


C# 3.0 Design Patterns



Other Microsoft .NET resources from O’Reilly

Related titles C# 3.0 in a Nutshell

C# 3.0 Cookbook

Head First C#

Head First Design Patterns

Learning C# 2005

Programming C# 3.0

.NET Books
Resource Center

dotnet.oreilly.com is a complete catalog of O’Reilly’s books on
.NET and related technologies, including sample chapters and
code examples.

ONDotnet.com provides independent coverage of fundamental,
interoperable, and emerging Microsoft .NET programming and
web services technologies.

Conferences O’Reilly & Associates bring diverse innovators together to nur-
ture the ideas that spark revolutionary industries. We specialize
in documenting the latest tools and systems, translating the
innovator’s knowledge into useful skills for those in the
trenches. Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.



C# 3.0 Design Patterns

Judith  Bishop

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo



C# 3.0 Design Patterns
by Judith Bishop

Copyright © 2008 Judith Bishop. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn
Production Editor: Loranah Dimant
Copyeditor: Rachel Wheeler
Proofreader: Loranah Dimant

Indexer: John Bickelhaupt
Interior Designer: David Futato
Cover Illustrator: Karen Montgomery
Illustrator: Jessamyn Read

Printing History:

December 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. C# 3.0 Design Patterns, the image of a greylag goose, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™,  a durable and flexible lay-flat binding.

ISBN 10:  0-596-52773-X

ISBN 13: 978-0-596-52773-0

[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com


In memory of my beloved father,

Tom Mullins (1920–2007).





vii

Table of Contents

Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Preface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1. C# Meets Design Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
About Patterns  2
About UML  3
About C# 3.0  5
About the Examples  6

2. Structural Patterns: Decorator, Proxy, and Bridge  . . . . . . . . . . . . . . . . . . . . . . . 8
Decorator Pattern  9
Proxy Pattern  22
Bridge Pattern  36
Example: OpenBook  39
Pattern Comparison  46

3. Structural Patterns: Composite and Flyweight . . . . . . . . . . . . . . . . . . . . . . . . . 49
Composite Pattern  49
Flyweight Pattern  61
Exercises  72
Pattern Comparison  72

4. Structural Patterns: Adapter and Façade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Adapter Pattern  74
Façade Pattern  93
Pattern Comparison  99



viii | Table of Contents

5. Creational Patterns: Prototype, Factory  Method, and Singleton . . . . . . . . 101
Prototype Pattern  101
Factory Method Pattern  110
Singleton Pattern  115
Pattern Comparison  120

6. Creational Patterns: Abstract  Factory and Builder . . . . . . . . . . . . . . . . . . . . 122
Abstract Factory Pattern  122
Builder Pattern  129
Pattern Comparison  137

7. Behavioral Patterns: Strategy,  State, and Template Method  . . . . . . . . . . . 139
Strategy Pattern  139
State Pattern  148
Template Method Pattern  158
Pattern Comparison  162

8. Behavioral Patterns: Chain of Responsibility and Command  . . . . . . . . . . . 164
Chain of Responsibility Pattern  164
Command Pattern  175
Pattern Comparison  186

9. Behavioral Patterns: Iterator, Mediator, and Observer . . . . . . . . . . . . . . . . . 188
Iterator Pattern  188
Mediator Pattern  200
Observer Pattern  210
Pattern Discussion and Comparison  217

10. Behavioral Patterns: Visitor, Interpreter, and Memento  . . . . . . . . . . . . . . . 220
Visitor Pattern  220
Interpreter Pattern  233
Memento Pattern  242
Pattern Comparison  252



Table of Contents | ix

11. The Future of Design Patterns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Summary of Patterns  253
A Future for Design Patterns  256
Concluding Remarks  258

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285





xi

Foreword1

When you’re faced with a problem to solve (and frankly, who isn’t these days?), the
basic strategy usually taken by we computer people is called “divide and conquer.” It
goes like this:

• Conceptualize the specific problem as a set of smaller sub-problems.

• Solve each smaller problem.

• Combine the results into a solution of the specific problem.

Reducing complex problems down to the level of twiddling the states of a few bil-
lion bits is what we do all day. But “divide and conquer” is not the only possible
strategy. We can also take a more generalist approach:

• Conceptualize the specific problem as a special case of a more general problem.

• Somehow solve the general problem.

• Adapt the solution of the general problem to the specific problem.

Design patterns are among the major tools in the toolboxes of those who espouse the
generalist approach. If you look at samples from a broad spectrum of software solu-
tions, you will find that though the specifics may vary widely, there is often an
underlying structural similarity. (Searching a filesystem for a file with a particular
attribute is in some sense structurally similar to searching an annotated parse tree for
a symbol with a particular type.) Design patterns codify general solutions to common
problems.

The ultimate example of the generalist approach is of course the design and imple-
mentation of programming languages themselves. As problem solving tools go, it is
hard to get more general than a programming language like C#. When designing
new programming languages (or new versions of old programming languages), we
think about common problems that are faced every day by real developers and figure
out how to create a language which solves them in a general, aesthetically pleasing,
and powerful way that is broadly applicable.



xii | Foreword

We want to embed the most useful and powerful abstractions so deeply into the lan-
guage infrastructure that you barely even consciously register them as being there
anymore. Patterns like “local variable” or “procedure call” or “while loop” are so
much a part of the air we all breathe that we don’t even think of them as patterns
anymore.

Furthermore, we want to make a language in which patterns which are useful but per-
haps not quite so fundamental are nevertheless relatively straightforward to implement
clearly and elegantly. A class in C# may be marked as “static,” or “abstract,” or
“sealed,” but not as “singleton.” That was a deliberate choice of the language design-
ers. However, implementing a singleton class in C# is still relatively easy.

The gray zone in between “clearly foundational” and “occasionally useful” is where
the interesting design challenges lie. Our observations of design patterns used by
real-world developers in C# (and other languages) strongly drive the design process
for new versions.

Consider for example how you would implement an iterator pattern on a linked list
in C# 1.0. You would end up defining an enumerator class to represent a position in
the list containing a lot of boring boilerplate code (which impedes readability), and
the solution would not be very reusable. The notion of “enumerate a set of things” is
sufficiently applicable to a wide variety of problems that it met the bar for inclusion
as a first class language concept. In C# 2.0 with its yield return statement the com-
piler can generate all the boring code for you, and the generic type system makes iter-
ating over a set of things typesafe no matter what the “things” are.

All of this is a long way to say just why it is that I am so very excited about Language
Integrated Query (LINQ) in C# 3.0. We believed that iterating over collections of
things was a great start, but that we could do so much more. Sorting, filtering, group-
ing, joining, projecting, and transforming data are also fundamental operations that
are useful in pretty much every domain. Whether you are writing a ray tracer, a com-
piler, an XML reader, or an online banking security system, odds are good that you
are going to need to manipulate collections of something in a rich way.

By moving these concepts out of domain-specific object models and into a general-
purpose programming language, we hopefully solve those more general problems.
We additionally hope, though, that by adding C# 3.0’s query expressions, lambda
expressions, extension methods, initializer expressions, expression trees, and so on
to the already rich set of C# 2.0 and 1.0 features, we make it easier to elegantly
implement all sorts of other useful design patterns.



Foreword | xiii

And that is also why I am excited about this book. C# 3.0 Design Patterns brings the
frequently abstruse world of design patterns into sharp focus with pragmatic C# 3.0
implementations. I look forward to seeing where developers can go with these tools
and this language, and what useful patterns we can build into the infrastructures of
future languages.

—Eric Lippert
Senior Developer

C# Compiler Team
Seattle, Washington
November 30, 2007





xv

Preface2

Why I Wrote This Book
In 2002, Microsoft Research hosted an international meeting in Cambridge, U.K., to
reveal its Rotor system, which would bring C# and .NET to non-Windows program-
mers. Once back home, writing software, papers, and a book on the topic, I came to
realize that we had witnessed the beginning of a real revolution in programming.
Since the advent of Java in 1996, programming had become platform-independent:
with Java byte-code, programs could run anywhere. This independence, however,
extended only to programs written in the Java language. .NET, on the other hand,
was language-independent: it allowed programs in different languages to interact,
but, up until that day, only on Windows.

In the ensuing five years, new platforms have come to support .NET (Mono, for
example) and new hardware has come to support Intel chips (on which Windows
runs). The result is that .NET now runs almost anywhere. Consequently, expertise in
C# programming is a very transportable skill to acquire. But C# keeps improving as
a language, and we are currently at the beginning of a new leap forward into C# 3.0,
which offers enormous benefits in terms of productivity and ease of programming.
Having already written an introductory C# text in 2003,* I realized that the benefits
of the new features announced now in 2007, four years later, would be felt at a much
more advanced level of software development. I wanted to write a second book that
introduced C# 3.0 to developers who already knew the basic language—but what
would be the formula that could introduce a language and address a reader’s needs
of precision, examples, and a heavy dose of reality?

Enter design patterns. Design patterns encapsulate common, accepted, and proven
ways of using language features together. They form a level of discourse at a higher
plane, and they exercise and promote good programming practices. However, there
is an element of unreality surrounding design patterns, and one gets the impression

* Judith Bishop and Nigel Horspool, C# Concisely (Boston, MA: Addison-Wesley, 2003).



xvi | Preface

that they are more talked about than used. I wanted to change that and make design
patterns really accessible to ordinary programmers, using the best language for them:
C# 3.0. The result is this book.

Who This Book Is For
If you are a programmer who loves your code, for whom every line has a precise
meaning and every feature has a correct place, this book is for you. It will help you
with your primary job of making your code correct, elegant, extensible, and effi-
cient. If you serve the business ends of your organization by focusing on the quality
of your code, you need a book like C# 3.0 Design Patterns. Knowledge about design
patterns is also a big step forward for those working up from low-level programmers
to software engineers and architects.

Through reading this book, you will acquire skills in:

• Programming design patterns

• Basic UML modeling notation for representing patterns

• Selecting patterns appropriate for given scenarios and comparing alternative
implementations

• Using advanced language features of C# 3.0 to realize patterns efficiently and
elegantly

Although not written as a textbook, C# 3.0 Design Patterns could fit in very well for
a mid-degree course on design patterns or advanced programming.

The diagrams and code for all the patterns and associated examples and case studies
in this book can be found on the book’s web site, http://www.oreilly.com/catalog/
9780596527730.

What You Need to Know
This book is for programmers who know how to program in C# 1.0 or Java 1.4 and
who would like to move on to the more modern features of the latest language. All
the new features of C# 3.0, as well as many novel features from C# 2.0, are intro-
duced by example and summarized in sidebars for easy reference. Thus, the book
serves as a programmers’ guide as well.

The book does not assume any acquaintance with design patterns. It covers the full
set of 23 patterns that were originally proposed in Erich Gamma, Richard Helm,
Ralph Johnson, and John Vlissides’s Design Patterns: Elements of Reusable Object-
Oriented Software in 1994 and now form a common introductory base to the pat-
terns that are emerging in many other domains (such as security, concurrency, and
architectural design). At the end of the book, the reader will have a thorough
grounding in design patterns as they are commonly understood.

http://www.oreilly.com/catalog/9780596527730
http://www.oreilly.com/catalog/9780596527730


Preface | xvii

How This Book Is Organized
After the introduction in Chapter 1, the book takes a tour through the 23 core design
patterns. Each chapter discusses two or three patterns, chosen because they have
some common applicability and can be compared at the end of the chapter. The pat-
terns are subdivided into three groups: structural, creational, and behavioral.

We begin with the structural patterns, studying the Decorator, Proxy, and Bridge
patterns in Chapter 2; the Composite and Flyweight patterns in Chapter 3; and the
Adapter and Façade patterns in Chapter 4. We then move on to the creational pat-
terns, exploring the Prototype, Factory Method, and Singleton patterns in Chapter 5
and the Abstract Factory and Builder patterns in Chapter 6. The last four chapters
deal with the largest category, the behavioral patterns: Chapter 7 focuses on the
Strategy, State, and Template Method patterns; Chapter 8 on the Chain of Responsi-
bility and Command patterns; Chapter 9 on the Iterator, Mediator, and Observer
patterns; and Chapter 10 on the Visitor, Interpreter, and Memento patterns.

Our discussion of each pattern will consist of the following parts:

Role
A short, high-level description of the pattern and what it is meant to achieve

Illustration
An example of where the pattern might be used in programming a modern com-
puter system, illustrating a real-world context with a photo or diagram to help
you remember the pattern

Design
An identification of the interconnected players in the pattern and their roles,
explained in a UML diagram, with links back to the key players in the
illustration

Implementation
A stepwise refinement development of a short program that illustrates the pat-
tern using the terms introduced in the “Design” section

Example
A second program that gives an example of the pattern, usually in terms of the
illustrative example, where the programming moves away from a strict adher-
ence to the pattern terms

Use
A discussion of real-world scenarios where the pattern might be used, ending
with a table listing the conditions that would make its use applicable

Exercises
A list of exercises of differing degrees of difficulty designed to enhance your
understanding of the pattern under discussion



xviii | Preface

At the end of each chapter you will find a comparison of the patterns discussed
therein and a discussion of how they fit in with those that have gone before.

The ordering of the patterns has been carefully chosen so as to represent a gradual
progression in C# 3.0 maturity. Implementing the earlier patterns in each section
requires very little that is not available in C# 1.0, while the later patterns are more
sophisticated in their implementation and take advantage of more advanced features
present in C# 3.0. This approach allows new features to be introduced inline, as they
become relevant, rather than all at once at the start or end of the text.

This book is not intended to be a reference guide to the whole of C# or even C# 3.0,
but rather to be a practical guide to using the most interesting features of the lan-
guage. Although the emphasis is on developments in the most recent version, I also
pick out some features of C# 1.0 and 2.0 that I think are really useful but that are
not often employed in code. The list of C# features explicitly covered follows this
Preface.

Special features of this book include:

• Pictorial illustrations of patterns, to help you focus on the meaning of what each
pattern can accomplish in real life

• Quizzes that relate the illustrations to the UML diagrams

• Uncluttered “theory” code that can be adapted to many situations

• Tables that give guidance on when to choose a specific pattern

• Comparison tables for patterns that are similar, showing how they differ

• Lists of the advantages, disadvantages, and limitations of each pattern

• Challenges and exercises to help you take your knowledge further

What You Need to Use This Book
To run the programs in this book, you need:

• A computer that will run Windows XP or Vista. Compatible platforms are any
PC or Intel-based Mac with a virtual machine.

• Microsoft’s .NET Framework 3.5. As of October 2007, this version is still in Beta
2, but it is very stable now. It is available at http://www.microsoft.com/downloads.

• A program editor or programming environment. Visual Studio 2008 is an ideal
companion to C# 3.0 programming, but it is not essential.

• The C# 3.0 reference documentation, available on the Microsoft web site (http://
msdn2.microsoft.com/vcsharp, 529 pages).

All the programs in this book were prepared on an iMac Intel Core 2 Duo running
Mac OS X 10.4 and 5 (Tiger and Leopard) and Windows XP on top of the Parallels
virtual machine. The editor used was SciTE.

http://www.microsoft.com/downloads/
http://msdn2.microsoft.com/vcsharp/
http://msdn2.microsoft.com/vcsharp/


Preface | xix

Finding What You Need
This book is intended to serve as a learning resource. In learning about C# 3.0 and
design patterns, there will be times when you will need to find a particular feature or
a related pattern. These tables are given in Chapter 11 for easy reference. The UML
class diagram notation is covered in Chapter 1. You will also find that there are a few
programs that, for space reasons, are not presented in full in the text. These are all
included in the Appendix.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, and email addresses.

Constant width
Indicates code examples and excerpts, commands, options, variables, attributes,
functions, types, classes, namespaces, methods, properties, parameters, values,
objects, events, and XML tags.

Constant width bold
Used for emphasis or highlighting in code examples.

Constant width italic
Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.



xx | Preface

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “C# 3.0 Design Patterns, by Judith
Bishop. Copyright 2008 Judith Bishop, 978-0-596-52773-0.”

If you think your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Comments and Questions
The author would be delighted to hear what you think of the book and whether you
have any good ideas to extend the presentation of C# design patterns. Please address
comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596527730

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

The author also has a site for the book at:

http://patterns.cs.up.ac.za

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it for free at http://safari.oreilly.com.

mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596527730
mailto:bookquestions@oreilly.com
http://www.oreilly.com


Preface | xxi

Acknowledgments
My first thanks are to John Osborn, my editor at O’Reilly, for keeping the faith and
getting this book out on time. His care and expertise are much appreciated. To Jeff
Pepper, who signed up the book quite a while ago, thanks as well. I’m sorry we could
not see the project through together. Thanks also to the reviewers, Eric Lippert, Jim
Whitehead, Stefan Gruner, and Pierre-Henri Kuaté, whose insightful comments—no
holds barred—led to many revisions but an ultimately much better book. My depart-
ment at the University of Pretoria provided me with the latest equipment, and my
colleagues gave me the time to really concentrate when I needed to. In particular I
thank Jan Eloff for his support and friendship. To Carlo Ghezzi of the Politecnico di
Milano, who graciously hosted me for the summer of 2007, when much of the first
draft was written, grazie mille. My former students Hans Lombard and D-J Miller
helped at very short notice with some of the examples, and I really appreciated their
fresh minds and dedication to the task.

Writing this book would have been a much less enjoyable experience without the
constant support and interest of my talented friends Nigel Horspool, Rob Koenig,
and Rudolph Vosser. They never knew quite when the book would really be fin-
ished, but now it is. And finally, to my mother, my sons, and my family, whose love
and joie de vivre kept me going on this (yet another) book—thank you.

—Judith Bishop
Pretoria, South Africa

October 2007

Acknowledgments




1

Chapter 1 CHAPTER 1

C# Meets Design Patterns1

What makes a successful and happy programmer? What contributes to that wonder-
ful “gotcha!” feeling you get when your program finally compiles and runs correctly,
and you know that it is as elegant as it can be? How did you manage to make it ele-
gant while at the same time satisfying all the normal “-ilities” (flexibility, maintain-
ability, reliability, and reusability, to name a few)? And why are some programmers
able to attain this level of elegance so much quicker than others?

It would be easy to say that some are born to program and some are not. Yet even
the best programmers will sit for hours or even days poring over a single screen of
code, knowing it is not quite right and struggling to make it better. The answer is
that a successful programmer has two primary tools: a good programming language
and design patterns. This book is devoted to showing how this winning combina-
tion works together to launch ordinary programmers into the realm of experts.

Those who have long-term programming experience will appreciate that time brings
improvements to a language. Simple things that we take for granted today—like type
checking of variables—were nonexistent or optional in the languages of the 1970s.
Object orientation, which is the basis for programming these days, only came into
vogue in the 1990s, and generics—on which our modern collection classes for
stacks, maps, and lists are based—were just a research project five years ago.

Successful programmers keep abreast of improvements in languages, but often it is
not obvious even to a seasoned professional how a particular new feature will be use-
ful. Some features, such as automatic properties (Chapter 3) and collection initializ-
ers (Chapter 3), are likely to immediately find a home in your toolbox; others, such
as extension methods (Chapter 2), are somewhat more abstract.

Examples are needed to illustrate the utility of many emerging language features—
but while examples illustrate, they can also obscure because they are directed toward
solving particular problems. Given an example of how iterators work with a family
tree manager (Chapter 9), would you be able to reuse them for a chat room pro-
gram? The connection is not at all obvious and could easily be missed. Enter design
patterns, the ultimate in mind connectors for successful programmers.



2 | Chapter 1: C# Meets Design Patterns

Design patterns encapsulate common ways of solving problems using
language features together.

Design patterns provide a high-level language of discourse for programmers to
describe their systems and to discuss solutions to common problems. This language
comprises the names of recognizable patterns and their elements. The proper and
intelligent use of patterns will guide a developer into designing a system that con-
forms to well-established prior practices, without stifling innovation. In the market-
place, design patterns greatly enhance practitioners’ mobility and the value of their
knowledge, as they provide a common, recognizable basis for tackling problems.

The patterns have illustrative names and are described with diagrams illustrating
their role players. There are only 23 classic patterns (fewer than the letters of the
English alphabet), and a good programmer can learn the names and uses of all of
them with some practice. When faced with design choices, such programmers are no
longer left to select language features, such as inheritance, interfaces, or delegates.
They can instead hone in on the bigger picture: a blog would match an Observer pat-
tern (Chapter 9), a community network system would need a Proxy (Chapter 2), and
so on. The element of decision making is not removed, but it is raised to a higher
level.

So, who decides how a design pattern is implemented in a given language? Books
such as this one and writings on web sites present the implementations of the pat-
terns, together with guidance on how to choose a pattern and even how to select
among alternative implementations (if there are any). However, the pull of custom is
very strong, and often patterns are presented using only the language features of the
1980s. Not so in this book. C# 3.0 Design Patterns aims to present the 23 classic pat-
terns in the best possible C# 3.0 style, ensuring that what you learn here will be of
real value to you for many years to come.

About Patterns
Design patterns were introduced in Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides’s seminal work Design Patterns: Elements of Reusable Object-
Oriented Software (Addison-Wesley). The book specifies and describes 23 patterns
that form the foundation of any study of the subject, which are still regarded as the
essential core patterns today.

These core patterns address issues in mainline object-oriented programming (OOP),
and the original implementations were presented in C++ and Smalltalk (the primary
OOP languages at the time they were developed). Since then, other books have



About UML | 3

implemented the patterns in Java, Visual Basic, and C#. As the value of the pattern
concept has become accepted, new patterns have been proposed to add to the
original list. In addition, there are now patterns that are applicable to specific areas,
such as software architecture, user interfaces, concurrency, and security. Although
these patterns are extremely important in their areas, their adherents are frag-
mented, and the core set of universally accepted patterns has not been expanded.

As outlined in the Preface, the discussion of each pattern in this book consists of a
brief description of its role, an illustration, a look at its design and implementation,
and an example, followed by a discussion of its uses and some exercises. New fea-
tures of the C# language are introduced where patterns draw upon them; thus, you
will learn more about the language as you learn about the patterns.

The 23 patterns are divided into three groups: creational, structural, and behavioral.
Within a group, though, there is no inherent ordering, and alphabetical ordering has
traditionally been the default. In this book, we take an innovative approach by relat-
ing the patterns to the language features they require and introducing them in order
of increasing language complexity. Several of the patterns in each group need only
inheritance or interfaces, and it makes sense to deal with these first so that the focus
can be on the patterns themselves and not on the language. The patterns that make
use of more advanced language features (generics, indexers, and delegates) are then
presented later. Novel features of C# can thus be introduced as we go along, rather
than in a standalone introduction or appendix. A comprehensive index comple-
ments this approach.

A key feature of any pattern handbook is the insight that it gives as to the use of pat-
terns in real systems. Knowing that the Façade pattern is frequently used in compiler
construction, or that adapters are prevalent in well-known graphical frameworks,
reinforces their importance and helps to direct their use. However, in large systems
patterns are seldom found in isolation, and often they work together. The Singleton
pattern, for example, is often used in conjunction with other patterns when it is nec-
essary to create only one version of a component. Thus, considerable attention is
given at the end of each chapter to the comparative merits of the patterns explored.

About UML
An important part of each pattern’s description is a Unified Modeling Language*

(UML) class diagram. UML is a universally accepted way of describing software in
diagrammatic form. The diagrams in the book make use of the UML features item-
ized in Table 1-1.

* Defined by the Object Management Group (see http://www.uml.org).

http://www.uml.org


4 | Chapter 1: C# Meets Design Patterns

Table 1-1. UML class diagram notation

Program element Diagram element Meaning

Class Types and parameters specified when important; access indicated by
+ (public), (private), and # (protected).

Interface Name starts with I. Also used for abstract classes.

Note Any descriptive text.

Package Grouping of classes and interfaces.

Inheritance B inherits from A.

Realization B implements A.

Association A and B call and access each other’s elements.

Association (one way) A can call and access B’s elements, but not vice versa.

Aggregation A has a B, and B can outlive A.

Class

+operation( )

–attribute

<<interface>>
IClass

+operation( )

descriptive text

Package

A

B

A

B

A B

A B

A B



About C# 3.0 | 5

There are three kinds of blocks, for classes, interfaces/abstract classes, and packages.
The class is the most common diagram element and contains details of some of its
corresponding C# class’s more important attributes (or fields) and operations (or
methods). A UML diagram is not meant to be an exact copy of a program, and thus
only the elements that are important to the pattern under consideration are shown.
The accessibility of all attributes and operations (private, public, or protected) is
indicated. The default for attributes is private and for operations is public. Devia-
tions from the defaults will be highlighted as they occur.

The types associated with attributes and operations are not usually given. However,
when these are important, they can be inserted after the identifier, separated by a
colon. The same relaxed approach applies to parameters of methods, which are not
usually shown in a diagram.

Notes are very useful for explaining relationships, such as when a method in one
class calls a particular method in another, when this information is directly relevant
to the pattern. In most cases, though, six types of lines give enough information. The
Decorator pattern, which we will consider first, has a reasonably rich diagram, and it
will be used to explain the lines in more detail.

About C# 3.0
An objective of this book is to present C# in its very best style. The version we are
using is C# 3.0 on the .NET 3.5 Beta 2 Framework (August 2007).

C# 1.0 came out in December 2002, embodying much of the research in OOP that
had taken place since Java was launched seven years previously. C# 2.0 was released
in final form in September 2005, and the ECMA standard was made available in June
2006. C# 2.0 added five significant features to C# 1.0, most of which are used in the
patterns in this book:

• Generics that allow classes, structs, interfaces, delegates, and methods to be
parameterized by the types of data they store and manipulate

• Anonymous methods that allow code blocks to be written “inline” where dele-
gate values are expected

• Iterators, which are methods to incrementally compute and yield sequences of
values

Composition A has a B, and B depends on A.

Table 1-1. UML class diagram notation (continued)

Program element Diagram element Meaning

A B



6 | Chapter 1: C# Meets Design Patterns

• Partial types that allow classes, structs, and interfaces to be broken into multiple
pieces stored in different source files for easier development and maintenance

• Nullable types that represent values that possibly are unknown; they support all
possible values of an underlying type plus an additional null state

Within Microsoft, work continued on the language, with a particular emphasis on
the integration of SQL database interfacing and the associated dynamic typing
required. The report on Version 3.0 of the language, finalized in May 2006, includes
substantial advances in integrating the functional and database programming para-
digms into mainline object-orientation:

• Implicit typing of local variables, which permits the types of local variables to be
inferred from the expressions used to initialize them

• Extension methods, which make it possible to extend existing types and con-
structed types with additional methods, outside their definitions

• Lambda expressions, an evolution of anonymous methods that provide improved
type inference and conversions to both delegate types and expression trees

• Object initializers, which ease construction and initialization of objects

• Anonymous types, which are tuple types automatically inferred and created from
object initializers

• Implicit typing of arrays, which is a form of array creation and initialization
together where the element type of the array is inferred from the initializer

• Query expressions, which provide a language-integrated syntax for queries that
is similar to relational and hierarchical query languages, such as SQL and
XQuery

All these new features are used in a natural way in this book. For full details on the
entire C# 3.0 language, see the reference documentation available at http://msdn2.
microsoft.com/vcsharp.

About the Examples
The nearly 40 full example programs in this book have been carefully crafted to sat-
isfy the following criteria:

• They are programmable in no more than 180 lines, and usually 100.

• They are related to real computer systems.

• They are extensible with more functionality.

http://msdn2.microsoft.com/vcsharp/
http://msdn2.microsoft.com/vcsharp/


About the Examples | 7

You’ll find programs related to real-world systems, such as Flickr and Facebook, as
well as chat rooms, games, and blogs. We’ll also tackle topics such as embedded sys-
tems and manufacturing. Some traditional examples (to do with banking and stu-
dent marks, for instance) are included as well, but for the most part, the examples
are new and have not been seen before in books of this nature. A key factor is that,
thanks to the incorporation of design patterns and the deft use of C# 3.0, the pro-
grams are remarkably short. Examples that would not have been feasible to show in
full in a book before are now perfectly reasonable.



8

Chapter 2CHAPTER 2

Structural Patterns: Decorator,
Proxy, and Bridge 2

We start our tour of design patterns with the group known as the structural pat-
terns. There are seven patterns that make up the structural group, each with the role
of building flexibility, longevity, and security into computer software. The names of
the patterns are important, so I’ll introduce them immediately. They are:

• Decorator

• Proxy

• Bridge

• Composite

• Flyweight

• Adapter

• Façade

Structural patterns are concerned with how classes and objects are composed to form
larger structures. Of the many purposes of the seven structural patterns, here are 10:

• Add new functionality dynamically to existing objects, or remove it (Decorator).

• Control access to an object (Proxy).

• Create expensive objects on demand (Proxy).

• Enable development of the interface and implementation of a component to pro-
ceed independently (Bridge).

• Match otherwise incompatible interfaces (Adapter).

• Reduce the cost of working with large numbers of very small objects (Flyweight).

• Reorganize a system with many subsystems into identifiable layers with single
entry points (Façade).

• Select or switch implementations at runtime (Bridge).

• Simplify the interface to a complex subsystem (Façade).

• Treat single objects and composite objects in the same way (Composite).



Decorator Pattern | 9

Structural patterns can be employed while a system is being designed, or later on
during maintenance and extension. In fact, some of them are specifically useful in the
post-production stages of the lifecycle of a software system, when changes are intro-
duced that were not foreseen and when even the interfaces between components
need updating. Thus, sometimes when you want to add functionality, you will be
working with existing classes that cannot be changed. The Decorator pattern is use-
ful here. Alternatively, you might be able to design a whole system from scratch so
that it works in a particularly usable way, with the Composite pattern.

Our exploration of the structural design patterns will span three chapters. In this
chapter, we’ll look at the Decorator, Proxy, and Bridge patterns. In Chapter 3, we’ll
tackle the Composite and Flyweight patterns, and in Chapter 4, we’ll examine the
Adapter and Façade patterns.

Our first three patterns provide ways of adding state and behavior dynamically, con-
trolling the creation and access of objects, and keeping specifications and implemen-
tations separate. They do not draw upon any advanced features of C#, relying only
on interfaces for structuring; however, at the end of this chapter, I introduce exten-
sion methods as an interesting way to implement the Bridge pattern.

For each pattern, we will examine its role, an illustration of where it might be used in
programming, and its design (what the major players are and what roles they play in
the pattern). We will then look at some simple code illustrating the implementation
of the pattern and at a more concrete example. Finally, we will consider some addi-
tional real-world uses for the pattern and some exercises that you can work through
to enhance your understanding of it. Also, at the end of this and every chapter, you
will find a more detailed discussion of when the individual patterns might be used
and a comparison of their intent and applicability.

Decorator Pattern

Role
The role of the Decorator pattern is to provide a way of attaching new state and
behavior to an object dynamically. The object does not know it is being “deco-
rated,” which makes this a useful pattern for evolving systems. A key implementa-
tion point in the Decorator pattern is that decorators both inherit the original class
and contain an instantiation of it.

Illustration
As its name suggests, the Decorator pattern takes an existing object and adds to it. As
an example, consider a photo that is displayed on a screen. There are many ways to
add to the photo, such as putting a border around it or specifying tags related to the
content. Such additions can be displayed on top of the photo, as shown in Figure 2-1.



10 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

The combination of the original photo and some new content forms a new object. In
the second image shown in Figure 2-1, there are four objects: the original photo as
shown to the left, the object that provides a border, and two tag objects with differ-
ent data associated with them. Each of them is a Decorator object. Given that the
number of ways of decorating photos is endless, we can have many such new objects.
The beauty of this pattern is that:

• The original object is unaware of any decorations.

• There is no one big feature-laden class with all the options in it.

• The decorations are independent of each other.

• The decorations can be composed together in a mix-and-match fashion.

Design
Now, we can specify the players in the Decorator pattern in a UML diagram, shown
in Figure 2-2. Because this is the first pattern we are describing in UML, we’ll take it
slowly. (The UML that we need for patterns in this book is covered in Chapter 1 and
summarized in Table 1-1.) The essential players in this UML diagram are:

Component
An original class of objects that can have operations added or modified (there
may be more than one such class)

Operation
An operation in IComponent objects that can be replaced (there may be several
operations)

Figure 2-1. Decorator pattern illustration—(a) plain photograph and (b) photograph with tags



Decorator Pattern | 11

IComponent
The interface that identifies the classes of objects that can be decorated
(Component is one of these)

Decorator
A class that conforms to the IComponent interface and adds state and/or behavior
(there may be more than one such class)

The center of the UML diagram is the Decorator class. It includes two types of rela-
tionships with the IComponent interface:

Is-a
The is-a relationship is shown by a dotted arrow from the Decorator to
IComponent, indicating that Decorator realizes the IComponent interface. The fact
that Decorator inherits from IComponent means that Decorator objects can be
used wherever IComponent objects are expected. The Component class is also in an
is-a relationship with IComponent, and therefore the client can use Component and
Decorator objects interchangeably—the heart of the Decorator pattern.

Has-a
The has-a relationship is shown by an open diamond on the Decorator, linked to
IComponent. This indicates that the Decorator instantiates one or more
IComponent objects and that decorated objects can outlive the originals. The
Decorator uses the component attribute (of type IComponent) to invoke any
replacement Operation it might wish to override. This is the way the Decorator
pattern achieves its objective.

The addedBehavior operation and the addedState attribute in the Decorator class are
other optional ways of extending what is in the original Component objects. We’ll look
at some examples momentarily.

Figure 2-2. Decorator pattern UML diagram

<<interface>>
IComponent

+Operation( )

Component

+Operation( )

Decorator

–addedState
–component : IComponent

+Operation( )
+AddedBehavior( )

Client

Calls the stored
component's operation



12 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

From this list, we can see that the following would be valid statements in a Client
wanting to put two tags on a photo:

Photo photo = new Photo( );
Tag foodTag = new Tag (photo, "Food",1);
Tag colorTag = new Tag (foodTag, "Yellow",2);

By the is-a relationship, photo, foodTag, and colorTag are all IComponent objects. Each
of the tags (the decorators) is created with a Component, which might be a photo or an
already tagged photo. The resulting object diagram is shown in Figure 2-3. As you
can see, there are actually three separate photo objects in the system. How they inter-
act is discussed in the upcoming “Implementation” section.

In most of the patterns we will encounter, the players can appear in multiple guises. To
keep the UML diagrams clear and simple, not all of the options will be shown. How-
ever, we should consider the implications of these multiple players on the design of the
pattern:

Q U I Z

Match the Decorator Pattern Players with the Photo Decorator
Illustration

To test whether you understand the Decorator pattern, cover the lefthand column of
the table below and see if you can identify the players among the items from the illus-
trative example (Figure 2-1), as shown in the righthand column. Then check your
answers against the lefthand column.

IComponent

Component

Operation

Decorator

Client

IComponent

Any photo

A plain photo

To display a photo

A tagged photo

Creator of photos and tagged photos

Any photo

Figure 2-3. Decorator pattern objects

colorTag

picture foodTag

picture photo



Decorator Pattern | 13

Multiple components
Different components that conform to the interface can also be decorated. For
example, we could have a class that draws people, houses, ships, and so on from
simple shapes and lines. They too could be tagged. It is for this reason that the
IComponent interface is important, even if it does not contain any operations. In
the case where we are sure there will only ever be one class of components, we
can dispense with the IComponent interface and have the decorators directly
inherit from Component.

Multiple decorators
We have seen that we can create different instances of a Tag decorator. We can
also consider having other types of decorators, such as Border decorators or even
decorators that make the photo invisible. No matter what the decorators are,
each contains a component object, which might itself be a decorator, setting off
a chain of changes (as suggested in Figure 2-3). Some Decorator pattern designs
include an IDecorator interface, but it generally serves no purpose in C#
implementations.

Multiple operations
Our illustration focuses on drawing as the chief operation for photos and deco-
rations. Other examples will lend themselves to many more optional operations.
Some of these will be part of the original component and its interface, whereas
some will be added behaviors in certain decorators only. The client can call any
of the operations individually on any of the components (decorated or other-
wise) to which it has access.

Implementation
The Decorator pattern’s key feature is that it does not rely on inheritance for extend-
ing behavior. If the Tag class had to inherit from the Photo class to add one or two
methods, Tags would carry everything concerned with Photos around with them,
making them very heavyweight objects. Instead, having the Tag class implement a
Photo interface and then add behavior keeps the Tag objects lean. They can:

• Implement any methods in the interface, changing the initial behavior of the
component

• Add any new state and behavior

• Access any public members via the object passed at construction

Before we carry on with the photo example, consider the theoretical version of the
Decorator pattern in Example 2-1. Short examples such as this one are useful for
showing the interaction between classes and objects of a pattern in a direct mapping to
the UML. Once we move on to a real-world example, optimizations and extensions
might be employed that make it more difficult to detect and visualize the pattern.
Moreover, in a real-world example, the names of the players can be completely dif-
ferent than those in the pattern description.



14 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

Example 2-1. Decorator pattern theory code

1   using System;
2
3   class DecoratorPattern {
4
5     // Decorator Pattern             Judith Bishop  Dec 2006
6     // Shows two decorators and the output of various
7     // combinations of the decorators on the basic component
8
9      interface IComponent {

10        string Operation( );
11      }
12
13      class Component : IComponent {
14        public string Operation ( ) {
15          return "I am walking ";
16        }
17      }
18
19       class DecoratorA : IComponent {
20         IComponent component;
21
22         public DecoratorA (IComponent c) {
23           component = c;
24         }
25
26         public string Operation( ) {
27           string s = component.Operation( );
28           s += "and listening to Classic FM ";
29           return s;
30         }
31       }
32
33       class DecoratorB : IComponent {
34         IComponent component;
35         public string addedState = "past the Coffee Shop ";
36
37         public DecoratorB (IComponent c) {
38           component = c;
39         }
40
41          public string Operation ( ) {
42            string s = component.Operation ( );
43            s += "to school ";
44            return s;
45          }
46
47          public string AddedBehavior( ) {
48            return "and I bought a cappuccino ";
49          }
50        }
51
52      class Client {
53
54        static void Display(string s, IComponent c) {



Decorator Pattern | 15

The example starts off with the IComponent interface and a simple Component class
that implements it (lines 9–17). There are two decorators that also implement the
interface; each of them includes a declaration of an IComponent, which is the object it
will decorate. DecoratorA (lines 19–31) is fairly plain and simply implements the
Operation by calling it on the component it has stored, then adding something to the
string it returns (line 28). DecoratorB (lines 33–50) is more elaborate. It also imple-
ments the Operation in its own way, but it offers some public addedState (line 35)
and addedBehavior (lines 47–49) as well. In both implemented operations, the com-
ponent’s Operation method is called first, but this is not a requirement of the pat-
tern; it merely makes for more readable output in this example.

The Client class is responsible for creating components and decorators in various con-
figurations and displaying the result of calling the Operation in each case. Cases 2 and 3
(lines 63–64) decorate the basic component in different ways, as shown in the output
on lines 79–80. Cases 4 and 5 apply two decorators, a B and an A, in different orders.
In cases 2–4, the decorator objects are instantiated and used immediately, then dis-
carded. In case 5, we create a DecoratorB object and keep this instance in a variable
of the same type (instead of IComponent), so we can invoke the new behavior:

55          Console.WriteLine(s+ c.Operation( ));
56        }
57
58        static void Main( ) {
59          Console.WriteLine("Decorator Pattern\n");
60
61          IComponent component = new Component( );
62          Display("1. Basic component: ", component);
63          Display("2. A-decorated : ", new DecoratorA(component));
64          Display("3. B-decorated : ", new DecoratorB(component));
65          Display("4. B-A-decorated : ", new DecoratorB(
66                  new DecoratorA(component)));
67          // Explicit DecoratorB
68          DecoratorB b = new DecoratorB(new Component( ));
69          Display("5. A-B-decorated : ", new DecoratorA(b));
70          // Invoking its added state and added behavior
71          Console.WriteLine("\t\t\t"+b.addedState + b.AddedBehavior( ));
72        }
73      }
74    }
75   /* Output
76   Decorator Pattern
77
78   1. Basic component: I am walking
79   2. A-decorated : I am walking and listening to Classic FM
80   3. B-decorated : I am walking to school
81   4. B-A-decorated : I am walking and listening to Classic FM to school
82   5. A-B-decorated : I am walking to school and listening to Classic FM
83            past the Coffee Shop and I bought a cappuccino
84   */

Example 2-1. Decorator pattern theory code (continued)



16 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

DecoratorB b = new DecoratorB(new Component( ));
Display("5. A-B-decorated : ", new DecoratorA(b));
// Invoking its added state and added behavior
Console.WriteLine("\t\t\t"+b.addedState + b.AddedBehavior( ));

5. A-B-decorated : I am walking to school and listening to Classic FM
        past the Coffee Shop and I bought a cappuccino

There are three objects here: the explicitly declared b and the implicitly declared
DecoratorA and Component objects. The Display method receives the DecoratorA
object and invokes its Operation method (line 55). This takes it to the DecoratorB
object. On line 42, the object that DecoratorB was composed with has its Operation
invoked, and the basic string “I am walking” was returned (line 15). Continuing on,
DecoratorB adds the bit about walking to school (line 43), and then DecoratorA adds
“listening to Classic FM” (line 28). This completes the call to Display. As can be seen
on line 82, the result is the opposite of line 81 because the decorators were com-
posed in a different order.

However, that is not all. Decorators can define new behavior, which can be invoked
explicitly. We do this on line 71, which results in the second line of output (line 83)
about buying a cappuccino.

That, in a nutshell, is how decorators work. Decorators do not need any advanced
language features; they rely on object aggregation and interface implementation.
Now, let’s consider a real-world example.

Example: Photo Decorator
In this section, we’ll consider how to implement a photo decorator system, as
described in the “Illustration” section, earlier. To emphasize that the original compo-
nent was written previously and is not available for altering, we’ll place it in a sepa-
rate namespace called Given:

using System.Windows.Forms;

  namespace Given {
    // The original Photo class
    public class Photo : Form {
      Image image;

      public Photo ( ) {
        image = new Bitmap("jug.jpg");
        this.Text = "Lemonade";
        this.Paint += new PaintEventHandler(Drawer);
      }

      public virtual void Drawer(Object source, PaintEventArgs e) {
        e.Graphics.DrawImage(image,30,20);
      }
    }
  }



Decorator Pattern | 17

Photo inherits from System.Windows.Forms so that it can be displayed. The construc-
tor sets up the Drawer method as the target of the PaintEventHandler that will be
called when the Form is activated by a Main method. In C#, a call to Application.Run
will start up a window in this way, so a basic client can look like this:

static void  Main ( ) {
  // Application.Run acts as a simple client
  Application.Run(new Photo( ));
}

Now, without altering anything in the Photo class, we can start adding decorators.
The first draws a blue border around the photo (we’ll assume the size is known to
keep things simple):

// This simple border decorator adds a colored border of fixed size
class BorderedPhoto : Photo {
  Photo photo;
  Color color;
  public BorderedPhoto (Photo p, Color c) {
    photo = p;
    color=c;
  }

  public override void Drawer(Object source, PaintEventArgs e) {
    photo.Drawer(source, e);
    e.Graphics.DrawRectangle(new Pen(color, 10),25,15,215,225);
  }
}

Notice that this code deviates from the pattern laid out in Figure 2-2, in that there is
no IComponent interface. This is perfectly acceptable; the decorators can inherit
directly from the component and maintain an object of that class as well. We see
now that Drawer is the operation that is to be called from one decorator to the next.
However, this code does rely on the original Component declaring Drawer as virtual. If
this is not the case, and we cannot go in and change the Component class, an interface
is necessary. This arrangement is shown in Example 2-1.

The Tag decorator follows a similar form, so we can put together the following
composition:

// Compose a photo with two tags and a blue border
foodTag = new Tag (photo, "Food", 1);
colorTag = new Tag (foodTag, "Yellow", 2);
composition = new BorderedPhoto(colorTag, Color.Blue);
Application.Run(composition);

The result of this sequence of decorations is shown in Figure 2-1(b). Notice that
Decorators can be instantiated with different parameters to give different effects: the
foodTag object has a second parameter of "Food", and the colorTag’s second parame-
ter is "Yellow".



18 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

Finally, let’s examine the added state and behavior that is in the Tags. A Tag class
declares a static array and counter that stores the tag names as they come in. Any tag
decorator object can then call the ListTags method to show all the tags currently in
play. The full program is given in Example 2-2.

Example 2-2. Decorator pattern example code—Photo Decorator

 using System;
   using System.Drawing;
   using System.Drawing.Drawing2D;
   using System.Windows.Forms;
   using System.Collections.Generic;
   using Given;

   // Decorator Pattern Example        Judith Bishop  Aug 2007
   // Draws a single photograph in a window of fixed size
   // Has decorators that are BorderedPhotos and TaggedPhotos
   // that can be composed and added in different combinations

   namespace Given {

      // The original Photo class
     public class Photo : Form {
       Image image;
       public Photo ( ) {
         image = new Bitmap("jug.jpg");
         this.Text = "Lemonade";
         this.Paint += new PaintEventHandler(Drawer);
       }

       public virtual void Drawer(Object source, PaintEventArgs e) {
         e.Graphics.DrawImage(image,30,20);
       }
     }
   }

   class DecoratorPatternExample {

     // This simple BorderedPhoto decorator adds a colored border of fixed size
     class BorderedPhoto : Photo {
       Photo photo;
       Color color;

       public BorderedPhoto (Photo p, Color c) {
         photo = p;
         color=c;
       }

      public override void Drawer(Object source, PaintEventArgs e) {
        photo.Drawer(source, e);
        e.Graphics.DrawRectangle(new Pen(color, 10),25,15,215,225);
      }
    }



Decorator Pattern | 19

    // The TaggedPhoto decorator keeps track of the tag number which gives it
    // a specific place to be written

    class TaggedPhoto : Photo {
     Photo photo;
      string tag;
      int number;
      static int count;
      List <string> tags = new List <string> ( );

      public TaggedPhoto(Photo p, string t) {
        photo = p;
        tag = t;
        tags.Add(t);
        number = ++count;
      }

      public override void Drawer(Object source, PaintEventArgs e) {
        photo.Drawer(source,e);
        e.Graphics.DrawString(tag,
            new Font("Arial", 16),
            new SolidBrush(Color.Black),
            new PointF(80,100+number*20));
      }

      public string ListTaggedPhotos( ) {
        string s = "Tags are: ";
        foreach (string t in tags) s +=t+" ";
        return s;
      }
    }

    static void Main ( ) {
      // Application.Run acts as a simple client
      Photo photo;
      TaggedPhoto foodTaggedPhoto, colorTaggedPhoto, tag;
      BorderedPhoto composition;

      // Compose a photo with two TaggedPhotos and a blue BorderedPhoto
      photo = new Photo( );
      Application.Run(photo);
      foodTaggedPhoto = new TaggedPhoto (photo,"Food");
      colorTaggedPhoto = new TaggedPhoto (foodTaggedPhoto,"Yellow");
      composition = new BorderedPhoto(colorTaggedPhoto, Color.Blue);
      Application.Run(composition);
      Console.WriteLine(colorTaggedPhoto.ListTaggedPhotos( ));

      // Compose a photo with one TaggedPhoto and a yellow BorderedPhoto
      photo = new Photo( );
      tag = new TaggedPhoto (photo,"Jug");
      composition = new BorderedPhoto(tag, Color.Yellow);
      Application.Run(composition);

Example 2-2. Decorator pattern example code—Photo Decorator (continued)



20 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

An important point about the Decorator pattern is that it is based around new
objects being created with their own sets of operations. Some of these might be inher-
ited, but only down one level. For example, when implementing the Photo Decora-
tor program, we could try to alter properties of the Windows Form class, such as
Height and Width, from within a decorator object. For the component itself and for a
first-level decorator, this would work. But as soon as there was a second level of dec-
orators, the changes would not get through. The reason is evident from the object
diagram in Figure 2-3: the first decorator holds a reference to the actual Windows
Form object, but the second-level decorator does not. For this kind of manipulation a
different pattern, such as Strategy (discussed in Chapter 7), would be more fitting.

In the example of the Photo Decorator program, we did not actually add any behav-
ior; we only overrode it. A Client implemented as the Application.Run harness uses
the event model to invoke the PaintEventHandler implicitly. It does not give an
opportunity for calling other methods explicitly. Of course, other events (such as
MouseMove and OnClick) can be programmed, and then the other behaviors in the
decorators will make sense (see the “Exercises” section later).

Use
Here are four ways the Decorator pattern is used in the real world:

• As our small example illustrated, the Decorator pattern fits well in the graphics
world. It is equally at home with video and sound; for instance, video streaming
can be compressed at different rates, and sound can be input to a simultaneous
translation service.

• At a more mundane level, decorators abound in the I/O APIs of C#. Consider
the following hierarchy:

System.IO.Stream
  System.IO.BufferedStream
  System.IO.FileStream
  System.IO.MemoryStream
  System.Net.Sockets.NetworkStream
  System.Security.Cryptography.CryptoStream

The subclasses decorate Stream because they inherit from it, and they also con-
tain an instance of a Stream that is set up when an object is constructed. Many of
their properties and methods relate to this instance.

      Console.WriteLine(tag.ListTaggedPhotos( ));
    }
   }
 /* Output
TaggedPhotos are: Food Yellow
 TaggedPhotos are: Food Yellow Jug
 */

Example 2-2. Decorator pattern example code—Photo Decorator (continued)



Decorator Pattern | 21

• In today’s world of mobile devices, web browsers and other mobile applications
thrive on the Decorator pattern. They can create display objects suitable for
smaller screens that include scroll bars and exclude banners that would be stan-
dard on desktop display browsers, for example.

• The Decorator pattern is so useful that there are now actual Decorator classes in
.NET 3.0. The one in System.Windows.Controls “provides a base class for
elements that apply effects onto or around a single child element, such as Bor-
der or Viewbox.”

The following table summarizes when, in general, to use the Decorator pattern.

Exercises
1. Assume that the Photo class was written with Drawer as a plain (not virtual)

method and it cannot be altered. Reconstruct Example 2-2 so that it works
under this constraint. (Hint: use an interface as in the theory example.)

2. Add to the Photo Decorator system a second type of component called Hominid.
Use the drawing methods for ovals and lines to draw an approximation of a per-
son. Then, use the same two decorators—Tag and Border—to decorate Hominid
objects.

3. Add other event handlers to the constructors of the decorators, together with
additional behavior. For example, an OnClick event could cause a tag to appear,
rather than having it appear automatically.

4. Decorate the Console class so that Write and WriteLine methods are trapped and
the output is reformatted for lines of a given size, avoiding unsightly wrap-
arounds. Test your decorator with the program in Example 2-1.

5. Write a program that decorates the Stream class and shows how much of a file
has been read in, using a trackbar.

Use the Decorator pattern when…

You have:
• An existing component class that may be unavailable for subclassing.

You want to:
• Attach additional state or behavior to an object dynamically.
• Make changes to some objects in a class without affecting others.
• Avoid subclassing because too many classes could result.

But consider using instead:
• The Adapter pattern, which sets up an interface between different classes.
• The Composite pattern, which aggregates an object without also inheriting its interface.
• The Proxy pattern, which specifically controls access to objects.
• The Strategy pattern, which changes the original object rather than wrapping it.



22 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

6. Write a program that decorates the Stream class and asks for a password before
allowing reading to continue.

7. Write a program that decorates a text message with a simple cipher. Include a
second decorator that transforms the encrypted message back to plain text.

Proxy Pattern

Role
The Proxy pattern supports objects that control the creation of and access to other
objects. The proxy is often a small (public) object that stands in for a more complex
(private) object that is activated once certain circumstances are clear.

Illustration
A major phenomenon in the world today is the rise in popularity of community net-
working systems, the most prominent of which is Facebook. A session from Face-
book is shown in Figure 2-4.

Figure 2-4. Proxy pattern illustration—a page in a social networking system



Proxy Pattern | 23

A feature of such systems is that many people who sign up do so only to view what
others are up to and do not actively participate or add content. It might therefore be
a good policy to start every newcomer with a plain page and not grant users any
actual storage space or access to any facilities until they start adding friends and
messages.

Another feature of these systems is that you have to first register with the system and
then log on at each session. Once logged on, you have access to your friends’ pages.
All the actions you can perform (poke, write on walls, send gifts, etc.) originate at
your browser and are sent across the network to the nearest Facebook server. The
objects are the Facebook pages; the proxies are the mechanisms that allow registra-
tion and login.

Design
The design of a proxy and its players is shown in the UML diagram in Figure 2-5.

The players in the pattern are:

ISubject
A common interface for subjects and proxies that enables them to be used
interchangeably

Subject
The class that a proxy represents

Proxy
A class that creates, controls, enhances, and authenticates access to a Subject

Request
An operation on the Subject that is routed via a proxy

The central class, Proxy, implements the ISubject interface. The Client can use
ISubject to abstract away from proxies. However, as we shall see in the upcoming
SpaceBook example, sometimes we can dispense with this interface. Each Proxy object
maintains a reference to a Subject, which is where the action really takes place. The
Proxy performs frontend work. Its value can be enhanced by making the Subject a pri-
vate class so that the Client cannot get to the Subject except via the Proxy.

Figure 2-5. Proxy pattern UML diagram

Client

Subject

+Request( )

<<interface>>
ISubject

+Request( )

Proxy

+Request( ) Routes requests
to the Subject



24 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

There are several kinds of proxies, the most common of which are:

Virtual proxies
Hands the creation of an object over to another object (useful if the creation pro-
cess might be slow or might prove unnecessary)

Authentication proxies
Checks that the access permissions for a request are correct

Remote proxies
Encodes requests and send them across a network

Smart proxies
Adds to or change requests before sending them on

Within the scope of the social networking system mentioned earlier, these map as
follows:

• Delaying the creation of a rich environment (virtual proxy)

• Logging in users (authentication proxy)

• Sending requests across the network (remote proxy)

• Performing actions on friends’ books (smart proxy

Implementation
A major aim of this book is to introduce interesting features of C# and show how
they can make writing patterns easier, clearer, and more secure. As each new feature
finds a place in a pattern, I will introduce it via a sidebar. This example illustrates the
use of some of C#’s access modifiers—the focus of our first sidebar.

Q U I Z

Match the Proxy Pattern Players with the Facebook Illustration
To test whether you understand the Proxy pattern, cover the lefthand column of the
table below and see if you can identify the players among the items from the illustrative
example (Figure 2-4), as shown in the righthand column. Then check your answers
against the lefthand column.

ISubject

Subject

Subject.Request

Proxy

Proxy.Request

Client

A list of actions that can be done on the pages

Actual pages belonging to one person

Actually changing the pages

Frontend to the actual pages

Performs some action before routing the Request onward

A user visiting her pages



Proxy Pattern | 25

Now, let’s look at a small theoretical example of the pattern that aims to show:

• How the division between the Client on the one hand and the proxies and the
Subject on the other can be implemented with the strictest access modifiers
possible

• How virtual and protection proxies perform their work and route requests
onward

The nub of the virtual proxy code is this:

 public class Proxy : ISubject {
   Subject subject;

   public string Request( ) {
     // A virtual proxy creates the object only on its first method call
     if (subject == null)
       subject = new Subject( );
     return subject.Request();
   }
 }

The Client can create the Proxy at any time using a normal instantiation. Because a
default constructor is used, the reference to a Subject is not made at this time. It is
only when the Request method is called that the Subject reference is checked and, if
null, assigned to an instantiated object.

The full code for the theory example is shown in Example 2-3. The example empha-
sizes that all instances in the client are declared of the interface type, ISubject. This
means that access to additional operations in proxies, such as Authenticate, will
require the ISubject object to be suitably type-cast, as happens on lines 63 and 64.
The example includes the second proxy in the ProtectionProxy class (lines 31–50).
This proxy is independent of the other one. If a ProtectionProxy object is declared,
as on line 61, all first requests will be met by an instruction to authenticate. In this
example, Authenticate is a separate method that must be called, as in lines 63 and
64. In the next example, registrations and authentication will start up automatically
when Request is called.

Table 2-1. Access modifiers

Modifier Effect Default for

private Accessible within the method or
type in which it is declared

Members of classes and structs; nested types

internal Accessible within the assembly Non-nested types

protected Accessible within a class and its
derived classes

–

protected internal Accessible within a class, its derived
classes, or an assembly

–

public Accessible everywhere Members of enums and interfaces



26 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

C# Feature—Access Modifiers
At the physical level, a C# program consists of one or more compilation units, each
contained in a separate source file. When a C# program is compiled, all of the compi-
lation units are processed together. Thus, compilation units can depend on each other,
possibly in a circular fashion. An assembly is a physical container for types and the
resources associated with them.

At the logical level, C# programs are organized using namespaces. Namespaces are
used as a way of presenting program elements that are exposed to other programs in
the same or different assemblies. Access modifiers are a way of specifying which mem-
bers of a namespace will be exposed and to what degree.

In C#, an access modifier alters the default accessibility of a type or its members. The
available modifiers and the defaults that are applied are shown in Table 2-1. In this
table, types include classes, structs, interfaces, enums, and delegates. The interpreta-
tion of this table for classes is as follows:

• A non-nested class is by default visible to other classes in the same assembly.

• A nested class is by default private and can have no more accessibility than its
enclosing class.

• A member of a class (e.g., field, method, property) is by default private.

• An inherited class can have special access to a member in its superclass that has
been tagged with the protected modifier.

Unless you are going to do cross-assembly development, the public modifier is not
strictly necessary; however, it has a currency in programming that the internal modi-
fier does not. It is therefore acceptable to use public when tagging members for access
outside of classes. The real need for the more restrictive internal modifier is illustrated
in the “Example” section.

