
Intel Threading Building Blocks
Outfitting C++ for Multi-Core

Processor Parallelism

James Reinders

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Intel Threading Building Blocks
by James Reinders

Copyright © 2007 James Reinders. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Sarah Schneider
Copyeditor: Audrey Doyle
Proofreader: Sarah Schneider

Indexer: Reg Aubry
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:

July 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The image of a wild canary and related trade dress are trademarks of O’Reilly
Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

Intel is a registered trademark of Intel Corporation.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-51480-8

ISBN-13: 978-0-596-51480-8

[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

ix

Table of Contents

Foreword . xiii

Note from the Lead Developer of Intel Threading Building Blocks xv

Preface . xix

1. Why Threading Building Blocks? . 1
Overview 2
Benefits 2

2. Thinking Parallel . 7
Elements of Thinking Parallel 8
Decomposition 9
Scaling and Speedup 13
What Is a Thread? 19
Mutual Exclusion and Locks 22
Correctness 23
Abstraction 25
Patterns 25
Intuition 27

3. Basic Algorithms . 29
Initializing and Terminating the Library 30
Loop Parallelization 32
Recursive Range Specifications 52
Summary of Loops 64

x | Table of Contents

4. Advanced Algorithms . 65
Parallel Algorithms for Streams 65

5. Containers . 80
concurrent_queue 81
concurrent_vector 86
concurrent_hash_map 91

6. Scalable Memory Allocation . 101
Limitations 101
Problems in Memory Allocation 101
Memory Allocators 103
Replacing malloc, new, and delete 104

7. Mutual Exclusion . 110
When to Use Mutual Exclusion 111
Mutexes 112
Mutexes 118
Atomic Operations 122

8. Timing . 130

9. Task Scheduler . 133
When Task-Based Programming Is Inappropriate 133
Much Better Than Raw Native Threads 134
Initializing the Library Is Your Job 137
Example Program for Fibonacci Numbers 137
Task Scheduling Overview 140
How Task Scheduling Works 142
Recommended Task Recurrence Patterns 145
Making Best Use of the Scheduler 147
Task Scheduler Interfaces 153
Task Scheduler Summary 168

10. Keys to Success . 169
Key Steps to Success 169
Relaxed Sequential Execution 170
Safe Concurrency for Methods and Libraries 171

Table of Contents | xi

Debug Versus Release 172
For Efficiency’s Sake 172
Enabling Debugging Features 172
Mixing with Other Threading Packages 174
Naming Conventions 176

11. Examples . 177
The Aha! Factor 177
A Few Other Key Points 179
parallel_for Examples 180
The Game of Life 190
Parallel_reduce Examples 199
CountStrings: Using concurrent_hash_map 209
Quicksort: Visualizing Task Stealing 215
A Better Matrix Multiply (Strassen) 223
Advanced Task Programming 230
Packet Processing Pipeline 237
Memory Allocation 257
Game Threading Example 262
Physics Interaction and Update Code 271
Open Dynamics Engine 275

12. History and Related Projects . 283
Libraries 283
Languages 285
Pragmas 286
Generic Programming 286
Caches 289
Costs of Time Slicing 290
Quick Introduction to Lambda Functions 291
Further Reading 292

Index . 297

xiii

Foreword1

Building libraries is an important task. The activity goes back to the earliest days of
computing, when Wilkes, Wheeler, and Gill introduced subroutines as instruments
for packaging useful software. Sadly, this activity lost its academic glamour and is
often relegated to the boiler room of programming. It is essential that we start build-
ing libraries based on rigorous scientific foundations.

Let us define a good library. It should not be intrusive. The old code should run as is
without any modifications. It should not be exclusive. Other libraries should be able
to coexist alongside it. It should be orthogonal. Instead of defining similar facilities
in different contexts, it should factor them out into different dimensions. It should
be open and not hide useful information from the client for the sake of illusory secu-
rity. It should be efficient. Using the library should not penalize the application.

Concurrent programming is a very difficult task. At the same time, the evolution of
hardware makes it more and more mainstream. Although there have been major
advances in our theoretical understanding of concurrency, we need to have practical
libraries that encapsulate this knowledge. It is great that the Intel team led by Arch
Robison made a major step designing and implementing Threading Building Blocks,
which could become a basis for the concurrency dimension of the C++ standard
library.

I would also like to congratulate Intel management for not just sponsoring this activ-
ity, but also releasing it as open source. I hope that they will keep funding the team
so that they can further extend their work.

—Alexander Stepanov
Palo Alto, California

Alexander Stepanov was the key person behind the creation of the C++ Standard Template Library (STL).
While at HP, he developed it with Meng Lee and David Musser. With the encouragement and persistence of
Andy Koenig and Bjarne Stroustrup, STL became a key part of the C++ standard. Alexander is presently a

Principal Scientist at Adobe Systems.

xv

Note from the Lead Developer of
Intel Threading Building Blocks2

Parallel computing has become personal, in both liberating and demanding ways.

I remember using an IBM 1130 mainframe in high school in the 1970s, and how frus-
trating it was because only one person could use the machine at a time, feeding it via
a card reader. Then, in the 1980s, computers became personal, and I had all the time
I wanted to run and debug sequential programs.

Parallel computing has undergone a similar shift. In the 1980s and 1990s, parallel
computers were institutional. They were fascinating to program, but access was lim-
ited. I was fortunate at one point to share a 256-processor nCUBE with only a few
other people. Now, with multi-core chips, every programmer can have cheap access
to a parallel computer—perhaps not with 256 processors yet, but with a growing
number every year.

The downside, of course, is that parallel programming is no longer optional because
parallel computers have become personal for consumers, too. Now parallel program-
ming is mandatory for performance-sensitive applications.

There is no one true way to do parallel programming. Many paradigms have been
proposed and have been cast in the form of new languages, language extensions, and
libraries. One such paradigm defines tasks that run in shared memory. This para-
digm is well suited to achieving parallel speedup on multi-core chips. The key notion
is to separate logical task patterns from physical threads, and to delegate task sched-
uling to the system.

The paradigm has been around for a long time. Intel Threading Building Blocks was
written to evangelize the paradigm, and to provide it off the shelf so that program-
mers would not have to reinvent it (and debug and tune it!).

Threading Building Blocks is strictly a library, not a new language or language exten-
sion. Though new languages and extensions are attractive, they raise a high barrier to
adoption in the near term, particularly in commercial settings, where continuity from
the existing code base is paramount. (Indeed, it is so important that businesses are
still selling systems that are upward-compatible with some of those mainframes from
the 1970s.)

xvi | Note from the Lead Developer of Intel Threading Building Blocks

Starting in 2004, I chaired a study group inside Intel that drafted the initial Thread-
ing Building Blocks proposal. Despite an early commitment to a library-only
solution, we drew much of our inspiration from new languages and extensions for
parallel programming. Our goal was to borrow as many good ideas as we could put
into library form. Sticking to a library was a requirement so that Threading Building
Blocks could slip easily into existing C++ programming environments.

C++ makes the library approach practical because it is designed for writing libraries.
Stroustrup cites a 10X reduction in line count for the Booch components written in
C++ versus Ada. Perhaps C++ will be even more powerful in the future. For exam-
ple, the addition of lambda functions (see Chapter 12) would simplify the mechanics
of using the Threading Building Blocks parallel_for.

A library-only solution is not perfect. We had to leave out some features that really
require compiler support. For example, data-parallel array operations such as
Fortran 90, ZPL, and NESL were deemed impractical because they rely heavily on
optimizing compilers. There have been some C++ libraries such as POOMA that do
some of the optimizations via template metaprogramming, but the complexity of
such libraries is high. Parallel functional programming is another powerful para-
digm, but alas, it requires significant compiler support.

Several systems were particularly influential in the development of Threading Build-
ing Blocks; these (and others) are listed in the bibliography of this book.

The Chare Kernel (now Charm++) showed the advantages of breaking a program
into many small tasks. In particular, distributing load is simplified. By analogy, it’s a
lot easier to evenly distribute many small objects among the cases instead of a few
large objects.

Cilk showed the power of combining a scheduling technique called task stealing with
recursive tasks. Recursion is often slower than iteration for serial programming, but
it turns out that recursive parallelism has some big advantages over iterative parallel-
ism with respect to load balancing and cache reuse. Cache reuse is critical because
restructuring for cache sometimes improves program speed by 2X or more, possibly
delivering better improvement than multithreading alone. Fortunately, the Cilk
approach tends to steer programmers to solutions that both are parallel and have
good cache behavior.

The C++ Standard Template Library (STL) showed how a library could be both
generic and efficient. As we gain experience, we’re learning how to be more generic.
STAPL showed how to bring generic binding of algorithms to containers into the
parallel world, by substituting the fundamentally sequential STL iterator with paral-
lel recursive ranges (pRanges in STAPL). This enabled parallel algorithms to operate
on parallel containers and opened up the ability to apply parallel recursive ranges to
multidimensional spaces (e.g., blocked_range2d), and even reuse (some would say
abuse) them to write a parallel quicksort.

Note from the Lead Developer of Intel Threading Building Blocks | xvii

If you are accustomed to heavyweight threads, lightweight tasks require a new mind-
set. For example, heavyweight threads tend to drive designs toward relatively few
threads because they are costly. Furthermore, they tend to introduce a lot of explicit
synchronization, such as locks. Lightweight tasks drive designs that use many tiny
tasks with implicit synchronization. Each task combines some work and a little bit of
synchronization. An extreme case is the Threading Building Blocks empty_task class,
which does nothing except synchronization. For instance, it is used by parallel_for
to synchronize completion without using any (explicit) locking. The synchronization
is implied by the task pattern. Locks are still sometimes necessary, but I encourage
you to exploit implicit task synchronization instead where possible.

Performance matters. By definition, parallel programming for speedup is wasted
effort if the sequential equivalent outruns it. Merely decomposing a problem into a
zillion parallel race-free tasks is typically not enough to achieve speedup because
each of those zillion tasks needs space. Threading Building Blocks is intended to
guide programmers toward patterns that are space-efficient.

I’ll close with my favorite principle for parallel programming: KISS (Keep It Simple,
Stupid). Writing parallel programs can be as complicated as you want it to be. How-
ever, the successful parallel programs that I’ve seen stick with simple patterns.
Threading Building Blocks provides a good foundation layer for these patterns.

—Arch D. Robison
Champaign, Illinois

Arch D. Robison is currently the lead developer of Intel Threading Building Blocks. Previously, Arch worked at
Shell on massively parallel codes for seismic imaging, and then was the lead developer for KAI C++, a portable,

cross-platform, high-performance, C++ compiler. He received his Ph.D. from the University of Illinois.

xix

Preface3

Multi-core processors have made parallel programming a topic of interest for every
programmer. Computer systems without multiple processor cores have become rela-
tively rare. This book is about a solution for C++ programmers that does not ask you
to abandon C++ or require the direct use of raw, native threads.

This book introduces Intel Threading Building Blocks. Threading Building Blocks is
a C++ template library for parallelism that extends C++ by abstracting away thread
management and allowing straightforward parallel programming. To use the library,
you specify tasks, not threads, and let the library map tasks onto threads in an effi-
cient manner. This has many advantages in a world where you need your applica-
tion to survive as more processor cores become available.

Threading Building Blocks will enable you to specify parallelism far more conve-
niently than using raw threads, while improving performance, portability, and
scalability.

You can download a copy of Intel Threading Building Blocks from
http://www.threadingbuildingblocks.org or http://www.intel.com/software/
products.

Assumptions This Book Makes
You do not need to have any experience with parallel programming or multi-core
processors to use this book. Whether you have a great deal of experience with paral-
lel programming, or none at all, this book will be useful. No prior understanding of
threading is required.

Prior knowledge of C++ templates and template libraries such as the Standard Tem-
plate Library (STL), or knowledge of generic programming, will allow some con-
cepts in the book to come more easily. Learning this template library, even if it is
your first template library, should be no more difficult a place to start than any other.

http://www.threadingbuildingblocks.org
http://www.intel.com/software/products
http://www.intel.com/software/products

xx | Preface

If you want to gain more background on the concepts of generic programming, or
the standard template library for C++, there are many fine books to read. Doing so is
not necessary before reading this book, but this book will make no attempt to cover
those topics.

This book is intended to be approachable for a C programmer or a C++ program-
mer without experience with templates, but it will require some patience as occa-
sional references to STL and templates will require some study. The examples
throughout the book, and particularly those in Chapter 11, are clear enough to fol-
low, even if you do not understand all the constructs perfectly.

Contents of This Book
Chapter 1, Why Threading Building Blocks?, introduces the motivation for Intel
Threading Building Blocks and gives you a high-level feel for how this solution is
superior to other options for C++ programmers.

Chapter 2, Thinking Parallel, is a brief introduction to parallelism. Understanding
how to “Think in Parallel” is fundamental to being able to write a good parallel pro-
gram. This is the one place in the book where terms such as scalability are defined
and the motivation for focusing on it is provided.

The rest of the book deals with using Threading Building Blocks.

Chapter 3, Basic Algorithms, covers the basic algorithmic capabilities. This is the key
chapter to learning Threading Building Blocks. Here you will come to understand the
concepts of recursion, task stealing, and algorithm patterns that are uniquely com-
bined in Intel Threading Building Blocks. This will make the capabilities of Thread-
ing Building Blocks available to you.

Chapter 4, Advanced Algorithms, covers more advanced algorithmic capabilities.

Chapter 5, Containers, covers the data structure capabilities: the containers.

Chapter 6, Scalable Memory Allocation, covers the scalable memory allocator. Mak-
ing sure your memory allocation is handled by a scalable memory allocator is very
important.

Chapter 7, Mutual Exclusion, discusses mutual exclusion, both by locks and by
atomic operations.

Chapter 8, Timing, discusses timing using a global timestamp capability built into
Threading Building Blocks.

Chapter 9, Task Scheduler, discusses the core of the Threading Building Blocks run-
time: the task scheduler.

Preface | xxi

Chapter 10, Keys to Success, pulls everything together to offer key tips to success,
including the five steps to making the best use of Threading Building Blocks. The
chapter also covers debugging, thread safety, mixing with other threading models,
and general performance considerations.

Chapter 11, Examples, is a rich collection of examples ranging from simple to moder-
ately complex and from obvious uses to more esoteric uses to meet specific needs.
This may be a chapter you jump to if you are eager to type in some code and take it
for a “spin.” This chapter expands on the short samples of code shown throughout
the book to explain individual features.

Chapter 12, History and Related Projects, departs from the goal of teaching the use of
Intel Threading Building Blocks and talks instead about its design and the influences
on it. The chapter includes a recap of the research that inspired Intel Threading
Building Blocks and a bibliography with many pointers to additional readings on
parallel programming.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms.

Constant width
Indicates variables, functions, data types, classes, the contents of files, and the
output from commands.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Indicates elements of code that you should replace with your own values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Informal Class Declarations
As a convention in this book, class members are summarized by informal class decla-
rations that describe the class as it seems to clients, not how it is actually imple-
mented. For example, here is an informal declaration of class Foo:

xxii | Preface

class Foo {
public:
 int x();
 int y;
 ~Foo();
};

The actual implementation might look like this:

class FooBase {
protected:
 int x();
};

class Foo: protected FooBase {
private:
 int internal_stuff;
public:
 using FooBase::x;
 int y;
};

The example shows two cases where the actual implementation departs from the
informal declaration:

• Method x() is inherited from a protected base class.

• The destructor is an implicitly generated method.

The informal declarations are intended to show you how to use the class without the
distraction of irrelevant clutter particular to the implementation.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Intel Threading Building Blocks, by
James Reinders. Copyright 2007 James Reinders, 978-0-596-51480-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

mailto:permissions@oreilly.com

Preface | xxiii

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596514808

Intel Threading Building Blocks itself is available from:

http://threadingbuildingblocks.org

and:

http://intel.com/software/products

To comment on or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Acknowledgments
I have the good fortune to work with a passionate and driven team at Intel. The Intel
Software Development Products team is very dedicated to helping software develop-
ers get the most out of parallelism, and none more so than the Threading Building
Blocks team.

Arch Robison was the principle architect and lead developer of Intel Threading
Building Blocks. Arch has been more than gracious in talking with me about Thread-
ing Building Blocks, answering my questions, and providing me with the reference
and tutorial material that forms the basis of specifications and many explanations in
this book. Arch was the most prolific reviewer of the book in terms of helping keep
things accurate.

Dave Poulsen is the project manager for a number of products, including Intel
Threading Building Blocks, who does his best to protect his team from random inter-
ruptions. He has been most gracious at allowing my interruptions to be productive
through his kind but direct style of feedback.

http://www.oreilly.com/catalog/9780596514808
http://threadingbuildingblocks.org
http://intel.com/software/products
mailto:bookquestions@oreilly.com
http://www.oreilly.com

xxiv | Preface

Victoria Gromova has been the most active in helping our customers use Intel
Threading Building Blocks. She has a reputation for bending the use of Threading
Building Blocks to make sure our customers get what they need. She provided exam-
ples and commentary for Chapter 11 and helped with short examples elsewhere in
the book. The experiences she has shared through many examples provide an impor-
tant contribution to this book.

Bob Kuhn generated a couple of key examples on packet processing and domain
decomposition, which you can find in Chapter 11, along with his fine explanations.

Dennis Lin took the examples explained in Chapter 11 and made them ready to
download from the web site and use. He helped correct several key issues for which I
am very grateful.

Tim Mattson, co-author of the book Parallel Programming Patterns (Addison-
Wesley), gave feedback on how to connect his general work with the specifics I
sought to convey in this book. He was most kind to tell me I should know better
than to write another book, since he and I both know how much work it is. Another
person who told me not to write the book, as a way to push me into doing it, was
Greg Stoner. Thank you for the push and the frequent back-and-forth discussions
over our shared belief in how exciting the future of processing cores everywhere is
going to be.

Laura Cane was instrumental in helping to create the product Reference Guide and
the Tutorial from which I drew much material for the core of this book. Laura has
helped make the material quite clear and accurate.

Sanjiv Shah manages the lab, as we call it, where our Intel Threading Building
Blocks, Intel Thread Profiler, Intel Thread Checker, OpenMP runtime, and Cluster
OpenMP runtime are developed, readied for the marketplace, and supported. He has
been a relentless champion for customers and strong engineering, as well as a friend.
Sanjiv’s support helped make this book possible and he offered feedback on the
book as well. In a bigger sense, he made Threading Building Blocks available to us all
through his championing it as a product.

Mike Davis, Shobhan Jha, Robert Reed, and Randy Smith have been tireless sup-
porters of Threading Building Blocks and helped with feedback on drafts of this
book.

Mike Voss and Alexey Kukanov contributed to the development of Threading
Building Blocks and provided key feedback on the draft of this book.

John Taylor Jr. provided feedback nearly cover to cover, which helped a great deal.
He provided good insights and his very fresh eyes caught issues we had overlooked a
hundred times because they were too familiar to us.

Preface | xxv

Anton Malkhov, Elena Gavrina, Susan Milbrandt, and Asia Nezhdanova all con-
tributed to the development of Threading Building Blocks and its project manage-
ment and, therefore, this book.

Clay Breshears, David Mackay, Anton Pegushin, and Vasanth Tovinkere work
tirelessly to train and help customers. They shared experiences, examples, and feed-
back. Their experience with Threading Building Blocks feeds back to the product
and to our ability to explain it better.

I also want to thank the OSCON team at O’Reilly, who encouraged me to get the
book pulled together sooner rather than later. In particular, Andy Oram provided
guidance as the editor, which helped this book a great deal. And thank you to the
Tools team at O’Reilly who provided such excellent tools for the book template
along with accurate and useful documentation.

And I want to especially thank my wife, Beth, and children, Andrew and Katie, for
supporting and encouraging me as I wrote this book. Beth reviewed the opening
chapters with a teacher’s eye. Andrew made sure the citations in Chapter 12 are both
accurate and properly documented. Katie provided encouragement so that we could
work on other things soon.

1

Chapter 1 CHAPTER 1

Why Threading Building Blocks?1

Intel Threading Building Blocks offers a rich and complete approach to expressing
parallelism in a C++ program. It is a library that helps you leverage multi-core pro-
cessor performance without having to be a threading expert. Threading Building
Blocks is not just a threads-replacement library; it represents a higher-level, task-
based parallelism that abstracts platform details and threading mechanisms for
performance and scalability.

This chapter introduces Intel Threading Building Blocks and how it stands out rela-
tive to other options for C++ programmers. Although Threading Building Blocks
relies on templates and the C++ concept of generic programming, this book does not
require any prior experience with these concepts or with threading.

Chapter 2 explains the challenges of parallelism and introduces key concepts that are
important for using Threading Building Blocks. Together, these first two chapters set
up the foundation of knowledge needed to make the best use of Threading Building
Blocks.

Download and Installation
You can download Intel Threading Building Blocks, along with instructions for instal-
lation, from http://threadingbuildingblocks.org or http://intel.com/software/products/tbb.

Threading Building Blocks was initially released in August 2006 by Intel, with prebuilt
binaries for Windows, Linux, and Mac OS X. Less than a year later, Intel provided
more ports and is now working with the community to provide additional ports. The
information on how to install Threading Building Blocks comes with the product
downloads.

http://threadingbuildingblocks.org
http://intel.com/software/products/tbb

2 | Chapter 1: Why Threading Building Blocks?

Overview
Multi-core processors are becoming common, yet writing even a simple parallel_for
loop is tedious with existing threading packages. Writing an efficient scalable pro-
gram is much harder. Scalability embodies the concept that a program should see
benefits in performance as the number of processor cores increases.

Threading Building Blocks helps you create applications that reap the benefits of new
processors with more and more cores as they become available.

Threading Building Blocks is a library that supports scalable parallel programming
using standard C++ code. It does not require special languages or compilers. The
ability to use Threading Building Blocks on virtually any processor or any operating
system with any C++ compiler makes it very appealing.

Threading Building Blocks uses templates for common parallel iteration patterns,
enabling programmers to attain increased speed from multiple processor cores with-
out having to be experts in synchronization, load balancing, and cache optimization.
Programs using Threading Building Blocks will run on systems with a single proces-
sor core, as well as on systems with multiple processor cores. Threading Building
Blocks promotes scalable data parallel programming. Additionally, it fully supports
nested parallelism, so you can build larger parallel components from smaller parallel
components easily. To use the library, you specify tasks, not threads, and let the
library map tasks onto threads in an efficient manner. The result is that Threading
Building Blocks enables you to specify parallelism far more conveniently, and with
better results, than using raw threads.

Benefits
As mentioned, the goal of a programmer in a modern computing environment is
scalability: to take advantage of both cores on a dual-core processor, all four cores on
a quad-core processor, and so on. Threading Building Blocks makes writing scalable
applications much easier than it is with traditional threading packages.

There are a variety of approaches to parallel programming, ranging from the use of
platform-dependent threading primitives to exotic new languages. The advantage of
Threading Building Blocks is that it works at a higher level than raw threads, yet does
not require exotic languages or compilers. You can use it with any compiler support-
ing ISO C++. This library differs from typical threading packages in these ways:

Threading Building Blocks enables you to specify tasks instead of threads
Most threading packages require you to create, join, and manage threads. Pro-
gramming directly in terms of threads can be tedious and can lead to inefficient
programs because threads are low-level, heavy constructs that are close to the
hardware. Direct programming with threads forces you to do the work to effi-
ciently map logical tasks onto threads. In contrast, the Threading Building

Benefits | 3

Blocks runtime library automatically schedules tasks onto threads in a way that
makes efficient use of processor resources. The runtime is very effective at load-
balancing the many tasks you will be specifying.

By avoiding programming in a raw native thread model, you can expect better
portability, easier programming, more understandable source code, and better
performance and scalability in general.

Indeed, the alternative of using raw threads directly would amount to program-
ming in the assembly language of parallel programming. It may give you maxi-
mum flexibility, but with many costs.

Threading Building Blocks targets threading for performance
Most general-purpose threading packages support many different kinds of
threading, such as threading for asynchronous events in graphical user inter-
faces. As a result, general-purpose packages tend to be low-level tools that pro-
vide a foundation, not a solution. Instead, Threading Building Blocks focuses on
the particular goal of parallelizing computationally intensive work, delivering
higher-level, simpler solutions.

Threading Building Blocks is compatible with other threading packages
Threading Building Blocks can coexist seamlessly with other threading pack-
ages. This is very important because it does not force you to pick among Thread-
ing Building Blocks, OpenMP, or raw threads for your entire program. You are
free to add Threading Building Blocks to programs that have threading in them
already. You can also add an OpenMP directive, for instance, somewhere else in
your program that uses Threading Building Blocks. For a particular part of your
program, you will use one method, but in a large program, it is reasonable to
anticipate the convenience of mixing various techniques. It is fortunate that
Threading Building Blocks supports this.

Using or creating libraries is a key reason for this flexibility, particularly because
libraries are often supplied by others. For instance, Intel’s Math Kernel Library
(MKL) and Integrated Performance Primitives (IPP) library are implemented
internally using OpenMP. You can freely link a program using Threading Build-
ing Blocks with the Intel MKL or Intel IPP library.

Threading Building Blocks emphasizes scalable, data-parallel programming
Breaking a program into separate functional blocks and assigning a separate
thread to each block is a solution that usually does not scale well because, typi-
cally, the number of functional blocks is fixed. In contrast, Threading Building
Blocks emphasizes data-parallel programming, enabling multiple threads to
work most efficiently together. Data-parallel programming scales well to larger
numbers of processors by dividing a data set into smaller pieces. With data-
parallel programming, program performance increases (scales) as you add pro-
cessors. Threading Building Blocks also avoids classic bottlenecks, such as a glo-
bal task queue that each processor must wait for and lock in order to get a new
task.

4 | Chapter 1: Why Threading Building Blocks?

Threading Building Blocks relies on generic programming
Traditional libraries specify interfaces in terms of specific types or base classes.
Instead, Threading Building Blocks uses generic programming, which is defined
in Chapter 12. The essence of generic programming is to write the best possible
algorithms with the fewest constraints. The C++ Standard Template Library
(STL) is a good example of generic programming in which the interfaces are
specified by requirements on types. For example, C++ STL has a template func-
tion that sorts a sequence abstractly, defined in terms of iterators on the
sequence.

Generic programming enables Threading Building Blocks to be flexible yet effi-
cient. The generic interfaces enable you to customize components to your
specific needs.

Comparison with Raw Threads and MPI
Programming using a raw thread interface, such as POSIX threads (pthreads) or
Windows threads, has been an option that many programmers of shared memory
parallelism have used. There are wrappers that increase portability, such as Boost
Threads, which are a very portable raw threads interface. Supercomputer users, with
their thousands of processors, do not generally have the luxury of shared memory, so
they use message passing, most often through the popular Message Passing Interface
(MPI) standard.

Raw threads and MPI expose the control of parallelism at its lowest level. They
represent the assembly languages of parallelism. As such, they offer maximum flexi-
bility, but at a high cost in terms of programmer effort, debugging time, and mainte-
nance costs.

In order to program parallel machines, such as multi-core processors, we need the
ability to express our parallelism without having to manage every detail. Issues such
as optimal management of a thread pool, and proper distribution of tasks with load
balancing and cache affinity in mind, should not be the focus of a programmer when
working on expressing the parallelism in a program.

When using raw threads, programmers find basic coordination and data sharing to
be difficult and tedious to write correctly and efficiently. Code often becomes very
dependent on the particular threading facilities of an operating system. Raw thread-
level programming is too low-level to be intuitive, and it seldom results in code
designed for scalable performance. Nested parallelism expressed with raw threads
creates a lot of complexities, which I will not go into here, other than to say that
these complexities are handled for you with Threading Building Blocks.

Another advantage of tasks versus logical threads is that tasks are much lighter
weight. On Linux systems, starting and terminating a task is about 18 times faster
than starting and terminating a thread. On Windows systems, the ratio is more than
100-fold.

Benefits | 5

With threads and with MPI, you wind up mapping tasks onto processor cores
explicitly. Using Threading Building Blocks to express parallelism with tasks allows
developers to express more concurrency and finer-grained concurrency than would
be possible with threads, leading to increased scalability.

Comparison with OpenMP
Along with Intel Threading Building Blocks, another promising abstraction for C++
programmers is OpenMP. The most successful parallel extension to date, OpenMP is
a language extension consisting of pragmas, routines, and environment variables for
Fortran and C programs. OpenMP helps users express a parallel program and helps
the compiler generate a program reflecting the programmer’s wishes. These
directives are important advances that address the limitations of the Fortran and C
languages, which generally prevent a compiler from automatically detecting parallel-
ism in code.

The OpenMP standard was first released in 1997. By 2006, virtually all compilers
had some level of support for OpenMP. The maturity of implementations varies, but
they are widespread enough to be viewed as a natural companion of Fortran and C
languages, and they can be counted upon when programming on any platform.

When considering it for C programs, OpenMP has been referred to as “excellent for
Fortran-style code written in C.” That is not an unreasonable description of
OpenMP since it focuses on loop structures and C code. OpenMP offers nothing spe-
cific for C++. The loop structures are the same loop nests that were developed for
vector supercomputers—an earlier generation of parallel processors that performed
tremendous amounts of computational work in very tight nests of loops and were
programmed largely in Fortran. Transforming those loop nests into parallel code
could be very rewarding in terms of results.

A proposal for the 3.0 version of OpenMP includes tasking, which will liberate
OpenMP from being solely focused on long, regular loop structures by adding
support for irregular constructs such as while loops and recursive structures. Intel
implemented tasking in its compilers in 2004 based on a proposal implemented by
KAI in 1999 and published as “Flexible Control Structures in OpenMP” in 2000.
Until these tasking extensions take root and are widely adopted, OpenMP remains
reminiscent of Fortran programming with minimal support for C++.

OpenMP has the programmer choose among three scheduling approaches (static,
guided, and dynamic) for scheduling loop iterations. Threading Building Blocks does
not require the programmer to worry about scheduling policies. Threading Building
Blocks does away with this in favor of a single, automatic, divide-and-conquer
approach to scheduling. Implemented with work stealing (a technique for moving
tasks from loaded processors to idle ones), it compares favorably to dynamic or
guided scheduling, but without the problems of a centralized dealer. Static scheduling

6 | Chapter 1: Why Threading Building Blocks?

is sometimes faster on systems undisturbed by other processes or concurrent sibling
code. However, divide-and-conquer comes close enough and fits well with nested
parallelism.

The generic programming embraced by Threading Building Blocks means that paral-
lelism structures are not limited to built-in types. OpenMP allows reductions on only
built-in types, whereas the Threading Building Blocks parallel_reduce works on any
type.

Looking to address weaknesses in OpenMP, Threading Building Blocks is designed
for C++, and thus to provide the simplest possible solutions for the types of pro-
grams written in C++. Hence, Threading Building Blocks is not limited to statically
scoped loop nests. Far from it: Threading Building Blocks implements a subtle but
critical recursive model of task-based parallelism and generic algorithms.

Recursive Splitting, Task Stealing, and Algorithms
A number of concepts are fundamental to making the parallelism model of Thread-
ing Building Blocks intuitive. Most fundamental is the reliance on breaking problems
up recursively as required to get to the right level of parallel tasks. It turns out that
this works much better than the more obvious static division of work. It also fits per-
fectly with the use of task stealing instead of a global task queue. This is a critical
design decision that avoids using a global resource as important as a task queue,
which would limit scalability.

As you wrestle with which algorithm structure to apply for your parallelism (for
loop, while loop, pipeline, divide and conquer, etc.), you will find that you want to
combine them. If you realize that a combination such as a parallel_for loop control-
ling a parallel set of pipelines is what you want to program, you will find that easy to
implement. Not only that, the fundamental design choice of recursion and task steal-
ing makes this work yield efficient scalable applications.

It is a pleasant surprise to new users to discover how acceptable it is to
code parallelism, even inside a routine that is used concurrently itself.
Because Threading Building Blocks was designed to encourage this
type of nesting, it makes parallelism easy to use. In other systems, this
would be the start of a headache.

With an understanding of why Threading Building Blocks matters, we are ready for
the next chapter, which lays out what we need to do in general to formulate a paral-
lel solution to a problem.

7

Chapter 2 CHAPTER 2

Thinking Parallel2

This chapter is about how to “Think Parallel.” It is a brief introduction to the men-
tal discipline that helps you make a program parallelizable in a safe and scalable
manner. Even though Intel Threading Building Blocks does much of the work that
traditional APIs require the programmer to do, this kind of thinking is a fundamental
requirement to writing a good parallel program.

This is the place in the book that defines terms such as scalability and provides the
motivation for focusing on these concepts. The topics covered in this chapter are
decomposition, scaling, threads, correctness, abstraction, and patterns.

If you don’t already approach every computer problem with parallelism in your
thoughts, this chapter should be the start of a new way of thinking. If you are already
deeply into parallel programming, this chapter can still show how Threading Build-
ing Blocks deals with the concepts.

How should we think about parallel programming? This is now a common question
because, after decades in a world where most computers had only one central pro-
cessing unit (CPU), we are now in a world where only “old” computers have one
CPU. Multi-core processors are now the norm. Parallel computers are the norm.
Therefore, every software developer needs to Think Parallel.

Today, when developers take on a programming job, they generally think about the
best approach before programming. We already think about selecting the best
algorithm, implementation language, and so on. Now, we need to think about the
inherent parallelism in the job first. This will, in turn, drive algorithm and implemen-
tation choices. Trying to consider the parallelism after everything else is not Think-
ing Parallel, and will not work out well.

8 | Chapter 2: Thinking Parallel

Elements of Thinking Parallel
Threading Building Blocks was designed to make expressing parallelism much easier
by abstracting away details and providing strong support for the best ways to pro-
gram for parallelism. Here is a quick overview of how Threading Building Blocks
addresses the topics we will define and review in this chapter:

Decomposition

Learning to decompose your problem into concurrent tasks (tasks that can run
at the same time).

Scaling
Expressing a problem so that there are enough concurrent tasks to keep all the
processor cores busy while minimizing the overhead of managing the parallel
program.

Threads
A guide to the technology underlying the concurrency in programs—and how
they are abstracted by Threading Building Blocks so that you can just focus on
your tasks.

Correctness
How the implicit synchronization inherent in Threading Building Blocks helps
minimize the use of locks. If you still must use locks, there are special features for
using the Intel Thread Checker to find deadlocks and race conditions, which
result from errors involving locks.

Abstraction and patterns
How to choose and utilize algorithms, from Chapters 3 and 4.

Caches
A key consideration in improving performance. The Threading Build Blocks task
scheduler is already tuned for caches.

Intuition
Thinking in terms of tasks that can run at the same time (concurrent tasks), data
decomposed to minimize conflicts among tasks, and recursion.

In everyday life, we find ourselves thinking about parallelism. Here are a few
examples:

Long lines
When you have to wait in a long line, you have undoubtedly wished there were
multiple shorter (faster) lines, or multiple people at the front of the line helping
serve customers more quickly. Grocery store checkout lines, lines to get train
tickets, lines to buy coffee, and lines to buy books in a bookstore are examples.

Decomposition | 9

Lots of repetitive work
When you have a big task to do, which many people could help with at the same
time, you have undoubtedly wished for more people to help you. Moving all
your possessions from an old dwelling to a new one, stuffing letters in envelopes
for a mass mailing, and installing the same software on each new computer in
your lab are examples.

The point here is simple: parallelism is not unknown to us. In fact, it is quite natural
to think about opportunities to divide work and do it in parallel. It just might seem
unusual for the moment to program that way. Once you dig in and start using paral-
lelism, you will Think Parallel. You will think first about the parallelism in your
project, and only then think about coding it.

Decomposition
When you think about your project, how do you find the parallelism?

At the highest level, parallelism exists either in the form of data on which to operate
in parallel, or in the form of tasks to execute concurrently. And these forms are not
mutually exclusive.

Data Parallelism
Data parallelism (Figure 2-1) is easy to picture. Take lots of data and apply the same
transformation to each piece of the data. In Figure 2-1, each letter in the data set is
capitalized and becomes the corresponding uppercase letter. This simple example
shows that given a data set and an operation that can be applied element by element,
we can apply the same task concurrently to each element. Programmers writing code
for supercomputers love this sort of problem and consider it so easy to do in parallel
that it has been called embarrassingly parallel. A word of advice: if you have lots of
data parallelism, do not be embarrassed—take advantage of it and be very happy.
Consider it happy parallelism.

Figure 2-1. Data parallelism

a b c d e f g h

A B C D E F G H

CAP CAP CAP CAP CAP CAP CAP CAP

10 | Chapter 2: Thinking Parallel

Task Parallelism
Data parallelism is eventually limited by the amount of data you want to process,
and your thoughts will then turn to task parallelism (Figure 2-2). Task parallelism
means lots of different, independent tasks that are linked by sharing the data they
consume. This, too, can be embarrassingly parallel. Figure 2-2 uses as examples some
mathematical operations that can each be applied to the same data set to compute
values that are independent. In this case, the average value, the minimum value, the
binary OR function, and the geometric mean of the data set are computed.

Pipelining (Task and Data Parallelism Together)
Pure task parallelism is harder to find than pure data parallelism. Often, when you
find task parallelism, it’s a special kind referred to as pipelining. In this kind of algo-
rithm, many independent tasks need to be applied to a stream of data. Each item is
processed by stages as they pass through, as shown by the letter A in Figure 2-3. A
stream of data can be processed more quickly if you use a pipeline because different
items can pass through different stages at the same time, as shown in Figure 2-4. A
pipeline can also be more sophisticated than other processes: it can reroute data or
skip steps for chosen items. Automobile assembly lines are good examples of pipe-
lines; materials flow through a pipeline and get a little work done at each step
(Figure 2-4).

Figure 2-2. Task parallelism

Figure 2-3. Pipeline

Figure 2-4. A pipeline in action with data flowing through it

1 4 9 12 6 14 3

7 1 15 5.243

AVERAGE MINIMUM BINARY OR GEO-MEAN

a a A A

ASPIN CAP SPIN FLIP

Decomposition | 11

Mixed Solutions
Consider the task of folding, stuffing, sealing, addressing, stamping, and mailing let-
ters. If you assemble a group of six people for the task of stuffing many envelopes,
you can arrange each person to specialize in and perform one task in a pipeline fash-
ion (Figure 2-5). This contrasts with data parallelism, where you divide the supplies
and give a batch of everything to each person (Figure 2-6). Each person then does all
the steps on his collection of materials as his task.

Figure 2-6 is clearly the right choice if every person has to work in a different loca-
tion far from each other. That is called coarse-grained parallelism because the inter-
actions between the tasks are infrequent (they only come together to collect
envelopes, then leave and do their task, including mailing). The other choice shown

Figure 2-5. Pipelining—each person has a different job

Figure 2-6. Data parallelism—each person has the same job

START FOLD STUFF SEAL ADDRESS STAMP MAIL

START FOLD STUFF SEAL ADDRESS STAMP MAIL

START FOLD STUFF SEAL ADDRESS STAMP MAIL

START FOLD STUFF SEAL ADDRESS STAMP MAIL

START FOLD STUFF SEAL ADDRESS STAMP MAIL

START FOLD STUFF SEAL ADDRESS STAMP MAIL

START FOLD STUFF SEAL ADDRESS STAMP MAIL

12 | Chapter 2: Thinking Parallel

in Figure 2-5 is known as fine-grained parallelism because of the frequent interac-
tions (every envelope is passed along to every worker in various steps of the
operation).

Neither extreme tends to fit reality, although sometimes they may be close enough to
be useful. In our example, it may turn out that addressing an envelope takes enough
time to keep three people busy, whereas the first two steps and the last two steps
require only one person on each pair of steps to keep up. Figure 2-7 illustrates the
steps with the corresponding size of the work to be done. The resulting pipeline
(Figure 2-8) is really a hybrid of data and task parallelism.

Achieving Parallelism
Coordinating people around the job of preparing and mailing the envelopes is easily
expressed by the following two conceptual steps:

1. Assign people to tasks (and feel free to move them around to balance the work-
load).

2. Start with one person on each of the six tasks, but be willing to split up a given
task so that two or more people can work on it together.

Figure 2-7. Unequal tasks are best combined or split to match people

Figure 2-8. Because tasks are not equal, assign more people to the addressing task

START FOLD STUFF SEAL ADDRESS STAMP MAIL

WORK
WORK

WORK

WORK

WORK

WORK

START FOLD STUFF SEAL ADDRESS STAMP MAIL

Scaling and Speedup | 13

The six tasks are folding, stuffing, sealing, addressing, stamping, and mailing. We
also have six people (resources) to help with the work. That is exactly how
Threading Building Blocks works best: you define tasks and data at a level you can
explain and then split or combine data to match up with resources available to do
the work.

The first step in writing a parallel program is to consider where the parallelism is.
Many textbooks wrestle with task and data parallelism as though there were a clear
choice. Threading Building Blocks allows any combination of the two that you
express.

If you are lucky, your program will be cleanly data-parallel only. To simplify this
work, Threading Building Blocks requires you only to specify tasks and how to split
them. For a completely data-parallel task, in Threading Building Blocks you will
define one task to which you give all the data. That task will then be split up auto-
matically to use the available hardware parallelism. The implicit synchronization will
often eliminate the need for using locks to achieve synchronization.

People have been exploring decomposition for decades, and some patterns have
emerged. We’ll cover this more later when we discuss design patterns for parallel
programming.

Scaling and Speedup
The scalability of a program is a measure of how much speedup the program gets as
you add more and more processor cores. Speedup is the ratio of the time it takes to
run a program without parallelism versus the time it runs in parallel. A speedup of
2X indicates that the parallel program runs in half the time of the sequential pro-
gram. An example would be a sequential program that takes 34 seconds to run on a
one-processor machine and 17 seconds to run on a quad-core machine.

As a goal, we would expect that our program running on two processor cores should
run faster than the program running on one processor core. Likewise, running on
four processor cores should be faster than running on two cores.

We say that a program does not scale beyond a certain point when adding more
processor cores no longer results in additional speedup. When this point is reached,
it is common for performance to fall if we force additional processor cores to be
used. This is because the overhead of distributing and synchronizing begins to domi-
nate. Threading Building Blocks has some algorithm templates which use the notion
of a grain size to help limit the splitting of data to a reasonable level to avoid this
problem. Grain size will be introduced and explained in detail in Chapters 3 and 4.

As Thinking Parallel becomes intuitive, structuring problems to scale will become
second nature.

14 | Chapter 2: Thinking Parallel

How Much Parallelism Is There in an Application?
The topic of how much parallelism there is in an application has gotten considerable
debate, and the answer is “it depends.”

It certainly depends on the size of the problem to be solved and on the ability to find
a suitable algorithm to take advantage of the parallelism. Much of this debate previ-
ously has been centered on making sure we write efficient and worthy programs for
expensive and rare parallel computers. The definition of size, the efficiency required,
and the expense of the computer have all changed with the emergence of multi-core
processors. We need to step back and be sure we review the ground we are standing
on. The world has changed.

Amdahl’s Law

Gene Amdahl, renowned computer architect, made observations regarding the maxi-
mum improvement to a computer system that can be expected when only a portion
of the system is improved. His observations in 1967 have come to be known as
Amdahl’s Law. It tells us that if we speed up everything in a program by 2X, we can
expect the resulting program to run 2X faster. However, if we improve the perfor-
mance of only half the program by 2X, the overall system improves only by 1.33X.
Amdahl’s Law is easy to visualize. Imagine a program with five equal parts that runs
in 500 seconds, as shown in Figure 2-9. If we can speed up two of the parts by 2X
and 4X, as shown in Figure 2-10, the 500 seconds are reduced to only 400 and 350
seconds, respectively. More and more we are seeing the limitations of the portions
that are not speeding up through parallelism. No matter how many processor cores
are available, the serial portions create a barrier at 300 seconds that will not be
broken (see Figure 2-11).

Figure 2-9. Original program without parallelism

100

100

100

100

100

Work 500 Time 500
Speedup 1X

Scaling and Speedup | 15

Parallel programmers have long used Amdahl’s Law to predict the maximum
speedup that can be expected using multiple processors. This interpretation ulti-
mately tells us that a computer program will never go faster than the sum of the parts
that do not run in parallel (the serial portions), no matter how many processors we
have.

Many have used Amdahl’s Law to predict doom and gloom for parallel computers,
but there is another way to look at things that shows much more promise.

Figure 2-10. Progress on adding parallelism

Figure 2-11. Limits according to Amdahl’s Law

100

50

Work 500 Time 400
Speedup 1.25X

50

100

50 50

100

Work 500 Time 350
Speedup 1.4X

100

25 25

100

100

25 25

25 2525 25

100

100

Work 500 Time 300
Speedup 1.7X

Many processing cores ~0 time

100

Many processing cores ~0 time

16 | Chapter 2: Thinking Parallel

Gustafson’s observations regarding Amdahl’s Law

Amdahl’s Law views programs as fixed, while we make changes to the computer. But
experience seems to indicate that as computers get new capabilities, applications
change to take advantage of these features. Most of today’s applications would not
run on computers from 10 years ago, and many would run poorly on machines that
are just five years old. This observation is not limited to obvious applications such as
games; it applies also to office applications, web browsers, photography software,
DVD production and editing software, and Google Earth.

More than two decades after the appearance of Amdahl’s Law, John Gustafson,
while at Sandia National Labs, took a different approach and suggested a reevalua-
tion of Amdahl’s Law. Gustafson noted that parallelism is more useful when you
observe that workloads grow as computers become more powerful and support pro-
grams that do more work rather than focusing on a fixed workload. For many prob-
lems, as the problem size grows, the work required for the parallel part of the
problem grows faster than the part that cannot be parallelized (the so-called serial
part). Hence, as the problem size grows, the serial fraction decreases and, according
to Amdahl’s Law, the scalability improves. So we can start with an application that
looks like Figure 2-9, but if the problem scales with the available parallelism, we are
likely to see the advancements illustrated in Figure 2-12. If the sequential parts still
take the same amount of time to perform, they become less and less important as a
percentage of the whole. The algorithm eventually reaches the conclusion shown in
Figure 2-13. Performance grows at the same rate as the number of processors, which
is called linear or order of n scaling, denoted as O(n).

Even in our example, the efficiency of the program is still greatly limited by the serial
parts. The efficiency of using processors in our example is about 40 percent for large
numbers of processors. On a supercomputer, this might be a terrible waste. On a sys-
tem with multi-core processors, one can hope that other work is running on the
computer concurrently to use the processing power our application does not use.
This new world has many complexities. In any case, it is still good to minimize serial
code, whether you take the “glass half empty” view and favor Amdahl’s Law or you
lean toward the “glass half full” view and favor Gustafson’s observations.

Both Amdahl’s Law and Gustafson’s observations are correct. The difference lies in
whether you want to make an existing program run faster with the same workload or
you envision working on a larger workload. History clearly favors programs getting
more complex and solving larger problems. Gustafson’s observations fit the histori-
cal evidence better. Nevertheless, Amdahl’s Law is still going to haunt us as we work
today to make a single application work faster on the same benchmark. You have to
look forward to see a brighter picture.

Scaling and Speedup | 17

The value of parallelism is easier to prove if you are looking forward
than if you assume the world is not changing.

Figure 2-12. Scale the workload with the capabilities

Figure 2-13. Gustafson saw a path to scaling

100

Work 700 Time 500
Speedup 1.4X

100

100 100

100

100 100

100

Work 1100 Time 500
Speedup 2.2X

100

100 100100 100

100

100 100100 100

100

100

N processing cores
100 seconds of work each

Work 2*N*100+300 Time 500
Speedup O(N)

100

N processing cores
100 seconds of work each

18 | Chapter 2: Thinking Parallel

Making today’s application run faster by switching to a parallel algorithm without
expanding the problem is harder than making it run faster on a larger problem. The
value of parallelism is easier to prove when we are not constrained to speeding up an
application that already works well on today’s machines.

The scalability of an application comes down to increasing the work done in parallel
and minimizing the work done serially. Amdahl motivates us to reduce the serial por-
tion, whereas Gustafson tells us to consider larger problems, where the parallel work
is likely to increase relative to the serial work.

Some have defined scaling that requires the problem size to grow as weak scaling. It
is ironic that the term embarrassingly parallel is commonly applied to other types of
scaling. Because almost all true scaling happens only when the problem size scales
with the parallelism available, we should call that just scaling. We can apply the term
embarrassing scaling to scaling that occurs without growth in the size. As with
embarrassing parallelism, if you have embarrassing scaling, take advantage of it and
do not be embarrassed.

What did they really say?

Here is what Amdahl and Gustafson actually said in their famous papers, which have
generated much dialog ever since:

…the effort expended on achieving high parallel processing rates is wasted unless it is
accompanied by achievements in sequential processing rates of very nearly the same
magnitude. —Amdahl, 1967

…speedup should be measured by scaling the problem to the number of processors,
not by fixing the problem size. —Gustafson, 1988

Combining these ideas, you can conclude that the value of parallelism is easier to
prove if you are looking forward than if you assume the world is not changing. If we
double the number of cores every couple of years, we should be working to double
the amount of work we want our computer to do every couple of years as well.

Serial versus parallel algorithms

One of the truths in programming is this: the best serial algorithm is seldom the best
parallel algorithm, and the best parallel algorithm is seldom the best serial algorithm.

This means that trying to write a program that runs well on a system with one pro-
cessor core, and also runs well on a system with a dual-core processor or quad-core
processor, is harder than just writing a good serial program or a good parallel
program.

Supercomputer programmers know from practice that the work required in concur-
rent tasks grows quickly as a function of the problem size. If the work grows faster
than the sequential overhead (e.g., communication, synchronization), you can fix a

What Is a Thread? | 19

program that scales poorly just by increasing the problem size. It’s not uncommon at
all to take a program that won’t scale much beyond 100 processors and scale it nicely
to 300 or more processors just by doubling the size of the problem.

To be ready for the future, write parallel programs and abandon the past. That’s the
simplest and best advice to offer. Writing code with one foot in the world of efficient
single-threaded performance and the other foot in the world of parallelism is the
hardest job of all.

What Is a Thread?
If you know what a thread is, skip ahead to the section “Safety in the Presence of
Concurrency.” It’s important to be comfortable with the concept of a thread, even
though the goal of Intel Threading Building Blocks is to abstract away thread man-
agement. Fundamentally, you will still be constructing a threaded program and you
will need to understand the implications of this underlying implementation.

All modern operating systems are multitasking operating systems that typically use a
preemptive scheduler. Multitasking means that more than one program can be active
at a time. You may take it for granted that you can have an email program and a web
browser program running at the same time. Yet, not that long ago, this was not the
case.

A preemptive scheduler means the operating system puts a limit on how long one
program can use a processor core before it is forced to let another program use it.
This is how the operating system makes it appear that your email program and your
web browser are running at the same time when only one processor core is actually
doing the work.

Generally, each process (program) runs relatively independent of other processes. In
particular, the memory where your program variables will reside is completely sepa-
rate from the memory used by other processes. Your email program cannot directly
assign a new value to a variable in the web browser program. If your email program
can communicate with your web browser—for instance, to have it open a web page
from a link you received in email—it does so with some form of communication that
takes much more time than a memory access.

Breaking a problem into multiple processes and using only a restricted, mutually
agreed-upon communication between them has a number of advantages. One of the
advantages is that an error in one process will be less likely to interfere with other
processes. Before multitasking operating systems, it was much more common for a
single program to be able to crash the entire machine. Putting tasks into processes,
and limiting interaction with other processes and the operating system, has greatly
added to system stability.

20 | Chapter 2: Thinking Parallel

Multiple processes work with coarse-grained parallelism where the tasks to be done
do not require frequent synchronization. You can think of synchronization as the
computer equivalent of people working on different parts of the same job and stop-
ping occasionally to talk, to hand over finished work to another person, and perhaps
to get work from another person. Parallel tasks need to coordinate their work as well.
The more fine-grained their parallelism is, the more time is spent communicating
between tasks. If parallelism is too fine, the amount of communication between tasks
can become unreasonable.

Therefore, all modern operating systems support the subdivision of processes into
multiple threads of execution. Threads run independently, like processes, and no
thread knows what other threads are running or where they are in the program
unless they synchronize explicitly. The key difference between threads and processes
is that the threads within a process share all the data of the process. Thus, a simple
memory access can accomplish the task of setting a variable in another thread.

Each thread has its own instruction pointer (a register pointing to the place in the
program where it is running) and stack (a region of memory that holds subroutine
return addresses and local variables for subroutines), but otherwise a thread shares
its memory. Even the stack memory of each thread is accessible to the other threads,
though when they are programmed properly, they don’t step on each other’s stacks.

Threads within a process that run independently but share memory have the obvi-
ous benefit of being able to share work quickly, because each thread has access to the
same memory as the other threads in the same process. The operating system can
view multiple threads as multiple processes that have essentially the same
permissions to regions of memory.

Programming Threads
A process usually starts with a single thread of execution and is allowed to request
that more threads be started. Threads can be used to logically break down a pro-
gram into multiple tasks, such as a user interface and a main program. Threads are
also useful for programming for parallelism, such as with multi-core processors.

Many questions arise once you start programming to use threads. How should you
divide and assign tasks to keep each available processor core busy? Should you cre-
ate a thread each time you have a new task, or should you create and manage a pool
of threads? Should the number of threads depend on the number of cores? What
should you do with a thread running out of tasks?

These are important questions for the implementation of multitasking, but that
doesn’t mean you as the application programmer should answer them. They detract
from the objective of expressing the goals of your program. Likewise, assembly lan-
guage programmers once had to worry about memory alignment, memory layout,

What Is a Thread? | 21

stack pointers, and register assignments. Languages such as Fortran and C were cre-
ated to abstract away those important details and leave them to be solved with com-
pilers and libraries. Similarly, today we seek to abstract away thread management so
that programmers can express parallelism directly.

Threading Building Blocks takes care of all thread management so that
programmers can express parallelism directly with tasks.

A key notion of Threading Building Blocks is that you should break up the program
into many more tasks than there are processors. You should specify as much parallel-
ism as practical and let Threading Building Blocks choose how much of that
parallelism is actually exploited.

Safety in the Presence of Concurrency
When code is written in such a way that it cannot be run in parallel without the con-
currency causing problems, it is said not to be thread-safe. Even with the abstraction
that Threading Building Blocks offers, the concept of thread safety is essential. You
need to understand how to build a program that is thread-safe, which essentially
means that each function can be invoked by more than one thread at the same time.

Single-threaded programs contain only one flow of control, so their parts need not be
reentrant or thread-safe. In multithreaded programs, the same functions and the
same resources may be utilized concurrently by several flows of control. Code
written for multithreaded programs must therefore be reentrant and thread-safe.

Any function that maintains a persistent state between invocations requires careful
writing to ensure it is thread-safe. In general, functions should be written to have no
side effects so that concurrent use is not an issue. In cases where global side effects—
which might range from setting a single variable to creating or deleting a file—do
need to occur, the programmer must be careful to call for mutual exclusion, ensuring
that only one thread at a time can execute the code that has the side effect, and that
other threads are excluded from that section of code.

Be sure to use thread-safe libraries. All the libraries you use should be reviewed to
make sure they are thread-safe. The C++ library has some functions inherited from C
that are particular problems because they hold internal state between calls, specifi-
cally asctime, ctime, gmtime, localtime, rand, and strtok. Be sure to check the docu-
mentation if you need to use these functions to see whether thread-safe versions are
available. The C++ Standard Template Library (STL) container classes are in general
not thread-safe (hence, some of the containers defined by Threading Building Blocks
are not thread-safe either).

22 | Chapter 2: Thinking Parallel

Mutual Exclusion and Locks
You need to think about whether concurrent accesses to the same resources will
occur in your program. The resource with which you will most often be concerned is
data held in memory, but you also need to think about files and I/O of all kinds.

The best policy is to decompose your problem in such a way that synchronization is
implicit instead of explicit. You can achieve this by breaking up the tasks so that they
can work independently, and the only synchronization that occurs is waiting for all
the tasks to be completed at the end.

Instead of locks, which are shown in Figure 2-14, you can use a small set of opera-
tions that the system guarantees to be atomic. An atomic operation is equivalent to
an instruction that cannot be interrupted.

When explicit synchronization and atomic operations are insufficient, locks needs to
be used. Chapter 7 covers the various options for mutual exclusion.

Consider a program with two threads. We start with X = 44. Thread A executes X = X +
10. Thread B executes X = X – 12. If we add locking (Figure 2-14) so that only Thread
A or Thread B can execute its statement at a time, we end up with X = 42. If both
threads try to obtain a lock at the same time, one will be excluded and will have to
wait before the lock is granted. Figure 2-14 shows how long Thread B might have to
wait if it requested the lock at the same time as Thread A but did not get the lock
because Thread A had it first.

Without the locks, a race condition exists and at least two more results are possible:
X = 32 or X = 54. X = 42 can still occur as well (Figure 2-15). Three results are now pos-
sible because each statement reads X, does a computation, and writes to X. Without
locking, there is no guarantee that a thread reads the value of X before or after the
other thread writes a value.

Figure 2-14. Predictable outcome due using mutual exclusion

Thread A

LOCK (X)

Read X (44)

add 10

Write X (54)

UNLOCK (X)

Thread B

(wait)

(wait)

(wait)

(wait)

(wait)

LOCK (X)

Read X (54)

subtract 12

Write X (42)

UNLOCK (X)

Value of X

44

44

44

54

54

54

54

54

42

42

Correctness | 23

Correctness
The biggest challenge of learning to Think Parallel is understanding correctness as it
relates to concurrency. Concurrency means you have multiple threads of control that
are active at one time. The operating system is going to schedule those threads in a
number of ways. Each time the program runs, the precise order of operations will
potentially be different. Your challenge as a programmer is to make sure that every
legitimate way the operations in your concurrent program can be ordered will still
lead to the correct result. A high-level abstraction such as Threading Building Blocks
helps a great deal, but there are a few issues you have to grapple with on your own:
potential variations in results when programs compute results in parallel, and new
types of programming bugs when locks are used incorrectly.

Computations done in parallel often get different results than the original sequential
program. Round-off errors are the most common surprise for many programmers
when a program is modified to run in parallel. You should expect numeric results to
vary slightly when computations are changed to run in parallel. For example, com-
puting (A+B+C+D) as ((A+B)+(C+D)) enables A+B and C+D to be computed in parallel,
but the final sum may be slightly different from other evaluations such as
(((A+B)+C)+D). Even the parallel results can differ from run to run, depending on the
order of the operations.

A few types of program failures can happen only in a parallel program because they
involve the coordination of tasks. These failures are known as deadlocks and race
conditions. Although Threading Building Blocks simplifies programming so as to
reduce the chance for such failures, they are still quite possible. Multithreaded pro-
grams can be nondeterministic as a result, which means the same program with the
same input can follow different execution paths each time it is invoked. When this
occurs, failures do not repeat consistently and debugger intrusions can easily change
the failure, thereby making debugging frustrating, to say the least.

Figure 2-15. Results of race condition (no mutual exclusion)

Thread A Thread B Value of X

44

44

32

32

32

42

Read X (44)

subtract 12

Write X (32)

Read X (32)

add 10

Write X (42)

DESIRED

Thread A Thread B Value of X

44

44

32

54

Read X (44)

subtract 12

Write X (32)add 10

Write X (54)

RACE – B first, A second

Read X (44)

Thread A Thread B Value of X

44

44

54

32

Read X (44)

subtract 12

Write X (32)

add 10

Write X (54)

RACE – A first, B second

Read X (44)

24 | Chapter 2: Thinking Parallel

Tracking down and eliminating the source of unwanted nondeterminism is not easy.
Specialized tools such as the Intel Thread Checker help, but the first step is to under-
stand these issues and try to avoid them.

There is also another very common problem when moving from sequential code to
parallel code: getting different results because of subtle changes in the order in which
work is done. Some algorithms may be unstable, whereas others simply exercise the
opportunity to reorder operations that are considered to have multiple correct
orderings.

Here are two key errors in parallel programming:

Deadlock
Deadlock occurs when at least two tasks wait for each other and each will not
resume until the other task proceeds. This happens easily when code requires
the acquisition of multiple locks. If Task A needs Lock R and Lock X, it might
get Lock R and then try to get Lock X. Meanwhile, if Task B needs the same two
locks but grabs Lock X first, we can easily end up with Task A wanting Lock X
while holding Lock R, and Task B waiting for Lock R while it holds only Lock X.
The resulting impasse can be resolved only if one task releases the lock it is
holding. If neither yields, deadlock occurs and the tasks are stuck forever.

Solution
Use implicit synchronization to avoid the need for locks. In general, avoid
using locks, especially multiple locks at one time. Acquiring a lock and then
invoking a function or subroutine that happens to use locks is often the
source of multiple lock issues. Because access to shared resources must
sometimes occur, the two most common solutions are to acquire locks in a
certain order (always A and then B, for instance) or to release all locks when-
ever a lock cannot be acquired and begin again.

Race conditions
A race condition occurs when multiple tasks read from and write to the same
memory without proper synchronization. The “race” may finish correctly some-
times and therefore complete without errors, and at other times it may finish
incorrectly. Figure 2-15 illustrates a simple example with three different possible
outcomes due to a race condition.

Race conditions are less catastrophic than deadlocks, but more pernicious
because they don’t necessarily produce obvious failures and yet can lead to cor-
rupted data: an incorrect value being read or written. The result of some race
conditions can be a state that is not legal because a couple of threads may each
succeed in updating half their state (multiple data elements).

Solution
Manage shared data in a disciplined manner using the synchronization
mechanisms described in Chapter 7 to ensure a correct program. Avoid low-
level methods based on locks because it is so easy to get things wrong.

Patterns | 25

Explicit locks should be a last effort. In general, the programmer is better off
using the synchronization implied by the algorithm templates and task
scheduler when possible. For instance, use parallel_reduce instead of creat-
ing your own with shared variables. The join operation in parallel_reduce
is guaranteed not to run until the subproblems it is joining are completed.

Abstraction
When writing a program, choosing an appropriate level of abstraction is important.
Few programmers use assembly language anymore. Programming languages such as
C and C++ have abstracted away the low-level details. Hardly anyone misses the old
programming method.

Parallelism is no different. You can easily get caught up in writing code that is too
low-level. Raw thread programming requires you to manage threads, which is time-
consuming and error-prone.

Programming in Threading Building Blocks offers an opportunity to avoid thread
management. This will result in code that is easier to create, easier to maintain, and
more elegant. However, it does require thinking of algorithms in terms of what work
can be divided and how data can be divided.

Patterns
Mark Twain once observed, “The past does not repeat itself, but it does rhyme.” And
so it is with computer programs: code may not be reused over and over without
change, but patterns do emerge.

Condensing years of parallel programming experience into patterns is not an exact
science. However, we can explain parallel programming approaches in more detail
than just talking about task versus data decomposition.

Object-oriented programming has found value in the Gang of Four (Gamma, Helm,
Johnson, and Vlissides) and their landmark work, Design Patterns: Elements of
Reusable Object-Oriented Software (Addison Wesley). Many credit that book with
bringing more order to the world of object-oriented programming. The book gath-
ered the collective wisdom of the community and boiled it down into simple
“patterns” with names, so people could talk about them.

A more recent book, Patterns for Parallel Programming, by Mattson et al. (Addison
Wesley), has similarly collected the wisdom of the parallel programming commu-
nity. Its point is that the field of parallel programming has moved from chaos to
established practice. Experts use common tricks and have their own language to talk
about these tricks. With these patterns in mind, programmers can quickly get up to
speed in this new field, just as object-oriented programmers have done for years with
the famous Gang of Four book.

26 | Chapter 2: Thinking Parallel

Patterns for Parallel Programming is a serious and detailed look at how to approach
parallelism. Tim Mattson often lectures on this topic, and he helped me summarize
how the patterns relate to Threading Building Blocks. This will help connect the con-
cepts of this book with the patterns for parallelism that his book works to describe.

Mattson et al. propose that programmers need to work through four design spaces
when moving from first thoughts to a parallel program (Table 2-1 summarizes these
explanations):

Finding concurrency
This step was discussed earlier in this chapter, in the section “Decomposition.”
Threading Building Blocks simplifies finding concurrency by encouraging you to
find one or more tasks without worrying about mapping them to hardware
threads. For some algorithms (e.g., parallel_for), you will supply an iterator
that determines how to make a task split in half when the task is considered
large enough. In turn, Threading Building Blocks will then divide large data
ranges repeatedly to help spread work evenly among processor cores. Other
algorithms, such as tbb::pipeline, help express the opportunity to create lots of
tasks differently. The key for you is to express parallelism in a way that allows
Threading Building Blocks to create many tasks.

Algorithm structures
This step embodies your high-level strategy. Figure 2-16 shows an organiza-
tional view for decompositions. In the “Decomposition” section, Figure 2-4 illus-
trated a Pipeline and Figure 2-2 illustrated Task Parallelism. Threading Building
Blocks is a natural fit for these two patterns. Threading Building Blocks also
excels at recursion because of its fundamental design around recursion, so the
patterns of Divide and Conquer and Recursive Data are easily handled. The
Event-Based Coordination pattern is a poor fit for parallelism because it is
unstructured and unpredictable. In some cases, using the task scheduler of
Threading Building Blocks directly may be an option.

Figure 2-16. A view on organization

Choose how
to organize

TasksFlow of Data Data

Regular? Irregular? Linear? Recursive? Linear? Recursive?

Pipeline Event-Based
Coordination

Task
Parallelism

Divide &
Conquer

Geometric
Decomposition

Recursive
Data

Intuition | 27

Supporting structures
This step involves the details for turning our algorithm strategy into actual code.
For the traditional parallel programmer, these issues are critical and have an
impact that reaches across the entire parallel programming process. But Thread-
ing Building Blocks offers enough support for this design pattern that the pro-
grammer rarely has to be concerned with it.

Implementation mechanisms
This step includes thread management and synchronization. Threading Building
Blocks handles all the thread management, leaving you free to worry only about
tasks at a higher level of design. The design encourages implicit synchronization
so as to reduce the need for explicit locking. Chapter 7 describes the use of
synchronization with Threading Building Blocks.

Our envelope-stuffing example from Figure 2-8 can be translated into code by
addressing these four design spaces. For the finding concurrency design space, the
concurrency is both data parallelism (the materials: envelopes, stamps, papers) and
task parallelism (the jobs of folding, stuffing, etc.). For the algorithm structures
design space, we chose a pipeline. With Threading Building Blocks, we can use
tbb::pipeline. Because the synchronization is all implicit, there is no need for locks.
Therefore, Threading Building Blocks handles the last two design spaces—supporting
structures and implementation mechanisms—for us.

Intuition
After reading this chapter, you should be able to explain Thinking Parallel in terms
of decomposition, scaling, correctness, abstraction, and patterns.

Once you understand these five concepts, and you can juggle them in your head
when considering a programming task, you are Thinking Parallel. You will be devel-
oping an intuition about parallelism that will serve you well. Already, programmers
seek to develop a sense of when a problem should use a parser, call on a sort algo-
rithm, involve a database, use object-oriented programming, and so on. We look for
patterns, think about decomposition, understand abstractions, and anticipate what
approaches will be easier to debug. Parallelism is no different in this respect.

Table 2-1. Design spaces and Threading Building Blocks

Design space Key Your job or not?

Finding concurrency Think Parallel Your job

Algorithm structures Algorithms from Chapters 3 and 4 You express yourself using the algorithm
templates; the rest is taken care of for you

Supporting structures Algorithms from Chapters 3 and 4 Threading Building Blocks

Implementation mechanisms Write code to avoid the need for explicit syn-
chronization, or use mutual exclusion from
Chapter 7

Threading Building Blocks does most of
the work for you

28 | Chapter 2: Thinking Parallel

Developing an intuition to Think Parallel requires nothing more than understanding
this chapter and trying it on a few projects. Intel Threading Building Blocks helps
with each type of thinking presented in the chapter. Combined with Think Parallel
intuition, Threading Building Blocks simply helps with parallel programming.

29

Chapter 3 CHAPTER 3

Basic Algorithms3

This is the key chapter in learning Intel Threading Building Blocks. Here you will
come to understand the recursion, task-stealing, and algorithm templates that
Threading Building Blocks uniquely combines.

The most visible contribution of Threading Building Blocks is the algorithm templates
covered in this chapter and the next chapter. This chapter introduces the simplest
loop-oriented algorithms based on recursive ranges, and the next chapter expands on
that with more advanced algorithm support. Future chapters offer details that round
out features needed to make your use of Threading Building Blocks complete.

Threading Building Blocks offers the following types of generic parallel algorithms,
which are covered in this chapter:

Loop parallelization

parallel_for and parallel_reduce
Load-balanced, parallel execution of a fixed number of independent loop
iterations

parallel_scan
A template function that computes a prefix computation (also known as a
scan) in parallel (y[i] = y[i-1] op x[i])

The validity of the term Building Block is clearer when you see how fully Threading
Building Blocks supports nested parallelism to enable you to build larger parallel
components from smaller parallel components. A Quicksort example shown in
Chapter 11, for instance, was implemented using parallel_for recursively. The
recursion is implicit because of Threading Building Blocks’ inherent concept of
splitting, as embodied in the parallel iterator.

When you thoroughly understand why a recursive algorithm such as
Quicksort should use the parallel_for template with a recursive range
instead of using a recursion template, you will understand a great deal
about how to apply Threading Building Blocks to your applications.

30 | Chapter 3: Basic Algorithms

Understanding some fundamental concepts can make the parallelism model of
Threading Building Blocks intuitive. Most fundamental is the reliance on breaking
up problems recursively as required to get to the right level of parallel tasks. The
proper degree of breakdown in a problem is embodied in a concept called grain size.
Grain size started as a mysterious manual process, which has since been facilitated
with some automation (heuristics) in the latest versions of Threading Building
Blocks. This chapter offers rules of thumb, based on experience with Threading
Building Blocks, for picking the best grain size.

Recursively breaking down a problem turns out to be much better than the more
obvious static division of work. It also fits perfectly with the use of task stealing
instead of a global task queue. Reliance on task stealing is a critical design decision
that avoids implementing something as important as a task queue as a global
resource that becomes a bottleneck for scalability.

