
this print for content only—size & color not accurate spine = 0.968" 512 page count

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Coauthor of

Web Accessibility:
Web Standards and
Regulatory Compliance

US $39.99

Shelve in JavaScript/
Web Development

User level:
Beginner–Intermediate

JavaScript
Heilm

ann

THE EXPERT’S VOICE® IN WEB DEVELOPMENT

Christian Heilmann
Foreword by Simon Willison,
Technology Development at Yahoo!

Beginning

JavaScript with DOM
Scripting and Ajax
From Novice to Professional

CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

ISBN 1-59059-680-3

9 781590 596807

53999

6 89253 59680 7

Companion
eBook Available

The ultimate guide to modern JavaScript development!

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details
on $10 eBook version

forums.apress.com
FOR PROFESSIONALS
BY PROFESSIONALS™

Join online discussions:

THE APRESS ROADMAP

Pro JavaScript Techniques

Pro CSS Techniques
Beginning XML

with DOM and Ajax

Beginning JavaScript
with DOM Scripting and Ajax

Beginning CSS
Web Development

Beginning JavaScript with DOM Scripting
and Ajax: From Novice to Professional
Dear Reader,

This is the only book you’ll need to learn the ins and outs of modern JavaScript
development. This means concentrating on unobtrusive cross-browser tech-
niques that enhance the user experience for the vast majority of us, but don’t
break the page when the user is using a screenreader or has JavaScript disabled. It
also means shying away from outdated DHTML hacks. When I wrote it, I had
three goals in mind: to write a book that teaches you the language, uses real-
world examples, and concentrates on techniques that will stand the test of time.

Writing a beginner’s book about JavaScript is a tricky subject, but I’ve been
careful to achieve a balance between basics and useful functionality—you’ll
start slow enough to not get out of your depth and progress up to coding work-
ing examples of Ajax and DOM scripting. If you’re a JavaScript novice, this book
will teach you how to write clean and maintainable code. If you’re already an
experienced JavaScripter, it’ll help you brush up on JavaScript and say goodbye
to outdated practices.

The book is packed with real-world examples to learn from and use in your
own projects, saving you hours of development time. The examples have been
developed with certain ideals in mind: being platform and browser agnostic,
accessible, web standards compliant, and very easy to maintain by others.

I’ve experienced a lot in my eight years of developing JavaScript, and I’m not
shy about discussing the mistakes I’ve made in the past to help you avoid making
the same. I’m confident that you’ll find a wealth of useful information within
these pages.

Regards,

Christian Heilmann

Beginning

DOM
 Scripting

and Ajax

with

Beginning JavaScript
with DOM Scripting
and Ajax
From Novice to Professional

■ ■ ■

Christian Heilmann

6803.book Page i Friday, June 23, 2006 9:05 AM

Beginning JavaScript with DOM Scripting and Ajax: From Novice to Professional

Copyright © 2006 by Christian Heilmann

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-680-7

ISBN-10 (pbk): 1-59059-680-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Charles Brown, Chris Mills
Technical Reviewer: Jon Stephens
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Beth Christmas
Copy Edit Manager: Nicole LeClerc
Copy Editor: Ami Knox
Assistant Production Director: Kari Brooks-Copony
Production Editor: Katie Stence
Compositor: Pat Christenson
Proofreader: Lori Bring
Indexer: Broccoli Information Management
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.beginningjavascript.com and http://
www.apress.com.

6803.book Page ii Friday, June 23, 2006 9:05 AM

To Ioanna, who can sleep and look like an angel while some geek next to her hacks on the
keyboard of a laptop and constantly mutters “Why won’t you work” under his breath.

6803.book Page iii Friday, June 23, 2006 9:05 AM

6803.book Page iv Friday, June 23, 2006 9:05 AM

v

Contents at a Glance

Foreword. xiii

About the Author . xv

About the Technical Reviewer. xvii

Acknowledgments. xix

Introduction . xxi

■CHAPTER 1 Getting Started with JavaScript . 1

■CHAPTER 2 Data and Decisions . 17

■CHAPTER 3 From DHTML to DOM Scripting . 61

■CHAPTER 4 HTML and JavaScript . 85

■CHAPTER 5 Presentation and Behavior (CSS and Event Handling) 123

■CHAPTER 6 Common Uses of JavaScript: Images and Windows 183

■CHAPTER 7 JavaScript and User Interaction: Navigation and Forms 241

■CHAPTER 8 Back-End Interaction with Ajax . 299

■CHAPTER 9 Data Validation Techniques . 343

■CHAPTER 10 Modern JavaScript Case Study: A Dynamic Gallery 387

■CHAPTER 11 Using Third-Party JavaScript . 415

■APPENDIX Debugging JavaScript . 451

■INDEX . 471

6803.book Page v Friday, June 23, 2006 9:05 AM

6803.book Page vi Friday, June 23, 2006 9:05 AM

vii

Contents

Foreword. xiii

About the Author . xv

About the Technical Reviewer. xvii

Acknowledgments. xix

Introduction . xxi

■CHAPTER 1 Getting Started with JavaScript. 1

The Why of JavaScript . 3

What Is JavaScript? . 4

Problems and Merits of JavaScript . 5

Why Use JavaScript If It Cannot Be Relied On? . 6

JavaScript in a Web Page and Essential Syntax . 7

JavaScript Syntax . 8

Code Execution . 9

An Aside About Functions . 11

Objects . 12

Simple JavaScript Example . 13

Summary . 16

■CHAPTER 2 Data and Decisions . 17

Data, Data Types, and Data Operators . 18

The String Data Type . 18

Operators . 21

JavaScript Variables . 23

Converting Different Types of Data . 26

The Composite Data Types: Array and Object . 30

Objects JavaScript Supplies You with: String, Date,
and Math. 30

Arrays . 39

The Array Object’s Methods and Properties 42

6803.book Page vii Friday, June 23, 2006 9:05 AM

viii ■C O N T E N T S

Making Decisions in JavaScript . 45

The Logical and Comparison Operators . 45

Conditional Statements . 49

Testing Multiple Values: the switch Statement 52

Repeating Things: Loops . 54

Summary . 59

■CHAPTER 3 From DHTML to DOM Scripting . 61

JavaScript As “the Behavior Layer” . 63

Object Detection vs. Browser Dependence . 65

Progressive Enhancement . 68

JavaScript and Accessibility . 69

Good Coding Practices. 71

Naming Conventions. 71

Code Layout . 72

Commenting. 74

Functions . 76

Short Code via Ternary Operator . 79

Sorting and Reuse of Functions . 80

Variable and Function Scope. 80

Keeping Scripts Safe with the Object Literal 81

Summary . 83

■CHAPTER 4 HTML and JavaScript . 85

The Anatomy of an HTML Document. 85

Providing Feedback in Web Pages via JavaScript:
The Old School Ways . 89

Using window Methods: prompt(), alert(),
and confirm(). 90

Accessing the Document via the DOM . 96

Of Children, Parents, Siblings, and Values . 99

From the Parents to the Children . 100

From the Children to the Parents . 102

Among Siblings . 103

Changing Attributes of Elements . 107

6803.book Page viii Friday, June 23, 2006 9:05 AM

■C O N T E N T S ix

Creating, Removing, and Replacing Elements. 109

Avoiding NOSCRIPT . 113

Shortening Your Scripts via InnerHTML. 115

DOM Summary: Your Cheat Sheet . 116

DOMhelp: Our Own Helper Library . 118

Summary . 122

■CHAPTER 5 Presentation and Behavior (CSS and Event Handling) . . 123

Changing the Presentation Layer via JavaScript . 123

Helping the CSS Designer . 131

Changing the Document’s Behavior via Event Handling 153

Events in the W3C-Compliant World . 156

Fixing Events for the Non-W3C-Compliant World 165

Never Stop Optimizing . 172

The Ugly Page Load Problem and Its Ugly Solutions. 173

Reading and Filtering Keyboard Entries . 174

The Dangers of Event Handling . 179

Summary . 180

■CHAPTER 6 Common Uses of JavaScript: Images and Windows 183

Images and JavaScript . 183

Basics of Image Scripting . 184

Preloading Images . 186

Rollover Effects . 187

Slide Shows . 196

Summary of Images and JavaScript . 211

Windows and JavaScript . 212

Window Properties . 213

Window Methods. 215

Summary: Windows and JavaScript . 238

Summary . 239

6803.book Page ix Friday, June 23, 2006 9:05 AM

x ■C O N T E N T S

■CHAPTER 7 JavaScript and User Interaction: Navigation and Forms. . . 241

Navigation and JavaScript. 241

The Fear of the Page Reload . 242

Basics of Navigation and JavaScript . 242

Browser Navigation. 245

In-Page Navigation . 246

Site Navigation. 255

Pagination. 263

Summary of Navigation with JavaScript . 272

Forms and JavaScript . 272

Basics of Forms with JavaScript . 274

Form Elements. 275

Interactive Forms: Hiding and Showing Dependent Elements. . . . 291

Custom Form Elements . 297

Summary of Forms and JavaScript . 297

Summary . 297

■CHAPTER 8 Back-End Interaction with Ajax . 299

Household Cleaning Liquid, Football Club, or Flash Gordon’s
Spacecraft: What Is Ajax? . 300

Et Tu, Cache? . 309

Putting the X Back into Ajax . 309

Replacing XML with JSON . 314

Using Server-Side Scripts to Reach Third-Party Content 316

XHR on Slow Connections . 320

A Larger Ajax Example: Connected Select Boxes 323

Optional Dynamic Ajax Menus . 331

Summary . 340

■CHAPTER 9 Data Validation Techniques . 343

Pros and Cons of Client-Side JavaScript Validation 343

A Quick Reminder About Protecting Content with JavaScript. 344

The One-Size-Fits-All Validation Myth . 345

6803.book Page x Friday, June 23, 2006 9:05 AM

■C O N T E N T S xi

Basic JavaScript Validation with String and Numeric Methods 346

String Validation Methods . 346

Numeric Validation Methods . 352

Regular Expressions. 357

Syntax and Attributes . 357

Wildcard Searches, Constraining Scope, and Alternatives 358

Restricting the Number of Characters with Quantifiers 359

Word Boundaries, Whitespace, and Other Shortcuts 360

Methods Using Regular Expressions . 361

The Power of Parenthesis Grouping. 361

Regular Expression Resources . 363

Summary of Validation Methods . 363

Form Validation Techniques . 364

Designating Mandatory Fields. 364

The Hidden Field Method. 364

The Indicator Element Method . 365

The CSS Classes Method. 366

The Custom Attribute Method . 366

Failures of These Methods . 367

Sharing Validation Rules . 367

Giving Users Validation Feedback . 369

Showing a List of Erroneous Fields . 369

Replacing the Main Form with a Clickable Error Message. 374

Highlighting Erroneous Fields Individually . 376

Instant Validation Feedback . 379

Other Dynamic Validation Methods . 381

Summary . 385

■CHAPTER 10 Modern JavaScript Case Study: A Dynamic Gallery 387

Basics of Thumbnail Galleries . 387

What Is a Thumbnail Gallery and What Should It Do? 388

Static Thumbnail Galleries . 388

Faking Dynamic Galleries with JavaScript . 389

Displaying Captions . 396

Dynamic Thumbnail Galleries. 401

Creating an Image Badge from a Folder. 406

Summary . 414

6803.book Page xi Friday, June 23, 2006 9:05 AM

xii ■C O N T E N T S

■CHAPTER 11 Using Third-Party JavaScript . 415

What the Web Offers You . 415

Code Snippets, RSS Feeds, APIs, and Libraries . 416

RSS Feeds and REST APIs . 417

Examples of REST APIs . 418

Using a Library: Short, Shorter, jQuery . 419

Dangers of jQuery and Other Libraries Using Their
Own Syntax . 426

Using an API: Adding a Map to Your Site with Google Maps. 427

Full Service: The Yahoo Developer Network and User
Interface Library. 438

Bouncy Headlines Using YUI . 439

Replacing Pop-Up Windows Using the YUI Connection
Manager and Container Components. 444