There are some restrictions as to where and how access modifiers can be placed. Inter-
face members are always public, and no modifiers are allowed. Namespaces cannot
have private or protected members. Modifiers can only be added to types and members
to make them as accessible as their enclosing methods or classes.

cf. C# Language Specification Version 3.0, September 2007, Section 10.3.5

Example 2-3. Proxy pattern theory code

1   using System;
2
3      // Proxy Pattern                 Judith Bishop  Dec 2006
4      // Shows virtual and protection proxies
5
6      class SubjectAccessor {
7        public interface ISubject {
8          string Request ( );
9       }

10



Proxy Pattern | 27

11       private class Subject {
12          public string Request( ) {
13            return "Subject Request " + "Choose left door\n";
14          }
15       }
16
17       public class Proxy : ISubject {
18          Subject subject;
19
20          public string Request( ) {
21            // A virtual proxy creates the object only on its first method call
22            if (subject == null) {
23              Console.WriteLine("Subject inactive");
24              subject = new Subject( );
25            }
26            Console.WriteLine("Subject active");
27            return "Proxy: Call to " + subject.Request( );
28          }
29       }
30
31       public class ProtectionProxy : ISubject {
32         // An authentication proxy first asks for a password
33         Subject subject;
34         string password = "Abracadabra";
35
36         public string Authenticate (string supplied) {
37           if (supplied!=password)
38             return "Protection Proxy: No access";
39           else
40             subject = new Subject( );
41             return "Protection Proxy: Authenticated";
42         }
43
44         public string Request( ) {
45           if (subject==null)
46             return "Protection Proxy: Authenticate first";
47           else return "Protection Proxy: Call to "+
48             subject.Request( );
49         }
50       }
51     }
52
53     class Client : SubjectAccessor {
54       static void Main( ) {
55         Console.WriteLine("Proxy Pattern\n");
56
57         ISubject subject = new Proxy( );
58         Console.WriteLine(subject.Request( ));
59         Console.WriteLine(subject.Request( ));
60
61         ProtectionProxy subject = new ProtectionProxy( );
62         Console.WriteLine(subject.Request( ));

Example 2-3. Proxy pattern theory code (continued)



28 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

The program is structured with an enclosing class called SubjectAccessor that is
there to group the types of the proxies and subjects. The interface and the proxies are
all declared as public (lines 7, 17, and 31), so that they and their publicly modified
members are fully accessible to clients. The intention of both the virtual and protec-
tion proxies is to provide a frontend to the Subject. For this reason, the Subject is
declared as private (line 11). Its Request method is public, but it is only visible to
classes that can see the class—i.e., those within SubjectAccessor.

We can perform two tests to check that the accessibility is set up just right:

• A more natural grouping for proxies and subjects would have been a namespace,
but classes within namespaces are not permitted to be private. See what hap-
pens when you change line 6 to namespace SubjectAccessor and add a using
SubjectAccessor statement after line 1. The same applies if you remove the
SubjectAccessor class altogether, as then the types all belong to the default
namespace.

• Add the following statement in the Main method (at line 56):
ISubject test = new Subject( );

The code for a client to declare a real subject will not compile because the pro-
gram is organized so that it can only declare proxies. However, if you remove the
private modifier from Subject (line 11), the instantiation will be accepted. The
reason for this is that in order to gain access to the classes in SubjectAccessor,
the client inherits from it, thus giving it access to internal members. An alterna-
tive way of composing the program is discussed in the exercises.

63         Console.WriteLine((subject as ProtectionProxy).Authenticate("Secret"));
64         Console.WriteLine((subject as ProtectionProxy).Authenticate("Abracadabra"));
65         Console.WriteLine(subject.Request( ));
66       }
67     }
68
69   /* Output
70
71   Proxy Pattern
72
73   Subject inactive
74   Subject active
75   Proxy: Call to Subject Request Choose left door
76
77   Subject active
78   Proxy: Call to Subject Request Choose left door
79
80   Protection Proxy: Authenticate first
81   Protection Proxy: No access
82   Protection Proxy: Authenticated
83   Protection Proxy: Call to Subject Request Choose left door
84   */

Example 2-3. Proxy pattern theory code (continued)



Proxy Pattern | 29

As this discussion has illustrated, you can make the proxies and the Subject avail-
able for use in just the ways you need. They are not intended to be independent of
each other—hence their grouping in a class. The proxies are free to aggregate objects
of the Subject. They keep them in line with each other and with what they offer to
the Client.

Example: SpaceBook
To further investigate proxies, we’ll postulate a rudimentary social networking sys-
tem called SpaceBook. SpaceBook keeps pages of text that people enter under their
login names, so both authentication and lazy creation of pages are required. As sug-
gested in the earlier “Illustration” section, simply registering for SpaceBook will not
give users any space on the system; to gain space, they must first add some content.
Therefore, the system should, from the start, enable people to write on others’ pages.
The SpaceBook class looks like this:

// The Subject
private class SpaceBook {
  static SortedList <string,RealSpaceBook> community =
      new SortedList <string,RealSpaceBook> (100);
  string pages;
  string name;
  string gap = "\n\t\t\t\t";

  static public bool IsUnique (string name) {
    return community.ContainsKey(name);
  }

  internal SpaceBook (string n) {
    name = n;
    community [n] = this;
  }

  internal void Add(string s) {
    pages += gap+s;
    Console.WriteLine(gap+"======== "+name+"'s SpaceBook =========");
    Console.WriteLine(pages);
    Console.WriteLine(gap+"==========================");
  }

  internal void Add(string friend, string message) {
    community[friend].Add(message);
  }

  internal void Poke (string who, string friend) {
    community[who].pages += gap + friend + " poked you";
  }
}



30 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

The class maintains a static list of all current users. We use the built-in SortedList
class here from System.Collections.Generic and index it with a string, which is the
user’s name. The constructor enters this SpaceBook object into the collection under
the given name. There are two Add methods: one for the user and one to add to
another user’s pages. Then there is the popular Poke method, which enters a fixed
message on another page.

SpaceBook has one public method, which might be unexpected: the static Unique
method, which checks whether a name has been used before. It enables us to keep
the community list completely private (which it is by default inside the class).

Now, we turn to the client. It shows a few tests of activity on Spacebook by Judith
and Tom:

// The Client
class ProxyPattern : SpaceBookSystem {
  static void Main ( ) {
    MySpaceBook me = new MySpaceBook( );
    me.Add("Hello world");
    me.Add("Today I worked 18 hours");

    MySpaceBook tom = new MySpaceBook( );
    tom.Poke("Judith");
    tom.Add("Judith","Poor you");
    tom.Add("Off to see the Lion King tonight");
  }
}

The first user, whom we deduce is Judith, creates a MySpaceBook (not a SpaceBook)
and adds two messages to it. Then, Tom also creates a MySpaceBook, pokes Judith,
and adds a message to her page and to his page.

Note that the neither the client nor the actual SpaceBook system has any authentica-
tion code. This will all be handled in the proxy, whose name is now obvious—
MySpaceBook. The output for the preceding client code is:

Let's register you for SpaceBook
All SpaceBook names must be unique
Type in a user name: Judith
Type in a password: haha
Thanks for registering with SpaceBook
Welcome Judith. Please type in your password: haha
Logged into SpaceBook

            ======== Judith's SpaceBook =========
            Hello world
            ==================================

            ======== Judith's SpaceBook =========
            Hello world
                 Today I worked 18 hours
            ==================================



Proxy Pattern | 31

Let's register you for SpaceBook
All SpaceBook names must be unique
Type in a user name: Tom
Type in a password: yey
Thanks for registering with SpaceBook
Welcome Tom. Please type in your password: yey
Logged into SpaceBook

            ======== Judith's SpaceBook =========
            Hello world
            Today I worked 18 hours
            Tom poked you
            eTom said: Poor you
            ==================================

            ======== Tom's SpaceBook =========
            Off to see the Lion King tonight
            ==================================

We can distinguish between the output from SpaceBook itself, which is centered
within lines, and the interaction initiated by the proxies.

SpaceBook does not have a constructor, so apart from obtaining a reference, nothing
happens when the client instantiates a SpaceBook. The heart of the proxy is here:

public void Add(string message) {
  Check( );
  if (loggedIn) mySpaceBook.Add(message);
}

void Check( ) {
  if (!loggedIn) {
    if (password==null)
    Register( );
    if (mySpaceBook == null)
    Authenticate( );
  }
}

The first point of contact by the client is a call on Add. Add immediately checks the
status of the user and takes him through the steps of registering and supplying a
password, and then authenticating against this password. Check is also called from
the other Add methods and the Poke method. We can now consider the full program,
shown in Example 2-4.

Example 2-4. Proxy pattern example code—SpaceBook

    using System;
    using System.Collections.Generic;

    // Proxy Pattern Example           Judith Bishop  Aug 2007
  // Sets up a SpaceBook page with registration and authentication



32 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

  class SpaceBookSystem {

    // The Subject
    private class SpaceBook {
      static SortedList <string,SpaceBook> community =
          new SortedList <string,SpaceBook> (100);
      string pages;
      string name;
      string gap = "\n\t\t\t\t";

      static public bool IsUnique (string name) {
        return community.ContainsKey(name);
      }

      internal SpaceBook (string n) {
        name = n;
        community [n] = this;
      }

      internal void Add(string s) {
        pages += gap+s;
        Console.Write(gap+"======== "+name+"'s SpaceBook =========");
        Console.Write(pages);
        Console.WriteLine(gap+"===================================");

      }

      internal void Add(string friend, string message) {
        community[friend].Add(message);
      }

      internal void Poke (string who, string friend) {
        community[who].pages += gap + friend + " poked you";
      }
   }

      // The Proxy
      public class MySpaceBook {
        // Combination of a virtual and authentication proxy
      SpaceBook mySpaceBook;
      string password;
      string name;
      bool loggedIn = false;

      void Register ( ) {
        Console.WriteLine("Let's register you for SpaceBook");
        do {
          Console.WriteLine("All SpaceBook names must be unique");
          Console.Write("Type in a user name: ");
          name = Console.ReadLine( );
        } while (SpaceBook.Unique(name));
        Console.Write("Type in a password: ");

Example 2-4. Proxy pattern example code—SpaceBook (continued)



Proxy Pattern | 33

        password = Console.ReadLine( );
        Console.WriteLine("Thanks for registering with SpaceBook");
      }

      bool Authenticate ( ) {
        Console.Write("Welcome "+name+". Please type in your password: ");
        string supplied = Console.ReadLine( );
        if (supplied==password) {
          loggedIn = true;
          Console.WriteLine("Logged into SpaceBook");
          if (mySpaceBook == null)
            mySpaceBook = new SpaceBook(name);
          return true;
        }
        Console.WriteLine("Incorrect password");
        return false;
      }

      public void Add(string message) {
        Check( );
        if (loggedIn) mySpaceBook.Add(message);
     }

      public void Add(string friend, string message) {
        Check( );
        if (loggedIn)
          mySpaceBook.Add(friend, name + " said: "+message);
     }

      public void Poke(string who) {
        Check( );
        if (loggedIn)
           mySpaceBook.Poke(who,name);
      }

      void Check( ) {
        if (!loggedIn) {
          if (password==null)
              Register( );
          if (mySpaceBook == null)
              Authenticate( );
        }
      }
    }

  // The Client
  class ProxyPattern : SpaceBookSystem {
    static void Main ( ) {
      MySpaceBook me = new MySpaceBook( );
      me.Add("Hello world");
      me.Add("Today I worked 18 hours");

Example 2-4. Proxy pattern example code—SpaceBook (continued)



34 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

Notice that in this program there is no need for the ISubject interface. SpaceBook and
MySpaceBook reside within the SpaceBookSystem and handle interaction through aggre-
gation (MySpaceBook has a reference to a SpaceBook object) and accessibility modifi-
ers, as discussed earlier.

      MySpaceBook tom = new MySpaceBook( );
      tom.Poke("Judith");
      tom.Add("Judith","Poor you");
      tom.Add("Off to see the Lion King tonight");
    }
  }
/* Output
Let's register you for SpaceBook
All SpaceBook names must be unique
Type in a user name: Judith
Type in a password: haha
Thanks for registering with SpaceBook
Welcome Judith. Please type in your password: haha
Logged into SpaceBook

            ======== Judith's SpaceBook =========
            Hello world
            ==================================

            ======== Judith's SpaceBook =========
            Hello world
                 Today I worked 18 hours
            ==================================
Let's register you for SpaceBook
All SpaceBook names must be unique
Type in a user name: Tom
Type in a password: yey
Thanks for registering with SpaceBook
Welcome Tom. Please type in your password: yey
Logged into SpaceBook

            ======== Judith's SpaceBook =========
            Hello world
            Today I worked 18 hours
            Tom poked you
            eTom said: Poor you
            ==================================

            ======== Tom's SpaceBook =========
            Off to see the Lion King tonight
            ==================================

*/

Example 2-4. Proxy pattern example code—SpaceBook (continued)



Proxy Pattern | 35

Use
Proxies are frontends to classes that have sensitive data or slow operations. They are
often found in image-drawing systems, where the proxy places a placeholder on the
screen and then activates a real drawer to fetch and render the image. In the same
way, they can be involved in initiating the buffering associated with video streaming.

Proxies, like decorators, forward requests on to another object. The difference is that
the proxy relationship is set up at design time and is well-known in advance, even
though the Subject is not an active participator in the relationship. Decorators, on
the other hand, can be added dynamically.

We have not examined remote proxies in detail in this section, but they can be found
in any client/server system running on the .NET Framework (see “Exercises,” later).

Exercises
1. Change Example 2-3 so that the Client does not inherit from the Program, but

rather creates an instance of it.

2. If you are a GUI programmer, turn the SpaceBook system into something more
visually appealing. You can either replace the methods in SpaceBook (the subject)
to draw frames in windows and so on, or add decorators, leaving the existing
component as it is.

3. The SpaceBook system as it stands lacks a real “friends” facility; at the moment,
a user has access to all the other books on the system. Improve SpaceBook so that
friends can be added and then operations such as Poke can be done only on users
who have been declared (and accepted as) your friends. Carefully design your
improvements so that code goes in the right place—SpaceBook (the subject) or
MySpaceBook (the proxy).

Use the Proxy pattern when…

You have objects that:
• Are expensive to create.
• Need access control.
• Access remote sites.
• Need to perform some action whenever they are accessed.

You want to:
• Create objects only when their operations are requested.
• Perform checks or housekeeping on objects whenever accessed.
• Have a local object that will refer to a remote object.
• Implement access rights on objects as their operations are requested.



36 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

4. Another type of online community network holds photos (an example is Flickr).
Users upload photos, which all others can view but only friends can download
or comment on. Sketch out the use of the Proxy pattern for such a system.

5. Consider how to monitor an activity on a library. For example, supposing a
third-party library expects a Stream class, you could implement your own
MyStream class that intercepts, monitors, and logs every call to Stream methods.
Write a short test program that uses the Proxy pattern to illustrate this idea.

Bridge Pattern

Role
The Bridge pattern decouples an abstraction from its implementation, enabling them
to vary independently. The Bridge pattern is useful when a new version of software is
brought out that will replace an existing version, but the older version must still run
for its existing client base. The client code will not have to change, as it is conform-
ing to a given abstraction, but the client will need to indicate which version it wants
to use.

Illustration
Consider the rolling out of a new version of the .NET Framework used to compile
and run C# 3.0. You can have several versions of the Framework loaded on your
computer at any time and can select which one to use by externally setting a path to it
in the Windows operating system. Setting the path is the bridge between what appli-
cations want from the Framework and the actual version they will get. In Figure 2-6,
you can see that there are five versions of the Framework loaded on my computer.
Figure 2-7 shows that the one the system is being directed to is Version 3.5, which
includes the C# 3.0 compiler.

Design
Inheritance is a common way to specify different implementations of an abstraction.
However, the implementations are then bound tightly to the abstraction, and it is
difficult to modify them independently. The Bridge pattern provides an alternative to
inheritance when there is more than one version of an abstraction. Consider the
UML diagram in Figure 2-8. The two implementations, A and B, implement an inter-
face called the Bridge. The Abstraction includes an attribute of type Bridge but is not
otherwise in a relationship with the implementations.



Bridge Pattern | 37

Figure 2-6. Bridge pattern illustration (a)—five versions of the .NET Framework loaded

Figure 2-7. Bridge pattern illustration (b)—environment Path variable set to Version 3.5



38 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

From this diagram, we can see that the role players for the Bridge pattern are:

Abstraction
The interface that the client sees

Operation
A method that is called by the client

Bridge
An interface defining those parts of the Abstraction that might vary

ImplementationA and ImplementationB
Implementations of the Bridge interface

OperationImp
A method in the Bridge that is called from the Operation in the Abstraction

As we noticed with the Decorator pattern, there can be several implementations for
the one abstraction. Legacy implementations do not have to implement the Bridge if
they are still going to be instantiated in the old way; they need to do so only if they
must be used interchangeably with the new implementations.

Implementation
Once again, let’s start with a small theoretical example, as shown in Example 2-5. In
the client, each instantiation of the Abstraction is given a different implementation
(lines 36–37). Then, the Operations are called. Each invocation goes to a different
OperationImp method (lines 23 and 29), and the resulting output is shown below (lines
43–44). Notice that the implementations implement Bridge, but the Abstraction
aggregates it.

Figure 2-8. Bridge pattern UML diagram

Example 2-5. Bridge pattern theory code

1    using System;
2
3      class BridgePattern {
4
5      // Bridge Pattern            Judith Bishop  Dec 2006, Aug 2007
6      // Shows an abstraction and two implementations proceeding independently
7

Client <<interface>>
Bridge

+OperationImp( )

Abstraction

–bridge

+Operation( )

Calls OperationImp
in bridge

ImplementationA

+OperationImp( )

ImplementationB

+OperationImp( )



Example: OpenBook | 39

Example: OpenBook
The Bridge pattern gives us a nice opportunity to extend a previous example and to
show different patterns interacting. Let’s consider the SpaceBook system again. Sup-
pose a developer is working on a new version of SpaceBook called OpenBook. The
main feature of OpenBook is that it does not require password authentication. It also
does not bother with lazy instantiation, as it is assumed that all OpenBook users will
get onto the system straightaway. OpenBook is thus replacing the proxy level of
SpaceBook but not the guts of it, and it is certainly the intention that users of both
systems should be able to see each other’s pages.

8      class Abstraction {
9        Bridge bridge;

10        public Abstraction (Bridge implementation) {
11          bridge = implementation;
12        }
13        public string Operation ( ) {
14          return "Abstraction" +" <<< BRIDGE >>>> "+bridge.OperationImp( );
15        }
16      }
17
18      interface Bridge {
19        string OperationImp( );
20      }
21
22      class ImplementationA : Bridge {
23        public string  OperationImp ( ) {
24          return "ImplementationA";
25        }
26      }
27
28      class ImplementationB : Bridge {
29        public string OperationImp ( ) {
30          return "ImplementationB";
31        }
32      }
33
34      static void Main ( ) {
35        Console.WriteLine("Bridge Pattern\n");
36        Console.WriteLine(new Abstraction (new ImplementationA( )).Operation( ));
37        Console.WriteLine(new Abstraction (new ImplementationB( )).Operation( ));
38      }
39    }
40 /* Output
41 Bridge Pattern
42
43 Abstraction <<< BRIDGE >>>> ImplementationA
44 Abstraction <<< BRIDGE >>>> ImplementationB
45 */

Example 2-5. Bridge pattern theory code (continued)



40 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

Therefore, we have a design where MyOpenBook and MySpaceBook need to implement a
common interface. We shall call this the Bridge interface. The Abstraction is what is
commonly called a Portal. It keeps a copy of the appropriate type of book object and
routes each of the methods in the interface to the versions in that book object. The
main program then reflects these changes:

class BridgePattern : SpaceBookSystem {
  static void Main ( ) {
    MySpaceBook me = new MySpaceBook( );
    me.Add("Hello world");
    me.Add("Today I worked 18 hours");

    Portal tom = new Portal(new MyOpenBook("Tom"));
    tom.Poke("Judith");
    tom.Add("Judith","Poor you");
    tom.Add("Hey, I'm also on OpenBook - it was so easy!");
  }
}

Users like Judith can continue to use the old SpaceBook, as nothing has changed, but
Tom can now go in through the Portal (the Abstraction) and link up via the Bridge
to the new OpenBook access to SpaceBook. The resulting output starts off as before,
but then we see that Tom did not have to register or authenticate:

Let's register you for SpaceBook
All SpaceBook names must be unique
Type in a user name: Judith
Type in a password: yey
Thanks for registering with SpaceBook

Q U I Z

Match the Bridge Pattern Players with the .NET Framework
Illustration

To test whether you understand the Bridge pattern, cover the lefthand column of the
table below and see if you can identify the players among the items from the illustrative
examples (Figures 2-6 and 2-7), as shown in the righthand column. Then check your
answers against the lefthand column.

Abstraction

Operation

Bridge

ImplementationA

ImplementationB

A’s OperationImp

B’s OperationImp

NET Framework

C# compiler

Environment Path variable

3.5 version of the Framework

2.0.50377 version and build of the Framework

3.0 compiler s

2.0 compiler



Example: OpenBook | 41

Welcome Judith. Please type in your password: yey
Logged into SpaceBook

            ======== Judith's SpaceBook =========
Hello world
                   Today I worked 18 hours
                   Tom poked you
                   Tom : hugged you

            ================================

            ======== Judith's SpaceBook =========
Hello world
                   Today I worked 18 hours
                   Tom poked you
                   Tom : hugged you
                   Tom : Poor you

            ================================

            ======== Tom-1's SpaceBook =========
Hey, I'm on OpenBook - it was so easy!

            ===============================

Here, we’ll assume that the developer decided to avoid conflicting names by adding a
serial number to each user’s ID—if the next user is Pat, her name will be Pat-2. At
the moment, Tom’s output still refers to SpaceBook because the new system is still
using all of SpaceBook’s facilities. Once OpenBook has been customized further, this
will change. The frontend is encapsulated in the Bridge interface:

interface Bridge {
  void Add(string message);
  void Add(string friend, string message);
  void Poke(string who);
}

The Portal is very simple and performs the duties of the abstraction exactly as they
were laid out in Example 2-5. However, it has three operations to route instead of
one:

class Portal {
  Bridge bridge;
  public Portal (Bridge aSpaceBook) {
    bridge = aSpaceBook;
  }
  public void Add(string message)
    {bridge.Add(message);}
  public void Add(string friend, string message)
    {bridge.Add(friend,message);}
  public void Poke(string who)
    {bridge.Poke(who);}
}



42 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

The second implementation of the Bridge interface in this example also happens to
be a Proxy to SpaceBook. Most of the Proxy mechanisms have been stripped out, and
all that remains is the smart proxy operation of keeping a serial count of users. Here
is OpenBook in its most rudimentary form:

public class MyOpenBook : Bridge {
  // Combination of a virtual and authentication proxy
  SpaceBook mySpaceBook;
  string name;
  static int users;

  public MyOpenBook (string n) {
    name = n;
    users++;
    mySpaceBook = new SpaceBook(name+"-"+users);
  }

  public void Add(string message) {
    mySpaceBook.Add(message);
  }

  public void Add(string friend, string message) {
    mySpaceBook.Add(friend, name + " said: "+message);
  }

  public void Poke(string who) {
    mySpaceBook.Poke(who,name);
  }
}

Note that the Bridge defines the operations that will be supported by all Portal mem-
bers. Now, suppose OpenBook wanted to add some cool operations, like SuperPoke:

public void SuperPoke (string who, string what) {
  myOpenBook.Add(who, what+" you");
}

SuperPoke is implemented rather crudely on top of Add, as this is a SpaceBook-
supported feature. If we put SuperPoke in OpenBook, the compiler will accept it, but
we won’t be able to call it because in the main program tom is a reference to a Portal
object and SuperPoke is not in the Portal. We can solve this problem in two ways:

• Add the new operation to the Portal (Abstraction), but not to the Bridge, so it
does not affect other implementations.

• If we cannot alter the Portal, we can create an extension method to extend it as
follows:

static class OpenBookExtensions {
  public static void SuperPoke (this Portal me, string who, string what) {
    me.Add(who, what+" you");
  }
}



Example: OpenBook | 43

and call it the same way we call the other methods:
tom.SuperPoke("Judith-1","hugged");

Extension methods are one of the new features in C# 3.0.

The full program for the OpenBook extension is given in Example 2-6. The
SpaceBook and MySpaceBook classes from Example 2-4 were not altered in any way and
are given as headers only to save space. In this output, Judith has switched to Open-
Book and therefore has the name Judith-1. Tom, as the second OpenBook user, is
given the name Tom-2.

C# 3.0 Feature—Extension Methods
Extension methods allow developers to add new methods to an existing type without
having to create an inherited class or to recompile the original. Thus, you can add
methods to classes for which you might not even have the sources (e.g., System.
String). An extension method is defined the same way as any other, with two
stipulations:

• It is declared as static in an outer-level static, nongeneric class.

• The type it is extending is declared as the first parameter, preceded by this.

The method can then be called as an instance method on an object of the type that has
been extended.

cf. C# Language Specification Version 3.0, September 2007, Section 10.6.9

Example 2-6. Bridge pattern example code—OpenBook

   using System;
     using System.Collections.Generic;

     // Bridge Pattern Example       Judith Bishop  Dec 2006, Aug 2007
     // Extending SpaceBook with a second implementation via a Portal

     // Abstraction
     class Portal {
       Bridge bridge;
       public Portal (Bridge aSpaceBook) {
         bridge = aSpaceBook;
       }
       public void Add(string message)
         {bridge.Add(message);}
       public void Add(string friend, string message)
         {bridge.Add(friend,message);}
       public void Poke(string who)
         {bridge.Poke(who);}
       }



44 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

    // Bridge
    interface Bridge {
      void Add(string message);
      void Add(string friend, string message);
      void Poke(string who);
    }

    class SpaceBookSystem {

    // The Subject
    private class SpaceBook { ... }

    // The Proxy
    public class MySpaceBook { ... }

    // A Proxy with little to do
    // Illustrates an alternative implementation of the Bridge pattern

    public class MyOpenBook : Bridge {
      // Combination of a virtual and authentication proxy
      SpaceBook myOpenBook;
      string name;
      static int users;

      public MyOpenBook (string n) {
        name = n;
        users++;
        myOpenBook = new SpaceBook(name+"-"+users);
      }

      public void Add(string message) {
        myOpenBook.Add(message);
      }

      public void Add(string friend, string message) {
        myOpenBook.Add(friend, name + " : "+message);
      }

      public void Poke(string who) {
        myOpenBook.Poke(who,name);
      }
    }
  }

  static class OpenBookExtensions {
    public static void SuperPoke (this Portal me, string who, string what) {
      me.Add(who, what+" you");
    }
  }

  // The Client
  class BridgePattern : SpaceBookSystem {
    static void Main ( ) {

Example 2-6. Bridge pattern example code—OpenBook (continued)



Example: OpenBook | 45

      Portal me = new Portal(new MyOpenBook("Judith"));
      me.Add("Hello world");
      me.Add("Today I worked 18 hours");

      Portal tom = new Portal(new MyOpenBook("Tom"));
      tom.Poke("Judith-1");
      tom.SuperPoke("Judith-1","hugged");
      tom.Add("Judith-1","Poor you");
      tom.Add("Hey, I'm on OpenBook - it's cool!");
    }
  }
/* Output
           ======== Judith-1's SpaceBook =========
           Hello world

           ===================================

           ======== Judith-1's SpaceBook =========
           Hello world
           Today I worked 18 hours

           ===================================

           ======== Judith-1's SpaceBook =========
           Hello world
           Today I worked 18 hours
           Tom poked you
           Tom : hugged you

           ===================================

           ======== Judith-1's SpaceBook =========
           Hello world
           Today I worked 18 hours
           Tom poked you
           Tom : hugged you
           Tom : Poor you

           ===================================

           ======== Tom-2's SpaceBook =========
           Hey, I'm on OpenBook - it's cool!

           ===================================

*/

Example 2-6. Bridge pattern example code—OpenBook (continued)



46 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

Use
Bridge is a very simple, but very powerful pattern. Given a single implementation, we
can add a second one together with a Bridge and an Abstraction and achieve
considerable generality over the original design.

A well-quoted use of the Bridge pattern is in graphics, where different displays have
different capabilities and drivers. These would be the implementations of the Bridge
pattern, and the Bridge would be an interface of their essential capabilities. The
Client calls the Abstraction to display something, and the Abstraction can examine
the properties of the one or more Bridge instances (drivers) it is holding and select
the most appropriate one for the task.

Exercise
1. Although some limited operations can be added to OpenBook, the fact that

some fundamental ones, such as the page header, are embedded in the private
SpaceBook class makes real change difficult. Assuming that you can negotiate an
upgrade with the developers of SpaceBook, make a proposal, including a UML
diagram, for the long-term design of an extensible system. Implement it.

Pattern Comparison
The careful reader might have noticed that the three patterns described in this chap-
ter seem to offer much the same service. At a high level, they are all helping to extend
classes in novel ways, and they all provide alternatives to inheritance. A summary of
when each pattern might be used was provided at the end of each section. Because
this is also a programming book, we’ll now summarize the object mechanisms the
patterns use (see Table 2-2) and draw conclusions about their comparative opera-
tion. This summary is based on the UML diagrams and theory code for each of the
patterns.

In each pattern, we can identify four roles, which can fall under the headings origi-
nal, new, interface, and client. The actual names given to these meta-roles are shown
in the first three rows of the table. Note that the Bridge pattern can work in two
ways. In our examples, we used the “Bridge-up” option. We assumed that we had

Use the Bridge pattern when…

You can:
• Identify that there are operations that do not always need to be implemented in the same way.

You want to:
• Completely hide implementations from clients.
• Avoid binding an implementation to an abstraction directly.
• Change an implementation without even recompiling an abstraction.
• Combine different parts of a system at runtime.



Pattern Comparison | 47

one implementation already and wanted to share its interface with other implemen-
tations yet to be built. To do so, we needed to create an Abstraction that was closely
connected to the Bridge interface. An equally valid application for the Bridge pattern
would be to have an original abstraction in mind and to build it hand-in-hand with
the implementations (the “Bridge-down” approach).

As you can see in the fourth row of the table, variations are found in the clients. For
example, the Decorator pattern aggregates the interface so that it can share decora-
tions; it provides the original as a construction parameter. The Bridge-up pattern
does the same. To make this more concrete, here are the two statements from the
clients:

// Decorator
Display(new DecoratorA(new IComponent( ));

// Bridge-up
Console.WriteLine(new Abstraction(new ImplementationA( )).Operation( ));

The fifth row shows what objects are invoked in the pattern. The Decorator pattern
can call the original components or the decorators, but the Bridge pattern variations
only call one or the other. The Proxy pattern both aggregates and invokes only the
new classes.

Table 2-2. Comparison of Decorator, Proxy, and Bridge patterns

Decorator Proxy Bridge-down Bridge-up

Original Component Subject Abstraction Implementation

Interface IComponent ISubject Bridge Bridge

New Decorator Proxy Implementation Abstraction

Client aggregates New with interface New Original with new New with original

Client activates Original and new New Original New

Original changed by Implementing the
interface

No change Aggregating the
interface

Implementing the
interface

New classes Aggregate the
interface

Implement the
interface

Aggregate the
original

Implement the
interface

Implement the
interface

Aggregate the
interface

Operation routed From new to original From new to original From original to new From new to original



48 | Chapter 2: Structural Patterns: Decorator, Proxy, and Bridge

The next row itemizes how the original changes as a result of the pattern. Only the
Proxy pattern enables the original to remain completely unchanged. The Decorator
pattern relies on there being an interface that everyone implements, which might
have to be added after the original classes are developed. The Bridge pattern is more
closely coupled, and there is an understanding that the original must incorporate
considerable references to the rest of the system.

All the patterns rely on rerouting operations. The last row in the table shows that the
rerouting is always done from the new code back to the original; in the case of the
Bridge pattern, it just depends on which class is called new and which class is called
the original. It is worth noting that in real-time applications, where reaction time is
important, the overhead of the time for rerouting the operations might not be
acceptable.



49

Chapter 3 CHAPTER 3

Structural Patterns: Composite
and Flyweight3

The Composite and Flyweight structural patterns apply to systems that have many
data objects. The Composite pattern has wide applicability, and its composite lists
can also make use of the Flyweight pattern. The Flyweight pattern shares identical
objects behind the scenes to save space. In their implementations, these patterns
make use of the following novel C# features:

• Generics

• Properties

• Structs

• Indexers

• Implicit typing

• Initializers

• Anonymous types

Composite Pattern

Role
The Composite pattern arranges structured hierarchies so that single components
and groups of components can be treated in the same way. Typical operations on the
components include add, remove, display, find, and group.

Illustration
Computer applications that specialize in grouping data abound these days. Consider
a music playlist in iTunes or a digital photo album in Flickr or iPhoto (Figure 3-1).
Items are put in a large list, which is then given structure separately.



50 | Chapter 3: Structural Patterns: Composite and Flyweight

Looking at the screenshot from iPhoto, we can see that there are different ways of
viewing the photos that have been imported: chronologically or by named event. A sin-
gle photo can appear in many albums (“Last Roll,” “2007,” and “Switzerland,” for
example). Creating an album forms a composite object but does not entail actually
copying the photos. In this context, the important point about the Composite pattern
is that the operations carried out on photos and albums of photos should have the
same names and effects, even though the implementations are different. For example,
the user should be able to display a photo or an album (that contains photos). Simi-
larly, deletions of a single photo or an album should behave in the same way.

Design
The Composite pattern is one of the simplest there is, on the face of it. It has to deal
with two types: Components and Composites of those components. Both types agree to
conform to an interface of common operations. Composite objects consist of
Components, and in most cases, operations on a Composite are implemented by calling
the equivalent operations for its Component objects. See Figure 3-2 for the UML dia-
gram for this pattern.

The essential players in the Composite pattern UML diagram are:

IComponent
Defines the operations for objects in the composition, and any default behavior
that will be applicable across objects of both types

Figure 3-1. Composite pattern illustration—iPhoto



Composite Pattern | 51

Operation
Performs an operation on IComponent-conforming objects

Component
Implements the operations as applicable to single objects that cannot be further
decomposed

Composite
Implements the operations as applicable to composite objects, using (or accessing)
a list of components kept locally and probably using the equivalent Component
operations

The client deals only with the IComponent interface, which simplifies its task.

Figure 3-2. Composite pattern UML diagram

Q U I Z

Match the Composite Pattern Players with the iPhoto Illustration
To test whether you understand the Composite pattern, cover the lefthand column of
the table below and see if you can identify the players among the items from the illus-
trative example (Figure 3-1), as shown in the righthand column. Then check your
answers against the lefthand column.

IComponent

Component

Composite

Operation

A visible entity  in iPhoto

A single photo

An album of photos

Open and view

Client <<interface>>
IComponent

+Operation( )

Component

+Operation( )

Composite

–list : IComponent

+Operation( )
For each component
call its operation



52 | Chapter 3: Structural Patterns: Composite and Flyweight

Implementation
Although our illustration referred to photos and albums, the design and implementa-
tion of the Composite pattern is completely independent from the kind of basic com-
ponent being handled. We could equally well be dealing with groups of people or bank
account portfolios. The composite operations, however, have to iterate through a
structure of these components. To realize both the flexibility of components of any
type and a connection between leaf and composite, we can use the C# generics feature.

By declaring IComponent, Component, and Composite as generic types, we create an imple-
mentation of the Composite pattern that can be instantiated in a practical example.

For the Composite pattern, we will not create a program, but a
namespace containing two classes, Composite and Component, and an
interface, IComponent.

Starting with the IComponent interface, we declare it as a generic of type T. Then each
of the anticipated operations follows:

public interface IComponent <T> {
  void           Add(IComponent <T> c);
  IComponent <T> Remove(T s);
  IComponent <T> Find(T s);
  string         Display(int depth);
  T              Item {get; set;}
}

C# Feature—Generics
Generics are an extension to the type system whereby structs, classes, interfaces, dele-
gates, and methods can be parameterized with types. For example, a generic type like
List<T> is a generator for constructed types like List<string> and List<Person>. All the
collections in the .NET Framework library used by C# are available in generic form.
They include Dictionary, Stack, Queue, and List, plus variations on them. There are
also generic methods such as Sort and BinarySearch. These require the types they are
working on to implement the IComparer interface so that comparisons between ele-
ments can be done correctly.

To specify a generic type or method, use the generic parameters in angle brackets, as
in <T> or <T, P>. The generic type can be used to specify further generic elements, again
using the <T> format, or it can be used normally as a type, as in T.

To construct an actual type or method from a generic one, supply actual types for each
of the generic parameters, as in <string>.

cf. C# Language Specification Version 3.0, September 2007, Section 10.1.3



Composite Pattern | 53

Because the types will be in a separate namespace, they must all be
declared as public.

Why do Add, Remove, and Find refer to IComponent <T> and Remove and Find refer to T
as well? What is the difference between <T> and T? Recall that an object of type
IComponent is either a Component or a Composite and will have state associated with
being an IComponent, in addition to the actual value of the element it is storing. The
element is of the type T, so in the case of Find and Remove, we pass as parameters
the actual element values of type T. For example, if the interface were instantiated
with T as an Image, we would pass an Image object to Find and in return get a refer-
ence to an IComponent object. The returned object would contain the Image object if
the search were successful.

The last line of the interface is interesting because it introduces a new syntax for prop-
erties in classes. Before C# 3.0, this new syntax was only present in interfaces. It has
now been extended to classes as well and makes programs shorter and easily readable.

Now, let’s consider how the Component class would be implemented in accordance
with the IComponent interface, as in the namespace shown in Example 3-1.

C# 3.0 Feature—Properties and Accessors
A property gives controlled access to the private local state of an object, either directly
to its fields or via some computation. Properties define one or two accessors: get and/
or set. The most common form of a property is:

public type Field {get; set;}

where Field is an identifier. This declaration creates a private field and makes it acces-
sible for public reading and writing via the name Field.

By placing such properties in an interface, we are effectively requiring classes to supply
property accessors as well as the usual methods when implementing the interface.

Properties can omit either the get or the set accessor; it is more typical to omit the set,
which makes the property read-only.

Properties can also compute the result of a get or set, in which case, the expanded syn-
tax is:

public type Field {
  get { statements; return expression; }
  set { statements including reference to value; }
}

A property typically, but not necessarily, has access to a private type Field. value is
the implicit parameter of a call to set a property.

cf. C# Language Specification Version 3.0, September 2007, Section 10.7



54 | Chapter 3: Structural Patterns: Composite and Flyweight

Example 3-1. Composite pattern—namespace code

1 using System;
2 using System.Collections.Generic;
3 using System.Text; // for StringBuilder
4
5 namespace CompositePattern {
6
7 // The Interface
8   public interface IComponent <T> {
9     void Add(IComponent <T> c);

10     IComponent <T> Remove(T s);
11     string Display(int depth);
12     IComponent <T> Find(T s);
13     T Name {get; set;}
14   }
15
16   // The Component
17   public class Component <T> : IComponent <T> {
18     public T Name {get; set;}
19
20     public Component (T name)  {
21         Name = name;
22     }
23
24     public void Add(IComponent <T> c) {
25       Console.WriteLine("Cannot add to an item");
26     }
27
28     public IComponent <T>  Remove(T s) {
29        Console.WriteLine("Cannot remove directly");
30        return this;
31     }
32
33     public string Display(int depth) {
34         return new String('-', depth) + Name+"\n";
35     }
36
37     public IComponent <T>  Find (T s) {
38       if (s.Equals(Name))
39        return this;
40       else
41         return null;
42     }
43   }
44
45   // The Composite
46   public class Composite <T> : IComponent  <T> {
47     List  <IComponent <T>> list;
48
49     public T Name {get; set;}
50
51     public Composite (T name)  {
52         Name = name;



Composite Pattern | 55

The namespace starts off with the definition of the interface with its four methods
and one property. Then follows the Component class. Not all of IComponent’s methods
are meaningful for Components. Adding and removing are done only in Composites, so

53         list = new List <IComponent <T>> ( );
54     }
55
56     public void Add(IComponent  <T> c) {
57         list.Add(c);
58     }
59
60     IComponent <T> holder=null;
61
62      // Finds the item from a particular point in the structure
63      // and returns the composite from which it was removed
64      // If not found, return the point as given
65      public IComponent <T> Remove(T s) {
66        holder = this;
67        IComponent <T> p = holder.Find(s);
68        if (holder!=null) {
69          (holder as Composite<T>).list.Remove(p);
70          return holder;
71        }
72        else
73          return this;
74      }
75
76     // Recursively looks for an item
77     // Returns its reference or else null
78     public IComponent <T>  Find (T s) {
79       holder = this;
80       if (Name.Equals(s)) return this;
81       IComponent <T> found=null;
82       foreach (IComponent <T> c in list)  {
83         found = c.Find(s);
84         if (found!=null)
85           break;
86         }
87         return found;
88       }
89
90     // Displays items in a format indicating their level in the composite structure
91     public string Display(int depth) {
92       StringBuilder s = new StringBuilder(new String('-', depth));
93       s.Append("Set "+ Name +  " length :" + list.Count + "\n");
94       foreach (IComponent <T> component in list) {
95         s.Append(component.Display(depth + 2));
96       }
97       return s.ToString( );
98     }
99   }

100 }

Example 3-1. Composite pattern—namespace code (continued)



56 | Chapter 3: Structural Patterns: Composite and Flyweight

a simple error message is written out (see the upcoming “Exercises” section for an
extension on this point). In the Component’s Find method (lines 37–42), the class
relies on the actual type parameter for T having an Equals method. If it does not, the
generic instantiation will fail at compile time.

The Display method (lines 33–35) also assumes that the field accessed by the Name
property has a ToString method defined. In fact, only string-like types will work
properly here, so it is likely that the Display method should be defined later (see the
upcoming “Exercises” section.)

The Composite class also implements the IComponent interface (line 46). The Find and
Remove methods of the Composite are more elaborate than those in the Component so
that they can handle arbitrary structures of composites and components. Let’s look
at some of the more interesting statements:

• The Composite keeps as a list a local structure that consists of Components and
Composites (line 47). When the contents are Composites, a new object is created,
as well as a new list. The list is declared as:

List <IComponent <T>> list;

This shows that an open generic type can be used as a parameter to another
generic type.

• The logic of Remove (lines 65–74) is that we first find the item in the structure
and then, if it is there, we remove it from the list structure held locally in the
Composite (line 69):

(holder as Composite<T>).list.Remove(p);

The holder variable is of type IComponent and needs to be cast to a Composite
before the list can be accessed.

• An open generic type can still be used in a foreach loop, as in the Find and
Display methods (lines 82 and 94):

foreach (IComponent <T> c in list) {
  found = c.Find(s);

• The call to Find will go to the appropriate method, depending on the actual type of
c at runtime. This supports the Composite pattern’s ideal of having Components and
Composites be treated the same.

That completes the theoretical Composite pattern implementation. Apart from the
concern with the Display method, the three preceding types can be used together for
any elements. Thus, we can put them in a namespace called CompositePattern for use
in the next example.Example: Photo Library

In this example, we are concerned with collecting the filenames of digital photos into
named sets. We will not use actual images in this example, just filenames as strings.
The client is given a domain-specific set of commands with which to create and
manipulate the library. Central to the manipulation of the library, from the user’s
point of view, is “where we are.” We start out at an empty set called “Album.” Some



Composite Pattern | 57

of the commands leave the system at the component that has just been adjusted,
whereas others move it back to the first component in the set. The commands are:

AddSet
Add a new empty set with a name and stay there.

AddPhoto
Add a new named photo after the pointer and stay there.

Find
Find the named component (set or photo), or return null if it is not found.

Remove
Remove the named component (set or photo) and stay at the set from which it
was removed.

Display
Display the whole structure.

Quit
Exit the program.

Thus, the two operations that work on either Components or Composites are Find and
Remove. Consider some examples of the workings of this system, illustrated in
Example 3-2. The input commands are shown in the middle, the result of Display is
shown on the left, and some commentary appears on the right.

The input file contains all the commands in the middle. The program
will expect this file to be called Composite.dat.

Example 3-2. Composite pattern—Photo Library sample run

             AddSet Home
             AddPhoto Dinner.jpg
             AddSet Pets     Going down another level
             AddPhoto Dog.jpg
             AddPhoto Cat.jpg
             Find Album      Ensures Garden is at same level as Home
             AddSet Garden
             AddPhoto Spring.jpg
             AddPhoto Summer.jpg
             AddPhoto Flowers.jpg
             AddPhoto Trees.jpg
             Display         Returns to start of Album
 Set Album length :2
--Set Home length :2
----Dinner.jpg
----Set Pets length :2
------Dog.jpg
------Cat.jpg
--Set Garden length :4
----Spring.jpg
----Summer.jpg



58 | Chapter 3: Structural Patterns: Composite and Flyweight

The Client class that implements these commands is shown in Example 3-3. It is a
simple command interpreter that makes good use of C#’s switch on string feature.

----Flowers.jpg
----Trees.jpg
             Remove Flowers.jpg            Will remain at Garden
             AddPhoto BetterFlowers.jpg    To end of Garden
             Display
 Set Album length :2
--Set Home length :2
----Dinner.jpg
----Set Pets length :2
------Dog.jpg
------Cat.jpg
--Set Garden length :4
----Spring.jpg
----Summer.jpg
----Trees.jpg
----BetterFlowers.jpg
             Find Home
             Remove Pets
             Display
 Set Album length :2
--Set Home length :1
----Dinner.jpg
--Set Garden length :4
----Spring.jpg
----Summer.jpg
----Trees.jpg
----BetterFlowers.jpg
             Quit

Example 3-3. Composite pattern example code—Photo Library

  using System;
  using System.Collections.Generic;
  using System.IO;
  using CompositePattern;

    // The Client
   class CompositePatternExample {
     static void Main ( ) {
       IComponent <string> album = new Composite<string> ("Album");
       IComponent <string> point = album;
       string [] s;
       string command, parameter;
       // Create and manipulate a structure
       StreamReader instream = new StreamReader("Composite.dat");
       do {
         string t = instream.ReadLine( );
         Console.WriteLine("\t\t\t\t"+t);
         s = t.Split( );

Example 3-2. Composite pattern—Photo Library sample run (continued)



Composite Pattern | 59

Use
The Composite pattern has wide applicability and is often used in conjunction with
the Decorator, Iterator, and Visitor patterns. Its composite lists can also make use of
the Flyweight pattern, discussed next. The Composite pattern looks like an ordinary
data structure implementation, but it is more than that because of its ability to
manipulate the different types of the elements equally.

         command = s[0];
         if (s.Length>1) parameter = s[1]; else parameter = null;
         switch (command) {
           case "AddSet" :
             IComponent <string> c = new Composite <string> (parameter);
             point.Add(c);
             point = c;
             break;
           case "AddPhoto" :
             point.Add(new Component <string> (parameter));
             break;
           case "Remove" :
             point = point.Remove(parameter);
             break;
           case "Find" :
             point = album.Find(parameter);
             break;
           case "Display" :
             Console.WriteLine(album.Display(0));
             break;
           case "Quit" :
             break;
         }
       } while (!command.Equals("Quit"));
     }
   }

Use the Composite pattern when…

You have:
• An irregular structure of objects and composites of the objects

You want:
• Clients to ignore all but the essential differences between individual objects and composites of objects
• To treat all objects in a composite uniformly

But consider using as well:
• The Decorator pattern to provide operations like Add, Remove, and Find
• The Flyweight pattern to share components, provided the notion of “where I am” can be disregarded and all

operations start at the root of the composite
• The Visitor pattern to localize the operations that are currently distributed between the Composite and
Component classes

Example 3-3. Composite pattern example code—Photo Library (continued)



60 | Chapter 3: Structural Patterns: Composite and Flyweight

Exercises
1. A manager is an employee who leads engineers, technicians, and support person-

nel, all of whom are also employees. Focusing on the operation of going on
leave, model this scenario with the Composite pattern.

2. In the Composite pattern example, the Component class has two error conditions.
Implement them using exceptions, and decide whether the exceptions should be
part of the IComponent interface. In general, how do you think patterns should
deal with exceptions?

3. The Display methods in Component and Composite assume that the type T is string-
like. Create a version of the Composite pattern where T is not a type that converts
to strings (use Image, for instance) and investigate whether the Display methods
can be overridden by extension methods in the namespace of the Client.

4. In the Composite class, change the List to a Dictionary class. How will this affect
the Find operation?

5. Although we strove to have one interface for components and composites, an
alternative approach is to consider the operations that are really common and to
separate out those that apply only to, for example, composites. We will then
have two levels of interfaces, as in:

interface IComponent {
  // Name, Display
}
interface IComposite<T> IComponent where T : IComponent {
  // Add, Remove, Find
}

Now, there is no need for IComponent to be generic—a component is just some-
thing that has a name and can be displayed. The tension about when to use T
and when to use IComponent<T> falls away, too. Reprogram the example in this
manner. (Hint: the second interface above makes use of generic constraints,
which are covered in Chapter 6.)

Flyweight Pattern

Role
The Flyweight pattern promotes an efficient way to share common information
present in small objects that occur in a system in large numbers. It thus helps reduce
storage requirements when many values are duplicated. The Flyweight pattern dis-
tinguishes between the intrinsic and extrinsic state of an object. The greatest savings
in the Flyweight pattern occur when objects use both kinds of state but:

• The intrinsic state can be shared on a wide scale, minimizing storage requirements.

• The extrinsic state can be computed on the fly, trading computation for storage.



Flyweight Pattern | 61

Illustration
Consider now the image aspect of the Photo Library application, as discussed with
the Composite pattern. At any one time, we want to have a full page of images dis-
played and, with no discernable time lag, we want to be able to scroll up and down
through the library. This implies that as many images as possible should be pre-
loaded into memory and kept there while the photo application is running. For a
Photo Group application, the primary function is to arrange photos in groups. Pho-
tos can belong to several different groups, so the number of images to display could
increase enormously. If all of the images do not fit in memory, the fact that they can
belong to different groups means that any given photo may be called up for display
at irregular times, resulting in a lot of disk transfers.

Consider the illustration in Figure 3-3. With a smaller window, the first two groups
could have scrolled off the window by the time the Food group appears, requiring at
least three of the images to be refetched and displayed.

An object’s unshared state is the set of groups to which it belongs. Its extrinsic state
is the actual image, which is large—it occupies about 2 MB. However, there are
methods in the System.Drawing namespace to convert an image to a thumbnail of
about 8 KB. This will be the object’s intrinsic state, which is small enough to allow
all the unique images to remain in memory at any one time. Through the group
information, the application can display the images in various combinations. Using
disk fetches, it can also show the complete original-sized images.

Design
Consider the UML diagram in Figure 3-4. As explained in the previous section, the
Flyweight pattern relies on being able to divide up the application’s state into three
types. The intrinsicState resides in the Flyweight objects. The Flyweight class
implements an IFlyweight interface, which specifies the operations upon which the
rest of the system relies. The Client maintains the unSharedState as well as a dictio-
nary of all the Flyweights, which it gets from a FlyweightFactory whose job it is to
ensure that only one of each value is created. Finally, the extrinsicState does not
appear in the system as such; it is meant to be computed at runtime for each
instrinsicState instance, as required.

The players in the Flyweight pattern are:

Client
Computes and maintains the unshared state of the objects

IFlyweight
Defines an interface through which Flyweights can receive and act on intrinsic
state



62 | Chapter 3: Structural Patterns: Composite and Flyweight

Figure 3-3. Flyweight pattern illustration—Photo Group

Figure 3-4. Flyweight pattern UML diagram

<<interface>>
IFlyweight

+Operation( )

FlyweightFactory

–flyweights : Dictionary

Client

–unSharedState

Flyweight

–intrinsicState

+Operation( )
exintrinsicState
computed at runtime



Flyweight Pattern | 63

FlyweightFactory
Creates and manages unique Flyweight objects

Flyweight
Stores intrinsic state that is shareable among all objects

There are other design options. For example, in Figure 3-4, the Flyweight is shown as
computing the extrinsicState. However, the Client could do the computation and
pass the extrinsicState to the Flyweight as a parameter to the Operation. Also, we
envisage the unSharedState as a Dictionary of values related to the Flyweights; how-
ever, the unSharedState could have a more complex structure, warranting its own
class. In this case, it would stand alongside the Flyweight class and implement the
IFlyweight interface.

Implementation
Our implementation of the Flyweight pattern makes use of two interesting features
from C# 1.0 and three from C# 3.0. They are:

• Structs

• Indexers

• Implicit typing for local variables and arrays

• Object and collection initializers

• Anonymous types

Q U I Z

Match the Flyweight Pattern Players with the Photo Group
Illustration

To test whether you understand the Flyweight pattern, cover the lefthand column of
the table below and see if you can identify the players among the items from the illus-
trative example (Figure 3-4), as shown in the righthand column. Then check your
answers against the lefthand column.

Client

xIFlyweight

FlyweightFactory

Flyweight

intrinsicState

extrinsicState

unSharedState

Photo Group Application

Specification of an image

Register of unique images

Creator and drawer of a thumbnail

Thumbnail

Full image

Group information



64 | Chapter 3: Structural Patterns: Composite and Flyweight

In addition, it uses generic collections from C# 2.0, as discussed in the section on
the Composite pattern. I will introduce these features in the text that follows.

This pattern encompasses three types: IFlyweight, Flyweight, and FlyweightFactory.
As in the Composite pattern, we shall put them in a namespace and use the
namespace as the theory example for the pattern.

Because the types are in an interface, they and their constructors must
be declared as public.

We’ll start with the interface:

public interface IFlyweight {
  void Load (string filename);
  void Display (PaintEventArgs e, int row, int col);
}

The Load method will load into memory a thumbnail version of a given image using
its filename. The Display method will display that thumbnail. Later, we will need to
add further Display options for displaying the full version of the image (its extrinsic
state). Now, let’s consider the first of our four features: structs.

A Flyweight is an ideal candidate for a struct; Flyweights are small, and they do not
inherit from anything (although the type does implement an interface). Here is our
Flyweight struct:

public struct Flyweight : IFlyweight {
  // Intrinsic state
  Image pThumbnail;

C# Feature—Structs
C# has two typing constructs that define attributes and operations: the well-known
class and the lesser-known struct. Structs are similar to classes in that they represent
types that can contain data members and function members. However, a variable of a
struct type directly contains the data of the struct, whereas a variable of a class type
contains a reference to the data. Instances of both class and structs are objects. How-
ever, Structs have value semantics—that is, the value is passed on assignment, rather
than the reference, as is the case with objects instantiated from classes.

Structs are lightweight and are implemented without the overhead. They are particu-
larly useful for small data structures. The restriction on structs is that they cannot
inherit from other types; they can, however, implement interfaces.

cf. C# Language Specification Version 3.0, September 2007, Section 11



Flyweight Pattern | 65

  public void Load (string filename) {
       pThumbnail = new Bitmap("images/"+filename).
           GetThumbnailImage(100, 100, null, new IntPtr( ));
  }

  public void Display(PaintEventArgs e, int row, int col) {
    e.Graphics.DrawImage(pThumbnail,col*100+10, row*130+40,
        pThumbnail.Width,pThumbnail.Height);
  }
}

As desired, Load uses the image at the given filename, but it doesn’t retain a copy of it
in its intrinsicState; it keeps only the thumbnail. The computations done to position
the thumbnails across the screen are shown in Figure 3-3. They could obviously be
improved using constants. Notice, however, that the row and col information is derived
from the unSharedState of the group, which is kept by the Client.

Next, let’s consider the factory. We’ll look further at factories in Chapter 6, but for
now, I’ll just say that in their simplest form, they generate objects according to spe-
cific conditions. Here, we are interested in checking whether an object exists already
before we add it to a collection. Before we dive into the code, let’s take a quick look
at indexers.

Now, we can give the FlyweightFactory class:

1 public class FlyweightFactory {
2   // Keeps an indexed list of IFlyweight objects in existence
3   Dictionary <string,IFlyweight> flyweights =
4       new Dictionary <string,IFlyweight> ( );
5
6   public FlyweightFactory ( ) {
7     flyweights.Clear( );
8   }
9

10   public IFlyweight this[string index] {
11     get {
12       if (!flyweights.ContainsKey(index))
13           flyweights[index]=new Flyweight( );
14       return flyweights[index];
15     }
16   }
17 }

In lines 3–4, a Dictionary is declared, mapping strings to flyweights. On lines 13–14,
the Dictionary is accessed using the indexer that is part of the Dictionary definition.
Line 13 is an example of the use of the set accessor, and line 14 calls a get accessor.

This is all part of the member declared in lines 10–16, where we define our own
indexer for the FlyweightFactory class. Line 10 specifies the return type and the key
type, and lines 12–14 give the body of the get accessor. It starts by checking whether
there is already a Flyweight with this key. If not, it allocates one. In either case, it
returns the element in the dictionary with the correct index.



66 | Chapter 3: Structural Patterns: Composite and Flyweight

Jumping ahead, we will see that the FlyweightFactory is instantiated as follows:

static FlyweightFactory album = new FlyweightFactory( );

and accessed as follows:

album[filename].Load(filename);

Thus, the indexer provides collection-like access to an object that holds a private
collection.

Example: Photo Group
Now, consider the application that produced the output in Figure 3-4. Its code, pre-
ceded by the FlyweightPattern namespace developed above, is shown in Example 3-4.

Instructions for compiling a namespace separately from the program
that uses it are included in the discussion of the Façade pattern in
Chapter 4.

C# Feature—Indexers
An indexer is a member that enables an object to be indexed using the same syntax as
an array. It is used with collections so that we can index collection objects using
[index] instead of Key(index). Moreover, the indexer accessor can check whether the
index value exists first, using the ContainsKey method.

