQ to Work

The test program takes two actions: AddCustomer and then UpdateCustomer, each of
which is encapsulated in a method call.

Adding a Customer Record
AddCustomer begins by creating an instance of the Customer class and populating its
properties:

Customer douglas = new Customer();
douglas.FirstName = "Douglas";
douglas.LastName = "Adams";
douglas.EmailAddress = "douglas0@adventureworks.com";
douglas.PasswordHash = "fake";
douglas.PasswordSalt = "fake";
douglas.ModifiedDate = DateTime.Today;
douglas.rowguid = Guid.NewGuid();

It does the same for the Address class:

Address addr = new Address();
addr.AddressLine1 = "1c Sharp Way";
addr.City = "Seattle";
addr.PostalCode = "98011";
addr.StateProvince = "Washington";
addr.CountryRegion = "United States";
addr.ModifiedDate = DateTime.Today;
addr.rowguid = Guid.NewGuid();

Finally, the class that joins an address to a customer is created:

CustomerAddress ca = new CustomerAddress();
ca.AddressType = "Main Office";
ca.Address = addr;
ca.Customer = douglas;
ca.ModifiedDate = DateTime.Today;
ca.rowguid = Guid.NewGuid();

 StringBuilder sb = new StringBuilder();
 sb.AppendFormat("{0} {1} {2} {3}",
 Title, FirstName, LastName, EmailAddress);
 foreach (CustomerAddress ca in CustomerAddresses)
 {
 sb.AppendFormat("\n\t{0}: {1}, {2}",
 ca.AddressType,
 ca.Address.AddressLine1,
 ca.Address.City);
 }
 sb.AppendLine();
 return sb.ToString();
 }
 }
}

Example 15-3. Modifying data using LINQ to SQL (continued)

Updating Data Using LINQ to SQL | 357

Notice that the relationship among these three objects is created through the proper-
ties of the CustomerAddress object (highlighted).

The advantage to this approach is that the customer may have more
than one address (e.g., work, home, vacation home, etc.).

With all three new objects created, you can add them to the database just by adding
the new Customer object to the Customers table and then telling the DataContext to
submit the changes:

dc.Customers.Add(douglas);
dc.SubmitChanges();

Because the Customer “has” an address, the Address and the joining table that repre-
sents the “has-a” relationship come along for the ride.

When ShowCustomersByFirstName("Douglas") is called, you find every customer
whose first name is Douglas and display the object:

private static void ShowCustomersByFirstName(string firstName)
{
 AdventureWorksDataContext dc = new AdventureWorksDataContext();
 var customers =
 from customer in dc.Customers
 where customer.FirstName == "Douglas"
 orderby customer.FirstName, customer.LastName
 select customer;

 Console.WriteLine("Customers whose first name is {0}:", firstName);
 foreach (Customer customer in customers)
 Console.WriteLine(customer);
}

The newly added Customer (complete with its address) is displayed appropriately:

Douglas Adams douglas0@adventureworks.com
 Main Office: 1c Sharp Way, Seattle

Modifying a Customer Record
Modifying the customer involves finding the record you want to modify, retrieving it,
modifying it as an object, and then storing it back in the database.

You retrieve Douglas Adams’ record much as you saw earlier:

Customer dAdams = dc.Customers.Single(
 c => (c.FirstName == "Douglas" && c.LastName == "Adams"));

With the record in hand, you add a new shipping address, which requires creating an
address record and a CustomerAddress record (to tie the new Address record to the
existing Customer record):

358 | Chapter 15: Putting LINQ to Work

Address addr = new Address();
addr.AddressLine1 = "1 Warehouse Place";
addr.City = "Los Angeles";
addr.PostalCode = "30210";
addr.StateProvince = "California";
addr.CountryRegion = "United States";
addr.ModifiedDate = DateTime.Today;
addr.rowguid = Guid.NewGuid();

CustomerAddress ca = new CustomerAddress();
ca.AddressType = "Shipping";
ca.Address = addr;
ca.Customer = dAdams;
ca.ModifiedDate = DateTime.Today;
ca.rowguid = Guid.NewGuid();

For a bit of sport, you also change his title, with all due respect, from blank to “Mr.”:

dAdams.Title = "Mr.";

By using Console.WriteLine statements before and after the modification, you can see
the changes:

Updating a customer...
Before:
 Douglas Adams douglas0@adventureworks.com
 Main Office: 1c Sharp Way, Seattle

After:
Mr. Douglas Adams douglas0@adventureworks.com
 Main Office: 1c Sharp Way, Seattle
 Shipping: 1 Warehouse Place, Los Angeles

You should also now see one record in the Customer table, and two each in the
CustomerAddress and Address tables, as shown in Figure 15-9.

Deleting Relational Data
Deleting a customer is a bit trickier than adding or modifying one, because the
relational database is going to enforce referential integrity. That is, to avoid data
inconsistency, the relational database (e.g., SQL Server) is going to ensure that the
rows in CustomerAddress be deleted before the rows in Address or Customer are
deleted. Ideally, in fact, you’d like the entire deletion of all the related rows, in all the
related tables, to be within a transaction so that if any of the deletions fail, the entire
set is “rolled back” to its initial state. That way, you don’t end up with orphaned
address records, or customers who have somehow lost data. (See the sidebar “Data
Consistency” later in this chapter.)

The easiest way to do this is to ask the database to help you. After all, this is what data-
bases do for a living. One solution they offer is stored procedures (they offer others,

Deleting Relational Data | 359

such as cascading deletes, etc.). To create a stored procedure, begin by right-clicking
on the Stored Procedures file folder of your data connection and choose Add New
Stored Procedure, as shown in Figure 15-10.

Figure 15-9. Modified data in the database

Figure 15-10. Adding a new stored procedure

360 | Chapter 15: Putting LINQ to Work

Replace the code in the prototype stored procedure with that shown in
Example 15-4. You don’t need to fully understand the SQL at this point; you can
trust that it will properly delete customers with the given first and last names and all
related address records. With that said, I’ve added some comments (after a double
dash) to help you along with what it is we’re doing in the SPROC (geek speak for
Stored PROCedure).

Example 15-4. Stored procedure

Create PROCEDURE [SalesLT].[DeleteCustomer]
 @firstName Name, -- parameters with their type
 @lastName Name
AS
BEGIN
 SET NOCOUNT ON; --- administrative stuff
 SET ANSI_NULLS ON
 SET QUOTED_IDENTIFIER ON
 declare @customerId int; -- local variable
 declare @addressId int;
 declare addressCursor cursor for -- keep track of where we're up to
 select CustomerId, AddressId -- find this record
 from CustomerAddress -- fromt this table
 where CustomerId in -- where this column is found in these results:
 (
 select CustomerId – find this column
 from Customer -- in this table
 where FirstName = @firstName -- where this is true
 and LastName = @lastName –- and this is also true
);

 begin transaction; -- start a transaction
 open addressCursor; -- go get that cursor
 -- get the next record and put results into our variables
 fetch next from addressCursor into @customerId, @addressId;
 -- start a while loop
 while @@fetch_status = 0 begin
 -- delete the matching records
 delete CustomerAddress where customerId = @customerId
 and addressId = @addressId
 --delete these matching records too
 delete Address where addressId = @addressId;
 loop
 fetch next from addressCursor into @customerId, @addressId;
 end; -- end the while
 close addressCursor; -- close the cursor
 deallocate addressCursor; -- clean up the resource

 delete Customer -- delete where you have a match
 where FirstName = @firstName
 and LastName = @lastName;

 commit; -- once everything worked, commit it all
 -- (implicit – if anything fails, roll back to your starting point)
END

Deleting Relational Data | 361

Open the Stored Procedures folder and locate your new stored procedure
(DeleteCustomer). Next, double-click on Adventureworks.dbml in the Solution Explorer,
which will reopen the designer.

Drag the new stored procedure onto the designer. It is now registered with the
designer and will appear in the righthand window of the designer, as shown in
Figure 15-11.

You now have access to that stored procedure from within your DataContext, as
shown in Example 15-5.

Figure 15-11. Stored procedure in the designer

362 | Chapter 15: Putting LINQ to Work

The code is unchanged from the previous example, except for a new method (which
you must call from Main()), named DeleteCustomer(). This method gets the
AdventureWorksDataContext, but then just calls DeleteCustomer, passing in the two
parameters of the first and last names. That’s it!

Because DeleteCustomer is a stored procedure registered with the DataContext, the
DataContext knows just what to do: it calls the stored procedure, and the Sproc does
all the work. Wicked cool.

Example 15-5. Calling stored procedures using LINQ to SQL: C# code

 private static void DeleteCustomer()
 {
 Console.WriteLine("Deleting a customer...");
 Console.Write("Before: ");
 ShowCustomersByFirstName("Douglas");

 AdventureWorksDataContext dc = new AdventureWorksDataContext();
 // Uncomment the statement below to show the
 // SQL statement generated by LINQ to SQL.
 // dc.Log = Console.Out;

 dc.DeleteCustomer("Douglas", "Adams");
 Console.Write("After: ");
 ShowCustomersByFirstName("Douglas");
 }

Output:

Deleting a customer...
Before: Customers whose first name is Douglas:
Mr. Douglas Adams douglas0@adventureworks.com
 Main Office: 1c Sharp Way, Seattle
 Shipping: 1 Warehouse Place, Los Angeles

Mr. Douglas Baldwin douglas1@adventure-works.com
 Main Office: Horizon Outlet Center, Holland

Mr. Douglas Groncki douglas2@adventure-works.com
 Main Office: 70259 West Sunnyview Ave, Visalia

After: Customers whose first name is Douglas:
Mr. Douglas Baldwin douglas1@adventure-works.com
 Main Office: Horizon Outlet Center, Holland

Mr. Douglas Groncki douglas2@adventure-works.com
 Main Office: 70259 West Sunnyview Ave, Visalia

LINQ to XML | 363

LINQ to XML
If you would like the output of your work to go to an XML document rather than to
a SQL database, you have only to create a new XML element for each object in the
Customers table, and a new XML attribute for each property representing a column
in the table. To do this, you use the LINQ to XML API, as illustrated in
Example 15-6.

Note carefully that this code takes advantage of the new LINQ to XML classes, such
as XElement, XAttribute, and XDocument. Working with XAttributes, for example, is
very similar to working with standard XML elements. However, note carefully that,
for example, XAttributes are not nodes in an XML tree, but instead are name/value
pairs associated with an actual XML element. This is also quite different from what
you are used to in working with the DOM.

The XElement object represents an actual XML element and can be used to create ele-
ments. It interoperates cleanly with System.XML, and makes for a terrific transition
class between LINQ to XML and XML itself.

Finally, the XDocument class derives from XContainer and has exactly one child node
(you guessed it: an XElement). It can also have an XDeclaration, zero or more
XProcessingInstructions, XComments, and one XDocumentType (for the DTD), but that
is more detail than we need.

Data Consistency
One issue for database managers is that of data consistency. To understand how this
works, you must first understand the concept of “normalization,” which, among other
things, implies that data is not unnecessarily duplicated in a relational database.

Thus, for example, if you have a database that tracks customers and their orders, rather
than duplicate the information about each customer (the customer’s name, address,
phone, etc.) in each order, you would create a customer record and assign each cus-
tomer a unique CustomerID. Each order would then contain a CustomerID that would
identify the customer who “owns” that order.

This has many advantages, one of which is that if you change the customer’s phone
number, you need to change it only in the customer record, not in every order record.

The data would be inconsistent, however, if the CustomerID in an order did not refer to
any customer at all (or worse, if it referred to the wrong customer!). To avoid this, data-
base administers like databases that enforce consistency rules, such as that you cannot
delete a customer record unless you’ve deleted all the orders for that customer first
(thus, not leaving any “orphan” orders that have no associated customer) and never
reusing a CustomerID.

364 | Chapter 15: Putting LINQ to Work

In the next example, we’re going to create some XElements and assign some
XAttributes. This should be very familiar to anyone comfortable with XML and a rel-
atively easy first glimpse for those who are totally new to raw XML (see Chapter 14).

Example 15-6. Constructing an XML document using LINQ to XML

using System;
using System.Data.Linq;
using System.Linq;
using System.Xml.Linq;

namespace LinqToXML
{
 // Main program
 public class Tester
 {
 static void Main()
 {
 XElement customerXml = CreateCustomerListXml();
 Console.WriteLine(customerXml);
 }

 /// <summary>
 /// Create an XML document containing a list of customers.
 /// </summary>
 /// <returns>XML document containing a list of customers.</returns>
 private static XElement CreateCustomerListXml()
 {
 AdventureWorksDataContext dc = new AdventureWorksDataContext();
 // Uncomment the statement below to show the
 // SQL statement generated by LINQ to SQL.
 // dc.Log = Console.Out;

 // Find a list of customer records.
 var customerDs =
 from customer in dc.Customers
 where customer.FirstName.StartsWith("D")
 orderby customer.FirstName, customer.LastName
 select customer;

 XElement customerXml = new XElement("Customers");
 foreach (Customer customer in customerDs)
 {
 customerXml.Add(new XElement("Customer",
 new XAttribute("FirstName", customer.FirstName),
 new XAttribute("LastName", customer.LastName),
 new XElement("EmailAddress", customer.EmailAddress)));
 }
 return customerXml;
 }
 }
}

LINQ to XML | 365

In this example, rather than simply writing out the values of the CustomerDS that
we’ve retrieved from the database, we convert the object to an XML file by using the
LINQ to XML API. It is so straightforward as to be almost startling.

Let’s take this example apart. We begin by calling CreateCustomerListXml and assign-
ing the results to an XElement named customerXml. CreateCustomerListXml begins by
creating a LINQ statement (those of us who grew up with SQL will take a few years
to get used to having the select statement come at the end!):

var customerDs =
 from customer in dc.Customers
 where customer.FirstName.StartsWith("D")
 orderby customer.FirstName, customer.LastName
 select customer;

Let me remind you that even though we use the keyword var here, which in JavaScript
is not type-safe, in C#, this is entirely type-safe; the compiler imputes the type based
on the query.

Next, we create an XElement named customerXml:

XElement customerXml = new XElement("Customers");

Here’s another potentially confusing aspect. We’ve given the C# XElement an identi-
fier, customerXml, so that we can refer to it in C# code, but when we instantiated the
XElement, we passed a name to the constructor (Customers). It is that name
(Customers) that will appear in the XML file.

Next, we iterate through the CustomerDS collection that we retrieved earlier, pulling out
each Customer object in turn, and create a new XElement based on the Customer object,
adding an XAttribute for the FirstName, LastName, and EmailAddress “columns”:

foreach (Customer customer in customerDs)
{
 XElement cust = new XElement("Customer",
 new XAttribute("FirstName", customer.FirstName),
 new XAttribute("LastName", customer.LastName),
 new XElement("EmailAddress", customer.EmailAddress));

As we iterate through each customer, we also iterate through each customer’s associ-
ated CustomerAddress collection (customer.Addresses). These return an object of type
Customer.Address, and we add to the XElement cust the Attributes for the Address,
beginning with a new XElement named Address. This gives our Customer element a
subelement of Addresses, with attributes for AddressLine1, AddressLine2, City, and so
on.

Thus, a single Address object in the XML will look like this:

 <Customer FirstName="Dora" LastName="Verdad">
 <EmailAddress>dora0@adventure-works.com</EmailAddress>
 <Address AddressLine1="Suite 2502 410 Albert Street" AddressLine2=""
 City="Waterloo" StateProvince="Ontario" PostalCode="N2V" />
 </Customer>

366 | Chapter 15: Putting LINQ to Work

Finally, we want each of these Customer elements (with their child Address elements)
to be child elements of the Customers (plural) element that we created earlier. We
accomplish this by opening the C# object and adding the new customer to the
element after each iteration of the loop:

customerXml.Add(cust);

Notice that because we’re doing this in the C#, we access the Element through its C#
identifier, not through its XML identifier. In the resulting XML document, the name
of the outer element will be Customers and within Customers will be a series of
Customer elements, each of which will contain Address elements:

<Customers>
 <Customer ...
 <Address </Address>
 <EmailAddress ... /EmailAddress/>
 </Customer>
 <Customer ...
 <Address </Address>
 <EmailAddress ... /EmailAddress/>
 </Customer>
</Customers>

Once we’ve iterated through the lot, we return the customerXml (the Customers ele-
ment) which contains all the Customer elements, which in turn contain all the address
elements; that is, the entire tree:

return customerXml;

Piece of pie; easy as cake.

Here is an excerpt from the complete output (slightly reformatted to fit the page):

<Customers>
 <Customer FirstName="Daniel" LastName="Blanco">
 <EmailAddress>daniel0@adventure-works.com</EmailAddress>
 <Address AddressLine1="Suite 800 2530 Slater Street"
 AddressLine2="" City="Ottawa"
 StateProvince="Ontario" PostalCode="K4B 1T7" />
 </Customer>
 <Customer FirstName="Daniel" LastName="Thompson">
 <EmailAddress>daniel2@adventure-works.com</EmailAddress>
 <Address AddressLine1="755 Nw Grandstand" AddressLine2="" City="Issaquah"
 StateProvince="Washington" PostalCode="98027" />
 </Customer>
 <Customer FirstName="Danielle" LastName="Johnson">
 <EmailAddress>danielle1@adventure-works.com</EmailAddress>
 <Address AddressLine1="955 Green Valley Crescent" AddressLine2=""
 City="Ottawa" StateProvince="Ontario" PostalCode="K4B 1S1" />
 </Customer>
 <Customer FirstName="Darrell" LastName="Banks">
 <EmailAddress>darrell0@adventure-works.com</EmailAddress>
 <Address AddressLine1="Norwalk Square" AddressLine2=""
 City="Norwalk" StateProvince="California" PostalCode="90650" />

LINQ to XML | 367

 </Customer>
 <Customer FirstName="Darren" LastName="Gehring">
 <EmailAddress>darren0@adventure-works.com</EmailAddress>
 <Address AddressLine1="509 Nafta Boulevard" AddressLine2=""
 City="Laredo" StateProvince="Texas" PostalCode="78040" />
 </Customer>
 <Customer FirstName="David" LastName="Givens">
 <EmailAddress>david15@adventure-works.com</EmailAddress>
 <Address AddressLine1="#500-75 O'Connor Street" AddressLine2=""
 City="Ottawa" StateProvince="Ontario" PostalCode="K4B 1S2" />
 </Customer>
</Customers>

368

Chapter 16CHAPTER 16

ADO.NET and Relational Databases 16

If you are working with a relational database, you have the option of accessing your
data with LINQ, with LINQ and ADO.NET, or directly with ADO.NET. ADO.NET
was designed to provide a disconnected data architecture (as database connections are
typically considered “precious resources”), though it does have a connected alternative.

In a disconnected architecture, data is retrieved from a database and cached on your
local machine. You manipulate the data on your local computer and connect to the
database only when you wish to alter records or acquire new data.

There are significant advantages to disconnecting your data architecture from your
database. The biggest advantage is that your application, whether running on the
Web or on a local machine, will create a reduced burden on the database server,
which may help your application to scale well. Database connections are resource-
intensive, and it is difficult to have thousands (or hundreds of thousands) of
simultaneous continuous connections. A disconnected architecture is resource-
frugal, though there are times that all you want to do is connect to the database, suck
out a stream of data, and disconnect; and ADO.NET has a Reader class that allows
for that as well.

ADO.NET typically connects to the database to retrieve data, and connects again to
update data when you’ve made changes. Most applications spend most of their time
simply reading through data and displaying it; ADO.NET provides a disconnected
subset of the data for your use while reading and displaying, but it is up to you as the
developer to keep in mind that the data in the database may change while you are dis-
connected, and to plan accordingly. I cover this in some detail later in this chapter.

Relational Databases and SQL
Although one can certainly write an entire book on relational databases, and another
on SQL, the essentials of these technologies aren’t hard to understand. A database is
a repository of data. A relational database organizes your data into tables. Consider
the Northwind database.

Relational Databases and SQL | 369

Microsoft provides the Northwind database as a free download on
Microsoft.com (just search on “Northwind database”; the first link
should take you to the download page), or you can download the file
(SQL200SampleDb.msi) from my site (http://www.JesseLiberty.com) by
clicking on Books, then again on Books, and then scrolling down to
this book and clicking on Northwind Database. Unzip the file, and
double-click on the .msi file to install it.

Tables, Records, and Columns
The Northwind database describes a fictional company buying and selling food
products. The data for Northwind is divided into 13 tables, including Customers,
Employees, Orders, Order Details, Products, and so forth.

Every table in a relational database is organized into rows, where each row repre-
sents a single record. The rows are organized into columns. All the rows in a table
have the same column structure. For example, the Orders table has these columns:
OrderID, CustomerID, EmployeeID, OrderDate, and so on.

For any given order, you need to know the customer’s name, address, contact name,
and so forth. You could store that information with each order, but that would be
very inefficient. Instead, you use a second table called Customers, in which each row
represents a single customer. In the Customers table is a column for the CustomerID.
Each customer has a unique ID, and that field is marked as the primary key for that
table. A primary key is the column or combination of columns that uniquely identi-
fies a record in a given table.

For VB 6 Programmers Moving to ADO.NET
ADO.NET is somewhat different from ADO. While learning how to implement the new
functionality found in ADO.NET, you are probably going to keep asking yourself such
questions as “Where is the MoveNext() method?” and “How do I test for the end-of-file?”

In ADO.NET, the functionality that was in Record Sets now resides in two places.
Navigation and retrieval are in the IDataReader interface, and support for disconnected
operation is in the (tremendously more powerful) DataSet and DataTables.

You can think of DataTables as an array of DataRows. Calling the MoveFirst() method
in ADO.NET would be the same as going to the first index of the array. Testing for the
end-of-file is the same as testing whether the current index matches the array’s upper
bound. Want to set a bookmark for a particular record? Just create a variable and
assign it the index of the current record—you don’t need a special BookMark property.

370 | Chapter 16: ADO.NET and Relational Databases

The Orders table uses the CustomerID as a foreign key. A foreign key is a column (or
combination of columns) that is a primary (or otherwise unique) key from a different
table. The Orders table uses the CustomerID (the primary key used in the Customers
table) to identify which customer has placed the order. To determine the address for
the order, you can use the CustomerID to look up the customer record in the Custom-
ers table.

This use of foreign keys is particularly helpful in representing one-to-many or
many-to-one relationships between tables. By separating information into tables
that are linked by foreign keys, you avoid having to repeat information in records. A
single customer, for example, can have multiple orders, but it is inefficient to place
the same customer information (name, phone number, credit limit, etc.) in every
order record. The process of removing redundant information from your records and
shifting it to separate tables is called normalization.

Normalization
Normalization not only makes your use of the database more efficient, but it also
reduces the likelihood of data corruption. If you kept the customer’s name in both
the Customers table and the Orders table, you would run the risk that a change in
one table might not be reflected in the other. Thus, if you changed the customer’s
address in the Customers table, that change might not be reflected in every row in
the Orders table (and a lot of work would be necessary to make sure that it was
reflected). By keeping only the CustomerID in Orders, you are free to change the
address in Customers, and the change is automatically reflected for each order.

Just as C# programmers want the compiler to catch bugs at compile time rather than
at runtime, database programmers want the database to help them avoid data cor-
ruption. The compiler helps avoid bugs in C# by enforcing the rules of the language
(e.g., you can’t use a variable you’ve not defined). SQL Server and other modern rela-
tional databases avoid bugs by enforcing constraints that you request. For example,
the Customers database marks the CustomerID as a primary key. This creates a pri-
mary key constraint in the database, which ensures that each CustomerID is unique. If
you were to enter a customer named Liberty Associates, Inc., with the CustomerID of
LIBE, and then tried to add Liberty Mutual Funds with a CustomerID of LIBE, the
database would reject the second record because of the primary key constraint.

Declarative Referential Integrity
Relational databases use declarative referential integrity (DRI) to establish con-
straints on the relationships among the various tables. For example, you might
declare a constraint on the Orders table that dictates that no order can have a
CustomerID unless that CustomerID represents a valid record in Customers. This helps
avoid two types of mistakes. First, you can’t enter a record with an invalid

Relational Databases and SQL | 371

CustomerID. Second, you can’t delete a customer record if that CustomerID is used in
any order. The integrity of your data and its relationships is thus protected.

SQL
The most popular language for querying and manipulating databases is Structured
Query Language (SQL), usually pronounced “sequel.” SQL is a declarative lan-
guage, as opposed to a procedural language, and it can take awhile to get used to
working with a declarative language when you are used to languages such as C#.

The heart of SQL is the query. A query is a statement that returns a set of records
from the database. The queries in Transact-SQL (the version used by SQL Server) are
very similar to the queries used in LINQ, though the actual syntax is slightly different.

For example, you might like to see all the CompanyNames and CustomerIDs of every
record in the Customers table in which the customer’s address is in London. To do
so, write:

Select CustomerID, CompanyName from Customers where city = 'London'

This returns the following six records as output:

CustomerID CompanyName
---------- --
AROUT Around the Horn
BSBEV B's Beverages
CONSH Consolidated Holdings
EASTC Eastern Connection
NORTS North/South
SEVES Seven Seas Imports

SQL is capable of much more powerful queries. For example, suppose the North-
wind manager would like to know what products were purchased in July 1996 by the
customer “Vins et alcools Chevalier.” This turns out to be somewhat complicated.
The Order Details table knows the ProductID for all the products in any given order.
The Orders table knows which CustomerIDs are associated with an order. The Cus-
tomers table knows the CustomerID for a customer, and the Products table knows the
product name for the ProductID. How do you tie all this together? Here’s the query:

select o.OrderID, productName
from [Order Details] od
join orders o on o.OrderID = od.OrderID
join products p on p.ProductID = od.ProductID
join customers c on o.CustomerID = c.CustomerID
where c.CompanyName = 'Vins et alcools Chevalier'
and orderDate >= '7/1/1996' and orderDate <= '7/31/1996'

This asks the database to get the OrderID and the product name from the relevant
tables. First, look at Order Details (which we’ve called od for short), and then join
that with the Orders table for every record in which the OrderID in the Order Details
table is the same as the OrderID in the Orders table.

372 | Chapter 16: ADO.NET and Relational Databases

When you join two tables, you can say, “Get every record that exists in either table”
(this is called an outer join), or, as we’ve done here, “Get only those records that exist
in both tables” (called an inner join). That is, an inner join states to get only the
records in Orders that match the records in Order Details by having the same value
in the OrderID field (on o.Orderid = od.Orderid).

SQL joins are inner joins by default. Writing join orders is the same as
writing inner join orders.

The SQL statement goes on to ask the database to create an inner join with Prod-
ucts, getting every row in which the ProductID in the Products table is the same as
the ProductID in the Order Details table.

Then, create an inner join with customers for those rows where the CustomerID is the
same in both the Orders table and the Customers table.

Finally, tell the database to constrain the results to only those rows in which the
CompanyName is the one you want, and the dates are in July.

The collection of constraints finds only three records that match:

OrderID ProductName
----------- --
10248 Queso Cabrales
10248 Singaporean Hokkien Fried Mee
10248 Mozzarella di Giovanni

This output shows that there was only one order (10248) in which the customer had
the right ID and in which the date of the order was July 1996. That order produced
three records in the Order Details table, and using the product IDs in these three
records, you got the product names from the Products table.

You can use SQL not only for searching for and retrieving data, but also for creating,
updating, and deleting tables, and generally managing and manipulating both the
content and the structure of the database.

The ADO.NET Object Model
The ADO.NET object model is rich, but at its heart it is a fairly straightforward set of
classes. The most important of these is the DataSet. The DataSet represents a subset
of the entire database, cached on your machine without a continuous connection to
the database.

Periodically, you’ll reconnect the DataSet to its parent database, update the database
with changes you’ve made to the DataSet, and update the DataSet with changes in
the database made by other processes.

The ADO.NET Object Model | 373

This is highly efficient, but to be effective, the DataSet must be a robust subset of the
database, capturing not just a few rows from a single table, but also a set of tables
with all the metadata necessary to represent the relationships and constraints of the
original database. This is, not surprisingly, what ADO.NET provides.

The DataSet is composed of DataTable objects as well as DataRelation objects. These
are accessed as properties of the DataSet object. The Tables property returns a
DataTableCollection, which in turn contains all the DataTable objects.

DataTables and DataColumns
The DataTable can be created programmatically or as a result of a query against the
database. The DataTable has a number of public properties, including the Columns
collection, which returns the DataColumnCollection object, which in turn consists of
DataColumn objects. Each DataColumn object represents a column in a table.

DataRelations
In addition to the Tables collection, the DataSet has a Relations property, which
returns a DataRelationCollection consisting of DataRelation objects. Each
DataRelation represents a relationship between two tables through DataColumn objects.
For example, in the Northwind database, the Customers table is in a relationship with
the Orders table through the CustomerID column.

The nature of this relationship is one-to-many, or parent-to-child. For any given
order, there will be exactly one customer, but any given customer might be repre-
sented in any number of orders.

Rows
DataTable’s Rows collection returns a set of rows for that table. Use this collection to
examine the results of queries against the database, iterating through the rows to
examine each record in turn. Programmers experienced with ADO are often
confused by the absence of the RecordSet with its moveNext and movePrevious com-
mands. With ADO.NET, you don’t iterate through the DataSet; instead, you access
the table you need, and then you can iterate through the Rows collection, typically
with a foreach loop. You’ll see this in the example in this chapter.

Data Adapter
The DataSet is an abstraction of a relational database. ADO.NET uses a DataAdapter
as a bridge between the DataSet and the data source, which is the underlying data-
base. DataAdapter provides the Fill() method to retrieve data from the database and
populate the DataSet.

374 | Chapter 16: ADO.NET and Relational Databases

Instead of tying the DataSet object too closely to your database architecture, ADO.NET
uses a DataAdapter object to mediate between the DataSet object and the database.
This decouples the DataSet from the database and allows a single DataSet to represent
more than one database or other data source.

DBCommand and DBConnection
The DBConnection object represents a connection to a data source. This connection
can be shared among different command objects. The DBCommand object allows you to
send a command (typically, a SQL statement or a stored procedure) to the database.
Often, these objects are implicitly created when you create a DataAdapter, but you can
explicitly access these objects; for example, you can declare a connection as follows:

string connectionString = "server=.\\sqlexpress;" +
"Trusted_Connection=yes; database=Northwind";

You can then use this connection string to create a connection object or to create a
DataAdapter object.

DataReader
An alternative to creating a DataSet (and DataAdapter) is to create a DataReader. The
DataReader provides connected, forward-only, read-only access to a collection of
tables by executing either a SQL statement or stored procedures. DataReaders are
lightweight objects that are ideally suited for filling controls with data and then
breaking the connection to the backend database.

Getting Started with ADO.NET
Enough theory! Let’s write some code and see how this works. Working with ADO.
NET can be complex, but for many queries, the model is surprisingly simple.

In this example, we’ll create a console application, and we’ll list out bits of informa-
tion from the Customers table in the Northwind database.

Begin by creating a (SQL Server-specific) DataAdapter object:

SqlDataAdapter DataAdapter =
new SqlDataAdapter(
commandString, connectionString);

The two parameters are commandString and connectionString. The commandString is
the SQL statement that will generate the data you want in your DataSet:

string commandString =
 "Select CompanyName, ContactName from Customers";

The connectionString is whatever string is needed to connect to the database. Typi-
cally, this will be SQL Server Express, which is installed with Visual Studio.

Getting Started with ADO.NET | 375

With the DataAdapter in hand, you’re ready to create the DataSet and fill it with the
data that you obtain from the SQL select statement:

DataSet DataSet = new DataSet();
DataAdapter.Fill(DataSet,"Customers");

That’s it. You now have a DataSet, and you can query, manipulate, and otherwise
manage the data. The DataSet has a collection of tables; you care only about the first
one because you’ve retrieved only a single table:

DataTable dataTable = DataSet.Tables[0];

You can extract the rows you’ve retrieved with the SQL statement and add the data
to the listbox:

foreach (DataRow dataRow in dataTable.Rows)
{
 lbCustomers.Items.Add(
 dataRow["CompanyName"] +
 " (" + dataRow["ContactName"] + ")");
}

The listbox is filled with the company name and contact name from the table in the
database, according to the SQL statement we passed in. Example 16-1 contains the
complete source code for this example.

Example 16-1. Working with ADO.NET

using System;
using System.Data;
using System.Data.SqlClient;

namespace Working_With_ADO.NET
{
 class Program
 {
 static void Main(string[] args)
 {
 string connectionString = "server=.\\sqlexpress;" +
 "Trusted_Connection=yes; database=Northwind";

 // get records from the Customers table
 string commandString =
 "Select CompanyName, ContactName from Customers";

 // create the data set command object
 // and the DataSet
 SqlDataAdapter DataAdapter =
 new SqlDataAdapter(
 commandString, connectionString);

 DataSet DataSet = new DataSet();

376 | Chapter 16: ADO.NET and Relational Databases

 // fill the DataSet object
 DataAdapter.Fill(DataSet, "Customers");

 // Get the one table from the DataSet
 DataTable dataTable = DataSet.Tables[0];

 // for each row in the table, display the info
 foreach (DataRow dataRow in dataTable.Rows)
 {
 Console.WriteLine("CompanyName: {0}. Contact: {1}",
dataRow["CompanyName"],
 dataRow["ContactName"]);
 }
 }
 }
}

Output (partial)
CompanyName: Centro comercial Moctezuma. Contact: Francisco Chang
CompanyName: Chop-suey Chinese. Contact: Yang Wang
CompanyName: Comércio Mineiro. Contact: Pedro Afonso
CompanyName: Consolidated Holdings. Contact: Elizabeth Brown
CompanyName: Drachenblut Delikatessen. Contact: Sven Ottlieb
CompanyName: Du monde entier. Contact: Janine Labrune
CompanyName: Eastern Connection. Contact: Ann Devon
CompanyName: Ernst Handel. Contact: Roland Mendel
CompanyName: Familia Arquibaldo. Contact: Aria Cruz
CompanyName: FISSA Fabrica Inter. Salchichas S.A.. Contact: Diego Roel
CompanyName: Folies gourmandes. Contact: Martine Rancé
CompanyName: Folk och fä HB. Contact: Maria Larsson
CompanyName: Frankenversand. Contact: Peter Franken
CompanyName: France restauration. Contact: Carine Schmitt
CompanyName: Franchi S.p.A.. Contact: Paolo Accorti
CompanyName: Furia Bacalhau e Frutos do Mar. Contact: Lino Rodriguez
CompanyName: Galería del gastrónomo. Contact: Eduardo Saavedra
CompanyName: Godos Cocina Típica. Contact: José Pedro Freyre
CompanyName: Gourmet Lanchonetes. Contact: André Fonseca
CompanyName: Great Lakes Food Market. Contact: Howard Snyder
CompanyName: GROSELLA-Restaurante. Contact: Manuel Pereira
CompanyName: Hanari Carnes. Contact: Mario Pontes
CompanyName: HILARION-Abastos. Contact: Carlos Hernández
CompanyName: Hungry Coyote Import Store. Contact: Yoshi Latimer
CompanyName: Hungry Owl All-Night Grocers. Contact: Patricia McKenna
CompanyName: Island Trading. Contact: Helen Bennett
CompanyName: Königlich Essen. Contact: Philip Cramer
CompanyName: La corne d'abondance. Contact: Daniel Tonini
CompanyName: La maison d'Asie. Contact: Annette Roulet
CompanyName: Laughing Bacchus Wine Cellars. Contact: Yoshi Tannamuri
CompanyName: Lazy K Kountry Store. Contact: John Steel

Example 16-1. Working with ADO.NET (continued)

Getting Started with ADO.NET | 377

With just a few lines of code, you have extracted a set of data from the database and
displayed it. This code will:

• Create the string for the connection:
string connectionString = "server=.\\sqlexpress;" +
"Trusted_Connection=yes; database=northwind";

• Create the string for the select statement:
string commandString =
"Select CompanyName, ContactName from Customers";

• Create the DataAdapter and pass in the select and connection strings:
SqlDataAdapter DataAdapter =
new SqlDataAdapter(
commandString, connectionString);

• Create a new DataSet object:
DataSet DataSet = new DataSet();

• Fill the DataSet from the Customers table using the DataAdapter:
DataAdapter.Fill(DataSet,"Customers");

• Extract the DataTable from the DataSet:
DataTable dataTable = DataSet.Tables[0];

• Use the DataTable to fill the listbox:
foreach (DataRow dataRow in dataTable.Rows)
{
 lbCustomers.Items.Add(
 dataRow["CompanyName"] +
 " (" + dataRow["ContactName"] + ")");
}

PART III

III.Programming with C#

Chapter 17, Programming ASP.NET Applications

Chapter 18, Programming WPF Applications

Chapter 19, Programming Windows Forms Applications

381

Chapter 17 CHAPTER 17

Programming ASP.NET Applications17

Developers are writing more and more of their applications to run over the Web and
to be seen in a browser. The most popular technology for doing so is ASP.NET, and
with AJAX (and now Silverlight), much of the application can be run client-side.

There are many obvious advantages to web-based applications. For one, you don’t
have to create as much of the user interface; you can let Internet Explorer and other
browsers handle a lot of the work for you. Another advantage is that distribution of
the application and of revisions is often faster, easier, and less expensive. Most
important, a web application can be run on any platform by any user at any loca-
tion, which is harder to do (though not impossible) with smart-client applications.

Another advantage of web applications is distributed processing (though smart-client
applications are making inroads). With a web-based application, it is easy to provide
server-side processing, and the Web provides standardized protocols (e.g., HTTP,
HTML, and XML) to facilitate building n-tier applications.

The focus of this chapter is where ASP.NET and C# programming intersect: the cre-
ation of Web Forms and their event handlers. For intensive coverage of ASP.NET,
please see either Programming ASP.NET by myself and Dan Hurwitz or Learning
ASP.NET 2.0 with AJAX by Jesse Liberty et al. (both published by O’Reilly).

Web Forms Fundamentals
Web Forms bring Rapid Application Development (RAD) to the creation of web
applications. From within Visual Studio or Visual Web Developer, you drag-and-drop
controls onto a form and write the supporting code in code-behind pages. The applica-
tion is deployed to a web server (typically IIS, which is shipped with most versions of
Windows, and Cassini, which is built into Visual Studio for testing your application),
and users interact with the application through a standard browser.

382 | Chapter 17: Programming ASP.NET Applications

Web Forms implement a programming model in which web pages are dynamically
generated on a web server for delivery to a browser over the Internet. With Web
Forms, you create an ASPX page with more or less static content consisting of
HTML and web controls, as well as AJAX and Silverlight, and you write C# code to
add additional dynamic content. The C# code runs on the server for the standard
ASPX event handlers and on the client for the Silverlight event handlers (JavaScript is
used for standard AJAX event handlers), and the data produced is integrated with
the declared objects on your page to create an HTML page that is sent to the
browser.

You should pick up the following three critical points from the preceding paragraph
and keep them in mind for this entire chapter:

• Web pages can have both HTML and web controls (described later).

• Processing may be done on the server or on the client, in managed code or in
unmanaged code, or via a combination.

• Typical ASP.NET controls produce standard HTML for the browser.

Web Forms divide the user interface into two parts: the visual part or user interface
(UI), and the logic that lies behind it. This is called code separation; and it is a good
thing.

From version 2.0 of ASP.NET, Visual Studio takes advantage of par-
tial classes, allowing the code-separation page to be far simpler than it
was in version 1.x. Because the code-separation and declarative pages
are part of the same class, there is no longer a need to have protected
variables to reference the controls of the page, and the designer can
hide its initialization code in a separate file.

The UI page for ASP.NET pages is stored in a file with the extension .aspx. When
you run the form, the server generates HTML sent to the client browser. This code
uses the rich Web Forms types found in the System.Web and System.Web.UI
namespaces of the .NET FCL, and the System.Web.Extension namespace in Microsoft
ASP.NET AJAX.

With Visual Studio, Web Forms programming couldn’t be simpler: open a form,
drag some controls onto it, and write the code to handle events. Presto! You’ve writ-
ten a web application.

On the other hand, even with Visual Studio, writing a robust and complete web
application can be a daunting task. Web Forms offer a very rich UI; the number and
complexity of web controls have greatly multiplied in recent years, and user expecta-
tions about the look and feel of web applications have risen accordingly.

In addition, web applications are inherently distributed. Typically, the client will not
be in the same building as the server. For most web applications, you must take

Web Forms Fundamentals | 383

network latency, bandwidth, and network server performance into account when
creating the UI; a round trip from client to host might take a few seconds.

To simplify this discussion, and to keep the focus on C#, we’ll ignore
client-side processing for the rest of this chapter, and focus on server-
side ASP.NET controls.

Web Forms Events
Web Forms are event-driven. An event represents the idea that “something
happened” (see Chapter 12 for a full discussion of events).

An event is generated (or raised) when the user clicks a button, or selects from a list-
box, or otherwise interacts with the UI. Events can also be generated by the system
starting or finishing work. For example, if you open a file for reading, the system
raises an event when the file has been read into memory.

The method that responds to the event is called the event handler. Event handlers are
written in C#, and are associated with controls in the HTML page through control
attributes.

By convention, ASP.NET event handlers return void and take two parameters. The
first parameter represents the object raising the event. The second, called the event
argument, contains information specific to the event, if any. For most events, the
event argument is of type EventArgs, which doesn’t expose any properties. For some
controls, the event argument might be of a type derived from EventArgs that can
expose properties specific to that event type.

In web applications, most events are typically handled on the server and, therefore,
require a round trip. ASP.NET supports only a limited set of events, such as button
clicks and text changes. These are events that the user might expect to cause a signif-
icant change, as opposed to Windows events (such as mouse-over) that might
happen many times during a single user-driven task.

Postback versus nonpostback events

Postback events are those that cause the form to be posted back to the server imme-
diately. These include click-type events, such as the button Click event. In contrast,
many events (typically change events) are considered nonpostback in that the form
isn’t posted back to the server immediately. Instead, the control caches these events
until the next time a postback event occurs.

You can force controls with nonpostback events to behave in a post-
back manner by setting their AutoPostBack property to true.

384 | Chapter 17: Programming ASP.NET Applications

State

A web application’s state is the current value of all the controls and variables for the
current user in the current session. The Web is inherently a “stateless” environment.
This means that every post to the server loses the state from previous posts, unless
the developer takes great pains to preserve this session knowledge. ASP.NET, how-
ever, provides support for maintaining the state of a user’s session.

Whenever a page is posted to the server, the server re-creates it from scratch before it
is returned to the browser. ASP.NET provides a mechanism that automatically main-
tains state for server controls (ViewState) independent of the HTTP session. Thus, if
you provide a list, and the user has made a selection, that selection is preserved after
the page is posted back to the server and redrawn on the client.

The HTTP session maintains the illusion of a connection between the
user and the web application, despite the fact that the Web is a state-
less, connectionless environment.

Web Forms Life Cycle
Every request for a page made to a web server causes a chain of events at the server.
These events, from beginning to end, constitute the life cycle of the page and all its
components. The life cycle begins with a request for the page, which causes the
server to load it. When the request is complete, the page is unloaded. From one end
of the life cycle to the other, the goal is to render appropriate HTML output back to
the requesting browser. The life cycle of a page is marked by the following events,
each of which you can handle yourself or leave to default handling by the ASP.NET
server:

Initialize
Initialize is the first phase in the life cycle for any page or control. It is here that
any settings needed for the duration of the incoming request are initialized.

Load ViewState
The ViewState property of the control is populated. The ViewState information
comes from a hidden variable on the control, used to persist the state across
round trips to the server. The input string from this hidden variable is parsed by
the page framework, and the ViewState property is set. You can modify this via
the LoadViewState() method. This allows ASP.NET to manage the state of your
control across page loads so that each control isn’t reset to its default state each
time the page is posted.

Process Postback Data
During this phase, the data sent to the server in the posting is processed. If any
of this data results in a requirement to update the ViewState, that update is per-
formed via the LoadPostData() method.

Creating a Web Form | 385

Load
CreateChildControls() is called, if necessary, to create and initialize server
controls in the control tree. State is restored, and the form controls contain
client-side data. You can modify the load phase by handling the Load event with
the OnLoad() method.

Send Postback Change Modifications
If there are any state changes between the current state and the previous state,
change events are raised via the RaisePostDataChangedEvent() method.

Handle Postback Events
The client-side event that caused the postback is handled.

PreRender
This is your last chance to modify the output prior to rendering, using the
OnPreRender() method.