Yahoo User Interface Library Summary. 449

Summary . 450

■APPENDIX Debugging JavaScript . 451

Common JavaScript Mistakes . 451

Misspellings and Case-Sensitivity Issues . 451

Trying to Access Undefined Variables . 452

Incorrect Number of Closing Braces and Parentheses 454

Concatenation Gone Wrong . 456

Assigning Instead of Testing the Value of a Variable 458

Tracing Errors with alert() and “Console” Elements 458

Error Handling with try and catch() . 459

Sequential Uncommenting . 462

Error Reporting in Browsers . 463

Microsoft Internet Explorer 6. 463

Safari . 464

Opera 8.5 . 466

Firefox 1.5.0.3 . 466

JSLint and JSUNIT . 470

Summary . 470

■INDEX . 471

6803.book Page xii Friday, June 23, 2006 9:05 AM

xiii

Foreword

There has never been a more exciting time to learn JavaScript. It may be a cliché, but it’s
certainly true. After years spent banished in a wilderness of browser wars and false promises,
JavaScript has finally emerged as an essential part of any web developer’s toolbox. No longer
just a vehicle for ads and annoyances, it is now a valuable component of the next generation of
web applications.

What has caused this sudden rush of interest? The first reason is purely practical: browser
improvements have finally made it viable to write cross-browser JavaScript with some certainty
that it will actually work. The second is more revolutionary: Ajax, an old technique with a new
name that enables client-side code to communicate directly with a server without refreshing
the whole page. This simple ability has thrown web application development wide open,
enabling new, innovative interfaces and dramatically altering user expectations of how web
interfaces can behave.

This adoption has been helped by the growing realization that JavaScript is not a toy
language. Despite its numerous warts, beneath its deceptively simple exterior lie a host of
powerful features not seen in many mainstream languages: closures, prototypal inheritance,
and extensive support for the functional programming style. That such a flexible language is
now installed on hundreds of millions of computers is a cause for celebration in itself.

Just because you can do something doesn’t mean that you should. Not all browsers are
born equal, and accessibility (both for people and for alternative devices) remains an essential
aspect of developing for the Web. Understanding the issues and techniques around progressive
enhancement is an important part of the JavaScript learning curve.

The set of challenges posed by JavaScript development is huge.
Browsers frequently deviate from what standard specifications there are, and pseudo-

standards are common and frequently unavoidable.
Ambitious new applications are uncovering browser bugs that have laid dormant for years.

The complexity of those applications is itself a problem, introducing new problems related to
maintaining large code bases.

Thankfully, the global JavaScript community has risen to the challenge. A wealth of
code and resources awaits the intrepid developer, but the value of this treasure trove can be
unlocked only through a solid understanding of the underlying platform. This book will provide
you with that knowledge.

As a long-standing teacher and leader in that community, Christian is the ideal guide to
this intricate world. This book comprises accumulated wisdom obtainable only through years
of experience.

Christian will teach you to apply JavaScript tastefully, responsibly, and elegantly in a way
that will delight your users and impress your peers.

Simon Willison
Technology Development at Yahoo!

6803.book Page xiii Friday, June 23, 2006 9:05 AM

6803.book Page xiv Friday, June 23, 2006 9:05 AM

xv

About the Author

■CHRISTIAN HEILMANN grew up in Germany and, after a year working
with people with disabilities for the Red Cross, spent a year as a radio
producer. From 1997 onwards, he worked for several agencies in
Munich as a web developer. In 2000, he moved to the US to work
for eToys and, after the dot-com crash, he moved to the UK where he
led the web development department at Agilisys. In April 2006,
he joined Yahoo! UK as a web developer. He publishes an almost daily
blog at http://wait-till-i.com and runs an article repository at

http://icant.co.uk. He is a member of the Web Standards Project’s DOM Scripting Task Force.

6803.book Page xv Friday, June 23, 2006 9:05 AM

6803.book Page xvi Friday, June 23, 2006 9:05 AM

xvii

About the Technical Reviewer

■JON STEPHENS has contributed to numerous books on web and open
source technologies as an author, reviewer, and editor. He’s particu-
larly keen on JavaScript, PHP, Linux, and MySQL. Jon coauthored
Professional JavaScript, Second Edition (Wrox Press, 2001), Beginning
MySQL Database Design and Optimization: From Novice to Profes-
sional (Apress, 2004), and PHP 5 Recipes: A Problem-Solution Approach
(Apress, 2005). He was also the technical reviewer for Jeremy Keith’s
DOM Scripting: Web Design with JavaScript and the Document Object

Model (friends of ED, 2005). Jon’s day job (we use the term “day” loosely here) is with MySQL
AB as a technical writer, where he’s learned to appreciate the finer points of MySQL Cluster,
DocBook XML, and very large fish caught in the Bay of Naples. His origins are lost in the depths
of time and space, but he is rumored to have a 4-digit user ID on Slashdot.org and a daughter in
Australia. (In recent years, we’ve posted Jon’s checks to an address in Brisbane, and someone
claiming to be him has cashed them.) Jon has also been sighted from time to time shoveling
down really extremely dangerously spicy Thai food purchased from street vendors in Bangkok
and Ayutthaya.

6803.book Page xvii Friday, June 23, 2006 9:05 AM

6803.book Page xviii Friday, June 23, 2006 9:05 AM

xix

Acknowledgments

I’d like to acknowledge all who helped in getting this book done—Chris, Beth, Ami, Katie, and
Charles at Apress, and Jon Stephens. I learned a lot, especially that writing a book is much more
work than I thought.

I’d also like to thank those who helped me by solving problems and asking for more and
more features—my fellow WaSP DOM Scripting Task Force Members, Stuart Colville, Matt
Warden, Jens Grochtdreis, Ingo Chao, Volkan Ozcelik, and many others on the evolt list, CSS-
discuss, and my blog comments.

Thanks to my former colleagues at Agilisys and my current colleagues at Yahoo for testing
help and support, and to Good for Food, The Spence, Pizzadelique, and Belle Epoque for
keeping me in shape by providing nourishment (and also to the neighbors of these places for
not protecting their wireless access points).

And last but not least, I’d like to thank you, as buying this book shows that there are people
who really want to learn JavaScript properly, instead of just copying and pasting in scripts. If
this is a pirated PDF, just remember that I can trace all copies back to your computer, and I will
know where you live.

6803.book Page xix Friday, June 23, 2006 9:05 AM

6803.book Page xx Friday, June 23, 2006 9:05 AM

xxi

Introduction

If you want to learn about JavaScript from scratch—what it is, what to use it for, and how to
make it work with other technologies like CSS and HTML—you have picked up the right book.
If you already have a considerable amount of experience with JavaScript, but want to bring your
knowledge up to date, you have also picked up the right book—a lot has changed in JavaScript
development in recent years.

When JavaScript first started being used for web development back in the mid-to-late
1990s (it was first supported in Netscape 2, back in 1996), it quickly became much maligned, for
many reasons—browser support was mediocre at best, and at worst, you actually had different
JavaScript functions being implemented in different ways by different browsers (Netscape 4
and Internet Explorer 4 were major culprits, at the height of the so-called browser wars). This
led to developers having to write completely different versions of web sites or indulge in messy
code forking, if they wanted to attempt to have cross-browser support.

And that was the consciencious ones—JavaScript’s bad reputation was just as much the
fault of the developers as the browser manufacturers. Developers back in those days tended to
use JavaScript for all manner of flashy effects that looked cool, but caused all manner of prob-
lems in terms of usability and accessibility (the days of DHTML—another marketing buzzword
back in the day, which referred to the application of JavaScript, CSS, and HTML to produce
dynamic effects). Pages would break completely if JavaScript was unavailable for any reason or
if the user was trying to use a screenreader. And a lot of web developers would copy and paste
scripts into their web sites without understanding how they actually worked, causing more
untold usability and code maintenance nightmares.

But as I said earlier, things have changed. Browser support is now at a manageable level,
with the modern browsers largely using the same implementation of the Document Object
Model and other constructs, and modern techniques are a lot more considerate of accessibility,
etc. As you’ll learn through the course of this book, modern techniques like DOM scripting are
built around the premise of separating out not only the structure (in your markup) and the
presentation (in your CSS), but also the behavior in your JavaScript files (not interspersed
through your markup documents). JavaScript does not have to be evil—you can code your web
sites so that the JavaScript enhancements you are using can add to the experience of users who
can take advantage of them, but they don’t break when JavaScript is not available. This is called
unobtrusive JavaScript—JavaScript enhancements should be seen as a bonus for those who can
use them, not an essential feature for the running of a site.

If you’ve used JavaScript before, then be prepared to take on a new mindset as you step
forward through the book. If you are completely new to JavaScript, then breathe a sign of relief
and consider yourself lucky that you never had to suffer the early days of JavaScript develop-
ment that I just touched on!

6803.book Page xxi Friday, June 23, 2006 9:05 AM

xxii ■I N T R O D U C T I O N

What This Book Will Cover
JavaScript is probably simultaneously the most underrated and the most misused language in
web development, but use it properly, and it can be a very valuable tool in your toolbox. In the
following pages, we’ll look at the basics of JavaScript and modern JavaScript techniques,
including DOM scripting for dynamic behavior and styling, and event handling. We’ll then
look at essential applications of JavaScript, including data validation, image and window
manipulation, and dynamic enhancements for forms and navigation menus.

Next, I turn your attention to probably the biggest JavaScript-related buzzword of the
moment—Ajax. Ajax standards for “Asynchronous JavaScript and XML,” which is a bit of a
misnomer, as the technique doesn’t necessarily have to involve XML, and is probably used with
HTML more often. But don’t concern yourself about that statement—it basically refers to
creating dynamic functionality on web pages that works because small parts of the web page
can be updated without having to refresh the whole page, for example, contact information in
an online e-mail application (Gmail being the most obvious example that comes to mind). The
most common way to do this right now is to use the XMLHttpRequest (XHR) object. It is very
popular because it allows us to create web applications that have rich functionality and almost
look and work like desktop applications. But Ajax does come with its own set of unique prob-
lems, which I’ll touch on in this book.

Next follows a case study for you to work through, showing a full-blown modern JavaScript-
enhanced web application.

Finally, Chapter 11 looks at another essential facet of modern JavaScript development—
using third-party JavaScript solutions. When you’re developing JavaScript applications, you
don’t need to code everything yourself from scratch every time. As well as creating reusable
objects and functions of your own, which will be covered in the earlier chapters of the book,
there are also countless third-party resources available on the Web for you to download and
use in your own applications, from libraries of functions, to full-blown APIs (application
programming interfaces) for you to hook into. Specifically, we look at jQuery, the Google Maps
API, the Yahoo! APIs, and much more besides.