Indexers are related to properties and share the same syntax for accessors, get and set.
An indexer is defined as:

modifiers return-type this[key-type key] {
  get { ... }
  set { ... }
}

The contents of the get block should return a value of type return-type. The contents
of the set block can use the value implicit parameter.

If a type has an indexer defined an object of that type can be used, as in:

obj[index] = x;
x = obj[index];

Indexers are already defined for arrays (of course) and for all the collections in the .NET
Framework library used by C#.

cf. C# Language Specification Version 3.0, September 2007, Section 10.9



Flyweight Pattern | 67

Example 3-4. Flyweight pattern example—Photo Group including the FlyweightPattern
namespace

  using System;
  using System.Collections.Generic;
  using System.Drawing;
  using System.Windows.Forms;

  namespace FlyweightPattern {

      // Flyweight Pattern           Judith Bishop  Sept 2007

      public interface IFlyweight {
        void Load (string filename);
        void Display (PaintEventArgs e, int row, int col);
      }

      public struct Flyweight : IFlyweight {
        // Intrinsic state
        Image pThumbnail;
        public void Load (string filename) {
          pThumbnail = new Bitmap("images/"+filename).
              GetThumbnailImage(100, 100, null, new IntPtr( ));
      }

      public void Display(PaintEventArgs e, int row, int col) {
        e.Graphics.DrawImage(pThumbnail,col*100+10, row*130+40,
            pThumbnail.Width,pThumbnail.Height);
      }
    }

    public class FlyweightFactory {
      // Keeps an indexed list of IFlyweight objects in existence
      Dictionary <string,IFlyweight> flyweights =
          new Dictionary <string,IFlyweight> ( );

      public FlyweightFactory ( ) {
         flyweights.Clear( );
      }

      public IFlyweight this[string index] {
        get {
          if (!flyweights.ContainsKey(index))
          flyweights[index] = new Flyweight( );
          return flyweights[index];
        }
      }
    }
  }

//============== End of namespace, start of program

  using System;
  using System.Collections.Generic;
  using System.Drawing;



68 | Chapter 3: Structural Patterns: Composite and Flyweight

  using System.Windows.Forms;
  using FlyweightPattern;

   class Client {
     // Shared state - the images
     static FlyweightFactory album = new FlyweightFactory( );

     // Unshared state - the groups
     static Dictionary <string,List<string>> allGroups =
         new Dictionary <string,List<string>> ( );

     public void LoadGroups ( ) {
       var myGroups = new [] {
         new  {Name = "Garden",
               Members = new [] {"pot.jpg", "spring.jpg",
               "barbeque.jpg", "flowers.jpg"}},
         new  {Name = "Italy",
               Members = new [] {"cappucino.jpg","pasta.jpg",
               "restaurant.jpg", "church.jpg"}},
         new  {Name = "Food",
               Members = new [] {"pasta.jpg", "veggies.jpg",
               "barbeque.jpg","cappucino.jpg","lemonade.jpg" }},
         new  {Name = "Friends",
               Members = new [] {"restaurant.jpg", "dinner.jpg"}}
     };

     // Load the Flyweights, saving on shared intrinsic state
     foreach (var g in myGroups) { // implicit typing
       allGroups.Add(g.Name,new List <string>( ));
       foreach (string filename in g.Members) {
         allGroups[g.Name].Add(filename);
         album[filename].Load(filename);
       }
     }
   }

   public void DisplayGroups (Object source, PaintEventArgs e) {
     // Display the Flyweights, passing the unshared state
     int row;
     foreach(string g in allGroups.Keys) {
       int col;
       e.Graphics.DrawString(g,
           new Font("Arial", 16),
           new SolidBrush(Color.Black),
           new PointF(0, row*130+10));
       foreach (string filename in allGroups[g]) {
         album[filename].Display(e, row, col);
         col++;
       }
       row++;
     }
   }

Example 3-4. Flyweight pattern example—Photo Group including the FlyweightPattern
namespace (continued)



Flyweight Pattern | 69

The application runs in two phases: load groups and display groups. For ease of
image handling, we’ll use the Application.Run model from C#. The Windows object
calls LoadGroups explicitly, and DisplayGroups is invoked implicitly through the
PaintEventHandler once the Form is drawn. LoadGroups illustrates the use of some of
the implicit typingandinitializingfeaturesofC#3.0. (Seethefollowingsidebars.)

myGroups in the LoadGroups method is an example of an anonymous type with a col-
lection and an array initializer. It establishes the image filenames in each group. Of
course, this data should be read from the disk, but it is interesting to see how it can
be entered into the program via an anonymously typed data structure. The initializer

 }

  class Window : Form {
    Window( ) {
      this.Height = 600;
      this.Width = 600;
      this.Text = "Picture Groups";
      Client client = new Client( );
      client.LoadGroups( );
      this.Paint += new PaintEventHandler (client.DisplayGroups);
    }

   static void Main ( ) {
     Application.Run(new Window( ));
   }
 }

C# 3.0 Feature—Implicit Typing
Variables can be declared as fields in classes or as locals in methods. A local variable of
a method (but not a field of a class or a struct) can have its type inferred from the
expression used to initialize it. This is called implicit typing. The syntax is to use var in
place of the type. This new syntax can aid readability by reducing redundancy. In the
following example, the type is now specified only once:

var marks = new Dictionary <string, int> ( );

The syntax is vital when the type is not named (an anonymous type, discussed in the
upcoming sidebar). In this case, implicit typing enables the type to be inferred from an
associated variable or type, as in:

foreach (var g in myGroups) { ... }

cf. C# Language Specification Version 3.0, September 2007, Section 8.5

Example 3-4. Flyweight pattern example—Photo Group including the FlyweightPattern
namespace (continued)



70 | Chapter 3: Structural Patterns: Composite and Flyweight

defines the data structure members (in this case, Name and Members)—used later in the
method by the foreach loop to set up the groups:

foreach (var g in myGroups) { // implicit typing
  allGroups.Add(g.Name,new List <string>( ));
  foreach (string filename in g.Members) {
    allGroups[g.Name].Add(filename);
    album[filename].Load(filename);
  }
}

The flyweight activity happens in the last line, where album is accessed with a given file-
name and either returns an existing shared flyweight object or creates one and then
returns it. The Load method is then called on this object, which is of type IFlyweight.

C# 3.0 Feature—Implicitly Typed Arrays
With respect to arrays in C# 2.0, only the length could be inferred from the simple
form of array initializer. Implicit typing has since been extended to arrays so that both
the element type and the length are inferred from the expression, as in:

var myGroups = new [] {
  new  {Name=  "Garden",
        Members = new [] {"pot.jpg", "spring.jpg"
        "barbeque.jpg", "flowers.jpg"}},
  new  {Name = "Friends",
        Members = new [] {"restaurant.jpg", "dinner.jpg"}}

};

This would create a new array of a type that has two rows (row 0 and row 1). Each ele-
ment is an object with two fields, Name and Members. Members itself is an array with a dif-
ferent length in each case.

cf. C# Language Specification Version 3.0, September 2007, Section 7.5.10.4

C# 3.0 Feature—Object and Collection Initializers
Initializers specify values for fields or properties of objects or collections. Examples of
initializers include:

Point p = new Point {X = 0, Y = 1};
List<int> digits = new List<int>
    { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

In C# 2.0, initialization syntax was valid only for arrays.

cf. C# Language Specification Version 3.0, September 2007, Section 7.5.10.1-3



Flyweight Pattern | 71

Use
The Flyweight pattern is specifically designed to be used when all the following con-
ditions are in place:

• There is a very large number of objects (thousands) that may not fit in memory.

• Most of the state can be kept on disk or calculated at runtime.

• The remaining state can be factored into a much smaller number of objects with
shared state.

Many examples of the Flyweight pattern refer to text processing, where the
flyweight objects are characters. However, the previous example using images is
more convincing in this day and age.

C# 3.0 Feature—Anonymous Types
Anonymous types are created from object initializers. An anonymous type is a nameless
class type that inherits directly from the supertype object. The members of an anony-
mous type are a sequence of read-only properties inferred from the anonymous object
initializer used to create an instance of the type. By nesting new declarations, an initial-
izer can specify values for an entire collection of objects. For example, the anonymous
type created by this declaration:

var group = new   {Name = "Italy",
    Members =  new  [] {"cappuccino.jpg", "pasta.jpg",
    "restaurant.jpg", "church.jpg"}},

would have two properties, Name and Members, with Members being an array of strings. The
types would have internal names and would be compatible with any other type of the
same structure. So, for example, group could be assigned to an element of myGroups, as in:

myGroups[0] = group;

Automatic get properties are created for the listed members, so we can access the value
of group.Name. There is no set property.

cf. C# Language Specification Version 3.0, September 2007, Section 7.5.10.6

Use the Flyweight pattern when…

There are:
• Many objects to deal with in memory
• Different kinds of state, which can be handled differently to achieve space savings
• Groups of objects that share state
• Ways of computing some of the state at runtime

You want to:
• Implement a system despite severe memory constraints



72 | Chapter 3: Structural Patterns: Composite and Flyweight

Exercises
1. Implement the final stage of the Photo Group application, which involves fetch-

ing and displaying an image (extrinsic state) when its thumbnail (intrinsic state)
is clicked.

2. Integrate the Photo Library and Photo Group applications so that commands
can be issued as well as photos displayed. Keep track of the two patterns (Com-
posite and Flyweight) and report at the end of the exercise how they fit together.

3. In the earlier Composite pattern example (Example 3-3), the specification of the
Photo Library was read from a file. As an exercise in object initialization, specify
the initial state of the library in the program using the same data:

AddSet Home
AddPhoto Dinner.jpg
AddSet Pets     Going down another level
AddPhoto Dog.jpg
AddPhoto Cat.jpg
Find Album      Ensures Garden is at same level as Home
AddSet Garden
AddPhoto Spring.jpg
AddPhoto Summer.jpg
AddPhoto Flowers.jpg
AddPhoto Trees.jpg

(Hint: take these lines out of the data file. The program won’t have to change
otherwise, as the loop will start processing from the first command it finds in the
file, which will be Display.)

Pattern Comparison
I grouped the Composite and Flyweight patterns in this chapter because they both
deal with structures of multiple objects. The Composite pattern is concerned with
reacting to commands for accessing and altering a data structure in a uniform way,
whereas the Flyweight pattern is a clever way of saving space when there are multi-
ple identical objects. They both have the property that the types making up the pat-
tern can be packaged into a namespace and then used by a client.

In our examples, the CompositePattern namespace was programmed generically, giv-
ing any client the built-in flexibility of instantiating the pattern to suit its needs. The
constraints that I mentioned at the time were that a type used for instantiating
Component needed to have Equals and ToString methods defined. The Equals method
is essential for the correct working of the Find method, but the ToString requirement
can be dispensed with if different output is arranged. The FlyweightPattern
namespace, on the other hand, contains the IFlyweight and Flyweight types, which
are very specific to the photo application used for illustration. (It also contains the
FlyweightFactory class, which is not dependent on any class from the client.)



Pattern Comparison | 73

Flyweight is a server pattern in the sense that it can be useful to many other patterns
to keep data compact. Examples we will encounter later are the Interpreter, State,
and Strategy patterns. The Composite pattern is also useful in combination with
other patterns that need to manage data structures. More typically, the Composite
pattern will use the Flyweight pattern, rather than the other way around.

The division of intrinsic versus extrinsic state in the Flyweight pattern has a parallel
with the virtual Proxy pattern. The original intent of the Flyweight pattern was that
the extrinsic state would be computed from the intrinsic state. In our example of the
Photo Group application, we did not so much compute the extrinsic state as use the
name of the photo to fetch it from disk. The Proxy pattern has a similar feel to it in
that, given a starting point, we can go to the disk and fetch the full item required.
One difference is that the Proxy pattern deals with an object individually, whereas
the Flyweight pattern from the start works with a dictionary of objects. These obser-
vations are summarized in Table 3-1.

Table 3-1. Comparison of Composite and Flyweight patterns

Composite Flyweight

Fixed types IComponent <T>
Component <T>
Composite <T>

IFlyweight
Flyweight
FlyweightFactory

Generic Yes FlyweightFactory is type-independent

Constraints T implements Equals and
ToString

Structure and relationship of intrinsic and extrinsic state
built into Flyweight type

Companion patterns Decorator, Builder, Iterator, Visitor Composite, Interpreter, State, Strategy, Proxy



74

Chapter 4CHAPTER 4

Structural Patterns: Adapter and Façade 4

The main pattern we will consider in this chapter is the Adapter pattern. It is a versa-
tile pattern that joins together types that were not designed to work with each other.
It is one of those patterns that comes in useful when dealing with legacy code—i.e.,
code that was written a while ago and to which one might not have access. There are
different kinds of adapters, including class, object, two-way, and pluggable. We’ll
explore the differences here. The second pattern we will look at in this chapter—the
Façade pattern—is a simple one that rounds out the structural group. The aim of this
pattern is to provide a simplified interface to a set of complex systems.

Adapter Pattern

Role
The Adapter pattern enables a system to use classes whose interfaces don’t quite
match its requirements. It is especially useful for off-the-shelf code, for toolkits, and
for libraries. Many examples of the Adapter pattern involve input/output because
that is one domain that is constantly changing. For example, programs written in the
1980s will have very different user interfaces from those written in the 2000s. Being
able to adapt those parts of the system to new hardware facilities would be much
more cost effective than rewriting them.

Toolkits also need adapters. Although they are designed for reuse, not all applica-
tions will want to use the interfaces that toolkits provide; some might prefer to stick
to a well-known, domain-specific interface. In such cases, the adapter can accept
calls from the application and transform them into calls on toolkit methods.

Illustration
Our illustration of the Adapter pattern is a very real one—it involves hardware
instruction sets, not input/output. From 1996 to 2006, Apple Macintosh computers



Adapter Pattern | 75

ran on the PowerPC processor. The operating system was Mac OS X. But in April
2006, Apple started releasing all new Apple computers—iMacs, Minis, and Mac-
Books—with Intel Core Duo processors. Mac OS X was rewritten to target the new
processor, and users of the new computers mostly accessed existing Intel-based soft-
ware via other operating systems, such as Linux and Windows. Figure 4-1 shows
iMacs made in 1998 and 2006.

Mac OS X was originally designed to take advantage of the AltiVec floating-point and
integer SIMD instruction set that is part of the PowerPC processor. When the Intel
processor replaced this processor, calls to AltiVec instructions from Mac OS X had to
be retargeted to the Intel x86 SSE extensions, which provide similar functionality to
AltiVec.

For something as important as an operating system, the code could be rewritten to
replace the calls to AltiVec with calls to SSE. However, Apple recognized that applica-
tion developers might not want to do this, or might not have access to the source of old
AltiVec-based code, so they recommended the use of the Accelerate framework. The
Accelerate framework is a set of high-performance vector-accelerated libraries. It pro-
vides a layer of abstraction for accessing vector-based code without needing to use vec-
tor instructions or knowing the architecture of the target machine. (This is the
important point for us here.) The framework automatically invokes the appropriate
instruction set, be it PowerPC or Intel (in these processors’ various versions).

Figure 4-1. Adapter pattern illustration—migration of Mac OS X from a 1998 PowerPC-based
iMac to a 2007 Intel-based iMac



76 | Chapter 4: Structural Patterns: Adapter and Façade

Thus, the Accelerate framework is an example of the Adapter pattern. It takes an
existing situation and adapts it to a new one, thus solving the problem of migrating
existing code to a new environment. No alterations to the original code are required.*

Design
The Adapter pattern’s important contribution is that it promotes programming to
interfaces. The Client works to a domain-specific standard, which is specified in the
ITarget interface. An Adaptee class provides the required functionality, but with a
different interface. The Adapter implements the ITarget interface and routes calls
from the Client through to the Adaptee, making whatever changes to parameters and
return types are necessary to meet the requirements. A Target class that implements
the ITarget interface directly could exist, but this is not a necessary part of the pat-
tern. In any case, the Client is aware only of the ITarget interface, and it relies on
that for its correct operation.

The adapter shown in Figure 4-2 is a class adapter because it implements an interface
and inherits a class. The alternative to inheriting a class is to aggregate the Adaptee.
This creates an object adapter. The design differences are primarily that overriding
Adaptee behavior can be done more easily with a class adapter, whereas adding
behavior to Adaptees can be done more easily with an object adapter. As we go along,
I will point out different instances.

The purpose of the ITarget interface is to enable objects of adaptee types to be inter-
changeable with any other objects that might implement the same interface. How-
ever, the adaptees might not conform to the operation names and signatures of
ITarget, so an interface alone is not a sufficiently powerful mechanism. That is why
we need the Adapter pattern. An Adaptee offers similar functionality to Request, but
under a different name and with possibly different parameters. The Adaptee is

* For more about this migration, read the “Introduction to AltiVec/SSE Migration Guide” at http://developer.
apple.com.

Figure 4-2. Adapter pattern UML diagram

<<interface>>
ITarget

+Request( )

Adaptee

+SpecificRequest( )

Client

Adapter

+Request( )
Request( ) invokes
SpecificRequest( )

http://developer.apple.com
http://developer.apple.com


Adapter Pattern | 77

completely independent of the other classes and is oblivious to any naming conven-
tions or signatures that they have. Now, let’s consider the roles in the pattern:

ITarget
The interface that the Client wants to use

Adaptee
An implementation that needs adapting

Adapter
The class that implements the ITarget interface in terms of the Adaptee

Request
An operation that the Client wants

SpecificRequest
The implementation of Request’s functionality in the Adaptee

The pattern applies to a single computer, which would only have
either the PowerPC or the Intel chip. In this case, it has the Intel
chip—hence the need for the adapter. There is no Target class present,
just the ITarget interface.

Implementation
It is best to illustrate the structure of the adapter with a small example, even at the
theory code level. Suppose that technical readings are being collected and reported
at a high level of precision, but the client can only make use of rough estimates.

Q U I Z

Match the Adapter Pattern Players with the Mac OS X Migration
Illustration

To test whether you understand the Adapter pattern, cover the lefthand column of the
table below and see if you can identify its players among the items from the illustrative
example (Figure 4-1), as shown in the righthand column. Then check your answers
against the lefthand column.

Client

ITarget

Request

Adapter

Adaptee

DifferentRequest

Mac OS X (or any Mac application)

The specification of the AltiVec instruction set

A call to an AltiVec instruction

The Accelerate framework

An Intel processor with an SSE instruction set

A Call to an SSE instruction



78 | Chapter 4: Structural Patterns: Adapter and Façade

The signatures for the interface would be couched in terms of integers, and for the
actual implementation in terms of double-precision numbers. Thus, an adapter is
needed, as shown in Example 4-1.

Example 4-1. Adapter pattern theory code

1       using System;
2
3       // Adapter Pattern - Simple         Judith Bishop  Oct 2007
4       // Simplest adapter using interfaces and inheritance
5
6       // Existing way requests are implemented
7       class Adaptee {
8         // Provide full precision
9         public double SpecificRequest (double a, double b) {

10           return a/b;
11         }
12       }
13
14       // Required standard for requests
15       interface ITarget {
16         // Rough estimate required
17         string Request (int i);
18       }
19
20       // Implementing the required standard via Adaptee
21       class Adapter : Adaptee, ITarget {
22         public string Request (int i) {
23           return "Rough estimate is " + (int) Math.Round(SpecificRequest (i,3));
24         }
25       }
26
27       class Client {
28
29         static void  Main ( ) {
30           // Showing the Adapteee in standalone mode
31           Adaptee first = new Adaptee( );
32           Console.Write("Before the new standard\nPrecise reading: ");
33           Console.WriteLine(first.SpecificRequest(5,3));
34
35           // What the client really wants
36           ITarget second = new Adapter( );
37           Console.WriteLine("\nMoving to the new standard");
38           Console.WriteLine(second.Request(5));
39         }
40       }
41   /* Output
42   Before the new standard
43   Precise reading: 1.66666666666667
44
45   Moving to the new standard
46   Rough estimate is 2
47   */



Adapter Pattern | 79

The main program in the client shows two scenarios. First, there is an example of how
the Adaptee could be called directly (line 33)—its output is shown in line 43. How-
ever, the client wants to work to a different interface for requests (lines 17 and 38).
The Adapter implements the ITarget interface and inherits the Adaptee (line 21).
Therefore, it can accept Request calls with a string-int signature and route them to
the Adaptee with a double-double-double signature (line 23). The new output is
shown on line 46.

A feature of adapters is that they can insert additional behavior between the ITarget
interface and the Adaptee. In other words, they do not have to be invisible to the
Client. In this case, the Adapter adds the words "Rough estimate is" to indicate that
the Request has been adapted before it calls the SpecificRequest (line 23).

Adapters can put in varying amounts of work to adapt an Adaptee’s implementation
to the Target’s interface. The simplest adaptation is just to reroute a method call to
one of a different name, as in the preceding example. However, it may be necessary
to support a completely different set of operations. For example, the Accelerate
framework mentioned in the “Illustration” section will need to do considerable work
to convert AltiVec instructions to those of the Intel Core Duo processor. To summa-
rize, we have the following options when matching adapter and adaptee interfaces:

Adapter interface and adaptee interface have same signature
This is the trivial case, with not much work to do.

Many examples of the Adapter pattern operate at this level and are not
illustrative or helpful in explaining its real power. Beware of them.

Adapter interface has fewer parameters than adaptee interface
The adapter calls the adaptee with some dummy input.

This case is shown in Example 4-1, where the second parameter is
defaulted to 3.

Adapter interface has more parameters than adaptee interface
The adapter adds the missing functionality, making it half an adapter and half a
component in its own right.

Adapter interface has other types than adaptee interface
The adapter performs some type conversion (casting).

This case is shown in Example 4-1, where the first double parameter is
created from an integer and the double return type is cast back to a
string.



80 | Chapter 4: Structural Patterns: Adapter and Façade

Of course, combinations of these basic cases are also possible.

Two-Way Adapters
Adapters provide access to some behavior in the Adaptee (the behavior required in
the ITarget interface), but Adapter objects are not interchangeable with Adaptee
objects. They cannot be used where Adaptee objects can because they work on the
implementation of the Adaptee, not its interface. Sometimes we need to have objects
that can be transparently ITarget or Adaptee objects. This could be easily achieved if
the Adapter inherited both interfaces; however, such multiple inheritance is not pos-
sible in C#, so we must look at other solutions.

The two-way adapter addresses the problem of two systems where the characteris-
tics of one system have to be used in the other, and vice versa. An Adapter class is set
up to absorb the important common methods of both and to provide adaptations to
both. The resulting adapter objects will be acceptable to both sides. Theoretically,
this idea can be extended to more than two systems, so we can have multiway adapt-
ers, but there are some implementation limitations: without multiple inheritance, we
have to insert an interface between each original class and the adapter.

Our Macintosh example has a follow-up that illustrates this point nicely. With an
Intel processor on board, a Mac can run the Windows operating system.* Windows,
of course, is targeted directly for the Intel processor and will make use of its SSE
instructions where necessary. In such a situation, we can view Windows and Mac OS
X as two clients wanting to get access to the Adaptee (the Intel processor). The
Adapter catches both types of instruction calls and translates them if required. For an
instruction issued by an application, the situation on the different operating systems
running on a Mac with an Intel processor can be summed up using pseudocode as
follows:

Mac OS X
ExecuteAltiVec(instruction);

Windows
ExecuteSEE(instruction);

Adapter
void ExecuteAltiVec(instruction) {

  ExecuteSSE(ConvertToSSE(instruction));

}

void ExecuteSSE(instruction) {

  Intel.ExecuteSSE(instruction);

}

* Windows runs on a Mac with the help of the Parallels or BootCamp virtual machines.



Adapter Pattern | 81

A key point with a two-way adapter is that it can be used in place of both ITarget
and the Adaptee. When called to execute AltiVec instructions, the adapter behaves as
a PowerPC processor (the Target), and when called to execute SSE instructions, it
behaves as an Intel processor (the Adaptee).

Example: The Seabird
We have already looked at some theory code and discussed an interesting applica-
tion of the Adapter pattern concept. It is now time for an example. That illustrates a
two-way adapter but sticks closely to the structure of Example 4-1.

Suppose an inventor has an embedded control system for a revolutionary water plane
called the Seabird. The plane derives from both aircraft and seacraft design: specifi-
cally, the Seabird has the body of a plane but the controls and engine of a ship. Both
parts are being assembled as-is. The inventor of the Seabird is adapting as much as he
can so that it is possible to control the craft via the interfaces provided by both parts.

In pattern terms, the Seabird will be a two-way adapter between the Aircraft and
Seacraft classes. When running the experiments on the Seabird, the inventor will use
an adapter and will be able to access methods and data in both classes. In other words,
Seabird will behave as both an Aircraft and a Seacraft. We could get a simple adapter
to behave as an Aircraft, say, and use the features of a Seacraft, but we could not do
this the other way as well. With a two-way adapter, however, this is possible.

The ITarget interface, IAircraft, has two properties, Airborne and Height, and one
method, TakeOff. The Aircraft class implements the interface in the manner of an
aircraft. The IAdaptee interface, ISeacraft (new in this version of the pattern), has
two methods—Speed and IncreaseRevs—that are implemented by the Seacraft class.
The Adapter inherits from the Adaptee (Seacraft) and implements the ITarget
(IAircraft) in the normal way. The adapter then has to do some work to match
these two different interfaces to each other. Table 4-1 makes it easier to see how one
would approach such an adapter.

Table 4-1. Adapter pattern Seabird example—methods and properties

Aircraft (Target) Seacraft (Adaptee) Seabird (Adapter) Experiment (Client)

Inherits Seabird, imple-
ments Aircraft

Instantiates seabird

Methods

TakeOff—sets
Airborne and Height to
200

TakeOff—involves
Seacraft, IsFlying,
and IncreaseRevs

seabird.TakeOff—goes
to Seabird

IncreaseRevs—
changes speed by 10

IncreaseRevs—calls
Seacraft
IncreaseRevs and
SeacraftIsFlyingand
sets the height

(seabird as ISeacraft)
IncreaseRevs—goes to
Seabird



82 | Chapter 4: Structural Patterns: Adapter and Façade

The classes representing each part of the invention offer different methods: TakeOff
for an aircraft and IncreaseRevs for a seacraft. In the simple adapter, only TakeOff
would work. In the two-way adapter, we also capture the method from the Adaptee
(IncreaseRevs) and adapt it to include information that otherwise would be supplied
by the Target (the height, here).

Two-way adapters also handle variables—in this case, Airborne, Speed, and Height.
Those from the Aircraft (the Target) are trapped and adapted to return locally held
information. The one in the Seacraft (Adaptee) is routed through.

The result of all of the above, when translated into C# classes, is that the Client can
conduct experiments on the Seabird as follows:

1 Console.WriteLine("\nExperiment 3: Increase the speed of the Seabird:");
2 (seabird as ISeacraft).IncreaseRevs( );
3 (seabird as ISeacraft).IncreaseRevs( );
4 if (seabird.Airborne)
5   Console.WriteLine("Seabird flying at height "
6       + seabird.Height +
7       " meters and speed "+(seabird as ISeacraft).Speed + " knots");
8 Console.WriteLine("Experiments successful; the Seabird flies!");

The calls to seabird.Airborne and seabird.Height (lines 4 and 6) are regular adapter
methods that adapt as described in Table 4-1. However, the ability to treat the Sea-
bird as a Seacraft as well (lines 2, 3, and 7) is peculiar to the two-way adapter. The
full program is given in Example 4-2.

Variables

Airborne—istrue after
takeoff

Airborne—is true if
Height > 50

seabird.Airborne—goes
to Seabird

Speed—returns the
speed

(seabird as Seacraft)
Speed—goes to Seacraft

Height—returns the
height

Height—returns the
stored height

seabird.Height—goes to
Seabird

Example 4-2. Two-way Adapter pattern example code—Seabird

    using System;

      // Two-Way Adapter Pattern  Pierre-Henri Kuate and Judith Bishop  Aug 2007
      // Embedded system for a Seabird flying plane

    // ITarget interface
    public interface IAircraft {
      bool Airborne {get;}
      void TakeOff( );
      int Height {get;}
    }

Table 4-1. Adapter pattern Seabird example—methods and properties (continued)

Aircraft (Target) Seacraft (Adaptee) Seabird (Adapter) Experiment (Client)



Adapter Pattern | 83

    // Target
    public sealed class Aircraft : IAircraft {
      int height;
      bool airborne;
      public Aircraft( ) {
        height = 0;
        airborne = false;
    }
    public void TakeOff ( ) {
      Console.WriteLine("Aircraft engine takeoff");
      airborne = true;
      height = 200; // Meters
    }
    public bool Airborne {
      get {return airborne;}
    }
    public int Height {
      get {return height;}
    }
  }

  // Adaptee interface
  public interface ISeacraft {
    int Speed {get;}
    void IncreaseRevs( );
  }
  // Adaptee implementation
  public class Seacraft : ISeacraft {
    int speed = 0;

    public virtual void IncreaseRevs( ) {
      speed += 10;
      Console.WriteLine("Seacraft engine increases revs to " + speed + " knots");
    }
    public int Speed {
      get {return speed;}
   }
 }

   // Adapter
   public class Seabird : Seacraft, IAircraft {
     int height = 0;
     // A two-way adapter hides and routes the Target's methods
     // Use Seacraft instructions to implement this one
     public void TakeOff( ) {
       while (!Airborne)
         IncreaseRevs( );
     }

     // Routes this straight back to the Aircraft
     public int Height {
       get {return height;}
     }

Example 4-2. Two-way Adapter pattern example code—Seabird (continued)



84 | Chapter 4: Structural Patterns: Adapter and Façade

     // This method is common to both Target and Adaptee
     public override void IncreaseRevs( ) {
       base.IncreaseRevs( );
       if(Speed > 40)
           height += 100;
      }

      public bool Airborne {
        get {return height > 50;}
      }
   }

  class Experiment_MakeSeaBirdFly {
    static void Main ( ) {
      // No adapter
      Console.WriteLine("Experiment 1: test the aircraft engine");
      IAircraft aircraft = new Aircraft( );
      aircraft.TakeOff( );
      if (aircraft.Airborne) Console.WriteLine(
           "The aircraft engine is fine, flying at "
           +aircraft.Height+"meters");

      // Classic usage of an adapter
      Console.WriteLine("\nExperiment 2: Use the engine in the Seabird");
      IAircraft seabird = new Seabird( );
      seabird.TakeOff( ); // And automatically increases speed
      Console.WriteLine("The Seabird took off");

      // Two-way adapter: using seacraft instructions on an IAircraft object
      // (where they are not in the IAircraft interface)
      Console.WriteLine("\nExperiment 3: Increase the speed of the Seabird:");
      (seabird as ISeacraft).IncreaseRevs( );
      (seabird as ISeacraft).IncreaseRevs( );
      if (seabird.Airborne)
        Console.WriteLine("Seabird flying at height "+ seabird.Height +
            " meters and speed "+(seabird as ISeacraft).Speed + " knots");
      Console.WriteLine("Experiments successful; the Seabird flies!");
     }
   }

 /* Output
 Experiment 1: test the aircraft engine
 Aircraft engine takeoff
 The aircraft engine is fine, flying at 200 meters

 Experiment 2: Use the engine in the Seabird
 Seacraft engine increases revs to 10 knots
 Seacraft engine increases revs to 20 knots
 Seacraft engine increases revs to 30 knots
 Seacraft engine increases revs to 40 knots
 Seacraft engine increases revs to 50 knots
 The Seabird took off

Example 4-2. Two-way Adapter pattern example code—Seabird (continued)



Adapter Pattern | 85

Pluggable Adapters
Developers who recognize that their systems will need to work with other compo-
nents can increase their chances of adaptation. Identifying in advance the parts of the
system that might change makes it easier to plug in adapters for a variety of new situ-
ations. Keeping down the size of an interface also increases the opportunities for new
systems to be plugged in. Although not technically different from ordinary adapters,
this feature of small interfaces gives them the name pluggable adapters.

A distinguishing feature of pluggable adapters is that the name of a method called by
the client and that existing in the ITarget interface can be different. The adapter
must be able to handle the name change. In the previous adapter variations, this was
true for all Adaptee methods, but the client had to use the names in the ITarget inter-
face. Suppose the client wants to use its own names, or that there is more than one
client and they have different terminologies. To achieve these name changes in a very
dynamic way, we can use delegates (see later sidebar).

Now, consider Example 4-3, which shows how to write pluggable adapters with
delegates.

 Experiment 3: Increase the speed of the Seabird:
 Seacraft engine increases revs to 60 knots
 Seacraft engine increases revs to 70 knots
 Seabird flying at height 300 meters and speed 70 knots
 Experiments successful; the Seabird flies!
 */

Example 4-3. Pluggable Adapter pattern theory code

1     using System;
2
3       // Adapter Pattern - Pluggable             Judith Bishop  Oct 2007
4       // Adapter can accept any number of pluggable adaptees and targets
5       // and route the requests via a delegate, in some cases using the
6       // anonymous delegate construct
7
8       // Existing way requests are implemented
9       class Adaptee {

10         public double Precise (double a, double b) {
11           return a/b;
12         }
13       }
14
15       // New standard for requests
16       class Target {
17         public string Estimate (int i) {
18           return "Estimate is " + (int) Math.Round(i/3.0);
19         }
20       }
21

Example 4-2. Two-way Adapter pattern example code—Seabird (continued)



86 | Chapter 4: Structural Patterns: Adapter and Façade

The delegate is contained in the Adapter and is instantiated on line 24, from one of
the standard generic delegates. On lines 33 and 40, it is assigned to the methods
Precise and Estimate, which are in the Adaptee and Target, respectively. Lines 31–34
show the use of an anonymous function to augment the results from the Adaptee.
Notice that the Client (the Main method) refers only to its chosen method name,
Request (see sidebar).

The pluggable adapter sorts out which object is being plugged in at the time. Once
a service has been plugged in and its methods have been assigned to the delegate
objects, the association lasts until another set of methods is assigned. What
characterizes a pluggable adapter is that it will have constructors for each of the

22       // Implementing new requests via old
23      class Adapter : Adaptee {
24        public Func <int,string> Request;
25
26        // Different constructors for the expected targets/adaptees
27
28        // Adapter-Adaptee
29        public Adapter (Adaptee adaptee) {
30        // Set the delegate to the new standard
31        Request = delegate(int i) {
32            return "Estimate based on precision is " +
33            (int) Math.Round(Precise (i,3));
34        };
35      }
36
37      // Adapter-Target
38      public Adapter (Target target) {
39        // Set the delegate to the existing standard
40        Request = target.Estimate;
41      }
42    }
43
44   class Client {
45
46     static void Main ( ) {
47
48       Adapter adapter1 = new Adapter (new Adaptee( ));
49       Console.WriteLine(adapter1.Request(5));
50
51       Adapter adapter2 = new Adapter (new Target( ));
52       Console.WriteLine(adapter2.Request(5));
53
54     }
55   }
56  /* Output
57  Estimate based on precision is 2
58  Estimate is 2
59  */

Example 4-3. Pluggable Adapter pattern theory code (continued)



Adapter Pattern | 87

types that it adapts. In each of them, it does the delegate assignments (one, or
more than one if there are further methods for rerouting).

Example: CoolBook
Our last Adapter pattern example picks up on an earlier example that we explored
with the Proxy and Bridge patterns: SpaceBook. Recall that Example 2-4 introduced
the SpaceBook class and its authentication frontend, MySpaceBook. Then, Example 2-6
showed how we could create a Bridge to an alternative version of MySpaceBook called
MyOpenBook, which did not have authentication. Now, we are going to consider going
GUI. The input and output of SpaceBook (wall writing, pokes, etc.) will be done via
Windows forms. There will be a separate form for each user, and users will be able to
write on each other’s pages as before. However, now the input will be interactive, as
well as being simulated by method calls in the program. Thus, we will have a proto-
type of a much more realistic system.

C# Feature—Delegates
A method that is specified in an interface is implemented with the same name in the
base class. However, such close coupling is not always appropriate. The delegate con-
struct can be used to break the coupling for this purpose. A delegate is a type that
defines a method signature. A delegate instance is then able to accept a method of that
signature, regardless of its method name or the type that encapsulates it.

The delegate syntax in C# evolved considerably from Versions 1.0 to 2.0 to 3.0. We
shall concentrate on the 3.0 version, which is the simplest to code. The language has
predefined standard generic delegate types, as follows:

delegate R Func<R>( );
delegate R Func<A1, R>(A1 a1);
delegate R Func<A1, A2, R>(A1 a1, A2 a2);
// ... and up to many arguments

where R is the return type and the As and as represent the argument types and names,
respectively. Thus, declaring a delegate instance is now straightforward. For example,
we can define a Request delegate that takes an integer parameter and returns a string:

public Func <int,string> Request;

Next, we can assign an actual method to Request, as in:

Request = Target.Estimate;

The delegate can then be invoked just as any other method would be:

string s = Request(5);

This statement would invoke the Estimate method in the Target class, returning a
string.

cf. C# Language Specification Version 3.0, September 2007, Section 10.8



88 | Chapter 4: Structural Patterns: Adapter and Façade

Creating a GUI and handling its events is a specialized function, and it is best to iso-
late it as much as possible from the ordinary logic of the system. In setting up Cool-
Book, we wrote a minimal GUI system called Interact. All Interact does is set up a
window with a TextBox and a Button called “Poke,” and pass any click events on the
Button to a delegate (see sidebar). Separately from this, we wrote MyCoolBook, which
mimics the functionality of MyOpenBook and, for reasons of simplicity at this stage,
maintains its own community of users. Given the following client program, the out-
put will be as shown in Figure 4-3.

static void Main( ) {

  MyCoolBook judith = new MyCoolBook("Judith");
  judith.Add("Hello world");

  MyCoolBook tom = new MyCoolBook("Tom");
  tom.Poke("Judith");
  tom.Add("Hey, We are on CoolBook");
  judith.Poke("Tom");
  Console.ReadLine( );
}

The second “Tom : Poked you” was created interactively by Tom typing in “Judith”
on his wall, selecting it, and clicking the Poke button. Judith then wrote on her own
wall, and was getting ready to poke Tom when the snapshot was taken.

MyCoolBook builds on top of Interact and acts as the adapter class. As can be seen in
the Client, MyOpenBook and MySpaceBook have been completely plugged out and
replaced by MyCoolBook. We can just change the instantiations back, and everything
will revert to the old system. This is what a pluggable adapter achieves. Consider the
insides of the adapter in Example 4-4. It inherits from MyOpenBook and, through
inheritance, it makes use of the MySpaceBook object stored there, as well as the Name

C# Feature—Anonymous Functions
Anonymous functions simplify the creation of one-time behavior for delegates. They are
useful when additional behavior is to be added before or after a method is invoked. For
example:

Request = delegate(int i) {
  return "Estimate based on precision is " +
      (int) Math.Round(Precise (i,3));
};

Here, the method to be invoked is Precise. The parameters are different from the ones
in the delegate, as is the return value. The anonymous function can wrap up the
changes and assign a “complete solution” to the delegate for later invocation.

cf. C# Language Specification Version 3.0, September 2007, Section 6.5



Adapter Pattern | 89

property. It reimplements the three important methods—Poke and the two Add meth-
ods—and has two methods that connect it to Interact via a form object called
visuals.

Figure 4-3. Adapter pattern—output from CoolBook

Example 4-4. Pluggable Adapter pattern example code—MyCoolBook

   // Adapter
   public class MyCoolBook : MyOpenBook {
     static SortedList<string, MyCoolBook> community =
         new SortedList<string, MyCoolBook>(100);
     Interact visuals;

     // Constructor starts the GUI
     public MyCoolBook(string name) : base(name) {
       // Create the Interact GUI on the relevant thread, and start it
       new Thread(delegate( ) {
         visuals = new Interact("CoolBook Beta");
         visuals.InputEvent += new InputEventHandler(OnInput);
         visuals.FormClosed += new FormClosedEventHandler(OnFormClosed);
         Application.Run(visuals);
       }).Start( );
       community[name] = this;

       while (visuals == null) {
         Application.DoEvents( );
         Thread.Sleep(100);
       }

       Add("Welcome to CoolBook " + Name);
     }

     // Closing the GUI
     private void OnFormClosed(object sender, FormClosedEventArgs e) {



90 | Chapter 4: Structural Patterns: Adapter and Façade

Of the three reimplemented methods, only the behavior of the first Add is specific to
MyCoolBook. The other two methods are very much like those in MyOpenBook. How-
ever, the problem is that given the closed nature of SpaceBook, MyCoolBook cannot
access the dictionary there and has to keep its own community. This sometimes hap-
pens with adapters. If it were possible to rewrite parts of the Target in a more collab-
orative way, the adapter could do less work. This idea is addressed in the upcoming
“Exercises” section. The code for the full CoolBook system is shown in the Appendix.

One point to note is the anonymous function that is passed to the Thread class in the
CoolBook constructor. This is a very quick way of creating an object in a new thread.
The last statement is Application.Run( ), which starts drawing the form and opens
up a message “pump” for the interactive input/output on it. Finally, Start is called
on the thread.

       community.Remove(Name);
     }

     // A handler for input events, which then calls Add to
     // write on the GUI
     private void OnInput(object sender, EventArgs e, string s) {
       Add("\r\n");
       Add(s, "Poked you");
     }

     // This method can be called directly or from the other
     // Add and Poke methods. It adapts the calls by routing them
     // to the Interact GUI.
     public new void Add(string message) {
     visuals.Output(message);
   }

   public new void Poke(string who) {
     Add("\r\n");
     if (community.ContainsKey(who))
         community[who].Add(Name, "Poked you");
     else
       Add("Friend " + who + " is not part of the community");
   }

   public new void Add(string friend, string message) {
     if (community.ContainsKey(friend))
         community[friend].Add(Name + " : " + message);
     else
       Add("Friend " + friend + " is not part of the community");
   }
 }

Example 4-4. Pluggable Adapter pattern example code—MyCoolBook (continued)



Adapter Pattern | 91

Use
The Adapter pattern is found wherever there is code to be wrapped up and
redirected to a different implementation. In 2002, Nigel Horspool and I developed a
system called Views that enabled an XML specification of a Windows GUI to run on
the cross-platform version of Windows called Rotor. The Views engine ran with the
GUI program and adapted Views method calls to Windows calls. That benefited the
clients (students) because they could use a simpler interface to GUI programming.

C# Feature—Events
Delegates are used extensively in Windows GUI event-driven programming, where
they reflect the need to call back into the user’s code when some event happens.
Mostly, existing code of this type will use an older syntax. Also, because the new Func
delegates must have return types, void delegates must use the original syntax too. Con-
sider a simple example of wanting to inform one object that input has occurred in
another object (this is part of Example 4-4). We first declare a delegate visible to both
classes:

public delegate void InputEventHandler(object sender,
    EventArgs e, string s);

Then, in the class where the event is handled, we create an instance of the delegate and
add it to the event object of the class that will receive the event. When creating the del-
egate, we indicate the method that it will call (in this case, OnInput):

visuals.InputEvent += new InputEventHandler(OnInput);

void OnInput(object sender, EventArgs e, string s) {
  // Do something
}

The signature of OnInput must match that of InputEventHandler, which it does. Now,
in the class where event occurs, we declare the event:

public event InputEventHandler InputEvent;

and in some method we invoke it:

public void Input(object source, EventArgs e) {
  InputEvent(this, EventArgs.Empty, who);
}

The action of invoking the InputEvent delegate causes the method currently assigned
to it (here, OnInput) to be invoked. Thus, the callback from one class to the other is
achieved.

More than one method can be associated with a delegate; when such a delegate is
invoked, all its methods are called. Thus, if another object needed to know about input
in the preceding example, it could add its own handler method on to InputEvent using
+=. Event handlers can be removed using -=.

cf. C# Language Specification Version 3.0, September 2007, Section 10.8



92 | Chapter 4: Structural Patterns: Adapter and Façade

A subsequent advantage was that Vista, the successor to Windows XP, used the
same approach.

At the time, it was a long way around to get Windows forms, but the adaptation
paid off later. In 2004, the backend of the Views engine was ported by Basil Wor-
rall to QT4, a graphics toolkit running on Linux. Immediately, all applications that
were using Views for GUI programming became independent of Windows and
could run with the Mono .NET Framework on Linux. The Views engine was there-
fore a pluggable adapter. (Our paper describing the approach is referenced in the
Bibliography at the end of the book.)

Exercises
1. Consider the Seabird program. Would it be possible to instantiate an Aircraft

object instead of a Seacraft object and change the methods inside Seabird
accordingly? If so, make the changes. If not, explain how the present program
would need to be altered to enable this and then make the changes.

2. Add a “SuperPoke” button to CoolBook, enabling one user to send a message to
another.

3. Having two different communities for SpaceBook and CoolBook is clearly a dis-
advantage. Assume you can make minor changes to the SpaceBook, MySpaceBook,
and MyOpenBook classes, and see whether you can remove the community collec-
tion from MyCoolBook, routing all accesses back through MyOpenBook to SpaceBook.

Use the Adapter pattern when…

You have:
• A domain-specific interface.
• A class to connect to with a mismatching interface.

You want to:
• Create a reusable class to cooperate with yet-to-be-built classes.
• Change the names of methods as called and as implemented.
• Support different sets of methods for different purposes.

Choose the Adapter you need…

Class adapter
Simple and versatile, invisible to the client.

Object adapter
Extensible to subclasses of the adapter.

Two-way adapter
Enables different clients to view an object differently.

Pluggable adapter
Presence of adapter is transparent; it can be put in and taken out
Several adapters can be active.



Façade Pattern | 93

Façade Pattern

Role
The role of the Façade pattern is to provide different high-level views of subsystems
whose details are hidden from users. In general, the operations that might be desir-
able from a user’s perspective could be made up of different selections of parts of the
subsystems.

Illustration
Simple interfaces to complex subsystems abound in real life. They can be created to
make frequent use of a system faster, or to differentiate between novices and power
users. A good illustration is Amazon.com’s 1-Click® system (Figure 4-4), which sim-
plifies the process of ordering items for well-known customers. Normally, after
selecting an item to purchase, an Amazon customer has to enter delivery and bank
account details before the order is accepted. If these details are stored and the cus-
tomer verifies her identity in some way, 1-Click takes that customer straight to the
checkout. The customer’s stored bank account details and selected delivery address
are used for the purchase, thus considerably speeding up (and simplifying) the order-
ing process. Thus, the 1-Click option forms a façade to the fuller system underneath.

Design
Hiding detail is a key programming concept. What makes the Façade pattern different
from, say, the Decorator or Adapter patterns is that the interface it builds up can be
entirely new. It is not coupled to existing requirements, nor must it conform to exist-
ing interfaces. There can also be several façades built up around an existing set of sub-
systems. The term “subsystem” is used here deliberately; we are talking at a higher
level than classes. See the UML diagram in Figure 4-5; it considers the subsystems to be
grouped together, so they can interact in agreed ways to form the top-level operations.

Figure 4-4. Façade pattern illustration—1-Click®



94 | Chapter 4: Structural Patterns: Adapter and Façade

The roles are:

Namespace 1
A library of subsystems

Subsystem
A class offering detailed operations

Façade
A class offering a few high-level operations as selections from the subsystems

Namespace 2
Where the client resides

Client
Calls the high-level operations in the Façade in Namespace 1

As shown in the UML diagram, the client’s code does not make reference to the classes
of the names of the subsystems; it only gets access to their operations via the Façade.

Implementation
The Façade pattern is simple to implement. It uses the C# concept of namespaces.
Classes in namespaces have the facility to define accessibility as internal or public.
If accessibility is defined as internal, the member is visible only in the assembly in
which the namespace is compiled. In a very large system, the client’s GUI will be in a
different namespace from the library, so we can enforce the Façade. (Alternative
implementations of the Façade pattern will be discussed shortly.)

Figure 4-5. Façade pattern UML diagram

Client

–facade : Facade

Library

Facade

–a : SubsystemA
–b : SubsystemB
–c : SubsystemC

+Operation1( )
+Operation2( )

SubsystemA

SubsystemB

SubsystemC



Façade Pattern | 95

In Example 4-5, the theory code comes from two files: Façade-Main.cs and Façade-
Library.cs. Both have to be compiled with special directives so that library in Façade-
Library.cs is recognized as a lib file and the client in Façade-Main.cs can reference it.
These commands are:

// Compile the library
csc /t:library /out:FaçadeLib.dll Façade-Library.cs

// Compile the main program
csc /r:FaçadeLib.dll Façade-Main.cs

This process of compiling and using libraries is facilitated in environ-
ments such as Visual Studio.

The example mirrors the diagram in Figure 4-5. Three subsystems, implemented as
classes, are inserted into the library. Façade is a static class that instantiates the three
subsystems under the façade as objects called a, b, and c. Operations 1 and 2 then
select combinations of methods from a, b, and c. For example, Operation1 will call
two methods in a, one in b, and none in c. Thus, the Façade is a means of providing
an interface to operations that should, on their own, remain hidden.

The client starts with a using statement that indicates it wants access to the public
members in the FacadeLib namespace. Then it calls the Façade’s two high-level opera-
tions. The output is shown below in Example 4-5.

Q U I Z

Match the Façade Pattern Players with the 1-Click Illustration
To test whether you understand the Façade pattern, cover the lefthand column of the
table below and see if you can identify its players among the items from the illustrative
example (Figure 4-4), as shown in the righthand column. Then check your answers
against the lefthand column.

Namespace 1

Subsystems

Façade

Operation

Namespace 2

Client

Amazon.com server

Registering, checkout, address entering, account details verification, etc.

Window offering choices for purchasing

1-Click

Client GUI

Customer



96 | Chapter 4: Structural Patterns: Adapter and Façade

Example 4-5. Façade pattern theory code

   using System;

      // Facade Pattern                 Judith Bishop  Dec 2006
      // Sets up a library of three systems, accessed through a
      // Facade of two operations
      // Compile with
      // csc /t:library /out:FacadeLib.dll Facade-Library.cs

    namespace Library {

        internal class SubsystemA {
          internal string A1( ) {
              return "Subsystem A, Method A1\n";
          }
          internal string A2( ) {
              return "Subsystem A, Method A2\n";
          }
        }

        internal class SubsystemB {
          internal string B1( ) {
            return "Subsystem B, Method B1\n";
          }
        }

        internal class SubsystemC {
          internal string C1( ) {
            return "Subsystem C, Method C1\n";
          }
        }
      }

   public static class Facade {
     static SubsystemA a = new SubsystemA( );
     static SubsystemB b = new SubsystemB( );
     static SubsystemC c = new SubsystemC( );

     public static void Operation1( ) {
       Console.WriteLine("Operation 1\n" +
           a.A1( ) +
           a.A2( ) +
           b.B1( ));
    }

     public static void Operation2( ) {
       Console.WriteLine("Operation 2\n" +
           b.B1( ) +
           c.C1( ));
     }
   }



Façade Pattern | 97

Everything in the façade has to be public so that the Client, which is compiled into a
different assembly, can access it. The classes all have the default internal visibility,
limiting access to them to the assembly in which they were compiled (excluding the
Client). As a test, if we try to let the Client instantiate any of the subsystems
directly, we will get an error like the following:

SubsystemC x = new SubsystemC( );
x.C1( );
Façade2Main.cs(12,3): error CS0122: 'FaçadeLib.SubsystemC' is inaccessible due to its
protection level

Façade Alternatives
Some alternative implementations of the Façade pattern are:

Transparent façades
The façade described in the preceding example is opaque, in that the subsystems
cannot be accessed except via the Façade object. This requirement might be too
stringent. Suppose some users want to get at the individual operations of partic-
ular subsystems. We can change all the internal modifiers to public, which will
make the façade optional, or transparent. That is, as well as being able to go
through the Façade, the client will be able to instantiate SubsystemA directly, for
example, and then call A1.

     // ============= Different compilation

    using System;
    using FacadeLib;

    // Compile with csc /r:FacadeLib.dll Facade-Main.cs

    class Client {
      static void Main ( ) {
        Facade.Operation1( );
        Facade.Operation2( );
      }
    }
 /* Output

 Operation 1
 Subsystem A, Method A1
 Subsystem A, Method A2
 Subsystem B, Method B1

 Operation 2
 Subsystem B, Method B1
 Subsystem C, Method C1
 */

Example 4-5. Façade pattern theory code (continued)



98 | Chapter 4: Structural Patterns: Adapter and Façade

Static façades
In most cases, there will only be one instance of a façade in the client for a set of
subsystems, so its operations could more appropriately be called on the user’s
side as members of the class itself, as in:

public void ClientMain ( ) {
  Façade.Operation1( );
  Façade.Operation2( );
}

This implies that Façade is a static class. No instantiation is necessary; the user
interfaces with the Façade class directly. In fact, the Singleton pattern (Chapter 5)
would be the preferred way of achieving this effect.

Example: Novice Photo Library
Consider the Composite pattern example in Chapter 3 that showed how photos
could be loaded into directories of arbitrary configurations. The instructions for
using the six commands relied on the current place (“where I am”), which was a
powerful, but perhaps confusing, concept. For novices, it might be a good idea to
abstract from the power of the Photo Library and just let them load sets of photos,
all at the same level, and immediately display them (as Flickr does). The commands
could simply be:

Upload setname
photoname1 photoname2 ...

ending with a blank line or some other indicator. These instructions would translate
into the following existing ones:

Find album
AddSet setname
AddPhoto photoname1
AddPhoto photoname2
...
Display

Instead of going in and altering the code to have a new command, we can have a
completely separate Façade that makes the calls as described above. The more com-
plex and rich commands might be available to expert users, but not to novices. (See
the preceding discussion on opaque and transparent façades.)

Use
Façades can be useful in different circumstances. There are many instances where a
computer system is built up out of a set of largely independent subsystems. One
well-known case is a compiler: it consists of clearly identifiable subsystems called a
lexical analyzer, a syntax analyzer, semantic analyzers, a code generator, and several
optimizers. In modern compilers, each subsystem has many subtasks. The different
tasks and subtasks are called in a sequence, but sometimes they are not all needed.



Pattern Comparison | 99

For example, if an error occurs in one of the analysis tasks, the compiler might not
go onto a later phase. (The .NET compilers follow this approach.) Hiding this detail
behind a façade enables a program to call tasks within subsystems in a logical order,
passing the necessary data structures between them.

Exercises
1. Program the suggested extension for novices to the Photo Library program.

2. Consider large systems that you use on the Internet, and come up with more
examples of Façades.

3. If you have access to source code for a compiler, find the part where the sub-
systems are called and examine how the data structures are passed between
them.

Pattern Comparison
The Adapter pattern has much in common with the patterns discussed in Chapter 2.
The differences are in the intents of the patterns. A bridge, for example, separates an
interface and its implementation so that they can vary independently, whereas an
adapter changes the interface of an existing object. The Adapter pattern is more use-
ful for one-off changes, whereas the Bridge pattern anticipates that change might
happen continuously.

Use the Façade pattern when…

A system has several identifiable subsystems and:
• The abstractions and implementations of a subsystem are tightly coupled.
• The system evolves and gets more complex, but early adopters might want to retain their simple views.
• You want to provide alternative novice, intermediate, and “power user” interfaces.
• There is a need for an entry point to each level of layered software.

But consider using instead:
• The Abstract Factory pattern for designs where subsystems create objects on behalf of the client.

Choose the Façade you need…

Opaque
Subsystem operations can only be called through the Façade.

Transparent
Subsystem operations can be called directly as well as through the Façade.

Singleton
Only one instance of the Façade is meaningful.



100 | Chapter 4: Structural Patterns: Adapter and Façade

A decorator enhances an object without changing its interface and should be trans-
parent to the application. An adapter is not transparent, as it is the named imple-
mentation of the interface the client sees. The Proxy pattern does not change any
interfaces; it defines substitute objects for other objects.

From a certain point of view, the Façade pattern is also adapting requests: it trans-
forms high-level requests into a sequence of lower-level requests. The Façade’s intent
is to hide complexity, and the Façade subsystems are not intended to be accessible
by the client.

To complete the picture, we can classify the Adapter and Façade patterns according
to the mechanisms shown in Table 4-2.

Table 4-2. Comparison of Adapter and Façade patterns

Mechanism Adapter Façade

Original Adaptee SubsystemA, B, and C

Interface ITarget Façade

New Adapter Operation1 and 2

Client Aggregates ITarget Accesses Façade

Client activates New New

Original changed by No change No change

New classes/subsystems Adapter provides adaptations to
their methods

Façade supplies high-level operations

Operation routed From new to original From new to original



101

Chapter 5 CHAPTER 5

Creational Patterns: Prototype, Factory
Method, and Singleton5

The creational patterns aim to separate a system from how its objects are created,
composed, and represented. They increase the system’s flexibility in terms of the
what, who, how, and when of object creation. Creational patterns encapsulate the
knowledge about which classes a system uses, but they hide the details of how the
instances of these classes are created and put together. Programmers have come to
realize that composing systems with inheritance makes those systems too rigid. The
creational patterns are designed to break this close coupling. In this and the follow-
ing chapter, we shall make further use of some C# features that help to abstract the
instantiation process—generics and delegates (introduced in Chapters 3 and 4,
respectively) are two of these.

We’ll start by looking at three small patterns that are helpful in combination with
many others. The Prototype pattern ensures that when copies of complex objects are
made, they are true copies. The Factory Method pattern is a means of creating
objects without knowing the exact subclass being used. Finally, the Singleton pat-
tern ensures that only one of a class can be built and that all users are directed to it.

Prototype Pattern

Role
The Prototype pattern creates new objects by cloning one of a few stored proto-
types. The Prototype pattern has two advantages: it speeds up the instantiation of
very large, dynamically loaded classes (when copying objects is faster), and it keeps a
record of identifiable parts of a large data structure that can be copied without know-
ing the subclass from which they were created.