Save State
Near the beginning of the life cycle, the persisted view state was loaded from the
hidden variable. Now it is saved back to the hidden variable, persisting as a
string object that will complete the round trip to the client. You can override this
using the SaveViewState() method.

Render
This is where the output to be sent back to the client browser is generated. You
can override it using the Render method. CreateChildControls() is called, if
necessary, to create and initialize server controls in the control tree.

Dispose
This is the last phase of the life cycle. It gives you an opportunity to do any final
cleanup and release references to any expensive resources, such as database
connections. You can modify it using the Dispose() method.

Creating a Web Form
To create the simple Web Form that we will use in the next example, start up Visual
Studio .NET and select File ➝ New Web Site. In the New Web Site dialog, choose
ASP.NET Web Site from the templates, File System for the location (you can also
create web sites remotely using HTTP or FTP), and Visual C# as your language.
Give your web site a location and a name and choose your .NET Framework, as
shown in Figure 17-1.

Visual Studio creates a folder named ProgrammingCSharpWeb in the directory
you’ve indicated, and within that directory it creates your Default.aspx page (for the
user interface), Default.aspx.cs file (for your code), web.config file (for web site con-
figuration settings), and an App_Data directory (currently empty but often used to
hold .mdb files or other data-specific files).

386 | Chapter 17: Programming ASP.NET Applications

Although Visual Studio no longer uses projects for web applications, it
does keep solution files to allow you to quickly return to a web site or
desktop application you’ve been developing. The solution files are
kept in a directory you can designate through the Tools ➝ Options
window, as shown in Figure 17-2.

Code-Behind Files
Let’s take a closer look at the .aspx and code-behind files that Visual Studio creates.
Start by renaming Default.aspx to HelloWeb.aspx. To do this, close Default.aspx and
then right-click its name in the Solution Explorer. Choose Rename, and enter the
name HelloWeb.aspx. That renames the file, but not the class. To rename the class,
right-click the .aspx page, choose View Code in the code page, and then rename the
class HelloWeb_aspx. You’ll see a small line next to the name. Click it, and you’ll open
the smart tag that allows you to rename the class. Click “Rename ‘_Default’ to
‘HelloWeb_aspx’” and Visual Studio ensures that every occurrence of Default_aspx
is replaced with its real name, as shown in Figure 17-3.

Within the HTML view of HelloWeb.aspx, you see that a form has been specified in
the body of the page using the standard HTML form tag:

<form id="form1" runat="server">

Figure 17-1. Creating your new web application

Creating a Web Form | 387

Web Forms assume that you need at least one form to manage the user interaction,
and it creates one when you open a project. The attribute runat="server" is the key
to the server-side magic. Any tag that includes this attribute is considered a server-
side control to be executed by the ASP.NET Framework on the server. Within the
form, Visual Studio has opened div tags to facilitate placing your controls and text.

Having created an empty Web Form, the first thing you might want to do is add
some text to the page. By switching to the Source view, you can add script and
HTML directly to the file just as you could with classic ASP. Adding to the body seg-
ment of the .aspx page the highlighted line in the following code snippet:

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="HelloWeb.aspx.cs"
Inherits="HelloWeb_aspx" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Figure 17-2. Project location options

Figure 17-3. Renaming the class

388 | Chapter 17: Programming ASP.NET Applications

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Hello Web Page</title>
</head>
<body>
 <form id="form1" runat="server">
 Hello World! It is now <% = DateTime.Now.ToString() %>
 <div>

 </div>
 </form>
</body>
</html>

will cause it to display a greeting and the current local time:

Hello World! It is now 9/9/2009 5:24:16 PM

The <% and %> marks work just as they did in classic ASP, indicating that code falls
between them (in this case, C#). The = sign immediately following the opening tag
causes ASP.NET to display the value, just like a call to Response.Write(). You could
just as easily write the line as:

Hello World! It is now
<% Response.Write(DateTime.Now.ToString()); %>

Run the page by pressing F5.

Adding Controls
You can add server-side controls to a Web Form in three ways: by writing HTML into
the HTML page, by dragging controls from the toolbox to the Design page, or by
programmatically adding them at runtime. For example, suppose you want to use
buttons to let the user choose one of three shippers provided in the Northwind data-
base. You can write the following HTML into the <form> element in the HTML
window:

<asp:RadioButton GroupName="Shipper" id="Speedy"
 text = "Speedy Express" Checked="True" runat="server">
</asp:RadioButton>
<asp:RadioButton GroupName="Shipper" id="United"
 text = "United Package" runat="server">

Enabling Debugging
When you press F5, you begin the debugger. It’s likely that Visual Studio will notice
that debugging is not enabled in the Web.config file for this application, and the
Debugging Not Enabled dialog box will appear, as shown in Figure 17-4.

The default in this dialog box is to modify (and, if needed, create) the Web.config file.
Go ahead and click OK to enable debugging for your application.

Creating a Web Form | 389

</asp:RadioButton>
<asp:RadioButton GroupName="Shipper" id="Federal"
 text = "Federal Shipping" runat="server">
</asp:RadioButton>

The asp tags declare server-side ASP.NET controls that are replaced with normal
HTML when the server processes the page. When you run the application, the
browser displays three radio buttons in a button group; selecting one deselects the
others.

You can create the same effect more easily by dragging three buttons from the Visual
Studio toolbox onto the form, or to make life even easier, you can drag a radio but-
ton list onto the form, which will manage a set of radio buttons declaratively. When
you do, the smart tag is opened, and you are prompted to choose a data source
(which allows you to bind to a collection; perhaps one you’ve obtained from a data-
base) or to edit items. Clicking Edit Items opens the ListItem Collection Editor,
where you can add three radio buttons.

Each radio button is given the default name ListItem, but you may edit its text and
value in the ListItem properties, where you can also decide which of the radio but-
tons is selected, as shown in Figure 17-5.

You can improve the look of your radio button list by changing properties in the
Properties window, including the font, colors, number of columns, repeat direction
(vertical is the default), and so forth, as well as by utilizing Visual Studio’s extensive
support for CSS styling, as shown in Figure 17-6.

In Figure 17-6, you can just see that in the lower-righthand corner you can switch
between the Properties window and the Styles window. Here, we’ve used the Proper-
ties window to set the tool tip, and the Styles window to create and apply the ListBox
style, which creates the border around our listbox and sets the font and font color.
We’re also using the split screen option to look at Design and Source at the same time.

Figure 17-4. Enabling debugging

390 | Chapter 17: Programming ASP.NET Applications

Figure 17-5. List item collection

Figure 17-6. Using properties and styles

Data Binding | 391

The tag indications (provided automatically at the bottom of the window) show us
our location in the document; specifically, inside a ListItem, within the ListBox
which is inside a div which itself is inside form1. Very nice.

Server Controls
Web Forms offer two types of server-side controls. The first is server-side HTML
controls. These are HTML controls that you tag with the attribute runat=Server.

The alternative to marking HTML controls as server-side controls is to use ASP.NET
Server Controls, also called ASP controls or web controls. ASP controls have been
designed to augment and replace the standard HTML controls. ASP controls pro-
vide a more consistent object model and more consistently named attributes. For
example, with HTML controls, there are myriad ways to handle input:

<input type="radio">
<input type="checkbox">
<input type="button">
<input type="text">
<textarea>

Each behaves differently and takes different attributes. The ASP controls try to nor-
malize the set of controls, using attributes consistently throughout the ASP control
object model. Here are the ASP controls that correspond to the preceding HTML
server-side controls:

<asp:RadioButton>
<asp:CheckBox>
<asp:Button>
<asp:TextBox rows="1">
<asp:TextBox rows="5">

The remainder of this chapter focuses on ASP controls.

Data Binding
Various technologies have offered programmers the opportunity to bind controls to
data so that as the data was modified, the controls responded automatically.
However, as Rocky used to say to Bullwinkle, “That trick never works.” Bound con-
trols often provided the developer with severe limitations in how the control looked
and performed.

The ASP.NET designers set out to solve these problems and provide a suite of robust
data-bound controls, which simplify display and modification of data, sacrificing nei-
ther performance nor control over the UI. From version 2.0, they have expanded the
list of bindable controls and provided even more out-of-the-box functionality.

392 | Chapter 17: Programming ASP.NET Applications

In the previous section, you hardcoded radio buttons onto a form, one for each of
three shippers in the Northwind database. That can’t be the best way to do it; if you
change the shippers in the database, you have to go back and rewire the controls.
This section shows you how you can create these controls dynamically and then bind
them to data in the database.

You might want to create the radio buttons based on data in the database because
you can’t know at design time what text the buttons will have, or even how many
buttons you’ll need. To accomplish this, you’ll bind your RadioButtonList to a data
source.

Create a new page (right-click on the project, and choose Add New Item; put your
form in split view; from the dialog box, choose Web Form). Name the new Web
Form DisplayShippers.aspx.

From the toolbox, drag a RadioButtonList onto the new form, either onto the design
pane, or within the <div> in the Source view.

If you don’t see the radio buttons on the left of your work space, try
clicking on View ➝ Toolbox to open the toolbox, and then clicking on
the Standard tab of the toolbox. Right-click on any control in the tool-
box, and choose Sort Items Alphabetically.

In the Design pane, click on the new control’s smart tag. Then, select Choose Data
Source. The Choose a Data Source dialog opens, as shown in Figure 17-7.

Figure 17-7. Choose a Data Source dialog

Data Binding | 393

Drop down the “Select a data source” menu and choose <New Data Source>. You
are then prompted to choose a data source from the datatypes on your machine.
Select Database, assign it an ID, and click OK. The Configure Data Source dialog
box opens, as shown in Figure 17-8.

Choose an existing connection, or in this case, choose New Connection to configure
a new data source, and the Add Connection dialog opens.

Fill in the fields: choose your server name, how you want to log in to the server (if in
doubt, choose Windows Authentication), and the name of the database (for this
example, Northwind). Be sure to click Test Connection to test the connection. When
everything is working, click OK, as shown in Figure 17-9.

After you click OK, the connection properties will be filled in for the Configure Data
Source dialog. Review them, and if they are OK, click Next. On the next wizard
page, name your connection (e.g., NorthWindConnectionString) if you want to save it
to your web.config file.

When you click Next, you’ll have the opportunity to specify the tables and columns
you want to retrieve, or to specify a custom SQL statement or stored procedure for
retrieving the data.

Figure 17-8. Choosing a data connection

Existing Connections

394 | Chapter 17: Programming ASP.NET Applications

Open the Table list, and scroll down to Shippers. Select the ShipperID and
CompanyName fields, as shown in Figure 17-10.

While you are here, you may want to click the Advanced button just
to see what other options are available to you.

Figure 17-9. The Add Connection dialog

Data Binding | 395

Click Next, and test your query to see that you are getting back the values you
expected, as shown in Figure 17-11.

It is now time to attach the data source you’ve just built to the RadioButtonList. A
RadioButtonList (like most lists) distinguishes between the value to display (e.g., the
name of the delivery service) and the value of that selection (e.g., the delivery service
ID). Set these fields in the wizard, using the drop down, as shown in Figure 17-12.

You can improve the look and feel of the radio buttons by binding to the Shippers
table, clicking the Radio Button list, and then setting the list’s properties and CSS
styles, as shown in Figure 17-13.

Examining the Code
Before moving on, there are a few things to notice. When you press F5 to run this
application, it appears in a web browser, and the radio buttons come up as expected.
Choose View ➝ Source, and you’ll see that what is being sent to the browser is sim-
ple HTML, as shown in Example 17-1.

Figure 17-10. Configuring the Select statement

396 | Chapter 17: Programming ASP.NET Applications

Figure 17-11. Testing the query

Figure 17-12. Binding radio buttons to the data source

Data Binding | 397

Figure 17-13. The Radio Button list with the data control

Example 17-1. HTML Source view

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head><title>
 Display Shippers
</title>
 <style type="text/css">
 .RadioButtonStyle
 {
 font-family: Verdana;
 font-size: medium;
 font-weight: normal;
 font-style: normal;
 border: medium groove #FF0000;
 }
 </style>

398 | Chapter 17: Programming ASP.NET Applications

Notice that the HTML has no RadioButtonList; it has a table, with cells, within
which are standard HTML input objects and labels. ASP.NET has translated the
developer controls to HTML understandable by any browser.

A malicious user may create a message that looks like a valid post from
your form, but in which he has set a value for a field you never pro-
vided in your form. This may enable him to choose an option not
properly available (e.g., a Premier-customer option), or even to launch
a SQL injection attack. You want to be especially careful about expos-
ing important data such as primary keys in your HTML, and take care
that what you receive from the user may not be restricted to what you
provide in your form. For more information on secure coding in .NET,
see http://msdn.microsoft.com/security/.

</head>
<body>
 <form name="form1" method="post" action="DisplayShippers.aspx" id="form1">
<div>
<input type="hidden" name="_ _VIEWSTATE" id="_ _VIEWSTATE"
value="/wEPDwUJMzU1NzcyMDk0D2QWAgIDD2QWAgIBDxAPFgIeC18hRGF0YUJvdW5kZ2QQFQMOU3BlZWR5
IEV4cHJlc3MOVW5pdGVkIFBhY2thZ2UQRmVkZXJhbCBTaGlwcGluZxUDATEBMgEzFCsDA2dnZ2RkZA9Nylp
g2lObPr0KzM1NvwXJoMBn" />
</div>

 <div>
 <table id="RadioButtonList1" border="0">
 <tr>
 <td><input id="RadioButtonList1_0" type="radio"
 name="RadioButtonList1" value="1" />
 <label for="RadioButtonList1_0">Speedy Express</label></td>
 </tr>
 <tr>
 <td><input id="RadioButtonList1_1" type="radio"
 name="RadioButtonList1" value="2" />
 <label for="RadioButtonList1_1">United Package</label></td>
 </tr>
 <tr>
 <td><input id="RadioButtonList1_2" type="radio"
 name="RadioButtonList1" value="3" />
 <label for="RadioButtonList1_2">Federal Shipping</label></td>
 </tr>
 </table>

 </div>

<div>

<input type="hidden" name="_ _EVENTVALIDATION" id="_ _EVENTVALIDATION"
value="/wEWBQLIyMfLBQL444i9AQL544i9AQL644i9AQL3jKLTDcEXOHLsO/LFFixl7k4g2taGl6Qy" />
</div></form>
</body>
</html>

Example 17-1. HTML Source view (continued)

Data Binding | 399

Adding Controls and Events
By adding just a few more controls, you can create a complete form with which users
can interact. You will do this by adding a more appropriate greeting (“Welcome to
NorthWind”), a text box to accept the name of the user, two new buttons (Order
and Cancel), and text that provides feedback to the user. Figure 17-14 shows the fin-
ished form.

This form won’t win any awards for design, but its use will illustrate a number of key
points about Web Forms.

I’ve never known a developer who didn’t think he could design a per-
fectly fine UI. At the same time, I never knew one who actually could.
UI design is one of those skills (such as teaching) that we all think we
possess, but only a few very talented folks are good at it. As develop-
ers, we know our limitations: we write the code, and someone else lays
it out on the page and ensures that usability issues are reviewed. For
more on this, I highly recommend every programmer read Don’t Make
Me Think: A Common Sense Approach to Web Usability by Steve Krug
(New Riders Press) and Why Software Sucks...and What You Can Do
About It by David Platt (Addison-Wesley).

Figure 17-14. The completed shipper form

400 | Chapter 17: Programming ASP.NET Applications

Example 17-2 is the complete HTML for the .aspx file.

Example 17-2. The .aspx file

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="DisplayShippers.aspx.cs"
Inherits="DisplayShippers" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Choose Shippers</title>
 <style type="text/css">
 .RadioButtonStyle
 {
 font-family: Verdana;
 font-size: medium;
 font-weight: normal;
 font-style: normal;
 border: medium groove #FF0000;
 }
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <table style="width: 300px; height: 33px">
 <tr>
 <td colspan="2" style="height: 20px">Welcome to NorthWind</td>
 </tr>
 <tr>
 <td>Your name:</td>
 <td><asp:TextBox ID="txtName" Runat=server></asp:TextBox></td>
 </tr>
 <tr>
 <td>Shipper:</td>
 <td>
 <asp:RadioButtonList ID="rblShippers" runat="server"
 DataSourceID="SqlDataSource1" DataTextField="CompanyName"
 DataValueField="ShipperID">
 </asp:RadioButtonList>
 </td>
 </tr>
 <tr>
 <td><asp:Button ID="btnOrder" Runat=server Text="Order"
 onclick="btnOrder_Click" /></td>
 <td><asp:Button ID="btnCancel" Runat=server Text="Cancel" /></td>
 </tr>
 <tr>
 <td colspan="2"><asp:Label id="lblMsg" runat=server></asp:Label></td>
 </tr>

 </table>

Data Binding | 401

When the user clicks the Order button, you’ll check that the user has filled in his
name, and you’ll also provide feedback on which shipper was chosen. Remember, at
design time, you can’t know the name of the shipper (this is obtained from the data-
base), so you’ll have to ask the Listbox for the chosen name (and ID).

To accomplish all of this, switch to Design mode, and double-click the Order
button. Visual Studio will put you in the code-behind page, and will create an event
handler for the button’s Click event.

To simplify this code, we will not validate that the user has entered a
name in the text box. For more on the controls that make such valida-
tion simple, please see Programming ASP.NET.

You add the event-handling code, setting the text of the label to pick up the text
from the text box, and the text and value from the RadioButtonList:

protected void btnOrder_Click(object sender, EventArgs e)
{
 lblMsg.Text = "Thank you " + txtName.Text.Trim() +
 ". You chose " + rblShippers.SelectedItem.Text +
 " whose ID is " + rblShippers.SelectedValue;
}

When you run this program, you’ll notice that none of the radio buttons are selected.
Binding the list did not specify which one is the default. There are a number of ways
to do this, but the easiest is to add a single line in the Page_Load method that Visual
Studio created:

protected void Page_Load(object sender, EventArgs e)
{
 rblShippers.SelectedIndex = 0;
}

This sets the RadioButtonList’s first radio button to Selected. The problem with this
solution is subtle. If you run the application, you’ll see that the first button is
selected, but if you choose the second (or third) button and click OK, you’ll find that
the first button is reset. You can’t seem to choose any but the first selection. This is
because each time the page is loaded, the OnLoad event is run, and in that event han-
dler you are (re-)setting the selected index.

 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:NorthwindConnectionString %>"
 SelectCommand="SELECT [ShipperID], [CompanyName] FROM [Shippers]">
 </asp:SqlDataSource>
 </form>
</body>
</html>

Example 17-2. The .aspx file (continued)

402 | Chapter 17: Programming ASP.NET Applications

The fact is that you only want to set this button the first time the page is selected, not
when it is posted back to the browser as a result of the OK button being clicked.

To solve this, wrap the setting in an if statement that tests whether the page has
been posted back:

protected override void OnLoad(EventArgs e)
{
 if (!IsPostBack)
 {
 rblShippers.SelectedIndex = 0;
 }
}

When you run the page, the IsPostBack property is checked. The first time the page is
posted, this value is false, and the radio button is set. If you click a radio button and
then click OK, the page is sent to the server for processing (where the btnOrder_Click
handler is run), and then the page is posted back to the user. This time, the IsPostBack
property is true, and thus the code within the if statement isn’t run, and the user’s
choice is preserved, as shown in Figure 17-15.

Figure 17-15. The user’s choices preserved on postback

Data Binding | 403

Example 17-3 shows the complete code-behind form.

Example 17-3. Code-behind form for DisplayShippers aspx.cs

using System;

public partial class DisplayShippers : System.Web.UI.Page
{
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!IsPostBack)
 {
 rblShippers.SelectedIndex = 0;
 }
 }

 protected void btnOrder_Click(object sender, EventArgs e)
 {
 lblMsg.Text = "Thank you " + txtName.Text.Trim() +
 ". You chose " + rblShippers.SelectedItem.Text +
 " whose ID is " + rblShippers.SelectedValue;
 }
}

404

Chapter 18CHAPTER 18

Programming WPF Applications 18

Microsoft currently offers two ways to create desktop applications: Windows Forms
(the technology in use since .NET 1.0) and Windows Presentation Foundation, or
WPF (new to .NET 3.5).

It is useful to see that regardless of the technology involved, the C# is very much the
same, so I will cover WPF in this chapter and Windows Forms in the next.

In this chapter, I’ll show you how to create a relatively straightforward (though non-
trivial) WPF application with C# event handlers. In the next chapter, I’ll show you
another nontrivial application, written in Windows Forms, and again, we’ll use C#
to implement the event handlers.

Everything about the two applications will be different, except for the C#; the lan-
guage remains unchanged whether you are writing WPF, Windows Forms, ASP.
NET, or Silverlight.

WPF in a Very Small Nutshell

It isn’t possible or reasonable to teach all of WPF in a single chapter,
and I won’t try. For a more reasonable introduction, please see Pro-
gramming .NET 3.5 by myself and Alex Horovitz (O’Reilly), and for a
complete and comprehensive review of WPF please see the truly won-
derful Programming WPF by Ian Griffiths and Chris Sells (O’Reilly),
which may be one of the best technical books I’ve ever read.

WPF is written, in large part, using a declarative language: XAML (pronounced
zamel, to rhyme with camel). XAML stands for eXtensible Application Markup Lan-
guage, which is a dialect of the industry-standard XML and thus is easily read and
manipulated by tools such as Visual Studio.

WPF in a Very Small Nutshell | 405

Creating a WPF Example
WPF does a lot of things well, but what sets it apart from previous Windows frame-
works is its command of rich text and rich graphics. WPF uses a different model
from the form-centric approach that many of us have (overly?) focused on with Win-
dows Forms.

Any sweeping generalization about WPF versus Windows Forms is
bound to fail, as one can always find a counterexample. What I’m
describing here is what I’ve seen in practice in many development
organizations, not what can be done in theory. As my old boss, Pat
Johnson, used to say (and as I’ve quoted before), “In theory, theory
and practice are the same, but in practice, they never are.”

Because this is a book about C# and not WPF, I’m going to start by showing you the
example we’re going to build, and I’ll teach only enough to get us there, with an
emphasis on the C# needed to make it work.

The Example Program
The example program we’re going to use is a variant on an example I’ve used in a
number of other places (varied here to emphasize the C#, to keep you interested,
and to stop my editor from yelling at me).

In this example, we’re going to reach out to the White House’s web site, and pull
down the images of the first 20 presidents of the United States and present them in a
custom WPF control.

The control will not be wide enough to show all 20, so we’ll provide a horizontal
scroll bar, and as the user mouses over an image, we’ll provide feedback by enlarg-
ing that image (from 75 to 85) and increasing its opacity from 75 percent to 100 per-
cent. As the user mouses off, we’ll return the image to its smaller, dimmer starting
point.

This will show off declarative animation (we’ll write no procedural code to accom-
plish these changes in the images!). In addition, when the user clicks on an image,
we’ll capture the click and display the name of the president using a C# event han-
dler, and we’ll reach into the control and place the president’s name into the title bar
of the control.

Figure 18-1 shows the result of scrolling to the 16th president and clicking on the
image. Note that the name of the president is displayed in the title bar, and that the
image of President Lincoln is both larger and brighter than the surrounding images.

406 | Chapter 18: Programming WPF Applications

Building the Application
To create this application, open Visual Studio 2008, and select Create ➝ Project. In
the New Project dialog select .NET Framework 3.5, and choose Visual C# in the
Project Types window and WPF Application in the Templates window. Select a
location for your program and give your program a name (I’ll be naming mine Presi-
dential Browser), as shown in Figure 18-2.

Visual Studio will create a starter application with a window, inside of which it will
place an empty grid. It will present you with a split window, with the designer on
top, and the XAML on the bottom. We can work with this (we’re easy).

Because we know that we want two items in our grid—the text block that says
“United States Presidents” and our sideways listbox of photographs—we can make a
start at a layout.

Grids and Stack Panels
Two of the layout objects WPF provides are stack panels and grids (not to be con-
fused with data grids!). A stack panel lets you stack a set of objects one on top of (or
next to) another set of objects. That turns out to be very useful.

At times, you’d like to set up a stack that is both horizontal and vertical—essentially
a table, which is what a grid is for. A grid has columns and rows, both counting from
zero.

We’ll create a simple grid of two rows and one column, and inside each row, we’ll
place a stack panel. The top stack panel will hold the text, and the bottom stack
panel will hold the listbox that will, in turn, hold the photos. (Don’t panic! We’ll
take this one step at a time.)

Figure 18-1. Clicking on Abraham Lincoln

Building the Application | 407

To begin, let’s give the grid some dimensions: a width of 300 and a height of 190
should do it (I know this because I’m a stud programmer, and because I tried some
values until I found two that worked pretty well).

As a matter of good programming practice, every time we open a tag, we immedi-
ately create its closing tag and then fill in its contents. This is not required, but you’d
be amazed at how much debugging time it saves. IntelliSense will help with this, as
shown in Figure 18-3.

Figure 18-2. The New Project dialog box

Figure 18-3. IntelliSense helping to find the closing tag

408 | Chapter 18: Programming WPF Applications

Fill in your code until it looks like Example 18-1.

Let’s take this apart. The first three lines declare the standard namespaces for WPF.
This is followed by the title of the window (cleverly named Window1), and the height
and width of the window.

The next line has the declaration of the grid and its height (note that the grid is only
300 wide).

Within the grid, I’ve added a Grid.RowDefinition declaration that lets me divide the
grid so that I can take precise control over the distribution of the spacing of the rows,
allocating 7/18 of the space to the first row. I could compute the remaining space for
the bottom row (120), or use the asterisk to let the grid do the math.

Next, I define two stack panels, telling the first that it is to occupy the first row of the
grid (and you do have such familiar attributes as RowSpan and ColumnSpan!), and
within each of the two StackPanels, I place a TextBlock. TextBlocks are very power-
ful and flexible controls for text that we are using here just to display simple text and
to align that text to the center of the panel, which we see immediately in the Design
view, as shown in Figure 18-4.

Change the text block in the first stack panel to the following:

<TextBlock FontSize="14" Grid.Row="0" >United States Presidents</TextBlock>

Note that the TextBlock has a property for FontSize. You may also want to play with
font weight and font family and a host of other features in the TextBlock. While
you’re tinkering, let’s fix the apportionment of the rows, allocating only 20 to the
first row, and the remainder to the second row, and setting the grid to 170.

Example 18-1. Starter XAML

<Window x:Class="Presidential_Browser.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Title="Window1" Height="300" Width="300">
 <Grid Width="300" Height="180">
 <Grid.RowDefinitions>
 <RowDefinition Height="70" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <StackPanel Grid.Row="0">
 <TextBlock Text="Top Stack Panel" VerticalAlignment="Center"/>
 </StackPanel>
 <StackPanel Grid.Row="1">
 <TextBlock Text="Bottom Stack Panel" VerticalAlignment="Center"/>
 </StackPanel>
 </Grid>
</Window>

Building the Application | 409

Sucking on a Fire Hose
Now I’m going to do something evil. If this were a book on WPF, I’d walk you
through how we do data access on groups of data in a number of small steps.
Instead, because this is a book on C#, I’m going to throw it at you all at once.

You have a couple of choices. You can struggle through what is admittedly a some-
what superficial and fast explanation so that you can see how the C# is used, and
come back to WPF when you are ready, or you can go off and read a couple of chap-
ters in a good WPF book (see the earlier note; I’ll wait right here, I promise).

The problem is that if I take you through the WPF in the kind of detail I’d like, this
will become a long diversion that really has little to do with C#, so forgive me while I
just throw a Nolan Ryan speedball directly between your eyes.

Our goals

Our first goal is to get the pictures into a listbox and to turn the listbox sideways so
that the pictures scroll along, as shown in Figure 18-1.

To accomplish that, we need to do two things: we need to work with the style of the
listbox, and we need to work with its data. Yes, you can separate these two aspects,
but it is faster and easier if I show you both at once, so fasten your seatbelts.

We’re going to jump to the top of the XAML file and start by creating some
resources. The first is a LinearGradientBrush, which we will name ListBoxGradient.

Figure 18-4. Grid and stack panels

410 | Chapter 18: Programming WPF Applications

We’ll be able to use this brush anywhere we want to draw a fill (rather than a color,
as this will give us a nice linear gradient, which is a color that changes gradually as it
moves through the colors identified in the gradient stops):

<Window.Resources>
 <LinearGradientBrush x:Key="ListBoxGradient"
 StartPoint="0,0"
 EndPoint="0,1">
 <GradientStop Color="#90000000"
 Offset="0" />
 <GradientStop Color="#40000000"
 Offset="0.005" />
 <GradientStop Color="#10000000"
 Offset="0.04" />
 <GradientStop Color="#20000000"
 Offset="0.945" />
 <GradientStop Color="#60FFFFFF"
 Offset="1" />
 </LinearGradientBrush>

Briefly, all linear gradients are perceived to occur on a line ranging from 0 to 1. You
can set the start points and endpoints (traditionally, the start point 0,0 is the upper-left
corner, and the endpoint 1,1 is the lower-right corner, making the linear gradient run
on an angle). Here, we’ve set the linear gradient to end at 0,1, making the gradient run
from top to bottom, giving a horizontal gradient, moving through five colors,
unevenly spaced.

Still within the resources, we next define a Style object, and we define its TargetType
to be an object of type ListBox:

<Style x:Key="SpecialListStyle"
 TargetType="{x:Type ListBox}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListBox}" >
 <Border BorderBrush="Gray"
 BorderThickness="1"
 CornerRadius="6"
 Background="{DynamicResource ListBoxGradient}" >
 <ScrollViewer VerticalScrollBarVisibility="Disabled"
 HorizontalScrollBarVisibility="Visible">
 <StackPanel IsItemsHost="True"
 Orientation="Horizontal"
 HorizontalAlignment="Left" />
 </ScrollViewer>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
</Style>

Building the Application | 411

The net effect of this code is to allow you to apply this style to a listbox to create a
gray border using the ListBoxGradient that will have no vertical scroll bar but will
have a horizontal scroll bar, and that will make the listbox itself horizontal.

Having created a style for the listbox, we need a style for the items in the listbox:

<Style x:Key="SpecialListItem"
 TargetType="{x:Type ListBoxItem}">
 <Setter Property="MaxHeight" Value="75" />
 <Setter Property="MinHeight" Value="75" />
 <Setter Property="Opacity" Value=".75" />
 <Style.Triggers>
 <EventTrigger RoutedEvent="Mouse.MouseEnter">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="MaxHeight" To="85" />
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="Opacity" To="1.0" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>

 <EventTrigger RoutedEvent="Mouse.MouseLeave">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:1"
 Storyboard.TargetProperty="MaxHeight" />
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="Opacity" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Style.Triggers>
</Style>

This style begins by setting its target type (ListBoxItems) and three properties
(MaxHeight, MinHeight, and Opacity). It then sets triggers. As you might imagine, trig-
gers are events that will set off a change; the change that a trigger sets off is the
beginning of an animation. Animations are defined in storyboards.

There are a number of ways to tie animations and storyboards to events, but one way
(and the way used here) is to tie an EventTrigger to a RoutedEvent. Let’s unpack the
first one:

<EventTrigger RoutedEvent="Mouse.MouseEnter">

Pretty clear: the following will be kicked off when the mouse enters the object that is
associated with this EventTrigger (that object will be the listbox item).

412 | Chapter 18: Programming WPF Applications

Within that EventTrigger are defined one or more EventTrigger.Actions. In this case,
the action is BeginStoryBoard, and there is a single, unnamed Storyboard:

<EventTrigger RoutedEvent="Mouse.MouseEnter">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="MaxHeight" To="85" />
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="Opacity" To="1.0" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
</EventTrigger>

The action is inside the storyboard, where we find two animations. There are vari-
ous kinds of animations, named for the kind of value they act upon. The two we see
here act upon doubles (nonintegral numeric values). These two animations are
defined to have a duration of 2/10 of a second. The TargetProperty refers to the
property of the object to be animated (that is the listbox item)—in the first case, the
height of the listbox item, which will be animated to a height of 85 (from a starting
point of 75). The second animation will change the opacity from its starting point of
.75 to 1 (making it appear to brighten).

Adding Data
We’re now going to cheat very badly, and rather than getting our data from a web
service or from a database, we’re going to put it right into our resources (please don’t
tell!). The data will consist of a generic list of ImageURL objects. You’ve not heard of
such objects because we haven’t created them yet. Right-click on the project and
choose Add ➝ Class, and in your new class add the code in Example 18-2.

Example 18-2. ImageURL class

using System;
using System.Collections.Generic;
using System.Windows.Media.Imaging;

namespace PhotoCatalog
{
 public class ImageURL
 {
 public string Path { get; private set; }
 public Uri ImageURI { get; set; }
 public BitmapFrame Image { get; private set; }
 public string Name { get; set; }

 public ImageURL() { }

 public ImageURL(string path, string name)

Building the Application | 413

OK, I lied—we created two classes. The first, ImageURL, is designed to act as a wrap-
per for an image that we retrieve given the path to an image or a URI from which we
can create an image. Note that we use the new C# Automatic Properties syntax (isn’t
that wicked cool!), and we override ToString() to return the Path property even
though we haven’t explicitly created the backing variable; gotta love that.

The second class is at the very bottom: Images derives from (is-a) generic list of
ImageURL objects. The implementation is empty, so it serves as an alias for
List<ImageURL>.

Instantiating objects declaratively

What takes awhile to get your head around is that now that we’ve declared these
classes, we can create instances of them in our resources section! To do so, we must
first include our class in our XAML file by creating a namespace for our project; we’ll
call that namespace local, as shown in Figure 18-5.

 {
 Path = path;
 ImageURI = new Uri(Path);
 Image = BitmapFrame.Create(ImageURI);
 Name = name;
 }
 public override string ToString()
 {
 return Path;
 }
 }

 public class Images : List<ImageURL> { }

}

Figure 18-5. Adding a local namespace

Example 18-2. ImageURL class (continued)

414 | Chapter 18: Programming WPF Applications

We create an instance of the Images class like this:

<local:Images x:Key="Presidents">

This is the XAML equivalent of writing:

List<ImageURL> Presidents = new List<ImageURL>();

We then add to that list by creating instances of ImageURL between the opening and
closing tags of the Images declaration:

<local:ImageURL ImageURI="http://www.whitehouse.gov/history/ presidents/images/gw1.
gif" Name="George Washington" />

Again, this is the XAML equivalent of writing:

ImageURL newImage = new ImageURL(
 "http://www.whitehouse.gov/history/ presidents/images/gw1.gif,
 "George Washington");
Presidents.Add(newImage)";

We do that 20 times, once for each of the first 20 presidents. That creates a static data
resource we can refer to in the rest of our XAML file, completing the resources section.

Using the Data in the XAML
Our next step is to provide a DataContext for the Grid:

<Grid Width="300" Height="170"
 DataContext="{StaticResource Presidents}">

Every Framework object has a DataContext object, usually null. If you don’t instruct
the object otherwise, it will look up the tree from where it is defined until it finds an
object that does have a DataContext defined, and then it will use that DataContext as
its data source (you can use virtually anything as a DataSource—a LINQ statement, a
connection to a database, or, as in this case, a static resource).

Defining the Listbox
We are now ready to define the listbox and the template for its contents in the
second StackPanel:

<StackPanel Grid.Row="1" Grid.ColumnSpan="3" >
 <ListBox Style="{StaticResource SpecialListStyle}"
 Name="PresPhotoListBox" Margin="0,0,0,20"
 SelectionChanged="PresPhotoListBox_SelectionChanged"
 ItemsSource="{Binding }"
 IsSynchronizedWithCurrentItem="True" SelectedIndex="0"
 ItemContainerStyle="{StaticResource SpecialListItem}" >

The first line shown here places the stack panel into the grid at row offset 1 (the sec-
ond row). The ListBox itself has its style set to a StaticResource (i.e., a resource we
defined earlier in the resources section). The listbox is named:

Name="PresPhotoListBox"

Building the Application | 415

And an event handler is defined for anytime an image is clicked:

SelectionChanged="PresPhotoListBox_SelectionChanged"

The source for each item is set to Binding, indicating that we are binding to the
source in the parent element (defined in the grid). Finally, the ItemContainerStyle is
set, again, to the style defined earlier in the resources section.

Each item in the listbox will be drawn from the (unknown) number of items in the
data (which in this case happens to be statically placed in the resources, but could
well be dynamically drawn from a web service). To do this, we’ll need a template for
how to draw each item:

<ListBox.ItemTemplate>
 <DataTemplate>
 <Border VerticalAlignment="Center"
 HorizontalAlignment="Center" Padding="4"
 Margin="2" Background="White">
 <Image Source="{Binding Path=ImageURI}" />
 </Border>
 </DataTemplate>
</ListBox.ItemTemplate>

Within the ListBox.ItemTemplate we place a DataTemplate; this is necessary if you
want to show anything more than simple text derived from the data retrieved. In this
case, we place a Border object within the DataTemplate, and within the Border object,
we place the Image object. It is the Image object we really care about (though the
Border object helps with placement). The Image requires a source, and here, we add
Binding (indicating that we are binding to the current source), and we add the help-
ful information that we’ll be using the ImageURI property to set the Path. Because the
source we bind to is a list of ImageURL objects, and each ImageURL has four public
properties (Path, ImageURI, Image, and Name), this is the critical piece of data required
to tell the DataTemplate how to get the information necessary to create the image in
the listbox.

The Complete XAML File
For those of you who are not sitting in front of a computer, Example 18-3 has the
complete XAML listing, truncated a bit so as not to take up too much room in the
chapter.

Example 18-3. Complete XAML listing

<Window x:Class="PhotoCatalog.Window1"
 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:local="clr-namespace:PhotoCatalog"
 Title="President Identifier" ShowInTaskbar="False" Height="256" Width="253">

 <Window.Resources>
 <LinearGradientBrush x:Key="ListBoxGradient"

416 | Chapter 18: Programming WPF Applications

 StartPoint="0,0"
 EndPoint="0,1">

 <GradientStop Color="#90000000"
 Offset="0" />
 <GradientStop Color="#40000000"
 Offset="0.005" />
 <GradientStop Color="#10000000"
 Offset="0.04" />
 <GradientStop Color="#20000000"
 Offset="0.945" />
 <GradientStop Color="#60FFFFFF"
 Offset="1" />

 </LinearGradientBrush>

 <Style x:Key="SpecialListStyle"
 TargetType="{x:Type ListBox}">
 <Setter Property="Template">
 <Setter.Value>
 <ControlTemplate TargetType="{x:Type ListBox}" >
 <Border BorderBrush="Gray"
 BorderThickness="1" CornerRadius="6"
 Background="{DynamicResource ListBoxGradient}" >
 <ScrollViewer VerticalScrollBarVisibility="Disabled"
 HorizontalScrollBarVisibility="Visible">
 <StackPanel IsItemsHost="True"
 Orientation="Horizontal"
 HorizontalAlignment="Left" />
 </ScrollViewer>
 </Border>
 </ControlTemplate>
 </Setter.Value>
 </Setter>
 </Style>

 <Style x:Key="SpecialListItem"
 TargetType="{x:Type ListBoxItem}">
 <Setter Property="MaxHeight" Value="75" />
 <Setter Property="MinHeight" Value="75" />
 <Setter Property="Opacity" Value=".75" />
 <Style.Triggers>
 <EventTrigger RoutedEvent="Mouse.MouseEnter">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="MaxHeight" To="85" />
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="Opacity" To="1.0" />
 </Storyboard>
 </BeginStoryboard>

Example 18-3. Complete XAML listing (continued)

Building the Application | 417

 </EventTrigger.Actions>
 </EventTrigger>

 <EventTrigger RoutedEvent="Mouse.MouseLeave">
 <EventTrigger.Actions>
 <BeginStoryboard>
 <Storyboard>
 <DoubleAnimation Duration="0:0:1"
 Storyboard.TargetProperty="MaxHeight" />
 <DoubleAnimation Duration="0:0:0.2"
 Storyboard.TargetProperty="Opacity" />
 </Storyboard>
 </BeginStoryboard>
 </EventTrigger.Actions>
 </EventTrigger>
 </Style.Triggers>
 </Style>

 <local:Images x:Key="Presidents">
 <local:ImageURL
ImageURI="http://www.whitehouse.gov/history/presidents/images/gw1.gif"
Name="George Washington" />
 <local:ImageURL ImageURI=".../ja2.gif" Name="John Adams" />
 <local:ImageURL ImageURI=".../tj3.gif" Name="Thomas Jefferson" />
 <local:ImageURL ImageURI=".../jm4.gif" Name="James Madison" />
 <local:ImageURL ImageURI=".../jm5.gif" Name="James Monroe" />
 <local:ImageURL ImageURI=".../ja6.gif" Name="John Quincy Adams" />
 <local:ImageURL ImageURI=".../aj7.gif" Name="Andrew Jackson" />
 <local:ImageURL ImageURI=".../mb8.gif" Name="Martin Van Buren" />
 <local:ImageURL ImageURI=".../wh9.gif" Name="William H. Harrison" />
 <local:ImageURL ImageURI=".../jt10.gif" Name="John Tyler" />
 <local:ImageURL ImageURI=".../jp11.gif" Name="James K. Polk" />
 <local:ImageURL ImageURI=".../zt12.gif" Name="Zachary Taylor" />
 <local:ImageURL ImageURI=".../mf13.gif" Name="Millard Fillmore" />
 <local:ImageURL ImageURI=".../fp14.gif" Name="Franklin Pierce" />
 <local:ImageURL ImageURI=".../jb15.gif" Name="James Buchanan" />
 <local:ImageURL ImageURI=".../al16.gif" Name="Abraham Lincoln" />
 <local:ImageURL ImageURI=".../aj17.gif" Name="Andrew Johnson" />
 <local:ImageURL ImageURI=".../ug18.gif" Name="Ulysses S. Grant" />
 <local:ImageURL ImageURI=".../rh19.gif" Name="Rutherford B. Hayes" />
 <local:ImageURL ImageURI=".../jp11.gif" Name="James Garfield" />
 <local:ImageURL ImageURI=".../jg20.gif" Name="Chester A. Arthur" />
 </local:Images>
 </Window.Resources>

 <Grid Width="300" Height="170"
 DataContext="{StaticResource Presidents}">
 <Grid.RowDefinitions>
 <RowDefinition Height="20" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>
 <StackPanel >

Example 18-3. Complete XAML listing (continued)

418 | Chapter 18: Programming WPF Applications

Event Handling (Finally!)
Note carefully that we did, in fact, wire up an event handler for when the user
changes the selected item in the listbox:

SelectionChanged="PresPhotoListBox_SelectionChanged"

This is typically done by clicking on an image (though you can accomplish this with
the arrow keys as well!). This will fire the event handler in the code-behind file,
which is, finally, C#. Remember C#? This is a book about C# (apologies to Arlo
Guthrie).

The event handler is, as you would expect, in the code-behind file, Window1.xaml.cs:

private void PresPhotoListBox_SelectionChanged(
 object sender, SelectionChangedEventArgs e)
{
 ListBox lb = sender as ListBox;
 if (lb != null)
 {

 if (lb.SelectedItem != null)
 {

 string chosenName = (lb.SelectedItem as ImageURL).Name.ToString();
 Title = chosenName;

 <TextBlock FontSize="14" Grid.Row="0" >
 United States Presidents
 </TextBlock>
 </StackPanel>
 <StackPanel Grid.Row="1" Grid.ColumnSpan="3" >
 <ListBox Style="{StaticResource SpecialListStyle}"
 Name="PresPhotoListBox" Margin="0,0,0,20"
 SelectionChanged="PresPhotoListBox_SelectionChanged"
 ItemsSource="{Binding }"
 IsSynchronizedWithCurrentItem="True" SelectedIndex="0"
 ItemContainerStyle="{StaticResource SpecialListItem}" >

 <ListBox.ItemTemplate>
 <DataTemplate>
 <Border VerticalAlignment="Center"
 HorizontalAlignment="Center" Padding="4"
 Margin="2" Background="White">
 <Image Source="{Binding Path=ImageURI}" />
 </Border>
 </DataTemplate>
 </ListBox.ItemTemplate>
 </ListBox>
 </StackPanel>
 </Grid>
</Window>

Example 18-3. Complete XAML listing (continued)

What Have You Learned, Dorothy? | 419

 }
 }
 else
 {
 throw new ArgumentException(
 "Expected ListBox to call selection changed in
 PresPhotoListBox_SelectionChanged");
 }

}

Like all event handlers in .NET, you receive two parameters: the sender (in this case,
the listbox), and an object derived from EventArgs.

In the code shown, we cast the sender to the listbox (and consider it an exception if
the sender is not a listbox, as that is the only type of object that should be sending to
this event handler).