Community and Support
When you ask developers with different technology or design-oriented backgrounds what Java-
Script is and what you should use it for, you will most probably get totally different answers.
This book tries to teach you how to become a JavaScript developer who can work with each of
these developers, and maybe get to change some views these people have by proving that you
can use JavaScript to enhance a web site, build a web application, or even extend a piece of soft-
ware without forcing the user to change his ways or hardware setup.

This is a book to work along with—all the code examples provided can be downloaded and
tried at http://www.beginningjavascript.com; you will also find extra information, bug fixes,
and other examples there (my publishers will also keep a copy of the errata and code download
at http://www.apress.com).

6803.book Page xxii Friday, June 23, 2006 9:05 AM

■I N T R O D U C T I O N xxiii

But what happens when you get a problem? You have many options available to you. First,
try getting ahold of me via my web site (http://wait-till-i.com) or mailing Apress about the
issue (contact details available at http://www.apress.com).

Second, try visiting any of the JavaScript forums available on the Web. Some of the best are

• evolt’s thelist: http://lists.evolt.org/mailman/listinfo/thelist

• The Mozilla JavaScript forums: http://developer.mozilla.org/en/docs/JavaScript

• Webdeveloper.com JavaScript forum: http://www.webdeveloper.com/forum/
forumdisplay.php?f=3

• The comp.lang.javascript FAQ: http://jibbering.com/faq/

These forums are frequented by many knowledge seekers, such as yourself, but also many
very experienced JavaScripters who are happy to help out the community with their problems
to further the cause of modern JavaScript. Make sure you ask questions intelligently, and don’t
just paste in your code and ask, “What’s wrong with this?” Also look over the other posts on
the forums; you may find that your question has been asked by someone else, and answered
already.

Last of all, read blogs! A lot of the most talented JavaScripters out there like to share their
ideas, innovations, and experiments with the rest of the world through their blogs, myself
included (OK, so I couldn’t resist getting another plug in there!). This is a great way to pick up
new ideas. I’d recommend reading the words of

• Jeremy Keith: http://www.adactio.com

• Simon Willison: http://simon.incutio.com/

• The WaSP DOM scripting task force: http://www.webstandards.org/action/dstf/

• Stuart Langridge: http://kryogenix.org/days/

• Robert Nyman: http://robertnyman.com/

• Jon Snook: http://www.snook.ca/jonathan/

Look at it like this—you’re now part of a very vibrant community. As well as learning a lot
of useful stuff, you’ll meet a variety of interesting people, and have some fun along the way!
Let’s get on with the fun—keep reading . . .

6803.book Page xxiii Friday, June 23, 2006 9:05 AM

6803.book Page xxiv Friday, June 23, 2006 9:05 AM

1

■ ■ ■

C H A P T E R 1

Getting Started with JavaScript

This book is about a scripting language called JavaScript and how to use it in a practical man-
ner. After you read it, you’ll be able to

• Understand JavaScript syntax and structures.

• Create scripts that are easy to understand and maintain.

• Write scripts that do not interfere with other JavaScripts.

• Write scripts that make web sites easier to use without blocking out non-JavaScript users.

• Write scripts that are independent of the browser or user agent trying to understand
them—which means that in some years they will still be usable and won’t rely on obso-
lete technology.

• Enhance a web site with JavaScript and allow developers without any scripting knowl-
edge to change the look and feel.

• Enhance a web document with JavaScript and allow HTML developers to use your func-
tionality by simply adding a CSS class to an element.

• Use progressive enhancement to make a web document nicer only when and if the user
agent allows for it.

• Use Ajax to bridge the gap between back end and client side, thus creating sites that are
easier to maintain and appear much slicker to the user.

• Use JavaScript as part of a web methodology that enables you to maintain it indepen-
dently without interfering with the other development streams.

What you will not find here are

• Instructions on how to create effects that look flashy but do nothing of value for the
visitor

• JavaScript applications that are browser specific

• JavaScripts that are only there to prove that they can be used and do not enhance the vis-
itor’s experience

• JavaScripts that promote unwanted content, such as pop-up windows or other flashy
techniques like tickers or animation for animation’s sake

6803.book Page 1 Friday, June 9, 2006 3:19 PM

2 C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT

It is my credo that JavaScript has a place in modern web development, but we cannot take it
for granted that the visitor will be able to use or even experience all the effects and functionality
we can achieve with JavaScript. JavaScript allows us to completely change the web page by add-
ing and removing or showing and hiding elements. We can offer users richer interfaces like drag-
and-drop applications or multilevel drop-down menus. However, some visitors cannot use a
drag-and-drop interface because they can only use a keyboard or rely on voice recognition to use
our sites. Other visitors might be dependent on hearing our sites rather than seeing them (via
screen readers) and will not necessarily be notified of changes achieved via JavaScript. Last but
not least, there are users who just cannot have JavaScript enabled, for example, in high-security
environments like banks. Therefore, it is necessary to back up a lot of the things we do in
JavaScript with solutions on the server side.

Sadly, JavaScript also has a history of being used as a way to force information onto the vis-
itor that was not requested (pop-up windows are a good example). This practice is frowned on
by me, as well as many professional web designers. It is my hope that you will not use the
knowledge gained from this book to such an end.

■Note Web design has matured over the years—we stopped using FONT tags and deprecated visual
attributes like bgcolor and started moving all the formatting and presentational attributes to a CSS file. The
same cleaning process has to happen to JavaScript should it remain a part of web development. We sepa-
rated content, structure, and presentation, and now it is time to separate the behavior of web sites from the
other layers. Web development now is for business and for helping the user rather than for the sake of putting
something out there and hoping it works in most environments.

It is high time we see JavaScript as a part of an overall development methodology, which
means that we develop it not to interfere with other technologies like HTML or CSS, but to
interact with them or complement them. To that end, we see the emergence of a new technol-
ogy (or at least a new way of using existing technologies) called Ajax, which we will discuss in
Chapter 8.

Web development has come quite a way since the 1990s, and there is not much sense in
creating web sites that are static and fixed in their size. Any modern web design should allow
for growth as needed. It should also be accessible to everyone (which does not mean that
everybody gets the same appearance—a nice multicolumn layout, for example, might make
sense on a high-resolution monitor but is hard to use on a mobile phone or a PDA)—and ready
for internationalization. We cannot afford any longer to build something and think it’ll last for-
ever. Since the Web is about content and change, it’ll become obsolete if we don’t upgrade our
web products constantly and allow other data sources to feed into it or get information from it.

Enough introductions—you got this book to learn about JavaScript, so let’s start by talking
quickly about JavaScript’s history and assets before diving right into it.

6803.book Page 2 Friday, June 9, 2006 3:19 PM

C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT 3

In this chapter you’ll learn

• What JavaScript is and what it can do for you

• The advantages and disadvantages of JavaScript

• How to add JavaScript to a web document and its essential syntax

• Object-oriented programming (OOP) in relation to JavaScript

• How to write and run a simple JavaScript program

Chances are that you have already come across JavaScript, and already have an idea of
what it is and what it can do, so we’ll move quite swiftly through some basics of the language
and its capabilities first. If you know JavaScript well already, and you simply want to know
more about the newer and more accessible features and concepts, you might skip to Chapter 3.
I won’t hold it against you—however, there might be some information you’ve forgotten, and
a bit of a review doesn’t hurt, either.

The Why of JavaScript
In the beginning of the Web, there was HTML and the Common Gateway Interface (CGI).
HTML defines the parts of a text document and instructs the user agent (usually the web
browser) how to show it—for example, text surrounded by the tags <p></p> becomes a para-
graph. Within that paragraph you may have <h1></h1> tags that define the main page heading.
Notice that for most opening tags, there is a corresponding closing tag that begins with </.

HTML has one disadvantage—it has a fixed state. If you want to change something, or
use data the visitor entered, you need to make a round-trip to a server. Using a dynamic tech-
nology (such as ColdFusion, ASP, ASP.NET, PHP, or JSP) you send the information from forms,
or from parameters, to a server, which then performs calculating/testing/database lookups,
etc. The application server associated with these technologies then writes an HTML document
to show the results, and the resulting HTML document is returned to the browser for viewing.

The problem with that is it means every time there is a change, the entire process must be
repeated (and the page reloaded). This is cumbersome, slow, and not as impressive as the new
media “Internet” promised us to be. It is true that at least the Western world has the benefit of
fast Internet connections these days, but displaying a page still means a reload, which could be
a slow process that frequently fails (ever get an Error 404?).

We need something slicker—something that allows web developers to give immediate
feedback to the user and change HTML without reloading the page from the server. Just imag-
ine a form that needs to be reloaded every time there’s an error in one of its fields—isn’t it
handier when something flags the errors immediately, without needing to reload the page
from the web server? This is one example of what JavaScript can do for you.

6803.book Page 3 Friday, June 9, 2006 3:19 PM

4 C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT

Some information, such as calculations and verifying the information on a form, may not
need to come from the server. JavaScript is executed by the user agent (normally a browser) on
the visitor’s computer. We call this client-side code. This could result in fewer trips to the
server and faster-running web sites.

What Is JavaScript?
JavaScript started life as LiveScript, but Netscape changed the name—possibly because of the
excitement being generated by Java—to JavaScript. The name is confusing though, as there is
no real connection between Java and JavaScript—although some of the syntax looks similar.

Java is to JavaScript what Car is to Carpet

——From a JavaScript discussion group on Usenet

Netscape created the JavaScript language in 1996 and included it in their Netscape Navi-
gator (NN) 2.0 browser via an interpreter that read and executed the JavaScript added to .html
pages. The language has steadily grown in popularity since then, and is now supported by the
most popular browsers.

The good news is that this means JavaScript can be used in web pages for all major
modern browsers. The not-quite-so-good news is that there are differences in the way the
different browsers implement JavaScript, although the core JavaScript language is much the
same. However, JavaScript can be turned off by the user—and many companies and other
institutions require their users to do so for security reasons. We will discuss this further
shortly, as well as throughout this book.

The great thing about JavaScript is that once you’ve learned how to use it for browser pro-
gramming, you can move on to use it in other areas. Microsoft’s server—IIS—uses JavaScript
to program server-side web pages (ASP), PDF files now use JavaScript, and even Windows
administration tasks can be automated with JavaScript code. A lot of applications such as
Dreamweaver and Photoshop are scriptable with JavaScript. Operating system add-ons like
the Apple Dashboard or Konfabulator on Linux and Windows even allow you to write small
helper applications in JavaScript.

Lately a lot of large companies also offer application programming interfaces (APIs) that
feature JavaScript objects and methods you can use in your own pages—Google Maps being
one of them. You can offer a zoomable and scrollable map in your web site with just a few lines
of code.

Even better is the fact that JavaScript is a lot easier to develop than higher programming
languages or server-side scripting languages. It does not need any compilation like Java or C++,
or to be run on a server or command line like Perl, PHP, or Ruby: all you need to write, execute,
debug, and apply JavaScript is a text editor and a browser—both of which are supplied with any
operating system. There are, of course, tools that make it a lot easier for you, examples being
JavaScript debuggers like Mozilla Venkman, Microsoft Script Debugger, or kjscmd.

6803.book Page 4 Friday, June 9, 2006 3:19 PM

C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT 5

Problems and Merits of JavaScript
As I mentioned at the outset of this chapter, JavaScript has been an integral part of web devel-
opment over the last few years, but it has also been used wrongly. As a result, it has gotten a bad
reputation. The reason for this is gratuitous JavaScript effects, like moving page elements and
pop-up windows, which might have been impressive the first time you saw them but soon
turned out to be just a “nice to have” and in some cases even a “nice to not have any longer.”
A lot of this comes from the days of DHTML (more on this in Chapter 3).