Furthermore, as you wrestle to decide which algorithm template to apply to parallel-
ism (for loop, while loop, pipeline, divide and conquer, etc.), you will find that you
want to mix and nest them. More often than not, you realize that in a C++ program,
a combination—such as a parallel_for loop controlling a parallel set of pipelines—is
what you want to program. Threading Building Blocks makes such mixtures surpris-
ingly easy to implement. Not only that, but the fundamental design choice of recur-
sion and task stealing makes the resulting program work very well.

Initializing and Terminating the Library
Intel Threading Building Blocks components are defined in the tbb namespace. For
brevity’s sake, the namespace is explicit in the first mention of a component in this
book, but implicit afterward.

Any thread that uses an algorithm template from the library or the task scheduler
must have an initialized tbb::task_scheduler_init object. A thread may have more
than one of these objects initialized at a time. The task scheduler shuts down when
all task_scheduler_init objects terminate. By default, the constructor for task_
scheduler_init does the initialization and the destructor does the termination. Thus,
declaring a task_scheduler_init in main(), as in Example 3-1, both starts and shuts
down the scheduler.

Example 3-1. Initializing the library

#include "tbb/task_scheduler_init.h"
using namespace tbb;

int main() {
 task_scheduler_init init;
 ...
 return 0;
}

Initializing and Terminating the Library | 31

The using directive in the example enables you to use the library identifiers without
having to write out the namespace prefix tbb before each identifier. The rest of the
examples assume that such a using directive is present.

Automatic startup/shutdown was not implemented because, based on Intel’s experi-
ence in implementing OpenMP, we knew that parts are too problematic on some
operating systems to do it behind the scenes. In particular, always knowing when a
thread shuts down can be quite problematic.

Calling the initialization more than once will not cause the program to fail, but it is a
bit wasteful and can cause a flurry of extra warnings from some debugging or analy-
sis tools, such as the Intel Thread Checker.

The section “Mixing with Other Threading Packages” in Chapter 10 explains how to
construct task_scheduler_init objects if your program creates threads itself using
another interface.

The constructor for task_scheduler_init takes an optional parameter that specifies
the number of desired threads, including the calling thread. The optional parameter
can be one of the following:

• The value task_scheduler_init::automatic, which is the default when the
parameter is not specified. It exists for the sake of the method task_scheduler_
init::initialize.

• The value task_scheduler_init::deferred, which defers the initialization until
the task_scheduler_init::initialize(n) method is called. The value n can be
any legal value for the constructor’s optional parameter.

• A positive integer specifying the number of threads to use.

The deferred form of the task scheduler allows you to create the init object at the
right scope so that the destruction will happen when that scope is exited. The actual
initialization call can then occur inside a subroutine without having the destruction
implicit in the return cause a problem.

The argument should be specified only when doing scaling studies during develop-
ment. Omit the parameter, or use task_scheduler_init::automatic, for production
code. The reason for not specifying the number of threads in production code is that
in a large software project, there is no way for various components to know how
many threads would be optimal for other components. Hardware threads are a
shared global resource. It is best to leave the decision of how many threads to use to
the task scheduler.

The parameter is ignored if another task_scheduler_init object is active. Disagree-
ments in the number of threads are resolved in favor of the first task_scheduler_init
that has not been deferred.

32 | Chapter 3: Basic Algorithms

Design your programs to try to create many more tasks than there are
threads, and let the task scheduler choose the mapping from tasks to
threads.

In general, you will let the library be terminated automatically by the destructor
when all task_scheduler_init objects terminate.

For cases where you want more control, there is a method named task_scheduler_
init::terminate for terminating the library early, before the task_scheduler_init is
destroyed. Example 3-2 defers the decision of the number of threads to be used by
the scheduler (line 3 defers, line 5 commits), and terminates it early (line 8).

In Example 3-2, you can omit the call to terminate() because the destructor for
task_scheduler_init checks whether the task_scheduler_init was initialized and, if
so, performs the termination.

The task scheduler is somewhat expensive to start up and shut down,
so it’s recommended that you put the task_scheduler_init in your
main routine or when a thread is born, and do not try to create a
scheduler every time you use a parallel algorithm template.

Loop Parallelization
The simplest form of scalable parallelism is a loop of iterations that can each run
simultaneously without interfering with each other. The following sections demon-
strate how to parallelize such simple loops.

parallel_for and parallel_reduce

Load-balanced, parallel execution of a fixed number of independent loop
iterations

parallel_scan

A template function that computes a parallel prefix (y[i] = y[i-1] op x[i])

Example 3-2. Early scheduler termination

1 int main(int argc, char* argv[]) {
2 int nthread = strtol(argv[0],0,0);
3 task_scheduler_init init(task_scheduler_init::deferred);
4 if(nthread>=1)
5 init.initialize(nthread);
6 ... code that uses task scheduler only if nthread>=1 ...
7 if(nthread>=1)
8 init.terminate();
9 return 0;

10 }

Loop Parallelization | 33

parallel_for
Suppose you want to apply a function Foo to each element of an array, and it is safe
to process each element concurrently. Example 3-3 shows the sequential code to do
this.

The iteration space here is of type size_t, and it goes from 0 to n-1. The template
function tbb::parallel_for breaks this iteration space into chunks and runs each
chunk on a separate thread.

The first step in parallelizing this loop is to convert the loop body into a form that
operates on a chunk. The form is a Standard Template Library (STL)-style function
object, called the body object, in which operator() processes a chunk. Example 3-4
declares the body object.

Note the iteration space argument to operator(). A blocked_range<T> is a template
class provided by the library. It describes a one-dimensional iteration space over type
T. Class parallel_for works with other kinds of iteration spaces, too. The library
provides blocked_range2d for two-dimensional spaces. A little later in this chapter, in
the section “Advanced Topic: Other Kinds of Iteration Spaces,” I will explain how
you can define your own spaces.

An instance of ApplyFoo needs member fields that remember all the local variables
that were defined outside the original loop but were used inside it. Usually, the con-
structor for the body object will initialize these fields, though parallel_for does not

Example 3-3. Original loop code

void SerialApplyFoo(float a[], size_t n) {
 for(size_t i=0; i<n; ++i)
 Foo(a[i]);
}

Example 3-4. A class for use by a parallel_for

#include "tbb/blocked_range.h"

class ApplyFoo {
 float *const my_a;
public:
 void operator()(const blocked_range<size_t>& r) const {
 float *a = my_a;
 for(size_t i=r.begin(); i!=r.end(); ++i)
 Foo(a[i]);
 }
 ApplyFoo(float a[]) :
 my_a(a)
 {}
};

34 | Chapter 3: Basic Algorithms

care how the body object is created. The template function parallel_for requires
that the body object have a copy constructor, which is invoked to create a separate
copy (or copies) for each worker thread. It also invokes the destructor to destroy
these copies.

In most cases, the implicitly generated copy constructor and destructor work cor-
rectly. You may need an explicit destructor if you’ve designed it such that the
destructor must perform some action, such as freeing memory. If the copy construc-
tor and destructor are both implicit, there will be no such side effects. But, if the
destructor is explicit, most likely the copy constructor will need to be explicit as well.

Because the body object might be copied, its operator() should not modify the
body. Thus, in Example 3-4, the operator() function should not modify data
member my_a. It can modify what my_a points to. This distinction is emphasized by
declaring my_a as const and what it points to as (non-const) float. Otherwise, the
modification might or might not become visible to the thread that invoked parallel_
for, depending upon whether operator() is acting on the original or a copy. As a
reminder of this nuance, parallel_for requires that the body object’s operator() be
declared as const.

Threading Building Blocks is designed to help guard against mistakes
that would lead to failures: thus, operator() is required to be const-
qualified as a syntactic guard against trying to accumulate side effects
that would be lost by the thread-private copies.

The example operator() loads my_a into a local variable, a. Though it’s not neces-
sary, there are two reasons for doing this in the example:

Style

It makes the loop body look more like the original.

Performance

Sometimes, putting frequently accessed values into local variables helps the com-
piler optimize the loop better, because local variables are often easier for the
compiler to track.

After you have written the loop body as a body object, invoke the template function
parallel_for, as shown in Example 3-5.

Example 3-5. Use of parallel_for

#include "tbb/parallel_for.h"

void ParallelApplyFoo(float a[], size_t n) {
 parallel_for(blocked_range<size_t>(0,n,YouPickAGrainSize), ApplyFoo(a));
}

Loop Parallelization | 35

The blocked_range constructed here represents the entire iteration space from 0 to
n–1, which parallel_for divides into subspaces for each processor. The general form
of the constructor is:

blocked_range<T>(begin,end,grainsize)

The T specifies the value type. The arguments begin and end specify the iteration
space in STL style as a half-open interval [begin,end). Half-open intervals are conve-
nient because the empty set is easily represented by [X,X). If Y is less than X, a range
[X,Y) is considered invalid and will raise an assertion if the debug macro TBB_DO_
ASSERT is defined and is nonzero.

Example 3-6 defines a routine, ParallelAverage, using parallel_for, that sets output[i]
to the average of input[i-1], input[i], and input[i+1], for .

Half-Open Intervals
Intervals are specified using a square bracket [or] to indicate inclusion, or a rounded
bracket (or) to indicate exclusion. An interval of [2,7] indicates the numbers 2, 3, 4,
5, 6, 7, whereas the interval (2,7) means 3, 4, 5, 6. The half-open interval [2,7) indi-
cates 2, 3, 4, 5, 6.

Threading Building Blocks uses half-open intervals. This means that the interval [X,Y)
effectively creates an iteration which will be covered by the loop for (i=X;i<Y;i++).

Example 3-6. Parallel average

#include "tbb/parallel_for.h"
#include "tbb/blocked_range.h"

using namespace tbb;

struct Average {
 float* input;
 float* output;
 void operator()(const blocked_range<int>& range) const {
 for(int i=range.begin(); i!=range.end(); ++i)
 output[i] = (input[i-1]+input[i]+input[i+1])*(1/3.0f);
 }
};

// Note: The input must be padded such that input[-1] and input[n]
// can be used to calculate the first and last output values.
void ParallelAverage(float* output, float* input, size_t n) {
 Average avg;
 avg.input = input;
 avg.output = output;
 parallel_for(blocked_range<int>(0, n, 1000), avg);
}

0 i n<≤

36 | Chapter 3: Basic Algorithms

Grain size

The third argument, grainsize, specifies the number of iterations for a reasonable
size chunk to deal out to a processor. If the iteration space has more than grainsize
iterations, parallel_for splits it into separate subranges that are scheduled
separately.

The grainsize amortizes parallel scheduling overhead. Having a grainsize indepen-
dent of the number of processors tends to keep, in common cases, the parallel
scheduling overhead in constant proportion to real work. This is because the packag-
ing-and-handling overhead is relatively constant per grain and therefore indepen-
dent of the number of processors.

The grainsize enables you to avoid excessive parallel overhead. A parallel loop con-
struct incurs overhead cost for every subrange. If the subranges are too small, the
overhead may exceed the useful work. By specifying a grain size, you can limit the
overhead. The grainsize effectively sets a minimum threshold for parallelization.

Figure 3-1 illustrates the impact of overhead by showing the useful work as lettered
squares surrounded by the overhead of a grain of work (the darker surrounding
areas). On the left, the problem is broken into four pieces (4X), and on the right,
with a finer grain size, the problem is broken into 36 pieces (36X).

The total work to be done on the system is represented by the light and dark gray
regions combined—the overall box. The 36X case shows how too small a grain size
leads to a relatively high proportion of overhead. The 4X case shows how a large
grain size reduces this proportion, at the cost of reducing potential parallelism. The

Figure 3-1. Packaging versus grain size, same workload

a b dc e f

g h ji k l

m n po q r

s t vu w x

y z

4X

a b c d e f

g h i j k l

m n po q r

s t vu w x

y z

36X

Loop Parallelization | 37

overhead as a fraction of useful work depends on the grain size, not on the number
of grains. Consider this relationship and not the total number of iterations or num-
ber of processors when setting a grain size.

A recommended rule of thumb is that grainsize iterations of operator() should take
at least 10,000 to 100,000 instructions to execute, which typically means more than
a few thousand mathematic calculations. When in doubt, do the following:

1. Set the grainsize parameter higher than necessary. Setting it to 10,000 is usually
a good starting point.

2. Run your algorithm on one processor core.

3. Start halving the grainsize parameter and see how much the algorithm slows
down as the value decreases.

A slowdown of about 5 to 10 percent when running with a single thread is a good
setting for most purposes. The drawback of setting a grain size too high is that it can
reduce parallelism. For example, if your grainsize value is 10,000 and the loop has
20,000 iterations, the parallel_for distributes the loop across only two processors,
even if more are available. However, if you are unsure, err on the side of being a little
too high instead of a little too low because too low a value hurts serial performance,
which in turns hurts parallel performance if other parallelism is available higher in
your program.

Grain size is not an exact science; you do not have to set it very
precisely.

To illustrate the inexact nature of setting the best value, Figure 3-2 shows a typical
“bathtub curve” for execution time versus grain size, based on the floating-point
a[i]=b[i]*c computation over 1 million indices. There is very little work per iteration.

Figure 3-2. Wall clock time versus grainsize

1

Ti
m

e
(m

ill
ise

co
nd

s)

grainsize

10 100 1,000 10,000 100,000 1,000,000
1

10

100

38 | Chapter 3: Basic Algorithms

The scale is logarithmic. The downward slope on the left side indicates that with a
grain size of 1, most of the time is spent on packaging (dark gray in Figure 3-1). An
increase in grain size brings a proportional decrease in parallel overhead. Then the
curve flattens out because the packaging (overhead) becomes insignificant for a suffi-
ciently large grain size. At the extreme right, the curve turns up because the chunks
are so large that there are fewer chunks than available hardware threads. Notice that
any grain size over the wide range of 100 to 100,000 works quite well.

A general rule of thumb for parallelizing loop nests is to parallelize the
outermost one possible. The reason is that each iteration of an outer
loop is likely to provide a bigger grain of work than an iteration of an
inner loop.

For a sufficiently simple function Foo, the examples might not show significant
speedup when written as parallel loops. The cause could be insufficient system band-
width between the processors and memory. In that case, you may have to rethink
your algorithm to take better advantage of cache. Restructuring to better utilize the
cache usually benefits the parallel program as well as the serial program.

Automatic grain size

The parallel loop templates in the original release of Threading Building Blocks
required a grainsize parameter. We have been looking into ways to automatically
determine the right value, but it’s not easy.

Feedback from users is that they want automatic grain size determination, even if it
is not always optimal, so the grainsize parameter is now optional in creating the
iterator. When grainsize is not specified, a partitioner should be supplied to the
algorithm template.

If both the partitioner and the grainsize are omitted, it’s the same as specifying a
grainsize of 1. If there are more than 10,000 instructions per iteration, it will work
okay. With fewer than a thousand or so, there will be a serious performance hit.

A partitioner is an object that guides the chunking of a range. Currently, only auto_
partitioner makes sense without a grainsize.

The auto_partitioner provides an alternative that heuristically chooses the grain size
so that you do not have to specify one. The heuristic attempts to limit overhead
while still providing ample opportunities for load balancing. Guessing the grain size
with the heuristic is not easy, but it does have a connection with the task scheduler
that allows it to get dynamic guidance, which can make it better than a static choice
of grain size.

Example 3-7 shows how to use an auto_partitioner instead of a grainsize. Notice
that the grainsize parameter is omitted when constructing the blocked_range and
that an auto_partitioner object is passed as a third argument to the parallel_for.

Loop Parallelization | 39

As with most heuristics, there are situations in which auto_partitioner might not
guess optimally and simple_partitioner would yield better performance. We recom-
mend using auto_partitioner unless you have the time to experiment and tune the
grain size for machines of interest.

Support for partitioners is a new feature in Threading Building Blocks
and will almost certainly have some additions in the future. You
should check the documentation with the latest release to see whether
there are new features.

Notes on automatic grain size

The optimal grain size depends upon implementation. This issue is not limited to
parallelism. Try writing a large file using a single-character write-and-flush operation
on each character. Picking appropriate chunk sizes is common in programming.
Thus, automatic determination of an optimal grain size is still a research problem.

parallel_for with partitioner

parallel_for takes an optional third argument to specify a partitioner. See the ear-
lier section “Automatic grain size” for more information.

This example shows a simple use of the partitioner concept with a parallel_for. The
code shown in Example 3-8 is an extension of Example 3-6. An auto_partitioner is
used to guide the splitting of the range.

Example 3-7. Use of auto_partitioner

#include "tbb/parallel_for.h"

void ParallelApplyFoo(float a[], size_t n) {
 parallel_for(blocked_range<size_t>(0,n), ApplyFoo(a),
 auto_partitioner());
}

Example 3-8. Parallel average with partitioner

#include "tbb/parallel_for.h"
#include "tbb/blocked_range.h"

using namespace tbb;

struct Average {
 float* input;
 float* output;
 void operator()(const blocked_range<int>& range) const {
 for(int i=range.begin(); i!=range.end(); ++i)
 output[i] = (input[i-1]+input[i]+input[i+1])*(1/3.0f);
 }
};

40 | Chapter 3: Basic Algorithms

Two important changes from Example 3-6 should be noted:

• The call to parallel_for takes a third argument, an auto_partitioner object.

• The blocked_range constructor is not provided with a grainsize parameter.

parallel_reduce
Applying a function such as sum, max, min, or logical AND across all the members of a
group is called a reduction operation. Doing a reduction in parallel can yield a differ-
ent answer from a serial reduction because of rounding. For instance, A+B+C+D+E+F
may be evaluated in serial as (((((A+B)+C)+D)+E)+F), whereas the parallel version
may compute ((A+B)+((C+D)+(E+F))). Ideally, the results would be the same, but if
rounding can occur, the answers will differ. Traditional C++ programs perform
reductions in loops, as in the summation shown in Example 3-9.

If the iterations are independent, you can parallelize this loop using the template
class parallel_reduce, as shown in Example 3-10.

// Note: The input must be padded such that input[-1] and input[n]
// can be used to calculate the first and last output values.
void ParallelAverage(float* output, float* input, size_t n) {
 Average avg;
 avg.input = input;
 avg.output = output;
 parallel_for(blocked_range<int>(0, n), avg, auto_partitioner());

Example 3-9. Original reduction code

float SerialSumFoo(float a[], size_t n) {
 float sum = 0;
 for(size_t i=0; i!=n; ++i)
 sum += Foo(a[i]);
 return sum;
}

Example 3-10. A class for use by a parallel_reduce

class SumFoo {
 float* my_a;
public:
 float sum;
 void operator()(const blocked_range<size_t>& r) {
 float *a = my_a;
 for(size_t i=r.begin(); i!=r.end(); ++i)
 sum += Foo(a[i]);
 }

 SumFoo(SumFoo& x, split) : my_a(x.my_a), sum(0) {}

 void join(const SumFoo& y) {sum+=y.sum;}

Example 3-8. Parallel average with partitioner (continued)

Loop Parallelization | 41

Threading Building Blocks defines parallel_reduce similar to parallel_for. The
principle difference is that thread-private copies of the body must be merged at the
end, and therefore the operator() is not const. Note the differences with class
ApplyFoo from Example 3-4. The operator() is not const because it must update
SumFoo::sum. Another difference is that SumFoo has a splitting constructor and a
method named join that must be present for parallel_reduce to work.

The splitting constructor takes as arguments a reference to the original object, and
has a dummy argument of type split. This dummy argument serves, simply by its
presence, to distinguish the splitting constructor from a copy constructor (which
would not have this argument). More information appears later in this chapter in a
section titled “Advanced Topic: Other Kinds of Iteration Spaces.”

The join method is invoked whenever a task finishes its work and needs to merge
the result back with the main body of work. The parameter passed to the method is
the result of the work, so the method will just repeat the same operation that was
performed in each task on each element (in this case, a sum).

When a worker thread is available, as decided by the task scheduler, parallel_reduce
hands off work to it by invoking the splitting constructor to create a subtask for the
processor. When the task completes, parallel_reduce uses the join method to accu-
mulate the result of the subtask. The diagram in Figure 3-3 shows the split-join
sequence.

 SumFoo(float a[]) :
 my_a(a), sum(0)
 {}
};

Figure 3-3. Split-join sequence

Example 3-10. A class for use by a parallel_reduce (continued)

Split iteration space in half

Reduce first half of iteration space

Wait for volunteer

x.join(y);

Steal second half of iteration space

Reduce second half of iteration space into y

SumFoo y(x, split());

42 | Chapter 3: Basic Algorithms

A line in Figure 3-3 indicates order in time. Notice that the splitting constructor
might run concurrently while object x is being used for the first half of the reduction.
Therefore, all actions of the splitting constructor that create y must be made thread-
safe with respect to x. If the splitting constructor needs to increment a reference
count shared with other objects, it should use an atomic increment (described in
Chapter 8).

Define join to update this to represent the accumulated result for this and the right-
hand side. The reduction operation should be associative, but it does not have to be
commutative. For a noncommutative operation op, left.join(right) should update
left to be the result of left op right.

A body is split only if the range is split, but the converse is not necessarily true.
Figure 3-4 diagrams a sample execution of parallel_reduce. The root represents the
original body b0 being applied to the half-open interval [0,20). The range is recur-
sively split at each level into two subranges. The grain size for the example is 5,
which yields four leaf ranges. The slash marks (/) denote where copies (b1 and b2) of
the body were created by the body splitting constructor. Bodies b0 and b1 each evalu-
ate one leaf. Body b2 evaluates leaf [10,15) and leaf [15,20), in that order. On the
way back up the tree, parallel_reduce invokes b0.join(b1) and b0.join(b2) to merge
the results of the leaves.

Figure 3-4 shows only one of the possible executions. Other valid executions include
splitting b2 into b2 and b3, or doing no splitting at all. With no splitting, b0 evaluates
each leaf in left to right order, with no calls to join.

A given body always evaluates one or more consecutive subranges in left to right
order. For example, in Figure 3-4, body b2 is guaranteed to evaluate [10,15) before
[15,20). You may rely on the consecutive left to right property for a given instance of
a body, but you must not rely on a particular choice of body splitting. parallel_
reduce makes the choice of body splitting nondeterministically. The left-to-right
property allows commutative operations to work, such as finding the first minimum
number in a sequence along with its position, as shown later in Example 3-13.

When no worker threads are available, parallel_reduce executes sequentially from
left to right in the same sense as for parallel_for. Sequential execution never invokes
the splitting constructor or method join.

Figure 3-4. parallel_reduce over blocked_range<int>(0,20,5)

b0 [0,20)

b2 [10,20)b0 [0,10)

b0 [0,5) b1 [5,10) b2 [10,15) b2 [15,20)

Loop Parallelization | 43

Example 3-11 uses the class defined in Example 3-10 to perform the reduction.

As with parallel_for, you must provide a reasonable grain size, with enough itera-
tions to take at least 10,000 instructions. If you are not sure, it is best to err on the
side of too large a grain size. You can also use a partitioner object to allow the run-
time library to guide the chunking of the range.

parallel_reduce generalizes to any associative operation. In general, the splitting
constructor does two things:

• Copies read-only information necessary to run the loop body

• Initializes the reduction variables to the identity element of the operations

The join method should do the corresponding merges. You can do more than one
reduction at the same time: for instance, you can gather the min and max with a single
parallel_reduce.

Advanced example

An example of a more advanced associative operation is to find the index containing
the smallest element of an array. A serial version might look like Example 3-12.

The loop works by keeping track of the minimum value found so far, and the index
of this value. This is the only information carried between loop iterations. To con-
vert the loop to use parallel_reduce, the function object must keep track of the
information carried, and must be able to merge this information when iterations are
spread across multiple threads. Also, the function object must record a pointer to a
to provide context.

Example 3-11. Parallel reduction code

float ParallelSumFoo(const float a[], size_t n) {
 SumFoo sf(a);
 parallel_reduce(blocked_range<size_t>(0,n,YouPickAGrainSize), sf);
 return sf.sum;
}

Example 3-12. Original minimization code

long SerialMinIndexFoo(const float a[], size_t n) {
 float value_of_min = FLT_MAX; // FLT_MAX from <climits>
 long index_of_min = -1;
 for(size_t i=0; i<n; ++i) {
 float value = Foo(a[i]);
 if(value<value_of_min) {
 value_of_min = value;
 index_of_min = i;
 }
 }
 return index_of_min;
}

44 | Chapter 3: Basic Algorithms

Example 3-13 shows the complete function object.

Now SerialMinIndex can be rewritten using parallel_reduce (see Example 3-14).

Chapter 11 contains a prime number finder based on parallel_reduce.

Example 3-13. Function object for minimization

class MinIndexFoo {
 const float *const my_a;
public:
 float value_of_min;
 long index_of_min;
 void operator()(const blocked_range<size_t>& r) {
 const float *a = my_a;
 for(size_t i=r.begin(); i!=r.end(); ++i) {
 float value = Foo(a[i]);
 if(value<value_of_min) {
 value_of_min = value;
 index_of_min = i;
 }
 }
 }

 MinIndexFoo(MinIndexFoo& x, split) :
 my_a(x.my_a),
 value_of_min(FLT_MAX), // FLT_MAX from <climits>
 index_of_min(-1)
 {}

 void join(const SumFoo& y) {
 if(y.value_of_min<value_of_min) {
 value_of_min = y.value_of_min;
 index_of_min = y.index_of_min;
 }
 }

 MinIndexFoo(const float a[]) :
 my_a(a),
 value_of_min(FLT_MAX), // FLT_MAX from <climits>
 index_of_min(-1),
 {}
};

Example 3-14. Parallel minimization

long ParallelMinIndexFoo(float a[], size_t n) {
 MinIndexFoo mif(a);
 parallel_reduce(blocked_range<size_t>(0,n,YouPickAGrainSize), mif);
 return mif.index_of_min;
}

Loop Parallelization | 45

Parallel_reduce with partitioner

Parallel_reduce has an optional third argument to specify a partitioner. See the
section “Automatic grain size” for more information.

Example 3-15 extends Examples 3-10 and 3-11 by using an auto_partitioner.

Two important changes from Example 3-11 should be noted:

• The call to parallel_reduce takes a third argument, an auto_partitioner object.

• The blocked_range constructor is not provided with a grainsize parameter.

Advanced Topic: Other Kinds of Iteration Spaces
The examples so far have used the class blocked_range<T> to specify ranges. This
class is useful in many situations, but it does not fit every one. You can define your
own iteration space objects to use with Intel Threading Building Blocks. The object
must specify how it can be split into subspaces by providing two methods and a split-
ting constructor. You can see these simple definitions in the class blocked_range<T>.

If your class is called R, the methods and constructor could be as shown in
Example 3-16.

Example 3-15. Parallel sum with partitioner

#include "tbb/parallel_reduce.h"
#include "tbb/blocked_range.h"

using namespace tbb;

struct Sum {
 float value;
 Sum() : value(0) {}
 Sum(Sum& s, split) {value = 0;}
 void operator()(const blocked_range<float*>& range) {
 float temp = value;
 for(float* a=range.begin(); a!=range.end(); ++a) {
 temp += *a;
 }
 value = temp;
 }
 void join(Sum& rhs) {value += rhs.value;}
};

float ParallelSum(float array[], size_t n) {
 Sum total;
 parallel_reduce(blocked_range<float*>(array, array+n),
 total, auto_partitioner());
 return total.value;
}

46 | Chapter 3: Basic Algorithms

The method empty must return true if the range is empty. The method is_divisible
needs to return true if the range can be split into two nonempty subspaces, and such
a split is worth the overhead. The splitting constructor needs to take two arguments:

• The first of type R

• The second of type tbb::split

The second argument is not used; it serves only to distinguish the constructor from
an ordinary copy constructor.

The splitting constructor should attempt to split r into two halves of roughly the
same size, update r to be the first half, and let the constructed object be the second
half. The two halves should be nonempty. The parallel algorithm templates call the
splitting constructor on r only if r.is_divisible is true.

The code in Example 3-17 defines a type TrivialIntegerRange that models the Range
Concept. It represents a half-open interval [lower,upper) that is divisible down to a
single integer.

TrivialIntegerRange is for demonstration and is not very practical because it lacks a
grainsize parameter. Use the library class blocked_range instead. Example 3-18
shows the implementation of blocked_range in the Threading Building Blocks library.
A full discussion of the class is beyond the scope of this book, but the code serves to
show the relationships among the various methods of an iteration space and the use
of the grain size.

Example 3-16. Define your own iteration space object

class R {
 // True if range is empty
 bool empty() const;
 // True if range can be split into nonempty subranges
 bool is_divisible() const;
 // Split r into subranges r and *this
 R(R& r, split);
 ...
};

Example 3-17. Trivial integer range

struct TrivialIntegerRange {
 int lower;
 int upper;
 bool empty() const {return lower==upper;}
 bool is_divisible() const {return upper>lower+1;}
 TrivialIntegerRange(TrivialIntegerRange& r, split) {
 int m = (r.lower+r.upper)/2;
 lower = m;
 upper = r.upper;
 r.upper = m;
 }
};

Loop Parallelization | 47

Example 3-18. Implementation of blocked_range

class blocked_range {
public:
 typedef Value const_iterator;
 typedef size_t size_type;

 blocked_range() : my_begin(), my_end() {}

 blocked_range(Value begin, Value end, size_type grainsize) :
 my_end(end), my_begin(begin), my_grainsize(grainsize)
 {
 _ _TBB_ASSERT(my_grainsize>0, "grainsize must be positive");
 }

 const_iterator begin() const {return my_begin;}
 const_iterator end() const {return my_end;}

 size_type size() const {
 _ _TBB_ASSERT(!(end()<begin()), "size() unspecified if end()<begin()");
 return size_type(my_end-my_begin);
 }

 size_type grainsize() const {return my_grainsize;}

 //--
 // Methods that implement Range Concept
 //--
 bool empty() const {return !(my_begin<my_end);}
 bool is_divisible() const {return my_grainsize<size();}

 blocked_range(blocked_range& r, split) :
 my_end(r.my_end),
 my_begin(do_split(r)),
 my_grainsize(r.my_grainsize)
 {}

private:
 Value my_end;
 Value my_begin;
 size_type my_grainsize;

 static Value do_split(blocked_range& r) {
 _ _TBB_ASSERT(r.is_divisible(), "cannot split blocked_range that is not divisible");
 Value middle = r.my_begin + (r.my_end-r.my_begin)/2u;
 r.my_end = middle;
 return middle;
 }

 template<typename RowValue, typename ColValue>
 friend class blocked_range2d;
};

48 | Chapter 3: Basic Algorithms

The iteration space does not have to be linear. Look at Example 3-19 (code from the
header file tbb/blocked_range2d.h) for an example of a two-dimensional range. Its
splitting constructor attempts to split the range along its longest axis. When used
with parallel_for, it causes the loop to be recursively blocked in a way that improves
cache usage. This nice cache behavior means that using parallel_for over a blocked_
range2d<T> can make a loop run faster than the sequential equivalent, even on a
single processor.

Example 3-19. A two-dimensional range

class blocked_range2d {
public:
 typedef blocked_range<RowValue> row_range_type;
 typedef blocked_range<ColValue> col_range_type;

private:
 row_range_type my_rows;
 col_range_type my_cols;

public:

 blocked_range2d(RowValue row_begin, RowValue row_end, typename row_range_type::size_
type row_grainsize,
 ColValue col_begin, ColValue col_end, typename col_range_type::size_
type col_grainsize) :
 my_rows(row_begin,row_end,row_grainsize),
 my_cols(col_begin,col_end,col_grainsize)
 {
 }

 bool empty() const {
 // Yes, it is a logical OR here, not AND.
 return my_rows.empty() || my_cols.empty();
 }

 bool is_divisible() const {
 return my_rows.is_divisible() || my_cols.is_divisible();
 }

 blocked_range2d(blocked_range2d& r, split) :
 my_rows(r.my_rows),
 my_cols(r.my_cols)
 {
 if(my_rows.size()*double(my_cols.grainsize()) < my_cols.size()*double(my_rows.
grainsize())) {
 my_cols.my_begin = col_range_type::do_split(r.my_cols);
 } else {
 my_rows.my_begin = row_range_type::do_split(r.my_rows);
 }
 }

Loop Parallelization | 49

Notes on blocked_range2d

The template class blocked_range2d is included in Threading Building Blocks because
beneficial uses for it showed up in many common applications. Parallelizing over two
dimensions instead of one often yields more parallelism and better cache behavior
than parallelizing over only one dimension.

The idea of extending to three or more dimensions, and the idea of making the num-
ber of dimensions a parameter, were both considered but rejected because they
added too much complexity with few practically motivating cases.

A constructor for blocked_range2d that takes two blocked_range arguments was con-
sidered as an alternative to the six-argument constructor, but so far, practice has
shown that such a constructor just adds extra clutter.

parallel_scan
A parallel_scan computes a parallel prefix, also known as a parallel scan. This com-
putation is an advanced concept in parallel computing that is sometimes useful in
scenarios that appear to have inherently serial dependencies.

A mathematical definition of the parallel prefix is as follows. Let ⊕ be an associative
operation ⊕ with left-identity element id⊕. The parallel prefix of ⊕ over a sequence

, , ... is a sequence , , , ... where:

•

•

For example, if ⊕ is addition, the parallel prefix corresponds to a running sum and
the identity element is 0. A serial implementation of parallel prefix is:

T temp = id⊕;
for(int i=1; i<=n; ++i) {
 temp = temp ⊕ x[i];
 y[i] = temp;
}

Parallel prefix performs this in parallel by reassociating the application of ⊕ and
using two passes. It may invoke ⊕ up to twice as many times as the serial prefix
algorithm. But given the right grain size and sufficient hardware threads, it can out-
perform the serial prefix because—even though it does more work—it can distribute
the work across more than one hardware thread.

 const row_range_type& rows() const {return my_rows;}

 const col_range_type& cols() const {return my_cols;}
};

Example 3-19. A two-dimensional range (continued)

x0 x1 xn 1– y0 y1 y2 yn 1–

y0 id ⊕ x0⊕=

yi yi 1– i⊕=

50 | Chapter 3: Basic Algorithms

Because parallel_scan needs two passes, systems with only two hard-
ware threads tend to exhibit only a small speedup. parallel_scan is
better suited for future systems with more than two cores. It shows
how a problem that appears inherently sequential can be parallelized.

Example 3-20 demonstrates how to use parallel_scan in a way similar to the sequen-
tial example.

The definition of operator() demonstrates typical patterns when using parallel_
scan:

• A single template defines both the first pass and the second pass versions. Doing
so is not required, but it usually saves coding effort because the two versions are
usually similar. The library defines static method is_final_scan() to enable dif-
ferentiation among the versions.

Example 3-20. parallel_scan

using namespace tbb;

class Body {
 T reduced_result;
 T* const y;
 const T* const x;
public:
 Body(T y_[], const T x_[]) : reduced_result(0), x(x_), y(y_) {}
 T get_reduced_result() const {return reduced_result;}

 template<typename Tag>
 void operator()(const blocked_range<int>& r, Tag) {
 T temp = reduced_result;
 for(int i=r.begin(); i<r.end(); ++i) {
 temp = temp ⊕ x[i];
 if(Tag::is_final_scan())
 y[i] = temp;
 }
 reduced_result = temp;
 }
 Body(Body& b, split) : x(b.x), y(b.y), reduced_result(id⊕) {}
 void reverse_join(Body& a) {
 reduced_result = a.reduced_result ⊕ reduced_result;
 }
 void assign(Body& b) {reduced_result = b.reduced_result;}
};

float DoParallelScan(T y[], const T x[], int n) {
 Body body(y,x);
 parallel_scan(blocked_range<int>(0,n,1000), body);
 return body.get_reduced_result();
}

Loop Parallelization | 51

• The prescan variant computes the ⊕ reduction, but does not update y. The
prescan is used by parallel_scan to generate look-ahead partial reductions.

• The final scan variant computes the ⊕ reduction and updates y.

The operation reverse_join is similar to the operation join used by parallel_reduce,
except that the arguments are reversed. In other words, this is the right argument of ⊕.

The template function parallel_scan decides whether and when to generate parallel
work. It is thus crucial that ⊕ is associative and that the methods of Body faithfully rep-
resent it. Operations such as floating-point addition that are somewhat associative can
be used, with the understanding that the results may be rounded differently depend-
ing upon the association used by parallel_scan. The reassociation may differ between
runs, even on the same machine. However, if no worker threads are available, execu-
tion associates identically to the serial form shown at the beginning of this section.

Parallel_scan with partitioner

Parallel_scan has an optional third argument to specify a partitioner (Example 3-21).
See the section “Automatic grain size” for more information.

Example 3-21. parallel_scan with partitioner argument

using namespace tbb;

class Body {
 T sum;
 T* const y;
 const T* const x;
public:
 Body(T y_[], const T x_[]) : sum(0), x(x_), y(y_) {}
 T get_sum() const {return sum;}

 template<typename Tag>
 void operator()(const blocked_range<int>& r, Tag) {
 T temp = sum;
 for(int i=r.begin(); i<r.end(); ++i) {
 temp = temp ⊕ x[i];
 if(Tag::is_final_scan())
 y[i] = temp;
 }
 sum = temp;
 }
 Body(Body& b, split) : x(b.x), y(b.y), sum(id⊕) {}
 void reverse_join(Body& a) { sum = a.sum ⊕ sum;}
 void assign(Body& b) {sum = b.sum;}
};

float DoParallelScan(T y[], const T x[], int n) {
 Body body(y,x);
 parallel_scan(blocked_range<int>(0,n), body, auto_partitioner());
 return body.get_sum();
}

52 | Chapter 3: Basic Algorithms

Two important changes from Example 3-20 should be noted:

• The call to parallel_scan takes a third argument, an auto_partitioner object.

• The blocked_range constructor is not provided with a grainsize parameter.

Recursive Range Specifications
Most algorithms provided by the Threading Building Blocks library are generic and
operate on all types that model the necessary concepts. Recursive ranges define the
space for the algorithm to operate upon and therefore are important to understand.

Splittable Concept Requirements for a type whose instances can be split into two pieces.
Table 3-1 lists the requirements for a splittable type X with instance x.

Description

A type is splittable if it has a splitting constructor that allows an instance to be split into two
pieces. The splitting constructor takes as arguments a reference to the original object, and a
dummy argument of type split, which is defined by the library. The dummy argument
distinguishes the splitting constructor from a copy constructor. After the constructor runs,
x and the newly constructed object should represent the two pieces of the original x. The
library uses splitting constructors in two contexts:

• Partitioning a range into two subranges that can be processed concurrently

• Forking a body (function object) into two bodies that can run concurrently

The following model types provide examples.

Model Types: Splittable Ranges
blocked_range and blocked_range2d represent splittable ranges. For each of these, splitting
partitions the range into two subranges.

The bodies for parallel_reduce, parallel_scan, simple_partitioner, and auto_partitioner
must be splittable. For each of these, splitting results in two bodies that can run
concurrently.

Table 3-1. Splittable Concept

Pseudosignature Semantics

X::X(X& x, split) Split x into two parts, one reassigned to x and the other to the newly constructed object.

Range Concept | 53

split Class Type for dummy argument of a splitting constructor.

#include "tbb/tbb_stddef.h"

class split;

Description

An argument of type split is used to distinguish a splitting constructor from a copy
constructor.

Members
namespace tbb {
 class split {
 };
}

Range Concept Requirements for a type representing a recursively divisible set of values.
Table 3-2 lists the requirements for a Range type R.

Description

A Range can be recursively subdivided into two parts. It is recommended that the division
be into nearly equal parts, but it is not required. Splitting as evenly as possible typically
yields the best parallelism. Ideally, a range is recursively splittable until the parts represent
portions of work that are more efficient to execute serially rather than split further. This key
limit to splitting is called the grain size. The amount of work represented by a Range typi-
cally depends upon higher-level context; hence, a typical type that models a Range should
provide a way to control the degree of splitting. For example, the template class blocked_
range has a grainsize parameter that specifies the biggest range considered indivisible.

The constructor that implements splitting is called a splitting constructor. If the set of values
has a sense of direction, by convention the splitting constructor should construct the
second part of the range and update the argument to refer to the first part of the range.
Following this convention causes the parallel_for, parallel_reduce, and parallel_scan
algorithms, when running sequentially, to work across a range in the increasing order
typical of an ordinary sequential loop.

Table 3-2. Range Concept

Pseudosignature Semantics

R::R(const R&) Copy constructor

R::~R() Destructor

bool R::empty() const True if range is empty

bool R::is_divisible() const True if range can be partitioned into two subranges

R::R(R& r, split) Split r into two subranges

54 | Chapter 3: Basic Algorithms

Model Types
blocked_range models a one-dimensional range.

blocked_range2d models a two-dimensional range.

blocked_range<Value> Template Class Template class for a recursively
divisible half-open interval.

#include "tbb/blocked_range.h"

template<typename Value> class blocked_range;

Description

A blocked_range<Value> represents a half-open range [i,j) that can be recursively split.
The types i and j must model the requirements in Table 3-3. Because the requirements are
pseudosignatures, signatures that differ in ways that can be implicitly converted are
allowed. For example, a blocked_range<int> is allowed because the difference of two int
values can be implicitly converted to a size_t. Examples that model the Value require-
ments are integral types, pointers, and STL random-access iterators whose difference can
be implicitly converted to a size_t.

A blocked_range models the Range Concept.

A blocked_range<Value> specifies a grainsize of type size_t. A blocked_range is splittable
into two subranges if the size of the range exceeds grainsize. The ideal grain size depends
upon the context of the blocked_range<Value>, which is typically the range argument to the
loop templates parallel_for, parallel_reduce, and parallel_scan. Too small a grain size
may cause scheduling overhead within the loop templates to swamp speedup gained from
parallelism. Too large a grain size may unnecessarily limit parallelism. For example, if the
grain size is so large that the range can be split only once, the maximum possible paral-
lelism is two.

Table 3-3. Value Concept for block_range

Pseudosignature Semantics

Value::Value(const Value&) Copy constructor

Value::~Value() Destructor

bool operator<(const Value& i, const Value& j) Value i precedes value j

size_t operator-(const Value& i, const Value& j) Number of values in range [i,j)

Value operator+(const Value& i, size_t k) kth value after i

blocked_range<Value> Template Class | 55

For a blocked_range [i,j) where j<i, not all methods have specified
behavior. However, enough methods do have specified behavior that
parallel_for, parallel_reduce, and parallel_scan iterate over the
same iteration space as the serial loop for(Value index=i; index<j;
++index)..., even when j<i. If the debug macro TBB_DO_ASSERT is non-
zero, methods with unspecified behavior raise an assertion failure. You
should not use iteration spaces [i,j) with j<i.

Members
namespace tbb {
 template<typename Value>
 class blocked_range {
 public:
 // types
 typedef size_t size_type;
 typedef Value const_iterator;

 // constructors
 blocked_range(Value begin, Value end, size_type grainsize=1);
 blocked_range(blocked_range& r, split);

 // capacity
 size_type size() const;
 bool empty() const;

 // access
 size_type grainsize() const;
 bool is_divisible() const;

 // iterators
 const_iterator begin() const;
 const_iterator end() const;
 };
}

size_type
Description: the type for measuring the size of a blocked_range. The type is always a
size_t.

const_iterator
Description: the type of a value in the range. Despite its name, the type const_iterator
is not necessarily an STL iterator; it merely needs to meet the Value requirements in
Table 3-3. However, it is convenient to call it const_iterator so that if it is a const_
iterator, the blocked_range behaves like a read-only STL container.

blocked_range(Value begin, Value end, size_t grainsize=1)
Effects: constructs a blocked_range representing the half-open interval [begin,end)
with the given grainsize.

Example: the statement blocked_range<int> r(5, 14, 2); constructs a range of int
that contains the values 5 through 13 inclusive, with a grainsize of 2. (The begin
parameter 5 is taken to be inclusive, and the end parameter 14 to be exclusive.) After-
ward, r.begin()==5 and r.end()==14.

56 | Chapter 3: Basic Algorithms

blocked_range(blocked_range& range, split)
Requirements: is_divisible() is true.

Effects: partitions range into two subranges. The newly constructed blocked_range is
approximately the second half of the original range, and range is updated to be the
remainder. Each subrange has the same grainsize as the original range.

Example: let i and j be integers that define a half-open interval [i,j) and let g specify
a grainsize. The statement blocked_range<int> r(i,j,g) constructs a blocked_
range<int> that represents [i,j) with grainsize g. Running the statement blocked_
range<int> s(r,split); subsequently causes r to represent [i, i +(j -i)/2) and s to
represent [i +(j -i)/2, j), both with grainsize g.

size_type size() const
Requirements: end()<begin() is false.

Effects: determines size of range.

Returns: end()-begin().

bool empty() const
Effects: determines whether the range is empty.

Returns: !(begin()<end()).

size_type grainsize() const
Returns: grain size of range.

bool is_divisible() const
Requirements: !(end()<begin()).

Effects: determines whether the range can be split into subranges.

Returns: true if size()>grainsize(); false otherwise.

const_iterator begin() const
Returns: inclusive lower bound on the range.

const_iterator end() const
Returns: exclusive upper bound on the range.

blocked_range2d Template Class Template class that represents a recursively divisible,
two-dimensional, half-open interval.

#include "tbb/blocked_range2d.h"

template<typename RowValue, typename ColValue>

 class blocked_range2d;

Description

A blocked_range2d<RowValue,ColValue> represents a half-open, two-dimensional range
[i0,j0)x[i1,j1). Each axis of the range has its own splitting threshold. The RowValue and
ColValue must meet the requirements in Table 3-3. A blocked_range is splittable if either
axis is splittable. A blocked_range models the Range Concept.

blocked_range2d Template Class | 57

Members
namespace tbb {
template<typename RowValue, typename ColValue=RowValue>
 class blocked_range2d {
 public:
 // Types
 typedef blocked_range<RowValue> row_range_type;
 typedef blocked_range<ColValue> col_range_type;

 // Constructors
 blocked_range2d(RowValue row_begin, RowValue row_end,
 typename row_range_type::size_type row_grainsize,
 ColValue col_begin, ColValue col_end,
 typename col_range_type::size_type col_grainsize);
 blocked_range2d(blocked_range2d& r, split);

 // Capacity
 bool empty() const;

 // Access
 bool is_divisible() const;
 const row_range_type& rows() const;
 const col_range_type& cols() const;
 };
}

row_range_type
Description: a blocked_range<RowValue>. That is, the type of the row values.

col_range_type
Description: a blocked_range<ColValue>. That is, the type of the column values.

blocked_range2d<RowValue,ColValue>(RowValue row_begin, RowValue row_end, typename
row_range_type::size_type row_grainsize, ColValue col_begin, ColValue col_end,
typename col_range_type::size_type col_grainsize)

Effects: constructs a blocked_range2d representing a two-dimensional space of values.
The space is the half-open Cartesian product [row_begin,row_end)x[col_begin,col_
end), with the given grain sizes for the rows and columns.

Example: the statement blocked_range2d<char,int> r('a', 'z'+1, 3, 0, 10, 2);
constructs a two-dimensional space that contains all value pairs of the form (i, j),
where i ranges from 'a' to 'z' with a grain size of 3, and j ranges from 0 to 9 with a
grain size of 2.

blocked_range2d<RowValue,ColValue> (blocked_range2d& range, split)
Effects: partitions a range into two subranges. The newly constructed blocked_range2d
is approximately the second half of the original range, and range is updated to be the
remainder. Each subrange has the same grain size as the original range. The split is
either by rows or by columns. The choice of which axis to split is intended to cause,
after repeated splitting, the subranges to approach the aspect ratio of the respective
row and column grain sizes. For example, if the row_grainsize is twice the col_
grainsize, the subranges will tend toward having twice as many rows as columns.

58 | Chapter 3: Basic Algorithms

bool empty() const
Effects: determines whether the range is empty.

Returns: rows().empty()||cols().empty().

bool is_divisible() const
Effects: determines whether the range can be split into subranges.

Returns: rows().is_divisible()||cols().is_divisible().

const row_range_type& rows() const
Returns: range containing the rows of the value space.

const col_range_type& cols() const
Returns: range containing the columns of the value space.

Partitioner Concept Requirements for a type that decides whether a range should be operated on by a
task body or further split. Table 3-4 lists the requirements for a partitioner type P.

Description

The partitioner implements rules for deciding when a given range should no longer be
subdivided, but should be operated over as a whole by a task’s body.

The default behavior of the algorithms parallel_for, parallel_reduce, and parallel_scan
is to recursively split a range until no subrange remains that is divisible, as decided by the
function is_divisible of the Range Concept. The Partitioner Concept models rules for the
early termination of the recursive splitting of a range, providing the ability to change the
default behavior. A Partitioner object’s decision making is implemented using two func-
tions: a splitting constructor and the function should_execute_range.

Within the parallel algorithms, each Range object is associated with a Partitioner object.
Whenever a Range object is split using its splitting constructor to create two subranges, the
associated Partitioner object is likewise split to create two matching Partitioner objects.

When a parallel_for, parallel_reduce, or parallel_scan algorithm needs to decide
whether to further subdivide a range, it invokes the function should_execute_range for the
Partitioner object associated with the range. If the function returns true for the given
range and task, no further splits are performed on the range and the current task applies its
body over the entire range.

Table 3-4. Partitioner Concept

Pseudosignature Semantics

P::~P() Destructor.

template <typename Range>
bool P::should_execute_range(const Range &r,
const task &t)

True ifr should be passed to the body oft.False ifr
should instead be split.

P::P(P& p, split) Split p into two partitioners.

auto_partitioner Class | 59

Model Types: Partitioners
simple_partitioner models the default behavior of splitting a range until it cannot be
further subdivided.

auto_partitioner models an adaptive behavior that monitors the work-stealing actions of
the task_scheduler to reduce the number of splits performed.

simple_partitioner Class A class that models the default range-splitting behavior of the
parallel_for, parallel_reduce, and parallel_scan algorithms,

where a range is recursively split until it cannot be further subdivided.

#include "tbb/partitioner.h"

class simple_partitioner;

Description

The class simple_partitioner models the default range-splitting behavior of the parallel_
for, parallel_reduce, and parallel_scan algorithms.

simple_partitioner()
An empty default constructor.

simple_partitioner(simple_partitioner &partitioner, split)
An empty splitting constructor.

template<typename Range> bool should_execute_range (const Range &r, const task &t)
A function that returns true when the provided range should be executed to comple-
tion by the given task. It returns !range.is_divisible().

auto_partitioner Class A class that models an adaptive partitioner that monitors the
work-stealing actions of the task_scheduler to manage the

number of splits performed.

#include "tbb/partitioner.h"

class auto_partitioner;

Description

The class auto_partitioner models an adaptive partitioner that limits the number of splits
needed for load balancing by reacting to work-stealing events.

The range is first divided into SI subranges, where SI is proportional to the number of
threads created by the task scheduler. These subranges are executed to completion by tasks
unless they are stolen. If a subrange is stolen by an idle thread, the auto_partitioner
further subdivides the range to create additional subranges.

60 | Chapter 3: Basic Algorithms

The auto_partitioner creates additional subranges only if threads are actively stealing
work. If the load is well balanced, the use of only a few large initial subranges reduces the
overheads incurred when splitting and joining ranges. However, if there is a load imbal-
ance that results in work stealing, the auto_partitioner creates additional subranges that
can be stolen to more finely balance the load.

The auto_partitioner therefore attempts to minimize the number of range splits, while
providing ample opportunities for work stealing.

auto_partitioner()
An empty default constructor.

auto_partitioner(auto_partitioner &partitioner, split)
A splitting constructor that divides the auto_partitioner partitioner into two
partitioners.

template<typename Range> bool should_execute_range (const Range &r, const task &t)
A function that returns true when the provided range should be operated on as a
whole by the given task’s body. This function may return true even if range.is_
divisible() == true and always returns true if range.is_divisible() == false. That is,
this function may decide that t should process an r that can be further subdivided, but
it always decides that t should process an r that cannot be further subdivided.

Table 3-5 provides guidance for selecting between the simple_partitioner and auto_
partitioner classes.

Ranges larger than the grain size may be passed to the body when
using an auto_partitioner. The body should therefore not use the
value of grainsize as an upper bound on the size of the range (for allo-
cating temporary storage, for example).

Table 3-5. Guidance for selecting a partitioner

Partitioner type Discussion

simple_partitioner Recursively splits a range until it is no longer divisible. The Range::is_divisible function
is wholly responsible for deciding when recursive splitting halts. When used with classes such
as blocked_range and blocked_range2d, the selection of an appropriate grain size is
therefore critical to allow concurrency while limiting overhead.

auto_partitioner Guides splitting decisions based on the work-stealing behavior of the task scheduler. When
used with classes such as blocked_range and blocked_range2d, the selection of an
appropriate grain size is less important. Subranges that are larger than the grain size are used
unless load imbalances are detected. Therefore, acceptable performance may often be achieved
by simply using the default grain size of 1.

parallel_for<Range,Body> Template Function | 61

parallel_for<Range,Body> Template Function Template for a function that performs
parallel iteration over a range of values.

#include "tbb/parallel_for.h"

template<typename Range, typename Body>

void parallel_for(const Range& range, const Body& body);

template<typename Range, typename Body, typename Partitioner>

 void parallel_for(const Range& range, const Body& body,

 Partitioner &partitioner);

Description

A parallel_for<Range,Body> represents parallel execution of Body over each value in Range.
Type Range must model the Range Concept. The body must model the requirements in
Table 3-6.

A parallel_for recursively splits the range into subranges to the point where is_divisible()
returns false for each subrange, and makes copies of the body for each of these subranges.
For each such body/subrange pair, it invokes Body::operator(). The invocations are inter-
leaved with the recursive splitting in order to minimize space overhead and efficiently use
the cache.

Some of the copies of the range and body may be destroyed after parallel_for returns.
This late destruction is not an issue in typical usage, but it is something to be aware of
when looking at execution traces or writing range or body objects with complex side
effects.

When worker threads are available, parallel_for executes iterations in nondeterministic
order. Do not rely upon any particular execution order for correctness. However, due to
efficiency concerns, parallel_for tends to operate on consecutive runs of values.

When no worker threads are available, parallel_for executes iterations from left to right in
the following sense. Imagine drawing a binary tree that represents the recursive splitting.
Each nonleaf node represents splitting a subrange r by invoking the splitting constructor
Range(r,split()). The left child represents the updated value of r. The right child repre-
sents the newly constructed object. Each leaf in the tree represents an indivisible subrange.
The method Body::operator() is invoked on each leaf subrange, from left to right.

Table 3-6. Requirements for parallel_for body

Pseudosignature Semantics

Body::Body(const Body&) Copy constructor

Body::~Body() Destructor

void Body::operator()(Range& range) const Apply body to range

62 | Chapter 3: Basic Algorithms

Complexity

If the range and body take O(1) space, and the range splits into nearly equal pieces, the
space complexity is O(p log n), where p is the number of threads and n is the size of the
range.

parallel_reduce<Range,Body> Template Function Computes reduction over
a range of values.

#include "tbb/parallel_reduce.h"

template<typename Range, typename Body>

void parallel_reduce(const Range& range, Body& body);

template<typename Range, typename Body, typename Partitioner>

 void parallel_reduce(const Range& range, Body& body,

 Partitioner &partitioner);

Description

A parallel_reduce<Range,Body> performs parallel reduction of Body over each value in
Range. Type Range must model the Range Concept. The body must model the requirements
in Table 3-7.

A parallel_reduce recursively splits the range into subranges to the point where is_
divisible() returns false for each subrange. A parallel_reduce uses the splitting
constructor to make one or more copies of the body for each thread. It may copy a body
while the body’s operator() or join method runs concurrently. You are responsible for
ensuring the safety of such concurrency. In typical usage, the safety requires no extra effort.

When worker threads are available, parallel_reduce invokes the splitting constructor for
the body. For each such split, it invokes the join method after processing in order to merge
the results from the bodies.

Complexity

If the range and body take O(1) space, and the range splits into nearly equal pieces, the
space complexity is O(p log n), where p is the number of threads and n is the size of the
range.

Table 3-7. Requirements for parallel_reduce body

Pseudosignature Semantics

Body::Body(Body&, split); Splitting constructor. Must be able to run the operator() and
join methods concurrently.

Body::~Body() Destructor.

void Body::operator()(Range& range); Accumulate results for the subrange.

void Body::join(Body& rhs); Join results. The result in rhs should be merged into the result of
this.

pre_scan_tag and final_scan_tag Classes | 63

parallel_scan<Range,Body> Template Function Template function that
computes parallel prefix.

#include "tbb/parallel_scan.h"

template<typename Range, typename Body>

 void parallel_scan(const Range& range, Body& body);

template<typename Range, typename Body, typename Partitioner>

 void parallel_scan(const Range& range, Body& body,

 Partitioner &partitioner);

Description

A parallel_scan<Range,Body> computes a parallel prefix, also known as a parallel scan.
This can be useful in scenarios that appear to have inherently serial dependencies. Given an
associative operation ⊕ with left-identity element id⊕, the parallel prefix of ⊕ over a
sequence , , ... is a sequence , , , ... , where and

.

The template parallel_scan<Range,Body> implements a parallel prefix generically. The
body must model the requirements in Table 3-8.

pre_scan_tag and final_scan_tag Classes Types that distinguish the phases of
parallel_scan.

#include "tbb/parallel_scan.h"

struct pre_scan_tag;

struct final_scan_tag;

Description

The types pre_scan_tag and final_scan_tag are dummy types used in conjunction with
parallel_scan.

Table 3-8. parallel_scan requirements

Pseudosignature Semantics

void Body::operator()(const Range& r,

pre_scan_tag)

Preprocess iterations for range r.

void Body::operator()(const Range& r,

final_scan_tag)

Do final processing for iterations of range r.

Body::Body(Body& b, split) Split b so that this and b can accumulate separately.

Void Body::reverse_join(Body& a) Merge preprocessing state of a into this, where awas created earlier
from b by b’s splitting constructor.

Void Body::assign(Body& b) Assign state of b to this.

x0 x1 xn 1– y0 y1 y2 yn 1– y0 id ⊕ x0⊕=

yi yi 1– x⊕
i

=

64 | Chapter 3: Basic Algorithms

Members
namespace tbb {

 struct pre_scan_tag {
 static bool is_final_scan();
 };

 struct final_scan_tag {
 static bool is_final_scan();
 };

}

bool is_final_scan()
Returns: true for a final_scan_tag; false otherwise.

Summary of Loops
The high-level loop templates in Intel Threading Building Blocks give you efficient,
scalable ways to exploit the power of multi-core chips without having to start from
scratch. They let you design your software at a concurrent task level and not worry
about low-level manipulation of threads. Because they are generic, you can custom-
ize them to your specific needs. Although algorithms in this chapter can unlock the
power of multi-core processing for many applications, sometimes you will require
more complex algorithms. The next chapter takes the models shown in this chapter
to a higher level.

65

Chapter 4 CHAPTER 4

Advanced Algorithms4

Algorithm templates are the keys to using Intel Threading Building Blocks. This
chapter presents some relatively complex algorithms that build on the foundation
laid in Chapter 3, so you should understand Chapter 3 before jumping into this
chapter. This chapter covers Threading Building Blocks’ support for the following
types of generic parallel algorithms.

Parallel algorithms for streams:

parallel_while
Use for an unstructured stream or pile of work. Offers the ability to add addi-
tional work to the pile while running.

pipeline
Use when you have a linear sequence of stages. Specify the maximum number of
items that can be in transit. Each stage can be serial or parallel. This uses the
cache efficiently because each worker thread takes an item through as many
stages as possible, and the algorithm is biased toward finishing old items before
tackling new ones.

Parallel sort:

parallel_sort
A comparison sort with an average time complexity not to exceed O(n log n) on a
single processor and approaching O(N) as more processors are used. When
worker threads are available, parallel_sort creates subtasks that may be exe-
cuted concurrently.

Parallel Algorithms for Streams
You can successfully parallelize many applications using only the constructs dis-
cussed thus far. However, some situations call for other parallel patterns. This
section describes the support for some of these alternative patterns:

66 | Chapter 4: Advanced Algorithms

parallel_while
Use for an unstructured stream or pile of work. Offers the ability to add addi-
tional work to the pile while running.

pipeline
Use when you have a linear pipeline of stages. Specify the maximum number of
items that can be in flight. Each stage can be serial or parallel. This uses the
cache efficiently because each worker thread handles an item through as many
stages as possible, and the algorithm is biased toward finishing old items before
tackling new ones.

Cook Until Done: parallel_while
For some loops, the end of the iteration space is not known in advance, or the loop
body may add more iterations to do before the loop exits. You can deal with both sit-
uations using the template class tbb::parallel_while.

A linked list is an example of an iteration space that is not known in advance. In par-
allel programming, it is usually better to use dynamic arrays instead of linked lists
because accessing items in a linked list is inherently serial. But if you are limited to
linked lists, if the items can be safely processed in parallel, and if processing each
item takes at least a few thousand instructions, you can use parallel_while in a situ-
ation where the serial form is as shown in Example 4-1.

If Foo takes at least a few thousand instructions to run, you can get parallel speedup
by converting the loop to use parallel_while. Unlike the templates described earlier,
parallel_while is a class, not a function, and it requires two user-defined objects.
The first object defines the stream of items. The object must have a method, pop_if_
present, such that when bool b = pop_if_present(v) is invoked, it sets v to the next
iteration value if there is one and returns true. If there are no more iterations, it
returns false. Example 4-2 shows a typical implementation of pop_if_present.

Example 4-1. Original list processing code

void SerialApplyFooToList(Item*root) {
 for(Item* ptr=root; ptr!=NULL; ptr=ptr->next)
 Foo(pointer->data);
}

Example 4-2. pop_if_present for a parallel_while

class ItemStream {
 Item* my_ptr;
public:
 bool pop_if_present(Item*& item) {
 if(my_ptr) {
 item = my_ptr;
 my_ptr = my_ptr->next;
 return true;

Parallel Algorithms for Streams | 67

The second object defines the loop body, and must define an operator() const and
an argument_type member type. This is similar to a C++ function object from the
C++ standard header, <functional>, except that it must be const (see Example 4-3).

Given the stream and body classes, the new code is as shown in Example 4-4.

The pop_if_present method does not have to be thread-safe for a given stream
because parallel_while never calls it concurrently for the same stream. Notice that
this convenience makes parallel_while nonscalable because the fetching is serial-
ized. But in many situations, you still get useful speedup over doing things
sequentially.

parallel_while may concurrently invoke pop_if_present on the same
object, but only if the object is in different streams.

There is a second way that parallel_while can acquire work, and this is the way it
can become scalable. The body of a parallel_while w, if given a reference to w when
it is constructed, can add more work by calling w.add(item), where item is of type
Body::argument_type.

 } else {
 return false;
 }
 };
 ItemStream(Item* root) : my_ptr(root) {}
}

Example 4-3. Use of parallel_while

class ApplyFoo {
public:
 void operator()(Item* item) const {
 Foo(item->data);
 }
 typedef Item* argument_type;
};

Example 4-4. ParallelApplyFooToList

void ParallelApplyFooToList(Item*root) {
 parallel_while<ApplyFoo> w;
 ItemStream stream;
 ApplyFoo body;
 w.run(stream, body);
}

Example 4-2. pop_if_present for a parallel_while (continued)

68 | Chapter 4: Advanced Algorithms

For example, perhaps processing a node in a tree is a prerequisite to processing its
descendants. With parallel_while, after processing a node, you could use parallel_
while::add to add the descendant nodes. The instance of parallel_while does not
terminate until all items have been processed.

Notes on parallel_while scaling

Use of parallel_while usually does not provide scalable parallelism if the add method
is not used because the input stream typically acts as a bottleneck. However, this
bottleneck is broken if the stream is used to get things started and further items come
from prior items invoking the add method.

Even in the nonscalable case, parallel_while covers a commonly desired idiom of
walking a sequential structure (e.g., a linked list) and dispatching concurrent work
for each item in the structure.

parallel_while Template Class Template class that processes work items.

#include "tbb/parallel_while.h"

template<typename Body> class parallel_while;

Description

A parallel_while<Body> performs parallel iteration over items. The processing to be
performed on each item is defined by a function object of type Body. The items are speci-
fied in two ways:

• An initial stream of items

• Additional items that are added while the stream is being processed

Table 4-1 shows the requirements on the stream and body.

For example, a unary function object, as defined in Section 20.3 of the C++ standard,
models the requirements for B. A concurrent_queue models the requirements for S.

Table 4-1. Requirements for parallel_while stream and body

Pseudosignature Semantics

bool S::pop_if_present(B::argument_type&
item)

Get next stream item. parallel_while does not concur-
rently invoke the method on the same object.

B::operator()(B::argument_type& item)
const

Process item. parallel_while may concurrently invoke
the operator for the same object but a different item.

B::argument_type() Default constructor.

B::argument_type(const B::argument_type&) Copy constructor.

~B::argument_type() Destructor.

parallel_while Template Class | 69

To achieve speedup, the grain size of B::operator() needs to be on the
order of 10,000 instructions to execute. Otherwise, the internal over-
heads of parallel_while swamp the useful work. The parallelism in
parallel_while is not scalable if all the items come from the input
stream. To achieve scaling, design your algorithm such that the add
method often adds more than one piece of work.

Members
namespace tbb {
 template<typename Body>
 class parallel_while {
 public:
 parallel_while();
 ~parallel_while();

 typedef typename Body::argument_type value_type;

 template<typename Stream>
 void run(Stream& stream, const Body& body);

 void add(const value_type& item);
 };
}

parallel_while<Body>()
Effects: constructs a parallel_while that is not yet running.

~parallel_while<Body>()
Effects: destroys a parallel_while.

Template <typename Stream> void run(Stream& stream, const Body& body)
Effects: applies body to each item in stream and any other items that are added by the
method add. Terminates when both of the following conditions become true:

• stream.pop_if_present returns false

• body(x) has returned for all items x generated from the stream or the add method

void add(const value_type& item)
Requirements: must be called from a call to body.operator() by parallel_while.
Otherwise, the termination semantics of the run method are undefined.

Effects: adds item to collection of items to be processed.

Working on the Assembly Line: Pipeline
Pipelining is a common parallel pattern that mimics a traditional manufacturing
assembly line. Data flows through a series of pipeline stages and each stage pro-
cesses the data in some way. Given an incoming stream of data, some of these stages
can operate in parallel, and others cannot. For example, in video processing, some
operations on frames do not depend on other frames and so can be done on multiple
frames at the same time. On the other hand, some operations on frames require pro-
cessing prior frames first.

70 | Chapter 4: Advanced Algorithms

Pipelined processing is common in multimedia and signal processing applications. A
classical thread-per-stage implementation suffers two problems:

• The speedup is limited to the number of stages.

• When a thread finishes a stage, it must pass its data to another thread.

Eliminating these problems is desirable. To do so, you specify whether a stage is
serial or parallel. A serial stage processes items one at a time, in order. A parallel
stage may process items out of order or concurrently. By allowing some stages to be
run concurrently, you make available more opportunities for load balancing and con-
currency. Given sufficient processor cores and concurrent opportunities, the
throughput of the pipeline is limited to the throughput of the slowest serial filter.

The pipeline and filter classes implement the pipeline pattern. Here we’ll look at a
simple text-processing problem to demonstrate the usage of pipeline and filter.
The problem is to read a text file, capitalize the first letter of each word, and write
the modified text to a new file. Figure 4-1 illustrates the pipeline.

Assume that the file I/O is sequential. However, the capitalization stage can be done in
parallel. That is, if you can serially read n chunks very quickly, you can capitalize the n
chunks in parallel, as long as they are written in the proper order to the output file.

To decide whether to capitalize a letter, inspect whether the preceding character is a
blank. For the first letter in each chunk, you must inspect the last letter of the pre-
ceding chunk. But doing so would introduce a complicated dependency in the mid-
dle stage.

The solution is to have each chunk also store the last character of the preceding
chunk. The chunks overlap by one character. This overlapping window strategy is
quite common to pipeline-processing problems. In the example, the window is repre-
sented by an instance of the MyBuffer class. It looks like a typical Standard Template
Library (STL) container for characters, except that begin()[-1] is legal and holds the
last character of the preceding chunk (see Example 4-5).

Figure 4-1. Pipeline

Example 4-5. Use of pipeline class

// Buffer that holds block of characters and last character of preceding buffer.
class MyBuffer {
 static const size_t buffer_size = 10000;
 char* my_end;
 // storage[0] holds the last character of the preceding buffer.
 char storage[1+buffer_size];
public:
 // Pointer to first character in the buffer

Read chunk from input file Capitalize words in chunk Write chunk to output file

parallel_while Template Class | 71

The parameter passed to the pipeline::run method controls the level of parallelism.
Conceptually, tokens flow through the pipeline. A serial stage must process each
token one at a time, in order. A parallel stage can process multiple tokens in parallel.

If the number of tokens were unlimited, there might be a problem where the unor-
dered stage in the middle keeps gaining tokens because the output stage cannot keep
up. This situation typically leads to undesirable resource consumption by the middle
stage. The parameter to the pipeline::run method specifies the maximum number of
tokens that can be in flight. Once this limit is reached, the pipeline class doesn’t cre-
ate a new token at the input stage until another token is destroyed at the output
stage.