We then check to make sure that the selectedItem is not null (during startup it is
possible that it can be null). Assuming it is not null, we cast the selectedItem to an
ImageURL, extract the Name property, and assign it to a temporary variable, chosenName,
which we then in turn assign to the title of the window.

The interim variable is useful only for debugging; there is no other reason not to
write:

Title = (lb.SelectedItem as ImageURL).Name.ToString();

You can also get at both the currently selected president’s ImageURL and
the previously selected ImageURL through the SelectionChangedEventArgs
parameter.

What Have You Learned, Dorothy?
WPF is heavily declarative, and although it is true that you will still be writing your
event handlers (and your business classes) in C#, many of the challenges in your pro-
gram will (at least at first) be in the XAML.

What we didn’t do in this program, of course, is integrate LINQ to access data, nor
did we build an entire business layer (though one can argue that the business layer in
many applications should be written in WF, which also uses XAML!).

Pick up a good book on WPF. You’ll find a fair amount of C#, but you’ll be sur-
prised at how many of the listings are in XAML compared to C#. C# hasn’t receded
in importance, but declarative programming has certainly supplemented object-
oriented programming as another arrow in our quiver.

420

Chapter 19CHAPTER 19

Programming Windows Forms
Applications 19

When .NET first came to life, there were two ways to create applications: ASP.NET
for web applications, and Windows Forms for Windows applications. Although
WPF offers many advantages over Windows Forms, Microsoft realizes that there are
a great many Windows Forms applications already up, tested, and working, and that
many companies will choose to maintain and extend them.

Our interest in this book is how we can use C# to interact with Windows Forms, and
in this chapter we’ll look at building a nontrivial application using this technology.
Figure 19-1 shows the application we’re going to build. It is a Windows application
for copying files from one or more directories to a target directory, written in Win-
dows Forms and designed to be run on a Windows computer (this application has
been tested on Windows XP, 2000, and Vista).

Once again, because this is a C# book and not a Windows programming book,
we’re going to make fast work of the UI and focus on the code-behind file and the
event handlers—that is, on the C#. Unlike with WPF, however, there is no declara-
tive aspect to Windows Forms; you create the UI by dragging objects onto a form,
and then interacting with those objects by clicking on them and setting their proper-
ties, either in the Properties window at design time, or programmatically at runtime.

Creating the Application
Open Visual Studio 2008, and choose Create ➝ Project. In the New Project window,
create a new Visual C# application, and from the Templates window, choose Win-
dows Forms Application. Name it Windows Form File Copier, as shown in Figure 19-2.

Visual Studio responds by creating a Windows Forms application and, best of all,
putting you into a design environment and opening a toolbox with controls sorted
by the type of work you might want to do. The user interface for FileCopier consists
of the following controls:

• Labels (source files and target files)

• Buttons (Clear, Copy, Delete, and Cancel)

Creating the Application | 421

• An “Overwrite if exists” checkbox

• A text box displaying the path of the selected target directory

• Two large tree-view controls, one for available source directories, and one for
available target devices and directories

To create the UI, click on the form and click in the Properties window. Expand the Size
property and set the Width to 585 and the Height to 561. Change the Text property to
File Copier, change the name to frmFileCopier, and change the AutoSizeMode to
GrowOnly. You can leave the remaining properties alone.

Drag two tree-view controls onto the form, placing them as shown in Figure 19-3.
Note that the left tree-view control is taller than the right, allowing room for a text
box above the right tree-view control. Continue to drag controls onto the form and
then name them, as shown in Table 19-1.

Table 19-1 shows the names we assigned to the controls on this form.

Figure 19-1. The File Copier application

422 | Chapter 19: Programming Windows Forms Applications

Figure 19-2. The New Project dialog

Figure 19-3. Controls labeled in Design mode

Label Buttons

Check box

Right tree view

Left tree view
Text box

Labels

Creating the Application | 423

Creating Event Handlers
There are four common ways to create event handlers in Visual Studio. One is to
click on a control, and then to name the event handler in the Properties window.
You can switch the Properties window into Events mode by clicking on the lightning
bolt button. Find the event you want to hook up, click in the box next to the event,
and type a name, as shown in Figure 19-4.

When you press the Enter key, Visual Studio 2008 will create an event handler stub
and place you in the source code to fill in the details.

Table 19-1. Controls on form

Control type Control name

Tree view (left) tvwSource

Tree view (right) tvwDestination

Text box txtTargetDir

Label lblSource

Label lblTarget

Label lblStatus

Button btnClear

Button btnCopy

Button btnDelete

Button btnCancel

Checkbox chkOverwrite

Figure 19-4. Naming event handlers

424 | Chapter 19: Programming Windows Forms Applications

The second option is to do the same thing, but rather than typing in a name, just
double-click in the space next to the property name in the Properties window. This
instructs Visual Studio to create a name for you, which it does by concatenating the
name of the control and the name of the event. Thus, were you to have double-clicked
in the space next to Click in Figure 19-4, Visual Studio would have created an event
handler named btnCancel_Click, and placed you in the stub of that event handler:

private void btnCancel_Click(object sender, EventArgs e)
{

}

The third option is to drop down a list of existing event handlers and thus instruct
Visual Studio that the Click event for this button will share an already existing event
handling method, as shown in Figure 19-5.

The fourth and fastest way to wire up an event handler is to double-click on a con-
trol. Each control has a default event (the most common event for that control).
With a button, that event is, of course, Click, and double-clicking on a button is
exactly like navigating to the Click event and double-clicking in the event name area:
an event handler is created for you with the name btnCancel_Click.

Populating the TreeView Controls
The two TreeView controls work identically, except that the left control, tvwSource,
lists the directories and files, whereas the right control, tvwTargetDir, lists only direc-
tories. The CheckBoxes property on tvwSource is set to true, and on tvwTargetDir it is
set to false. Also, although tvwSource will allow multiselection, which is the default
for TreeView controls, you will enforce single selection for tvwTargetDir.

Figure 19-5. Choosing a shared event handler

Creating the Application | 425

You’ll factor the common code for both TreeView controls into a shared method,
FillDirectoryTree, and pass in the control with a flag indicating whether to get the
files. You’ll call this method from the form’s constructor, once for each of the two
controls:

FillDirectoryTree(tvwSource, true);
FillDirectoryTree(tvwTargetDir, false);

The FillDirectoryTree implementation names the TreeView parameter tvw. This will
represent the source TreeView and the destination TreeView in turn. You’ll need some
classes from System.IO, so add a using System.IO; statement at the top of Form1.cs.
Next, add the method declaration to Form1.cs:

private void FillDirectoryTree(TreeView tvw, bool isSource)

TreeNode objects

The TreeView control has a property, Nodes, which gets a TreeNodeCollection object.
The TreeNodeCollection is a collection of TreeNode objects, each of which represents
a node in the tree. Start by emptying that collection:

tvw.Nodes.Clear();

You are ready to fill the TreeView’s Nodes collection by recursing through the directo-
ries of all the drives. First, get all the logical drives on the system. To do so, call a
static method of the Environment object, GetLogicalDrives(). The Environment class
provides information about and access to the current platform environment. You can
use the Environment object to get the machine name, OS version, system directory,
and so forth, from the computer on which you are running your program:

string[] strDrives = Environment.GetLogicalDrives();

.NET Windows Forms Tips for VB 6 Programmers
It’s great that the basic .NET Windows controls have a lot in common with their VB 6
ancestors. But there are some changes that could catch you off guard. Keep these tips
in mind when designing forms.

In VB 6, some controls display text using the Text property and some use the Caption
property. With .NET, all text-related properties are now simply called Text.

VB 6 CommandButtons use the properties Default and Cancel so that the user could effec-
tively select them by pressing the Enter or the Escape key. With .NET, these properties
are now part of the Form object. The AcceptButton and CancelButton properties are used
to reference which button on the form assumes each responsibility.

You display a VB 6 form by calling the Show() method. If you want the form to be dis-
played as a modal dialog box, you pass the vbModal enumerator to the Show() method.
In .NET, these two functions have been separated into two different method calls:
Show() and ShowModal().

426 | Chapter 19: Programming Windows Forms Applications

GetLogicalDrives() returns an array of strings, each of which represents the root
directory of one of the logical drives. You will iterate over that collection, adding
nodes to the TreeView control as you go:

foreach (string rootDirectoryName in strDrives)
{

You process each drive within the foreach loop.

The very first thing you need to determine is whether the drive is ready. Our hack for
that is to get the list of top-level directories from the drive by calling GetDirectories()
on a DirectoryInfo object we created for the root directory:

DirectoryInfo dir = new DirectoryInfo(rootDirectoryName);
dir.GetDirectories();

The DirectoryInfo class exposes instance methods for creating, moving, and enu-
merating through directories, their files, and their subdirectories. I cover the
DirectoryInfo class in detail in Chapter 22.

The GetDirectories() method returns a list of directories, but actually, this code
throws the list away. You are calling it here only to generate an exception if the drive
is not ready.

Wrap the call in a try block and take no action in the catch block. The effect is that
if an exception is thrown, the drive is skipped.

Once you know that the drive is ready, create a TreeNode to hold the root directory of
the drive and add that node to the TreeView control:

TreeNode ndRoot = new TreeNode(rootDirectoryName);
tvw.Nodes.Add(ndRoot);

To get the plus (+) signs right in the TreeView, you must find at least two levels of
directories (so that the TreeView knows which directories have subdirectories and can
write the + next to them). You don’t want to recurse through all the subdirectories,
however, because that would be too slow.

The job of the GetSubDirectoryNodes() method is to recurse two levels deep, passing
in the root node, the name of the root directory, a flag indicating whether you want
files, and the current level (you always start at level 1):

if (isSource)
{

 GetSubDirectoryNodes(ndRoot, ndRoot.Text, true,1);
}
else
{
 GetSubDirectoryNodes(ndRoot, ndRoot.Text, false,1);
}

You are probably wondering why you need to pass in ndRoot.Text if you’re already
passing in ndRoot. Patience—you will see why this is needed when you recurse back

Creating the Application | 427

into GetSubDirectoryNodes. You are now finished with FillDirectoryTree(). See
Example 19-1, later in this chapter, for a complete listing of this method.

Recursing through the subdirectories

GetSubDirectoryNodes() begins by once again calling GetDirectories(), this time
stashing away the resulting array of DirectoryInfo objects:

private void GetSubDireoctoryNodes(
 TreeNode parentNode, string fullName, bool getFileNames)
{
 DirectoryInfo dir = new DirectoryInfo(fullName);
 DirectoryInfo[] dirSubs = dir.GetDirectories();

Notice that the node passed in is named parentNode. The current level of nodes will
be considered children to the node passed in. This is how you map the directory
structure to the hierarchy of the tree view.

Iterate over each subdirectory, skipping any that are marked Hidden:

foreach (DirectoryInfo dirSub in dirSubs)
{
 if ((dirSub.Attributes & FileAttributes.Hidden) != 0)
 {
 continue;
 }

FileAttributes is an enum; other possible values include Archive, Compressed,
Directory, Encrypted, Hidden, Normal, ReadOnly, and so on.

The property dirSub.Attributes is the bit pattern of the current
attributes of the directory. If you logically AND that value with the bit
pattern FileAttributes.Hidden, a bit is set if the file has the hidden
attribute; otherwise, all the bits are cleared. You can check for any hid-
den bit by testing whether the resulting int is something other than 0.

Create a TreeNode with the directory name, and add it to the Nodes collection of the
node passed in to the method (parentNode):

TreeNode subNode = new TreeNode(dirSub.Name);
parentNode.Nodes.Add(subNode);

Now you check the current level (passed in by the calling method) against a con-
stant defined for the class:

private const int MaxLevel = 2;

so as to recurse only two levels deep:

if (level < MaxLevel)
{
 GetSubDirectoryNodes(
 subNode, dirSub.FullName, getFileNames, level+1);
}

428 | Chapter 19: Programming Windows Forms Applications

You pass in the node you just created as the new parent, the full path as the full
name of the parent, and the flag you received, along with one greater than the cur-
rent level (thus, if you started at level 1, this next call will set the level to 2).

The call to the TreeNode constructor uses the Name property of the
DirectoryInfo object, whereas the call to GetSubDirectoryNodes() uses
the FullName property. If your directory is C:\Windows\Media\Sounds,
the FullName property returns the full path, and the Name property
returns just Sounds. Pass in only the name to the node because that is
what you want displayed in the tree view. Pass in the full name with
the path to the GetSubDirectoryNodes() method so that the method
can locate all the subdirectories on the disk. This answers the ques-
tion asked earlier regarding why you need to pass in the root node’s
name the first time you call this method. What is passed in isn’t the
name of the node; it is the full path to the directory represented by the
node!

Getting the files in the directory

Once you’ve recursed through the subdirectories, it is time to get the files for the
directory if the getFileNames flag is true. To do so, call the GetFiles() method on
the DirectoryInfo object. An array of FileInfo objects is returned:

if (getFileNames)
{
 // Get any files for this node.
 FileInfo[] files = dir.GetFiles();

The FileInfo class provides instance methods for manipulating files.

You can now iterate over this collection, accessing the Name property of the FileInfo
object, and passing that name to the constructor of a TreeNode, which you then add
to the parent node’s Nodes collection (thus creating a child node). There is no recur-
sion this time because files don’t have subdirectories:

foreach (FileInfo file in files)
{
 TreeNode fileNode = new TreeNode(file.Name);
 parentNode.Nodes.Add(fileNode);
}

That’s all it takes to fill the two tree views. See Example 19-1 for a complete listing of
this method.

If you found any of this confusing, I highly recommend putting the
code into your debugger and stepping through the recursion; you can
watch the TreeView build its nodes.

Creating the Application | 429

Handling TreeView Events
You must handle a number of events in this example. First, the user might click Can-
cel, Copy, Clear, or Delete. Second, the user might click one of the checkboxes in the
left TreeView, one of the nodes in the right TreeView, or one of the plus signs in either
view.

Let’s consider the clicks on the TreeViews first, as they are the more interesting, and
potentially the more challenging.

Clicking the source TreeView

There are two TreeView objects, each with its own event handler. Consider the source
TreeView object first. The user checks the files and directories he wants to copy from.
Each time the user clicks the checkbox indicating a file or directory, a number of
events are raised. The event you must handle is AfterCheck.

To do so, implement a custom event handler method you will create and name
tvwSource_AfterCheck(). Visual Studio will wire this to the event handler, or if you
aren’t using the IDE, you must do so yourself:

tvwSource.AfterCheck +=
new System.Windows.Forms.TreeViewEventHandler
 (this.tvwSource_AfterCheck);

The implementation of AfterCheck() delegates the work to a recursable method
named SetCheck() that you’ll also write. The SetCheck method will recursively set
the checkmark for all the contained folders.

To add the AfterCheck event, select the tvwSource control, click the Events icon in the
Properties window, and then double-click AfterCheck. This will add the event, wire
it up, and place you in the code editor where you can add the body of the method:

private void tvwSource_AfterCheck (
object sender, System.Windows.Forms.TreeViewEventArgs e)
{
 SetCheck(e.Node,e.Node.Checked);
}

The event handler passes in the sender object and an object of type TreeViewEventArgs.
It turns out that you can get the node from this TreeViewEventArgs object (e). Call
SetCheck(), passing in the node and the state of whether the node has been checked.

Each node has a Nodes property, which gets a TreeNodeCollection containing all the
subnodes. SetCheck() recurses through the current node’s Nodes collection, setting
each subnode’s checkmark to match that of the node that was checked. In other
words, when you check a directory, all its files and subdirectories are checked, recur-
sively, all the way down.

430 | Chapter 19: Programming Windows Forms Applications

For each TreeNode in the Nodes collection, check to see whether it is a leaf. A node is a
leaf if its own Nodes collection has a count of 0. If it is a leaf, set its check property to
whatever was passed in as a parameter. If it isn’t a leaf, recurse:

private void SetCheck(TreeNode node, bool check)
{
 // find all the child nodes from this node
 foreach (TreeNode n in node.Nodes)
 {
 n.Checked = check; // check the node

 // if this is a node in the tree, recurse
 if (n.Nodes.Count != 0)
 {
 SetCheck(n,check);
 }
 }
}

This propagates the checkmark (or clears the checkmark) down through the entire
structure. In this way, the user can indicate that he wants to select all the files in all
the subdirectories by clicking a single directory.

Expanding a directory

Each time you click a + next to a directory in the source (or in the target), you want
to expand that directory. To do so, you’ll need an event handler for the BeforeExpand
event. Because the event handlers will be identical for both the source and the target
tree views, you’ll create a shared event handler (assigning the same event handler to
both):

private void tvwExpand(object sender, TreeViewCancelEventArgs e)
{

TreeView tvw = (TreeView) sender;
 bool getFiles = tvw == tvwSource;

TreeNode currentNode = e.Node;

It’s Turtles, All the Way Down
Here’s my favorite story on recursion, as told by Stephen Hawking: it happened that a
famous scientist was telling a story about primitive creation myths. “Some peoples,”
he said, “believe the world rests on the back of a great turtle. Of course, that raises the
question: on what does the turtle rest?”

An elderly woman from the back of the room stood up and said, “Very clever, Sonny,
but it’s turtles, all the way down.”

Creating the Application | 431

 string fullName = currentNode.FullPath;
 currentNode.Nodes.Clear();
 GetSubDirectoryNodes(currentNode, fullName, getFiles, 1);
}

The first line of this code casts the object passed in by the delegate from object to
TreeView, which is safe because you know that only a TreeView can trigger this event.

Your second task is to determine whether you want to get the files in the directory
you are opening, and you do only if the name of the TreeView that triggered the event
is tvwSource.

You determine which node’s + was checked by getting the Node property from the
TreeViewCancelEventArgs that is passed in by the event:

TreeNode currentNode = e.Node;

Once you have the current node, you get its full pathname (which you will need as a
parameter to GetSubDirectoryNodes), and then you must clear its collection of subn-
odes because you are going to refill that collection by calling in to
GetSubDirectoryNodes:

currentNode.Nodes.Clear();

Why do you clear the subnodes and then refill them? Because this time you will go
another level deep so that the subnodes know whether they in turn have subnodes,
and thus will know whether they should draw a + next to their subdirectories.

Clicking the target TreeView

The second event handler for the target TreeView (in addition to BeforeExpand) is
somewhat trickier. The event itself is AfterSelect. (Remember that the target
TreeView doesn’t have checkboxes.) This time, you want to take the one directory
chosen and put its full path into the text box at the upper-left corner of the form.

To do so, you must work your way up through the nodes, finding the name of each
parent directory, and building the full path:

private void tvwTargetDir_AfterSelect (
 object sender, System.Windows.Forms.TreeViewEventArgs e)
{

 string theFullPath = GetParentString(e.Node);

We’ll look at GetParentString() in just a moment. Once you have the full path, you
must lop off the backslash (if any) on the end, and then you can fill the text box:

if (theFullPath.EndsWith("\\"))
{
 theFullPath =
 theFullPath.Substring(0,theFullPath.Length-1);
}
txtTargetDir.Text = theFullPath;

432 | Chapter 19: Programming Windows Forms Applications

The GetParentString() method takes a node and returns a string with the full path.
To do so, it recurses upward through the path, adding the backslash after any node
that is not a leaf:

private string GetParentString(TreeNode node)
{
 if (node.Parent == null)
 {
 return node.Text;
 }
 else
 {
 return GetParentString(node.Parent) + node.Text +
 (node.Nodes.Count == 0 ? "" : "\\");
 }
}

The conditional operator (?) is the only ternary operator in C# (a
ternary operator takes three terms). The logic is “Test whether node.
Nodes.Count is 0; if so, return the value before the colon (in this case,
an empty string). Otherwise, return the value after the colon (in this
case, a backslash).”

The recursion stops when there is no parent; that is, when you hit the root directory.

Handling the Clear button event

Given the SetCheck() method developed earlier, handling the Clear button’s Click
event is trivial:

private void btnClear_Click(object sender, System.EventArgs e)
{
 foreach (TreeNode node in tvwSource.Nodes)
 {
 SetCheck(node, false);
 }
}

Just call the SetCheck() method on the root nodes, and tell them to recursively
uncheck all their contained nodes.

Implementing the Copy Button Event
Now that you can check the files and pick the target directory, you’re ready to han-
dle the Copy button-click event. The very first thing you need to do is to get a list of
which files were selected. What you want is an array of FileInfo objects, but you
have no idea how many objects will be in the list. This is a perfect job for ArrayList.
Delegate responsibility for filling the list to a method called GetFileList():

Creating the Application | 433

private void btnCopy_Click (object sender, System.EventArgs e)
{

List<FileInfo> fileList = GetFileList();

Let’s pick that method apart before returning to the event handler.

Getting the selected files

Start by instantiating a new List object to hold the strings representing the names of
all the files selected:

private List<FileInfo> GetFileList()
{

List<string> fileNames = new List<string>();

To get the selected filenames, you can walk through the source TreeView control:

foreach (TreeNode theNode in tvwSource.Nodes)
{
 GetCheckedFiles(theNode, fileNames);
}

To see how this works, step into the GetCheckedFiles() method. This method is
pretty simple: it examines the node it was handed. If that node has no children (node.
Nodes.Count == 0), it is a leaf. If that leaf is checked, get the full path (by calling
GetParentString() on the node), and add it to the ArrayList passed in as a parameter:

private void GetCheckedFiles(TreeNode node, List<string> fileNames)
{
 if (node.Nodes.Count == 0)
 {
 if (node.Checked)
 {
 string fullPath = GetParentString(node);
 fileNames.Add(fullPath);
 }
 }

If the node is not a leaf, recurse down the tree, finding the child nodes:

 else
 {
 foreach (TreeNode n in node.Nodes)
 {
 GetCheckedFiles(n, fileNames);
 }
 }
}

This returns the List filled with all the filenames. Back in GetFileList(), use this
List of filenames to create a second List, this time to hold the actual FileInfo
objects:

List<FileInfo> fileList = new List<FileInfo>();

434 | Chapter 19: Programming Windows Forms Applications

Notice the use of type-safe List objects to ensure that the compiler flags any objects
added to the collection that aren’t of type FileInfo.

You can now iterate through the filenames in fileList, picking out each name and
instantiating a FileInfo object with it. You can detect whether it is a file or a direc-
tory by calling the Exists property, which will return false if the File object you
created is actually a directory. If it is a File, you can add it to the new ArrayList:

foreach (string fileName in fileNames)
{
 FileInfo file = new FileInfo(fileName);

 if (file.Exists)
 {
 fileList.Add(file);
 }
}

Sorting the list of selected files

You want to work your way through the list of selected files in large to small order so
that you can pack the target disk as tightly as possible. You must therefore sort the
ArrayList. You can call its Sort() method, but how will it know how to sort
FileInfo objects?

To solve this, you must pass in an IComparer<T> interface. We’ll create a class called
FileComparer that will implement this generic interface for FileInfo objects:

public class FileComparer : IComparer<FileInfo>
{

This class has only one method, Compare(), which takes two FileInfo objects as
arguments:

public int Compare(FileInfo file1, FileInfo file2){

The normal approach is to return 1 if the first object (file1) is larger than the second
(file2), to return -1 if the opposite is true, and to return 0 if they are equal. In this
case, however, you want the list sorted from big to small, so you should reverse the
return values.

Because this is the only use of the compare method, it is reasonable to
put this special knowledge that the sort is from big to small right into
the compare method itself. The alternative is to sort small to big, and
have the calling method reverse the results.

To test the length of the FileInfo object, you must cast the Object parameters to
FileInfo objects (which is safe because you know this method will never receive any-
thing else):

Creating the Application | 435

 public int Compare(FileInfo file1, FileInfo file2)
 {

 if (file1.Length > file2.Length)
 {
 return -1;
 }
 if (file1.Length < file2.Length)
 {
 return 1;
 }
 return 0;
 }

Returning to GetFileList(), you were about to instantiate the IComparer reference
and pass it to the Sort() method of fileList:

IComparer<FileInfo> comparer = (IComparer<FileInfo>) new FileComparer();
fileList.Sort(comparer);

With that done, you can return fileList to the calling method:

return fileList;

The calling method was btnCopy_Click. Remember, you went off to GetFileList() in
the first line of the event handler:

protected void btnCopy_Click (object sender, System.EventArgs e)
{
List<FileInfo> fileList = GetFileList();

At this point, you’ve returned with a sorted list of File objects, each representing a
file selected in the source TreeView.

You can now iterate through the list, copying the files and updating the UI:

foreach (FileInfo file in fileList)
{
 try
 {
 lblStatus.Text = "Copying " + txtTargetDir.Text +
 "\\" + file.Name + "...";
 Application.DoEvents();

 file.CopyTo(txtTargetDir.Text + "\\" +
 file.Name, chkOverwrite.Checked);
 }

 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}
lblStatus.Text = "Done.";

436 | Chapter 19: Programming Windows Forms Applications

As you go, write the progress to the lblStatus label and call Application.DoEvents()
to give the UI an opportunity to redraw. Then, call CopyTo() on the file, passing in
the target directory obtained from the text field, and a Boolean flag indicating
whether the file should be overwritten if it already exists.

You’ll notice that the flag you pass in is the value of the chkOverWrite checkbox. The
Checked property evaluates true if the checkbox is checked and false if not.

The copy is wrapped in a try block because you can anticipate any number of things
going wrong when copying files. For now, handle all exceptions by popping up a dia-
log box with the error; you might want to take corrective action in a commercial
application.

That’s it; you’ve implemented file copying!

Handling the Delete Button Event
The code to handle the Delete event is even simpler. The very first thing you do is
ask the user whether she is sure she wants to delete the files:

private void btnDelete_Click(object sender, System.EventArgs e)
{
 System.Windows.Forms.DialogResult result =
 MessageBox.Show(
 "Are you quite sure?", // msg
 "Delete Files", // caption
 MessageBoxButtons.OKCancel, // buttons
 MessageBoxIcon.Exclamation, // icons
 MessageBoxDefaultButton.Button2); // default button

 if (result == System.Windows.Forms.DialogResult.OK)
 {
 List<FileInfo> fileNames = GetFileList();

 foreach (FileInfo file in fileNames)
 {
 try
 {
 lblStatus.Text = "Deleting " +
 txtTargetDir.Text + "\\" +
 file.Name + "...";
 Application.DoEvents();

 // Danger Will Robinson!
 file.Delete();
 }

 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }

Creating the Application | 437

 }
 lblStatus.Text = "Done.";
 Application.DoEvents();
 }

}

You can use the MessageBox static Show() method, passing in the message you want
to display, the title "Delete Files" as a string, and flags, as follows:

• MessageBox.OKCancel asks for two buttons: OK and Cancel.

• MessageBox.IconExclamation indicates that you want to display an exclamation
mark icon.

• MessageBox.DefaultButton.Button2 sets the second button (Cancel) as the default
choice.

When the user chooses OK or Cancel, the result is passed back as a System.Windows.
Forms.DialogResult enumerated value. You can test this value to see whether the
user selected OK:

if (result == System.Windows.Forms.DialogResult.OK)
{

If so, you can get the list of fileNames and iterate through it, deleting each as you go.

This code is identical to the copy code, except that the method that is called on the
file is Delete().

Example 19-1 provides the commented source code for this example.

Example 19-1. FileCopier source code

using System;
using System.Collections;
using System.Collections.Generic;
using System.IO;
using System.Windows.Forms;

/// <remarks>
/// File Copier - Windows Forms demonstration program
/// (c) Copyright 2007 O'Reilly Media
/// </remarks>
namespace FileCopier
{

 /// <summary>
 /// Form demonstrating Windows Forms implementation
 /// </summary>
 partial class frmFileCopier : Form
 {
 private const int MaxLevel = 2;
 public frmFileCopier()

438 | Chapter 19: Programming Windows Forms Applications

 {
 InitializeComponent();
 FillDirectoryTree(tvwSource, true);
 FillDirectoryTree(tvwTarget, false);
 }

 /// <summary>
 /// nested class which knows how to compare
 /// two files we want to sort large to small,
 /// so reverse the normal return values.
 /// </summary>
 public class FileComparer : IComparer<FileInfo>
 {

 public int Compare(FileInfo file1, FileInfo file2)
 {

 if (file1.Length > file2.Length)
 {
 return -1;
 }
 if (file1.Length < file2.Length)
 {
 return 1;
 }
 return 0;
 }

 public bool Equals(FileInfo x, FileInfo y) { throw new NotImplementedException();}
 public int GetHashCode(FileInfo x) {throw new NotImplementedException(); }

 }

 private void FillDirectoryTree(TreeView tvw, bool isSource)
 {
 // Populate tvwSource, the Source TreeView,
 // with the contents of
 // the local hard drive.
 // First clear all the nodes.
 tvw.Nodes.Clear();

 // Get the logical drives and put them into the
 // root nodes. Fill an array with all the
 // logical drives on the machine.
 string[] strDrives = Environment.GetLogicalDrives();

 // Iterate through the drives, adding them to the tree.
 // Use a try/catch block, so if a drive is not ready,
 // e.g., an empty floppy or CD,

Example 19-1. FileCopier source code (continued)

Creating the Application | 439

 // it will not be added to the tree.
 foreach (string rootDirectoryName in strDrives)
 {

 try
 {

 // Fill an array with all the first level
 // subdirectories. If the drive is
 // not ready, this will throw an exception.
 DirectoryInfo dir =
 new DirectoryInfo(rootDirectoryName);

 dir.GetDirectories(); // force exception if drive not ready

 TreeNode ndRoot = new TreeNode(rootDirectoryName);

 // Add a node for each root directory.
 tvw.Nodes.Add(ndRoot);

 // Add subdirectory nodes.
 // If Treeview is the source,
 // then also get the filenames.
 if (isSource)
 {

 GetSubDirectoryNodes(
 ndRoot, ndRoot.Text, true,1);
 }
 else
 {
 GetSubDirectoryNodes(
 ndRoot, ndRoot.Text, false,1);
 }
 }
 // Catch any errors such as
 // Drive not ready.
 catch
 {
 }
 Application.DoEvents();
 }
 } // close for FillSourceDirectoryTree

 /// <summary>
 /// Gets all the subdirectories below the
 /// passed-in directory node.
 /// Adds to the directory tree.
 /// The parameters passed in are the parent node
 /// for this subdirectory,
 /// the full pathname of this subdirectory,
 /// and a Boolean to indicate

Example 19-1. FileCopier source code (continued)

440 | Chapter 19: Programming Windows Forms Applications

 /// whether or not to get the files in the subdirectory.
 /// </summary>
 private void GetSubDirectoryNodes(
 TreeNode parentNode, string fullName, bool getFileNames, int level)
 {
 DirectoryInfo dir = new DirectoryInfo(fullName);
 DirectoryInfo[] dirSubs = dir.GetDirectories();

 // Add a child node for each subdirectory.
 foreach (DirectoryInfo dirSub in dirSubs)
 {

 // do not show hidden folders
 if ((dirSub.Attributes & FileAttributes.Hidden)
 != 0)
 {
 continue;
 }

 /// <summary>
 /// Each directory contains the full path.
 /// We need to split it on the backslashes,
 /// and only use
 /// the last node in the tree.
 /// Need to double the backslash since it
 /// is normally
 /// an escape character
 /// </summary>
 TreeNode subNode = new TreeNode(dirSub.Name);
 parentNode.Nodes.Add(subNode);

 // Call GetSubDirectoryNodes recursively.

 if (level < MaxLevel)
 {
 GetSubDirectoryNodes(
 subNode, dirSub.FullName, getFileNames, level+1);
 }

 }
 if (getFileNames)
 {
 // Get any files for this node.
 FileInfo[] files = dir.GetFiles();

 // After placing the nodes,
 // now place the files in that subdirectory.
 foreach (FileInfo file in files)
 {
 TreeNode fileNode = new TreeNode(file.Name);
 parentNode.Nodes.Add(fileNode);
 }

Example 19-1. FileCopier source code (continued)

Creating the Application | 441

 }
 }

 /// <summary>
 /// Create an ordered list of all
 /// the selected files, copy to the
 /// target directory
 /// </summary>
 private void btnCopy_Click(object sender,
 System.EventArgs e)
 {
 // get the list
 List<FileInfo> fileList = GetFileList();

 // copy the files
 foreach (FileInfo file in fileList)
 {
 try
 {
 // update the label to show progress
 lblStatus.Text = "Copying " + txtTargetDir.Text +
 "\\" + file.Name + "...";
 Application.DoEvents();

 // copy the file to its destination location
 file.CopyTo(txtTargetDir.Text + "\\" +
 file.Name, chkOverwrite.Checked);
 }

 catch (Exception ex)
 {
 // you may want to do more than
 // just show the message
 MessageBox.Show(ex.Message);
 }
 }
 lblStatus.Text = "Done.";

 }

 /// <summary>
 /// Tell the root of each tree to uncheck
 /// all the nodes below
 /// </summary>
 private void btnClear_Click(object sender, System.EventArgs e)
 {
 // get the topmost node for each drive
 // and tell it to clear recursively
 foreach (TreeNode node in tvwSource.Nodes)
 {

Example 19-1. FileCopier source code (continued)

442 | Chapter 19: Programming Windows Forms Applications

 SetCheck(node, false);
 }
 }

 /// <summary>
 /// on cancel, exit
 /// </summary>
 private void btnCancel_Click(object sender, EventArgs e)
 {
 Application.Exit();
 }

 /// <summary>
 /// Given a node and an array list
 /// fill the list with the names of
 /// all the checked files
 /// </summary>
 // Fill the ArrayList with the full paths of
 // all the files checked
 private void GetCheckedFiles(TreeNode node,
 List<string> fileNames)
 {
 // if this is a leaf...
 if (node.Nodes.Count == 0)
 {
 // if the node was checked...
 if (node.Checked)
 {
 // get the full path and add it to the arrayList
 string fullPath = GetParentString(node);
 fileNames.Add(fullPath);
 }
 }
 else // if this node is not a leaf
 {
 // if this node is not a leaf
 foreach (TreeNode n in node.Nodes)
 {
 GetCheckedFiles(n, fileNames);
 }
 }
 }

 /// <summary>
 /// Given a node, return the
 /// full pathname
 /// </summary>
 private string GetParentString(TreeNode node)
 {
 // if this is the root node (c:\) return the text
 if (node.Parent == null)

Example 19-1. FileCopier source code (continued)

Creating the Application | 443

 {
 return node.Text;
 }
 else
 {
 // recurse up and get the path then
 // add this node and a slash
 // if this node is the leaf, don't add the slash
 return GetParentString(node.Parent) + node.Text +
 (node.Nodes.Count == 0 ? "" : "\\");
 }
 }

 /// <summary>
 /// shared by delete and copy
 /// creates an ordered list of all
 /// the selected files
 /// </summary>
 private List<FileInfo> GetFileList()
 {
 // create an unsorted array list of the full filenames
 List<string> fileNames = new List<string>();

 // ArrayList fileNames = new ArrayList();

 // fill the fileNames ArrayList with the
 // full path of each file to copy
 foreach (TreeNode theNode in tvwSource.Nodes)
 {
 GetCheckedFiles(theNode, fileNames);
 }

 // Create a list to hold the FileInfo objects
 List<FileInfo> fileList = new List<FileInfo>();
 // ArrayList fileList = new ArrayList();

 // for each of the filenames we have in our unsorted list
 // if the name corresponds to a file (and not a directory)
 // add it to the file list
 foreach (string fileName in fileNames)
 {
 // create a file with the name
 FileInfo file = new FileInfo(fileName);

 // see if it exists on the disk
 // this fails if it was a directory
 if (file.Exists)
 {
 // both the key and the value are the file
 // would it be easier to have an empty value?
 fileList.Add(file);
 }

Example 19-1. FileCopier source code (continued)

444 | Chapter 19: Programming Windows Forms Applications

 }

 // Create an instance of the IComparer interface
 IComparer<FileInfo> comparer = (IComparer<FileInfo>) new FileComparer();

 // pass the comparer to the sort method so that the list
 // is sorted by the compare method of comparer.
 fileList.Sort(comparer);
 return fileList;
 }

 /// <summary>
 /// check that the user does want to delete
 /// Make a list and delete each in turn
 /// </summary>
 private void btnDelete_Click(object sender, System.EventArgs e)
 {
 // ask them if they are sure
 System.Windows.Forms.DialogResult result =
 MessageBox.Show(
 "Are you quite sure?", // msg
 "Delete Files", // caption
 MessageBoxButtons.OKCancel, // buttons
 MessageBoxIcon.Exclamation, // icons
 MessageBoxDefaultButton.Button2); // default button

 // if they are sure...
 if (result == System.Windows.Forms.DialogResult.OK)
 {
 // iterate through the list and delete them.
 // get the list of selected files
 List<FileInfo> fileNames = GetFileList();

 foreach (FileInfo file in fileNames)
 {
 try
 {
 // update the label to show progress
 lblStatus.Text = "Deleting " +
 txtTargetDir.Text + "\\" +
 file.Name + "...";
 Application.DoEvents();

 // Danger Will Robinson!
 file.Delete();
 }

 catch (Exception ex)
 {
 // you may want to do more than
 // just show the message
 MessageBox.Show(ex.Message);

Example 19-1. FileCopier source code (continued)

Creating the Application | 445

 }
 }
 lblStatus.Text = "Done.";
 Application.DoEvents();
 }

 }

 /// <summary>
 /// Get the full path of the chosen directory
 /// copy it to txtTargetDir
 /// </summary>
 private void tvwTargetDir_AfterSelect(
 object sender,
 System.Windows.Forms.TreeViewEventArgs e)
 {
 // get the full path for the selected directory
 string theFullPath = GetParentString(e.Node);

 // if it is not a leaf, it will end with a backslash
 // remove the backslash
 if (theFullPath.EndsWith("\\"))
 {
 theFullPath =
 theFullPath.Substring(0, theFullPath.Length - 1);
 }
 // insert the path in the text box
 txtTargetDir.Text = theFullPath;
 }

 /// <summary>
 /// Mark each node below the current
 /// one with the current value of checked
 /// </summary>
 private void tvwSource_AfterCheck(object sender,
 System.Windows.Forms.TreeViewEventArgs e)
 {
 // Call a recursible method.
 // e.node is the node which was checked by the user.
 // The state of the checkmark is already
 // changed by the time you get here.
 // Therefore, we want to pass along
 // the state of e.node.Checked.
 SetCheck(e.Node, e.Node.Checked);
 }

 /// <summary>
 /// recursively set or clear checkmarks
 /// </summary>
 private void SetCheck(TreeNode node, bool check)
 {
 // find all the child nodes from this node

Example 19-1. FileCopier source code (continued)

446 | Chapter 19: Programming Windows Forms Applications

 foreach (TreeNode n in node.Nodes)
 {
 n.Checked = check; // check the node

 // if this is a node in the tree, recurse
 if (n.Nodes.Count != 0)
 {
 SetCheck(n, check);
 }
 }
 }

 private void tvwExpand(object sender, TreeViewCancelEventArgs e)
 {

 TreeView tvw = (TreeView) sender;
 bool getFiles = tvw == tvwSource;
 TreeNode currentNode = e.Node;
 string fullName = currentNode.FullPath;
 currentNode.Nodes.Clear();
 GetSubDirectoryNodes(currentNode, fullName, getFiles, 1);

 }

 } // end class frmFileCopier
} // end namespace FileCopier

Example 19-1. FileCopier source code (continued)

PART IV

IV.The CLR and the .NET Framework

Chapter 20, Attributes and Reflection

Chapter 21, Threads and Synchronization

Chapter 22, Streams

Chapter 23, Programming .NET and COM

449

Chapter 20 CHAPTER 20

Attributes and Reflection20

Throughout this book, I have emphasized that a .NET application contains code,
data, and metadata. Metadata is information about the data—that is, information
about the types, code, assembly, and so forth—stored along with your program. This
chapter explores how some of that metadata is created and used.

Attributes are a mechanism for adding metadata, such as compiler instructions and
other data about your data, methods, and classes to the program itself. Attributes are
inserted into the metadata and are visible through ILDASM and other metadata-
reading tools.

Reflection is the process by which a program can read its own metadata, or metadata
from another program. A program is said to reflect on itself or on another program,
extracting metadata from the reflected assembly and using that metadata either to
inform the user or to modify the program’s behavior.

Attributes
An attribute is an object that represents data you want to associate with an element
in your program. The element to which you attach an attribute is referred to as the
target of that attribute. For example, the attribute:

[NoIDispatch]

is associated with a class or an interface to indicate that the target class should derive
from IUnknown rather than IDispatch when exporting to COM. I discuss COM inter-
face programming in detail in Chapter 23.

450 | Chapter 20: Attributes and Reflection

Types of Attributes
Some attributes are supplied as part of the CLR, or by the framework. In addition,
you are free to create your own custom attributes for your own purposes.

Most programmers will use only the attributes provided by the framework, though
creating your own custom attributes can be a powerful tool when combined with
reflection, as described later in this chapter.

Attribute targets

If you search through the CLR, you’ll find a great many attributes. Some attributes
are applied to an assembly, others to a class or interface, and some, such as
[WebMethod], are applied to class members. These are called the attribute targets. The
possible attributes are declared in the AttributeTargets enumeration, and are
detailed in Table 20-1.

Applying attributes

You apply attributes to their targets by placing them in square brackets immediately
before the target item (except in the case of assemblies, in which case you place them
at the top of the file).

You can combine attributes by stacking one on top of another:

Table 20-1. Possible attribute targets

Member name Usage

All Applied to any of the following elements: assembly, class, constructor, delegate, enum, event,
field, interface, method, module, parameter, property, return value, or struct

Assembly Applied to the assembly itself

Class Applied to a class

Constructor Applied to a given constructor

Delegate Applied to a delegate

Enum Applied to an enumeration

Event Applied to an event

Field Applied to a field

Interface Applied to an interface

Method Applied to a method

Module Applied to a single module

Parameter Applied to a parameter of a method

Property Applied to a property (both get and set, if implemented)

ReturnValue Applied to a return value

Struct Applied to a struct

Attributes | 451

[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile(".\\keyFile.snk")]

You can also do this by separating the attributes with commas:

[assembly: AssemblyDelaySign(false),
 assembly: AssemblyKeyFile(".\\keyFile.snk")]

You must place assembly attributes after all using statements and
before any code.

Many attributes are used for interoperating with COM, as discussed in detail in
Chapter 23. You’ve already seen use of one attribute ([WebMethod]) in Chapter 16.
You’ll see other attributes, such as the [Serializable] attribute, used in the discus-
sion of serialization in Chapter 22.

The System.Reflection namespace offers a number of attributes, including attributes
for assemblies (such as the AssemblyKeyFileAttribute), for configuration, and for ver-
sion attributes.

One of the attributes you are most likely to use in your everyday C# programming (if
you aren’t interacting with COM) is [Serializable]. As you’ll see in Chapter 22, all
you need to do to ensure that your class can be serialized to disk or to the Internet is
add the [Serializable] attribute to the class:

[Serializable]
class MySerializableClass

The attribute tag is put in square brackets immediately before its target—in this case,
the class declaration.

The key fact about attributes is that you know when you need them; the task will
dictate their use.

Custom Attributes
You are free to create your own custom attributes and use them at runtime as you see
fit. Suppose, for example, that your development organization wants to keep track of
bug fixes. You already keep a database of all your bugs, but you’d like to tie your bug
reports to specific fixes in the code.

You might add comments to your code along the lines of:

// Bug 323 fixed by Jesse Liberty 1/1/2008.

This would make it easy to see in your source code, but there is no enforced connec-
tion to Bug 323 in the database. A custom attribute might be just what you need.
You would replace your comment with something like this:

[BugFixAttribute(323,"Jesse Liberty","1/1/2008",
Comment="Off by one error")]

452 | Chapter 20: Attributes and Reflection

You could then write a program to read through the metadata to find these bug-fix
notations and update the database. The attribute would serve the purposes of a com-
ment, but would also allow you to retrieve the information programmatically
through tools you’d create.

This may be a somewhat artificial example, however, because these
attributes would be compiled into the shipping code.

Declaring an attribute

Attributes, like most things in C#, are embodied in classes. To create a custom
attribute, derive your new custom attribute class from System.Attribute:

public class BugFixAttribute : System.Attribute

You need to tell the compiler which kinds of elements this attribute can be used with
(the attribute target). Specify this with (what else?) an attribute:

[AttributeUsage(AttributeTargets.Class |
 AttributeTargets.Constructor |
 AttributeTargets.Field |
 AttributeTargets.Method |
 AttributeTargets.Property,
 AllowMultiple = true)]

AttributeUsage is an attribute applied to attributes: a meta-attribute. It provides, if
you will, meta-metadata—that is, data about the metadata. For the AttributeUsage
attribute constructor, you pass two arguments.