The term user agent and the lack of understanding what a user agent is can also be a prob-
lem. Normally, the user agent is a browser like Microsoft Internet Explorer (MSIE), Netscape,
Mozilla (Moz), Firefox (Fx), Opera, or Safari. However, browsers are not the only user agents on
the Web. Others include

• Assistive technology that helps users to overcome the limitations of a disability—like
text-to-speech software or Braille displays

• Text-only agents like Lynx

• Web-enabled applications

• Game consoles

• Mobile/cell phones

• PDAs

• Interactive TV set-top boxes

• Search engines and other indexing programs

• And many more

This large variety of user agents, of different technical finesse (and old user agents that
don’t get updated), is also a great danger for JavaScript.

Not all visitors to your web site will experience the JavaScript enhancements you applied
to it. A lot of them will also have JavaScript turned off—for security reasons. JavaScript can be
used for good and for evil. If the operating system—like unpatched Windows—allows you to,
you can install viruses or Trojan Horses on a computer via JavaScript or read out user informa-
tion and send it to another server.

■Note There is no way of knowing what the visitor uses or what his computer is capable of. Furthermore,
you never know what the visitor’s experience and ability is like. This is one of the beautiful aspects of the
Web—everyone can participate. However, this can introduce a lot of unexpected consequences for the
JavaScript programmer.

6803.book Page 5 Friday, June 9, 2006 3:19 PM

6 C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT

In many cases, you might want to have a server-side backup plan. It would test to see
whether the user agent supports the functionality desired and, if it doesn’t, the server takes over.

Independence of scripting languages is a legal requirement for web sites, defined in the
Digital Discrimination Act for the UK, section 508 in the US law, and many more localized legal
requirements throughout the world. This means that if the site you developed cannot be used
without JavaScript, or your JavaScript enhancements are expecting a certain ability of the users
or their user agent without a fallback, your client could be sued for discrimination.

However, JavaScript is not evil or useless, and it is a great tool to help your visitor to surf
web sites that are a lot slicker and less time-consuming.

Why Use JavaScript If It Cannot Be Relied On?
As I just mentioned, just because it may not always be available doesn’t mean that JavaScript
shouldn’t be used at all. It should simply not be the only means of user interaction.

The merits of using JavaScript are

• Less server interaction: You can validate user input before sending the page off to the
server. This saves server traffic, which means saving money.

• Immediate feedback to the visitors: They don’t have to wait for a page reload to see if
they have forgotten to enter something

• Automated fixing of minor errors: For example, if you have a database system that
expects a date in the format dd-mm-yyyy and the visitor enters it in the form dd/mm/yyyy,
a clever JavaScript script could change this minor mistake prior to sending the form to the
server. If that was the only mistake the visitor made, you can save her an error message—
thus making it less frustrating to use the site.

• Increased usability by allowing visitors to change and interact with the user interface
without reloading the page: For example, by collapsing and expanding sections of the
page or offering extra options for visitors with JavaScript. A classic example of this would
be select boxes that allow immediate filtering, such as only showing the available desti-
nations for a certain airport, without making you reload the page and wait for the result.

• Increased interactivity: You can create interfaces that react when the user hovers over
them with a mouse or activates them via the keyboard. This is partly possible with CSS
and HTML as well, but JavaScript offers you a lot wider—and more widely supported—
range of options.

• Richer interfaces: If your users allow for it, you can use JavaScript to include such items
as drag-and-drop components and sliders—something that originally was only possible
in thick client applications your users had to install, such as Java applets or browser
plug-ins like Flash.

6803.book Page 6 Friday, June 9, 2006 3:19 PM

C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT 7

• Lightweight environment: Instead of downloading a large file like a Java applet or a
Flash movie, scripts are small in file size and get cached (held in memory) once they
have been loaded. JavaScript also uses the browser controls for functionality rather than
its own user interfaces like Flash or Java applets do. This makes it easier for users, as they
already know these controls and how to use them. Modern Flash and Macromedia Flex
applications do have the option to stream media and—being vector based—are visually
scalable, something JavaScript and HTML controls aren’t. On the other hand, they
require the plug-in to be installed.

JavaScript in a Web Page and Essential Syntax
Applying JavaScript to a web document is very easy; all you need to do is to use the script tag:

<script type="text/javascript">
 // Your code here
</script>

For older browsers, or if you want to use strict XHTML (the newest version of HTML)
instead of transitional, you’ll need to comment out the code to make sure the user agent does
not display it inside the page or tries to render it as HTML markup. There are two different syn-
taxes for commenting out code. For HTML documents and transitional XHTML, you use the
normal HTML comments:

<script type="text/javascript">
<!--
 // Your code here
-->
</script>

In strict XHTML, you will need to use the CDATA commenting syntax to comment out
your code—however, it is best not to add any JavaScript inside strict XHTML documents, but
keep it in its own document. More on this in Chapter 3.

<script type="text/javascript"><!--//--><![CDATA[//><!—
 // Your code here
//--><!]]></script>

Technically it is possible to include JavaScript anywhere in the HTML document, and
browsers will interpret it. However, there are reasons in modern scripting why this is a bad
idea. For now though, we will add JavaScript examples to the body of the document to allow
you to see immediately what your first scripts are doing. This will help you get familiar with
JavaScript a lot easier than the more modern and advanced techniques awaiting you in
Chapter 3.

■Note There is also an “opposite” to the script tag—noscript—which allows you to add content that
will only be displayed when JavaScript is not available. However, noscript is deprecated in XHTML and strict
HTML, and there is no need for it—if you create JavaScript that is unobtrusive.

6803.book Page 7 Friday, June 9, 2006 3:19 PM

8 C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT

JavaScript Syntax
Before we go any further, we should discuss some JavaScript syntax essentials:

• // indicates that the rest of the current line is a comment and not code to be executed,
so the interpreter doesn’t try to run it. Comments are a handy way of putting notes in
the code to remind us what the code is intended to do, or to help anyone else reading the
code see what’s going on.

• /* indicates the beginning of a comment that covers more than one line.

• */ indicates the end of a comment that covers more than one line. Multiline comments
are also useful if you want to stop a certain section of code from being executed but don’t
want to delete it permanently. If you were having problems with a block of code, for
example, and you weren’t sure which lines were causing the problem, you could com-
ment one portion of it at a time in order to isolate the problem.

• Curly braces ({ and }) are used to indicate a block of code. They ensure that all the lines
inside the braces are treated as one block. You will see more of these when we discuss
structures such as if or for, as well as functions.

• A semicolon or a newline defines the end of a statement, and a statement is a single com-
mand. Semicolons are in fact optional, but it’s still a good idea to use them to make clear
where statements end, because doing so makes your code easier to read and debug.
(Although you can put many statements on one line, it’s best to put them on separate
lines in order to make the code easier to read.) You don’t need to use semicolons after
curly braces.

Let’s put this syntax into a working block of code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
<head>
<body>
<script type="text/JavaScript">
 // One-line comments are useful for reminding us what the code is doing

 /*
 This is a multiline comment. It's useful for longer comments and
 also to block out segments of code when you're testing
 */

 /*
 Script starts here. We're declaring a variable myName, and assigning to it the
 value of whatever the user puts in the prompt box (more on that in Chapter
 2), finishing the instruction with a semicolon because it is a statement
 */

6803.book Page 8 Friday, June 9, 2006 3:19 PM

C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT 9

 var myName = prompt ("Enter your name","");

 // If the name the user enters is Chris Heilmann
 if (myName == "Chris Heilmann")
 {
 // then a new window pops up saying hello
 alert("Hello Me");
 }

 // If the name entered isn't Chris Heilmann
 else
 {
 // say hello to someone else
 alert("hello someone else");
 }
</script>
</body>
</html>

Some of the code may not make sense yet, depending on your previous JavaScript experi-
ence. All that matters for now is that it’s clear how comments are used, what a code block is,
and why there are semicolons at the end of some of the statements. You can run this script if
you like—just copy it into an HTML page, save the document with the file extension .html, and
open it in your browser.

Although statements like if and else span more than one line and contain other state-
ments, they are considered single statements and don’t need a semicolon after them. The
JavaScript interpreter knows that the lines linked with an if statement should be treated as one
block because of the curly braces, {}. While not mandatory, it is a good idea to indent the code
within the curly braces. This makes reading and debugging much easier. We’ll be looking at
variables and conditional statements (if and else) in the next chapter.

Code Execution
The browser reads the page from top to bottom, so the order in which code executes depends
on the order of the script blocks. A script block is the code between the <script> and
</script> tags. (Also note that it’s not just the browser that can read our code; the user of a
web site can view your code, too, so it’s not a good idea to put anything secret or sensitive in
there.) There are three script blocks in this next example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
<head>
<script type="text/javascript">
alert('First script Block ');
alert('First script Block - Second Line ');
</script>

6803.book Page 9 Friday, June 9, 2006 3:19 PM

10 C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT

</head>
<body>
<h1>Test Page</h1>
<script type="text/JavaScript">
 alert('Second script Block');
</script>
<p>Some more HTML</p>
<script type="text/JavaScript">
 alert('Third script Block');
 function doSomething() {
 alert('Function in Third script Block');
 }
</script>
</body>
</html>

If you try it out, you’ll see that the alert() dialog in the first script block appears first dis-
playing the message

First script Block

followed by the next alert() dialog in the second line displaying the message

First script Block - Second Line.

The interpreter continues down the page and comes to the second script block, where the
alert() function displays this dialog:

Second script Block

and the third script block following it with an alert() statement that displays

Third script Block

6803.book Page 10 Friday, June 9, 2006 3:19 PM

C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT 11

Although there’s another alert statement inside the function a few lines down, it doesn’t
execute and display the message. This is because it’s inside a function definition (function
doSomething()) and code inside a function executes only when the function is called.

An Aside About Functions
We’ll be talking about functions in much more depth in Chapter 3, but I introduce them here
because you can’t get very far in JavaScript without an understanding of functions. A function
is a named, reusable block of code, surrounded by curly braces, that you create to perform a
task. JavaScript contains functions that are available for us to use and perform tasks like dis-
playing a message to the user. Proper use of functions can save a programmer a lot of writing
of repetitive code.

We can also create our own functions, which is what we did in the previous code block.
Let’s say we create some code that writes out a message to a page in a certain element. We’d
probably want to use it again and again in different situations. While we could cut and paste
code blocks wherever we wanted to use them, this approach can make the code excessively
long; if you want the same piece of code three or four times within one page, it’ll also get pretty
hard to decipher and debug. Instead we can wrap the messaging code into a function and then
pass in any information that the function needs in order to work using parameters. A function
can also return a value to the code that called the function into action originally.

To call the function, you simply write its name followed by parentheses, (). (Note—you
use the parentheses to pass the parameters. However, even when there are no parameters, you
must still use the parentheses.) But you can’t call the function, as you might expect, until the
script has created it. We can call it in this script by adding it to the third script block like this:

<script type="text/JavaScript">
alert('Third script Block ');
function doSomething(){
 alert('Function in Third script Block ');
}
// Call the function doSomething
doSomething();
</script>
</body>
</html>

So far in this chapter you’ve looked at the pros and cons of the JavaScript language, seen
some of the syntax rules, learned about some of the main components of the language (albeit
briefly), and run a few JavaScript scripts. You’ve covered quite a lot of distance. Before we move
on to a more detailed examination of the JavaScript language in the next chapter, let’s talk
about something key to successful JavaScript development: objects.