102 | Chapter 5: Creational Patterns: Prototype, Factory Method, and Singleton

Illustration
Let’s again consider the Photo Group application discussed in Chapter 3, which held
groups of photographs (see Figure 3-3). At some stage, we might like to archive one
of the groups by copying it to another album. Then, later, we can bring it back again
(perhaps if the original is deleted by mistake). In this case, the archive becomes a
holder of prototypes that can be copied whenever required. We shall call the
updated version of the application with this added functionality Photo Archive.

Design
Objects are usually instantiated from classes that are part of the program. The Proto-
type pattern presents an alternative route by creating objects from existing proto-
types. The UML for the Prototype pattern is given in Figure 5-1.

Given a key, the program creates an object of the required type, not by instantiation,
but by copying a clean instance of the class. This process of copying, or cloning, can
be repeated over and over again. The copies, or clones, are objects in their own right,
and the intention of the pattern is that their state can be altered at will without
affecting the prototype. During the run of the program new prototypes can be added,
either from new classes or from variations on existing prototypes. Although there are
other designs, the most flexible is to keep a prototype manager that maintains an
indexed list of prototypes that can be cloned. The main players in the pattern are:

IPrototype
Defines the interface that says prototypes must be cloneable

Prototype
A class with cloning capabilities

PrototypeManager
Maintains a list of clone types and their keys

Client
Adds prototypes to the list and requests clones

Figure 5-1. Prototype pattern UML diagram

<<interface>>
IPrototype

+Clone( )
+DeepCopy( )

Class

+Operation( )

Prototype

+Clone( )

PrototypeManager



Prototype Pattern | 103

Q U I Z

Match the Prototype Pattern Players with the Photo Archive
Illustration

To test whether you understand the Prototype pattern, cover the lefthand column of the
table below and see if you can identify its players among the items from the illustrative
example (using the picture in Figure 3-3), as shown in the righthand column. Then
check your answers against the lefthand column.

IPrototype

Prototype

PrototypeManager

Client

Facility for archiving

An archived photo set

The Photo Library

The user

C# Features—Cloning and Serialization
MemberwiseClone is a method that is available on all objects. It copies the values of all
fields and any references, and returns a reference to this copy. However, it does not
copy what the references in the object point to. That is, it performs what is known as
a shallow copy. Many objects are simple, without references to other objects, and there-
fore shallow copies are adequate. To preserve the complete value of the object, includ-
ing all its subobjects use a deep copy.

It is not easy to write a general algorithm to follow every link in a structure and recreate
the arrangement elsewhere. However, algorithms do exist, and in the .NET Frame-
work they are encapsulated in a process called serialization. Objects are copied to a
given destination and can be brought back again at will. The options for serialization
destinations are several, including disks and the Internet, but the easiest one for serial-
izing smallish objects is memory itself. Thus a deep copy consists of serializing and
deserializing in one method.

A generic method that will work for all types that are marked as serializable (such as
lists and so on) is shown in Example 5-1. Note that there are two Serialization
namespaces that must be imported. Marking a type as serializable is done with the
[Serializable( )] attribute.

Serialization is part of the .NET Framework, not the C# language. The following ref-
erence is to the .NET library online.

cf. http://msdn2.microsoft.com/en-us/library/ system.runtime.serialization(VS.71).aspx



104 | Chapter 5: Creational Patterns: Prototype, Factory Method, and Singleton

Serializing an object structure is possible only if all referenced objects
are serializable. Avoid serializing an object that has a reference to a
“resource,” such as an open file handler or a database connection.

Part of the Prototype pattern then relies on a namespace with two methods: Clone
and DeepCopy. In fact, Clone is merely a synonym for MemberwiseClone and can be
omitted. The namespace is shown in Example 5-1.

Implementation
The implementation of the Prototype pattern in C# is greatly assisted by two facili-
ties in the .NET Framework: cloning and serialization. Both of these are provided as
interfaces in the System namespace.

Now, consider the program to test the namespace, as in Example 5-2. It is a small
example that sets up three prototypes, each consisting of a country, a capital, and
a language (lines 26–28). The last of these, Language, refers to another class called
DeeperData. The purpose of this class is to create a reference in the prototype. The

Example 5-1. Prototype pattern theory code—namespace

1 using System;
2 using System.Collections.Generic;
3 using System.Runtime.Serialization;
4 using System.Runtime.Serialization.Formatters.Binary;
5
6 namespace PrototypePattern {
7   // Prototype Pattern        Judith Bishop  Nov 2007
8   // Serialization is used for the deep copy option
9   // The type T must be marked with the attribute [Serializable( )]

10
11   [Serializable( )]
12   public abstract class IPrototype <T> {
13
14     // Shallow copy
15     public T Clone( ) {
16       return (T) this.MemberwiseClone( );
17     }
18
19     // Deep Copy
20     public T DeepCopy( ) {
21       MemoryStream stream = new MemoryStream( );
22       BinaryFormatter formatter = new BinaryFormatter( );
23       formatter.Serialize(stream, this);
24       stream.Seek(0, SeekOrigin.Begin);
25       T copy = (T) formatter.Deserialize(stream);
26       stream.Close( );
27       return copy;
28     }
29   }
30 }



Prototype Pattern | 105

example will show that for this deeper data item, there is a difference between
shallow copying and deep copying.

Example 5-2. Prototype pattern theory code

1 using System;
2 using System.Collections.Generic;
3 using System.Runtime.Serialization;
4 using PrototypePattern;
5
6   // Prototype Pattern        Judith Bishop  Dec 2006, Nov 2007
7   // Serializable is used for the deep copy option
8
9   [Serializable( )]

10   // Helper class used to create a second level data structure
11   class DeeperData {
12     public string Data {get; set;}
13
14     public DeeperData(string s) {
15       Data = s;
16     }
17     public override string ToString ( ) {
18       return Data;
19     }
20   }
21
22   [Serializable( )]
23   class  Prototype : IPrototype <Prototype>  {
24
25     // Content members
26     public string Country {get; set;}
27     public string Capital {get; set;}
28     public DeeperData Language {get; set;}
29
30     public Prototype (string country, string capital, string language) {
31       Country = country;
32       Capital = capital;
33       Language = new DeeperData(language);
34     }
35
36     public override string ToString( ) {
37       return Country+"\t\t"+Capital+"\t\t->"+Language;
38     }
39
40   }
41   [Serializable( )]
42   class PrototypeManager : IPrototype <Prototype>  {
43     public Dictionary <string, Prototype> prototypes
44       = new Dictionary <string, Prototype> {
45        {"Germany",
46         new Prototype ("Germany", "Berlin", "German")},
47        {"Italy",
48         new Prototype ("Italy", "Rome", "Italian")},



106 | Chapter 5: Creational Patterns: Prototype, Factory Method, and Singleton

49        {"Australia",
50         new Prototype ("Australia", "Canberra", "English")}
51     };
52   }
53
54   class PrototypeClient : IPrototype <Prototype> {
55
56     static void Report (string s, Prototype a, Prototype b) {
57       Console.WriteLine("\n"+s);
58       Console.WriteLine("Prototype "+a+"\nClone      "+b);
59     }
60
61     static void Main ( ) {
62
63     PrototypeManager manager = new PrototypeManager( );
64     Prototype  c2, c3;
65
66     // Make a copy of Australia's data
67     c2  =  manager.prototypes["Australia"].Clone( );
68     Report("Shallow cloning Australia\n===============",
69         manager.prototypes["Australia"], c2);
70
71     // Change the capital of Australia to Sydney
72     c2.Capital = "Sydney";
73     Report("Altered Clone's shallow state, prototype unaffected",
74         manager.prototypes["Australia"], c2);
75
76     // Change the language of Australia (deep data)
77     c2.Language.Data = "Chinese";
78     Report("Altering Clone deep state: prototype affected *****",
79             manager.prototypes["Australia"], c2);
80
81     // Make a copy of Germany's data
82     c3  =  manager.prototypes["Germany"].DeepCopy( );
83     Report("Deep cloning Germany\n============",
84             manager.prototypes["Germany"], c3);
85
86     // Change the capital of Germany
87     c3.Capital = "Munich";
88     Report("Altering Clone shallow state, prototype unaffected",
89             manager.prototypes["Germany"], c3);
90
91     // Change the language of Germany (deep data)
92     c3.Language.Data = "Turkish";
93     Report("Altering Clone deep state, prototype unaffected",
94         manager.prototypes["Germany"], c3);
95   }
96 }
97 /* Output
98 Shallow cloning Australia
99 ===============

Example 5-2. Prototype pattern theory code (continued)



Prototype Pattern | 107

The main program consists of a series of experiments demonstrating the effects of
cloning and deep copying. In the first group, Australia is shallow copied. Lines 104–
105 show the changing of Australia’s clone. The capital is Canberra in the prototype
and Sydney in the clone. The statement responsible is on line 72; however, changing
the language to Chinese (as is done on line 77) also changes the prototype’s lan-
guage (line 108). That is not what we wanted. We got the error because we did a
shallow copy and the language in the prototype and in the clone reference the same
DeeperData object.

In the next experiment, we clone Germany using a deep copy (line 82). The output
on line 118 shows that altering the clone’s shallow state—its capital (line 87)—
works correctly, as does altering the deep state—its language to Turkish (line 92).
Line 121 shows the prototype after the changes; it is unaffected.

Remember that all classes involved in the prototype must add the
Serializable( ) attribute.

100 Prototype Australia           Canberra                ->English
101 Clone      Australia            Canberra                ->English
102
103 Altered Clone's shallow state, prototype unaffected
104 Prototype Australia           Canberra                ->English
105 Clone      Australia            Sydney                   ->English
106
107 Altering Clone deep state: prototype affected *****
108 Prototype Australia           Canberra                ->Chinese
109 Clone      Australia            Sydney                   ->Chinese
110
111 Deep cloning Germany
112 ============
113 Prototype Germany             Berlin          ->German
114 Clone      Germany              Berlin          ->German
115
116 Altering Clone shallow state, prototype unaffected
117 Prototype Germany             Berlin          ->German
118 Clone      Germany              Munich          ->German
119
120 Altering Clone deep state, prototype unaffected
121 Prototype Germany             Berlin          ->German
122 Clone      Germany              Munich          ->Turkish
123 */

Example 5-2. Prototype pattern theory code (continued)



108 | Chapter 5: Creational Patterns: Prototype, Factory Method, and Singleton

Example: Photo Archive
As an example of the Prototype pattern, we’ll extend the Photo Group application
from Chapter 3 to include archiving using the following new commands:

Archive set

Retrieve set
Display Archive

The archive is an additional component at the same level as the album. The action
associated with the two new commands is very simple:

case "Archive" : archive = point.Share(parameter,archive); break;
case "Retrieve" : point = archive.Share(parameter,album); break;

and this is the Share method in the Composite class:

public IComponent <T> Share (T set, IComponent <T> toHere) {
  IPrototype <IComponent <T>> prototype=
  this.Find (set) as IPrototype <IComponent <T>>;
  toHere.Add(copy);
  return toHere;
 }

Of course, the Prototype Pattern is added as a used namespace as well. Given these
changes to the program, the output can look like this (starting from the Display of
the constructed composite):

1 Set Album length :2
2 --Set Home length :2
3 ----Dinner.jpg
4 ----Set Pets length :2
5 ------Dog.jpg
6 ------Cat.jpg
7 --Set Garden length :4
8 ----Spring.jpg
9 ----Summer.jpg

10 ----Flowers.jpg
11 ----Trees.jpg
12
13             Find Pets
14             Archive Pets
15             Display Archive
16 Set Archive length :1
17 --Set Pets length :2
18 ----Dog.jpg
19 ----Cat.jpg
20
21             Find Album
22             Remove Home
23             Find Album
24             Remove Garden
25             Display
26 Set Album length :0
27



Prototype Pattern | 109

28             Retrieve Pets
29             Display
30 Set Album length :1
31 --Set Pets length :2
32 ----Dog.jpg
33 ----Cat.jpg

Lines 14 and 15 show that the Pets set is archived. In lines 21–24, we remove every-
thing from the album; we then copy the contents back from the archive in lines 28–
33. Because we used a deep copy, we could copy Pets repeatedly, or, as the name of
the method suggests, aim to share it with other programs. The full listing of the
Photo Archive program is in the Appendix.

Use
The Prototype pattern co-opts one instance of a class and uses it as a “breeder” for
all future instances. Designs that make heavy use of the Composite and Decorator
patterns often can benefit from the Prototype pattern as well. Prototypes are useful
when object initialization is expensive and you anticipate few variations on the ini-
tialization parameters. In this context, the Prototype pattern can avoid expensive
“creation from scratch,” supporting cheap cloning of a preinitialized prototype.
However, cloning via serialization is not particularly cheap itself, so it is worth con-
sidering shallow cloning if you are absolutely sure you have a flat, single-level data
structure.

There are different situations where the Prototype pattern would be used:

• Say you have loaded a set of objects into memory and choose to copy by means of
user input. When implementing user input, typically there are only a few choices
of objects. These are known as the prototypes, and they are identified within the
program by matching them up with the admissible input keys (such as strings,
integers, or characters). The reason for using prototyping and not instantiation is
to reduce the overhead when creating objects that have heavyweight constructors.

• There are composite structures in the program and parts of them need to be cop-
ied, perhaps for archiving. Which part to copy will normally be identified by
user input. The parts will all be the same (or within the same hierarchy, as in the
Composite pattern), and the copy will become the prototype, which should not
be altered. An example of this scenario is the Photo Archive application.

Use the Prototype pattern when…

You want to:
• Hide concrete classes from the client.
• Add and remove new classes (via prototypes) at runtime.
• Keep the number of classes in the system to a minimum.
• Adapt to changing structures of data at runtime.



110 | Chapter 5: Creational Patterns: Prototype, Factory Method, and Singleton

Exercises
1. Community networking systems such as Facebook support groups that people

can join. Each group has a title, administrative members, a group type (open/
closed), and a list of related groups. Otherwise, a group operates just like an
ordinary page. Reorganize the SpaceBook application (Example 2-3) so that
SpaceBooks and different sorts of SpaceGroups are prototypes.

2. Write a simple system that manages external courses offered by the Department
of Tourism Management (e.g., Scenic Spots, Historic Sites, Local Cuisine, Meet-
ing the People, and so on). Identify the attributes that each course should have—
length, price, topics, etc.—and set them all up as prototypes with a manager.
Then, create a little test program that enables users to select a course, get a copy
of it, and fill in details to enroll for the course.

Factory Method Pattern

Role
The Factory Method pattern is a way of creating objects, but letting subclasses
decide exactly which class to instantiate. Various subclasses might implement the
interface; the Factory Method instantiates the appropriate subclass based on infor-
mation supplied by the client or extracted from the current state.

Illustration
Consider a high-class grocery store in London that stocks avocados all year round. It
relies on a buyer to ensure that avocados arrive regularly, no matter what the time of
year. The buyer sources the best avocados and supplies them to the store. The buyer
is operating as a Factory Method, returning Kenyan, South African, or Spanish avo-
cados depending on the time of year. Although the produce is labeled, the store-
keeper is not particularly interested in the source of the products. Figure 5-2 shows
what might happen at different times of the year.

Because:
• In C# 3.0, cloning by deep copying is absolutely straightforward.

Consider using this pattern:
• With the Composite pattern, to provide archiving.
• Instead of the Factory Method pattern, when subclasses start proliferating.

Use the Prototype pattern when…



Factory Method Pattern | 111

Design
The client declares a Product variable but calls a FactoryMethod to instantiate it. This
defers the decision as to which particular product to create. In the UML diagram in
Figure 5-3, there are two choices: ProductA and ProductB.

The list of players is:

IProduct
The interface for products

ProductA and ProductB
Classes that implement IProduct

Figure 5-2. Factory Method pattern illustration—avocado sourcing

Figure 5-3. Factory Method pattern UML diagram

ProductA ProductB
Client

product =
creator.FactoryMethod( )

Creator

+FactoryMethod( ) : Product

<<interface>>
IProduct

product : IProduct



112 | Chapter 5: Creational Patterns: Prototype, Factory Method, and Singleton

Creator
Provides the FactoryMethod

FactoryMethod
Decides which class to instantiate

The design of this pattern enables the decision-making about which product to be
instantiated to be handled in one place. If the client knew about all the options, the
decisions would be dispersed in its code. As it is, the client need only be concerned
with getting products; it does not even have to bind in all the different subclasses of
products. Of course, the client can have more than one creator, for different types of
products.

Implementation and Example: Avocado Sourcing
A simple program implementing the avocado supplier example is shown in
Example 5-3. Each of the avocado-producing countries has a class, and they all
implement IProduct so that they can ship avocados to the buyer. Depending on the
month, the FactoryMethod (lines 31–38) will choose to supply either ProductA (avoca-
dos from South Africa) or ProductB (avocados from Spain). There is also a third
option, a DefaultProduct, which is selected when avocados are not available (in this
case, in month 3). The important line is line 46, which shows a product being cre-
ated from a factory (the buyer) without the client knowing the product’s class.

Q U I Z

Match the Factory Method Pattern Players with the Avocado
Illustration

To test whether you understand the Factory Method pattern, cover the lefthand col-
umn of the table below and see if you can identify its players among the items from the
illustrative example (Figure 5-2), as shown in the righthand column. Then check your
answers against the lefthand column.

Client

Creator

ProductA

ProductB

IProduct

Shoekeeper

Buyer

Supplier of avocados from Spain

Supplier of avocados from South Africa

Supplying avocados



Factory Method Pattern | 113

Example 5-3. Factory Method pattern example code

1      using System;
2      using System.Collections;
3
4      class FactoryPattern {
5
6           // Factory Method Pattern           Judith Bishop  2006
7
8         interface IProduct {
9           string ShipFrom( );

10         }
11
12        class ProductA : IProduct {
13          public String ShipFrom ( ) {
14            return " from South Africa";
15          }
16        }
17
18        class ProductB : IProduct {
19          public String ShipFrom ( ) {
20            return "from Spain";
21          }
22        }
23
24        class DefaultProduct : IProduct {
25          public String ShipFrom ( ) {
26            return "not available";
27          }
28        }
29
30        class Creator {
31          public IProduct FactoryMethod(int month) {
32            if (month >= 4 && month <=11)
33                return new ProductA( );
34            else
35            if (month == 1 || month == 2 || month == 12)
36                return new ProductB( );
37            else return new DefaultProduct( );
38          }
39        }
40
41        static void Main( ) {
42          Creator c = new Creator( );
43          IProduct product;
44
45          for (int i=1; i<=12; i++) {
46            product = c.FactoryMethod(i);
47            Console.WriteLine("Avocados "+product.ShipFrom( ));
48          }
49        }
50    }
51



114 | Chapter 5: Creational Patterns: Prototype, Factory Method, and Singleton

Use
The Factory Method pattern is a lightweight pattern that achieves independence
from application-specific classes. The client programs to the interface (in this case,
IProduct) and lets the pattern sort out the rest.

A particular advantage of the Factory Method pattern is that it can connect parallel
class hierarchies. If each hierarchy contains a FactoryMethod, it can be used to create
instances of subclasses in a sensible way.

Exercises
1. Extend the avocado sourcing example to source different seasonal products such

as artichokes, asparagus, and grapes. Create them as prototypes and extend the
Factory Method to work with more than one class.

2. Set up a system to draw circles, squares, and lines. Create a Factory Method that
instantiates one of these classes at random and uses it to draw a shape of ran-
dom size on the screen. Run the program to see what interesting shapes you get.

3. A company has a web site to display test results from a plain text file. The
company recently purchased a new computer that produces a binary data file,

52  /* Output
53  Avocados from Spain
54  Avocados from Spain
55  Avocados not available
56  Avocados  from South Africa
57  Avocados  from South Africa
58  Avocados  from South Africa
59  Avocados  from South Africa
60  Avocados  from South Africa
61  Avocados  from South Africa
62  Avocados  from South Africa
63  Avocados  from South Africa
64  Avocados from Spain
65  */

Use the Factory Method pattern when…

• Flexibility is important.
• Objects can be extended in subclasses
• There is a specific reason why one subclass would be chosen over another—this logic forms part of the Factory

Method.
• A client delegates responsibilities to subclasses in parallel hierarchies.

Consider using instead . . . .

• The Abstract Factory, Prototype, or Builder patterns, which are more flexible (though also more complex).
• The Prototype pattern to store a set of objects to clone from the abstract factory.

Example 5-3. Factory Method pattern example code (continued)



Singleton Pattern | 115

and it has another new machine on the way that will possibly produce a differ-
ent data file. The company is also considering switching to an XML format.
Write a system to deal with such changes. The web site just needs data to dis-
play; your job is to provide the specified data format for the web site.

Singleton Pattern

Role
The purpose of the Singleton pattern is to ensure that there is only one instance of a
class, and that there is a global access point to that object. The pattern ensures that
the class is instantiated only once and that all requests are directed to that one and
only object. Moreover, the object should not be created until it is actually needed. In
the Singleton pattern, it is the class itself that is responsible for ensuring this con-
straint, not the clients of the class.

Illustration
Any class or subsystem that defines a data bank or provides access to applications,
devices, or windows would benefit from the Singleton pattern. Take for example the
Mac OS X Dock, shown in Figure 5-4. The Dock shows all the applications that a
user accesses regularly. Those that are open have a little black arrow (Tiger) or white
dot (Leopard) under them. In this case, reading from the left, Mac OS X, Prefer-
ences, Thunderbird, Firefox, Flickr Upload, Parallels for Windows, and Microsoft
Word are open. Skype, Seamonkey, iPhoto, and VPUML are closed; they will be
opened only when needed.

In most cases, when an open application’s icon is clicked, Mac OS X will immedi-
ately pass control to that application and make its window visible on the screen.
This is an example of the Singleton pattern: there is one instance of the application,
and all accesses go there. The applications themselves then take care of opening dif-
ferent windows or documents. Not all applications implement the Singleton pat-
tern, however. For example, the Parallels virtual machine will start a new virtual
machine when its icon is clicked, regardless of whether it is currently open or closed.

Figure 5-4. Singleton pattern illustration—the Mac Dock



116 | Chapter 5: Creational Patterns: Prototype, Factory Method, and Singleton

This behavior is justified in that Parallels can support several operating systems at
once, each in its own virtual machine. In contrast, Word, for example, can have
many documents open, but they are all attended to by the same instance of the
Word application.

The concept of a Dock does not exist in Windows Vista itself, but
there are third-party applications that mimic it.*

Design
The Singleton pattern adds functionality by modifying an existing class. The modifi-
cations required are:

• Make the constructor private and add a private static constructor as well.

• Add a private static read-only object that is internally instantiated using the pri-
vate constructor.

• Add a public static property that accesses the private object.

It is the public property (3) that is now visible to the world. All constructor requests
for the class go to the property. The property accesses the private static object and
will instantiate it if it does not already exist. The UML diagram in Figure 5-5 sums all
this up.

The visible players in the Singleton pattern are:

Singleton
The class containing the mechanism for a unique instance of itself

Instance
A property for making and accessing an instance of the Singleton class

* See http://www.stardock.com/products/objectdock/.

Figure 5-5. Singleton pattern UML diagram

Singleton

–static uniqueInstance : Singleton = new Singleton( )

–Singleton( )
–static readonly Singleton( )
+static Instance( ) : Singleton

returns the
uniqueInstance

http://www.stardock.com/products/objectdock/


Singleton Pattern | 117

Implementation
A good implementation of the Singleton pattern in C# relies on the precise interpre-
tation of language rules regarding construction.* Given the plan outlined in the previ-
ous section, a correct and elegant implementation is presented in Example 5-4.

The constructor in line 3 is private by default. To create an object, the client calls the
UniqueInstance property defined in lines 9–11, as in:

Singleton s1 = Singleton.UniqueInstance;

As soon as a class is accessed by the first call on any of its methods, properties, or
constructors (and in this case, only the property is callable), its fields are set up.
Here, this involves initializing the field called uniqueInstance by invoking the con-
structor on line 3. For illustrative purposes, we can test that the following two
instantiations will refer to the same object:

Singleton s1 = Singleton.Instance;
Singleton s2 = Singleton.Instance;

Q U I Z

Match the Singleton Pattern Players with the Dock Illustration
To test whether you understand the Singleton pattern, cover the lefthand column of
the table below and see if you can identify its players among the items from the illus-
trative example (Figure 5-4), as shown in the righthand column. Then check your
answers against the lefthand column.

Singleton

Instance

An application icon in the Dock

An application

* See Jon Skeets’s article at http://www.csharphelp.com/archives4/archive670.html.

Example 5-4. Singleton pattern theory code

1 public sealed class Singleton {
2   // Private Constructor
3   Singleton( ) { }
4
5   // Private object instantiated with private constructor
6   static readonly Singleton instance = new Singleton( );
7
8   // Public static property to get the object
9   public static Singleton UniqueInstance {

10     get { return instance;}
11   }
12 }

http://www.csharphelp.com/archives4/archive670.html


118 | Chapter 5: Creational Patterns: Prototype, Factory Method, and Singleton

As with all static fields, the initialization is not repeated, and therefore the second
call on the Instance property, for s2, returns the same object reference.

The Singleton pattern would also like to offer lazy instantiation—i.e., that the object
is not initialized until its first invocation.

Be aware that in a multithreaded program, different threads could try
to instantiate a class simultaneously. For this reason, a Singleton
implementation that relies on an if statement to check whether the
instance is null will not be thread-safe. Do not use code like that!

To do this, we put the instantiation of the Singleton object in a nested class,
SingletonCreator, as in Example 5-5 in lines 6–11. The static constructor then falls
away.

Instantiation of the object will be triggered by the first reference to the static mem-
ber of the nested class, which occurs in the UniqueInstance property (lines 14–16).
This implementation is fully lazy but has all the performance benefits of the previous
one. Note that although nested classes have access to the enclosing class’s private
members, the reverse is not true (hence the need for Instance to be internal here).
That doesn’t raise any other problems, though, as the class itself is private by default.

An important part of the Singleton pattern is the initializing of resources in the
Singleton constructor. In fact, if no resources are being initialized in the constructor,
it usually means that a normal static class should be used rather than a Singleton. An
example of such initialization is shown in the next section.

Example 5-5. Singleton pattern—lazy instantiation

1 public class Singleton {
2   // Private constructor
3   Singleton ( ) { }
4
5   // Nested class for lazy instantiation
6   class SingletonCreator {
7     static SingletonCreator ( ) {}
8     // Private object instantiated with private constructor
9     internal static readonly

10       Singleton uniqueInstance = new Singleton( );
11   }
12
13   // Public static property to get the object
14   public static Singleton UniqueInstance {
15     get {return SingletonCreator.uniqueInstance;}
16   }
17 }



Singleton Pattern | 119

Example: Singleton Façade
There are several patterns that make the implicit assumption that only one instance
of a class will be created. The Façade pattern is one of these—there should be only
one instance of each Façade. The Singleton pattern can enforce this requirement.

To integrate the Singleton into an existing pattern, we again follow the steps out-
lined earlier. The revised constructor for the Façade is as follows:

 // start Singleton pattern
   // private constructors
   Façade( ) {
     a = new SubsystemA( );
     b = new SubsystemB( );
     c = new SubsystemC( );
   }
   static Façade( ) {}

   // private object
   static readonly Façade uniqueInstance = new Façade( );

   // public static property
   public static Façade Instance {
     get {return uniqueInstance;}
   }
// end Singleton pattern

Then, in the client, instead of:

Façade façade = new Façade( );

(which would not compile because the constructor is private now), we use:

Façade façade = Façade.Instance;

If we need to refer to the Façade again from another place in the system, we can
declare a new variable and create a new Façade object, but it will still access the same
instance.

Use
Many other patterns—for example, the Builder, Prototype, and Abstract Factory pat-
terns—can make use of the Singleton pattern to ensure that only one copy of a class
is created. However, the effectiveness of the Singleton pattern relies entirely on devel-
opers all using the same rules. Even though implementing a singleton as outlined in
this chapter doesn’t require much coding effort, it would be nice to be able to reuse
the implementation. But if the standard rules are not followed, one developer may
use an Instance property and another a Create method, for example, or one may use
the nested class while the other doesn’t. Even if two developers use the same nested
class, they might give the class different names. The result could be a complete mess,
even for a simple singleton! A solution to this issue is proposed in the “Pattern Com-
parison” section, later in this chapter.



120 | Chapter 5: Creational Patterns: Prototype, Factory Method, and Singleton

Exercises
1. The community in the SpaceBook application (Example 2-4) was created as

static. Rework SpaceBook as a Singleton class.

2. Consider an international airline with a number of servers situated all over the
world that are used to process reservations. At different times of the 24-hour
clock, some will be heavily loaded and some lightly loaded. Each server can
apply to a load balancer to be added to or removed from the system temporarily
as time goes by. Model this system with the load balancer as a singleton.

Pattern Comparison
There is a symbiosis between patterns and languages, and it is dynamic. As this book
has shown, the new features of C# 3.0 have made implementing patterns easier. (A
quick comparison of the code in this book with standard C# pattern code will confirm
this statement.) Two of the patterns discussed in this chapter—the Prototype and Sin-
gleton patterns—raise some interesting points about pattern language features.

Implementing the Prototype pattern was quite a challenge 10 years ago, when obtain-
ing a deep copy of an arbitrary data structure meant creating a graph traversal algo-
rithm from scratch. Now, it can all be done with one method call to Serialize, plus
some associated setup of streams. This facility is available to all languages in .NET,
and Java has a similar mechanism. Thus, the implementation of the pattern as it was
originally envisaged has almost disappeared. Nevertheless, its intent remains, and
managing prototypes is still very much part of the developer’s task.

Considering the Singleton pattern, is there any way in which the language might help
to make it reusable?* One solution for achieving reusability is to use C# generics, as
shown in Example 5-6.

Use the Singleton pattern when …

• You need to ensure there is only one instance of a class.
• Controlled access to that instance is essential.
• You might need more than one instance at a later stage.
• The control should be localized in the instantiated class, not in some other mechanism.

* Thanks to Alastair van Leeuwen for initiating this discussion and for the generic example.

Example 5-6. Singleton pattern generic code

1 using System;
2
3   //  Singleton Pattern      Judith Bishop Nov 2007
4   //  Generic version
5
6 public class Singleton <T> where T : class, new( ){



Pattern Comparison | 121

The Singleton class corresponds to that in Example 5-5, with the addition of two
generic constraints (see Chapter 6) to ensure that the type used for the generic instan-
tiation is a class and has a constructor (line 6). Variables of any class can be created
with the same Singleton class, as shown in lines 25–27. Given how neat and tidy this
class is, it would be useful to draw it into the language. Perhaps we can look ahead to
a new version of C#, where a new language construct—singleton—will define that a
class is in fact a singleton. In theory, the language will make sure that the singleton
implementation has an Instance property, and the developer will not have to state
whether the constructor of the singleton is private—the language will force the con-
structor to be private. The process of language and pattern convergence is not at an
end, so the Singleton construct may well come into the language one day.

7   Singleton( ) { }
8
9   class SingletonCreator {

10     static SingletonCreator ( ) {}
11     // Private object instantiated with private constructor
12     internal static readonly T instance = new T( );
13   }
14
15   public static T UniqueInstance {
16    get {return SingletonCreator.instance;}
17   }
18 }
19
20 class Test1 {}
21 class Test2 {}
22
23 class Client {
24
25   static void Main ( ) {
26     Test1 t1a = Singleton<Test1>.UniqueInstance;
27     Test1 t1b = Singleton<Test1>.UniqueInstance;
28     Test2 t2 = Singleton<Test2>.UniqueInstance;
29
30     if (t1a == t1b) {
31       Console.WriteLine("Objects are the same instance");
32     }
33   }
34 }

Example 5-6. Singleton pattern generic code (continued)



122

Chapter 6CHAPTER 6

Creational Patterns: Abstract
Factory and Builder 6

The creational patterns introduce a very popular concept in design patterns: facto-
ries. Factories are classes that handle the instantiation of related objects without sub-
classing. We saw in Chapter 5 how the Factory Method pattern can hide the class
name from the place where an object is instantiated. The Abstract Factory pattern
takes this one step further, creating families of related or dependent objects. The
Builder pattern offers additional flexibility in terms of the combination of objects
being built.

Abstract Factory Pattern

Role
This pattern supports the creation of products that exist in families and are designed
to be produced together. The abstract factory can be refined to concrete factories,
each of which can create different products of different types and in different combi-
nations. The pattern isolates the product definitions and their class names from the
client so that the only way to get one of them is through a factory. For this reason,
product families can easily be interchanged or updated without upsetting the struc-
ture of the client.

Illustration
A scourge of modern society is the huge number of fakes on the market. The prod-
ucts of many famous brands are copied and presented for sale, often as the real thing.
Sometimes the copies are identified up front as replicas, so the customer is aware of
what he is buying. However, often the customer is unaware (or maybe does not care)
from which factory the goods actually originated. Figure 6-1 shows some replica
handbags—they look like Guccis but could have come from a factory such as Poochy
(a made-up name).



Abstract Factory Pattern | 123

The Abstract Factory pattern creates a similar layer of opacity by actually hiding the
factory name from the client. In computer terms, this makes it possible to swap the
factory, while still providing the goods according to an agreed interface.

Design
The Abstract Factory pattern has a lot of players, as illustrated in the following UML
diagram (Figure 6-2), but the design is actually quite simple. The client has a con-
crete factory conforming to the AbstractFactory interface. Through that, it asks for
product objects (here, of type A and B). However, these are abstract product types;
the concrete factories sort out exactly which products the client gets. This enables
the system to be independent of how the products are created, composed, and imple-
mented. The client is not concerned about the details of the products, nor even
about their actual class names; it just knows that an A type object and a B type object
are provided.

Formally, the players in the pattern are:

AbstractFactory
An interface with Create operations for each of the abstract products

Factory1, Factory2
Implementations of all the AbstractFactory creation operations

AbstractProduct
An interface for a kind of product with its own operations

ProductA1, ProductA2, ProductB1, ProductB2
Classes that implement the AbstractProduct interface and define product objects
to be created by the corresponding factories

Client
A class that accesses only the AbstractFactory and AbstractProduct interfaces

An interesting aspect of the Abstract Factory pattern is that the whole product fam-
ily can be changed while the application is running. For example, if the client is using
the family of objects created by FactoryA, it can instantiate FactoryB and switch to
that. Because the products implement the same abstract interface, any operations it
may contain will be the same, although their implementations will differ.

Figure 6-1. Abstract Factory pattern illustration—replica Gucci handbags (Poochies)



124 | Chapter 6: Creational Patterns: Abstract Factory and Builder

Figure 6-2. Abstract Factory pattern UML diagram

Q U I Z

Match the Abstract Factory Pattern Players with the Replica
Handbag Illustration

To test whether you understand the Abstract Factory pattern, cover the lefthand col-
umn of the table below and see if you can match the players in the righthand column
to the items in the illustrative example (Figure 6-1). Then check your answers against
the lefthand column.

Client

AbstractFactory

FactoryA

FactoryB

AbstractProduct

ProductA1

ProductB1

Customer buying a handbag

Returns a handbag

Gucci

Poochy

Handbags

Genuine bags

Replica bags

Client

–a : IProductA
–b : IProductB

+Client(parameter : IFactory)

IFactory IProductA

ProductA1 ProductA2

Factory1 Factory2

IProductB

ProductB1 ProductB2



Abstract Factory Pattern | 125

Implementation and Example: Gucci and Poochy
The code that we shall develop here is based on the preceding illustration. The
implementation we have chosen for the Abstract Factory pattern is not the usual
inheritance-based one—it also makes use of generics to simplify the creation of the
factories. Instead of several factory subclasses, we have only one, and it is generic. A
factory and its interface look like this:

interface IFactory<Brand>
  where Brand : IBrand {
   IBag CreateBag( );
   IShoes CreateShoes( );
}

 // Factories (both in the same one)
 class Factory<Brand> : IFactory<Brand>
     where Brand : IBrand, new( ) {

   public IBag CreateBag( ) {
     return new Bag<Brand>( );
   }
   public IShoes CreateShoes( ) {
     return new Shoes<Brand>( );
   }
 }

Our factory is going to make bags and shoes. The structure of the factories is always
the same, so we create a generic one based on brand. The generic specification for
Factory includes some constraints.

In our example, the two Products are bags and shoes. Bags indicate what they are
made of, and shoes indicate their price. Once again, we declare the products as
generic:

C# Feature—Generic Constraints
Generic type and method declarations can optionally specify constraints on the types
that can be used to instantiate them. Constraints can indicate which interfaces the type
should implement. For example:

class SortedList<T> where T: IComparable<T> {...}

Here, a type T used to instantiate SortedList must implement IComparable.

new( ) as a constraint indicates that the type must have a constructor.

cf. C# Language Specification Version 3.0, September 2007, Section 10.1.5



126 | Chapter 6: Creational Patterns: Abstract Factory and Builder

// Product 1
interface IBags {
  string Material { get; }
}
// Concrete Product 1
 class Bag<Brand> : IBag
     where Brand : IBrand, new( ) {
   private Brand myBrand;
   public Bag( ) {
        myBrand = new Brand( );
  }

  public string Material { get { return myBrand.Material; } }
}

When the Factory to be used is instantiated, as in:

IFactory<Brand> factory = new Factory<Brand>( );

one of the small brand specifications, such as:

class Gucci : IBrand {
  public int Price { get { return 1000; } }
  public string Material { get { return "Crocodile skin"; } }
}

is passed through to the Factory. Then, when a product is to be made, as in:

IBag bag = factory.CreateBag( );
IShoes shoes = factory.CreateShoes( );

the Factory uses the same brand to instantiate the generic Bag and Shoe classes. The
full example code is in Example 6-1.

Example 6-1. Abstract Factory pattern example code

1       using System;
2
3         namespace AbstractFactoryPattern {
4           // Abstract Factory     D-J Miller and Judith Bishop  Sept 2007
5           // Uses generics to simplify the creation of factories
6
7           interface IFactory<Brand>
8               where Brand : IBrand {
9             IBag CreateBag( );

10             IShoes CreateShoes( );
11           }
12
13           // Concrete Factories (both in the same one)
14           class Factory<Brand> : IFactory<Brand>
15               where Brand : IBrand, new( ) {
16             public IBag CreateBag( ) {
17               return new Bag<Brand>( );
18             }
19
20            public IShoes CreateShoes( ) {
21              return new Shoes<Brand>( );



Abstract Factory Pattern | 127

22            }
23      }
24
25           // Interface IProductA
26       interface IBag {
27         string Material { get; }
28       }
29
30       // Interface IProductB
31       interface IShoes {
32         int Price { get; }
33       }
34
35       // All concrete ProductA's
36       class Bag<Brand> : IBag
37           where Brand : IBrand, new( ) {
38         private Brand myBrand;
39         public Bag( ) {
40           myBrand = new Brand( );
41         }
42
43         public string Material { get { return myBrand.Material; } }
44       }
45
46       // All concrete ProductB's
47      class Shoes<Brand> : IShoes
48          where Brand : IBrand, new( ) {
49        private Brand myBrand;
50        public Shoes( ) {
51          myBrand = new Brand( );
52        }
53
54        public int Price { get { return myBrand.Price; } }
55      }
56
57      // An interface for all Brands
58      interface IBrand {
59        int Price { get; }
60        string Material { get; }
61      }
62
63      class Gucci : IBrand {
64        public int Price { get { return 1000; } }
65        public string Material { get { return "Crocodile skin"; } }
66      }
67
68      class Poochy : IBrand {
69        public int Price { get { return new Gucci( ).Price / 3; } }
70        public string Material { get { return "Plastic"; } }
71      }
72

Example 6-1. Abstract Factory pattern example code (continued)



128 | Chapter 6: Creational Patterns: Abstract Factory and Builder

The IBrand interface is not a part of the original Abstract Factory pattern, but it does
simplify adding new factories. Three different factories are included in this example
to show that the generic implementation makes it very easy to add essential informa-
tion about production without the need to write another Factory class. In this case,
all that was needed to add Groundcover as a factory were lines 73–76. The output
from running with all three factories in succession is shown in lines 101–106.

Use
As we have seen, the Abstract Factory pattern handles families of products and keeps
their details independent from the clients. As such, it is ideal for generating different
layouts and multiple-look-and-feel user interfaces. It can also be successfully applied
for portability across operating systems, where the sense of what is required is the
same—open file, close window, etc.—but the events and consequences differ.

73      class Groundcover : IBrand {
74        public int Price { get { return 2000; } }
75        public string Material { get { return "South african leather"; } }
76      }
77
78      class Client<Brand>
79          where Brand : IBrand, new( ) {
80        public void ClientMain( ) //IFactory<Brand> factory) {
81          IFactory<Brand> factory = new Factory<Brand>( );
82
83          IBag bag = factory.CreateBag( );
84          IShoes shoes = factory.CreateShoes( );
85
86          Console.WriteLine("I bought a Bag which is made from " + bag.Material);
87          Console.WriteLine("I bought some shoes which cost " + shoes.Price);
88        }
89      }
90
91      static class Program {
92        static void Main( ) {
93          // Call Client twice
94          new Client<Poochy>( ).ClientMain( );
95          new Client<Gucci>( ).ClientMain( );
96          new Client<Groundcover>( ).ClientMain( );
97        }
98      }
99      }

100  /* Output
101  I bought a Bag which is made from Plastic
102  I bought some shoes which cost 333
103  I bought a Bag which is made from Crocodile skin
104  I bought some shoes which cost 1000
105  I bought a Bag which is made from South african leather
106  I bought some shoes which cost 2000
107  */

Example 6-1. Abstract Factory pattern example code (continued)



Builder Pattern | 129

An oft-quoted limitation of the Abstract Factory pattern is that it is not easy to add
new kinds of products. The number and names of the abstract products are coded
directly into the abstract factory (see lines 9–10 in Example 6-1). Therefore, adding a
new product requires the factory interface and all its subclassed concrete factories to be
updated. Even the client needs to change to take advantage of the new addition. The
Builder pattern, which we will discuss next, emphasizes extensibility over flexibility.

Exercises
1. Add belts to the products that are to be made by the factories in the example.

2. Under what conditions would the example in Figure 5-3 (sourcing avocados)
become a candidate for the Abstract Factory pattern? Program it up as such.

3. Just for the experience, program Example 6-1 without generics, using separate
classes for each of the factories. Comment on the differences between the
implementations.

Builder Pattern

Role
The Builder pattern separates the specification of a complex object from its actual
construction. The same construction process can create different representations.

Illustration
Following on from the replica bag example introduced in the previous section, sup-
pose that an online order company offers bags and shoes—both real and replica—on
a bespoke basis (i.e., with the products made to order). We would expect that the
time taken to make one of the genuine articles would be longer. In addition, we
would notice other differences between the products. Each bag (Product) is made up
of several parts, including the outside material, the lining, the label, the handle, and
so on. The genuine, more expensive bags will have more parts usually. Certainly,
there can be differences in the part lists for different makes of bags. For example,
apart from being plastic (not leather), a replica bag might not have a nice lining.

The Builder pattern goes into the details of how the products are actually made, and
some of this information can be transmitted back to the customer. For example, the

Use the Abstract Factory pattern when…

• A system should be independent of how its products are created, composed, and represented.
• A system can be configured with one of multiple families of products.
• The constraint requiring products from the same factory to be used together must be enforced.
• The emphasis is on revealing interfaces, not implementations.



130 | Chapter 6: Creational Patterns: Abstract Factory and Builder

time taken to deliver will be obvious, but the country of origin as specified on the
label might also be important.

Design
The Builder pattern is based on Directors and Builders. Any number of Builder
classes can conform to an IBuilder interface, and they can be called by a director to
produce a product according to specification. The builders supply parts that the
Product objects accumulate until the director is finished with the job. Suppose a
Director wants two of one kind of part and one of another. It would request them
from a Builder and pass them on to be added to the product’s list. The point about
the Builder pattern is that different builders can supply different (though conform-
ing) parts. Consider the UML for the Builder pattern in Figure 6-3.

There can be several Directors and Builders. The client calls Construct for a particu-
lar Director with a particular Builder. The Director has an individual way of putting
together parts on offer from the Builder interface. The Product maintains a running
list of the parts as they are created, and this list is the result of the construction pro-
cess. Here are the main players:

IBuilder
An interface defining what can be built

Director
A sequence of operations that can be followed to create a Product

Builder
A class that is called by a Director to make Product parts

Product
The object under construction, by parts

Figure 6-3. Builder pattern UML diagram

Client

Director

+Construct( ) : Product

IBuilder

+BuildPart( )
+GetResult( ) : Product

Builder

+BuildPart( )
+GetResult( ) : Product

Product

–parts : List

Invoke BuildPart
as required



Builder Pattern | 131

A specific advantage of the Builder/Director partnership is that the products do not
all necessarily turn out the same. The Builder can redefine the way it works and,
even with the same Director, produce a different product. Furthermore, the Builder
pattern constructs the product step by step under the director’s control. Only when
the construction is complete is the product returned to the director for the director to
work with.

Implementation
In the theory code shown in Example 6-2, the Client creates a director and two
builders. The director wants to make products as follows:

     class Director {
        // Build a Product from several parts
        public void Construct(IBuilder builder) {
            builder.BuildPartA( );
            builder.BuildPartB( );
            builder.BuildPartB( );
        }
     }

In other words, a part A followed by two part Bs. This makes up a product. How-
ever, depending on the builder supplied, the output will be different. Builder1 does
indeed make these parts, but Builder2 makes PartX’s and PartY’s. Though different,
they conform to the IBuilder interface. Thus output from two calls to the Director
could be:

Q U I Z

Match the Builder Pattern Players with the Replica Handbag
Illustration

To test whether you understand the Builder pattern, cover the lefthand column of the
table below and see if you can identify the players in the righthand column to the items
in the illustrative example (Figure 6-1). Then check your answers against the lefthand
column.

IBuilder

Director

Builder

Decorator

Product

What is to be purchased (a bag)

Factory instructions for making a bag

To display a photo

Requests a bag to be made

The  bag



132 | Chapter 6: Creational Patterns: Abstract Factory and Builder

Product Parts -------
PartA PartB PartB

Product Parts -------
PartX PartY PartY

The full program is shown in Example 6-2.

Example 6-2. Builder pattern theory code

1 using System;
2 using System.Collections.Generic;
3
4   // Builder Pattern               Judith Bishop November 2007
5   // Simple theory code with one director and two builders
6
7     class Director {
8         // Build a Product from several parts
9         public void Construct(IBuilder builder) {

10             builder.BuildPartA( );
11             builder.BuildPartB( );
12             builder.BuildPartB( );
13         }
14     }
15
16     interface IBuilder {
17         void BuildPartA( );
18         void BuildPartB( );
19         Product GetResult( );
20     }
21
22     class Builder1 : IBuilder {
23         private Product product = new Product( );
24         public  void BuildPartA( ) {
25             product.Add("PartA ");
26         }
27
28         public void BuildPartB( ) {
29             product.Add("PartB ");
30         }
31
32         public Product GetResult( ) {
33             return product;
34         }
35     }
36
37     class Builder2 : IBuilder {
38         private Product product = new Product( );
39         public void BuildPartA( ) {
40             product.Add("PartX ");
41         }
42
43         public void BuildPartB( ) {



Builder Pattern | 133

44             product.Add("PartY ");
45         }
46
47         public Product GetResult( ) {
48             return product;
49         }
50     }
51
52     class Product {
53         List <string> parts = new List <string> ( );
54         public void Add(string part) {
55             parts.Add(part);
56         }
57
58         public void Display( ) {
59             Console.WriteLine("\nProduct Parts -------");
60             foreach (string part in parts)
61                 Console.Write(part);
62             Console.WriteLine( );
63         }
64     }
65
66      public class Client {
67
68         public static void Main( ) {
69             // Create one director and two builders
70             Director director = new Director( );
71
72             IBuilder b1 = new Builder1( );
73             IBuilder b2 = new Builder2( );
74
75             // Construct two products
76             director.Construct(b1);
77             Product p1 = b1.GetResult( );
78             p1.Display( );
79
80             director.Construct(b2);
81             Product p2 = b2.GetResult( );
82             p2.Display( );
83         }
84     }
85 /* Output
86 Product Parts -------
87 PartA PartB PartB
88
89 Product Parts -------
90 PartX PartY PartY
91 */

Example 6-2. Builder pattern theory code (continued)



134 | Chapter 6: Creational Patterns: Abstract Factory and Builder

Example
The example is very similar to that of the Abstract Factory pattern. The crucial differ-
ence is that the Director contains more functionality than the factories were required
to. To illustrate, here is one of the two Directors from the code in Example 6-2:

class Gucci : IBrand {
 public IBag CreateBag( ) {
   Bag b = new Bag( );
   Program.DoWork("Cut Leather", 250);
   Program.DoWork("Sew leather", 1000);
   b.Properties += "Leather";
   Program.DoWork("Create Lining", 500);
   Program.DoWork("Attach Lining", 1000);
   b.Properties += " lined";
   Program.DoWork("Add Label", 250);
   b.Properties += " with label";
   return b;
 }
}

The DoWork method simulates the passing of time so that we can see that some prod-
ucts take longer than others to make. In lines 61–72 of Example 6-2, the Director for
replica bags (lines 61–72) has fewer steps than that for Gucci bags (lines 46–49).
Ultimately, as shown in the output, they are also produced faster. Example 6-3
shows the full example code.

Example 6-3. Builder pattern example code

1 using System;
2 using System.Diagnostics;
3 using System.IO;
4 using System.Threading;
5
6  namespace BuilderPattern {
7    // Builder Pattern    D-J Miller and Judith Bishop  Sept 2007
8
9    // Abstract Factory : Builder Implementation

10    interface IBuilder<Brand>
11        where Brand : IBrand {
12      IBag CreateBag( );
13    }
14
15    // Abstract Factory now the Builder
16    class Builder<Brand> : IBuilder<Brand>
17        where Brand : IBrand, new( ) {
18
19      Brand myBrand;
20      public Builder( ) {
21        myBrand = new Brand( );
22      }
23
24      public IBag CreateBag( ) {
25        return myBrand.CreateBag( );



Builder Pattern | 135

26      }
27    }
28
29    // Product 1
30    interface IBag {
31      string Properties { get; set; }
32    }
33
34    // Concrete Product 1
35    class Bag : IBag
36    {
37      public string Properties { get; set; }
38    }
39
40
41    // Directors
42    interface IBrand {
43      IBag CreateBag( );
44    }
45
46    class Gucci : IBrand {
47      public IBag CreateBag( ) {
48        Bag b = new Bag( );
49        Program.DoWork("Cut Leather", 250);
50        Program.DoWork("Sew leather", 1000);
51        b.Properties += "Leather";
52        Program.DoWork("Create Lining", 500);
53        Program.DoWork("Attach Lining", 1000);
54        b.Properties += " lined";
55        Program.DoWork("Add Label", 250);
56        b.Properties += " with label";
57        return b;
58      }
59    }
60
61    class Poochy : IBrand {
62      public IBag CreateBag( ) {
63        Bag b = new Bag( );
64        Program.DoWork("Hire cheap labour", 200);
65        Program.DoWork("Cut Plastic", 125);
66        Program.DoWork("Sew Plastic", 500);
67        b.Properties += "Plastic";
68        Program.DoWork("Add Label", 100);
69        b.Properties += " with label";
70        return b;
71      }
72    }
73
74    class Client<Brand>
75        where Brand : IBrand, new( ) {
76      public void ClientMain( ) //IFactory<Brand> factory) {
77        IBuilder<Brand> factory = new Builder<Brand>( );
78

Example 6-3. Builder pattern example code (continued)



136 | Chapter 6: Creational Patterns: Abstract Factory and Builder

79        DateTime date = DateTime.Now;
80        Console.WriteLine("I want to buy a bag!");
81        IBag bag = factory.CreateBag( );
82
83        Console.WriteLine("I got my Bag which took " +
84             DateTime.Now.Subtract(date).TotalSeconds * 5 + " days");
85        Console.WriteLine("  with the following properties " +
86             bag.Properties+"\n");
87      }
88    }
89
90    static class Program {
91
92      static void Main( ) {
93        // Call Client twice
94        new Client<Poochy>().ClientMain( );
95        new Client<Gucci>().ClientMain( );
96      }
97
98      public static void DoWork(string workitem, int time) {
99        Console.Write("" + workitem + ": 0%");

100        Thread.Sleep(time);
101        Console.Write("....25%");
102        Thread.Sleep(time);
103        Console.Write("....50%");
104        Thread.Sleep(time);
105        Console.WriteLine("....100%");
106      }
107    }
108  }
109
110 /* Output
111 I want to buy a bag!
112 Hire cheap labour: 0%....25%....50%....100%
113 Cut Plastic: 0%....25%....50%....100%
114 Sew Plastic: 0%....25%....50%....100%
115 Add Label: 0%....25%....50%....100%
116 I got my Bag which took 14.02016 days
117   with the following properties Plastic with label
118
119 I want to buy a bag!
120 Cut Leather: 0%....25%....50%....100%
121 Sew leather: 0%....25%....50%....100%
122 Create Lining: 0%....25%....50%....100%
123 Attach Lining: 0%....25%....50%....100%
124 Add Label: 0%....25%....50%....100%
125 I got my Bag which took 45.0648 days
126   with the following properties Leather lined with label
127 */

Example 6-3. Builder pattern example code (continued)



Pattern Comparison | 137

Use
Builders can be found in applications that create complex structures. The result of a
builder is often a composite.

Exercises
1. A popular example of the Builder pattern is supplying a car with given character-

istics. Suppose there is one car company that offers three models: economy,
medium, and luxury. Write a nongeneric program that illustrates the pattern in
this domain. The program should be able to handle different car models (prod-
ucts), and each model should offer different options for things such as wheels,
upholstery, color, and air conditioning.

2. Use the Builder pattern to create a maze. The IBuilder interface should have
methods such as BuildMaze, BuildRoom, BuildDoor, and GetMaze. Then create a
StandardMazeBuilder and a DifficultMazeBuilder that implement the operations
differently; for example, in the BuildRoom method, the StandardMaze could have
two doors and the DifficultMaze between one and four doors. The client asks a
director to create a maze builder of a given kind, and then to build the maze.

Pattern Comparison
The Builder and Abstract Factory patterns are similar in that they both look at con-
struction at an abstract level. However, the Builder pattern is concerned with how a
single object is made up by the different factories, whereas the Abstract Factory pat-
tern is concerned with what products are made. The Builder pattern abstracts the
algorithm for construction by including the concept of a director. The director is
responsible for itemizing the steps and calls on builders to fulfill them. Directors do
not have to conform to an interface.

Use the Builder pattern when…

• The algorithm for creating parts is independent from the parts themselves.
• The object to be assembled might have different representations.
• You need fine control over the construction process.



138 | Chapter 6: Creational Patterns: Abstract Factory and Builder

A further elaboration on the theme of creating products is that instead of the client
explicitly declaring fields of type ProductA and ProductB, say, the Product object the
builder returns is actually a list of parts, which can have different lengths and con-
tents depending on the director that was in charge at its creation.

A comparison of the two patterns is given in Table 6-1.

Table 6-1. Comparison of Abstract Factory and Builder patterns

Criteria Abstract Factory Builder

Client aggregates A Factory and Products A Director, Builders, and a Product

Product creation is via A factory A director

Product creation invokes CreateProductA Construct(builder)

Factory/Builder returns A specific product A part of a product

Product has Specific properties A list of parts



139

Chapter 7 CHAPTER 7

Behavioral Patterns: Strategy,
State, and Template Method7

Behavioral patterns are concerned with algorithms and communication between
them. The operations that make up a single algorithm might be split up between dif-
ferent classes, making a complex arrangement that is difficult to manage and main-
tain. The behavioral patterns capture ways of expressing the division of operations
between classes and optimize how the communication should be handled. In this
first chapter on behavioral patterns, we’ll look at three simple but very useful pat-
terns: the Strategy, State, and Template Methods.

Strategy Pattern

Role
The Strategy pattern involves removing an algorithm from its host class and putting it
in a separate class. There may be different algorithms (strategies) that are applicable for
a given problem. If the algorithms are all kept in the host, messy code with lots of con-
ditional statements will result. The Strategy pattern enables a client to choose which
algorithm to use from a family of algorithms and gives it a simple way to access it. The
algorithms can also be expressed independently of the data they are using.

Illustration
A classic illustration of the Strategy pattern is found in the choice of algorithms for
sorting. There are many sorting algorithms, and although some, such as Quicksort, are
generally very fast, there are situations when this would be a poor choice and another
algorithm, such as Mergesort, would perform better. Even the linear sorts, such as
Shellsort, can perform very well under certain conditions. When studying sorting, one
learns about the different conditions to consider and how to optimize the choice of
algorithms. This is a strategy that can be captured in the Strategy pattern.



140 | Chapter 7: Behavioral Patterns: Strategy, State, and Template Method

Sorting lends itself to animation, as shown in Figure 7-1. The graph plots the index
against the value at successive stages in the sort. Thus, initially the box shows a scat-
ter of points. As the algorithm progresses, the points start to converge on the diago-
nal, indicating that the values are in the correct positions in the list. The lefthand
window shows Mergesort in action, and the righthand window shows Quicksort.

In terms of strategy, the animator is set up so that the user indicates the type of items
being sorted (at a very rough level in this example). The underlying Strategy pattern
then selects an appropriate sort method. In this case, larger values (objects) that have
costly compare operations are sent to Mergesort, which uses the lowest number of
comparisons of all popular sorts. On the other hand, Quicksort can go very fast with
primitive items (where the comparisons are cheap), so it is preferred for those types
of values. The third button is there because of a limitation of Quicksort: without
careful programming, it is very slow with reversed data. This button can be used to
activate Mergesort. The Strategy pattern makes it easy to add other criteria and sorts
to the animator as needed.