The first argument is a set of flags that indicate the target—in this case, the class and
its constructor, fields, methods, and properties. The second argument is a flag that
indicates whether a given element might receive more than one such attribute. In this
example, AllowMultiple is set to true, indicating that class members can have more
than one BugFixAttribute assigned.

Naming an attribute

The new custom attribute in this example is named BugFixAttribute. The conven-
tion is to append the word Attribute to your attribute name. The compiler supports
this by allowing you to call the attribute with the shorter version of the name. Thus,
you can write:

[BugFix(123, "Jesse Liberty", "01/01/08", Comment="Off by one")]

The compiler will first look for an attribute named BugFix and, if it doesn’t find that,
will then look for BugFixAttribute.

Attributes | 453

Constructing an attribute

Attributes take two types of parameters: positional and named. In the BugFix exam-
ple, the programmer’s name, the bug ID, and the date are positional parameters, and
comment is a named parameter. Positional parameters are passed in through the con-
structor, and must be passed in the order declared in the constructor:

public BugFixAttribute(int bugID, string programmer,
string date)
{
 this.BugID = bugID;
 this.Programmer = programmer;
 this.Date = date;
}

Named parameters are implemented as fields or as properties:

public string Comment { get; set; }

It is common to create read-only properties for the positional parameters:

public int BugID { get; private set; }

Using an attribute

Once you have defined an attribute, you can put it to work by placing it immediately
before its target. To test the BugFixAttribute of the preceding example, the follow-
ing program creates a simple class named MyMath and gives it two functions. Assign
BugFixAttributes to the class to record its code-maintenance history:

[BugFixAttribute(121,"Jesse Liberty","01/03/08")]
[BugFixAttribute(107,"Jesse Liberty","01/04/08",
 Comment="Fixed off by one errors")]
public class MyMath

These attributes are stored with the metadata. Example 20-1 shows the complete
program.

Example 20-1. Working with custom attributes

using System;

namespace CustomAttributes
{
 // create custom attribute to be assigned to class members
 [AttributeUsage(AttributeTargets.Class |
 AttributeTargets.Constructor |
 AttributeTargets.Field |
 AttributeTargets.Method |
 AttributeTargets.Property,
 AllowMultiple = true)]
 public class BugFixAttribute : System.Attribute
 {
 // attribute constructor for positional parameters
 public BugFixAttribute

454 | Chapter 20: Attributes and Reflection

 (
 int bugID,
 string programmer,
 string date
)
 {
 this.BugID = bugID;
 this.Programmer = programmer;
 this.Date = date;
 }

 // accessors
 public int BugID { get; private set; }
 public string Date { get; private set; }
 public string Programmer { get; private set; }

 // property for named parameter
 public string Comment { get; set; }
 }

 // ********* assign the attributes to the class ********

 [BugFixAttribute(121, "Jesse Liberty", "01/03/08")]
 [BugFixAttribute(107, "Jesse Liberty", "01/04/08",
 Comment = "Fixed off by one errors")]
 public class MyMath
 {
 public double DoFunc1(double param1)
 {
 return param1 + DoFunc2(param1);
 }

 public double DoFunc2(double param1)
 {
 return param1 / 3;
 }
 }

 public class Tester
 {
 static void Main(string[] args)
 {
 MyMath mm = new MyMath();
 Console.WriteLine("Calling DoFunc(7). Result: {0}",
 mm.DoFunc1(7));
 }
 }
}

Output:
Calling DoFunc(7). Result: 9.3333333333333333

Example 20-1. Working with custom attributes (continued)

Attributes | 455

As you can see, the attributes had absolutely no impact on the output. In fact, for the
moment, you have only my word that the attributes exist at all. A quick look at the
metadata using ILDASM does reveal that the attributes are in place, however, as
shown in Figure 20-1. You’ll see how to get at this metadata and use it in your pro-
gram in the next section.

Figure 20-1. The metadata in the assembly

456 | Chapter 20: Attributes and Reflection

Reflection
For the attributes in the metadata to be useful, you need a way to access them, ideally
during runtime. The classes in the Reflection namespace, along with the System.Type
class, provide support for examining and interacting with the metadata.

Reflection is generally used for any of four tasks:

Viewing metadata
This might be used by tools and utilities that wish to display metadata.

Performing type discovery
This allows you to examine the types in an assembly and interact with or instan-
tiate those types. This can be useful in creating custom scripts. For example, you
might want to allow your users to interact with your program using a script lan-
guage, such as JavaScript, or a scripting language you create yourself.

Late binding to methods and properties
This allows the programmer to invoke properties and methods on objects
dynamically instantiated, based on type discovery. This is also known as
dynamic invocation.

Creating types at runtime (reflection emit)
The ultimate use of reflection is to create new types at runtime and then to use
those types to perform tasks. You might do this when a custom class, created at
runtime, will run significantly faster than more generic code created at compile
time.

Viewing Metadata
In this section, you will use the C# reflection support to read the metadata in the
MyMath class.

Start by obtaining an object of the type MemberInfo. This object, in the System.
Reflection namespace, is provided to discover the attributes of a member and to
provide access to the metadata:

System.Reflection.MemberInfo inf = typeof(MyMath);

Call the typeof operator on the MyMath type, which returns an object of type Type,
which derives from MemberInfo.

The Type class is the heart of the reflection classes. Type encapsulates a
representation of the type of an object. The Type class is the primary
way to access metadata. Type derives from MemberInfo and encapsulates
information about the members of a class (e.g., methods, properties,
fields, events, etc.).

Reflection | 457

The next step is to call GetCustomAttributes on this MemberInfo object, passing in the
type of the attribute you want to find. You get back an array of objects, each of type
BugFixAttribute:

object[] attributes;
attributes =
 inf.GetCustomAttributes(typeof(BugFixAttribute),false);

You can now iterate through this array, printing out the properties of the
BugFixAttribute object. Example 20-2 replaces the Tester class from Example 20-1.

When you put this replacement code into Example 20-1 and run it, you can see the
metadata printed as you’d expect.

Example 20-2. Using reflection

public static void Main(string[] args)
{
 MyMath mm = new MyMath();
 Console.WriteLine("Calling DoFunc(7). Result: {0}",
 mm.DoFunc1(7));

 // get the member information and use it to
 // retrieve the custom attributes
 System.Reflection.MemberInfo inf = typeof(MyMath);
 object[] attributes;
 attributes = inf.GetCustomAttributes(
 typeof(BugFixAttribute), false);

 // iterate through the attributes, retrieving the
 // properties
 foreach (Object attribute in attributes)
 {
 BugFixAttribute bfa = (BugFixAttribute)attribute;
 Console.WriteLine("\nBugID: {0}", bfa.BugID);
 Console.WriteLine("Programmer: {0}", bfa.Programmer);
 Console.WriteLine("Date: {0}", bfa.Date);
 Console.WriteLine("Comment: {0}", bfa.Comment);
 }
}

Output:
Calling DoFunc(7). Result: 9.3333333333333333

BugID: 121
Programmer: Jesse Liberty
Date: 01/03/08
Comment:

BugID: 107
Programmer: Jesse Liberty
Date: 01/04/08
Comment: Fixed off by one errors

458 | Chapter 20: Attributes and Reflection

Type Discovery
You can use reflection to explore and examine the contents of an assembly. You can
find the types associated with a module; the methods, fields, properties, and events
associated with a type, as well as the signatures of each of the type’s methods; the
interfaces supported by the type; and the type’s base class.

To start, you load an assembly dynamically with the Assembly.Load() static method.
The Assembly class encapsulates the actual assembly itself, for purposes of reflection.
One signature for the Load method is:

public static Assembly.Load(AssemblyName)

For the next example, pass in the core library to the Load() method. Mscorlib.dll has
the core classes of the .NET Framework:

Assembly a = Assembly.Load("Mscorlib");

Once the assembly is loaded, you can call GetTypes() to return an array of Type
objects. The Type object is the heart of reflection. Type represents type declarations
(classes, interfaces, arrays, values, and enumerations):

Type[] types = a.GetTypes();

The assembly returns an array of types that you can display in a foreach loop, as
shown in Example 20-3. Because this example uses the Type class, you will want to
add a using directive for the System.Reflection namespace.

Example 20-3. Reflecting on an assembly

using System;
using System.Reflection;

namespace ReflectingAnAssembly
{
 public class Tester
 {
 public static void Main()
 {
 // what is in the assembly
 Assembly a = Assembly.Load("Mscorlib");
 Type[] types = a.GetTypes();
 foreach (Type t in types)
 {
 Console.WriteLine("Type is {0}", t);
 }
 Console.WriteLine(
 "{0} types found", types.Length);
 }
 }
}

Reflection | 459

The output from this would fill many pages. Here is a short excerpt:

Type is System.Object
Type is ThisAssembly
Type is AssemblyRef
Type is System.ICloneable
Type is System.Collections.IEnumerable
Type is System.Collections.ICollection
Type is System.Collections.IList
Type is System.Array
2373 types found

This example obtained an array filled with the types from the core library and
printed them one by one. The array contained 2,373 entries on my machine.

In version 1.1, I found 1,426 entries on my machine. Microsoft has
been busy!

Reflecting on a Type
You can reflect on a single type in the Mscorlib assembly as well. To do so, you
extract a type from the assembly with either typeOf or the GetType() method, as
shown in Example 20-4.

Finding all type members

You can ask the Assembly type for all its members using the GetMembers() method of
the Type class, which lists all the methods, properties, and fields, as shown in
Example 20-5.

Example 20-4. Reflecting on a type

using System;

namespace ReflectingOnAType
{
 public class Tester
 {
 public static void Main()
 {
 // examine a type
 Type theType = Type.GetType("System.Reflection.Assembly");
 Console.WriteLine("\nSingle Type is {0}\n", theType);
 }
 }
}

Output:
Single Type is System.Reflection.Assembly

460 | Chapter 20: Attributes and Reflection

Once again, the output is quite lengthy, but within the output you see fields, meth-
ods, constructors, and properties, as shown in this excerpt:

System.Type GetType(System.String, Boolean, Boolean) is a Method
System.Type[] GetExportedTypes() is a Method
System.Reflection.Module GetModule(System.String) is a Method
System.String get_FullName() is a Method

Finding type methods

You might want to focus on methods only, excluding the fields, properties, and so
forth. To do so, remove the call to GetMembers():

MemberInfo[] mbrInfoArray =
 theType.GetMembers();

and add a call to GetMethods():

mbrInfoArray = theType.GetMethods();

The output now contains nothing but the methods:

Output (excerpt):
Boolean Equals(System.Object) is a Method
System.String ToString() is a Method
System.String CreateQualifiedName(
System.String, System.String) is a Method
Boolean get_GlobalAssemblyCache() is a Method

Example 20-5. Reflecting on the members of a type

using System;
using System.Reflection;

namespace ReflectingOnMembersOfAType
{
 public class Tester
 {
 public static void Main()
 {
 // examine a single object
 Type theType = Type.GetType("System.Reflection.Assembly");
 Console.WriteLine("\nSingle Type is {0}\n", theType);

 // get all the members
 MemberInfo[] mbrInfoArray = theType.GetMembers();
 foreach (MemberInfo mbrInfo in mbrInfoArray)
 {
 Console.WriteLine("{0} is a {1}",
 mbrInfo, mbrInfo.MemberType);
 }
 }
 }
}

Reflection | 461

Finding particular type members

Finally, to narrow it down even further, you can use the FindMembers method to find
particular members of the type. For example, you can narrow your search to meth-
ods whose names begin with “Get.”

To narrow the search, use the FindMembers method, which takes four parameters:

MemberTypes
A MemberTypes object that indicates the type of the member to search for. These
include All, Constructor, Custom, Event, Field, Method, Nestedtype, Property, and
TypeInfo. You will also use the MemberTypes.Method to find a method.

BindingFlags
An enumeration that controls the way searches are conducted by reflection.
There are a great many BindingFlags values, including IgnoreCase, Instance,
Public, Static, and so forth.

MemberFilter
A delegate (see Chapter 12) that filters the list of members in the MemberInfo
array of objects. You use a Type.FilterName filter, which is a field of the Type
class that filters on a name.

Object
A string value used by the filter. In this case, you pass in Get* to match only
those methods that begin with “Get.”

The complete listing for filtering on these methods is shown in Example 20-6.

Example 20-6. Finding particular members

using System;
using System.Reflection;

namespace FindingParticularMembers
{
 public class Tester
 {
 public static void Main()
 {
 // examine a single object
 Type theType = Type.GetType("System.Reflection.Assembly");

 // just members which are methods beginning with Get
 MemberInfo[] mbrInfoArray = theType.FindMembers(
 MemberTypes.Method,
 BindingFlags.Public |
 BindingFlags.Static |
 BindingFlags.NonPublic |
 BindingFlags.Instance |
 BindingFlags.DeclaredOnly,
 Type.FilterName, "Get*");
 foreach (MemberInfo mbrInfo in mbrInfoArray)

462 | Chapter 20: Attributes and Reflection

Late Binding
Once you find a method, you can invoke it using reflection. For example, you might
like to invoke the Cos() method of System.Math, which returns the cosine of an angle.

You can, of course, call Cos() in the normal course of your code, but
reflection allows you to bind to that method at runtime. This is called
late binding, and offers the flexibility of choosing at runtime which
object to bind to and invoking it programmatically. This can be useful
when creating a custom script to be run by the user or when working
with objects that might not be available at compile time. For example,
by using late binding, your program can interact with the spellchecker
or other components of a running commercial word processing pro-
gram such as Microsoft Word.

To invoke Cos(), first get the Type information for the System.Math class:

Type theMathType = Type.GetType("System.Math");

With that type information, you can dynamically load an instance of a class using a
static method of the Activator class. Because Cos() is static, you don’t need to con-
struct an instance of System.Math (and you can’t because System.Math has no public
constructor).

The Activator class contains four methods, all static, which you can use to create
objects locally or remotely, or to obtain references to existing objects. The four meth-
ods are as follows:

CreateComInstanceFrom
Creates instances of COM objects.

 {
 Console.WriteLine("{0} is a {1}",
 mbrInfo, mbrInfo.MemberType);
 }
 }
 }
}

Output (excerpt):
System.Type GetType(System.String, Boolean, Boolean) is a Method
System.Type[] GetExportedTypes() is a Method
System.Reflection.Module GetModule(System.String) is a Method
System.Reflection.AssemblyName[] GetReferencedAssemblies() is a Method
Int64 GetHostContext() is a Method
System.String GetLocation() is a Method
System.String GetFullName() is a Method

Example 20-6. Finding particular members (continued)

Reflection | 463

CreateInstanceFrom
Creates a reference to an object from a particular assembly and type name.

GetObject
Used when marshaling objects.

CreateInstance
Creates local or remote instances of an object. For example:

Object theObj = Activator.CreateInstance(someType);

Back to the Cos() example. You now have one object in hand: a Type object named
theMathType, which you created by calling GetType.

Before you can invoke a method on the object, you must get the method you need
from the Type object, theMathType. To do so, you’ll call GetMethod(), and you’ll pass
in the signature of the Cos method.

The signature, you will remember, is the name of the method (Cos) and its parame-
ter types. In the case of Cos(), there is only one parameter: a double. However, Type.
GetMethod takes two parameters. The first represents the name of the method you
want, and the second represents the parameters. The name is passed as a string; the
parameters are passed as an array of types:

MethodInfo CosineInfo =
 theMathType.GetMethod("Cos",paramTypes);

Before calling GetMethod(), you must prepare the array of types:

Type[] paramTypes = new Type[1];
paramTypes[0]= Type.GetType("System.Double");

This code declares the array of Type objects, and then fills the first element
(paramTypes[0]) with a type representing a double. Obtain the type representing a dou-
ble by calling the static method Type.GetType(), and passing in the string System.Double.

You now have an object of type MethodInfo on which you can invoke the method. To
do so, you must pass in the object on which to invoke the method and the actual
value of the parameters, again in an array. Because this is a static method, pass in
theMathType (if Cos() were an instance method, you could use theObj instead of
theMathType):

Object[] parameters = new Object[1];
parameters[0] = 45 * (Math.PI/180); // 45 degrees in radians
Object returnVal = CosineInfo.Invoke(theMathType,parameters);

Note that you’ve created two arrays. The first, paramTypes, holds the
type of the parameters. The second, parameters, holds the actual
value. If the method had taken two arguments, you’d have declared
these arrays to hold two values. If the method didn’t take any values,
you can still create the array, but you give it a size of zero:

Type[] paramTypes = new Type[0];

Odd as this looks, it is correct.

464 | Chapter 20: Attributes and Reflection

Example 20-7 illustrates dynamically calling the Cos() method.

That was a lot of work just to invoke a single method. The power, however, is that
you can use reflection to discover an assembly on the user’s machine, to query what
methods are available, and to invoke one of those members dynamically.

Example 20-7. Dynamically invoking a method

using System;
using System.Reflection;

namespace DynamicallyInvokingAMethod
{
 public class Tester
 {
 public static void Main()
 {
 Type theMathType = Type.GetType("System.Math");
 // Since System.Math has no public constructor, this
 // would throw an exception.
 // Object theObj =
 // Activator.CreateInstance(theMathType);

 // array with one member
 Type[] paramTypes = new Type[1];
 paramTypes[0] = Type.GetType("System.Double");

 // Get method info for Cos()
 MethodInfo CosineInfo =
 theMathType.GetMethod("Cos", paramTypes);

 // fill an array with the actual parameters
 Object[] parameters = new Object[1];
 parameters[0] = 45 * (Math.PI / 180); // 45 degrees in radians
 Object returnVal =
 CosineInfo.Invoke(theMathType, parameters);
 Console.WriteLine(
 "The cosine of a 45 degree angle {0}",
 returnVal);
 }
 }
}

Output:
The cosine of a 45 degree angle 0.707106781186548

465

Chapter 21 CHAPTER 21

Threads and Synchronization21

Threads are responsible for multitasking within a single application. The System.
Threading namespace provides a wealth of classes and interfaces to manage multi-
threaded programming. The majority of programmers might never need to manage
threads explicitly, however, because the CLR abstracts much of the threading sup-
port into classes that simplify most threading tasks.

The first part of this chapter shows you how to create, manage, and kill threads.
Even if you don’t create your own threads explicitly, you’ll want to ensure that your
code can handle multiple threads if it’s run in a multithreading environment. This
concern is especially important if you are creating components that other program-
mers might use in a program that supports multithreading.

The second part of this chapter focuses on synchronization. When you have a
limited resource (such as a database connection) you may need to restrict access to
that resource to one thread at a time. A classic analogy is to a restroom on an air-
plane. You want to allow access to the restroom for only one person at a time. You
do this by putting a lock on the door. When passengers want to use the restroom,
they try the door handle; if it is locked, they either go away and do something else, or
wait patiently in line with others who want access to the resource. When the
resource becomes free, one person is taken off the line and given the resource, which
is then locked again.

At times, various threads might want to access a resource in your program, such as a
file. It might be important to ensure that only one thread has access to your resource
at a time, and so you will lock the resource, allow a thread access, and then unlock
the resource. Programming locks can be fairly sophisticated, ensuring a fair distribu-
tion of resources.

466 | Chapter 21: Threads and Synchronization

Threads
Threads are typically created when you want a program to do two things at once. For
example, assume you are calculating pi (3.141592653589...) to the 10 billionth
place. The processor will happily begin to compute this, but nothing will write to the
user interface while it is working. Because computing pi to the 10 billionth place will
take a few million years, you might like the processor to provide an update as it goes.
In addition, you might want to provide a Stop button so that the user can cancel the
operation at any time. To allow the program to handle the click on the Stop button,
you will need a second thread of execution.

Another common place to use threading is when you must wait for an event, such as
user input, a read from a file, or receipt of data over the network. Freeing the proces-
sor to turn its attention to another task while you wait (such as computing another
10,000 values of pi) is a good idea, and it makes your program appear to run more
quickly.

On the flip side, note that in some circumstances, threading can actually slow you
down. Assume that in addition to calculating pi, you also want to calculate the
Fibonacci series (1,1,2,3,5,8,13,21,...). If you have a multiprocessor machine, this will
run faster if each computation is in its own thread. If you have a single-processor
machine (as most users do), computing these values in multiple threads will certainly
run slower than computing one and then the other in a single thread because the pro-
cessor must switch back and forth between the two threads. This incurs some
overhead.

Starting Threads
The simplest way to create a thread is to create a new instance of the Thread class.
The Thread constructor takes a single argument: a delegate instance. The CLR pro-
vides the ThreadStart delegate class specifically for this purpose, which points to a
method you designate. This allows you to construct a thread and to say to it, “When
you start, run this method.” The ThreadStart delegate declaration is:

public delegate void ThreadStart();

As you can see, the method you attach to this delegate must take no parameters and
must return void. Thus, you might create a new thread like this:

Thread myThread = new Thread(new ThreadStart(myFunc));

For example, you might create two worker threads, one that counts up from zero:

public void Incrementer()
{
 for (int i =0;i<1000;i++)
 {
 Console.WriteLine("Incrementer: {0}", i);
 }
}

Threads | 467

and one that counts down from 1,000:

public void Decrementer()
{
 for (int i = 1000;i>=0;i--)
 {
 Console.WriteLine("Decrementer: {0}", i);
 }
}

To run these in threads, create two new threads, each initialized with a ThreadStart
delegate. These in turn would be initialized to the respective member functions:

Thread t1 = new Thread(new ThreadStart(Incrementer));
Thread t2 = new Thread(new ThreadStart(Decrementer));

Instantiation of these threads doesn’t start them running. To do so, you must call the
Start method on the Thread object itself:

t1.Start();
t2.Start();

If you don’t take further action, the thread stops when the function
returns. You’ll see how to stop a thread before the function ends later
in this chapter.

Example 21-1 is the full program and its output. You will need to add a using state-
ment for System.Threading to make the compiler aware of the Thread class. Notice
the output, where you can see the processor switching from t1 to t2.

Example 21-1. Using threads

using System;
using System.Threading;

namespace UsingThreads
{
 class Tester
 {
 static void Main()
 {
 // make an instance of this class
 Tester t = new Tester();

 Console.WriteLine("Hello");
 // run outside static Main
 t.DoTest();
 }

 public void DoTest()
 {
 // create a thread for the Incrementer
 // pass in a ThreadStart delegate

468 | Chapter 21: Threads and Synchronization

The processor allows the first thread to run long enough to count up to 106. Next,
the second thread kicks in, counting down from 1,000 for a while. Then, the first
thread is allowed to run. When I run this with larger numbers, I’ve noticed that each
thread is allowed to run for about 100 numbers before switching.

 // with the address of Incrementer
 Thread t1 = new Thread(
 new ThreadStart(Incrementer));

 // create a thread for the Decrementer
 // pass in a ThreadStart delegate
 // with the address of Decrementer
 Thread t2 = new Thread(
 new ThreadStart(Decrementer));

 // start the threads
 t1.Start();
 t2.Start();
 }

 // demo function, counts up to 1K
 public void Incrementer()
 {
 for (int i = 0; i < 1000; i++)
 {
 System.Console.WriteLine(
 "Incrementer: {0}", i);
 }
 }

 // demo function, counts down from 1k
 public void Decrementer()
 {
 for (int i = 1000; i >= 0; i--)
 {
 System.Console.WriteLine(
 "Decrementer: {0}", i);
 }
 }
 }
}

Output (excerpt):
Incrementer: 102
Incrementer: 103
Incrementer: 104
Incrementer: 105
Incrementer: 106
Decrementer: 1000
Decrementer: 999
Decrementer: 998
Decrementer: 997

Example 21-1. Using threads (continued)

Threads | 469

The actual amount of time devoted to any given thread is handled by
the thread scheduler and depends on many factors, such as the proces-
sor speed, demands on the processor from other programs, and so on.

Joining Threads
When you tell a thread to stop processing and wait until a second thread completes
its work, you are said to be joining the first thread to the second. It is as though you
tied the tip of the first thread onto the tail of the second, hence “joining” them.

To join thread 1 (t1) onto thread 2 (t2), write:

t2.Join();

If this statement is executed in a method in thread t1, t1 will halt and wait until t2
completes and exits. For example, you might ask the thread in which Main() exe-
cutes to wait for all your other threads to end before it writes its concluding message.
In this next code snippet, assume you’ve created a collection of threads named
myThreads. Iterate over the collection, joining the current thread to each thread in the
collection in turn:

foreach (Thread myThread in myThreads)
{
 myThread.Join();
}

Console.WriteLine("All my threads are done.");

The final message, All my threads are done., isn’t printed until all the threads have
ended. In a production environment, you might start up a series of threads to accom-
plish some task (e.g., printing, updating the display, etc.) and not want to continue
the main thread of execution until the worker threads are completed.

Blocking Threads with Sleep
At times, you want to suspend your thread for a short while. You might, for exam-
ple, like your clock thread to suspend for about a second in between testing the
system time. This lets you display the new time about once a second without devot-
ing hundreds of millions of machine cycles to the effort.

The Thread class offers a public static method, Sleep, for just this purpose. The
method is overloaded; one version takes an int, the other a timeSpan object.

Each represents the number of milliseconds you want the thread suspended for,
expressed either as an int (e.g., 2,000 = 2,000 milliseconds or two seconds), or as a
timeSpan.

Although timeSpan objects can measure ticks (100 nanoseconds), the Sleep()
method’s granularity is in milliseconds (1 million nanoseconds).

470 | Chapter 21: Threads and Synchronization

To cause your thread to sleep for one second, you can invoke the static method of
Thread.Sleep, which suspends the thread in which it is invoked:

Thread.Sleep(1000);

At times, you’ll pass zero for the amount of time to sleep; this signals the thread
scheduler that you’d like your thread to yield to another thread, even if the thread
scheduler might otherwise give your thread a bit more time.

If you modify Example 21-1 to add a Thread.Sleep(1) statement after each WriteLine(),
the output changes significantly:

for (int i =0;i<1000;i++)
{
 Console.WriteLine(
 "Incrementer: {0}", i);
 Thread.Sleep(1);
}

This small change is sufficient to give each thread an opportunity to run once the
other thread prints one value. The output reflects this change:

Incrementer: 0
Incrementer: 1
Decrementer: 1000
Incrementer: 2
Decrementer: 999
Incrementer: 3
Decrementer: 998
Incrementer: 4
Decrementer: 997
Incrementer: 5
Decrementer: 996
Incrementer: 6
Decrementer: 995

Killing Threads
Typically, threads die after running their course. You can, however, ask a thread to
kill itself. The cleanest way is to set a KeepAlive Boolean flag that the thread can
check periodically. When the flag changes state (e.g., goes from true to false), the
thread can stop itself.

An alternative is to call Thread.Interrupt, which asks the thread to kill itself. Finally,
in desperation, and if you are shutting down your application in any case, you may
call Thread.Abort. This causes a ThreadAbortException exception to be thrown, which
the thread can catch.

The thread ought to treat the ThreadAbortException exception as a signal that it is
time to exit immediately. In any case, you don’t so much kill a thread as politely
request that it commit suicide.

Threads | 471

You might wish to kill a thread in reaction to an event, such as the user clicking the
Cancel button. The event handler for the Cancel button might be in thread t1, and
the event it is canceling might be in thread t2. In your event handler, you can call
Abort on t1:

t2.Abort();

An exception will be raised in t1’s currently running method that t1 can catch.

In Example 21-2, three threads are created and stored in an array of Thread objects.
Before the Threads are started, the IsBackground property is set to true (background
threads are exactly like foreground threads, except that they don’t stop a process from
terminating). Each thread is then started and named (e.g., Thread1, Thread2, etc.). A
message is displayed indicating that the thread is started, and then the main thread
sleeps for 50 milliseconds before starting up the next thread.

After all three threads are started, and another 50 milliseconds have passed, the first
thread is aborted by calling Abort(). The main thread then joins all three of the run-
ning threads. The effect of this is that the main thread will not resume until all the
other threads have completed. When they do complete, the main thread prints a
message: All my threads are done.. Example 21-2 displays the complete source.

Example 21-2. Interrupting a thread

using System;
using System.Threading;

namespace InterruptingThreads
{
 class Tester
 {
 static void Main()
 {
 // make an instance of this class
 Tester t = new Tester();

 // run outside static Main
 t.DoTest();
 }

 public void DoTest()
 {
 // create an array of unnamed threads
 Thread[] myThreads =
 {
 new Thread(new ThreadStart(Decrementer)),
 new Thread(new ThreadStart(Incrementer)),
 new Thread(new ThreadStart(Decrementer)),
 new Thread(new ThreadStart(Incrementer))
 };

472 | Chapter 21: Threads and Synchronization

 // start each thread
 int ctr = 1;
 foreach (Thread myThread in myThreads)
 {
 myThread.IsBackground = true;
 myThread.Start();
 myThread.Name = "Thread" + ctr.ToString();
 ctr++;
 Console.WriteLine("Started thread {0}",
 myThread.Name);
 Thread.Sleep(50);
 }

 // ask the first thread to stop
 myThreads[0].Interrupt();

 // tell the second thread to abort immediately
 myThreads[1].Abort();

 // wait for all threads to end before continuing
 foreach (Thread myThread in myThreads)
 {
 myThread.Join();
 }

 // after all threads end, print a message
 Console.WriteLine("All my threads are done.");
 }

 // demo function, counts down from 100
 public void Decrementer()
 {
 try
 {
 for (int i = 100; i >= 0; i--)
 {
 Console.WriteLine(
 "Thread {0}. Decrementer: {1}",
 Thread.CurrentThread.Name, i);
 Thread.Sleep(1);
 }
 }
 catch (ThreadAbortException)
 {
 Console.WriteLine(
 "Thread {0} aborted! Cleaning up...",
 Thread.CurrentThread.Name);
 }
 catch (System.Exception e)
 {
 Console.WriteLine(
 "Thread has been interrupted ");

Example 21-2. Interrupting a thread (continued)

Threads | 473

 }
 finally
 {
 Console.WriteLine(
 "Thread {0} Exiting. ",
 Thread.CurrentThread.Name);
 }
 }

 // demo function, counts up to 100
 public void Incrementer()
 {
 try
 {
 for (int i = 0; i < 100; i++)
 {
 Console.WriteLine(
 "Thread {0}. Incrementer: {1}",
 Thread.CurrentThread.Name, i);
 Thread.Sleep(1);
 }
 }
 catch (ThreadAbortException)
 {
 Console.WriteLine(
 "Thread {0} aborted!",
 Thread.CurrentThread.Name);
 }
 catch (System.Exception e)
 {
 Console.WriteLine(
 "Thread has been interrupted");
 }
 finally
 {
 Console.WriteLine(
 "Thread {0} Exiting. ",
 Thread.CurrentThread.Name);
 }
 }
 }
}

Output (excerpt):
Thread Thread2. Incrementer: 42
Thread Thread1. Decrementer: 7
Thread Thread2. Incrementer: 43
Thread Thread1. Decrementer: 6
Thread Thread2. Incrementer: 44
Thread Thread1. Decrementer: 5

Example 21-2. Interrupting a thread (continued)

474 | Chapter 21: Threads and Synchronization

You see the first thread start and decrement from 100 to 99. The second thread
starts, and the two threads are interleaved for a while until the third and fourth
threads start. After a short while, however, Thread2 reports that it has been aborted,
and then it reports that it is exiting. A little while later, Thread1 reports that it was
interrupted. Because the interrupt waits for the thread to be in a wait state, this can
be a bit less immediate than a call to Abort. The two remaining threads continue
until they are done. They then exit naturally, and the main thread, which was joined
on all three, resumes to print its exit message.

Synchronization
At times, you might want to control access to a resource, such as an object’s proper-
ties or methods, so that only one thread at a time can modify or use that resource.
Your object is similar to the airplane restroom discussed earlier, and the various
threads are like the people waiting in line. Synchronization is provided by a lock on
the object, which helps the developer avoid having a second thread barge in on your
object until the first thread is finished with it.

This section examines three synchronization mechanisms: the Interlock class, the
C# lock statement, and the Monitor class. But first, you need to create a shared
resource (often a file or printer); in this case, a simple integer variable: counter. You
will increment counter from each of two threads.

Thread Thread2. Incrementer: 45
Thread Thread1. Decrementer: 4
Thread Thread2. Incrementer: 46
Started thread Thread3
Thread Thread3. Decrementer: 100
Thread Thread2. Incrementer: 47
Thread Thread1. Decrementer: 3
Thread Thread2. Incrementer: 48
Thread Thread1. Decrementer: 2
Thread Thread3. Decrementer: 99
Thread Thread2. Incrementer: 49
Thread Thread3. Decrementer: 98
Thread Thread1. Decrementer: 1
Thread Thread1. Decrementer: 0
Thread Thread2. Incrementer: 50
Thread Thread3. Decrementer: 97
Thread Thread2. Incrementer: 51
Thread Thread1 Exiting.
Thread Thread3. Decrementer: 96
...
Thread Thread4. Incrementer: 99
Thread Thread4 Exiting.
All my threads are done.

Example 21-2. Interrupting a thread (continued)

Synchronization | 475

To start, declare the member variable and initialize it to 0:

int counter = 0;

Modify the Incrementer method to increment the counter member variable:

public void Incrementer()
{
 try
 {
 while (counter < 1000)
 {
 int temp = counter;
 temp++; // increment

 // simulate some work in this method
 Thread.Sleep(1);

 // assign the Incremented value
 // to the counter variable
 // and display the results
 counter = temp;
 Console.WriteLine(
 "Thread {0}. Incrementer: {1}",
 Thread.CurrentThread.Name,
 counter);
 }
 }

The idea here is to simulate the work that might be done with a controlled resource.
Just as you might open a file, manipulate its contents, and then close it, here, you
read the value of counter into a temporary variable, increment the temporary vari-
able, sleep for one millisecond to simulate work, and then assign the incremented
value back to counter.

The problem is that your first thread reads the value of counter (0) and assigns that
to a temporary variable. Then, it increments the temporary variable. While it is doing
its work, the second thread reads the value of counter (still 0), and assigns that value
to a temporary variable. The first thread finishes its work, and then assigns the tem-
porary value (1) back to counter and displays it. The second thread does the same.
What is printed is 1,1. In the next go around, the same thing happens. Rather than
having the two threads count 1,2,3,4, you’ll see 1,2,3,3,4,4. Example 21-3 shows
the complete source code and output for this example.

Example 21-3. Simulating a shared resource

using System;
using System.Threading;

namespace SharedResource
{
 class Tester

476 | Chapter 21: Threads and Synchronization

 {
 private int counter = 0;

 static void Main()
 {
 // make an instance of this class
 Tester t = new Tester();

 // run outside static Main
 t.DoTest();
 }

 public void DoTest()
 {
 Thread t1 = new Thread(new ThreadStart(Incrementer));
 t1.IsBackground = true;
 t1.Name = "ThreadOne";
 t1.Start();
 Console.WriteLine("Started thread {0}",
 t1.Name);

 Thread t2 = new Thread(new ThreadStart(Incrementer));
 t2.IsBackground = true;
 t2.Name = "ThreadTwo";
 t2.Start();
 Console.WriteLine("Started thread {0}",
 t2.Name);
 t1.Join();
 t2.Join();

 // after all threads end, print a message
 Console.WriteLine("All my threads are done.");
 }

 // demo function, counts up to 1K
 public void Incrementer()
 {
 try
 {
 while (counter < 1000)
 {
 int temp = counter;
 temp++; // increment

 // simulate some work in this method
 Thread.Sleep(1);

 // assign the decremented value
 // and display the results
 counter = temp;
 Console.WriteLine(

Example 21-3. Simulating a shared resource (continued)

Synchronization | 477

Using Interlocked
The CLR provides a number of synchronization mechanisms. These include the
common synchronization tools such as critical sections (called locks in .NET), as well
as the Monitor class. Each is discussed later in this chapter.

Incrementing and decrementing a value is such a common programming pattern,
and one which needs synchronization protection so often that the CLR offers a spe-
cial class, Interlocked, just for this purpose. Interlocked has two methods, Increment
and Decrement, which not only increment or decrement a value, but also do so under
synchronization control.

Modify the Incrementer method from Example 21-3 as follows:

public void Incrementer()
{

 "Thread {0}. Incrementer: {1}",
 Thread.CurrentThread.Name,
 counter);
 }
 }
 catch (ThreadInterruptedException)
 {
 Console.WriteLine(
 "Thread {0} interrupted! Cleaning up...",
 Thread.CurrentThread.Name);
 }
 finally
 {
 Console.WriteLine(
 "Thread {0} Exiting. ",
 Thread.CurrentThread.Name);
 }
 }
 }
}

Output:
Started thread ThreadOne
Started thread ThreadTwo
Thread ThreadOne. Incrementer: 1
Thread ThreadOne. Incrementer: 2
Thread ThreadOne. Incrementer: 3
Thread ThreadTwo. Incrementer: 3
Thread ThreadTwo. Incrementer: 4
Thread ThreadOne. Incrementer: 4
Thread ThreadTwo. Incrementer: 5
Thread ThreadOne. Incrementer: 5
Thread ThreadTwo. Incrementer: 6
Thread ThreadOne. Incrementer: 6

Example 21-3. Simulating a shared resource (continued)

478 | Chapter 21: Threads and Synchronization

 try
 {
 while (counter < 1000)
 {
 int temp = Interlocked.Increment(ref counter);

 // simulate some work in this method
 Thread.Sleep(0);

 // display the incremented value
 Console.WriteLine(
 "Thread {0}. Incrementer: {1}",
 Thread.CurrentThread.Name, temp);

 }
 }

The catch and finally blocks and the remainder of the program are unchanged from
the previous example.

Interlocked.Increment() expects a single parameter: a reference to an int. Because
int values are passed by value, use the ref keyword, as described in Chapter 4.

The Increment() method is overloaded and can take a reference to a
long rather than to an int, if that is what you need.

Once this change is made, access to the counter member is synchronized, and the
output is what we’d expect:

Output (excerpts):
Started thread ThreadOne
Started thread ThreadTwo
Thread ThreadOne. Incrementer: 1
Thread ThreadTwo. Incrementer: 2
Thread ThreadOne. Incrementer: 3
Thread ThreadTwo. Incrementer: 4
Thread ThreadOne. Incrementer: 5
Thread ThreadTwo. Incrementer: 6
Thread ThreadOne. Incrementer: 7
Thread ThreadTwo. Incrementer: 8
Thread ThreadOne. Incrementer: 9
Thread ThreadTwo. Incrementer: 10
Thread ThreadOne. Incrementer: 11
Thread ThreadTwo. Incrementer: 12
Thread ThreadOne. Incrementer: 13
Thread ThreadTwo. Incrementer: 14
Thread ThreadOne. Incrementer: 15
Thread ThreadTwo. Incrementer: 16
Thread ThreadOne. Incrementer: 17

Synchronization | 479

Thread ThreadTwo. Incrementer: 18
Thread ThreadOne. Incrementer: 19
Thread ThreadTwo. Incrementer: 20

Using Locks
Although the Interlocked object is fine if you want to increment or decrement a
value, there will be times when you want to control access to other objects as well.
What is needed is a more general synchronization mechanism. This is provided by
the C# lock feature.

A lock marks a critical section of your code, providing synchronization to an object
you designate while the lock is in effect. The syntax of using a lock is to request a
lock on an object and then to execute a statement or block of statements. The lock is
removed at the end of the statement block.

C# provides direct support for locks through the lock keyword. Pass in a reference
to an object, and follow the keyword with a statement block:

lock(expression) statement-block

For example, you can modify Incrementer again to use a lock statement, as follows:

public void Incrementer()
{
 try
 {
 while (counter < 1000)
 {
 int temp;
 lock (this)
 {
 temp = counter;
 temp++;
 Thread.Sleep(1);
 counter = temp;
 }

 // assign the decremented value
 // and display the results
 Console.WriteLine(
 "Thread {0}. Incrementer: {1}",
 Thread.CurrentThread.Name, temp);

 }
 }

The catch and finally blocks and the remainder of the program are unchanged from
the previous example.

The output from this code is identical to that produced using Interlocked.

480 | Chapter 21: Threads and Synchronization

Using Monitors
The objects used so far will be sufficient for most needs. For the most sophisticated
control over resources, you might want to use a monitor. A monitor lets you decide
when to enter and exit the synchronization, and it lets you wait for another area of
your code to become free.

When you want to begin synchronization, call the Enter() method of the monitor,
passing in the object you want to lock:

Monitor.Enter(this);

If the monitor is unavailable, the object protected by the monitor is presumed to be
in use. You can do other work while you wait for the monitor to become available,
and then try again. You can also explicitly choose to Wait(), suspending your thread
until the moment the monitor is free and the developer calls Pulse (discussed in a
bit). Wait() helps you control thread ordering.

For example, suppose you are downloading and printing an article from the Web.
For efficiency, you’d like to print in a background thread, but you want to ensure
that at least 10 pages have downloaded before you begin.

Your printing thread will wait until the get-file thread signals that enough of the file
has been read. You don’t want to Join the get-file thread because the file might be
hundreds of pages. You don’t want to wait until it has completely finished down-
loading, but you do want to ensure that at least 10 pages have been read before your
print thread begins. The Wait() method is just the ticket.

To simulate this, rewrite Tester, and add back the decrementer method. Your
incrementer counts up to 10. The decrementer method counts down to zero. It turns
out you don’t want to start decrementing unless the value of counter is at least 5.

In decrementer, call Enter on the monitor. Then, check the value of counter, and if it
is less than 5, call Wait on the monitor:

if (counter < 5)
{
 Monitor.Wait(this);
}

This call to Wait() frees the monitor, but signals the CLR that you want the monitor
back the next time it is free. Waiting threads are notified of a chance to run again if
the active thread calls Pulse():

Monitor.Pulse(this);

Pulse() signals the CLR that there has been a change in state that might free a thread
that is waiting.

When a thread is finished with the monitor, it must mark the end of its controlled
area of code with a call to Exit():

Monitor.Exit(this);

Synchronization | 481

Example 21-4 continues the simulation, providing synchronized access to a counter
variable using a Monitor.

Example 21-4. Using a Monitor object

using System;
using System.Threading;

namespace UsingAMonitor
{
 class Tester
 {
 private long counter = 0;

 static void Main()
 {
 // make an instance of this class
 Tester t = new Tester();

 // run outside static Main
 t.DoTest();
 }

 public void DoTest()
 {
 // create an array of unnamed threads
 Thread[] myThreads =
 {
 new Thread(new ThreadStart(Decrementer)),
 new Thread(new ThreadStart(Incrementer))
 };

 // start each thread
 int ctr = 1;
 foreach (Thread myThread in myThreads)
 {
 myThread.IsBackground = true;
 myThread.Start();
 myThread.Name = "Thread" + ctr.ToString();
 ctr++;
 Console.WriteLine("Started thread {0}", myThread.Name);
 Thread.Sleep(50);
 }

 // wait for all threads to end before continuing
 foreach (Thread myThread in myThreads)
 {
 myThread.Join();
 }

 // after all threads end, print a message
 Console.WriteLine("All my threads are done.");
 }

482 | Chapter 21: Threads and Synchronization

 void Decrementer()
 {
 try
 {
 // synchronize this area of code
 Monitor.Enter(this);

 // if counter is not yet 10
 // then free the monitor to other waiting
 // threads, but wait in line for your turn
 if (counter < 10)
 {
 Console.WriteLine(
 "[{0}] In Decrementer. Counter: {1}. Gotta Wait!",
 Thread.CurrentThread.Name, counter);
 Monitor.Wait(this);
 }

 while (counter > 0)
 {
 long temp = counter;
 temp--;
 Thread.Sleep(1);
 counter = temp;
 Console.WriteLine(
 "[{0}] In Decrementer. Counter: {1}. ",
 Thread.CurrentThread.Name, counter);
 }
 }
 finally
 {
 Monitor.Exit(this);
 }
 }

 void Incrementer()
 {
 try
 {
 Monitor.Enter(this);
 while (counter < 10)
 {
 long temp = counter;
 temp++;
 Thread.Sleep(1);
 counter = temp;
 Console.WriteLine(
 "[{0}] In Incrementer. Counter: {1}",
 Thread.CurrentThread.Name, counter);
 }

Example 21-4. Using a Monitor object (continued)

Synchronization | 483

In this example, decrementer is started first. In the output, you see Thread1 (the
decrementer) start up and then realize that it has to wait. You then see Thread2 start
up. Only when Thread2 pulses does Thread1 begin its work.