6803.book Page 11 Friday, June 9, 2006 3:19 PM

12 C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT

Objects
Objects are central to the way we use JavaScript. Objects in JavaScript are in many ways like
objects in the world outside programming (it does exist, I just had a look). In the real world,
an object is just a “thing” (many books about object-oriented programming compare objects
to nouns): a car, a table, a chair, and the keyboard I’m typing on. Objects have

Properties (analogous to adjectives): The car is red.

Methods (like verbs in a sentence): The method for starting the car might be turn
ignition key.

Events: Turning the ignition key results in the car starting event.

 Object Oriented Programming (OOP) tries to make programming easier by modeling real-
world objects. Let’s say we were creating a car simulator. First, we would create a car object,
giving it properties like color and current speed. Then we’d need to create methods: perhaps a
start method to start the car, and a break method to slow the car, into which we’d need to pass
information about how hard the brakes should be pressed so that we can determine the slow-
ing effect. Finally, we would want some events, for example, a gasoline low event to remind us
to fill up the car.

Object-oriented programming works with these concepts. This way of designing software
is now very commonplace and influences many areas of programming—but most importantly
to us, it’s central to JavaScript and web browser programming.

Some of the objects we’ll be using are part of the language specification: the String object,
the Date object, and the Math object, for example. The same objects would be available to
JavaScript in a PDF file and on a web server. These objects provide lots of useful functionality
that could save us tons of programming time. The Date object, for example, allows you to
obtain the current date and time from the client (such as a user’s PC). It stores the date and
provides lots of useful date-related functions, for example, converting the date/time from one
time zone to another. These objects are usually referred to as core objects, as they are indepen-
dent of the implementation. The browser also makes itself available for programming through
objects that allow us to obtain information about the browser and to change the look and feel
of the application. For example, the browser makes available the Document object, which repre-
sents a web page available to JavaScript. We can use this in JavaScript to add new HTML to the
web page being viewed by the user of the web browser. If you were to use JavaScript with a dif-
ferent host, with a Windows server for example, then you’d find that the server hosting
JavaScript exposes a very different set of host objects, their functionality being related to things
you want to do on a web server.

You’ll also see in Chapter 3 that JavaScript allows us to create our own objects. This is a
powerful feature that allows us to model real-world problems using JavaScript. To create a new
object, we need to specify the properties and methods it should have using a template called a
class. A class is a bit like an architect’s drawing in that it specifies what should go where and do
what, but it doesn’t actually create the object.

6803.book Page 12 Friday, June 9, 2006 3:19 PM

e18cd8d5fbe3ee1b9db965b32e1af6d9

C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT 13

■Note There is some debate as to whether JavaScript is an object-based language or an object-oriented
language. The difference is that an object-based language uses objects for doing programming but doesn’t
allow the coder to use object-oriented programming in their code design. An object-oriented programming
language not only uses objects, but also makes it easy to develop and design code in line with object-oriented
design methodology. JavaScript allows us to create our own objects, but this is not accomplished in the same
way as in class-based languages like Java or C#. However, we’ll be concentrating not on debates about what
is or isn’t object oriented here, but on how objects are useful in practical terms in this book, and we’ll look at
some basic object-oriented coding where it helps make life easier for us.

As you progress through the book, you’ll get a more in-depth look at objects: the objects
central to the JavaScript language, the objects that the browser makes available for access and
manipulation using JavaScript, and creating your own custom objects. For now, though, all
you need to know is that objects in JavaScript are “entities” you can use to add functionality to
web pages, and that they can have properties and methods. The Math object, for example, has
among its properties one that represents the value of pi and among its methods one that gen-
erates a random number.

Simple JavaScript Example
We’ll finish the chapter with a simple script that determines first the width of the visitor’s
screen and then applies a suitable style sheet (by adding an extra LINK element to the page).
We’ll do this using the Screen object, which is a representation of the user’s screen. This object
has an availWidth property that we’ll retrieve and use to decide which style sheet to load.

Here’s the code:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
 <title>CSS Resolution Demo</title>
 <!-- Basic style with all settings -->
 <link rel="StyleSheet" href="basic.css" type="text/css" />
 <!--
 Extra style (applied via JavaScript) to override default settings
 according to the screen resolution
 -->

6803.book Page 13 Friday, June 9, 2006 3:19 PM

14 C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT

 <script type="text/javascript">
 // Define a variable called cssName and a message
 // called resolutionInfo
 var cssName;
 var resolutionInfo;
 // If the width of the screen is less than 650 pixels
 if(screen.availWidth < 650) {
 // define the style Variable as the low-resolution style
 cssName = 'lowres.css';
 resolutionInfo = 'low resolution';
 // Or if the width of the screen is less than 1000 pixels
 } else {
 if(screen.availWidth > 1000) {
 // define the style Variable as the high-resolution style
 cssName = 'highres.css';
 resolutionInfo = 'high resolution';
 // Otherwise
 } else {
 // define the style Variable as the mid-resolution style
 cssName = 'lowres.css';
 resolutionInfo = 'medium resolution';
 }
 }
 document.write('<link rel="StyleSheet" href="' +
 cssName + '" type="text/css" />');
 </script>
 </head>
 <body>
 <script type="text/javascript">
 document.write('<p>Applied Style:' +
 resolutionInfo + '</p>');
 </script>
 </body>
</html>

Although we’ll be looking at the details of if statements and loops in the next chapter, you
can probably see how this is working already. The if statement on the first line asks whether
the screen.availWidth is less than 650:

if (screen.availWidth < 650)

If the user’s screen is 640× 480, then the width is less than 650, so the code within the curly
braces is executed and the low-resolution style and message get defined.

6803.book Page 14 Friday, June 9, 2006 3:19 PM

C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT 15

if (screen.availWidth < 650) {
// define the style Variable as the low-resolution style
 cssName = 'lowres.css';
 resolutionInfo = 'low resolution';
}

The code carries on checking the screen size using the else statement. The final else only
occurs if neither of the other evaluations have resulted in code being executed, so we assume
that the screen is 800× 600, and define the medium style and message accordingly:

else {
// define the style Variable as the mid-resolution style
 cssName = 'lowres.css';
 resolutionInfo = 'medium resolution';
}

It’s also worth noting that we’re measuring the screen size here, and the user may have a
800× 600 screen, but that doesn’t mean their browser window is maximized. We may be apply-
ing a style that may not be appropriate.

We’re using another object, the document object, to write to the page (HTML document).
The document object’s write() method allows us to insert HTML into the page. Note that
document.write() doesn’t actually change the source HTML page, just the page the user sees
on his computer.

■Note In fact, you’ll find document.write() very useful as you work through the first few chapters of the
book. It’s good for small examples that show how a script is working, for communicating with the user, and
even for debugging an area of a program that you’re not sure is doing what you think it should be doing. It
also works on all browsers that support JavaScript. More modern browsers have better tools and methods for
debugging, but more on that in Chapter 3.

We use document.write() to write out the appropriate link element with our defined style
in the head:

document.write('<link rel="StyleSheet" href="' +
cssName + '" type="text/css" />');

And in the document’s body, we write out the message explaining which resolution style was
applied:

<script type="text/javascript">
 document.write('<p>Applied Style: '+ resolutionInfo + '</p>');
</script>

Later on, we’ll be working with more complex examples that use JavaScript to test capabil-
ities of the user’s agent and interface. For now though, I hope this simple example gives you an
inkling of the kind of flexibility you can add to your web pages using JavaScript.

6803.book Page 15 Friday, June 9, 2006 3:19 PM

16 C H A P T E R 1 ■ GETTING STARTED WITH JAVASCRIPT

Summary
In this chapter, we’ve taken a look at what JavaScript is, how it works, and what its advantages
and disadvantages are. I noted that the biggest disadvantage is that we cannot rely on it as a
given. However, I also mentioned that using JavaScript can make web sites a nicer and slicker
experience.

You’ve run some JavaScript code, seen how to add comments to the code, and how to sep-
arate JavaScript statements using semicolons. You also saw that you can tell JavaScript to treat
a group of lines of code as a single block using curly braces, following an if statement, for
example. You learned that JavaScript execution generally runs from top to bottom, and from
the first script block to the last, with the exception of functions that only execute when you
tell them to.

We also looked at objects, which are central to writing JavaScript. Not only is JavaScript
itself very much dependent on objects, but the browser also uses objects and methods to
make itself and the document available for scripting. Finally, we looked at a simple example
that reads out the user’s screen resolution and applies a suitable style sheet.

In the next chapter, I’ll cover the language fundamentals of JavaScript. You’ll see how
JavaScript stores and manipulates data, and uses it in calculations. We’ll also look at creating
“intelligent” JavaScript programs using decision-making statements that allow us to evaluate
data, do calculations with it, and decide on an appropriate course of action. With that chapter
under your belt, you’ll have most of the fundamental knowledge needed to go on to more excit-
ing and useful web programming.

6803.book Page 16 Friday, June 9, 2006 3:19 PM

17

■ ■ ■

C H A P T E R 2

Data and Decisions

Data and decision making are fundamental to every “intelligent” program. We’ll begin this
chapter by looking at how JavaScript understands, or represents, data. This is important
because JavaScript works with a number of data types and manipulates data according to its
data type. You can generate unexpected results by mismatching data of different types. We’ll
look at some of the more common data type problems, and you’ll see how to convert one type
of data to another.

We’ll also be working with conditional statements and loops: two of the most valuable
tools for decision making. In order to make decisions in a computer language, we need to let
the program know what should happen in response to certain conditions, which is where con-
ditional statements come in. Loops, on the other hand, simply allow you to repeat an action
until a specified circumstance is met. For example, you might want to loop through each input
box in a form and check the information it contains is valid.

I’ll be covering a lot of different facets of JavaScript in this chapter:

• Classifying and manipulating information in JavaScript: data types and data operators

• Variables

• Converting data types

• Introducing data objects: String, Date, and Math objects

• Arrays: storing ordered sets of data like the items in a shopping basket

• Decision making with conditional statements, loops, and data evaluation

■Note The examples in this chapter are kept as simple as possible and therefore use document.write()
as a feedback mechanism for you to see the results. You’ll learn in later chapters about other methods for doing
this that are more modern and versatile.

6803.book Page 17 Wednesday, June 14, 2006 12:33 PM

18 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

Data, Data Types, and Data Operators
Data is used to store information, and, in order to do that more effectively, JavaScript needs to
have each piece of data assigned a type. This type stipulates what can or cannot be done with
the data. For example, one of the JavaScript data types is number, which allows you to perform
certain calculations on the data that it holds.

The three most basic data types that store data in JavaScript are

• String: A series of characters, for example, “some characters”

• Number: A number, including floating point numbers

• Boolean: Can contain a true or false value

These are sometimes referred to as primitive data types in that they store only single val-
ues. There are two slightly different primitive data types as well. These don’t store information,
but instead warn us about a particular situation:

• Null: Indicates that there is no data.

• Undefined: Indicates that something has not been defined and given a value. This is
important when you’re working with variables.

We’ll be working extensively with these data types throughout the chapter.

