

Testing a Series 60
Application

Version 1.0
August 2002

S
E

R
I

E
S

P

L
A

T
F

O
R

M

60

Testing a Series 60 Application | 2

Version 1.0 | August 2002

Table of Contents

1. About This Document.. 5
1.1 Purpose .. 5
1.2 Audience .. 5

2. Introduction.. 5
3. Tools For Development... 6
4. The Engine/User Interface Architecture... 6
5. Application-Wide Testing Techniques ... 6

5.1 Following Coding Standards and Idioms ... 6
5.2 Implementing the Correct Exiting Mechanism ... 7
5.3 Handling Limited Amounts of Memory for Write Operations.................................... 7
5.4 Checking the Contents of Descriptors.. 7
5.5 Regression Testing .. 8
5.6 Debug Output ... 9
5.7 Specialist Macros ... 9

5.7.1 Assertions .. 9
5.7.2 Heap Operations ... 10
5.7.3 Test Invariant ... 10

6. Application Engine Testing Techniques .. 11
6.1 Use of Console Applications for Testing Engines .. 11

7. Application User Interface Testing Techniques 11
7.1 User Interface Component Creation and Testing .. 11
7.2 Debug Keys.. 12
7.3 Internationalization ... 12

8. Testing on Hardware ... 12
9. General Testing Perspectives... 13

9.1 Stress Testing .. 13
9.2 Recovery Testing ... 13
9.3 Volume Testing .. 13
9.4 Asynchronous Testing.. 13

Testing a Series 60 Application | 3

Version 1.0 | August 2002

Glossary Definitions

Term Meaning

MSVC Microsoft Visual C++™ the development environment used for
Series 60 C++ development

DLL Dynamic Link Library

SDK Software Developer Kit

Cleanup Stack Symbian OS mechanism for ensuring that failed memory allocations
do not cause memory leaks

Leave Symbian OS mechanism for exception handling

API Application Programming Interface

Testing a Series 60 Application | 4

Version 1.0 | August 2002

Legal Notices
Copyright © Nokia Corporation 2002. All rights reserved.

Reproduction, transfer, distribution or storage of part or all of the contents in this
document in any form without the prior written permission of Nokia is prohibited.

Nokia and Nokia Connecting People are registered trademarks of Nokia Corporation.
Other product and company names mentioned herein may be trademarks or tradenames
of their respective owners.

Nokia operates a policy of continuous development. Nokia reserves the right to make
changes and improvements to any of the products described in this document without
prior notice.

Under no circumstances shall Nokia be responsible for any loss of data or income or any
special, incidental, consequential or indirect damages howsoever caused.

The contents of this document are provided "as is". Except as required by applicable
law, no warranties of any kind, either express or implied, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose, are made in
relation to the accuracy, reliability or contents of this document. Nokia reserves the right
to revise this document or withdraw it at any time without prior notice.

Testing a Series 60 Application | 5

Version 1.0 | August 2002

1 . Ab o u t T h i s D oc u m e n t

1.1 Purpose
The following document is intended to give an overview of testing methodologies
available to the Series 60 developer.

Combining general software engineering mechanisms with Series 60-specific practices,
this document is not meant to be exhaustive, but rather, serve as a point of reference to
other, more in-depth sources.

1.2 Audience
There is a bias towards the Series 60 C++ developer due to the nature of the provided
debugging tools. However the general software engineering principles can be applied to
development in any language.

2 . I n t r oduc t i on
Smartphones are characterized by their limited hardware in terms of memory, screen
size and input methods. Consequently, software for a smartphone platform such as
Series 60 must be developed with these constraints in mind. This, in turn, will influence
testing aims and testing methodologies. Testing is one of the most vital parts of
application development and must be performed at all stages of the software
development life cycle. Before release to market, applications should undergo a
thorough and rigorous testing program. From a general perspective testing should be
performed with the initial software requirements in mind and be well planned. Due to the
modular nature of development, particularly from the object-oriented perspective so
prevalent on Series 60 Platform, testing should be performed on the individual units that
comprise an application and then be migrated to the application as a whole.