Try some experiments with this code. First, comment out the call to Pulse(); you’ll
find that Thread1 never resumes. Without Pulse(), there is no signal to the waiting
threads.

 // I'm done incrementing for now, let another
 // thread have the Monitor
 Monitor.Pulse(this);
 }
 finally
 {
 Console.WriteLine("[{0}] Exiting...",
 Thread.CurrentThread.Name);
 Monitor.Exit(this);
 }
 }
 }
}

Output:
Started thread Thread1
[Thread1] In Decrementer. Counter: 0. Gotta Wait!
Started thread Thread2
[Thread2] In Incrementer. Counter: 1
[Thread2] In Incrementer. Counter: 2
[Thread2] In Incrementer. Counter: 3
[Thread2] In Incrementer. Counter: 4
[Thread2] In Incrementer. Counter: 5
[Thread2] In Incrementer. Counter: 6
[Thread2] In Incrementer. Counter: 7
[Thread2] In Incrementer. Counter: 8
[Thread2] In Incrementer. Counter: 9
[Thread2] In Incrementer. Counter: 10
[Thread2] Exiting...
[Thread1] In Decrementer. Counter: 9.
[Thread1] In Decrementer. Counter: 8.
[Thread1] In Decrementer. Counter: 7.
[Thread1] In Decrementer. Counter: 6.
[Thread1] In Decrementer. Counter: 5.
[Thread1] In Decrementer. Counter: 4.
[Thread1] In Decrementer. Counter: 3.
[Thread1] In Decrementer. Counter: 2.
[Thread1] In Decrementer. Counter: 1.
[Thread1] In Decrementer. Counter: 0.
All my threads are done.

Example 21-4. Using a Monitor object (continued)

484 | Chapter 21: Threads and Synchronization

As a second experiment, rewrite Incrementer to pulse and exit the monitor after each
increment:

void Incrementer()
{
 try
 {
 while (counter < 10)
 {
 Monitor.Enter(this);
 long temp = counter;
 temp++;
 Thread.Sleep(1);
 counter = temp;
 Console.WriteLine(
 "[{0}] In Incrementer. Counter: {1}",
 Thread.CurrentThread.Name, counter);
 Monitor.Pulse(this);
 Monitor.Exit(this);
 }
 }
 Catch {}

Rewrite Decrementer as well, changing the if statement to a while statement, and
knocking down the value from 10 to 5:

//if (counter < 10)
while (counter < 5)

The net effect of these two changes is to cause Thread2, the Incrementer, to pulse the
Decrementer after each increment. While the value is smaller than five, the
Decrementer must continue to wait; once the value goes over five, the Decrementer
runs to completion. When it is done, the Incrementer thread can run again. The out-
put is shown here:

[Thread2] In Incrementer. Counter: 2
[Thread1] In Decrementer. Counter: 2. Gotta Wait!
[Thread2] In Incrementer. Counter: 3
[Thread1] In Decrementer. Counter: 3. Gotta Wait!
[Thread2] In Incrementer. Counter: 4
[Thread1] In Decrementer. Counter: 4. Gotta Wait!
[Thread2] In Incrementer. Counter: 5
[Thread1] In Decrementer. Counter: 4.
[Thread1] In Decrementer. Counter: 3.
[Thread1] In Decrementer. Counter: 2.
[Thread1] In Decrementer. Counter: 1.
[Thread1] In Decrementer. Counter: 0.
[Thread2] In Incrementer. Counter: 1
[Thread2] In Incrementer. Counter: 2
[Thread2] In Incrementer. Counter: 3
[Thread2] In Incrementer. Counter: 4
[Thread2] In Incrementer. Counter: 5
[Thread2] In Incrementer. Counter: 6
[Thread2] In Incrementer. Counter: 7

Race Conditions and Deadlocks | 485

[Thread2] In Incrementer. Counter: 8
[Thread2] In Incrementer. Counter: 9
[Thread2] In Incrementer. Counter: 10

Race Conditions and Deadlocks
The .NET library provides sufficient thread support such that you will rarely find
yourself creating your own threads or managing synchronization manually.

Thread synchronization can be tricky, especially in complex programs. If you do
decide to create your own threads, you must confront and solve all the traditional
problems of thread synchronization, such as race conditions and deadlock.

Race Conditions
A race condition exists when the success of your program depends on the uncon-
trolled order of completion of two independent threads.

Suppose, for example, that you have two threads—one is responsible for opening a
file, and the other is responsible for writing to the file. It is important that you con-
trol the second thread so that it’s assured that the first thread has opened the file. If
not, under some conditions, the first thread will open the file, and the second thread
will work fine; under other unpredictable conditions, the first thread won’t finish
opening the file before the second thread tries to write to it, and you’ll throw an
exception (or worse, your program will simply seize up and die). This is a race condi-
tion, and race conditions can be very difficult to debug.

You can’t leave these two threads to operate independently; you must ensure that
Thread1 will have completed before Thread2 begins. To accomplish this, you might
Join() Thread2 on Thread1. As an alternative, you can use a Monitor and Wait() for
the appropriate conditions before resuming Thread2.

Deadlocks
When you wait for a resource to become free, you are at risk of a deadlock, also
called a deadly embrace. In a deadlock, two or more threads are waiting for each
other, and neither can become free.

Suppose you have two threads, ThreadA and ThreadB. ThreadA locks down an Employee
object, and then tries to get a lock on a row in the database. It turns out that ThreadB
already has that row locked, so ThreadA waits.

Unfortunately, ThreadB can’t update the row until it locks down the Employee object,
which is already locked down by ThreadA. Neither thread can proceed; neither thread
will unlock its own resource. They are waiting for each other in a deadly embrace.

486 | Chapter 21: Threads and Synchronization

As described, a deadlock is fairly easy to spot—and to correct. In a program running
many threads, a deadlock can be very difficult to diagnose, let alone solve. One
guideline is to get all the locks you need or to release all the locks you have. That is,
as soon as ThreadA realizes that it can’t lock the Row, it should release its lock on the
Employee object. Similarly, when ThreadB can’t lock the Employee, it should release the
Row. A second important guideline is to lock as small a section of code as possible,
and to hold the lock as briefly as possible.

487

Chapter 22 CHAPTER 22

Streams22

For many applications, data is held in memory and accessed as though it were a
three-dimensional solid; when you need to access a variable or an object, use its
name, and, presto, it is available to you. When you want to move your data into or
out of a file, across the network, or over the Internet, however, your data must be
streamed.* In a stream, data flows much like bubbles in a stream of water.

Typically, the endpoint of a stream is a backing store. The backing store provides a
source for the stream, like a lake provides a source for a river. Typically, the backing
store is a file, but it is also possible for the backing store to be a network or web
connection.

Files and directories are abstracted by classes in the .NET Framework. These classes
provide methods and properties for creating, naming, manipulating, and deleting
files and directories on your disk.

The .NET Framework provides buffered and unbuffered streams, as well as classes
for asynchronous I/O. With asynchronous I/O, you can instruct the .NET classes to
read your file; while they are busy getting the bits off the disk, your program can be
working on other tasks. The asynchronous I/O tasks notify you when their work is
done. The asynchronous classes are sufficiently powerful and robust that you might
be able to avoid creating threads explicitly (see Chapter 21).

Streaming into and out of files is no different from streaming across the network, and
the second part of this chapter will describe streaming using both TCP/IP and web
protocols.

To create a stream of data, your object will typically be serialized, or written to the
stream as a series of bits. The .NET Framework provides extensive support for serial-
ization, and the final part of this chapter walks you through the details of taking
control of the serialization of your object.

* Internet data may also be sent in datagrams.

488 | Chapter 22: Streams

Files and Directories
Before looking at how you can get data into and out of files, let’s start by examining
the support provided for file and directory manipulation.

The classes you need are in the System.IO namespace. These include the File class,
which represents a file on disk, and the Directory class, which represents a directory
(also known in Windows as a folder).

Working with Directories
The Directory class exposes static methods for creating, moving, and exploring
directories. All the methods of the Directory class are static; therefore, you can call
them all without having an instance of the class.

The DirectoryInfo class is a similar class, but one that has nothing but instance
members (i.e., no static members at all). DirectoryInfo derives from FileSystemInfo,
which in turn derives from MarshalByRefObject. The FileSystemInfo class has a num-
ber of properties and methods that provide information about a file or directory.

Table 22-1 lists the principal methods of the Directory class, and Table 22-2 lists the
principal methods of the DirectoryInfo class, including important properties and
methods inherited from FileSystemInfo.

Table 22-1. Principal methods of the Directory class

Method Use

CreateDirectory() Creates all directories and subdirectories specified by its path parameter

GetCreationTime() Returns and sets the time the specified directory was created

GetDirectories() Gets named directories

GetLogicalDrives() Returns the names of all the logical drives in the form <drive>:\

GetFiles() Returns the names of files matching a pattern

GetParent() Returns the parent directory for the specified path

Move() Moves a directory and its contents to a specified path

Table 22-2. Principal methods and properties of the DirectoryInfo class

Method or property Use

Attributes Inherits from FileSystemInfo; gets or sets the attributes of the current file

CreationTime Inherits from FileSystemInfo; gets or sets the creation time of the current file

Exists Public property Boolean value, which is true if the directory exists

Extension Public property inherited from FileSystemInfo; that is, the file extension

FullName Public property inherited from FileSystemInfo; that is, the full path of the file or
directory

LastAccessTime Public property inherited from FileSystemInfo; gets or sets the last access time

Files and Directories | 489

Creating a DirectoryInfo Object
To explore a directory hierarchy, you need to instantiate a DirectoryInfo object. The
DirectoryInfo class provides methods for getting not just the names of contained
files and directories, but also FileInfo and DirectoryInfo objects, allowing you to
dive into the hierarchical structure, extracting subdirectories and exploring these
recursively.

You instantiate a DirectoryInfo object with the name of the directory you want to
explore:

string path = Environment.GetEnvironmentVariable("SystemRoot");
DirectoryInfo dir = new DirectoryInfo(path);

Remember that the at (@) sign before a string creates a verbatim string
literal in which it isn’t necessary to escape characters such as the back-
slash. I covered this in Chapter 10.

You can ask that DirectoryInfo object for information about itself, including its
name, full path, attributes, the time it was last accessed, and so forth. To explore the
subdirectory hierarchy, ask the current directory for its list of subdirectories:

DirectoryInfo[] directories = dir.GetDirectories();

This returns an array of DirectoryInfo objects, each of which represents a directory.
You can then recurse into the same method, passing in each DirectoryInfo object in
turn:

foreach (DirectoryInfo newDir in directories)

LastWriteTime Public property inherited from FileSystemInfo; gets or sets the time when the current
file or directory was last written to

Name Public property name of this instance of DirectoryInfo

Parent Public property parent directory of the specified directory

Root Public property root portion of the path

Create() Public method that creates a directory

CreateSubdirectory() Public method that creates a subdirectory on the specified path

Delete() Public method that deletes a DirectoryInfo and its contents from the path

GetDirectories() Public method that returns a DirectoryInfo array with subdirectories

GetFiles() Public method that returns a list of files in the directory

GetFileSystemInfos() Public method that retrieves an array of FileSystemInfo objects

MoveTo() Public method that moves a DirectoryInfo and its contents to a new path

Refresh() Public method inherited from FileSystemInfo; refreshes the state of the object

Table 22-2. Principal methods and properties of the DirectoryInfo class (continued)

Method or property Use

490 | Chapter 22: Streams

{
 dirCounter++;
 ExploreDirectory(newDir);
}

The dirCounter static int member variable keeps track of how many subdirectories
have been found altogether. To make the display more interesting, add a second
static int member variable, indentLevel, which will be incremented each time you
recurse into a subdirectory, and will be decremented when you pop out. This will
allow you to display the subdirectories indented under the parent directories.
Example 22-1 shows the complete listing.

Example 22-1. Recursing through subdirectories

using System;
using System.IO;

namespace RecursingDirectories
{
 class Tester
 {
 // static member variables to keep track of totals
 // and indentation level
 static int dirCounter = 1;
 static int indentLevel = -1; // so first push = 0

 public static void Main()
 {
 Tester t = new Tester();

 // choose the initial subdirectory
 string theDirectory =
 Environment.GetEnvironmentVariable("SystemRoot");
 // Mono and Shared Source CLI users on Linux, Unix or
 // Mac OS X should comment out the preceding two lines
 // of code and uncomment the following:
 //string theDirectory = "/tmp";

 // call the method to explore the directory,
 // displaying its access date and all
 // subdirectories

 DirectoryInfo dir = new DirectoryInfo(theDirectory);

 t.ExploreDirectory(dir);

 // completed. print the statistics
 Console.WriteLine(
 "\n\n{0} directories found.\n",
 dirCounter);
 }

Files and Directories | 491

You must add using System.IO; to the top of your file; Visual Studio
2008 doesn’t do this automatically.

 // Set it running with a directoryInfo object
 // for each directory it finds, it will call
 // itself recursively

 private void ExploreDirectory(DirectoryInfo dir)
 {
 indentLevel++; // push a directory level

 // create indentation for subdirectories
 for (int i = 0; i < indentLevel; i++)
 Console.Write(" "); // two spaces per level

 // print the directory and the time last accessed
 Console.WriteLine("[{0}] {1} [{2}]\n",
 indentLevel, dir.Name, dir.LastAccessTime);

 // get all the directories in the current directory
 // and call this method recursively on each
 DirectoryInfo[] directories = dir.GetDirectories();
 foreach (DirectoryInfo newDir in directories)
 {
 dirCounter++; // increment the counter
 ExploreDirectory(newDir);
 }
 indentLevel--; // pop a directory level
 }
 }
}

Output (excerpt):
 [2] logiscan [5/1/2001 3:06:41 PM]

 [2] miitwain [5/1/2001 3:06:41 PM]

 [1] Web [5/1/2001 3:06:41 PM]

 [2] printers [5/1/2001 3:06:41 PM]

 [3] images [5/1/2001 3:06:41 PM]

 [2] Wallpaper [5/1/2001 3:06:41 PM]

363 directories found.

Example 22-1. Recursing through subdirectories (continued)

492 | Chapter 22: Streams

This program will throw an exception in Vista as you attempt to read
into directories that are protected by the operating system. That is a
good thing; it means Vista is doing what it should.

The program begins by identifying a directory (SystemRoot, usually C:\WinNT or
C:\Windows) and creating a DirectoryInfo object for that directory. It then calls
ExploreDirectory, passing in that DirectoryInfo object. ExploreDirectory displays
information about the directory, and then retrieves all the subdirectories.

The list of all the subdirectories of the current directory is obtained by calling
GetDirectories. This returns an array of DirectoryInfo objects. ExploreDirectory is
the recursive method; each DirectoryInfo object is passed into ExploreDirectory in
turn. The effect is to push recursively into each subdirectory, and then to pop back out
to explore sister directories until all the subdirectories of %SystemRoot% are dis-
played. When ExploreDirectory finally returns, the calling method prints a summary.

Working with Files
The DirectoryInfo object can also return a collection of all the files in each subdirec-
tory found. The GetFiles() method returns an array of FileInfo objects, each of
which describes a file in that directory. The FileInfo and File objects relate to one
another, much as DirectoryInfo and Directory do. Like the methods of Directory, all
the File methods are static; like DirectoryInfo, all the methods of FileInfo are
instance methods.

Table 22-3 lists the principal methods of the File class; Table 22-4 lists the impor-
tant members of the FileInfo class.

Table 22-3. Principal public static methods of the File class

Method Use

AppendText() Creates a StreamWriter that appends text to the specified file

Copy() Copies an existing file to a new file

Create() Creates a file in the specified path

CreateText() Creates a StreamWriter that writes a new text file to the specified file

Delete() Deletes the specified file

Exists() Returns true if the specified file exists

GetAttributes(),
SetAttributes()

Gets or sets the FileAttributes of the specified file

GetCreationTime(),
SetCreationTime()

Returns or sets the creation date and time of the file

GetLastAccessTime(),
SetLastAccessTime()

Returns or sets the last time the specified file was accessed

Files and Directories | 493

Example 22-2 modifies Example 22-1, adding code to get a FileInfo object for each
file in each subdirectory. That object is used to display the name of the file, along
with its length and the date and time it was last accessed.

GetLastWriteTime(),
SetLastWriteTime()

Returns or sets the last time the specified file was written to

Move() Moves a file to a new location; can be used to rename a file

OpenRead() Public static method that opens a FileStream on the file

OpenWrite() Creates a read/write Stream on the specified path

Table 22-4. Methods and properties of the FileInfo class

Method or property Use

Attributes() Inherits from FileSystemInfo; gets or sets the attributes of the current file

CreationTime Inherits from FileSystemInfo; gets or sets the creation time of the current file

Directory Public property that gets an instance of the parent directory

Exists Public property Boolean value that is true if the directory exists

Extension Public property inherited from FileSystemInfo; that is, the file extension

FullName Public property inherited from FileSystemInfo; that is, the full path of the file or directory

LastAccessTime Public property inherited from FileSystemInfo; gets or sets the last access time

LastWriteTime Public property inherited from FileSystemInfo; gets or sets the time when the current file
or directory was last written to

Length Public property that gets the size of the current file

Name Public property Name of this DirectoryInfo instance

AppendText() Public method that creates a StreamWriter that appends text to a file

CopyTo() Public method that copies an existing file to a new file

Create() Public method that creates a new file

Delete() Public method that permanently deletes a file

MoveTo() Public method to move a file to a new location; can be used to rename a file

Open() Public method that opens a file with various read/write and sharing privileges

OpenRead() Public method that creates a read-only FileStream

OpenText() Public method that creates a StreamReader that reads from an existing text file

OpenWrite() Public method that creates a write-only FileStream

Example 22-2. Exploring files and subdirectories

using System;
using System.IO;

using System.Collections;

namespace ExploringFilesAndSubdirectories

Table 22-3. Principal public static methods of the File class (continued)

Method Use

494 | Chapter 22: Streams

{
 class Tester
 {
 // static member variables to keep track of totals
 // and indentation level
 static int dirCounter = 1;
 static int indentLevel = -1; // so first push = 0
 static int fileCounter = 0;

 public static void Main()
 {
 Tester t = new Tester();
 //Console.WriteLine("GetEnvironmentVariables: ");
 //IDictionary environmentVariables =
 // Environment.GetEnvironmentVariables();
 //foreach (DictionaryEntry de in environmentVariables)
 // {
 // Console.WriteLine(" {0} = {1}", de.Key, de.Value);
 // }

 //return;

 // choose the initial subdirectory
 string theDirectory =
 Environment.GetEnvironmentVariable("SystemRoot");
 // Mono and Shared Source CLI users on Linux, Unix or
 // Mac OS X should comment out the preceding two lines
 // of code and uncomment the following:
 //string theDirectory = "/tmp";

 // call the method to explore the directory,
 // displaying its access date and all
 // subdirectories
 DirectoryInfo dir = new DirectoryInfo(theDirectory);

 t.ExploreDirectory(dir);

 // completed. print the statistics

 Console.WriteLine(
 "\n\n{0} files in {1} directories found.\n",
 fileCounter, dirCounter);
 }

 // Set it running with a directoryInfo object
 // for each directory it finds, it will call
 // itself recursively
 private void ExploreDirectory(DirectoryInfo dir)
 {
 indentLevel++; // push a directory level

Example 22-2. Exploring files and subdirectories (continued)

Files and Directories | 495

 // create indentation for subdirectories
 for (int i = 0; i < indentLevel; i++)
 Console.Write(" "); // two spaces per level

 // print the directory and the time last accessed
 Console.WriteLine("[{0}] {1} [{2}]\n",
 indentLevel, dir.Name, dir.LastAccessTime);

 // get all the files in the directory and
 // print their name, last access time, and size
 try
 {
 FileInfo[] filesInDir = dir.GetFiles();

 foreach (FileInfo file in filesInDir)
 {
 // indent once more to put files
 // under their directory
 for (int i = 0; i < indentLevel + 1; i++)
 Console.Write(" "); // two spaces per level

 Console.WriteLine("{0} [{1}] Size: {2} bytes",
 file.Name,
 file.LastWriteTime,
 file.Length);
 fileCounter++;
 }
 // get all the directories in the current directory
 // and call this method recursively on each
 DirectoryInfo[] directories = dir.GetDirectories();
 foreach (DirectoryInfo newDir in directories)
 {
 dirCounter++; // increment the counter
 ExploreDirectory(newDir);
 }
 indentLevel--; // pop a directory level
 }
 catch { } // skip over the ones Vista doesn't like

 }
 }
}

Output (excerpt):

 0.LOG [8/30/2007 8:26:05 PM] Size: 0 bytes
 AC3API.INI [1/14/1999 2:04:06 PM] Size: 231 bytes
 actsetup.log [7/1/2004 11:13:11 AM] Size: 3848 bytes
 Blue Lace 16.bmp [8/29/2002 6:00:00 AM] Size: 1272 bytes
 BOOTSTAT.DAT [8/30/2007 8:25:03 PM] Size: 2048 bytes
44760 files in 8251 directories found.

Example 22-2. Exploring files and subdirectories (continued)

496 | Chapter 22: Streams

The example is initialized with the name of the SystemRoot directory. It prints
information about all the files in that directory, and then recursively explores all the
subdirectories and all their subdirectories (your output might differ). This can take
quite a while to run because the SystemRoot directory tree is rather large (in this case,
44,760 files in 8,251 directories).

In this version, we used a try/catch block to catch the exception
thrown when we tried to get information about directories that are
protected by Vista, and so the program was able to run to completion
(though the count of files and directories is diminished by the
uncounted secured directories):

 try
 {
 FileInfo[] filesInDir = dir.GetFiles();
 //...
 indentLevel--; // pop a directory level
 }
 catch { }

Modifying Files
As you saw from Tables 22-3 and 22-4, you can use the FileInfo class to create,
copy, rename, and delete files. The next example creates a new subdirectory, copies
files in, renames some, deletes others, and then deletes the entire directory.

To set up these examples, create a \test directory and copy the media
directory from WinNT or Windows into the \test directory. Don’t
work on files in the system root directly; when working with system
files, you want to be extraordinarily careful.

The first step is to create a DirectoryInfo object for the test directory (adjust
theDirectory appropriately if you are on a Mac OS X, Linux, or Unix system):

string theDirectory = @"c:\test\media";
DirectoryInfo dir = new DirectoryInfo(theDirectory);

Next, create a subdirectory within the test directory by calling CreateSubDirectory on
the DirectoryInfo object. You get back a new DirectoryInfo object, representing the
newly created subdirectory:

string newDirectory = "newTest";
DirectoryInfo newSubDir =
 dir.CreateSubdirectory(newDirectory);

You can now iterate over the test and copy files to the newly created subdirectory:

FileInfo[] filesInDir = dir.GetFiles();
foreach (FileInfo file in filesInDir)
{
 string fullName = newSubDir.FullName +
 "\\" + file.Name;

Files and Directories | 497

 file.CopyTo(fullName);
 Console.WriteLine("{0} copied to newTest",
 file.FullName);
}

Notice the syntax of the CopyTo method. This is a method of the FileInfo object. Pass
in the full path of the new file, including its full name and extension.

Once you’ve copied the files, you can get a list of the files in the new subdirectory
and work with them directly:

filesInDir = newSubDir.GetFiles();
foreach (FileInfo file in filesInDir)
{

Create a simple integer variable named counter, and use it to rename every other file:

if (counter++ %2 == 0)
{
 file.MoveTo(fullName + ".bak");
 Console.WriteLine("{0} renamed to {1}",
 fullName,file.FullName);
}

You rename a file by “moving” it to the same directory, but with a new name. You
can, of course, move a file to a new directory with its original name, or you can move
and rename at the same time.

Rename every other file, and delete the ones you don’t rename:

file.Delete();
Console.WriteLine("{0} deleted.", fullName);

Once you’re done manipulating the files, you can clean up by deleting the entire
subdirectory:

newSubDir.Delete(true);

The Boolean parameter determines whether this is a recursive delete. If you pass in
false, and if this directory has subdirectories with files in it, it throws an exception.

Example 22-3 lists the source code for the complete program. Be careful when
running this: when it is done, the subdirectory is gone. To see the renaming and
deletions, put a breakpoint on or remove the last line.

Example 22-3. Creating a subdirectory and manipulating files

using System;
using System.IO;

namespace CreatingSubdirectoryManipulatingFile
{
 class Tester
 {
 public static void Main()
 {

498 | Chapter 22: Streams

 // make an instance and run it
 Tester t = new Tester();
 string theDirectory = @"c:\test\media";
 DirectoryInfo dir = new DirectoryInfo(theDirectory);
 t.ExploreDirectory(dir);
 }

 // Set it running with a directory name
 private void ExploreDirectory(DirectoryInfo dir)
 {

 // make a new subdirectory
 string newDirectory = "newTest";
 DirectoryInfo newSubDir =
 dir.CreateSubdirectory(newDirectory);

 // get all the files in the directory and
 // copy them to the new directory
 FileInfo[] filesInDir = dir.GetFiles();
 foreach (FileInfo file in filesInDir)
 {
 string fullName = newSubDir.FullName +
 "\\" + file.Name;
 file.CopyTo(fullName);
 Console.WriteLine("{0} copied to newTest",
 file.FullName);
 }

 // get a collection of the files copied in
 filesInDir = newSubDir.GetFiles();

 // delete some and rename others
 int counter = 0;
 foreach (FileInfo file in filesInDir)
 {
 string fullName = file.FullName;

 if (counter++ % 2 == 0)
 {
 file.MoveTo(fullName + ".bak");
 Console.WriteLine("{0} renamed to {1}",
 fullName, file.FullName);
 }
 else
 {
 file.Delete();
 Console.WriteLine("{0} deleted.", fullName);
 }
 }

 newSubDir.Delete(true); // delete the subdirectory
 }

Example 22-3. Creating a subdirectory and manipulating files (continued)

Reading and Writing Data | 499

Reading and Writing Data
Reading and writing data is accomplished with the Stream class. Remember streams?
This is a chapter about streams.*

Stream supports synchronous and asynchronous reads and writes. The .NET Frame-
work provides a number of classes derived from Stream, including FileStream,
MemoryStream, and NetworkStream. In addition, there is a BufferedStream class that
provides buffered I/O, and can be used with any of the other stream classes.
Table 22-5 summarizes the principal classes involved with I/O.

 }
}
Output (excerpts):
c:\test\media\Bach's Brandenburg Concerto No. 3.RMI
 copied to newTest
c:\test\media\Beethoven's 5th Symphony.RMI copied to newTest
c:\test\media\Beethoven's Fur Elise.RMI copied to newTest
c:\test\media\canyon.mid copied to newTest
c:\test\media\newTest\Bach's Brandenburg Concerto
 No. 3.RMI renamed to
c:\test\media\newTest\Bach's Brandenburg Concerto
 No. 3.RMI.bak
c:\test\media\newTest\Beethoven's 5th Symphony.RMI deleted.
c:\test\media\newTest\Beethoven's Fur Elise.RMI renamed to
c:\test\media\newTest\Beethoven's Fur Elise.RMI.bak
c:\test\media\newTest\canyon.mid deleted.

* With a tip of the hat to Arlo Guthrie.

Table 22-5. Principal I/O classes of the .NET Framework

Class Use

Stream Abstract class that supports reading and writing bytes

BinaryReader/BinaryWriter Read and write encoded strings and primitive datatypes to and from streams

File, FileInfo, Directory,
DirectoryInfo

Provide implementations for the abstract FileSystemInfo classes, including creat-
ing, moving, renaming, and deleting files and directories

FileStream For reading to and from File objects; supports random access to files; opens files
synchronously by default; supports asynchronous file access

TextReader, TextWriter,
StringReader, StringWriter

TextReader and TextWriter are abstract classes designed for Unicode character I/
O; StringReader and StringWriter write to and from strings, allowing your
input and output to be either a stream or a string

BufferedStream A stream that adds buffering to another stream such as a NetworkStream;
BufferedStreams can improve the performance of the stream to which they are
attached, but note that FileStream has buffering built in

Example 22-3. Creating a subdirectory and manipulating files (continued)

500 | Chapter 22: Streams

Binary Files
This section starts by using the basic Stream class to perform a binary read of a file.
The term binary read is used to distinguish from a text read. If you don’t know for
certain that a file is just text, it is safest to treat it as a stream of bytes, known as a
binary file.

The Stream class is chock-a-block with methods, but the most important are Read(),
Write(), BeginRead(), BeginWrite(), and Flush(). We will cover all of these in the
next few sections.

To perform a binary read, begin by creating a pair of Stream objects, one for reading
and one for writing:

Stream inputStream = File.OpenRead(
 @"C:\test\source\test1.cs");

Stream outputStream = File.OpenWrite(
 @"C:\test\source\test1.bak");

To open the files to read and write, you use the static OpenRead() and OpenWrite()
methods of the File class. The static overload of these methods takes the path for the
file as an argument, as shown previously.

Binary reads work by reading into a buffer. A buffer is just an array of bytes that will
hold the data read by the Read() method.

Pass in the buffer, the offset in the buffer at which to begin storing the data read in,
and the number of bytes to read. InputStream.Read reads bytes from the backing
store into the buffer and returns the total number of bytes read.

It continues reading until no more bytes remain:

while ((bytesRead =
 inputStream.Read(buffer,0,SIZE_BUFF)) > 0)
{
 outputStream.Write(buffer,0,bytesRead);
}

Each bufferful of bytes is written to the output file. The arguments to Write() are the
buffer from which to read, the offset into that buffer at which to start reading, and
the number of bytes to write. Notice that you write the same number of bytes as you
just read.

Example 22-4 provides the complete listing.

MemoryStream A nonbuffered stream whose encapsulated data is directly accessible in memory, and is
most useful as a temporary buffer

NetworkStream A stream over a network connection

Table 22-5. Principal I/O classes of the .NET Framework (continued)

Class Use

Reading and Writing Data | 501

Before you run this program, create the C:\test\source subdirectory and
add a file (containing the source to this program) named test1.cs. As
with previous examples, Unix, Linux, and Mac OS X readers should
adjust the paths appropriately.

Example 22-4. Implementing a binary read and write to a file

using System;
using System.IO;

namespace ImplementingBinaryReadWriteToFile
{
 class Tester
 {
 const int SizeBuff = 1024;

 public static void Main()
 {
 // make an instance and run it
 Tester t = new Tester();
 t.Run();
 }

 // Set it running with a directory name
 private void Run()
 {
 // the file to read from
 Stream inputStream = File.OpenRead(
 @"C:\test\source\test1.cs");

 // the file to write to
 Stream outputStream = File.OpenWrite(
 @"C:\test\source\test1.bak");

 // create a buffer to hold the bytes
 byte[] buffer = new Byte[SizeBuff];
 int bytesRead;

 // while the read method returns bytes
 // keep writing them to the output stream
 while ((bytesRead =
 inputStream.Read(buffer, 0, SizeBuff)) > 0)
 {
 outputStream.Write(buffer, 0, bytesRead);
 }

 // tidy up before exiting
 inputStream.Close();
 outputStream.Close();
 }
 }
}

502 | Chapter 22: Streams

The result of running this program is that a copy of the input file (test1.cs) is made in
the same directory and is named test1.bak. You can compare these files using your
favorite file comparison tool; they are identical, as shown in Figure 22-1.*

Buffered Streams
In the previous example, you created a buffer to read into. When you called Read(),
a bufferful was read from disk. It might be, however, that the operating system can
be much more efficient if it reads a larger (or smaller) number of bytes at once.

A buffered stream object creates an internal buffer, and reads bytes to and from the
backing store in whatever increments it thinks are most efficient. It will still fill your
buffer in the increments you dictate, but your buffer is filled from the in-memory
buffer, not from the backing store. The net effect is that the input and output are
more efficient and thus faster.

A BufferedStream object is composed around an existing Stream object that you
already have created. To use a BufferedStream, start by creating a normal stream
class as you did in Example 22-4:

Stream inputStream = File.OpenRead(
 @"C:\test\source\folder3.cs");

Stream outputStream = File.OpenWrite(
 @"C:\test\source\folder3.bak");

Once you have the normal stream, pass that stream object to the buffered stream’s
constructor:

BufferedStream bufferedInput =
 new BufferedStream(inputStream);

BufferedStream bufferedOutput =
 new BufferedStream(outputStream);

Figure 22-1. File comparison showing the two files are identical

* My favorite file comparison utility, as shown here, is ExamDiff Pro (http://www.prestosoft.com/ps.
asp?page=edp_examdiffpro).

Reading and Writing Data | 503

You can then use the BufferedStream as a normal stream, calling Read() and Write()
just as you did before. The operating system handles the buffering:

while ((bytesRead =
 bufferedInput.Read(buffer,0,SIZE_BUFF)) > 0)
{
 bufferedOutput.Write(buffer,0,bytesRead);
}

Remember to flush the buffer when you want to ensure that the data is written out to
the file:

bufferedOutput.Flush();

This essentially tells the in-memory buffer to flush out its contents.

Note that all streams should be closed, though the finalizer will even-
tually close them for you if you just let them go out of scope. In a
robust program, you should always explicitly close the buffer.

Example 22-5 provides the complete listing.

Example 22-5. Implementing buffered I/O

using System;
using System.IO;

namespace Programming_CSharp
{
 class Tester
 {
 const int SizeBuff = 1024;

 public static void Main()
 {
 // make an instance and run it
 Tester t = new Tester();
 t.Run();
 }

 // Set it running with a directory name
 private void Run()
 {
 // create binary streams
 Stream inputStream = File.OpenRead(
 @"C:\test\source\folder3.cs");

 Stream outputStream = File.OpenWrite(
 @"C:\test\source\folder3.bak");

 // add buffered streams on top of the
 // binary streams

504 | Chapter 22: Streams

With larger files, this example should run more quickly than Example 22-4 did.

Working with Text Files
If you know that the file you are reading (and writing) contains nothing but text, you
might want to use the StreamReader and StreamWriter classes. These classes are
designed to make text manipulation easier. For example, they support the ReadLine()
and WriteLine() methods that read and write a line of text at a time. You’ve already
used WriteLine() with the Console object.

To create a StreamReader instance, start by creating a FileInfo object, and then call
the OpenText() method on that object:

FileInfo theSourceFile =
 new FileInfo (@"C:\test\source\test1.cs");

StreamReader stream = theSourceFile.OpenText();

OpenText() returns a StreamReader for the file. With the StreamReader in hand, you
can now read the file, line by line:

do
{
 text = stream.ReadLine();
} while (text != null);

ReadLine() reads a line at a time until it reaches the end of the file. The StreamReader
will return null at the end of the file.

 BufferedStream bufferedInput =
 new BufferedStream(inputStream);

 BufferedStream bufferedOutput =
 new BufferedStream(outputStream);
 byte[] buffer = new Byte[SizeBuff];
 int bytesRead;

 while ((bytesRead =
 bufferedInput.Read(buffer, 0, SizeBuff)) > 0)
 {
 bufferedOutput.Write(buffer, 0, bytesRead);
 }

 bufferedOutput.Flush();
 bufferedInput.Close();
 bufferedOutput.Close();
 }
 }
}

Example 22-5. Implementing buffered I/O (continued)

Reading and Writing Data | 505

To create the StreamWriter class, call the StreamWriter constructor, passing in the full
name of the file you want to write to:

StreamWriter writer = new
StreamWriter(@"C:\test\source\folder3.bak",false);

The second parameter is the Boolean argument append. If the file already exists, true
will cause the new data to be appended to the end of the file, and false will cause the
file to be overwritten. In this case, pass in false, overwriting the file if it exists.

You can now create a loop to write out the contents of each line of the old file into
the new file, and while you’re at it, to print the line to the console as well:

do
{
 text = reader.ReadLine();
 writer.WriteLine(text);
 Console.WriteLine(text);
} while (text != null);

Example 22-6 provides the complete source code.

Example 22-6. Reading and writing to a text file

using System;
using System.Collections.Generic;
using System.IO;
using System.Text;

namespace ReadingWritingToTextFile
{
 class Tester
 {
 public static void Main()
 {
 // make an instance and run it
 Tester t = new Tester();
 t.Run();
 }

 // Set it running with a directory name
 private void Run()
 {
 // open a file
 FileInfo theSourceFile = new FileInfo(
 @"C:\test\source\test.cs");

 // create a text reader for that file
 StreamReader reader = theSourceFile.OpenText();

 // create a text writer to the new file
 StreamWriter writer = new StreamWriter(
 @"C:\test\source\test.bak", false);

506 | Chapter 22: Streams

When this program is run, the contents of the original file are written both to the
screen and to the new file. Notice the syntax for writing to the console:

Console.WriteLine(text);

This syntax is nearly identical to that used to write to the file:

writer.WriteLine(text);

The key difference is that the WriteLine() method of Console is static, and the
WriteLine() method of StreamWriter, which is inherited from TextWriter, is an
instance method, and thus must be called on an object rather than on the class itself.

Asynchronous I/O
All the programs you’ve looked at so far perform synchronous I/O, meaning that
while your program is reading or writing, all other activity is stopped. It can take a
long time (relatively speaking) to read data to or from the backing store, especially if
the backing store is a slow disk or (horrors!) a source on the Internet.

With large files, or when reading or writing across the network, you’ll want asyn-
chronous I/O, which allows you to begin a read and then turn your attention to other
matters while the CLR fulfills your request. The .NET Framework provides asyn-
chronous I/O through the BeginRead() and BeginWrite() methods of Stream.

The sequence is to call BeginRead() on your file and then to go on to other, unrelated
work while the read continues, possibly in another thread. When the read com-
pletes, you are notified via a callback method. You can then process the data that
was read, kick off another read, and then go back to your other work.

 // create a text variable to hold each line
 string text;

 // walk the file and read every line
 // writing both to the console
 // and to the file
 do
 {
 text = reader.ReadLine();
 writer.WriteLine(text);
 Console.WriteLine(text);
 } while (text != null);

 // tidy up
 reader.Close();
 writer.Close();
 }
 }
}

Example 22-6. Reading and writing to a text file (continued)

Asynchronous I/O | 507

In addition to the three parameters you’ve used in the binary read (the buffer, the off-
set, and how many bytes to read), BeginRead() asks for a delegate and a state object.

This is an instance of the more general async pattern seen through-
out .NET (e.g., async stream I/O, async socket operations, async
delegate invocation, etc.).

The delegate is an optional callback method, which, if provided, is called when the
data is read. The state object is also optional. In this example, pass in null for the
state object. The state of the object is kept in the member variables of the test class.

You are free to put any object you like in the state parameter, and you can retrieve it
when you are called back. Typically (as you might guess from the name), you stash
away state values that you’ll need on retrieval. The developer can use the state
parameter to hold the state of the call (paused, pending, running, etc.).

In this example, create the buffer and the Stream object as private member variables
of the class:

public class AsynchIOTester
{
 private Stream inputStream;
 private byte[] buffer;
 const int BufferSize = 256;

In addition, create your delegate as a private member of the class:

private AsyncCallback myCallBack; // delegated method

The delegate is declared to be of type AsyncCallback, which is what the BeginRead()
method of Stream expects.

An AsyncCallback delegate is declared in the System namespace as follows:

public delegate void AsyncCallback (IAsyncResult ar);

Thus, this delegate can be associated with any method that returns void and that
takes an IAsyncResult interface as a parameter. The CLR will pass in the
IAsyncResult interface object at runtime when the method is called. You only have to
declare the method:

void OnCompletedRead(IAsyncResult asyncResult)

and then hook up the delegate in the constructor:

AsynchIOTester()
{
 //...
 myCallBack = new AsyncCallback(this.OnCompletedRead);
}

508 | Chapter 22: Streams

Here’s how it works, step by step. In Main(), create an instance of the class and tell it
to run:

public static void Main()
{
 AsynchIOTester theApp = new AsynchIOTester();
 theApp.Run();
}

The call to new invokes the constructor. In the constructor, open a file and get a
Stream object back. Then, allocate space in the buffer, and hook up the callback
mechanism:

AsynchIOTester()
{
 inputStream = File.OpenRead(@"C:\test\source\AskTim.txt");
 buffer = new byte[BufferSize];
 myCallBack = new AsyncCallback(this.OnCompletedRead);
}

This example needs a large text file. I’ve copied a column written by
Tim O’Reilly (“Ask Tim”) from http://www.oreilly.com into a text file
named AskTim.txt. I placed that in the subdirectory test\source on my
C: drive. You can use any text file in any subdirectory.

In the Run() method, call BeginRead(), which causes an asynchronous read of the file:

inputStream.BeginRead(
 buffer, // where to put the results
 0, // offset
 buffer.Length, // BufferSize
 myCallBack, // call back delegate
 null); // local state object

Then, go on to do other work. In this case, simulate useful work by counting up to
500,000, displaying your progress every 1,000 iterations:

for (long i = 0; i < 500000; i++)
{
 if (i%1000 == 0)
 {
 Console.WriteLine("i: {0}", i);
 }
}

When the read completes, the CLR will call your callback method:

void OnCompletedRead(IAsyncResult asyncResult)
{

The first thing to do when notified that the read has completed is to find out how
many bytes were actually read. Do so by calling the EndRead() method of the Stream
object, passing in the IAsyncResult interface object passed in by the CLR:

int bytesRead = inputStream.EndRead(asyncResult);

Asynchronous I/O | 509

EndRead() returns the number of bytes read. If the number is greater than zero, you’ll
convert the buffer into a string, and write it to the console, and then call BeginRead()
again, for another asynchronous read:

if (bytesRead > 0)
{
 String s =
 Encoding.ASCII.GetString (buffer, 0, bytesRead);
 Console.WriteLine(s);
 inputStream.BeginRead(
 buffer, 0, buffer.Length,
 myCallBack, null);
}

The effect is that you can do other work while the reads are taking place, but you can
handle the read data (in this case, by outputting it to the console) each time a buffer-
ful is ready. Example 22-7 provides the complete program.

Example 22-7. Implementing asynchronous I/O

using System;
using System.IO;

namespace AsynchronousIO
{
 public class AsynchIOTester
 {
 private Stream inputStream;

 // delegated method
 private AsyncCallback myCallBack;

 // buffer to hold the read data
 private byte[] buffer;

 // the size of the buffer
 const int BufferSize = 256;

 // constructor
 AsynchIOTester()
 {
 // open the input stream
 inputStream = File.OpenRead(
 @"C:\test\source\AskTim.txt");

 // allocate a buffer
 buffer = new byte[BufferSize];

 // assign the callback
 myCallBack =
 new AsyncCallback(this.OnCompletedRead);
 }

510 | Chapter 22: Streams

 public static void Main()
 {
 // create an instance of AsynchIOTester
 // which invokes the constructor
 AsynchIOTester theApp = new AsynchIOTester();

 // call the instance method
 theApp.Run();
 }

 void Run()
 {
 inputStream.BeginRead(
 buffer, // holds the results
 0, // offset
 buffer.Length, // (BufferSize)
 myCallBack, // callback delegate
 null); // local state object

 // do some work while data is read
 for (long i = 0; i < 500000; i++)
 {
 if (i % 1000 == 0)
 {
 Console.WriteLine("i: {0}", i);
 }
 }
 }

 // callback method
 void OnCompletedRead(IAsyncResult asyncResult)
 {
 int bytesRead =
 inputStream.EndRead(asyncResult);

 // if we got bytes, make them a string
 // and display them, then start up again.
 // Otherwise, we're done.
 if (bytesRead > 0)
 {
 String s =
 Encoding.ASCII.GetString(buffer, 0, bytesRead);
 Console.WriteLine(s);
 inputStream.BeginRead(
 buffer, 0, buffer.Length, myCallBack, null);
 }
 }
 }
}

Example 22-7. Implementing asynchronous I/O (continued)

Network I/O | 511

The output reveals that the program is working on the two threads concurrently. The
reads are done in the background while the other thread is counting and printing out
every one-thousandth iteration. As the reads complete, they are printed to the con-
sole, and then you go back to counting. (I’ve shortened the listings to illustrate the
output.)

In a real-world application, you might process user requests or compute values while
the asynchronous I/O is busy retrieving or storing to a file or database.

Network I/O
Writing to a remote object on the Internet isn’t very different from writing to a file
on your local machine. You might want to do this if your program needs to store its
data to a file on a machine on your network, or if you are creating a program that
displays information on a monitor connected to another computer on your network.

Network I/O is based on the use of streams created with sockets. Sockets are very
useful for client/server and peer-to-peer (P2P) applications, and when making remote
procedure calls.