Design
The design of the Strategy pattern is encapsulated in the UML diagram in Figure 7-2.
Within a given Context, an appropriate strategy is chosen from an available family of
strategies. The algorithm in the strategy is then followed through to a conclusion.

Figure 7-1. Strategy pattern illustration—sorting objects with Mergesort and sorting primitive types
with Quicksort



Strategy Pattern | 141

The roles for the players in this pattern are as follows:

Context
A class that maintains contextual information for an IStrategy object’s algo-
rithm to work on

IStrategy
Defines an interface common to all the strategies

StrategyA, StrategyB
Classes that include algorithms that implement the IStrategy interface

Figure 7-2. Strategy pattern UML diagram

Q U I Z

Match the Strategy Pattern Players with the Sorting Animator
Illustration

To test whether you understand the Strategy pattern, cover the lefthand column of the
table below and see if you can identify its players among the items from the illustrative
example (Figure 7-2), as shown in the righthand column. Then check your answers
against the lefthand column.

Context

Strategy

IStrategy

Algorithm

The GUI, the list generator, and the selection of the Strategy

Class containing the methods used for a particular sort

Sorting interface (e.g., specifying the list and its item type)

Mergesort or Quicksort

<<interface>>
IStrategy

+Algorithm( )

Client

StrategyA

+Algorithm( )

StrategyB

+Algorithm( )



142 | Chapter 7: Behavioral Patterns: Strategy, State, and Template Method

As defined, the Context aggregates an object of the chosen Strategy type. Generally,
it will only have access to the main method that the algorithm requires. If it needs
more information from the Strategy, this should be included in the IStrategy inter-
face. On the other hand, the Strategy will need to work within the Context and
access its state.

Implementation
The theory code for the Strategy pattern (Example 7-1) does not need any new C# 3.0
features. It relies on aggregation of the IStrategy interface in the Context (line 13).
The client calls the Algorithm method on the Context (line 59), and it is routed
through to the method of the strategy applicable at the time. In this example, the
strategies have Move methods that count up and down. A random number generated
in the client determines when to switch from counting up to counting down. The
resulting output is shown in line 65.

Example 7-1. Strategy pattern theory code

1    using System;
2
3     // Strategy Pattern              Judith Bishop  Oct 2007
4     // Shows two strategies and a random switch between them
5
6   // The Context
7   class Context {
8       // Context state
9      public const int start = 5;

10      public int Counter = 5;
11
12      // Strategy aggregation
13      IStrategy strategy = new Strategy1( );
14
15      // Algorithm invokes a strategy method
16      public int Algorithm( ) {
17        return strategy.Move(this);
18      }
19
20      // Changing strategies
21      public void SwitchStrategy( ) {
22        if (strategy is Strategy1)
23            strategy = new Strategy2( );
24        else
25            strategy = new Strategy1( );
26      }
27   }
28
29    // Strategy interface
30    interface IStrategy {
31      int Move (Context c);
32    }
33



Strategy Pattern | 143

Some key points about the implementation of the Strategy pattern are:

• The Context will often contain a switch statement or a cascading if statement,
where information is processed to reach a decision on which Strategy to adopt.

• If the strategies are simple methods, they can be implemented without enclosing
classes, and the delegate mechanism can be used to hook the chosen Strategy
into the Context at runtime.

• Extension methods can be used to define new strategies independently of the
original classes that they support.

34    // Strategy 1
35    class Strategy1 : IStrategy {
36      public int Move (Context c) {
37        return ++c.Counter;
38      }
39    }
40
41    // Strategy 2
42    class Strategy2 : IStrategy {
43      public int Move (Context c) {
44        return --c.Counter ;
45      }
46    }
47
48    // Client
49    static class Program {
50      static void Main ( ) {
51        Context context = new Context( );
52        context.SwitchStrategy( );
53        Random r = new Random(37);
54        for (int i=Context.start; i<=Context.start+15; i++) {
55          if (r.Next(3) == 2) {
56            Console.Write("|| ");
57            context.SwitchStrategy( );
58          }
59          Console.Write(context.Algorithm( ) +"  ");
60        }
61        Console.WriteLine( );
62      }
63    }
64  /* Output
65  4  || 5  6  7  || 6  || 7  8  9  10  || 9  8  7  6  || 7  || 6  5
66  */

Example 7-1. Strategy pattern theory code (continued)



144 | Chapter 7: Behavioral Patterns: Strategy, State, and Template Method

Example: Sorting Animator
The program that produces the animations in Figure 7-1 is shown in Example 7-2.
Consider first the Context (lines 61–86). ButtonClick is activated from the GUI and,
based on the button clicked, will decide on a strategy to follow. In other words, it
will select one of the available strategy classes and instantiate it. After generating data
from the class at line 15 (not shown in full here), it activates the GUI window and
starts the sort. We don’t show the full sorting algorithms here, only the interaction
with the Context (see lines 96–112 for Mergesort). Input is the list that is being
sorted, and the algorithms contain strategic calls to update the user interface through
the UpdateUI event.

Example 7-2. Strategy pattern example code—Sorting Animator

1     using System;
2     using System.Collections.Generic;
3     using System.Linq;
4     using System.Windows.Forms;
5     using System.Drawing;
6     using System.Threading;
7
8     namespace Strategy {
9

10        // Strategy Pattern       Judith Bishop and D-J Miller  Sept 2007
11        // Gives a choice of sort routines to display
12        // Algorithms and GUI adapted from a Java system at
13        // http://www.geocities.com/SiliconValley/Network/1854/Sort1.html
14
15        static class StartSetGenerator {
16          private static List<int> myList;
17
18        public static IEnumerable<int> GetStartSet( ) {
19          // omitted
20        }
21
22     class StrategyView<T> : Form
23         where T : IComparable<T> {
24       PictureBox pb;
25       Func<IEnumerable<T>> Generator;
26
27       // Constructor to set up the GUI
28       public StrategyView(Func<IEnumerable<T>> generator) {
29         // omitted
30
31       public void DrawGraph(IEnumerable<T> list) {
32         if (pb.Image == null)
33             pb.Image = new Bitmap(pb.Width, pb.Height);
34         Graphics g = Graphics.FromImage(pb.Image);
35         g.Clear(Color.White);
36         g.DrawRectangle(Pens.Blue, 19, 19, 202, 202);
37         g.Dispose( );
38         Bitmap b = pb.Image as Bitmap;
39



Strategy Pattern | 145

40         // Plots the index x against the value val of all elements in the list
41         // IEnumerable<T>.Count is an extension
42         int listSize = list.Count( );
43         int x = 0;
44         foreach (T item in list) {
45           // val must be a nullable integer. The as operator will return null
46           // if it cannot convert the item to int
47           int? val = item as int?;
48           if (!val.HasValue)
49             val = 0;
50          // Drawing methods do not handle nullable types
51          b.SetPixel(x + 20, 20 + 200 - ((int)val), Color.Black);
52          x++;
53        }
54
55        this.Refresh( );
56        Thread.Sleep(100);
57        Application.DoEvents( );
58      }
59
60      // The Context
61      void ButtonClick(object sender, EventArgs e) {
62        Button control = sender as Button;
63        SortStrategy<T> strategy = null;
64
65        switch (control.Name) {
66          case "LargeItems":
67            strategy = new MergeSorter<T>( );
68            break;
69          case "SmallItems":
70            strategy = new QuickSorter<T>( );
71            break;
72          case "ReversedList":
73            strategy = new MergeSorter<T>( );
74            break;
75        }
76
77        IEnumerable<T> newlist = Generator( );
78        DrawGraph(newlist);
79        if (strategy == null)
80            return;
81
82        // DrawGraph will be invoked during sorting when
83        // the UpdateUI event is triggered
84        strategy.UpdateUI += new Action<IEnumerable<T>>(DrawGraph);
85        strategy.Sort(newlist);
86      }
87    }
88
89    // Strategy interface
90    interface SortStrategy<T> where T : IComparable<T> {
91      event Action<IEnumerable<T>> UpdateUI;

Example 7-2. Strategy pattern example code—Sorting Animator (continued)



146 | Chapter 7: Behavioral Patterns: Strategy, State, and Template Method

92      void Sort(IEnumerable<T> input);
93    }
94
95    // Strategy 1
96    class MergeSorter<T> : SortStrategy<T>
97        where T : IComparable<T> {
98
99      public event Action<IEnumerable<T>> UpdateUI;

100
101      List<T> aux;
102      int opCount = 0;
103      public void Sort(IEnumerable<T> input) {
104        UpdateUI(input);
105        opCount++;
106        List<T> sorteditems = new List<T>(input);
107        aux = new List<T>(sorteditems.Count);
108        for (int i = 0; i < sorteditems.Count; i++)
109            aux.Add(default(T));
110        MergeSort(ref sorteditems, 0, sorteditems.Count - 1);
111        UpdateUI(sorteditems);
112      }
113
114      private void Merge(ref List<T> a, int l, int m, int r) {
115        // omitted
116
117      private void MergeSort(ref List<T> a, int l, int r) {
118        // omitted
119    }
120
121    // Strategy 2
122    class QuickSorter<T> : SortStrategy<T>
123        where T : IComparable<T> {
124
125      public event Action<IEnumerable<T>> UpdateUI;
126
127      int opCount = 0;
128      public void Sort(IEnumerable<T> input) {
129        UpdateUI(input);
130        opCount++;
131        List<T> sorteditems = new List<T>(input);
132
133        QuickSort(ref sorteditems, 0, sorteditems.Count - 1);
134        UpdateUI(sorteditems);
135      }
136
137      private int Partition(ref List<T> a, int l, int r) {
138        // omitted
139
140      private void QuickSort(ref List<T> a, int l, int r) {
141        // omitted
142    }
143
144    static class Program {

Example 7-2. Strategy pattern example code—Sorting Animator (continued)



Strategy Pattern | 147

UpdateUI is an event that is set in line 84 (in the Context) to refer to DrawGraph. This is
a more transparent way of the Strategy getting back to the animator than having it
call DrawGraph directly. Notice that DrawGraph (lines 31–58) has an interesting loop
that uses a new feature in C# 2.0: nullable types.

Consider the loop in question. The items in the list are of type T, and it is possible
that they might not have values. The cast to int on line 47 will therefore be trapped
unless null is included as a possibility for val. In the next line, we can convert any
possible nulls to zeros. Then, on line 51, we see that we have to convert the int?
type to int so that it can be used in arithmetic:

44         foreach (T item in list) {
45           // val must be an integer. The as conversion needs it
46           // also to be a non-nullable, which is checked by the ?
47           int? val = item as int?;
48           if (!val.HasValue)
49               val = 0;
50           // Drawing methods do not handle nullable types
51           b.SetPixel(x + 20, 20 + 200 - ((int)val), Color.Black);
52           x++;
53         }

145      static void Main( ) {
146        Application.EnableVisualStyles( );
147        Application.SetCompatibleTextRenderingDefault(false);
148        Application.Run(new StrategyView<int>(StartSetGenerator.GetStartSet));
149      }
150    }
151  }

C# Feature—Nullable Types
Nullable types add to primitive types and structs the ability to include an “undefined
value.” In keeping with objects, the value is called null, and it can be assigned and
checked for.

In programs, all primitive types are assigned default values on instantiation. Therefore,
the ability to assign null to numeric and Boolean types is particularly useful when deal-
ing with databases and other data types containing elements that may not be assigned
a value. For example, a Boolean field in a database can store the values true or false,
or it may be undefined.

In C#, a nullable type is declared with the addition of a question mark (e.g., int? x).
An extra property—HasValue—can then be used to check whether a value is non-null.
To convert back to a non-nullable type, use the as operator. as will return null if it can-
not convert the value. For example, int? val = DateTime.Now as int?;

cf. C# Language Specification Version 3.0, September 2007, Section 4.1.10

Example 7-2. Strategy pattern example code—Sorting Animator (continued)



148 | Chapter 7: Behavioral Patterns: Strategy, State, and Template Method

Use
There are many examples where a different algorithm can be passed to an active
method or class. Dialog boxes, for example, can have different validating strategies
depending on the kind of data required, whereas graph-drawing programs can accept
algorithms for drawing pie charts, histograms, or bar charts. The C# 3.0 LINQ sup-
port libraries (for database queries) use this kind of separation between data and
algorithm extensively.

Exercises
1. One of the criteria for choosing a sorting algorithm is whether the data is ini-

tially presorted, reverse-sorted, or in random order. Add to the Generator class in
the Sorting Animator so that different arrangements of data in the list can be cre-
ated. Then, add some more buttons to make the user’s description of the prob-
lem at least two-dimensional (i.e., size of elements and arrangement of data).
Change the strategy selection accordingly.

2. Add to the animator a linear sort like Shellsort, and define its criteria so that it
can also be selected when appropriate. (Hint: Shellsort is good enough for short
lists.)

3. In the proxy-protected version of MySpaceBook (Chapter 2), the registration pro-
cess does not check whether the input is valid. Decide on more rich input (such
as email addresses and requirements for passwords), and implement the input of
each field using the Strategy pattern.

State Pattern

Role
The next pattern in this group, the State pattern, can be seen as a dynamic version of
the Strategy pattern. When the state inside an object changes, it can change its
behavior by switching to a set of different operations. This is achieved by an object
variable changing its subclass, within a hierarchy.

Use the Strategy pattern when…

• Many related classes differ only in their behavior.
• There are different algorithms for a given purpose, and the selection criteria can be codified.
• The algorithm uses data to which the client should not have access.



State Pattern | 149

Illustration
Consider a frequent flyer program run by an airline. A traveler starts out at, say, Blue
level; then, as miles are accumulated by flying, she moves up to Silver or Gold level.
At these levels, travelers can access lounges, get an extra baggage allowance, and also
earn miles at a faster rate. For example, at the Silver tier, for every 1000 miles flown, a
credit for 1250 miles is earned; at the Gold level, the credit is for 1500 miles. Other
benefits also apply, as shown in the sample from South African Airways in Figure 7-3.

A frequent flyer program works in annual cycles: at the end of each year, a member’s
activity is calculated for the year and she is assigned to a tier. In the case of our hypo-
thetical program, one of the requirements is to fly 25,000 miles in one year to attain Sil-
ver status and keep it for the next year; for Gold status a member must fly 50,000 miles.

So, in this illustration, the State is the member’s level in the program. When the
State for a traveler changes, the behavior with respect to lounge access, baggage
allowances, and so on also changes.

Design
The State pattern presents an interesting interplay between a Context and a State.
The Context represents information that is mostly fixed, whereas the State can
change between the available options as the program progresses. The UML diagram
for this pattern is shown in Figure 7-4.

From the diagram, we can identify the players in the pattern as:

Figure 7-3. State pattern illustration—frequent flyer program



150 | Chapter 7: Behavioral Patterns: Strategy, State, and Template Method

Context
A class that maintains an instance of a State that defines the current context and
the interface of interest to clients

IState
Defines an interface for a particular state of the Context

StateA and StateB
Classes that implement behavior associated with a state of the Context

The Context has a variable of type IState that starts out with a reference to a particu-
lar State object (say, StateA). All Requests are passed through to the Handle opera-
tion in that State. As shown in the diagram, the State has full access to the data in
the Context. Thus, at any point, either the Context or the active State can decide that
it is time to switch states. This is accomplished by assigning the state attribute of the
Context object to an object of the other state. Immediately, all requests begin going
to the new state, where they can elicit quite different behaviors than before.

Figure 7-4. State pattern UML diagram

Q U I Z

Match the State Pattern Players with the Frequent Flyer Illustration
To test whether you understand the State pattern, cover the lefthand column of the
table below and see if you can identify its players among the items from the illustrative
example (Figure 7-3), as shown in the righthand column. Then check your answers
against the lefthand column.

Context

Request

IState

StateA, StateB,

etc.

Handle

A member’s account details

An activity such as flying and earning miles, spending miles, or accessing a lounge

The list of different policies that can change according to the tier

Particular policies applying to each tier (specific Blue, Silver, or Gold tier status rules and
benefits)

An activity in a particular tier policy

<<interface>>
IState

–context : Context

Context

–state : IState

+Request( )
+Handle( )

StateA

+Handle( )

StateB

+Handle( )
invokes
state.Handle( )



State Pattern | 151

So, for example, part of the member’s details (the Context) will be her membership
tier. Suppose it is Silver. This information will be stored in the state variable in the
Context, and when she flies, a 25 percent bonus will be added to the miles she
accumulates.

Implementation
Like the Strategy pattern, the State pattern relies on simple mechanisms: interfaces and
aggregation. In Example 7-3, there are two state classes, NormalState and FastState,
which act at different rates on a counter in the Context class. Both states implement the
IState interface with the same two operations: MoveUp and MoveDown. The states them-
selves decide when it is time to switch to a different state. In this example, the decision
is based on a comparison of the numeric value of the counter to a set limit in the
Context. The test program simulates the operation of the state for 15 turns. The output
is shown in line 74. The double bar (||) indicates a change of state.

Example 7-3. State pattern theory code

1     using System;
2     using System.Collections.Generic;
3
4       // State Pattern                               Judith Bishop  Oct 2007
5       // Shows two states with two operations, which themselves change the state
6       // Increments and decrements a counter in the context
7
8    interface IState {
9      int MoveUp(Context context);

10      int MoveDown(Context context);
11    }
12
13    // State 1
14    class NormalState : IState {
15      public int MoveUp(Context context) {
16        context.Counter+=2;
17        return context.Counter;
18      }
19
20      public int MoveDown(Context context) {
21        if (context.Counter < Context.limit) {
22          context.State = new FastState( );
23          Console.Write("|| ");
24        }
25        context.Counter-=2;
26        return context.Counter;
27      }
28    }
29
30    // State 2
31    class FastState : IState {
32      public int MoveUp(Context context) {
33        context.Counter+=5;
34        return context.Counter;



152 | Chapter 7: Behavioral Patterns: Strategy, State, and Template Method

The different States can be classes, or if they are quite simple—without much data—
they can be implemented as delegates. This difference was explored in the discus-
sion of the Adapter pattern. In both cases, states are switched by assigning objects,
and all calls to Requests are done via the currently active State object in the Context.

An advantage of the State pattern is that the transition between states is explicit; we
can see when one state hands over to another. Moreover, the state change is accom-
plished in one go (by assigning a reference), so there cannot be inconsistencies in the
internals of the Context.

35      }
36
37      public int MoveDown(Context context) {
38        if (context.Counter < Context.limit) {
39          context.State = new NormalState( );
40          Console.Write("||");
41        }
42        context.Counter-=5;
43        return context.Counter;
44      }
45    }
46
47    // Context
48    class Context {
49      public const int limit = 10;
50      public IState State {get; set; }
51      public int Counter = limit;
52      public int Request(int n) {
53        if (n==2)
54            return State.MoveUp(this);
55        else
56            return State.MoveDown(this);
57      }
58    }
59
60    static class Program {
61      // The user interface
62      static void Main ( ) {
63        Context context = new Context( );
64        context.State = new NormalState( );
65        Random r = new Random(37);
66        for (int i = 5; i<=25; i++) {
67          int command = r.Next(3);
68          Console.Write(context.Request(command)+" ");
69        }
70        Console.WriteLine( );
71      }
72    }
73  /* Output
74  8 10 8 || 6 11 16 11 6 ||1 3 || 1 ||-4 || -6 -1 4 ||-1 || -3 2 7 ||2 4
75  */

Example 7-3. State pattern theory code (continued)



State Pattern | 153

When implementing the State pattern, we need to consider whether to create all the
State objects at once and keep them, or create them as needed. The choice will
depend upon the frequency with which states’ changes are made and the size of the
states’ data. In the Frequent Flyer example, state changes will be infrequent, so creat-
ing the State objects as needed is the appropriate choice. In the next example, we’ll
consider a game, in which the states have only methods and are passed the context
each time.

Example: RPC Game
Games inherently exhibit strategy. Our next example demonstrates how the State
pattern can handle a very simple game called RPC (which stands for Run, Panic,
Calm Down). In this single-person game, the player can be in one of four states:

• Resting

• Attacking

• Panicking

• Moving

The context of the game consists of the state the player is in at present. Even slightly
more complex games have other attributes, such as the number of points scored for
and against. The Requests that can be put through (in terms of the State pattern) are
the moves the player can make, which are the ones to which the states must react.
These are specified in the State abstract class as follows:

abstract class State {
  public virtual string Move(Context context) {return " ";}
  public virtual string Attack(Context context) {return " ";}
  public virtual string Stop(Context context) {return " ";}
  public virtual string Run(Context context) {return " ";}
  public virtual string Panic(Context context) {return " ";}
  public virtual string CalmDown(Context context) {return " ";}
}

The code for the RPC game example is presented in Example 7-4. Considering this
code, we can see that each of the four states implements the six actions in com-
pletely different ways. They all return a string saying what happened, but some of
them also change the state, as shown in lines 20–23. The RestingState’s Move method
is called with a given context. The response is to switch to MovingState for the same
context and to return a message accordingly.

Example 7-4. State pattern example code—RPC game

1     using System;
2     using System.Collections.Generic;
3
4       namespace StatePattern {
5



154 | Chapter 7: Behavioral Patterns: Strategy, State, and Template Method

6         // State Pattern               D-J Miller and Judith Bishop  Sept 2007
7         // Simple game where the context changes the state based on user input
8         // Has four states, each with six operations
9

10        abstract class IState {
11          public virtual string Move(Context context) {return "";}
12          public virtual string Attack(Context context) {return "";}
13          public virtual string Stop(Context context) {return "";}
14          public virtual string Run(Context context) {return "";}
15          public virtual string Panic(Context context) {return "";}
16          public virtual string CalmDown(Context context) {return "";}
17        }
18
19          // There are four States
20          class RestingState : IState {
21            public override string Move(Context context) {
22              context.State = new MovingState( );
23              return "You start moving";}
24            public override string Attack(Context context) {
25              context.State = new AttackingState( );
26              return "You start attacking the darkness"; }
27            public override string Stop(Context context) {
28              return "You are already stopped!"; }
29            public override string Run(Context context) {
30              return "You cannot run unless you are moving"; }
31            public override string Panic(Context context) {
32              context.State = new PanickingState( );
33              return "You start Panicking and begin seeing things"; }
34            public override string CalmDown(Context context) {
35              return "You are already relaxed"; }
36          }
37
38          class AttackingState : IState {
39            public override string Move(Context context) {
40              return "You need to stop attacking first"; }
41            public override string Attack(Context context) {
42              return "You attack the darkness for " +
43                  (new Random( ).Next(20) + 1) + " damage"; }
44            public override string Stop(Context context) {
45              context.State = new RestingState( );
46              return "You are calm down and come to rest"; }
47            public override string Run(Context context) {
48              context.State = new MovingState( );
49              return "You Run away from the fray"; }
50            public override string Panic(Context context) {
51              context.State = new PanickingState( );
52              return "You start Panicking and begin seeing things"; }
53            public override string CalmDown(Context context) {
54              context.State = new RestingState( );
55              return "You fall down and sleep"; }
56           }
57
58         class PanickingState : IState {

Example 7-4. State pattern example code—RPC game (continued)



State Pattern | 155

59           public override string Move(Context context) {
60             return "You move around randomly in a blind panic"; }
61           public override string Attack(Context context) {
62             return "You start attacking the darkness, but keep on missing"; }
63           public override string Stop(Context context) {
64             context.State = new MovingState( );
65             return "You are start relaxing, but keep on moving"; }
66           public override string Run(Context context) {
67             return "You run around in your panic"; }
68           public override string Panic(Context context) {
69             return "You are already in a panic"; }
70           public override string CalmDown(Context context) {
71             context.State = new RestingState( );
72             return "You relax and calm down"; }
73         }
74
75         class MovingState : IState {
76           public override string Move(Context context) {
77             return"You move around randomly"; }
78           public override string Attack(Context context) {
79             return"You need to stop moving first"; }
80           public override string Stop(Context context) {
81             context.State = new RestingState( );
82             return"You stand still in a dark room"; }
83           public override string Run(Context context) {
84             return"You run around in cirles"; }
85           public override string Panic(Context context) {
86             context.State = new PanickingState( );
87             return"You start Panicking and begin seeing things"; }
88           public override string CalmDown(Context context) {
89            context.State = new RestingState( );
90            return"You stand still and relax"; }
91         }
92
93         class Context {
94           public IState State { get; set; }
95
96           public void Request(char c) {
97             string result;
98             switch (char.ToLower(c)) {
99               case 'm' : result = State.Move(this); break;

100               case 'a' : result = State.Attack(this); break;
101               case 's' : result = State.Stop(this); break;
102               case 'r' : result = State.Run(this); break;
103               case 'p' : result = State.Panic(this); break;
104               case 'c' : result = State.CalmDown(this); break;
105               case 'e' : result = "Thank you for playing \"The RPC Game\""; break;
106               default : result = "Error, try again"; break;
107             }
108             Console.WriteLine(result);
109          }
110        }
111

Example 7-4. State pattern example code—RPC game (continued)



156 | Chapter 7: Behavioral Patterns: Strategy, State, and Template Method

112      static class Program {
113        // The user interface
114        static void Main ( ) {
115          // context.s are States
116          // Decide on a starting state and hold onto the Context thus established
117          Context context = new Context( );
118          context.State = new RestingState( );
119
120          char command = ' ';
121          Console.WriteLine("Welcome to \"The State Game\"!");
122          Console.WriteLine("You are standing here looking relaxed!");
123          while (command != 'e') {
124            Console.WriteLine("\nWhat would you like to do now?");
125            Console.Write("   Move    Attack    Stop    Run    Panic    CalmDown
126                         Exit the game: ==>");
127            string choice;
128            do
129              choice = Console.ReadLine( );
130            while (choice==null);
131            command = choice[0];
132            context.Request(command);
133          }
134        }
135      }
136    }
137  /* Output
138     Welcome to "The State Game"!
139  You are standing here looking hesitant!
140
141  What would you like to do now?
142     Move    Attack    Stop    Run    Panic    CalmDown    Exit the game: ==>m
143  You start moving
144
145  What would you like to do now?
146     Move    Attack    Stop    Run    Panic    CalmDown    Exit the game: ==>a
147  You need to stop moving first
148
149  What would you like to do now?
150     Move    Attack    Stop    Run    Panic    CalmDown    Exit the game: ==>s
151  You stand still in a dark room
152
153  What would you like to do now?
154     Move    Attack    Stop    Run    Panic    CalmDown    Exit the game: ==>p
155  You start Panicking and begin seeing things
156
157  What would you like to do now?
158     Move    Attack    Stop    Run    Panic    CalmDown    Exit the game: ==>r
159  You run around in your panic
160
161  What would you like to do now?
162     Move    Attack    Stop    Run    Panic    CalmDown    Exit the game: ==>a

Example 7-4. State pattern example code—RPC game (continued)



State Pattern | 157

The Context is called by the GUI (the main program) and extends over lines 93–110.
Once a Context is constructed, the state is set, as from line 118. Thereafter, changes
are made from within the other states.

Use
This is another pattern that can be used effectively in the implementation of graphics
tools. Essentially, a tool editor can be “handed” a tool to use by the user and, when
necessary, be “given” a different tool. The tool’s behavior and capabilities are known
to the editor, but the user controls the tool selection, based on the current context.

Exercises
1. The RPC game has a good set of state changes, but the context switching is

rather simple—based entirely on the previous state. Add some characteristics to
the player (e.g., strength, stamina) that become part of the context and can make
the state changes more interesting.

2. Investigate whether the IState class and the rest of the State classes could have
been programmed as an interface and classes, without virtual methods. Explain
the difference between the two techniques.

3. Program up the frequent flyer example mentioned in the illustration. Decide in
advance what falls into the Context and what are the States.

163  You start attacking the darkness, but keep on missing
164
165  What would you like to do now?
166     Move    Attack    Stop    Run    Panic    CalmDown    Exit the game: ==>c
167  You relax and calm down
168
169  What would you like to do now?
170     Move    Attack    Stop    Run    Panic    CalmDown    Exit the game: ==>e
171  Thank you for playing "The State Game"
172  */

Use the State pattern when…

You have objects that:
• Will change their behavior at runtime, based on some context
• Are becoming complex, with many conditional branches

You want to:
• Vary the set of handlers for an object request dynamically
• Retain flexibility in assigning requests to handlers

Example 7-4. State pattern example code—RPC game (continued)



158 | Chapter 7: Behavioral Patterns: Strategy, State, and Template Method

Template Method Pattern

Role
The Template Method pattern enables algorithms to defer certain steps to sub-
classes. The structure of the algorithm does not change, but small well-defined parts
of its operation are handled elsewhere.

Illustration
Consider the sorting algorithms discussed under the Strategy pattern. Each sort has a
certain structure that is independent of the kind of items being sorted—except for
one operation. At some point, the sort will need to compare two items. The compari-
son will depend on the types of the items themselves. For example, comparing two
integers could be done with a simple i==j, but if the items are, say, People objects,
there could be many ways in which they could be compared. If the comparison is
done on a Surname field, the sort will yield a list sorted by surname. However, the
comparison could also be done on another field, such as Town, which would produce
a list of people sorted by the town in which they live. Thus, we can see a clear dis-
tinction between the sorting algorithm and some subsidiary operation that is depen-
dent on the data. The same distinction exists for other algorithms, such as searching.
Sorting and searching are therefore Template Methods, as some parts of their opera-
tion are deferred to other classes.

Design
The UML diagram for the Template Method pattern is given in Figure 7-5. It shows
an algorithm class that uses an IPrimitives interface to connect with methods
defined in any class. This class would typically handle data (as in the earlier sorting
and searching example), but it could be purely behavioral itself.

Figure 7-5. Template Method pattern UML diagram

Algorithm

+TemplateMethod( )

<<interface>>
IPrimitives

+Operation( )

AnyClass

+Operation( )

Calls
Operation( )



Template Method Pattern | 159

The players are:

Algorithm
A class that includes a TemplateMethod

TemplateMethod
A method that defers some parts of its operation to other classes

IPrimitives
The interface defining the operation(s) that TemplateMethod defers to other classes

AnyClass
Any class that implements the IPrimitives interface

Operation
One of the methods that TemplateMethod needs to complete its operation

In this example, there is only one primitive method. There could obviously be more,
either in the same interface or in other interfaces.

Implementation
The implementation of a simple Template Method program is shown in
Example 7-5. It follows the UML of Figure 7-5, with the Algorithm containing the
TemplateMethod and going through the IPrimitives interface to the two classes that
implement it. In the main method, the Algorithm’s Template Method is called with
objects of ClassA and ClassB in turn, with different results. The TemplateMethod
knows that it must call Operations on an object of type IPrimitives, but it does not
have to know which class exactly.

Q U I Z

Match the Template Method Pattern Players with the Sorting
Animator Illustration

To test whether you understand the Template Method pattern, cover the lefthand col-
umn of the table below and see if you can identify its players among the items from the
illustrative example (Figure 7-1), as shown in the righthand column. Then check your
answers against the lefthand column.

Algorithm

TemplateMethod

IPrimitives

AnyClass

Operation

Sorting visualizer

Mergesort

Specification of a compare operation

Person

Compare two people



160 | Chapter 7: Behavioral Patterns: Strategy, State, and Template Method

Example 7-5. Template Method pattern theory code

1 using System;
2
3 // Template Method Pattern     Judith Bishop November 2007
4 //  Shows two versions of the same algorithm
5
6   interface IPrimitives {
7     string Operation1( );
8     string Operation2( );
9   }

10
11   class Algorithm {
12     public void TemplateMethod(IPrimitives a) {
13       string s =
14         a.Operation1( ) +
15         a.Operation2( );
16         Console.WriteLine(s);
17     }
18   }
19
20   class ClassA : IPrimitives {
21     public string Operation1( ) {
22       return "ClassA:Op1 ";
23     }
24     public string Operation2( ) {
25       return "ClassA:Op2 ";
26     }
27   }
28
29   class ClassB : IPrimitives {
30     public string Operation1( ) {
31       return "ClassB:Op1 ";
32     }
33     public string Operation2( ) {
34       return "ClassB.Op2 ";
35     }
36   }
37
38   class TemplateMethodPattern {
39
40     static void Main( ) {
41       Algorithm m = new Algorithm( );
42
43       m.TemplateMethod(new ClassA( ));
44       m.TemplateMethod(new ClassB( ));
45     }
46  }
47 /* Output
48 ClassA:Op1 ClassA:Op2
49 ClassB:Op1 ClassB.Op2
50 */
51



Template Method Pattern | 161

Example
Example 7-2 sorts integers for the Sorting Animator, but this is not built into the
implementation. In the sort methods, the compare operations do not use the == oper-
ator, but rather the primitive operation CompareTo, as in:

if (aux[j].CompareTo(aux[i]) == -1) {

CompareTo is a method that returns 1 if a>b, 0 if a==b, and -1 if a<b. It is defined in the
IComparable interface, which many predefined C# types already implement. For exam-
ple, CompareTo is available for integers and strings. Because our sort methods are meant
to be general, we declare that the item types must implement the interface using:

class MergeSorter<T> : SortStrategy<T>
    where T : IComparable<T> {

The where clause puts a constraint on the type <T> by saying it must implement
IComparable. Any class can do so if it provides a CompareTo method. For example,
inside a Person class, we might have:

// Comparison based on surnames
public int CompareTo(object obj) {
  if(obj is Person) {
    Person p = (Person) obj;
    return Surname.CompareTo(p.Surname);
  }
  throw new ArgumentException("object is not a Person");
}

But how is CompareTo defined in terms of CompareTo? Well, we are looking at names,
so Surname will presumably be a string. CompareTo is defined for strings so that is what
will be called. The check for the type of the object is necessary because the imple-
mentation of CompareTo must match its interface, which is defined on the object.

When a Template Method uses an interface for specifying the primitive operations,
the classes must implement those operations. It is also possible to define IPrimitives
as an abstract class and to provide default behavior for any of the operations, leaving
the subclass to override as many operations as it wishes. Methods that have defaults
are called hook operations, and they often do nothing by default.

Use
Template Methods are, as we have seen, very useful in conjunction with the Strategy
pattern. Any system that wishes to defer primitive operations to other classes will
benefit from this pattern. In C#, it is used extensively through predefined interfaces
such as IComparable.



162 | Chapter 7: Behavioral Patterns: Strategy, State, and Template Method

A key quality of the Template Method pattern is the ability to handle a sequence of
multiple method calls, where some of the method implementations are deferred to
subclasses (or other class hierarchies via a Strategy). The programmer decides which
steps of an algorithm are fixed and which are customizable. The invariant steps are
implemented in a base class, whereas the variant steps are either given a default
implementation or no implementation at all. The programmer decides which are the
required steps of an algorithm, and the order of the steps, but allows the client to
extend or replace some number of these steps. For this reason, the Template Method
is used prominently in frameworks. Each framework implements the fixed parts a
domain’s architecture and defines “placeholders” for all necessary or interesting cli-
ent customization options.

Exercises
1. Take one of the sorting methods and implement it for a Person class. Supply the

CompareTo method as a primitive operation, implementing IComparable.

2. Investigate other similar interfaces in the .NET Framework.

Pattern Comparison

Pattern Comparison
There are considerable similarities between the Strategy and State patterns, but the
main difference is one of intent:

• A Strategy object encapsulates an algorithm

• A State object encapsulates a state-dependent behavior (and possibly state
transitions)

Both patterns are concerned with polymorphism. Both patterns define a parent inter-
face or abstract class and a series of subclasses that implement the methods therein.
And both patterns have a context that they maintain and use to decide on state tran-
sitions. So, the biggest difference between the patterns is that we encapsulate an
algorithm into strategy classes in the Strategy pattern, but we encapsulate state into
state classes in the State pattern.

Use the Template Method pattern when…

• Common behavior can be factored out of an algorithm.
• The behavior varies according to the type of a subclass.



Pattern Comparison | 163

The Template Method pattern is more like the Strategy pattern in that it is algorithm
based. The steps of the algorithm are specified in the Template Method and some are
deferred to domain classes.

These similarities and differences are illustrated in the simple theory code in Exam-
ples 7-1, 7-3, and 7-5. Table 7-1 summarizes them.

Table 7-1. Comparison of Strategy, State, and Template Method patterns

Strategy State Template Method

Action achieved by Context invokes Strategy Client invokes Context Algorithm invoking
Operations

Switching modes based on Client inspecting Context State inspecting Context Instantiation of classes in
Client

Context/IPrimitivescontains Current Strategy Current State Operational interface



164

Chapter 8CHAPTER 8

Behavioral Patterns: Chain of
Responsibility and Command 8

The two behavioral patterns we will explore in this chapter—Chain of Responsibil-
ity and Command—are concerned with passing requests for action to appropriate
objects. The respective patterns choose the objects to pass the requests to in differ-
ent ways.

Chain of Responsibility Pattern

Role
The Chain of Responsibility pattern works with a list of Handler objects that have
limitations on the nature of the requests they can deal with. If an object cannot han-
dle a request, it passes it on to the next object in the chain. At the end of the chain,
there can be either default or exceptional behavior.

Illustration
The Chain of Responsibility pattern is encountered frequently in real life. Imagine
members of the public (such as you and me) approaching a bank, a government
office, a hospital, or a similar institution with a request. In the case of a bank, we
know that a first level of clerks will handle straightforward requests. Those requests
requiring more inspection will be sent up to a supervisor, and ultimately the man-
ager might have to authorize or rule on a request. The clerk, supervisor, and man-
ager together are an example of a chain of responsibility. Of course, sometimes clerks
can deal with matters quite well on their own, as illustrated in Figure 8-1.*

Within the bank illustration, we can immediately see that it is the levels that form the
chain (clerk, supervisor, manager), and there could well be more than one individual
at each level. In human terms, such chains do not generally get very long (or else

* From S. Francis, H. Dugmore, and Rico, www.madamandeve.co.za, printed with permission.



Chain of Responsibility Pattern | 165

customers would get very frustrated), but theoretically there is no limit. Typically,
clerks will stagger their tea and lunch breaks so that there is always someone on
duty; they join and leave the chain dynamically, and at different times.

Design
Imagine a client that has a request for a handler. The Chain of Responsibility pattern
distances the handler from the client by passing the request along a hidden chain of
handlers until one that will handle it is found.

To handle a request, the handler must have the appropriate resources, knowledge,
and permissions. The handlers themselves decide whether to handle a request and
can do so on the basis of workload, resource limitations, policy issues, or any other
good reason.

The Chain of Responsibility pattern is a simple pattern in that it consists of a single,
uniform interface that is implemented by multiple handlers (as many as are neces-
sary or available). Each handler is linked in some way to a successor so that requests
can be passed on if necessary. Depending on the language, the link to the successor is
either internal or external to the handler itself. The UML for the Chain of Responsi-
bility pattern is shown in Figure 8-2.

Figure 8-1. Chain of Responsibility pattern illustration—a bank clerk deals with a request

Figure 8-2. Chain of Responsibility pattern UML diagram

<<interface>>
IHandler

#successor : Handler

Client

+Request( )

Handler1

+Request( )

Handler2

+Request( )

Calls Successor
if necessary



166 | Chapter 8: Behavioral Patterns: Chain of Responsibility and Command

The roles assumed by the players in the pattern are as follows:

Client
A class that initiates a Request

IHandler
The interface for different Handlers

Handler1, Handler2, etc.
The classes that are available as Handlers

Successor
The link to the next Handler object

Request
The request from the Client

As we’ll see next, the most efficient implementation of the Chain of Responsibility pat-
tern depersonalizes the Handlers, reducing them to the operations that they perform.

In terms of the design, there can be variations on Figure 8-2:

• The handlers may differ only in terms of the values of the state they store (e.g., a
limit on an amount), or in the behavior of the Request method. In this case, the
IHandler interface can be dispensed with, and the Handlers can still be instanti-
ated in sufficient variety.

• The UML diagram implies only one instantiation of each Handler, resulting in
one handler at each level in the chain. Practically speaking, there might be sev-
eral identical handlers at certain levels (e.g., clerks in a bank). A different design
is required to accommodate the latter case. This design is shown in the upcom-
ing example code.

Q U I Z

Match the Chain of Responsibility Pattern Players with the Bank
Illustration

To test whether you understand the Chain of Responsibility pattern, cover the lefthand
column of the table below and see if you can identify its players among the items from
the illustrative example (Figure 8-1), as shown in the righthand column. Then check
your answers against the lefthand column.

Client

Handlers

Successor

Request

The customer

Clerks, supervisors, managersn

The next most senior handler

The customer’s request, query, or problem



Chain of Responsibility Pattern | 167

• What happens when a request reaches the end of the chain without finding a
valid handler is an important design decision. The last object may handle the
request in a default manner, or an exception may be thrown without the request
being handled.

• However they are implemented, Handlers need to have a means for deciding
whether they can rightly handle a request. There are several ways of implement-
ing this decision, as we shall see.

Implementation
The simple theory code for the Chain of Responsibility pattern is shown in
Example 8-1. The program creates five handlers that can deal with amounts up to
1,000 times their handler IDs. Each handler links to the one that can handle a higher
amount. The handlers are created from highest to lowest in the loop at lines 28–31.
The links point backward, and we get the structure shown in Figure 8-3.

Example 8-1. Chain of Responsibility pattern theory code

1     using System;
2
3     class ChainwithStatePattern {
4
5       // Chain of Responsibility Pattern    Judith Bishop  June 2007
6
7      class Handler {
8        Handler next;
9        int id;

10        public int Limit {get; set;}
11        public Handler (int id, Handler handler) {
12          this.id = id;
13          Limit = id*1000;
14          next = handler;
15        }
16        public string HandleRequest(int data) {
17          if (data < Limit)
18              return "Request for " +data+" handled at level "+id;
19          else if (next!=null)
20              return next.HandleRequest(data);
21          else return ("Request for " +data+" handled BY DEFAULT at level "+id);
22        }
23      }
24
25      static void Main ( ) {
26
27        Handler start = null;
28        for (int i=5; i>0; i--) {
29          Console.WriteLine("Handler "+i+" deals up to a limit of "+i*1000);
30          start = new Handler(i,  start);
31        }
32
33        int [] a = {50,2000,1500,10000,175,4500};
34        foreach (int i in a)



168 | Chapter 8: Behavioral Patterns: Chain of Responsibility and Command

We’ll start by exploring the implementation from the client’s point of view. The cli-
ent wants to call a handler with some data. For example:

handler(2000);

The crux of the Chain of Responsibility pattern is in lines 35 and then 20. Line 35
calls a handler, and line 20 can pass the request on to the next in line. The handler
makes this decision based on conditions it can evaluate. Lines 18 and 21 show the
other two outcomes: handling the request and handling it by default if the handler is
the last in the chain.

The Chain of Responsibility pattern has an inherent limitation in that the request can
get lost if the chain is not set up properly or if no handler is appropriate for the
passed-in data. For this reason, the last handler has a default action. An alternative
implementation, as mentioned earlier, would be to define a ChainException that the
Handler can throw and the Client can catch. This approach is shown in the follow-
ing example.

Example: Trusty Bank
To further explore the Chain of Responsibility pattern, we’ll model the action of a
bank that is careful about allowing withdrawals of large amounts. Trusty Bank’s
business rules for handling withdrawals are:

35            Console.WriteLine(start.HandleRequest(i));
36      }
37
38    }
39  /* Output
40  Handler 5 deals up to a limit of 5000
41  Handler 4 deals up to a limit of 4000
42  Handler 3 deals up to a limit of 3000
43  Handler 2 deals up to a limit of 2000
44  Handler 1 deals up to a limit of 1000
45  Request for 50 handled at level 1
46  Request for 2000 handled at level 3
47  Request for 1500 handled at level 2
48  Request for 10000 handled BY DEFAULT at level 5
49  Request for 175 handled at level 1
50  Request for 4500 handled at level 5
51  */

Figure 8-3. Chain of handlers

Example 8-1. Chain of Responsibility pattern theory code (continued)

1000

Start

2000 3000 4000 5000



Chain of Responsibility Pattern | 169

• Clerks can handle withdrawals of up to $1,000.

• Supervisors can handle withdrawals of up to $4,000.

• The bank manager can handle withdrawals of up to $9,000.

Any amount larger than $9,000 has to be divided into several withdrawals. The bank
has several clerks on duty at any one time (up to 10), and usually 3 supervisors; there
is only one manager.

In this example of the Chain of Responsibility pattern, we distinguish between levels
in the chain and the number of object instances at each of those levels. The organiza-
tional structure we want is shown in Figure 8-4.

We reflect this structure in two C# collections: one for the information about the
limits and the number of positions, and one for the actual Handler objects used at
runtime. The collections are:

static Dictionary <Levels,Structure> structure =
    new Dictionary <Levels, Structure> {
      {Levels.Manager, new Structure {Limit = 9000, Positions =1}},
      {Levels.Supervisor, new Structure {Limit = 4000, Positions =3}},
      {Levels.Clerk, new Structure {Limit = 1000, Positions =10}}};

static Dictionary <Levels, List<Handler>> handlersAtLevel =
    new Dictionary <Levels, List<Handler>> {
      {Levels.Manager, new List <Handler>( )},
      {Levels.Supervisor, new List <Handler>( )},
      {Levels.Clerk, new List <Handler>( )}};

Figure 8-4. Trusty Bank organizational structure

Manager

Limit $9000

Supervisor

Limit $4000

Clerk
Limit $1000



170 | Chapter 8: Behavioral Patterns: Chain of Responsibility and Command

This excerpt uses two interesting C# features: initializing and enumerated types. We
looked at initializing in Chapter 3, but I’ll repeat the information here, more specifi-
cally for collections.

Both of the collections use an enumerated type: Levels. It is declared as:

enum Levels {Manager, Supervisor, Clerk}

Because enum constants can be associated with values, we could include the limits
for the handler types with them, as in:

enum Levels (Manager = 9000, Supervisor = 4000, Clerk = 1000}

We’ll revisit this idea in the upcoming “Exercises”section.

Having set up the structure, we then create a collection of three lists called
handlersAtLevel. Each list contains the people who are at the level indicated, exactly
as in Figure 8-4. The loop to create the handlers (requiring less writing) is:

foreach (Levels level in Enum.GetValues(typeof(Levels))) {
  for (int i=0; i<structure[level].Positions; i++) {
    handlersAtLevel[level].Add(new Handler(i, level));
  }
}

Thus, for each level, we pick up from the structure chart the number of positions
required and instantiate that number of handlers, passing through an identifier and
the level. Notice that this way of setting up the handlers differs from the theory code
in Example 8-1 because there is no direct link to another handler; the link is deduced
from the level plus a random number and found in the lists of handlersAtLevel.

The next step is to run the bank, accepting various requests, as in the theory exam-
ple. Here’s the loop:

C# 3.0 Feature—Initializing Collections
In initializing a collection, we match the values with the required structure. If the items
in any dimension of the structure are objects, new is required, and we open another set
of brackets. If values are available, they can be inserted, as in:

{Levels.Clerk, new Structure {Limit = 500,
                              Positions =10}},

Otherwise, an object constructor will do, as in:

{Levels.Clerk, new List <Handler>( )},

If the structure is local to a method, its type can be inferred from the initialization and
the var declaration is permitted, as in:

var structure = new Dictionary <Levels, Structure> {

cf. C# Language Specification Version 3.0, September 2007, Section 7.5.10.1-3



Chain of Responsibility Pattern | 171

int [] amounts = {50,2000,1500,10000,175,4500};
foreach (int amount in amounts) {
  try {
    int which = choice.Next(structure[Levels.Clerk].Positions);
    Console.WriteLine(handlersAtLevel
         [Levels.Clerk][which].HandleRequest(amount));
    AdjustChain( );
  } catch (ChainException e) {
    Console.WriteLine("\nNo facility to handle a request of "+
            e.Data["Limit"]+
           "\nTry breaking it down into smaller requests\n");
}
}

Here, we use a random number generator to pick a clerk and then call the chosen
handler at the clerk level. Inside the chosen handler, the limit is checked. If the han-
dler cannot deal with the amount, it uses the same technique to pick a supervisor,
generating a number between 0 and 2. Given all this, the output from the program is:

1 Trusty Bank opens with
2  1 Manager(s) who deal up to a limit of 9000
3  3 Supervisor(s) who deal up to a limit of 4000
4  10 Clerk(s) who deal up to a limit of 1000
5
6  Approached Clerk 4. Request for 50 handled by Clerk 4
7  Approached Clerk 0. Request for 2000 handled by Supervisor 1

C# Feature—Enumerated Types
An enumerated type (enum) specifies a set of named constants. The value of an enum
is written out as if it were a string. For example:

enum Levels (Manager, Supervisor, Clerk}
Levels me = Manager;
Console.WriteLine((Levels) me);

Enum variables can be used in switch statements, and variables of the type can make
use of comparison operations. In addition, the two operators ++ and -- go forward and
backward in the set, and an error will occur if there is no value to move to. Enums can
also be used in a foreach statement, as follows:

foreach (Levels level in Enum.GetValues(typeof(Levels))) {

This formulation is rather clumsy, but it’s the best C# has available at present.

In addition, complicated methods are needed to detect whether a value is the first or
last of a set.a

Enum constants can have integer values associated with them. By default, these start
at zero; however, casting back and forth to the integer type has to be done explicitly.

cf. C# Language Specification Version 3.0, September 2007, Section 14

a See Marc Clifton’s article “The Enumerable Enumerator” (November 2, 2006), available at http://www.
codeproject.com/csharp/EnumerableEnumerator.asp.

http://www.codeproject.com/csharp/EnumerableEnumerator.asp
http://www.codeproject.com/csharp/EnumerableEnumerator.asp


172 | Chapter 8: Behavioral Patterns: Chain of Responsibility and Command

8  Approached Clerk 9. Request for 1500 handled by Supervisor 0
9  Approached Clerk 1.

10  No facility to handle a request of 10000
11  Try breaking it down into smaller requests
12
13  Approached Clerk 3. Request for 175 handled by Clerk 3
14  Approached Clerk 3. Request for 4500 handled by Manager 0
15  Approached Clerk 1. Request for 2000 handled by Supervisor 1

As this output shows, Clerks handled requests for $50 and $175 (lines 6 and 13), and
three requests were sent up to Supervisors (not always the same one) on lines 7, 8,
and 15. The Manager authorized one request (line 14) and rejected another (lines 9–
11). When even the Manager cannot handle the request, the Handler interacts with the
Client via an exception.

The full code for the Trusty Bank program is presented in Example 8-2.

C# Feature—Exception Properties
C# exceptions are objects that can be created, thrown, and caught. Exceptions are
caught in try/catch blocks; different catch clauses can catch different exceptions.
Exceptions can carry information from the throwing object to the catching one. The
following properties are useful in user programming:

Message
A string property

Data
An IDictionary that can hold key/value pairs

cf. C# Language Specification Version 3.0, September 2007, Section 16, and C# Class
Library, the Exception Class

Example 8-2. Chain of Responsibility pattern example code—Trusty Bank

    using System;
    using System.Collections.Generic;

    class ChainPatternExample {

        // Chain of Responsibility Pattern Example         Judith Bishop  Sept 2007
        // Sets up the Handlers as level-based structure
        // Makes use of a user-defined exception if the end of the chain is reached

     class Handler {
       Levels level;
       int id;
       public Handler (int id, Levels level) {
         this.id = id;
         this.level = level;
       }



Chain of Responsibility Pattern | 173

       public string HandleRequest(int data) {
         if (data < structure[level].Limit) {
           return "Request for " +data+" handled by "+level+ " "+id;
         }
         else if (level > First) {
           Levels nextLevel = --level;
           int which = choice.Next(structure[nextLevel].Positions);
           return handlersAtLevel[nextLevel][which].HandleRequest(data);
         }
         else {
           Exception chainException = new ChainException( );
           chainException.Data.Add("Limit", data);
           throw chainException;
         }
       }
     }

     public class ChainException : Exception {
       public ChainException( ) {}
     }

     void AdjustChain( ) {}

     enum Levels {Manager, Supervisor, Clerk}
     static Random choice = new Random(11);
     static Levels First {
       get { return ((Levels[])Enum.GetValues(typeof(Levels)))[0]; }
     }

     static Dictionary <Levels,Structure> structure =
         new Dictionary <Levels, Structure> {
           {Levels.Manager, new Structure {Limit = 9000, Positions =1}},
           {Levels.Supervisor, new Structure {Limit = 4000, Positions =3}},
           {Levels.Clerk, new Structure {Limit = 1000, Positions =10}}};

     static Dictionary <Levels, List<Handler>> handlersAtLevel =
         new Dictionary <Levels, List<Handler>> {
           {Levels.Manager, new List <Handler>( )},
           {Levels.Supervisor, new List <Handler>( )},
           {Levels.Clerk, new List <Handler>( )}};

     class Structure {
       public int Limit {get; set;}
       public int Positions {get; set;}
     }

     void RunTheOrganization ( ) {

       Console.WriteLine("Trusty Bank opens with");
       foreach (Levels level in Enum.GetValues(typeof(Levels))) {
         for (int i=0; i<structure[level].Positions; i++) {
           handlersAtLevel[level].Add(new Handler(i, level));

Example 8-2. Chain of Responsibility pattern example code—Trusty Bank (continued)



174 | Chapter 8: Behavioral Patterns: Chain of Responsibility and Command

In the preceding example, the handlers were all instantiated from the same class. But
according to the UML diagram (Figure 8-2), the classes can be different, as long as
they conform to an interface with a well-defined Request method. In this case, using
delegates to set up the chain of request methods might be a useful technique.

Use
The Chain of Responsibility pattern is used in tools that handle user events. It is
often employed in conjunction with events and exceptions.

         }
         Console.WriteLine(structure[level].Positions+ " "+ level+
               "(s) who deal up to a limit of " + structure[level].Limit);
       }
       Console.WriteLine( );

       int [] amounts = {50,2000,1500,10000,175,4500,2000};
       foreach (int amount in amounts) {
         try {
           int which = choice.Next(structure[Levels.Clerk].Positions);
           Console.Write("Approached Clerk "+which+". ");
           Console.WriteLine(handlersAtLevel[Levels.Clerk][which].
                   HandleRequest(amount));
           AdjustChain( );
         } catch (ChainException e) {
           Console.WriteLine("\nNo facility to handle a request of "+
                   e.Data["Limit"]+
                   "\nTry breaking it down into smaller requests\n");
         }
       }
     }

     static void Main ( ) {
       new ChainPatternExample( ).RunTheOrganization( );
     }

   }

Use the Chain of Responsibility pattern when…

You have:
• More than one handler for a request
• Reasons why a handler should pass a request on to another one in the chain
• A set of handlers that varies dynamically

You want to:
• Retain flexibility in assigning requests to handlers

Example 8-2. Chain of Responsibility pattern example code—Trusty Bank (continued)



Command Pattern | 175

Exercises
1. Change the enumerated type in the Trusty Bank example so that each constant

has an associated value that refers to its limit. Rework the program accordingly.

2. In the Trusty Bank example, set up a completely different Handler class called
HeadOffice. Extend the system to enable requests to go from the Manager to
HeadOffice for approval.

3. Exception handlers work in chains and are themselves an example of the Chain
of Responsibility pattern. As an exercise, implement the notion of an exception-
handling mechanism without using C#’s built-in exception-handling mechanism.

Command Pattern

Role
The Command pattern creates distance between the client that requests an opera-
tion and the object that can perform it. This pattern is particularly versatile. It can
support:

• Sending requests to different receivers

• Queuing, logging, and rejecting requests

• Composing higher-level transactions from primitive operations

• Redo and Undo functionality

Illustration
The Command pattern is used in the menu systems of many well-known applica-
tions. An example of such an interface is shown in Figure 8-5 (which happens to be
the program editor I usually use). Note that there are different insert and copy
operations.

The figure shows two ways in which commands can be activated: select them from a
drop-down textual menu, or click on the icons that represent each of the operations.
In the top menu, there could be a receiver that handles word processing cut-and-
paste-type operations, and another for brace matching and changing case. For most
of these commands, Undo and Redo functions will also be appropriate; however,
some operations are indicated in gray, which means they cannot be undone or
repeated. Furthermore, in systems such as this one, there is usually a way of string-
ing together some commands so that they can be executed in a batch later. These so-
called macro commands are common in graphics and photo-editing programs.



176 | Chapter 8: Behavioral Patterns: Chain of Responsibility and Command

Design
The design of the Command pattern is shown in Figure 8-6. The Client has a certain
way of saying what is required, usually in high-level and domain-specific terms. It
thinks in terms of commands such as Cut, Redo, Open, and so on. The Receivers—
and there may be several—know how to carry out these requests. Referring to the
menu example, a Cut command for text would go to one part of a system and a Cut
command for an image would be handled elsewhere.

Figure 8-5. Command pattern illustration—menus



Command Pattern | 177

The Command class forms the interface between the Client and the Receivers. In a
Command object, the Client’s requests are declared and associated with viable corre-
sponding operations in a Receiver. There might also be a state that the Client wants
to pass on to the Receiver, and this must be allowed for. The Invoker is there to dis-
tance the Client from the Receiver.

Put simply, the Client issues a call to Execute in the Invoker, and the request goes to
the Command and then to Action in the Receiver. In a program, there could be many
requests of different types being routed to different Receivers. The ICommand inter-
face ensures that they all conform to a standard form.

The players in this pattern are:

Client
Creates and executes Commands

ICommand
An interface that specifies the Execute operation

Invoker
Asks the Command to carry out the Action

Command
A class that implements the Execute operation by invoking operations on the
Receiver

Receiver
Any class that can perform the required Action

Action
The operation that needs to be performed

The Command pattern does seem to have many players, but some of them fall away
when delegates are used, as shown in the next section. Other aspects of the design are:

• Commands can be assembled into composite commands in the Command class.