This top-level code also shows the clear method that removes all stages from the
pipeline. This call is required if the filters have to be destroyed before the pipeline.
The pipeline is a container that holds filters, and as with most containers in C++, it
is illegal to destroy an item while it is in the container.

 char* begin() {return storage+1;}
 const char* begin() const {return storage+1;}
 // Pointer to one past last character in the buffer
 char* end() const {return my_end;}
 // Set end of buffer.
 void set_end(char* new_ptr) {my_end=new_ptr;}
 // Number of bytes a buffer can hold
 size_t max_size() const {return buffer_size;}
 // Number of bytes in buffer.
 size_t size() const {return my_end-begin();}
};
// Below is the top-level code for building and running the pipeline
 // Create the pipeline
 tbb::pipeline pipeline;

 // Create file-reading stage and add it to the pipeline
 MyInputFilter input_filter(input_file);
 pipeline.add_filter(input_filter);

 // Create capitalization stage and add it to the pipeline
 MyTransformFilter transform_filter;
 pipeline.add_filter(transform_filter);

 // Create file-writing stage and add it to the pipeline
 MyOutputFilter output_filter(output_file);
 pipeline.add_filter(output_filter);

 // Run the pipeline
 pipeline.run(MyInputFilter::n_buffer);

 // Remove filters from pipeline before they are implicitly destroyed.
 pipeline.clear();

Example 4-5. Use of pipeline class (continued)

72 | Chapter 4: Advanced Algorithms

Now look in detail at how the stages are defined. Each stage is derived from the
filter class. First let’s consider the output stage because it is the simplest (see
Example 4-6).

The class is derived from the filter class. When its constructor calls the base class
constructor for filter, it specifies that this is a serial filter. The class overrides the
virtual method filter::operator(), which is the method invoked by the pipeline to
process an item. The parameter item points to the item to be processed. The value
returned points to the item to be processed by the next filter. Because this is the last
filter, the return value is ignored, and thus can be NULL.

The middle stage is similar. Its operator() returns a pointer to the item to be sent to
the next stage (see Example 4-7).

Example 4-6. Output stage for pipeline

// Filter that writes each buffer to a file.
class MyOutputFilter: public tbb::filter {
 FILE* my_output_file;
public:
 MyOutputFilter(FILE* output_file);
 /*override*/void* operator()(void* item);
};

MyOutputFilter::MyOutputFilter(FILE* output_file) :
 tbb::filter(/*is_serial=*/true),
 my_output_file(output_file)
{
}

void* MyOutputFilter::operator()(void* item) {
 MyBuffer& b = *static_cast<MyBuffer*>(item);
 fwrite(b.begin(), 1, b.size(), my_output_file);
 return NULL;
}

Example 4-7. Middle stage for pipeline

// Filter that changes the first letter of each word
// from lowercase to uppercase.
class MyTransformFilter: public tbb::filter {
public:
 MyTransformFilter();
 /*override*/void* operator()(void* item);
};

MyTransformFilter::MyTransformFilter() :
 tbb::filter(/*serial=*/false)
{}

/*override*/void* MyTransformFilter::operator()(void* item) {
 MyBuffer& b = *static_cast<MyBuffer*>(item);
 bool prev_char_is_space = b.begin()[-1]==' ';

parallel_while Template Class | 73

The middle stage operates on purely local data. Thus, any number of invocations on
operator() can run concurrently on the same instance of MyTransformFilter. The
class communicates this fact to the pipeline by constructing its base class, filter,
with the <serial> parameter set to false.

The input filter is the most complicated because it has to decide when the end of the
input is reached and it must allocate buffers (see Example 4-8).

 for(char* s=b.begin(); s!=b.end(); ++s) {
 if(prev_char_is_space && islower(*s))
 *s = toupper(*s);
 prev_char_is_space = isspace(*s);
 }
 return &b;
}

Example 4-8. Input stage for pipeline

class MyInputFilter: public tbb::filter {
public:
 static const size_t n_buffer = 4;
 MyInputFilter(FILE* input_file_);
private:
 FILE* input_file;
 size_t next_buffer;
 char last_char_of_previous_buffer;
 MyBuffer buffer[n_buffer];
 /*override*/ void* operator()(void*);
};

MyInputFilter::MyInputFilter(FILE* input_file_) :
 filter(/*is_serial=*/true),
 next_buffer(0),
 input_file(input_file_),
 last_char_of_previous_buffer(' ')
{
}

void* MyInputFilter::operator()(void*) {
 MyBuffer& b = buffer[next_buffer];
 next_buffer = (next_buffer+1) % n_buffer;
 size_t n = fread(b.begin(), 1, b.max_size(), input_file);
 if(!n) {
 // end of file
 return NULL;
 } else {
 b.begin()[-1] = last_char_of_previous_buffer;
 last_char_of_previous_buffer = b.begin()[n-1];
 b.set_end(b.begin()+n);
 return &b;
 }
}

Example 4-7. Middle stage for pipeline (continued)

74 | Chapter 4: Advanced Algorithms

The input filter is serial because it is reading from a sequential file. The override of
operator() ignores its parameter because it is generating a stream, not transforming
it. It remembers the last character of the preceding chunk so that it can properly
overlap windows.

The buffers are allocated from a circular queue of size n_buffer. This might seem
risky because after the initial n_buffer input operations, buffers are recycled without
any obvious checks as to whether they are still in use. But the recycling is indeed safe
because of two constraints:

• The pipeline received n_buffer tokens when pipeline::run was called. There-
fore, no more than n_buffer buffers are ever in flight simultaneously.

• The last stage is serial. Therefore, the buffers are retired by the last stage in the
order they were allocated by the first stage.

Notice that if the last stage were not serial, you would have to keep track of which
buffers are currently in use because buffers might be retired out of order.

The directory examples/pipeline/text_filter that comes with Threading Building Blocks
contains the complete code for the text filter.

Throughput of pipeline

The throughput of a pipeline is the rate at which tokens flow through it, and it is lim-
ited by two constraints. First, if a pipeline is run with n tokens, there obviously can-
not be more than n operations running in parallel. Selecting the right value of n may
involve some experimentation. Too low a value limits parallelism; too high a value
may demand too many resources (for example, more buffers).

Second, the throughput of a pipeline is limited by the throughput of the slowest
sequential stage. This is true even for a pipeline with no parallel stages. No matter
how fast the other stages are, the slowest sequential stage is the bottleneck. So in
general, you should try to keep the sequential stages fast and, when possible, shift
work to the parallel stages.

The text-processing example has relatively poor speedup because the serial stages are
limited by the I/O speed of the system. Indeed, even when files are on a local disk,
you are unlikely to see a speedup of much more than 2X. To really benefit from a
pipeline, the parallel stages need to be doing more substantial work compared to the
serial stages.

The window size, or subproblem size for each token, can also limit throughput.
Making windows too small may cause overheads to dominate the useful work. Mak-
ing windows too large may cause them to spill out of cache. A good guideline is to
try for a large window size that still fits in cache. You may have to experiment a bit
to find a good window size.

parallel_while Template Class | 75

Nonlinear pipelines

The pipeline template supports only linear pipelines. It does not directly handle
more baroque plumbing, such as in Figure 4-2.

However, you can still use pipeline for this. One solution is to topologically sort the
stages into a linear order, as in Figure 4-3. Another solution, which injects dummy
stages to get lower latency, is provided in Chapter 11 in the section titled “Two
Mouths: Feeding Two from the Same Task in a Pipeline.”

In the topological sorting of the stages (Figure 4-3), the light gray arrows are the orig-
inal arrows that are now implied by transitive closure of the other arrows. It might
seem that a lot of parallelism is lost by forcing a linear order on the stages, but in
fact, the only loss is in the latency of the pipeline, not the throughput. The latency is
the time it takes a token to flow from the beginning to the end of the pipeline. Given
a sufficient number of processors, the latency of the original nonlinear pipeline is
three stages. This is because stages A and B could process the token concurrently,
and likewise, stages D and E could process the token concurrently. In the linear pipe-
line, the latency is five stages. The behavior of stages A, B, D, and E may need to be
modified to properly handle objects that don’t need to be acted upon by the stage,
other than to be passed along to the next stage in the pipeline.

The throughput remains the same because, regardless of the topology, the through-
put is still limited by the throughput of the slowest serial stage. If pipeline sup-
ported nonlinear pipelines, it would add a lot of programming complexity, and
would not improve throughput. The linear limitation of pipeline is a good trade-off
of gain versus pain.

Figure 4-2. Nonlinear pipeline

Figure 4-3. Topologically sorted pipeline

A

B

C

D

E

A

B

C

D

E

76 | Chapter 4: Advanced Algorithms

pipeline Class Abstract base class that performs pipelined execution.

#include "tbb/pipeline.h"

class pipeline;

Description

A pipeline represents the pipelined application of a series of filters to a stream of items.
Each filter is parallel or serial. See the filter class for details.

A pipeline contains one or more filters, denoted here as fi, where i denotes the position of
the filter in the pipeline. The pipeline starts with filter f0, followed by f1, f2, and so on.
The following steps describe how to use the class:

1. Derive fi classes from filter. The constructor for fi specifies whether it is serial via
the Boolean parameter to the constructor for the base class filter.

2. Override the virtual method filter::operator() to perform the filter’s action on the
item, and return a pointer to the item to be processed by the next filter. The first filter,
f0, generates the stream. It should return NULL if there are no more items in the stream.
The return value for the last filter is ignored.

3. Create an instance of class pipeline.

4. Create instances of the fi filters and add them to the pipeline in order from first to
last. An instance of a filter can be added once, at most, to a pipeline. A filter should
never be a member of more than one pipeline at a time.

5. Call the method pipeline::run. The parameter max_number_of_live_tokens puts an
upper bound on the number of stages that will be run concurrently. Higher values may
increase concurrency at the expense of more memory consumption from having more
items in flight.

Given sufficient processors and tokens, the throughput of the pipeline is limited to the
throughput of the slowest serial filter.

A filter must be removed from the pipeline before destroying it. You can accomplish this by
destroying the pipeline first, or by calling pipeline::clear().

Members
namespace tbb {
 class pipeline {
 public:
 pipeline();
 virtual ~pipeline();
 void add_filter(filter& f);
 void run(size_t max_number_of_live_tokens);
 void clear();
 };
}

pipeline()
Effects: constructs a pipeline with no filters.

~pipeline()
Effects: removes all filters from the pipeline and destroys the pipeline.

filter Class | 77

void add_filter(filter& f)
Effects: appends filter f to the sequence of filters in the pipeline. The filter f must not
already be in a pipeline.

void run(size_t max_number_of_live_tokens)
Effects: runs the pipeline until the first filter returns NULL and each subsequent filter
has processed all items from its predecessor. The number of items processed in parallel
depends upon the structure of the pipeline and the number of available threads. At
most, max_number_of_live_tokens are in flight at any given time.

void clear()
Effects: removes all filters from the pipeline.

filter Class Abstract base class that represents a filter in a pipeline.

#include "tbb/pipeline.h"

class filter;

Description

A filter represents a filter in a pipeline. A filter is parallel or serial. A parallel filter can
process multiple items in parallel and possibly out of order. A serial filter processes items
one at a time in the original stream order. Parallel filters are preferred when viable because
they permit parallel speedup. Whether the filter is serial or parallel is specified by an argu-
ment to the constructor.

The filter class should be used only in conjunction with pipeline.

Members
namespace tbb {
 class filter {
 protected:
 filter(bool is_serial);
 public:
 bool is_serial() const;
 virtual void* operator()(void* item) = 0;
 virtual ~filter();
 };
}

filter(bool is_serial)
Effects: constructs a serial filter if is_serial is true, or a parallel filter if is_serial is
false.

~filter()
Effects: destroys the filter. The filter must not be in a pipeline; otherwise, memory
might be corrupted. The debug version of the library raises an assertion failure if the
filter is in a pipeline. Always clear or destroy the containing pipeline first. A way to
remember this is that a pipeline acts like a container of filters, and a C++ container
usually does not allow one to destroy an item while it is in the container.

78 | Chapter 4: Advanced Algorithms

bool is_serial() const
Returns: true if filter is serial; false if filter is parallel.

virtual void* operator()(void * item)
Effects: the derived filter should override this method to process an item and return a
pointer to item to be processed by the next filter. The item parameter is NULL for the
first filter in the pipeline.

Returns: the first filter in a pipeline should return NULL if there are no more items to
process. The result of the last filter in a pipeline is ignored.

parallel_sort
parallel_sort is a comparison sort with an average time complexity O(n log n).
When worker threads are available, parallel_sort creates subtasks that may be exe-
cuted concurrently. This sort provides an unstable sort of the sequence [begin1,
end1). Being an unstable sort means that it might not preserve the relative ordering of
elements with equal keys.

The sort is deterministic; sorting the same sequence will produce the same result
each time. The requirements on the iterator and sequence are the same as for
std::sort.

A call to parallel_sort(i,j,comp) sorts the sequence [i,j) using the third argument
comp to determine relative orderings. If comp(x,y) returns true, x appears before y in
the sorted sequence. A call to parallel_sort(i,j) is equivalent to parallel_
sort(i,j,std::less<T>).

Example 4-9 shows two sorts. The sort of array a uses the default comparison, which
sorts in ascending order. The sort of array b sorts in descending order by using std::
greater<float> for comparison.

Example 4-9. Two sorts

#include "tbb/parallel_sort.h"
#include <math.h>

using namespace tbb;

const int N = 100000;
float a[N];
float b[N];

void SortExample() {
 for(int i = 0; i < N; i++) {
 a[i] = sin((double)i);
 b[i] = cos((double)i);
 }
 parallel_sort(a, a + N);
 parallel_sort(b, b + N, std::greater<float>());
}

parallel_sort<RandomAccessIterator, Compare> Template Function | 79

parallel_sort<RandomAccessIterator, Compare> Template Function
Sorts a sequence.

#include "tbb/parallel_sort.h"

template<typename RandomAccessIterator>

 void parallel_sort(RandomAccessIterator begin,

 RandomAccessIterator end);

template<typename RandomAccessIterator, typename Compare>

 void parallel_sort(RandomAccessIterator begin,

 RandomAccessIterator end,

 const Compare& comp);

Description

Performs an unstable sort of the sequence [begin1, end1). The requirements on the iterator
and sequence are the same as for std::sort. Specifically, RandomAccessIterator must be a
random access iterator, and its value type T must model the requirements in Table 4-2.

Complexity

parallel_sort is a comparison sort with an average time complexity of O(n log n)on a
single-processor core, where n is the number of elements in the sequence. Complexity
reduces to O(N) as the number of processors increases. When worker threads are available,
parallel_sort creates subtasks that may be executed concurrently, leading to improved
execution times.

Table 4-2. Requirements on value type T of RandomAccessIterator for parallel_sort

Pseudosignature Semantics

void swap(T& x, T& y) Swaps x and y.

bool Compare::operator()(const T& x, const T& y) True if x comes before y; false otherwise.

80

Chapter 5CHAPTER 5

Containers 5

Intel Threading Building Blocks provides highly concurrent containers that permit
multiple threads to invoke a method simultaneously on the same container. At this
time, a concurrent queue, vector, and hash map are provided. All of these highly
concurrent containers can be used with this library, OpenMP, or raw threads.

Highly concurrent containers are very important because Standard Template Library
(STL) containers generally are not concurrency-friendly, and attempts to modify
them concurrently can easily corrupt the containers. As a result, it is standard prac-
tice to wrap a lock (mutex) around STL containers to make them safe for concurrent
access, by letting only one thread operate on the container at a time. But that
approach eliminates concurrency, and thus is not conducive to multi-core
parallelism.

As much as possible, the interfaces of the Threading Building Blocks containers are
similar to STL, but they do not match completely because some STL interfaces are
inherently not thread-safe. The Threading Building Blocks containers provide fine-
grained locking or lock-free implementations, and sometimes both.

Fine-grained locking
Multiple threads operate on the container by locking only those portions they
really need to lock. As long as different threads access different portions, they
can proceed concurrently.

Lock-free algorithms
Different threads proceed straight through the operation without locks, account-
ing for and correcting the effects of other interfering threads. There is inevitably
some waiting at the end, but the contention over locks can be avoided during the
operations.

Locks are worth avoiding because they limit concurrency, and mis-
takes create problems that are difficult to debug. Threading Building
Blocks avoids the need for locks, but does not guarantee you freedom
from locks.

concurrent_queue | 81

Highly concurrent containers come at a cost. They typically have higher overhead
than regular STL containers, and so operations on highly concurrent containers may
take longer than for STL containers. Therefore, you should use highly concurrent
containers when the speedup from the additional concurrency that they enable out-
weighs their slower sequential performance.

Unlike STL, the Intel Threading Building Blocks containers are not templated with
an allocator argument. The library retains control over memory allocation.

concurrent_queue
The template class concurrent_queue<T> implements a concurrent queue with values
of type T. Multiple threads may simultaneously push and pop elements from the
queue.

In a single-threaded program, a queue is a first-in first-out structure. But if multiple
threads are pushing and popping concurrently, the definition of first is uncertain.
The only guarantee of ordering offered by concurrent_queue is that if a thread pushes
multiple values, and another thread pops those same values, they will be popped in
the same order that they were pushed.

Why Do Containers Not Use an Allocator Argument?
An allocator argument is not supported for two reasons. First, it would lead to code
bloat because much more of the container class code would be in the headers. Second,
there is an advantage in having detailed control over memory allocation, so trade-offs
can be made between cache-aligned memory and packed memory to avoid always
paying for alignment.

The containers use a mix of cache_aligned_allocator and the default operator, new.
The cache_aligned_allocator uses the scalable allocator (Chapter 6) if it is present.
There are places for improvement; for instance, the concurrent_hash_map should use
the scalable_allocator in a future version to enhance its scalability.

There is no requirement to link in the scalable allocator, as it will default to using
malloc. Performance will likely be better if you link with the scalable allocator.

If you have your own scalable memory allocator which you prefer, you will have to
work a little to force Threading Building Blocks containers to use it. The only recourse
currently is to have your allocator connected using the same interface as the Threading
Building Blocks scalable_allocator (the four C routines prototyped in tbb/scalable_
allocator.h). Perhaps a future version will address this area.

82 | Chapter 5: Containers

Pushing is provided by the push method. There are blocking and nonblocking flavors
of pop:

pop_if_present
This method is nonblocking: it attempts to pop a value, and if it cannot because
the queue is empty, it returns anyway.

pop
This method blocks until it pops a value. If a thread must wait for an item to
become available and it has nothing else to do, it should use pop(item) and not
while(!pop_if_present(item)) continue; because pop uses processor resources
more efficiently than the loop.

Unlike most STL containers, concurrent_queue::size_type is a signed integral type,
not unsigned. This is because concurrent_queue::size() is defined as the number of
push operations started minus the number of pop operations started. If pops out-
number pushes, size() becomes negative. For example, if a concurrent_queue is
empty and there are n pending pop operations, size() returns –n. This provides an
easy way for producers to know how many consumers are waiting on the queue. In
particular, consumers may find the empty() method useful; it is defined to be true if
and only if size() is not positive.

By default, a concurrent_queue<T> is unbounded. It may hold any number of values
until memory runs out. It can be bounded by setting the queue capacity with the
set_capacity method. Setting the capacity causes push to block until there is room in
the queue. Bounded queues are slower than unbounded queues, so if there is a con-
straint elsewhere in your program that prevents the queue from becoming too large,
it is better not to set the capacity.

Iterating over a concurrent_queue for Debugging
The template class concurrent_queue supports STL-style iteration. This support is
intended only for debugging, when you need to dump a queue. It provides iterator
and const_iterator types. Both follow the usual STL conventions for forward itera-
tors. The iterators go in the forward direction only and are too slow to be very useful
in production code. The iteration order is from least recently pushed item to most
recently pushed item. If a queue is modified, all iterators pointing to it become
invalid and unsafe to use. The snippet of code in Example 5-1 dumps a queue. The
operator << is defined for a Foo.

Example 5-1. Concurrent queue listing dump program

concurrent_queue<Foo> q;
...
for(concurrent_queue<Foo>::const_iterator i(q.begin()); i!=q.end(); ++i) {
 cout << *i;
}

concurrent_queue Template Class | 83

The iterators are relatively slow. You should use them only for
debugging.

When Not to Use Queues
Queues are widely used in parallel programs to buffer consumers from producers.
Before using an explicit queue, however, consider using parallel_while or pipeline
instead. These options are often more efficient than queues for the following reasons:

• A queue is inherently a bottleneck because it must maintain first-in first-out
order.

• A thread that is popping a value may have to wait idly until the value is pushed.

• A queue is a passive data structure. If a thread pushes an item and another
thread pops it, the item must be moved to the other processor. Even if the origi-
nal thread pops the item, enough time could elapse between the push and the
pop for the item (and whatever it references) to be discarded from the cache.

In contrast, parallel_while and pipeline avoid these bottlenecks. Because their
threading is implicit, they optimize the use of worker threads so that they do other
work until a value shows up. They also try to keep items hot in the cache. For exam-
ple, when another work item is added to a parallel_while, it is kept local to the
thread that added it, unless another idle thread can steal it before the “hot” thread
processes it. By applying this selectivity in pulling from another queue, items are
more often processed by the hot thread.

concurrent_queue Template Class Template class for queue with concurrent operations.

#include "tbb/concurrent_queue.h"

template<typename T> class concurrent_queue;

Description

A concurrent_queue is a bounded data structure that permits multiple threads to concur-
rently push and pop items. Its behavior is first-in first-out in reference to any items pushed
by a single thread and popped by a single thread. The default bounds are large enough to
make the queue practically unbounded, subject to memory limitations on the target
machine.

The interface is different from that of an STL std::queue because concurrent_queue is
designed for concurrent operations. See Table 5-1 for the differences.

84 | Chapter 5: Containers

If the push or pop operation blocks, it blocks using a user-space lock, which can waste
processor resources when the blocking time is long. The concurrent_queue class is designed
for situations where the blocking time is typically short relative to the rest of the applica-
tion time.

Members
namespace tbb {
 template<typename T>
 class concurrent_queue {
 public:
 // types
 typedef T value_type;
 typedef T& reference;
 typedef const T& const_reference;
 typedef std::ptrdiff_t size_type;
 typedef std::ptrdiff_t difference_type;

 concurrent_queue() {}
 ~concurrent_queue();

 void push(const T& source);
 void pop(T& destination);
 bool pop_if_present(T& destination);
 size_type size() const {return internal_size();}
 bool empty() const;
 size_t capacity();
 void set_capacity(size_type capacity);

 typedef implementation-defined iterator;
 typedef implementation-defined const_iterator;

 // iterators (these are slow and intended only for debugging)

Table 5-1. std::queue versus tbb::concurrent_queue

Feature STL std::queue tbb::concurrent_queue

Access to front and back front and back methods Not present. They would be unsafe while concurrent operations
are in progress.

size_type Unsigned integral type Signed integral type.

size() Returns the number of
items in the queue

Returns the number of pushes minus the number of pops. Wait-
ing push or pop operations are included in the difference. The size
is negative if there are pops waiting for corresponding pushes.

Copy and pop item from
queue q

x=q.front()
q.pop()

q.pop(x) waits for the object indefinitely. For an immediate
return, use pop_if_present.

Copy and pop item
unless queue q is empty

bool b=!q.empty();
if(b) {

x=q.front();
 q.pop();
}

q.pop_if_present(x) returns true, with the object in x, if
an object is available; otherwise returns false immediately (no
waiting).

Pop of empty queue Not allowed Waits until an item becomes available.

concurrent_queue Template Class | 85

 iterator begin();
 iterator end();
 const_iterator begin() const;
 const_iterator end() const;
 };
}

concurrent_queue()
Effects: constructs an empty queue.

~concurrent_queue()
Effects: destroys all items in the queue.

void push(const T& source)
Effects: waits until size()<capacity, then pushes a copy of source onto the back of the
queue.

void pop(T& destination)
Effects: waits until a value becomes available and pops it from the queue. Assigns it to
destination. Destroys the original value.

bool pop_if_present(T& destination)
Effects: if a value is available, pops it from the queue, assigns it to destination, and
destroys the original value. Otherwise, does nothing.

Returns: true if value was popped; false otherwise.

size_type size() const
Returns: number of pushes minus number of pops. The result is negative if there are
pop operations waiting for corresponding pushes.

bool empty() const
Returns: size()== 0.

This does not mean the queue is really empty. Because size is the difference between
pushes and pops, empty() can return true when there is work in flight.

size_type capacity() const
Returns: maximum number of values that the queue can hold.

void set_capacity(size_type capacity)
Effects: sets the maximum number of values that the queue can hold.

Example

Example 5-2 builds a queue with the integers 0...9, and then dumps the queue to standard
output. Its overall effect is to print 0 1 2 3 4 5 6 7 8 9.

Example 5-2. Concurrent queue count

#include "tbb/concurrent_queue.h"
#include <iostream>

using namespace std;
using namespace tbb;

int main() {
 concurrent_queue<int> queue;
 for(int i=0; i<10; ++i)

86 | Chapter 5: Containers

iterator begin()
Returns: iterator pointing to the beginning of the queue.

iterator end()
Returns: iterator pointing to the end of the queue.

const_iterator begin() const
Returns: const_iterator pointing to the beginning of the queue.

const_iterator end() const
Returns: const_iterator pointing to the end of the queue.

concurrent_vector
A concurrent_vector<T> is a dynamically growable array of items of type T for which
it is safe to simultaneously access elements in the vector while growing it. However,
be careful not to let another task access an element that is under construction or is
otherwise being modified. For safe concurrent growing, concurrent_vector has two
methods for resizing that support common uses of dynamic arrays: grow_by and
grow_to_at_least. The index of the first element is 0. The method grow_by(n) enables
you to safely append n consecutive elements to a vector, and returns the index of the
first appended element. Each element is initialized with T(). So for instance,
Example 5-3 safely appends a C string to a shared vector.

The related method grow_to_at_least(n) grows a vector to size n if it is shorter. Con-
current calls to grow_by and grow_to_at_least do not necessarily return in the order
that elements are appended to the vector.

The size() method returns the number of elements in the vector, which may include
elements that are still undergoing concurrent construction by grow_by and grow_to_
at_least. Also, it is safe to use iterators while the concurrent_vector is being grown,
as long as the iterators never go past the current value of end(). However, the itera-
tor may reference an element undergoing concurrent construction. You must syn-
chronize construction and access of an element.

 queue.push(i);
 for(concurrent_queue<int>::const_iterator i(queue.begin()); i!=queue.end(); ++i)
 cout << *i << " ";
 cout << endl;
 return 0;

}

Example 5-3. Concurrent vector

void Append(concurrent_vector<char>& vector, const char* string) {
 size_t n = strlen(string)+1;
 memcpy(&vector[vector.grow_by(n)], string, n+1);
}

Example 5-2. Concurrent queue count (continued)

concurrent_vector Template Class | 87

A concurrent_vector<T> never moves an element until the array is cleared, which can
be an advantage over the STL std::vector (which can move elements to resize the
vector), even for single-threaded code. However, concurrent_vector does have more
overhead than std::vector. Use concurrent_vector only if you really need to dynami-
cally resize it while other accesses are (or might be) in flight, or if you require that an
element never move.

Operations on concurrent_vector are concurrency-safe with respect to
growing, but are not safe for clearing or destroying a vector. Never
invoke clear() if other operations are in process on the concurrent_
vector.

concurrent_vector Template Class Template class for vector that can be
concurrently grown and accessed.

#include "tbb/concurrent_vector.h"

template<typename T> class concurrent_vector;

Members
namespace tbb {
 template<typename T>
 class concurrent_vector {
 public:
 typedef size_t size_type;
 typedef T value_type;
 typedef ptrdiff_t difference_type;
 typedef T& reference;
 typedef const T& const_reference;

 // whole vector operations
 concurrent_vector() {}
 concurrent_vector(const concurrent_vector&);
 concurrent_vector& operator=(const concurrent_vector&);
 ~concurrent_vector();
 void clear();

 // concurrent operations
 size_type grow_by(size_type delta);
 void grow_to_at_least(size_type new_size);
 size_type push_back(const_reference value);
 reference operator[](size_type index);
 const_reference operator[](size_type index) const;

 // parallel iteration
 typedef implementation-defined iterator;
 typedef implementation-defined const_iterator;
 typedef generic_range_type<iterator> range_type;
 typedef generic_range_type<const_iterator> const_range_type;

88 | Chapter 5: Containers

 range_type range(size_t grainsize);
 const_range_type range(size_t grainsize) const;

 // capacity
 size_type size() const;
 bool empty() const;
 size_type capacity() const;
 void reserve(size_type n);
 size_type max_size() const;

 // STL support
 iterator begin();
 iterator end();
 const_iterator begin() const;
 const_iterator end() const;

 typedef implementation-defined reverse_iterator;
 typedef implementation-defined const_reverse_iterator;
 iterator rbegin();
 iterator rend();
 const_iterator rbegin() const;
 const_iterator rend() const;
 };
}

Whole Vector Operations
These operations are not thread-safe on the same instance:

concurrent_vector()
Effects: constructs an empty vector.

concurrent_vector(const concurrent_vector& src)
Effects: constructs a copy of src.

concurrent_vector& operator=(const concurrent_vector& src)
Effects: assigns contents of src to *this.

Returns: reference to lefthand side.

~concurrent_vector()
Effects: erases all elements and destroys the vector.

void clear()
Effects: erases all elements. Afterward, size()==0.

Concurrent Operations
The methods described in this section safely execute on the same instance of a
concurrent_vector<T>:

concurrent_vector Template Class | 89

size_type grow_by(size_type delta)
Effects: atomically appends delta elements to the end of the vector. The new ele-
ments are initialized with T(), where T is the type of the values in the vector.

Returns: old size of the vector. If it returns k, the new elements are at the half-
open index range [k...k+delta).

void grow_to_at_least(size_type n)
Effects: grows the vector until it has at least n elements. The new elements are
initialized with T(), where T is the type of the values in the vector.

size_t push_back(const_reference value);
Effects: atomically appends a copy of value to the end of the vector.

Returns: index of the copy.

reference operator[](size_type index)
Returns: reference to the element with the specified index.

const_reference operator[](size_type index) const;
Returns: const reference to the element with the specified index.

Parallel Iteration
The types const_range_type and range_type model the Range Concept and provide
the methods in Table 5-2 to access the bounds of the range. The types differ only in
that the bounds for a const_range_type are of type const_iterator, whereas the
bounds for a range_type are of type iterator.

Use the range types in conjunction with parallel_for, parallel_reduce, and
parallel_scan to iterate over pairs in a concurrent_vector.

range_type range(size_t grainsize)
Returns: range over an entire concurrent_vector that permits read-write access.

const_range_type range(size_t grainsize) const
Returns: range over an entire concurrent_vector that permits read-only access.

Capacity
size_type size() const

Returns: number of elements in the vector. The result may include elements that
are under construction by concurrent calls to the grow_by or grow_to_at_least
method.

Table 5-2. Concept for concurrent_vector range R

Pseudosignature Semantics

R::iterator R::begin() const First item in range

R::iterator R::end() const One past last item in range

90 | Chapter 5: Containers

bool empty() const
Returns: size()==0.

size_type capacity() const
Returns: maximum size the vector can grow to without allocating more memory.

void reserve(size_type n)
Returns: reserve space for at least n elements.

Throws: std::length_error if n>max_size().

size_type max_size() const
Returns: highest size vector that might be representable.

max_size() is a requirement on STL containers. The C++ standard
defines it as “size() of the largest possible container,” which is vague.
Threading Building Blocks does what most STL libraries do and com-
putes max_size() on the very optimistic assumption that the
machine’s address space is fully populated with usable memory, and
that the container is the only object in this space. In practice, if you
allocate a container of size max_size(), you will most likely get an out-
of-memory exception. In the freak event that you succeed, the next
request will surely run out of memory.

Iterators
The template class concurrent_vector<T> supports random access iterators as defined
in Section 24.1.4 of the ISO C++ standard. Unlike an std::vector, the iterators are
not raw pointers. A concurrent_vector<T> meets the reversible container require-
ments in Table 66 of the ISO C++ standard.

iterator begin()
Returns: iterator pointing to the beginning of the vector.

iterator end()
Returns: iterator pointing to the end of the vector.

const_iterator begin() const
Returns: const_iterator pointing to the beginning of the vector.

const_iterator end() const
Returns: const_iterator pointing to the end of the vector.

iterator rbegin()
Returns: const_reverse_iterator(end()).

iterator rend()
Returns: const_reverse_iterator(begin()).

const_reverse_iterator rbegin() const
Returns: const_reverse_iterator(end()).

const_ reverse_iterator rend() const
Returns: const_reverse_iterator(begin()).

concurrent_hash_map | 91

concurrent_hash_map
A concurrent_hash_map<Key,T,HashCompare> is a hash table that permits concurrent
accesses. The table is a map from a key to a type T. The HashCompare traits type
defines how to hash a key and how to compare two keys.

Example 5-4 builds a concurrent_hash_map in which the keys are strings and the cor-
responding data is the number of times each string occurs in the array Data.

Example 5-4. Concurrent hash map

#include "tbb/concurrent_hash_map.h"
#include "tbb/blocked_range.h"
#include "tbb/parallel_for.h"
#include <string>

using namespace tbb;
using namespace std;

// Structure that defines hashing and comparison operations for user's type.
struct MyHashCompare {
 static size_t hash(const string& x) {
 size_t h = 0;
 for(const char* s = x.c_str(); *s; ++s)
 h = (h*17)^*s;
 return h;
 }
 //! True if strings are equal
 static bool equal(const string& x, const string& y) {
 return x==y;
 }
};

// A concurrent hash table that maps strings to ints.
typedef concurrent_hash_map<string,int,MyHashCompare> StringTable;

// Function object for counting occurrences of strings.
struct Tally {
 StringTable& table;
 Tally(StringTable& table_) : table(table_) {}
 void operator()(const blocked_range<string*> range) const {
 for(string* p=range.begin(); p!=range.end(); ++p) {
 StringTable::accessor a;
 table.insert(a, *p);
 a->second += 1;
 }
 }
};

const size_t N = 1000000;

string Data[N];

92 | Chapter 5: Containers

A concurrent_hash_map acts as a container of elements of type std::pair<const
Key,T>. Typically, when accessing a container element, you are interested in either
updating it or reading it. The template class concurrent_hash_map supports these two
operations with the accessor and const_accessor classes, respectively, which act as
smart pointers.

An accessor represents update (write) access. As long as it points to an element, all
other attempts to look up that key in the table block until the accessor is done. A
const_accessor is similar, except that it represents read-only access. Therefore, multi-
ple const_accessors can point to the same element at the same time. This feature can
greatly improve concurrency in situations where elements are frequently read and
infrequently updated.

The find and insert methods take an accessor or const_accessor as an argument.
The choice tells concurrent_hash_map whether you are asking for update or read-only
access, respectively. Once the method returns, the access lasts until the accessor or
const_accessor is destroyed.

Because having access to an element can block other threads, try to shorten the life-
time of the accessor or const_accessor. To do so, declare it in the innermost block pos-
sible. To release access even sooner than the end of the block, use the release method.

Example 5-5 is a rework of the loop body that uses release instead of waiting for the
destruction of the accessor for the lock to be released.

The method remove(key) can also operate concurrently. It implicitly requests write
access. Therefore, before removing the key, it waits on any other extant accesses on
the key.

void CountOccurrences() {
 // Construct empty table.
 StringTable table;

 // Put occurrences into the table
 parallel_for(blocked_range<string*>(Data, Data+N, 100),
 Tally(table));

 // Display the occurrences
 for(StringTable::iterator i=table.begin(); i!=table.end(); ++i)
 printf("%s %d\n",i->first.c_str(),i->second);
}

Example 5-5. Use of release method

 StringTable accessor a;
 for(string* p=range.begin(); p!=range.end(); ++p) {
 table.insert(a, *p);
 a->second += 1;
 a.release();
 }

Example 5-4. Concurrent hash map (continued)

concurrent_hash_map | 93

More on HashCompare
In general, the definition of HashCompare must provide two signatures:

• A hash method that maps a Key to a size_t

• An equal method that determines whether two keys are equal

The signatures fall naturally in a single class because if two keys are equal, they must
hash to the same value. Otherwise, the hash table might not work. You could trivi-
ally meet this requirement by always hashing to 0, but that would cause tremendous
inefficiency. Ideally, each key should hash to a different value, or at least the proba-
bility of two distinct keys hashing to the same value should be kept low.

The methods of HashCompare should be static unless you need to have them behave
differently for different instances. If so, construct the concurrent_hash_map using the
constructor that takes a HashCompare as a parameter. Example 5-6 is a variation on an
earlier example that uses instance-dependent methods. The instance performs either
case-sensitive or case-insensitive hashing and comparison, depending upon an inter-
nal flag, ignore_case.

The directory examples/concurrent_hash_map/count_strings contains a complete
example that uses concurrent_hash_map to enable multiple processors to cooperatively
build a histogram.

Example 5-6. Hash compare

// Structure that defines hashing and comparison operations
class VariantHashCompare {
 // If true, then case of letters is ignored.
 bool ignore_case;
public:
 size_t hash(const string& x) {
 size_t h = 0;
 for(const char* s = x.c_str(); *s; s++)
 h = (h*17)^*(ignore_case?tolower(*s):*s);
 return h;
 }
 // True if strings are equal
 bool equal(const string& x, const string& y) {
 if(ignore_case)
 strcasecmp(x.c_str(), y.c_str())==0;
 else
 return x==y;
 }
 VariantHashCompare(bool ignore_case_) : ignore_case() {}
};

typedef concurrent_hash_map<string,int, VariantHashCompare>
 VariantStringTable;
VariantStringTable CaseSensitiveTable(VariantHashCompare(false));
VariantStringTable CaseInsensitiveTable(VariantHashCompare(true));

94 | Chapter 5: Containers

concurrent_hash_map<Key,T,HashCompare> Template Class Template class for
associative container with concurrent access.

#include "tbb/concurrent_hash_map.h"

template<typename Key, typename T, typename HashCompare> class concurrent_hash_map;

Description

A concurrent_hash_map maps keys to values in a way that permits multiple threads to
concurrently access values. The keys are unordered. The interface resembles typical STL
associative containers, but with some differences that are critical to supporting concurrent
access.

The Key and T types must model the CopyConstructible Concept.

The HashCompare type specifies how keys are hashed and compared for equality. It must
model the HashCompare Concept defined in Table 5-3.

As for most hash tables, if two keys are equal, they must hash to the same hash code. That
is, for a given HashCompare h and any two keys j and k, the following assertion must hold:
!h.equal(j,k) || h.hash(j)==h.hash(k). The importance of this property is the reason that
concurrent_hash_map places key equality and hashing in a single object instead of keeping
them as separate objects.

Members
namespace tbb {
 template<typename Key, typename T, typename HashCompare>
 class concurrent_hash_map {
 public:
 // types
 typedef Key key_type;
 typedef T mapped_type;
 typedef std::pair<const Key,T> value_type;
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;

 // whole-table operations
 concurrent_hash_map();
 concurrent_hash_map(const concurrent_hash_map&);
 ~concurrent_hash_map();
 concurrent_hash_map operator=(const concurrent_hash_map&);
 void clear();

Table 5-3. HashCompare Concept

Pseudosignature Semantics

HashCompare::HashCompare(const HashCompare &) Copy constructor

HashCompare::~HashCompare () Destructor

bool HashCompare::equal(const Key& j, const Key& k) const True if keys are equal

size_t HashCompare::hash(const Key& k) Hash code for key

concurrent_hash_map<Key,T,HashCompare> Template Class | 95

 // concurrent access
 class const_accessor;
 class accessor;

 // concurrent operations on a table
 bool find(const_accessor& result, const Key& key) const;
 bool find(accessor& result, const Key& key);
 bool insert(const_accessor& result, const Key& key);
 bool insert(accessor& result, const Key& key);
 bool erase(const Key& key);

 // parallel iteration
 typedef implementation defined range_type;
 typedef implementation defined const_range_type;
 range_type range(size_t grainsize);
 const_range_type range(size_t grainsize) const;

 // Capacity
 size_type size() const;
 bool empty() const;
 size_type max_size() const;

 // Iterators
 typedef implementation defined iterator;
 typedef implementation defined const_iterator;
 iterator begin();
 iterator end();
 const_iterator begin() const;
 const_iterator end() const;
 };
}

Whole-Table Operations
These operations affect an entire table. Do not concurrently invoke them on the
same table.

concurrent_hash_map()
Effects: constructs an empty table.

concurrent_hash_map(const concurrent_hash_map& table)
Effects: copies a table. The table being copied may have map operations running
on it concurrently.

~concurrent_hash_map()
Effects: removes all items from the table and destroys it. This method is not safe
to execute concurrently with other methods on the same concurrent_hash_map.

96 | Chapter 5: Containers

concurrent_hash_map& operator= (concurrent_hash_map& source)
Effects: if the source table and destination table (this) are distinct, clear the
destination table and copy all key-value pairs from the source table to the desti-
nation table. Otherwise, do nothing.

Returns: reference to the destination table.

void clear()
Effects: erases all key-value pairs from the table.

Concurrent Access
The member classes const_accessor and accessor are called accessors. Accessors
allow multiple threads to concurrently access pairs in a shared concurrent_hash_map.
An accessor acts as a smart pointer to a pair in a concurrent_hash_map. It holds an
implicit lock on a pair until the instance is destroyed or the release method is called
on the accessor.

The const_accessor and accessor classes differ in the kind of access they permit, as
shown in Table 5-4.

Accessors cannot be assigned or copy-constructed because allowing that would
greatly complicate the locking semantics.

const_accessor Provides read-only access to a pair in a concurrent_hash_map.

#include "tbb/concurrent_hash_map.h"

template<typename Key, typename T, typename HashCompare> class concurrent_hash_
map<Key,T,HashCompare>::const_accessor;

Description

A const_accessor permits read-only access to a key-value pair in a concurrent_hash_map.

Members
namespace tbb {
 template<typename Key, typename T, typename HashCompare>
 class concurrent_hash_map<Key,T,HashCompare>::const_accessor {
 public:
 // types
 typedef const std::pair<const Key,T> value_type;

Table 5-4. Differences between const_accessor and accessor

Class value_type Implied lock on pair

const_accessor const std::pair<const Key,T> Reader lock: permits shared access with other readers

accessor std::pair<const Key,T> Writer lock: blocks access by other threads

accessor class | 97

 // construction and destruction
 const_accessor();
 ~const_accessor();

 // inspection
 bool empty() const;
 const value_type& operator*() const;
 const value_type* operator->() const;

 // early release
 void release();
 };
}

bool empty() const
Returns: true if the instance points to nothing; false if the instance points to a key-
value pair.

void release()
Effects: if the instance contains a key-value pair, releases the implied lock on the pair
and sets the instance to point to nothing. Otherwise, does nothing.

const value_type& operator*() const
Effects: raises an assertion failure if empty() is true and TBB_DO_ASSERT is defined as
nonzero.

Returns: const reference to a key-value pair.

const value_type* operator->() const
Returns: &operator*().

const_accessor()
Effects: constructs a const_accessor that points to nothing.

~const_accessor
Effects: if pointing to a key-value pair, releases the implied lock on the pair.

accessor class Class that provides read and write access to a pair in a concurrent_hash_map.

#include "tbb/concurrent_hash_map.h"

template<typename Key, typename T, typename HashCompare>

class concurrent_hash_map<Key,T,HashCompare>::accessor;

Description

An accessor permits read and write access to a key-value pair in a concurrent_hash_map. It is
derived from a const_accessor, and thus can be implicitly cast to a const_accessor.

Members
namespace tbb {
 template<typename Key, typename T, typename HashCompare>
 class concurrent_hash_map<Key,T,HashCompare>::accessor:
 concurrent_hash_map<Key,T,HashCompare>::const_accessor {
 public:

98 | Chapter 5: Containers

 typedef std::pair<const Key,T> value_type;
 value_type& operator*() const;
 value_type* operator->() const;
 };
}

value_type& operator*() const
Effects: raises an assertion failure if empty() is true and TBB_DO_ASSERT is defined as
nonzero.

Returns: reference to a key-value pair.

value_type* operator->() const
Returns: &operator*().

Concurrent Operations: find, insert, erase
The operations find, insert, and erase are the only operations that may be concur-
rently invoked on the same concurrent_hash_map. These operations search the table
for a key-value pair that matches a given key. The find and insert methods each
have two variants. One takes a const_accessor argument and provides read-only
access to the desired key-value pair. The other takes an accessor argument and pro-
vides write access.

If the non-const variant succeeds in finding the key, the consequent
write access blocks any other thread from accessing the key until the
accessor object is destroyed. Where possible, use the const variant to
improve concurrency.

The result of the map operation is true if the operation succeeds.

bool find(const_accessor& result, const Key& key) const
Effects: searches a table for a pair with the given key. If the key is found, pro-
vides read-only access to the matching pair.

Returns: true if the key is found; false if the key is not found.

bool find(accessor& result, const Key& key)
Effects: searches a table for a pair with the given key. If the key is found, pro-
vides write access to the matching pair.

Returns: true if the key is found; false if the key is not found.

bool insert(const_accessor& result, const Key& key)
Effects: searches a table for a pair with the given key. If not present, inserts a new
pair into the table. The new pair is initialized with pair(key,T()). Provides read-
only access to the matching pair.

Returns: true if a new pair is inserted; false if the key is already in the map.

accessor class | 99

bool insert(accessor& result, const Key& key)
Effects: searches a table for a pair with the given key. If not present, inserts a new
pair into the table. The new pair is initialized with pair(key,T()). Provides write
access to the matching pair.

Returns: true if a new pair is inserted; false if the key is already in the map.

bool erase(const Key& key)
Effects: searches a table for a pair with the given key. Removes the matching pair
if it exists.

Returns: true if the pair is removed; false if the key is not in the map.

Parallel Iteration
The types const_range_type and range_type model the Range Concept and provide
methods to access the bounds of the range, as shown in Table 5-5. The types differ
only in that the bounds for a const_range_type are of type const_iterator, whereas
the bounds for a range_type are of type iterator.

Use the range types in conjunction with parallel_for, parallel_reduce, and
parallel_scan to iterate over pairs in a concurrent_hash_map.

const_range_type range(size_t grainsize) const
Effects: constructs a const_range_type representing all keys in the table. The
grainsize parameter is in units of hash table slots. Each slot typically has only
one key-value pair.

Returns: a const_range_type object for the table.

range_type range(size_t grainsize)
Returns: like const_range_type, but returns a range_type object for the table.

Capacity
size_type size() const

Returns: number of key-value pairs in the table.

This method takes constant time, but it is slower than the corresponding
method in most STL containers.

Table 5-5. Concept for concurrent_hash_map range R

Pseudosignature Semantics

R::iterator R::begin() const First item in range

R::iterator R::end() const One past last item in range

100 | Chapter 5: Containers

bool empty() const
Returns: size()==0.

This method takes constant time, but it is slower than the corresponding
method in most STL containers.

size_type max_size() const
Returns: inclusive upper bound on the number of key-value pairs that the table
can hold.

Iterators
The template class concurrent_hash_map supports forward iterators; that is, iterators
that can advance only forward across the table. Reverse iterators are not supported.
All elements will be visited in a walk from begin to end, but there is no guarantee on
the order of the walk.

iterator begin()
Returns: iterator pointing to the beginning of the key-value sequence.

iterator end()
Returns: iterator pointing to the end of the key-value sequence.

const_iterator begin() const
Returns: const_iterator pointing to the beginning of the key-value sequence.

const_iterator end() const
Returns: const_iterator pointing to the end of the key-value sequence.

101

Chapter 6 CHAPTER 6

Scalable Memory Allocation6

Making sure your memory allocation is handled by a scalable shared memory alloca-
tor is very important. This chapter explains why and introduces a solution included
with Intel Threading Building Blocks.

Allocating memory is not only one of the most basic programming tasks, it’s also one
of the most challenging to do efficiently in multithreaded programs on multiproces-
sor systems. Solutions necessarily depend on the operating system and C++ com-
piler in use; a totally portable solution would not offer adequate performance.

Because memory allocation is such an essential requirement for programs, C++
offers several ways to plug in new memory allocators. Threading Building Blocks
comes with a scalable allocator that supports the same signatures as std::allocator.

Limitations
The scalable memory allocator is cleanly separate from the rest of Threading Build-
ing Blocks so that your choice of memory allocator for concurrent usage is indepen-
dent of your choice of parallel algorithm and container templates.

Every memory allocator has its merits. The Threading Building Blocks scalable allo-
cator is built for scalability and speed. In some situations, this comes at a cost of
wasted virtual space. Specifically, it wastes a lot of space when allocating blocks in
the 9K to 12K range. It is also not yet terribly sophisticated about paging issues.

Threading Building Blocks does not define malloc; if you want to replace malloc, it is
up to you to provide one to fit your particular needs.

Problems in Memory Allocation
When ordinary, nonthreaded allocators are used, memory allocation becomes a seri-
ous bottleneck in a multithreaded program because each thread competes for a glo-
bal lock for each allocation and deallocation of memory from a single global heap.

102 | Chapter 6: Scalable Memory Allocation

Programs that run this way are not scalable. In fact, because of this contention, pro-
grams that make intensive use of memory allocation may actually slow down as the
number of processor cores increases! Programs utilizing the Standard Template
Library (STL) may be more memory-intensive than is obvious because the memory
allocation is hidden from view.

Another serious issue for concurrent programs is called false sharing. False sharing
occurs when multiple threads use memory locations that are close together, even if
they are not actually using the same memory locations. Because processor cores fetch
and hold memory in chunks called cache lines, any memory accesses within the same
cache line should be done only by the same thread. Otherwise, accesses to memory
on the same cache line will cause unnecessary contention and swapping of cache
lines back and forth, resulting in slowdowns which can easily be a hundred times
worse for the affected memory accesses.

False Sharing
To illustrate why false sharing carries such a performance penalty, we can look at the
extra overhead imposed on the caches and operating system when two threads access
memory near each other. We’ll assume for the sake of this example that a cache line
contains 64 bytes, two threads are running on processors that share the cache, and
your program defines two arrays containing one thousand 4-byte elements:

float A_array[1000];
float B_array[1000];

The end of A_array and the beginning of B_array probably lie at least partly within the
same cache line because the compiler allocates them in sequence. Consider program
activity as follows:

Thread A writes to A_array[999]. The processor reads the 64 bytes including this ele-
ment into the cache.

Thread B writes to B_array[0].

Extra overhead: the processor must flush the cache line so that A_array[0] is saved to
memory, and the operating system must invalidate the cache for thread A.

Continuing its work, thread A writes to A_array[1].

Extra overhead: the processor must flush the cache line so that B_array[0] is saved to
memory, and the operating system must reload the cache for thread A while invalidat-
ing the cache for thread B.

You can see that a tremendous overhead can easily be imposed from false sharing of
data, even if thread A uses only A_array and thread B uses only B_array. The solution
is to align the arrays to cache-line boundaries so that there is no false sharing.

Memory Allocators | 103

Memory Allocators
The solution to the challenges of concurrent memory allocation is to use a scalable
memory allocator, either in Intel Threading Building Blocks or in another third-party
solution. The Threading Building Blocks scalable memory allocator utilizes a mem-
ory management algorithm divided on a per-thread basis to minimize contention
associated with allocation from a single global heap.

Threading Building Blocks offers two choices, both similar to the STL template class,
std::allocator:

scalable_allocator
This template offers just scalability, but it does not completely protect against
false sharing. Memory is returned to each thread from a separate pool, which
helps protect against false sharing if the memory is not shared with other threads.

cache_aligned_allocator
This template offers both scalability and protection against false sharing. It
addresses false sharing by making sure each allocation is done on a cache line.

Note that protection against false sharing between two objects is guaranteed only if
both are allocated with cache_aligned_allocator. For instance, if one object is allo-
cated by cache_aligned_allocator<T> and another object is allocated some other
way, there is no guarantee against false sharing.

The functionality of cache_aligned_allocator comes at some cost in space because it
allocates in multiples of cache-line-size memory chunks, even for a small object. The
padding is typically 128 bytes. Hence, allocating many small objects with cache_
aligned_allocator may increase memory usage.

Use cache_aligned_allocator only if false sharing is likely to be a real problem. Try-
ing both allocators and measuring the resulting performance for a particular program
is a good idea.

Although you do not need to use this scalable memory allocator, it is
unwise to ignore the problem of scalable memory allocation. You are
advised to use a scalable solution for concurrency because the default
memory allocation routines are not yet ready for efficient concurrent
use.

The following subsections describe the basic use of these templates, which involves
linking the proper library and specifying the use of the allocator in templates. These
tasks are the first step toward reducing memory contention, but in general, you will
need to think about all memory allocation in your program to make sure no memory
allocations which are created or used concurrently will cause performance issues.
Later sections of this chapter discuss what you need to do in order to cover all mem-
ory allocations and thereby improve performance.

104 | Chapter 6: Scalable Memory Allocation

Which Library to Link into Your Application
Both the debug and release versions for Threading Building Blocks are divided into
two dynamic shared libraries, one with general support and the other with a scalable
memory allocator. The latter is distinguished by malloc in its name (although it does
not define a routine actually called malloc). For example, the release versions for
Windows are tbb.dll and tbbmalloc.dll, respectively.

Therefore, applications have a variety of choices. The scalable_allocator template
requires the scalable memory allocator library and does not require the general
library. The cache_aligned_allocator<T> template uses the scalable allocator library
if it is present, and otherwise reverts to using malloc and free. Thus, cache_aligned_
allocator<T> can be used without the memory allocator library, but the resulting
allocators will likely not scale. The rest of Threading Building Blocks can be used
with or without the scalable memory allocator library.

Using the Allocator Argument to C++ STL Template Classes
The interface to scalable_allocator and cache_aligned_allocator is identical to
std::allocator and conforms to the relevant requirements in the ISO C++ standard,
so you can use either as the allocator argument to STL template classes. The follow-
ing code shows how to declare an STL vector that uses cache_aligned_allocator for
allocation:

std::vector< int, cache_aligned_allocator<int> >;

Replacing malloc, new, and delete
As emphasized earlier in this chapter, the Threading Building Blocks containers are
not likely to provide adequate performance when used with general C++ memory
routines. A production-quality solution to memory allocation requires some custom
memory-allocation functions that reflect your operating system and C++ compiler.
You can make the replacement in one of the following ways:

• Replace malloc/free and related memory routines (C programs).

• Replace global new and delete operators (C++ programs).

Replace malloc, free, realloc, and calloc
Four simple interfaces to allow for malloc, free, realloc, and calloc exist:

#include "tbb\scalable_allocator.h"
void * scalable_malloc (size_t size);
void scalable_free (void* ptr);
void * scalable_realloc (void* ptr, size_t size);
void * scalable_calloc (size_t nobj, size_t size);

Replacing malloc, new, and delete | 105

These can be used to replace the C language malloc, free, realloc, and calloc mem-
ory functions by calling them instead. In general, that is the safest and easiest choice.
Be sure that memory from scalable_malloc is freed using scalable_free, and memory
from malloc is freed using free. Mixing these up can have results which are difficult
to debug. Therefore, Threading Building Blocks does not attempt to replace malloc,
free, realloc, and calloc for you. If you are diligent and make sure you are not max-
ing malloc/free and scalable_malloc/scalable_free (including if you use a module
compiled to use the standard malloc to obtain objects you later free), you can also
override the definitions using extern statements and macros. Code to do that is
shown in Chapter 11 in Example 11-52 (“Replacing malloc, calloc, realloc, and free”).

Note: You do not want to make malloc a call to scalable_allocator because
scalable_malloc(n) returns a pointer with sufficient alignment for any type, whereas
scalable_allocator<char>().allocate(n) is guaranteed only to return a pointer with
sufficient alignment for type char.

For the moment, in some cases scalable_malloc and scalable_free
make calls to malloc and free, so replacing them by linking in rou-
tines with these names which in turn call the scalable allocator would
cause a big problem. This may change in a future implementation, but
for now you should not redefine malloc or free in a way which would
have malloc or free call the scalable allocator.

Replace new and delete
The C++ standard provides eight signatures, which you can replace with functions
using the Threading Building Blocks scalable memory allocator. There are four pairs
of new/delete operators, which provide throw/no-throw versions of each as well as
scalar and array forms. Example 6-1 shows the complete list of signatures.

Replacing all eight signatures is the only way to ensure portability. Some implemen-
tations may simply implement the array forms in terms of the scalar forms, but rely-
ing on that could lead to more problems than it is worth if that assumption proves
not to be true in the future.

The replacements you write for new and delete have to go in the right place (before
any use of new or delete).

Example 6-1. ISO 14882 C++ new/delete

void* operator new(std::size_t size) throw(std::bad_alloc);
void* operator new(std::size_t size, const std::nothrow_t&) throw();
void* operator new[](std::size_t size) throw(std::bad_alloc);
void* operator new[](std::size_t size, const std::nothrow_t&) throw();
void operator delete(void* ptr) throw();
void operator delete(void* ptr, const std::nothrow_t&) throw();
void operator delete[](void* ptr) throw();
void operator delete[](void* ptr, const std::nothrow_t&) throw();

106 | Chapter 6: Scalable Memory Allocation

Actual code to do new/delete replacement can be found in Chapter 11 in
Example 11-50 (“Replacement of new and delete functions, demonstration”).

Consult your C++ compiler documentation carefully to understand
limitations and other issues. Understanding the particulars of your
environment is important.

Allocator Concept
The Allocator Concept for allocators in Intel Threading Building Blocks is similar to
the allocator requirements in Table 32 of the ISO C++ standard, but with further
guarantees required by the ISO C++ standard (Section 20.1.5, paragraph 4) for use
with ISO C++ containers. Table 6-1 summarizes the Allocator Concept. Here, A and
B represent instances of the allocator class.

Table 6-1. Allocator Concept

Pseudosignature Semantics

typedef T* A::pointer Pointer to T

typedef const T* A::const_pointer Pointer to const T

typedef T& A::reference Reference to T

typedef const T& A::const_reference Reference to const T

typedef T A::value_type Type of value to be allocated

typedef size_t A::size_type Type for representing number of values

typedef ptrdiff_t A::difference_type Type for representing pointer difference

template<typename U> struct rebind {
 typedef A<U> A::other;
};

Rebind to a different type U

A() throw() Default constructor

A(const A&) throw() Copy constructor

template<typename U> A(const A&) Rebinding constructor

~A() throw() Destructor

T* A::address(T& x) const Return address

const T* A::const_address(const T& x) const Take const address

T* A::allocate(size_type n, void* hint=0) Allocate space for n values

void A::deallocate(T* p, size_t n) Deallocate n values

size_type A::max_size() const throw() Maximum plausible argument permitted to the
method allocate

void A::construct(T* p, const T& value) new(p) T(value)

void A::destroy(T* p) p->T::~T()

bool operator==(const A&, const B&) Return true

bool operator!=(const A&, const B&) Return false

cache_aligned_allocator<T> Template Class | 107

Model Types
Both template classes, scalable_allocator<T> and cached_aligned_allocator<T>,
model the Allocator Concept.

scalable_allocator<T> Template Class Template class for scalable memory allocation.

#include "tbb/scalable_allocator.h"

template<typename T> class scalable_allocator;

Description

A scalable_allocator allocates and frees memory in a way that scales with the number of
processors. Memory allocated by a scalable_allocator function should be freed by a
scalable_allocator function, not by an std::allocator function.

Members

See Allocator Concept.

cache_aligned_allocator<T> Template Class Template class for allocating memory
in way that avoids false sharing.

#include "tbb/cache_aligned_allocator.h"

template<typename T> class cache_aligned_allocator;

Description

A cache_aligned_allocator allocates memory on cache-line boundaries to avoid false
sharing. False sharing is when logically distinct items occupy the same cache line, which
can hurt performance if multiple threads attempt to access the different items
simultaneously.

A cache_aligned_allocator models the allocator requirements. It can be used to replace an
std::allocator.

Members
namespace tbb {

 template<typename T>
 class NFS_Allocator {
 public:
 typedef T* pointer;
 typedef const T* const_pointer;
 typedef T& reference;
 typedef const T& const_reference;
 typedef T value_type;
 typedef size_t size_type;
 typedef ptrdiff_t difference_type;
 template<typename U> struct rebind {

108 | Chapter 6: Scalable Memory Allocation

 typedef cache_aligned_allocator<U> other;
 };

 #if _WIN64
 char* _Charalloc(size_type size);
 #endif /* _WIN64 */

 cache_aligned_allocator() throw();
 cache_aligned_allocator(const cache_aligned_allocator&) throw();
 template<typename U>
 cache_aligned_allocator(const cache_aligned_allocator<U>&) throw();
 ~cache_aligned_allocator();

 pointer address(reference x) const;
 const_pointer address(const_reference x) const;

 pointer allocate(size_type n, void* hint=0);
 void deallocate(pointer p, size_type);
 size_type max_size() const throw();

 void construct(pointer p, const T& value);
 void destroy(pointer p);
 };

 template<>
 class cache_aligned_allocator<void> {
 public:
 typedef void* pointer;
 typedef const void* const_pointer;
 typedef void value_type;
 template<typename U> struct rebind {
 typedef cache_aligned_allocator<U> other;
 };
 };

 template<typename T, typename U>
 bool operator==(const cache_aligned_allocator<T>&,
 const cache_aligned_allocator<U>&);

 template<typename T, typename U>
 bool operator!=(const cache_aligned_allocator<T>&,
 const cache_aligned_allocator<U>&);

}

For the sake of brevity, the following list describes only those meth-
ods that differ significantly from the corresponding methods of
std::allocator.

pointer allocate(size_type n, void* hint=0)
Effects: allocates size bytes of memory on a cache-line boundary. The allocation may
include extra hidden padding.

aligned_space Template Class | 109

Returns: pointer to the allocated memory.

void deallocate(pointer p, size_type n)
Requirements: the pointer p must be the result of the method allocate(n). The
memory must not have been already deallocated.

Effects: deallocates memory pointed to by p, and also deallocates any extra hidden
padding.

char* _Charalloc(size_type size)
This method is provided only on 64-bit Windows platforms. It is a non-ISO method
that exists for backward compatibility with versions of Windows containers that seem
to require it. Please do not use it directly.

aligned_space Template Class Uninitialized memory space.

template<typename T, size_t N> class aligned_space;

#include "tbb/aligned_space.h"

Description

An aligned_space occupies enough memory to hold an array T[N]. The calling code is respon-
sible for initializing or destroying the objects. An aligned_space is typically used as a local
variable or field in scenarios where a block of fixed-length uninitialized memory is needed.

Members
namespace tbb {
 template<typename T, size_t N>
 class aligned_space {
 public:
 aligned_space();
 ~aligned_space();
 T* begin();
 T* end();
 };
}

aligned_space()
Effects: none. Does not invoke constructors.

~aligned_space()
Effects: none. Does not invoke destructors.

T* begin()
Returns: pointer to the beginning of storage.

T* end()
Returns: begin()+N.

110

Chapter 7CHAPTER 7

Mutual Exclusion 7

One of the key advantages of threading is the capability of tasks to share data and
other resources, such as open files, network connections, and the user interface. But
concurrency creates some uncertainty over when each task reads or writes resources,
leading to the need for mutual exclusion.

The Threading Building Blocks algorithms encourage code that does not make exten-
sive use of concurrent accesses to the same objects. Threading Building Blocks also
provides concurrent containers, which greatly reduce the difficulty of using key data
structures concurrently.

Explicit synchronization is still sometimes necessary, but you are encouraged to
exploit implicit task synchronization where possible. For occasions when you need
to provide your own locking, the mutual exclusions methods described in this chap-
ter prove to be much better in common multithreading applications than other syn-
chronization objects (such as Windows synchronization objects).

Chapter 2 introduced mutual exclusion and locks, explained deadlock and race con-
ditions, and pointed out what to look for to have thread-safe programs. If you are
unfamiliar with these terms, you should read the appropriate sections in Chapter 2.
This chapter describes atomic operations, which are preferred, and locks. When it is
not possible to use an atomic operation, locks need to be used to obtain mutual
exclusion.

Because you program in terms of tasks, not threads, you will probably think of
mutual exclusion of tasks. This leads to task-safe code, but because it is normally
referred to as thread-safe code, we will use that name as well. Otherwise, all discus-
sion of mutual exclusion will be in terms of tasks. Mutual exclusion of tasks will lead
to mutual exclusion of the corresponding threads upon which Threading Building
Blocks maps your tasks.

When to Use Mutual Exclusion | 111

When to Use Mutual Exclusion
To prevent race conditions and other nondeterministic and undesirable behavior, no
two tasks should invoke a method or function concurrently on the same objects.

In other words, you need to provide your own locking. When planning the pro-
gram’s division of labor, try to stick to intuitively obvious locking. Threading Build-
ing Blocks provides a lot of help, but it cannot always hide the necessary locking.

Leaving the control to you in parallel programming is important because locking
more often creates overhead, which will often lead to poor scalability. In general, you
should work to divide data among tasks so tasks implicitly have exclusive access to
individual objects and thereby avoid any chance of concurrent updates. When you
cannot do so, use fine-grained locking so that you hold a lock for as little time as
possible.

When can intuition fail us, and the intuitively obvious not be obvious enough? When
reads are not what they seem and actually modify some state. It is okay for concur-
rent uses of objects if all uses are strictly for reading and do not modify any state.
Here are two cases where something seems like a read but is not and must be con-
trolled by mutual exclusion:

Objects that share internal state
An example is string structures that have different string objects point to a
shared string buffer if the actual string values are the same or overlap. The
objects in these cases must protect themselves internally to prevent the creation
of race conditions due to lack of control.

Structures where reads track usage
Beware of any exotic objects you might design or use that modify state when
used. An example is a self-balancing binary search tree structure (splay tree)
where a read access can cause internal modifications of the data structure.

Descriptions of the classes in this book note any departures from the need for syn-
chronization. For example, the concurrent containers are more liberal. By their
nature, they permit concurrent operations on the same container object.

This chapter assumes that you understand the importance of mutual exclusion and
when it is needed. This chapter will define a few concepts as it goes along to show
how Intel Threading Building Blocks fits the requirements, but it won’t spend time
on tutorials about locking.

Threading Building Blocks offers two kinds of mutual exclusion:

Mutexes
These will be familiar to anyone who has used locks in other environments, and
they include common variants such as reader-writer locks.

112 | Chapter 7: Mutual Exclusion

Atomic operations
These are based on atomic operations offered by hardware processors, and they
provide a solution that is simpler and faster than mutexes in a limited set of situa-
tions. These should be preferred when the circumstances make their use possible.

Mutexes
A mutex is a global variable that multiple tasks can access. Before entering code that
you do not want to execute concurrently, a task should request a lock on the mutex.
If the mutex is already locked, the task is stalled waiting. Once the lock is granted,
the task can proceed. The task should proceed quickly and release the lock on the
mutex promptly to avoid unnecessary stalls in other tasks.

If a mutex creates a lot of lock requests, it is considered highly contested. Highly
contested locks will result in many tasks being stalled and a sharp reduction in pro-
gram scalability. Avoiding highly contested locks through careful program design is
important.

A mutex, used properly, ensures that no task reads or writes a variable or other
resource when another task is writing it. Intel Threading Building Blocks mutexes
work with generic programming in C++, even in the presence of exceptions. Meet-
ing all these requirements is no small feat and takes some consideration to ensure
their proper usage.

In Threading Building Blocks, mutual exclusion is implemented by classes known as
mutexes and locks. A mutex is an object on which a task can acquire a lock. Only one
task at a time can have a lock on a mutex; other tasks have to wait their turn.

Mutual exclusion controls how many tasks can simultaneously run a region of code.
In general, you protect a region of code from concurrency when that code reads or
writes a small amount of memory, which is generally interrelated by a particular
operation you want to effect.

Consider a simple way to write code to allocate a node from a list of available nodes:

Node* AllocateNode() {
 Node* n;
 FreeListMutexType::scoped_lock lock;
 lock.acquire(FreeListMutex);
 n = FreeList;
 if(n)
 FreeList = n->next;
 lock.release();
 if(!n)
 n = new Node();
 return n;
}

Mutexes | 113

The acquire method waits until it can acquire a lock on the mutex FreeListMutex;
the release method releases the lock. It is recommended that you add extra braces
where possible, to clarify for future maintainers which code is protected by the lock:

Node* AllocateNode() {
 Node* n;
 FreeListMutexType::scoped_lock lock;
 {
 lock.acquire(FreeListMutex);
 n = FreeList;
 if(n)
 FreeList = n->next;
 lock.release();
 }
 if(!n)
 n = new Node();
 return n;
}

If you are familiar with C interfaces for locks, you may be wondering why Threading
Building Blocks does not simply acquire and release methods on the mutex object
itself. The reason is that the C interface would not be exception-safe because, if the
protected region threw an exception, control would skip over the release. With the
object-oriented interface, destruction of the scoped_lock object causes the lock to be
released, no matter whether the protected region was exited by normal control flow
or an exception. In the version of AllocateNode that uses acquire and release, the
explicit release causes the lock to be released before its scope ends, so when the
scope ends and the destructor runs, it sees that the lock was released and does
nothing.

All mutexes in Threading Building Blocks have a similar interface, which not only
makes them easier to learn, but also enables generic programming. For example, all
of the mutexes have a nested scoped_lock type, so given a mutex of type M, the corre-
sponding lock type is M::scoped_lock.

It is recommended that you always use a typedef for the mutex type,
as shown in the next example. That way, you can change the type of
the lock later without having to edit the rest of the code. In the exam-
ple, you could replace the typedef with typedef queuing_mutex
FreeListMutexType, and the code would still be correct.

The simplest mutex is the spin_mutex. A task trying to acquire a lock on a busy spin_
mutex waits until it can acquire the lock. A spin_mutex is appropriate when the lock is
held for only a few instructions.

For instance, the code in Example 7-1 uses a mutex that ensures only one task has
access at a time. Five lines of code were added in Example 7-1 to the sequential code
to provide the proper mutual exclusion to make this code thread-safe: lines 1, 3, 4, 9,
and 20.

114 | Chapter 7: Mutual Exclusion

The *this constructor for scoped_lock waits until there are no other locks on the
FreeListMutex mutex. The destructor releases the lock. The destructor runs at the
closing brace, which terminates the scope of the lock; hence the name scoped lock.
This interaction with the compiler also explains the unusual braces inside the
AllocateNode routine. Their role is to keep the lifetime of the lock as short as possi-
ble so that other waiting tasks can get their chance as soon as possible. Without the
extra braces, the scope of the lock in this example would be the entire routine.