The String Data Type
The JavaScript interpreter expects string data to be enclosed within single or double quotation
marks (known as delimiters). This script, for example, will write some characters onto the page:

<html>
 <body>
 <script type="text/javascript">
 document.write("some characters");
 </script>
 </body>
</html>

The quotation marks won’t be written out to the page because they are not part of the
string; they simply tell JavaScript where the string starts and ends. We could just as easily have
used single quotation marks:

<html>
 <body>
 <script type="text/javascript">
 document.write('some characters');
 </script>
 </body>
</html>

6803.book Page 18 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 19

Both methods are fine, just as long as you close the string the same way you opened it and
don’t try to delimit it like this:

document.write('some characters");
document.write("some characters');

Of course, you might want to use a single or double quotation mark inside the string itself,
in which case you need to use a distinct delimiter. If you used double quotation marks, the
instructions will be interpreted as you intended:

document.write("Paul's characters ");

But if you used single quotations marks, they won’t be:

document.write('Paul's characters');

This will give you a syntax error because the JavaScript interpreter thinks the string ends after
the l in Paul and doesn’t understand what is happening afterwards.

■Note JavaScript syntax, like English syntax, is a set of rules that makes the language “intelligible.” Just
as a syntax error in English can render a sentence meaningless, a syntax error in JavaScript can render the
instruction meaningless.

You can avoid creating JavaScript syntax errors like this one by using single quotation
marks to delimit any string containing double quotes and vice versa:

document.write("Paul's numbers are 123");
document.write('some "characters"');

If, on the other hand, you wanted to use both single and double quotation marks in your
string, you need to use something called an escape sequence. In fact, it’s better coding practice
to use escape sequences instead of the quotation marks we’ve been using so far, because they
make your code easier to read.

Escape Sequences

Escape sequences are also useful for situations where you want to use characters that can’t
be typed using a keyboard (like the symbol for the Japanese yen, ¥, on a Western keyboard).
Table 2-1 lists some of the most commonly used escape sequences.

6803.book Page 19 Wednesday, June 14, 2006 12:33 PM

20 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

Table 2-1. Common Escape Sequences

Let’s amend this string, which causes a syntax error:

document.write('Paul's characters');

so that it uses the escape sequence (\') and is correctly interpreted:

document.write('Paul\'s characters');

The escape sequence tells the JavaScript interpreter that the single quotation mark belongs to
the string itself and isn’t a delimiter.

ASCII is a character encoding method that uses values from 0 to 254. As an alternative, we
could specify characters using the ASCII value in hexadecimal with the \xNN escape sequence.
The letter C is 67 in decimal and 43 in hex, so we could write that to the page using the escape
sequence like this:

document.write("\x43");

The \uDDDD escape sequence works in much the same way but uses the Unicode character
encoding method, which has 65,535 characters. As the first few hundred ASCII and Unicode
character sets are similar, you can write out the letter C using this escape sequence as follows:

document.write('\u0043');

ASCII and Unicode information can get quite detailed, so the best place to look for information
is on the Web. For Unicode, try http://www.unicode.org.

Escape Sequences Character Represented

\b Backspace.

\f Form feed.

\n Newline.

\r Carriage return.

\t Tab.

\' Single quote.

\" Double quote.

\\ Backslash.

\xNN NN is a hexadecimal number that identifies a character in the Latin-1
character set (the Latin-1 character is the norm for English-speaking
countries).

\uDDDD DDDD is a hexadecimal number identifying a Unicode character.

6803.book Page 20 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 21

Operators
JavaScript has a number of operators that you can use to manipulate the data in your pro-
grams; you’ll probably recognize them from math. Table 2-2 presents some of the most
commonly used operators.

Table 2-2. JavaScript Operators

Here they are in use:

<html>
 <body>
 <script type="text/javascript">
 document.write(1 - 1);
 document.write("
");
 document.write(1 + 1);
 document.write("
");
 document.write(2 * 2);
 document.write("
");
 document.write(12 / 2);
 document.write("
");
 document.write(1 + 2 * 3);
 document.write("
");
 document.write(98 % 10);
 </script>
 </body>
</html>

Operator What It Does

+ Adds two numbers together or concatenates two strings.

- Subtracts the second number from the first.

* Multiplies two numbers.

/ Divides the first number by the second.

% Finds the modulus—the reminder of a division. For example, 98 % 10 = 8.

-- Decreases the number by 1: only useful with variables, which we’ll see at work later.

++ Increases the number by 1: only useful with variables, which we’ll see at work later.

6803.book Page 21 Wednesday, June 14, 2006 12:33 PM

22 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

You should get this output:

0
2
4
6
7
8

JavaScript, just like math, gives some operators precedence. Multiplication takes a higher
precedence than addition, so the calculation 1 + 2 * 3 is carried out like this:

2 * 3 = 6

6 + 1 = 7

All operators have an order of precedence. Multiplication, division, and modulus have
equal precedence, so where they all appear in an equation the sum will be calculated from left
to right. Try this calculation:

2 * 10 / 5%3

The result is 1, because the calculation simply reads from left to right:

2 * 10 = 20

20 / 5 = 4

4%3 = 1

Addition and subtraction also have equal precedence.
You can use parentheses to give part of a calculation higher precedence. For example, you

could add 1 to 1 and then multiply by 5 like this:

(1 + 1) * 5

The result will then be 10, but without the parentheses it would have been 6. In fact, it’s a good
idea to use parentheses even when they’re not essential because they help make the order of
the execution clear.

If you use more than one set of parentheses, JavaScript will simply work from left to right
or, if you have inner parentheses, from the inside out:

document.write((1 + 1) * 5 * (2 + 3));

6803.book Page 22 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 23

This is how the calculations for the preceding are performed:

(1 + 1) = 2

(2 + 3) = 5

2 * 5 = 10

10 * 5 = 50

As we’ve seen, JavaScript’s addition operator adds the values. What it actually does with
the two values depends on the data type that you’re using. For example, if you’re working with
two numbers that have been stored as the number data type, the + operator will add them
together. However, if one of the data types you’re working with is a string (as indicated by the
delimiters), the two values will be concatenated. Try this:

<html>
 <body>
 <script type="text/javascript">
 document.write('Java' + 'Script');
 document.write(1 + 1);
 document.write(1 + '1');
 </script>
 </body>
</html>

Being able to use the addition operator with strings can be handy (and is called the concat-
enation operator in this case), but it can also generate unexpected results if one of the values
you’re working with happens to be of a different data type from the one you were expecting.
We’ll be looking at some examples like this, and resolving them, later on.

It’s less of a problem if you’re working with literal values as we have been doing so far.
However, much of the data you’ll be working with in your programs will be entered by the user,
or generated by the script, so you won’t know in advance exactly what values you’re going to
be working with. This is where variables come in. Variables are placeholders for data in your
script, and they’re central to JavaScript.

JavaScript Variables
JavaScript is probably the most forgiving language when it comes to variables. You don’t need
to define what a variable is before you can use it, and you can change the type of a variable any
time in the script. However, to ease maintenance and keep up a stricter coding syntax, it is a
good idea to declare variables explicitly at the beginning of your script or—in the case of local
variables—your function.

6803.book Page 23 Wednesday, June 14, 2006 12:33 PM

24 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

We declare a variable by giving it a unique name and using the var keyword.
Variable names have to start with a letter of the alphabet or with an underscore, while the

rest of the name can be made up only of numbers, letters, the dollar sign ($), and underscore
characters. Do not use any other characters.

■Note Like most things in JavaScript, variable names are case sensitive: thisVariable and ThisVariable
are different variables. Be very careful about naming your variables; you can run into all sorts of trouble if you don’t
name them consistently. To that end, most programmers use camel notation: the name of the variable begins
with a lowercase letter while subsequent words are capitalized and run in without spaces. Thus the name
thisVariable.

Always give your variables meaningful names. In the next example we’ll build, we’re
going to write an exchange rate conversion program, so we’ll use variable names like
euroToDollarRate and dollarToPound. There are two advantages to naming variables descrip-
tively: it’s easier to remember what the code is doing if you come back to it at a later date, and
it’s easier for someone new to the code to see what’s going on. Code readability and layout are
very important to the development of web pages. It makes it quicker and easier to spot errors
and debug them, and to amend the code as you want to.

■Note While it is not technically necessary, variable declarations should begin with the keyword var. Not
using it could have implications, which you will see as we progress.

With all that said, let’s start declaring variables. We can declare a variable without initial-
izing it (giving it a value):

var myVariable;

Then it’s ready and waiting for when we have a value. This is useful for variables that will hold
user input.

We can also declare and initialize the variable at the same time:

var myVariable = "A String";
var anotherVariable = 123;

Or we can declare and initialize a variable by assigning it the return value of the prompt()
function or the sum of a calculation:

var eurosToConvert = prompt("How many Euros do you wish to➥

 convert", "");
var dollars = eurosToConvert * euroToDollarRate;

6803.book Page 24 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 25

The prompt() function is a JavaScript function that asks the user to enter a value and then
returns it to the code. Here we’re assigning the value entered to the variable eurosToConvert.

Initializing your variables is a very good idea, especially if you can give them a default
value that’s useful to the application. Even initializing a variable to an empty string can be a
good idea, because you can check back on it without bringing up the error messages that would
have popped up if it didn’t have a value.

Let’s look at how variables can improve both the readability of your code and its function-
ality. Here’s a block of code without any variables:

<html>
 <body>
 <script type="text/javascript">
 document.write(0.872 * prompt("How many Euros do you➥

 wish to convert", ""));
 </script>
 </body>
</html>

It’s not immediately obvious that this code is converting euros to dollars, because there’s
nothing to tell us that 0.872 is the exchange rate. The code works fine though; if you try it out
with the number 10, you should get the following result:

8.72

We are using the prompt() method of the window object to get user feedback in this example
(the window is optional in this instance, and to keep the code shorter you can omit it). This
method has two parameters: one label displayed above an entry field and an initial value of the
field. You’ll learn more about prompt() and how to use it in Chapter 4. Supposing that we
wanted to make the result a little more informative, like this:

10 Euros is 8.72 Dollars

Without variables, the only way to do it would be to ask users to enter the euros they want
to convert twice, and that really wouldn’t be user friendly. Using variables, though, we can
store the data temporarily, and then call it up as many times as we need to:

<html>
 <body>
 <script type="text/javascript">
 // Declare a variable holding the conversion rate
 var euroToDollarRate = 0.872;

6803.book Page 25 Wednesday, June 14, 2006 12:33 PM

26 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

 // Declare a new variable and use it to store the
 // number of euros
 var eurosToConvert = prompt("How many Euros do you wish➥

 to convert", "");
 // Declare a variable to hold the result of the euros
 // multiplied by the conversion
 var dollars = eurosToConvert * euroToDollarRate;
 // Write the result to the page
 document.write(eurosToConvert + " euros is " + dollars +➥

 " dollars");
 </script>
 </body>
</html>

We’ve used three variables: one to store the exchange rate from euros to dollars, another
to store the number of euros that will be converted, and the final one to hold the result of the
conversion into dollars. Then all we need to do is write out the result using both variables. Not
only is this script more functional, it’s also much easier to read.