A socket is an object that represents an endpoint for communication between pro-
cesses communicating across a network. Sockets can work with various protocols,
including UDP and TCP. In this section, we will create a TCP/IP connection between
a server and a client. TCP/IP is a connection-based stream-like protocol for network
communication. Connection-based means that with TCP/IP, once a connection is
made, the two processes can talk with one another as though they were connected by
a direct phone line.

Output (excerpt):
i: 47000
i: 48000
i: 49000
Date: January 2001
From: Dave Heisler
To: Ask Tim
Subject: Questions About O'Reilly
Dear Tim,
I've been a programmer for about ten years. I had heard of
O'Reilly books,then...
Dave,
You might be amazed at how many requests for help with
school projects I get;
i: 50000
i: 51000
i: 52000

Example 22-7. Implementing asynchronous I/O (continued)

512 | Chapter 22: Streams

Although TCP/IP is designed to talk across a network, you can simu-
late network communication by running the two processes on the
same machine.

It is possible for more than one application on a given computer to be talking to vari-
ous clients all at the same time (e.g., you might be running a web server, an FTP
server, and a program that provides calculation support). Therefore, each applica-
tion must have a unique ID so that the client can indicate which application it is
looking for. That ID is known as a port. Think of the IP address as a phone number
and the port as an extension.

The server instantiates a TcpListener and tells the listener to listen for connections
on a specific port. The constructor for the TcpListener has two parameters, an IP
address and an int representing the port on which that listener should listen.

Client applications connect to a specific IP address. For example, Yahoo!’s IP address
is 66.94.234.13. Clients must also connect to a specific port. All web browsers
connect to port 80 by default. Port numbers range from 0 to 65535 (e.g., 216);
however, some numbers are reserved.*

Ports are divided into the following ranges:

• 0–1023: well-known ports

• 1024–49151: registered ports

• 49152–65535: dynamic and/or private ports

For a list of all the well-known and registered ports, look at http://
www.iana.org/assignments/port-numbers.

Once the listener is created, call Start() on it, telling the listener to begin accepting
network connections. When the server is ready to start responding to calls from cli-
ents, call AcceptSocket(). The thread in which you’ve called AcceptSocket() blocks
(waiting sadly by the phone, wringing its virtual hands, hoping for a call).

You can imagine creating the world’s simplest listener. It waits patiently for a client
to call. When it gets a call, it interacts with that client to the exclusion of all other cli-
ents. The next few clients to call will connect, but they will automatically be put on
hold. While they are listening to the music and being told their call is important and
will be handled in the order received, they will block in their own threads. Once the
backlog (hold) queue fills, subsequent callers will get the equivalent of a busy signal.
They must hang up and wait for our simple socket to finish with its current client.
This model works fine for servers that take only one or two requests a week, but it

* If you run your program on a network with a firewall, talk to your network administrator about which ports
are closed.

Network I/O | 513

doesn’t scale well for real-world applications. Most servers need to handle thou-
sands, even tens of thousands, of connections a minute!

To handle a high volume of connections, applications use asynchronous I/O to
accept a call and create a socket with the connection to the client. The original
listener then returns to listening, waiting for the next client. This way, your applica-
tion can handle many calls; each time a call is accepted, a new socket is created.

The client is unaware of this sleight of hand in which a new socket is created. As far
as the client is concerned, he has connected with the IP address and port he
requested. Note that the new socket establishes a connection with the client. This is
quite different from UDP, which uses a connectionless protocol. With TCP/IP, once
the connection is made, the client and server know how to talk with each other with-
out having to readdress each packet.

Creating a Network Streaming Server
To create a network server for TCP/IP streaming, start by creating a TcpListener
object to listen to the TCP/IP port you’ve chosen. I’ve arbitrarily chosen port 65000
from the available port IDs:

IPAddress localAddr = IPAddress.Parse("127.0.0.1");
TcpListener tcpListener = new TcpListener(localAddr, 65000);

Once the TcpListener object is constructed, you can ask it to start listening:

tcpListener.Start();

Now, wait for a client to request a connection:

Socket socketForClient = tcpListener.AcceptSocket();

The AcceptSocket method of the TcpListener object returns a Socket object that repre-
sents a Berkeley socket interface and is bound to a specific endpoint. AcceptSocket() is
a synchronous method that will not return until it receives a connection request.

Because the model is widely accepted by computer vendors, Berkeley
sockets simplify the task of porting existing socket-based source code
from Windows and Unix environments.

Once you have a socket you’re ready to send the file to the client. Create a
NetworkStream class, passing the socket into the constructor:

NetworkStream networkStream = new NetworkStream(socketForClient);

Then create a StreamWriter object much as you did before, except this time not on a
file, but rather on the NetworkStream you just created:

System.IO.StreamWriter streamWriter = new
 System.IO.StreamWriter(networkStream);

514 | Chapter 22: Streams

When you write to this stream, the stream is sent over the network to the client.
Example 22-8 shows the entire server. (I’ve stripped this server down to its bare
essentials. With a production server, you almost certainly would run the request pro-
cessing code in a thread, and you’d want to enclose the logic in try blocks to handle
network problems.)

Example 22-8. Implementing a network streaming server

using System;
using System.Collections.Generic;
using System.Net;
using System.Net.Sockets;
using System.Text;

namespace NetworkStreamingServer
{
 public class NetworkIOServer
 {
 public static void Main()
 {
 NetworkIOServer app = new NetworkIOServer();
 app.Run();
 }

 private void Run()
 {
 // create a new TcpListener and start it up
 // listening on port 65000

 IPAddress localAddr = IPAddress.Parse("127.0.0.1");
 TcpListener tcpListener = new TcpListener(localAddr, 65000);
 tcpListener.Start();

 // keep listening until you send the file
 for (; ;)
 {
 // if a client connects, accept the connection
 // and return a new socket named socketForClient
 // while tcpListener keeps listening
 Socket socketForClient =
 tcpListener.AcceptSocket();
 Console.WriteLine("Client connected");

 // call the helper method to send the file
 SendFileToClient(socketForClient);

 Console.WriteLine("Disconnecting from client...");

 // clean up and go home
 socketForClient.Close();
 Console.WriteLine("Exiting...");
 break;
 }

Network I/O | 515

Creating a Streaming Network Client
The client instantiates a TcpClient class, which represents a TCP/IP client connec-
tion to a host:

TcpClient socketForServer;
socketForServer = new TcpClient("localHost", 65000);

 }

 // helper method to send the file
 private void SendFileToClient(
 Socket socketForClient)
 {
 // create a network stream and a stream writer
 // on that network stream
 NetworkStream networkStream =
 new NetworkStream(socketForClient);
 System.IO.StreamWriter streamWriter =
 new System.IO.StreamWriter(networkStream);

 // create a stream reader for the file
 System.IO.StreamReader streamReader =
 new System.IO.StreamReader(
 @"C:\test\source\myTest.txt");

 string theString;

 // iterate through the file, sending it
 // line by line to the client
 do
 {
 theString = streamReader.ReadLine();

 if (theString != null)
 {
 Console.WriteLine(
 "Sending {0}", theString);
 streamWriter.WriteLine(theString);
 streamWriter.Flush();
 }
 }
 while (theString != null);

 // tidy up
 streamReader.Close();
 networkStream.Close();
 streamWriter.Close();
 }
 }
}

Example 22-8. Implementing a network streaming server (continued)

516 | Chapter 22: Streams

With this TcpClient, you can create a NetworkStream, and on that stream, you can
create a StreamReader:

NetworkStream networkStream = socketForServer.GetStream();
System.IO.StreamReader streamReader =
 new System.IO.StreamReader(networkStream);

Now, read the stream as long as there is data on it, outputting the results to the
console:

do
{
 outputString = streamReader.ReadLine();

 if(outputString != null)
 {
 Console.WriteLine(outputString);
 }
}
while(outputString != null);

Example 22-9 is the complete client.

Example 22-9. Implementing a network streaming client

using System;
using System.Collections.Generic;
using System.Net.Sockets;
using System.Text;

namespace NetworkStreamingClient
{
 public class Client
 {
 static public void Main(string[] Args)
 {
 // create a TcpClient to talk to the server
 TcpClient socketForServer;
 try
 {
 socketForServer =
 new TcpClient("localHost", 65000);
 }
 catch
 {
 Console.WriteLine(
 "Failed to connect to server at {0}:65000",
 "localhost");
 return;
 }

 // create the Network Stream and the Stream Reader object
 NetworkStream networkStream =
 socketForServer.GetStream();

Network I/O | 517

To test this, I created a simple test file named myTest.txt:

This is line one
This is line two
This is line three
This is line four

Here is the output from the server and the client:

Output (Server):

Client connected
Sending This is line one
Sending This is line two
Sending This is line three
Sending This is line four
Disconnecting from client...
Exiting...
Output (Client):

This is line one
This is line two

 System.IO.StreamReader streamReader =
 new System.IO.StreamReader(networkStream);

 try
 {
 string outputString;

 // read the data from the host and display it
 do
 {
 outputString = streamReader.ReadLine();

 if (outputString != null)
 {
 Console.WriteLine(outputString);
 }
 }
 while (outputString != null);
 }
 catch
 {
 Console.WriteLine(
 "Exception reading from Server");
 }

 // tidy up
 networkStream.Close();
 }
 }
}

Example 22-9. Implementing a network streaming client (continued)

518 | Chapter 22: Streams

This is line three
This is line four
Press any key to continue

If you are testing this on a single machine, run the client and server in
separate command windows or individual instances of the develop-
ment environment. You need to start the server first, or the client will
fail, saying it can’t connect. If you aren’t running this on a single
machine, you need to replace occurrences of 127.0.0.1 and localhost
with the IP address of the machine running the server. If you are run-
ning Windows XP Service Pack 2 with the default settings, you will get
a Windows Security Alert asking whether you want to unblock the
port.

Handling Multiple Connections
As I mentioned earlier, this example doesn’t scale well. Each client demands the
entire attention of the server. A server is needed that can accept the connection and
then pass the connection to overlapped I/O, providing the same asynchronous solu-
tion that you used earlier for reading from a file.

To manage this, create a new server, AsynchNetworkServer, which will nest within it a
new class, ClientHandler. When your AsynchNetworkServer receives a client connec-
tion, it instantiates a ClientHandler, and passes the socket to that ClientHandler
instance.

The ClientHandler constructor will create a copy of the socket and a buffer and open
a new NetworkStream on that socket. It then uses overlapped I/O to asynchronously
read and write to that socket. For this demonstration, it simply echoes whatever text
the client sends back to the client and also to the console.

To create the asynchronous I/O, ClientHandler defines two delegate methods,
OnReadComplete() and OnWriteComplete(), that manage the overlapped I/O of the
strings sent by the client.

The body of the Run() method for the server is very similar to what you saw in
Example 22-8. First, create a listener and then call Start(). Then, create a forever
loop and call AcceptSocket(). Once the socket is connected, instead of handling the
connection, create a new ClientHandler and call StartRead() on that object.

Example 22-10 shows the complete source for the server.

Example 22-10. Implementing an asynchronous network streaming server

using System;
using System.Collections.Generic;
using System.Net;
using System.Net.Sockets;
using System.Text;

Network I/O | 519

namespace AsynchNetworkServer
{
 public class AsynchNetworkServer
 {
 class ClientHandler
 {
 private byte[] buffer;
 private Socket socket;
 private NetworkStream networkStream;
 private AsyncCallback callbackRead;
 private AsyncCallback callbackWrite;

 public ClientHandler(Socket socketForClient)
 {
 socket = socketForClient;
 buffer = new byte[256];
 networkStream =
 new NetworkStream(socketForClient);

 callbackRead =
 new AsyncCallback(this.OnReadComplete);

 callbackWrite =
 new AsyncCallback(this.OnWriteComplete);
 }

 // begin reading the string from the client
 public void StartRead()
 {
 networkStream.BeginRead(
 buffer, 0, buffer.Length,
 callbackRead, null);
 }

 // when called back by the read, display the string
 // and echo it back to the client
 private void OnReadComplete(IAsyncResult ar)
 {
 int bytesRead = networkStream.EndRead(ar);

 if (bytesRead > 0)
 {
 string s =
 System.Text.Encoding.ASCII.GetString(
 buffer, 0, bytesRead);
 Console.Write(
 "Received {0} bytes from client: {1}",
 bytesRead, s);
 networkStream.BeginWrite(
 buffer, 0, bytesRead, callbackWrite, null);
 }
 else

Example 22-10. Implementing an asynchronous network streaming server (continued)

520 | Chapter 22: Streams

 {
 Console.WriteLine("Read connection dropped");
 networkStream.Close();
 socket.Close();
 networkStream = null;
 socket = null;
 }
 }

 // after writing the string, print a message and resume reading
 private void OnWriteComplete(IAsyncResult ar)
 {
 networkStream.EndWrite(ar);
 Console.WriteLine("Write complete");
 networkStream.BeginRead(
 buffer, 0, buffer.Length,
 callbackRead, null);
 }
 }

 public static void Main()
 {
 AsynchNetworkServer app = new AsynchNetworkServer();
 app.Run();
 }

 private void Run()
 {
 // create a new TcpListener and start it up
 // listening on port 65000

 IPAddress localAddr = IPAddress.Parse("127.0.0.1");
 TcpListener tcpListener = new TcpListener(localAddr, 65000);
 tcpListener.Start();

 // keep listening until you send the file
 for (; ;)
 {
 // if a client connects, accept the connection
 // and return a new socket named socketForClient
 // while tcpListener keeps listening
 Socket socketForClient = tcpListener.AcceptSocket();
 Console.WriteLine("Client connected");
 ClientHandler handler =
 new ClientHandler(socketForClient);
 handler.StartRead();
 }
 }
 }
}

Example 22-10. Implementing an asynchronous network streaming server (continued)

Network I/O | 521

The server starts up and listens to port 65000. If a client connects, the server instanti-
ates a ClientHandler that will manage the I/O with the client while the server listens
for the next client.

In this example, you write the string received from the client to the
console in OnReadComplete() and OnWriteComplete(). Writing to the
console can block your thread until the write completes. In a produc-
tion program, you don’t want to take any blocking action in these
methods because you are using a pooled thread. If you block in
OnReadComplete() or OnWriteComplete(), you may cause more threads
to be added to the thread pool, which is inefficient and will harm per-
formance and scalability.

The client code is very simple. The client creates a tcpSocket for the port on which
the server will listen (65000), and creates a NetworkStream object for that socket. It
then writes a message to that stream and flushes the buffer. The client creates a
StreamReader to read on that stream, and writes whatever it receives to the console.
Example 22-11 shows the complete source for the client.

Example 22-11. Implementing a client for asynchronous network I/O

using System;
using System.Collections.Generic;
using System.Net.Sockets;
using System.Text;

namespace AsynchNetworkClient
{
 public class AsynchNetworkClient
 {
 private NetworkStream streamToServer;

 static public int Main()
 {
 AsynchNetworkClient client =
 new AsynchNetworkClient();
 return client.Run();
 }

 AsynchNetworkClient()
 {
 string serverName = "localhost";
 Console.WriteLine("Connecting to {0}", serverName);
 TcpClient tcpSocket = new TcpClient(serverName, 65000);
 streamToServer = tcpSocket.GetStream();
 }

 private int Run()
 {
 string message = "Hello Programming C#";

522 | Chapter 22: Streams

In this example, the network server doesn’t block while it is handling client connec-
tions, but rather, it delegates the management of those connections to instances of
ClientHandler. Clients should not experience a delay waiting for the server to handle
their connections.

Asynchronous Network File Streaming
You can now combine the skills you learned for asynchronous file reads with asyn-
chronous network streaming to produce a program that serves a file to a client on
demand.

Your server will begin with an asynchronous read on the socket, waiting to get a
filename from the client. Once you have the filename, you can kick off an asynchro-
nous read of that file on the server. As each bufferful of the file becomes available,
you can begin an asynchronous write back to the client. When the asynchronous
write to the client finishes, you can kick off another read of the file; in this way, you

 Console.WriteLine(
 "Sending {0} to server.", message);

 // create a streamWriter and use it to
 // write a string to the server
 System.IO.StreamWriter writer =
 new System.IO.StreamWriter(streamToServer);
 writer.WriteLine(message);
 writer.Flush();

 // Read response
 System.IO.StreamReader reader =
 new System.IO.StreamReader(streamToServer);
 string strResponse = reader.ReadLine();
 Console.WriteLine("Received: {0}", strResponse);
 streamToServer.Close();
 return 0;
 }
 }
}

Output (Server):
Client connected
Received 22 bytes from client: Hello Programming C#
Write complete
Read connection dropped

Output (Client):
Connecting to localhost
Sending Hello Programming C# to server.
Received: Hello Programming C#

Example 22-11. Implementing a client for asynchronous network I/O (continued)

Network I/O | 523

ping-pong back and forth, filling the buffer from the file and writing the buffer out to
the client. The client need do nothing but read the stream from the server. In the
next example, the client will write the contents of the file to the console, but you
could easily begin an asynchronous write to a new file on the client, thereby creating
a network-based file copy program.

The structure of the server isn’t unlike that shown in Example 22-10. Once again you
will create a ClientHandler class, but this time, you will add an AsyncCallback named
myFileCallBack, which you initialize in the constructor along with the callbacks for
the network read and write:

myFileCallBack =
 new AsyncCallback(this.OnFileCompletedRead);

callbackRead =
 new AsyncCallback(this.OnReadComplete);

callbackWrite =
 new AsyncCallback(this.OnWriteComplete);

The Run() function of the outer class, now named AsynchNetworkFileServer, is
unchanged. Once again you create and start the TcpListener class as well as create a
forever loop in which you call AcceptSocket(). If you have a socket, instantiate the
ClientHandler and call StartRead(). As in the previous example, StartRead() kicks
off a BeginRead(), passing in the buffer and the delegate to OnReadComplete.

When the read from the network stream completes, your delegated method
OnReadComplete() is called and it retrieves the filename from the buffer. If text is
returned, OnReadComplete() retrieves a string from the buffer using the static System.
Text.Encoding.ASCII.GetString() method:

if(bytesRead > 0)
{
 string fileName =
 System.Text.Encoding.ASCII.GetString(
 buffer, 0, bytesRead);

You now have a filename; with that, you can open a stream to the file and use the
exact same asynchronous file read used in Example 22-7:

inputStream =
 File.OpenRead(fileName);

inputStream.BeginRead(
 buffer, // holds the results
 0, // offset
 buffer.Length, // Buffer Size
 myFileCallBack, // callback delegate
 null); // local state object

This read of the file has its own callback that will be invoked when the input stream
has read a bufferful from the file on the server disk drive.

524 | Chapter 22: Streams

As noted earlier, you normally shouldn’t take any action in an over-
lapped I/O method that might block the thread for any appreciable
time. The call to open the file and begin reading it is normally pushed
off to a helper thread instead of doing this work in OnReadComplete(). I
simplified it for this example to avoid distracting from the issues at
hand.

When the buffer is full, OnFileCompletedRead() is called, which checks to see
whether any bytes were read from the file. If so, it begins an asynchronous write to
the network:

if (bytesRead > 0)
{
 // write it out to the client
 networkStream.BeginWrite(
 buffer, 0, bytesRead, callbackWrite, null);
}

If OnFileCompletedRead was called, and no bytes were read, this signifies that the
entire file has been sent. The server reacts by closing the NetworkStream and socket,
thus letting the client know that the transaction is complete:

networkStream.Close();
socket.Close();
networkStream = null;
socket = null;

When the network write completes, the OnWriteComplete() method is called, and
this kicks off another read from the file:

private void OnWriteComplete(IAsyncResult ar)
{
 networkStream.EndWrite(ar);
 Console.WriteLine("Write complete");

 inputStream.BeginRead(
 buffer, // holds the results
 0, // offset
 buffer.Length, // (BufferSize)
 myFileCallBack, // callback delegate
 null); // local state object

}

The cycle begins again with another read of the file, and the cycle continues until the
file has been completely read and transmitted to the client. The client code simply
writes a filename to the network stream to kick off the file read:

string message = @"C:\test\source\AskTim.txt";
System.IO.StreamWriter writer =
 new System.IO.StreamWriter(streamToServer);
writer.Write(message);
writer.Flush();

Network I/O | 525

The client then begins a loop, reading from the network stream until no bytes are
sent by the server. When the server is done, the network stream is closed. Start by
initializing a Boolean value to false and creating a buffer to hold the bytes sent by
the server:

bool fQuit = false;
while (!fQuit)
{
 char[] buffer = new char[BufferSize];

You are now ready to create a new StreamReader from the NetworkStream member
variable streamToServer:

System.IO.StreamReader reader =
 new System.IO.StreamReader(streamToServer);

The call to Read() takes three parameters—the buffer, the offset at which to begin
reading, and the size of the buffer:

int bytesRead = reader.Read(buffer,0, BufferSize);

Check to see whether the Read() returned any bytes; if not, you are done, and you
can set the Boolean value fQuit to true, causing the loop to terminate:

if (bytesRead == 0)
 fQuit = true;

If you did receive bytes, you can write them to the console, or write them to a file, or
do whatever it is you will do with the values sent from the server:

else
{
 string theString = new String(buffer);
 Console.WriteLine(theString);
}
}

Once you break out of the loop, close the NetworkStream:

streamToServer.Close();

Example 22-12 shows the complete annotated source for the server, with the client
following later in Example 22-13.

Example 22-12. Implementing a client for an asynchronous network file server

using System;
using System.Net.Sockets;
using System.Threading;
using System.Text;

public class AsynchNetworkClient
{
 private const int BufferSize = 256;
 private NetworkStream streamToServer;

526 | Chapter 22: Streams

 static public int Main()
 {
 AsynchNetworkClient client =
 new AsynchNetworkClient();
 return client.Run();
 }

 AsynchNetworkClient()
 {
 string serverName = "localhost";
 Console.WriteLine("Connecting to {0}", serverName);
 TcpClient tcpSocket = new TcpClient(serverName, 65000);
 streamToServer = tcpSocket.GetStream();
 }

 private int Run()
 {
 string message = @"C:\test\source\AskTim.txt";
 Console.Write("Sending {0} to server.", message);

 // create a streamWriter and use it to
 // write a string to the server
 System.IO.StreamWriter writer =
 new System.IO.StreamWriter(streamToServer);
 writer.Write(message);
 writer.Flush();

 bool fQuit = false;

 // while there is data coming
 // from the server, keep reading
 while (!fQuit)
 {
 // buffer to hold the response
 char[] buffer = new char[BufferSize];

 // Read response
 System.IO.StreamReader reader =
 new System.IO.StreamReader(streamToServer);

 // see how many bytes are
 // retrieved to the buffer
 int bytesRead = reader.Read(buffer, 0, BufferSize);
 if (bytesRead == 0) // none? quite
 fQuit = true;
 else // got some?
 {
 // display it as a string
 string theString = new String(buffer);
 Console.WriteLine(theString);
 }
 }

Example 22-12. Implementing a client for an asynchronous network file server (continued)

Web Streams | 527

By combining the asynchronous file read with the asynchronous network read, you
have created a scalable application that can handle requests from a number of clients.

Web Streams
Instead of reading from a stream provided by a custom server, you can just as easily
read from any web page on the Internet.

A WebRequest is an object that requests a resource identified by a URI, such as the
URL for a web page. You can use a WebRequest object to create a WebResponse object
that will encapsulate the object pointed to by the URI. That is, you can call
GetResponse() on your WebRequest object to get access to the object pointed to by the
URI. What is returned is encapsulated in a WebResponse object. You can then ask that
WebResponse object for a Stream object by calling GetResponseStream().
GetResponseStream() returns a stream that encapsulates the contents of the web
object (e.g., a stream with the web page).

The next example retrieves the contents of a web page as a stream. To get a web
page, you’ll want to use HttpWebRequest. HttpWebRequest derives from WebRequest and
provides additional support for interacting with the HTTP protocol.

To create the HttpWebRequest, cast the WebRequest returned from the static Create()
method of the WebRequestFactory:

HttpWebRequest webRequest =
 (HttpWebRequest) WebRequest.Create
 ("http://www.libertyassociates.com/book_edit.htm");

Create() is a static method of WebRequest. When you pass in a URI, an instance of
HttpWebRequest is created.

The method is overloaded on the type of the parameter. It returns dif-
ferent derived types depending on what is passed in. For example, if
you pass in a URI, an object of type HttpWebRequest is created. The
return type, however, is WebRequest, and so you must cast the returned
value to HttpWebRequest.

Creating the HttpWebRequest establishes a connection to a page on your web site.
What you get back from the host is encapsulated in an HttpWebResponse object,
which is an HTTP protocol-specific subclass of the more general WebResponse class:

HttpWebResponse webResponse =
 (HttpWebResponse) webRequest.GetResponse();

 streamToServer.Close(); // tidy up
 return 0;
 }
}

Example 22-12. Implementing a client for an asynchronous network file server (continued)

528 | Chapter 22: Streams

You can now open a StreamReader on that page by calling the GetResponseStream()
method of the WebResponse object:

StreamReader streamReader = new StreamReader(
 webResponse.GetResponseStream(), Encoding.ASCII);

You can read from that stream exactly as you read from the network stream.
Example 22-13 shows the complete listing.

Example 22-13. Reading a web page as an HTML stream

using System;
using System.Collections.Generic;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Text;

namespace ReadingWebPageAsHTML
{
 public class Client
 {
 static public void Main(string[] Args)
 {
 // create a webRequest for a particular page
 HttpWebRequest webRequest =
 (HttpWebRequest)WebRequest.Create
 ("http://www.jesseliberty.com/");

 // ask the web request for a webResponse encapsulating
 // that page
 HttpWebResponse webResponse =
 (HttpWebResponse)webRequest.GetResponse();

 // get the streamReader from the response
 StreamReader streamReader = new StreamReader(
 webResponse.GetResponseStream(), Encoding.ASCII);

 try
 {
 string outputString;
 outputString = streamReader.ReadToEnd();
 Console.WriteLine(outputString);
 }
 catch
 {
 Console.WriteLine("Exception reading from web page");
 }
 streamReader.Close();
 }
 }
}
Output (excerpt):
<html>

Serialization | 529

The output shows that what is sent through the stream is the HTML of the page you
requested. You might use this capability for screen scraping: reading a page from a
site into a buffer and then extracting the information you need.

All examples of screen scraping in this book assume that you are read-
ing a site for which you have copyright permission.

Serialization
When an object is streamed to disk, its various member data must be serialized—
that is, written out to the stream as a series of bytes. The object will also be serialized
when stored in a database or when marshaled across a context, app domain, process,
or machine boundary.

The CLR provides support for serializing an object graph—an object and all the
member data of that object. By default, types aren’t serializable. To be able to serial-
ize an object, you must explicitly mark it with the [Serializable] attribute.

The CLR will do the work of serializing your object for you. Because the CLR knows
how to serialize all the primitive types, if your object consists of nothing but primitive
types (all your member data consists of integers, longs, strings, etc.), you’re all set. If
your object consists of other user-defined types (classes), you must ensure that these
types are also serializable. The CLR will try to serialize each object contained by your
object (and all their contained objects as well), but these objects themselves must be
either primitive types or serializable, or else they will not be serialized.

<head>
<title>Liberty Associates</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<script language="JavaScript">
<!--
isNS=(navigator.appName=="Netscape");
activeMenu="";
activeIndex=-1;
activeImg="";

window.onError = null;

function setImage(imgName,index) {
 if(activeImg==imgName)
 return true;
 document.images[imgName].src = rolloverImg[index].src;
 return true;
}

rolloverImg=new Array();

Example 22-13. Reading a web page as an HTML stream (continued)

530 | Chapter 22: Streams

When an object is marshaled, either by value or by reference, it must
be serialized. The difference is only whether a copy is made or a proxy
is provided to the client. Objects marked with the [Serializable]
attribute are marshaled by value; those that derive from
MarshalByRefObject are marshaled by reference, but both are serialized.

Using a Formatter
When data is serialized, it is eventually read by the same program or another
program on the same or a different computer. In any case, the code reading the data
expects that data to be in a particular format. Most of the time in a .NET applica-
tion, the expected format is the native binary format or SOAP.

SOAP is a simple, lightweight, XML-based protocol for exchanging
information across the Web. SOAP is highly modular and very extensi-
ble. It also leverages existing Internet technologies, such as HTTP and
SMTP.

When data is serialized, the format of the serialization is determined by the formatter
you apply. Formatter classes implement the interface IFormatter; you are also free to
create your own formatter, though very few programmers will ever need or want to!
The CLR provides a SoapFormatter for use with web services and a BinaryFormatter
that is useful for fast local storage or remoting.

You can instantiate these objects with their default constructors:

BinaryFormatter binaryFormatter =
 new BinaryFormatter();

Once you have an instance of a formatter, you can invoke its Serialize() method,
passing in a stream and an object to serialize. You’ll see how this is done in the next
example.

Working with Serialization
To see serialization at work, you need a sample class that you can serialize and then
deserialize. You can start by creating a class named SumOf. SumOf has three member
variables:

private int startNumber = 1;
private int endNumber;
private int[] theSums;

The member array theSums represents the value of the sums of all the numbers from
startNumber through endNumber. Thus, if startNumber is 1 and endNumber is 10, the
array will have the values:

1,3,6,10,15,21,28,36,45,55

Serialization | 531

Each value is the sum of the previous value plus the next in the series. Thus, if the
series is 1,2,3,4, the first value in theSums will be 1. The second value is the previous
value (1) plus the next in the series (2); thus, theSums[1] will hold the value 3. Like-
wise, the third value is the previous value (3) plus the next in the series, so
theSums[2] is 6. Finally, the fourth value in theSums is the previous value (6) plus the
next in the series (4), for a value of 10.

The constructor for the SumOf object takes two integers: the starting number and the
ending number. It assigns these to the local values, and then calls a helper function
to compute the contents of the array:

public SumOf(int start, int end)
{
 startNumber = start;
 endNumber = end;
 ComputeSums();

The ComputeSums helper function fills in the contents of the array by computing the
sums in the series from startNumber through endNumber:

private void ComputeSums()
{
 int count = endNumber - startNumber + 1;
 theSums = new int[count];
 theSums[0] = startNumber;
 for (int i=1,j=startNumber + 1;i<count;i++,j++)
 {
 theSums[i] = j + theSums[i-1];
 }
}

You can display the contents of the array at any time by using a foreach loop:

private void DisplaySums()
{
 foreach(int i in theSums)
 {
 Console.WriteLine("{0}, ",i);
 }
}

Serializing the object

Now, mark the class as eligible for serialization with the [Serializable] attribute:

[Serializable]
class SumOf

To invoke serialization, you first need a fileStream object into which you’ll serialize
the SumOf object:

FileStream fileStream =
 new FileStream("DoSum.out",FileMode.Create);

532 | Chapter 22: Streams

You are now ready to call the formatter’s Serialize() method, passing in the stream
and the object to serialize. Because this is done in a method of SumOf, you can pass in
the this object, which points to the current object:

binaryFormatter.Serialize(fileStream,this);

This serializes the SumOf object to disk.

Deserializing the object

To reconstitute the object, open the file, and ask a binary formatter to DeSerialize it:

public static SumOf DeSerialize(){
 FileStream fileStream =
 new FileStream("DoSum.out",FileMode.Open);
 BinaryFormatter binaryFormatter =
 new BinaryFormatter();
 SumOf retVal = (SumOf) binaryFormatter.Deserialize(fileStream);
 fileStream.Close();
 return retVal;}

To make sure all this works, first, instantiate a new object of type SumOf and tell it to
serialize itself. Then, create a new instance of type SumOf by calling the static deserial-
izer and asking it to display its values:

public static void Main()
{
 Console.WriteLine("Creating first one with new...");
 SumOf app = new SumOf(1,10);

 Console.WriteLine(
 "Creating second one with deserialize...");
 SumOf newInstance = SumOf.DeSerialize();
 newInstance.DisplaySums();
}

Example 22-14 provides the complete source code to illustrate serialization and
deserialization.

Example 22-14. Serializing and deserializing an object

using System;
using System.Collections.Generic;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
using System.Text;

namespace SerializingDeserializingAnObject
{
 [Serializable]
 class SumOf
 {

Serialization | 533

 private int startNumber = 1;
 private int endNumber;
 private int[] theSums;

 public static void Main()
 {
 Console.WriteLine("Creating first one with new...");
 SumOf app = new SumOf(1, 10);

 Console.WriteLine("Creating second one with deserialize...");
 SumOf newInstance = SumOf.DeSerialize();
 newInstance.DisplaySums();
 }

 public SumOf(int start, int end)
 {
 startNumber = start;
 endNumber = end;
 ComputeSums();
 DisplaySums();
 Serialize();
 }

 private void ComputeSums()
 {
 int count = endNumber - startNumber + 1;
 theSums = new int[count];
 theSums[0] = startNumber;
 for (int i = 1, j = startNumber + 1; i < count; i++, j++)
 {
 theSums[i] = j + theSums[i - 1];
 }
 }

 private void DisplaySums()
 {
 foreach (int i in theSums)
 {
 Console.WriteLine("{0}, ", i);
 }
 }

 private void Serialize()
 {
 Console.Write("Serializing...");
 // create a file stream to write the file
 FileStream fileStream =
 new FileStream("DoSum.out", FileMode.Create);
 // use the CLR binary formatter
 BinaryFormatter binaryFormatter =
 new BinaryFormatter();

Example 22-14. Serializing and deserializing an object (continued)

534 | Chapter 22: Streams

The output shows that the object was created, displayed, and then serialized. The
object was then deserialized and output again, with no loss of data.

 // serialize to disk
 binaryFormatter.Serialize(fileStream, this);
 Console.WriteLine("...completed");
 fileStream.Close();
 }

 public static SumOf DeSerialize()
 {
 FileStream fileStream =
 new FileStream("DoSum.out", FileMode.Open);
 BinaryFormatter binaryFormatter =
 new BinaryFormatter();
 SumOf retVal = (SumOf)binaryFormatter.Deserialize(fileStream);
 fileStream.Close();
 return retVal;
 }
 }
}

Output:
Creating first one with new...
1,
3,
6,
10,
15,
21,
28,
36,
45,
55,
Serializing......completed
Creating second one with deserialize...
1,
3,
6,
10,
15,
21,
28,
36,
45,
55,

Example 22-14. Serializing and deserializing an object (continued)

Serialization | 535

Handling Transient Data
In some ways, the approach to serialization demonstrated in Example 22-14 is very
wasteful. Because you can compute the contents of the array given its starting and
ending numbers, there really is no reason to store its elements to disk. Although the
operation might be inexpensive with a small array, it could become costly with a very
large one.

You can tell the serializer not to serialize some data by marking it with the
[NonSerialized] attribute:

[NonSerialized] private int[] theSums;

If you don’t serialize the array, however, the object you create will not be correct
when you deserialize it. The array will be empty. Remember, when you deserialize
the object, you simply read it up from its serialized form; no methods are run.

To fix the object before you return it to the caller, implement the IDeserializationCallback
interface:

[Serializable]
class SumOf : IDeserializationCallback

Also, implement the one method of this interface: OnDeserialization(). The CLR
promises that if you implement this interface, your class’ OnDeserialization()
method will be called when the entire object graph has been deserialized. This is just
what you want: the CLR will reconstitute what you’ve serialized, and then you have
the opportunity to fix up the parts that were not serialized.

This implementation can be very simple. Just ask the object to recompute the series:

public virtual void OnDeserialization (Object sender)
{
 ComputeSums();
}

This is a classic space/time trade-off; by not serializing the array, you may make dese-
rialization somewhat slower (because you must take the time to recompute the array),
and you make the file somewhat smaller. To see whether not serializing the array had
any effect, I ran the program with the digits 1–5,000. Before setting [NonSerialized]
on the array, the serialized file was 20 KB. After setting [NonSerialized], the file was
1 KB. Not bad. Example 22-15 shows the source code using the digits 1–5 as input
(to simplify the output).

Example 22-15. Working with a nonserialized object

using System;
using System.Collections.Generic;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
using System.Text;

536 | Chapter 22: Streams

namespace WorkingWithNonSerializedObject
{
 [Serializable]
 class SumOf : IDeserializationCallback
 {
 private int startNumber = 1;
 private int endNumber;
 [NonSerialized]
 private int[] theSums;

 public static void Main()
 {
 Console.WriteLine("Creating first one with new...");
 SumOf app = new SumOf(1, 5);

 Console.WriteLine("Creating second one with deserialize...");
 SumOf newInstance = SumOf.DeSerialize();
 newInstance.DisplaySums();
 }

 public SumOf(int start, int end)
 {
 startNumber = start;
 endNumber = end;
 ComputeSums();
 DisplaySums();
 Serialize();
 }

 private void ComputeSums()
 {
 int count = endNumber - startNumber + 1;
 theSums = new int[count];
 theSums[0] = startNumber;
 for (int i = 1, j = startNumber + 1; i < count; i++, j++)
 {
 theSums[i] = j + theSums[i - 1];
 }
 }

 private void DisplaySums()
 {
 foreach (int i in theSums)
 {
 Console.WriteLine("{0}, ", i);
 }
 }

 private void Serialize()
 {
 Console.Write("Serializing...");
 // create a file stream to write the file

Example 22-15. Working with a nonserialized object (continued)

Serialization | 537

You can see in the output that the data was successfully serialized to disk and then
reconstituted by deserialization. The trade-off of disk storage space versus time
doesn’t make a lot of sense with five values, but it makes a great deal of sense with
five million values.

 FileStream fileStream =
 new FileStream("DoSum.out", FileMode.Create);
 // use the CLR binary formatter
 BinaryFormatter binaryFormatter =
 new BinaryFormatter();
 // serialize to disk
 binaryFormatter.Serialize(fileStream, this);
 Console.WriteLine("...completed");
 fileStream.Close();
 }

 public static SumOf DeSerialize()
 {
 FileStream fileStream =
 new FileStream("DoSum.out", FileMode.Open);
 BinaryFormatter binaryFormatter =
 new BinaryFormatter();
 SumOf retVal = (SumOf)binaryFormatter.Deserialize(fileStream);
 fileStream.Close();
 return retVal;
 }

 // fix up the nonserialized data

 public virtual void OnDeserialization(Object sender)
 {
 ComputeSums();
 }
 }
}

Output:
Creating first one with new...
1,
3,
6,
10,
15,
Serializing......completed
Creating second one with deserialize...
1,
3,
6,
10,
15,

Example 22-15. Working with a nonserialized object (continued)

538 | Chapter 22: Streams

So far, you’ve streamed your data to disk for storage and across the network for easy
communication with distant programs. There is one other time you might create a
stream: to store permanent configuration and status data on a per-user basis. For this
purpose, the .NET Framework offers isolated storage.

Isolated Storage
The .NET CLR provides isolated storage to allow the application developer to store
data on a per-user basis. Isolated storage provides much of the functionality of tradi-
tional Windows .ini files, or the more recent HKEY_CURRENT_USER key in the Windows
Registry.

Applications save data to a unique data compartment associated with the applica-
tion. The CLR implements the data compartment with a data store, which is
typically a directory on the filesystem.

Administrators are free to limit how much isolated storage individual applications
can use. They can also use security so that less-trusted code can’t call more highly
trusted code to write to isolated storage.

What is important about isolated storage is that the CLR provides a standard place to
store your application’s data, but it doesn’t impose (or support) any particular layout
or syntax for that data. In short, you can store anything you like in isolated storage.

Typically, you will store text, often in the form of name-value pairs. Isolated storage
is a good mechanism for saving user configuration information such as login name,
the position of various windows and widgets, and other application-specific, user-
specific information. The data is stored in a separate file for each user, but the files
can be isolated even further by distinguishing among different aspects of the identity
of the code (by assembly or by originating application domain).

Using isolated storage is fairly straightforward. To write to isolated storage, create an
instance of an IsolatedStorageFileStream, which you initialize with a filename and a
file mode (create, append, etc.):

IsolatedStorageFileStream configFile =
 new IsolatedStorageFileStream
 ("Tester.cfg",FileMode.Create);

Now, create a StreamWriter on that file:

StreamWriter writer =
 new StreamWriter(configFile);

Then, write to that stream as you would to any other. Example 22-16 illustrates.

Isolated Storage | 539

After running this code, search your hard disk for Tester.cfg. On my machine, this
file is found in:

C:\Documents and Settings\Jesse\Local Settings\Application Data\
IsolatedStorage\mipjwcsz.iir\2hzvpjcc.p0y\StrongName.
mwoxzllzqpx3u0taclp1dti11kpddwyo\Url.a2f4v2g3ytucslmvlpt2wmdxhrhqg1pz\
Files

Example 22-16. Writing to isolated storage

using System;
using System.Collections.Generic;
using System.IO;
using System.IO.IsolatedStorage;
using System.Text;

namespace WritingToIsolatedStorage
{
 public class Tester
 {
 public static void Main()
 {
 Tester app = new Tester();
 app.Run();
 }

 private void Run()
 {
 // create the configuration file stream
 IsolatedStorageFileStream configFile =
 new IsolatedStorageFileStream
 ("Tester.cfg", FileMode.Create);

 // create a writer to write to the stream
 StreamWriter writer =
 new StreamWriter(configFile);

 // write some data to the config. file
 String output;
 System.DateTime currentTime = System.DateTime.Now;
 output = "Last access: " + currentTime.ToString();
 writer.WriteLine(output);
 output = "Last position = 27,35";
 writer.WriteLine(output);

 // flush the buffer and clean up
 writer.Close();
 configFile.Close();
 }
 }
}

540 | Chapter 22: Streams

You can read this file with Notepad if what you’ve written is just text:

Last access: 8/26/2007 10:00:57 AM
Last position = 27,35

Or, you can access this data programmatically. To do so, reopen the file:

IsolatedStorageFileStream configFile =
 new IsolatedStorageFileStream
 ("Tester.cfg",FileMode.Open);

Create a StreamReader object:

StreamReader reader =
 new StreamReader(configFile);

Use the standard stream idiom to read through the file:

string theEntry;
do
{
 theEntry = reader.ReadLine();
 Console.WriteLine(theEntry);
} while (theEntry != null);
Console.WriteLine(theEntry);

Isolated storage is scoped by assembly (so if you shut down your program and start it
later, you can read the configuration file you created, but you can’t read the configu-
ration of any other assembly). Example 22-17 provides the method needed to read
the file. Replace the Run() method in the previous example, recompile it, and run it
(but don’t change its name, or it won’t be able to access the isolated storage you cre-
ated previously).

Example 22-17. Reading from isolated storage

 private void Run()
 {
 // open the configuration file stream
 IsolatedStorageFileStream configFile =
 new IsolatedStorageFileStream
 ("Tester.cfg", FileMode.Open);

 // create a standard stream reader
 StreamReader reader =
 new StreamReader(configFile);

 // read through the file and display
 string theEntry;
 do
 {
 theEntry = reader.ReadLine();
 Console.WriteLine(theEntry);
 } while (theEntry != null);

Isolated Storage | 541

 reader.Close();
 configFile.Close();
 }
 }

Output:

Last access: 8/26/2007 11:19:51 PM
Last position = 27,35

Example 22-17. Reading from isolated storage (continued)

542

Chapter 23CHAPTER 23

Programming .NET and COM 23

Programmers love a clean slate. Although it would be nice if we could throw away all
the code we’ve ever written and start over, this typically isn’t a viable option for most
companies. Over the past decade, many development organizations have made a
substantial investment in developing and purchasing COM components and ActiveX
controls. Microsoft has made a commitment to ensure that these legacy components
are usable from within .NET applications, and (perhaps less important) that .NET
components are easily callable from COM.

This chapter describes the support .NET provides for importing ActiveX controls and
COM components into your application, exposing .NET classes to COM-based appli-
cations, and making direct calls to Win32 APIs. You’ll also learn about C# pointers and
keywords for accessing memory directly; this may be crucial in some applications.

Importing ActiveX Controls
ActiveX controls are COM components typically dropped into a form, which might or
might not have a user interface. When Microsoft developed the OCX standard, which
allowed developers to build ActiveX controls in VB and use them with C++ (and vice
versa), the ActiveX control revolution began. Over the past few years, thousands of such
controls have been developed, sold, and used. They are small, easy to work with, and an
effective example of binary reuse. Importing ActiveX controls into .NET is surprisingly
easy, considering how different COM objects are from .NET objects. Visual Studio 2008
is able to import ActiveX controls automagically. As an alternative to using Visual
Studio, Microsoft has developed a command-line utility, Aximp, which will create the
assemblies necessary for the control to be used in a .NET application.