Be sure to name the lock object; otherwise, it will be destroyed too
soon because C++ compilers are allowed to eliminate unnamed
objects. For example, if the creation of the scoped_lock object in the
example is changed to:

FreeListMutexType::scoped_lock (FreeListMutex);

the scoped_lock is destroyed when execution reaches the semicolon,
which releases the lock before FreeList is accessed.

Mutex Flavors
Connoisseurs distinguish various attributes of mutexes. It helps to know some of
these, because they involve trade-offs between generality and efficiency. Picking the
right one often helps performance. Mutexes can be described by the following
qualities, also summarized in Table 7-1.

Example 7-1. SpinMutex example

1 #include "tbb/spin_mutex.h"
2 Node* FreeList;
3 typedef spin_mutex FreeListMutexType;
4 FreeListMutexType FreeListMutex;
5
6 Node* AllocateNode() {
7 Node* n;
8 {
9 FreeListMutexType::scoped_lock mylock(FreeListMutex);

10 n = FreeList;
11 if(n)
12 FreeList = n->next;
13 }
14 if(!n)
15 n = new Node();
16 return n;
17 }
18
19 void FreeNode(Node* n) {
20 FreeListMutexType::scoped_lock mylock(FreeListMutex);
21 n->next = FreeList;
22 FreeList = n;
23 }

Mutexes | 115

Scalable
Some mutexes are called scalable. In a strict sense, this is not an accurate name
because a mutex limits execution to one task at a time and is therefore necessar-
ily a drag on scalability. A scalable mutex is rather one that does no worse than
forcing single-threaded performance. A mutex actually can do worse than serial-
ize execution if the waiting tasks consume excessive processor cycles and
memory bandwidth, reducing the speed of tasks trying to do real work. Scalable
mutexes are often slower than nonscalable mutexes under light contention, so a
nonscalable mutex may be better. When in doubt, use a scalable mutex.

Fair
Mutexes can be fair or unfair. A fair mutex lets tasks through in the order they
arrive. Fair mutexes avoid starving tasks. Each task gets its turn. However, unfair
mutexes can be faster because they let tasks that are running go through first,
instead of the task that is next in line, which may be sleeping because of an
interrupt.

Reentrant
Mutexes can be reentrant or nonreentrant. A reentrant mutex allows a task that
is already holding a lock on the mutex to acquire another lock on it. This is use-
ful in some recursive algorithms, but it typically adds overhead to the lock
implementation.

Sleep or spin
Mutexes can cause a task to spin in user space or sleep while it is waiting. For
short waits, spinning in user space is fastest because putting a task to sleep takes
cycles. But for long waits, sleeping is better because it causes the task to give up
its processor to some task that needs it. Spinning is also undesirable in proces-
sors with multiple-task support in a single core, such as Intel processors with
hyperthreading technology.

The following is a summary of mutex behaviors:

• A spin_mutex is nonscalable, unfair, nonreentrant, and spins in user space. It
would seem to be the worst of all possible worlds, except that it is very fast in
lightly contended situations. If you can design your program so that contention is
somehow spread out among many spin mutexes, you can improve performance

Table 7-1. Traits and behavior of mutexes

Mutex Scalable Fair Reentrant Sleeps Size

mutex OS-dependent OS-dependent No Yes Three or more words

spin_mutex No No No No One byte

queuing_mutex Yes Yes No No One word

spin_rw_mutex No No No No One word

queuing_rw_mutex Yes Yes No No One word

116 | Chapter 7: Mutual Exclusion

over other kinds of mutexes. If a mutex is heavily contended, your algorithm will
not scale anyway. Consider redesigning the algorithm instead of looking for a
more efficient lock.

• A queuing_mutex is scalable, fair, nonreentrant, and spins in user space. Use it
when scalability and fairness are important.

• A spin_rw_mutex and a queuing_rw_mutex are similar to spin_mutex and queuing_
mutex, but they additionally support reader locks.

spin_mutex is very fast in lightly contended situations; use it if you
need to protect a small section of code.

• A mutex is a wrapper around the system’s native mutual exclusion mechanism.
On Windows systems, it is implemented on top of a CRITICAL_SECTION. On
Linux systems, it is implemented on top of a pthread mutex. The advantages of
using the wrapper are that it adds an exception-safe interface and provides an
interface identical to the other mutexes in Threading Building Blocks, which
makes it easy to swap in a different kind of mutex later if warranted by perfor-
mance measurements.

Future versions of Threading Building Blocks may be able to put tasks
to sleep more often, which can be very desirable.

Reader-Writer Mutexes
Mutual exclusion is necessary when at least one task writes to a shared variable. But
it does no harm to permit multiple readers into a protected region. The reader-writer
variants of the mutexes, denoted by _rw_ in the class names, enable multiple readers
by distinguishing reader locks from writer locks. There can be more than one reader
lock on a given mutex.

Requests for a reader lock are distinguished from requests for a writer lock via an
extra Boolean parameter in the constructor for scoped_lock. The parameter is false
to request a reader lock and true to request a writer lock. It defaults to true so that
when it is omitted, a spin_rw_mutex or queuing_rw_mutex behaves like its non-_rw_
counterpart. The next section shows an example where the parameter is explicitly
false in order to obtain a reader lock.

Upgrade/Downgrade
It is possible to upgrade a reader lock to a writer lock by using the method upgrade_
to_writer. Here is an example:

Mutexes | 117

std::vector<string> MyVector;
typedef spin_rw_mutex MyVectorMutexType;
MyVectorMutexType MyVectorMutex;

void AddKeyIfMissing(const string& key) {
 // Obtain a reader lock on MyVectorMutex
 MyVectorMutexType::scoped_lock lock(MyVectorMutex,/*is_writer=*/false);
 size_t n = MyVector.size();
 for(size_t i=0; i<n; ++i)
 if(MyVector[i]==key) return;
 if(!MyVectorMutex.upgrade_to_writer())
 // Check if key was added while lock was temporarily released
 for(int i=n; i<MyVector.size(); ++i)
 if(MyVector[i]==key) return;
 vector.push_back(key);
}

Note that after obtaining a lock on the vector, the routine must sometimes search the
vector again. This is necessary because upgrade_to_writer might have to temporarily
release the lock before it can upgrade. Otherwise, deadlock might ensue. The
upgrade_to_writer method returns a bool that is true if it successfully upgrades the
lock without releasing it, and false if the lock is released temporarily. Thus, when
upgrade_to_writer returns false, the code must rerun the search to check that the
key was not inserted by another writer. The example presumes that keys are always
added to the end of the vector, and that keys are never removed. Because of these
assumptions, it does not have to re-search the entire vector, but only the elements
beyond those originally searched. The critical point to remember is that when
upgrade_to_writer returns false, any assumptions established while holding a reader
lock may have been invalidated and must be rechecked.

For symmetry, there is a corresponding method, downgrade_to_reader, though in
practice there are few reasons to use it.

Lock Pathologies
Locks can introduce performance and correctness problems. If you are new to lock-
ing, here are some of the problems to avoid.

Deadlock

Deadlock happens when tasks are trying to acquire more than one lock, and each
holds some of the locks the other tasks need in order to proceed. More precisely,
deadlock happens when:

• There is a cycle of tasks.

• Each task holds at least one lock on a mutex, and is waiting on a mutex for
which the next task in the cycle already has a lock.

• No task is willing to give up its lock.

118 | Chapter 7: Mutual Exclusion

Think of classic gridlock at an intersection. Each car has “acquired” part of the road,
but it needs to acquire the road under another car to get through. There are three
common ways to avoid deadlock:

• Avoid needing to hold two locks at the same time. Break your program into
small actions, each of which can be accomplished while holding a single lock.

• Always acquire locks in the same order. For example, if you have outer container
and inner container mutexes, and you need to acquire a lock on one of each, you
could always acquire the outer sanctum one first. Another example is to acquire
locks in alphabetical order, in a situation where the locks have names. Or if the
locks are unnamed, acquire locks in order of the numerical addresses for the
mutex.

• Use atomic operations instead of locks, as discussed later in this chapter.

Convoying and priority inversion

Convoying is a problem that comes up between threads of the same priority and is a
concern when using locks and Threading Building Blocks. Convoying occurs when
the operating system interrupts a task that is holding a lock. All other tasks must
wait until the interrupted task resumes and releases the lock. Fair mutexes can make
the situation even worse because if a waiting task is interrupted, all the tasks behind
it must wait for it to resume.

To avoid convoying, use atomic operations instead of locks where possible.

Convoying is similar to priority inversion. Priority inversion describes a general case
where a lower-priority task holds a shared resource that is required by a higher-
priority task. The higher-priority task is therefore blocked until the lower-priority task
has released the resource, effectively inverting the relative priorities of the two tasks.

To minimize convoying and priority inversion, use atomic operations if possible.
Otherwise, hold any lock as briefly as possible. Precompute whatever you can before
acquiring the lock.

Mutexes
Mutexes provide mutual exclusion of tasks from sections of code.

In general, strive for designs that minimize the use of explicit locking, because it can
lead to serial bottlenecks. If explicit locking is necessary, try to spread it out so that
multiple tasks usually do not contend to lock the same mutex.

mutex Class | 119

Mutex Concept
The mutexes and locks here have simple interfaces that are designed for high perfor-
mance. The interfaces enforce the scoped locking pattern, which is widely used in
C++ libraries because:

• It does not require the programmer to remember to release the lock.

• It releases the lock if an exception is thrown out of the mutual exclusion region
protected by the lock.

There are two parts to the pattern: a mutex and a lock. The constructor of the lock
object acquires the lock, and the destructor of the lock object releases the lock.
Here’s an example:

{
 // Construction of myLock acquires lock on myMutex
 M::scoped_lock myLock(myMutex);
 ... actions to be performed while holding the lock ...
 // Destruction of myLock releases lock on myMutex
}

If the actions throw an exception, the lock is automatically released as the block is
exited.

Table 7-2 summarizes the classes that model the Mutex Concept.

mutex Class Class that models the Mutex Concept using underlying OS locks.

#include "tbb/mutex.h"class mutex;

Description

A mutex models the Mutex Concept. It is a wrapper around OS calls that provide mutual
exclusion. Here are the advantages of using a mutex instead of the OS calls:

• The mutex class is portable across all operating systems supported by Intel Threading
Building Blocks.

• The mutex releases the lock if an exception is thrown from the protected region of code.

Table 7-2. Mutex Concept

Pseudosignature Semantics

M() Construct unlocked mutex.

~M() Destroy unlocked mutex.

M::scoped_lock() Construct lock without acquiring mutex.

M::scoped_lock(M&) Construct lock and acquire lock on mutex.

M::~scoped_lock() Release lock (if acquired).

M::scoped_lock::acquire(M&) Acquire lock on mutex.

M::scoped_lock::release() Release lock.

120 | Chapter 7: Mutual Exclusion

Members

See Table 7-2.

spin_mutex Class Class that models the Mutex Concept using a spin lock.

#include "tbb/spin_mutex.h"

class spin_mutex;

Description

A spin_mutex models the Mutex Concept. A spin_mutex is not scalable, fair, or reentrant. It
is ideal when the lock is lightly contended and is held for only a few machine instructions.
If a task cannot acquire a spin_mutex when the class is created, it busy-waits, which can
degrade system performance if the wait is long. However, if the wait is typically short, a
spin_mutex significantly improves performance compared to other mutexes.

Members

See Table 7-2.

queuing_mutex Class Class that models the Mutex Concept that is fair and scalable.

#include "tbb/queuing_mutex.h"

class queuing_mutex;

Description

A queuing_mutex models the Mutex Concept. A queuing_mutex is scalable, in the sense that
if a task has to wait to acquire the mutex, it spins on its own local cache line. A queuing_
mutex is fair, in that tasks acquire the lock in the order they requested it, even if they are
later suspended. A queuing_mutex is not reentrant.

The current implementation does busy-waiting, so using a queuing_mutex may degrade
system performance if the wait is long.

Members

See Table 7-2.

ReaderWriterMutex Concept
The ReaderWriterMutex Concept extends the Mutex Concept to include the notion
of reader-writer locks. It introduces a Boolean parameter, write, that specifies
whether a writer lock (write = true) or reader lock (write = false) is being requested.
Multiple reader locks can be held simultaneously on a ReaderWriterMutex if it does
not have a writer lock on it. A writer lock on a ReaderWriterMutex excludes all other
tasks from holding a lock on the mutex at the same time.

Model Types | 121

Table 7-3 shows the requirements for ReaderWriterMutex RW.

The following sections explain the semantics of the ReaderWriterMutex Concept in
detail.

Model Types
spin_rw_mutex and queuing_rw_mutex model the ReaderWriterMutex Concept.

ReaderWriterMutex()
Effect: constructs an unlocked ReaderWriterMutex.

~ReaderWriterMutex()
Effect: destroys an unlocked ReaderWriterMutex. The effect of destroying a locked
ReaderWriterMutex is undefined.

ReaderWriterMutex::scoped_lock()
Effect: constructs a scoped_lock object that does not hold a lock on any mutex.

ReaderWriterMutex::scoped_lock(ReaderWriterMutex& rw, bool write=true)
Effect: constructs a scoped_lock object that acquires a lock on mutex rw. The lock is a
writer lock if write is true; it is a reader lock otherwise.

ReaderWriterMutex::~scoped_lock()
Effect: if the object is holding a lock on a ReaderWriterMutex, releases the lock.

void ReaderWriterMutex:: scoped_lock:: acquire(ReaderWriterMutex& rw, bool write=true)
Effect: acquires a lock on mutex rw. The lock is a writer lock if write is true; it is a
reader lock otherwise.

bool ReaderWriterMutex:: scoped_lock::try_acquire(ReaderWriterMutex& rw, bool write=true)
Effect: attempts to acquire a lock on mutex rw. The lock is a writer lock if write is
true; it is a reader lock otherwise.

Returns: true if the lock is acquired, false otherwise.

void ReaderWriterMutex:: scoped_lock::release()
Effect: releases the lock. The effect is undefined if no lock is held.

bool ReaderWriterMutex:: scoped_lock::upgrade_to_writer()
Effect: changes a reader lock to a writer lock. The effect is undefined if the object does
not already hold a reader lock.

Returns: false if the lock is released and reacquired; true otherwise.

Table 7-3. ReaderWriterMutex Concept

Pseudosignature Semantics

RW() Construct an unlocked mutex.

~RW() Destroy an unlocked mutex.

RW::scoped_lock::acquire(RW&, bool write=true) Acquire lock on mutex.

RW::scoped_lock::release() Release lock.

bool RW::scoped_lock::upgrade_to_writer() Change reader lock to writer lock.

bool RW::scoped_lock::downgrade_to_reader() Change writer lock to reader lock.

122 | Chapter 7: Mutual Exclusion

bool ReaderWriterMutex:: scoped_lock::downgrade_to_reader()
Effect: changes a writer lock to a reader lock. The effect is undefined if the object does
not already hold a writer lock.

Returns: false if the lock is released and reacquired; true otherwise.

Intel’s current implementations for spin_rw_mutex and queuing_rw_mutex always return
true. Different implementations might sometimes return false.

spin_rw_mutex Class Class that models ReaderWriterMutex Concept that is unfair and not scalable.

#include "tbb/spin_rw_mutex.h"

class spin_rw_mutex;

Description

A spin_rw_mutex models the ReaderWriterMutex Concept. A spin_rw_mutex is not scalable,
fair, or reentrant. It is ideal when the lock is lightly contended and is held for only a few
machine instructions. If a task cannot acquire a spin_rw_mutex when the class is created, it
busy-waits, which can degrade system performance if the wait is long. However, if the wait
is typically short, a spin_rw_mutex significantly improves performance compared to other
ReaderWriterMutex mutexes.

Members

See Table 7-3.

queuing_rw_mutex Class Class that models ReaderWriterMutex Concept that is fair and scalable.

#include "tbb/queuing_rw_mutex.h"

class queuing_rw_mutex;

Description

A queuing_rw_mutex models the ReaderWriterMutex Concept. A queuing_rw_mutex is scal-
able, in the sense that if a task has to wait to acquire the mutex, it spins on its own local
cache line. A queuing_rw_mutex is fair, in that tasks acquire the lock in the order they
requested it, even if they later are suspended. A queuing_rw_mutex is not reentrant.

Members

See Table 7-3.

Atomic Operations
Atomic operations are a fast and relatively easy alternative to mutexes. They do not
suffer from the deadlock and convoying problems described earlier, in the section
“Lock Pathologies.” The main limitation of atomic operations is that they are lim-
ited in current computer systems to fairly small data sizes: the largest is usually the
size of the largest scalar, often a double-precision floating-point number.

Atomic Operations | 123

Atomic operations are also limited to a small set of operations supported by the
underlying hardware processor. But sophisticated algorithms can accomplish a lot
with these operations; this section shows a couple of examples. You should not pass
up an opportunity to use an atomic operation in place of mutual exclusion.

The class atomic<T> implements atomic operations with C++ style.

A classic use of atomic operations is for thread-safe reference counting. Suppose x is
a reference count of type int and the program needs to take some action when the
reference count becomes zero. In single-threaded code, you could use a plain int for
x, and write --x; if(x==0) action(). But this method might fail for multithreaded
code because two tasks might interleave their operations, as shown in Figure 7-1,
where ta and tb represent machine registers and time progresses downward.

The problem shown in Figure 7-1 is a classic race condition. Although the code
intends x to be decremented twice, x ends up being only one less than its original
value. Also, another problem results because the test of x is separate from the decre-
ment: if x starts out as 2, and both tasks decrement x before either task evaluates the
if condition, both tasks will call action().

Note that simply writing if(--x==0) action() does not solve the problem—as long
as x is a conventional variable—because at the machine code level, the decrement is
still a separate instruction from the compare. Two tasks can still interleave their
operations.

To correct this problem, you need to ensure that only one task at a time does the
decrement and that the value checked by the if is the result of the decrement. You
can do this by introducing a mutex, but it is much faster and simpler to declare x as
atomic<int> and write if(--x==0) action(). The method atomic<int>::operator--
acts atomically; no other task can interfere.

atomic<T> supports atomic operations on type T, which must be an integral or
pointer type. Five fundamental operations are supported, with additional interfaces
in the form of overloaded operators for syntactic convenience. For example, ++, --,
-=, and += operations on atomic<T> are all forms of the fundamental operation fetch-
and-add. Table 7-4 shows the five fundamental operations on a variable x of type
atomic<T>.

Figure 7-1. Interleaving of machine instructions

ta = x

Task A

x = ta – 1

if (x==0)

tb = x

x = tb – 1

if (x==0)

Task B

124 | Chapter 7: Mutual Exclusion

Because these operations happen atomically, they can be used safely without mutual
exclusion. Consider Example 7-2.

The routine GetUniqueInteger returns a different integer each time it is called, until
the counter wraps around. This is true no matter how many tasks call
GetUniqueInteger simultaneously.

The operation compare_and_swap is fundamental to many nonblocking algorithms. A
problem with mutual exclusion is that if a task holding a lock is suspended, all other
tasks are blocked until the holding task resumes. Nonblocking algorithms avoid this
problem by using atomic operations instead of locking. They are generally compli-
cated and require sophisticated analysis to verify. However, the idiom in
Example 7-3 is straightforward and worth knowing. It updates a shared variable,
globalx, in a way that is somehow based on its old value:

Table 7-4. Fundamental operations on a variable x of type atomic<T>

Operation Description

= x Read the value of x.

x = Write the value of x, and return it.

x.fetch_and_store(y) Execute y=x and return the old value of x.

x.fetch_and_add(y) Execute x+=y and return the old value of x.

x.compare_and_swap(y,z) If x equals z, execute x=y.

In either case, return the old value of x.

Example 7-2. GetUniqueInteger atomic example

atomic<unsigned> counter;

unsigned GetUniqueInteger() {
 return counter.fetch_and_add(1);
}

Example 7-3. compare_and_swap atomically

atomic<int> globalx;

int UpdateX() { // Update x and return old value of x.
 do {
 // Read globalx
 oldx = globalx;
 // Compute new value
 newx = ...expression involving oldx....
 // Store new value if another task has not changed globalX.
 } while(globalx.compare_and_swap(newx,oldx)!=oldx);
 return oldx;
}

Atomic Operations | 125

In some OS implementations, compare_and_swap can cause tasks to iterate the loop
until no other task interferes, and this may seem less efficient in highly contended
situations because of the repetition. But typically, if the update takes only a few
instructions, the idiom is faster than the corresponding mutual-exclusion solution, so
you should use compare_and_swap.

The update idiom (compare_and_swap) is inappropriate if the A-B-A problem (see
sidebar) thwarts your intent. It is a frequent problem when trying to design a non-
blocking algorithm for linked data structures.

Why atomic<T> Has No Constructors
The template class atomic<T> deliberately has no constructors because examples such
as GetUniqueInteger are commonly required to work correctly even before all file-
scope constructors have been called. If atomic<T> had constructors, a file-scope
instance might be initialized after it had been referenced.

A-B-A Problem
The A-B-A problem occurs when a thread checks a location to be sure the value is A,
and proceeds with an update only if it is A. The question arises whether it is a problem
if other tasks change the same location in a way that the first task does not detect:

A task reads a value A from globalx.

Other tasks change globalx from A to B and then back to A.

At the same time, the original task does its compare_and_swap, reading A and thus not
detecting the intervening change to B.

If the task erroneously proceeds under an assumption that the location has not
changed since the task first read it, the task may proceed to corrupt the object or other-
wise get the wrong result.

Consider an example with linked lists. Assume a linked list ,
where the letters are the node locations and the numbers are the values in the nodes.
Assume a task transverses the list to find a node X to dequeue. The task fetches the next
pointer, X.next (which is Y), with the intent to put it in W.next. But before the swap is
done, the task is suspended for some time.

During the suspension, other tasks are busy. They dequeue X and then happen to reuse
that same memory and queue a new version of node X as well as dequeuing Y and add-
ing Q at some point in time. Now the list is .

Once the original task finally wakes up, it finds that W.next still points to X, so it swaps
out W.next to become Y, thereby making a complete mess out of the linked list.

Atomic operations are the way to go if they embody enough protection for your algo-
rithm. If the A-B-A problem can ruin your day, find a more complex solution.

W 1() X 9() Y 7() Z 4()→ → →

W 1() X 2() Q 3() Z 4()→ → →

126 | Chapter 7: Mutual Exclusion

You can rely on zero initialization to initialize an atomic<T> to 0. To create an
atomic<T> with a specific value, default-construct it first, and afterward assign a value
to it. For example:

atomic<int> x;
x = 2048;

Memory Consistency and Fences
A processor may reorder memory reads and writes so they occur in an order that is
inconsistent with the original program. Memory consistency is a term used to
describe how inconsistent the processor’s actual memory accessing can be relative to
the original program. Obviously, two accesses to a single location need to happen in
an order which preserves the intent of the original program. It is not okay to reorder
a read of a variable that occurs after a write of the same variable. What is less clear is
whether the order of reads and writes of different variables (different addresses)
matters. In a multithreaded environment, it may matter a great deal how reads and
writes are ordered because multiple threads can view the state of memory. The stron-
ger memory consistency is, the less challenging it is for programmers, but the more
limiting it is for hardware efficiency.

Some processor architectures, such as the Intel Itanium, IBM POWER and PowerPC,
and Alpha processors, have weak memory consistency, in which memory operations
on different addresses may be reordered by the hardware for the sake of efficiency.
For Sun SPARC processors, the ordering is different under Solaris (which uses total-
store order or TSO) and Linux (which uses relaxed-memory order or RMO). There-
fore, Sun SPARC has weak memory consistency under Linux but not under Solaris.

The subject is complex, and the interested reader should consult other works on the
subject. If you are programming only IA-32 and Intel 64/AMD64 processor plat-
forms, you can skip this section. These platforms have the strongest memory consis-
tency models.

To constrain reordering, the processor may invoke fences, which prevent reordering
that could risk corrupting results. Table 7-5 describes the different types of fences.
Each kind of fence stops the hardware from moving any other operation past the
atomic operation.

Table 7-5. Types of fences

Kind Description Default for

Acquire Operations after the fence never move over it. Read

Release Operations before the fence never move over it. Write

Full Operations on either side of the fence never move over it. fetch_and_store
fetch_and_add
compare_and_swap

atomic<T> Template Class | 127

The rightmost column lists the operations that default to a particular kind. Nor-
mally, you should leave the defaults in place to avoid unexpected surprises. For read
and write, the defaults are the only kinds of fences available. However, if you are
familiar with weak memory consistency, you might want to change the full fences to
lesser fences. To do this, use variants that take a template argument. The argument
can be acquire or release, which are values of the enum type memory_semantics.

For example, suppose various tasks are producing parts of a data structure, and you
want to signal a consuming task when the data structure is ready. One way to do this
is to initialize an atomic counter with the number of busy producers; as each pro-
ducer finishes, it decrements the count by executing:

refcount.fetch_and_add<release>(-1);

The argument release guarantees that the producer’s work (which involves writing
to shared memory) occurs before refcount is decremented. By default, the fetch_and_
add fence would block instruction reordering in both directions, but that’s not
required in this particular situation, so you can safely allow instructions to be moved
before the decrement.

Similarly, when the consumer checks refcount, the consumer must use an acquire
fence, which is the default for reads. So the consumer’s reads of the data structure do
not happen until after the consumer sees refcount become 0.

atomic<T> Template Class Template class for atomic operations.

#include "tbb/atomic.h"

template<typename T> atomic;

Description

An atomic<T> supports atomic read, write, fetch-and-add, fetch-and-store, and compare-
and-swap. Type T may be an integral type or a pointer type. When T is a pointer type, arith-
metic operations are interpreted as pointer arithmetic. For example, if x has type
atomic<float*> and a float occupies four bytes, ++x advances x by four bytes. The special-
ization atomic<void*> does not allow pointer arithmetic.

Some of the methods offer two method variants, one of which is a templated form that
permits more selective memory fencing using memory_semantics. For instance, the first of
the following fetch_and_add calls is templated to specify a release fence, whereas the
second call is not templated:

refcount.fetch_and_add<release>(-1);
refcount.fetch_and_add(1);

On IA-32 and Intel 64 processors, the templated calls have the same effect as the nontem-
plated variants because the processors do not support weaker memory consistency. On
processors with weak memory consistency, the templated calls may improve performance
by allowing the memory subsystem more latitude on the orders of reads and writes; there-
fore, using them may improve performance. Table 7-5 shows the fencing defaults
(nontemplated form).

128 | Chapter 7: Mutual Exclusion

The template class atomic<T> does not have any nontrivial constructors
because such constructors could lead to accidental introduction of com-
piler temporaries that would subvert the purpose of atomic<T>. See the
section “Why atomic<T> Has No Constructors,” earlier in this chapter.

Members
namespace tbb {
 enum memory_semantics {
 acquire,
 release
 };
 struct atomic<T> {
 typedef T value_type;

 template<memory_semantics M>
 value_type fetch_and_add(value_type addend);

 value_type fetch_and_add(value_type addend);

 template<memory_semantics M>
 value_type fetch_and_increment();

 value_type fetch_and_increment();

 template<memory_semantics M>
 value_type fetch_and_decrement();

 value_type fetch_and_decrement();

 template<memory_semantics M>
 value_type compare_and_swap(value_type new_value,
 value_type comparand);

 value_type compare_and_swap(value_type new_value,
 value_type comparand);

 template<memory_semantics M>
 value_type fetch_and_store(value_type new_value);

 value_type fetch_and_store(value_type new_value);

 operator value_type() const;

 value_type operator=(value_type new_value);

 value_type operator+=(value_type);
 value_type operator-=(value_type);
 value_type operator++();
 value_type operator++(int);
 value_type operator--();
 value_type operator--(int);
 };
}

atomic<T> Template Class | 129

enum memory_semantics
Description: defines values used to select the template variants that permit more selec-
tive memory fencing (see Table 7-5).

value_type fetch_and_add(value_type addend)
Effect: atomically adds addend to the variable (*this) that invoked the method.

Returns: original value (*this).

value_type fetch_and_increment()
Effect: atomically increments the variable (*this) that invoked the method.

Returns: original value (*this).

value_type fetch_and_decrement()
Effect: atomically decrements the variable (*this) that invoked the method.

Returns: original value (*this).

value_type compare_and_swap(value_type new_value, value_type comparand)
Effect: atomically compares the variable (*this) that invoked the method with
comparand, and if they are equal, sets the variable (*this) to new_value.

Returns: original value (*this).

value_type fetch_and_store(value_type new_value)
Effect: atomically exchanges the variable (*this) that invoked the method with new_
value.

Returns: original value (*this).

130

Chapter 8CHAPTER 8

Timing 8

Intel Threading Building Blocks provides a thread-safe and portable method to
compute elapsed time.

Many operating systems provide a fine-grained method to track the accounting of
central processing unit (CPU) time, and most provide a way to track elapsed/wall-
clock time. The method of extracting an elapsed measurement with subsecond
accuracy varies a great deal.

The class tick_count in Threading Building Blocks provides a simple interface for
measuring wall-clock time, as shown in Example 8-1.

This is guaranteed to work even if the processor core running a task changes while
the work is being done, and therefore the tick_count calls run on different processors.

Unlike some timing interfaces, tick_count is guaranteed to be safe to
use across threads. It is based on a common or global clock. It is valid
to subtract tick_count values that were created by different threads to
compute elapsed time.

A tick_count value obtained from the static method tick_count::now() represents
the current absolute time. This value has no meaning other than for use in compari-
sons with other tick_count values. Subtracting two tick_count values yields a rela-
tive time in tick_count::interval_t, as shown in Example 8-1. Relative time is
expressed in seconds as a double in order to allow fractional values in keeping with
the resolution available on the operating system.

Example 8-1. Using tick_count to measure elapsed time

#include "tbb/tick_count.h"
using namespace tbb;
...
tick_count t0 = tick_count::now();
... do some work ...
tick_count t1 = tick_count::now();
printf("work took %g seconds\n",(t1-t0).seconds());

tick_count Class | 131

The resolution of tick_count corresponds to the highest-resolution timing service on
the platform that is valid across threads in the same process. The routines are wrap-
pers around operating system services that have been verified as safe to use across
threads.

Because the highest-resolution counters—the CPU timer registers—
are not valid across threads on some platforms, the resolution of tick_
count cannot be guaranteed to be consistent from platform to plat-
form. The library seeks to do the best that the platform can supply.

tick_count Class Class for computing wall-clock times.

#include "tbb/tick_count.h"

class tick_count;

Description

A tick_count is an absolute timestamp. One tick_count object may be subtracted from
another to compute a relative time tick_count::interval_t, which can be converted to
seconds.

Example
#include "tbb/tick_count.h"
using namespace tbb;

void Foo() {
 tick_count t0 = tick_count::now();
 ...action being timed...
 tick_count t1 = tick_count::now();
 printf("time for action = %g seconds\n", (t1-t0).seconds());
}

Members
namespace tbb {

 class tick_count {
 public:
 class interval_t;
 static tick_count now();
 };

 tick_count::interval_t operator-(const tick_count& t1,
 const tick_count& t0);
} // tbb

static tick_count tick_count::now()
Returns: current wall-clock timestamp.

tick_count::interval_t operator-;(const tick_count& t1, const tick_count& t0)
Returns: relative time that t1 occurred after t0.

132 | Chapter 8: Timing

tick_count::interval_t Class Class for relative wall-clock time.

#include "tbb/tick_count.h"

class tick_count::interval_t;

Description

A tick_count::interval_t represents relative wall-clock time or duration.

Members provide for the accumulation and reduction of intervals by other interval_t
values, and for the conversion of interval_t values into seconds.

Members
namespace tbb {

 class tick_count::interval_t {
 public:
 interval_t();
 double seconds() const;
 interval_t operator+=(const interval_t& i);
 interval_t operator-=(const interval_t& i);
 };

 tick_count::interval_t operator+(const tick_count::interval_t& i,
 const tick_count::interval_t& j);
 tick_count::interval_t operator-(const tick_count::interval_t& i,
 const tick_count::interval_t& j);

} // tbb

interval_t()
Effects: constructs an interval_t representing a zero time duration.

double seconds() const
Returns: a time interval measured in seconds (can have noninteger values).

interval_t operator+=(const interval_t& i)
Effects: *this = *this + i.

Returns: a reference to *this after the addition.

interval_t operator-=(const interval_t& i)
Effects: *this = *this - i.

Returns: a reference to *this after the subtraction.

interval_t operator+ (const interval_t& i, const interval_t& j)
Returns: an interval_t representing the sum of intervals i and j.

interval_t operator- (const interval_t& i, const interval_t& j)
Returns: an interval_t representing the difference between intervals i and j.

133

Chapter 9 CHAPTER 9

Task Scheduler9

This chapter introduces the Intel Threading Building Blocks task scheduler. The task
scheduler is the heart of Threading Building Blocks, but generally it is not used
directly after you initialize it by constructing a tbb::task_scheduler_init.

The task scheduler is the engine that powers the loop templates. When practical, you
should use the loop templates instead of the task scheduler because the templates
hide the complexity of the scheduler. However, if you have an algorithm that does
not naturally map onto one of the high-level templates, use the task scheduler. All of
the scheduler functionality used by the high-level templates is available for you to use
directly, so you can build new high-level templates that are just as powerful as the
existing ones.

When Task-Based Programming Is Inappropriate
Using the task scheduler is usually the best approach to threading for performance,
but there are cases when the built-in task scheduler is not the most appropriate solu-
tion. The task scheduler is intended for high-performance algorithms composed of
nonblocking tasks. It still works if the tasks block occasionally. However, if threads
block frequently, there is a performance loss when using the task scheduler because
the processor is not doing any work while the task is blocked.

Blocking typically occurs while waiting for I/O or mutexes for long periods. If
threads hold mutexes for long periods, your code is not likely to perform well any-
way, no matter how many threads it has. If you have blocking tasks, it is best to use
full-blown threads for those. The task scheduler is designed so that you can safely
mix your own threads with Threading Building Blocks tasks.

134 | Chapter 9: Task Scheduler

Much Better Than Raw Native Threads
The task scheduler manages a thread pool and hides the complexity of native
threads. The parallel algorithms (covered in Chapter 3) are all based on the task
scheduler interface. The task scheduler is designed to address common performance
issues of parallel programming with native threads, specifically those issues listed in
Table 9-1. The following subsections of this chapter offer details on each item in the
table.

Oversubscription
Getting the number of threads right is difficult. The threads you would create with a
threading package are logical threads, which map onto the physical threads of the
hardware. For computations that do not wait on external devices, the highest effi-
ciency usually occurs when there is exactly one running logical thread per physical
thread. Otherwise, there can be inefficiencies from any mismatch.

If there are not enough running logical threads to keep the physical threads working,
the result is undersubscription or inefficiency. If there are more running logical
threads than physical threads, this oversubscription usually leads to time-sliced exe-
cution of logical threads, which incurs overhead.

The Threading Building Blocks task scheduler avoids undersubscription and over-
subscription by selecting the number of logical threads that will likely make the most
efficient use of the underlying hardware. It maps tasks to logical threads in a way
that tolerates interference by other threads from the same or other processes.

Nested parallelism makes oversubscription more likely because a nested subroutine
has to do something very elaborate to check whether it is running within a parallel
operation on a higher level. Coordinating the creation of new threads within inde-
pendent threads is also complex.

It is important to try to take advantage of parallelism at all levels of nesting to avoid
undersubscription. Unfortunately, with raw threads this is nontrivial. Threading
Building Blocks avoids this problem by having you create tasks instead of threads.

Table 9-1. Problems with raw threads

Problem Intel Threading Building Blocks approach

Oversubscription One scheduler thread per hardware thread.

Choice of scheduling policy Nonpreemptive unfair scheduling.

High coding overhead Programmer specifies tasks, not threads.

Load imbalances Work stealing balances load.

Portability No code changes should be needed to use with any C++ compiler on any operating system.

Much Better Than Raw Native Threads | 135

The task scheduler tries to avoid oversubscription by having one logical thread per
physical thread regardless of the number of tasks.

The key advantage of tasks versus logical threads is that tasks are much lighter in
weight than logical threads. On Linux systems, starting and terminating a task is
about 18 times faster than starting and terminating a thread. On Windows systems,
the ratio is more than 100-fold. This is because a thread has its own copy of a lot of
resources, such as register state and a stack. On Linux, a thread even has its own
process ID. A task in Threading Building Blocks, in contrast, is typically a small
routine and cannot be preempted at the task level by the scheduler (although its
associated logical thread can be preempted by the operating system).

Fair Scheduling
Most general-purpose operating systems use a scheduler based on the idea of fair
scheduling. You might be asking yourself, “With a name like fair scheduling, how
could it be bad?”

It’s bad because fair, when speaking of thread scheduling, means balancing time.
Thread schedulers typically distribute time slices in a round-robin fashion. The dis-
tribution is called fair because each logical thread gets an equal share of time. Thread
schedulers are typically fair because it is the safest strategy to undertake without
understanding the higher-level organization of a program.

Preempting a thread in the name of fairness is often done out of concern that some
very large tasks will dominate others. But Threading Building Blocks takes care of the
difference in task loads by monitoring processors and starting new tasks on idle pro-
cessors. It also offers some assurance that tasks are “right-sized,” thanks to recursive
splitting. This works very well in combination with the dynamic load balancing that
Threading Building Blocks implements through task stealing.

In short, Threading Building Blocks does not need the inefficiencies of so-called fair
scheduling. Preempting a task, in the name of fairness, would generally slow the
completion of the overall task. It is better to let tasks complete.

In task-based programming, the task scheduler does have some of the higher-level
information that is unavailable to the operating system, so the Threading Building
Blocks task scheduler can sacrifice fairness for efficiency. Indeed, the scheduler often
delays starting a task until the task can make useful progress. This chapter explains
more about how this works and how it saves both time and space.

The result is that tasks are more efficient because the task scheduler is unfair.

136 | Chapter 9: Task Scheduler

High Coding Overhead
Raw threads, such as POSIX threads (pthreads) or Windows threads, expose the
control of parallelism at its lowest level. They represent the assembly languages of
parallelism. As such, they offer maximum flexibility at a high cost.

When using raw threads, programmers find basic work to be difficult and tedious to
write correctly and efficiently. Code often becomes very dependent on the particular
threading facilities of an operating system. Raw thread-level programming is too low-
level to be intuitive and seldom results in code designed for scalable performance.
Furthermore, the programming model does not encourage nested parallelism, which
turns out to be very important.

With thread-based programming, you are forced to think at the low level of physical
threads to get good efficiency because you want to maintain one logical thread per
physical thread—and make sure that the logical thread is not blocked for long peri-
ods of time—to avoid undersubscription or oversubscription. You also have to deal
with the relatively coarse grain of threads.

The main advantage of using tasks instead of threads is that they let you think at a
higher, task-based level. You can concentrate on dependencies among tasks and
leave efficient scheduling to the scheduler.

Load Imbalance
The task scheduler does load balancing. With thread-based programming, you are
often stuck dealing with load balancing yourself, which can be tricky to get right. By
breaking your program into many small tasks, the Threading Building Blocks sched-
uler assigns tasks to threads in a way that spreads out the work evenly.

Threading Building Blocks emphasizes scalable, data-parallel programming. Break-
ing up a program into separate functional blocks and assigning a separate thread to
each block often doesn’t scale well because the number of functional blocks is
typically fixed. In contrast, the flexible data-parallel programming technique in
Threading Building Blocks enables multiple threads to work on different parts of a
collection. Data-parallel programming scales well to larger numbers of processors
because it divides the collection (continually and recursively, if necessary) into
smaller pieces. This scalability protects you from having to rewrite an application
every time a new chip with more processor cores ships.

In addition to using the right number of threads, it is important to distribute work
evenly across those threads. As long as you break your program into enough small
tasks, the scheduler usually does a good job of assigning tasks to threads in order to
balance the load on different processors.

Example Program for Fibonacci Numbers | 137

Portability
Using the Threading Building Blocks interfaces makes your program portable. All
standard-conforming C++ compilers should work with Threading Building Blocks.
Intel released the first version of the library with Windows, Linux, and Mac OS X
support on 32-bit x86 processors and 64-bit Itanium processors, and it worked with
Intel, Microsoft, and GNU compilers. Intel has since added 64-bit support for Intel 64
and AMD64. More processor and operating-system support is becoming available.
Porting to a new platform requires only a C++ compiler and a little additional work
to implement key locks efficiently.

Initializing the Library Is Your Job
Each thread must initialize the Threading Building Blocks library using tbb::task_
scheduler_init before using an algorithm template or the task scheduler. If you use
the default task scheduler for the whole program and just define tasks using algo-
rithm templates as shown in the earlier chapters of this book, it is enough to define
tbb::task_scheduler_init once, in your main program. However, if you create your
own tasks as shown in this chapter, each task has to initialize the scheduler as well.

Refer to the section “Initializing and Terminating the Library” in Chapter 3 for more
information on the proper initialization and optional parameters to tbb::task_
scheduler_init.

The section “Mixing with Other Threading Packages” in Chapter 10 explains how to
construct task_scheduler_init objects if your program creates threads itself using
another interface.

Example Program for Fibonacci Numbers
This section uses the computation of the Fibonacci numbers as an example to illus-
trate the direct use of the Intel Threading Building Blocks task scheduler. A Fibonacci
number in the Fibonacci series F is defined as the sum of the previous two terms:

Therefore, the seventh Fibonacci number of the series beginning with F0 = 0, F1 = 1
is 8 (F6 = 8). This example uses an inefficient method to compute Fibonacci num-
bers, but it demonstrates the basics of a task library using a simple recursive pattern.

To get scalable speedup out of task-based programming, you need to specify a lot of
tasks. This is typically done in Threading Building Blocks with a recursive task pattern.

Example 9-1 shows a traditional, serial solution using recursion.

Fn Fn 1– Fn 2–+=

138 | Chapter 9: Task Scheduler

The top-level code for the parallel task-based version is in Example 9-2.

This code uses a task of type FibTask to do the real work. It involves the following
distinct steps:

1. Allocate space for the task. Tasks must be allocated by special methods so that
the space can be efficiently recycled when the task completes. Allocation is done
by a special overloaded new and task::allocate_root method. The _root suffix in
the name denotes the fact that the task created has no parent. It is the root of a
task tree.

2. Construct the task with the constructor FibTask(n,&sum), invoked by new. When
the task is run in step 3, it computes the nth Fibonacci number and stores it into
*sum.

3. Run the task to completion with task::spawn_root_and_wait.

The real work is done inside struct FibTask. Example 9-3 shows its definition.

Efficient Fibonacci Number Calculation
Fibonacci number computation is a classic computer science example for showing
recursion, but it is also a classic example in which a simple algorithm is inefficient. A
more efficient method would be to compute:

and take the upper-left element. The exponentiation over the matrix can be done
quickly via repeated squaring. But we’ll go ahead in this section and use the classic
recursion example for teaching purposes.

Example 9-1. Fibonacci serial version

long SerialFib(long n) {
 if(n<2)
 return n;
 else
 return SerialFib(n-1)+SerialFib(n-2);
}

Example 9-2. Fibonacci recursive parallel version

long ParallelFib(long n) {
 long sum;
 FibTask& a = *new(task::allocate_root()) FibTask(n,&sum);
 task::spawn_root_and_wait(a);
 return sum;
}

1 1
1 0

n 1–

Example Program for Fibonacci Numbers | 139

This is a relatively large piece of code, compared to SerialFib, because it expresses
parallelism without the help of any extensions to standard C++.

Like all tasks scheduled by Threading Building Blocks, FibTask is derived from the
class task, which is defined by Threading Building Blocks. The fields n and sum hold
the input value and the pointer to the output, respectively. These are copies of the
arguments passed to the constructor for FibTask.

The execute method does the actual computation. Every task must provide a defini-
tion of execute that overrides the pure virtual method task::execute. The definition
should do the work of the task and return either NULL or a pointer to the next task to
run. In this simple example, it returns NULL.

The method FibTask::execute() does the following:

1. Checks whether n is so small that serial execution would be faster. Finding the
right value of CutOff requires some experimentation. A value of at least 16 works
well in practice for getting the greatest possible speedup out of this example.
Resorting to a sequential algorithm when the problem size becomes small is
characteristic of most divide-and-conquer patterns for parallelism. Finding the
point at which to switch requires experimentation, so be sure to write your code
in a way that allows you to experiment.

Example 9-3. Fibonacci task

const int CutOff = 16;

class FibTask: public task {
public:
 const long n;
 long* const sum;
 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() { // Overrides virtual function task::execute
 if(n < CutOff) {
 *sum = SerialFib(n);
 } else {
 long x, y;
 FibTask& a = *new(allocate_child()) FibTask(n-1,&x);
 FibTask& b = *new(allocate_child()) FibTask(n-2,&y);
 // Set ref_count to "two children plus one for the wait".
 set_ref_count(3);
 // Start b running.
 spawn(b);
 // Start a running and wait for all children (a and b).
 spawn_and_wait_for_all(a);
 // Do the sum
 *sum = x+y;
 }
 return NULL;
 }
};

140 | Chapter 9: Task Scheduler

2. If the else branch is taken, the code creates and runs two child tasks that com-
pute the (n-1)th and (n-2)th Fibonacci numbers. Here, the inherited method
allocate_child() is used to allocate space for the task. Remember that the top-
level routine ParallelFib used allocate_root() to allocate space for a task. The
difference is that here the task is creating child tasks. This relationship is indi-
cated by the choice of allocation method.

3. Calls set_ref_count(3). The number 3 represents the two children and an addi-
tional implicit reference that is required by the method spawn_and_wait_for_all.
Make sure to call set_reference_count(3) before spawning any children. Failure
to do so results in undefined behavior. The debug version of the library usually
detects and reports this type of error.

4. Spawns two child tasks. Spawning a task indicates to the scheduler that it can
run the task whenever it chooses, possibly in parallel with executing other tasks.
The first spawning, by the spawn method, returns immediately without waiting
for the child task to start executing. The second spawning, by the method spawn_
and_wait_for_all, causes the parent to wait until all currently allocated child
tasks are finished.

5. After the two child tasks complete, the parent computes x+y and stores it in *sum.

At first glance, the parallelism might appear to be limited because the task creates
only two child tasks. The trick here is recursive parallelism. The two child tasks each
create two child tasks, and so on, until n<Cutoff. This chain reaction creates a lot of
potential parallelism. The advantage of the task scheduler is that it turns this poten-
tial parallelism into real parallelism in a very efficient way, because it chooses tasks
to run that keep physical threads busy with relatively little context switching.

Task Scheduling Overview
The library provides a task scheduler, which is the engine that drives the algorithm
templates. You may also call it directly. This is worth considering if your application
meets the criteria described earlier that make the default task scheduler inefficient.

Tasks are logical units of computation. The scheduler maps these onto physical
threads. The mapping is non-preemptive. Each thread has an execute() method.
Once a thread starts running execute(), the task is bound to that thread until
execute() returns. During that time, the thread services other tasks only when it
waits on child tasks, at which time it may run the child tasks or—if there are no
pending child tasks—service tasks created by other threads.

The task scheduler is intended for parallelizing computationally intensive work.
Since task objects are not scheduled preemptively, they should not make calls that
might block for long periods because, meanwhile, the blocked thread (and its
associated processor) are precluded from servicing other tasks.

Task Scheduling Overview | 141

There is no guarantee that potentially parallel tasks actually execute in
parallel, because the scheduler adjusts actual parallelism to fit avail-
able worker threads. For example, when given a single worker thread,
the scheduler obviously cannot create parallelism. Furthermore, it is
unsafe to use tasks in a producer/consumer relationship if the con-
sumer needs to do some initialization or other work before the pro-
ducer task completes, because there is no guarantee that the consumer
will do this work (or even that it will run at all) while the producer is
running. The pipeline algorithm in Threading Building Blocks, for
instance, is designed not to require tasks to run in parallel.

Potential parallelism is typically generated by a split/join pattern. Two basic patterns of
split/join are supported. The most efficient is continuation passing, in which the pro-
grammer constructs an explicit “continuation” task rather than leaving it to the default
scheduler to determine the next task. The steps are shown in Figure 9-1, and the run-
ning tasks (that is, the tasks whose execute methods are active) at each step are shaded.

In step A, the parent is created. In step B, the parent task spawns off child tasks and
specifies a continuation task to be executed when the children complete. The contin-
uation inherits the parent’s ancestor. The parent task then exits; in other words, it
does not block on its children. In step C, the children run. In step D, after the chil-
dren (or their continuations) finish, the continuation task starts running.

Explicit continuation passing is efficient because it decouples the thread’s stack from
the tasks. However, it is more difficult to program. A second pattern is blocking style,
which uses implicit continuations. It is sometimes less efficient in performance, but
more convenient to program. In this pattern, the parent task blocks until its children
complete, as shown in step C of Figure 9-2.

The convenience comes with a price. Because the parent blocks, its thread’s stack
cannot be popped yet. The thread must be careful about what work it takes on
because continual stealing and blocking could cause the stack to grow without
bound. To solve this problem, the scheduler constrains a blocked thread such that it
never executes a task that is less deep than its deepest blocked task. This constraint
may impact performance because it limits available parallelism and tends to cause
threads to select smaller (deeper) subtrees than they would otherwise choose.

Figure 9-1. Continuation-passing style

Parent Parent

Child

Continuation

Child Child

Continuation

Child

Continuation

A B C D

142 | Chapter 9: Task Scheduler

How Task Scheduling Works
The scheduler evaluates a task graph. The graph is a directed graph in which nodes
are tasks, and each points to its parent, which is either NULL for the root task or
another task that is waiting for it to complete. The task::parent() method gives you
read-only access to the parent pointer.

Each task has a refcount that counts the number of tasks that have it as a parent.
Each task also has a depth, which is usually one more than the depth of its parent.
Figure 9-3 shows a task graph for the Fibonacci example shown earlier in Examples
9-2 and 9-3.

In the figure, the tasks with nonzero reference counts (A, B, and C) wait for their
child tasks. The leaf tasks are running or are ready to run.

The scheduler runs tasks in a way that tends to minimize both memory demands and
cross-thread communication. To achieve this, a balance must be reached between
depth-first and breadth-first execution. Assuming that the tree is finite, depth-first is
best for sequential execution for the following reasons:

Strike when the cache is hot

The deepest tasks are the most recently created tasks and, therefore, the hottest
in the cache. Also, if they can complete, task C can continue executing; although
it’s not the hottest in the cache, it’s still warmer than the older tasks above it.

Minimize space

Executing a shallow task in breadth-first fashion unfolds the tree under it and
makes all those tasks take up space while they wait for threads. This creates a
potentially exponential growth of nodes that coexist simultaneously. In con-
trast, depth-first execution creates the same number of nodes, but only a linear
number have to exist at the same time because it stacks the other ready tasks (E,
F, and G in the figure).

Figure 9-2. Blocking style

Parent Parent

Child Child

A B C D

Parent

Child Child

Parent

How Task Scheduling Works | 143

Though breadth-first execution has a severe problem with memory consumption, it
does maximize parallelism if you have an infinite number of physical threads.
Because physical threads are limited, it is better to use only enough breadth-first
execution to keep the available processors busy. The scheduler implements breadth-
first execution as follows:

• Each thread has its own ready pool, which is an array of lists of tasks.

• A task goes into each pool when it is deemed ready to run.

• Each thread steals tasks from other pools when necessary.

Figure 9-4 shows a snapshot of a pool that corresponds to the task graph in
Figure 9-3.

The pool comprises an array of lists. The array is subscripted by the task’s depth, and
the lists are treated as stacks. Tasks are pushed onto the left side of a list and are
popped from the left side. There are two intertwined actions on each ready pool:
putting tasks into the pool, and getting tasks out of the pools to run them.

Figure 9-3. Fibonacci task graph

task A

depth = 0

refcount = 2

depth = 1

refcount = 0

task Gtask B

depth = 1

refcount = 2

task C

depth = 2

refcount = 2

depth = 2

refcount = 0

task F

task D

depth = 3

refcount = 0

depth = 3

refcount = 0

task E

144 | Chapter 9: Task Scheduler

The rule for getting tasks out is that when a thread participates in task graph evalua-
tion and needs a new task to run, it gets the task by the first of the following rules
that applies:

• Use the task returned by the execute method for the previous task. This rule
does not apply if execute returns NULL.

• Take the task at the front of the deepest list of its own pool. This rule does not
apply if all lists in its pool are empty.

• Steal from the front of the shallowest list of another randomly chosen pool. If the
chosen pool is empty, the thread tries this rule again until it succeeds.

Getting a task is always automatic; it just happens as part of task graph evaluation.
Putting a task can be explicit or automatic.

When a task is put into a ready pool, it always goes into the pool of the putting
thread. Stealing from another pool is allowed; donating to another pool is not.

There are three ways that a task can be put into a ready pool:

• The task is explicitly spawned—for example, by the spawn method.

• A task has been marked for reexecution by the task::recycle_to_reexecute
method.

• The task’s reference count becomes 0 after being implicitly decremented when a
child task completes. This does not always happen when the last child task com-
pletes because sometimes a fictitious guard reference is added, in scenarios
where automatic spawning of a task is not wanted.

To summarize, the task scheduler’s fundamental strategy is breadth-first theft and
depth-first work. The breadth-first theft rule raises parallelism sufficiently to keep
threads busy. The depth-first work rule keeps each thread operating efficiently once
it has sufficient work to do.

Figure 9-4. A thread’s ready pool for the Fibonacci task graph in Figure 9-3

Shallowest

Deepest

task G

task F

task D task E

Recommended Task Recurrence Patterns | 145

Recommended Task Recurrence Patterns
This section catalogues three recommended task recurrence patterns. In each pat-
tern, the class T is assumed to be derived from the class task. Subtasks are labeled t1,
t2, ... tk. The subscripts indicate the order in which the subtasks execute if no paral-
lelism is available. If parallelism is available, the subtask execution order is nondeter-
ministic, except that t1 is guaranteed to be executed by the spawning thread.

Blocking Style with Children
Example 9-4 shows the recommended style for a recursive task of type T where each
level spawns k children.

Child construction and spawning may be reordered if convenient, as long as a task is
constructed before it is spawned.

The key points of the pattern are:

• The call to set_ref_count uses k+1 as its argument. The extra 1 is critical.

• Each task is allocated by allocate_child.

Continuation-Passing Style with Children
There are two recommended styles. They differ in terms of whether it is more conve-
nient to recycle the parent as the continuation or as a child. The decision should be
based on whether the continuation or the child acts more like the parent.

Recycling the parent as the continuation

This style is useful when the continuation needs to inherit much of the parent’s state
and the child does not need the state. The continuation must have the same type as
the parent. Example 9-5 illustrates the model.

Example 9-4. Blocking style with children

task* T::execute() {
 if(not recursing any further) {
 ...
 } else {
 set_ref_count(k+1);
 task& tk = new(allocate_child()) T(...); tk.spawn();
 task& tk-1= new(allocate_child()) T(...); tk-1.spawn();
 ...
 task& t1 = new(allocate_child()) T(...); t1.spawn_and_wait(t1);
 }
 return NULL;
}

146 | Chapter 9: Task Scheduler

Here are the key points of the pattern:

• The call to set_ref_count uses k as its argument. There is no extra 1, as there is
in blocking style.

• Each child task is allocated by allocate_child.

• The continuation is recycled from the parent, and hence gets the parent’s state
without doing copy operations.

Recycling the parent as a child

This style is useful when the child inherits much of its state from a parent and the con-
tinuation does not need the parent’s state. The child must have the parent’s type. In
Example 9-6, C is the type of the continuation, and it must derive from the class task.
If C does nothing but wait for all children to complete, C can be the class empty_task.

Example 9-5. Recycling parent as continuation

task* T::execute() {
 if(not recursing any further) {
 ...
 return NULL;
 } else {
 set_ref_count(k);
 recycle_as_continuation();
 task& tk = new(allocate_child()) T(...); tk.spawn();
 task& tk-1 = new(allocate_child()) T(...); tk-1.spawn();
 ...
 task& t1 = new(c.allocate_child()) T(...); t1.spawn();
 return &t1;
 }
}

Example 9-6. Recycling parent as a child

task* T::execute() {
 if(not recursing any further) {
 ...
 return NULL;
 } else {
 set_ref_count(k);
 // Construct continuation
 C& c = allocate_continuation();
 // Recycle self as first child
 task& tk = new(c.allocate_child()) T(...); tk.spawn();
 task& tk-1 = new(c.allocate_child()) T(...); tk-1.spawn();
 ...
 task& t2 = new(c.allocate_child()) T(...); t2.spawn();
 // task t1 is our recycled self.
 recycle_as_child_of(c);
 ... update fields of *this to state subproblem to be solved by t1
 return this;
 }
}

Making Best Use of the Scheduler | 147

Here are the key points of the pattern:

• The call to set_ref_count uses k as its argument. There is no extra 1, as there is
in blocking style.

• Each child task except for t1 is allocated by c.allocate_child. It is critical to use
c.allocate_child and not (*this).allocate_child; otherwise, the task graph will
be wrong.

• Task t1 is recycled from the parent, and hence gets the parent’s state without
performing copy operations. Do not forget to update the state to represent a
child subproblem; otherwise, infinite recursion will occur.

Making Best Use of the Scheduler
This section explains useful programming techniques for scheduling tasks.

Recursive Chain Reaction
The scheduler works best with tree-structured task graphs, because that is where the
strategy of breadth-first theft and depth-first work applies very well. Also, tree-
structured task graphs allow fast creation of many tasks. For example, if a master
task tries to create n children directly, it will take O(n) steps. But with tree-structured
forking, it takes only O(log n) steps because some of the tasks created can go on to
create subtasks.

Often, domains are not obviously tree-structured, but you can easily map them to
trees. For example, parallel_for works over an iteration space such as a sequence of
integers. The template function parallel_for uses that definition to recursively map
the iteration space onto a binary tree.

Continuation Passing
The spawn_and_wait_for_all method is a convenient way to wait for child tasks, but
it incurs some inefficiency if a thread becomes idle. The idle thread attempts to keep
busy by stealing tasks from other threads. The scheduler limits possible victim tasks
to those deeper than the waiting task. This limit modifies the policy that the
shallowest task should be chosen. The limit restrains memory demands in worst-case
scenarios.

A way around the constraint is for the parent not to wait, but simply to spawn both
children and return. The children are allocated not as children of the parent, but as
children of the parent’s continuation task, which is a task that runs when both chil-
dren complete. Example 9-7 shows the continuation-passing variant of FibTask, with
the addition of FibContinuation c.

148 | Chapter 9: Task Scheduler

The rest of this section explains the important differences between the original ver-
sion and the continuation version here.

The big difference is that in the original version, x and y are local variables in the
method execute. In the continuation-passing version, they cannot be local variables
because the parent returns before its children complete. Instead, they are fields of the
continuation task FibContinuation.

In addition, the allocation logic is changed. The continuation is allocated with
allocate_continuation. It is similar to allocate_child, except that the depth of the
continuation is the same as the parent, not one deeper, as it would be for a child.
Also, it forwards the parent of this to c and sets the parent attribute of this to NULL.
Figure 9-5 summarizes the effects.

One property of the transformation is that it does not change the reference count of
the parent, and thus avoids interfering with reference-counting logic.

Example 9-7. Continuation-passing Fibonacci

struct FibContinuation: public task {
 long* const sum;
 long x, y;
 FibContinuation(long* sum_) : sum(sum_) {}
 task* execute() {
 *sum = x+y;
 return NULL;
 }
};

struct FibTask: public task {
 const long n;
 long* const sum;
 FibTask(long n_, long* sum_) :
 n(n_), sum(sum_)
 {}
 task* execute() {
 if(n<CutOff) {
 *sum = SerialFib(n);
 return NULL;
 } else {
 FibContinuation& c =
 *new(allocate_continuation()) FibContinuation(sum);
 FibTask& a = *new(c.allocate_child()) FibTask(n-2,&c.x);
 FibTask& b = *new(c.allocate_child()) FibTask(n-1,&c.y);
 // Set ref_count to "two children".
 c.set_ref_count(2);
 c.spawn(b);
 c.spawn(a);
 return NULL;
 }
 }
};

Making Best Use of the Scheduler | 149

The reference count is set to 2, the number of children. In the original version, it was
set to 3 because spawn_and_wait_for_all required the augmented count. Further-
more, the code sets the reference count of the continuation instead of the parent
because it is the execution of the continuation that waits for the children.

The pointer sum is passed to the continuation by the constructor because it is now
FibContinuation that stores results into *sum. The children are still allocated with
allocate_child, but notice that now they are allocated as children of the continua-
tion c, not the parent. This is done so that c, and not this, becomes the dependent of
the children; that is, c is automatically spawned when both children complete. If you
accidentally used this.allocate_child(), the parent task would run again after both
children completed.

If you remember how the original top-level code, ParallelFib, was written, you
might be worried now that continuation-passing style breaks the code—because now
the root FibTask completes before the children are done and the top-level code uses
spawn_root_and_wait to wait for the root FibTask. This is not a problem because
spawn_root_and_wait is designed to work correctly with continuation-passing style.
An invocation spawn_root_and_wait(x) does not actually wait for x to complete.
Instead, it constructs a dummy dependent of x and waits for the dependent’s
reference count to be decremented. Because allocate_continuation forwards this
dummy dependent to the continuation, the dummy dependent’s reference count is
not decremented until the continuation completes.

Scheduler bypass

Scheduler bypass is an optimization in which you directly specify the next task to run
instead of letting the scheduler pick. Continuation-passing style often opens up an
opportunity for scheduler bypass. For instance, in the continuation-passing example,
it turns out that once FibTask::execute() returns, by the getting rules, task a is
always the next task taken from the ready pool. Putting the task into the ready pool
and then getting it back out incurs some overhead that can be avoided. To avoid the
overhead, make sure that execute does not spawn the task but instead returns a
pointer to it as the result. Example 9-8 shows the necessary changes.

Figure 9-5. Action of allocate_child

depth = d

refcount

this

(parent)

depth = d

refcount

this

null

depth = d

refcount = 0

c

(parent)

150 | Chapter 9: Task Scheduler

Recycling

Not only can you bypass the scheduler, you might be able to bypass task allocation
and deallocation as well. This opportunity frequently arises for recursive tasks that
do scheduler bypass because the child is initiated immediately upon return just as
the parent completes. Example 9-9 shows the changes required to implement
recycling in the scheduler bypass example.

Example 9-8. Scheduler bypass

struct FibTask: public task {
 ...
 task* execute() {
 if(n<CutOff) {
 *sum = SerialFib(n);
 return NULL;
 } else {
 FibContinuation& c =
 *new(allocate_continuation()) FibContinuation(sum);
 FibTask& a = *new(c.allocate_child()) FibTask(n-2,&c.x);
 FibTask& b = *new(c.allocate_child()) FibTask(n-1,&c.y);
 // Set ref_count to "two children".
 set_ref_count(2);
 c.spawn(b);
// was: c.spawn(a); // the return of &a will spawn a.
// was: return NULL;
 return &a;
 }
 }
};

Example 9-9. Scheduler bypass plus task alloc/dealloc bypass

struct FibTask: public task {
// was: const long n;
 long n;
// was: long* const sum;
 long* sum;
 ...
 task* execute() {
 if(n<CutOff) {
 *sum = SerialFib(n);
 return NULL;
 } else {
 FibContinuation& c =
 *new(allocate_continuation()) FibContinuation(sum);
 FibTask& a = *new(c.allocate_child()) FibTask(n-2,&c.x);
 FibTask& b = *new(c.allocate_child()) FibTask(n-1,&c.y);
 recycle_as_child_of(c);
 n -= 2;
 sum = &c.x;
 // Set ref_count to "two children".
 set_ref_count(2);

Making Best Use of the Scheduler | 151

The child that was previously called a is now the recycled this. The call recycle_as_
child_of(c) has several effects:

• It marks this not to be automatically destroyed when execute returns.

• It sets the depth of this to be one more than the depth of c.

• It sets the dependent of this to be c. To prevent reference-counting problems,
recycle_as_child_of has a prerequisite that this must have a NULL dependent.
This is the case after allocate_continuation occurs.

When recycling, ensure that the original task’s fields are not used after the task might
start running. The example uses the scheduler bypass trick to ensure this. You can
spawn the recycled task instead, as long as none of its fields is used after the
spawning. This restriction applies even to const fields, because after the task is
spawned, it might run and be destroyed before the parent progresses any further.

A similar method, task::recycle_as_continuation(), recycles a task as a continua-
tion instead of a child.

Empty tasks

You might need a task that does not do anything but wait for its children to com-
plete. The header file task.h defines class empty_task for this purpose. Example 9-10
shows its definition.

A good example of empty_task in action shown in Example 9-11. It invokes
parallel_for in the method start_for::execute(). The code there uses
continuation-passing style. It creates two child tasks and uses an empty_task as the
continuation when the child tasks complete. The top-level routine parallel_for
waits on the root.

 c.spawn(b);
// was: return &a;
 return this;
 }
 }
};

Example 9-10. empty_task

// Task that does nothing. Useful for synchronization.
class empty_task: public task {
 /*override*/ task* execute() {
 return NULL;
 }
};

Example 9-9. Scheduler bypass plus task alloc/dealloc bypass (continued)

152 | Chapter 9: Task Scheduler

Lazy copying

It can be useful to copy a data structure only when another thread steals a task.
Example 9-12 uses the start_reduce::execute() method to implement parallel_
reduce. The code forks the loop body object you provide only when the thread runs a
stolen task. The forking permits the thief to run locally afterward until it is done and
joins its result to the original thread’s result. Because the forks and joins incur some
overhead, they are worth doing only when stealing occurs.

Example 9-11. empty_task usage from parallel_for

template<typename Range, typename Body>
task* start_for<Range,Body>::execute() {
 if(!my_range.is_divisible()) {
 my_body(my_range);
 return NULL;
 } else {
 empty_task& c = *new(allocate_continuation()) empty_task;
 recycle_as_child_of(c);
 c.set_ref_count(2);
 start_for& b =
 *new(c.allocate_child()) start_for(Range(my_range,split()),my_body);
 c.spawn(b);
 return this;
 }
}

Example 9-12. parallel_reduce start_reduce::execute() method

template<typename Range, typename Body>
 task* start_reduce<Range,Body>::execute() {
 Body* body = my_body;
 if(is_stolen_task()) {
 finish_reduce<Body>* p = static_cast<finish_type*>(parent());
 body = new(p->zombie_space.begin()) Body(*body,split());
 my_body = p->right_zombie = body;
 }
 task* next_task = NULL;
 if(!my_range.is_divisible())
 (*my_body)(my_range);
 else {
 finish_reduce<Body>& c =
 *new(allocate_continuation()) finish_type(body);
 recycle_as_child_of(c);
 c.set_ref_count(2);
 start_reduce& b =
 *new(c.allocate_child()) start_reduce(Range(my_range,split()), body);
 c.spawn(b);
 next_task = this;
 }
 return next_task;
 }
}

task_scheduler_init Class | 153

The method task::is_stolen_task provides a way to detect stealing. It is called on a
running task, typically by the task itself. Informally speaking, it returns true if the
task is stolen. Formally, it returns true if the thread that owns the task is not the
thread that owns the thread’s dependent. For the usual fork-join task patterns, the
informal and formal definitions have the same effect because usually when a task is
created, it is created by the thread that owns its dependent. For example, the depen-
dent is typically the parent or a continuation created by the parent. The exception to
this rule can occur if the method allocate_additional_child_of(t) is used. A task
can use this method to create a child of another task t, even if t already has running
children.

Example 9-13 shows the method allocate_additional_child_of used by a running
child task to create new siblings. In this case, task::is_stolen_task will return true
unless the child is stolen by the thread that is running t. The name task::might_be_
running_on_different_thread_from_dependent() would be more accurate but tedious.

Task Scheduler Interfaces
The scheduler employs task stealing. Each thread keeps a ready pool of tasks that are
ready to run. The ready pool is structured as an array of lists of tasks, where the list
for the ith element corresponds to tasks at level i in the tree. The lists are manipu-
lated in last-in, first-out order. A task at level i spawns child tasks at level i+1. A
thread pulls tasks from the deepest nonempty list in the array. If there are no non-
empty lists, the thread randomly steals a task from the shallowest list of another
thread. A thread also implicitly steals if it completes the last child, in which case it
starts executing the task that was waiting on the children.

The task scheduler tends to strike a good balance between locality of reference, space
efficiency, and parallelism. The scheduling technique is similar to that used by Cilk,
a research project that implements efficient, unfair scheduling (http://supertech.csail.
mit.edu/cilk).

task_scheduler_init Class Class that represents thread’s interest in task scheduling services.

#include "tbb/task_soinit;

Description

A task_scheduler_init is either active or inactive. Each thread that uses a task should have
one active task_scheduler_init object that stays active over the duration that the thread
uses task objects. A thread may have more than one active task_scheduler_init at any
given moment.

Example 9-13. Creating new siblings with allocate_additional_child_of

block_type& t =
 *new(allocate_additional_child_of(my_barrier)) block_type(my_body);

http://supertech.csail.mit.edu/cilk
http://supertech.csail.mit.edu/cilk

154 | Chapter 9: Task Scheduler

The default constructor for a task_scheduler_init activates it, and the destructor deacti-
vates it. To defer initialization, pass the value task_scheduler_init::deferred to the
constructor. Such a task_scheduler_init may be initialized later by calling the initialize
method. Destruction of an initialized task_scheduler_init implicitly deactivates it. To
deactivate it earlier, call the terminate method.

An optional parameter to the constructor and initialize method allows you to specify the
number of threads to be used for task execution. This parameter is useful for scaling
studies during development, but should not be set for production use.

To minimize time overhead, it is best to have a thread create a single task_scheduler_init
object whose activation spans all uses of the library’s task scheduler. A task_scheduler_
init is not assignable or copy-constructible.

The template algorithms implicitly use the task class. Hence, creating
a task_scheduler_init object is a prerequisite to using the template
algorithms. The debug version of the library will report a failure to
create the task_scheduler_init.