Converting Different Types of Data
For the most part, the JavaScript interpreter can work out what data types we want to be used.
In the following code, for example, the interpreter understands the numbers 1 and 2 to be of
number data type and treats them accordingly:

<html>
 <body>
 <script type="text/javascript">
 var myCalc = 1 + 2;
 document.write("The calculated number is " + myCalc);
 </script>
 </body>
</html>

This will be written to your page:

The calculated number is 3

6803.book Page 26 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 27

However, if we rewrite the code to allow the user to enter his own number using the
prompt() function, then we’ll get a different calculation altogether:

<html>
 <body>
 <script type="text/javascript">
 var userEnteredNumber = prompt("Please enter a number",➥

 "");
 var myCalc = 1 + userEnteredNumber;
 var myResponse = "The number you entered + 1 = " + myCalc;
 document.write(myResponse);
 </script>
 </body>
</html>

If you enter 2 at the prompt, then you’ll be told that

The number you entered + 1 = 12

Rather than add the two numbers together, the JavaScript interpreter has concatenated
them. This is because the prompt() function actually returns the value entered by the user as a
string data type, even though the string contains number characters. The concatenation hap-
pens in this line:

var myCalc = 1 + userEnteredNumber;

In effect, it’s the same as if we’d written

var myCalc = 1 + "2";

If, however, we use the subtraction operator instead:

var myCalc = 1 - userEnteredNumber;

userEnteredNumber is subtracted from 1. The subtraction operator isn’t applicable to string
data, so JavaScript works out that we wanted the data to be treated as a number, converts the
string to a number, and does the calculation. The same applies to the * and / operators. The
typeof() operator returns the type of data that has been passed to it, so we can use that to see
which data types the JavaScript interpreter is working with:

<html>
 <body>
 <script type="text/javascript">
 var userEnteredNumber = prompt("Please enter a number",➥

 "");

6803.book Page 27 Wednesday, June 14, 2006 12:33 PM

28 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

 document.write(typeof(userEnteredNumber));
 </script>
 </body>
</html>

This will write string into the page. The way to ensure that the interpreter is using the
desired number data type is to explicitly declare that the data is a number. There are three
functions you can use to do this:

• Number(): Tries to convert the value of the variable inside the parentheses into a number.

• parseFloat(): Tries to convert the value to a floating point. It parses the string character
by character from left to right, until it encounters a character that can’t be used in a
number. It then stops at that point and evaluates this string as a number. If the first char-
acter can’t be used in a number, the result is NaN (which stands for Not a Number).

• parseInt(): Converts the value to an integer by removing any fractional part without
rounding the number up or down. Anything nonnumerical passed to the function will
be discarded. If the first character is not +, -, or a digit, the result is NaN.

Let’s see how these functions work in practice:

<html>
 <body>
 <script type="text/javascript">
 var userEnteredNumber = prompt("Please enter a number",➥

 "");
 document.write(typeof(userEnteredNumber));
 document.write("
");
 document.write(parseFloat(userEnteredNumber));
 document.write("
");
 document.write(parseInt(userEnteredNumber));
 userEnteredNumber = Number(userEnteredNumber)
 document.write("
");
 document.write(userEnteredNumber);
 document.write("
");
 document.write(typeof(userEnteredNumber));
 </script>
 </body>
</html>

Try entering the value 23.50. You should get this output:

string
23.5
23
23.5
number

6803.book Page 28 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 29

The data entered is read as a string in the first line. Then parseFloat() converts 23.50 from
a string to a floating point number, and in the next line parseInt() strips out the fractional part
(without rounding up or down). The variable is then converted to a number using the Number()
function, stored in the userEnteredNumber variable itself (overwriting the string held there), and
on the final line we see that userEnteredNumber’s data type is indeed number.

Try entering 23.50abc at the user prompt:

string
23.5
23
NaN
number

The results are similar, but this time Number() has returned NaN. The parseFloat() and
parseInt() functions still return a number because they work from left to right converting as
much of the string to a number as they can, and then stop when they hit a nonnumeric value.
The Number() function will reject any string that contains nonnumerical characters (digits, a
valid decimal place, and + and - signs are allowed but nothing else).

If you try entering abc, you’ll just get

string
NaN
NaN
NaN
number

None of the functions can find a valid number, and so they all return NaN, which we can
see is a number data type, but not a valid number. This is a good way of checking user input for
validity, and we’ll be using it to do exactly that later on.

So let’s get back to the problem we started with: using prompt() to retrieve a number. All
we need to do is tell the interpreter the data entered by the user should be converted to a num-
ber data type, using one of the functions discussed with the prompt() function:

<html>
 <body>
 <script type="text/javascript">
 var userEnteredNumber = Number(prompt("Please enter➥

 a number", ""));
 var myCalc = 1 + userEnteredNumber;
 var myResponse = "The number you entered + 1 = " +➥

 myCalc;
 document.write(myResponse);
 </script>
 </body>
</html>

6803.book Page 29 Wednesday, June 14, 2006 12:33 PM

30 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

This will not throw any error, but it does not help the visitor much, as the meaning of NaN
is not common knowledge. Later on we will deal with conditions, and you’ll see how you could
prevent an output that does not make much sense to the non-JavaScript-savvy user.

And that’s all you need to know about primitive data types and variables for now. Primitive
data types, as you have seen, simply hold a value. However, JavaScript can also deal with com-
plex data, and it does this using composite data types.

The Composite Data Types: Array and Object
Composite data types are different from simple data types, as they can hold more than one
value. There are two composite data types:

• Object: Contains a reference to any object, including the objects that the browser makes
available

• Array: Contains one or more of any other data types

We’ll look at the object data type first. As you might recall from the discussion in Chapter 1,
objects model real-world entities. These objects can hold data and provide us with properties
and methods.

Objects JavaScript Supplies You with: String, Date, and Math
These three objects do three different things:

• String object: Stores a string, and provides properties and methods for working
with strings

• Date object: Stores a date, and provides methods for working with it

• Math object: Doesn’t store data, but provides properties and methods for manipulating
mathematical data

Let’s start with the String object.

The String Object

Earlier we created string primitives by giving them some characters to hold, like this:

var myPrimitiveString = "ABC123";

A String object does things slightly differently, not only allowing us to store characters,
but also providing a way to manipulate and change those characters. You can create String
objects explicitly or implicitly.

6803.book Page 30 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 31

Creating a String Object

Let’s work with the implicit method first: we’ll begin declaring a new variable and assign it a
new string primitive to initialize it. Try that now using typeof()to make sure that the data in the
variable myStringPrimitive is a string primitive:

<html>
 <body>
 <script type="text/javascript">
 var myStringPrimitive= "abc";
 document.write(typeof(myStringPrimitive));
 </script>
 </body>
</html>

We can still use the String object’s methods on it though. JavaScript will simply convert
the string primitive to a temporary String object, use the method on it, and then change the
data type back to string. We can try that out using the length property of the String object:

<html>
 <body>
 <script type="text/javascript">
 var myStringPrimitive= "abc";
 document.write(typeof(myStringPrimitive));
 document.write("
");
 document.write(myStringPrimitive.length);
 document.write("
");
 document.write(typeof(myStringPrimitive));
 </script>
 </body>
</html>

This is what you should see in the browser window:

string
3
string

6803.book Page 31 Wednesday, June 14, 2006 12:33 PM

32 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

So myStringPrimitive is still holding a string primitive after the temporary conversion.
We can also create String objects explicitly, using the new keyword together with the String()
constructor:

<html>
 <body>
 <script type="text/javascript">
 var myStringObject = new String("abc");
 document.write(typeof(myStringObject));
 document.write("
");
 document.write(myStringObject.length);
 document.write("
");
 document.write(typeof(myStringObject));
 </script>
 </body>
</html>

Loading this page displays the following:

object
3
object

The only difference between this script and the previous one is in the first line where we
create the new object and supply some characters for the String object to store:

var myStringObject = new String("abc");

The result of checking the length property is the same whether we create the String
object implicitly or explicitly. The only real difference between creating String objects
explicitly or implicitly is that creating them explicitly is marginally more efficient if you’re
going to be using the same String object again and again. Explicitly creating String objects
also helps prevent the JavaScript interpreter getting confused between numbers and strings,
as it can do.

Using the String Object’s Methods

The String object has a lot of methods, so we’ll limit our discussion to two of them here, the
indexOf() and substring() methods.

JavaScript strings, as you’ve seen, are made up of characters. Each of these characters is
given an index. The index is zero-based, so the first character’s position has the index 0, the
second 1, and so on. The method indexOf() finds and returns the position in the index at which
a substring begins (and the lastIndexOf() method returns the position at which the substring
ends). For example, if we want our user to enter an e-mail address, we could check that they’d
included the @ symbol in their entry. (While this wouldn’t ensure that the address is valid, it
would at least go some way in that direction. We’ll be working with much more complex data
checking later on in the book.)

6803.book Page 32 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 33

Let’s do that next, using the prompt() method to obtain the user’s e-mail address and then
check the input for the @ symbol, returning the index of the symbol using indexOf():

<html>
 <body>
 <script type="text/javascript">
 var userEmail= prompt("Please enter your email➥

 address ", "");
 document.write(userEmail.indexOf("@"));
 </script>
 </body>
</html>

If the @ is not found, -1 is written to the page. As long as the character is there in the
string somewhere, its position in the index, in other words something greater than –1, will be
returned.

The substring() method carves one string from another string, taking the indexes of the
start and end position of the substring as parameters. We can return everything from the first
index to the end of the string by leaving off the second parameter.

So to extract all the characters from the third character (at index 2) to the sixth character
(index 5), we’d write

<html>
 <body>
 <script type="text/javascript">
 var myOldString = "Hello World";
 var myNewString = myOldString.substring(2, 5);
 document.write(myNewString);
 </script>
 </body>
</html>

You should see llo written out to the browser. Note that the substring() method copies
the substring that it returns, and it doesn’t alter the original string.

The substring() method really comes into its own when you’re working with unknown
values. Here’s another example that uses both the indexOf() and substring() methods:

<html>
 <body>
 <script type="text/javascript">
 var characterName = "my name is Simpson, Homer";
 var firstNameIndex = characterName.indexOf("Simpson,➥

 ") + 9;
 var firstName = characterName.substring(firstNameIndex);
 document.write(firstName);
 </script>
 </body>
</html>

6803.book Page 33 Wednesday, June 14, 2006 12:33 PM

34 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

We’re extracting Homer from the string in the variable characterName, using indexOf()
to find the start of the last name, and adding 9 to it to get the index of the start of the first name
(as “Simpson, ” is 9 characters long), and storing it in firstNameIndex. This is used by the
substring() method to extract everything from the start of the first name—we haven’t speci-
fied the final index, so the rest of the characters in the string will be returned.

Now let’s look at the Date object. This allows us to store dates and provides some useful
date/time-related functionality.

The Date Object

JavaScript doesn’t have a primitive date data type, so we can only create Date objects explicitly.
We create new Date objects the same way as we create String objects, using the new keyword
together with the Date() constructor. This line creates a Date object containing the current date
and time:

var todaysDate = new Date();

To create a Date object that stores a specific date or time, we simply put the date, or date
and time, inside the parentheses:

var newMillennium = new Date("1 Jan 2000 10:24:00");

Different countries describe dates in a different order. For example, in the US dates
are specified in MM/DD/YY, while in Europe they are DD/MM/YY, and in China they are
YY/MM/DD. If you specify the month using the abbreviated name, then you can use any order:

var someDate = new Date("10 Jan 2002");
var someDate = new Date("Jan 10 2002");
var someDate = new Date("2002 10 Jan");

In fact, the Date object can take a number of parameters:

var someDate = new Date(aYear, aMonth, aDate,➥

anHour, aMinute, aSecond, aMillisecond)

To use these parameters, you first need to specify year and month, and then use the
parameters you want—although you do have to run through them in order and can’t select
among them. For example, you can specify year, month, date, and hour:

var someDate = new Date(2003, 9, 22, 17);

You can’t specify year, month, and then hours though:

var someDate = new Date(2003, 9, , 17);

■Note Although we usually think of month 9 as September, JavaScript starts counting months from 0
(January), and so September is represented as month 8.