Creating an ActiveX Control
To demonstrate the ability to use classic ActiveX controls in a .NET application,
you’ll first develop a simple four-function calculator as an ActiveX control and then
invoke that ActiveX control from within a C# application. You’ll build the control in

Importing ActiveX Controls | 543

VB 6, and test it in a VB 6 application. If you don’t have VB 6 or don’t want to
bother creating the control, you can download the control from http://www.
JesseLiberty.com. (Click on the Book site, then click on Books. Navigate to this book,
and click on the source code.) Once the control is working in the standard Windows
environment, you’ll import it into your Windows Forms application.

To create the control, open VB 6 and choose ActiveX control as the new project type.
Make the project form as small as possible because this control will not have a user
interface. Right-click UserControl1 and choose Properties. Rename it Calculator in
the Properties window. Click the Project in the Project Explorer, and in the Proper-
ties window, rename it CalcControl. Immediately save the project and name both the
file and the project CalcControl, as shown in Figure 23-1.

You can add the four calculator functions by right-clicking the CalcControl form, select-
ing View Code from the pop-up menu, and typing the VB code shown in Example 23-1.

Figure 23-1. Creating a VB ActiveX control

Example 23-1. Implementing the CalcControl ActiveX control

Public Function _
Add(left As Double, right As Double) _
 As Double
 Add = left + right
End Function

544 | Chapter 23: Programming .NET and COM

This is the entire code for the control. Compile this to the CalcControl.ocx file by choos-
ing File ➝ Make CalcControl.ocx on the VB 6 menu bar. Open a second project in VB as
a standard executable (EXE). Name the form TestForm, and name the project CalcTest.
Save the file and project as CalcTest. Add the ActiveX control as a component by press-
ing Ctrl-T and choosing CalcControl from the Controls tab, shown in Figure 23-2.

Public Function _
Subtract(left As Double, right As Double) _
 As Double
 Subtract = left - right
End Function

Public Function _
Multiply(left As Double, right As Double) _
 As Double
 Multiply = left * right
End Function

Public Function _
Divide(left As Double, right As Double) _
 As Double
 Divide = left / right
End Function

Figure 23-2. Adding the CalcControl to the VB 6 toolbox

Example 23-1. Implementing the CalcControl ActiveX control (continued)

Importing ActiveX Controls | 545

This action puts a new control on the toolbox, as shown circled in Figure 23-3.

Drag the new control onto the form TestForm and name it CalcControl. Note that the
new control will not be visible. This control has no user interface. Add two text
boxes, four buttons, and one label, as shown in Figure 23-4.

Name the buttons btnAdd, btnSubtract, btnMultiply, and btnDivide. All that is left is
for you to implement methods for handling the button-click events of the calculator
buttons.

Figure 23-3. Locating CalcControl in the VB 6 toolbox

Figure 23-4. Building the TestForm user interface

546 | Chapter 23: Programming .NET and COM

Each time a button is clicked, you want to get the values in the two text boxes, cast
them to double (as required by CalcControl) using the VB 6 CDbl function, invoke a
CalcControl function, and print the result in the label control. Example 23-2 pro-
vides the complete source code.

Importing a Control in .NET
Now that you’ve shown that the CalcControl ActiveX control is working, you can
copy the CalcControl.ocx file to your .NET development environment. Once you
have copied it, remember that the CalcControl.ocx file requires that you register it
using Regsvr32 (if you are running Vista, you’ll need to do this as an administrator):

Regsvr32 CalcControl.ocx

You’re now ready to build a test program in .NET to use the calculator.

To get started, create a Visual C# Windows Forms application in Visual Studio
2008, name the application InteropTest, and design a form (such as the TestForm
form you created in VB in the preceding section) by dragging and dropping controls
onto it. Name the form TestForm. Figure 23-5 shows a complete sample form.

Example 23-2. Using the CalcControl ActiveX control in a VB program (TestForm)

Private Sub btnAdd_Click()
 Label1.Caption = _
 calcControl.Add(CDbl(Text1.Text), _
 CDbl(Text2.Text))
End Sub

Private Sub btnDivide_Click()
 Label1.Caption = _
 calcControl.Divide(CDbl(Text1.Text), _
 CDbl(Text2.Text))
End Sub

Private Sub btnMultiply_Click()
 Label1.Caption = _
 calcControl.Multiply(CDbl(Text1.Text), _
 CDbl(Text2.Text))
End Sub

Private Sub btnSubtract_Click()
 Label1.Caption = _
 calcControl.Subtract(CDbl(Text1.Text), _
 CDbl(Text2.Text))
End Sub

Importing ActiveX Controls | 547

Importing a control

There are two ways to import an ActiveX control into the Visual Studio 2008 develop-
ment environment: you can use the Visual Studio 2008 tools themselves, or you can
import the control manually using the Aximp utility that ships with the .NET Frame-
work SDK. To use Visual Studio 2008, right-click on the toolbox and add a tab named
COM. Then right-click again and select Choose Items. This will bring up the Choose
Toolbox Items dialog box. Select the COM Components tab, as shown in Figure 23-6.

Figure 23-5. Building a Windows Form to test the CalcControl ActiveX control

Figure 23-6. Adding the CalcControl to the toolbox

548 | Chapter 23: Programming .NET and COM

Manually importing the control

Alternatively, you can open a command box and import the control manually using
the Aximp.exe utility, as shown in Figure 23-7.

Aximp.exe takes one argument, the ActiveX control you want to import (CalcControl.
ocx). It produces three files:

AxCalcControl.dll
A .NET Windows control

CalcControl.dll
A proxy .NET class library

AxCalcControl.pdb
A debug file

Once this is done, you can return to the Choose Toolbox Items window, but this
time, select .NET Framework Components. You can now browse to the location at
which the .NET Windows control AxCalcControl.dll was generated and import that
file into the toolbox, as shown in Figure 23-8.

Adding the control to the form

Once imported, the control appears on the toolbox menu, as shown in Figure 23-9.

Now, you can drag this control onto your Windows Form and make use of its func-
tions, just as you did in the VB 6 example.

Add event handlers for each of the four buttons. The event handlers will delegate
their work to the ActiveX control you wrote in VB 6 and imported into .NET.

Example 23-3 shows the source code for the event handlers.

Figure 23-7. Running Aximp

Importing ActiveX Controls | 549

Figure 23-8. Browsing for the imported control

Figure 23-9. New control in the toolbox

550 | Chapter 23: Programming .NET and COM

Each implementing method obtains the values in the text fields, converts them to
double using the static method double.Parse(), and passes those values to the calcu-
lator’s methods. The results are cast back to a string and inserted in the label, as
shown in Figure 23-10.

Example 23-3. Implementing the event handlers

using System;
using System.Windows.Forms;

namespace InteropTest
{
 public partial class Form1 : Form
 {
 public Form1()
 {
 InitializeComponent();
 }

 private void btnAdd_Click(object sender, EventArgs e)
 {
 double left = double.Parse(textBox1.Text);
 double right = double.Parse(textBox2.Text);
 label1.Text = axCalculator1.Add(ref left, ref right).ToString();

 }

 private void btnSubtract_Click(object sender, EventArgs e)
 {
 double left = double.Parse(textBox1.Text);
 double right = double.Parse(textBox2.Text);
 label1.Text = axCalculator1.Subtract(ref left, ref right).ToString();

 }

 private void btnMultiply_Click(object sender, EventArgs e)
 {
 double left = double.Parse(textBox1.Text);
 double right = double.Parse(textBox2.Text);
 label1.Text = axCalculator1.Multiply(ref left, ref right).ToString();

 }

 private void btnDivide_Click(object sender, EventArgs e)
 {
 double left = double.Parse(textBox1.Text);
 double right = double.Parse(textBox2.Text);
 label1.Text = axCalculator1.Divide(ref left, ref right).ToString();

 }
 }
}

P/Invoke | 551

P/Invoke
It is possible to invoke unmanaged code from within C#. Typically, you would do
this if you needed to accomplish something you couldn’t accomplish through the
FCL. With the 2.0 version of .NET, the use of P/Invoke will become relatively rare.

The .NET platform invoke facility (P/Invoke) was originally intended only to provide
access to the Windows API, but you can use it to call functions in any DLL.

To see how this works, let’s revisit Example 22-3 from Chapter 22. You will recall
that you used the FileInfo class to rename files by invoking the MoveTo() method:

file.MoveTo(fullName + ".bak");

You can accomplish the same thing by using the Windows kernel32.dll and invoking
the MoveFile method.* To do so, you need to declare the method as a static extern
and use the DllImport attribute:

[DllImport("kernel32.dll", EntryPoint="MoveFile",
 ExactSpelling=false, CharSet=CharSet.Unicode,
 SetLastError=true)]
static extern bool MoveFile(
 string sourceFile, string destinationFile);

The DllImport attribute class is used to indicate that an unmanaged method will be
invoked through P/Invoke. The parameters are as follows:

DLL name
The name of the DLL you are invoking.

EntryPoint
Indicates the name of the DLL entry point (the method) to call.

ExactSpelling
Allows the CLR to match methods with slightly different names based on the
CLR’s knowledge of naming conventions.

Figure 23-10. Testing the Interop control

* In fact, this is what Fileinfo.Move() is doing itself.

552 | Chapter 23: Programming .NET and COM

CharSet
Indicates how the string arguments to the method should be marshaled.

SetLastError
Setting this to true allows you to call Marshal.GetLastWin32 Error, and check
whether an error occurred when invoking this method.

The rest of the code is virtually unchanged, except for the invocation of the
MoveFile() method itself. Notice that MoveFile() is declared to be a static method of
the class, so use static method semantics:

Tester.MoveFile(file.FullName,file.FullName + ".bak");

Pass in the original filename and the new name, and the file is moved, just as it was
when calling file.MoveTo(). In this example, there is no advantage—and actually
considerable disadvantage—to using P/Invoke. You have left managed code, and
the result is that you’ve abandoned type safety and your code will no longer run in
“partial-trusted” scenarios. Example 23-4 shows the complete source code for using
P/Invoke to move the files.

Example 23-4. Using P/Invoke to call a Win32 API method

using System;
using System.IO;
using System.Runtime.InteropServices;

namespace UsingPInvoke
{
 class Tester
 {

 // declare the WinAPI method you wish to P/Invoke
 [DllImport("kernel32.dll", EntryPoint = "MoveFile",
 ExactSpelling = false, CharSet = CharSet.Unicode,
 SetLastError = true)]
 static extern bool MoveFile(
 string sourceFile, string destinationFile);

 public static void Main()
 {
 // make an instance and run it
 Tester t = new Tester();
 string theDirectory = @"c:\test\media";
 DirectoryInfo dir =
 new DirectoryInfo(theDirectory);
 t.ExploreDirectory(dir);
 }

 // Set it running with a directory name
 private void ExploreDirectory(DirectoryInfo dir)
 {

P/Invoke | 553

 // make a new subdirectory
 string newDirectory = "newTest";
 DirectoryInfo newSubDir =
 dir.CreateSubdirectory(newDirectory);

 // get all the files in the directory and
 // copy them to the new directory
 FileInfo[] filesInDir = dir.GetFiles();
 foreach (FileInfo file in filesInDir)
 {
 string fullName = newSubDir.FullName +
 "\\" + file.Name;
 file.CopyTo(fullName);
 Console.WriteLine("{0} copied to newTest",
 file.FullName);
 }

 // get a collection of the files copied in
 filesInDir = newSubDir.GetFiles();

 // delete some and rename others
 int counter = 0;
 foreach (FileInfo file in filesInDir)
 {
 string fullName = file.FullName;

 if (counter++ % 2 == 0)
 {
 // P/Invoke the Win API
 Tester.MoveFile(fullName, fullName + ".bak");

 Console.WriteLine("{0} renamed to {1}",
 fullName, file.FullName);
 }
 else
 {
 file.Delete();
 Console.WriteLine("{0} deleted.",
 fullName);
 }
 }
 // delete the subdirectory
 newSubDir.Delete(true);
 }
 }
}

Output:

c:\test\media\chimes.wav copied to newTest
c:\test\media\chord.wav copied to newTest
c:\test\media\desktop.ini copied to newTest

Example 23-4. Using P/Invoke to call a Win32 API method (continued)

554 | Chapter 23: Programming .NET and COM

Pointers
Until now, you’ve seen no code using C-/C++-style pointers. Only here, in the final
paragraphs of the final pages of the book, does this topic arise, even though pointers
are central to the C family of languages. In C#, pointers are relegated to unusual and
advanced programming; typically, they are used only with P/Invoke.

C# supports the usual C pointer operators, listed in Table 23-1.

The use of pointers is almost never required, and is nearly always discouraged. When
you do use pointers, you must mark your code with the C# unsafe modifier. The
code is marked unsafe because you can manipulate memory locations directly with
pointers. This is a feat that is otherwise impossible within a C# program. In unsafe

c:\test\media\ding.wav copied to newTest
c:\test\media\dts.wav copied to newTest
c:\test\media\flourish.mid copied to newTest
c:\test\media\ir_begin.wav copied to newTest
c:\test\media\ir_end.wav copied to newTest
c:\test\media\ir_inter.wav copied to newTest
c:\test\media\notify.wav copied to newTest
c:\test\media\onestop.mid copied to newTest
c:\test\media\recycle.wav copied to newTest
c:\test\media\ringout.wav copied to newTest
c:\test\media\Speech Disambiguation.wav copied to newTest
c:\test\media\Speech Misrecognition.wav copied to newTest
c:\test\media\newTest\chimes.wav renamed to c:\test\media\newTest\chimes.wav
c:\test\media\newTest\chord.wav deleted.
c:\test\media\newTest\desktop.ini renamed to c:\test\media\newTest\desktop.ini
c:\test\media\newTest\ding.wav deleted.
c:\test\media\newTest\dts.wav renamed to c:\test\media\newTest\dts.wav
c:\test\media\newTest\flourish.mid deleted.
c:\test\media\newTest\ir_begin.wav renamed to c:\test\media\newTest\ir_begin.wav
c:\test\media\newTest\ir_end.wav deleted.
c:\test\media\newTest\ir_inter.wav renamed to c:\test\media\newTest\ir_inter.wav
c:\test\media\newTest\notify.wav deleted.
c:\test\media\newTest\onestop.mid renamed to c:\test\media\newTest\onestop.mid
c:\test\media\newTest\recycle.wav deleted.
c:\test\media\newTest\ringout.wav renamed to c:\test\media\newTest\ringout.wav
c:\test\media\newTest\Speech Disambiguation.wav deleted.

Table 23-1. C# pointer operators

Operator Meaning

& The address-of operator returns a pointer to the address of a value

* The dereference operator returns the value at the address of a pointer

-> The member access operator is used to access the members of a type

Example 23-4. Using P/Invoke to call a Win32 API method (continued)

Pointers | 555

code, you can directly access memory, perform conversions between pointers and
integral types, take the address of variables, and so forth. In exchange, you give up
garbage collection and protection against uninitialized variables, dangling pointers,
and accessing memory beyond the bounds of an array. In essence, unsafe code cre-
ates an island of C++ code within your otherwise safe C# application, and your code
will not work in partial-trust scenarios.

As an example of when this might be useful, read a file to the console by invoking
two Win32 API calls: CreateFile and ReadFile. ReadFile takes, as its second parame-
ter, a pointer to a buffer. The declaration of the two imported methods is
straightforward:

[DllImport("kernel32", SetLastError=true)]
static extern unsafe int CreateFile(
 string filename,
 uint desiredAccess,
 uint shareMode,
 uint attributes,
 uint creationDisposition,
 uint flagsAndAttributes,
 uint templateFile);

[DllImport("kernel32", SetLastError=true)]
static extern unsafe bool ReadFile(
 int hFile,
 void* lpBuffer,
 int nBytesToRead,
 int* nBytesRead,
 int overlapped);

You will create a new class, APIFileReader, whose constructor will invoke the
CreateFile() method. The constructor takes a filename as a parameter, and passes
that filename to the CreateFile() method:

public APIFileReader(string filename)
{
 fileHandle = CreateFile(
 filename, // filename
 GenericRead, // desiredAccess
 UseDefault, // shareMode
 UseDefault, // attributes
 OpenExisting, // creationDisposition
 UseDefault, // flagsAndAttributes
 UseDefault); // templateFile
}

The APIFileReader class implements only one other method, Read(), which invokes
ReadFile(). It passes in the file handle created in the class constructor, along with a
pointer into a buffer, a count of bytes to retrieve, and a reference to a variable that
will hold the number of bytes read. It is the pointer to the buffer that is of interest to
us here. To invoke this API call, you must use a pointer.

556 | Chapter 23: Programming .NET and COM

Because you will access it with a pointer, the buffer needs to be pinned in memory;
the .NET Framework can’t be allowed to move the buffer during garbage collection.
To accomplish this, use the C# fixed keyword. fixed allows you to get a pointer to
the memory used by the buffer, and to mark that instance so that the garbage collec-
tor won’t move it.

The block of statements following the fixed keyword creates a scope, within which
the memory will be pinned. At the end of the fixed block, the instance will be
unmarked so that it can be moved. This is known as declarative pinning:

public unsafe int Read(byte[] buffer, int index, int count)
{
 int bytesRead = 0;
 fixed (byte* bytePointer = buffer)
 {
 ReadFile(
 fileHandle,
 bytePointer + index,
 count,
 &bytesRead, 0);
 }
 return bytesRead;
}

Notice that the method must be marked with the unsafe keyword. This creates an
unsafe context and allows you to create pointers. To compile this you must use the
/unsafe compiler option. The easiest way to do so is to open the project properties,
click the Build tab, and check the “Allow unsafe code” checkbox, as shown in
Figure 23-11.

The test program instantiates the APIFileReader and an ASCIIEncoding object. It
passes the filename (8Swnn10.txt) to the constructor of the APIFileReader and then
creates a loop to repeatedly fill its buffer by calling the Read() method, which

Figure 23-11. Checking “Allow unsafe code”

Pointers | 557

invokes the ReadFile API call. An array of bytes is returned, which is converted to a
string using the ASCIIEncoding object’s GetString() method. That string is passed to
the Console.Write() method, to be displayed on the console. Example 23-5 shows
the complete source.

The text that it will read is a short excerpt of Swann’s Way (by Marcel
Proust), currently in the public domain and downloaded as text from
Project Gutenberg (http://www.gutenberg.org/wiki/Main_Page).

Example 23-5. Using pointers in a C# program

using System;
using System.Runtime.InteropServices;
using System.Text;

namespace UsingPointers
{
 class APIFileReader
 {
 const uint GenericRead = 0x80000000;
 const uint OpenExisting = 3;
 const uint UseDefault = 0;
 int fileHandle;

 [DllImport("kernel32", SetLastError = true)]
 static extern unsafe int CreateFile(
 string filename,
 uint desiredAccess,
 uint shareMode,
 uint attributes,
 uint creationDisposition,
 uint flagsAndAttributes,
 uint templateFile);

 [DllImport("kernel32", SetLastError = true)]
 static extern unsafe bool ReadFile(
 int hFile,
 void* lpBuffer,
 int nBytesToRead,
 int* nBytesRead,
 int overlapped);

 // constructor opens an existing file
 // and sets the file handle member
 public APIFileReader(string filename)
 {
 fileHandle = CreateFile(
 filename, // filename
 GenericRead, // desiredAccess
 UseDefault, // shareMode
 UseDefault, // attributes

558 | Chapter 23: Programming .NET and COM

The key section of code where you create a pointer to the buffer and fix that buffer in
memory using the fixed keyword is shown in bold. You need to use a pointer here
because the API call demands it.

 OpenExisting, // creationDisposition
 UseDefault, // flagsAndAttributes
 UseDefault); // templateFile
 }

 public unsafe int Read(byte[] buffer, int index, int count)
 {
 int bytesRead = 0;
 fixed (byte* bytePointer = buffer)
 {
 ReadFile(
 fileHandle, // hfile
 bytePointer + index, // lpBuffer
 count, // nBytesToRead
 &bytesRead, // nBytesRead
 0); // overlapped
 }
 return bytesRead;
 }
 }

 class Test
 {
 public static void Main()
 {
 // create an instance of the APIFileReader,
 // pass in the name of an existing file
 APIFileReader fileReader =
 new APIFileReader("8Swnn10.txt");

 // create a buffer and an ASCII coder
 const int BuffSize = 128;
 byte[] buffer = new byte[BuffSize];
 ASCIIEncoding asciiEncoder = new ASCIIEncoding();

 // read the file into the buffer and display to console
 while (fileReader.Read(buffer, 0, BuffSize) != 0)
 {
 Console.Write("{0}", asciiEncoder.GetString(buffer));
 }
 }
 }
}

Example 23-5. Using pointers in a C# program (continued)

Pointers | 559

Output:

Altogether, my aunt used to treat him with scant ceremony. Since she was
of the opinion that he ought to feel flattered by our invitations, she
thought it only right and proper that he should never come to see us in
summer without a basket of peaches or raspberries from his garden, and
that from each of his visits to Italy he should bring back some
photographs of old masters for me.

It seemed quite natural, therefore, to send to him whenever we wanted a
recipe for some special sauce or for a pineapple salad for one of our big
dinner-parties, to which he himself would not be invited, not seeming of
sufficient importance to be served up to new friends who might be in our
house for the first time. If the conversation turned upon the Princes of
the House of France, "Gentlemen, you and I will never know, will we, and
don't want to, do we?" my great-aunt would say tartly to Swann, who had,
perhaps, a letter from Twickenham in his pocket; she would make him play
accompaniments and turn over music on evenings when my grandmother's
sister sang; manipulating this creature, so rare and refined at other
times and in other places, with the rough simplicity of a child who will
play with some curio from the cabinet no more carefully than if it were a
penny toy. Certainly the Swann who was a familiar figure in all the clubs
of those days differed hugely from, the Swann created in my great-aunt's
mind when, of an evening, in our little garden at Combray, after the two
shy peals had sounded from the gate, she would vitalise, by injecting into
it everything she had ever heard about the Swann family, the vague and
unrecognisable shape which began to appear, with my grandmother in its
wake, against a background of shadows, and could at last be identified by
the sound of its voice. But then, even in the most insignificant details
of our daily life, none of us can be said to constitute a material whole,
which is identical for everyone, and need only be turned up like a page in
an account-book or the record of a will; our social personality is created
by the thoughts of other people. Even the simple act which we describe as
"seeing some one we know" is, to some extent, an intellectual process. We
pack the physical outline of the creature we see with all the ideas we
have already formed about him, and in the complete picture of him which we
compose in our minds those ideas have certainly the principal place. In
the end they come to fill out so completely the curve of his cheeks, to
follow so exactly the line of his nose, they blend so harmoniously in the
sound of his voice that these seem to be no more than a transparent
envelope, so that each time we see the face or hear the voice it is our
own ideas of him which we recognise and to which we listen. And so, no
doubt, from the Swann they had built up for their own purposes my family
had left out, in their ignorance, a whole crowd of the details of his
daily life in the world of fashion, details by means of which other
people, when they met him, saw all the Graces enthroned in his face and
stopping at the line of his arched nose as at a natural frontier; but they
contrived also to put into a face from which its distinction had been
evicted, a face vacant and roomy as an untenanted house, to plant in the
depths of its unvalued eyes a lingering sense, uncertain but not

560 | Chapter 23: Programming .NET and COM

unpleasing, half-memory and half-oblivion, of idle hours spent together
after our weekly dinners, round the card-table or in the garden, during
our companionable country life. Our friend's bodily frame had been so well
lined with this sense, and with various earlier memories of his family,
that their own special Swann had become to my people a complete and living
creature; so that even now I have the feeling of leaving some one I know
for another quite different person when, going back in memory, I pass from
the Swann whom I knew later and more intimately to this early Swann--this
early Swann in whom I can distinguish the charming mistakes of my
childhood, and who, incidentally, is less like his successor than he is
like the other people I knew at that time, as though one's life were a
series of galleries in which all the portraits of any one period had a
marked family likeness, the same (so to speak) tonality--this early Swann
abounding in leisure, fragrant with the scent of the great chestnut-tree,
of baskets of raspberries and of a sprig of tarragon.

And yet one day, when my grandmother had gone to ask some favour of a lady
whom she had known at the Sacré Coeur (and with whom, because of our caste
theory, she had not cared to keep up any degree of intimacy in spite of
several common interests), the Marquise de Villeparisis, of the famous
house of Bouillon, this lady had said to her:

"I think you know M. Swann very well; he is a great friend of my nephews,
the des Laumes."

561

C# Keywords

C# Keywords24

abstract
A class modifier that specifies a class cannot be instantiated and the full imple-
mentation will be provided by a subclass.

A method modifier that specifies a method is implicitly virtual and without an
implementation.

alias
Suffixes an extern directive.

as
A binary operator that casts the left operand to the type specified by the right
operand and returns null rather than throwing an exception if the cast fails.

ascending
A query comprehension operator used in conjunction with orderby.

base
A variable with the same meaning as this, except that it accesses a base-class
implementation of a member.

bool
A logical datatype that can be true or false.

break
A jump statement that exits a loop or switch statement block.

by
A query comprehension operator used in conjunction with group.

byte
A 1-byte, unsigned integral data type.

case
A selection statement that defines a particular choice in a switch statement.

562 | C# Keywords

catch
A keyword for the clause in a try statement to catch exceptions of a specific
type.

char
A 2-byte, Unicode character data type.

checked
A statement or operator that enforces arithmetic bounds checking on an expression
or statement block.

class
A type declaration keyword for a custom reference type; typically used as a blue-
print for creating objects.

A generic type constraint, indicating the generic type must be a reference type.

const
A modifier for a local variable or field declaration that indicates that the value is
statically evaluated and immutable.

continue
A jump statement that skips the remaining statements in a statement block and
continues to the next iteration in a loop.

decimal
A 16-byte precise decimal datatype.

default
A special label in a switch statement specifying the action to take when no case
statements match the switch expression.

An operator that returns the default value for a type.

delegate
A type declaration keyword for a type that defines a protocol for a method.

descending
A query comprehension operator used in conjunction with orderby.

do
A loop statement to iterate a statement block until an expression at the end of
the loop evaluates to false.

double
An 8-byte, floating-point data type.

else
A conditional statement that defines the action to take when a preceding if
expression evaluates to false.

C# Keywords | 563

enum
A type declaration keyword that defines a value type representing a group of
named numeric constants.

equals
A query comprehension operator that performs an equijoin, used in conjunction
with join.

event
A member modifier for a field or property of a delegate type that indicates that
only the += and -= methods of the delegate can be accessed.

explicit
An operator that defines an explicit conversion.

extern
A method modifier that indicates that the method is implemented with unmanaged
code.

A directive that declares a reference to an external namespace, which must corre-
spond to an argument passed to the C# compiler.

false
A literal of the bool type.

finally
The keyword in the clause of a try statement that executes whenever control
leaves the scope of the try block.

fixed
A statement to pin down a reference type so the garbage collector won’t move it
during pointer arithmetic operations.

A field modifier within an unsafe struct to declare a fixed length array.

float
A 4-byte, floating-point data type.

for
A loop statement that combines an initialization statement, continuation condi-
tion, and iterative statement into one statement.

foreach
A loop statement that iterates over collections that implement IEnumerable.

from
A query comprehension operator that specifies the sequence from which to
query.

get
The name of the accessor that returns the value of a property.

564 | C# Keywords

global
A keyword placed in front of an identifier to indicate the identifier is qualified
with the global namespace.

goto
A jump statement that jumps to a label within the same method and same scope
as the jump point.

group
A query comprehension operator that splits a sequence into a group given a key
value to group by.

if
A conditional statement that executes its statement block if its expression evalu-
ates to true.

implicit
An operator that defines an implicit conversion.

in
The operator between a type and an IEnumerable in a foreach statement.

A query comprehension operator used in conjunction with from.

int
A 4-byte, signed integral data type.

into
A query comprehension operator that specifies a name for an output sequence.

interface
A type declaration keyword for a custom reference type that defines a contract
for a type comprising a set of implicitly abstract members.

internal
An access modifier that indicates that a type or type member is accessible only to
other types in the same assembly.

is
A relational operator that evaluates to true if the left operand’s type matches, is
derived from, or implements the type specified by the right operand.

let
A query comprehension operator that introduces a new variable into each ele-
ment in a sequence.

lock
A statement that acquires a lock on a reference-type object to help multiple
threads cooperate.

long
An 8-byte, signed integral data type.

C# Keywords | 565

namespace
A keyword for defining a name that encloses a set of types in a hierarchical
name.

new
An operator that calls a constructor on a type, allocating a new object on the
heap if the type is a reference type or initializing the object if the type is a value
type.

A type member modifier that hides an inherited member with a new member
with the same signature.

null
A reference-type literal meaning no object is referenced.

object
A predefined type that is the ultimate base class for all types.

on
A query comprehension operator used in conjunction with join or group.

operator
A method modifier that overloads operators.

orderby
A query comprehension operator that sorts a sequence.

out
A parameter and argument modifier that specifies that the variable is passed by
reference and must be assigned by the method being called.

override
A method modifier that indicates that a method of a class overrides a virtual
method defined by a base class.

params
A parameter modifier that specifies that the last parameter of a method may
accept multiple parameters of the same type.

partial
A class or method modifier that indicates the definition of the class or method is
split (typically across files).

private
An access modifier that indicates that only the containing type can access the
member.

protected
An access modifier that indicates that only the containing type or derived types
can access the member.

566 | C# Keywords

public
An access modifier that indicates that a type or type member is accessible to all
other types.

readonly
A field modifier specifying that a field can be assigned only once, either in its
declaration or in its containing type’s constructor.

ref
A parameter and argument modifier that specifies that the variable is passed by
reference and is assigned before being passed to the method.

return
A jump statement that that exits a method, specifying a return value when the
method is not void.

sbyte
A 1-byte, signed integral data type.

sealed
A class modifier that indicates a class cannot be derived from.

set
The name of the accessor that sets the value of a property.

short
A 2-byte, signed integral data type.

sizeof
An operator that returns the size in bytes of a struct.

stackalloc
An operator that returns a pointer to a specified number of value types allocated
on the stack.

static
A type member modifier that indicates that the member applies to the type
rather than to an instance of the type.

A class modifier indicating the class is comprised of only static members and
cannot be instantiated.

string
A predefined reference type that represents an immutable sequence of Unicode
characters.

struct
A type declaration keyword for a custom value type; typically used as a blue-
print for creating light-weight instances.

A generic type constraint, indicating the generic type must be a value type.

C# Keywords | 567

switch
A selection statement that allows a selection of choices to be made based on the
value of a predefined type.

this
A variable that references the current instance of a class or struct.

A parameter modifier for the first parameter in a static method, making the
method an extension method.

throw
A jump statement that throws an exception when an abnormal condition has
occurred.

true
A literal of the bool type.

try
A statement that defines a statement block where errors can be caught and handled.

typeof
An operator that returns the type of an object as a System.Type object.

uint
A 4-byte, unsigned integral data type.

ulong
An 8-byte, unsigned integral data type.

unchecked
A statement or operator that prevents arithmetic bounds checking on an expres-
sion.

unsafe
A type modifier, member modifier, or statement that permits executing code that
is not type-safe (notably, that uses pointer arithmetic).

ushort
A 2-byte, unsigned integral data type.

using
A directive that specifies that types in a particular namespace can be referred to
without requiring their fully qualified type names.

A statement that allows an object implementing IDisposable to be disposed of at
the end of the statement’s scope.

value
A name used for the implicit variable set by the set accessor of a property.

virtual
A class method modifier that indicates that a method can be overridden by a
derived class.

568 | C# Keywords

void
A keyword used in place of a type for methods that don’t have a return value.

volatile
A field modifier indicating that a field’s value may be modified in a multi-
threaded scenario; neither the compiler nor runtime should perform optimizations
with that field.

while
A loop statement to iterate a statement block while an expression at the start of
each iteration evaluates to false.

yield
A statement that yields the next element from an iterator block.

569

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
+ (addition operator), 50
+= (addition self-assignment operator), 52
& (address-of operator), 554
&& (and operator) in conditionals, 55, 57
<> (angle brackets), around XML tags, 303
<% ... %> (angle brackets, percent sign), in

ASP.NET, 388
= (assignment operator), 49

confusing with equals operator, 39
using instead of subscribe operator, 266

@ (at sign)
beginning string literal, 216
in XPath, 318, 320

\ (backslash)
escape character for, 24
in string literals, 24, 216

{} (braces)
around statement blocks, 37
in array element initialization, 163, 168
in class declarations, 8

[] (brackets)
in array declarations, 158, 166, 169
in indexers, 177
in metadata attributes, 450
in syntax, 35

: (colon), in base class constructor
invocation, 106

+ (concatenation operator), 221
-- (decrement operator), 53
* (dereference operator), 554
/ (division operator), 50
/= (division self-assignment operator), 52

. (dot operator), 11, 12
" (double quotes)

escape character for, 24
in string literals, 217

= (equal sign), in ASP.NET, 388
== (equals operator), 54

confusing with assignment operator, 39
overloading, requirements for, 120, 124
with strings, 222

> (greater than operator), 54
>= (greater than or equals operator), 54
++ (increment operator), 53
[] (index operator)

for arrays, 160
for strings, 222

=> (lambda operator), 272
< (less than operator), 54
<= (less than or equals operator), 54
& (logical AND operator), 57
| (logical OR operator), 57
^ (logical XOR operator), 57
-> (member access operator), 554
% (modulus operator), 50
%= (modulus self-assignment operator), 52
* (multiplication operator), 50
*= (multiplication self-assignment

operator), 52
!= (not equals operator), 54
! (not operator) in conditionals, 55
|| (or operator) in conditionals, 55, 57
() (parentheses)

in if...else statement, 35
in switch statement, 39

570 | Index

+ (plus sign), in debugger, 19
(pound sign), preceding directives, 59
; (semicolon)

ending statements, 33
not ending class definitions, 63

<<>> (shift operator), 57
' (single quotes), escape character for, 24
/ (slash), in XPath, 318
/* ... */ (slash asterisk), enclosing

comments, 10
// (slash, double), preceding comments, 9
+= (subscribe operator), 265, 266
- (subtraction operator), 50
-= (subtraction self-assignment operator), 52
?: (ternary operator), 58
-= (unsubscribe operator), 267

A
abstract classes, 109–112, 146
abstract keyword, 109
abstract modifier, 561
AcceptSocket() method, TcpListener, 512,

513
access modifiers, 107

for classes, 65
for properties, 95
for static member variables, 79
not allowed in explicit

implementations, 152
ActiveX controls

adding to form after importing, 548
creating, 542–546
importing, 542–550

Add() method
Dictionary, 212
List, 195, 196
XmlAttributeOverrides, 335

addition operator (+), 50
addition self-assignment operator (+=), 52
AddRange() method, List, 195
address-of operator (&), 554
AddSort() method, XPathExpression, 328
ADO, compared to ADO.NET, 369
ADO.NET, 368

compared to ADO, 369
connecting to database, 374, 377
disconnected architecture of, 368
object model of, 372–374
querying data, 375, 377

Adventure Works LT sample database, 338

AJAX, 6
(see also Silverlight)

alert, escape character for, 24
and operator (&&) in conditionals, 55, 57
angle brackets (<>), around XML tags, 303
angle brackets, percent sign (<% ... %>), in

ASP.NET, 388
anonymous class, 291
anonymous methods, 258, 271
anonymous types, 291
Append() method, StringBuilder, 227
AppendChild() method, XML, 308
AppendFormat() method,

StringBuilder, 227, 228
AppendText() method

File, 492
FileInfo, 493

applications
console applications, 11
web-based (see web-based applications)
Windows Forms (see Windows Forms

applications)
WPF applications (see WPF)

arguments of methods (see parameters of
methods)

arithmetical operators, 50
arrays, 156

as object of type System.Array, 157
collections accessed as (see indexers)
conversions of, 173–175
declaring, 158
default values for, 159
elements of

accessing, 160–161
initializing, 163

instantiating, 158
iterating over, 162, 164
jagged, 169–172
methods for, 157
multidimensional, 165–172
passing as parameter without

creating, 164
properties for, 157
rectangular, 165–169
sorting, 175–177
upper and lower bounds of, 159, 160,

172
as operator, 146
ASP (web) controls, 391
asp tag, 389

Index | 571

ASP.NET, 381
books about, 381
debugging, enabling, 388
(see also Web Forms)

.aspx file extension, 382
AsReadOnly() method

List, 195
System.Array, 157

assemblies, 5
assignment

definite, 27, 86–89
operator precedence for, 57

assignment operator (=), 49
confusing with equals operator, 39
using instead of subscribe operator, 266

AsyncCallback delegate, 273–276, 507, 523
AsynchNetworkServe class, 518
asynchronous I/O, 487, 506–511
asynchronous network file

streaming, 522–527
at sign (@)

beginning string literal, 216
in XPath, 318, 320

Attributes property, DirectoryInfo, 488
Attributes() method, FileInfo, 493
attributes, in metadata, 449

accessing (see reflection)
custom, 451–455
naming conventions for, 452
parameters of, 453
targets of, 450

applying to attributes, 450
list of, 449

types of, 450
attributes, of files, 488, 493
attributes, of XML elements, 309–311
AttributeTargets enumeration, 450
AutoComplete feature, fixing case errors

with, 14
axes, XPath searches using, 319
Aximp utility, 542, 547, 548

B
backing store, 487
backslash (\)

escape character for, 24
in string literals, 24, 216

backspace, escape character for, 24
base class constructors, 106

base classes, 101, 113
(see also abstract classes)

base keyword, 106, 561
BeginRead() method, Stream, 506, 508
BeginWrite() method, Stream, 506
Berkeley socket interface, 513
binary files, 500–502
BinaryFormatter class, 530
BinaryReader class, 499
BinarySearch() method

List, 195
System.Array, 157

BinaryWriter class, 499
binding

late binding, using reflection, 456,
462–464

server-side controls to data, 391–398
books

Learning ASP.NET 2.0 with AJAX
(Liberty et al.), 381

Programming .NET 3.5 (Liberty,
Horovitz), x, 6, 404

Programming ASP.NET (Liberty,
Hurwitz), 381, 401

Programming Silverlight (Liberty), 6
Programming WCF Services (Lowy), 329
Programming WPF (Sells, Griffiths), 404
Swann’s Way (Proust), 557

bool type, 22
boolean type, 22
braces ({})

around statement blocks, 37
in array element initialization, 163, 168
in class declarations, 8

brackets ([])
in array declarations, 158, 166, 169
in indexers, 177
in metadata attributes, 450
in syntax, 35
(see also index operator ([]))

branching
conditional branching statements, 35–42
unconditional branching statements, 34
(see also jump statements)

break statement
in loops, 47
in switch statement, 39, 41

breakpoints, in debugger, 18
buffered streams, 502–504
BufferedStream class, 499, 502

572 | Index

bugs, compared to exceptions, 241
built-in types, 21, 22–25

choosing, 23
conversion of, 24
list of, 22

button controls, Windows Forms, 432–437
byte type, 22

C
C

strings, differences in, 214
switch statement differences, 41

C#, x, 3
book about, x
features of, 4–6
history of, 4
invoking unmanaged code from, 551–554
new features in, 3, 4

C++
copy constructor, equivalent for, 73
indexer operator, overloading, equivalent

to, 178
multiple inheritance, equivalent for, 101
nonstatic operators, no equivalent

for, 119
object types that can be thrown,

limitations to, 242
private and protected inheritance, no

equivalent for, 101
structs, differences in, 127
switch statement differences, 41
templates, equivalent for, 186

C++-style comments, 9
call stack

displaying, with stack trace, 253–255
unwinding, 242, 246

callback methods, 272–276
camel notation, 14
Capacity property, List, 195, 197
capture collections, for regular

expressions, 237–240
Capture object, 237
CaptureCollection collection, 237
carriage return, escape character for, 24
case sensitivity, 14
case statement (see switch statement)
casting (explicit conversions), 25, 121, 124
catch block, 244, 246
catch statement, 241, 244–250
char keyword, 562
char literals, 24

(see also string literals)

char type, 22, 24
(see also strings)

Chars property
String, 218
StringBuilder, 227

checked keyword, 562
child elements, XML, 303, 308
class keyword, 62, 562
class members (see members of a class)
classes, 4, 8, 61

abstract classes, 109–112, 146
access modifiers for, 65
anonymous, 291
base classes, 101, 113
behaviors of (see methods)
concrete classes, 111
declarations of, 4, 8
defining, 62–65
derived classes, 101, 113
generated, adding methods to, 348
instantiating (see objects)
metadata stored with, 5
named by Visual Studio, 16
naming conventions for, 14
nesting, 115–117
partial classes, 382
sealed classes, 112
static, 78

Clear() method
Dictionary, 212
List, 195
Queue, 206
Stack, 208
System.Array, 157

ClientHandler class, 518, 523
Clone() method

ICloneable, 73
System.Array, 157

Close() method, implementing, 82
code examples, xvi
code reuse, inheritance used for, 102
code separation, 382
code style guidelines by Microsoft, 14
code, commenting out, 10
code-behind pages, 381, 386–388
collection interfaces, 186

IComparable interface, 198–201
IComparer interface, 201–205
IEnumerable interface, 187–189
list of, 186
type safety of, 186

Index | 573

collections, 156
accessing as arrays (see indexers)
dictionaries, 211–213
hash function for, 113
Item element for, 196
queues, 206–208
stacks, 208–211
type safety of, 156
(see also arrays; lists)

colon (:), in base class constructor
invocation, 106

columns, relational database, 369
COM components (see ActiveX controls)
comments, 9

around code, 10
author’s guidelines for, 317
for XML-based documentation, 11
nesting, 10

Compare() method, String, 218, 221
CompareTo() method

IComparable, 198
String, 218

comparison operators (see relational
operators)

Compile() method, XPathNavigator, 328
compiling programs, 17
component-oriented programming, with

C#, 5
Concat() method, String, 218, 221
concatenation operator (+), 221
concrete classes, 111
conditional branching statements, 35–42

Boolean expressions required for, 35
if...else statement, 35–37
nested if statements, 37
switch statement, 38–42

conditional directives, 60
console applications, 11
Console object, 11
const keyword, 562
constants, 28

naming conventions for, 14
(see also enumerations)

ConstrainedCopy() method,
System.Array, 157

constraints
for lists, 190–195
for relational database, 370

constructors, 68–70
base class constructors, 106
copy constructors, 73
default, 68

defining, 69
overloaded, 71, 89–92
static, 76–77

contact information for this book, xvi
Contains() method

List, 195
Queue, 206
Stack, 208

ContainsKey() method, Dictionary, 212
ContainsValue() method, Dictionary, 212
continue keyword, 562
continue statement, 47
controls, ActiveX (see ActiveX controls)
controls, server-side (see server-side controls)
controls, Windows Forms

button controls, 432–437
creating, 421
populating, 424–428
TreeView controls, 424–432

conventions used in this book, xiv
conversions (see type conversion)
ConvertAll() method

List, 195
System.Array, 157

copy constructors, 73
Copy() method

File, 492
String, 218, 222
System.Array, 157

CopyTo() method
FileInfo, 493, 497
List, 195
Queue, 206
Stack, 208, 209, 211
String, 218
System.Array, 157

corruption of databases, 343
Count property

Dictionary, 212
List, 195
Queue, 206
Stack, 208

Create() method
DirectoryInfo, 489
File, 492
FileInfo, 493

CreateAttribute() method, XML, 309
CreateChildControls() method, 385
CreateDirectory() method, Directory, 488
CreateElement() method, XML, 307
CreateInstance() method, System.Array, 157,

172

574 | Index

CreateNavigator() method,
XmlDocument, 326

CreateSubdirectory() method,
DirectoryInfo, 489, 496

CreateText() method, File, 492
CreationTime property

DirectoryInfo, 488
FileInfo, 493

C-style comments, 10
curly braces (see braces)

D
data binding, 391–398
data compartment for application, 538
data store, 538
DataAdapter class, ADO.NET, 373, 374,

377
databases, 368

Adventure Works LT sample
database, 338

connecting to, with ADO.NET, 374, 377
connecting to, with LINQ (see LINQ)
corruption of, 343
relational databases, 368–371
searching

LINQ for (see LINQ)
methodologies for, 279

DataColumn class, ADO.NET, 373
DataColumnCollection class,

ADO.NET, 373
DataContext object, 342, 345, 348, 350
DataReader class, ADO.NET, 374
DataRelation class, ADO.NET, 373
DataRelationCollection class,