Example
#include "tbb/task_scheduler_init"

int main() {
 task_scheduler_init init;
 ... use task or template algorithms here...
 return 0;
}
Members
namespace tbb {

 class task_scheduler_init {
 public:
 static const int automatic = implementation-defined;
 static const int deferred = implementation-defined;
 task_scheduler_init(int number_of_threads=automatic);
 ~task_scheduler_init();
 void initialize(int number_of_threads=automatic);
 void terminate();
 };
} // namespace tbb

task_scheduler_init(int number_of_threads=automatic)
Requirements: number_of_threads object must be one of the values in Table 9-2.

Effects: if number_of_threads==task_scheduler_init::deferred, nothing happens, and
the task_scheduler_init object remains inactive. Otherwise, the task_scheduler_init
object is activated as follows. If the thread has no other active task_scheduler_init
objects, the thread allocates internal thread-specific resources required for scheduling
task objects. If there are no threads with active task_scheduler_init objects yet,
internal worker threads are created as described in Table 9-2. These workers sleep
until the task scheduler needs them.

task Class | 155

~task_scheduler_init()
Effects: if the task_scheduler_init object is inactive, nothing happens. Otherwise, the
task_scheduler_init object is deactivated as follows. If the thread has no other active
task_scheduler_init objects, the thread deallocates the internal thread-specific
resources required for scheduling task objects. If no existing thread has any active
task_scheduler_init objects, the internal worker threads are terminated.

void initialize(int number_of_threads=automatic)
Requirements: the task_scheduler_init object must be inactive.

Effects: similar to the constructor.

void terminate()
Requirements: the task_scheduler_init object must be active.

Effects: deactivates the task_scheduler_init object without destroying it. The descrip-
tion of the destructor specifies what deactivation entails.

task Class Base class for tasks.

#include "tbb/task.h"

class task;

Description

This class is the base class for tasks. Programmers are expected to derive classes from it and
override the virtual method task* task::execute().

Each instance of task has associated attributes, which are described in Table 9-3. Although
they are not directly visible, they must be understood to fully grasp how task objects are used.

Always allocate memory for task objects using the special overloaded
new operators provided by the library. Otherwise, results are unde-
fined. Destruction of a task is normally implicit.

Table 9-2. Value for number_of_threads

number_of_threads Semantics

task_scheduler_init::automatic Let library determine number_of_threads based on hardware
configuration.

task_scheduler_init::deferred Defer activation actions.

Positive integer If no worker threads exist yet, create number_of_threads-1
worker threads. If worker threads exist, do not change the number of
worker threads.

Table 9-3. Task attributes

Attribute Description

owner The worker thread that is currently in charge of the task.

parent Either NULL or the parent/continuation task that allocated this task.

156 | Chapter 9: Task Scheduler

The copy constructor and assignment operators for task are not acces-
sible. This prevents the accidental copying of a task, which would be
ill-defined and would corrupt internal data structures.

Notation

Some member descriptions illustrate the effects of running the methods by diagrams such
as Figure 9-6.

Conventions in the diagram, such as Figure 9-6, are as follows:

• Each task’s state is shown as a box divided into parent, depth, and refcount subboxes.

• The arrow denotes the transition from the old state to the new state. Often, two
objects take on a new state: the object that invokes the method (this), and the object
returned by the method (the result).

• Gray denotes a state that is ignored. Sometimes an ignored state is simply left blank.

• Black denotes a state that is read.

• Bold black with a thick box outline denotes a state that is written.

Members

In the following description, the types proxy1...proxy4 are internal types. Methods
returning such types should be used only in conjunction with the special overloaded new
operators.

namespace tbb {
 class task {
 protected:
 task();

 public:
 virtual ~task() {}

depth The depth of the task in the task tree.

refcount The number of tasks that have this as their parent. Increments and decrements of refcount must
always be atomic.

Figure 9-6. Example effect diagram

Table 9-3. Task attributes (continued)

Attribute Description

depth

refcount

this

depth

refcount

this

null

depth

result

parent parent

0

task Class | 157

 virtual task* execute() = 0;

 // task allocation and destruction
 static proxy1 allocate_root();
 proxy2 allocate_continuation();
 proxy3 allocate_child();
 proxy4 allocate_additional_child_of(task& t);

 // Explicit task destruction
 void destroy(task& victim);

 // Recycling
 void recycle_as_continuation();
 void recycle_as_child_of(task& parent);
 void recycle_to_reexecute();

 // task depth
 typedef implementation-defined-signed-integral-type depth_type;
 depth_type depth() const;
 void set_depth(depth_type new_depth);
 void add_to_depth(int delta);

 // Synchronization
 void set_ref_count(int count);
 void wait_for_all();
 void spawn(task& child);
 void spawn(task_list& list);
 void spawn_and_wait_for_all(task& child);
 void spawn_and_wait_for_all(task_list& list);
 static void spawn_root_and_wait(task& root);
 static void spawn_root_and_wait(task_list& root);

 // task context
 static task& self();
 task* parent() const;
 bool is_stolen_task() const;

 // task debugging
 enum state_type {
 executing,
 reexecute,
 ready,
 allocated,
 freed
 };
 int ref_count() const;
 state_type state() const;
 };
} // namespace tbb

void *operator new(size_t bytes, const proxy1& p);
void operator delete(void* task, const proxy1& p);
void *operator new(size_t bytes, const proxy2& p);
void operator delete(void* task, const proxy2& p);

158 | Chapter 9: Task Scheduler

void *operator new(size_t bytes, const proxy3& p);
void operator delete(void* task, const proxy3& p);
void *operator new(size_t bytes, proxy4& p);
void operator delete(void* task, proxy4& p);

Task derivation

task is an abstract base class. You must override the task::execute method. It should
perform the necessary actions for running the task and then return the next task to execute,
or return NULL if the scheduler should choose the next task to execute. Typically, if non-
NULL, the returned task is one of the children of this. Unless one of the recycle/reschedule
methods is called while the execute method is running, the this object will be implicitly
destroyed after execute returns.

The derived class should override the virtual destructor if necessary to release resources
allocated by the constructor.

Processing of execute()

When the scheduler decides that a thread should begin executing a task, it performs the
following steps:

1. It invokes execute() and waits for it to return.

2. If the task has not been marked for recycling by one of the recycle_∗ methods, it
checks the task’s parent. If the parent is non-NULL, it atomically decrements parent->
refcount, and if it becomes zero, it puts the parent into the ready pool.

3. It calls the task’s destructor.

4. It frees the memory used by the task.

5. If the code has reached this point, the task has been marked for recycling. If it was
marked by recycle_to_reexecute, the scheduler puts the task back into the ready pool.
Otherwise, the task was marked by recycle_as_child or recycle_as_continuation. (See
the section “Recycling tasks,” later in this chapter.)

Task allocation

Always allocate memory for task objects using one of the special overloaded new operators.
The allocation methods do not construct the task. Instead, they return a proxy object that
can be used as an argument to an overloaded version of new provided by the library.

In general, the allocation methods must be called before any of the tasks allocated are
spawned. The exception to this rule is allocate_additional_child_of(t), which can be
called even if task t is already running. The proxy types are defined by the implementa-
tion. Because these methods are used idiomatically, the headings in the subsection show
the idiom, not the declaration. The argument this is typically implicit, but it is shown
explicitly in the headings to distinguish instance methods from static methods.

new(task::allocate_root()) T
Effects: allocates a task of type T with a depth that is one greater than the depth of the
innermost task currently being executed by the current native thread. Figure 9-7
summarizes the state transition.

Use the spawn_root_and_wait method to execute the task.

task Class | 159

new(this. allocate_continuation()) T
Effects: allocates and constructs a task of type T at the same depth as this, and trans-
fers the parent from this to the new task. No reference counts change. Figure 9-8
summarizes the state transition.

new(this. allocate_child()) T
Effects: allocates a task with a depth that is one greater than this, with this as its
parent. Figure 9-9 summarizes the state transition.

If you are using explicit continuation passing, call the allocation method from the
continuation, not the parent, so that the parent member is set correctly. The task this
must be owned by the current thread.

If the number of tasks is not a small fixed number, consider building a task_list of the
children first and spawning them with a single call to task::spawn. If a task must

Figure 9-7. Effect of task::allocate_root()

Figure 9-8. Effect of task::allocate_continuation()

Figure 9-9. Effect of task::allocate_child()

depth

result

null

0

depth

refcount

this

depth

refcount

this

null

depth

result

parent parent

0

depth

refcount

this

depth

refcount

this

parent parent

depth+1

result

0

160 | Chapter 9: Task Scheduler

spawn some children before all are constructed, it should use task::allocate_
additional_child_of(*this) instead because that method atomically increments
refcount so that the additional child is properly counted. However, if using this proce-
dure, the task must protect against premature zeroing of refcount by using a blocking-
style task pattern (as was shown in Figure 9-2).

new(this.task::allocate_additional_child_of(parent))
Effects: allocates a task as a child of another task, parent. The result becomes a child of
parent, not this. The parent may be owned by another thread and may already be
running or have other children running. The task object this must be owned by the
current thread, and the result has the same owner as the current thread, not the
parent. Figure 9-10 summarizes the state transition.

Because parent may already have running children, the increment of parent.refcount is
thread-safe (unlike the other allocation methods, where the increment is not thread-safe).
When adding a child to a parent with other children running, it is up to the programmer to
ensure that the parent’s refcount does not prematurely reach 0 and trigger execution of the
parent before the child is added.

Explicit task destruction

Usually, a task is automatically destroyed by the scheduler after its execute method returns.
But sometimes task objects are used idiomatically (e.g., for reference counting) without
ever running execute. Such tasks should be disposed of with the destroy method.

void destroy(task& victim)
Requirements: the reference count of victim should be 0. This requirement is checked
in the debug version of the library. The calling thread must own this.

Effects: calls the victim object’s destructor and deallocates its memory. If this has a
non-NULL parent, the method atomically decrements parent->refcount. The parent is
not put into the ready pool if parent->refcount becomes 0. Figure 9-11 summarizes the
state transition.

Figure 9-10. Effect of task::allocate_additional_child_of(parent)

this

depth

refcount+1

parent

grandparent

depth+1

result

0

this

depth

refcount

parent

grandparent

(result.owner = this.owner)

task Class | 161

The implicit argument this is used internally, but it is not visibly affected. A task is
allowed to destroy itself, so this->destroy(*this) is permitted unless the task has been
spawned but has not yet completed its execute method.

Recycling tasks

It is often more efficient to recycle a task object than it is to reallocate one from scratch.
Often, the parent can be reused as the continuation of one of its children.

void recycle_as_continuation()
Requirements: must be called while execute is running.

The refcount for the recycled task should be set to the number of current children of
the continuation task.

The caller must guarantee that the task’s refcount does not become 0 until after
execute returns. If this is not possible, use the method recycle_as_safe_continuation()
instead, and set refcount to one greater than the number of current children of the
continuation task.

Effects: causes this not to be destroyed when its execute method returns.

void recycle_as_safe_continuation()
Requirements: must be called while execute is running.

The refcount for the recycled task should be set to one greater than the number of chil-
dren of the continuation task. The additional one represents the task to be recycled.

Effects: causes this not to be destroyed when its execute method returns.

This method avoids race conditions that can arise from using the method recycle_as_
continuation. The race occurs when all of the following take place:

• The task’s execute method recycles this as a continuation.

• The continuation creates children.

• All the children finish before the original task’s execute method completes so that
the continuation executes before the scheduler is done running this. The out-
come is a corrupted scheduler.

Figure 9-11. Effect of destroy(victim)

refcount–1

parent

thisrefcount

parent

this

depth

0

victim
(can be null)

refcount adjustment skipped if parent is null

162 | Chapter 9: Task Scheduler

The recycle_as_safe_continuation method avoids this race condition because the
additional one in the refcount prevents the continuation from executing until the task
completes.

void recycle_as_child_of(task& parent)
Requirements: must be called while execute is running.

Effects: causes this to become a child of parent and not be destroyed when execute
returns.

void recycle _to_reexecute()
Requirements: must be called while execute is running. execute must return a pointer
to another task.

Effects: causes this to be automatically spawned after execute returns.

Task depth

For general fork-join parallelism, there is no need to explicitly set the depth of a task.
However, in specialized task patterns that do not follow the fork-join pattern, it may be
useful to explicitly set or adjust the depth of a task.

depth_type
The type task::depth_type is an implementation-defined, signed integral type.

depth_type depth() const
Returns: current depth attribute for the task.

void set_depth(depth_type new_depth)
Requirements: the value new_depth must be non-negative.

Effects: sets the depth attribute of the task to new_depth. Figure 9-12 shows the effects.

void add_to_depth(int delta)
Requirements: the task must not be in the ready pool. The sum depth+delta must be
non-negative.

Effects: sets the depth attribute of the task to depth+delta. Figure 9-13 illustrates the
effect. The update is not atomic.

Figure 9-12. Effect of set_depth

Figure 9-13. Effect of add_to-depth(delta)

depth

refcount

this

new_depth

refcount

this

parent parent

depth

refcount

this

depth+delta

refcount

this

parent parent

task Class | 163

Synchronization

Spawning a task either causes the calling thread to invoke task.execute(), or causes task
to be put into the ready pool. Any thread participating in task scheduling may then acquire
the task and invoke task.execute(). The calls that spawn tasks come in two forms:

• Calls that spawn a single task.

• Calls that spawn multiple task objects specified by a task_list and then clear task_
list.

The calls distinguish between spawning root tasks and child tasks. A root task is one that is
created using the allocate_root method.

A task should not spawn any child until it has called set_ref_count to
indicate both the number of children and whether it intends to use one
of the wait_for_all methods.

void set_ref_count(int count)
Requirements: count must be greater than 0. If the intent is to subsequently spawn n
children and wait, count should be n+1. Otherwise, count should be n.

Effects: sets the refcount attribute to count.

void wait_for_all()
Requirements: refcount=n+1, where n is the number of children still running.

Effects: executes tasks in the ready pool until refcount is 1. Afterward, sets refcount to 0.
Figure 9-14 summarizes the state transitions.

void spawn(task& child)
Requirements: child.refcount must be greater than 0. The calling thread must own
this and child.

Effects: puts the task into the ready pool and immediately returns. The this task that
does the spawning must be owned by the caller thread. A task may spawn itself if it is
owned by the caller thread. If no convenient task owned by the current thread is
handy, use task::self().spawn(task) to spawn the child.

Figure 9-14. Effect of wait_for_all

this

depth

dependent

n+1

this

depth

dependent

0

n = previously spawned
children who are still running

164 | Chapter 9: Task Scheduler

The parent must call set_ref_count before spawning any child tasks because once the
child tasks are going, their completion will cause refcount to be decremented asyn-
chronously. The debug version of the library detects when a required call to set_ref_
count is not made, or is made too late.

void spawn (task_list& list)
Requirements: for each task in list, refcount must be greater than 0. The calling
thread must own the task invoking the method and each task in list. Each task in
list must have the same value for its depth attribute.

Effects: equivalent to executing spawn on each task in list and clearing list, but more
efficient. If list is empty, there is no effect.

void spawn_and_wait_for_all(task& child)
Requirements: any other children of this must already be spawned. The task child
must have a non-NULL parent attribute. There must be a chain of parent links from the
child to the calling task. Typically, this chain contains a single link. That is, child is
typically an immediate child of this.

Effects: similar to {spawn(task); wait_for_all();}, but often more efficient. Further-
more, it guarantees that task is executed by the current thread. This constraint can
sometimes simplify synchronization. Figure 9-15 illustrates the state transitions.

void spawn_and_wait_for_all(task_list& list)
Effects: similar to {spawn(list); wait_for_all();}, but often more efficient.

static void spawn_root_and_wait(task& root)
Requirements: the memory for task root must have been allocated by task::allocate_
root(). The calling thread must own root.

Effects: sets the parent attribute of root to an undefined value and executes root.
Destroys root afterward unless it was recycled.

static void spawn_root_and_wait(task_list& root_list)
Requirements: each task object in root_list must meet the requirements for the
parameter root of spawn_root_and_wait().

Effects: for each task object t in root_list, performs spawn_root_and_wait(t), possibly
in parallel.

Figure 9-15. Effect of spawn_and_wait_for_all

this

depth

dependent

refcount

this

depth

dependent

0

previously spawned children
who have not completed

depth+1

child

0

task Class | 165

Task context

These methods expose relationships among task objects, and between task objects and the
underlying physical threads:

static task& self()
Returns: reference to the innermost task that the calling thread is executing.

task* parent() const
Returns: value of the parent attribute. The result is an undefined value if the task was
allocated by allocate_root and is currently running under control of spawn_root_and_
wait.

bool is_stolen_task() const
Requirements: the attribute parent must be non-NULL and this.execute() must be
running. The calling task must not have been allocated with allocate_root.

Returns: true if the attribute owner of this is unequal to the owner of parent.

Task debugging

Methods in this subsection are useful for debugging. They may change in future
implementations.

state_type state() const
Returns: current state of the task. Table 9-4 describes valid states. Any other value is
the result of memory corruption, such as caused by using a task whose memory has
been deallocated. Figure 9-16 summarizes possible state transitions for a task.

This method is intended for debugging only. Its behavior or perfor-
mance may change in future implementations. The definition of
task::state_type may also change in future implementations. The
information in this section is provided because it can be useful for
diagnosing problems during debugging.

int ref_count() const
Returns: the value of the attribute refcount.

This method is intended for debugging only. Its behavior or perfor-
mance may change in future implementations.

Table 9-4. Values returned by task::state()

Value Description

allocated The task is freshly allocated or recycled.

ready The task is in the ready pool, or is in the process of being transferred to or from the pool.

executing The task is running, and it will be destroyed after its execute method returns.

freed The task is on the internal free list, or is in the process of being transferred to or from the list.

reexecute The task is running, and will be respawned after its execute method returns.

166 | Chapter 9: Task Scheduler

empty_task Class Subclass of task that represents doing nothing.

#include "tbb/task.h"

class empty_task;

Description

An empty_task is a task that does nothing. It is useful as a continuation of a parent task
when the continuation should do nothing except wait for its children to complete.

Figure 9-16. Typical task::state() transitions

Storage from heap

allocated

ready reexecute

executing

freed

allocate_...(t)

spawn(t)

(implicit)

return from
t.execute()

t.recycle_to_reexecute

return from t.execute()

t.recycle_as...

allocate_...(t)

(implicit)

Storage returned to heap

task_list Class | 167

Members
namespace tbb {
 class empty_task: public task {
 /*override*/ task* execute() {return NULL;}
 };
}

task_list Class List of task objects.

#include "tbb/task.h"

class task_list;

Description

A task_list is a list of references to task objects. The purpose of task_list is to allow a
task to create a list of child tasks and spawn them all at once via the method task::
spawn(task_list&). A task can belong to, at most, one task_list at a time, and can be on
that task_list once at most. A task that has been spawned but has not started running
must not belong to a task_list. A task_list cannot be copy-constructed or assigned.

Members
namespace tbb {
 class task_list {
 public:
 task_list();
 ~task_list();
 bool empty() const;
 void push_back(task& task);
 task& pop_front();
 void clear();
 };
}

task_list()
Effects: constructs an empty list.

~task_list()
Effects: destroys the list. Does not destroy the task objects.

bool empty() const
Returns: true if the list is empty; false otherwise.

push_back(task& task)
Effects: inserts a reference to task at the back of the list.

task& task pop_front()
Effects: removes a task reference from the front of the list.

Returns: the reference that was removed.

void clear()
Effects: removes all task references from the list. Does not destroy the task objects.

168 | Chapter 9: Task Scheduler

Task Scheduler Summary
The task scheduler works most efficiently for fork-join parallelism with lots of forks
so that the task stealing can cause sufficient breadth-first behavior to occupy threads,
which then conduct themselves in a depth-first manner until they need to steal more
work.

The task scheduler is not the simplest-possible scheduler because it is designed for
speed. If you need to use it directly, it may be best to hide it behind a higher-level
interface, such as the templates parallel_for, parallel_reduce, and so on. Some of
the details to remember are:

• Always use new(allocation_method) T to allocate a task, where allocation_
method is one of the allocation methods of the class task. Do not create local or
file-scope instances of a task.

• Allocate all siblings before any of them start to run, unless you are using
allocate_additional_child_of.

• Exploit continuation passing, scheduler bypass, and task recycling to squeeze
out maximum performance.

• If a task completes and was not marked for reexecution, it is automatically
destroyed. Also, its dependent’s reference count is decremented, and if it hits 0,
the dependent is automatically spawned.

169

Chapter 10 CHAPTER 10

Keys to Success10

This chapter offers some advice and covers a number of issues that go beyond pro-
gramming techniques for Intel Threading Building Blocks. These are important
things you should know about: debugging, efficiency of the implementation, and
compatibility with other thread packages.

Key Steps to Success
Our experience using Threading Building Blocks has helped us create a simple five-
step program to success that has been working well for us at Intel:

1. Think Parallel. Understand where parallelism is and how you want to express it
in terms of tasks.

2. Design using relaxed sequential execution (see the next section). Do not intro-
duce anything in your code that will not allow single-thread execution.

3. When possible, use:

a. The algorithm templates (Chapters 3 and 4) instead of raw tasks

b. The algorithm templates instead of locking

c. A scalable memory allocator (not malloc or the default new functions)

4. Debug:

a. Debug the single-thread version first (enabled by step 1). Do this by giving
tbb::task_scheduler_init a parameter value of 1.

b. After that, try two threads, then four threads, and so on. It doesn’t hurt to
test with many more threads in case there are races lurking that might be
hidden by unfair scheduling on a few processors.

c. Use the Intel Thread Checker to check for race conditions, even if the
program is working.

5. Look for tuning opportunities using the Intel Thread Profiler, which can give
you insight into stalls induced by synchronization.

170 | Chapter 10: Keys to Success

Relaxed Sequential Execution
Most parallel programs can run sequentially but will benefit from parallelism when it
is present. However, it is very possible to design programs that require parallelism for
correct behavior.

Consider a variable swap: A=B and B=A. If we start with A=14 and B=30, do we end with
A=30 and B=14 or with A=30 and B=30? If the two assignments can be forced to run in
parallel, we get the swap to occur. If that is what we expect, that code must be run in
parallel.

This trivial example gives you a hint of what it means to require parallelism and
strong synchronization. But such tight synchronization is not the only way to force
parallelism. Nontrivial examples tend to be algorithms such as producer-consumer
programs that must have two or more threads. For instance, consider a bounded con-
tainer with a capacity for only two items and a program that has one thread doing
PUT PUT PUT and another thread doing GET GET GET, each doing their actions
only in triples. Such a program requires interleaving (concurrency).

A program that requires concurrency is more difficult to debug. That is why Thread-
ing Building Blocks (and many other concurrent systems, such as OpenMP) assume
that a program has a valid sequential execution.

Threading Building Blocks implements a relaxed sequential execution model. The
word relaxed refers to the notion that serial programs are actually overly constrained
by implicit serial dependencies (such as the program counter) and that the concur-
rent library introduces as much parallelism as possible without removing the ability
to run sequentially.

You can think of this model as being as relaxed as possible and still
being able to run correctly in a single thread. That is the goal.

Being able to run a program sequentially gives you a tremendous advantage when
debugging your program. It lets you debug common programming errors before
dealing with any concurrency issues that need to be debugged. Our advice is simple:
start with debugging in a sequential mode, and then run the program in parallel to
debug concurrency issues. Programs designed to require concurrency do not give you
this option. Furthermore, programs designed to require concurrency will have
performance pitfalls when the number of required threads exceeds the number of
hardware threads because time-slicing artifacts can hit hard.

Design your programs not to require concurrency. You will be happier. Threading
Building Blocks is designed to encourage you to use relaxed sequential execution.

Safe Concurrency for Methods and Libraries | 171

Safe Concurrency for Methods and Libraries
It is recommended that you check the documentation for all the libraries you link
with and use only thread-safe libraries in your Threading Building Blocks applica-
tion. If you use libraries that are not thread-safe, you need to be very sure that they
are not used improperly (without proper mutual exclusion) by multiple threads
concurrently.

In particular, you should make sure you use the thread-safe runtime libraries in Win-
dows (luckily, failure to do so will cause a compile-time error to help you remember
this). Therefore, use the /MDd or /MD compiler option with the Intel or Microsoft
compilers, for debug or release builds, respectively.

Windows runtime libraries come in thread-safe and thread-unsafe
forms. Using thread-unsafe versions with Intel Threading Building
Blocks could cause undefined results.

In general, you should write your code so it does not need locks. Threading Building
Blocks offers algorithms that promote implicit synchronization as an alternative to
explicit synchronization with locks. But because that is not always possible, you
need some guidance on locks.

The thread-safety rules for non-thread-safe libraries reduce to the following general
principle: do not invoke methods or functions concurrently on the same object. Two
tasks, or threads, can invoke a method or function concurrently on different objects,
but not on the same object. A short way to say this is: you need to provide your own
locking, and the kind of locking needed is the intuitively obvious locking.

Chapter 2 introduced mutual exclusion and locks, explained deadlock and race con-
ditions, and pointed out what to look for in order to have thread-safe programs.

Chapter 7 discussed when your intuition might fail you when distinguishing reads
from writes (i.e., when fancy data structures share and modify hidden state, or when
state could be shared).

Descriptions of the classes in this book note any departures from the need for syn-
chronization. For example, the concurrent containers are more liberal. By their
nature, they permit concurrent operations on the same container object.

Except where allowed, departure from these thread-safety rules will
result in nondeterministic programs. A program may work today and
then fail tomorrow. Care should be taken.

A later section of this chapter, “Mixing with Other Threading Packages,” covers the
use of Threading Building Blocks with other packages such as OpenMP.

172 | Chapter 10: Keys to Success

Debug Versus Release
A few features should be used only when debugging. They won’t cause production
versions to fail, but they’ll severely diminish the value of using Threading Building
Blocks. Here is a list of things that should not be used in production code:

• Do not set the number of threads with task_scheduler_init. Let the setting be
automatic (default) so that the program will run on a wide variety of hardware
and make the best use of the processors.

• Leave TBB_DO_ASSERT undefined or set to zero.

• Leave TBB_DO_THREADING_TOOLS undefined or set to zero.

For Efficiency’s Sake
There is no requirement to link in the scalable allocator just because you used a con-
tainer, as it will default to dynamically loading the library or to using malloc. Perfor-
mance will likely be better if you make sure the scalable allocator (Chapter 6) is
indeed dynamically found and loaded.

Avoid using mutual exclusion if you can. Try to use implicit synchronization inher-
ent in the algorithms covered in Chapters 3 and 4. If you cannot rewrite an algorithm
to avoid sharing critical sections, avoid locks and protect shared memory usage using
atomic operations if you can. Refer to Chapter 7 for more information.

Use the debug versions and assert macros only for debugging, as they introduce
nontrivial overhead.

Enabling Debugging Features
The Threading Building Blocks headers define two macros that control certain
debugging features. In general, it is useful to compile with these features turned on
for development code, but to turn them off for production code.

The TBB_DO_ASSERT Macro
The macro TBB_DO_ASSERT controls whether error checking is enabled in the header
files. Define TBB_DO_ASSERT as 1 to enable error checking.

If an error is detected, the library prints an error message on stderr and calls the
standard C routine abort. To stop a program when internal error checking detects a
failure, place a breakpoint on tbb::assertion_failure.

On Windows systems, debug builds implicitly set TBB_DO_ASSERT to 1.

Enabling Debugging Features | 173

Do Not Ship Your Program Built with TBB_DO_ASSERT
TBB_DO_ASSERT not only adds assertion checking, it also turns off some inlining and
enables extra hidden fields in some data structures. Therefore, it slows down perfor-
mance. Furthermore, code compiled with TBB_DO_ASSERT is typically linked against
the debug version of the library, which has some significantly slow assertion checks.

TBB_DO_ASSERT writes out failures to stderr; there is no way to request it to throw
exceptions. The errors it detects are so egregious that they should be eliminated dur-
ing debugging and are not the sort we expect anyone to plan to handle in production
code.

On Windows, the debug version is linked against Microsoft’s debug library, another
reason it is unsuitable for production use. It is possible to use TBB_DO_ASSERT=1 and
link against the release version of the Threading Building Blocks library, which gets
you a few assertion checks. Still, we recommend setting TBB_DO_ASSERT=1 for
development and debugging but having TBB_DO_ASSERT=0 for production code.

The TBB_DO_THREADING_TOOLS Macro
The macro TBB_DO_THREADING_TOOLS controls support for the following Intel thread-
ing analysis and debugging tools:

• Intel Thread Profiler

• Intel Thread Checker

More information is available at http://intel.com/software/products.

Define TBB_DO_THREADING_TOOLS as 1 to enable full support for these tools. The debug
version of the library always has full support enabled.

Leave TBB_DO_THREADING_TOOLS undefined or 0 to enable top performance, at the
expense of turning off some support for tools. In the current implementation, the
only features affected are spin_mutex and spin_rw_mutex.

The Intel Thread Checker is a tool that helps you detect the potential for deadlock or
race conditions in a program by observing it while it is running. The checker has spe-
cial support for Threading Building Blocks, and by defining TBB_DO_THREADING_TOOLS
for full support, you will get better diagnostics.

The checker works by recording when each thread sends or receives a synchroniza-
tion message. For instance, when releasing a lock, a thread is effectively sending the
message, “I’m done with the critical section,” whereas acquiring a lock receives that
message.

The checker recognizes standard Windows API calls, but it can have difficulty with
Threading Building Blocks without a little help; hence, TBB_DO_THREADING_TOOLS.
Some of the Threading Building Blocks calls may be inlined, which would generally
make them escape detection without this help.

http://intel.com/software/products

174 | Chapter 10: Keys to Success

The checker lets you decorate calls with special do-nothing subroutines (used to flag
the calls to the checker) that identify send and receive points. Unfortunately, a do-
nothing subroutine has overhead that might be noticeable for very lightweight locks.
There’s also a spot in concurrent_hash_map that uses TBB_DO_THREADING_TOOLS to call
an alternative out-of-line code sequence that hides a harmless race condition in the
fast code sequence so that it is not reported.

Debug Versus Release Libraries
Threading Building Blocks includes dynamic shared libraries that come in debug and
release versions, as described in Table 10-1.

All versions of the libraries support the Intel Thread Checker and Intel Thread Profiler.
The debug versions always have full support enabled. The release version requires
compiling code with the macro TBB_DO_THREADING_TOOLS set to 1 for full support.

The instrumentation support for the Intel Thread Checker becomes
live after the first initialization of a task. If the library components are
used before this initialization occurs, the Intel Thread Checker may
falsely report race conditions that cannot actually occur.

Mixing with Other Threading Packages
Intel Threading Building Blocks can be mixed with other threading packages. No spe-
cial effort is required to use the containers, synchronization primitives, or atomic oper-
ations with other threading packages. However, using the parallel algorithms or task
scheduler requires extra effort because each thread that uses one of those features must
construct its own task_scheduler_init object that is live while the feature is in use.

Mixing OpenMP (which was introduced in Chapter 1) with Threading Building
Blocks is supported. Performance may be inferior to a pure OpenMP or pure Thread-
ing Building Blocks solution if the two forms of parallelism are nested.

An OpenMP parallel region that plans to use the task scheduler should create a task_
scheduler_init inside the parallel region, because the parallel region may create new
threads unknown to Threading Building Blocks. Each of these new OpenMP threads,
like native threads, must create a task_scheduler_init object before using Threading
Building Blocks algorithms.

Table 10-1. Dynamic shared libraries

Library Description When to use

tbb_debug
tbbmalloc_debug

These versions have extensive internal checking
for incorrect use of the library.

Use with code that is compiled with the
TBB_DO_ASSERT macro set to 1.

tbb
tbbmalloc

These versions deliver top performance. Use with code compiled with TBB_DO_
ASSERT undefined or set to 0.

Mixing with Other Threading Packages | 175

Example 10-1 parallelizes an outer loop with OpenMP and an inner loop with Intel
Threading Building Blocks.

The details of InnerBody are omitted for brevity. What is important is the placement
of the task_scheduler_init declaration. The #pragma omp parallel causes OpenMP to
create a team of threads, and each thread executes the block statement associated
with the pragma. Each thread must construct its own task_scheduler_init inside the
block. The #pragma omp for statement indicates that the compiler should use the pre-
viously created thread team to execute the loop in parallel. Because this pragma does
not create threads, it has no corresponding task_scheduler_init declaration.

Example 10-2 is the same as Example 10-1, but written using POSIX threads
(pthreads). The initial function run by the pthread_create call that spawns each
thread, OuterLoopIteration, simply defines a task_scheduler_init object.

Example 10-1. OpenMP and parallel_for used together

int M, N;

struct InnerBody {
 ...
};

void TBB_NestedInOpenMP() {
#pragma omp parallel
 {
 task_scheduler_init init;
#pragma omp for
 for(int i=0; i<M; ++j) {
 parallel_for(blocked_range<int>(0,N,10), InnerBody(i));
 }
 }
}

Example 10-2. pthreads and parallel_for used together

int M, N;

struct InnerBody {
 ...
};

void* OuterLoopIteration(void* args) {
 task_scheduler_init init;
 int i = (int)args;
 parallel_for(blocked_range<int>(0,N,10), InnerBody(i));
}

void TBB_NestedInPThreads() {
 std::vector<pthread_t> id(M);
 // Create thread for each outer loop iteration

176 | Chapter 10: Keys to Success

Using threading support from Intel for OpenMP and Intel Threading Building Blocks
together will ensure a level of compatibility and cooperation in the threading pack-
ages that is not present with other combinations. There is some danger of oversub-
scription or lack of coordination between arbitrary threading packages. But in
practice, there is generally no issue with correctness, although performance may not
be optimal.

Naming Conventions
This section lists a few conventions and restrictions in the naming of variables and
functions.

The tbb Namespace
The library puts all public classes and functions into the namespace tbb.

The tbb::internal Namespace
The library uses the namespace tbb::internal for internal identifiers. Client code
should never directly reference the namespace tbb::internal or the identifiers inside
it. Indirect reference via a public typedef provided by the header files is permitted.

An example of the distinction between direct and indirect use is type concurrent_
vector<T>::iterator. This type is a typedef for an internal class internal::vector_
iterator<Container,Value>. Source code should use the iterator typedef.

The _ _TBB Prefix
The library reserves the prefix _ _TBB for internal identifiers and macros that should
never be directly referenced by your code.

 for(int i=0; i<M; ++i)
 pthread_create(&id[i], NULL, OuterLoopIteration, NULL);
 // Wait for outer loop threads to finish
 for(int i=0; i<M; ++i)
 pthread_join(&id[i], NULL);
}

Example 10-2. pthreads and parallel_for used together (continued)

177

Chapter 11 CHAPTER 11

Examples11

This chapter contains a rich collection of examples, together with explanations, to
illustrate usage of Intel Threading Building Blocks. The early examples probably
mimic the sorts of operations you will tackle first with Threading Building Blocks,
and therefore are useful to get you started quickly. Then we include more complex
examples that will help you understand Threading Building Blocks in more depth,
and some later examples cover the domains of gaming and packet processing to
show how you can develop specialized ways to utilize Threading Building Blocks
tailored for your needs.

Starting with this chapter is a fine way to use this book. You can flip back to the ear-
lier chapters for more in-depth discussions of particular features. Experimentation is
recommended: pick an example, download and study it, and then modify and
experiment with it.

You can download the source code for all the examples in this chapter
from http://www.threadingbuildingblocks.org/book. Look for errata and
notes at this web site as well.

The Aha! Factor
a•ha /ä-'hä/ interjection, Middle English: Depending on manner of utterance, used to
express surprise, pleasure, irony, derision, mockery, contempt, or triumph.

Studying these examples will hopefully have you saying Aha! a few times as the pos-
sibilities unfold. Here is a short list of some Aha! moments I have seen through the
eyes of others, and on my own:

Splitting ranges can be complex operations
Splitting a parallel range can be far more interesting than it first seems. You can
play with the data in the region represented by the range. Oh, the possibilities!
See Example 11-31.

http://www.threadingbuildingblocks.org/book

178 | Chapter 11: Examples

Recursion maps to parallel_for
Recursive functions convert to parallelism using parallel_for easily. It is not
obvious to use parallel_for for recursion—at least not until you have this Aha!
moment. It makes sense because recursion is about splitting up work, and so is
parallel_for. See the section “Quicksort: Visualizing Task Stealing,” later in this
chapter. Sometimes direct use of the task scheduler may seem better; see the sec-
tion “A Better Matrix Multiply (Strassen),” later in this chapter.

Use implicit synchronization
Implicit synchronization is better than using locks. Develop a mindset to think
about using implicit synchronization and avoiding locks. See the section
“Advanced Task Programming,” later in this chapter.

Memory is shared between tasks
It’s all in the shared memory. When discussing pipelines and other algorithms,
and being careful to partition access to data, it is possible to forget that all the
data is in shared memory, which any task can access. This means you may need
to use mutual exclusion (Chapter 7) if you did not split up your data com-
pletely, but it also means that pipelines do not really need to move data from
input to output. See the section “Two Mouths: Feeding Two from the Same
Task in a Pipeline,” later in this chapter.

Dynamically adding tasks
Slipping in a task when you can identify work is easy and can be very powerful.
See the section “Open Dynamics Engine,” later in this chapter.

Empty tasks for synchronization
Tasks that do nothing are useful. They still synchronize actions. See the section
“Advanced Task Programming.”

Tasks that split help future-proof a program
Recursive splitting so that tasks fit available parallelism is very powerful. See
Chapter 2 and Chapter 3. The number of processor cores will continue to grow
in the future. Designing your program to have enough tasks to keep all proces-
sor cores busy will be increasingly important. But creating too many tasks is a
problem due to additional overhead. Recursive splitting allows you to program
in a manner that dynamically matches the needs of the system, and avoids hav-
ing too many tasks or too few tasks. Recursive splitting lets the runtime break up
as needed.

Code for parallelism need not disrupt program structure
Parallel and serial versions of code, through clever structured coding, can share
drivers and low-level routines, leaving only a little code that is different. See the
sections “The Game of Life,” “A Better Matrix Multiply (Strassen),” and
“ParallelPrime,” later in this chapter.

A Few Other Key Points | 179

What grainsize means
grainsize is a parameter to some algorithms (Chapter 3) to guide recursive split-
ting. It specifies the largest size range to not split. Because ranges that are larger
than grainsize can be split, tasks could end up with ranges just above half the
size of grainsize. This would be surprising if you were thinking of grainsize as a
minimum size. It might also be surprising how much splitting is actually done.
See Example 11-10.

I hope this chapter provides you with a few Aha! moments that help you learn
Threading Building Blocks so that you can create your own masterpieces.

A Few Other Key Points
Although the items in this section are not quite Aha!-quality insights, you should
consider them while exploring this chapter:

More examples
More examples come with Threading Building Blocks—for instance, examples\
parallel_while\parallel_preorder, which uses parallel_while to do parallel
preorder traversal of a sparse graph—I simply did not have the time or space to
include them all in this chapter. The examples are set up as ready to build and
try, although they currently include virtually no explanation about how they
work internally. You just have to read the source code.

Even more examples
Be sure to regularly visit the web sites for Threading Building Blocks, as we hope
to add more and more examples, user forums, and so on.

Use a scalable memory allocator
Have you ever analyzed the thread safety and scalability of your memory
allocator? The results will send you looking for change. See the “Memory Alloca-
tion” section in this chapter, and see Chapter 6.

Create only programs that can run serially (threads=1) for debugging purposes
Always aim to be able to debug your code without concurrency as you write it.
Experience will show that it is easier to debug common mistakes, which have
nothing to do with parallelism, while running without concurrency. See
Chapter 2 and Chapter 12.

The task scheduler is quite approachable
Spawning tasks (Chapter 9) can be a better alternative to parallel_for when
boundaries and computation granularity change between function calls. Take a
look at how efficient it can be when you create and spawn tasks from the loop.
See the example in the “Open Dynamics Engine” section (and other task
examples in this chapter).

180 | Chapter 11: Examples

When in doubt, build a task graph that domain-decomposes your data structures from
the top

And create about twice as many tasks as the number of cores you can imagine
ever running upon. See “Game Threading Example,” later in the chapter.

Controlling access to the shared data
This is made easy with the help of highly concurrent containers (Chapter 5): you
can have multiple threads reading data containers without blocking each other,
or you can modify a container with one writer exclusively. Moreover, if two writ-
ers modify different parts of the data containers, they will not block each other!
See the example in the section “CountStrings: Using concurrent_hash_map,”
later in this chapter.

parallel_for Examples
The use of parallel_for is pretty straightforward. The first three examples in this
section help you make sure you’re comfortable with Threading Building Blocks
basics. The last two examples, ParallelMerge and SubstringFinder, are a little more
challenging and will help drill home how versatile parallel_for can be. The next sec-
tion implements John Conway’s Game of Life and is the only example to mix C++
and managed C++ in this chapter. Chapter 3 covers parallel_for in detail.

ParallelAverage
Example 11-1 defines a routine named ParallelAverage that sets output[i] to the
average of input[i-1], input[i], and input[i+1], for .

Example 11-1. ParallelAverage

#include "tbb/parallel_for.h"
#include "tbb/blocked_range.h"

using namespace tbb;

class Average {
public:
 float* input;
 float* output;
 void operator()(const blocked_range<int>& range) const {
 for(int i=range.begin(); i!=range.end(); ++i)
 output[i] = (input[i-1]+input[i]+input[i+1])*(1/3.0f);
 }
};

// Note: The input must be padded such that input[-1] and input[n]
// can be used to calculate the first and last output values.
void ParallelAverage(float* output, float* input, size_t n) {
 Average avg;

0 i≤ n<

parallel_for Examples | 181

Seismic
Here is a simple seismic wave simulation (wave propagation) based on parallel_for
and blocked_range. The key parts of this example are shown here; the entire code is
available for download.

The main program steps through the simulation of a seismic wave in a core loop that
sets the impulse from the source of the disturbance, does the two tough computa-
tions of stress updates and velocities, and finally cleans up the edges of the
simulation.

First we’ll look at the stress algorithm, in Example 11-2 and Example 11-3. The first
shows the serial version of the algorithm, and the second shows an equivalent
parallel version.

 avg.input = input;
 avg.output = output;
 parallel_for(blocked_range<int>(0, n, 1000), avg);
}

Example 11-2. Seismic serial: Update stress

static void SerialUpdateStress() {
 drawing_area drawing(0, 0, UniverseWidth, UniverseHeight);
 for(int i=1; i<UniverseHeight-1; ++i) {
 color_t* c = ColorMap[Material[i]];
 drawing.set_pos(1, i);
#pragma ivdep
 for(int j=1; j<UniverseWidth-1; ++j) {
 S[i][j] += (V[i][j+1]-V[i][j]);
 T[i][j] += (V[i+1][j]-V[i][j]);
 int index = (int)(V[i][j]*(ColorMapSize/2)) + ColorMapSize/2;
 if(index<0) index = 0;
 if(index>=ColorMapSize) index = ColorMapSize-1;
 drawing.put_pixel(c[index]);
 }
 }
}

Example 11-3. Seismic parallel: Update stress

struct UpdateStressBody {
 void operator()(const tbb::blocked_range<int>& range) const {
 drawing_area drawing(0,
 range.begin(),
 UniverseWidth,
 range.end()-range.begin());
 int i_end = range.end();
 for(int y = 0, i=range.begin(); i!=i_end; ++i,y++) {
 color_t* c = ColorMap[Material[i]];
 drawing.set_pos(1, y);

Example 11-1. ParallelAverage (continued)

182 | Chapter 11: Examples

The parallel version, shown in Example 11-3, requires very little work to create from
the serial version. The serial routine needs to be put into a function in a class. Note
that struct UpdateStressBody { is equivalent to the class/public we use elsewhere in
the book:

class UpdateStressBody {
public:

It seems worth letting you see it both ways. The function ParallelUpdateStress sim-
ply uses the parallel_for algorithm (Chapter 3), and specifies the range, the struct/
class UpdateStressBody we created, and the grain size. The difference between the
two versions of the code is minimal. If C++ were to support lambda functions
(Chapter 12), the code would look almost identical. Similarly, compare the easy
conversion of the serial version in Example 11-4 with the parallel version in
Example 11-5.

#pragma ivdep
 for(int j=1; j<UniverseWidth-1; ++j) {
 S[i][j] += (V[i][j+1]-V[i][j]);
 T[i][j] += (V[i+1][j]-V[i][j]);
 int index = (int)(V[i][j]*(ColorMapSize/2)) + ColorMapSize/2;
 if(index<0) index = 0;
 if(index>=ColorMapSize) index = ColorMapSize-1;
 drawing.put_pixel(c[index]);
 }
 }
 }
};

static void ParallelUpdateStress() {
 tbb::parallel_for(
 tbb::blocked_range<int>(1, UniverseHeight-1, GrainSize),
 UpdateStressBody());
}

Example 11-4. Seismic serial: Update velocity

static void SerialUpdateVelocity() {
 for(int i=1; i<UniverseHeight-1; ++i)
#pragma ivdep
 for(int j=1; j<UniverseWidth-1; ++j) {
 V[i][j] += (S[i][j] - S[i][j-1] + T[i][j] - T[i-1][j])*M[i];
 }
}

Example 11-5. Seismic parallel: Update velocity

struct UpdateVelocityBody {
 void operator()(const tbb::blocked_range<int>& range) const {
 int i_end = range.end();
 for(int i=range.begin(); i!=i_end; ++i) {

Example 11-3. Seismic parallel: Update stress (continued)

parallel_for Examples | 183

Matrix Multiply
Example 11-6 shows a SerialMatrixMultiply that makes no use of Threading
Building Blocks or any other parallelization, whereas Example 11-7 shows the
corresponding ParallelMatrixMultiply that uses a blocked_range2d to specify a two-
dimensional iteration space. The functions operate the same as far as the rest of the
program is concerned. Obviously, we expect ParallelMatrixMultiply to run faster
when on a machine with more than one processor core.

#pragma ivdep
 for(int j=1; j<UniverseWidth-1; ++j) {
 V[i][j] += (S[i][j] - S[i][j-1] + T[i][j] - T[i-1][j])*M[i];
 }
 }
 }
};

static void ParallelUpdateVelocity() {
 tbb::parallel_for(
 tbb::blocked_range<int>(1, UniverseHeight-1, GrainSize),
 UpdateVelocityBody());
}

Example 11-6. Matrix multiply serial code

const size_t L = 150;
const size_t M = 225;
const size_t N = 300;

void SerialMatrixMultiply(float c[M][N], float a[M][L], float b[L][N]) {
 for(size_t i=0; i<M; ++i) {
 for(size_t j=0; j<N; ++j) {
 float sum = 0;
 for(size_t k=0; k<L; ++k)
 sum += a[i][k]*b[k][j];
 c[i][j] = sum;
 }
 }
}

Example 11-7. Equivalent matrix multiply with blocked_range2d

#include "tbb/parallel_for.h"
#include "tbb/blocked_range2d.h"

using namespace tbb;

const size_t L = 150;
const size_t M = 225;
const size_t N = 300;

Example 11-5. Seismic parallel: Update velocity (continued)

184 | Chapter 11: Examples

The blocked_range2d enables the two outermost loops of the serial version to become
parallel loops. The parallel_for recursively splits the blocked_range2d until the
pieces are no larger than 16 × 32. It invokes MatrixMultiplyBody2D::operator() on
each piece.

ParallelMerge
The example in this section (Example 11-8) is more complex and requires a little
familiarity with the Standard Template Library (STL) to fully understand. It shows
the power of parallel_for beyond flat iteration spaces. The code performs a parallel
merge of two sorted sequences. It works for any sequence with a random-access
iterator. The algorithm operates recursively as follows:

1. If the sequences are too short for effective use of parallelism, it does a sequential
merge. Otherwise, it performs steps 2–6.

2. It swaps the sequences if necessary so that the first sequence, [begin1,end1), is at
least as long as the second sequence, [begin2,end2).

3. It sets m1 to the middle position in [begin1,end1). It calls the item at that
location key.

class MatrixMultiplyBody2D {
 float (*my_a)[L];
 float (*my_b)[N];
 float (*my_c)[N];
public:
 void operator()(const blocked_range2d<size_t>& r) const {
 float (*a)[L] = my_a; // a,b,c used in example to emphasize
 float (*b)[N] = my_b; // commonality with serial code
 float (*c)[N] = my_c;
 for(size_t i=r.rows().begin(); i!=r.rows().end(); ++i){
 for(size_t j=r.cols().begin(); j!=r.cols().end(); ++j) {
 float sum = 0;
 for(size_t k=0; k<L; ++k)
 sum += a[i][k]*b[k][j];
 c[i][j] = sum;
 }
 }
 }
 MatrixMultiplyBody2D(float c[M][N], float a[M][L], float b[L][N]) :
 my_a(a), my_b(b), my_c(c)
 {}
};

void ParallelMatrixMultiply(float c[M][N], float a[M][L], float b[L][N]){
 parallel_for(blocked_range2d<size_t>(0, M, 16, 0, N, 32),
 MatrixMultiplyBody2D(c,a,b));
}

Example 11-7. Equivalent matrix multiply with blocked_range2d (continued)

parallel_for Examples | 185

4. It sets m2 to where key would fall in [begin2,end2).

5. It merges [begin1,m1) and [begin2,m2) to create the first part of the merged
sequence.

6. It merges [m1,end1) and [m2,end2) to create the second part of the merged
sequence.

The Intel Threading Building Blocks implementation of this algorithm uses the Range
object to perform most of the steps. The predicate is_divisible performs the test in
step 1, along with step 2. The splitting constructor performs steps 3–6. The body
object does the sequential merges.

Example 11-8. Parallel merge

#include "tbb/parallel_for.h"
#include <algorithm>

using namespace tbb;

template<typename Iterator>
struct ParallelMergeRange {
 static size_t grainsize;
 Iterator begin1, end1; // [begin1,end1) is 1st sequence to be merged
 Iterator begin2, end2; // [begin2,end2) is 2nd sequence to be merged
 Iterator out; // where to put merged sequence
 bool empty() const {return (end1-begin1)+(end2-begin2)==0;}
 bool is_divisible() const {
 return std::min(end1-begin1, end2-begin2) > grainsize;
 }
 ParallelMergeRange(ParallelMergeRange& r, split) {
 if(r.end1-r.begin1 < r.end2-r.begin2) {
 std::swap(r.begin1,r.begin2);
 std::swap(r.end1,r.end2);
 }
 Iterator m1 = r.begin1 + (r.end1-r.begin1)/2;
 Iterator m2 = std::lower_bound(r.begin2, r.end2, *m1) ;
 begin1 = m1;
 begin2 = m2;
 end1 = r.end1;
 end2 = r.end2;
 out = r.out + (m1-r.begin1) + (m2-r.begin2);
 r.end1 = m1;
 r.end2 = m2;
 }
 ParallelMergeRange(Iterator begin1_, Iterator end1_,
 Iterator begin2_, Iterator end2_,
 Iterator out_) :
 begin1(begin1_), end1(end1_),
 begin2(begin2_), end2(end2_), out(out_)
 {}
};

186 | Chapter 11: Examples

The ParallelMergeRange class has two constructors. The first contains the dummy
variable, split, as explained in Chapter 3, to permit the library to split the range
between two variables. The second is a conventional constructor. As before, the
ParallelMergeBody class defines the operator() method that overloads () to perform
the desired operation, and the ParallelMerge class invokes the operation.

Because the algorithm moves many locations, it tends to be bandwidth-limited.
Speedup varies, depending on the system.

SubstringFinder
SubstringFinder uses the parallel_for template in a substring matching program.
For each position in a string, the program finds the length and location of the largest
matching substring elsewhere in the string. For instance, take the string
OregonOrmereg. Starting a scan at the first character (position 0), the largest substring
with a match elsewhere in the string is Or at position 6. Starting at position 1, the
largest match is reg at position 10. The position of such matches, and the length of
the match, is recorded for every position in the string being searched.

Example 11-9 shows a serial version (lines 12–31) and a parallel version (lines 33–55).
Note how lines 15–31 and 39–55 are nearly identical. The only difference is that the
serial version does all the work directly on the input array, whereas the parallel ver-
sion works on a range passed to it in the blocked_range r. For the sake of simplicity,
both versions declare an array of static size to hold the output.

Example 11-9. Serial and parallel SubstringFinder

1 #include <iostream>
2 #include <string>
3 #include <algorithm>
4 #include "tbb/task_scheduler_init.h"
5 #include "tbb/parallel_for.h"
6 #include "tbb/blocked_range.h"
7 #include "tbb/tick_count.h"
8 using namespace tbb;
9 using namespace std;

10 static const size_t N = 22;
11
12 void SerialSubStringFinder (const string &str,
13 size_t *max_array,
14 size_t *pos_array) {
15 for (size_t i = 0; i < str.size(); ++i) {
16 size_t max_size = 0, max_pos = 0;
17 for (size_t j = 0; j < str.size(); ++j)
18 if (j != i) {
19 size_t limit = str.size()-(i > j ? i : j);
20 for (size_t k = 0; k < limit; ++k) {
21 if (str[i + k] != str[j + k]) break;
22 if (k > max_size) {
23 max_size = k;
24 max_pos = j;

parallel_for Examples | 187

The main program (Example 11-11) sets up a string (with a Fibonacci string of “a” and
“b” characters that is 17,711 characters long: “babbababbabbababbababbabbababbabb…”).

The result of the SubstringFinder is an array of positions and an array of lengths of
the matches found at the corresponding position. Two pairs of arrays are prepared:
one filled in by the serial version and the other by the parallel version. The results are
checked to be sure they are identical.

The parallel_for is used with a blocked_range with a grainsize of 100. The initial
range is set to [0,17711).

When this example was run on a dual-core machine, the task scheduler made 254
calls to operator(). At first, this may seem excessive. You might have assumed it
would split the work into [0,8855) and [8856,17711) and let the two processor cores
do equal work. But there are two reasons not to do this. The first is that operator()

25 }
26 }
27 }
28 max_array[i] = max_size;
29 pos_array[i] = max_pos;
30 }
31 }
32
33 class SubStringFinder {
34 const string str;
35 size_t *max_array;
36 size_t *pos_array;
37 public:
38 void operator() (const blocked_range<size_t>& r) const {
39 for (size_t i = r.begin(); i != r.end(); ++i) {
40 size_t max_size = 0, max_pos = 0;
41 for (size_t j = 0; j < str.size(); ++j)
42 if (j != i) {
43 size_t limit = str.size()-(i > j ? i : j);
44 for (size_t k = 0; k < limit; ++k) {
45 if (str[i + k] != str[j + k]) break;
46 if (k > max_size) {
47 max_size = k;
48 max_pos = j;
49 }
50 }
51 }
52 max_array[i] = max_size;
53 pos_array[i] = max_pos;
54 }
55 }
56
57 SubStringFinder(string &s, size_t *m, size_t *p) :
58 str(s), max_array(m), pos_array(p) { }
59 };

Example 11-9. Serial and parallel SubstringFinder (continued)

188 | Chapter 11: Examples

is assumed not to take the same amount of processing on every invocation. Because
short substrings take less time to process than long ones, and other variations exist,
the time will vary.

The second reason is that each thread is subject to differing demands on the proces-
sor core on which it is run. It is possible that one processor’s core may be inter-
rupted more often than the other. It is also possible in the future that processor cores
will not all be the same.

For these reasons, in this simple example, the run split up the work into 254 tasks.
Some of the ranges are shown in Example 11-10. You might also note that the grain
size of 100 means that ranges can become as small as 50. (In this example, 69 was a
favorite because 17711/2/2/2/2/2/2/2/2 = 69.1836). The split stopped at 69 because
ranges larger than the grain size, which was set to 100, were considered splittable.
You can also see how the ranges are kept far apart until the end in order to avoid
cache contention. Interestingly enough, starting one thread in the middle and mov-
ing away from the other thread might perform slightly better by avoiding the slight
potential for conflict at the end. There are always things to think about for future
versions of the task scheduler.

Aha! grainsize is the largest size not to split. Ranges half the size of
grainsize are possible, or smaller depending on the logic of the
splitter. All that is certain is that the splitter is supposed to reduce the
range passed to it, so both subranges created will be smaller.

Example 11-10. Ranges passed to operator() on dual-core machine

1 [0,69)
2 [8924,8993)
3 [69,138)
4 [8993,9062)
5 [138,207)
6 [9062,9131)
7 [207,276)
8 [9131,9200)
9 [276,345)

10 [9200,9269)
11 [345,414)
12 [9269,9338)
13 [9338,9408)
14 [414,483)
15 [9408,9477)
16 [483,553)
17 [553,622)
18 [9477,9546)
19 [622,691)
20 [9546,9615)
21 [691,760)
22 [9615,9685)
23 [760,829)

parallel_for Examples | 189

Example 11-11 runs the two substring finders, and the results are shown in
Example 11-12, SubstringFinder. The speedup of 1.9 is near the ideal 2X (there were
two processors used). The timer functions from Threading Building Blocks
(described in Chapter 7) are used in this example to determine the times.

24 [9685,9754)
25 [829,898)
26 [9754,9823)
27 [898,967)
28 [9823,9892)
29 [967,1036)
30 [9892,9962)
31 [1036,1106)
32 [9962,10031)
33 [1106,1175)
34 [10031,10100)
35 [10100,10169)
36 [1175,1244)
37 [10169,10238)
38 [1244,1313)
39 [10238,10307)
40 [1313,1382)
41 [10307,10376)
...
244 [8231,8301)
245 [17572,17641)
246 [8301,8370)
247 [17641,17711)
248 [8578,8647)
249 [8370,8439)
250 [8647,8716)
251 [8439,8508)
252 [8716,8785)
253 [8508,8578)
254 [8785,8855)

Example 11-11. Driver (main) for SubstringFinder

1 int main(size_t argc, char *argv[]) {
2 task_scheduler_init init;
3
4 string str[N] = { string("a"), string("b") };
5 for (size_t i = 2; i < N; ++i) str[i] = str[i-1]+str[i-2];
6 string &to_scan = str[N-1];
7
8 size_t *max = new size_t[to_scan.size()];
9 size_t *max2 = new size_t[to_scan.size()];

10 size_t *pos = new size_t[to_scan.size()];
11 size_t *pos2 = new size_t[to_scan.size()];
12 cout << " Done building string." << endl;
13

Example 11-10. Ranges passed to operator() on dual-core machine (continued)

190 | Chapter 11: Examples

The Game of Life
Here is a fun example written with a combination of C++ to use parallel_for from
Threading Building Blocks and managed C++ code for the user interface code. This
example implements the Game of Life invented by British mathematician, John Hor-
ton Conway. It was widely popularized when Martin Gardner described it in his
“Mathematical Games” column in Scientific American in October 1970. It was
popular from the start, but it also opened up a new field of mathematical research
known as cellular automata and spurred work in the field of simulation games.

14 tick_count serial_t0 = tick_count::now();
15 SerialSubStringFinder(to_scan, max2, pos2);
16 tick_count serial_t1 = tick_count::now();
17 cout << " Done with serial version." << endl;
18
19 tick_count parallel_t0 = tick_count::now();
20 parallel_for(blocked_range<size_t>(0, to_scan.size(), 100),
21 SubStringFinder(to_scan, max, pos));
22 tick_count parallel_t1 = tick_count::now();
23 cout << " Done with parallel version." << endl;
24
25 for (size_t i = 0; i < to_scan.size(); ++i) {
26 if (max[i] != max2[i] || pos[i] != pos2[i]) {
27 cout << "ERROR: Serial and Parallel Results are Different!" << endl;
28 }
29 }
30 cout << " Done validating results." << endl;
31
32 cout << "Serial version ran in " <<
33 (serial_t1 - serial_t0).seconds() << " seconds" << endl
34 << "Parallel version ran in " <<
35 (parallel_t1 - parallel_t0).seconds() << " seconds" << endl
36 << "Resulting in a speedup of " <<
37 (serial_t1 - serial_t0).seconds() /
38 (parallel_t1 - parallel_t0).seconds() << endl;
39 return 0;
40 }

Example 11-12. SubstringFinder run on a dual-core machine

Done building string.
 Done with serial version.
 Done with parallel version.
 Done validating results.
Serial version ran in 19.476 seconds
Parallel version ran in 10.1276 seconds
Resulting in a speedup of 1.92305

Example 11-11. Driver (main) for SubstringFinder (continued)

The Game of Life | 191

The Game of Life is played on a two-dimensional orthogonal grid of square cells,
each of which is in one of two possible states: live or dead. Every cell interacts with
its eight neighbors, which are the cells that touch the cell (horizontally, vertically, or
diagonally). At every step in life, each cell lives, dies, stays empty, or is born because
of a simple decision based on the surrounding population (number of neighbors).

Life persists in any cell where it is also present in two or three of the eight neighbor-
ing cells, and otherwise disappears (due to loneliness or overcrowding). Life is born
in any empty cell for which there is life in exactly three of the eight neighboring cells.
The decision-making is illustrated in Figure 11-1. A small grid containing five living
cells is shown in Figure 11-2. As you can see, The Game of Life is beautifully parallel.

Figure 11-1. How to decide whether a cell lives, dies, is born, or stays empty for the next generation

Figure 11-2. Grid with five living cells

Start
apply to every cell in parallel

Live currently?

Exactly 3 live
neighbors?

Number of
live neighbors is

2 or 3?

Dead

Live

NOYES

NO NOYES YES

deadlive

lonely or
crowded

no
birth

bornliving

192 | Chapter 11: Examples

Implementation
This program runs two simultaneous instances of this Game of Life. To show a
side-by-side comparison, one of these instances is calculated using sequential pro-
gramming and the other is calculated using parallel programming.

Each generation of a colony is calculated based on the position of the cells in the pre-
ceding generation. The decisions that determine what the next generation looks like
are shown in Figure 11-1. Generation after generation, a colony grows, shrinks, and
changes according to these very simple rules. Usually, it will eventually reach a state
where every living cell stays alive, or where small figures oscillate between two or
more repeating states. If we calculate the next four generations for the colony in
Figure 11-2, we will see it progressing as shown in Figure 11-3.

The colony in this figure actually oscillates among four patterns, while at the same
time moving diagonally across the grid. This pattern is known as the glider among
Game of Life aficionados.

Automaton
We call our implementation automaton and, when run, it presents a pair of blank
grids side by side. The lefthand grid displays cell colony generations with the calcula-
tions being done with sequential logic. The righthand grid displays cell colony gener-
ations with the calculations being done with parallel logic using Threading Building
Blocks. Above each grid is the current generation number. Running on a single-
processor core will work, but the results will vary based on the threads that get prior-
ity. Some will see the parallel side appear to be faster, even on a single-core
processor, because it will have more resources competing fairly for the single-
processor core than the sequential version (see the section “Fair Scheduling,” in
Chapter 9). Other machines show the opposite behavior because the sequential
thread ends up with a priority. Neither result says anything about the efficiency of
the parallel version. However, if you run this code on a quad-core (or better) proces-
sor, you will see a commensurate increase in speed for the parallel side due to true
parallelism.

Figure 11-3. Game of Life: Four sample steps

The Game of Life | 193

The Game of Life was originally assumed to take place on an infinite space. In this
implementation, both of the grids wrap. The top edge is treated as though it is con-
nected to the bottom edge, and the left edge is treated as though it is connected to
the right edge. Therefore, a glider pattern moving off one edge will come into the
grid from the opposite edge.

To seed both grids with the same starting cell pattern, you pull down the Game
menu and select Seed. A random cell pattern is generated and placed into both grids.
To begin the processing, pull down the Game menu again and select Run. Soon you
will see a display similar to that shown in Figure 11-4.

Automata: Implementation
Automata are implemented as a mixture of managed and unmanaged C++. The user
interface is entirely in managed code, with the calculation engine being a mixture of
both.

The abstract class Evolution (Example 11-16) serves as a base class for the two
implementations, SequentialEvolution (Example 11-17) and ParallelEvolution
(Example 11-18). The actual generational calculations are performed by iterative
calls to the Cell class, found in Cell.h and Cell.cpp.

The sequential calculation loop can be found in SequentialEvolution::Step(),
shown in Example 11-13.

Figure 11-4. Automaton in action

194 | Chapter 11: Examples

This loop calls cell.CalculateState() for each cell in the source grid, and puts the
resultant state in the same cell location in the destination grid. The corresponding
parallel calculation can be found in ParallelEvolution::Step(), as shown in
Example 11-14.

The routine sets up the parameters of the parallel_for (Chapter 3) by setting begin
and end, and specifying the size of a parallel piece of work (grainsize = 4000) to be
assigned to a thread by the underlying Threading Building Blocks logic. The actual
loop code is implementead in the parallel class tbb_parallel_task as an override of
the () operator. That operator override code is shown in Example 11-15 as part of
the definition of tbb_parallel_task.

Example 11-13. Automaton: SequentialEvolution step

// SequentialEvolution::Step() - override of step method
void SequentialEvolution::Step()
{
 Cell cell;

 for (int i=0; i<m_size; i++) {
 *(m_dest+i) = cell.CalculateState(
 m_matrix->data, // pointer to source data block
 m_matrix->width, // logical width of field
 m_matrix->height, // logical height of field
 i // number of cell position to examine
);
 }
}

Example 11-14. Automaton: ParallelEvolution step

//
// ParallelEvolution::Step() - override of Step method
//
void ParallelEvolution::Step()
{
 size_t begin = 0; // beginning cell position
 size_t end = m_size-1; // ending cell position
 size_t grainSize = 4000; // grain (chunk) size for individual tasks

 // set matrix pointers
 tbb_parallel_task::set_values(m_matrix, m_dest);

 // do calculation loop
parallel_for (blocked_range<size_t> (begin, end, grainSize),
 tbb_parallel_task());
}

Example 11-15. Automaton tbb_parallel_task

//
// class tbb_parallel_task
//

The Game of Life | 195

Threading Building Blocks decides at runtime how many individual tasks to create. It
schedules those tasks on threads as it sees fit, passing in the limits of the subloop to
perform via the blocked_range parameter (Chapter 3). The more processing cores
that are available, the more tasks it will create and the more threads it will utilize.
Thus, it scales to fit the local hardware configuration.

// TBB requires a class for parallel loop implementations. The actual
// loop "chunks" are performed using the () operator of the class. The
// blocked_range contains the range to calculate. Please see the TBB
// documentation for more information.
//
public class tbb_parallel_task
{
public:
 static void set_values(Matrix* source, char* dest)
 {
 void* x;
 m_source = source;
 m_dest = dest;
 x = m_source;
 x = m_dest;
 return;
 }

 void operator()(const blocked_range<size_t>& r) const
 {
 int begin = (int)r.begin();// capture lower range number for this chunk
 int end = (int)r.end(); // capture upper range number for this chunk
 Cell cell;

 for (int i=begin; i<=end; i++)
 {
 *(m_dest+i) = cell.CalculateState(
 m_source->data, // pointer to source data block
 m_source->width, // logical width of field
 m_source->height,// logical height of field
 i // number of cell position to examine
);
 }
 }

 // constructor
 tbb_parallel_task () {}

private:
 // private data

 static Matrix* m_source;
 static char* m_dest;
};

Example 11-15. Automaton tbb_parallel_task (continued)

196 | Chapter 11: Examples

Example 11-16. Automaton abstract class evolution

//
// Evolution constructor
//
Evolution::Evolution(
 Matrix *m, // beginning matrix including initial pattern
 Board^ board, // the board to update
 HWND messageWindow // window to which WM_DISPLAY_MATRIX message
 // will be sent
) : m_matrix(m), m_board(board), m_hWnd(messageWindow), m_dest(NULL),
 m_size(m_matrix->height * m_matrix->width)
{
 // allocate memory for second matrix data block
 m_dest = new char[m_size];
 m_done = false;
}

//
// Evolution destructor
//
Evolution::~Evolution()
{
 // release allocated memory
 delete m_dest;
}

//
// Evolution::PrepareForCalculation()
// moves the previous destination data to the
// source data block and zeros out destination.
//
void Evolution::PrepareForCalculation()
{
 for (int i=0; i<m_size; i++) {
 *(m_matrix->data+i) = *(m_dest+i);
 *(m_dest+i) = 0;
 }
}

Example 11-17. Automaton SequentialEvolution

//
// SequentialEvolution constructor
//
SequentialEvolution::SequentialEvolution(Matrix *m, Board^ board,
 HWND messageWindow)
 : Evolution(m, board, messageWindow)
{
}

//
// SequentialEvolution::Run - begins looped evolution
//

The Game of Life | 197

void SequentialEvolution::Run()
{
 // copy source matrix to destination matrix to set up data for call to
 // PrepareForCalculation().
 for (int i=0; i<m_size; i++) {
 *(m_dest+i) = *(m_matrix->data+i);
 }

 while (!m_done)
 {
 PrepareForCalculation();
 Step();
 m_board->draw();
 }
}

//
// SequentialEvolution::Step() - override of step method
//
void SequentialEvolution::Step()
{
 Cell cell;

 for (int i=0; i<m_size; i++) {
 *(m_dest+i) = cell.CalculateState(
 m_matrix->data, // pointer to source data block
 m_matrix->width, // logical width of field
 m_matrix->height, // logical height of field
 i // number of cell position to examine
);
 }
}

Example 11-18. Automaton ParallelEvolution

//
// ParallelEvolution constructor
//
ParallelEvolution::ParallelEvolution(Matrix *m, Board^ board,
 HWND messageWindow)
 : Evolution(m, board, messageWindow)
{
 // instantiate a task_scheduler_init object and save a pointer to it
 m_pInit = NULL;
}

//
// ParallelEvolution destructor
//
ParallelEvolution::~ParallelEvolution()
{

Example 11-17. Automaton SequentialEvolution (continued)

198 | Chapter 11: Examples

Extending the Application
This application is ready for demonstrating the basic Game of Life, but you could
extend it to offer more interesting features. Here are some of the ways you might
extend the application:

• Experiment with grain size or the auto partitioner (see Chapter 3).

• Allow the user to specify the size of the cell grids.

• The program could measure actual performance differences between the sequen-
tial and parallel implementations and display the running results next to the gen-
eration numbers.