• New commands can be added without disturbing existing ones.

Figure 8-6. Command pattern UML diagram

Client Invoker

+Execute( )

ICommand

+Execute( )

Command

–State

+Execute( )

Receiver

+Action( )
Calls
receiver.Action( )



178 | Chapter 8: Behavioral Patterns: Chain of Responsibility and Command

Implementation
The theory code for implementing a simple version of the Command pattern is shown
in Example 8-3.

Q U I Z

Match the Command Pattern Players with the Cut Request
Illustration

To test whether you understand the Command pattern, cover the lefthand column of
the table below and see if you can identify its players among the items from the illus-
trative example (Figure 8-5), as shown in the righthand column. Then check your
answers against the lefthand column.

Client

ICommand

Command

Receiver

Invoker

Action

User of the editor, who selects a Cut command on a menu

Menu

Holder of a Cut request

An object that can perform a Cut

Process the selection of a Cut option

Cut

Example 8-3. Command pattern theory code

1      using System;
2
3      class CommandPattern {
4
5          // Command Pattern                    Judith Bishop  June 2007
6          // Uses a single delegate for the single type of commands that
7          // the client invokes
8
9         delegate void Invoker ( );

10         static Invoker Execute, Undo, Redo;
11
12         class Command {
13           public Command(Receiver receiver) {
14             Execute = receiver.Action;
15             Redo = receiver.Action;
16             Undo = receiver.Reverse;
17           }
18         }
19
20         public class Receiver {
21           string build, oldbuild;
22           string s = "some string ";
23



Command Pattern | 179

The Invoker and ICommand interface are implemented together as a delegate type (line
9) with its instantiated delegate objects (line 10). The names of the delegate objects
(the Invokers) are based on what the client wants; their names are Execute, Redo, and
Undo (line 10). The Command associates the delegate command objects with the two
methods inside the Receiver, Action, and Reverse (lines 14–16). Execute and Redo
both go to Action, and Undo goes to Reverse. The Receiver keeps track of the state
and is responsible for output. This arrangement is unlike previous patterns, where
the receivers returned values from their fields for the client to display or not. To
adopt the same mechanism, we would make the delegate type return a string, as in:

delegate string CommandStr ( );

This implementation is vastly shorter than many of the standard ones because it uses
a delegate type (line 9) and instantiates it for three delegate objects in one line (line
10). The object-based solution would have three separate single-method classes for
the three invokers.

The actual Undo/Redo implementations depend on actual operations
to be undone or redone. In the Command pattern, Undo and Redo
serve only as abstract placeholders.

24           public void Action( ) {
25             oldbuild = build;
26             build +=s;
27             Console.WriteLine("Receiver is adding "+build);
28           }
29
30          public void Reverse( ) {
31            build = oldbuild;
32            Console.WriteLine("Receiver is reverting to "+build);
33          }
34        }
35
36      static void Main( ) {
37        new Command (new Receiver( ));
38        Execute( );
39        Redo( );
40        Undo( );
41        Execute( );
42      }
43    }
44  /* Output
45  Receiver is adding some string
46  Receiver is adding some string some string
47  Receiver is reverting to some string
48  Receiver is adding some string some string
49  */

Example 8-3. Command pattern theory code (continued)



180 | Chapter 8: Behavioral Patterns: Chain of Responsibility and Command

Multireceiver commands

What would happen if we had more than one delegate type in the same program,
and also more than one receiver? First of all, the names of the delegate types
(Invokers) would be different. The Command objects can configure the matches
between the delegate objects and different Receiver methods as required.

In the following program, there are two Command classes and two Receivers. Because
both Commands use the same delegate objects (Invokers), the Client executes com-
mands first in one Receiver and then in the other; however, that might be an unnec-
essary constraint. To overcome it, we can either introduce more delegate objects or
group them inside the Commands, as shown in the next example.

The multireceiver version of the Command pattern in Example 8-4 illustrates in
addition how to handle commands that cannot be associated with anything mean-
ingful in a given Receiver, as shown for the second Command (lines 25–32). Undo is not
allowed for this Execute command, so we assign an anonymous delegate to the
delegate object that writes out an error message (line 30). Note that the writing is
not done when the association is made, but only when (and if) the Client calls Undo.

Example 8-4. Command pattern theory code—multireceiver version

1     using System;
2
3     class CommandPattern {
4
5         // Command Pattern – Multireceiver Version      Judith Bishop  June 2007
6         // Has two different delegates for two types of commands
7         // The second receiver uses both of them
8
9       delegate void Invoker ( );

10       delegate void InvokerSet (string s);
11
12       static Invoker Execute, Redo, Undo;
13       static InvokerSet Set;
14
15       class Command {
16         public Command(Receiver receiver) {
17           Set = delegate {Console.WriteLine("Not implemented - default of XXX used");
18               receiver.S = "XXX";};
19           Execute= receiver.Action;
20           Redo = receiver.Action;
21           Undo = receiver.Reverse;
22        }
23      }
24
25      class Command2 {
26        public Command2(Receiver2 receiver) {
27          Set = receiver.SetData;
28          Execute= receiver.DoIt;
29          Redo = receiver.DoIt;
30          Undo = delegate {Console.WriteLine("Not Implemented");};



Command Pattern | 181

31        }
32      }
33
34      public class Receiver {
35        string build, oldbuild;
36        string s = "some string ";
37        public string S {
38          get {return s;}
39          set {s = value;}
40      }
41
42      public void Action( ) {
43        oldbuild = build;
44        build +=s;
45        Console.WriteLine("Receiver is adding "+build);
46      }
47
48      public void Reverse( ) {
49        build = oldbuild;
50        Console.WriteLine("Receiver is reverting to "+build);
51      }
52    }
53
54      public class Receiver2 {
55        string build, oldbuild;
56        string s;
57
58        public void SetData(string s) {
59          this.s = s;
60        }
61
62        public void DoIt( ) {
63          oldbuild = build;
64          build +=s;
65          Console.WriteLine("Receiver is building "+build);
66        }
67      }
68
69        class Client {
70          public void ClientMain( ) {
71
72            new Command (new Receiver( ));
73            Execute( );
74            Redo( );
75            Undo( );
76            Set("III");
77            Execute( );
78
79            Console.WriteLine( );
80            new Command2 (new Receiver2( ));
81            Set("houses ");
82            Execute( );

Example 8-4. Command pattern theory code—multireceiver version (continued)



182 | Chapter 8: Behavioral Patterns: Chain of Responsibility and Command

Example: Menu Handler
Consider a very small part of a menu, with just Paste and Print commands. Assume
there is a public clipboard, where the client can place strings. The pasting and print-
ing is done by a receiver, which maintains the current copy of the document. On top
of that, there are Undo and Redo commands that might or might not be appropriate
(for example, undoing a Print operation does not make sense).

There is only one invoker type, but the Paste and Print command classes will imple-
ment the Execute, Undo, and Redo invoker objects differently. Therefore, we place
them in an abstract class that the commands can inherit. This ensures uniformity for
the commands; it is also used in logging, which we will discuss momentarily.

In this example, the commands each have their own delegate objects, so one of them
looks like this:

class Paste {
  public Invoker Execute, Redo, Undo;
  public Paste(Document document) {
    Execute = document.Paste;
    Redo = document.Paste;
    Undo = document.Restore;
  }
}

When the Client calls the commands, the object name is required, as in:

83            Set("castles ");
84            Undo( );
85            Execute( );
86            Redo( );
87          }
88        }
89
90       static void Main( ) {
91         new Client( ).ClientMain( );
92       }
93    }
94  /* Output
95  Receiver is adding some string
96  Receiver is adding some string some string
97  Receiver is reverting to some string
98  Not implemented - default of XXX used
99  Receiver is adding some string XXX

100
101  Receiver is building houses
102  Not Implemented
103  Receiver is building houses castles
104  Receiver is building houses castles castles
105  */

Example 8-4. Command pattern theory code—multireceiver version (continued)



Command Pattern | 183

Paste paste = new Paste(document);
Print print = new Print(document);

clipboard = "Hello, everyone";
paste.Execute( );
print.Execute( );
paste.Undo( );

The rest of the program—including the Receiver that handles the Document—mirrors
the simple Command pattern example.

Because command objects are separate from Clients and Receivers, they can under-
take system functions such as logging. A simple logging operation is to count how
many times commands are called—a function of the Invoker type. To implement the
logging, we define an extension method on the Invoker delegate type to provide:

• A Log method that increments a count

• A Count method that returns the current count value

This InvokerExtensions class is shown at the start of the program in Example 8-5.

Recall that extension methods:

• Must be static

• Must be in static classes at the outer level

• Can only have static fields

• Can be applied to delegates

Details are in Chapter 2.

At the end of the program, we can call the Count method to print out the number of
calls, as in:

Console.WriteLine("Logged "+paste.Execute.Count( )+" commands");

Because the count field is static, the count applies to all invoker calls (thus the refer-
ence to the instance paste). Execute is a way of getting at this total count. Any
invoker instance would return the same value (7). More sophisticated logging
methods are explored in the upcoming “Exercises” section. The full menu handler
program is shown in Example 8-5.

Example 8-5. Command pattern example code—menu handler

   using System;
   using System.Collections.Generic;

     // Command Pattern            Judith Bishop  Jan, July 2007
     // Example: simple Paste and Print system
     // with Undo and logging

     delegate void Invoker ( ) ;



184 | Chapter 8: Behavioral Patterns: Chain of Responsibility and Command

     static class InvokerExtensions {
       static int count;
       public static int Count (this Invoker invoker) {
         return count;
       }
       public static void Log (this Invoker invoker) {
         count++;
       }
     }

     class CommandMenu {
       abstract class ICommand {
         public Invoker Execute, Redo, Undo;
       }

       // Command 1
       class Paste : ICommand {
         public Paste(Document document) {
           Execute = delegate {Execute.Log( ); document.Paste( );};
           Redo = delegate {Redo.Log( ); document.Paste( );};
           Undo = delegate {Undo.Log( ); document.Restore( );};
         }
       }

       // Command 2 - without an Undo method
       class Print : ICommand {
         public Print(Document document) {
           Execute = delegate {Redo.Log( ); document.Print( );};
           Redo = delegate {Redo.Log( ); document.Print( );};
           Undo = delegate{ Redo.Log( ); Console.WriteLine("Cannot undo a Print ");};
        }
       }

       // Common state
       static string clipboard;

       // Receiver
       class Document {
         string name;
         string oldpage, page;

         public Document (string name) {
           this.name = name;
         }

         public void Paste( ) {
           oldpage = page;
           page += clipboard+"\n";
         }

         public void Restore( ) {
           page = oldpage;
         }

Example 8-5. Command pattern example code—menu handler (continued)



Command Pattern | 185

Use
The Command pattern can be applied wherever domain-specific commands are
required and the tool has system-specific operations. Once the separation has been
made between the two, extra functionality can be added at the command level.

         public void Print( ) {
           Console.WriteLine(
             "File "+name+" at "+DateTime.Now+"\n"+page);
         }
       }

     static void Main( ) {
       Document document = new Document("Greetings");
       Paste paste = new Paste(document);
       Print print = new Print(document);

       clipboard = "Hello, everyone";
       paste.Execute( );
       print.Execute( );
       paste.Undo( );

       clipboard = "Bonjour, mes amis";
       paste.Execute( );
       clipboard = "Guten morgen, meine Freunde";
       paste.Redo( );
       print.Execute( );
       print.Undo( );

       Console.WriteLine("Logged "+paste.Execute.Count( )+" commands");
     }
   }

 /* Output
 File Greetings at 2007/09/21 01:40:52 AM
 Hello, everyone

 File Greetings at 2007/09/21 01:40:52 AM
 Bonjour, mes amis
 Guten morgen, meine Freunde

 Cannot undo a Print
 Logged 7 commands
 */

Example 8-5. Command pattern example code—menu handler (continued)



186 | Chapter 8: Behavioral Patterns: Chain of Responsibility and Command

Exercises
1. In the simple theory code in Example 8-3, introduce a second delegate type for

an Invoker that handles commands with a string parameter. Integrate this into
the Command class and observe what other changes are required to make the pro-
gram run using suitable test calls from Main.

2. In Example 8-4, all of the void Invoker objects are set up by one Command object
and go to one Receiver, while all of the string Invoker objects are set up by a sec-
ond Command object and go to a different Receiver. Investigate how to get a mix of
Invoker objects to be handled by each Command object and to go to different
Receivers. Report on any limitations you encounter.

3. The Photo Library example for the Composite pattern in Chapter 3, as extended
with the Prototype pattern in Chapter 5 for the Photo Archive application, has a
fairly complex set of commands. Consider an auxiliary program called UpLoad
that just takes a set of photos out of a file and creates it as a set in the library.
Implement this as a command that calls other commands. Also include an Undo
function, and add a logging function that will report on how many photos were
uploaded.

Use the Command pattern when…

You have:
• Commands that different receivers can handle in different ways
• A high-level set of commands that are implemented by primitive operations

You want to:
• Specify, queue, and execute commands at different times
• Support an Undo function for commands
• Support auditing and logging of all changes via commands



Pattern Comparison | 187

Pattern Comparison
A similarity between the Chain of Responsibility and the Command patterns is that
they decouple senders and receivers, thus improving the layering and reusability of a
system. The Chain of Responsibility pattern supports decoupling by passing a
request between potential receivers, whereas the Command pattern supports using a
command object to encapsulate a request. The implementation issues are described
in Table 8-1.

Table 8-1. Comparison of the Chain of Responsibility and Command patterns

Chain of Responsibility Command

Client creates Handler objects Command objects

Different kinds of Handler classes at different levels Command classes and

Receiver classes

Client can work with Multiple handlers Different receivers

Client calls Handler objects Receiver objects

Work is done in HandleRequest, in a handler Action, in a receiver

Decisions based on Limits in handlers Routing in commands

Deals with unimplementable requests Yes Yes



188

Chapter 9CHAPTER 9

Behavioral Patterns: Iterator, Mediator,
and Observer 9

The three behavioral patterns we will study in this chapter support communication
between objects while letting them keep their independence and, in some cases, their
anonymity. The Iterator pattern is a fundamental pattern that has wide application in
many situations and is substantially supported by C# 3.0’s LINQ or Linq (Language
INtegrated Query) extensions. The Mediator and Observer patterns mirror the mail-
box and publish/subscribe methodologies that are well-known in distributed systems.

Iterator Pattern

Role
The Iterator pattern provides a way of accessing elements of a collection sequen-
tially, without knowing how the collection is structured. As an extension, the pat-
tern allows for filtering elements in a variety of ways as they are generated.

Illustration
Consider a typical file directory such as that shown in Figure 9-1. Common direc-
tory operations include searching for files with particular names or extensions, or
files created before or after certain dates. When searching for a file, the directory
structure is unimportant and should be abstracted away. For directories of reason-
able size, another useful operation is to list their contents in a hierarchy, as shown in
Figure 9-2. The loop that displays a directory in a neat format can once again be
independent of which item is supplied next. As long as enough is known about each
item’s position in the hierarchy and its attributes (such as size), a loop should be able
to print each line.

A more interesting iterative operation than a simple print would be to calculate the
sizes of directories as the sum of the sizes of all their enclosed files and subdirectories.
Once again, we can imagine that the loop will be supplied with file or directory sizes



Iterator Pattern | 189

one at a time and will be told when one directory ends and a new one begins
(recursively).

As this illustration shows, there can be many reasons for iterating through a struc-
ture. The way in which we iterate might change as well. For example, to do the file

Figure 9-1. Iterator pattern illustration (a)—files and directories

Figure 9-2. Iterator pattern illustration (b)—hierarchical directories



190 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

size calculation, we need to scan all the inner files and then return to the enclosing
directory. For printing, we can print each item in turn as it comes.* However, both
operations are independent of how the directories themselves are stored in memory.
Now, let’s consider the background and design of iterators and match this illustra-
tion to the pattern itself.

Design
The concept of iterators and enumerators (also called generators) has been around
for a long time. Enumerators are responsible for producing the next element in a
sequence defined by certain criteria. Such a sequence is said to be enumerable. Exam-
ples might be the next prime number or the next product order sorted by date. The
iterator is the means by which we cycle through this sequence of elements from
beginning to end.

Over the past five years, developments in language and compiler technology have
wrought a revolution in loop programming. Iteration over any collection of any data
type is now linked to a more compact, yet versatile, type-specific enumerator. The
inspiration for this new way of thinking comes from the database world (SQL) as
well as the functional world (Haskell and Mondrian). Consider the following C# 3.0
statements:

var selection = from f in mydir
  where f.Date.Year >= 2007
  orderby f.Name
  select f;

foreach (var f in selection) {
  Console.Write(f + "  ");

The first statement asks for a selection of files from a collection called mydir, with the
conditions that they must be dated 2007 or later and that the selection, when made,
must be ordered by filename. Note that the statement will work no matter what the
type of the collection holding mydir is; it could be an array, a linked list, a binary tree,
or even a database. This statement works together with an enumerator that:

• Follows the structure of the data type in a prescribed order

• Applies the conditions and ordering as specified

• Operates in a lazy fashion, generating values only when they are needed by an
iterator

When the foreach iterator is applied to a collection resulting from an enumerator (in
this case, the variable called selection), the values are fetched and can be used in the
body of the loop.

* These operations are known as “tree traversals” in data structures and algorithms terminology. The file size
calculation would use a postorder traversal and the printing calculation would use a preorder traversal.



Iterator Pattern | 191

Thus, if a display of the mydir directory gives:

Full directory
[COS110, 1999]  [COS212, 2007]  [COS341, 2005]  [COS333, 2006]  [CBD780, 2007]
[VRS780, 2006]  [SPE781, 2007]

 the result of the preceding statements will be:

Files from 2007 in alpha order
[CBD780, 2007]   [COS212, 2007]   [SPE781, 2007]

Iterators need data to iterate over. Most of the time the data exists, either in mem-
ory, on disk, or somewhere on the Internet. However, sometimes an iterator will
work with an enumerator that actually generates values (for example, random num-
bers). An example of the latter case is given in one of the programs we’ll look at later.

The Iterator pattern is the one that has received the most assistance from language
design in recent years. For this reason, the UML diagram in Figure 9-3 shows the
statements that are involved, on an equal footing with the classes. In C# 3.0, the
names of the interface (IEnumerable) and its one enumerator method (GetEnumerator)
are fixed. GetEnumerator is automatically invoked from the foreach statement. Other
enumerator methods can also be implemented and called from the Client. These are
indicated by OtherOps in the diagram.

The players in the pattern are:

Client
Keeps a Collection object and uses a foreach statement to iterate over it

IEnumerable
A defined interface in C# for the operation GetEnumerator

Collection
A data type containing or having the ability to generate a collection of values

Figure 9-3. Iterator pattern UML diagram

<<interface>>
IEnumerable

+GetEnumerator( )

Client

–collection

Collection

–structure = supplied

+GetEnumerator( )
+OtherOps( )

for each c in collection
doSomething

for each s in structure
yield return s



192 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

GetEnumerator
A method that supplies the values in sequence

OtherOps
Other methods that supply Collection values in different sequences with differ-
ent filters and transformations

Implementation
Iterators range from the very basic to the very powerful. Consider the theory exam-
ple in Example 9-1, which writes out the contents of an array. Here, the players in
the pattern are clearly identifiable. The Client is the Main method (lines 20–27). It
aggregates a collection object (line 22) and iterates over it using a normal foreach
loop (line 24). The foreach defers to the GetEnumerator method in the Collection
class (lines 13–17). Its foreach loop on line 15 seemingly duplicates line 24, but its
body uses a new statement, the yield return. The effect of the yield return is to
return a value only each time the object returned by the GetEnumerator is called by
the Client’s foreach. GetEnumerator’s foreach remembers where it was after the last
yield return and gives the next value.

Q U I Z

Match the Iterator Pattern Players with the Directory Illustration
To test whether you understand the Iterator pattern, cover the lefthand column of the
table below and see if you can identify its players among the items from the illustrative
examples (Figures 9-1 and 9-2), as shown in the righthand column. Then check your
answers against the lefthand column.

Client

Collection

GetEnumerator

OtherOps

The user who is iterating over file directories

A structure of directories and files

Returns a single file or directory item

Returns a single file or directory item according to other criteria (such as date>=2007)

Example 9-1. Iterator pattern theory code

1   using System;
2   using System.Collections;
3
4     class IteratorPattern {
5
6       // Simplest Iterator                    Judith Bishop  Sept 2007
7
8       class MonthCollection : IEnumerable {



Iterator Pattern | 193

The astute reader will wonder why, on line 24, we did not just loop through months.
The reason is that months is declared not in the Client, but in its own collection class.
Even without the benefits gained from separating iteration and enumeration, it
would be bad style for the Client to access months directly

The enumerator does not have exclusive access to the collection. Therefore, enumer-
ating through a collection is not intrinsically a thread-safe procedure. Even when a
collection is synchronized, other threads can still modify the collection, which causes
the enumerator to throw an exception. To guarantee thread safety during enumera-
tion, you can either lock the collection during the entire enumeration or catch the
exceptions resulting from changes made by other threads.

Enumerators can also provide filters, transformations, and projections on the data
that can be linked back to the iterators that use them. The enumerators provide
methods that do the work, and the iterators can either call the methods directly or
use the special LINQ query expression syntax.

Now, let’s look at another simple program, shown in Example 9-2, that uses the full
power of LINQ. Here, the collection is in the same class as the iterators for simplic-
ity’s sake; however, it could easily be placed in a Collection class. The first query is
on lines 21–23. It sets up a rule to select from the daysInMonth structure all elements
that have names with more than five characters. The next query (lines 25–28) works
on the result of the first; it looks for all months that have 31 days, and then orders
the results alphabetically. Neither of these statements actually executes until the

9
10        string [] months = {"January", "February", "March", "April", "May", "June",
11            "July", "August", "September", "October", "November", "December"};
12
13        public IEnumerator GetEnumerator ( ) {
14          // Generates values from the collection
15          foreach( string element in months )
16              yield return element;
17        }
18     }
19
20     static void Main( ) {
21
22       MonthCollection collection = new MonthCollection( );
23       // Consumes values generated from collection's GetEnumerator method
24       foreach (string n in collection)
25           Console.Write(n+"   ");
26       Console.WriteLine("\n");
27     }
28   }
29 /* Output
30 January   February   March   April   May   June   July   August   September
31 October   November   December
32 */

Example 9-1. Iterator pattern theory code (continued)



194 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

foreach iterator on line 30 begins. It starts asking for values in the selection collec-
tion, and these are supplied by going through the two query expressions. The result
is shown in the output.

C# Features—IEnumerable and IEnumerator
IEnumerable is an interface that has one method, GetEnumerator. Classes that imple-
ment IEnumerable supply a GetEnumerator method that successively returns a value
from a collection using yield return. Each time GetEnumerator is invoked, control picks
up after the yield return statement.

All collections in the .NET library implement IEnumerable (i.e., they each provide a
conforming GetEnumerator method). That is why they can be used in the foreach state-
ment directly. When yield return appears in a foreach loop, it is making use of the
underlying GetEnumerator for the collection it is iterating over, as in:

public IEnumerator GetEnumerator ( ) {
  foreach ( string element in months )
    yield  return element;
}

In this case, the enumerator for an array (used by months) is invoked.

yield return can appear several times in succession. For example, these statements:

public IEnumerator GetEnumerator ( ) {
  yield return 1;
  yield return 3;
  yield return 5;
  yield return 7;
  yield return 11;
}

will return the numbers in the sequence given.

yield return keeps the enumerator going for the next iteration. However, a yield break
statement has the effect of terminating the loop that called the enumerator.

IEnumerator is a lower-level interface that specifies the Current property and the Rest
and MoveNext methods. It is possible to implement this method and thereby satisfy the
requirements of the IEnumerable interface.

IEnumerable and IEnumerator exist in generic and nongeneric forms.

cf. C# 3.0 Language Specification Version 3.0, September 2007, Section 8.8.4



Iterator Pattern | 195

C# Feature—Query Expressions
Query expressions provide a language-integrated syntax for queries that is similar to
relational and hierarchical query languages such as SQL and XQuery.

A query expression begins with a from clause and ends with either a select or a group
clause. In between, these clauses can appear:

• A from clause, which is a generator that introduces one or more iteration vari-
ables ranging over a sequence or a join of multiple sequences

• A let clause, which computes a value and introduces an identifier representing
that value

• A where clause, which is a filter that excludes items from the result

• An orderby clause, which specifies an ordering for the result

• An into clause, which can be used to “splice” queries by treating the result of
one query as a generator in a subsequent query

These query expressions are translated into invocations of methods named Where, Select,
SelectMany, Join, GroupJoin, OrderBy, OrderByDescending, ThenBy, ThenByDescending,
GroupBy, and Cast that are expected to have particular signatures and result types. These
methods can be instance methods of the object being queried or extension methods that
are external to the object. They implement the actual execution of the query.

For the standard collections, there are default methods present.

cf. C# 3.0 Language Specification Version 3.0, September 2007, Section 7.15

Example 9-2. Iterator pattern LINQ code

1     using System;
2     using System.Collections.Generic;
3     using System.Linq;
4
5       class IteratorPattern {
6
7         // Iterator Pattern         Judith Bishop  Sept 2007
8        // Uses LINQ
9

10       static void Main( ) {
11
12         Dictionary <string, int> daysInMonths =
13             new Dictionary <string, int> {
14             {"January", 31},   {"February", 28},
15             {"March", 31},     {"April", 30},
16             {"May", 31},       {"June", 30},
17             {"July", 31},      {"August", 31},
18             {"September", 30}, {"October", 31},
19             {"November", 30},  {"December", 31}};
20



196 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

Example: Family Tree
Suppose we have a family tree, such as that in Figure 9-4. The goal of the example is
to traverse the tree and select people with various criteria for printing.

Because the number of links from one person to the next is unpredictable, family
trees are usually represented as binary trees, with the left link to the firstborn and the
next link to the right to the next sibling. Given this scheme, an initialization of the
tree in Figure 9-4 would be:

var family = new Tree <Person> ( new Node <Person>
    (new Person ("Tom", 1950),
     new Node <Person> (new Person ("Peter", 1976),

21         var selection = from n in daysInMonths
22           where n.Key.Length > 5
23             select n;
24
25         selection = from n in selection
26             where n.Value == 31
27             orderby n.Key
28             select n;
29
30         foreach (var n in selection)
31             Console.Write(n+"   ");
32         Console.WriteLine("\n");
33
34     }
35
36
37  /* Output
38  [August, 31]   [December, 31]   [January, 31]   [October, 31]
39  */

Figure 9-4. Iterator pattern example—a family tree

Example 9-2. Iterator pattern LINQ code (continued)

Tom
1950

Robert
1978

Mark
1982

Peter
1976

James
2002

Sarah
2000

Carrie
2005

Family Tree



Iterator Pattern | 197

       new Node <Person>
         (new Person ("Sarah", 2000), null,
       new Node <Person>
         (new Person ("James", 2002), null,
       null) // no more siblings James
     ),
     new Node <Person>
         (new Person ("Robert", 1978), null,
     new Node <Person>
         (new Person ("Mark", 1982),
       new Node <Person>
           (new Person ("Carrie", 2005), null, null),
       null) // no more siblings Mark
     )),
       null) // no siblings Tom
    );

There is no predefined way to handle a tree with nodes of the following kind:

class Node <T> {
  public Node ( ) {}
  public Node <T> Left{get; set;}
  public Node <T> Right {get; set;}
  public T Data {get; set;}

  public Node (T d, Node <T> left, Node <T> right) {
    Data = d;
    Left = left;
    Right = right;
  }
}

as used in the initialization. Therefore, we need to define our own class, which serves
as the Collection class for the Iterator pattern. We’ll make the class generic, and in
this example, T will stand for Person, which is defined quite simply as having Name
and Birth properties. The Tree class is as follows:

// T is the data type. The Node type is built-in.
class Tree <T> {
  Node <T> root;
  public Tree( ) {}
  public Tree (Node <T> head) {
    root = head;
}

 public IEnumerable <T> Preorder {
   get {return ScanPreorder (root);}
 }

   // Enumerator with Filter
   public IEnumerable <T> Where (Func <T, bool> filter) {
     foreach (T p in ScanPreorder(root))
        if (filter(p)==true)
        yield return p;
  }



198 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

   // Enumerator with T as Person
   private IEnumerable <T> ScanPreorder (Node <T> root) {
     yield return root.Data;
     if (root.Left !=null)
         foreach (T p in ScanPreorder (root.Left))
             yield return p;
     if (root.Right !=null)
       foreach (T p in ScanPreorder (root.Right))
           yield return p;
   }
 }

There are two public enumerators. The first is called Preorder, because it will walk
through the tree from left to right and top to bottom. Preorder itself is a front for a
private version called ScanPreorder. ScanPreorder uses recursion to treat the tree as
follows:

Visit a tree
Visit the root

Visit the left tree

Visit the right tree

Visiting means yielding a value. For the root, the method yields the data at that node
to the iterator in the Client. For the other two cases, it yields a node to the enumera-
tor itself. In this way, the whole tree is traversed. An iterator in the Client such as
this:

foreach (Person p in family.Preorder)
    Console.Write(p+"  ");
    Console.WriteLine("\n");

will print the following based on the data presented earlier:

[Tom, 1950]  [Peter, 1976]  [Sarah, 2000]  [James, 2002]  [Robert, 1978]
[Mark, 1982]  [Carrie, 2005]

The other enumerator is the Where method, which also calls ScanPreorder but then
filters out the required Person objects according to the delegate supplied. The type of
the delegate is Func <T,bool>, meaning it takes a T (in this instance, a Person) as a
parameter on each iteration, and returns a bool value. The corresponding iterator in
the client is:

var selection = from p in family
    where p.Birth > 1980
    orderby p.Name
    select p;

The delegate’s parameter is inferred from the from clause type, and the body of the
delegate is provided by the where clause. In older syntax, without the sorting this
would be:

var selection = family.
    Where(p=> p.Birth > 1980);



Iterator Pattern | 199

Remember that query expressions are not activated until an iterator
uses them.

So, it is only when we get to:

foreach (Person p in selection)
    Console.Write(p+"   ");
    Console.WriteLine("\n");

that the people in the tree are enumerated and filtered, producing finally:

[Carrie, 2005]   [James, 2002]   [Sarah, 2000]

The full program for this example is in the Appendix. Further examples of iterators
will be given in the programs that follow.

In the past, there were many implementation issues to consider with iterators. They
have mostly been covered with C# 3.0’s query expressions, a very powerful and
user-friendly concept (see the earlier sidebar).

Use
The Iterator pattern defines a fundamental separation between the iteration process
and the enumeration process. Even in trivial cases the separation is advantageous,
but its benefits are really felt when:

• The structure is complex.

• Different iterations are required over it, potentially at the same time.

• The same structure and iterations can be applied to different data.

It is important to keep clear the distinction (in the C# 3.0 context) between enumer-
ators and iterators:

Enumerators
Provided by all the collections in the library, generic and nongeneric. They are
supported by the IEnumerable interface and the yield return and yield break
statements.

Iterators
Written by clients and supported by the foreach statement and query expressions.

Loops pervade most code. Specifically, we would look to use an Iterator pattern with
an iterator/enumerator mechanism when the conditions in the following table apply.

Use the Iterator pattern when…

You are iterating over a collection and one of these conditions holds:
• There are various ways of traversing it (several enumerators).
• There are different collections for the same kind of traversing.
• Different filters and orderings might apply.



200 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

Exercises
1. Consider the file directory illustration. The problem to be solved is almost the

same as the family tree problem. Realize the data from Figure 9-2 in the form of
the initializer given for the family tree. Then rework the client program to get a
printout of various views of the hierarchy. You should be able to use the Node
and Tree classes as they are.

2. Create a new enumerator for the file directory that will traverse it in postorder to
determine the total size of each directory as a sum of its parts. Add this to the
Tree class and test it out.

3. Write a simple program that throws two dice. A die can have values from 1 to 6.
Encapsulate this information and the enumerator for generating a value at ran-
dom in a class called Dice. In the client program, create an iterator that will
throw two dice together and display their values.

Mediator Pattern

Role
The Mediator pattern is there to enable objects to communicate without knowing
each other’s identities. It also encapsulates a protocol that objects can follow.

Illustration
The Mediator pattern is all about communication. There are numerous ways of com-
municating these days. Communication can be between two individuals, or among
members of a group. Often there is protocol that is observed between the members of
a group. Messages might also be vetted for content. All of this points to the need for a
mediator.

Consider a mailing list whose members are people interested in C# 3.0 Design Pat-
terns. People interested in the topic can join the mailing list by subscribing to it using
a special message subject (“Subscribe”). Any messages that come in will go to all of
the list’s subscribers. Members can remove themselves from the list at any time by
sending an “Unsubscribe” message.

Of course, mailing lists are seldom so simple. Members expect that messages they
receive will not be spam, will come only from other members, and will be relevant to
the topic at hand. To enforce this latter rule, the cs3pd group might decide not to
permit any messages that mention Java, for instance. Sending out messages and
checking their content is termed “moderating” the list. Some of the moderation func-
tionality can be handled by software, and some of it will be done by a designated per-
son in the group (usually referred to as the moderator).



Mediator Pattern | 201

Figure 9-5 shows an example of a moderation panel from a mailing list program. The
program has trapped a message as potential spam and is asking for confirmation and
further action. One of the allowable actions is to automatically reject any future
emails from that address.

Clearly, the moderation process here is performing part of the role of the Mediator
pattern: establishing a communication protocol and content filter. The other part—
keeping members unaware of each other—is inherently part of the mailing list con-
cept of mailing to a central address and then broadcasting from there.

Design
Now, let’s consider the Mediator pattern at the UML diagram level. As illustrated in
Figure 9-6, it consists of only two classes that use messages to communicate:

Colleague
Registers with a Mediator by supplying a Receive method; issues Send requests to
other colleagues via the Mediator

Mediator
Broadcasts sent messages to all signed-on Colleagues using the Respond delegate

Figure 9-5. Mediator pattern illustration—mailing list moderation

Figure 9-6. Mediator pattern UML diagram

Colleague

–mediator

+Receive( )
+Send( )

Mediator

–Respond( ) : Callback
+Send( )
+SignOn(Callback)

send calls
mediator Send

Respond calls
Receive back



202 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

The Mediator pattern makes provisions for more than one mediator. For example,
there may be many different mailing lists created under one mailing system. Each list
may have a different moderator, different rules of engagement, and a different list of
users, but the structure of the lists is identical. Therefore, creating a new Mediator is
merely an instantiation operation and does not require subclassing or an interface.

Implementation
Key points of the Mediator pattern are:

• Each Colleague is passed a Mediator at instantiation and keeps it as a private
reference.

• Each Mediator keeps a list of signed-on Colleagues as a private reference.

The callback to the colleagues is a very thin interface—just a method. Therefore, a
dictionary list (names with callbacks) of Colleagues in the Mediator would be over-
kill: we can just use the delegate mechanism to chain the Receive methods. On the
other hand, within one mediator system, there could be Colleague types that imple-
ment the Receive method differently. This variation is shown in the theory code in
Example 9-3.

Q U I Z

Match the Mediator Pattern Players with the Mailing List
Illustration

To test whether you understand the Mediator pattern, cover the lefthand column of
the table below and see if you can identify its players and methods among the items
from the illustrative example (Figure 9-5), as shown in the righthand column. Then
check your answers against the lefthand column.

Colleague

Mediator

Respond

Callback

Send

Receive

A user subscribed to a mailing list

The mailing list moderator

Calls back the signed-on users

A means of contacting all users on the list

Mailing a message to the list

Receiving a message from the list

Example 9-3. Mediator pattern theory code

1     using System;
2     using System.Collections.Generic;
3
4       class MediatorPattern {
5



Mediator Pattern | 203

6         // Mediator Pattern                           Judith Bishop  Sept 2007
7         /* The Mediator maintains a list of colleagues and specifies the
8           communication methods that it can mediate - in this case, Send.
9           Receive is implemented at Colleague level and called via a delegate

10          supplied by the colleagues to the mediator on sign-on.
11        */
12
13          class Mediator {
14
15            public delegate void Callback (string message, string from);
16            Callback respond;
17
18            public void SignOn (Callback method) {
19            respond += method;
20          }
21
22          public void Block (Callback method) {
23           respond -=method;
24          }
25          public void Unblock (Callback method) {
26            respond +=method;
27          }
28
29          // Send is implemented as a broadcast
30          public void Send(string message, string from) {
31            respond(message, from);
32            Console.WriteLine( );
33          }
34        }
35
36         class Colleague {
37           Mediator mediator;
38           protected string name;
39
40           public Colleague(Mediator mediator,string name) {
41             this.mediator = mediator;
42             mediator.SignOn(Receive);
43             this.name = name;
44           }
45           public virtual void Receive(string message, string from) {
46             Console.WriteLine(name +" received from "+from+": " + message);
47           }
48           public void Send(string message) {
49             Console.WriteLine("Send (From "+name+ "): "+message);
50             mediator.Send(message, name);
51           }
52
53          }
54
55         class ColleagueB : Colleague {
56           public ColleagueB(Mediator mediator,string name)
57               : base (mediator, name) {

Example 9-3. Mediator pattern theory code (continued)



204 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

58           }
59
60           // Does not get copies of own messages
61           public override void Receive(string message, string from) {
62             if (!String.Equals(from,name))
63                 Console.WriteLine(name +" received from "+from+": " + message);
64           }
65         }
66
67        static void Main ( ) {
68          Mediator m = new Mediator( );
69          // Two from head office and one from a branch office
70          Colleague head1 = new Colleague(m,"John");
71          ColleagueB branch1 = new ColleagueB(m,"David");
72          Colleague head2 = new Colleague(m,"Lucy");
73
74          head1.Send("Meeting on Tuesday, please all ack");
75          branch1.Send("Ack"); // by design does not get a copy
76          m.Block(branch1.Receive); // temporarily gets no messages
77          head1.Send("Still awaiting some Acks");
78          head2.Send("Ack");
79          m.Unblock(branch1.Receive); // open again
80          head1.Send("Thanks all");
81      }
82    }
83  /* Output
84  Send (From John): Meeting on Tuesday, please all ack
85  John received from John: Meeting on Tuesday, please all ack
86  David received from John: Meeting on Tuesday, please all ack
87  Lucy received from John: Meeting on Tuesday, please all ack
88
89  Send (From David): Ack
90  John received from David: Ack
91  Lucy received from David: Ack
92
93  Send (From John): Still awaiting some Acks
94  John received from John: Still awaiting some Acks
95  Lucy received from John: Still awaiting some Acks
96
97  Send (From Lucy): Ack
98  John received from Lucy: Ack
99  Lucy received from Lucy: Ack

100
101  Send (From John): Thanks all
102  John received from John: Thanks all
103  Lucy received from John: Thanks all
104  David received from John: Thanks all
105  */

Example 9-3. Mediator pattern theory code (continued)



Mediator Pattern | 205

This code uses for illustration an example of two people from the head office and
one from a branch office communicating about a meeting. The Colleagues are of dif-
ferent types, in that they have different ways of receiving messages: the head office
group members always get copies of their own messages (lines 45–46), whereas the
branch office members do not (lines 61–63).

The Mediator keeps a private delegate called Respond of a public type called Callback
(lines 15–16). The Colleagues use the Callback type to ensure that the Receive meth-
ods they register at sign-on are compatible. The Mediator also provides Block and
Unblock methods that Colleagues can use to sign themselves in and out of the sys-
tem. Consider the first three actions on the system:

74       head1.Send("Meeting on Tuesday, please all ack");
75       branch1.Send("Ack"); // by design does not get a copy
76       m.Block(branch1.Receive); // temporarily gets no messages

and the relevant output:

84 Send (From John): Meeting on Tuesday, please all ack
85 John received from John: Meeting on Tuesday, please all ack
86 David received from John: Meeting on Tuesday, please all ack
87 Lucy received from John: Meeting on Tuesday, please all ack
88
89 Send (From David): Ack
90 John received from David: Ack
91 Lucy received from David: Ack

At this point, David actively blocks further messages by calling mediator.Block.
Later, he calls Unblock to start receiving them again.

Simulating activity by calling methods from the main program presents an unnatu-
rally sequential view of the operation of this pattern. The example we’ll look at next
shows a more dynamic version.

Although the previous example shows a very simple Mediator, it is possible that
mediating between more than two subclasses of colleagues could make the Mediator
code quite complex. For example, Mediator might need to be used as a router
through which colleague A can address colleague B without contacting colleague C.
Nevertheless, the value of the anonymity and the simplicity the colleagues gain is
worth the effort.

Example: Chat Room
A chat room is a more dynamic form of a mailing list where the messages are imme-
diately visible to all the members on a window, rather than being sent via email.
Consider the sample chat room session in Figure 9-7.



206 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

The chat room design closely follows the Mediator theory code, except for two
changes:

• The Mediator Send method checks messages before broadcasting them. The rule
of this chat room is that no one can mention work, so any message that contains
“work” is ignored. In the figure, David sent the message “It’s a day off work”
and it was not broadcast.

• All the members have the same standing, so there is only one Colleague class.

The full chat room program is shown in Example 9-4. It integrates the Interact class
for multithreaded windows, which was first introduced for CoolBook in Chapter 4.
The GUI setup of the Interact constructor is not shown in the listing, as it is not too
relevant to the pattern.

Figure 9-7. Mediator pattern example—chat room

Example 9-4. Mediator pattern example code—chat room

    using System;
    using System.Collections.Generic;
    using System.Windows.Forms;
    using System.Drawing;
    using System.Threading;

      // Mediator Pattern                             Judith Bishop  Sept 2007
      // This version of the pattern does not need a list of Colleagues in
      // the Mediator. The delegate keeps a record of the methods on its chain.
      // All other information stays in the colleague itself.

      namespace MediatorSpace {
        public delegate void Callback(string message, string from);

      // The Mediator is in two parts: Interact handles the GUI;
      // Mediator itself sets up the threads and does the
      // broadcast from the delegate (Send method)
     class Mediator {
       Callback Respond;

       public void SignOn (string name, Callback Receive, Interact visuals) {



Mediator Pattern | 207

       // Add the Colleague to the delegate chain
       Respond += Receive;
       new Thread((ParameterizedThreadStart) delegate(object o) {
         visuals.InputEvent += Send;
         Application.Run(visuals);
       }).Start(this);

       // Wait to load the GUI
       while (visuals == null || !visuals.IsHandleCreated) {
         Application.DoEvents( );
         Thread.Sleep(100);
       }
     }

     // Send implemented as a broadcast
     public void Send(string message, string from) {
       // Message not sent if it contains "work"
       if (message.IndexOf("work")==-1)
         if (Respond != null)
           Respond(message, from);
     }
   }

   class Interact : Form {
     TextBox wall ;
     Button sendButton ;
     TextBox messageBox;
     string name;

     public Interact(string name) {

        // GUI construction not shown but includes
        // sendButton.Click += new EventHandler(Input);
     }

     public event Callback InputEvent;

     public void Input(object source, EventArgs e) {
       if (InputEvent != null)
           InputEvent(messageBox.Text, name);
     }

     public void Output(string message) {
       if (this.InvokeRequired)
           this.Invoke((MethodInvoker)delegate( ) { Output(message); });
       else {
         wall.AppendText(message + "\r\n");
         messageBox.Clear( );
         this.Show( );
       }
     }
   }

Example 9-4. Mediator pattern example code—chat room (continued)



208 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

The mediator functionality is divided between the Mediator itself, which handles
messages as before, and the Interact class, which handles the window I/O. Because
the GUI is kept in the Interact class, both the Mediator and Colleague classes closely
resemble the theory code for this pattern. The Mediator is set up as a separate thread,
as is each of the Colleague’s visual objects. The Colleague’s Send and Receive meth-
ods are altered to work with the window instead of the console.

One major change to the program was required to accommodate the windows. The
colleagues each type their messages on their windows and then press the Send but-
ton. As shown in the single line from the Interact constructor, a click on Send is
directed to an Input event in Interact:

sendButton.Click += new EventHandler(Input);

Interact then passes this on to InputEvent:

public event Callback InputEvent;

public void Input(object source, EventArgs e) {
  if (InputEvent != null)
     InputEvent(messageBox.Text, name);
}

   class Colleague {
     Interact visuals;
     string name;

     public Colleague(Mediator mediator, string name) {
       this.name = name;
       visuals = new Interact(name);
       mediator.SignOn(name, Receive, visuals);
     }

     public void Receive(string message, string from) {
       visuals.Output(from + ": " + message);
     }
   }

   class MediatorPattern {
     static void Main ( ) {
       Mediator m = new Mediator( );

       Colleague chat1 = new Colleague(m, "John");
       Colleague chat2 = new Colleague(m, "David");
       Colleague chat3 = new Colleague(m, "Lucy");
     }
   }
 }

Example 9-4. Mediator pattern example code—chat room (continued)



Mediator Pattern | 209

In the Mediator constructor, the Mediator’s Send method was signed up to
InputEvent. So, by this route, a click of the Send button triggers the Send method.
The Send method then broadcasts the message as usual.

Use
The Mediator pattern is used in many modern systems that reflect a send/receive
protocol, such as list servers and chat rooms. But in addition to supporting human
interaction, the Mediator pattern has an important role to play as a means of central-
izing interconnections between objects. If objects communicate directly with each
other, it becomes difficult to move or reuse any one of them. Mediators can be set up
to collect and disseminate information about who is connected to whom. For exam-
ple, within a given application, GUI controls (or widgets) can appear in different
forms and locations in different dialog boxes, and they may interact in different
ways. For instance, pressing a button in a Continue dialog box may result in very dif-
ferent behavior than pressing the same button in a Print dialog box. This informa-
tion can be kept in a Mediator for each type of dialog box. The Mediator collects the
controls it needs and arranges their interconnections.

The Mediator pattern can have a performance impact on a system. Because all com-
munication must go through the mediator, it can become a bottleneck. Almost

C# Feature—Events or Delegates?
The construct for providing references to methods is the delegate. The keyword event
is a modifier that can be used on delegate objects. For almost all purposes, objects des-
ignated as delegates and those designated as events are interchangeable. However,
events have some added value:a

• An event behaves just like a field of a delegate type. The field stores a reference
to a delegate that represents the event handlers that have been added to the
event.

• An event can be invoked only within the class that declared it; all who can see it
can use a delegate.

• Events can be included in interfaces, but delegates cannot.

• Events have Add and Remove accessor methods that can be overridden.

The most significant difference is that one can restrict delegates to be invoked only
locally by declaring them as events. In Example 9-4, for instance, both Respond and
InputEvent can be events rather than delegates, even though Respond is private and
InputEvent is public.

cf. C# 3.0 Language Specification Version 3.0, September 2007, Sections 10.8 and 15

a Julien Couvier’s April 29, 2003 blog entry helped clarify this point (see http://blog.monstuff.com/archives/
000040.html).

http://blog.monstuff.com/archives/000040.html
http://blog.monstuff.com/archives/000040.html


210 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

everyone has experienced a slowdown in receiving list messages when a system is
overloaded. Alternatives to the Mediator are the Observer (which does not check
protocols) and the Façade (which is a unidirectional form of providing a convenient
interface to complex subsystems).

Exercises
1. Change the chat room example so that individual users can specify which topics

they would not like to hear about. This will make the work inside the Mediator’s
Send method more complex.

2. Investigate the dialog box system mentioned in the “Use” section by designing
two such dialog boxes that have a selection of buttons, text boxes, and other
controls, and show how Mediators can help to keep their interaction under
control.

Observer Pattern

Role
The Observer pattern defines a relationship between objects so that when one
changes its state, all the others are notified accordingly. There is usually an identifi-
able single publisher of new state, and many subscribers who wish to receive it.

Illustration
Once more, we’ll look to the world of the Internet for an illustration. The Observer
pattern leads us to blogs, which are web sites where people write about technical top-
ics, their travels, their lives, and so on. Each blog site is maintained by a single blog-
ger. People who come to read about the information put out by a blogger and find it
interesting can subscribe to be informed each time a new blog entry is posted.
Bloggers don’t always post regularly; days or weeks might go by between entries.
Therefore, it is more efficient for the blogger to alert interested parties rather than for
those parties to constantly poll the blog site.

Figure 9-8 shows a typical blog site. On the right is an “Email alerts” link. In terms of
the Observer pattern, those who wish to observe what is going on can click on this
link to sign up to be alerted whenever there is a change on the site.

Use the Mediator pattern when…

• Objects communicate in well-structured but potentially complex ways.
• The objects’ identities should be protected even though they communicate.
• Some object behaviors can be grouped and customized.



Observer Pattern | 211

Design
The Observer pattern is, like the Mediator pattern, composed of two classes. The
Subject is a class whose objects change their state at an independent rate. Observers
may indicate that they wish to be informed of these changes, in which case, the
Subject will send them notifications. Observers can subscribe to and unsubscribe
from such notifications at will. The UML for the Observer pattern is shown in
Figure 9-9.

Figure 9-8. Observer pattern illustration—a blog site

Figure 9-9. Observer pattern UML diagram

Subject

–state

–Notify( )
+Attach( )
+Detach( )

<<interface>>
IObserver

+Update( )

Observer

–subject
–state

+Update( )

Notify calls
Update



212 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

The Subject maintains a private event called Notify. Whenever its state changes, it
activates the event, sending its state as a parameter to the Update operations inside
the Observers. These methods have previously been registered with the Subject via
the Attach operation. Each Observer is quite distinct from the Subject and can regis-
ter an operation of any name to receive the updates, provided it can receive the state.

Here is a summary of the players in the pattern:

Subject
The class whose instances independently change their state and notify Observers

IObserver
An interface for Observers specifying how they should be updated

Observer
A class that provides an Update method to enable its instance’s state to stay con-
sistent with the Subject’s

Update
The operation that forms the interface between the Subject and the Observers

Notify
The event mechanism for calling the Update operation on all Observers

Push and pull models

It should be noted that the state that is sent is not necessarily just text, as in the case
of a blog. It could, for example, include values that cause the Observers to react and
rearrange their own state accordingly. Sometimes the Subject might want to send a

Q U I Z

Match the Observer Pattern Players with the Blog Illustration
To test whether you understand the Observer pattern, cover the lefthand column of the
table below and see if you can identify its players among the items from the illustrative
example (Figure 9-8), as shown in the righthand column. Then check your answers
against the lefthand column.

Subject

IObserver

Observer

Update

Notify

State

A blogger who writes about C#

The “Email alert”

A programmer interested in C#

Receiving an alert by email

An email from the blog site to all those signed up

A blog



Observer Pattern | 213

lot of data. In the push notification model, the Update interface allows full details
related to the change to go through on a Notify (the data is pushed down to the
Observers). An alternative mechanism is for the Update interface to merely indicate a
change, and for the Observers who are really interested to ask for more information.
This is known as the pull model. The Observer pattern supports both models.

A particular observer might be interested in only certain aspects of the changing state
of a Subject. In this case, the Update interface can be expanded to express such a
selection. The Subject will then have several Notify events, and each Observer will be
able to choose the ones required. Another option would be to split the work among
different Subjects so that Observers can attach to only those that are relevant.

Implementation
The theory code for the Observer pattern is given in Example 9-5. There is one sub-
ject that produces numbers. Two observers—center and right—receive and print
this information. To simulate the independent nature of the Subject’s operation, it is
implemented as a thread (line 22), and its data comes from an iterator, the Simulator
class (lines 72–80). It will start producing data and sending it out as soon as line 22 is
executed. For this reason, we split the instantiation of the Subject from its activa-
tion, with the Observers (which need the Subject reference) in between (lines 66–69).

Example 9-5. Observer pattern theory code

1      using System;
2      using System.Collections;
3      using System.Threading;
4
5        class ObserverPattern {
6
7          // Observer Pattern                  Judith Bishop  Jan 2007
8
9          // The Subject runs in a thread and changes its state

10         // independently. At each change, it notifies its Observers.
11
12         class Subject {
13           public delegate void Callback (string s);
14
15           public event Callback Notify;
16
17           Simulator simulator = new Simulator( );
18           const int speed = 200;
19           public string SubjectState {get; set;}
20
21           public void Go( ) {
22             new Thread(new ThreadStart(Run)).Start( );
23           }
24
25           void Run ( ) {
26             foreach (string s in simulator) {



214 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

27               Console.WriteLine("Subject: "+s);
28               SubjectState = s;
29               Notify(s);
30               Thread.Sleep(speed); // milliseconds
31           }
32       }
33
34       interface IObserver {
35         void Update(string state);
36       }
37
38       class Observer : IObserver {
39         string name;
40         Subject subject;
41         string state;
42         string gap;
43
44         public Observer (Subject subject, string name,string gap) {
45           this.subject = subject;
46           this.name = name;
47           this.gap = gap;
48           subject.Notify += Update;
49         }
50        public void Update(string subjectState) {
51           state = subjectState;
52           Console.WriteLine(gap+name+": "+state);
53         }
54      }
55
56      static void Main ( ) {
57        Subject subject = new Subject( );
58        Observer Observer =  new Observer(subject,"Center","\t\t");
59        Observer observer2 = new Observer(subject,"Right","\t\t\t\t");
60        subject.Go( );
61      }
62
63     class Simulator : IEnumerable {
64
65       string [] moves = {"5","3","1","6","7"};
66
67       public IEnumerator GetEnumerator ( ) {
68         foreach( string element in moves )
69             yield return element;
70       }
71     }
72   }
73  /* Output
74  Subject: 5
75        Center: 5
76             Right: 5
77  Subject: 3
78        Center: 3

Example 9-5. Observer pattern theory code (continued)



Observer Pattern | 215

Notify is expressed as an event (line 15), as it is only used locally within the Subject.
Its delegate type is Callback (line 13), which is accessible publicly and used by the
Observers when they attach with an Update method to the subject’s Notify event
(line 48). The output shows that the Observers get the state. This example does not
illustrate detaching; that is shown next.

Example: Blogs
The next example shows how blogs work. In terms of what Observers can achieve, it
is not a very complex example, but it is interactive and therefore enables us to see the
dynamics of the pattern. Consider Figure 9-10.

There are three bloggers—Eric, Jim, and Judith—who are blogging on programming
issues. Thabo and Ellen are initially subscribed to all three blog sites. After Jim’s first
post, Ellen decides to unsubscribe from his blog. Therefore, Thabo gets Jim’s post on
Threads, but Ellen does not. A short while later, Ellen resubscribes to Jim’s blog and
gets his last post on Efficiency.

79              Right: 3
80  Subject: 1
81        Center: 1
82              Right: 1
83  Subject: 6
84        Center: 6
85              Right: 6
86  */

Figure 9-10. Observer pattern example—blogs

Example 9-5. Observer pattern theory code (continued)



216 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

The full program that implements this system is given in the Appendix. Here, I’ll just
highlight the points that distinguish it from the theory code.

The first design issue is: are there three Subjects? Because the nature of the state that
is being transferred is the same (a blog entry), it is not necessary to have three
Subject classes, or even subclasses; instead, we maintain a table of blogger names
against their lists of Observers. This is expressed in the Subject as:

Dictionary <string,Callback> Notify =
    new Dictionary <string,Callback> ( );

And the Attach and Detach methods change accordingly:

public void Attach(string blogger, Callback Update) {
  Register(blogger);
  Notify[blogger] += Update;
}

public void Detach(string blogger, Callback Update) {
  Notify[blogger] -= Update;
}

The Register enables the system to be self-starting. Observers can ask about blogs for
someone, even if that person has not yet posted anything. (Try out Peter Subscribe
when you run the program.)

The system runs with the Interact class and has four threads: a thread for the blog
site and one for each of the Observers. The Observers can enter text and click but-
tons, and this interaction has to be handled. The main difference is in the addition of
an Input method that responds to input:

public void Input(object source, EventArgs e) {
  // Subscribe to the specified blogger
  if (source == visuals.subscribeButton) {
    blogs.Attach(visuals.messageBox.Text, Update);
    visuals.wall.AppendText("Subscribed to "+
         visuals.messageBox.Text+"\r\n");
  } else
  // Unsubscribe from the blogger
  if (source == visuals.unsubscribeButton) {
    blogs.Detach(visuals.messageBox.Text, Update);
    visuals.wall.AppendText(
         "Unsubscribed from "+visuals.messageBox.Text+"\r\n");
  }
}

Potential extensions to this system are mentioned in the “Exercises” section.

Finally, notice once again that the Iterator pattern has been used to good effect to
simulate the irregular appearance of blog entries, thereby supplying data to the
Subject. The loop in the Simulator is:



Pattern Discussion and Comparison | 217

public IEnumerator GetEnumerator ( ) {
  foreach( Blogs blog in bloggers )
      yield return blog;
}

Use
The Observer pattern is widely used in blog sites and various software systems—
Flickr, cyber-dating web sites, and Microsoft Updates are a few of the places where it
is applied. It also has a formal face as the “publish/subscribe” model and the
“Model-View-Controller” (MVC) architectural pattern.

Another good example of the Observer pattern is the way that different graphs
reflecting data in a spreadsheet change when the data changes. The Observers seem
to be working together, although they are independent.

Exercises
1. An important aspect of the Observer pattern is that Observers deal with state dif-

ferently. Enhance the blog program by creating another Observer that subclasses
Observer and that reports differently on the blog (i.e., has a different implemen-
tation of Update).

2. Repeat exercise 1, this time with a combination of the State pattern and the
Observer pattern.

3. Change the blog system to implement the pull model. That is, do not send any
state back with Update, but enable Observers to call back for more information if
desired.

Pattern Discussion and Comparison
We shall wind up the chapter in two parts. First, we shall consider the Iterator pattern
in more detail, and second, we shall compare the Mediator and Observer patterns.
Although all three patterns support communication between objects, C#’s language
support for the Iterator has projected it into a different category than the other two.
The Observer and Mediator still rely on communication via simple method calling.