Testing a Series 60 Application | 6

Version 1.0 | August 2002

3 . To o l s f o r De ve l o pme n t
The development of Series 60 applications is undertaken utilizing the Series 60 emulator
and a development environment. For C++ applications, Microsoft Visual C++ (MSVC)
is currently the preferred environment. Java applications can be created using any
environment capable of generating MIDlets, for example Sun One Studio or Borland
JBuilder . Applications are built within the development environment of choice and can
then be run and tested within the emulator. The emulator is a representation of the target
platform and ensures that the majority of development takes place on a PC. However, it
is advisable to build and test applications for hardware as early and frequently as
possible, since differences can emerge. When developing for C++, building for the
emulator is performed using the Microsoft C++ compiler, while the GCC compiler carries
out target building.

4 . T h e E n g i ne / Us er I n te r f ac e Ar c h i t ec t ur e
Developers are advised to separate the application engine from the application user
interface when developing for Series 60. This serves to enhance portability between
Symbian OS-based devices and aids testing. The application engine is seen to contain
the data pertaining to the application and is likely to be implemented as a DLL with a
public interface so that it can potentially be used by other applications. A two-way
relationship exists between the user interface and engine. The user interface receives
input that can influence the state of data in the engine, while the user interface is drawn
with respect to the data in the engine.

Series 60 application development involves the bringing together of various different
aspects of software creation. Development teams can focus on a diverse set of tasks
ranging from creating user interface components to creating application engines, all of
which will need to interact seamlessly. Consequently, testing techniques emerge that
are relevant for the engine, the user interface, or both.

5 . Ap p l i ca t i o n - Wi d e Tes t i n g Tec h n i q u e s
Regardless of the task at hand, certain testing facilities are applicable to all Series 60
C++ applications and can range from simple, common-sense tasks that are often
overlooked, to more complex debugging routines and tools.

5.1 Following Coding Standards and Idioms
The naming conventions outlined within the Series 60 development documentation are
extremely useful for discovering the nature and behavior of variables and functions. For
example, seeing the prefix “i” in a variable name indicates that this variable is class
member data and should not be placed on the Cleanup Stack. While the appearance of a
trailing L at the end of a function implies that there is the potential for the function to
“Leave”. A developer is advised to create code that adheres to the coding conventions

USER INTERFACE

ENGINE

Testing a Series 60 Application | 7

Version 1.0 | August 2002

as this will aid interaction with other developers’ code and enhance readability,
particularly during code reviews and other such coding inspections. Following such
conventions can also reduce debugging time since a developer can instantly see how
particular variables and functions should be behaving if a defect has been traced to
them.

See also Series 60 SDK Documentation – Search: “Coding Conventions”

5.2 Implementing the Correct Exiting Mechanism
A Series 60 application can be exited in one of the following ways:-

! Using the right soft key

! Using the Options menu

! From the application task list

This is handled within a HandleCommandL() function, by using either the EEikCmdExit
or EAknCmdExit flag, depending on the context. When exiting via the softkey
EEikCmdExit is used; however, when the Options menu is employed, EAknCmdExit
should be used. The reason for this is because application embedding necessitates two
types of exit. On the one hand, there is the need to exit and return control to a parent
application (EEikCmdExit), on the other hand, there is the need to exit parent
applications as well (EAknCmdExit). Developers should note that the right soft key is
often also assigned the role of a “Back” key press through the EAknSoftkeyBack flag. A
context management mechanism must be implemented to distinguish between the use of
the right soft key for the purpose of exiting or performing a “Back” operation.

See also Series 60 SDK Documentation – Series 60 Application Framework Handbook:
“Application Exit and EEikCmdExit”

5.3 Handling Limited Amounts of Memory for Write Operations
Smartphones have a relatively small amount of memory. Consequently, users may often
be faced with a situation wherein memory is extremely limited. If an application is
performing a write operation it is advisable to check the current state of memory. A
function called FFSSpaceBelowCriticalLevel() should be used to check that there is
memory available for the write operation. Testing will require a simulation of almost-full
disk space and monitor the behavior of the application when it tries to write to the disk.

See also Series 60 SDK Documentation – Coding Idioms for Symbian Developers: “Low
Disk Handling”

5.4 Checking the Contents of Descriptors
Handling strings and characters when developing for Series 60 is achieved through the
descriptor classes. The most useful facility while testing is to be able to view the
contents of a descriptor, which can be achieved through the following:

! Insert a breakpoint in the code.

! Ensure that “Display Unicode Strings” is checked in the
Tools>Options>Debug dialog.