• Allow the user to optionally seed the grids with patterns entered via mouse
clicks.

• Offer interesting starting cell configurations, such as the glider, as starting seeds.

• Make two side-by-side grids fit the screen or be otherwise adjustable.

 // delete task_scheduler_init object
 if (m_pInit != NULL)
 delete m_pInit;
}

//
// ParallelEvolution::Run - begins looped evolution
//
void ParallelEvolution::Run()
{
 // start task scheduler as necessary
 if (m_pInit == NULL)
 m_pInit = new task_scheduler_init();

 // copy source matrix to destination matrix to set up data for call to
 // PrepareForCalculation().
 for (int i=0; i<m_size; i++)
 {
 *(m_dest+i) = *(m_matrix->data+i);
 }

 while (!m_done)
 {
 PrepareForCalculation();
 Step();
 m_board->draw();
 }
}

Example 11-18. Automaton ParallelEvolution (continued)

Parallel_reduce Examples | 199

Futher Reading
• Gardner, M. (1970). “Mathematical Games: The fantastic combinations of John

Conway’s new solitaire game ‘life.’” Scientific American, 223, 120–123.

• John Conway’s Game of Life, http://www.bitstorm.org/gameoflife.

• “Mathematical Games,” http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_
projekt/proj_gamelife/ConwayScientificAmerican.htm.

• “Patterns, Programs, and Links for Conway’s Game of Life,” http://www.
radicaleye.com/lifepage.

Parallel_reduce Examples
Parallel_reduce is an extension of the parallel ranges used in earlier examples, but it
adds the complexity of combining results and eventually reducing them back to a
single answer. Studying the examples in this section should make you very comfort-
able with parallel_reduce (Chapter 3).

ParallelSum
Example 11-19 sums the values in an array.

Example 11-19. ParallelSum

#include "tbb/parallel_reduce.h"
#include "tbb/blocked_range.h"

using namespace tbb;

struct Sum {
 float value;
 Sum() : value(0) {}
 Sum(Sum& s, split) {value = 0;}
 void operator()(const blocked_range<float*>& range) {
 float temp = value;
 for(float* a=range.begin(); a!=range.end(); ++a) {
 temp += *a;
 }
 value = temp;
 }
 void join(Sum& rhs) {value += rhs.value;}
};

float ParallelSum(float array[], size_t n) {
 Sum total;
 parallel_reduce(blocked_range<float*>(array, array+n, 1000),
 total);
 return total.value;
}

http://www.bitstorm.org/gameoflife
http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
http://ddi.cs.uni-potsdam.de/HyFISCH/Produzieren/lis_projekt/proj_gamelife/ConwayScientificAmerican.htm
http://www.radicaleye.com/lifepage
http://www.radicaleye.com/lifepage

200 | Chapter 11: Examples

This example is easily converted to do a reduction for any associative operation op as
follows:

1. Replace occurrences of 0 with the identity element for op.

2. Replace occurrences of += with op= or its logical equivalent.

3. Change the name Sum to something more appropriate for op.

The operation is allowed to be noncommutative. For example, op could be matrix
multiplication.

ParallelSum without Having to Specify a Grain Size
Example 11-20 does away with the need to supply a grain size by converting the
prior example to use an auto_partitioner. Note how the block_range loses the
grainsize parameter, and the parallel_reduce has a parameter added specifying our
desire to use the auto_partitioner.

ParallelPrime
This example is a parallel version of the Sieve of Eratosthenes, which finds prime
numbers, written using parallel_reduce. This program computes prime numbers up
to n. The algorithm here is a fairly efficient version of the Sieve of Eratosthenes, even

Example 11-20. ParallelSum with auto_partitioner

#include "tbb/parallel_reduce.h"
#include "tbb/blocked_range.h"

using namespace tbb;

struct Sum {
 float value;
 Sum() : value(0) {}
 Sum(Sum& s, split) {value = 0;}
 void operator()(const blocked_range<float*>& range) {
 float temp = value;
 for(float* a=range.begin(); a!=range.end(); ++a) {
 temp += *a;
 }
 value = temp;
 }
 void join(Sum& rhs) {value += rhs.value;}
};

float ParallelSum(float array[], size_t n) {
 Sum total;
 parallel_reduce(blocked_range<float*>(array, array+n),
 total, auto_partitioner());
 return total.value;
}

Parallel_reduce Examples | 201

though the Sieve is not the most efficient way to find primes. Figure 11-5 shows how
the Sieve of Eratosthenes finds primes through an elimination process.

The parallel version demonstrates how to use parallel_reduce, and in particular,
how to exploit lazy splitting.

For comparison purposes, let’s look at a serial version of the Sieve in Example 11-21.

Aha! Parallel and serial versions of code differ in the middle, and clever
coding can have a shared driver and can share low-level routines,
leaving only a little code different.

Figure 11-5. Finding primes via the Sieve of Eratosthenes

Example 11-21. Serial version of count primes

//! Count number of primes between 0 and n
/** This is the serial version. */
Number SerialCountPrimes(Number n) {
 // Two is special case
 Number count = n>=2;
 if(n>=3) {
 Multiples multiples(n);
 count += multiples.n_factor;
 if(PrintPrimes)
 printf("---\n");
 Number window_size = multiples.m;
 for(Number j=multiples.m; j<=n; j+=window_size) {
 if(j+window_size>n+1)
 window_size = n+1-j;
 count += multiples.find_primes_in_window(j, window_size);
 }
 }
 return count;
}

Start with odd integers

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Strike out odd multiples of 3

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Strike out odd multiples of 5

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Strike out odd multiples of 7

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

202 | Chapter 11: Examples

The equivalent code to do this in parallel is in Example 11-22. The code for the
Multiples class, including find_primes_in_window, is in Example 11-23. The
Multiples class is used by the parallel and serial versions. Both the serial and parallel
versions have subroutines working to find primes in the window.

Example 11-22. Parallel version of count primes

//! Count number of primes between 0 and n
/** This is the parallel version. */
Number ParallelCountPrimes(Number n) {
 // Two is special case
 Number count = n>=2;
 if(n>=3) {
 Sieve s(n);
 count += s.multiples.n_factor;
 if(PrintPrimes)
 printf("---\n");
 parallel_reduce(SieveRange(s.multiples.m, n,
 s.multiples.m, GrainSize),
 s);
 count += s.count;
 }
 return count;
}

Example 11-23. The Multiples class used by the serial and parallel sieves

#include <cassert>
#include <cstdio>
#include <cstring>
#include <math.h>
#include <cstdlib>
#include <cctype>
#include "tbb/parallel_reduce.h"
#include "tbb/task_scheduler_init.h"
#include "tbb/tick_count.h"

using namespace std;
using namespace tbb;

typedef unsigned long Number;

//! If true, then print primes on stdout.
static bool PrintPrimes = false;

//! Grainsize parameter // someday we should
 // convert program to use auto_partitioner
static Number GrainSize = 1000;

class Multiples {
 inline Number strike(Number start,
 Number limit,
 Number stride) {

Parallel_reduce Examples | 203

 // Hoist "my_is_composite" into register for sake of speed.
 bool* is_composite = my_is_composite;
 assert(stride>=2);
 for(;start<limit; start+=stride)
 is_composite[start] = true;
 return start;
 }
 //! Window into conceptual sieve
 bool* my_is_composite;

 //! Indexes into window
 /** my_striker[k] is an index into
 my_composite corresponding to
 an odd multiple of my_factor[k]. */
 Number* my_striker;

 //! Prime numbers less than m.
 Number* my_factor;
public:
 //! Number of factors in my_factor.
 Number n_factor;
 Number m;
 Multiples(Number n) :
 is_forked_copy(false)
 {
 m = Number(sqrt(double(n)));
 // Round up to even
 m += m&1;
 my_is_composite = new bool[m/2];
 my_striker = new Number[m/2];
 my_factor = new Number[m/2];
 n_factor = 0;
 memset(my_is_composite, 0, m/2);
 for(Number i=3; i<m; i+=2) {
 if(!my_is_composite[i/2]) {
 if(PrintPrimes)
 printf("%d\n",(int)i);
 my_striker[n_factor] = strike(i/2, m/2, i);
 my_factor[n_factor++] = i;
 }
 }
 }

 //! Find primes in range [start,window_size),
 // advancing my_striker as we go.
 /** Returns number of primes found. */
 Number find_primes_in_window(Number start,
 Number window_size) {
 bool* is_composite = my_is_composite;
 memset(is_composite, 0, window_size/2);
 for(size_t k=0; k<n_factor; ++k)
 my_striker[k] = strike(my_striker[k]-m/2,

Example 11-23. The Multiples class used by the serial and parallel sieves (continued)

204 | Chapter 11: Examples

 window_size/2,
 my_factor[k]);
 Number count = 0;
 for(Number k=0; k<window_size/2; ++k) {
 if(!is_composite[k]) {
 if(PrintPrimes)
 printf("%ld\n",long(start+2*k+1));
 ++count;
 }
 }
 return count;
 }

 ~Multiples() {
 if(!is_forked_copy)
 delete[] my_factor;
 delete[] my_striker;
 delete[] my_is_composite;
 }

 //--
 // Begin extra members required by parallel version

 //! True if this instance was forked from another instance.
 const bool is_forked_copy;

 Multiples(const Multiples& f, split) :
 n_factor(f.n_factor),
 m(f.m),
 my_is_composite(NULL),
 my_striker(NULL),
 my_factor(f.my_factor),
 is_forked_copy(true)
 {}

 bool is_initialized() const {
 return my_is_composite!=NULL;
 }

 void initialize(Number start) {
 assert(start>=1);
 my_is_composite = new bool[m/2];
 my_striker = new Number[m/2];
 for(size_t k=0; k<n_factor; ++k) {
 Number f = my_factor[k];
 Number p = (start-1)/f*f % m;
 my_striker[k] = (p&1 ? p+2*f : p+f)/2;
 assert(m/2<=my_striker[k]);
 }
 }
 // End extra methods required by parallel version
 //---
};

Example 11-23. The Multiples class used by the serial and parallel sieves (continued)

Parallel_reduce Examples | 205

For the parallel version, a parallel range is required, as shown in Example 11-24. The
class Sieve—which effectively is the body for parallel_reduce—is shown in
Example 11-25.

Example 11-24. Parallel range designed for the sieve

//! Range of a sieve window.
//
// Actually very simple creation of a
// range specialized for the Sieve
//
class SieveRange {
 //! Width of full-size window into sieve.
 const Number my_stride;

 //! Always multiple of my_stride
 Number my_begin;

 //! One past last number in window.
 Number my_end;

 //! Width above which it is worth forking.
 const Number my_grainsize;

 bool assert_okay() const {
 assert(my_begin%my_stride==0);
 assert(my_begin<=my_end);
 assert(my_stride<=my_grainsize);
 return true;
 }
public:
 //--
 // Begin signatures required by parallel_reduce

 // should we split? (is it worth the overhead?)
 bool is_divisible() const {
 return my_end-my_begin>my_grainsize;
 }

 // is the range empty?
 bool empty() const {return my_end<=my_begin;}

 // called to split the range
 SieveRange(SieveRange& r, split) :
 my_stride(r.my_stride),
 my_grainsize(r.my_grainsize),
 my_end(r.my_end)
 {
 assert(r.is_divisible());
 assert(r.assert_okay());
 Number middle = r.my_begin +
 (r.my_end-r.my_begin+r.my_stride-1)/2;

206 | Chapter 11: Examples

 middle = middle/my_stride*my_stride;
 my_begin = middle;
 r.my_end = middle;
 assert(assert_okay());
 assert(r.assert_okay());
 }
 // End of signatures required by parallel_reduce
 //---

 Number begin() const {return my_begin;}
 Number end() const {return my_end;}
 SieveRange(Number begin,
 Number end,
 Number stride,
 Number grainsize) :
 my_begin(begin),
 my_end(end),
 my_stride(stride),
 my_grainsize(grainsize<stride?stride:grainsize)
 {
 assert(assert_okay());
 }
};

Example 11-25. Sieve class used in the parallel sieve

//! Loop body for parallel_reduce.
/** parallel_reduce splits the sieve into subsieves.
 Each subsieve handles a subrange of [0..n]. */
class Sieve {
public:
 //! Prime multiples to consider, and
 // working storage for this subsieve.
 Multiples multiples;

 //! Number of primes found so far by this subsieve.
 Number count;

 //! Construct Sieve for counting primes in [0..n].
 Sieve(Number n) :
 multiples(n),
 count(0)
 {}

 //---
 // Begin signatures required by parallel_reduce

 void operator()(const SieveRange& r) {
 Number m = multiples.m;
 if(multiples.is_initialized()) {
 // Simply reuse "multiples" structure
 // from previous window

Example 11-24. Parallel range designed for the sieve (continued)

Parallel_reduce Examples | 207

Lazy splitting is supported through the reuse of Multiples. This avoids an explosion
of memory allocation and usage, which would occur if all Multiples were created at
once. This can be quite important. Note the extra is_initialized flag that is
designed to help reduce the runtime on reused Multiples. See Example 11-26 for
code that calls SerialCountPrimes and ParallelCountPrimes.

 // This works because parallel_reduce always applies
 // *this from left to right.
 } else {
 // Need to initialize "multiples" because
 // *this is a forked copy
 // that needs to be set up to start at r.begin().
 multiples.initialize(r.begin());
 }
 Number window_size = m;
 for(Number j=r.begin(); j<r.end(); j+=window_size) {
 assert(j%multiples.m==0);
 if(j+window_size>r.end())
 window_size = r.end()-j;
 count += multiples.find_primes_in_window(j, window_size);
 }
 }

 void join(Sieve& other) {
 count += other.count;
 }

 Sieve(Sieve& other, split) :
 multiples(other.multiples,split()),
 count(0)
 {}
 // End of signatures required by parallel_reduce
 //--
};

Example 11-26. Code that calls SerialCountPrimes and ParallelCountPrimes

//! A closed range of Number.
struct NumberRange {
 Number low;
 Number high;
 void set_from_string(const char* s);
 NumberRange(Number low_, Number high_) : low(low_), high(high_) {}
};

void NumberRange::set_from_string(const char* s) {
 char* end;
 high = low = strtol(s,&end,0);
 switch(*end) {
 case ':':
 high = strtol(end+1,0,0);
 break;

Example 11-25. Sieve class used in the parallel sieve (continued)

208 | Chapter 11: Examples

 case '\0':
 break;
 default:
 printf("unexpected character = %c\n",*end);
 }

}

//! Number of threads to use.
static NumberRange NThread(0,4);

//! If true, then at end wait for user to hit return
static bool PauseFlag = false;

//! Parse the command line.
static Number ParseCommandLine(int argc, char* argv[]) {
 Number n = 100000000;
 int i = 1;
 if(i<argc && strcmp(argv[i], "pause")==0) {
 PauseFlag = true;
 ++i;
 }
 if(i<argc && !isdigit(argv[i][0])) {
 // Command line is garbled.
 fprintf(stderr,
 "Usage: %s [['pause'] n [nthread [grainsize]]]\n",
 argv[0]);
 fprintf(stderr,"where n is a positive integer [%lu]\n",n);
 fprintf(stderr,
 "%s the form low:high [%ld:%lu]\n",
 "\tnthread is a non-negative integer, or range of",
 NThread.low,NThread.high);
 fprintf(stderr,
 "\tgrainsize is an optional positive integer [%lu]\n",
 GrainSize);
 exit(1);
 }
 if(i<argc)
 n = strtol(argv[i++],0,0);
 if(i<argc)
 NThread.set_from_string(argv[i++]);
 if(i<argc)
 GrainSize = strtol(argv[i++],0,0);
 return n;
}

static void WaitForUser() {
 char c;
 printf("Press return to continue\n");
 do {
 c = getchar();
 } while(c!='\n');
}

Example 11-26. Code that calls SerialCountPrimes and ParallelCountPrimes (continued)

CountStrings: Using concurrent_hash_map | 209

CountStrings: Using concurrent_hash_map
The container concurrent_hash_map (Chapter 5) is similar to the associative contain-
ers of STL, but it permits concurrent accesses to its elements. The hash table provides
a way to use associative arrays that allows you to store data indexed by keys of any
type you desire. For this example, we will start with a program that uses a standard
STL map (hash map) to count the occurrences of distinct strings in an array and uses
the parallel_for template to run in parallel. Because the STL map is not thread-safe
(STL containers are not thread-safe in general), synchronization is required to avoid
corruption of the map when more than one thread tries to access it concurrently.

Example 11-27 shows our initial hybrid implementation. Step by step, we’ll examine
how to replace the uses of the STL map with a Threading Building Blocks concurrent_
hash_map. Because concurrent_hash_map is thread-safe, this will allow us to remove the
coarse-grained synchronization using a native lock, which STL required.

int main(int argc, char* argv[]) {
 Number n = ParseCommandLine(argc,argv);

 // Try different numbers of threads
 for(Number p=NThread.low; p<=NThread.high; ++p) {
 task_scheduler_init init(task_scheduler_init::deferred);
 // If p!=0, we are doing a parallel run
 if(p)
 init.initialize(p);

 Number count;
 tick_count t0 = tick_count::now();
 if(p==0) {
 count = SerialCountPrimes(n);
 } else {
 count = ParallelCountPrimes(n);
 }
 tick_count t1 = tick_count::now();

 printf("#primes from [2..%lu] = %lu (%.2f sec with ",
 (unsigned long)n,
 (unsigned long)count,
 (t1-t0).seconds());
 if(p)
 printf("%lu-way parallelism)\n", p);
 else
 printf("serial code)\n");
 }
 if(PauseFlag) {
 WaitForUser();
 }
 return 0;
}

Example 11-26. Code that calls SerialCountPrimes and ParallelCountPrimes (continued)

210 | Chapter 11: Examples

Example 11-27. CountStrings using STL map with a coarse-grained lock

1 #include "my_native_lock_wrappers.h"
2 #include <map>
3 #include "tbb/blocked_range.h"
4 #include "tbb/parallel_for.h"
5 #include "tbb/tick_count.h"
6 #include "tbb/task_scheduler_init.h"
7 #include <string>
8 #include <cctype>
9

10 using namespace tbb;
11 using namespace std;
12
13 LOCK_TYPE my_lock;
14
15 //! maps strings to ints.
16 typedef map<string,int> StringTable;
17
18 //! Function object for counting occurrences of strings.
19 struct Tally {
20 StringTable& table;
21 Tally(StringTable& table_) : table(table_) {}
22 void operator()(const blocked_range<string*> range) const {
23 for(string* p=range.begin(); p!=range.end(); ++p) {
24 LOCK_WRAPPER(&my_lock);
25 table[*p] += 1;
26 UNLOCK_WRAPPER(&my_lock);
27 }
28 }
29 };
30
31 const size_t N = 1000000;
32
33 static string Data[N];
34
35 static void CountOccurrences() {
36 StringTable table;
37 LOCK_INIT_WRAPPER(&my_lock);
38 tick_count t0 = tick_count::now();
39 parallel_for(blocked_range<string*>(Data, Data+N, 1000),
40 Tally(table));
41 tick_count t1 = tick_count::now();
42
43 int n = 0;
44 for(StringTable::iterator i=table.begin(); i!=table.end(); ++i) {
45 n+=i->second;
46 }
47 printf("total=%d time = %g\n",n,(t1-t0).seconds());
48 LOCK_DESTROY_WRAPPER(&my_lock);
49 }
50
51 static const string Adjective[] =
52 { "sour", "sweet", "bitter", "salty", "big", "small" };
53

CountStrings: Using concurrent_hash_map | 211

The example code uses an STL map protected by a coarse-grained native lock
because the STL map is not safe for concurrent use. This coarse-grained lock is nec-
essary to ensure that the STL map is not corrupted, but limits concurrency.

On line 39, the CountOccurrences method uses a parallel_for template with a Tally
object as the body and a blocked_range<string *> object to describe the range,
including a grain size of 1000.

The operator() in Tally, lines 22–28, performs the actual calculation in which each
thread iterates through its assigned portion of data and increments the correspond-
ing element in the STL map table. The single lock that controls access to the entire
map is acquired at line 24 and then released at line 26.

Line 47 prints the total time used to tally the occurrences as well as the total number
of strings that were inspected (this total should always equal the data set size of N).

Switching from an STL map

Now we’ll change the definition of the table from an STL map to a Threading Build-
ing Blocks concurrent_hash_map. First, we include the Intel Threading Building
Blocks concurrent_hash_map class at line 1 (Example 11-28) instead of the STL map
class that was at line 2 in the original listing (Example 11-27). Next, we define a
traits class for the map, which shows how the map will perform its two central func-
tions: deriving the hash value and determining whether two values being compared
are equal. MyHashCompare, defined at line 4, provides the hash function to use in map-
ping, as well as a function that evaluates the equality of two keys.

54 static const string Noun[] =
55 { "apple", "banana", "cherry", "date", "eggplant",
56 "fig", "grape", "honeydew", "icao", "jujube" };
57
58 static void CreateData() {
59 size_t n_adjective = sizeof(Adjective)/sizeof(Adjective[0]);
60 size_t n_noun = sizeof(Noun)/sizeof(Noun[0]);
61 for(int i=0; i<N; ++i) {
62 Data[i] = Adjective[rand()%n_adjective];
63 Data[i] += " ";
64 Data[i] += Noun[rand()%n_noun];
65 }
66 }
67
68 int main(int argc, char* argv[]) {
69 srand(2);
70 task_scheduler_init init;
71 CreateData();
72 CountOccurrences();
73 }

Example 11-27. CountStrings using STL map with a coarse-grained lock (continued)

212 | Chapter 11: Examples

The typedef on line 19 of the new example replaces the typedef on line 16 in the
original listing for the StringTable type.

In the next version (Example 11-29), we remove the coarse-grained lock code from
Tally::operator() and use an accessor instead to gain exclusive access to the
concurrent_hash_map element.

A concurrent_hash_map acts as a container of elements of type std::pair<const
Key,T>. Typically, when accessing a container element, you either want to update it
or read it. The concurrent_hash_map template class supports these two purposes with
the accessor and const_accessor classes, respectively. These act as smart pointers
and enable atomic access to elements.

An accessor represents update (write) access. As long as it points to an element, all
other attempts to look up that key in the table will block until the accessor is done
(destroyed).

The lock and unlock at lines 24 and 26 of Example 11-27 are removed here. Instead,
at line 7, an accessor object is created. The element associated with key=*p is exclu-
sively acquired at line 8. If an element already exists for this key, the insert method
returns that element; otherwise, it creates a new one. The value associated with the
key is updated at line 9. The accessor releases the element when it is destroyed at the
end of the operator() method’s scope, at line 10.

The lock declaration, initialization, and destruction are no longer needed (lines 13,
37, and 48 in Example 11-27).

Example 11-28. Converting to use concurrent_hash_map

1 #include <tbb/concurrent_hash_map.h>
2
3 //! Structure that defines hashing and comparison operations for user's type.
4 struct MyHashCompare {
5
6 static size_t hash(const string& x) {
7 size_t h = 0;
8 for(const char* s = x.c_str(); *s; s++)
9 h = (h*17)^*s;

10 return h;
11 }
12 //! True if strings are equal
13 static bool equal(const string& x, const string& y) {
14 return x==y;
15 }
16 };
17
18 //! maps strings to ints.
19 typedef concurrent_hash_map<string,int,MyHashCompare> StringTable;

CountStrings: Using concurrent_hash_map | 213

We have measured the performance of the different CountStrings examples and
found the following:

• An STL map using a Win32 mutex for locks achieved less than one-tenth the
performance of the original sequential version for two, three, or four threads.

• An STL map using Win32 CRITICAL_SECTION for locks achieved about 75 percent
of the performance of the original sequential version for two, three, or four
threads.

• concurrent_hash_map achieved about 125 percent of the performance of the origi-
nal sequential version for two threads and about 150 percent for three or four
threads.

A Win32 mutex is a kernel object that is visible across processes. Although guarding
each access to the STL map with a single mutex object ensures thread safety, doing
so also incurs a very high overhead. On the other hand, a Win32 CRITICAL_SECTION is
a lightweight, user-space, intra-process mutex object, and therefore is the option
more likely to be selected by an experienced developer.

Even though the coarse-grained lock covers only a small increment of a key in the
map, the concurrency provided by the Threading Building Blocks concurrent
container enables speedup over the original sequential program, whereas the coarse-
grained locking of an STL container can not. Example 11-30 shows the final program.

Example 11-29. Switching away from the coarse-grained locks that STL map required

1 //! Function object for counting occurrences of strings.
2 struct Tally {
3 StringTable& table;
4 Tally(StringTable& table_) : table(table_) {}
5 void operator()(const blocked_range<string*> range) const {
6 for(string* p=range.begin(); p!=range.end(); ++p) {
7 StringTable::accessor a;
8 table.insert(a, *p);
9 a->second += 1;

10 }
11 }
12 };

Example 11-30. CountStrings using concurrent_hash_map instead of STL map

#include "tbb/concurrent_hash_map.h"
#include "tbb/blocked_range.h"
#include "tbb/parallel_for.h"
#include "tbb/tick_count.h"
#include "tbb/task_scheduler_init.h"
#include <string>
#include <cctype>

using namespace tbb;
using namespace std;

214 | Chapter 11: Examples

//! Set to true to counts.
static bool Verbose = false;
//! Working threads count
static int NThread = 1;
//! Problem size
const size_t N = 1000000;

//! Structure that defines hashing and comparison operations for user's type.
struct MyHashCompare {
 static size_t hash(const string& x) {
 size_t h = 0;
 for(const char* s = x.c_str(); *s; s++)
 h = (h*17)^*s;
 return h;
 }
 //! True if strings are equal
 static bool equal(const string& x, const string& y) {
 return x==y;
 }
};

//! A concurrent hash table that maps strings to ints.
typedef concurrent_hash_map<string,int,MyHashCompare> StringTable;

//! Function object for counting occurrences of strings.
struct Tally {
 StringTable& table;
 Tally(StringTable& table_) : table(table_) {}
 void operator()(const blocked_range<string*> range) const {
 for(string* p=range.begin(); p!=range.end(); ++p) {
 StringTable::accessor a;
 table.insert(a, *p);
 a->second += 1;
 }
 }
};

static string Data[N];

static void CountOccurrences() {
 StringTable table;

 tick_count t0 = tick_count::now();
 parallel_for(blocked_range<string*>(Data, Data+N, 1000), Tally(table));
 tick_count t1 = tick_count::now();

 int n = 0;
 for(StringTable::iterator i=table.begin(); i!=table.end(); ++i) {
 if(Verbose)
 printf("%s %d\n",i->first.c_str(),i->second);
 n+=i->second;

Example 11-30. CountStrings using concurrent_hash_map instead of STL map (continued)

Quicksort: Visualizing Task Stealing | 215

Quicksort: Visualizing Task Stealing
Although Quicksort is a recursive algorithm, no explicit recursion is needed in
Threading Building Blocks. Aside from studying the code for Quicksort, look to this
example as an illustration of task stealing and range splitting. Let’s go through how it
would work using Threading Building Blocks.

 }
 printf("threads = %d total = %d time = %g\n", NThread, n, (t1-t0).seconds());
}

static const string Adjective[] =
 { "sour", "sweet", "bitter", "salty", "big", "small" };

static const string Noun[] = {
 { "apple", "banana", "cherry", "date", "eggplant",
 "fig", "grape", "honeydew", "icao", "jujube" };

static void CreateData() {
 size_t n_adjective = sizeof(Adjective)/sizeof(Adjective[0]);
 size_t n_noun = sizeof(Noun)/sizeof(Noun[0]);
 for(int i=0; i<N; ++i) {
 Data[i] = Adjective[rand()%n_adjective];
 Data[i] += " ";
 Data[i] += Noun[rand()%n_noun];
 }
}

static void ParseCommandLine(int argc, char* argv[]) {
 int i = 1;
 if(i<argc && strcmp(argv[i], "verbose")==0) {
 Verbose = true;
 ++i;
 }
 if(i<argc && !isdigit(argv[i][0])) {
 fprintf(stderr,"Usage: %s [verbose] number-of-threads\n",argv[0]);
 exit(1);
 }
 if(i<argc) NThread = strtol(argv[i++],0,0);
}

int main(int argc, char* argv[]) {
 srand(2);
 ParseCommandLine(argc, argv);
 task_scheduler_init init(NThread);
 CreateData();
 CountOccurrences();
}

Example 11-30. CountStrings using concurrent_hash_map instead of STL map (continued)

216 | Chapter 11: Examples

Part of the magic is realizing that when you are splitting a parallel range, you are free
to adjust the data in that range before considering it split and handing it off. It is safe
to do this because when a range is being split, there is no concurrent use on that
particular range.

The Quicksort range shown in Example 11-31 is where the partitioning step is done
(using std::swap). Partitioning involves making sure that all the numbers on one side
of a pivot are smaller than or equal to the pivot, and the numbers on the other side
are larger than or equal to it. Without this step, you would end up with a bunch of
sort sections in the array. They appear sorted overall only because of this
partitioning. See Example 11-32 for the Quicksort functions.

Aha! Recursive splitting so that tasks fit available parallelism is very
powerful.

Example 11-31. Quicksort range

template<typename RandomAccessIterator, typename Compare>
struct quick_sort_range {
 static const size_t grainsize = 500;
 const Compare ∁
 RandomAccessIterator begin;
 size_t size;

 quick_sort_range(RandomAccessIterator begin_,
 size_t size_,
 const Compare &comp_) :
 comp(comp_), begin(begin_), size(size_) {}

 bool empty() const {return size==0;}
 bool is_divisible() const {return size>=grainsize;}

 quick_sort_range(quick_sort_range& range, split) : comp(range.comp) {
 RandomAccessIterator array = range.begin;
 RandomAccessIterator key0 = range.begin;
 size_t m = range.size/2u;
 std::swap (array[0], array[m]);

 size_t i=0;
 size_t j=range.size;
 // Partition interval [i+1,j-1] with key *key0.
 for(;;) {
 _ _TBB_ASSERT(i<j, NULL);
 // Loop must terminate since array[l]==*key0.
 do {
 --j;
 _ _TBB_ASSERT(i<=j, "bad ordering relation?");
 } while(comp(*key0, array[j]));

Quicksort: Visualizing Task Stealing | 217

Aha! Splitting a parallel range can be interesting code. It can be a very
active routine. You can play with the data in the region represented by
the range! Oh, the possibilities! See Example 11-31.

 do {
 _ _TBB_ASSERT(i<=j, NULL);
 if(i==j) goto partition;
 ++i;
 } while(comp(array[i],*key0));
 if(i==j) goto partition;
 std::swap(array[i], array[j]);
 }
partition:
 // Put the partition key where it belongs
 std::swap(array[j], *key0);
 // array[l..j) is less or equal to key.
 // array(j..r) is greater than or equal to key.
 // array[j] is equal to key
 i=j+1;
 begin = array+i;
 size = range.size-i;
 range.size = j;
 }
};

Example 11-32. Quicksort functions

template<typename RandomAccessIterator, typename Compare>
struct quick_sort_body {
 void operator()(const quick_sort_range<RandomAccessIterator,
 Compare>& range) const {
 //SerialQuickSort(range.begin, range.size, range.comp);
 std::sort(range.begin, range.begin + range.size, range.comp);
 }
};

template<typename RandomAccessIterator, typename Compare>
void parallel_quick_sort(RandomAccessIterator begin,
 RandomAccessIterator end,
 const Compare& comp) {
 parallel_for(quick_sort_range<RandomAccessIterator,Compare>
 (begin, end-begin, comp),
 quick_sort_body<RandomAccessIterator,Compare>());
}

template<typename RandomAccessIterator, typename Compare>
void parallel_sort(RandomAccessIterator begin,
 RandomAccessIterator end, const Compare& comp) {
 const int min_parallel_size = 500;
 if(end > begin) {
 if (end - begin < min_parallel_size) {

Example 11-31. Quicksort range (continued)

218 | Chapter 11: Examples

Figure 11-6 through Figure 11-15 show how recursion and task stealing might
progress for a simple instantiation of tbb::parallel_sort(color,color+64). Four
threads are shown, which is what Threading Building Blocks would create on a
quad-core, processor-based machine. If you ran this on a dual-core machine, you
would get only two threads. The shading in the figures shows which of the four
threads handles each data set. As you read through the figures, look at the bottom of
each one to see what’s changed—that is, to see how data sets split and are taken by
different threads.

The ten steps have been sequenced to help illustrate the key steps. Because splitting
and sorting run in parallel, and the only synchronization occurs when task stealing
takes place, the timeline for progress is more rapid than these figures might lead you
to believe.

The task scheduler built into Threading Building Blocks has each thread do a very
simple job: pick up work from the local task pool, and split it if it is deemed
splittable; otherwise, it sorts it. If the local task queue is empty, the thread looks to
steal from another queue. It is that simple.

Aha! Recursive functions convert to parallelism easily using parallel_
for. It is not obvious to use parallel_for for recursion, such as Quick-
sort, at least not until you have this Aha! moment. It makes sense
because recursion is about splitting up work, and so is parallel_for.

The task stealing is biased toward stealing from the cold end of the task pool in order
to leave behind the work that is most likely to have data in the cache of the other
thread. The task pool is used as last-in first-out locally, but it is stolen from as first-in

 std::sort(begin, end, comp);
 } else {
 parallel_quick_sort(begin, end, comp);
 }
 }
}

template<typename RandomAccessIterator>
inline void parallel_sort(RandomAccessIterator begin,
 RandomAccessIterator end) {
 parallel_sort(begin, end, std::less< typename std::iterator_
traits<RandomAccessIterator>::value_type >());
}

template<typename T>
inline void parallel_sort(T * begin, T * end) {
 parallel_sort(begin, end, std::less< T >());
}

Example 11-32. Quicksort functions (continued)

Quicksort: Visualizing Task Stealing | 219

first-out. This helps avoid cache thrash and tends to give priority to moving larger
chunks of work at a time. Avoiding cache thrash is not going to show up in this small
example, but it turns out to be reasonably important in real-life applications.

Figure 11-6. Quicksort: all work starts assigned to Thread 1

Figure 11-7. Quicksort: Thread 1 splits the workload

Figure 11-8. Quicksort: Thread 2 steals work for itself

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

01 23 45 6 789 10 11 12131415 16 171819 20 2122 23242526 27 2829 3031 3332 34 3536 37 38 39 404142 4344 45 46474849 5051 52 535455 5657 585960 6162 63

THREAD 1 THREAD 3 THREAD 2 THREAD 4

Thread 1 starts with
the initial data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

01 23 45 6 789 10 11 12131415 16 171819 20 2122 23242526 27 2829 3031 3332 34 3536 37 38 39 404142 4344 45 46474849 5051 52 535455 5657 585960 6162 63

THREAD 1 THREAD 3 THREAD 2 THREAD 4

Thread 1 partitions/
splits the data

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7

15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35
37

47 41 43 53 60 61 38 56 48 59 54 5052

49 51 45 62 39 42 40 58 55 57 44 46 63

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

01 23 45 6 789 10 11 12131415 16 171819 20 2122 23242526 27 2829 3031 3332 34 3536 37 38 39 404142 4344 45 46474849 5051 52 535455 5657 585960 6162 63

THREAD 1 THREAD 3 THREAD 2 THREAD 4

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7

15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35
37

47 41 43 53 60 61 38 56 48 59 54 5052

49 51 45 62 39 42 40 58 55 57 44 46 63

Thread 2 gets work by
stealing from Thread 1

220 | Chapter 11: Examples

Figure 11-9. Quicksort: both Thread 1 and Thread 2 split their workloads

Figure 11-10. Quicksort: Threads 3 and 4 steal work

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

01 23 45 6 789 10 11 12131415 16 171819 20 2122 23242526 27 2829 3031 3332 34 3536 37 38 39 404142 4344 45 46474849 5051 52 535455 5657 585960 6162 63

THREAD 1 THREAD 3 THREAD 2 THREAD 4

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7

15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35
37

47 41 43 53 60 61 38 56 48 59 54 5052

49 51 45 62 39 42 40 58 55 57 44 46 63

Thread 1 partitions/
splits its data

Thread 2 partitions/
splits its data

1 0 2

3

12 29 27 19 20 30 33 31 25 21

6 4 5 7 15 17 26 18 16 10 9 23 13 14 8 24

36 32 28 22 34

11

35

62515250

5558615659

54

63536057

49

45 47 41

46 44 40 38

42 48

43

39

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

01 23 45 6 789 10 11 12131415 16 171819 20 2122 23242526 27 2829 3031 3332 34 3536 37 38 39 404142 4344 45 46474849 5051 52 535455 5657 585960 6162 63

THREAD 1 THREAD 3 THREAD 2 THREAD 4

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7

15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35
37

47 41 43 53 60 61 38 56 48 59 54 5052

49 51 45 62 39 42 40 58 55 57 44 46 63

Thread 4 gets work by
stealing from Thread 2

1 0 2

3

12 29 27 19 20 30 33 31 25 21

6 4 5 7 15 17 26 18 16 10 9 23 13 14 8 24

36 32 28 22 34

11

35

62515250

5558615659

54

63536057

49

45 47 41

46 44 40 38

42 48

43

39

Thread 3 gets work by
stealing from Thread 1

Quicksort: Visualizing Task Stealing | 221

Figure 11-11. Quicksort: some workloads are split while others finish

Figure 11-12. Quicksort: Thread 1 steals work, Thread 3 finishes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

01 23 45 6 789 10 11 12131415 16 171819 20 2122 23242526 27 2829 3031 3332 34 3536 37 38 39 404142 4344 45 46474849 5051 52 535455 5657 585960 6162 63

THREAD 1 THREAD 3 THREAD 2 THREAD 4

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7

15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35
37

47 41 43 53 60 61 38 56 48 59 54 5052

49 51 45 62 39 42 40 58 55 57 44 46 63

1 0 2

3

12 29 27 19 20 30 33 31 25 21

6 4 5 7 15 17 26 18 16 10 9 23 13 14 8 24

36 32 28 22 34

11

35

62515250

5558615659

54

63536057

49

45 47 41

46 44 40 38

42 48

43

39

Thread 3 partitions/
splits its data

Thread 1 sorts the
rest of its data

Thread 2 sorts the
rest of its data

Thread 4 sorts the
rest of its data

12 29271920

3033312521

1517

26

1816109 23

13148

24

36 32 28 22 34

11

35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

01 23 45 6 789 10 11 12131415 16 171819 20 2122 23242526 27 2829 3031 3332 34 3536 37 38 39 404142 4344 45 46474849 5051 52 535455 5657 585960 6162 63

THREAD 1 THREAD 3 THREAD 2 THREAD 4

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7

15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35
37

47 41 43 53 60 61 38 56 48 59 54 5052

49 51 45 62 39 42 40 58 55 57 44 46 63

1 0 2

3

12 29 27 19 20 30 33 31 25 21

6 4 5 7 15 17 26 18 16 10 9 23 13 14 8 24

36 32 28 22 34

11

35

62515250

5558615659

54

63536057

49

45 47 41

46 44 40 38

42 48

43

39

Thread 1 gets more work
by stealing from Thread 3

Thread 3 sorts the
rest of its data

12 29271920

3033312521

1517

26

1816109 23

13148

24

36 32 28 22 34

11

35

222 | Chapter 11: Examples

Figure 11-13. Quicksort: Thread 1 workload is still splittable

Figure 11-14. Thread 2 steals work, Thread 1 finishes

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

01 23 45 6 789 10 11 12131415 16 171819 20 2122 23242526 27 2829 3031 3332 34 3536 37 38 39 404142 4344 45 46474849 5051 52 535455 5657 585960 6162 63

THREAD 1 THREAD 3 THREAD 2 THREAD 4

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35

37
47 41 43 53 60 61 38 56 48 59 54 5052

49 51 45 62 39 42 40 58 55 57 44 46 63

1 0 2

3

12 29 27 19 20 30 33 31 25 21
6 4 5 7 15 17 26 18 16 10 9 23 13 14 8 24

36 32 28 22 34

11

35

62515250
5558615659

54

63536057
49

45 47 41
46 44 40 38
42 48

43

39

Thread 1 partitions/
splits its data

12 29271920
3033312521

1517

26
1816109 23

13148
24

36 32 28 22 34

11

35

29
27

19

20

30 33

31

25
21
26

23
24 36 32 2822

34 35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

01 23 45 6 789 10 11 12131415 16 171819 20 2122 23242526 27 2829 3031 3332 34 3536 37 38 39 404142 4344 45 46474849 5051 52 535455 5657 585960 6162 63

THREAD 1 THREAD 3 THREAD 2 THREAD 4

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7
15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35

37
47 41 43 53 60 61 38 56 48 59 54 5052

49 51 45 62 39 42 40 58 55 57 44 46 63

1 0 2

3

12 29 27 19 20 30 33 31 25 21
6 4 5 7 15 17 26 18 16 10 9 23 13 14 8 24

36 32 28 22 34

11

35

62515250
5558615659

54

63536057
49

45 47 41
46 44 40 38
42 48

43

39

Thread 1 sorts the
rest of its data

12 29271920
3033312521

1517

26
1816109 23

13148
24

36 32 28 22 34

11

35

29
27

19

20

30 33

31

25
21
26

23
24 36 32 2822

34 35

Thread 2 gets more work
by stealing from Thread 1

A Better Matrix Multiply (Strassen) | 223

A Better Matrix Multiply (Strassen)
This implementation uses the task scheduler to run a seven-task version of the
Strassen algorithm. It is an excellent and simple introduction to using the task
scheduler (Chapter 9).

The Strassen algorithm is faster than the standard matrix multiply process for large
matrixes. Volker Strassen published his algorithm in 1969 and was the first to point
out that the standard method of Gaussian elimination is not optimal. His paper
touched off a search for even faster algorithms.

The parallel implementation is found in the StrassenMultiply class. Instead of a
recursive function call, we create a new task of type StrassenMultiply that will oper-
ate with the submatrixes (see Example 11-35). Seven new tasks are created to com-
pute p1…p7. Those new tasks are put into the tbb::task_list (Chapter 9) and then
they are all spawned by the spawn_and_wait_for_all (list) function. After all of the
children are finished, it calculates the resulting submatrixes. The recursion ends

Figure 11-15. When Thread 2 finishes, all work is done

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3332 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

01 23 45 6 789 10 11 12131415 16 171819 20 2122 23242526 27 2829 3031 3332 34 3536 37 38 39 404142 4344 45 46474849 5051 52 535455 5657 585960 6162 63

THREAD 1 THREAD 3 THREAD 2 THREAD 4

11 0 9 26 31 30 3 19 12 29 27 1 20 5 33 4 25 21 7

15 17 6 18 16 10 2 23 13 14 8 24 36 32 28 22 34 35
37

47 41 43 53 60 61 38 56 48 59 54 5052

49 51 45 62 39 42 40 58 55 57 44 46 63

1 0 2

3

12 29 27 19 20 30 33 31 25 21

6 4 5 7 15 17 26 18 16 10 9 23 13 14 8 24

36 32 28 22 34

11

35

62515250

5558615659

54

63536057

49

45 47 41

46 44 40 38

42 48

43

39

Thread 2 sorts the
rest of its data

12 29271920

3033312521

1517

26

1816109 23

13148

24

36 32 28 22 34

11

35

29

27

19

20

30 33

31

25

21

26

23

24 36 32 2822

34 35

224 | Chapter 11: Examples

when the matrix size becomes less than the cutoff parameter, and it uses a serial
algorithm to multiply these smaller matrixes.

The serial version uses two temporary arrays (a_cum and b_cum) to store things such as
(a11+a22) and (b21+b22) (operands for the recursive call to compute pj). Those arrays
are being reused to compute p1...p7. For Threading Building Blocks, this would not
work and the memory will be spoiled by the part that prepares arguments for the fol-
lowing pj. So, we have to allocate new arrays for each child task. All memory alloca-
tion is performed by the alloca function that allocates memory on the function stack,
so it gets cleaned up when the function returns. It should work faster than malloc.

There are three versions of matrix multiplication: matrix_mult (serial simple
algorithm, not shown), strassen_mult (Strassen serial, not shown), and strassen_
mult_par (Strassen parallel, shown in Example 11-33).

Example 11-34 shows timing results from a quad-core system with 1024 × 1024
matrixes. It shows a 2.43X speedup for Strassen due to parallelism through an imple-
mentation without any tuning work or special compiler switches, so there may be
more opportunity to tune after this first step of making it run in parallel.
Example 11-35 shows the StrassenMultiply task, and Example 11-36 shows the
main program to call the various matrix multiply routines.

Aha! Parallel and serial versions of code differ in the middle, and clever
coding can have a shared driver and shared low-level routines, leaving
only a little code different.

Example 11-33. strassen_mult_par (Strassen parallel)

void strassen_mult_par (
 // dimensions of A, B, and C submatrices
 int n,
 // (ax,ay) = origin of A submatrix for multiplicand
 double *A, int ax, int ay, int as,
 // (bx,by) = origin of B submatrix for multiplicand
 double *B, int bx, int by, int bs,
 // (cx,cy) = origin of C submatrix for result
 double *C, int cx, int cy, int cs,
 // current depth of Strassen's recursion
 int d,
 // Strassen's recursion limit for array dimensions
 int s
)
{
 StrassenMultiply& t = *new (tbb::task::allocate_root ())
 StrassenMultiply (n, A, ax, ay, as,
 B, bx, by, bs,
 C, cx, cy, cs, d, s);
 tbb::task::spawn_root_and_wait (t);
}

A Better Matrix Multiply (Strassen) | 225

Example 11-34. Strassen timing results

Simple serial: 12.6384 seconds
Srassen serial: 1.39001 seconds
Strassen parallel: 0.571969 seconds

Example 11-35. The StrassenMultiply task

/*
 * Perform A x B => C for square submatrices of
 * A, B, and C assuming the submatrix
 * dimension is divisible by two.
 *
 * First, decompose matrices as follows:
 * n_2 = n/2 = order of partitioned matrices
 *
 * ------------- ------------- -------------
 * n/2 ! a11 ! a12 ! ! b11 ! b12 ! ! c11 ! c12 ! n/2
 * !-----!-----!*!-----!-----! = !-----!-----!
 * n/2 ! a21 ! a22 ! ! b21 ! b22 ! ! c21 ! c22 ! n/2
 * ------------- ------------- -------------
 * n/2 n/2 n/2 n/2 n/2 n/2
 *
 * algorithm:
 * Then, compute temp. Matrices as follows:
 * p1 = (a11+a22)*(b11+b22)
 * p2 = (a21+a22)*b11
 * p3 = a11*(b12-b22)
 * p4 = a22*(b21-b11)
 * p5 = (a11+a12)*b22
 * p6 = (a21-a11)*(b11+b12)
 * p7 = (a12-a22)*(b21+b22)
 *
 * In the end, when all temp. matrices are ready,
 * compute the result matrix C:
 * c11 = p1+p4-p5+p7
 * c12 = p3+p5
 * c21 = p2+p4
 * c22 = p1+p3-p2+p6
 *
 * Each matrix multiplication is implemented as a
 * recursive call to strassen_mult.
 */
class StrassenMultiply : public tbb::task {
 int n, ax, ay, as, bx, by, bs, cx, cy, cs, d, s;
 double *A, *B, *C;
public:
 // dimensions of A, B, and C submatrices
 StrassenMultiply (int _n,
 // (ax,ay) = origin of A submatrix for multiplicand
 double *_A, int _ax, int _ay, int _as,
 // (bx,by) = origin of B submatrix for multiplicand
 double *_B, int _bx, int _by, int _bs,
 // (cx,cy) = origin of C submatrix for result
 double *_C, int _cx, int _cy, int _cs,

226 | Chapter 11: Examples

 // current depth of Strassen's recursion
 int _d,
 // Strassen's recursion limit for array dimensions
 int _s
): n(_n), A(_A), B(_B), C(_C),
 ax(_ax), ay(_ay), as(_as), bx(_bx), by(_by), bs(_bs),
 cx(_cx), cy(_cy), cs(_cs), d(_d), s(_s) {}

 tbb::task* execute () {
 if (n < s) {
 // just do the simple algorithm for small matrices
 matrix_mult(n, n, n, A, ax, ay, as,
 B, bx, by, bs, C, cx, cy, cs, d);
 } else {

 // we are going to create a list of seven tasks –
 // those tasks may create seven more each
 tbb::task_list list;
 int count = 1;

 int n_2 = n >> 1;
 double *work;
 double *p1, *p2, *p3, *p4, *p5, *p6, *p7;

 work = (double *) alloca (sizeof(double) * n_2 * n_2 * 9);
 p1 = work;
 p2 = p1 + n_2 * n_2;
 p3 = p2 + n_2 * n_2;
 p4 = p3 + n_2 * n_2;
 p5 = p4 + n_2 * n_2;
 p6 = p5 + n_2 * n_2;
 p7 = p6 + n_2 * n_2;

 // p1 = (a11 + a22) x (b11 + b22)
 double* a_cum1 =
 (double *) alloca (sizeof(double) * n_2 * n_2);
 double* b_cum1 =
 (double *) alloca (sizeof(double) * n_2 * n_2);
 matrix_add(n_2, n_2, A, ax, ay, as,
 A, ax+n_2, ay+n_2, as, a_cum1, 0, 0, n_2);
 matrix_add(n_2, n_2, B, bx, by, bs,
 B, bx+n_2, by+n_2, bs, b_cum1, 0, 0, n_2);
 ++count;
 list.push_back (*new (allocate_child ())
 StrassenMultiply (n_2, a_cum1, 0, 0, n_2,
 b_cum1, 0, 0, n_2, p1, 0, 0, n_2, d+1, s));

 // p2 = (a21 + a22) x b11
 double* a_cum2 = (double *) alloca (sizeof(double) * n_2 * n_2);
 matrix_add(n_2, n_2, A, ax+n_2,
 ay, as, A, ax+n_2, ay+n_2, as, a_cum2, 0, 0, n_2);

Example 11-35. The StrassenMultiply task (continued)

A Better Matrix Multiply (Strassen) | 227

 ++count;
 list.push_back (*new (allocate_child ())
 StrassenMultiply (n_2, a_cum2, 0, 0, n_2,
 B, bx, by, bs, p2, 0, 0, n_2, d+1, s));

 // p3 = a11 x (b12 - b22)
 double* b_cum3 = (double *) alloca (sizeof(double) * n_2 * n_2);
 matrix_sub(n_2, n_2, B, bx,
 by+n_2, bs, B, bx+n_2, by+n_2, bs, b_cum3, 0, 0, n_2);
 ++count;
 list.push_back (*new (allocate_child ())
 StrassenMultiply (n_2, A, ax, ay, as,
 b_cum3, 0, 0, n_2, p3, 0, 0, n_2, d+1, s));

 // p4 = a22 x (b21 - b11)
 double* b_cum4 = (double *) alloca (sizeof(double) * n_2 * n_2);
 matrix_sub(n_2, n_2, B, bx+n_2,
 by, bs, B, bx, by, bs, b_cum4, 0, 0, n_2);
 ++count;
 list.push_back (*new (allocate_child ())
 StrassenMultiply (n_2, A, ax+n_2, ay+n_2, as,
 b_cum4, 0, 0, n_2, p4, 0, 0, n_2, d+1, s));

 // p5 = (a11 + a12) x b22
 double* a_cum5 = (double *) alloca (sizeof(double) * n_2 * n_2);
 matrix_add(n_2, n_2, A, ax,
 ay, as, A, ax, ay+n_2, as, a_cum5, 0, 0, n_2);
 ++count;
 list.push_back (*new (allocate_child ())
 StrassenMultiply (n_2, a_cum5, 0, 0, n_2,
 B, bx+n_2, by+n_2, bs, p5, 0, 0, n_2, d+1, s));

 // p6 = (a21 - a11) x (b11 + b12)
 double* a_cum6 = (double *) alloca (sizeof(double) * n_2 * n_2);
 double* b_cum6 = (double *) alloca (sizeof(double) * n_2 * n_2);
 matrix_sub(n_2, n_2, A, ax+n_2,
 ay, as, A, ax, ay, as, a_cum6, 0, 0, n_2);
 matrix_add(n_2, n_2, B, bx,
 by, bs, B, bx, by+n_2, bs, b_cum6, 0, 0, n_2);
 ++count;
 list.push_back (*new (allocate_child ())
 StrassenMultiply (n_2, a_cum6, 0, 0, n_2,
 b_cum6, 0, 0, n_2, p6, 0, 0, n_2, d+1, s));

 // p7 = (a12 - a22) x (b21 + b22)
 double* a_cum7 = (double *) alloca (sizeof(double) * n_2 * n_2);
 double* b_cum7 = (double *) alloca (sizeof(double) * n_2 * n_2);
 matrix_sub(n_2, n_2, A, ax,
 ay+n_2, as, A, ax+n_2, ay+n_2, as, a_cum7, 0, 0, n_2);
 matrix_add(n_2, n_2, B, bx+n_2,
 by, bs, B, bx+n_2, by+n_2, bs, b_cum7, 0, 0, n_2);

Example 11-35. The StrassenMultiply task (continued)

228 | Chapter 11: Examples

 ++count;
 list.push_back (*new (allocate_child ())
 StrassenMultiply (n_2, a_cum7, 0, 0, n_2,
 b_cum7, 0, 0, n_2, p7, 0, 0, n_2, d+1, s));

 set_ref_count (count);
 spawn_and_wait_for_all (list);

 // c11 = p1 + p4 - p5 + p7
 matrix_add(n_2, n_2, p1, 0,
 0, n_2, p4, 0, 0, n_2, C, cx, cy, cs);
 matrix_sub(n_2, n_2, C, cx,
 cy, cs, p5, 0, 0, n_2, C, cx, cy, cs);
 matrix_add(n_2, n_2, C, cx,
 cy, cs, p7, 0, 0, n_2, C, cx, cy, cs);

 // c12 = p3 + p5
 matrix_add(n_2, n_2, p3, 0,
 0, n_2, p5, 0, 0, n_2, C, cx, cy+n_2, cs);

 // c21 = p2 + p4
 matrix_add(n_2, n_2, p2, 0,
 0, n_2, p4, 0, 0, n_2, C, cx+n_2, cy, cs);

 // c22 = p1 + p3 - p2 + p6
 matrix_add(n_2, n_2, p1, 0,
 0, n_2, p3, 0, 0, n_2, C, cx+n_2, cy+n_2, cs);
 matrix_sub(n_2, n_2, C, cx+n_2,
 cy+n_2, cs, p2, 0, 0, n_2, C, cx+n_2, cy+n_2, cs);
 matrix_add(n_2, n_2, C, cx+n_2,
 cy+n_2, cs, p6, 0, 0, n_2, C, cx+n_2, cy+n_2, cs);
 }
 return NULL;
 }
};

Example 11-36. The main program to call the various matrix multiply routines

void init (size_t size, double* A, double* B) {
 srand((unsigned int)time(NULL));
 for (size_t i = 0; i < size; i++) {
 for (size_t j = 0; j < size; j++) {
 A[i*size + j] = ((float) rand()) / ((float) RAND_MAX);
 B[i*size + j] = ((float) rand()) / ((float) RAND_MAX);
 }
 }
}

int main(int argc, char *argv[])
{
 double *A, *B, *C, *D, *E;

Example 11-35. The StrassenMultiply task (continued)

A Better Matrix Multiply (Strassen) | 229

 // Allocate array storage
 A = new double [size * size];
 B = new double [size * size];
 C = new double [size * size];
 D = new double [size * size];
 E = new double [size * size];

 // Set up input matrices with random values
 init (size, A, B);

 std::cerr << "Parameters:" << std::endl <<
 " array size: " << size << "x" << size << std::endl <<
 " threads: " << threadreq << std::endl <<
 " strassen minimum: " << strass << std::endl <<
 " matmul blocksize: " << block << std::endl;

 // Blocked serial matrices multiplication
 tbb::tick_count simple1 = tbb::tick_count::now ();
 matrix_mult (size, size, size,
 A, 0, 0, size,
 B, 0, 0, size,
 D, 0, 0, size, 0);
 tbb::tick_count simple2 = tbb::tick_count::now ();
 std::cerr << "Simple serial algorithm: " <<
 (simple2-simple1).seconds () << " seconds" << std::endl;

 // Strassen algorithm [Serial]
 tbb::tick_count serial1 = tbb::tick_count::now ();
 strassen_mult (size, A, 0, 0, size,
 B, 0, 0, size,
 C, 0, 0, size, 1, strass);
 tbb::tick_count serial2 = tbb::tick_count::now ();
 std::cerr << "Strassen algorithm serial: " <<
 (serial2-serial1).seconds () << " seconds" << std::endl;

 // Strassen algorithm [Parallel]
 tbb::task_scheduler_init init (threadreq);
 tbb::tick_count parallel1 = tbb::tick_count::now ();
 strassen_mult_par (size, A, 0, 0, size,
 B, 0, 0, size,
 E, 0, 0, size, 1, strass);
 tbb::tick_count parallel2 = tbb::tick_count::now ();
 std::cerr << "Strassen algorithm parallel: " <<
 (parallel2-parallel1).seconds () << " seconds" << std::endl;

 delete[] A;
 delete[] B;
 delete[] C;
 delete[] D;
 delete[] E;

 return 0;
}

Example 11-36. The main program to call the various matrix multiply routines (continued)

230 | Chapter 11: Examples

Advanced Task Programming
This section could be called “Dummy Tasks to the Rescue” because, although the
design of Threading Building Blocks is very simple at the core, there are times when
you want a little more help.

This section has two examples that use a dummy task to create relationships among
tasks that at first seem impossible because they have non-treelike dependence
graphs. In the first example, we give a sibling task to the main program that is usu-
ally the base of the tree. In the second example, we set up a pipeline with a fork in it.
It is a classic example of avoiding locks through implicit synchronization. We’ll
name the two examples as follows:

• Start a Large Task in Parallel with the Main Program

• Two Mouths: Feeding Two from the Same Task in a Pipeline

Start a Large Task in Parallel with the Main Program
Instead of having all threads execute portions of a problem, it is possible to start a
task in parallel with the main application. We’ve seen a number of requests for how
to do this. The trick is to use a nonexecuting dummy task as the parent on which to
synchronize, as shown in Example 11-37. Something very close to this trick is already
used in tbb/parallel_while.h and tbb/parallel_scan.h, shown earlier.

One of the beautiful things about this approach is that each half of the program is
free to invoke as much parallelism as it desires. The task-based approach of Thread-
ing Building Blocks does the load balancing and manages the assignment of tasks to
threads without causing oversubscription.

Example 11-37. Using a dummy task for synchronization

1 // The technique is similar to one used in tbb/parallel_while.h
2
3 #include "tbb/task.h"
4 #include "tbb/task_scheduler_init.h"
5 #include <stdio.h>
6 #include <stdlib.h>
7
8 //! Some busywork
9 void TwiddleThumbs(const char * message, int n) {

10 for(int i=0; i<n; ++i) {
11 printf(" %s: i=%d\n",message,i);
12 static volatile int x;
13 for(int j=0; j<20000000; ++j)
14 ++x;
15 }
16 }
17

Advanced Task Programming | 231

In the example, the main program starts up an additional task called SideShow as the
child of a dummy parent task. The parent task is never started and is therefore well
suited to use in synchronization to determine whether and when the SideShow has
completed. The example in the following section builds on this one to solve a
common problem in parallel programs.

18 //! SideShow task
19 class SideShow: public tbb::task {
20 tbb::task* execute() {
21 TwiddleThumbs("Sideshow task",4);
22 return NULL;
23 }
24 };
25
26 //! Start up a SideShow task.
27 //! Return pointer to dummy task that acts as parent of the SideShow.
28 tbb::empty_task* StartSideShow() {
29 tbb::empty_task* parent = new(tbb::task::allocate_root()) tbb::empty_task;
30 // 2 = 1 for SideShow and C
31 parent->set_ref_count(2);
32 SideShow* s = new(parent->allocate_child()) SideShow;
33 parent->spawn(*s);
34 return parent;
35 }
36
37 //! Wait for SideShow task. Argument is dummy parent of the SideShow.
38 void WaitForSideShow(tbb::empty_task* parent) {
39 parent->wait_for_all();
40 // parent not actually run, so we need to destroy it explicitly.
41 // (If you forget this line, the debug version of tbb reports a task leak.)
42 parent->destroy(*parent);
43 }
44
45 //! Optional command-line argument is number of threads to use. Default is 2.
46 int main(int argc, char* argv[]) {
47 tbb::task_scheduler_init init(argc>1 ? strtol(argv[1],0,0) : 2);
48 // Loop over n tests various cases where SideShow/Main finish twiddling first.
49 for(int n=3; n<=5; ++n) {
50 printf("\ntest with n=%d\n",n);
51
52 // Start up a Sideshow task
53 tbb::empty_task* e = StartSideShow();
54
55 // Do some useful work
56 TwiddleThumbs("master",n);
57
58 // Wait for Sideshow task to complete
59 WaitForSideShow(e);
60 }
61 return 0;
62 }

Example 11-37. Using a dummy task for synchronization (continued)

232 | Chapter 11: Examples

The main and SideShow tasks are free to create more tasks by using parallel algo-
rithms from Threading Building Blocks or the task scheduler. There is no danger of
oversubscription, so there is no need for the SideShow developer and the developer of
the main program to coordinate their decisions on parallelism unless they share some
data. If SideShow and the main program share, the developers need only talk about
safe concurrent access to data. There is still no need to discuss load balancing
because it is automatic when using Threading Building Blocks to manage your
parallelism.

The program is instrumented with some simple printf calls to show the various
cases where the main program completes before and after the SideShow task.
Table 11-1 shows the output from a dual-core system running Windows Vista and
using Intel Threading Building Blocks 1.1 for Windows. The program was run with
input arguments of one, two, and four threads, to set the number of threads for the
purposes of illustration. With only one thread you can see there is no parallelism.

Table 11-1. Output from TwiddleThumbs in the example

Only one thread run (run on a two-
core system)

Run with two threads (run on a two-
core system)

Run with four threads (run on a two-
core system)

test with n=3
 master: i=0
 master: i=1
 master: i=2
 Sideshow task: i=0
 Sideshow task: i=1
 Sideshow task: i=2
 Sideshow task: i=3

test with n=4
 master: i=0
 master: i=1
 master: i=2
 master: i=3
 Sideshow task: i=0
 Sideshow task: i=1
 Sideshow task: i=2
 Sideshow task: i=3

test with n=5
 master: i=0
 master: i=1
 master: i=2
 master: i=3
 master: i=4
 Sideshow task: i=0
 Sideshow task: i=1
 Sideshow task: i=2
 Sideshow task: I=3

test with n=3
 master: i=0
 Sideshow task: i=0
 master: i=1
 Sideshow task: i=1
 master: i=2
 Sideshow task: i=2
 Sideshow task: i=3

test with n=4
 master: i=0
 Sideshow task: i=0
 Sideshow task: i=1
 master: i=1
 master: i=2
 Sideshow task: i=2
 master: i=3
 Sideshow task: i=3

test with n=5
 master: i=0
 Sideshow task: i=0
 master: i=1
 Sideshow task: i=1
 master: i=2
 master: i=3
 Sideshow task: i=2
 master: i=4
 Sideshow task: i=3

test with n=3
 master: i=0
 Sideshow task: i=0
 Sideshow task: i=1
 master: i=1
 Sideshow task: i=2
 master: i=2
 Sideshow task: i=3

test with n=4
 master: i=0
 Sideshow task: i=0
 master: i=1
 Sideshow task: i=1
 master: i=2
 Sideshow task: i=2
 master: i=3
 Sideshow task: i=3

test with n=5
 master: i=0
 Sideshow task: i=0
 Sideshow task: i=1
 Sideshow task: i=2
 master: i=1
 master: i=2
 Sideshow task: i=3
 master: i=3
 master: i=4

Advanced Task Programming | 233

Two Mouths: Feeding Two from the Same Task in a Pipeline
Imagine you have a couple of pipelines and you want to merge results from different
pipelines in a task.

Additionally, suppose the output of at least one task feeds more than a single task.
Normally, a task can feed only one other task in a pipeline. The solution is to use a
dummy task inside a task to link in the data for the task that feeds two dependents.

Figure 11-16 shows a diagram for a desired pipeline that contains a split such that
the output of one stage is used by two other stages. This is a pretty typical-looking
set of parallel pipelines such as you might find in any variety of signal-processing or
multimedia applications. The temptation is to give up after the third step and do the
merges back into the main program, but that would give up the parallelism available
during the merges. Likewise, we do not want to execute the middle pipeline (ending
with FILTER B) twice.

To focus on the problem we’re solving, we need only look at the last two phases, as
shown in Figure 11-17. The actual solution is to create a DUMMY task solely for the
sake of synchronization, as shown in Figure 11-18. Example 11-38 shows the code of
the worker tasks and dummy task, and Example 11-39 shows the main program that
spawns the three worker tasks. Keep in mind that because all data is in memory and
is accessible by any thread, there is no real data movement. The dummy task does
not need to move data, nor does it impose any real overhead.

Aha! It’s all in the shared memory. When discussing pipelines and other
algorithms, and being careful to partition access to data, it is possible to
forget that all the data is in shared memory, which any task can access.

Figure 11-16. A pipeline with lots of parallelism, but a twist at the end

Figure 11-17. The example will focus on the final part of the pipeline

TRANSFORM 1 FILTER A TRANSFORM 2

SPECKLE 1 SKEW 1 FILTER B

TRANSFORM 3 FILTER B WARP 1

COMBINE 1

COMBINE 2

TRANSFORM 2

FILTER B

WARP 1

COMBINE 1

COMBINE 2

234 | Chapter 11: Examples

Figure 11-18. This is how the example actually implements the pipeline

Example 11-38. Pipelined tasks with a dummy task to help in a TwoMouths pattern

1 #include "tbb/task.h"
2 #include "tbb/task_scheduler_init.h"
3 #include <stdio.h>
4 #include <stdlib.h>
5
6 //! Some busywork
7 void TwiddleThumbs(const char * message, int n) {
8 for(int i=0; i<n; ++i) {
9 printf(" %s: i=%d\n",message,i);

10 static volatile int x;
11 for(int j=0; j<20000000; ++j)
12 ++x;
13 }
14 }
15
16 // Time delays
17 int m1, m2, t1, t2;
18
19 class Combine1: public tbb::task {
20 public:
21 tbb::task* execute() {
22 TwiddleThumbs("Combine1",m1);
23 return NULL;
24 }
25 };
26
27 class Combine2: public tbb::task {
28 public:
29 tbb::task* execute() {
30 TwiddleThumbs("Combine2",m2);
31 return NULL;
32 }
33 };
34

TRANSFORM 2

FILTER B

WARP 1

COMBINE 1

COMBINE 2

DUMMY
(for FILTER B)

Advanced Task Programming | 235

35 class Filterb: public tbb::task {
36 public:
37 tbb::empty_task* dummy;
38 tbb::task* execute() {
39 TwiddleThumbs("Filterb",4);
40 // When all the work is done –
41 // start dummy, which does nothing and signals the
42 // second parent to continue.
43 dummy->spawn(*dummy);
44 return NULL;
45 }
46 };
47
48 class Transform2: public tbb::task {
49 public:
50 tbb::task* execute() {
51 TwiddleThumbs("Transform2",t1);
52 return NULL;
53 }
54 };
55
56 class Warp1: public tbb::task {
57 public:
58 tbb::task* execute() {
59 TwiddleThumbs("Warp1",t2);
60 return NULL;
61 }
62 };

Example 11-39. The main program that sets up the pipeline for TwoMouths

1 //! Optional command-line argument is number of threads to use. Default is 3.
2 int main(int argc, char* argv[]) {
3 tbb::task_scheduler_init init(argc>1 ? strtol(argv[1],0,0) : 3);
4 // Test various time delays
5 for(m1=3; m1<=5; ++m1) {
6 for(m2=3; m2<=5; ++m2) {
7 for(t1=3; t1<=5; ++t1) {
8 for(t2=3; t2<=5; ++t2) {
9 printf("\nm1=%d m2=%d t1=%d t2=%d\n",m1,m2,t1,t2);

10 tbb::empty_task* root =
11 new(tbb::task::allocate_root()) tbb::empty_task;
12 root->set_ref_count(3);
13 Combine1* combine1 = new(root->allocate_child()) Combine1;
14 combine1->set_ref_count(2);
15 Combine2* combine2 = new(root->allocate_child()) Combine2;
16 combine2->set_ref_count(2);
17 Filterb* filterb = new(combine1->allocate_child()) Filterb;
18 filterb->dummy =
19 new(combine2->allocate_child()) tbb::empty_task;
20 filterb->spawn(*filterb);

Example 11-38. Pipelined tasks with a dummy task to help in a TwoMouths pattern (continued)

236 | Chapter 11: Examples

The main program loops with a variety of timing delays that exist only to demon-
strate a variety of timings among the pipeline stages (tasks). The main program has
the job of creating the tasks shown in Figure 11-18. Therefore, main creates the tasks
TRANSFORM 2, FILTER B, WARP 1, COMBINE 1, and COMBINE 2. The FILTER B task is informed
about DUMMY inside it so that it can use that task to signal COMBINE 2. The tasks
TRANSFORM 2, FILTER B, and WARP 1 are spawned (started) at this point.

If we had implemented the original design as shown in Figure 11-16, we would have
created six more tasks (TRANSFORM 1, FILTER A, SPECKLE 1, SKEW 1, TRANSFORM 3, and
FILTER B), and we would have started the leftmost three tasks (TRANSFORM 1, SPECKLE 1,
and TRANSFORM 3) instead of TRANSFORM 2, FILTER B, and WARP 1. FILTER B gets started by
the task to the left (SKEW 1), and it has to do the same trick of using DUMMY to signal
COMBINE 2.

The trick is that Filterb::execute does the spawning of DUMMY just before it exits, so
logically, the graph behaves as though FILTER B has both COMBINE 1 and COMBINE 2
waiting on it.