ADO.NET, 373
DataSet class, ADO.NET, 372, 375, 377
DataTable class, ADO.NET, 373, 377
DBCommand class, ADO.NET, 374
DBConnection class, ADO.NET, 374
deadlocks, 485
debugger, Visual Studio, 18–20

breakpoints in, 18
examining object values, 19
stepping through program, 19

debugging, ASP.NET, 388
decimal keyword, 562
decimal type, 22, 23
declarative pinning, 556
declarative programming, 419
declarative referential integrity (DRI), 370
decrement operator (--), 53

decrement operators, 52–53
default keyword, 562
#define directive, 59
definite assignment, 27, 86–89
delegate keyword, 257, 562
delegates, 5, 257

asynchronous I/O, 507
callbacks using, 272–276
creating, 257
methods called directly,

preventing, 266–271
potential problems with, 266
publish and subscribe pattern

using, 258–266
uses of, 257

Delete() method
DirectoryInfo, 489
File, 492
FileInfo, 493

Dequeue() method, Queue, 206
dereference operator (*), 554
derived classes, 101, 113
deserialization, 532–534
Deserialize() method, XmlSerializer, 331
destructors, 79

defining, 80
Finalize() implemented using, 113

dictionaries, 211–213
Dictionary class, 212
directives, preprocessor, 59–60
directories, 488

listing files in, 492–496
traversing subdirectories of, 489–492

Directory class, 488, 499
Directory property, FileInfo, 493
DirectoryInfo class, 488, 499

instantiating, 489
methods of, 488
properties of, 488
subdirectories

returning files for, 492
traversing, 489–492

Dispose() method, IDisposable, 80–83, 385
division operator (/), 50
division self-assignment operator (/=), 52
do...while loop, 44
document element (see root element)
documentation

this keyword used as, 74
(see also comments)

DocumentElement property, XML, 308
dot operator (.), 11, 12

Index | 575

double keyword, 562
double quotes (")

escape character for, 24
in string literals, 217

double type, 22, 23
DRI (declarative referential integrity), 370
dynamic invocation (see late binding, using

reflection)
dynamic strings (see StringBuilder class)

E
elements, XML

attributes of, 309–311
defining, 303

#elif directive, 60
#else directive, 60
else statement (see if...else statement)
Empty property, String, 218
encapsulation, 61, 92–96
#endif directive, 60
EndRead(), method, Stream, 509
EndsWith() method, String, 218, 222
Enqueue() method, Queue, 206
enumerations, 30–31
equal sign (=), in ASP.NET, 388

(see also assignment operator (=))
equals operator (==), 54

confusing with assignment operator, 39
overloading, requirements for, 120, 124
with strings, 222

Equals() method
Object, 113, 120, 125
String, 218, 222

errors, compared to exceptions, 241
escape characters, 24, 216
event handlers, 258

Web Forms, 382, 383
Windows Forms, 423, 429–437
WPF, 418

event keyword, 267–271
event triggers, WPF, 411
EventArgs class, 258
events, 256

observing of, 258
publishing of, 258, 262–264
subscribing to, 258, 264
unsubscribing from, 267
Web Forms, 383, 399–403

examples, source code for, xi
exception handler, 241
Exception objects, 252–255

exceptions, 241
actions performed regardless of, 250–252
catching, 241, 244–250
throwing, 241, 242–244

Exists property
DirectoryInfo, 488
FileInfo, 493

Exists() method
File, 492
List, 195
System.Array, 157

explicit conversions (casting), 25, 121, 124
explicit interface implementation, 151–154
expressions, 49
eXtensible Application Markup Language

(XAML), 404
eXtensible Markup Language (see XML)
extension methods, LINQ, 3, 292–294, 351

defining and using, 294–296
multiple implementations of, on different

targets, 301
queries using, as method-based

queries, 298
restrictions on, 296

Extension property
DirectoryInfo, 488
FileInfo, 493

extern keyword, 563
extra whitespace, 33

F
“f” suffix on a number, 24
fields (see member variables)
FIFO (first-in, first-out) collection (see

queues)
File class, 488, 499

methods for, 492
relationship to FileInfo class, 492

FileInfo class, 496, 499
methods for, 493
properties for, 493
relationship to File class, 492

files
accessing in Vista, exceptions caused

by, 492, 496
asynchronous I/O for (see asynchronous

I/O)
binary files, 500–502
listing for subdirectories, 492–496
modifying, 496–499
reading and writing (see streaming)
text files, 504–506

576 | Index

FileStream class, 499
FileSystemInfo class, 488
filter, of query, 282
Finalize() method, Object, 113
finally block, 242, 250–252
finally keyword, 563
finally statement, 250–252
Find() method

List, 195
System.Array, 157

FindAll() method
List, 195
System.Array, 157

FindIndex() method
List, 195
System.Array, 157

FindLast() method
List, 195
System.Array, 157

FindLastIndex() method
List, 196
System.Array, 157

first-in, first-out (FIFO) collection (see
queues)

fixed keyword, 556
float type, 22, 23
folders (see directories)
fonts used in this book, xiv
for keyword, 563
for loop, 44–47
foreach keyword, 563
foreach loop, 162, 164
ForEach() method

List, 196
System.Array, 157

foreign key, relational database, 370
form feed, escape character for, 24
Format() method, String, 218
formatter for serialization, 530
forms (see Web Forms; Windows Forms

applications)
forward slash (see slash)
from clause of query, 282
FullName property

DirectoryInfo, 488
FileInfo, 493

functions, C# (see methods)
functions, XPath, 321

G
garbage collection, 23, 79
generalization, 98–101
generic collection interfaces (see collection

interfaces)
generics, 186
get accessor, 94
get keyword, 563
get() method, for indexers, 180
GetAttributes() method, File, 492
GetCreationTime() method

Directory, 488
File, 492

GetDirectories() method
Directory, 488, 492
DirectoryInfo, 489

GetEnumerator() method
Dictionary, 212
List, 196
Queue, 206
Stack, 208
System.Array, 157

GetFiles() method
Directory, 488
DirectoryInfo, 489, 492

GetFileSystemInfos() method,
DirectoryInfo, 489

GetHashCode() method, Object, 113
GetLastAccessTime() method, File, 492
GetLastWriteTime() method, File, 493
GetLength() method, System.Array, 157
GetLogicalDrives() method, Directory, 488
GetLongLength() method,

System.Array, 157
GetLowerBound() method,

System.Array, 157
GetObjectData() method, Dictionary, 212
GetParent() method, Directory, 488
GetProperties() method,

XmlAttributeOverrides, 335
GetRange() method, List, 196
GetResponse(), WebRequest, 527
GetResponseStream() method,

WebResponse, 527
GetType() method

Object, 113
XmlSerializer, 330

GetUpperBound() method,
System.Array, 157

Index | 577

GetValue() method, System.Array, 157
global methods, equivalent to, 75
“goes to” operator (see lambda operator)
goto keyword, 564
goto statement, 42

in switch statement, 39, 41
reasons to avoid, 42

graphical user interface (see GUI)
greater than operator (>), 54
greater than or equals operator (>=), 54
grids, WPF, 406–408, 414
Griffiths, Ian

blog for, 301
Programming WPF, 404

Group class, 234
grouping in query, 290
Groups collection, 234
groups, regular expressions, 234–237
GUI (graphical user interface)

programs without (see console
applications)

H
HasAttributes property, XmlElement, 319
hash function for collections, 113
heap, 23
Hejlsberg, Anders (C# creator), 4
“Hello World” example, 7, 14–18
HelpLink property, Exception, 253
HKEY_CURRENT_USER key, 538
Horovitz, Alex (Programming .NET 3.5), x,

6, 404
HTML controls, 391
HttpWebRequest class, 527
Hungarian notation, 32
Hurwitz, Dan (Programming

ASP.NET), 381, 401

I
IAsyncResult interface, 507
ICloneable interface, 73
ICollection interface, 186, 187
IComparable interface, 187, 198–201
IComparer interface, 187, 201–205
identifiers (names), 32

(see also naming conventions)
identifiers, preprocessor, 59

IDeserializationCallback interface, 535
IDictionary interface, 187, 212
IDisposable interface, 81
IEnumerable interface, 186, 187–189
IEnumerator interface, 186
#if directive, 60
if...else statement, 35–37
IFormatter interface, 530
IList interface, 187
implicit conversions, 24, 121, 124
implicit types, 22
implicitly typed local variables, 291
increment operator (++), 53
increment operators, 52–53
index operator ([])

for arrays, 160
for strings, 222

indexers, 177–181
assignment to, 181–183
based on strings, 183–186
declaring, 177
get() and set() methods for, 180

IndexOf() method
List, 196
String, 223
System.Array, 157

information
contact information for this book, xvi
(see also books; web site resources)

inheritance, 98, 101
.ini files, 538
Initialize() method, System.Array, 158
initializers, 70–73, 79
inline documentation, 5
inner join, SQL, 372
Insert() method

List, 196
String, 223
StringBuilder, 227

InsertRange() method, List, 196
instance members of a class, 75
int keyword, 564
int type, 22, 23
int16 type, 22
int32 type, 22
int64 type, 23
interface keyword, 132

578 | Index

interfaces, 5, 132
combining, 137–140
compared to abstract classes, 146
defining, 132–134
extending, 136
hiding members of, 154
implementing, 134–136

explicitly, 151–154
multiple interfaces, 136

naming, 133
overriding, 147–151
polymorphism and, potential problems

with, 140–146
Interlocked class, 477
internal access modifier, 65
IP address, 512
is-a relationship (see specialization)
IsFixedSize property, System.Array, 158
isolated storage, 538–541
IsolatedStorageFileStream object, 538
IsReadOnly property, System.Array, 158
IsSynchronized property, System.Array, 158
Item element for collection classes, 196
Item property, IDictionary, 212
Item() method

Dictionary, 212
List, 195

iteration statements, 42–49
do...while loop, 44
for loop, 44–47
foreach loop, 162, 164
while loop, 43

J
jagged arrays, 169–172
Java

constant fields, no equivalent for, 132
final class, equivalent for, 112
wrapper classes, equivalent for, 83

join clause of query, 285
Join() method

LINQ, 301
String, 218

jump statements
break statement, 47
continue statement, 47
goto statement, 42
in switch statement, 39, 41
return statement, 35, 126
(see also unconditional branching

statements)

K
keyboard shortcuts, 17
Keys property, Dictionary, 212
keywords

reference, 561–568

L
lambda expressions

for delegate definitions, 271
in LINQ, 297–301

lambda operator (=>), 272
Language-INtegrated Query (see LINQ)
LastAccessTime property

DirectoryInfo, 488
FileInfo, 493

last-in, first-out (LIFO) collections (see
stacks)

LastIndexOf() method
List, 196
System.Array, 158

LastWriteTime property
DirectoryInfo, 489
FileInfo, 493

late binding, using reflection, 456, 462–464
Learning ASP.NET 2.0 with AJAX (Liberty et

al.), 381
Length property

FileInfo, 493
String, 218, 222
StringBuilder, 227
System.Array, 158, 160

less than operator (<), 54
less than or equals operator (<=), 54
Liberty, Jesse (author), x

Learning ASP.NET 2.0 with AJAX, 381
Programming .NET 3.5, x, 6, 404
Programming ASP.NET, 381, 401
Programming Silverlight, 6
support provided by, xv
web site for, xi

life cycle, Web Forms, 384
LIFO (last-in, first-out) collections (see

stacks)
line break, in string literals, 216
LINQ (Language-INtegrated Query), 279

compared to SQL, 285
connecting to SQL database, 339
deleting data, 358–362
extension methods of, 3, 285, 292–297,

298, 301, 351

Index | 579

lambda expressions in, 297–301
mapping class properties to database

columns
manually, 340–343
with Visual Studio, 344–348

queries
caching results of, 284
creating, 280–283, 352
deferred execution of, 283

retrieving data, 349–353
table properties, creating, 350
updating data, 353–358
XML output from, 363–367

List class, 195
lists, 195

adding items to, 196
capacity of, 197
constraints for, 190–195
methods for, 195
properties for, 195

literal values, 50
literals, 28

char literals, 24
string literals, 32, 216

Load event, 385
LoadPostData() method, 384
LoadViewState() method, 384
lock statement, 479
locking resources (see synchronization)
logical AND operator (&), 57
logical operators, 55, 57
logical OR operator (|), 57
logical XOR operator (^), 57
long type, 23
LongLength property, System.Array, 158
loop variable, scope of, 46
loops (see iteration statements)
Lowy, Juval (Programming WCF

Services), 329

M
“m” suffix on a number, 24
Main() method, 8
manifest types, 22
Match objects, 232–234
MatchCollection type, 232–234
mathematical operators, 50
member access operator (->), 554
member variables

accessibility by other classes (see access
modifiers)

readonly, 96

static, 78
(see also properties)

members of a class, 75–79
(see also events; indexers; methods;

properties; variables)
MemberwiseClone() method, Object, 113
MemoryStream class, 500
Message property, Exception, 252
metadata, 5, 449

attributes of (see attributes, in metadata)
reading (see reflection)

method-based queries, 298
methods, 8

accessibility by other classes (see access
modifiers)

adding to generated classes, 348
anonymous, 258, 271
callback methods, 272–276
constructors (see constructors)
declarations of, 8, 65
encapsulated in delegates (see delegates)
encapsulating data using, 92–96
for arrays, 157
global, equivalent to, 75
initializers for, 70–73
invoking

as unconditional branching, 34
with dot operator, 11

LINQ extension methods (see extension
methods, LINQ)

naming conventions for, 8, 14
overloaded, 89–92
overriding, 102–106, 147–151
parameters of, 8, 9, 66–67
polymorphic, 102–106
return value of, 8, 9

multiple values, 9
void, 9

selectively exposing in interface, 153
signature of, 89
stack frame allocated for, 23
static

as global methods, 75
invoking, 75, 76
passing instance members to, 76

with same signature, in two implemented
interfaces, 151

Microsoft code style guidelines, 14
modulus operator (%), 50
modulus self-assignment operator (%=), 52
monitors, 480–485

580 | Index

Move() method
Directory, 488
File, 493

MoveNext() method,
XPathNodeIterator, 327

MoveTo() method
DirectoryInfo, 489
FileInfo, 493

multidimensional arrays, 165–172
multiplication operator (*), 50
multiplication self-assignment operator

(*=), 52

N
\n escape character, in string literal, 216
Name property

DirectoryInfo, 489
FileInfo, 493

Named Pipes protocol, enabling, 338
names (identifiers), 32

(see also naming conventions)
namespaces, 11

dot operator for, 12
naming conventions for, 14
using directive for, 13
(see also specific namespaces)

naming conventions, 14, 32, 452
nested classes, 115–117
nested comments, 10
nested if statements, 37
.NET platform, 6

book about, 6
new features in, 6

network I/O, 511–513
asynchronous network file

streaming, 522–527
multiple connections, handling, 518–522
streaming network client for, 515–518
streaming network server for, 513–515
testing on single machine, 518

NetworkStream class, 500, 513
new keyword

for array instantiation, 158
for methods not overridden, 108
for object instantiation, 67

new operator, 565
newlines

escape character for, 24
in string literals, 216
(see also whitespace)

nondeterministic finalization, 79

nonpostback events, Web Forms, 383
NonSerialized attribute, 535
normalization, relational database, 370
Northwind database, 369
not equals operator (!=), 54
not operator (!) in conditionals, 55
null keyword, 565
null, escape character for, 24

O
object graph, 529
object initializers, 291
Object type, 113–115
object type, 565
object-oriented languages, C# as, 4
objects, 8, 61

as reference and value types, 130
as reference types, 23
copying, 113
created by instantiation, 63, 67
current instance of (this keyword), 73–74
destroying (freeing resources), 79–83
equivalence of, determining, 113
on the heap, 23, 67
passing to another method as a

parameter, 74
referring to same instance,

determining, 113
string representation of, 113

observer design pattern, 258
OCX standard, 542
OnDeserialization() method,

IDeserializationCallback, 535
OnLoad() method, 385
OnPreRender() method, 385
OnReadComplete() method,

ClientHandler, 518, 521
OnWriteComplete() method,

ClientHandler, 518, 521
Open() method, FileInfo, 493
OpenRead() method

File, 493, 500
FileInfo, 493

OpenText() method, FileInfo, 493, 504
OpenWrite() method

File, 493, 500
FileInfo, 493

operator keyword, 118, 565
operators, 49

arithmetical operators, 50
assignment operator (=), 49

Index | 581

decrement operators, 52–53
increment operators, 52–53
logical operators, 55
mathematical operators, 50
overloading, 118

alternatives for other languages, 119
cautions regarding, 120
examples of, 124
required pairs of, 120

postfix operators, 53
precedence of, 55–58
prefix operators, 53
relational operators, 54
self-assignment operators, 52
short-circuit evaluation of, 56
ternary operator, 58
(see also specific operators)

or operator (||) in conditionals, 55, 57
orderby clause of query, 286–289, 301
OrderBy() method, LINQ, 301
out keyword, 565
out parameter, 86
outer join, SQL, 372
overloaded constructors, 71, 74, 89–92
overloaded methods, 89–92
override keyword, 102, 107, 565
overriding Equals() method, 120
overriding interface

implementations, 147–151
overriding methods, 102–106

P
P/Invoke (platform invoke facility), 551–554
parameters of methods, 8, 9

defining, 66–67
optional, 67
passing by reference, 9, 83–85
passing by value, 9, 83
with same name as member variable, 73

params keyword, 164, 565
parent elements, XML, 303
Parent property, DirectoryInfo, 489
parentheses (())

in if...else statement, 35
in switch statement, 39

partial classes, 382
partial classes and methods

partial keyword, 565
partial keyword, 348
Pascal notation, 14
passing by reference, 9

passing by value, 9
Peek() method

Queue, 206, 208
Stack, 208, 209

platform invoke facility (P/Invoke), 551–554
plus sign (+), in debugger, 19

(see also addition operator (+))
pointer operators, 554
pointers, 5, 554–560

avoiding, 6
compared to this keyword, 73

polymorphism, 98, 102
base class constructors, calling, 106
polymorphic methods, 102–106
polymorphic types, 102

Pop() method, Stack, 208, 209
ports, 512
postback events, Web Forms, 383
postfix operators, 53
pound sign (#), preceding directives, 59
precedence of operator evaluation, 55–58
predicates (search conditions), XPath, 318,

320–321
prefix operators, 53
preprocessor directives, 59–60
preprocessor identifiers, 59, 60
primary key, relational database, 369
private (access modifier), 565
private access modifier, 65
Programming .NET 3.5 (Liberty,

Horovitz), x, 6, 404
Programming ASP.NET (Liberty,

Hurwitz), 381, 401
Programming Silverlight (Liberty), 6
Programming WCF Services (Lowy), 329
Programming WPF (Sells, Griffiths), 404
programs

compiling and running, 17
creating, 15

Project Gutenberg, 557
projection of query, 283, 294
properties, 92

access modifiers for, 95
encapsulating data using, 92–96
for arrays, 157
get accessor for, 94
mapping to database columns

manually, 340–343
with Visual Studio, 344–348

naming conventions for, 14
set accessor for, 95

protected access modifier, 65, 565

582 | Index

protected internal access modifier, 65
public access modifier, 65, 66, 566
publish and subscribe design

pattern, 258–266
publishing events, 258, 262–264
Push() method, Stack, 208, 209

Q
queries, ADO.NET, 375, 377
queries, LINQ

caching results of, 284
creating, 280–283, 352
deferred execution of, 283
from clause, 282
grouping, 290
join clause, 285
method-based queries, 298
orderby clause, 286–289
range variable for, 282
select clause (projection), 283, 294
storing results with anonymous

types, 291
where clause (filter), 282

queries, SQL, 371
Queue class, 206
queues, 206–208
quotes (see double quotes; single quotes)

R
race conditions, 485
RAD (Rapid Application Development)

Web Forms for, 381
RaisePostDataChangedEvent() method, 385
range variable, LINQ, 282
Rank property, System.Array, 158
Rapid Application Development (RAD)

Web Forms for, 381
Read() method, Stream, 500
Reader class, ADO.NET, 368
ReadLine() method

Console, 47
StreamReader, 504

readonly fields, 96
readonly modifier, 566
records, relational database, 369
rectangular arrays, 165–169
ref modifier, 566
ref parameter modifier, 83
reference types, objects as, 23, 130
ReferenceEquals() method, Object, 113

reflection, 449, 456
creating types at runtime using, 456
late binding using, 456, 462–464
type discovery using, 456, 458–462
viewing metadata using, 456–457

reflection emit (see types, creating at runtime
using reflection)

Refresh() method, DirectoryInfo, 489
Regex class, 230
Regsvr32 utility, 546
regular expressions, 214, 229–232

capture collections for, 237–240
grouping subexpression matches

of, 234–237
match collections for, 232–234

relational databases, 368–371
constraints, 370
declarative referential integrity (DRI), 370
normalization of, 370
querying with SQL, 371

relational operators, 54
operator precedence for, 57
overloading, required pairs for, 120

remainders in division (see modulus operator
(%))

Remove() method
Dictionary, 212
List, 196
StringBuilder, 227

RemoveAll() method, List, 196
RemoveAt() method, List, 196
RemoveRange() method, List, 196
Render() method, 385
Replace() method, StringBuilder, 227
Resize() method, System.Array, 158
resources

creating, in WPF, 409
freeing, 79–83
locking (see synchronization)
unmanaged, cleaning up, 79, 113

resources (information)
contact information for this book, xvi
(see also books; web site resources)

return statement, 35, 126
return value of methods, 8
Reverse() method

List, 196
System.Array, 158, 175

root element, XML, 303, 307
Root property, DirectoryInfo, 489
Rows collection, ADO.NET, 373
rows, relational database, 369
runat=Server attribute, 391

Index | 583

S
SaveViewState() method, 385
sbyte keyword, 566
sbyte type, 22
screen scraping, 529
sealed classes, 112
sealed keyword, 112
sealed modifier, 566
search conditions (predicates), XPath, 318,

320–321
searching database (see LINQ)
security, with data binding, 398
select clause of query, 283, 294
Select() method, XPathNavigator, 327
SelectNodes() method, XPath, 321
SelectSingleNode() method, XPath, 318,

319, 326
self-assignment operators, 52
Sells, Chris (Programming WPF), 404
semicolon (;)

ending statements, 33
not ending class definitions, 63

Serializable attribute, 529, 531
serialization, 487, 529–538

formatter for, 530
transient data, handling, 535

serialization, XML, 329–331
customizing using attributes, 331–333
deserialization, 331
runtime customization of, 333–336

Serialize() method, formatter, 532
server-side controls

adding to Web Form, 388–391, 399–403
ASP (web) controls, 391
binding to data, 391–398
HTML controls, 391
validation controls, 401

set accessor, 95
set() method, for indexers, 180
SetAttributes() method, File, 492
SetCreationTime() method, File, 492
SetLastAccessTime() method, File, 492
SetLastWriteTime() method, File, 493
SetValue() method, System.Array, 158
shift operator (<<>>), 57
short type, 22
short-circuit evaluation, 56
signature of a method, 89
Silverlight, information about, 6
Simonyi, Charles (inventor of Hungarian

notation), 32

single quotes ('), escape character for, 24
single type, 22
slash (/), in XPath, 318

(see also division operator (/))
slash asterisk (/* ... */), enclosing

comments, 10
slash, double (//), preceding comments, 9
SOA, book about, 329
SOAP, 530
SoapFormatter class, 530
sockets, 511
software requirements, x
Sort() method

List, 196, 198
System.Array, 158, 175

sorting arrays, 175–177
sorting query results, 286–289
source code for examples, xi
spaces (see whitespace)
specialization, 98–101
Split() method

Regex, 231
String, 218, 226

SQL (Structured Query Language), 371
connecting to database with LINQ (see

LINQ)
LINQ syntax compared to, 285

SQL injection attack, 398
SQL Server 2005 Adventure Works LT

sample database, 338
SQL Server, version used for this book, x
SQML (Structured Query Markup

Language), 304
square brackets (see brackets)
stack (in memory), 23

(see also call stack)
Stack class, 208
stack frame, 23, 242
stack panels, WPF, 406–408, 414
stack trace, 253–255
stackalloc keyword, 566
stacks, 208–211
StackTrace property, Exception, 253
standard output, 11
Start() method, TcpListener, 512, 513
StartRead() method, ClientHandler, 518,

523
starts-with() function, XPath, 321
StartsWith() method, String, 218
state object, asynchronous I/O, 507
state of web application, 384

584 | Index

statement blocks, 37
statements, 33

conditional branching statements, 35–42
iteration statements, 42–49
unconditional branching statements, 34
(see also specific statements)

static classes, 78
static keyword, 14
static members of a class, 14, 75–79

constructors, 76–77
initializers for, 79
member variables

accessibility of, 79
tracking instances using, 78

methods
as global, 75
invoking, 75, 76
passing instance members to, 76

static modifier, 566
statically typed, 21
storage, isolated, 538–541
Stream class, 499
streaming

asynchronous network files, 522–527
network client, 515–518
network server, 513–515
web streams, 527–529

StreamReader class, 504
streams, 487

backing store for, 487
buffered, 502–504
serialization of data for (see serialization)

StreamWriter class, 504, 513
String class, 215
string keyword, 32
string literals, 32, 216

(see also char literals)
string representation of object, 113
StringBuilder class, 227–228
StringReader class, 499
strings, 32, 215, 566

comparing, 221
concatenating, 221
copying, 222
creating with literals, 216
creating with ToString() method, 217
delimiters in, problems with, 229
equality of, testing, 222
finding specific character in, 222
immutable (String class), 215
indexers based on, 183–186

length of, 222
manipulating, 217–223
methods and properties for, 217
mutable (StringBuilder class), 227–228
ordering, 215
parsing into substrings, 226
String type compared to string type, 215
switch statement using, 42
(see also regular expressions; substrings)

StringWriter class, 499
strongly typed, 22
structs, 5, 127, 566

creating, 129–131
defining, 128
performance of, 127

Structured Query Markup Language
(SQML), 304

style guidelines for code, by Microsoft, 14
subdirectories

creating, 496
listing files in, 492–496
traversing, 489–492

subscribe operator (+=), 265, 266
subscribing to events, 258, 264
Substring() method, String, 218, 223–225
substrings

finding at end of string, 222
finding location of, within string, 223
finding within string, 223–225
inserting into a string, 223
parsing string into, 226

subtraction operator (-), 50
subtraction self-assignment operator (-=), 52
support for this book, xv
SuppressFinalize() method, GC, 81
Swann’s Way (Proust), 557
switch keyword, 567
switch statement, 38–42

C and C++ differences in, 41
default case for, 41
on strings, 42
Visual Basic 6 equivalents to, 40

symbolic constants, 28
symbolic values, 50
synchronization, 465, 474–477

Interlocked class for, 477
lock statement for, 479
monitors for, 480–485
(see also thread synchronization)

synchronous I/O, 506
SyncRoot property, System.Array, 158

Index | 585

System.Array type, 157
System.Attribute class, 452
System.IO namespace, 488
System.Object type, 113–115
System.Reflection namespace, 451
System.Threading namespace, 465
System.Web namespace, 382
System.Web.Extension namespace, 382
System.Web.UI namespace, 382
System.Xml namespace, 307
System.Xml.Serialization namespace, 329
System.Xml.XPath namespace, 311, 322
SystemRoot directory, 496

T
\t escape character, in string literal, 216
tables, relational database, 369
tabs

escape characters for, 24
in string literals, 216
(see also whitespace)

tags, XML, 303
targets, of metadata attributes, 450

applying to attributes, 450
list of, 449

TCP/IP protocol, 511
TcpClient class, 515
TcpListener object, 512, 513
ternary operator (?:), 58
text files, 504–506
TextReader class, 499
TextWriter class, 499
ThenBy() method, LINQ, 301
this keyword, 73–74

as documentation, 74
for passing objects as parameters, 74
in indexer declarations, 177, 180
to call overloaded constructors, 74
to qualify instance members, 73

Thread class, 466
thread synchronization, 485
threads, 465

creating, 466
joining, 469
killing, 470–474
scheduling of, 469
starting, 467
suspending (sleeping), 469
uses of, 466

ThreadStart delegate class, 466
throw statement, 242–244
ToArray() method

LINQ, 284
List, 196
Queue, 206
Stack, 209

ToArray() method, Stack, 209
ToList() method, LINQ, 284
ToString() method, Object, 113, 115, 125,

217
ToUpper() method, String, 218
TreeView controls, Windows Forms

event handling for, 429–432
populating, 424–428

triggers, WPF, 411
Trim() method, String, 218
TrimEnd() method, String, 218
TrimExcess() method

List, 196
Queue, 206
Stack, 209

TrimToSize() method, List, 196
TrueForAll() method, System.Array, 158
try block, 244, 246
TryGetValue() method, Dictionary, 212
type conversion

implementing operators for, 121, 124
of built-in types, 24

type discovery, using reflection, 456,
458–462

types, 7, 21
built-in types, 22–25
creating at runtime using reflection, 456
suffixes of numbers indicating, 24

U
uint type, 22, 23
uint16 type, 22
uint32 type, 22
uint64 type, 23
ulong type, 23
UML (Unified Modeling Language), 99
unconditional branching statements, 34

(see also jump statements)
#undef directive, 60
UnderlyingObject property,

XPathNavigator, 327
Unified Modeling Language (UML), 99

586 | Index

unmanaged code, invoking from
C#, 551–554

unmanaged resources, cleaning up, 79, 113
unsafe keyword, 554, 556, 567
unsubscribe operator (-=), 267
unwinding the stack, 242, 246
user-defined types, 21
ushort type, 22, 23
using directive, 13
using keyword, 567
using statement, 82

V
validation controls, 401
value types, 130
Values property, Dictionary, 212
variables, 25–26

assigning values to, 25, 27, 49
declaring, 25
implicitly types local variables, 291
initialization of, avoiding, 86–89
initializing, 25, 27
naming conventions for, 14
on the stack, 23
(see also member variables)

verbatim string literals, 216
versioning, 107
ViewState property, web control, 384
virtual keyword, 102, 567

(see also overriding methods)
Visual Basic 6

ADO compared to ADO.NET, 369
array size, differences in, 159
controls, differences in, 425
Dim and New performance penalty, no

equivalent to, 68
loop variable differences, 46
optional parameter equivalents, 67
pointers in, compared to this keyword, 73
Static keyword, compared to C# static

keyword, 75
switch statement eqivalents in, 40
variables in try blocks, restrictions

on, 253

Visual Studio
compiling programs, 17
creating projects, 15
debugger (see debugger)
importing ActiveX controls using, 547
LINQ to SQL designer, 344–348
namespaces included by default, 13, 16
version used for this book, x
web-based applications created

using, 382, 385

W
web controls (see ASP controls)
Web Forms, 381–383

code separation used by, 382
code-behind pages for, 381, 386–388
controls for (see server-side controls)
creating, 385–391
event handlers for, 383
events in, 383, 399–403
life cycle of, 384

web site resources
Adventure Works LT sample

database, 338
author, xi, xv
code style guidelines by Microsoft, 14
for this book, xvi
Griffiths, Ian, blog for, 301
Hungarian notation, 32
Northwind database, 369
port numbers, 512
Project Gutenberg, 557
security, 398
Silverlight, 6
source code for examples, xi
support, xv
XPath, 320
XPath functions, 322

web streams, 527–529
web-based applications

advantages of, 381
state of, 384
Visual Studio used for, 382
(see also ASP.NET; Web Forms)

Index | 587

WebRequest object, 527
WebResponse object, 527
where clause of query, 282
Where() method, LINQ, 293
while keyword, 568
while loop, 43
whitespace, 33, 47
Wiltamuth, Scott (C# creator), 4
Windows Forms applications

controls
button, 432–437
creating, 421
populating, 424–428
TreeView, 424–432

creating, 420–421
event handlers for, 423, 429–437

Windows Presentation Foundation (see
WPF)

Windows Vista
protected files, accessing, 492, 496
version used for this book, x

WPF (Windows Presentation
Foundation), 101

books about, 404
creating applications, 405–408
data for application, 412, 414
declarative nature of, 419
event handling in, 418
grids, 406–408, 414
instantiating objects declaratively, 413
resources, creating, 409
stack panels, 406–408, 414
triggers in, 411
Windows version required for, x

Write() method, Console, 46
WriteLine() method

Console, 11, 26, 506
StreamWriter, 504, 506

X
XAML (eXtensible Application Markup

Language), 6, 404
XAttribute class, 363
XDocument class, 363
XElement class, 363
XHTML, 304
Xie, Donald (author), x
XML (eXtensible Markup Language), 302,

304
creating documents, 304–311
elements in, 303
LINQ output to, 363–367
tags in, 303
versions of, 302

XML editor, 309
XML serialization, 329–331

customizing using attributes, 331–333
deserialization, 331
runtime customization of, 333–336

XmlAttribute object, 309
XmlAttributeAttribute object, 333, 335
XmlAttributeOverrides class, 335
XML-based documentation, comments

for, 11
XmlNode class, 318
XmlSerializer object, 330
XPath, 311–317

functions for, 321
search conditions (predicates) for, 318,

320–321
searching for a node, 318–319
searching using axes, 319
searching using

XPathNavigator, 322–328
web site about, 320, 322

XPathExpression object, 328
XPathNavigator class, 322, 326
XPathNodeIterator object, 327

About the Authors
Jesse Liberty, currently a senior program manager on the Silverlight Development
Team at Microsoft, is the author of Programming .NET 3.5, Learning ASP.NET with
AJAX (both for O’Reilly), and many other books. He is a recognized .NET expert
whose experience includes working as a software architect at PBS and as a distin-
guished software engineer at AT&T. He can be reached at http://www.JesseLiberty.com.

Donald Xie has been programming since Apple II was known as state of the art. He
has written a lot of applications using different languages and technologies. Since the
late 90s, Donald has focused on developing enterprise-strength business applica-
tions using Microsoft technologies—especially with .NET—from the very first beta.

Donald is a coauthor of several books, including Pro Visual Studio .NET (Apress),
and Fast Track ADO.NET and Data-Centric .NET Programming with C# (both for
Peer Information, Inc.). He has also written books on C++ and Visual Basic.
Currently, Donald works as a business analyst for Chevron.

Colophon
The animal on the cover of Programming C# 3.0, Fifth Edition, is an African
crowned crane. This tall, skinny bird wanders the marshes and grasslands of West and
East Africa (the Western and Eastern African crowned cranes are known as Balearica
pavonia pavonia and Balearica regulorum gibbericeps, respectively).

Adult birds stand about three feet tall and weigh six to nine pounds. Inside their long
necks is a five-foot long windpipe—part of which is coiled inside their breastbone—
giving voice to loud calls that can carry for miles. They live for about 22 years,
spending most of their waking hours looking for the various plants, small animals,
and insects they like to eat. (One crowned crane food-finding technique, perfected
during the 38 to 54 million years these birds have existed, is to stamp their feet as
they walk, flushing out tasty bugs.) They are the only type of crane to perch in trees,
which they do at night when sleeping.

Social and talkative, African crowned cranes group together in pairs or families, and
the smaller groups band together in flocks of more than 100 birds. Their elaborate
mating dance has served as a model for some of the dances of local people.

The cover image is an original engraving from the 19th century. The cover font is
Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe
Myriad Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	Programming C# 3.0, Fifth Edition
	Table of Contents
	Preface
	C# and .NET
	About This Book
	What You Need to Use This Book
	How This Book Is Organized
	Part I: The C# Language
	Part II: C# and Data
	Part III: Programming with C#
	Part IV: The CLR and the .NET Framework

	Who This Book Is For
	Conventions Used in This Book
	Support
	We’d Like to Hear from You
	Using Code Examples
	Safari® Books Online
	Acknowledgments
	From Jesse Liberty
	From Donald Xie

	Dedications
	From Jesse Liberty
	From Donald Xie

	Part I The C# Language
	C# 3.0 and .NET 3.5
	The Evolution of C#
	The C# Language
	A Tiny Bit of History
	C# Features

	The .NET Platform

	Getting Started: “Hello World”
	Classes, Objects, and Types
	Methods
	Comments
	Console Applications
	Namespaces
	The Dot Operator (.)
	The using Directive
	Case Sensitivity
	The static Keyword

	Developing “Hello World”
	Editing “Hello World”
	Compiling and Running “Hello World”

	Using the Visual Studio 2008 Debugger

	C# Language Fundamentals
	Types
	The Built-In Types
	Choosing a built-in type
	Converting built-in types

	Variables and Constants
	Definite Assignment
	Constants
	Enumerations
	Strings
	Identifiers

	Whitespace
	Statements
	Unconditional Branching Statements
	Conditional Branching Statements
	if...else statements
	Nested if statements
	switch statements: an alternative to nested ifs
	Switch on string statements

	Iteration Statements
	The goto statement
	The while loop
	The do...while loop
	The for loop
	The foreach statement
	The continue and break statements

	Operators
	The Assignment Operator (=)
	Mathematical Operators
	Simple arithmetical operators (+, -, *, /)
	The modulus operator (%) to return remainders

	Increment and Decrement Operators
	Calculate and reassign operators
	The prefix and postfix operators

	Relational Operators
	Use of Logical Operators with Conditionals
	Operator Precedence
	The Ternary Operator

	Preprocessor Directives
	Defining Identifiers
	Undefining Identifiers
	#if, #elif, #else, and #endif

	Classes and Objects
	Defining Classes
	Access Modifiers
	Method Arguments

	Creating Objects
	Constructors
	Initializers
	The ICloneable Interface
	The this Keyword

	Using Static Members
	Invoking Static Methods
	Using Static Constructors
	Static Classes
	Using Static Fields

	Destroying Objects
	The C# Destructor
	Destructors Versus Dispose
	Implementing the Close(��) Method
	The using Statement

	Passing Parameters
	Passing by Reference
	Overcoming Definite Assignment with out Parameters

	Overloading Methods and Constructors
	Encapsulating Data with Properties
	The get Accessor
	The set Accessor
	Property Access Modifiers

	readonly Fields

	Inheritance and Polymorphism
	Specialization and Generalization
	Inheritance
	Implementing Inheritance

	Polymorphism
	Creating Polymorphic Types
	Creating Polymorphic Methods
	Calling Base Class Constructors
	Controlling Access
	Versioning with the new and override Keywords

	Abstract Classes
	Limitations of Abstract
	Sealed Class

	The Root of All Types: Object
	Nesting Classes

	Operator Overloading
	Using the operator Keyword
	Supporting Other .NET Languages
	Creating Useful Operators
	Logical Pairs
	The Equality Operator
	Conversion Operators
	Putting Operators to Work

	Structs
	Defining Structs
	Creating Structs
	Structs As Value Types

	Interfaces
	Defining and Implementing an Interface
	Implementing More Than One Interface
	Extending Interfaces
	Combining Interfaces
	Polymorphism with Interfaces
	Interface Versus Abstract Class

	Overriding Interface Implementations
	Explicit Interface Implementation
	Selectively Exposing Interface Methods
	Member Hiding

	Arrays, Indexers, and Collections
	Arrays
	Declaring Arrays
	Understanding Default Values
	Accessing Array Elements

	The foreach Statement
	Initializing Array Elements
	The params Keyword
	Multidimensional Arrays
	Rectangular arrays
	Jagged arrays

	Array Bounds
	Array Conversions
	Sorting Arrays

	Indexers
	Indexers and Assignment
	Indexing on Other Values

	Collection Interfaces
	The IEnumerable<T> Interface

	Constraints
	List<T>
	Implementing IComparable
	Implementing IComparer

	Queues
	Stacks
	Dictionaries
	IDictionary<K,V>

	Strings and Regular Expressions
	Strings
	Creating Strings
	The ToString(��) Method
	Manipulating Strings
	Finding Substrings
	Splitting Strings
	Manipulating Dynamic Strings

	Regular Expressions
	Using Regular Expressions: Regex
	Using Regex Match Collections
	Using Regex Groups
	Using CaptureCollection

	Exceptions
	Throwing and Catching Exceptions
	The throw Statement
	The catch Statement
	Taking corrective action
	Unwinding the call stack

	Try/Catch Best Practices
	The finally Statement

	Exception Objects

	Delegates and Events
	Events
	Events and Delegates
	Indirect Invocation
	Publish and Subscribe/Observer
	The Publishing Class: Clock
	Registering to Be Notified
	Sequence of Events
	The Danger with Delegates
	The event Keyword

	Anonymous Methods
	Lambda Expressions
	Callback Methods

	Part II C# and Data
	Introducing LINQ
	Defining and Executing a Query
	Creating the Query
	The from clause
	Filtering
	Projection (or select)

	Deferred Query Evaluation

	LINQ and C#
	Joining
	Ordering and the var Keyword
	Grouping and the group Keyword

	Anonymous Types
	Implicitly Typed Local Variables
	Extension Methods
	Defining and Using Extension Methods
	Extension Method Restrictions

	Lambda Expressions in LINQ

	Working with XML
	XML Basics (A Quick Review)
	Elements
	XHTML

	X Stands for eXtensible
	Creating XML Documents
	XML Elements
	XML Attributes

	Searching in XML with XPath
	Searching for a Single Node
	Searching Using Axes
	Predicates
	XPath Functions

	Searching Using XPathNavigator
	Using XPathNodeIterator
	Using XPathExpression

	XML Serialization
	Customizing XML Serialization Using Attributes
	Runtime XML Serialization Customization

	Putting LINQ to Work
	Getting Set Up
	LINQ to SQL Fundamentals
	Using Visual Studio LINQ to SQL Designer
	Retrieving Data
	Creating Properties for Each Table
	A LINQ Query

	Updating Data Using LINQ to SQL
	Adding a Customer Record
	Modifying a Customer Record

	Deleting Relational Data
	LINQ to XML

	ADO.NET and Relational Databases
	Relational Databases and SQL
	Tables, Records, and Columns
	Normalization
	Declarative Referential Integrity
	SQL

	The ADO.NET Object Model
	DataTables and DataColumns
	DataRelations
	Rows
	Data Adapter
	DBCommand and DBConnection
	DataReader

	Getting Started with ADO.NET

	Part III Programming with C#
	Programming ASP.NET Applications
	Web Forms Fundamentals
	Web Forms Events
	Postback versus nonpostback events
	State

	Web Forms Life Cycle

	Creating a Web Form
	Code-Behind Files
	Adding Controls
	Server Controls

	Data Binding
	Examining the Code
	Adding Controls and Events

	Programming WPF Applications
	WPF in a Very Small Nutshell
	Creating a WPF Example
	The Example Program

	Building the Application
	Grids and Stack Panels
	Sucking on a Fire Hose
	Our goals

	Adding Data
	Instantiating objects declaratively

	Using the Data in the XAML
	Defining the Listbox
	The Complete XAML File
	Event Handling (Finally!)

	What Have You Learned, Dorothy?

	Programming Windows Forms Applications
	Creating the Application
	Creating Event Handlers
	Populating the TreeView Controls
	TreeNode objects
	Recursing through the subdirectories
	Getting the files in the directory

	Handling TreeView Events
	Clicking the source TreeView
	Expanding a directory
	Clicking the target TreeView
	Handling the Clear button event

	Implementing the Copy Button Event
	Getting the selected files
	Sorting the list of selected files

	Handling the Delete Button Event

	Part IV The CLR and the .NET Framework
	Attributes and Reflection
	Attributes
	Types of Attributes
	Attribute targets
	Applying attributes

	Custom Attributes
	Declaring an attribute
	Naming an attribute
	Constructing an attribute
	Using an attribute

	Reflection
	Viewing Metadata
	Type Discovery
	Reflecting on a Type
	Finding all type members
	Finding type methods
	Finding particular type members

	Late Binding

	Threads and Synchronization
	Threads
	Starting Threads
	Joining Threads
	Blocking Threads with Sleep
	Killing Threads

	Synchronization
	Using Interlocked
	Using Locks
	Using Monitors

	Race Conditions and Deadlocks
	Race Conditions
	Deadlocks

	Streams
	Files and Directories
	Working with Directories
	Creating a DirectoryInfo Object
	Working with Files
	Modifying Files

	Reading and Writing Data
	Binary Files
	Buffered Streams
	Working with Text Files

	Asynchronous I/O
	Network I/O
	Creating a Network Streaming Server
	Creating a Streaming Network Client
	Handling Multiple Connections
	Asynchronous Network File Streaming

	Web Streams
	Serialization
	Using a Formatter
	Working with Serialization
	Serializing the object
	Deserializing the object

	Handling Transient Data

	Isolated Storage

	Programming .NET and COM
	Importing ActiveX Controls
	Creating an ActiveX Control
	Importing a Control in .NET
	Importing a control
	Manually importing the control
	Adding the control to the form

	P/Invoke
	Pointers

	C# Keywords
	Index