! Enter the descriptor variable name into the watch window.

! Expand the value in the watch window.

! Apply one of the following casts to the descriptor name (DesName)
depending on the value of the iType attribute:

Testing a Series 60 Application | 8

Character Set Value
Of

iType

Cast

Unicode 0 (TText16*)(&DesName)+2

 1 (TPtrC16*)&DesName

 2 (TPtr16*)&DesName

 3 (TText16*)(&DesName)+4

 4 (TText16*)(*((int*)&DesName+2))+2

Narrow (descriptor type ends in
“8”)

0 (char*)(&DesName)+4

 1 (TPtrC8*)&DesName

 2 (TPtr8*)&DesName

 3 (char*)(&DesName)+8

 4 (char*)(*((int*)&DesName+2))+4

The illustration below is of a Unicode TDesC, with an iType value of 3:

5.5 Regression Testing
As an application develops in complexity throughout its lifecycle, so will the variety and
depth of required testing routines. Regression testing is a method for ensuring that
additional modules and module enhancements have not corrupted previously verified
code. By utilizing tests designed for older functionality new functionality can be tested.
Testing Step 1:

•
•
•

•
•
•
TEST HARNESS

• Test 1
• Test 2
• Test 3
MODULE

Function 1
Function 2
Function 3
Version
RESULTS

1 PASS
2 PASS
3 PASS
 1.0 | August 2002

Testing a Series 60 Application | 9

Version 1.0 | August 2002

Testing Step 2:

In the above illustration it becomes apparent that the creation of Function 4 introduces a
defect in Function 2, and this has been uncovered by previously successful tests.
Consequently it is clear how regression testing is useful in testing the effects of new
functionality introduced into an application.

5.6 Debug Output
The Series 60 development environment provides a useful function for printing simple
debugging information to the debug window of MSVC. This ability facilitates the
discovery of the current execution point in the application code and the current values of
particular variables. The outputting of information is achieved through the following:

RDebug::Print();

or in practical terms:

RDebug::Print(_L(“Hello I am in the Hello World function!”));

This can also be used in conjunction with printf-style output formatting. For example,
in a spreadsheet application the developer wants to continually keep track of which cell
is currently being highlighted for use:

TInt currentXCell = iSheet->GetHighlightedXCell();
TInt currentYCell = iSheet->GetHighlightedYCell();

RDebug::Print(_L("Currently cell (%d, %d) is being highlighted.\n"),
currentXCell, currentYCell);

5.7 Specialist Macros
Within the Series 60 development tool chain are a series of macros each performing a
specific role within the testing process:

! Assertions - Parameter scrutiny

! Heap Operations - Memory checking

! Test Invariant - Object state verification

5.7.1 Assertions
There are two types of Assert macro for checking erroneous data input.
ASSERT_DEBUG handles errors that are a consequence of development
mistakes and the assertion is made only when running the emulator in debug
mode. ASSERT_ALWAYS is used for exceptions at run-time when the application is
in use.

For illustration purposes imagine a situation where a class of mathematical
functions performs a division operation where the denominator must be greater
than zero.

void CTestMath::SetDenominator(TInt aDenominator)

RESULTS

• 1 PASS
• 2 FAIL
• 3 PASS

TEST HARNESS

• Test 1
• Test 2
• Test 3

MODULE

• Function 1
• Function 2
• Function 3
• Function 4

Testing a Series 60 Application | 10

Version 1.0 | August 2002

{
_LIT(KZeroOrLessDenominatorPanic, “The denominator is not
greater than zero”);
ASSERT_DEBUG(aDenominator > 0,
User::Panic(KZeroOrLessDenominatorPanic));
 iDenominator = aDenominator;
}

If an ASSERT_ALWAYS is required, the above ASSERT_DEBUG is simply replaced
with:
ASSERT_ALWAYS(aDenominator > 0,
User::Panic(KZeroOrLessDenominatorPanic));

See also Series 60 SDK Documentation – Search: “Coding Conventions”

5.7.2 Heap Operations
There are numerous macros defined in Series 60 that assist the developer with
heap inspection and are particularly useful for out of memory (OOM) testing, i.e.,
testing the application to see how it and the device respond to memory
exhaustion. These are listed below:

Macro Name Description
__*HEAP_CHECK(aParam) The number of cells allocated at this nested level of the

heap is checked against the value of aParam.
__*HEAP_CHECKALL(aParam) Heap should be checked to have allocated aParam heap

cells.
__*HEAP_FAILNEXT(aParam) After aParam attempts to perform a heap allocation, a

failure takes place.
__*HEAP_MARK Commencement of heap checking
__*HEAP_MARKEND Termination of heap checking
__*HEAP_MARKENDC(aParam) Checking heap ended with a number of heap cells equal to

aParam expected to still be allocated.
__*HEAP_RESET Imitation of heap allocation failure is ended
__*HEAP_SETFAIL(aNature,
aFrequency)

Heap allocation failure imitated.
aNature: the nature of the failure that is imitated;
aFrequency: the frequency of failure

Where “*” in the table above should be replaced by one of the following letters,
corresponding to the different types of heap:

! K – Kernel heap, e.g., __KHEAP_MARKEND

! R – Developer specified heap, e.g., __RHEAP_MARKEND

! U – Current thread’s heap, e.g., __UHEAP_MARKEND

A comprehensive illustration of each type is beyond the scope of this document.
However, additional information can be found in the SDK.

See also Series 60 SDK Documentation – Search: “Memory Allocation”

5.7.3 Test Invariant
The methods called on an object have the potential to leave the object in an
invalid or unsafe state. To ensure an object is in a safe state the
__DECLARE_TEST and __TEST_INVARIANT macros can be used, with a
partnering __DbgTestInvariant() function.

For illustration, imagine a class with some member data, which can never be
zero. The developer’s first step is to employ the __DECLARE_TEST macro by
adding it as the last line in the class definition:

class TTestingClass

Testing a Series 60 Application | 11

Version 1.0 | August 2002

{
public:
/*public functions etc*/
private:
/*private functions etc*/
TInt iCanNeverBeZero;
__DECLARE_TEST
};

The next step is to create the invariance checking function
in this case:
TTestingClass:: __DbgTestInvariant()
{
#if defined(_DEBUG)
if(iCanNeverBeZero == 0)
User::Invariant();
#endif
}

Then in a particular function, checking can take place:
void TTestingClass::PerformATask()
{
__TEST_INVARIANT
/*Perform task involving some change to iCanNeverBeZero*/
__TEST_INVARIANT
}

The first macro checks that iCanNeverBeZero is in a valid state before
proceeding to the function’s statements. Once finished, the second macro
checks that the statements have not in anyway invalidated iCanNeverBeZero.

See also Series 60 SDK Documentation – Search: “System Macros”.

6 . Ap p l i ca t i o n E n g i ne Te s t i n g Te c h n i q u es

6.1 Use of Console Applications for Testing Engines
A common Series 60 development idiom is the separation of the application user
interface from the application engine. Series 60 development tools provide a console
environment, which is ideal for displaying the output of engine calculations without the
need to negotiate the complexities of developing a user interface. This in itself could
introduce more defects while distracting the developer from the matter at hand – testing
the application engine.

To uncover defects, the developer should concentrate on developing test harnesses that
automate the testing process and, if possible, output results to both the console and
external files for inspection and comparison. If the functions of an application have been
verified through a simple console test harness, then debugging time is further reduced
when a user interface is introduced and defects arise. Having had the test harness in
place it is more than likely that the defects are on the user interface side and the time it
takes to locate the defect is reduced.

7 . Ap p l i ca t i o n Us er I n te r f ac e Te s t i n g
Te c h n i q u es

7.1 User Interface Component Creation and Testing
Developers can create their own user interface components – for example, a text editor
with an automatic spell checker – to augment those provided by Series 60 and to
perform a specific function. Testing of these components should focus on behavior and
display. Concerns will center on resizing consistency, interaction with other controls,

Testing a Series 60 Application | 12

Version 1.0 | August 2002

event management, and input handling. At the same time, construction of such controls
should be possible through resource files or API, but this will also require scrutiny.
These issues are very important if the control is to be used by other developers or even
made publicly available.

7.2 Debug Keys
The Series 60 emulator provides the developer with a series of key combinations in
debug mode that can greatly assist in testing user-interface-driven applications. These
can perform tasks that range from resource allocation to screen refreshing.

For example, using Ctrl + Alt + Shift +:

! T - shows currently active programs in a task list.

! R - redraws the entire screen in order to test that applications can cope with
redraws.