This is a classic example of choosing to utilize implicit synchronization instead of using
explicit synchronization such as a lock. This is a fundamental mindset to cultivate. If
we had used native threads, COMBINE 1 and COMBINE 2 would have to block on some syn-
chronization event (lock) that FILTER B has to signal when it is done. With Threading
Building Blocks, the DUMMY task eliminates the need to use a lock to synchronize.

Aha! Implicit synchronization is better than using locks. You want to
develop a mindset to think about using implicit synchronization and
avoiding locks.

The output is very long. Table 11-2 shows some of it. The program was run on a
dual-core system running Windows Vista and using Intel Threading Building Blocks
1.1 for Windows. The program was run with input arguments of 1 and 2 to set the
number of threads for the purposes of illustration. With only one thread, you can see
there is no parallelism.

21 Transform2* transform2 =
22 new(combine1->allocate_child()) Transform2;
23 combine1->spawn(*transform2);
24 Warp1* warp1 =
25 new(combine2->allocate_child()) Warp1;
26 combine2->spawn(*warp1);
27 root->wait_for_all();
28 root->destroy(*root);
29 }
30 }
31 }
32 }
33 }

Example 11-39. The main program that sets up the pipeline for TwoMouths (continued)

Packet Processing Pipeline | 237

Packet Processing Pipeline
This example illustrates how you can use pipelines (Chapter 4) and a concurrent hash
map (Chapter 5) to implement packet processing such as you might find in a router.

Packet processing is an ideal application for Threading Building Blocks. Packet pro-
cessing is often done on special devices as well as on computer systems, so this is a
good example of how Threading Building Blocks can help embedded designs that
take advantage of multi-core processors.

Table 11-2. Some of the output from the TwoMouths pattern example

Only one thread run (run on a two-core system) Run with two threads (run on a two-core system)

. . .

m1=3 m2=3 t1=4 t2=5
 Warp1: i=0
 Warp1: i=1
 Warp1: i=2
 Warp1: i=3
 Warp1: i=4
 Transform2: i=0
 Transform2: i=1
 Transform2: i=2
 Transform2: i=3
 Filterb: i=0
 Filterb: i=1
 Filterb: i=2
 Filterb: i=3
 Combine2: i=0
 Combine2: i=1
 Combine2: i=2
 Combine1: i=0
 Combine1: i=1
 Combine1: i=2

m1=3 m2=3 t1=5 t2=3
 Warp1: i=0
 Warp1: i=1
 Warp1: i=2
 Transform2: i=0
 Transform2: i=1
 Transform2: i=2
 Transform2: i=3
 Transform2: i=4
 Filterb: i=0
 Filterb: i=1
 Filterb: i=2
 Filterb: i=3
 Combine2: i=0
 Combine2: i=1
 Combine2: i=2
 Combine1: i=0
 Combine1: i=1
 Combine1: i=2

. . .

. . .

m1=3 m2=3 t1=4 t2=5
 Filterb: i=0
 Warp1: i=0
 Filterb: i=1
 Warp1: i=1
 Filterb: i=2
 Warp1: i=2
 Filterb: i=3
 Warp1: i=3
 Transform2: i=0
 Warp1: i=4
 Combine2: i=0
 Transform2: i=1
 Combine2: i=1
 Transform2: i=2
 Combine2: i=2
 Transform2: i=3
 Combine1: i=0
 Combine1: i=1
 Combine1: i=2

m1=3 m2=3 t1=5 t2=3
 Warp1: i=0
 Transform2: i=0
 Transform2: i=1
 Warp1: i=1
 Transform2: i=2
 Warp1: i=2
 Transform2: i=3
 Filterb: i=0
 Transform2: i=4
 Filterb: i=1
 Filterb: i=2
 Filterb: i=3
 Combine1: i=0
 Combine2: i=0
 Combine2: i=1
 Combine1: i=1
 Combine2: i=2
 Combine1: i=2

. . .

238 | Chapter 11: Examples

Devices on the Internet communicate using packets of information. Each packet is
like a postcard; it has an address to send to and a return address plus a message. On
the way from the sender to the receiver, it passes through switches and routers that
direct traffic and do other processing on the packets. Packet processing is not unlike
mail processing; the router must receive a packet on a connection and send it out to
the appropriate connections. It also provides a service called network address trans-
lation (NAT), which allows the outside world to communicate with a collection of
computers and devices through one address without even knowing it is not a single
computer at that one address. This is not unlike the postcard that arrives addressed
to an apartment building without the number that indicates the apartment to which
to deliver it. The postal delivery person will use other clues, such as the name on the
postcard, to determine where it should be delivered.

Parallel Programming for an Internet Device
Devices that connect the worldwide network of unique addressed devices to local
networks are known as devices at the edge of the network. More generally, you can
create subnetworks yourself that have devices on their edges to hook to other subnet-
works. Devices at the edge of the network perform sophisticated processing in order
to handle the packets coming in over the different subnetworks they aggregate.
Examples of edge devices are appliances at the frontend of a data center that per-
form functions such as XML acceleration, load balancing, or other content process-
ing, as well as devices at the entry point of an enterprise that perform security-related
functions such as firewalls, intrusion detection, and virus checking. Designing
network-edge software is very complex today and consumes nontrivial processing
power. With the advent of multiple-core processors, we can address the processing
needed with a hybrid model of both parallel packet processing and pipelined packet
processing. We illustrate the latter with a Threading Building Blocks example. For
the sake of the example, we will assume a small network (Figure 11-19) such as you
might find in a home or small business, and we will have only special processing for
file transfer protocol (FTP) packets. This simplified example will allow us to discuss
all the key points of how to use Threading Building Blocks, and you can extend it to
process many more types of packets.

The packet processing applications on network-edge devices exhibit some common
characteristics. They usually fit into a regular flow of data pattern (Figure 2-16). They
typically access a lot of memory, including state information that exhibits temporal
locality (fits in caches well). These applications exhibit numerous forms of parallel-
ism including packet-level, connection-level, and service-level parallelism. Maximiz-
ing the performance of such applications requires programmable parallel hardware.
The trend toward processors with multiple cores aligns well with these needs.

Packet Processing Pipeline | 239

Threading Building Blocks supports functional simulation because network-edge
devices have strict performance requirements. For efficient packet processing, some
primary goals are as follows:

• Nearly all the time, task switching should be fast. A packet processor cannot
afford to fall behind.

• You should be able to guarantee that no tasks are starved. A packet must never
get stalled indefinitely.

Worldwide and Local IP Addresses
At one time, the rapid growth of Internet addressable devices was of grave concern
because we were on pace to run out of the unique addresses required for every com-
puter in the world to be connected to each other. Addresses were allocated in blocks
and you would, as an individual, usually pay to receive a single number from your
Internet service provider. Organizations such as businesses obtained blocks of
addresses, but with rapid growth, even they faced running out of numbers. Businesses
also worried about the security of giving every computer or device within their com-
pany a unique address that outsiders could learn.

Most Internet addressing is done with a 4-byte Internet Protocol (IP) address that is
written as a set of four 8-bit numbers separated by dots. An example address is
198.175.96.33. In order to allow organizations and individuals to run local networks
with addresses that are never assigned unique numbers, three blocks of addresses have
been reserved for local area network (LAN) usage only. One block, 10.x.x.x, has only
8 bits as a prefix; the other 24 bits are available for use internally in the local network,
thereby allowing a local network using this range to have more than 16 million devices.
Another block, 172.16.x.x through 172.31.x.x, has 12 bits of prefix. And the third
block, 192.168.x.x, is known as the 16-bit prefix block and can handle networks of
more than 65,000 unique addresses for the local network. Addresses such as 10.10.20.20,
172.19.3.2, and 192.168.0.1 are examples of numbers that can be used only locally and
never as a unique worldwide address. Large organizations are free to create local net-
works hooked to local networks, so there is really no limit on how many devices can
be given addresses.

Local networks require a method to talk with the worldwide network, which is
achieved using network address translation (NAT). NAT is a simple concept: hook
many local devices to the world using a single address owned by a special routing
device (router). Outgoing requests are rewritten with instructions to respond to the
one single address. Responses coming to the router from outside the local network are
routed to the appropriate device inside the local network. The example will show spe-
cific cases of NAT.

240 | Chapter 11: Examples

Threading Building Blocks should be able to handle programming most packet
processing applications. Linear pipelines, such as the Threading Building Blocks pipe-
line class, are most common, yet packet processing can occasionally have branches,
multicasts, and loopbacks.

Here are some of the topics we will cover in our discussion of the local network
router:

Local network router example
What are some common functions and how is it structured? Up front, it must be
said that this example is the simplest one possible to demonstrate the concept of
using the Threading Building Blocks pipeline class.

Simple stages of a local network router
Including NAT, Application Layer Gateway (ALG), and packet forwarding.

Implementation
Points out how the functions described have been implemented in Threading
Building Blocks.

Example filter code
The key parts of the example are included here. You can download the com-
plete example from the web site for this book.

Local Network Router Example
In looking for an example that is simple enough to cover in a few pages, is realistic in
functionality, and can be completed with a Threading Building Blocks pipeline, a
local network router came to mind. Figure 11-19 shows how a local network router
used for a home is structured. (The home could be a business as well.) Here are the
key points:

• IP addresses within the local network, inside the home, are private. Packets leav-
ing the local network must be modified as they go through the router.

• The local network for the home has one IP address known outside the home.
Packets coming back from the Internet are sent to this address. The real destina-
tion must be determined by the router and the packet must be forwarded to the
appropriate home device.

• Some application protocols pass address or port information inside the packet,
called the payload, on top of the Transmission Control Protocol/Internet
Protocol (TCP/IP). This information is used by the application to connect to the
right address or port. Hence, for correct operation a router that transparently
modifies the TCP/IP port or address information must also modify such infor-
mation in the payload. In this example, we will only write code that can work
with FTP payloads.

Packet Processing Pipeline | 241

Pipelined Components for the Local Network Router
Protocol processing is very frequently organized into a pipeline. The main reason is
that it simplifies packet processing by layer and by function. It also allows a func-
tional dataflow parallel programming style. Although these layers and functions
must be performed serially on a single packet, when executed with a pipeline we find
that different packets may be processed in parallel. The pipeline in the example func-
tionally simulates three stages. Let’s describe each.

Network address translation (NAT)

Network address translation is a technique wherein IP addresses are mapped from
one address realm to another. A typical use of NATs is at the edge of a local network
where the addresses within the network are private, unregistered addresses. This
flexibility makes networking easier. NAT allows devices on the local network to
communicate with end systems on the Internet by transparently routing the packets
so that they appear to come from one IP address. A more global benefit of NAT is
that it helps stem depletion of IP addresses. Because the addresses inside the home
are not advertised, multiple networks could use the same set of addresses without
causing any problems. A simple NAT operation would be to map, usually via a table,
a private network IP plus port number to a router port number so that outbound
packets appear to be sourced from the router’s IP with a port that the router has
selected. In this way, the router can map reply packets to that port back to the
private-side IP and port.

NATs have evolved to support various flavors such as Bidirectional, Twice NAT, and
Realm Specific IP that a real NAT implementation would have to support. These are
beyond the scope of this example.

Figure 11-19. Local network (at home) router structural diagram

Media PC

IP address: 10.230.30.03

Laptop 2

IP address: 10.230.30.02

Laptop 1

IP address: 10.230.30.01

INSIDE HOME

HOME ROUTER
NIC: eth1

NIC: eth2

NIC: eth3

NIC: eth0

NAT Address Information
IP address: 134.77.77.30

OUTSIDE HOME

Server

IP address: 104.44.44.10

Internet

242 | Chapter 11: Examples

Application Layer Gateway (ALG)

ALGs are frequently used with NATs to handle cases where peer addresses or ports
are embedded in application-layer payloads. Packets with such payloads require spe-
cial treatment. The ALG modifies the content of the packet and may adjust the
header information to reflect address translations required in a router. In the
example, we offer just one well-known special case—namely, the processing of an
FTP PORT command. For an active FTP connection, the FTP PORT command from a
client on the home network requests the server to send FTP data back to the port
specified in the payload of the client’s PORT command. Therefore, the ALG needs to
correct the IP and port mapping of this basic network address port translation
(NAPT).

An ALG should treat several other application considerations—for example, DNA
and SIP, where packets carry the addresses for sessions to be established, IPv4/IPv6
translation, or security considerations where end-to-end encryption may encrypt IP
addresses or the router may be required to filter for exposed IP addresses.

Packet forwarding

The third stage in this example simply touches on the most basic responsibility of a
router: to move packets from one network interface controller (NIC) in the router to
another. The example considers the connections from a remote device’s IP to NIC to
be fixed. When a packet wants to go to a destination IP, a static table is used to
determine what the next hop NIC is.

Our example

We make numerous simplifying assumptions in this example implementation for the
sake of brevity. Specifically, we do not actually send or receive packets over the
network.

We simulate this with a packet trace. That is, we read from an input file represent-
ing a simplified packet record containing only the relevant fields of a packet. The
fields include values from the IP header, TCP header, and certain application pay-
load information. This allows us to focus on the parts of the application that we
want to pipeline. Furthermore, for the application stages themselves, we implement
only sufficient functionality to provide insight into the benefits of pipelining.

In terms of NAT, we implement only a simplified version of NAPT. We do not delete
mapping entries in the table once a connection has been closed, which a real imple-
mentation would do in order to reuse port numbers.

In terms of ALG, we consider only an FTP ALG in this example. Specifically, we look
at the PORT command in an active FTP connection wherein the client sends its IP
address and port information in the packet payload. We do not update the check-
sum and other header information that a real implementation would have to modify
when the packet payload is modified.

Packet Processing Pipeline | 243

Nevertheless, this example demonstrates how a pipeline class would be used and
how it would benefit a programmer creating a real packet processing application.

Figure 11-20 through Figure 11-23 show how this router will need to process pack-
ets through with its three stages. The first figure shows the router sending out a
packet and remembering the port it has assigned so that when responses come back,
as shown in Figure 11-21, it can route them to the appropriate computer on the local
network. Figure 11-22 shows the router doing similar processing but also tampering
with the payload to complete the address translation.

Implementation
Let’s walk through the implementation, including use of a Threading Building Blocks
pipeline (Chapter 4), to understand it. We’ll start with pipeline creation and execu-
tion. Then we will review the synchronized structures for transforming the packets in
the trace and storing port and NIC mappings. Finally, we’ll discuss the filters.

The Threading Building Blocks pipeline

The three stages described earlier are implemented in a Threading Building Blocks
pipeline with five filters. An input filter to simulate packets coming into the pipeline
comes first. An output filter has been added at the end to simulate packets going

Figure 11-20. Packets from inside the home get NAT and are sent to the server

LAPTOP 1
10.230.30.01

LAPTOP 2
10.230.30.02

MEDIA PC
10.230.30.03

HOME ROUTER

eth1

eth2

eth3

eth0
134.77.77.30

Server
104.44.44.10

PayloadSourceIP

10.230.30.03

134.77.77.30

DestinationIP

104.44.44.10

104.44.44.10

NIC

eth3

eth0

DestPort

4003

4003

SrcPort

5003

2003

App

notFTP

notFTP

Outbound packet. Network address translation in router (NAT) must learn to map
(10.230.30.03, 5003) to a Router Port, in this case it allocates port 2003

Into router

Out of router

PayloadSourceIP

10.230.30.03

134.77.77.30

DestinationIP

104.44.44.10

104.44.44.10

NIC

eth3

eth0

DestPort

4003

4003

SrcPort

5003

2003

App

notFTP

notFTP

Outbound packet. Stream of any number of packets would use the same Router Port
sending to (104.44.44.10, 4003)

Into router

Out of router

244 | Chapter 11: Examples

back out through the device. The three packet processing stages between the input
and output filters are the network_address_translator filter, application_level_
gateway filter, and packet_forwarding filter.

Figure 11-21. The Response requires a NAT lookup to finish delivery

Figure 11-22. FTP port mapping from inside the home to the server

LAPTOP 1
10.230.30.01

LAPTOP 2
10.230.30.02

MEDIA PC
10.230.30.03

HOME ROUTER

eth1

eth2

eth3

eth0
134.77.77.30

Server
104.44.44.10

Payload

10.230.30.03

134.77.77.30

DestinationIP SourceIP

104.44.44.10

104.44.44.10

NIC

eth0

eth3

4003

4003

SrcPortDestPort

5003

2003

App

notFTP

notFTP

Inbound packet from (104.44.44.10, 4003). Port 2003 still mapped to
(10.230.30.03, 5003)

Into router

Out of router

Payload

10.230.30.03

134.77.77.30

DestinationIP SourceIP

104.44.44.10

104.44.44.10

NIC

eth0

eth3

4003

4003

SrcPortDestPort

5003

2003

App

notFTP

notFTP

Inbound packets. Stream of any number of packets being sent to
(10.230.30.03, 5003)

Into router

Out of router

LAPTOP 1
10.230.30.01

LAPTOP 2
10.230.30.02

MEDIA PC
10.230.30.03

HOME ROUTER

eth1

eth2

eth3

eth0
134.77.77.30

Server
104.44.44.10

PayloadSourceIP

10.230.30.02

134.77.77.30

DestinationIP

104.44.44.10

104.44.44.10

NIC

eth2

eth0

DestPort

21

21

SrcPort

5002

2002

App

FTPport

FTPport

Outbound FTP packet. NAT maps (10.230.30.02, 5002) to a port, in this case 2002. With
FTP PORT command, the gateway (ALG) will reuse the entry created by NAT but modify
the port value in the mapping to that specified in the payload (10.230.30.02, 6002)

Into router

Out of router

6002

2002

Packet Processing Pipeline | 245

In the main routine, the five pipeline filters are plugged together in a straightforward
way:

 tbb::pipeline pipeline;
 // Stage 0: Input Packet
 get_next_packet receive_packet (in_file);
 pipeline.add_filter (receive_packet);

 // Stage 1: Network Address Translator
 translator network_address_translator (router_ip, router_nic,
 mapped_ports);
 pipeline.add_filter (network_address_translator);

 // Stage 2: Application Level Gateway
 gateway application_level_gateway (router_ip, router_nic,
 mapped_ports);
 pipeline.add_filter (application_level_gateway);

 // Stage 3: Packet Forwarding Stage
 forwarding packet_forwarding (router_ip, router_nic,
 network_config);
 pipeline.add_filter (packet_forwarding);

 // Stage 4: Output Packet
 output_packet send_packet (out_file);
 pipeline.add_filter (send_packet);

Figure 11-23. Inbound FTP data returned to the proper laptop inside the home

LAPTOP 1
10.230.30.01

LAPTOP 2
10.230.30.02

MEDIA PC
10.230.30.03

HOME ROUTER

eth1

eth2

eth3

eth0
134.77.77.30

Server
104.44.44.10

Payload

10.230.30.02

134.77.77.30

DestinationIP SourceIP

104.44.44.10

104.44.44.10

NIC

eth0

eth2

20

20

SrcPortDestPort

6002

2002

App

FTPdata

FTPdata

Inbound FTP packet for (10.230.30.02, 6002). NAT modifies the port value from 2002
to 6002 using the mapping entry created earlier

Into router

Out of router

Payload

10.230.30.02

134.77.77.30

DestinationIP SourceIP

104.44.44.10

104.44.44.10

NIC

eth0

eth2

20

20

SrcPortDestPort

6002

2002

App

FTPdata

FTPdata

Inbound packets. Any number of data packets sent back to (10.230.30.02, 6002)

Into router

Out of router

246 | Chapter 11: Examples

And the pipeline is started on the packet trace:

 pipeline.run (number_of_live_items);
 pipeline.clear ();

For compute-intensive pipelines, the speedup of a pipeline is limited to the number
of stages, subject to the proportion of time in the slowest stage. Packet processing
pipelines may have I/O stalls waiting for packet transmission delays. Allowing the
number of packets in the pipeline, number_of_live_items, to grow above five would
allow for frequent interruptions in the input and output stages. In the example, that
number is set to 10, but you can experiment with several values. Note that any
thread may be processing several packets in the same or different filters.

If you want to experiment with scaling, you should increase the size of the packet
trace file (download), which is pretty small right now. You can easily expand the
back-and-forth traffic mentioned in Figure 11-21, Figure 11-22, and Figure 11-23 as
“Any number of data packets....”

Synchronization with the pipeline item and concurrent hash maps

You synchronize packet information between stages using the Threading Building
Blocks pipeline template. Each filter returns a packet_trace instance that is passed to
the next stage.

The pipeline template is given a packet trace structure that consists of:

typedef struct {
 nic_t packetNic; // the NIC packet into and out of router
 ip_t packetDestIp; // destination IP into and out of router
 ip_t packetSrcIp; // source IP into and out of router
 port_t packetDestPort; // destinationPort paired w/destination IP
 port_t packetSrcPort; // source Port paired w/source IP
 protocol_t packetProtocol;// packet protocol type
 port_t packetPayloadApp; // any of the packet worth simulating
} packet_trace;

A packet will be transformed, filter by filter, from what would come into the router
into what would go out of the router. For example, for an outbound packet, the
NAT would change the packetSrcIp to be the IP of the router outgoing_ip. That is
how every device in the Ethernet will see the local network. And it will change the
packetSrcPort to the router port mapped in its mapped_ports_table.

The other synchronized structures are the data tables in the local network router.
The network_table is used to map the IP to the NIC in packet forwarding. It is imple-
mented using a concurrent hash map (Chapter 5).

typedef tbb::concurrent_hash_map<ip_t, nic_t, ip_addr_comparator>
 network_table;

The key data structure for mapping a router port is the mapped_ports_table. The
NAPT function for outbound packets is mapping the outbound (Local Device IP,
Local Device Port) to a router port, and then reversing that mapping, from a router

Packet Processing Pipeline | 247

port to a (Local Device IP, Local Device Port), for inbound packets. Therefore, a
good hash key into a concurrent hash map would be a port moving in either direc-
tion, represented by a port_t type. The map would return a pointer to an accessor
address class we created, which can access an IP address with get_ip_address, or a
port number with get_port_number.

typedef tbb::concurrent_hash_map<port_t, address*, port_comparator> mapped_ports_
table;
class address {
public:
 virtual bool get_ip_address (mapped_ports_table& /*in*/,
 ip_t& /*out*/) = 0;
 virtual bool get_port_number (port_t& /*out*/) = 0;
};

A concurrent hash map is used because multiple packets will be flowing through the
pipeline simultaneously. They may have to add a new port mapping if the local
device wants to use another port associated with its IP. Port mappings can change in
both the NAT and ALG stages.

Filter Classes
The source code for the setup, hash table, and filters is presented here for you to
study. You can download the complete source code (about 400 lines) from http://
www.threadingbuildingblocks.org/book. Look for errata and notes at this web site as
well.

The includes and constants sections (Example 11-40) are pretty straightforward.
Some constant values are also read from the packet trace file.

Example 11-40. Filter classes setup

#include <iostream>
#include <sstream>
#include <fstream>
#include <string>
#include "tbb\task_scheduler_init.h"
#include "tbb\pipeline.h"
#include "tbb\concurrent_hash_map.h"
#include "tbb\atomic.h"
#include "tbb\pipeline.h"

using namespace std;
// All packet attributes stored as std::strings (for simplicity)
typedef string nic_t, ip_t, port_t, app_t, protocol_t;

// Constants
static const string empty = "";
static const port_t FTPcmdPort = "21";
static const port_t FTPdataPort = "20";

http://www.threadingbuildingblocks.org/book
http://www.threadingbuildingblocks.org/book

248 | Chapter 11: Examples

Example 11-41 shows the concurrent hash map definitions we need. Hash maps are
used for storing both router port to (Local Device IP, Local Device Port) mapping,
mapped_ports_table, and Local Device IP to Router NIC mapping, network_table.
string_comparator is the hash compare type in both cases. The network_table is an
easy-to-understand example of how to use a hash map. For the port mapping, out-
bound the lookup has to return a router port and inbound it has to return a (Local
Device IP, Local Device Port). Hence, it is a bit complex to follow.

// Request contains FTP command
static const protocol_t IPwithFTP = "IPwithFTP";

// Default filenames
static const char* in_file_name = "input.txt";
static const char* out_file_name = "output.txt";

// Marker for packets stream
static const string end_of_map = "PacketTrace";

Example 11-41. Concurrent hash map for port mapping

// Hash compare type for tbb::concurrent_hash_map
class string_comparator {
public:
 static size_t hash(const string& x) {
 size_t h = 0;
 for(const char* s = x.c_str(); *s; s++)
 h = (h*17)^*s;
 return h;
 }
 static bool equal(const string& x, const string& y) {
 return x==y;
 }
};

class address;
typedef string_comparator port_comparator, ip_addr_comparator;
// Hash map key is a port_t. This can be either router assigned port number or local
device port number
// If key is a router port number, then the value is the local device assigned port;
// If key is an local device port number, then the value is a pair = (IP, router port
number).
// The router port numbers are duplicated to avoid linear search at the NAT stage
typedef tbb::concurrent_hash_map<port_t, address*, port_comparator> mapped_ports_table;
// Network configuration table: IP->NIC
typedef tbb::concurrent_hash_map<ip_t, nic_t, ip_addr_comparator> network_table;

// This is an interface class for value type of mapped_ports_table: PORT->ADDRESS*
// where ADDRESS points to either port_number (local device port number) or
// to ip_address (associated with the local device port number)

Example 11-40. Filter classes setup (continued)

Packet Processing Pipeline | 249

Each packet trace record read from the input file and written to the output file is a
packet_trace instance. Packet trace streaming operations define this in Example 11-42.

class address {
public:
 virtual bool get_ip_address (mapped_ports_table& /*in*/, ip_t& /*out*/) = 0;
 virtual bool get_port_number (port_t& /*out*/) = 0;
};

// If mapped_ports_table is port_number, then router mapped port number is known
// (stored in the object), IP address can be found in the table via local device port
class port_number : public address {
public:
 port_t port;
 port_number (port_t& _port) : port(_port) {}
 bool get_ip_address (mapped_ports_table& mapped_ports, ip_t& addr) {
 mapped_ports_table::const_accessor a;
 if (mapped_ports.find (a, port)) {
 return a->second->get_ip_address (mapped_ports, addr);
 }
 return false;
 }
 bool get_port_number (port_t& p) { p = port; return true; }
};

// if mapped_ports_table is ip_address,
// then the router mapped port and associated IP
// address are known (stored in the object)
class ip_address : public address {
public:
 ip_t ip;
 port_t router_port;
 ip_address (ip_t& _ip, port_t& _router_port) : ip(_ip), router_port(_router_port) {}
 bool get_ip_address (mapped_ports_table& mapped_ports /*in*/, ip_t& addr /*out*/) {
 addr = ip;
 return true;
 }
 bool get_port_number (port_t& p) { p = router_port; return true; }
};

Example 11-42. Packet attributes and I/O

// Packet attributes
typedef struct {
 nic_t packetNic;
 ip_t packetDestIp;
 ip_t packetSrcIp;
 port_t packetDestPort;
 port_t packetSrcPort;
 protocol_t packetProtocol;
 port_t packetPayloadApp;
} packet_trace;

Example 11-41. Concurrent hash map for port mapping (continued)

250 | Chapter 11: Examples

Initialization is shown in Example 11-43. The main program arguments are the
names of the input and output files. Initialization mostly loads the network_table.

//Input packet
istream& operator>> (istream &s, packet_trace& a)
{
 // No input data verification for simplicity
 s >> a.packetNic >> a.packetDestIp >> a.packetSrcIp >>
 a.packetDestPort >> a.packetSrcPort >> a.packetProtocol;
 if (a.packetProtocol == IPwithFTP)
 s >> a.packetPayloadApp;
 else
 a.packetPayloadApp = empty;
 return s;
}

// Output packet
ostream& operator<< (ostream &s, packet_trace& a) {
 return s << a.packetNic << " " << a.packetDestIp << " " <<
 a.packetSrcIp << " " << a.packetDestPort << " " <<
 a.packetSrcPort << " " << a.packetProtocol << " " <<
 a.packetPayloadApp << endl;
}

Example 11-43. Initialization for the packet processing example

void get_args (int argc, char* argv[]) {
 // Parse command line
 switch (argc) {
 case 3: out_file_name = argv[2];
 case 2: in_file_name = argv[1]; break;
 case 1: break;
 default: cerr << "Usage:\trouter input-file output-file"
 << endl;
 };
 cerr << "Router: input file - " << in_file_name
 << ", output file - " << out_file_name << endl;
}

bool init_home_router (ip_t& outgoing_ip,
 nic_t& outgoing_nic,
 network_table& network_config,
 ifstream& in_file)
{
 // Router outgoing IP and NIC: first line of input file
 if (!in_file.eof()) in_file >> outgoing_nic >> outgoing_ip;
 else return false;

 // Initialize network configuration map: IP => NIC
 string nic, ip;
 network_table::accessor a;
 while (!in_file.eof()) {
 in_file >> nic;

Example 11-42. Packet attributes and I/O (continued)

Packet Processing Pipeline | 251

Class get_next_packet : public tbb::filter

The filter class get_next_packet (Example 11-44) reads each packet from a packet
trace in the input file.

Class output_packet : public tbb::filter

The filter class output_packet (Example 11-45) writes each packet from a packet
structure to the output file.

 if (nic == end_of_map) break;
 in_file >> ip;
 network_config.insert (a, ip);
 a->second = nic;
 }
 return true;
}

Example 11-44. Filter to get the next packet

class get_next_packet : public tbb::filter {
 istream& in_file;
public:
 get_next_packet (ifstream& file) : in_file (file),
 filter (true) {}
 void* operator() (void*) {
 packet_trace* packet = new packet_trace ();
 in_file >> *packet;
 if (packet->packetNic == empty) {
 delete packet;
 return NULL;
 }
 return packet;
 }
};

Example 11-45. Filter to output a packet

class output_packet : public tbb::filter {
 ostream& out_file;
public:
 output_packet (ofstream& file) : out_file (file), filter (true) {}
 void* operator() (void* item) {
 packet_trace* packet = static_cast<packet_trace*> (item);
 out_file << *packet;
 delete packet;
 return NULL;
 }
};

Example 11-43. Initialization for the packet processing example (continued)

252 | Chapter 11: Examples

Class translator : public tbb::filter

The filter class translator (Example 11-46) performs the NAT function. In this sim-
ple example, it separates inbound packets from outbound packets. For outbound
packets, it maps the local device (IP,Port) to the router port by hashing into the
mapped_ports_table, creating a mapping if one is needed. It also inserts the router’s
IP into the packet source IP slot in case the destination will send a packet back. For
inbound packets, it does the reverse by looking up the router port to local device
(IP,Port).

Example 11-46. Filter that does the actual NAT

class translator : public tbb::filter {
 const ip_t outgoing_ip;
 const nic_t outgoing_nic;
 // port => address, where port={router mapped port | home device port}
 // and address = {home device port | pair(IP, router mapped port)}
 mapped_ports_table& mapped_ports;
 static tbb::atomic<int> spare_port; // Previous spare port number

public:
 translator (ip_t& _outgoing_ip, nic_t& _outgoing_nic,
 mapped_ports_table& _mapped_ports) :
 outgoing_ip(_outgoing_ip), outgoing_nic(_outgoing_nic),
 mapped_ports(_mapped_ports), filter (true /* is_serial*/) { spare_port =
2002; }
 void* operator() (void* item) {
 packet_trace* packet = static_cast<packet_trace*> (item);
 if (packet->packetNic == outgoing_nic) {
 // this is an external incoming packet
 ip_t app_ip;
 port_t app_port;
 if (get_port_mapping (packet->packetDestPort,
 app_ip, app_port)) {
 packet->packetDestIp = app_ip;
 packet->packetDestPort = app_port;
 }
 else
 cerr << "Packet destination unknown" << endl;
 }
 else {
 // this is an internal outgoing packet
 port_t mappedPort;
 if (! get_router_port (mappedPort, packet->packetSrcIp,
 packet->packetSrcPort)) {
 mappedPort = add_new_mapping (packet->packetSrcIp,
 packet->packetSrcPort,
 get_new_port());
 }
 packet->packetSrcPort = mappedPort;
 }

 return packet;
 }

Packet Processing Pipeline | 253

 // IP, home device port <= router mapped port
 bool get_port_mapping (port_t& router_port /*in*/,
 ip_t& ip /*out*/, port_t& app_port /*out*/)
 {
 mapped_ports_table::/*const_*/accessor a;
 if (mapped_ports.find (a, router_port))
 {
 address* addr = a->second;
 if (! addr->get_port_number (app_port)) return false;
 a.release();

 return addr->get_ip_address (mapped_ports, ip);
 }
 return false;
 }
 // Router mapped port <= home device assigned port, IP
 bool get_router_port (port_t& router_port /*out*/,
 ip_t& ip /*in*/, port_t& app_port /*in*/)
 {
 mapped_ports_table::/*const_*/accessor a;
 if (mapped_ports.find (a, app_port))
 {
 address* addr = a->second;
 return addr->get_port_number (router_port);
 }
 return false;
 }

 // Allocates next spare port
 port_t get_new_port () {
 int port = ++spare_port; // this is an atomic operation
 stringstream s;
 s << port;
 return s.str ();
 }

 port_t& add_new_mapping (ip_t& ip, port_t& port, port_t& new_port) {
 mapped_ports_table::accessor a; // acquires writer lock
 if (mapped_ports.insert (a, new_port)) {
 port_number* mapped_port = new port_number (port);
 a->second = mapped_port;
 if (mapped_ports.insert (a, port)) {
 ip_address* addr = new ip_address (ip, new_port);
 a->second = addr;
 }
 }
 return new_port;
 }
};

tbb::atomic<int> translator::spare_port;

Example 11-46. Filter that does the actual NAT (continued)

254 | Chapter 11: Examples

Class gateway : public tbb::filter

The filter class gateway (Example 11-47), in this simple example, only checks for FTP
applications. If it is an FTP command, it looks at the application payload that would
contain a command port somewhere. (In this packet trace input, all the rest of the
packet has been thrown away.) The ALG modifies the mapped_ports_table to antici-
pate receiving FTP packets for this command port.

Example 11-47. Filter to check for specific (FTP) applications

class gateway : public tbb::filter {
 const ip_t outgoing_ip;
 const nic_t outgoing_nic;
 // port => address,
 // where port={router mapped port | home device port}
 // and
 // address = {home device port | pair(IP, router mapped port)}
 mapped_ports_table& mapped_ports;
public:
 gateway (ip_t& _outgoing_ip, nic_t& _outgoing_nic,
 mapped_ports_table& _mapped_ports) :
 outgoing_ip(_outgoing_ip), outgoing_nic(_outgoing_nic),
 mapped_ports(_mapped_ports),
 filter (true /* is_serial*/) { }

 void* operator() (void* item) {
 packet_trace* packet = static_cast<packet_trace*> (item);
 if (packet->packetDestPort == FTPcmdPort) {
 // outbound packet sends FTP command
 // packetPayloadApp contains data port –
 // save it in ports table
 add_new_mapping (packet->packetSrcIp,
 packet->packetPayloadApp,
 packet->packetSrcPort);
 packet->packetSrcIp = outgoing_ip;
 packet->packetPayloadApp = packet->packetSrcPort;
 }
 return packet;
 }
 port_t& add_new_mapping (ip_t& ip, port_t& port,
 port_t& new_port) {
 port_number* mapped_port = new port_number (port);
 ip_address* addr = new ip_address (ip, new_port);
 mapped_ports_table::accessor a; // acquires writer lock
 if (! mapped_ports.find (a, new_port))
 mapped_ports.insert (a, new_port);
 else
 delete a->second;
 // The port has already been mapped at the NAT stage
 // Re-map the port to the one specified by packet->PayloadApp
 a->second = mapped_port;
 mapped_ports.insert (a, port);

Packet Processing Pipeline | 255

Class forwarding : public tbb::filter

The filter class forwarding (Example 11-48) performs a very simple packet forward-
ing operation. If the packet is inbound, it uses the network_table to select a NIC.
Outbound packets can go to only one place, which is the NIC connected to the out-
bound Ethernet link. (In the NIC IP bindings in the input file, we made the simplify-
ing assumption that the first pair was the outward link.) See Example 11-49 for the
packet processing main program.

 a->second = addr;
 return new_port;
 }
};

Example 11-48. Forwarding filter

class forwarding : public tbb::filter {
 const ip_t outgoing_ip;
 const nic_t outgoing_nic;
 network_table& network_config;
public:
 forwarding (ip_t& _outgoing_ip, nic_t& _outgoing_nic,
 network_table& _network_config) :
 outgoing_ip(_outgoing_ip), outgoing_nic(_outgoing_nic),
 network_config(_network_config),
 filter (false /* is_serial*/) { }

 void* operator() (void* item) {
 packet_trace* packet = static_cast<packet_trace*> (item);
 if (packet->packetNic == outgoing_nic) {
 // packet is inbound, so translate it to the target Mac
 nic_t nextNic;
 if (find_next_hop (packet->packetDestIp, nextNic))
 packet->packetNic = nextNic;
 else
 cerr << "No next hop found" << endl;
 }
 else {
 // packet is outbound, only one place it can go
 packet->packetSrcIp = outgoing_ip;
 packet->packetNic = outgoing_nic;
 }
 return packet;
 }

 bool find_next_hop (ip_t& ip, nic_t& nic) {
 network_table::const_accessor a; // acquires reader lock
 if (network_config.find (a, ip)) {
 nic = a->second;
 return true;

Example 11-47. Filter to check for specific (FTP) applications (continued)

256 | Chapter 11: Examples

 }
 return false;
 }
};

Example 11-49. Packet processing main program

int main (int argc, char** argv)
{
 mapped_ports_table mapped_ports; // Router assigned ports
 network_table network_config; // Network configuration: IP => NIC

 ip_t router_ip; // Router outgoing IP
 nic_t router_nic; // Router outgoing NIC
 const size_t number_of_live_items = 10; // Pipeline's throughput

 // Parse command-line arguments
 get_args (argc, argv);

 // Open file streams
 ifstream in_file (in_file_name);
 if (!in_file) {
 cerr << "Cannot open input file " << in_file_name << endl;
 exit (1);
 }
 ofstream out_file (out_file_name);
 if (!out_file) {
 cerr << "Cannot open output file " << out_file_name << endl;
 exit (1);
 }

 // Initialize home router: build network configuration table
 // and read outgoing IP and NIC from input file
 if (! init_home_router (router_ip, router_nic,
 network_config, in_file)) exit (1);

 // Create home router instance
 //home_router router (port_map (port_table),
 // network_map (net_map),
 // router_nic, router_ip);

 // Initialize Threading Building Blocks
 tbb::task_scheduler_init tbb_init;

 // Create Threading Building Blocks pipeline
 tbb::pipeline pipeline;

 // Stage 0: Input Packet
 get_next_packet receive_packet (in_file);
 pipeline.add_filter (receive_packet);

Example 11-48. Forwarding filter (continued)

Memory Allocation | 257

Additional reading

• Srisuresh, P., and M. Holdrege (1999). IP Network Address Translator (NAT)
Terminology and Considerations, http://www.ietf.org/rfc/rfc2663.txt?number=2663.

Memory Allocation
There are two examples for memory allocation. The first is for replacing new and
delete. The second is one for C programmers with notes about replacing malloc,
calloc, realloc, and free.

Replacing new and delete
Example 11-50 shows a method to replace new and delete. As described in Chapter 6,
all versions of new and delete must be replaced at once, which amounts to four ver-
sions of new and four versions of delete. It is necessary to link with the scalable mem-
ory library (see Chapter 6).

Please note that you do not have to initialize the task scheduler to be able to use the
memory allocator. We do initialize it in this example because it uses parallel_for in
order to demonstrate the use of memory allocation and deallocation in multiple

 // Stage 1: Network Address Translator
 translator network_address_translator (router_ip, router_nic,
 mapped_ports);
 pipeline.add_filter (network_address_translator);

 // Stage 2: Application Level Gateway
 gateway application_level_gateway (router_ip, router_nic,
 mapped_ports);
 pipeline.add_filter (application_level_gateway);

 // Stage 3: Packet Forwarding Stage
 forwarding packet_forwarding (router_ip, router_nic,
 network_config);
 pipeline.add_filter (packet_forwarding);

 // Stage 4: Output Packet
 output_packet send_packet (out_file);
 pipeline.add_filter (send_packet);

 cerr << "Starting packets processing..." << endl;
 pipeline.run (number_of_live_items);
 pipeline.clear ();
 cerr << "All packets are processed. Exiting..." << endl;

 return 0;
}

Example 11-49. Packet processing main program (continued)

http://www.ietf.org/rfc/rfc2663.txt?number=2663

258 | Chapter 11: Examples

tasks. Similarly, the only header file that is required for the memory allocator is tbb/
scalable_allocator.h.

There are four basic signatures for new and delete: a set for individual objects, and a
set for arrays of objects. If memory cannot be allocated, new calls the new handler
function if set, or it throws the std::bad_alloc() exception. This example chooses to
ignore any new handler because there are thread-safety issues (see the sidebar
“Thread-Safety Issues in Implementing new”), and it always throws std::bad_alloc().
The variation of the basic signature includes the additional parameter const std::
nothrow_t& that means that this operator will not throw an exception but will return
NULL if the allocation fails. These four non-throwing exception operators can be used
for C runtime libraries. See Example 11-51 for a driver program that also demon-
strates the replacement of new and delete.

Example 11-50. Replacement of new and delete functions, demonstration

#include "tbb\task_scheduler_init.h"
#include "tbb\blocked_range.h"
#include "tbb\parallel_for.h"
#include "tbb\scalable_allocator.h"

// No retry loop because we assume that scalable_malloc does
// all it takes to allocate the memory, so calling it repeatedly
// will not improve the situation at all
//
// No use of std::new_handler because it cannot be done in portable
// and thread-safe way (see sidebar)
//
// We throw std::bad_alloc() when scalable_malloc returns NULL
//(we return NULL if it is a no-throw implementation)

void* operator new (size_t size) throw (std::bad_alloc)
{
 if (size == 0) size = 1;
 if (void* ptr = scalable_malloc (size))
 return ptr;
 throw std::bad_alloc ();
}

void* operator new[] (size_t size) throw (std::bad_alloc)
{
 return operator new (size);
}

void* operator new (size_t size, const std::nothrow_t&) throw ()
{
 if (size == 0) size = 1;
 if (void* ptr = scalable_malloc (size))
 return ptr;
 return NULL;
}

Memory Allocation | 259

void* operator new[] (size_t size, const std::nothrow_t&) throw ()
{
 return operator new (size, std::nothrow);
}

void operator delete (void* ptr) throw ()
{
 if (ptr != 0) scalable_free (ptr);
}

void operator delete[] (void* ptr) throw ()
{
 operator delete (ptr);
}

void operator delete (void* ptr, const std::nothrow_t&) throw ()
{
 if (ptr != 0) scalable_free (ptr);
}

void operator delete[] (void* ptr, const std::nothrow_t&) throw ()
{
 operator delete (ptr, std::nothrow);
}

Example 11-51. Driver program to demonstrate replacement of new and delete

class do_for {
 const size_t chunk;
public:
 do_for (size_t _chunk): chunk (_chunk) {}
 void operator() (tbb::blocked_range<int> &r) const {
 for (int i = r.begin(); i != r.end(); ++i) {
 // scalable_malloc will be called to allocate the memory
 // for this array of int's
 int *p = new int [chunk];
 // scalable_free will be called to deallocate the memory
 // for this array of int's
 delete[] p;
 }

 }
};

int main (int argc, char** argv)
{
 const size_t size = 1000;
 const size_t chunk = 10;
 const size_t grain_size = 200;
 // Initialize TBB
 tbb::task_scheduler_init tbb_init;

Example 11-50. Replacement of new and delete functions, demonstration (continued)

260 | Chapter 11: Examples

Replacing malloc, calloc, realloc, and free
Four simple interfaces that provide equivalent functionality to malloc, free, realloc,
and calloc exist:

#include "tbb/scalable_allocator.h"
void * scalable_malloc (size_t size);
void scalable_free (void* ptr);
void * scalable_realloc (void* ptr, size_t size);
void * scalable_calloc (size_t nobj, size_t size);

These can be used to replace the C language malloc, free, realloc, and calloc memory
functions by calling them instead. In general, that is the safest and easiest choice.

You do not want to make malloc a call to scalable_allocator because
scalable_malloc(n) returns a pointer with sufficient alignment for any
type, whereas scalable_allocator<char>().allocate(n) is guaranteed
only to return a pointer with sufficient alignment for type char.

Be sure that memory from scalable_malloc is freed using scalable_free, and that
memory from malloc is freed using free. Mixing these up can have results which are
difficult to debug. Therefore, Threading Building Blocks does not attempt to replace
malloc, free, realloc, and calloc for you. If you are diligent and make sure you are
not mixing malloc with free and scalable_malloc with scalable_free (including if
you use a module compiled to use the standard malloc to obtain objects you later
free), you can also replace the definitions using extern statements and macros. The
code to do this is in Example 11-52.

 // scalable_malloc will be called to allocate the memory
 // for this array of int's
 int *p = new int[size];

 tbb::parallel_for (tbb::blocked_range<int> (0, size, grain_size),
 do_for (chunk));

 return 0;
}

Example 11-52. Replacing malloc, calloc, realloc, and free

extern "C" void * scalable_malloc(size_t size);
extern "C" void scalable_free(void* object);
extern "C" void * scalable_realloc(void* ptr, size_t size);
extern "C" void * scalable_calloc(size_t nobj, size_t size);
#define calloc scalable_calloc
#define malloc scalable_malloc
#define realloc scalable_realloc
#define free scalable_free

Example 11-51. Driver program to demonstrate replacement of new and delete (continued)

Memory Allocation | 261

In some cases, scalable_malloc and scalable_free make calls to
malloc and free, so replacing them by linking in routines with these
names that in turn call the scalable allocator would cause a big prob-
lem. This may change in a future implementation, but for now you
should not redefine malloc or free in a way which would have malloc
or free call the scalable allocator.

Thread-Safety Issues in Implementing new
The implementation for the new operator described in the C++ standard does not
guarantee thread safety. A simple implementation could look like Example 11-53.

Lines 12 and 13 are troubling because the only way to get the address of the current
handler is via line 12, which also sets it to zero, and that can affect other threads. Line
13 has the potential to be setting a new handler to an address that was obtained—with
poor timing—based on another thread executing line 10 at the wrong time.

We could try to force lines 12 and 13 to be indivisible by using a lock. The use of a lock
around lines 12 and 13 would help keep this function from clobbering another one, but
it would do nothing to protect it from other calls to these routines that don’t have locks
around them.

There seems to be no portable solution here. We choose just to throw bad_alloc in
Example 11-50 and avoid the problem, but potentially this will not create the behavior
your program expects. You should feel free to address this shortcoming as you see fit.

Example 11-53. Example of new which is not thread-safe

1 // described in the sidebar
2 void* operator new (size_t size) throw (std::bad_alloc)
3 {
4 if (size == 0) size = 1;
5 // operator tries to allocate memory multiple times
6 // if the first time fails
7 while (true) {
8 if (void* ptr = scalable_malloc (size))
9 return ptr; // memory was allocated

10 // successfully, return a ponter
11 // if allocation fails then the standard behavior is
12 //to try to call new_handler function
13 std::new_handler cur_new_handler = std::set_new_handler (0);
14 std::set_new_handler (cur_new_handler);
15 // if new_handler function was set (!= 0) then we call it
16 if (cur_new_handler)
17 (*cur_new_handler) ();
18 //(it may be able to resolve the memory issue
19 // so we can repeat the attempt)
20 else

262 | Chapter 11: Examples

Game Threading Example
This example clearly illustrates how rethinking parallelism can result in a decomposi-
tion that is better suited to scaling. This example also emphasizes building your own
structures with Threading Building Blocks tailored to your particular specialty.
You’ll find more information and downloads on the Web for the particular gaming
framework used here. For the purposes of this book, we’ll focus on the key design
decisions and show the code that uses the task scheduler directly.

Games, like many programs, have been threaded for the sake of convenience rather
than performance. Specifically, games have often been threaded along function lines
and nothing more. In order to fully utilize many cores, this example shows how to
thread a game using a functional pipeline with domain decomposition. This example
demonstrates several ways to reach the next level of scalability in game architecture.
Most threading of games has traditionally focused on functional parallelism and data
parallelism. The former is pretty straightforward: one thread for rendering, one
thread for physics, and so forth. Data parallelism generally comes in waves with
serial interludes, as shown in Figure 11-24.

In this example, we concern ourselves with rendering stars after determining posi-
tions based on physics. We go beyond data parallelism to discuss domain decompo-
sition, which has the structure shown in Figure 11-25.

The principle performance advantage of this structure is that a group of stars each
form a domain task that is treated as a large single task with several data parallel
sections, instead of scheduling each region and then each star separately. The compu-
tations take advantage of knowing that several nearby stars are in the same domain
to avoid most of the threading synchronization overhead. It has been shown in many
supercomputer applications that this simple domain decomposition principle helps
scalable performance considerably. This is especially true in games where some
significant sections are serial and the need to produce many frames-per-second syn-
chronization penalties are paid many times over.

21 throw std::bad_alloc (); // otherwise, we throw exception and
22 // leave the loop
23 }
24 }

Figure 11-24. Data parallelism with serial section between

Example 11-53. Example of new which is not thread-safe

tparallel tparallel tparalleltserial tserial

Game Threading Example | 263

By developing a simple example game architecture, you can keep the threading archi-
tecture design issues simple and clear enough to experiment with, and thus
demonstrate the best threading methods for real games.

When you run the example, a window will appear that shows marble-like stars mov-
ing around in space under the force of gravity between each of the other stars and a
black hole. Figure 11-26 shows a view of the game in progress. By setting the Count of
object stars and the simulated computational Load in the fill-ins on the right, you can
model the complexity of a simulated k-d tree data structure. At the top of the win-
dow, you can see various performance data, such as the frames per second (FPS), the
operations performed in Serial mode, and the number of stars in each of the eight
object domains: 15 15 09 12 11 11 14 13.

Threading Architecture: Physics + Rendering
This threading architecture splits the data structures of the game, such as the scene
graph, into domains, and has threads that walk around the domains in the scene
graph.

This version implements compound functional and domain decomposed threading
of a game. At the functional level, two things are occurring, each of which represents
a greatly simplified game component:

Physics interactions
Star objects move toward each other and toward a black hole under the force of
gravity. They do a gravity interaction and an update-positions phase in each
frame. The set of stars is decomposed with the data structures and with Thread-
ing Building Blocks tasks into domains.

Rendering
The scene graph goes into a display list and is displayed.

Figure 11-25. Domain decomposition of each frame from example

tparallel tparallel tserial

One Frame

Domain 1 task interact several stars

Domain 2 task interact several stars

Domain n–1 task interact several stars

Domain n task interact several stars

Cause stars to interact

Task 1 update several stars

Task 2 update several stars

Task n–1 update several stars

Task n update several stars

Update positions Rebalance groups

264 | Chapter 11: Examples

On two-processor cores, physics and rendering are each given a core resulting in a
pipeline on two threads. On four-processor cores, physics has multiple Threading
Building Blocks threads that execute different domains.

Overview of Keys to Scalability
The first thing that really matters in achieving scalability is having abundant
parallelism in an application. Games do have abundant parallelism. At least 60 times
per second, everything could change and need to be recomputed. And with rela-
tively few dependencies, it could all be computed in parallel. So, we describe the gen-
eral places to look to avoid losing performance. Recalling Amdahl’s Law (Chapter 2),
the speedup can decrease rapidly with small performance losses.

One thing to be cautious of in highly parallel applications is that to get computa-
tions to run in parallel, you may need to add some extra computations. You have to
measure performance carefully to make sure that any added computation is not
slowing down the serial computation, giving extra credit for making the game faster.
We will identify added computation shortly.

The second thing that really matters is that the overhead of threading on a multi-core
processor stays low. Three dimensions must be reviewed:

Figure 11-26. Screen capture from example

Game Threading Example | 265

• Task setup and scheduling

• Synchronization

• Cache and shared memory efficiency

These three are largely orthogonal issues. You can attack each one. Conversely,
improving the program structure strategically, you can improve more than one at a
time. For these three areas a qualitative four-point rating of importance is given. To
give you an idea, there will be comments on overhead, characterized from not-good
(1 out of 4 on the overhead scale), to bad (2), to terrible (3), to worst (4). The names
may exaggerate a bit to make a point: avoid overhead. These ratings are intended to
highlight key overhead decisions. More careful evaluation should be performed after
implementing these strategies in your application. Look ahead to Table 11-3 to see
what this four-point rating means. We will build up this table in each of the follow-
ing sections leading to the table.

A Frame Loop
Simply put, we propose that instead of having several data parallel loops in a frame,
we have only two: one to move objects and a second to update positions for the next
frame.

To compare threaded game architectures, consider data parallelism (Figure 11-24)
and domain decomposition (Figure 11-25). The data parallelism structure indicates
several parallel loops running in each frame. Operations on pieces of data are distrib-
uted in each parallel loop. After each parallel loop is executed, synchronization with
the root thread occurs. It performs some serial computation and after several parallel
loops, it synchronizes with the rendering thread to allow the next frame to begin.
Each of these synchronizations, sometimes called barriers, is terrible (3 on the scale)
because:

• The fastest thread must wait for the slowest thread every loop. There are more
chances for load imbalance.

• Synchronization with the root thread is a much more contentious multiple-
writer, single-reader (root thread) type.

How many synchronizations are really needed? Note that for each frame there
are at least two synchronizations: at the end of parallel interactions (SI), and
then at the end of the frame when all the object positions are updated for the
next frame to start (SF; F is for frame).

• SI and SF are sufficient to keep all threads synchronized on each frame.

With domain decomposition, the data is divided among the threads at the beginning
into domains of objects. Also, fewer synchronizations are done in one large loop.
This is a major improvement in scalability because it avoids all but one of the SI syn-
chronizations where physics threads have to wait for the slowest physics thread.

266 | Chapter 11: Examples

There is still an SF frame synchronization between the rendering thread and the root
thread.

In the example code, InteractTask (Example 11-54) and UpdateTask (Example 11-55)
are the SI and SF phases. The call to spawn_root_and_wait(task) (Chapter 9) causes a
barrier at the end of each phase.

Domain Decomposition Data Structure Needs
Data decomposition is a technique frequently used for very scalable computations.
There are two points of definition: tasks that communicate most frequently are in the
same domain; and the amount of work in a domain is fairly balanced. For scalabil-
ity, the first point assumes that most communication occurs local to each domain; in
other words, local to a single thread and requiring no synchronization. A smaller
amount between domains should impact speedup less. Communication cost should
include the cache effects of moving a cache line from one core to another, as well as
synchronization.

There is a natural tendency to associate the term domain with a spatial domain. That
may not be the case. It is possible, and demonstrated in the example, that spatially
close objects may execute in different threads because the memory is still shared. It is
also possible that a domain—a group of objects—may move (by task stealing) to a
different thread even though its spatial-domain neighbors stay.

In this example, one root task creates a task for each domain in a k-d tree (see
Figure 11-27). It starts by creating the root:

*new(tbb::task::allocate_root())
 InteractTask(m_bh, 0, m_bh, m_universeRadius, m_DummyCount);

A task tree of all the domain tasks is built recursively descending the k-d tree struc-
ture. See InteractTask (Example 11-54) or UpdateTask (Example 11-55). At each level,
descendant tasks are built by creating a task_list with a for loop over the children:

for (i = 0; i < m_node->getChildCount(); ++i) {
list.push_back(*new(c.allocate_child())
 UpdateTask(m_node->getChild(i)));
}

Figure 11-27. Task creation structure

Root
Task Domain

Task Object
Task

Recursive
creation

Wait for all

Game Threading Example | 267

Because we need to enumerate the number of children that we want to wait for
before proceeding, c.set_ref_count((int)i) is used for a continuation task:

tbb::task& c = *new(allocate_continuation()) tbb::empty_task();

Then the children tasks are put into the ready queue:

c.spawn(list);

At the leaves of the tree, parallel execution of all the leaf objects (individual stars) in
a domain task will be performed in this way. (It would be low overhead in Thread-
ing Building Blocks—in other words, only not-good—to create these tasks on the
same thread on which they execute.) The root task waits for all InteractTask tasks to
have completed, SI, before the same task-building process is executed to update each
object, SF.

You can run the code and increase the number of objects to see how speedup
increases with more objects. You can use the Intel Thread Profiler to see the threads
and how they execute tasks. You can visually see where all the threads wait for the
last task to complete. Run the code as normal with one thread per core. Also run it
with multiple threads on a single core to see the threading overhead.

In the downloadable example code (not shown in this chapter), we wanted to illus-
trate how game data structures drive domain decomposition task creation. Above the
individual object level, a k-d tree is built. This k-d tree is not very realistic in the
example, in that it is only an eight-way decomposition, but it does accurately
illustrate the interaction between tree traversal and task creation.

Creating a task graph can range from bad to not-good. If the root task must create the
whole graph, there is greater overhead than if each task creates subtasks in parallel.
Threading Building Blocks is designed to support the latter.

Think Tasks, Not Threads
You should think about game architecture in terms of tasks rather than threads. Each
task should have several characteristics:

Parallel
A task is a unit of work that is done repetitively and can be done independently.

Managed
At the end of task execution, normally it will be recreated as a task in the next
frame of work. A leaf- or object-level task should not create other tasks.

Autonomous
The task should minimize synchronization with tasks on other threads. If a syn-
chronization lock is needed between tasks, the locked region should be as small as
possible. At runtime, if the same thread releases and claims a lock, it is not-good
overhead compared to serial code. Or if one thread releases it and, after some
delay (this is an uncontended lock), the next thread claims it, it is also not-good. It

268 | Chapter 11: Examples

is bad only if the lock is contended, such as when multiple threads are simulta-
neously interfering to get the lock. You can use the Intel Thread Profiler to mea-
sure this directly, which is how you can go about characterizing your own usage.

In the physics interaction set of tasks, we want to create tasks so that:

• There are several times more tasks than threads to allow task stealing for load
balancing. (See the next section, “Load Balancing Versus Task Stealing.”)

• Tasks that are close to each other in game space where they might communicate
get scheduled on the same thread to maximize the opportunity for cache reuse
and local synchronization.

The latter is achieved by using Threading Building Blocks task creation as the data
structure is traversed.

In the example code that you can download, there is a frame loop that is not shown
in the code in this book. The parallelism and management are as described in the
previous subsection. Refer also to Figure 11-25. All objects are moved forward in
time, together, by executing a parallel Threading Building Blocks task tree.

We are unable to reach the completely autonomous goal stated earlier because of the
requirements of the physics. If the user at the user interface changes the number of
objects, or if objects are absorbed by the black hole, the data structures must be
changed for the next frame. The k-d tree is locked at each SceneNode node to allow
simultaneous updates of the tree. Lock() and Unlock() bind to EnterCriticalSection(&m_
criticalSection) and LeaveCriticalSection(&m_criticalSection), where the
m_criticalSection is local to the SceneNode. Then they drop down to the individual star
level to lock and unlock star private &m_criticalSections. Now data structure
changes are rare enough that this lock granularity does not impact performance.

Load Balancing Versus Task Stealing
Task stealing is terrible because it can result in a relatively large synchronization cost.
But more importantly, it can move all the data in cache from one core to another.
You should minimize the number of tasks stolen. Therefore, there are two levels of
work distribution in the example:

• Balancing the amount of work within each domain task

• Task stealing of domain tasks

The work in each domain of data decomposition by a spatial data structure, such as
a k-d tree, can be balanced by selecting an algorithm available in the data structure
research. But because the work does not have to be perfectly balanced, and rarely is,
it is good to create more domain tasks than physical threads. In the example, we
demonstrate that Threading Building Blocks can be used to steal domain tasks from
one thread to another when the first thread has less work to do in its normal domain.

Game Threading Example | 269

The example shows that on average, m tasks are stolen. As long as m << n, the data
decomposition is sufficiently efficient.

In addition, in the current k-d tree traversal, we assume that the k-d tree is roughly
spatially balanced. But objects can move in space from one quadrant to another
without moving in the k-d tree. Thus, the tree can become an incorrect k-d tree over
time. Moving objects to their proper place in the k-d tree takes extra time and may
not be necessary for threading efficiency. In some games, it may be necessary to keep
the k-d tree correct for other purposes. So in the example code, if (!(balance_
counter % 10)) means that every 10 frames we check when an object has moved to
another domain. Then, it is removed from the tree and reinserted.

When you run the code, you can see in the data reported how many objects are
currently in each domain. Note that as the serial version runs next to the parallel ver-
sion, the number of objects in each domain is different.

Synchronization Between Physics Threads
There are several ways to make scalable communication. Applying the right tech-
nique depends on the game’s rules. But with respect to scalability, there are two
major cases. First, if there are a constant number of point-to-point interactions inde-
pendent of the number of threads, the game would be scalable. Second, if there are
effects that have a collective nature, such as gravity between objects—potentially n2

point-to-point operations—the game is not likely to scale. (We consider this to be
worst.) There are a variety of techniques to improve the scalability of such n2 point-
to-point operations. In selecting the right technique, you should also take into
account that the serial computation of these effects can be more efficient (linear
time) than the scalable point-to-point computation.

As an example, a real physics computation is rigid body physics. There are two cases.
Each rigid body may lie within one or a few domains. In this case, it is scalable
because the physics will be computed by each thread on bodies within its domain. If,
however, the rigid body spans all domains substantially, an advanced technique
must be used. In this case, you could consider the computations done in molecular
dynamics (MD), which have similar characteristics. MD computations have been
implemented in an extremely scalable manner in the NAMD application (http://en.
wikipedia.org/wiki/NAMD), which won a Gordon Bell award for scalability. It is not
likely that you will need that much scalability, so be selective in using these
techniques.

In the example, in order to illustrate why object-to-object physics interaction alone
can be hard, we used the gravity challenge, potentially n2 communications. Our
example code illustrates two implementation moves.

The first move is to split the physics into two phases, as described earlier in terms of
SI and SF. In the first phase, compute all the interactions:

http://en.wikipedia.org/wiki/NAMD
http://en.wikipedia.org/wiki/NAMD

270 | Chapter 11: Examples

• Based on current state positions and velocities, these are stored in a state[0]
structure.

• Compute the next state position and velocities. These are in state[1].

In the second phase, transfer the next state into the current state so that the next
frame can repeat.

In the second phase, we implemented a fast algorithm that does neither all-to-all syn-
chronization nor only point-to-point. It uses something loosely based on the n-body
Barnes-Hutt computation. It is inside the pStar->Update method for stars and is not
shown in the code (though it is in the downloadable complete version of the code).

Integrating the Example into a Real Game
We do not claim that the example is fast for game engines, but rather that it has a
better set of techniques to speed up a game engine. Although implementing these
techniques in a real game will take time, it will also require applying these tech-
niques and perhaps some others. We want to do two things to validate the example:

• Review the source structure of the game to determine which techniques we can
apply and whether there are gaps in the techniques we need. The review must
determine how much code restructuring is needed and the step-by-step sequence
such that the game can be tested at each step.

• Update the example code to model the structure of the game at each step, plus
the performance modeling needed to see whether the expected performance and
scalability will be attained if the code is transformed.

Spatially decomposing a k-d data structure may be appropriate for physics and scene
management, but how can you provide good scalability for other game components?
The answer is not clear. Let’s do a thought exercise. Suppose, for example, that
online players only interact with players in the current neighborhood. Although they
may see other players moving at a distance in other spatial domains, the group of
players nearby have much more game play to be executed. It will be necessary to
spread these closer players’ game-play structures across tasks to get speedup.

To achieve this, it would be necessary for:

• The player’s space structure to be load-balanced across tasks. There can be
granularity problems.

• Tasks to execute the player’s work space in a timely manner, interacting players
to enter and leave the player space structure, and the work to remain balanced
(by domain decomposition or task stealing).

• Tasks executing the player structure to synchronize with the spatial data struc-
tures. This is the most complex problem because even if the synchronization is
not contended, there may be a cache-thrashing problem.

Physics Interaction and Update Code | 271

The granularity of tasks must allow threads that execute few player tasks to have
more other tasks to execute in idle periods.

Synchronization between the data structures may mean that there is a direct trade-off
between processing speedup and memory bandwidth utilized.

How to Measure Performance
Measuring performance in a scalable game is very easy from an end user’s point of
view. The gaming experience keeps getting better as more cores are added. But it is
more important here to look at the developer’s point of view, which is much more
complex and will allow us to understand scalability in the full game.

Two types of overhead must be considered. The first overhead is observed in the
threading primitives used. Here, there are also two types: when it recurs on every
frame, synchronizations are an example, and when it depends on game play, task
stealing is an example.

The second overhead concerns the additional computation needed in the threaded
version. For example, if a game did not have a k-d tree and it was added just to pro-
vide a spatial decomposition, all computations with this tree would be overhead. In
the ideal case, this type of overhead would vary no more than linearly with the num-
ber of threads. If this is the case, the overhead for one thread would be zero or
almost zero.

Table 11-3 summarizes the aforementioned techniques in terms of the four-tiered
overhead scale: not-good (the best of the four), bad, terrible, and worst.

Physics Interaction and Update Code
The source code for the physics interaction (Examples 11-54 and 11-55) and update
(Example 11-56) are presented here for you to study. You can download the complete
source code from http://www.threadingbuildingblocks.org/book. Look for errata and
notes at this web site as well.

Table 11-3. Summary of the techniques examined

Cost scale Description

Not-good Creating a task and executing it on the same thread

Not-good Getting an uncontended lock

Bad Getting a contended lock

Bad Creating a task graph

Terrible Task stealing; if it occurs, it will disrupt cached data

Terrible Data parallel loop synchronization

Terrible Computing frames that are not rendered

Worst Nonscalable interactions between tasks

http://www.threadingbuildingblocks.org/book

272 | Chapter 11: Examples

For more in-depth reading on this topic, Intel engineers wrote several articles cover-
ing the topic of threading games, which you can download at the web site as well.

Example 11-54. Physics interaction code: InteractTask

class InteractTask : public tbb::task
{
 SceneNode* m_node;
 size_t m_i;
 D3DBlackHole* m_bh;
 float m_universeRadius;
size_t m_DummyCount;

public: // Interact all stars in task
InteractTask(SceneNode* node,
 size_t i,
 D3DBlackHole* bh,
 float universeRadius,
 size_t DummyCount)
 : m_node(node), m_i(i),
 m_bh(bh), m_universeRadius(universeRadius),
 m_DummyCount(DummyCount)
 {}
 tbb::task* execute()
 {
 if (m_node->getChildCount()) {
// High in scene graph, Create parallel domain tasks for the children
 size_t i;
 tbb::task_list list;
 tbb::task& c = *new(allocate_continuation()) tbb::empty_task();
 for (i = 0; i < m_node->getChildCount(); ++i) {
 list.push_back(*new(c.allocate_child())
 InteractTask(m_node->getChild(i),
 i, m_bh, m_universeRadius, m_DummyCount));
 }
 c.set_ref_count((int)i);
 c.spawn(list);
 }
 if (m_node->getUserID() > 0) {
 // Low-level object tasks, interact each star serially
 D3DStar* pStar = (D3DStar*)m_node;
 float elapsedTime = g_elapsedTime - pStar->getTimeStamp();
 // TODO: check accuracy of interaction and decide:
 // 1. Skip interaction for this short period of time
 // 2. Split this long period of time to parts and
 // interact for each
 pStar->setTimeStamp(g_elapsedTime);
 pStar->setElapsedTime(elapsedTime);
 if (!pStar->isAlive() && !pStar->isDying()) {
 pStar->Reset(m_bh, m_universeRadius);
 pStar->NextState();
 } else {

Physics Interaction and Update Code | 273

 // apply attraction to black hole
 pStar->Interact(elapsedTime, m_bh,
 m_universeRadius, m_DummyCount);
 // apply attraction to every other star
 SceneNode* node = m_node->getParent();
 for (size_t j = (m_i + 1); j < node->getChildCount(); ++j) {
 pStar->Interact(elapsedTime,
 (D3DStar*)node->getChild(j),
 m_DummyCount);
 }
 }
 }
 return NULL;
 }
};

Example 11-55. Physics interaction code: UpdateTask

class UpdateTask : public tbb::task
{
 SceneNode* m_node;

public: // Update all star positions based on
 // interactions in this frame
 UpdateTask(SceneNode* node)
 : m_node(node)
 {}
 tbb::task* execute()
 {
 if (m_node->getChildCount()) {
 // High in scene graph, Create parallel
 // domain tasks for the children
 size_t i;
 tbb::task_list list;
 tbb::task& c = *new(allocate_continuation()) tbb::empty_task();
 for (i = 0; i < m_node->getChildCount(); ++i) {
 list.push_back(*new(c.allocate_child())
 UpdateTask(m_node->getChild(i)));
 }
 c.set_ref_count((int)i);
 c.spawn(list);
 }
 if (m_node->getUserID() > 0) {
// Low-level object tasks, update each star serially
 D3DStar* pStar = (D3DStar*)m_node;
 // Matrix transformation
 pStar->Update(pStar->getElapsedTime());
 }
 return NULL;
 }
};

Example 11-54. Physics interaction code: InteractTask (continued)

274 | Chapter 11: Examples

Example 11-56. Update code

void World::Update(void)
{
 static __itt_event ev = _ _itt_event_create("update", 6);
// Lock out changing k-d tree until interactions
// and updates are done.
Lock();
 _ _itt_event_start(ev);
 tbb::tick_count t0 = tbb::tick_count::now();
 if (isParallel() && !isChanged()) {
 InteractTask& task = *new(tbb::task::allocate_root())
 InteractTask(m_bh, 0, m_bh,
 m_universeRadius,
 m_DummyCount);
 tbb::task::spawn_root_and_wait(task);
 } else {
// Sequential equivalent to threaded version in InteractTask
 for (size_t i = 0; i < m_bh->getChildCount(); ++i) {
 GroupNode* grp = (GroupNode*)m_bh->getChild(i);
 for (size_t j = 0; j < grp->getChildCount(); ++j) {
 D3DStar* pStar = (D3DStar*)grp->getChild(j);
 float elapsedTime = g_elapsedTime - pStar->getTimeStamp();
 pStar->setTimeStamp(g_elapsedTime);
 pStar->setElapsedTime(elapsedTime);
 if (!pStar->isAlive() && !pStar->isDying()) {
 pStar->Reset(m_bh, m_universeRadius);
 pStar->NextState();
 continue;
 }
 // apply attraction to black hole
 pStar->Interact(elapsedTime, m_bh,
 m_universeRadius, m_DummyCount);
 // apply attraction to every other star in group
 for (size_t k = (j + 1); k < grp->getChildCount(); ++k) {
 pStar->Interact(elapsedTime,
 (D3DStar*)grp->getChild(k),
 m_DummyCount);
 }
 }
 }
 }
 tbb::tick_count t1 = tbb::tick_count::now();
 m_UpdateTime = (t1-t0).seconds();
 _ _itt_event_end(ev);

 t0 = tbb::tick_count::now();
 if (isParallel() && !isChanged()) {
 UpdateTask& task = *new(tbb::task::allocate_root())
 UpdateTask(m_bh);
 tbb::task::spawn_root_and_wait(task);
 } else {
// Sequential equivalent to threaded version in UpdateTask
 for (size_t i = 0; i < m_bh->getChildCount(); ++i) {

Open Dynamics Engine | 275

Open Dynamics Engine
As a final example, let’s take a look at how to thread the Open Dynamics Engine, an
open-source physics engine that is available for download and experimentation from
http://www.ode.org. The Open Dynamics Engine (ODE) is a physics engine with two
main components: a rigid body dynamics simulation engine and a collision detection
engine.