Use the Observer pattern when…

• There are aspects to an abstraction that can vary independently.
• Changes in one object need to be propagated to a selection of other objects, not all of them.
• The object sending the changes does not need to know about the receivers.



218 | Chapter 9: Behavioral Patterns: Iterator, Mediator, and Observer

Language Support for the Iterator Pattern

Fully 25 years ago, iterators were supported by languages such as Alphard and Clu
and could be programmed via functions in Ada.* During the Java and C# 1.0 and 2.0
era, iterators consisted of the methods for the basic elements of a loop: Current,
MoveNext, and Reset. If the programmer implemented these methods in a collection, a
foreach loop would call them correctly for objects of that collection. C# 3.0’s query
expressions together with the IEnumerator interface have vastly simplified the han-
dling of loops over arbitrary collections of data. Consider this excerpt from
Example 9-2:

var selection = from n in daysInMonths
         where n.Key.Length > 5
         select n;

In earlier versions of C# iterators, both lambda expressions and delegates were used
to express queries and interact with enumerator methods. Using lambda expres-
sions, the selection would be expressed like this:

var selection = daysInMonths.
   Where(s => s.Key.Length>5);

The lambda expression is introduced by the Where keyword and reads like this: “all s
such that s.Key.Length>5”. Where maps to a method defined for the Dictionary col-
lection. The method returns a value of type “sequence of s”, or Dictionary in this
case. Expressing this query in an even more primitive form with delegates, we have:

foreach (string n in collection.
   Where(delegate(string s) {return s.Length > 5;}))

Note the dot after collection on the first line; it indicates that Where is an instance
method for collection’s type. collection would be instantiated as follows:

StringCollection collection = new StringCollection(months);

and the class would look like this:

public class StringCollection {

  string[] elements;

  public StringCollection(string[] elements) {
    this.elements = elements;
  }

  public IEnumerable<string> Where (Func <string, bool> filter) {
    foreach( string element in elements )
        if( filter(element) == true )
        yield return element;
  }
}

* J. M. Bishop, “The effect of data abstraction on loop programming techniques,” IEEE Transactions on Soft-
ware Engineering 16, no. 4 (1990): 389–402.



Pattern Discussion and Comparison | 219

The iterator passes a delegate to the enumerator Where. Where applies the delegate,
called filter, each time around the loop, yielding only those elements that comply.
These more complex forms are necessary for structures and/or criteria not covered
by the built-in forms, as shown in the next example.

The advances made in C# 3.0 iterators give the following benefits:

• Hiding the structure of the underlying collection enables it to be changed inde-
pendently of the program containing the iterator.

• Providing an extensive range of data-filtering mechanisms akin to those avail-
able for database queries makes programs short and powerful.

• Generating values in the enumerator only when the iterator needs them is more
efficient in terms of space and time.

Mediator and Observer Pattern Comparison

As the examples suggest, Mediator and Observer are very similar patterns. Mailing
lists, chat rooms, and blogs all involve communication between individuals who
actively sign up to the activity. The difference is that the Mediator centralizes the
communication between colleagues, whereas the Observer distributes control of infor-
mation by differentiating between subjects (publishers) and observers (subscribers).

The communication in the Mediator pattern is easier to understand. Colleagues send
messages to a mediator and the transmission of the information further to whom-
ever is currently in the group is handled there, in one place (consult Example 9-3
again). In the Observer pattern, observers wait to be invoked with (presumably rele-
vant) information from more than one subject. The coupling is closer in the Media-
tor, as the client or colleagues send messages that will go to other colleagues (though
not by name). The example is the chat room. In the Observer, the coupling is one
step removed, in that observers do not send any information; they wait to receive it
from subjects, who distributed it to all who have subscribed. An example is the blog.

The question of a constraint on communication is answered differently by the two
patterns. The Mediator keeps the constraint in the mediator object, deciding how,
who, and when should get the next message. In the Observer, there can be a proto-
col between an observer and subject, but it would be more varied and maintained on
both sides. These observations are summarized in Table 9-1.

Table 9-1. Comparison of Mediator and Observer patterns

Mediator Observer

Client creates Colleagues and a mediator Observers and subjects

Messages initiated by Client and colleagues Subject

Messages sent to Mediator then colleagues Observers

Constraints In the mediator Between the observers and subjects



220

Chapter 10CHAPTER 10

Behavioral Patterns: Visitor, Interpreter,
and Memento 10

In this chapter, we’ll consider the final three core design patterns. The Visitor and
Interpreter patterns are well-known in compiler-writing circles. However, they also
apply wherever operations are defined on structures according to specific rules, and
the operations and structures are defined separately. The Memento pattern rounds out
the behavioral group by showing how the state of objects can be saved and restored.

Visitor Pattern

Role
The Visitor pattern defines and performs new operations on all the elements of an
existing structure, without altering its classes.

Illustration
This illustration takes us into the realms of student record systems. These days, it’s
typical for courses to be assessed in several ways, which all add up to a final result.
At the start of a course, instructors are required to declare the components that will
contribute to the assessment. The students’ marks are recorded throughout the
semester and then totaled up at the end according to the weights that were specified.
For example, consider the extract from a spreadsheet containing the marks for a
course on Programming Languages in Figure 10-1. We can deduce that the assess-
ment for the course consisted of:

• Five laboratories (or labs) (2 percent each)

• A midterm evaluation consisting of a laboratory component (10 percent) and a
theory component (15 percent)

• An assignment that is a take-home laboratory (10 percent)

• An examination consisting of a laboratory component (15 percent) and a theory
component (40 percent)



Visitor Pattern | 221

From the columns, we can see that the total of the labs is important, as is the mark
obtained from the lab and theory tests done in the middle of the term (the midterm
assessment). Other calculations are the averages for the lab work and the theory
work, and of course the final result.

Those who have worked with spreadsheets of this complexity will know that the pro-
cess can be tedious and error-prone. An alternative is to create a program that will
process the results in a customized way. To drive such a program, we can define a
notation that specifies the weight of each mark and whether it is categorized as The-
ory or Lab, Midterm, or Exam. The Midterm and Exam can, as shown in the illustra-
tion, be further subdivided into Lab and Theory components. Assignments are take-
home labs and fall under the Lab category.

An example of specifying the different mark components and their weights based on
the sample course would be:

COS333 L2 L2 L2 L2 L2 M25 (L40 T60 ) L10 E55 (L28 T73 )

where L stands for lab, T for theory, and so on. The only complexity is introduced by
the Midterm and the Exam, which have component parts themselves. These are
expressed inside parentheses after the main component. All weights are given in per-
centages, with the percentages inside the parentheses indicating the relative weights
of the components (i.e., for the Midterm weighing 25%, the split between the lab
and theory components is 40:60).

Given this definition of the data, we can set up a data structure in memory that rep-
resents a course (Figure 10-2).

Figure 10-1. Interpreter pattern illustration—a) an XML specification and b) a corresponding GUI



222 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

 Having arrived at this structure, we can now process it in one of two broad ways:

• Categorize and summarize the different types of elements making up the course.

• Apply the structure to the marks recorded for the students to get their results.

Both applications involve the Visitor pattern: we set up the structure and then “visit”
it to perform the operations. We’ll focus on the first task here and consider the sec-
ond in the discussion of the Interpreter pattern.

Design
The Visitor pattern has two distinct parts: there are the classes that make up an
object structure, and then there are the methods that will be applied to the object
structure. These are the visitors. The UML for the pattern is given in Figure 10-3.

Figure 10-2. Visitor pattern illustration—course structure

Figure 10-3. Visitor pattern UML diagram

L2 M35 L10 E55L2 L2 L2 L2

L40 T60 L28 T72

<<interface>>
IVisitor

Visitor1

+VisitorMethod1( )

Visitor2

+VisitorMethod2( )

Client

–objectStructure : Element
–visitor1 : Visitor1
–visitor2 : Visitor2

Element

ElementA ElementB



Visitor Pattern | 223

The Client defines and creates an object structure and populates it with data. This
process is not part of the pattern, however. The object structure is specified by a hier-
archy of Element classes, three of which are shown here: Element, ElementA, and
ElementB. The Visitor methods, VisitorMethod1 and VisitorMethod2, are defined in
separate classes. Objects of these classes conform to an IVisitor interface. Although
the object structure and Visitors are separate, some implementations of the Visitor
pattern might require a small change to the objects to make them visitor-ready.

The players in the Visitor pattern are:

Client
A class that creates and maintains the object structure; instantiates and calls the
Visitors

ObjectStructure
A composite structure of several related element types

Element
The root element type for the object structure

ElementA and ElementB
Subclasses of Element

IVisitor
An interface for all the Visitor classes

Visitor1 and Visitor2
Classes that contain methods that iterate through the object structure and apply
operations to its elements

Note that the object structure is not necessarily a class hierarchy. In general, one
node in the object structure can refer to another object of any type whatsoever, and
the visitor can traverse to that other object. The interesting issue with subclass rela-
tionships among the object structure nodes is whether the visitor actions can easily
be inherited.

The Visitor pattern is intended for object structures, so it is often used in conjunc-
tion with the Composite pattern. The Composite pattern is responsible for setting up
the multilevel structure on which the Visitor pattern then operates.

Implementation
Because the Visitor pattern is one of those with a distinction between the data and
some additional and extraneous behavior, we shall develop it in three parts:

• The object structure

• The visitor(s)

• The client



224 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

We shall illustrate this development with a small theoretical example and show two
ways of implementing visitors, before going on to the larger example. The small
example sets up a structure in levels, and then the client asks the visitor to count the
number of top-level nodes. One might imagine that it would be easy to add this
functionality to the nodes themselves and simply traverse the structure. However,
with the Visitor pattern, we can add new behavior after the object structure has effec-
tively been sealed off. On the other side, the object structure might evolve, and we
would like the visiting process to be unaffected. Although this small example does
not show the power of the Visitor pattern, it does reveal the independence of the dif-
ferent players and how this independence reduces coupling.

The program is shown in Example 10-1. It starts with setting up the object structure,
in a namespace called ObjectStructure (lines 7–37). This is all fairly standard. The
initializing of the structure is done in client on lines 70–82, and we can see that it has
nine ordinary nodes of the type Element and two of the type ElementWithLink, which
go down a next level. The only other business in the client is to instantiate the visi-
tor, call it, and report on the number of elements (lines 84–87).

Q U I Z

Match the Visitor Pattern Players with the Course Illustration
To test whether you understand the Visitor pattern, cover the lefthand column of the
table below and see if you can identify its players among the items from the illustrative
example (Figure 10-1), as shown in the righthand column. Then check your answers
against the lefthand column.

Client

ObjectStructure

Element

ElementA, ElementB

VisitorA

VisitorB

The instructor

The rules of the course (taken from the notation)

Course

Lab, Theory, Midterm, Exam

Print the course rules

Summarize the Lab and Theory totals

Example 10-1. Visitor pattern theory code

1 using System;
2 using ObjectStructure;
3
4 // Visitor Pattern - Example    Judith Bishop October 2007
5 // Sets up an object structure and visits it
6
7 namespace ObjectStructure {
8
9    abstract class IElement {



Visitor Pattern | 225

10       // Added to make the elements Visitor-ready
11       public abstract void Accept(IVisitor visitor);
12    }
13
14    class Element : IElement {
15       public Element Next {get; set;}
16       public Element Link {get; set;}
17       public Element ( ) {}
18       public Element (Element next) {
19          Next = next;
20       }
21       // Added to make the elements Visitor-ready
22       public override void Accept(IVisitor visitor) {
23          visitor.Visit(this);
24       }
25    }
26
27    class ElementWithLink : Element {
28       public ElementWithLink (Element link, Element next) {
29          Next = next;
30          Link = link;
31       }
32       // Added to make the elements Visitor-ready
33       public override void Accept(IVisitor visitor) {
34          visitor.Visit(this);
35       }
36    }
37 }
38
39    // Visitor interface
40    interface IVisitor {
41       void Visit (Element element);
42       void Visit (ElementWithLink element);
43    }
44
45    // Visitor
46    class CountVisitor : IVisitor {
47      public int Count {get; set;}
48      public void CountElements(Element element) {
49           element.Accept(this);
50            if (element.Link!=null) CountElements(element.Link);
51            if (element.Next!=null) CountElements(element.Next);
52       }
53
54      //Elements with links are not counted
55      public void Visit(ElementWithLink element) {
56         Console.WriteLine("Not counting");
57      }
58
59      // Only Elements are counted
60      public void Visit(Element element) {
61           Count++;

Example 10-1. Visitor pattern theory code (continued)



226 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

Now, we can set up Visitor’s communication with the object structure as follows:

1. Add an IVisitor interface listing Visit methods for each type in the structure
and make the Visitor implement it:

   // Visitor interface
   interface IVisitor {
      void Visit (Element element);
      void Visit (ElementWithLink element);
   }

2. In the Visitor class, add implementations for each of these methods, for example:
    // Only Elements are counted
    public void Visit(Element element) {
       Count++;
    }

62       }
63     }
64
65   // Client
66   class Client {
67
68     static void Main( ) {
69       // Set up the object structure
70       Element objectStructure =
71          new Element(
72            new Element(
73            new ElementWithLink(
74                new Element(
75                   new Element(
76                    new ElementWithLink(
77                    new Element(null),
78                   new Element(
79                   null)))),
80          new Element(
81            new Element(
82            new Element(null))))));
83
84      Console.WriteLine ("Count the Elements");
85      CountVisitor visitor = new CountVisitor( );
86      visitor.CountElements(objectStructure);
87      Console.WriteLine("Number of Elements is: "+visitor.Count);
88   }
89 }
90 /*
91 Count the Elements
92 Found Element
93 Found Element
94 Number of Elements is: 9
95 */

Example 10-1. Visitor pattern theory code (continued)



Visitor Pattern | 227

3. In the ObjectStructure’s namespace, add an interface with one method called
Accept, and make the top level type implement it:

    abstract class IElement {
      // Added to make the elements Visitor-ready
      public abstract void Accept(IVisitor visitor);
   }

4. In each type of the structure, add an Accept method of the following identical
form:

      // Added to make the elements Visitor-ready
     public override void Accept(IVisitor visitor) {
        visitor.Visit(this);
     }

Once all this is in place, the Visitor pattern’s mechanism can get into action. Within
the recursive method CountElements (line 48–52), an Accept method is called on an
object of type Element.

The Elements are unaware of what visitors to expect, but they do have
to supply the “hooks” to accept visits.

Because of the object hierarchy, the actual object could also be ElementWithLink. At
runtime, the appropriate Accept statement in the corresponding class will be called.
These small methods simply bounce the call back to the correct Visit method in the
CountVisitor (line 23 goes to line 55 and line 34 goes to line 60). In this way, the Vis-
itor pattern uses a well-known method called double-dispatch.

Now, consider how to extend the example. We can add another Visitor with its
own Visit methods and use the same Accept methods already build into the struc-
ture. That is good news. But what is not such good news, is that we had to add the
Accept methods in the first place. It is possible that we might not have been able to
do so (because the code was not accessible). For this reason, we are going to con-
sider an alternative way of finding the right Visit method, without going into the
structure to add the Accept methods: reflection.

Put together, the reflective methods and types outlined in the sidebar form a
ReflectiveVisit method in the CountVisitor:

 public void ReflectiveVisit(Element element) {
// Use reflection to find and invoke the correct Visit method
   Type[] types = new Type[] {element.GetType( )};
   MethodInfo methodInfo = this.GetType( ).GetMethod("Visit", types);
   if (methodInfo != null)
      methodInfo.Invoke(this, new object[] {element});
   else Console.WriteLine("Unexpected Visit");
}



228 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

The counting method now calls this method instead of the Accept method in the
structures. This sequence of instructions causes the correct Visit method inside
CountVisitor to be called. The method can be put in a class and used by all other
Visitors, so it has to be written only once. The full program is given in the Appendix.

The reflective approach has one disadvantage: it is considerably slower (40 to 100
times) than double-dispatch. For small structures, it is adequate, but for large struc-
tures with many types, it would be a disaster. However, the dynamic discovery of
types can be sped up by adding an optimization that stores the discovered type. This
will scale better over hundreds of objects.

Apart from being slow, reflection can be error-prone if the types and their methods
don’t actually exist. You can test this by commenting out one of the Visit methods
in CountVisitor. The program still compiles, but it will fail at runtime. The Visitor
pattern is associated with compile-time checking, however, as supplied by double-
dispatch. There are other options for implementing the Visitor pattern, which I will
address in the last section of this chapter.

C# Feature—Reflection
Reflection is a feature of the .NET Framework libraries that is available to C# and
other .NET languages. Using classes and methods in the System.Reflection API, we
can discover information about a class or object that we can then use in further execut-
ing the program. Typically, reflection can be used in these four circumstances:

• Viewing metadata

• Performing type discovery

• Late binding to methods and properties

• Creating types at runtime with Reflection.Emit

The first two relate to the Interpreter pattern (discussed next). Useful classes are:

Type[]
Will hold a list of type names

GetType( )
Will return a class name

MethodInfo
Can return all parameters and the return type of a method

Invoke
Will call the method described in a variable of type MethodInfo

cf. http://msdn2.microsoft.com/en-us/library/system.reflection.aspx



Visitor Pattern | 229

Example: Course Statistics
Now, let’s apply the Visitor pattern to our earlier course example. The program code
follows the theory code of Example 10-1 quite closely. It starts off with two Visitors:
one will print element structures, and one will summarize the values in the individ-
ual objects. In this case, we are interested in the total weight for lab components ver-
sus theory components. Because we have different visitors and because efficiency is
not an issue, we use the reflection solution.

The object structure is built up from five classes—Element plus four others that
inherit from it. The Print visitor handles all Elements the same, so it has only one
Visit method. The Summarize method in the second visitor has three Visit methods
and checks the type in the last one to decide how to handle the weights.

These Visitors are defined subsequently, independently of the Element
classes.

The complete code is shown in Example 10-2.

Example 10-2. Visitor pattern example code—course marks

 using System;
 using System.Reflection;

   // Visitor Pattern - Example    Judith Bishop October 2007
   // Sets up course rules and visits in two ways

class Program {

    abstract class IVisitor {
      public void ReflectiveVisit(Element element) {
        Type[] types = new Type[] {element.GetType( )};
        MethodInfo methodInfo = this.GetType( ).GetMethod("Visit", types);

        if (methodInfo != null) {
            methodInfo.Invoke(this, new object[] {element});
        }
      }
    }

    class PrintVisitor : IVisitor {
        public void Print(Element element) {
           ReflectiveVisit(element);
           if (element.Part!=null) {
               Console.Write(" [");
               Print(element.Part);
           }



230 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

           if (element.Next!=null) Print (element.Next);
           Console.Write("] ");
       }
       public void Visit(Element element) {
         Console.Write(" "+element.Weight);
      }
    }

    class StructureVisitor : IVisitor {
      public int Lab {get; set;}
      public int Test {get; set;}

     public void Summarize(Element element) {
       ReflectiveVisit(element);
         if (element.Part!=null) VisitAllLabTest(element.Part.Next);
         if (element.Next!=null) VisitAllLabTest(element.Next);
       }
       public void Visit(Lab element) {
           Lab += element.Weight;
       }
       public void Visit(Test element) {
         Test += element.Weight;
       }
       public void Visit (Element element) {
         if ((element is Midterm || element is Exam)
            && element.Part==null) Test += element.Weight;
         }
     }

   class Element {
      public int Weight {get; set;}
      public Element Next {get; set;}
      public Element Part {get; set;}

      public void Parse (Context context) {
          string starters = "LTME";
          if (context.Input.Length>0 && starters.IndexOf(context.Input[0])>=0) {
             switch(context.Input[0]) {
               case 'L':
                  Next=new Lab( );
                   break;
               case 'T':
                  Next=new Test( );
                   break;
               case 'M':
                  Next=new Midterm( );
                   break;
               case 'E':
                  Next = new Exam( );
                  break;
            }
            Next.Weight = GetNumber(context);
            if (context.Input.Length>0 && context.Input[0]=='(') {

Example 10-2. Visitor pattern example code—course marks (continued)



Visitor Pattern | 231

                  context.Input = context.Input.Substring(1);
                  Next.Part = new Element( );
                  Next.Part.Parse(context);
                  Element e = Next.Part;
                  while (e!=null) {
                     e.Weight = e.Weight * Next.Weight / 100;
                     e = e.Next;
                  }
                  context.Input = context.Input.Substring(2);
            }
            Next.Parse(context);
         }
      }
   }

   class Course : Element {
      public string Name {get; set;}
      public Course (Context context) {
         Name = context.Input.Substring(0,6);
         context.Input = context.Input.Substring(7);
      }
   }

   class Lab : Element {
   }

   class Test : Element {
   }

   class Midterm : Element {
   }

   class Exam : Element {
   }

  class Context {
       public string Input {get; set;}
      public double Output {get; set;}

        public Context(string c) {
            Input = c;
         Output = 0;
        }
    }

   static int GetNumber (Context context) {
          int atSpace = context.Input.IndexOf(' ');
        int number = Int32.Parse(context.Input.Substring(1,atSpace));
         context.Input = context.Input.Substring(atSpace+1);
          return number;
  }

  static void Main( ) {

Example 10-2. Visitor pattern example code—course marks (continued)



232 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

Using the same rule as illustrated in Figure 10-2:

COS333 L2 L2 L2 L2 L2 M25 (L40 T60 ) L10 E55 (L28 T73 )

we can create an object structure via a Parse method acting on a stream of data.

Use
Clearly, the Visitor pattern is very handy when the behavior of a class hierarchy
needs to be extended. As it is specifically intended for hierarchies, it can be found in
compilers and other large system software packages that are built with frontends and
backends. The class hierarchy is defined so that the frontend can create and popu-
late a parse tree. The backend of the compiler then takes over and adds its own pro-
cessing of the parse tree with its own methods. These methods should not be
muddled up with the frontend’s classes, as they are needed at quite different times.
The Visitor pattern is ideal for achieving this separation.

A word of caution, however, on the approach taken for implementing the Visitor pat-
tern. To put the performance implications into perspective, some tests were run

     string rules = "COS333 L2 L2 L2 L2 L2 M25 (L40 T60 ) L10 E55 (L28 T73 ) ";

     Context context;
     Console.WriteLine (rules+"\n");
     context = new Context (rules);
     Element course = new Course(context);
     course.Parse(context);

     PrintVisitor visitor = new PrintVisitor( );
     Console.WriteLine("Visitor 1 - Course structure");
     visitor.Print(course);

     StructureVisitor visitor2 = new StructureVisitor( );
     visitor2.Summarize(course);
     Console.WriteLine ("\n\nVisitor 2 - Summing the weights\nLabs "
                        +visitor2.Lab + "% and Tests "
                        +visitor2.Test + "%");
  }
}
/*Output
COS333 L2 L2 L2 L2 L2 M25 (L40 T60 ) L10 E55 (L28 T73 )

Visitor 1 - Course structure
 0 2 2 2 2 2 25 [ 0 10 15] ] ]  10 55 [ 0 15 40] ] ] ] ] ] ] ] ] ] ] ]

Visitor 2 - Summing the weights
Labs 45% and Tests 55%
*/

Example 10-2. Visitor pattern example code—course marks (continued)



Interpreter Pattern | 233

multiple times on a simple program like the one used here, but with a very large tree.*

The reflection approach was between 100 and 200 times slower than the dynamic
dispatch implementation. This is a considerable difference, and it’s significant enough
to make reflection viable only when programs are performing a lot of work in the
Visit methods, or they are I/O-bound. In these cases, the effect of the overhead
would be diminished.

For applications such as a compiler, dynamic dispatch is the approach of choice; the
verboseness of the code is offset by the fact that many compiler generators will emit
the methods involved in the Visitor pattern for the parse tree associated with the
input grammar.

Exercises
1. After the course in Example 10-2 has been set up, changes can still be made to

the structure during the first two weeks. Suppose that the lab component of the
final exam is to be canceled and the weight distributed proportionately among
the other components. Thus, the first lab will get 2/15 extra weight. Write a
Visitor to perform this operation and alter the weights. Then, call the Print and
Summarize visitors again to show the new situation.

2. Take the dynamic dispatch program in Example 10-3 and embellish it with print
statements that show the steps taken through the program as a Visitor is
activated.

3. In Example 10-1, add some data fields to the structure and invent some visitor
behavior that can alter their values.

4. Redo Example 10-2 using double-dispatch.

Interpreter Pattern
The Interpreter pattern supports the interpretation of instructions written in a lan-
guage or notation defined for a specific purpose. The notation is precise and can be
defined in terms of a grammar.

* Thanks to Nigel Horspool for suggesting and executing these tests.

Use the Visitor pattern when…

• You have a class hierarchy that is effectively sealed.
• There are many distinct operations to perform on it.
• The operations are orthogonal to the core purpose of the types in the hierarchy.
• You need the flexibility to define new operations over time.



234 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

Illustration
XML (eXtended Markup Language) is a very popular way of expressing the format of
data. XML consists of tags that introduce attributes and associated values in a sim-
ple nested and sequential notation. Consider the example in Figure 10-4—(a) shows
an XML description of a GUI depicted in (b). The XML corresponds to the controls
and parameters of a Windows form. Thus, the following:

<TextBox Top="10" Left="100" Name="eurobox" />

specifies a TextBox control followed by pixel values for its top-left corner and the
name by which it will be known in the program ("eurobox"). The corresponding label
at top=10 pixels has the text “Paid on hols” so that will be opposite the eurobox con-
trol when it is laid out on the form.

The XML specification is read into a program, checked, and interpreted into GUI
objects to be displayed on the screen. Thus, this example illustrates the essence of
the Interpreter pattern.

Grammars

Languages can be expressed in other notations as well. A familiar form is a grammar
of terms. Terms written in sequence must follow each other; alternatives are indi-
cated with a | and repetition by recursive definitions. Given this scheme, we could
specify a grammar for the course rules laid out earlier in Example 10-2 as:

Figure 10-4. Interpreter pattern illustration—XML description of a GUI



Interpreter Pattern | 235

1 course           = name restcourse
2 restcourse       = terminalpart | nonterminalpart | restcourse | empty
3 nonterminalpart  = group ( terminalpart restterminalpart )
4 terminalpart     = lab | test | group
5 restterminalpart = terminalpart restterminalpart | empty
6 group            = midterm | exam
7 lab              = L weight
8 text             = T weight
9 midterm          = M weight

10 exam             = E weight
11 weight           = integer

empty is a special term that matches nothing and returns the interpreter to the previ-
ous term. L, T, M, E, and integer have their literal meanings.

This grammar is workable for interpreting course rules, although it has one defi-
ciency: both terminalpart and nonterminalpart can start with a group (midterm or
exam), and therefore the grammar is ambiguous in the first term as the input is being
processed. However, the ambiguity can be resolved by looking ahead to the next few
terms. Ambiguous grammars can also be transformed into unambiguous grammars
by introducing more terms.

Design
As seen in both the course rules (grammar) and the XML for the GUI (Figure 10-4),
there is a distinction between terminals and nonterminals in the input to the inter-
preter. In the grammar, terminals are final terms, whereas nonterminals comprise
other terms. The Interpreter is an operation defined at all levels to process input as
required. The operations are done in the context of some input and output.

The UML diagram for this pattern is given in Figure 10-5.

Figure 10-5. Interpreter pattern UML diagram

<<interface>>
Term

Terminal

+Interpreter( )

Nonterminal

+Interpreter( )

+Interpreter( )

Client

Context

<<use>>



236 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

The players in the pattern are:

Client
A class that builds an object structure that represents a set of instructions in the
given grammar

Context
A class that contains information for use by the Interpreter (usually its input
and output)

Term
An abstract class that provides an interface for all the classes in the structure and
a default for the Interpreter operation

Nonterminal
A class that implements the Interpreter and also can contain other Term instances

Terminal
A class that implements the Interpreter

Parsing

The Interpreter pattern does not specify how the object structure is created. This
process is known as parsing and involves matching input against a grammar to cre-
ate a structure, often known as a parse tree. Once the structure is created, the
Interpreter starts its work and will match a new set of input against the parsed
grammar. For example, the XML in Figure 10-4(a) results in a set of controls that are
drawn on the screen. The user can then type in input and press buttons, and these
actions are interpreted according to the type of boxes and buttons that were parsed.
The process is shown in Figure 10-6.

Q U I Z

Match the Interpreter Pattern Players with the XML Illustration
To test whether you understand the Interpreter pattern, cover the lefthand column of
the table below and see if you can identify its players among the items from the illus-
trative example (Figure 10-4), as shown in the righthand column. Then check your
answers against the lefthand column.

Context

Terminal

Nontermial

Interpreter

Rule specification and the GUI output

An attribute (e.g., Top)

A tag (e.g., TextBox)

Process of transforming the XML to the GUI



Interpreter Pattern | 237

Implementation
Although the UML diagram shows the Interpreter methods as integral to the Term hier-
archy classes, it turns out that implementing them as extension methods is a very con-
venient solution. We’ll return to the course example to explore the implementation.

To make our program conform to the ideals of the Interpreter pattern, we replace the
object initializer in the Main method with a Parse method inside Element:

public void Parse (Context context) {
  string starters = "LTME";
  if (context.Input.Length>0 && starters.IndexOf(context.Input[0])>=0) {
    switch(context.Input[0]) {
      case 'L':
        Next=new Lab( );
        break;
      case 'T':
        Next=new Test( );
        break;
      case 'M':
        Next=new Midterm( );
        break;
      case 'E':
        Next = new Exam( );
        break;
    }
    Next.Weight = GetNumber(context);
    if (context.Input.Length>0 && context.Input[0]=='(') {
      context.Input = context.Input.Substring(1);
      Next.Part = new Element( );
      Next.Part.Parse(context);
      Element e = Next.Part;
      while (e!=null) {
        e.Weight = e.Weight * Next.Weight / 100;
        e = e.Next;
      }

Figure 10-6. Parser and Interpreter diagram

Input

Object
structureParserGrammar Interpreter

Results



238 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

      context.Input = context.Input.Substring(2);
    }
    Next.Parse(context);
  }
}

The Parser’s task is to determine whether an element is terminal or nonterminal and,
more precisely, what class should be instantiated for the values. It works as an end-
recursion method, calling itself on the Next field of each object after it has been cre-
ated. The switch statement takes care of the terminals (based on the initial character
of each), and the if statement after that handles the case when there is a bracketed
part, as in M25 (L30 T70).

Finally, we add the interpreter as a visitor. The function of the interpreter is to suc-
cessively match up against the parsed course rules a sequence of marks such as
would be found in this array of three students:

int [][] values = new [] {
    new [] {80,0,100,100,85,51,52,50,57,56},
    new [] {87,95,100,100,77,70,99,100,75,94},
    new [] {0,55,100,65,55,75,73,74,71,72}};

The Main method calls the Interpreter thusly:

Console.WriteLine("\n\nVisitor 3 (Interpreter) ");
foreach (int [] student in values) {
  Console.Write(student.Display( ));
  course.SetUp(context, student);
  course.Interpreter( );
  Console.WriteLine(" = "+context.Output/100);
}

resulting in the following output:

Visitor 3 (Interpreter)
[80, 0, 100, 100, 85, 51, 52, 50, 57, 56] = 56.15
[87, 95, 100, 100, 77, 70, 99, 100, 75, 94] = 89.88
[0, 55, 100, 65, 55, 75, 73, 74, 71, 72] = 70.8

which conforms to the original spreadsheet shown in Figure 10-1. The Interpreter
method is:

public static int [] values;
public static int n;
public static Context context;

public static void SetUp (this Element element, Context c, int[] v) {
  context = c;
  context.Output=0;
  values = v;
  n = 0;
}

public static void Interpreter(this Element element) {



Interpreter Pattern | 239

 // Terminals
 if (element is Lab || element is Test) {
   context.Output += values[n]*element.Weight;
   n++;
 }
 else
   // Potential non-terminals
   if ((element is Midterm || element is Exam)
       && element.Part==null) {
     context.Output += values[n]*element.Weight;
     n++;
   }

    if (element.Part!=null) Interpreter(element.Part.Next);
    if (element.Next!=null) Interpreter(element.Next);
  }
 }

It operates in the same way as previous Visitors, by examining the type of a class and
then acting accordingly. The SetUp method is called first to get the marks into a con-
venient array and clear the context’s output. Then, the interpreter works as an end-
recursive method, following the Part and Next links as required. The full extended
program is shown in the Appendix.

This discussion addressed the implementation issues via a fairly simple example. We’ll
now consider another, larger example related to the original illustration for the pattern.

Example: Mirrors
In this section, we’ll turn our attention to an industrial-strength example of consider-
able power called Mirrors. The Mirrors system is a program that will interpret XML
for any .NET API and then call the methods mentioned therein. Figure 10-1(b) was
in fact produced from Mirrors using Figure 10-1(a) as the input. In terms of
Figure 10-6, Mirrors acts as a combined Parser and Interpreter. It activates XML
parsing mechanisms that are built into .NET, and then uses reflection to invoke the
methods thus described. As such, Mirrors can be described as a generic reflective
Interpreter. It does not mention any API by name and can work with any of them.

The Mirrors system was written by Hans Lombard and was based on an interpreter
called Views, which Nigel Horspool, D-J Miller, and I developed before Windows
Forms was available with .NET on Linux and Mac OS X. The Views notation was a
stylized XML, and the interpreter included a parser and an engine. (See references in
the Bibliography at the end of the book.)

Mirrors is particularly useful for creating GUIs. The version included here will access
the Windows Forms API and show a GUI, but to conserve space, it does not include
the engine to make the resulting GUI operate; this is a small add-on of the size of the
Interact class used previously. The events would be specified in the XML and the
corresponding methods implemented in extension methods to the Mirrors system.



240 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

The main operational part of the Mirrors system is its constructor:

1 public Mirror(string spec) {
2  objectStack = new Stack( );
3  objectStack.Push(null);
4
5  // Register the commands
6  commands = new List<Command>( );
7  commands.Add(new ElementCommand( ));
8  commands.Add(new EndElementCommand( ));
9  commands.Add(new AttributeCommand( ));

10
11  Reader = new XmlTextReader(spec);
12  while (Reader.Read( )) {
13    InterpretCommands( );
14
15    bool b = Reader.IsEmptyElement;
16    if (Reader.HasAttributes) {
17      for (int i = 0; i < Reader.AttributeCount; i++) {
18        Reader.MoveToAttribute(i);
19        InterpretCommands( );
20      }
21    }
22    if (b) Pop( );
23  }
24 }

XMLTextReader (line 11) accepts the entire XML specification and emits elements one
at a time. On line 13, we move to the command interpreter, which operates exactly
according to the pattern in Figure 10-5. There are three classes in the hierarchy:
ElementCommand, EndCommand, and AttributeCommand.

Each has its own Interpret method. The first one is:

public class ElementCommand : Command {
  public override void Interpret (Mirror context) {
    if (context.Reader.NodeType != XmlNodeType.Element) return;
    Type type = GetTypeOf(context.Reader.Name);
    if (type == null) return;
    object o = Activator.CreateInstance(type);

    if (context.Peek( ) != null)
        ((Control)context.Peek( )).Controls.Add((Control)o);
    context.Push(o);
  }

    // Omit GetType method here
}

The Interpret method checks that the XML node type from the reader is correct. It
then gets the actual type of the node (for example, TextBox), creates an instance of
that type, adds the control to the stack, and pushes it down. Correspondingly, an
EndCommand (which the Interpreter encounters when it hits a /> symbol in XML)
pops the stack. The AttributeCommand class is the only other class:



Interpreter Pattern | 241

public class AttributeCommand : Command {
  public override void Interpret (Mirror context) {
    if (context.Reader.NodeType != XmlNodeType.Attribute) return;
    SetProperty(context.Peek( ), context.Reader.Name, context.Reader.Value);
  }

 public void SetProperty(object o, string name, string val) {
   Type type = o.GetType( );
   PropertyInfo property = type.GetProperty(name);

   // Find an appropriate property to match the attribute name
   if (property.PropertyType.IsAssignableFrom(typeof(string))) {
     property.SetValue(o, val, null);
   } else if (property.PropertyType.IsSubclassOf(typeof(Enum))) {
     object ev = Enum.Parse(property.PropertyType, val, true);
     property.SetValue(o, ev, null);
   } else {
     MethodInfo m = property.PropertyType.GetMethod
          ("Parse", new Type[] { typeof(string) });
     object newval = m.Invoke(null /*static */, new object[] { val });
     property.SetValue(o, newval, null);
   }
  }
}

It too checks the node type, then goes through each of the attributes (e.g., Top or
Left) to find their types, and sets the values that follow accordingly (on the last line).
This Interpret method makes heavy use of reflection to find out the types of the
object attributes.

Assuming the XML specification is in a file called calc_winforms.xml, the whole
interpreter will be activated by one line:

Mirror m = new Mirror("calc_winforms.xml");

The full program is shown in the Appendix.

Efficiency

No discussion involving reflection would be complete without mention of efficiency.
Any program that relies on reflection has efficiency overheads because for every oper-
ation it first has to determine the type of the objects on which it’s working. Quantify-
ing these costs for small programs is difficult; however, the overhead is analogous to
that incurred in the implementation of the Visitor pattern presented earlier:

• Examining the type of the object using the is operator

• Moving through the classes using dynamic dispatch

Both of these defer object binding to runtime in order to increase flexibility.



242 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

Use
The Interpreter pattern is coded up from scratch wherever there is a simple grammar
to parse and interpret. For more complex grammars, such as those that describe pro-
gramming languages or .NET APIs, parsing tools can be employed to set up the
object structure. The corresponding Interpret methods can still be successfully writ-
ten from scratch. In the Mirrors example, the System.Xml API from .NET provides
the parser. In compilers, there are special parser generator tools that construct a
parse tree from a grammar.

Many domain-specific languages define their rules in terms of XML and rely on inter-
preters to activate them. For example, the Windows Vista operating system, in con-
junction with Visual Studio, interprets XML for GUIs.

Exercises
1. Program a simple calculator using the Interpreter pattern. To accommodate pre-

cedence between addition/subtraction and multiplication/division operations,
set the objects involved in the latter operations lower in the object hierarchy.

2. Create the XML for a calculator GUI and run it through Mirrors.

Memento Pattern

Role
This pattern is used to capture an object’s internal state and save it externally so that
it can be restored later.

Illustration
Many computer games go on for a long time. Having a means to save a game’s state
so that it can be resumed at a later stage is very handy. It can also be useful to save
what are known as “checkpoints” in a game so that it’s possible to return to a previ-
ous checkpoint after a disastrous move. For example, here is a description of
CilkChess, a chess program produced at MIT:

Cilk jobs may survive machine crashes or network outages despite the fact that Cilk
programs have been coded with no special provision for handling machine or network

Use the Interpreter pattern when…

You have a grammar to be interpreted and:
• The grammar is not too large.
• Efficiency is not critical.
• Parsing tools are available.
• XML is an option for the specification.



Memento Pattern | 243

failures. If a worker crashes, then other workers automatically redo any work that was
lost in the crash. In the case of a more catastrophic failure, such as a power outage, a
total network failure, or a crash of the file server, then all workers may crash. For this
case, Cilk-NOW provides automatic checkpointing, so when service is restored, the
Cilk job may be restarted with minimal lost work.

Some of the more humorous aspects of computer chess are summed up in the car-
toon in Figure 10-7.*

Design
As indicated in the preceding quote, the saving of state can be made independent of
the object itself, and this is a key point of the Memento pattern. The UML for this
pattern is shown in Figure 10-8.

The Originator is the class that supports objects with state to be saved; it can decide
how much state needs to be saved at any time. The Memento does the saving, and the
Caretaker keeps track of the various stored states.

The Memento pattern is interesting because it has two interfaces:

• A wide interface to the Originator that enables it to access everything that needs
to be saved or restored

• A narrow interface to the Caretaker that can keep and pass on memento refer-
ences, but no more

Figure 10-7. Memento pattern illustration—computer chess

* From S. Francis, H. Dugmore, and Rico, www.madamandeve.co.za, printed with permission.

Figure 10-8. Memento pattern UML diagram

Originator

–State

Memento

+Save( )
+Restore( )

Client Caretaker

–Memento



244 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

The Memento class keeps the state of the Originator but does not allow other classes
to access that state. It therefore preserves encapsulation boundaries, relieving the
Originator of this responsibility.

In sum, the roles in the pattern are:

Originator
A class that has state to be saved

Memento
A class for objects representing the Originator’s saved state

Caretaker
A class that is a holder for the mementos

Client
Keeps a copy of the originator

Implementation
The implementation of the Memento pattern relies on the .NET Serialization API,
which we saw before when discussing the Prototype pattern. Thus, we’ll move
straight on to the theory code in Example 10-3. The program shows how strings can
be saved out to mementos and then restored if the first character of the line is a *, as
in *UNDO (line 131). Thus, mistakes in the data for the Originator can be corrected.

Q U I Z

Match the Memento Pattern Players with the Chess Illustration
To test whether you understand the Memento pattern, cover the lefthand column of
the table below and see if you can identify its players among the items from the illus-
trative example (Figure 10-7), as shown in the righthand column. Then check your
answers against the lefthand column.

Originator

Memento

Caretaker

Client

The chessboard with pieces on it

The program that saves the state of the board

A checkpoint of the state of the game

Playing chess on the electronic chessboard

Example 10-3. Memento pattern theory code

1      using System;
2      using System.IO;
3      using System.Runtime.Serialization;
4      using System.Runtime.Serialization.Formatters.Binary;
5      using System.Collections.Generic;



Memento Pattern | 245

6      using System.Collections;
7
8        // Memento Pattern           Judith Bishop  Sept 2007
9        // Simple illustration with undo

10
11     class MementoPattern {
12
13       // Client
14       static void Main( ) {
15
16       // References to the mementos
17       Caretaker [] c = new Caretaker [10];
18       Originator originator = new Originator( );
19
20       int move = 0;
21       // Iterator for the moves
22       Simulator simulator = new Simulator( );
23
24       foreach (string command in simulator) {
25         // Check for undo
26         if (command[0]=='*' && move > 0)
27             originator.Restore(c[move-1].Memento);
28         else
29             originator.Operation(command);
30         move++;
31         c[move] = new Caretaker( );
32         c[move].Memento = originator.Save( );
33       }
34     }
35
36     // Originator
37     [Serializable( )]
38     class Originator {
39       List <string> state = new List <string> ( );
40
41       public void Operation (string s) {
42         state.Add(s);
43         foreach (string line in state)
44             Console.WriteLine(line);
45         Console.WriteLine("=======================");
46       }
47
48       // The reference to the memento is passed back to the client
49       public Memento SetMemento( ) {
50         Memento memento = new Memento( );
51         return memento.Save(state);
52       }
53
54       public void GetMemento(Memento memento) {
55         state = (List <string>) memento.Restore( );
56       }
57     }
58

Example 10-3. Memento pattern theory code (continued)



246 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

59     [Serializable( )]
60     // Serializes by deep copy to memory and back
61     class Memento {
62       MemoryStream stream = new MemoryStream( );
63       BinaryFormatter formatter = new BinaryFormatter( );
64
65       public Memento Save (object o) {
66         formatter.Serialize(stream, o);
67         return this;
68       }
69
70       public object Restore( ) {
71         stream.Seek(0, SeekOrigin.Begin);
72         object o = formatter.Deserialize(stream);
73         stream.Close( );
74         return o;
75       }
76     }
77
78     class Caretaker {
79       public Memento Memento {get; set;}
80     }
81
82     class Simulator : IEnumerable {
83
84       string [] lines = {
85           "The curfew tolls the knell of parting day",
86           "The lowing herd winds slowly o'er the lea",
87           "Uh hum uh hum",
88           "*UNDO",
89           "The plowman homeward plods his weary way",
90           "And leaves the world to darkness and to me."};
91
92       public IEnumerator GetEnumerator ( ) {
93         foreach( string element in lines )
94             yield return element;
95       }
96     }
97
98   }
99  /* Output

100  The curfew tolls the knell of parting day
101  =======================
102  The curfew tolls the knell of parting day
103  The lowing herd winds slowly o'er the lea
104  =======================
105  The curfew tolls the knell of parting day
106  The lowing herd winds slowly o'er the lea
107  Uh hum uh hum
108  ======================
109  The curfew tolls the knell of parting day
110  The lowing herd winds slowly o'er the lea
111  The plowman homeward plods his weary way
112  =======================

Example 10-3. Memento pattern theory code (continued)



Memento Pattern | 247

The Memento class uses the .NET memory streams and binary formatters to copy data
to memory and get it back again. If the data is very large, it could be copied to disk
or to the Internet instead.

Example: TicTacToe
Creating an example of chess game or a live Internet computer game would be a bit
of a challenge in a book like this, so we’ll revert to TicTacToe, which reveals many of
the same issues. The game is played on a board between two players. In this exam-
ple, we’ll consider a TicTacToe tutor that pits a human player against the computer.
The player learns the better strategies by trial and error and therefore should be able
to go back and try different moves if he/she is not winning.

This is an ideal situation for the Memento pattern. The Originator is the board, and its
state is saved at every turn. The Caretaker keeps an array of Mementos so that it can roll
back more than one turn. See Example 10-4. Its output shows that after a very bad
move (line 160), the player rolled back two Mementos and continued with a better
strategy.

113  The curfew tolls the knell of parting day
114  The lowing herd winds slowly o'er the lea
115  The plowman homeward plods his weary way
116  And leaves the world to darkness and to me.
117  =======================
118  */

Example 10-4. Memento pattern example code—TicTacToe

1      using System;
2      using System.IO;
3      using System.Runtime.Serialization;
4      using System.Runtime.Serialization.Formatters.Binary;
5      using System.Collections;
6
7        // Memento Pattern                   Judith Bishop  Sept 2007
8        // Simulates TicTacToe, where the game can roll back any
9        // specified number of moves. Mementos are kept at each move.

10
11        class MementoPattern {
12
13          // Client
14          static void Main( ) {
15            Console.WriteLine("Let's practice TicTacToe");
16            Console.WriteLine("Commands are:\n1-9 for a position\n"+
17                "U-n where n is the number of moves to undo"+
18                "\nQ to end");
19            Game game = new Game( );
20
21            // References to the mementos
22            Caretaker [] c = new Caretaker [10];
23

Example 10-3. Memento pattern theory code (continued)



248 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

24          game.DisplayBoard( );
25          int move = 1;
26          // Iterator for the moves
27          Simulator simulator = new Simulator( );
28
29          foreach (string command in simulator) {
30            Console.Write("Move "+move+" for "+game.Player+": "+command);
31            if (command[0]=='Q') break;
32
33            // Save at the start of each move
34            c[move] = new Caretaker( );
35            c[move].Memento = game.Save( );
36
37            // Check for undo
38            if (command[0]=='U') {
39              int back = Int32.Parse(command.Substring(2,1));
40              if (move-back >0)
41                game.Restore(c[move-back].Memento);
42              else
43               Console.WriteLine("Too many moves back");
44            move = move - back - 1;
45            }
46            // Otherwise play
47            else
48              game.Play(Int32.Parse(command.Substring(0,1)));
49
50        // Update board and move number
51        game.DisplayBoard( );
52        move++;
53      }
54      Console.WriteLine("Thanks for playing");
55    }
56
57    // Originator
58    [Serializable( )]
59    class Game {
60      // Nine spaces
61      char [] board = {'X','1','2','3','4','5','6','7','8','9'};
62      public char Player {get; set;}
63
64      public Game ( ) {
65        Player = 'X';
66      }
67
68      public void Play (int pos) {
69        board[pos] = Player;
70        if (Player == 'X') Player = 'O'; else Player = 'X';
71        // Preserve player
72        board[0] = Player;
73      }
74
75      // The reference to the memento is passed back to the client
76      public Memento Save( ) {

Example 10-4. Memento pattern example code—TicTacToe (continued)



Memento Pattern | 249

77        Memento memento = new Memento( );
78        return memento.Save(board);
79      }
80
81      public void Restore(Memento memento) {
82        board = (char []) memento.Restore( );
83        Player = board[0];
84      }
85
86      public void DisplayBoard( ) {
87        Console.WriteLine( );
88        for (int i = 1; i<=9; i+=3) {
89          Console.WriteLine(board[i]+" | "+board[i+1]+" | "+board[i+2]);
90          if (i<6) Console.WriteLine("---------");
91        }
92      }
93    }
94
95    [Serializable( )]
96    // Serializes by deep copy to memory and back
97    class Memento {
98      MemoryStream stream = new MemoryStream( );
99      BinaryFormatter formatter = new BinaryFormatter( );

100
101      public Memento Save (object o) {
102        formatter.Serialize(stream, o);
103        return this;
104      }
105
106      public object Restore( ) {
107        stream.Seek(0, SeekOrigin.Begin);
108        object o = formatter.Deserialize(stream);
109        stream.Close( );
110        return o;
111      }
112    }
113
114    class Caretaker {
115      public Memento Memento {get; set;}
116    }
117
118    class Simulator : IEnumerable {
119
120      string [] moves = {"5","3","1","6","9","U-2","9","6","4","2","7","8","Q"};
121
122      public IEnumerator GetEnumerator ( ) {
123        foreach( string element in moves )
124            yield return element;
125      }
126    }
127
128    }

Example 10-4. Memento pattern example code—TicTacToe (continued)



250 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

129  /* Output
130  Let's practice TicTacToe
131  Commands are: 1-9 for a position U-n where n is the number of moves to undo Q to end
132
133
134  1 | 2 | 3
135  ---------
136  4 | 5 | 6
137 ---------
138  7 | 8 | 9
139  Move 1 for X: 5
140  1 | 2 | 3
141  ---------
142  4 | X | 6
143  ---------
144 7  | 8 | 9
145  Move 2 for O: 3
146  1 | 2 | O
147  ---------
148  4 | X | 6
149  ---------
150  7 | 8 | 9
151  Move 3 for X: 1
152  X | 2 | O
153  ---------
154  4 | X | 6
155  ---------
156  7 | 8 | 9
157  Move 4 for O: 6
158  X | 2 | O
159  ---------
160  4 | X | O
161 ---------
162  7 | 8 | 9
163  Move 5 for X: 9
164  X | 2 | O
165  ---------
166  4 | X | O
167 ---------
168  7 | 8 | X
169  Move 6 for O: U-2
170  X | 2 | O
171  ---------
172  4 | X | 6
173  ---------
174  7 | 8 | 9
175  Move 4 for O: 9
176  X | 2 | O
177  ---------
178  4 | X | 6
179  ---------
180  7 | 8 | O

Example 10-4. Memento pattern example code—TicTacToe (continued)



Memento Pattern | 251

Use
The Memento pattern is used extensively in scientific computing to save the state of
long-running computations; in computer games to save the state of play over a mat-
ter of hours or days; and in graphics toolkits to preserve the state of a display while
objects are being moved around.

181  Move 5 for X: 6
182  X | 2 | O
183  ---------
184  4 | X | X
185  ---------
186  7 | 8 | O
187  Move 6 for O: 4
188  X | 2 | O
189  ---------
190  O | X | X
191  ---------
192  7 | 8 | O
193  Move 7 for X: 2
194  X | X | O
195  ---------
196  O | X | X
197  ---------
198  7 | 8 | O
199  Move 8 for O: 7
200  X | X | O
201  ---------
202  O | X | X
203  ---------
204  O | 8 | O
205  Move 9 for X: 8
206  X | X | O
207  ---------
208  O | X | X
209  ---------
210  O | X | O
211  Move 10 for O: Q
212  Thanks for playing
213  */

Use the Memento pattern when…

• An object’s state must be saved to be restored later, and
• It is undesirable to expose the state directly.

Example 10-4. Memento pattern example code—TicTacToe (continued)



252 | Chapter 10: Behavioral Patterns: Visitor, Interpreter, and Memento

Exercise
1. Consider how the Memento pattern can be integrated into the Iterator pattern to

preserve the state of an iteration and restore it at any time.

Pattern Comparison
Though seemingly dissimilar, there are several ways in which we can compare these
three patterns.

Reusability
All three patterns aim to relieve the developer of repeatedly implementing com-
mon code. Once Visitors have been set up, they can be used with many different
kinds of object structures without change. The success rate for reusability will
depend on how much of the actual state the Visitor needs to be aware of. In our
examples, the Visitors were dependent only on the type of the elements, and not
on their contents, so a high degree of visitor reusability was obtained between
the theory example and the course example. The Interpreter pattern was specifi-
cally designed to make inputting structures data driven, by means of a Parse
method. In the Memento pattern, the Caretaker and Memento classes are data-
independent, and only the Originator needs to change for different
circumstances.

Working with structures
All the patterns are intended to work with structures. The Memento moves the
structure around as a whole, relying on serialization to do the traversing,
whereas Visitor and Interpreter require the developer to write the traversing
code. These patterns complement each other in that the traversing code is part of
the Visitor pattern, whereas getting the data into an object structure in the first
place is part of the Interpreter pattern.

Objects as arguments
The Visitor and Memento pattern pass objects around as part of their infrastruc-
ture. In the case of the Visitor, the Element object achieves polymorphism in the
double-dispatch implementation. In the Memento pattern, the Memento object
defined in the Caretaker is the reference to the state that is being saved or
restored. In a smaller way, the Interpreter pattern relies on a Context which
keeps the evolving state of the input that is being interpreted to output.

This concludes the discussion of the behavioral patterns as well as the set of classic
patterns as a whole. In Chapter 11, I summarize all the patterns and make some con-
cluding remarks.



253

Chapter 11 CHAPTER 11

The Future of Design Patterns11

This book has introduced and described design patterns, along with the advanced fea-
tures of C# 3.0, a modern programming language. In many cases, we have found that
the language offers substantial assistance in the implementation of the pattern. In this
final chapter, we look back at the patterns and what features they needed, and then
look forward to what researchers are grappling with for the next iteration of languages.

Summary of Patterns
It is time to collect together all the patterns along with the language features that
were used to implement them in this book. It is worth reiterating that in some cases
these implementations differ substantially from the traditional forms found with
Java, C++, and older C# versions. Thus, in Table 11-1 interpret the Language fea-
tures column as meaning “modern, good and desirable” rather than “fixed, standard
and only.” This table is a useful companion to all the theory code programs, which
can be found grouped on my web site for the book (http://patterns.cs.up.ac.za). In the
second column, the features in italics were used in an alternative implementation or
in the example, but not in the primary theory code. Most features are written in the
plural, but there may be only one instance of them, depending on the size of the sys-
tem the pattern is being applied to.

The table is ordered by features used so that you can get a feel for which are the
“easy” patterns to implement in terms of language knowledge; however, do not con-
fuse this criterion with the pattern itself being easy. My personal experience is that
the Adapter and Visitor patterns—which appear in the top half of the table—were
two of the most challenging to implement. The difficulties centered around the inter-
play of types, as both of these are aimed at decoupling types. In a strictly type
checked language, such as C#, considerable care has to be taken to get the parame-
ters and object instances to match up correctly, even without considering generics.



254 | Chapter 11: The Future of Design Patterns

Another way of looking at patterns is to examine which other patterns they interact
with or support. Although somewhat subjective, Table 11-2 gives some idea of the
pattern groupings from this angle.

Table 11-1. Summary of patterns and language features

Pattern Language features Optional and in the examples

Abstract Factory interfaces generic, generic constraints

Bridge interfaces extension methods

Builder interfaces generic, generic constraints

Decorator interfaces

Factory Method interfaces

Adapter interfaces, inheritance, delegates, anonymous functions, threads,
events

Proxy interfaces, private collections

State interfaces, selection statements

Strategy interfaces, selection statements generics, nullable types

Interpreter recursion, selection statements

Visitor interfaces, recursion reflection

Façade namespaces

Singleton private, nested classes, static property

Template Method method overriding

Command delegates

Mediator delegates threads

Observer interfaces, delegates, events threads

Flyweight interfaces, structs, collections, indexers implicit typing, initializers, anonymous types

Memento serialization, collections, indexers

Prototype cloning, serialization, collections, indexers

Chain of Responsibility generics, exceptions enumerated types, initializers

Composite interfaces, collections, generics, properties

Iterator enumerators, foreach, query expressions
(Linq)

generics, recursion

Table 11-2. Pattern interactions

Pattern Interacts with or supports

Abstract Factory Bridge, Factory Method, Prototype, Singleton

Adapter

Bridge Abstract Factory

Builder Composite

Chain of Responsibility Composite



Summary of Patterns | 255

It is not surprising that the patterns with the most interactions are those that create
and manage complex structures: Composite, Flyweight, and Abstract Factory. Many
of the other patterns rely on these when they have more than a single type to deal
with. Adapter and Proxy are not listed as having any interplays, but recall that they
were also two of the patterns that came in multiple designs that were related to each
other.

A feature of this book has been the examples that illustrate each and every pattern.
In several cases, the examples have been carried over several patterns, illustrating the
interplays described above. In this way, I was able to strike a balance between vari-
ety and continuity. In many of the exercises, further adaptations of the examples
using other patterns are suggested. Specifically, the Singleton pattern has not been
used much in the book, and it would be a good one to try out with some of the exist-
ing programs. For ease of reference, Table 11-3 lists the examples and the patterns
they are used in.