! A - indicates the amount of cells the application has currently allocated on
the heap

! B - illustrates the quantity of file server resources currently utilized by the
application.

A more comprehensive list can be found in the SDK

See Series 60 SDK Documentation – Search: “Debug Facilities“.

7.3 Internationalization
Series 60 smartphones will be available throughout the world, and many users will have
language settings to suit their geographical location. The requirements for
internationalization need to be a design consideration for developers of Series 60
applications. A simple problem on the user-interface side is that words in different
languages may have a different number of letters and controls will have to be resized to
accommodate this; however, it may result in the application redrawing incorrectly. For
example, the word “Close” in English is “Schliessen” in German.

8 . Te s t i n g o n Har dw ar e
In time, a variety of Series 60 devices will emerge, each with unique features.

Despite this variety, certain general considerations are applicable to all device profiles:

! Differences in user interaction between the emulator and target hardware.
For example use of the PC keyboard to input data is not the same as data
input using a smartphone keypad

! Scope for “hardware dependent” behavior differences between the emulator
environment and a physical device: For example, the granularity of clock
ticks is not the same, so applications that rely on certain timing operations
may have to make compensations

! Call handling and other such situations that are not immediately evident
during emulator-based development. For example, analyzing how an
application behaves when the smartphone receives a telephone call

! A call stack size limit of 8k, which can be exceeded by an application running
in the emulator but not by an application running on the target hardware

! Target hardware provides a multi-process environment, whereas the
emulator provides a single process

! Certain actions are possible in the emulator but not on target hardware: For
example, it is possible to display an information message using

Testing a Series 60 Application | 13

Version 1.0 | August 2002

CCoeEnv::InfoMsg() within the emulator environment, but it will not be
displayed on the target hardware

All applications should be tested on hardware as early as possible to alleviate such
problems, or at the very least to provide experience in handling some of the more
complex situations.

9 . G e ne r a l Te s t i n g P er s pe c t i ve s
Developers should give due consideration to testing issues that are of a general nature,
which can greatly assist development on Series 60 Platform. These issues fall into the
following categories:-

! Stress testing

! Recovery testing

! Volume testing

! Asynchronous testing

9.1 Stress Testing
Stress testing determines how an application behaves in situations where system
resources are limited. A simple example is to run several applications on the device, at
the same time as the tested application. This can often result in unanticipated situations,
that need to be evaluated carefully and potentially handled. Out Of Memory testing (see
Section 8.6.2 Heap Operations) is also a form of stress testing.

9.2 Recovery Testing
Recovery tests ascertain what will happen to an application following unexpected
situations. Examples include terminating a connection while the application is retrieving
information from a remote source or removing the battery when the application is
processing information. The expected results of such tests would be that the application
reconnects, proceeds from the last known saved instance, or restarts completely.

9.3 Volume Testing
Volume testing assesses the application behavior when a certain action is repeated
numerous times, e.g. the response of the application if ten short messages are received
in a row or it is repeatedly opened and closed.

9.4 Asynchronous Testing
Asynchronous tests expose the application to a variety of system-oriented functions.
These functions can include the following:-

! Incoming communication, e.g., receiving voice calls and short messages

! Outgoing communication, e.g., initiating a voice call and sending information via
infrared

! System alarms, e.g., clock alarms and calendar alarms

! System notifications, e.g., battery full

Testing a Series 60 Application | 14

Version 1.0 | August 2002

An application should gracefully handle all of the functionality that is specific to the target
device. To illustrate, a game must pause itself and save its current state if a telephone
call is received.

	About This Document
	Purpose
	Audience

	Introduction
	Tools for Development
	The Engine/User Interface Architecture
	Application-Wide Testing Techniques
	Following Coding Standards and Idioms
	Implementing the Correct Exiting Mechanism
	Handling Limited Amounts of Memory for Write Operations
	Checking the Contents of Descriptors
	Regression Testing
	Debug Output
	Specialist Macros
	Assertions
	Heap Operations
	Test Invariant

	Application Engine Testing Techniques
	Use of Console Applications for Testing Engines

	Application User Interface Testing Techniques
	User Interface Component Creation and Testing
	Debug Keys
	Internationalization

	Testing on Hardware
	General Testing Perspectives
	Stress Testing
	Recovery Testing
	Volume Testing
	Asynchronous Testing