 GroupNode* grp = (GroupNode*)m_bh->getChild(i);
 for (size_t j = 0; j < grp->getChildCount(); ++j) {
 D3DStar* pStar = (D3DStar*)grp->getChild(j);
 // Matrix transformation
 pStar->Update(pStar->getElapsedTime());
 }
 }
 }
 float elapsedTime = g_elapsedTime - m_bh->getTimeStamp();
 m_bh->setTimeStamp(g_elapsedTime);
 m_bh->setElapsedTime(elapsedTime);
 // update Black Hole
 m_bh->Update(elapsedTime);
 t1 = tbb::tick_count::now();
 m_TransformTime = (t1-t0).seconds();

 // Balance groups here (every 10 frame)
 static int balance_counter = 0;
 if (!(balance_counter % 10)) {
 for (size_t i = 0; i < m_bh->getChildCount(); ++i) {
 GroupNode* grp = (GroupNode*)m_bh->getChild(i);
 for (size_t j = 0; j < grp->getChildCount(); ++j) {
 D3DStar* pStar = (D3DStar*)grp->getChild(j);
 if (pStar->isAlive() &&
 !grp->isInGroup(pStar->getLocation(0),
 pStar->getLocation(1),
 pStar->getLocation(2))) {
 for (size_t k = 0; k < m_bh->getChildCount(); ++k) {
 GroupNode* ngrp = (GroupNode*)m_bh->getChild(k);
 if (ngrp != grp &&
 ngrp->isInGroup(pStar->getLocation(0),
 pStar->getLocation(1),
 pStar->getLocation(2))) {
 grp->removeChild(pStar);
 ngrp->addChild(pStar);
 }
 }
 }
 }
 }
 }
 Unlock(); // Ok, now permit changing the k-d tree.
}

Example 11-56. Update code (continued)

http://www.ode.org

276 | Chapter 11: Examples

We will walk through an example, which is typical of how we approach the task of
helping thread programs with Threading Building Blocks when we are asked to assist
with code we have not seen before.

Having never used the code before, we downloaded it to take a look at what we could
do. We ended up finding two alternative implementations: parallel_for, which is
quick and easy to implement, and a more advanced use of the task scheduler to deal
with dynamics. It is interesting that the tasks into which we break up our program
are relatively the same, so the discovery of the parallel_for solution has the program
ready for better task handling when we understand the application a little better.

Look for Hotspots
The first step was to use a performance analysis tool—the VTune Performance
Analyzer in this case—to identify the hotspot in this library. Sampling found a
hotspot in the dynamics simulation engine (a hotspot is a place where the program is
spending a lot of time). The function containing the hotspot was dInternalStepFast.

dInternalStepFast is a solver function that works with two connected objects. Basi-
cally, it applies forces to the objects. There are several loops doing compute-intensive
work. If you look more closely at the code, you will see that all these loops have data
dependencies and the work is too fine-grained. So, you do not want to apply
parallel_for there because it is unlikely that you will get good scalability. What we
should do when we are discouraged in this way is look higher in the call tree—in this
case, we wanted to see which function was calling dInternalStepFast.

Returning to VTune, we used information from a call graph view to identify the higher-
level function that calls dInternalStepFast. That function is dInternalIslandStepFast.
The call graph timing information showed that dInternalIslandStepFast itself did not
take much time to execute: it goes through the list of objects and computes inertia
tensor and rotational force for each one. Then, it calls dInternalStepFast for the object
pairs.

Notice what we are doing: we are walking up the call graph to find as
much parallelism as we can. The fact that we started our walk at a
hotspot means this would be nice to run in parallel. Walking up the
call graph looking for the best place to break into parallelism is typi-
cal. The higher we go, we hope, the more coarse-grained parallelism
we may find.

At this point, we realized that dInternalIslandStepFast works with the groups of
objects, not with the complete list. Returning to the call graph, we looked higher
still. We noticed processIslandsFast (Example 11-57), which takes the list of all
objects in the scene and searches for the islands. An island is a subrange of objects
that have common joints so that objects from the different islands do not intersect

Open Dynamics Engine | 277

and islands can be processed independently (there are no data dependencies between
them), which makes them very good choices for data parallel decomposition.

We decided to apply parallel_for (Example 11-58), which would take the std::vector
of islands and call dInternalIslandStepFast for each island in parallel. We added a new
class, process_island, and overrode its operator() to make it model the parallel_for
Body Concept (Chapter 3). Operator() calls dInternalIslandStepFast for each island of
the given subrange. Then our prototype was done. The modified processIslandsFast
function was called processIslandsFastPfor (Example 11-59) in the modeling app.

Example 11-57. ODE: processIslandsFast

// Finds islands of connected objects and calls solver
void processIslandsFast (int counter, world_t& world)
{
 int obj_num = counter;
 for (size_t i = 0; i < world.size(); i++) {
 busy (search_time);
 if (i % counter == 0) {
 // Call solver for the found island
 dInternalStepIslandFast (obj_num, world);
 }
 }
}

Example 11-58. ODE: process_islands for parallel_for

// Body functor for parallel_for version
class process_islands
{
 islands_vector &p;
 int obj_num;
public:
 process_islands (islands_vector& params, int num):
 p (params), obj_num (num) {}
 void operator() (tbb::blocked_range<int> &r) const
 {
 // Call solver for each island from the sub-range
 for (int i = r.begin(); i != r.end(); i++)
 dInternalStepIslandFast (obj_num, *p[i]);
 }
};

Example 11-59. ODE: processIslandsFastPfor

// Modified processIslandsFast: calls tbb::parallel_for
// for the array of islands
void processIslandsFastPfor (int counter, world_t& world)
{
 int obj_num = counter;
 int num_islands = 0;

278 | Chapter 11: Examples

Improving on the First Solution
Naturally, we wondered what we could do to improve our newly parallel program.

What’s wrong with using parallel_for in this example, you ask? The problem is that
the applications that would use ODE are dynamic: the number of objects in the
scene changes, the number of islands also changes over time, and so on. It’s hard to
come up with a good grainsize parameter for parallel_for. Also, the more objects
you have, the more time you spend searching for islands. What if we could make the
island processing overlap with other operations? Our prototype does not allow this
to happen, and it becomes a major problem.

The task scheduler interface is a natural place to go when you have a dynamic ability
to find more tasks. Islands make good tasks, but in the parallel_for structure they
are not balanced well because they pop up as surprises.

We created yet another class, process_one_island (Example 11-60), that has a class
task as a parent. We overrode the pure virtual execute method where we just called
dInternalIslandStepFast for the given island. So, we just described our own logical
task.

Aha! Slipping in a task when you can identify work is easy and can be
very powerful.

We wanted processIslandsFast to spawn tasks. To do this we needed to create a
root task. We wrote a new class for this root task, process_world, which would just call
a modified processIslandsFast (processIslandsFastTask, shown in Example 11-61).
The modified processIslandsFast needed to be changed to accept a new parameter—a
reference to the root task, which is used to create, spawn, and wait for process_one_
island tasks. The new children tasks were created and spawned as soon as the new
island was found (so that we did not have to wait until all islands were found to start
processing, like we did in the parallel_for case).

 for (size_t i = 0; i < world.size(); i++) {
 busy (search_time);
 if (i % counter == 0) {
 // Just register a new island
 num_islands++;
 }
 }
 islands_vector islands(num_islands);
 // Call parallel_for for all found islands
 tbb::parallel_for (tbb::blocked_range<int>(0, num_islands,
 grain_size),
 process_islands (islands, obj_num));
}

Example 11-59. ODE: processIslandsFastPfor (continued)

Open Dynamics Engine | 279

Example 11-60. ODE: process_one_island (task)

// Task: calls solver for the given island
class process_one_island: public tbb::task
{
 island_t &p;
 int obj_num;
public:
 process_one_island (island_t& params, int num):
 p (params), obj_num (num) {}
 task* execute ()
 {
 dInternalStepIslandFast (obj_num, p);
 return NULL;
 }
};

Example 11-61. ODE: processIslandsFastTask

void processIslandsFastTask (tbb::task& tbb_root,
 int counter, world_t& world);
// Root task: calls processIslandsFastTask to search for islands
// spawns process_one_island tasks for the found islands
class process_world: public tbb::task
{
 int counter;
 world_t& world;
public:
 process_world (int num, world_t& w) :
 world (w), counter(num) {}
 task* execute ()
 {
 processIslandsFastTask (*this, counter, world);
 return NULL;
 }
};

// Modified processIslandsFast: spawns process_one_island task
// for the island new parameter "tbb_root" is added
void processIslandsFastTask (tbb::task& tbb_root,
 int counter, world_t& world)
{
 int obj_num = counter;

 for (size_t i = 0; i < world.size(); i++) {
 busy (search_time);
 if (i % counter == 0) {
 // Spawn the solver task immediately,
 // not wait until all islands are found
 tbb::task& t =
 *new (tbb_root.allocate_additional_child_of (tbb_root))
 process_one_island (island_t(), obj_num);
 tbb_root.spawn (t);

280 | Chapter 11: Examples

We are seeing more parallel work now, and better resource utilization. The new ver-
sion can adapt to the dynamically changing environment better than the parallel_
for version.

The first attempt gave a 1.1X speedup, whereas the second effort gave us a 1.29X
speedup when run with 400 simple objects on a quad-core system, all in the span of
less than a day of effort.

The Code
To meet space constraints, we’ve published a complete standalone version of the
program that actually uses delay loops to simulate being in the ODE package itself.
This means that all the code listed strictly concerns the code that was written to
introduce threading (two different ways) via Threading Building Blocks (see Exam-
ples 11-62 and 11-63). This model program contains none of the ODE but behaves
like the ODE at a high level. The timing delays in the listing simulate the effects of
the real calls in the ODE such that the speedup results seem consistent with the trials
we ran. The web site for this book has instructions on how to download a modified
ODE as well, which actually incorporates these changes into the whole ODE.

 }
 }
 // Join all the children tasks
 tbb_root.wait_for_all ();
}

Example 11-62. ODE: includes and delay placeholders

#include <stdio.h>
#include <vector>
#include <windows.h>
#include "tbb\task_scheduler_init.h"
#include "tbb\task.h"
#include "tbb\parallel_for.h"
#include "tbb\blocked_range.h"
#include "tbb\tick_count.h"

typedef int object_t;
typedef std::vector<object_t*> world_t;
typedef std::vector<object_t*> island_t;
typedef std::vector<island_t*> islands_vector;

const unsigned int N = 20000; // Weight of the computation complexity

const int grain_size = 5; // Grainsize for parallel_for: hard to
 // find a good number if the
 // environment changes dynamically

Example 11-61. ODE: processIslandsFastTask (continued)

Open Dynamics Engine | 281

const int step_time = 1; // Time to spend processing one object
 // in dInternalStepIslandFast (solver)

const int search_time = 1; // Time to spend processing one object
 // in processIslandsFast (islands finder)

void busy (int weight)
{
 for (int i = 0; i < weight; i++) {
 static volatile int x;
 for (int j = 0; j < N; j++)
 ++x;
 }
}

// Simulates solver
void dInternalStepIslandFast (int obj_num, island_t& island)
{
 for (int i = 0; i < obj_num; i++)
 busy (step_time);
}

// put Example 11-57 through Example 11-61 here //

Example 11-63. ODE: set-up

// after Example 11-62, and Example 11-57 through Example 11-61

void main (int argc, char **argv)
{
 unsigned int world_size = 400;
 int tbb_num_threads = tbb::task_scheduler_init::automatic;

 // Process program input arguments
 unsigned int num = 0;
 for (int i=1; i<argc; i++)
 {
 if (_stricmp(argv[i],"-numThreads")==0) {
 if ((i < argc-1) && ((num = atoi(argv[i+1])) > 0))
 tbb_num_threads = num;
 }
 else if (_stricmp(argv[i],"-numObjects")==0) {
 if ((i < argc-1) && ((num = atoi(argv[i+1])) > 1))
 world_size = num;
 }
 }

 // Initialize the world with objects
 world_t world(world_size);

 if (tbb_num_threads != tbb::task_scheduler_init::automatic)
 printf ("Number of threads: %d\n", tbb_num_threads);

Example 11-62. ODE: includes and delay placeholders (continued)

282 | Chapter 11: Examples

 else
 printf ("Running default number of threads\n");

 printf ("Number of objects in the scene: %d\n", world_size);

 //**** Serial version:
 tbb::tick_count t1_serial = tbb::tick_count::now();

 // Frame loop: simulates dynamically changing environment:
 // total number of objects is constant, number of islands varies
 for (unsigned int i = 1; i <= world_size/2; ++i)
 processIslandsFast (i, world);

 tbb::tick_count t2_serial = tbb::tick_count::now();
 printf ("Serial time: %g seconds\n",
 (t2_serial-t1_serial).seconds ());

 //**** tbb::parallel_for version
 tbb::task_scheduler_init tbb_init(tbb_num_threads);
 tbb::tick_count t1_pfor = tbb::tick_count::now();

 // Frame loop:
 for (unsigned int i = 1; i <= world_size/2; ++i)
 processIslandsFastPfor (i, world);

 tbb::tick_count t2_pfor = tbb::tick_count::now();
 printf ("parallel_for version time: %g seconds\n",
 (t2_pfor-t1_pfor).seconds ());

 //**** tbb::task version:
 tbb::tick_count t1_task = tbb::tick_count::now();

 // Frame loop:
 for (unsigned int i = 1; i <= world_size/2; ++i)
 {
 tbb::task& root =
 *new (tbb::task::allocate_root())
 process_world (i, world);
 root.set_ref_count (1);
 tbb::task::spawn_root_and_wait (root);
 }

 tbb::tick_count t2_task = tbb::tick_count::now();
 printf ("Task version time: %g seconds\n",
 (t2_task-t1_task).seconds ());

}

Example 11-63. ODE: set-up (continued)

283

Chapter 12 CHAPTER 12

History and Related Projects12

Nothing in this chapter is required reading to learn how to use Intel Threading Build-
ing Blocks. Instead, this chapter looks at some of the inspirations that shaped our
thoughts at Intel and led to the design and implementation of Threading Building
Blocks. A list of papers, articles, and books at the end of the chapter forms a bibliog-
raphy to give some suggested further reading. The chapter also contains a brief
explanation of lambda functions, whose inclusion in C++ is advocated by Arch
Robison, lead developer for Threading Building Blocks, in his foreword to this book.

The information in this bibliography is likely to appeal most to those who want to
contribute to Threading Building Blocks. There is much to be pondered in the design
of Threading Building Blocks, and this chapter aims to clarify where to start.

Intel Threading Building Blocks draws from a great many sources. Figure 12-1 high-
lights the key influences of the past decade or so. The influences were in the form of
inspiration and, other than McRT, they have no actual source code connection.
Influences prior to 1988 are left as an exercise for other historians.

Threading Building Blocks is unique because it rests on a few key decisions:

• Support general C++ programs with existing compilers.

• Relaxed sequential execution (see Chapter 10).

• Use recursive parallelism and generic algorithms.

• Use task stealing.

This chapter gives insights into each one of these. The Quicksort example in
Chapter 11 can give good insights into task stealing and recursive parallelism.

Libraries
1988, Chare Kernel, University of Illinois at Urbana-Champaign

In 1988, it was simply a C library. The key notion was to break a program into
small bits of work, called chares, and the scheduler would take care of packing

284 | Chapter 12: History and Related Projects

these efficiently (in both space and time) onto processors. Mapping tasks onto
threads instead of programming threads directly is an important concept. The
Chare Kernel was later extended with some features for marshalling to address
distributed memory machines, becoming Charm++ (http://charm.cs.uiuc.edu/
research/charm/index.shtml).

1993, Standard Template Library (STL) for C++, Hewlett-Packard
STL was presented in November 1993 to the ANSI/ISO C++ committee and HP
made it freely available in 1994. It was adopted into the C++ standard. Arch
Robison related: “I once heard Stepanov give a great talk on generic program-
ming, where he went through how to write a really generic greatest-common-
factor algorithm. [The paper at http://www.stepanovpapers.com/gcd.pdf is similar
to that talk, but with more mathematical emphasis.] In its full glory, generic pro-
gramming is not just parametric types, but programming with concepts.” There
is a very good explanation of generic programming in the box on page 2 of http://
www.osl.iu.edu/publications/prints/2003/comparing_generic_programming03.pdf.
More works by Stepanov on STL and generic programming are listed later in this
chapter.

1999, Java Specification Request #166 (JSR-166), Doug Lea
It was actually not standardized until later, but 1999 was the year Lea first intro-
duced it. FJTask was an attempt to put Cilk-style parallelism into the stock Java
library. It was proposed for JSR-166, but it did not make it into that standard.
An overview is available at http://java.sun.com/developer/technicalArticles/J2SE/
concurrency.

Figure 12-1. Key influences on design of Intel Threading Building Blocks

Languages

Pragmas

Libraries

Threaded-C
continuation tasks

task stealing
Cilk

space efficient scheduler
cache-oblivious algorithms

OpenMP
fork/join

tasks OpenMP taskqueue
while and recursion

STL
generic

programming

Chare Kernel
small tasks

JSR-166
(FJTask)

containers STAPL
recursive ranges

ECMA CLI
parallel iteration classes

Intel Threading
Building Blocks

McRT

1988

1995

2001

2006

http://charm.cs.uiuc.edu/research/charm/index.shtml
http://charm.cs.uiuc.edu/research/charm/index.shtml
http://www.stepanovpapers.com/gcd.pdf
http://www.osl.iu.edu/publications/prints/2003/comparing_generic_programming03.pdf
http://www.osl.iu.edu/publications/prints/2003/comparing_generic_programming03.pdf
http://java.sun.com/developer/technicalArticles/J2SE/concurrency
http://java.sun.com/developer/technicalArticles/J2SE/concurrency

Languages | 285

2001, Standard Template Adaptive Parallel Library (STAPL), Texas A&M
STAPL introduced the notion of recursive parallel ranges (“pRanges”) and the
concept of using these ranges instead of iterators to bind parallel generic algo-
rithms to parallel containers. STL lacks a recursive range. STAPL is more com-
plex than Threading Building Blocks because it encompasses distributed
memory architectures typical of High Performance Computing (HPC). Further-
more, STAPL supports the specification of arbitrary execution order for parallel
task graphs. This allows the use of multiple scheduling policies to optimize exe-
cution time (http://parasol.tamu.edu/stapl).

2004, ECMA CLI parallel profile, Intel
This ECMA spec for the .NET virtual machine has classes for parallel iteration,
designed by Arch Robison. See http://www.ecma-international.org/publications/
files/ECMA-ST/Ecma-335.pdf, pp. 554–555.

2006, McRT-Malloc, Intel Research
A scalable transactional memory allocator, McRT forms the basis of the Scalable
Memory Allocator supplied with Intel Threading Building Blocks. Sections 3 and
3.1 of a 2006 paper by Hudson, Saha, Adl-Tabatabai, and Hertzberg (http://doi.
acm.org/10.1145/1133956.1133967) describe roughly what is in the Scalable
Memory Allocator in Threading Building Blocks.

Languages
1994, Threaded-C, Massachusetts Institute of Technology

The Parallel Continuation Machine (PCM) was the runtime support for
Threaded-C. It was a C-based package that provided continuation-passing-style
threads on Thinking Machines Corporation’s Connection Machine Model CM-5
Supercomputer and used work stealing as a general scheduling policy to improve
the load balance and locality of the computation. This language is not to be con-
fused with the Threaded-C for EARTH from McGill University and the Univer-
sity of Delaware. PCM is briefly mentioned in the history of Cilk on page 2 of
http://supertech.csail.mit.edu/cilk/manual-5.3.2.pdf.

1995, Cilk, Massachusetts Institute of Technology
The first implementation of Cilk (http://supertech.csail.mit.edu/cilk) was a direct
descendent of PCM/Threaded-C. Cilk fixed the difficulty of programming con-
tinuation tasks and came up with methods to tailor task allocation to caches
without knowing the size of the caches with cache-oblivious algorithms. Cilk is
an extension of C that supports very efficient fork/join parallelism. Its space effi-
ciency is discussed in http://supertech.csail.mit.edu/papers/cilkjpdc96.pdf. FFTW
(http://www.fftw.org) is an example of a cache-oblivious algorithm.

http://parasol.tamu.edu/stapl
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-335.pdf
http://doi.acm.org/10.1145/1133956.1133967
http://doi.acm.org/10.1145/1133956.1133967
http://supertech.csail.mit.edu/cilk/manual-5.3.2.pdf
http://supertech.csail.mit.edu/cilk
http://supertech.csail.mit.edu/papers/cilkjpdc96.pdf
http://www.fftw.org

286 | Chapter 12: History and Related Projects

Pragmas
1997, OpenMP, by a consortium of major computer hardware and software vendors

OpenMP supports multiplatform, shared-memory parallel programming in C
and Fortran, offering a standard set of compiler directives, library routines, and
environment variables. Prior to OpenMP, many vendors had proprietary
compiler directives with similar intent, but they lacked portability. OpenMP
embodies a fork/join philosophy. See http://www.openmp.org.

1998, OpenMP Taskqueue, Kuck & Associates (KAI)
Proposed extensions for OpenMP to move beyond loops. The original paper
(http://www.it.lth.se/ewomp99/papers/grant.pdf) is more programmer-friendly
than the later compiler-oriented paper at http://www.caspur.it/ewomp02/
PAPERI/EWOMP02-03.pdf.

Generic Programming
Bjarne Stroustrup, creator of C++, once considered there to be three fundamental
styles supported by C++—procedural programming, data abstraction, and object-
oriented programming—but later said that generic programming has become a fourth
style.

We can give credit to the Standard Template Library (STL), created by Alexander
Stepanov, for popularizing this style. It fits very well with the principles of C++,
which favors abstraction and efficiency together.

In STL and Threading Building Blocks, algorithms are separated from containers.
This means that an algorithm takes a recursive range and uses it to access elements
within the container. The specific type of the container itself is unknown to the algo-
rithm. This clear separation of containers and algorithms is the basic idea of generic
programming. Separation of algorithms from containers means that template instan-
tiations result in relatively little added code and generally only that which is actually
going to be used.

Threading Building Blocks does embrace the same principles as STL, but does it
through the use of recursive ranges, not iterators. Iterators in STL (except for ran-
dom access iterators) are fundamentally sequential, and thus inappropriate for
expressing parallelism. Random access iterators can, of course, express parallelism,
and blocked_range is carefully defined so that blocked_range works for ranges defined
by [begin,end) iterator pairs. In fact, an early design of Threading Building Blocks
used random-access iterators to express parallel ranges, but there was not a clean
way to extend that to multidimensional ranges and more general ranges such as the
one used for Quicksort.

http://www.openmp.org
http://www.it.lth.se/ewomp99/papers/grant.pdf
http://www.caspur.it/ewomp02/PAPERI/EWOMP02-03.pdf
http://www.caspur.it/ewomp02/PAPERI/EWOMP02-03.pdf

Generic Programming | 287

Threading Building Blocks algorithms are written to use recursive ranges without any
concerns regarding which container supplies the recursive range. The recursive
ranges themselves are completely independent. They are related only in being
required to supply the same required operations and obey the same semantics.

The design of Threading Building Blocks embraces these same principles to provide
the separation of container and algorithms through the use of recursive ranges. Addi-
tionally, Threading Building Blocks has a focus on parallelism and specifying tasks
instead of threads.

Concepts in Generic Programming
Generic programming is supported in C++ through the notion of templates. The
templates provide abstraction while retaining the opportunity for optimal
performance.

A Concept is a set of requirements on a type and is represented in this book in Pascal-
Case (a style of combining words into keywords by capitalizing the first letters in
each word). The requirements may be syntactic or semantic. For example, the Con-
cept of Sortable could be defined as a set of requirements that enable an array to be
sorted. A type T would be Sortable if:

• x < y returns a Boolean value, and represents a total order on items of type T.

• swap(x,y) swaps items x and y.

You can write a sorting template function in C++ and be assured that it can sort an
array of any type that is Sortable.

We describe the requirements you should observe on types for Threading Building
Blocks types in this book as Concepts. When these constraints are followed, Thread-
ing Building Blocks will work well. When they are violated, you may get a cryptic
compiler error message or occasionally inefficient or incorrect code. There is a great
deal of interest in designing a type system for C++ that can check template argu-
ments for errors. In the future, we may have extensions to C++ that allow more type
constraints in the template definitions. This will lead to more safety and better error
messages from the compiler.

Pseudosignatures in Generic Programming
Two approaches for defining Concepts are valid expressions and pseudosignatures.
The C++ standard follows the valid expressions approach that shows what the usage
pattern looks like for a Concept. It has the drawback of relegating important details
to notational conventions. This document uses pseudosignatures because they are
concise and can be cut-and-pasted for an initial implementation.

288 | Chapter 12: History and Related Projects

You can find information on where to learn more about pseudosignatures versus valid
expressions in the paper by Siek et al. in the “Further Reading” section of this
chapter. Table 12-1 shows pseudosignatures for a Sortable type T.

A real signature may differ from the pseudosignature by relying on implicit conver-
sions allowed by C++ to deal with the difference. For an example, type U, the real
signature that implements operator< in Table 12-1, can be expressed as int
operator<(U x, U y) because C++ permits implicit conversion from int to bool and
implicit conversion from U to (const U&). Similarly, the real signature bool operator
<(U& x, U& y) is acceptable because C++ permits implicit addition of a const quali-
fier to a reference type.

Models in Generic Programming
A type models a Concept if it meets the requirements of the Concept. For example,
type int models the Sortable Concept in Table 12-1 if there exists a function
swap(x,y) that swaps two int values x and y. The other requirement for Sortable,
specifically x<y, is already met by the built-in operator< on type int.

The library sometimes requires that a type model the CopyConstructible Concept,
which is defined by the ISO C++ standard and provides fundamental operations for
creating and referring to the type. Table 12-2 shows the requirements for
CopyConstructible in pseudosignature form. For a type to model the
CopyConstrutible Concept, it needs to implement each operation specified in
Table 12-2. This way, containers and algorithms that expect CopyConstructible types
will be able to use your types, too.

Table 12-1. Pseudosignatures for example Sortable Concept

Pseudosignature Semantics

bool operator<(const T& x, const T& y) Compare x and y.

void swap(T& x, T& y) Swap x and y.

Table 12-2. CopyConstructible requirements

Pseudosignature Semantics

T(const T&) Construct copy of T.

~T() Destructor.

T* operator&() Take address of T.

const T* operator&() const Take address of T.

Caches | 289

Caches
The speed of processors has grown to be much faster than main memory. Making all
of memory nearly as fast as a processor would simply prove too expensive for most
computers. Instead, designers make small amounts of memory, known as caches,
operate nearly as fast as the processor. The main memory can then be slower and
more affordable. The hardware knows how to move information in and out of caches
as needed, thereby adding to the number of places where data is shuffled on its
journey between memory and the processor cores. Caches are critical in helping
overcome the mismatch between memory speed and processor speed.

Virtually all computers use caches only for a temporary copy of data that should
eventually reside in memory. Therefore, the function of a memory subsystem is to
move data needed as input by each processing core to caches near that processor
core, and to move data produced by the processing cores out to main memory. As
data is read from memory into the caches, some data needs to be evicted from the
cache. Cache designers work to make the data evicted be approximately the data
least likely to be used again.

Once a processor accesses data, it is best to exhaust the program’s use of it while it is
still in the cache. Continued usage will hold it in the cache, whereas prolonged
inactivity will likely lead to its eviction and future usage will need to do a more
expensive (slow) access to get the data. Furthermore, every time an additional thread
runs on a processor core, data is likely to be discarded from the cache.

Threading Building Blocks is designed with caches in mind and works to limit the
unnecessary movement of tasks and data. When a task has to be passed to a differ-
ent processor core for execution, Threading Building Blocks moves the task with the
least likelihood of having data in the cache for the processor core from which the
task is stolen.

It is interesting to note that parallel Quicksort (Chapter 11) is an example in which
caches beat maximum parallelism. Parallel Mergesort has more parallelism than par-
allel Quicksort. But parallel Mergesort is not an in-place sort, and thus has twice the
cache footprint that parallel Quicksort does. Hence, Quicksort usually runs faster in
practice.

Keep data locality in mind when considering how to structure your program. Avoid
using data regions sporadically when you can design the application to use a single
set of data in focused chunks of time. This happens most naturally if you use data
decomposition, especially at the higher levels in a program.

290 | Chapter 12: History and Related Projects

Costs of Time Slicing
Time slicing enables there to be more logical threads than physical threads. Each
logical thread is serviced for a time slice—a short period of time defined by the oper-
ating system during which a thread can run before being preempted—by a physical
thread. If a thread runs longer than a time slice, as most do, it relinquishes the physi-
cal thread until it gets another turn. This chapter details the costs incurred by time
slicing.

The most obvious cost is the time for context switching between logical threads. Each
context switch requires that the processor save all its registers for the previous logi-
cal thread that it was executing, and load its registers with information for the next
logical thread it runs.

A subtler cost is cache cooling. Processors keep recently accessed data in cache mem-
ory, which is very fast, but also relatively small compared to main memory. When
the processor runs out of cache memory, it has to evict items from cache and put
them back into main memory. Typically, it chooses the least recently-used items in
the cache. (The reality of set-associative caches is a bit more complicated, but this is
not a cache primer.)

When a logical thread gets its time slice, as it references a piece of data for the first
time, this data is pulled into cache, taking hundreds of cycles. If it is referenced fre-
quently enough not to be evicted, each subsequent reference will find it in cache, and
take only a few cycles. Such data is called hot in cache.

Time slicing undoes this because if Thread A finishes its time slice, and subsequently
Thread B runs on the same physical thread, B will tend to evict data that was hot in
cache for A, unless both threads need the data. When Thread A gets its next time
slice, it will need to reload evicted data, at the cost of hundreds of cycles for each
cache miss. Or worse yet, the next time slice for Thread A may be on a different
physical thread that has a different cache altogether.

Another cost is lock preemption. This happens if a thread acquires a lock on a
resource and its time slice runs out before it releases the lock. No matter how short a
time the thread intended to hold the lock, it is now going to hold it for at least as
long as it takes for its next turn at a time slice to come up. Any other threads waiting
on the lock either busy-wait pointlessly or lose the rest of their time slice. The effect
is called convoying because the threads end up “bumper to bumper” waiting for the
preempted thread in front to resume driving.

Quick Introduction to Lambda Functions | 291

Quick Introduction to Lambda Functions
Adding lambda functions to C++ would let a programmer write a loop body in-place
instead of having to write a separate STL-style function object. Similar capability is
found in the anonymous method in C#, in the inner class in Java, and in the primor-
dial lambda expression of LISP.

For example, currently a programmer who wants to convert a sequential for loop
into a parallel_for has to write something like this:

// Without lambda expression
class ApplyFoo {
public:
 int my_x;
 ApplyFoo(int x) : my_x(x) {}
 void operator()(const blocked_range<size_t>& r) const {
 for(size_t i=r.begin(); i!=r.end(); ++i)
 Foo(i,my_x);
 }
};
void ParallelApplyFoo(size_t n, int x) {
 parallel_for(blocked_range<size_t>(0,n,10),
 ApplyFoo(x));
}

In particular, the programmer has to deal with capturing the value of parameter x in
ParallelApplyFoo so that it can be referenced from ApplyFoo. The addition of lambda
expressions, as recently proposed to the C++ Standards Committee, would enable
the preceding example to be written more concisely as:

// With lambda expression
void ParallelApplyFoo(size_t n, int x) {
 parallel_for(
 blocked_range<size_t>(0,n,10),
 <>(const blocked_range<size_t>& r) {
 for(size_t i=r.begin(); i<r.end(); ++i)
 Foo(i,x);
 });
}

The <> directs the compiler to convert the expression after it into a function object
that does everything the handcoded ApplyFoo would do. In general, lambda expres-
sions let programmers pass blocks of code as parameters without having to write the
function-object boilerplate.

292 | Chapter 12: History and Related Projects

Further Reading
Acar, U., G. Blelloch, and R. Blumofe (2000). “The Data Locality of Work Stealing.”
Proceedings of the Twelfth Annual ACM Symposium on Parallel Algorithms and
Architectures, 1–12.

Amdahl, G. M. (1967, April). “Validity of the single-processor approach to achiev-
ing large scale computing capabilities.” AFIP Conference Proceedings, 30. Reston,
VA: AFIPS Press, 483–485.

An, P., A. Jula, et al. (2003). “STAPL: An Adaptive, Generic Parallel C++ Library.”
Workshop on Language and Compilers for Parallel Computing, 2001. Lecture Notes
in Computer Science 2624, 193–208.

Austern, M. H., R. A. Towle, and A. A. Stepanov (1996). “Range partition adaptors:
a mechanism for parallelizing STL.” ACM SIGAPP Applied Computing Review. 4, 1,
5–6.

Blumofe, R. D., and D. Papadopoulos (1998). “Hood: A User-Level Threads Library
for Multiprogrammed Multiprocessors.” From http://citeseer.ist.psu.edu/
blumofe98hood.html.

Blumofe, R. D., C. F. Joerg, et al. (1996). “Cilk: An Efficient Multithreaded Runtime
System.” Proceedings of the 5th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, 207–216. http://supertech.csail.mit.edu/papers/
cilkjpdc96.pdf.

Boehm, H. (2006, June). “An Atomic Operations Library for C++.” C++ standards
committee document N2047.

Butenhof, D. R. (1997). Programming with POSIX Threads. Reading, MA: Addison
Wesley.

Flynn, M. J. (1972, September). “Some Computer Organizations and Their Effective-
ness.” IEEE Transactions on Computers, C-21, 9, 948–960.

Garcia, R., J. Järvi, et al. (2003, October). “A Comparative Study of Language Sup-
port for Generic Programming.” Proceedings of the 2003 ACM SIGPLAN confer-
ence on object-oriented programming, systems, languages, and applications. http://
www.osl.iu.edu/publications/prints/2003/comparing_generic_programming03.pdf.

Gustafson, J. L. (1988). “Reevaluating Amdahl’s Law.” Communications of the
ACM, 31(5), 532–533.

Halbherr, M., Y. Zhou, and C. F. Joerg (1994, March). MIMD-Style Parallel Pro-
gramming Based on Continuation-Passing Threads, Computation Structures Group
Memo 355. http://csg.csail.mit.edu/pubs/memos/Memo-355/memo-355.pdf.

http://citeseer.ist.psu.edu/blumofe98hood.html
http://citeseer.ist.psu.edu/blumofe98hood.html
http://supertech.csail.mit.edu/papers/cilkjpdc96.pdf
http://supertech.csail.mit.edu/papers/cilkjpdc96.pdf
http://www.osl.iu.edu/publications/prints/2003/comparing_generic_programming03.pdf
http://www.osl.iu.edu/publications/prints/2003/comparing_generic_programming03.pdf
http://csg.csail.mit.edu/pubs/memos/Memo-355/memo-355.pdf

Further Reading | 293

Halbherr, M., Y. Zhou, and C. F. Joerg (1994, September). “MIMD-style parallel
programming with continuation-passing threads.” Proceedings of the 2nd Interna-
tional Workshop on Massive Parallelism: Hardware, Software, and Applications,
Capri, Italy.

Hansen, B. (1973). “Concurrent Programming Concepts.” ACM Computing
Surveys, 5, 4.

Hoare, C. A. R. (1974). “Monitors: An Operating System Structuring Concept.”
Communications of the ACM, 17, 10, 549–557.

Hudson, R. L., B. Saha, et al. (2006, June). “McRT-Malloc: a scalable transactional
memory allocator.” Proceedings of the 2006 International Symposium on Memory
Management. New York: ACM Press, 74–83. http://doi.acm.org/10.1145/1133956.
1133967.

Intel Threading Building Blocks 1.0 for Windows, Linux, and Mac OS—Intel Soft-
ware Network (1996). From the Intel product web site, http://www.intel.com/cd/
software/products/asmo-na/eng/294797.htm.

“A Formal Specification of Intel Itanium Processor Family Memory Ordering” (2002,
October). From Intel web site: http://www.intel.com/design/itanium/downloads/
25142901.pdf.

ISO/IEC 14882:1998(E) International Standard (1998). Programming languages—
C++. ISO/IEC, 1998.

ISO/IEC 9899:1999 International Standard (1999). Programming languages—C,
ISO/IEC, 1999.

Järvi, J., and B. Stroustrup (2004, September). Decltype and auto (revision 4). C++
standards committee document N1705=04-0145.

Kapur, D., D. R. Musser, and A.A. Stepanov (1981). “Operators and Algebraic Struc-
tures.” Proceedings of the 1981 Conference on Functional Programming Languages
and Computer Architecture, 59–63.

MacDonald, S., D. Szafron, and J. Schaeffer (2004). “Rethinking the Pipeline as
Object-Oriented States with Transformations.” Ninth International Workshop on
High-Level Parallel Programming Models and Supportive Environments.

Mahmoud, Q. H. (2005, March). “Concurrent Programming with J2SE 5.0.” Sun
Developer Network. From http://java.sun.com/developer/technicalArticles/J2SE/concurrency.

Massingill, B. L., T. G. Mattson, and B. A. Sanders (2005). “Reengineering for Paral-
lelism: An Entry Point for PLPP (Pattern Language for Parallel Programming) for
Legacy Applications.” Proceedings of the Twelfth Pattern Languages of Programs
Workshop. http://www.cise.ufl.edu/research/ParallelPatterns/plop2005.pdf.

http://doi.acm.org/10.1145/1133956.1133967
http://doi.acm.org/10.1145/1133956.1133967
http://www.intel.com/cd/software/products/asmo-na/eng/294797.htm
http://www.intel.com/cd/software/products/asmo-na/eng/294797.htm
http://www.intel.com/design/itanium/downloads/25142901.pdf
http://www.intel.com/design/itanium/downloads/25142901.pdf
http://java.sun.com/developer/technicalArticles/J2SE/concurrency
http://www.cise.ufl.edu/research/ParallelPatterns/plop2005.pdf

294 | Chapter 12: History and Related Projects

Mattson, T. G., B. A. Sanders, and B. L. Massingill (2004). Patterns for Parallel Pro-
gramming. Reading, MA: Addison Wesley.

McDowell, C. E., and D. P. Helmbold (1989). “Debugging Concurrent Programs.”
Communications of the ACM, 21, 2.

Meyers, S. (1998). Effective C++, Second Edition. Reading, MA: Addison Wesley,
1998.

Musser, D. R., and A.A. Stepanov (1994). “Algorithm-Oriented Generic Libraries.”
Software—Practice and Experience, 24(7), 623–642.

Musser, D. R., G. J. Derge, and A. Saini, with foreword by Alexander Stepanov
(2001). STL Tutorial and Reference Guide, Second Edition: C++ Programming with
the Standard Template Library, Boston, MA: Addison Wesley, 2001. PDF.

Narlikar, G., and G. Blelloch (1999). “Space-Efficient Scheduling of Nested Parallel-
ism.” ACM Transactions on Programming Languages and Systems, 21, 1, 138–173.

“OpenMP C and C++ Application Program Interface, Version 2.5 (May 2005).”
From the OpenMP web site: http://www.openmp.org.

Ottosen, T. (2006, September). Range Library Core. C++ standards committee
document N2068.

Plauger, P. J., M. Lee, et al. (2000). C++ Standard Template Library, Prentice Hall.

Rauchwerger, L., F. Arzu, and K. Ouchi (1998, May). “Standard Templates Adap-
tive Parallel Library,” Proceedings of the 4th International Workshop on Languages,
Compilers, and Run-Time Systems for Scalable Computers (LCR), Pittsburgh, PA.
Also Lecture Notes in Computer Science, 1511, Springer-Verlag, 1998, 402–410.

Robison, A. D. (2006). “A Proposal to Add Parallel Iteration to the Standard Library.”
From the Open Standards project: http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2006/n2104.pdf.

Robison, A. (2003, April). “Memory Consistency & .NET.” Dr. Dobb’s Journal. http://
www.ddj.com/dept/windows/184405316.

Samko, V. (2006, February). “A proposal to add lambda functions to the C++ stan-
dard.” C++ standards committee document N1958=06-028.

Schmidt, D. C., and I. Pyarali (1998). Strategies for Implementing POSIX Condition
Variables on Win32. Department of Computer Science, Washington University, St.
Louis, MO.

Schmidt, D. C., M. Stal, et al. (2000). Patterns for Concurrent and Networked
Objects. Pattern-Oriented Architecture, 2.

PDF
http://www.openmp.org
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2104.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2104.pdf
http://www.ddj.com/dept/windows/184405316
http://www.ddj.com/dept/windows/184405316

Further Reading | 295

Shah, S., G. Haab, et al. (1999). “Flexible Control Structures for Parallelism in
OpenMP.” Proceedings of the First European Workshop on OpenMP. http://www.it.
lth.se/ewomp99/papers/grant.pdf.

Siek, J., D. Gregor, et al. (2005). “Concepts for C++0x.” From http://www.osl.iu.edu/
publications/prints/2005/siek05:_concepts_cpp0x.pdf (see section 3.3.2 regarding
pseudosignatures versus valid expressions).

Stepanov, A. A., and M. Lee (1995). “The Standard Template Library.” HP Labora-
tories Technical Report 95-11(R.1).

Stepanov, A. A. (1999). “Greatest Common Measure: The Last 2500 Years.” http://
www.stepanovpapers.com/gcd.pdf.

Stroustrup, B. (1994). The Design and Evolution of C++, also known as D&E. Read-
ing, MA: Addison Wesley.

Stroustrup, B. (2000). The C++ Programming Language. Special Edition. Reading,
MA: Addison Wesley.

Stroustrup, B., and G. Dos Reis (2005, April). “A Concept Design (rev.1).” Techni-
cal Report N1782=05-0042, ISO/IEC SC22/JTC1/WG21, available from http://www.
open-std.org/jtc1/sc22/wg21/docs/papers/2005.

Stroustrup, B., and G. Dos Reis (2005, October). “Specifying C++ concepts.” Tech-
nical Report N1886=05-0146, ISO/IEC SC22/JTC1/WG21, available from http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2005.

Su, E., X. Tian, et al. (2002, September). “Compiler Support of the Workqueuing
Execution Model for Intel SMP Architectures.” Fourth European Workshop on
OpenMP, Rome. http://www.caspur.it/ewomp02/PAPERI/EWOMP02-03.pdf.

Sutter, H. (2005, January). “The Concurrency Revolution.” Dr. Dobb’s Journal.
From http://www.ddj.com/dept/cpp/184401916.

Sutter, H. (2005, March). “The Free Lunch is Over: A Fundamental Turn Towards
Concurrency in Software.” Dr. Dobb’s Journal.

Voss, M. (2006, December). “Enable Safe, Scalable Parallelism with Intel Threading
Building Blocks’ Concurrent Containers.” From DevX web site: http://www.devx.
com/cplus/Article/33334.

Voss, M. (2006, October). “Demystify Scalable Parallelism with Intel Threading
Building Blocks’ Generic Parallel Algorithms.” From DevX web site: http://www.
devx.com/cplus/Article/32935.

Willcock, J., J. Järvi, et al. (2006). “Lambda Expressions and Closures for C++.”
N1968-06-0038.

http://www.it.lth.se/ewomp99/papers/grant.pdf
http://www.it.lth.se/ewomp99/papers/grant.pdf
http://www.osl.iu.edu/publications/prints/2005/siek05:_concepts_cpp0x.pdf
http://www.osl.iu.edu/publications/prints/2005/siek05:_concepts_cpp0x.pdf
http://www.stepanovpapers.com/gcd.pdf
http://www.stepanovpapers.com/gcd.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005
http://www.caspur.it/ewomp02/PAPERI/EWOMP02-03.pdf
http://www.ddj.com/dept/cpp/184401916
http://www.devx.com/cplus/Article/33334
http://www.devx.com/cplus/Article/33334
http://www.devx.com/cplus/Article/32935
http://www.devx.com/cplus/Article/32935

297

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
A-B-A problem, 125
abstraction, 8, 25–27
accessor, 96

class, 97
acquire method for locks, 113
Aha! factor in examples, 177
algorithm structures, 26
algorithm templates, 29–64, 65–79, 169
aligned_space template class, 109
allocator arguments, 81
Allocator Concept, 106
Amdahl, Gene, 14, 292
Amdahl’s Law, 14–18

Gustafson’s observations and, 16–18
Application Layer Gateway (ALG), 242
assembly languages of parallelism, 4, 136
atomic and constructors, 125
atomic operations, 22, 112, 122–129

convoying, minimizing, 118
interleaving, 123
mutual exclusion, versus, 123
priority inversion, minimizing, 118
thread-safe reference counting, 123

atomic template class, 127
auto_partitioner class, 38, 45, 52, 59
automata, 192
automatic grain size, 38

B
bibliography, 292–295
blocked_range, 35

template class, 54
blocked_range2d, 49

template class, 56–58
blocking, 133
blocking style, 141

children, with, 145
body object, 33
Boost Threads, 4
breadth-first execution, 142
breadth-first theft and depth-first work, 144

C
C++, 1, 5
cache, 8, 289

aligned allocator, 103
cooling, 290
lines, 102

calloc, replacing, 104
Chare Kernel, xvi, 283
Charm++, xvi, 284
Cilk, 285
coarse-grained parallelism, 11, 20
compare_and_swap, 124
comparison sort (see parallel_sort)
compatibility, 3

298 | Index

Concepts
generic programming, in, 287
modeling a concept, 288
Sortable, 287

concurrency, 21, 23, 26, 171
concurrent access, 96
concurrent operations, 88

erase, 98
find, 98
insert, 98

concurrent_hash_map, 91–99, 209–213
template class, 94

concurrent_queue, 81–83
iterating for debugging, 82
template class, 83–86
unbounded, 82

concurrent_vector, 86–90
template class, 87

const_accessor, 96
const_iterator, 82
const_range_type, 99
containers, 80–100
context switching, 290
continuation passing, 141, 145–153

children, with, 146
task, 147

convoying, 118, 290
Conway, John Horton, 190
CopyConstructible Concept, 288
correctness, 8, 23–24
CountStrings, 209–213

D
data parallelism, 9
data-parallel programming, 3, 136
deadlock, 24, 117
debugging, 165, 169

enabling, 172
release versus, 172, 174

decomposition, 8, 9–13
delete operators, replacing, 105
design patterns, 25–27
design spaces

algorithm structures, 26
finding concurrency, 26
implementation mechanisms, 27
supporting structures, 27

destructor, 32
Divide and Conquer, 26
domain decomposition, 266

do-nothing subroutines, 174
Dummy Tasks to the Rescue, 230
dynamic scheduling, 5

E
ECMA CLI parallel profile, 285
embarrassingly parallel, 9, 18
empty tasks, 151, 230
empty_task, 151

class, 166
erase from hash map, 98
errata, 177
Event-Based Coordination, 26
examples, 177–280

concurrent_hash_map, 209–213
download the source code, 177
filter classes, 247–255
game threading, 262
parallel_for, 180–189
parallel_reduce, 199–205
pipeline, 233

explicit synchronization, 22
explicit task destruction, 160

F
fair mutex, 115
fair scheduling, 135
fairness and efficiency, 135
false sharing, 102
feeding two from the same task in a

pipeline, 233–236
fences, 126
fetch-and-add, 123
fetch-and-store, 123
Fibonacci numbers, 137–140
filter class, 70, 72, 77

examples, 247–255
final_scan_tag class, 63
find in hash map, 98
finding concurrency, 26
fine-grained locking, 80, 111
fine-grained parallelism, 12, 20
FJTask, 284
for (see parallel_for)
Fortran, 5, 21, 286
forwarding class, 255
frame loops, 265
free, replacing, 104
function object, 43

Index | 299

G
Game of Life, 190–199

automata, 192
implementation, 193–198

cells, live or dead, 191
generation, 192
implementation, 192

Gardner, Martin, 190
gateway class, 254
Gaussian elimination, 223
generic programming, 1, 4, 286

Concepts, 287
models, 288
pseudosignatures, 287

geometric decomposition, 26
get_next_packet class, 251
grain size, 13, 30, 36–39, 179

automatic, 38
ParallelSum and, 200

guided scheduling, 5
Gustafson, John, 16
Gustafson’s observations, 16–18

H
half-open intervals, 35
happy parallelism, 9
hash map (see concurrent_hash_map)
hash table, 91
HashCompare, 93
high coding overhead, 136
High Performance Computing (HPC), 285
highly concurrent containers, 80–100
history and related projects, 283–291
hot in cache data, 290
hotspots, 276

I
implementation mechanisms, 27
implicit synchronization, 236
initializing and terminating the

library, 30–32
initializing the library, 137
insert in hash map, 98
instruction pointer, 20
Integrated Performance Primitives (IPP)

library, 3
Intel Thread Checker, 169, 173
Intel Thread Profiler, 169

intuition, 8
intuitively obvious locking, 111
IP addresses, local and worldwide, 239
iteration spaces, 45, 66, 286

J
Java Specification Request #166

(JSR-166), 284
join method, 41

reverse_join, 51
split-join sequence, 42

K
keys to success, 169–176

L
lambda functions, 291
languages, Cilk, 285
latency, 75
lazy copying, 152
Lea, Doug, 284
libraries, 283

Chare Kernel, 283
ECMA CLI parallel profile, 285
Java Specification Request #166

(JSR-166), 284
McRT-Malloc, 285
Standard Template Adaptive Parallel

Library (STAPL), 285
Standard Template Library (STL), 284

linear or order of n scaling (O(n)), 16
linear pipelines, 75
linked lists, 66

dynamic arrays versus, 66
load balancing, 136, 268
lock preemption, 290
lock-free algorithms, 80
locks, 22, 80, 110, 112, 171, 178

convoying, 118
deadlock, 117
fine-grained locking, 111
intuitively obvious locking, 111
naming, 114
pathologies, 117
priority inversion, 118
reader locks, 116
upgrading and downgrading, 116
writer locks, 116

300 | Index

logical threads, 134
loop parallelization, 29, 32–52

parallel_for, 33–40
parallel_reduce, 40–45
parallel_scan, 49
rule of thumb, 38

loop templates, 133

M
malloc, 101

replacing, 104–105
Math Kernel Library (MKL), 3
matrix multiply, 183, 223–224
Mattson, Tim, 26, 293
McRT-Malloc, 285
memory, weak memory consistency, 126
memory allocation, 101–109, 257–260

cache lines, 102
false sharing, 102
replacing malloc, calloc, realloc, and

free, 260
replacing new and delete, 257–260

memory allocators, 103
memory consistency, 126–127
merge sort, 289
Message Passing Interface (MPI), 4
molecular dynamics (MD), 269
multi-core processors, xix, 7
multitasking, 19
mutex, 80, 112–122, 133

class, 119
Concept, 119
fair, 115
flavors, 114
non-reentrant, 115
reentrant, 115
scalable, 115
scoped locking pattern, 119
sleeping, 115
spinning in user space, 115
typedef and, 113
unfair, 115

mutual exclusion, 21, 110–129
avoiding, 172

N
NAMD application, 269
naming conventions of variables and

functions, 176
nested parallelism, 2, 134

network address translation (NAT), 238, 241
network interface controller (NIC), 242
new operators, replacing, 105, 257–261
nonblocking algorithms, 124
nondeterminism, 24
nonlinear pipelines, 75, 233–236

O
object-oriented programming, 25
objects that share internal state, 111
Open Dynamics Engine (ODE), 275–282
OpenMP, 3, 5, 174, 286

Taskqueue, 5, 286
operator(), 50
output_packet class, 251
overlapping window strategy, 70
oversubscription, 134

P
packet forwarding, 242
packet processing pipeline, 237–255
parallel algorithms for streams, 65–79
parallel iteration (see iteration spaces)
parallel prefix, 49
parallel range, splitting, 177
parallel_for, 29, 33–40, 178

template function, 61
parallel_reduce, 40–45

parallel_for versus, 41
ParallelPrime, 200
ParallelSum, 199
partitioner with, 45
sequential execution, 42
template function, 62

parallel_scan, 49–52
floating point addition and, 51
partitioner with, 51
template function, 63

parallel_sort, 78
comparison sort, 79
template function, 79

parallel_while, 66–69, 83
scalability, 68
template class, 68

ParallelAverage, 180
parallelism, xix, 1, 7–28, 199

achieving, 12
assembly languages of, 4, 136
coarse-grained, 11
data, 9

Index | 301

embarrassingly parallel, 9
fine-grained, 12
glass half empty versus glass half full

view, 16
happy parallelism, 9
hybrid, 12
intuition about, 27
long lines, and, 8
loop, 32–52
lots of repetitive work, and, 9
nested, 2, 134
pipelining, 10
recursive, 140
task, 10

ParallelMerge, 184, 289
ParallelPrime, 200
ParallelSum, 199

grain size and, 200
Partitioner Concept, 58
partitioners, 38, 45, 51
patterns, 8, 25–27
Patterns for Parallel Programming, 25
performance, 3, 271
physical threads, 134
physics interaction and update, 271
physics threads, 269
pipeline, 66, 83, 233

class, 70, 76
components for the local network

router, 241–247
pipelines, 26, 70, 74, 237–255
pipelining, 10–13, 69–78

latency, 75
nonlinear, 75
throughput, 74
tokens, 71

pop_if_present for parallel_while, 66–69
pop_if_present from queue, 82, 84–85
port mapping, 248
portability, 137
POSIX threads (pthreads), 4, 136
pre_scan_tag class, 63
preemptive scheduler, 19
prime (see ParallelPrime)
priority inversion, 118
pseudosignatures, 287

real signatures versus, 288
valid expressions versus, 288

push on a queue, 82

Q
queue (see concurrent_queue)
queues, when not to use, 83
queuing, 116
queuing_mutex, 116

class, 120
queuing_rw_mutex, 116

class, 122
quick sort, 215–219, 289

R
race conditions, 22, 24, 169
Range Concept, 53
range_type, 99
raw threads, 134
reader locks, 116
ReaderWriterMutex Concept, 120
ready pool, 143, 153
realloc, replacing, 104
recursive, 30

blocked, 48
chain reaction, 147
functions, 178, 218
parallel ranges (pRanges), 285
parallelism, 140
range specifications, 52–64
ranges, 286

recursive ranges
splitting, 6, 178

reduce (see parallel_reduce)
reduction operation, 40
reentrant mutex, 115
relaxed sequential execution, 169

model, 170
release, 113
release libraries, 174
reverse_join, 51
Robison, Arch, 283

S
scalability, 2, 7, 13–19, 30, 136, 264

weak scaling, 18
scalable

allocators, 81, 103
memory allocation, 101–109
memory allocator, 169
mutex, 115
template class, 107

302 | Index

scaling, 8, 13
scan (see parallel_scan)
scheduler bypass, 149
scoped lock, 114
scoped locking pattern, 119
seismic wave simulation (wave

propagation), 181
sequential execution, 170
sequential overhead, 18
serial parts of a parallel system, 16
serial versus parallel algorithms, 18
SerialMatrixMultiply, 183
shared memory, 178, 233
Sieve of Eratosthenes, 201
simple_partitioner class, 59
sort (see parallel_sort; quick sort)
spawn_and_wait_for_all, 147
speedup, 13–19, 69
spin_mutex, 113, 115

class, 120
spin_rw_mutex, 116

class, 122
split class, 53
split/join patterns, 141

blocking style, 141
continuation passing, 141

Splittable Concept, 52
Splittable Ranges, 52
splitting, 29
splitting constructor, 41, 45, 52
stack, 20
Standard Template Adaptive Parallel Library

(STAPL), 285
Standard Template Library (STL), xix, 4, 21,

33, 80, 284
static scheduling, 5
Stepanov, Alexander, 286
Strassen multiply algorithm, 223
StrassenMultiply, 223–224
Stroustrup, Bjarne, 286
substring matching, 186
SubstringFinder, 186–189
supporting structures, 27
synchronization, 13, 20, 24, 163–164, 170,

178, 236
barrier, 265
explicit, 22

T
task class, 155

allocation, 158
context, 165
debugging, 165
depth, 162
derivation, 158
destruction, 161
recycling, 161
synchronization, 163

task graph, 142
task parallelism, 10, 26
task recurrence patterns, 145–147
task scheduler, 31, 133–168, 179, 218

blocking style with children, 145
breadth-first execution, 142
breadth-first theft and depth-first

work, 144
continuation passing, 147
continuation-passing style with

children, 145
empty tasks, 151
explicit task destruction, 160
how it works, 142
interface, 278
interfaces, 153–164
lazy copying, 152
load balancing and, 136
making best use of the

scheduler, 147–153
minimize space, 142
overview, 140
ready pool, 143, 153
recursive chain reaction, 147
recycling, 150

parent as a child, 146
parent as the continuation, 145

scheduler bypass, 149
strike when the cache is hot, 142
tree-structured task graphs, 147

task stealing, 6, 30, 218, 266, 268
task_list class, 167
task_scheduler_init, 31

class, 153
tasks versus threads, 2
_ _TBB prefix, 176
tbb namespace, 30

Index | 303

tbb::internal namespace, 176
tbb::split, 46
TBB_DO_ASSERT macro, 172
TBB_DO_THREADING_TOOLS

macro, 173
templates, 2
terminating the library, 30–32
Think Parallel, 7, 169
thread management, 21
Threading Building Blocks

benefits, 2
download, 1
overview, 1–6

threading packages, other, 174
threads, 8, 19–21

architecture, 263
physics interactions, 263
rendering, 263

game example, 262
instruction pointer, 20
Intel Thread Profiler, 169
logical, 134
physical, 134
physics, 269
POSIX, 136
processes versus, 20
programming for parallelism, 20
raw native, 134
ready pool, 143
stack, 20
testing, 169
Windows, 136

thread-safe, 21
code, 110
libraries, 21

tick_count, 130–132
class, 131

time slicing, 290
cache cooling and, 290
context switching and, 290
convoying and, 290
hot in cache data, 290
lock preemption and, 290

timing, 130–132
tree-structured task graphs, 147

U
undersubscription, 134
unfair mutex, 115
unstable sort, 78
using directive, 31

V
variable swap, 170
variables and functions, naming

conventions, 176
vector (see concurrent_vector)
VTune Performance Analyzer, 276

W
weak memory consistency, 126
weak scaling, 18
while (see parallel_while)
whole vector operations, 88
whole-table operations, 95
Windows threads, 136
work stealing, 5, 285
worldwide and local IP addresses, 239
writer locks, 116

About the Author
James Reinders, Chief Evangelist for Intel Software Development Products, is a
senior engineer who joined Intel Corporation in 1989. He has contributed to a
number of projects, including the world’s first TeraFLOP supercomputer (ASCI Red),
and compilers and architecture work for the iWarp, Pentium Pro, Pentium II,
Itanium, and Pentium 4 processors. He has years of experience in processor architec-
ture, optimizing compilers, parallel computer architecture, and making products for
software developers.

Reinders is also the editorial columnist for the monthly “The Gauntlet” at www.go-
parallel.com, and is the author of VTune Performance Analyzer Essentials (Intel Press)
and a contributor to Multi-Core Programming (Intel Press).

Colophon
The animal on the cover of Intel Threading Building Blocks is a wild canary (Serinus
canaria), a small songbird in the finch family. It is also known as an island canary or
Atlantic canary because it is native to islands off western Europe, particularly
Madeira, Azores, and the Canary Islands, for which the bird was named. The name
comes from the Latin canaria (“of the dogs”), first used by Pliny the Elder in his
Naturalis Historia because of the large dogs roaming the Islands. Canaries live in
orchards, farmlands, and copses, and make their nests in bushes and trees.

Although the wild canary is darker and slightly larger than the domestic canary, it is
otherwise similar in appearance. Its breast is yellow-green and its back is streaked with
brown. Like many species, the male is more vibrantly colored than the female. The
male also has a sweeter song. When the Spanish conquered the Islands in the 15th
century, they domesticated the birds and began to breed them. By the 16th century,
canaries were prized as pets throughout Europe. (Samuel Pepys writes about his
“canary birds” in a 1661 diary entry.) Five hundred years of selective breeding have
produced many canary varieties, including the bright yellow type common today. The
small birds are popular pets because they can live up to 10 years, require little special
attention, and are considered to have the most melodious song of all birds.

As late as the 1980s, coal miners used canaries as a warning system, with two birds
in each coal pit. According to the U.S. Bureau of Mines, canaries were preferred to
mice because they are more sensitive to fumes and more visibly show distress in the
presence of gas. A canary in a mine would chirp all day, but if the carbon monoxide
level rose, it would stop singing and sway on its perch before falling dead—warning
the miners to get out fast.

The cover image is from J. G. Wood’s Animate Creation. The cover font is Adobe
ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

	OReilly Intel Threading Building Blocks: OutFitting C++ for Multi-Core Processor Parallelism
	Table of Contents
	Foreword
	Note from the Lead Developer of Intel Threading Building Blocks
	Preface
	Assumptions This Book Makes
	Contents of This Book
	Conventions Used in This Book
	Informal Class Declarations

	Using Code Examples
	How to Contact Us
	Acknowledgments

	Why Threading Building Blocks?
	Overview
	Benefits
	Comparison with Raw Threads and MPI
	Comparison with OpenMP
	Recursive Splitting, Task Stealing, and Algorithms

	Thinking Parallel
	Elements of Thinking Parallel
	Decomposition
	Data Parallelism
	Task Parallelism
	Pipelining (Task and Data Parallelism Together)
	Mixed Solutions
	Achieving Parallelism

	Scaling and Speedup
	How Much Parallelism Is There in an Application?
	Amdahl’s Law
	Gustafson’s observations regarding Amdahl’s Law
	What did they really say?
	Serial versus parallel algorithms

	What Is a Thread?
	Programming Threads
	Safety in the Presence of Concurrency

	Mutual Exclusion and Locks
	Correctness
	Abstraction
	Patterns
	Intuition

	Basic Algorithms
	Initializing and Terminating the Library
	Loop Parallelization
	parallel_for
	Grain size
	Automatic grain size
	Notes on automatic grain size
	parallel_for with partitioner

	parallel_reduce
	Advanced example
	Parallel_reduce with partitioner

	Advanced Topic: Other Kinds of Iteration Spaces
	Notes on blocked_range2d

	parallel_scan
	Parallel_scan with partitioner

	Recursive Range Specifications
	Splittable Concept
	Model Types: Splittable Ranges
	split Class
	Range Concept
	Model Types
	blocked_range<Value> Template Class
	blocked_range2d Template Class
	Partitioner Concept
	Model Types: Partitioners
	simple_partitioner Class
	auto_partitioner Class
	parallel_for<Range,Body> Template Function
	parallel_reduce<Range,Body> Template Function
	parallel_scan<Range,Body> Template Function
	pre_scan_tag and final_scan_tag Classes

	Summary of Loops

	Advanced Algorithms
	Parallel Algorithms for Streams
	Cook Until Done: parallel_while
	Notes on parallel_while scaling
	parallel_while Template Class

	Working on the Assembly Line: Pipeline
	Throughput of pipeline
	Nonlinear pipelines
	pipeline Class
	filter Class

	parallel_sort
	parallel_sort<RandomAccessIterator, Compare> Template Function

	Containers
	concurrent_queue
	Iterating over a concurrent_queue for Debugging
	When Not to Use Queues
	concurrent_queue Template Class

	concurrent_vector
	concurrent_vector Template Class
	Whole Vector Operations
	Concurrent Operations
	Parallel Iteration
	Capacity
	Iterators

	concurrent_hash_map
	More on HashCompare
	concurrent_hash_map<Key,T,HashCompare> Template Class

	Whole-Table Operations
	Concurrent Access
	const_accessor
	accessor class

	Concurrent Operations: find, insert, erase
	Parallel Iteration
	Capacity
	Iterators

	Scalable Memory Allocation
	Limitations
	Problems in Memory Allocation
	Memory Allocators
	Which Library to Link into Your Application
	Using the Allocator Argument to C++ STL Template Classes

	Replacing malloc, new, and delete
	Replace malloc, free, realloc, and calloc
	Replace new and delete
	Allocator Concept
	Model Types
	scalable_allocator<T> Template Class
	cache_aligned_allocator<T> Template Class
	aligned_space Template Class

	Mutual Exclusion
	When to Use Mutual Exclusion
	Mutexes
	Mutex Flavors
	Reader-Writer Mutexes
	Upgrade/Downgrade
	Lock Pathologies
	Deadlock
	Convoying and priority inversion

	Mutexes
	Mutex Concept
	mutex Class
	spin_mutex Class
	queuing_mutex Class

	ReaderWriterMutex Concept
	Model Types
	spin_rw_mutex Class
	queuing_rw_mutex Class

	Atomic Operations
	Why atomic<T> Has No Constructors
	Memory Consistency and Fences
	atomic<T> Template Class

	Timing
	tick_count Class
	tick_count::interval_t Class

	Task Scheduler
	When Task-Based Programming Is Inappropriate
	Much Better Than Raw Native Threads
	Oversubscription
	Fair Scheduling
	High Coding Overhead
	Load Imbalance
	Portability

	Initializing the Library Is Your Job
	Example Program for Fibonacci Numbers
	Task Scheduling Overview
	How Task Scheduling Works
	Recommended Task Recurrence Patterns
	Blocking Style with Children
	Continuation-Passing Style with Children
	Recycling the parent as the continuation
	Recycling the parent as a child

	Making Best Use of the Scheduler
	Recursive Chain Reaction
	Continuation Passing
	Scheduler bypass
	Recycling
	Empty tasks
	Lazy copying

	Task Scheduler Interfaces
	task_scheduler_init Class
	task Class
	Task derivation
	Processing of execute(��)
	Task allocation
	Explicit task destruction
	Recycling tasks
	Task depth
	Synchronization
	Task context
	Task debugging
	empty_task Class
	task_list Class

	Task Scheduler Summary

	Keys to Success
	Key Steps to Success
	Relaxed Sequential Execution
	Safe Concurrency for Methods and Libraries
	Debug Versus Release
	For Efficiency’s Sake
	Enabling Debugging Features
	The TBB_DO_ASSERT Macro
	Do Not Ship Your Program Built with TBB_DO_ASSERT
	The TBB_DO_THREADING_TOOLS Macro
	Debug Versus Release Libraries

	Mixing with Other Threading Packages
	Naming Conventions
	The tbb Namespace
	The tbb::internal Namespace
	The _��_TBB Prefix

	Examples
	The Aha! Factor
	A Few Other Key Points
	parallel_for Examples
	ParallelAverage
	Seismic
	Matrix Multiply
	ParallelMerge
	SubstringFinder

	The Game of Life
	Implementation
	Automaton
	Automata: Implementation
	Extending the Application
	Futher Reading

	Parallel_reduce Examples
	ParallelSum
	ParallelSum without Having to Specify a Grain Size
	ParallelPrime

	CountStrings: Using concurrent_hash_map
	Switching from an STL map

	Quicksort: Visualizing Task Stealing
	A Better Matrix Multiply (Strassen)
	Advanced Task Programming
	Start a Large Task in Parallel with the Main Program
	Two Mouths: Feeding Two from the Same Task in a Pipeline

	Packet Processing Pipeline
	Parallel Programming for an Internet Device
	Local Network Router Example
	Pipelined Components for the Local Network Router
	Network address translation (NAT)
	Application Layer Gateway (ALG)
	Packet forwarding
	Our example

	Implementation
	The Threading Building Blocks pipeline
	Synchronization with the pipeline item and concurrent hash maps

	Filter Classes
	Class get_next_packet : public tbb::filter
	Class output_packet : public tbb::filter
	Class translator : public tbb::filter
	Class gateway : public tbb::filter
	Class forwarding : public tbb::filter
	Additional reading

	Memory Allocation
	Replacing new and delete
	Replacing malloc, calloc, realloc, and free

	Game Threading Example
	Threading Architecture: Physics + Rendering
	Overview of Keys to Scalability
	A Frame Loop
	Domain Decomposition Data Structure Needs
	Think Tasks, Not Threads
	Load Balancing Versus Task Stealing
	Synchronization Between Physics Threads
	Integrating the Example into a Real Game
	How to Measure Performance

	Physics Interaction and Update Code
	Open Dynamics Engine
	Look for Hotspots
	Improving on the First Solution
	The Code

	History and Related Projects
	Libraries
	Languages
	Pragmas
	Generic Programming
	Concepts in Generic Programming
	Pseudosignatures in Generic Programming
	Models in Generic Programming

	Caches
	Costs of Time Slicing
	Quick Introduction to Lambda Functions
	Further Reading

	Index