Command Memento, Composite

Composite Builder, Decorator, Flyweight, Interpreter, Visitor, Chain of Responsibility, Command,
Iterator

Decorator Composite, Strategy

Façade Singleton

Factory Method Abstract Factory, Template Method

Flyweight Composite, Interpreter, Strategy, State

Interpreter Composite, Flyweight, Visitor

Iterator Visitor, Memento, Composite

Mediator Observer

Memento Iterator, Command

Observer Mediator

Prototype Abstract Factory

Proxy

Singleton Façade, Abstract Factory

State Flyweight

Strategy Decorator, Flyweight, Template Method

Template Method Factory Method, Strategy

Visitor Iterator, Composite, Interpreter

Table 11-3. Examples illustrating patterns

Example

Blogs Observer

Chat Room Mediator

Table 11-2. Pattern interactions (continued)

Pattern Interacts with or supports



256 | Chapter 11: The Future of Design Patterns

Exercises
Summarizing and tabulating are good ways to come to grips with the pattern list.
Here are two more to try:

1. Create a table of patterns with a one sentence description of their roles.

2. Create a table of patterns listing at most four major players (no duplicates and
ignoring Client).

A Future for Design Patterns
I’ll conclude this book with some observations about design patterns and where they
are heading.* As we have seen, a design pattern is a formal mechanism of document-
ing solutions to reoccurring software design problems. Christopher Alexander first
introduced the concept of design patterns in civil architecture in 1977; they were
later adapted to software design. The academic and commercial interest in software
design patterns has grown dramatically over the last few years, and design patterns
have been cataloged by a number of researchers.

Design patterns are mostly seen as solutions to software design issues. They are, of
course, not the only solution to software design, and they should not be used to the
exclusion of all others. Component-based design, software architecture, aspect-
oriented programming, and refactoring also have a place. Viewed against the larger

Course Rules Visitor, Interpreter

Family Tree Iterator

Gucci and Poochy (manufacturing) Abstract Factory, Builder

Menu system Command

Mirrors Interpreter

Photo decorator, Photo Library,
Photo Groups, Photo sets

Decorator, Composite, Flyweight, Façade, Prototype, Adapter

RCP Game, Tic-Tac-Toe game State, Memento

Seabird Adapter

Sorting animator Strategy, Template Method

Sourcing avocados Factory Method

SpaceBook, Openbook, Coolbook Proxy, Bridge, Adapter

Trusty Bank Chain of Responsibility

* Thanks to Alastair von Leeuwen for researching this topic.

Table 11-3. Examples illustrating patterns (continued)

Example



A Future for Design Patterns | 257

backdrop of software engineering, design patterns can be seen to present some of
their own challenges:

Traceability
The traceability of a design pattern is hard to maintain when programming lan-
guages offer poor support for the underlying patterns. The physical implementa-
tion of a design pattern in a programming language can be scattered across a
number of classes and thus hard to trace. In this respect, the implementations in
this book have made considerable strides by using some of the more compact
features of C#, such as delegates and query expressions.

Reusability
Design patterns are used and reused in the design of a software system, but with
little or no language support, developers must implement the patterns again and
again in a physical programming language. A design pattern does not give a
developer the same benefits that a component does, which can encapsulate
behavior and be reused as is.

Writability
Some design patterns have several methods with trivial behavior. Without good
programming tools, it can be tedious to write all this code and maintain it. Once
again, more compact and powerful language features can alleviate the program-
mer’s burden.

Maintainability
Using multiple patterns can lead to a large cluster of mutually dependent classes.
Mutually dependent classes can lead to maintainability problems when imple-
mented in a traditional object-oriented programming language.

Current research is investigating how to transform design patterns into reusable arti-
facts so that developers won’t have to implement the same patterns over and over. In
1997, Bertrand Meyer defined reusability as “the ability of software elements to serve
for the construction of many different applications.” In the context of design pat-
terns, a specific language feature, a language library, or a component could solve the
pattern implementation reusability problem. Meyer goes on to state that a design
pattern “is componentizable if it is possible to produce a reusable component, which
provides all the functions of the pattern” and that “[a] successful pattern cannot just
be a book description: it must be a software component, or a set of components.”
This work is ongoing.

We have also seen in the course of this book that languages are continually evolving.
The Iterator pattern is now fully supported in C# 3.0, and there are good ideas for a
Singleton pattern. Others may follow, and pattern and language integration is a fruit-
ful area for research.



258 | Chapter 11: The Future of Design Patterns

Concluding Remarks
This book has given you a tour through 23 design patterns (some with extra varia-
tions), 25 C# features, 20 examples, and 25 theory codes. Now, you are ready to reap
the benefits of design patterns in C# 3.0. Design patterns offer a number of benefits
as they do the following:

• Promote design reuse

• Form a common vocabulary and improve communication within and across
software development teams

• Improve documentation

• Help developers restructure a system, regardless of whether it used them up
front

• Explicitly capture knowledge that experienced developers already understand
implicitly

• Facilitate training of new developers

• Transcend “programming-language-centric” viewpoints

• Exploit and bring out the best in programming languages

You may not have encountered these design benefits in your career yet, except of
course the last one, which is the subject of this book. Now, armed with the knowl-
edge and skills here, you will be able to apply each design pattern in the right place
and at the right time, knowing that it will be programmed correctly.



259

Appendix1

Pluggable Adapter Pattern Example Code—CoolBook
See the following code for an example of the Pluggable Adapter Pattern:

using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Drawing;
using System.Threading;

  // Adapter Pattern Example               Judith Bishop  Aug 2007
  // Sets up a CoolBook
  // This is D-J's as changed for the book
  class AdapterPattern {

   // class SpaceBookSystem {

   public delegate void InputEventHandler(object sender, EventArgs e, string s);

   // Adapter
   public class MyCoolBook : MyOpenBook {
     static SortedList<string, MyCoolBook> community =
         new SortedList<string, MyCoolBook>(100);
     Interact visuals;

     public MyCoolBook(string name) : base(name) {
       // Create interact on the relevant thread, and start it!
       new Thread(delegate( ) {
         visuals = new Interact("CoolBook Beta");
         visuals.InputEvent += new InputEventHandler(OnInput);
         visuals.FormClosed += new FormClosedEventHandler(OnFormClosed);
         Application.Run(visuals);
       }).Start( );
       community[name] = this;



260 | Appendix

       while (visuals == null) {
         Application.DoEvents( );
         Thread.Sleep(100);
       }

       Add("Welcome to CoolBook " + Name);
     }

     private void OnFormClosed(object sender, FormClosedEventArgs e) {
       community.Remove(Name);
     }

     private void OnInput(object sender, EventArgs e, string s) {
       Add("\r\n");
       Add(s, "Poked you");
     }

     public new void Poke(string who) {
       Add("\r\n");
       if (community.ContainsKey(who))
           community[who].Add(Name, "Poked you");
       else
           Add("Friend " + who + " is not part of the community");
     }

     public new void Add(string message) {
       visuals.Output(message);
     }

     public new void Add(string friend, string message) {
       if (community.ContainsKey(friend))
           community[friend].Add(Name + " : " + message);
       else
           Add("Friend " + friend + " is not part of the community");
     }
   }

   // New implementation (Adaptee)
   public class Interact : Form {
     public TextBox Wall { get; set; }
     public Button Poke { get; set; }

     public Interact( ) { }

     public Interact(string title) {
       Control.CheckForIllegalCrossThreadCalls = true;
       Poke = new Button( );
       Poke.Text = "Poke";
       this.Controls.Add(Poke);
       Poke.Click += new EventHandler(Input);
       Wall = new TextBox( );
       Wall.Multiline = true;
       Wall.Location = new Point(0, 30);
       Wall.Width = 300;



Appendix | 261

       Wall.Height = 200;
       Wall.AcceptsReturn = true;
       this.Text = title;
       this.Controls.Add(Wall);
     }

     public event InputEventHandler InputEvent;

     public void Input(object source, EventArgs e) {
       string who = Wall.SelectedText;
       if (InputEvent != null)
           InputEvent(this, EventArgs.Empty, who);
     }

     public void Output(string message) {
       if (this.InvokeRequired)
           this.Invoke((MethodInvoker)delegate( ) { Output(message); });
       else {
           Wall.AppendText(message + "\r\n");
           this.Show( );
       }
     }

     protected override void OnFormClosed(FormClosedEventArgs e) {
       // Remove the interact and CoolBook from the community here!
       base.OnFormClosed(e);
     }
   }

   // The RealSubject (Proxy pattern)
   // CANNOT CHANGE
   public class SpaceBook {
     static SortedList<string, SpaceBook> community =
         new SortedList<string, SpaceBook>(100);
     string pages;
     string name;
     string gap = "\n\t\t\t\t";

     static public bool Unique(string name) {
       return community.ContainsKey(name);
     }

     internal SpaceBook(string n) {
       name = n;
       community[n] = this;
     }

     internal string Add(string s) {
       pages += gap + s;
       return gap + "======== " + name + "'s SpaceBook =========\n" +
           pages +
           gap + "\n===================================";
     }



262 | Appendix

     internal string Add(string friend, string message) {
       return community[friend].Add(message);
     }

     internal void Poke(string who, string friend) {
       community[who].pages += gap + friend + " poked you";
     }
   }

   // Target (Adapter pattern)
   // CANNOT CHANGE
   public class MyOpenBook {

     SpaceBook myOpenBook;
     public string Name { get; set; }
     public static int Users { get; set; }

     public MyOpenBook(string n) {
       Name = n;
       Users++;
       myOpenBook = new SpaceBook(Name + "-" + Users);
     }

     public void Add(string message) {
       Console.WriteLine(myOpenBook.Add(message));
     }

     public void Add(string friend, string message) {
       Console.WriteLine(myOpenBook.Add(friend, Name + " : " + message));
     }

     public void Poke(string who) {
       myOpenBook.Poke(who, Name);
     }

     public void SuperPoke(string who, string what) {
       myOpenBook.Add(who, what + " you");
     }
   }

   // }
   // The Client

   static void Main( ) {

     MyCoolBook judith = new MyCoolBook("Judith");
     judith.Add("Hello world");

     MyCoolBook tom = new MyCoolBook("Tom");
     tom.Poke("Judith");
     tom.Add("Hey, We are on CoolBook");
     judith.Poke("Tom");
     Console.ReadLine( );
   }
 }



Appendix | 263

Prototype Pattern Example Code—Photo Archive
See the following code for an example of the Prototype Pattern:

Here is an
using System;
using System.Collections.Generic;
using System.IO;
using PrototypePattern;

namespace CompositePattern {

   // The Composite Pattern namespace
   // including the Share operations

// The Interface
  public interface IComponent <T> {
    void Add(IComponent <T> c);
    IComponent <T> Remove(T s);
    string Display(int depth);
    IComponent <T> Find(T s);
    IComponent <T> Share (T s,IComponent <T> home);
    string Name {get; set;}
  }

  // The Composite
  [Serializable( )]
  public class Composite <T> : IPrototype <IComponent <T>>, IComponent  <T> {
    List  <IComponent <T>> list;
    public string Name {get; set;}

    public Composite (string name)  {
      Name = name;
      list = new List <IComponent <T>> ( );
    }

    public void Add(IComponent  <T> c) {
      list.Add(c);
    }

    // Finds the item from a particular point in the structure
    // and returns the composite from which it was removed
    // If not found, return the point as given
    public IComponent <T> Remove(T s) {
      holder = this;
      IComponent <T> p = holder.Find(s);
      if (holder!=null) {
        (holder as Composite<T>).list.Remove(p);
        return holder;
      }
      else
        return this;
    }

    IComponent <T> holder=null;



264 | Appendix

    // Recursively looks for an item
    // Returns its reference or else null
    public IComponent <T>  Find (T s) {
      holder = this;
      if (Name.Equals(s)) return this;
      IComponent <T> found=null;
      foreach (IComponent <T> c in list)  {
        found = c.Find(s);
        if (found!=null)
          break;
      }
      return found;
    }

    public IComponent <T> Share (T set, IComponent <T> toHere) {
      IPrototype <IComponent <T>> prototype =
         this.Find(set) as IPrototype <IComponent <T>>;
      IComponent <T> copy = prototype.DeepCopy( ) as IComponent<T>;
      toHere.Add(copy);
      return toHere;
    }

    // Displays items in a format indicating their level in the composite structure
    public string Display(int depth) {
      String s = new String('-', depth) + "Set "+ Name +  " length :" + list.Count +
"\n";
      foreach (IComponent <T> component in list)
        s += component.Display(depth + 2);

    }
  }

  // The Component
  [Serializable( )]
  public class Component <T> : IPrototype <IComponent<T>>, IComponent <T> {
    public string Name {get; set;}
    public Component (string name)  {
      Name = name;
    }

    public void Add(IComponent <T> c) {
      Console.WriteLine("Cannot add to an item");
    }

    public IComponent <T>  Remove(T s) {
       Console.WriteLine("Cannot remove directly");
       return this;
    }

    public string Display(int depth) {
      return new String('-', depth) + Name+"\n";
    }



Appendix | 265

    public IComponent <T>  Find (T s) {
      if (s.Equals(Name)) return this;
      else
        return null;
    }

    public IComponent <T> Share (T set, IComponent  <T>toHere) {
      IPrototype <IComponent <T>> prototype =
         this.Find(set) as IPrototype <IComponent <T>>;
      IComponent <T> copy = prototype.Clone( ) as IComponent<T>;
      toHere.Add(copy);
      return toHere;
    }
  }
}

using System;
using System.Collections.Generic;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;
using CompositePattern;
using PrototypePattern;

//  Prototype Pattern Pattern    August 2007
//  Makes use of the Photo Library examples
//  Shares (i.e. deep copies) parts of the hierarchy, then makes changes

  // The Client
  class prototypePatternExample {

    static void Main ( ) {
      IComponent <string> album = new Composite<string> ("Album");
      IComponent <string> point = album;
      IComponent <string> archive = new Composite<string> ("Archive");
      string [] s;
      string command, parameter;
      // Create and manipulate a structure
      StreamReader instream = new StreamReader("prototype.dat");
      do {
        string t= instream.ReadLine( );
        Console.WriteLine("\t\t\t\t"+t);
        s = t.Split( );
        command = s[0];
        if (s.Length>1) parameter = s[1]; else parameter = null;
        switch (command) {
        case "AddSet" :
           IComponent <string> c = new Composite <string> (parameter);
          point.Add(c);
          point = c;
          break;



266 | Appendix

        case "AddPhoto" :
           point.Add(new Component <string> (parameter));
          break;
        case "Remove" :
           point = point.Remove(parameter);
          break;
        case "Find" :
           point = album.Find(parameter);
           break;
        case "Display" :
           if (parameter==null)
            Console.WriteLine(album.Display(0));
          else
            Console.WriteLine(archive.Display(0));
          break;
        case "Archive" :
           archive = point.Share(parameter,archive); break;
        case "Retrieve" :
           point = archive.Share(parameter,album); break;
        case "Quit" :
           break;
        }
      } while (!command.Equals("Quit"));
    }
  }
/*Output
  AddSet Home
        AddPhoto Dinner.jpg
        AddSet Pets
        AddPhoto Dog.jpg
        AddPhoto Cat.jpg
        Find Album
        AddSet Garden
        AddPhoto Spring.jpg
        AddPhoto Summer.jpg
        AddPhoto Flowers.jpg
        AddPhoto Trees.jpg
        Display
Set Album length :2
--Set Home length :2
----Dinner.jpg
----Set Pets length :2
------Dog.jpg
------Cat.jpg
--Set Garden length :4
----Spring.jpg
----Summer.jpg
----Flowers.jpg
----Trees.jpg

        Find Pets
        Archive Pets
        Display Archive
Set Archive length :1



Appendix | 267

--Set Pets length :2
----Dog.jpg
----Cat.jpg

        Find Album
        Remove Home
        Find Album
        Remove Garden
        Display
Set Album length :0

        Retrieve Pets
        Display
Set Album length :1
--Set Pets length :2
----Dog.jpg
----Cat.jpg

        Quit
*/

Iterator Pattern Example Code—Family Tree
See the following code for an example of the Iterator Pattern:

using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;

  class Person {
    public Person( ) {}
    public string Name {get; set;}
    public int Birth {get; set;}

    public Person (string name, int birth) {
      Name = name;
      Birth = birth;
    }

    public override string ToString ( ) {
      return ("["+Name+", "+Birth+"]");
    }
  }

  class Node <T> {
    public Node ( ) {}
    public Node <T> Left{get; set;}
    public Node <T> Right {get; set;}
    public T Data {get; set;}



268 | Appendix

    public Node (T d, Node <T> left, Node <T> right) {
      Data = d;
      Left = left;
      Right = right;
    }
  }

  // T is the data type. The Node type is built-in.
  class Tree <T> {
    Node <T> root;
    public Tree( ) {}
    public Tree (Node <T> head) {
      root = head;
    }

    public IEnumerable <T> Preorder {
      get {return ScanPreorder (root);}
    }

    // Enumerator with Filter
    public IEnumerable <T> Where (Func <T, bool> filter) {
      foreach (T p in ScanPreorder(root))
          if (filter(p)==true)
              yield return p;
    }

    // Enumerator with T as Person
    private IEnumerable <T> ScanPreorder (Node <T> root) {
      yield return root.Data;
      if (root.Left !=null)
          foreach (T p in ScanPreorder (root.Left))
              yield return p;
      if (root.Right !=null)
          foreach (T p in ScanPreorder (root.Right))
              yield return p;
    }
  }

  class IteratorPattern {

    // Iterator Pattern for a Tree        Judith Bishop  Sept 2007
    // Shows two enumerators using links and recursion

    static void Main( ) {

      var family = new Tree <Person> (new Node <Person>
          (new Person ("Tom", 1950),
               new Node <Person> (new Person ("Peter", 1976),
                   new Node <Person>
                       (new Person ("Sarah", 2000), null,
                   new Node <Person>
                       (new Person ("James", 2002), null,
                        null) // no more siblings James
                   ),



Appendix | 269

               new Node <Person>
                   (new Person ("Robert", 1978), null,
               new Node <Person>
                   (new Person ("Mark", 1980),
                    new Node <Person>
                        (new Person ("Carrie", 2005), null, null),
                         null) // no more siblings Mark
               )),
          null) // no siblings Tom
      );

      Console.WriteLine("Full family");
      foreach (Person p in family.Preorder)
          Console.Write(p+"  ");
      Console.WriteLine("\n");

      // Older syntax
      var selection = family.
          Where(p=> p.Birth > 1980);

      // New syntax
      selection = from p in family
          where p.Birth > 1980
          orderby p.Name
          select p;

      Console.WriteLine("Born after 1980 in alpha order");
      foreach (Person p in selection)
          Console.Write(p+"   ");
      Console.WriteLine("\n");
    }

  }

Observer Pattern Example Code—Blogs
See the following code for an example of the Observer Pattern:

using System;
using System.Collections.Generic;
using System.Collections;
using System.Threading;
using System.Windows.Forms;
using System.Drawing;

  class ObserverPattern {

    // Observer Pattern                          Judith Bishop  Sept 2007
    // Demonstrates blog updates. Observers can subscribe and unsubscribe
    // online through a GUI.



270 | Appendix

    // State type
    public class Blogs {
      public string Name {get; set;}
      public string Topic {get; set;}

      public Blogs (string name, string topic) {
        Name = name;
        Topic = topic;
      }
    }

    public delegate void Callback (Blogs blog);

    // The Subject runs in a thread and changes its state
    // independently by calling the Iterator
    // At each change, it notifies its Observers
    // The Callbacks are in a collection based on blogger name

    class Subject {
      Dictionary <string,Callback> Notify = new Dictionary <string,Callback> ( );
      Simulator simulator = new Simulator( );
      const int speed = 4000;

      public void Go( ) {
        new Thread(new ThreadStart(Run)).Start( );
      }

      void Run ( ) {
        foreach (Blogs blog in simulator) {
          Register(blog.Name); // if necessary
          Notify[blog.Name](blog); // publish changes
          Thread.Sleep(speed); // milliseconds
        }
      }

      // Adds to the blogger list if unknown
      void Register (string blogger) {
        if (!Notify.ContainsKey(blogger)) {
          Notify[blogger] = delegate {};
        }
      }

      public void Attach(string blogger, Callback Update) {
        Register(blogger);
        Notify[blogger] += Update;
      }

      public void Detach(string blogger, Callback Update) {
        // Possible problem here
        Notify[blogger] -= Update;
      }
    }

    class Interact : Form {
      public TextBox wall ;



Appendix | 271

      public Button subscribeButton, unsubscribeButton ;
      public TextBox messageBox;
      string name;

      public Interact(string name, EventHandler Input) {

        Control.CheckForIllegalCrossThreadCalls = true;
        // wall must be first!
        this.name = name;
        wall = new TextBox( );
        wall.Multiline = true;
        wall.Location = new Point(0, 30);
        wall.Width = 300;
        wall.Height = 200;
        wall.AcceptsReturn = true;
        wall.Dock = DockStyle.Fill;
        this.Text = name;
        this.Controls.Add(wall);

        // Panel must be second
        Panel p = new Panel( );
        messageBox = new TextBox( );
        messageBox.Width = 120;
        p.Controls.Add(messageBox);
        subscribeButton = new Button( );
        subscribeButton.Left = messageBox.Width;
        subscribeButton.Text = "Subscribe";
        subscribeButton.Click += new EventHandler(Input);
        p.Controls.Add(subscribeButton);
        unsubscribeButton = new Button( );
        unsubscribeButton.Left = messageBox.Width+subscribeButton.Width;
        unsubscribeButton.Text = "Unsubscribe";
        unsubscribeButton.Click += new EventHandler(Input);
        p.Controls.Add(unsubscribeButton);

        p.Height = subscribeButton.Height;
        p.Height = unsubscribeButton.Height;
        p.Dock = DockStyle.Top;
        this.Controls.Add(p);
      }

      public void Output(string message) {
        if (this.InvokeRequired)
            this.Invoke((MethodInvoker)delegate( ) { Output(message); });
        else {
            wall.AppendText(message + "\r\n");
            this.Show( );
        }
      }
    }

    // Useful if more observer types
    interface IObserver {
      void Update(Blogs state);
    }



272 | Appendix

    class Observer : IObserver {
      string name;
      Subject blogs;
      Interact visuals;

      public Observer (Subject subject, string name) {
        this.blogs = subject;
        this.name = name;
        visuals = new Interact(name,Input);
        new Thread((ParameterizedThreadStart) delegate(object o) {
          Application.Run(visuals);
        }).Start(this);

        // Wait to load the GUI
        while (visuals == null || !visuals.IsHandleCreated) {
          Application.DoEvents( );
          Thread.Sleep(100);
        }
        blogs.Attach("Jim",Update);
        blogs.Attach("Eric",Update);
        blogs.Attach("Judith",Update);
      }

      public void Input(object source, EventArgs e) {
        // Subscribe to the specified blogger
        if (source == visuals.subscribeButton) {
          blogs.Attach(visuals.messageBox.Text, Update);
          visuals.wall.AppendText("Subscribed to "+visuals.messageBox.Text+"\r\n");
        } else
        // Unsubscribe from the blogger
        if (source == visuals.unsubscribeButton) {
          blogs.Detach(visuals.messageBox.Text, Update);
          visuals.wall.AppendText("Unsubscribed from
               "+visuals.messageBox.Text+"\r\n");
       }
     }

     public void Update(Blogs blog) {
       visuals.Output("Blog from "+blog.Name+" on "+blog.Topic);
     }
   }

   // Iterator to supply the data
   class Simulator : IEnumerable {

     Blogs [] bloggers = {new Blogs ("Jim","UML diagrams"),
         new Blogs("Eric","Iterators"),
         new Blogs("Eric","Extension Methods"),
         new Blogs("Judith","Delegates"),
         new Blogs("Eric","Type inference"),
         new Blogs("Jim","Threads"),
         new Blogs("Eric","Lamda expressions"),
         new Blogs("Judith","Anonymous properties"),
         new Blogs("Eric","Generic delegates"),
         new Blogs("Jim","Efficiency")};



Appendix | 273

     public IEnumerator GetEnumerator ( ) {
       foreach( Blogs blog in bloggers )
           yield return blog;
     }
   }

static void Main ( ) {
     Subject subject = new Subject( );
     Observer Observer = new Observer(subject,"Thabo");
     Observer observer2 = new Observer(subject,"Ellen");
     subject.Go( );
   }

 }

Visitor Pattern Theory Code—Reflection
See the following code for an example of the Visitor Pattern:

using System;
using System.Reflection;
using ObjectStructure;

  // Visitor Pattern - Example    Judith Bishop October 2007
  // Sets up an object structure and visits it
  // in two ways - for counting using reflection

namespace ObjectStructure {

  class Element {
    public Element Next {get; set;}
    public Element Part {get; set;}
    public Element ( ) {}
    public Element (Element next) {
      Next = next;
    }
  }

  class ElementWithLink : Element {
    public ElementWithLink (Element part, Element next) {
      Next = next;
      Part = part;
    }
  }
}

  abstract class IVisitor {
    public void ReflectiveVisit(Element element) {
       // Use reflection to find and invoke the correct Visit method
       Type[] types = new Type[] {element.GetType( )};
       MethodInfo methodInfo = this.GetType( ).GetMethod("Visit", types);
       if (methodInfo != null)
                methodInfo.Invoke(this, new object[] {element});



274 | Appendix

       else Console.WriteLine("Unexpected Visit");
       }
    }

   // Visitor
  class CountVisitor : IVisitor {
    public int Count {get; set;}
    public void CountElements(Element element) {
        ReflectiveVisit(element);
        if (element.Part!=null) CountElements(element.Part);
        if (element.Next!=null) CountElements(element.Next);
     }

     public void Visit(ElementWithLink element) {
       Console.WriteLine("Not counting");
     }
     // Only Elements are counted
     public void Visit(Element element) {
           Count++;
    }
   }

  // Client
  class Client {

  static void Main( ) {
    // Set up the object structure
    Element objectStructure =
      new Element(
          new Element(
          new ElementWithLink(
           new Element(
                 new Element(
                   new ElementWithLink(
               new Element(null),
                 new Element(
                 null)))),
      new Element(
          new Element(
          new Element(null))))));

    Console.WriteLine ("Count the elements");
    CountVisitor visitor = new CountVisitor( );
    visitor.CountElements(objectStructure);
    Console.WriteLine("Number of Elements is: "+visitor.Count);
  }
}
/*
Count the elements
Not counting
Not counting
Number of Elements is: 9
*/



Appendix | 275

Interpreter Pattern Example Code—Course Rules
See the following code for an example of the Interpreter Pattern:

using System;

  // Interpreter Pattern Example           Judith Bishop  Oct 2007
  // Sets up an object structure and interprets it with given data

  static class ElementExtensions {
    public static string gap;

    public static void Print(this Element element) {
      Console.WriteLine(gap+element + " " + element.Weight);
      if (element.Part!=null) {
        gap+="  ";
        Print(element.Part.Next);
        gap = gap.Substring(2);
      }
      if (element.Next!=null) Print(element.Next);
    }

    public static int Lab {get; set;}
    public static int Test {get; set;}

    public static void Summarize(this Element element) {
      if (element is Lab) Lab += element.Weight;
      else if
           (element is Test) Test += element.Weight;
      else if ((element is Midterm || element is Exam)
           && element.Part==null) Test += element.Weight;
      if (element.Part!=null) Summarize(element.Part.Next);
      if (element.Next!=null) Summarize(element.Next);
    }

    public static int [] values;
    public static int  n;
    public static Context context;

    public static void SetUp (this Element element, Context c, int[] v) {
      context = c;
      context.Output=0;
      values = v;
      n = 0;
    }

    public static void Interpreter(this Element element) {

      if (element is Lab || element is Test) {
        context.Output += values[n]*element.Weight;
        n++;
      }



276 | Appendix

      else
      if ((element is Midterm || element is Exam)
          && element.Part==null) {
        context.Output += values[n]*element.Weight;
        n++;
     }

      if (element.Part!=null) Interpreter(element.Part.Next);
      if (element.Next!=null) Interpreter(element.Next);
    }
  }

 public class Element {
   public int Weight {get; set;}
   public Element Next {get; set;}
   public Element Part {get; set;}

   public virtual string Display( ) {
     return Weight+"%";
   }

   int GetNumber (Context context) {
     int atSpace = context.Input.IndexOf(' ');
     int number = Int32.Parse(context.Input.Substring(1,atSpace));
     context.Input = context.Input.Substring(atSpace+1);
     return number;
   }

   public void Parse (Context context) {
     string starters = "LTME";
     if (context.Input.Length>0 && starters.IndexOf(context.Input[0])>=0) {
       switch(context.Input[0]) {
         case 'L':
           Next=new Lab( );
           break;
         case 'T':
           Next=new Test( );
           break;
         case 'M':
           Next=new Midterm( );
           break;
         case 'E':
           Next = new Exam( );
           break;
       }
       Next.Weight = GetNumber(context);
       if (context.Input.Length>0 && context.Input[0]=='(') {
         context.Input = context.Input.Substring(1);
         Next.Part = new Element( );
         Next.Part.Parse(context);
         Element e = Next.Part;
         while (e!=null) {



Appendix | 277

           e.Weight = e.Weight * Next.Weight / 100;
           e = e.Next;
         }
         context.Input = context.Input.Substring(2);
       }
       Next.Parse(context);
     }
   }
 }

 class Course : Element {
   public string Name {get; set;}
   public Course (Context context) {
     Name = context.Input.Substring(0,6);
     context.Input = context.Input.Substring(7);
   }
   public override string Display( ) {
     return Name;
   }
 }

 class Lab : Element {
 }

 class Test : Element {
 }

 class Midterm : Element {
 }

 class Exam : Element {
 }

 public class Context {
   public string Input {get; set;}
   public double Output {get; set;}

   public Context(string c) {
     Input = c;
     Output = 0;
   }
 }

 static class IntArrayExtension {
   public static string Display (this int[] a) {
     string s = "[";
     foreach (int i in a)
         s+=i+", ";
     return s.Substring(0,s.Length-2)+"]";
   }
 }

 class InterpreterPattern {



278 | Appendix

   static void Main( ) {
     string rules = "COS333 L2 L2 L2 L2 L2 M25 (L40 T60 ) L10 E55 (L28 T73 ) ";
     int [][] values = new [] {new [] {80,0,100,100,85,51,52,50,57,56},
                               new [] {87,95,100,100,77,70,99,100,75,94},
                               new [] {0,55,100,65,55,75,73,74,71,72}};

     Context context;
     Console.WriteLine (rules+"\n");

     context = new Context (rules);
     Element course = new Course(context);
     course.Parse(context);

     Console.WriteLine("Visitor 1 - Course structure\n");
     course.Print( );

     course.Summarize( );
     Console.WriteLine ("\n\nVisitor 2 - Summing the weights\nLabs "
                        +ElementExtensions.Lab + "% and Tests "
                        +ElementExtensions.Test + "%");

     Console.WriteLine("\n\nVisitor 3 (Interpreter) ");
     foreach (int [] student in values) {
       Console.Write(student.Display( ));
       course.SetUp(context, student);
       course.Interpreter( );
       Console.WriteLine(" = "+context.Output/100);
     }
   }
 }

/* Output
COS333 L2 L2 L2 L2 L2 M25 (L40 T60 ) L10 E55 (L28 T73 )

Visitor 1 - Course structure

Course 0
Lab 2
Lab 2
Lab 2
Lab 2
Lab 2
Midterm 25
  Lab 10
  Test 15
Lab 10
Exam 55
  Lab 15
  Test 40

Visitor 2 - Summing the weights
Labs 45% and Tests 55%



Appendix | 279

Visitor 3 (Interpreter)
[80, 0, 100, 100, 85, 51, 52, 50, 57, 56] = 56.15
[87, 95, 100, 100, 77, 70, 99, 100, 75, 94] = 89.88
[0, 55, 100, 65, 55, 75, 73, 74, 71, 72] = 70.8
*/

Interpreter Pattern Example Code—Mirrors
See the following code for another example of the Intrepreter Pattern:

using System;
using System.Xml;
using System.Reflection;
using System.Collections;
using System.Collections.Generic;
using System.Windows.Forms;

  public class Mirror {

     // Mirrors                          Hans Lombard  June 2006, revised Sept 2007
     // Based on Views and Views-2 by Nigel Horspool, Judith Bishop, and D-J Miller
     // A general-purpose interpreter for any .NET API
     // Reads XML and executes the methods it represents
     // This example assumes the Windows Form API only in the final line
     // where Application.Run is called

    Stack objectStack;
    List<Command> commands;
    public object CurrentObject { get { return objectStack.Peek( ); } }
    public XmlTextReader Reader { get; set; }
    public object LastObject { get; set; }

    public Mirror(string spec) {
      objectStack = new Stack( );
      objectStack.Push(null);

      // Register the commands
      commands = new List<Command>( );
      commands.Add(new ElementCommand( ));
      commands.Add(new EndElementCommand( ));
      commands.Add(new AttributeCommand( ));

      Reader = new XmlTextReader(spec);
      while (Reader.Read( )) {
        InterpretCommands( );

        bool b = Reader.IsEmptyElement;
        if (Reader.HasAttributes) {
          for (int i = 0; i < Reader.AttributeCount; i++) {
            Reader.MoveToAttribute(i);
            InterpretCommands( );
          }
        }



280 | Appendix

        if (b) Pop( );
      }
    }

    public void InterpretCommands( ) {

      // Run through the commands and interpret
     foreach (Command c in commands)
         c.Interpret(this);
   }

   public void Push(object o) {
     objectStack.Push(o);
   }

   public void Pop( ) {
     LastObject = objectStack.Pop( );
   }

   public object Peek( ) {
     return objectStack.Peek( );
   }
 }

 public abstract class Command {
   public abstract void Interpret (Mirror context);
 }

 // Handles an XML element. Creates a new object that reflects the XML
 // element name.
 public class ElementCommand : Command {
   public override void Interpret (Mirror context) {
     if (context.Reader.NodeType != XmlNodeType.Element) return;
     Type type = GetTypeOf(context.Reader.Name);
     if (type == null) return;
     object o = Activator.CreateInstance(type);

     if (context.Peek( ) != null)
         ((Control)context.Peek( )).Controls.Add((Control)o);
     context.Push(o);
   }

   public Type GetTypeOf(string s) {
     string ns = "System.Windows.Forms";
     Assembly asm = Assembly.Load("System.Windows.Forms, Version=2.0.0.0,
         Culture=neutral, PublicKeyToken=b77a5c561934e089");
     Type type = asm.GetType(ns + "." + s);
     return type;
   }
 }

 // Handles an XML end element. Removes the element from the object stack.
 public class EndElementCommand : Command {



Appendix | 281

   public override void Interpret (Mirror context) {
     if (context.Reader.NodeType != XmlNodeType.EndElement) return;
     context.Pop( );
   }
 }

 // Applies attributes to the current object. The attributes reflect to the
 // properties of the object.
 public class AttributeCommand : Command {
   public override void Interpret (Mirror context) {
     if (context.Reader.NodeType != XmlNodeType.Attribute) return;
     SetProperty(context.Peek( ), context.Reader.Name, context.Reader.Value);
   }

   public void SetProperty(object o, string name, string val) {
     Type type = o.GetType( );
     PropertyInfo property = type.GetProperty(name);

     // Find an appropriate property to match the attribute name
     if (property.PropertyType.IsAssignableFrom(typeof(string))) {
       property.SetValue(o, val, null);
     } else if (property.PropertyType.IsSubclassOf(typeof(Enum))) {
       object ev = Enum.Parse(property.PropertyType, val, true);
       property.SetValue(o, ev, null);
     } else {
       MethodInfo m = property.PropertyType.GetMethod("Parse", new Type[] {
           typeof(string) });
       object newval = m.Invoke(null /*static */, new object[] { val });
       property.SetValue(o, newval, null);
     }
   }
 }

 public class MainClass {
   public static void Main( ) {
     Mirror m = new Mirror("calc_winforms.xml");
     Application.Run((Form)m.LastObject);
   }
 }

/* Input
  <Form Text="Currency calculator" Width="250" Height="180">
    <Label Top="10" Text="Paid on hols" />
    <TextBox Top="10" Left="100" Name="eurobox" />
    <Label Top="40" Text="Charged" />
    <TextBox Top="40" Left="100" Name="GBPbox" />
    <Label Top="70" Text="Exchange rate is"   />
    <TextBox Top="70" Left="100" Name="ratebox" />
    <Button Top="100" Name="equals" Text "="  />
<Button Top="100" Left="100" Name="clear" Text="Reset" />
  </Form>
*/





283

Bibliography2

Agebro, E. and Cornils, A. “How to preserve the benefits of Design Patterns.” Pro-
ceedings of OOPLSA (1998): 134–143.

Alexander, C. et al. A Pattern Language, New York: Oxford University Press, 1977.

Alexandrescu, Andrei. Modern C++ Design: Generic Programming and Design Pat-
terns Applied. Boston, MA: Addison-Wesley Professional, 2001.

Arnout, Karine. “From Patterns to Components.” Ph.D. diss., Swiss Institute of
Technology, 2004.

Arnout, Karine and Meyer, Bertrand. “Pattern componentization: the factory exam-
ple.” Innovations in Systems and Software Technology: A NASA Journal 2, no. 2
(July 2006): 65–79.

Avgeriou, Paris and Zdun, Uwe. “Architectural patterns revisited—a pattern lan-
guage.” Proceedings of the 10th European Conference on Pattern Languages of
Programs (EuroPlop 2005): 1–39.

Bishop, Judith, Horspool, Nigel, and Worrall, Basil. “Experience in integrating Java
with C# and .NET.” Concurrency and Computation: Practice and Experience 17
(June 2005): 663–680.

Bishop, Judith. “Multi-platform user interface construction: a challenge for software
engineering-in-the-small.” Proceedings of the 28th International Conference on
Software Engineering (2006): 751–760.

Bosch, Jan. “Design Patterns as Language Constructs.” Journal of Object-Oriented
Programming 11, no. 2 (1998): 18–32.

Bosch, Jan. “Design Patterns & Frameworks: On the Issue of Language Support.”
Proceedings of the Workshop on Language Support for Design Patterns and
Object-Oriented Frameworks (LSDF), (ECOOP 1997): 133–136.

Budinski, F., Finnie, M., Yu, P., and Vlissides, J. “Automatic code generation from
design patterns.” IBM Systems Journal 35, no. 2 (1996): 151–171.



284 | Bibliography

Coplien, J. O. and Schmidt, D. C. Patterns Languages of Program Design. Boston,
MA: Addison-Wesley, 1995.

Chambers, C., Harrison, B., and Vlissides, J. O. “A Debate on Language and Tool
Support for Design Patterns.” Proceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (2000): 277–289.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. O. Design Patterns: Elements of
Reusable Object-Oriented Software. Boston, MA: Addison-Wesley, 1995.

Gil, J. and Lorenz, D. H. “Design Patterns vs. Language Design.” Proceedings of the
Workshop on Language Support for Design Patterns and Object-Oriented Frame-
works (LSDF), (ECOOP 1997): 108–111.

Meyer, Bertrand. Object-Oriented Software Construction, Second Edition. Upper
Saddle River, NJ: Prentice Hall, 1997.

Meyer, Bertrand and Arnout, Karine. “Componentization: the Visitor example.”
Computer 39, no. 7 (2006): 23–30.

Schmidt, Doug. “Using Design Patterns to Develop Reusable Object-Oriented Com-
munication Software.” Communications of the ACM 38, no. 10 (1995): 65–74.



285

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
Abstract Factory pattern, 122–129

Builder pattern, compared to, 137
constraints, 125
design, 123
example code, 126–128
exercises, 129
Gucci and Poochy example, 125–128
illustration, 122
implementation, 125–128
quiz, 124
role, 122
use, 128

Accelerate framework, 75
access modifiers, 24
accessors, 53
Adapter pattern, 74–92

Accelerate framework and, 76
CoolBook example, 87–90

example code, 259–262
exercises, 92
Façade pattern, compared to, 99
illustration, 74
implementation, 77–80
options for matching adapter and adaptee

interfaces, 76, 79
pluggable adapters, 85–87
Seabird example, 81–85
theory code, 78
two-way Adapters, 80
use, 91

addedBehavior operation, 11

addedState attribute, 11
Amazon.com’s 1-Click® system, 93
animation and sorting, 140
anonymous methods, 5
anonymous types, 6, 71
Archive command, 108
assembly, 26
authentication proxies, 24
Avocado Sourcing, 112–114

B
behavioral patterns, xvii, 139

Chain of Responsibility (see Chain of
Responsibility pattern)

Command pattern (see Command
pattern)

comparison, Chain of Responsibility and
Command patterns, 186

comparison, Mediator and Observer
patterns, 219

comparison, Strategy, Template Method,
and State patterns, 162

comparison, Visitor, Interpreter, and
Memento patterns, 252

Interpreter pattern (see Interpreter
pattern)

Iterator pattern (see Iterator pattern)
Mediator pattern (see Mediator pattern)
Memento pattern (see Memento pattern)
Observer pattern (see Observer pattern)
State pattern (see State pattern)
Strategy pattern (see Strategy pattern)



286 | Index

behavioral patterns (continued)
Template Method (see Template Method

pattern)
Visitor pattern (see Visitor pattern)

Blogs, 215
example code, 269–273

Bridge pattern, 36–46
design, 36
example, 39–45
exercise, 46
illustration, 36
implementation, 38
Proxy and Decorator patterns, compared

to, 46
quiz, 40
use, 46

Builder pattern, 129–137
Abstract Factory pattern, compared

to, 137
exercises, 137
illustration, 129
quiz, 131
role, 129
use, 137

C
C# 3.0, 5

access modifiers, 26
anonymous types, 71
delegates, 209
enumerated types, 171
events, 209
exceptions, 172
generic constraints, 125
generics, 52
IEnumerable and IEnumerator, 194
implicit typing, 70
implicitly typed arrays, 70
indexers, 66
initializing collections, 170
nullable types, 147
object and collection initializers, 71
properties and accessors, 53
query expressions, 195
structs, 65

C# language, xv, 5
Chain of Responsibility pattern, 164–175

Command pattern, compared to, 186
design, 165
example code, 172

exercises, 175
Handlers, 166
illustration, 164
implementation, 167–168
quiz, 166
role, 164
theory code, 167
Trusty Bank example, 168–174

different handlers, 174
use, 174

Chat Room, 205
class adapters, 76
class cloning, 102
cloning, 104
code examples, xix
Colleague class, 201
collection initializers, 71
Command pattern, 175–186

Chain of Responsibility pattern, compared
to, 186

design, 176
exercises, 186
illustration, 175
implementation, 178
Menu Handler example, 182–185
multireceiver commands, 180
quiz, 178
Receivers, 176
role, 175
theory code, 178

multireceiver version, 180–182
use, 185

Component class, 10
Composite pattern, 49–60

C# features used by, 49
comparison with Flyweight pattern, 72
design, 50
example, 56–59
exercises, 60
implementation, 51–56
quiz, 52
use, 59

constraints, 125
CoolBook, 87–90

example code, 259–262
Course Rules

example code, 275–279
creational patterns, xvii, 101

Abstract Factory pattern (see Abstract
Factory pattern)

Builder pattern (see Builder pattern)



Index | 287

comparison, Abstract Factory and Builder
patterns, 137

comparison, Singleton and Prototype
patterns, 120

factories, 122
Factory Method (see Factory Method

pattern)
Prototype pattern (see Prototype pattern)
Singleton pattern (see Singleton pattern)

D
Decorator class, 11
Decorator pattern, 9–22

design, 10
exercises, 21
graphics and, 20
I/O APIs and, 20
illustration, 9
implementation, 13
mobile applications and, 21
multiple components, 13
multiple decorators, 13
multiple operations, 13
.NET 3.0 and, 21
Photo Decorator example, 16–20
Proxy and Bridge patterns, compared

to, 46
quiz, 12
role, 9
theory code, 14
use, 20

design patterns, xv, 1–3
core patterns, 2
origins, 2
the three pattern groups, xvii
three groups, division into, 3

Design Patterns: Elements of Reusable
Object-Oriented Software, xvi, 2

Display method, 56

E
enumerated types, 171
enumerators, 190
Equals method, 56
example programs, 6
extension methods, 6
extrinsic state, 61

F
Façade pattern, 74, 93–99

Adapter pattern, compared to, 99
design, 93
exercises, 99
illustration, 93
implementation, 94–97

alternative implementations, 97
Novice Photo Library example, 98
quiz, 94
role, 93
theory code, 96–97
use, 98

factories, 122
Factory Method pattern, 101, 110–115

Avocado Sourcing example, 112–114
design, 111
example code, 113
exercises, 114
illustration, 110
implementation, 112–114
quiz, 112
role, 110
use, 114

Family Tree, 196–199
example code, 267–269

Find method, 56
Flyweight pattern, 49, 61–72

C# features used by, 49
comparison with Composite pattern, 72
design, 62
example, 67–70
exercises, 72
illustration, 61
implementation, 63–67
use, 71–72

from clause, 195

G
Gamma, Erich, xvi
generators, 190
generic constraints, 125
generics, 5, 52
GetEnumerator, 191
graphics

Decorator pattern and, 20



288 | Index

H
Handlers, 164, 166
has-a relationship, 11

I
I/O APIs and decorators, 20
IComponent interface, 11
IEnumerable and IEnumerator, 194
implicit typing, 6, 70
indexers, 66
inherited classes, 26
initializers, 71
Interpreter pattern, 233–242

Course Rules example
example code, 275–279

design, 235
parsing, 236

exercises, 242
illustration, 234

grammars, 234
XML description of a GUI, 234

implementation, 237–239
Mirrors example, 239–241

efficiency, 241
example code, 279–281

quiz, 236
use, 242
Visitor and Memento patterns, compared

to, 252
into clause, 195
intrinsic state, 61
is-a relationship, 11
ITarget interface, 76
Iterator pattern, 188–200

design, 190–192
exercises, 200
Family Tree example, 196–199

example code, 267–269
illustration, 188
implementation, 192–196
language support for, 218
LINQ code, 195
role, 188
theory code, 192
use, 199

iterators, 5

L
Lambda expressions, 6
let clause, 195
LINQ (Language INtegrated Query), 188,

193

M
Mac OS X Dock, 115
Mac OS X, revision for new processors, 75
Mediator pattern, 188, 200–210

Chat Room example, 205
classes, 201
design, 201
example chat room code, 206–208
exercises, 210
illustration, 200
implementation, 202–205
key points, 202
Observer pattern, compared to, 219
quiz, 202
role, 200
theory code, 202–204
use, 209

members, 26
Memento pattern, 242–252

design, 243
exercises, 252
illustration, 242
implementation, 244–247
quiz, 244
role, 242
theory code, 244–247
TicTacToe example, 247–251
use, 251
Visitor and Interpreter patterns, compared

to, 252
Menu Handler, 182–185
Mirrors, 239–241

efficiency, 241
multireceiver commands, 180

N
namespaces, 26, 52
nested and non-nested classes, 26
.NET, xv
nonterminals, 235



Index | 289

NormalState class, 151
Novice Photo Library, 98
nullable types, 6, 147

O
object adapters, 76
object initializers, 6, 71
object-oriented programming (OOP), 2
Observer pattern, 188, 210–217

Blogs example, 215
example code, 269–273

design, 211
exercises, 217
illustration, 210
implementation, 213–215
Mediator pattern, compared to, 219
multiplicity, 213
push and pull models, 212
quiz, 212
role, 210
use, 217

OOP (see object-oriented programming)
opaque façades, 97
OpenBook, 39–45
Operation, 10
orderby clause, 195

P
parsing, 236
partial types, 6
Photo Decorator, 16–20
Photo Group, 67–70
Photo Library, 56–59
pluggable Adapter pattern example

code, 259–262
pluggable Adapters, 85–87
programming examples, 6
properties, 53
Prototype pattern, 101–110

design, 102
exercises, 110
illustration, 102
implementation, 104–107
Photo Archive example, 108
quiz, 103
Singleton pattern compared to, 120
use, 109

Proxy pattern, 22–36

Decorator and Bridge patterns, compared
to, 46

design, 23–25
example, 29–34
exercises, 35
implementation, 24–29
quiz, 24
theory code, 26–29
use, 35

Q
query expressions, 6, 195

R
Receivers, 176
remote proxies, 24
requirements, xviii
Retrieve command, 108
RPC Game, 153–157

S
Seabird, 81–85
serialization, 104
Share method, 108
Singleton pattern, 115–120

design, 116
exercises, 120
illustration, 115
implementation, 117–118
Prototype pattern, compared to, 120
quiz, 117
role, 115
Singleton Façade example, 119
use, 119

smart proxies, 24
sorting algorithms, 139
Sorting Animator, 144–147
SpaceBook, 29–34
State pattern, 148–157

Context and State, 149
design, 149
example code, 153–157
exercises, 157
illustration, 149
implementation, 151–153
quiz, 150
role, 148



290 | Index

State pattern (continued)
RPC Game example, 153–157
Strategy and Template Method patterns,

compared to, 162
theory code, 151
use, 157

static façades, 98
Strategy pattern, 139–148

design, 140
example code, 144–147
exercises, 148
illustration, 139
implementation, 142

key points, 143
quiz, 141
role, 139
sorting and, 139
Sorting Animator example, 144–147
State and Template Method patterns,

compared to, 162
theory code, 142
use, 148

structs, 65
structural patterns, xvii, 8

Adapter pattern (see Adapter pattern)
Bridge pattern (see Bridge pattern)
comparison of Composite and Flyweight

patterns, 72
comparison of Decorator, Proxy, and

Bridge patterns, 46
comparison, Façade and Adapter

patterns, 99
Composite pattern (see Composite

pattern)
Decorator pattern (see Decorator pattern)
Façade pattern (see Façade pattern)
Flyweight pattern (see Flyweight pattern)
names and purposes, 8
Proxy pattern (see Proxy pattern)
uses, 9

T
Template Method pattern, 158–162

design, 158
example, 161
exercises, 162
illustration, 158
implementation, 161
quiz, 159
role, 158

Strategy and State patterns, compared
to, 162

use, 161
terminals, 235
TicTacToe, 247–251
transparent façades, 97
Trusty Bank, 168–174
two-way Adapters, 80
types, 26

U
UML (Unified Modeling Language), 3

class diagram notation, 4
Unified Modeling Language (see UML)
unshared state, 61

V
Views, 239
virtual proxies, 24
Visitor pattern, 220–233

Client, 223
design, 222
Element classes, 223
exercises, 233
illustration, 220
Interpreter and Memento patterns,

compared to, 252
quiz, 224
role, 220
use, 232

visitors, 222
Vistior pattern
Vlissides, John, xvi

W
where clause, 195

X
XML (eXtended Markup Language), 234

Y
yield return statement, 192



About the Author
Judith Bishop is a professor of computer science at the University of Pretoria, South
Africa. She specializes in the application of programming languages to distributed
systems and web-based technologies. She is internationally known as an advocate of
new technology, with books on Java and C# published in six languages. Judith
represents South Africa on IFIP TC2 on software and is a chair or a member of
numerous international conference committees and editorial boards.

Colophon
The animal on the cover of C# 3.0 Design Patterns is a greylag goose (Anser anser),
probably one of the first domesticated animals. Archaeological evidence suggests
that domestic geese lived in ancient Egypt and Rome 3,000 years ago.

Fairly large birds, usually weighing between 5–12 pounds, greylag geese have an
average wingspan of 59–66 inches and are generally 29–30 inches in length. Their
plumage is grayish-brown, their bellies are white, and their lower breasts are shaded
gray. Their bills are large and yellow, and their feet and legs are a pink, flesh-like
color. (Younger geese have gray legs and feet that turn pinker as they age.)

They are migratory birds that fly south or west in the winter to escape the harsh
weather. During the summer, they live in Scotland, Iceland, Scandinavia, as far east
as Russia, Poland, and Germany. In autumn, the geese in Iceland migrate to the
British Isles, while the rest of the greylag geese in Europe head to places like the
Netherlands, Spain, France, and East Africa.

A social bird, it travels long distances in groups, often in the familiar v-shape pattern.
Their groups range from small families to flocks with tens of thousands of geese.

The time at which their breeding season begins depends on their geographic location.
In Scotland, breeding starts in late April; in Iceland it starts in early May; and in
Europe, it starts earlier. During breeding season, greylag geese live in marshes and
fens—places with a lot of vegetation. Nests are built in high places to keep their eggs
safe from predators.

A mother can lay as many as 12 eggs, but she usually lays between 4 and 6. She incu-
bates the eggs for approximately 26 days. Once hatched, the goslings wait until they
are dry to leave the nest. Young birds feed themselves with their parents’ supervi-
sion. Twenty years is their average life expectancy.

Greylag geese thrive on grasses, roots, rhizomes of marsh plants, and small aquatic
animals. They also have a taste for some root crops—turnips, potatoes, and
carrots—a real concern for farmers in Europe.



Golden eagles, ravens, and hawks are among their predators in the sky; when on the
ground, they have to be vigilant for prowling dogs, foxes, and humans. Humans
hunt geese for their flavorful meat and their down, or soft feathers. Down is often
used to stuff pillows, blankets, and outdoor clothing.

Caesar, the Roman emperor, declared greylag geese as sacred in 390 B.C., and he
made it illegal to kill and consume them. Caesar credited them with saving his
empire from attack. He believed that when the Gauls tried to invade, the geeses’ loud
calls alerted the Romans and saved them from occupation.

The cover image is from Dover Animals Book. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.




	C# 3.0 Design Patterns
	Table of Contents
	Foreword
	Preface
	Why I Wrote This Book
	Who This Book Is For
	What You Need to Know
	How This Book Is Organized
	What You Need to Use This Book
	Finding What You Need
	Conventions Used in This Book
	Using Code Examples
	Comments and Questions
	Safari® Books Online
	Acknowledgments

	C# Meets Design Patterns
	About Patterns
	About UML
	About C# 3.0
	About the Examples

	Structural Patterns: Decorator, Proxy, and Bridge
	Decorator Pattern
	Role
	Illustration
	Design
	Implementation
	Example: Photo Decorator
	Use
	Exercises

	Proxy Pattern
	Role
	Illustration
	Design
	Implementation
	Example: SpaceBook
	Use
	Exercises

	Bridge Pattern
	Role
	Illustration
	Design
	Implementation

	Example: OpenBook
	Use
	Exercise

	Pattern Comparison

	Structural Patterns: Composite and Flyweight
	Composite Pattern
	Role
	Illustration
	Design
	Implementation
	Use
	Exercises

	Flyweight Pattern
	Role
	Illustration
	Design
	Implementation
	Example: Photo Group
	Use

	Exercises
	Pattern Comparison

	Structural Patterns: Adapter and Façade
	Adapter Pattern
	Role
	Illustration
	Design
	Implementation
	Two-Way Adapters
	Example: The Seabird
	Pluggable Adapters
	Example: CoolBook
	Use
	Exercises

	Façade Pattern
	Role
	Illustration
	Design
	Implementation
	Façade Alternatives
	Example: Novice Photo Library
	Use
	Exercises

	Pattern Comparison

	Creational Patterns: Prototype, Factory Method, and Singleton
	Prototype Pattern
	Role
	Illustration
	Design
	Implementation
	Example: Photo Archive
	Use
	Exercises

	Factory Method Pattern
	Role
	Illustration
	Design
	Implementation and Example: Avocado Sourcing
	Use
	Exercises

	Singleton Pattern
	Role
	Illustration
	Design
	Implementation
	Example: Singleton Façade
	Use
	Exercises

	Pattern Comparison

	Creational Patterns: Abstract Factory and Builder
	Abstract Factory Pattern
	Role
	Illustration
	Design
	Implementation and Example: Gucci and Poochy
	Use
	Exercises

	Builder Pattern
	Role
	Illustration
	Design
	Implementation
	Example
	Use
	Exercises

	Pattern Comparison

	Behavioral Patterns: Strategy, State, and Template Method
	Strategy Pattern
	Role
	Illustration
	Design
	Implementation
	Example: Sorting Animator
	Use
	Exercises

	State Pattern
	Role
	Illustration
	Design
	Implementation
	Example: RPC Game
	Use
	Exercises

	Template Method Pattern
	Role
	Illustration
	Design
	Implementation
	Example
	Use
	Exercises

	Pattern Comparison
	Pattern Comparison


	Behavioral Patterns: Chain of Responsibility and Command
	Chain of Responsibility Pattern
	Role
	Illustration
	Design
	Implementation
	Example: Trusty Bank
	Use
	Exercises

	Command Pattern
	Role
	Illustration
	Design
	Implementation
	Multireceiver commands

	Example: Menu Handler
	Use
	Exercises

	Pattern Comparison

	Behavioral Patterns: Iterator, Mediator, and Observer
	Iterator Pattern
	Role
	Illustration
	Design
	Implementation
	Example: Family Tree
	Use
	Exercises

	Mediator Pattern
	Role
	Illustration
	Design
	Implementation
	Example: Chat Room
	Use
	Exercises

	Observer Pattern
	Role
	Illustration
	Design
	Push and pull models

	Implementation
	Example: Blogs
	Use
	Exercises

	Pattern Discussion and Comparison
	Language Support for the Iterator Pattern
	Mediator and Observer Pattern Comparison


	Behavioral Patterns: Visitor, Interpreter, and Memento
	Visitor Pattern
	Role
	Illustration
	Design
	Implementation
	Example: Course Statistics
	Use
	Exercises

	Interpreter Pattern
	Illustration
	Grammars

	Design
	Parsing

	Implementation
	Example: Mirrors
	Efficiency

	Use
	Exercises

	Memento Pattern
	Role
	Illustration
	Design
	Implementation
	Example: TicTacToe
	Use
	Exercise

	Pattern Comparison

	The Future of Design Patterns
	Summary of Patterns
	Exercises

	A Future for Design Patterns
	Concluding Remarks

	Appendix
	Pluggable Adapter Pattern Example Code—CoolBook
	Prototype Pattern Example Code—Photo Archive
	Iterator Pattern Example Code—Family Tree
	Observer Pattern Example Code—Blogs
	Visitor Pattern Theory Code—Reflection
	Interpreter Pattern Example Code—Course Rules
	Interpreter Pattern Example Code—Mirrors

	Bibliography
	Index