6803.book Page 34 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 35

Using the Date Object

The Date object has a lot of methods that you can use to get or set a date or time. You can use
local time (the time on your computer in your time zone) or UTC (Coordinated Universal Time,
once called Greenwich Mean Time). While this can be very useful, you need to be aware when
you’re working with Date that many people don’t set their time zone correctly.

Let’s look at an example that demonstrates some of the methods:

<html>
 <body>
 <script type="text/javascript">
 // Create a new date object
 var someDate = new Date("31 Jan 2003 11:59");
 // Retrieve the first four values using the
 // appropriate get methods
 document.write("Minutes = " + someDate.getMinutes() + "
");
 document.write("Year = " + someDate.getFullYear() + "
");
 document.write("Month = " + someDate.getMonth() + "
");
 document.write("Date = " + someDate.getDate() + "
");
 // Set the minutes to 34
 someDate.setMinutes(34);
 document.write("Minutes = " + someDate.getMinutes() + "
");
 // Reset the date
 someDate.setDate(32);
 document.write("Date = " + someDate.getDate() + "
");
 document.write("Month = " + someDate.getMonth() + "
");
 </script>
 </body>
</html>

Here’s what you should get:

Minutes = 59
Year = 2003
Month = 0
Date = 31
Minutes = 34
Date = 1
Month = 1

This line of code might look a bit counterintuitive at first:

someDate.setDate(32);

JavaScript knows that there aren’t 32 days in January, so instead of trying to set the date to the
January 32, the interpreter counts 32 days beginning with January 1, which gives us February 1.

6803.book Page 35 Wednesday, June 14, 2006 12:33 PM

36 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

This can be a handy feature if you need to add days onto a date. Usually we’d have to take
into account the number of days in the different months, and whether it’s a leap year, if we
wanted to add a number of days to a date, but it’s much easier to use JavaScript’s understand-
ing of dates instead:

<html>
 <body>
 <script type="text/javascript">
 // Ask the user to enter a date string
 var originalDate = prompt(Enter a date (Day, Name of➥

 the Month, Year), "31 Dec 2003");
 // Overwrite the originalDate variable with a new Date
 // object
 var originalDate = new Date(originalDate);
 // Ask the user to enter the number of days to be
 // added, and convert to number
 var addDays = Number(prompt("Enter number of days➥

 to be added", "1"))
 // Set a new value for originalDate of originalDate
 // plus the days to be added
 originalDate.setDate(originalDate.getDate() + addDays)
 // Write out the date held by the originalDate
 // object using the toString() method
 document.write(originalDate.toString())
 </script>
 </body>
</html>

If you enter 31 Dec 2003 when prompted, and 1 for the number of days to be added, then
the answer you’ll get is Thu Jan 1 00:00:00 UTC 2004.

■Note Notice that we’re using the Number() method of the Math object on the third line of the script. The
program will still run if we don’t, but the result won’t be the same. If you don’t want to use the method, there
is a trick to convert different data types: if you subtract 0 from a string that could be converted to a number
using parseInt(), parseFloat(), or Number(), then you convert it to a number, and if you add an empty
string, '', to a number, you convert it to a string, something you normally do with toString().

On the fourth line, we set the date to the current day of the month, the value returned by
originalDate.getDate() plus the number of days to be added; then comes the calculation, and
the final line outputs the date contained in the Date object as a string using the toString()

6803.book Page 36 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 37

method. If you’re using IE5.5+ or Gecko-based browsers (Mozilla, Netscape >6), toDateString()
produces a nicely formatted string using the date alone. You can use the same methods for get
and set if you’re working with UTC time—all you need to do is add UTC to the method name.
So getHours() becomes getUTCHours(), setMonth() becomes setUTCMonth(), and so on. You
can also use the getTimezoneOffset() method to return the difference, in hours, between the
computer’s local time and UTC time. (You’ll have to rely on users having set their time zones cor-
rectly, and be aware of the differences in daylight saving time between different countries.)

■Note For crucial date manipulation, JavaScript might not be the correct technology, as you cannot trust
the client computer to be properly set up. You could, however, populate the initial date of your JavaScript via
a server-side language and go from there.

The Math Object

The Math object provides us with lots of mathematical functionality, like finding the square of a
number or producing a random number. The Math object is different from the Date and String
objects in two ways:

• You can’t create a Math object explicitly, you just go ahead and use it.

• The Math object doesn’t store data, unlike the String and Date object.

You call the methods of the Math object using the format:

Math.methodOfMathObject(aNumber):
alert("The value of pi is " + Math.PI);

We’ll look at a few of the commonly used methods next (you can find a complete reference
by running a search at http://www.mozilla.org/docs/web-developer/). We’ll look at the meth-
ods for rounding numbers and generating random numbers here.

Rounding Numbers

You saw earlier that the parseInt() function will make a fractional number whole by removing
everything after the decimal point (so 24.999 becomes 24). Pretty often you’ll want more math-
ematically accurate calculations, if you’re working with financial calculations, for example,
and for these you can use one of the Math object’s three rounding functions: round(), ceil(),
and floor(). This is how they work:

• round(): Rounds a number up when the decimal is . 5 or greater

• ceil() (as in ceiling): Always rounds up, so 23.75 becomes 24, as does 23.25

• floor(): Always rounds down, so 23.75 becomes 23, as does 23.25

6803.book Page 37 Wednesday, June 14, 2006 12:33 PM

38 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

Here they are at work in a simple example:

<html>
 <body>
 <script type="text/javascript">
 var numberToRound = prompt("Please enter a number", "")
 document.write("round() = " + Math.round(numberToRound));
 document.write("
");
 document.write("floor() = " + Math.floor(numberToRound));
 document.write("
");
 document.write("ceil() = " + Math.ceil(numberToRound));
 </script>
 </body>
</html>

Even though we used prompt() to obtain a value from the user, which as we saw earlier
returns a string, the number returned is still treated as a number. This is because the rounding
methods do the conversion for us just so long as the string contains something that can be con-
verted to a number.

If we enter 23.75, we get the following result:

round() = 24
floor() = 23
ceil() = 24

If we enter -23.75, we get

round() = -24
floor() = -24
ceil() = -23

Generating a Random Number

You can generate a fractional random number that is 0 or greater but smaller than 1 using the
Math object’s random() method. Usually you’ll need to multiply the number, and then use one
of the rounding methods in order to make it useful.

For example, in order to mimic a die throw, we’d need to generate a random number
between 1 and 6. We could create this by multiplying the random fraction by 5, to give a frac-
tional number between 0 and 5, and then round the number up or down to a whole number
using the round() method. (We couldn’t just multiply by 6 and then round up every time using
ceil(), because that would give us the occasional 0.) Then we’d have a whole number between

6803.book Page 38 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 39

0 and 5, so by adding 1, we can get a number between 1 and 6. This approach won’t give you a
perfectly balanced die, but it’s good enough for most purposes. Here’s the code:

<html>
 <body>
 <script type="text/javascript">
 var diceThrow = Math.round(Math.random() * 5) + 1;
 document.write("You threw a " + diceThrow);
 </script>
 </body>
</html>

Arrays
JavaScript allows us to store and access related data using an array. An array is a bit like a row
of boxes (elements), each box containing a single item of data. An array can work with any of
the data types that JavaScript supports. So, for example, you could use an array to work with a
list of items that the users will select from, or for a set of graph coordinates, or to reference a
group of images.

Array objects, like String and Date objects, are created using the new keyword together
with the constructor. We can initialize an Array object when we create it:

var preInitArray = new Array("First item", "Second item",➥

 "Third Item");

Or set it to hold a certain number of items:

var preDeterminedSizeArray = new Array(3);

Or just create an empty array:

var anArray = new Array();

You can add new items to an array by assigning values to the elements:

anArray[0] = "anItem"
anArray[1] = "anotherItem"
anArray[2] = "andAnother"

■Tip You do not have to use the array() constructor; instead it is perfectly valid to use a shortcut notation:

var myArray = [1, 2, 3];
var yourArray = ["red", "blue", "green"]

6803.book Page 39 Wednesday, June 14, 2006 12:33 PM

40 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

Once we’ve populated an array, we can access its elements through their indexes or posi-
tions (which, once again, are zero-based) using square brackets:

<html>
 <body>
 <script type="text/javascript">
 var preInitArray = new Array("First Item",➥

 "Second Item", "Third Item");
 document.write(preInitArray[0] + "
");
 document.write(preInitArray[1] + "
");
 document.write(preInitArray[2] + "
");
 </script>
 </body>
</html>

Using index numbers to store items is useful if you want to loop through the array—we’ll
be looking at loops next.

You can use keywords to access the array elements instead of a numerical index, like this:

<html>
 <body>
 <script type="text/javascript">
 // Creating an array object and setting index
 // position 0 to equal the string Fruit
 var anArray = new Array();
 anArray[0] = "Fruit";
 // Setting the index using the keyword
 // 'CostOfApple' as the index.
 anArray["CostOfApple"] = 0.75;
 document.write(anArray[0] + "
");
 document.write(anArray["CostOfApple"]);
 </script>
 </body>
</html>

Keywords are good for situations where you can give the data useful labels, or if you’re
storing entries that are only meaningful in context, like a list of graph coordinates. You can’t,
however, access entries using an index number if they have been set using keywords (as you
can in some other languages, like PHP). We can also use variables for the index. We can rewrite
the previous example using variables (one holding a string and the other a number), instead of
literal values:

<html>
 <body>
 <script type="text/javascript">
 var anArray = new Array();
 var itemIndex = 0;
 var itemKeyword = "CostOfApple";

6803.book Page 40 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 41

 anArray[itemIndex] = "Fruit";
 anArray[itemKeyword] = 0.75;
 document.write(anArray[itemIndex] + "
");
 document.write(anArray[itemKeyword]);
 </script>
 </body>
</html>

Let’s put what we’ve discussed about arrays and the Math object into an example. We’ll
write a script that randomly selects a banner to display at the top of the page.

We’ll use an Array object to hold some image source names, like this:

var bannerImages = new Array();
bannerImages[0] = "Banner1.jpg";
bannerImages[1] = "Banner2.jpg";
bannerImages[2] = "Banner3.jpg";
bannerImages[3] = "Banner4.jpg";
bannerImages[4] = "Banner5.jpg";
bannerImages[5] = "Banner6.jpg";
bannerImages[6] = "Banner7.jpg";

Then we need six images with corresponding names to sit in the same folder as the HTML
page. You can use your own or download mine from http://www.beginningjavascript.com.

Next we’ll initialize a new variable, randomImageIndex, and use it to generate a random
number. We’ll use the same method that we used to generate a random die throw earlier, but
without adding 1 to the result because we need a random number from 0 to 6:

var randomImageIndex = Math.round(Math.random() * 6);

Then we’ll use document.write() to write the randomly selected image into the page.
Here’s the complete script:

<html>
 <body>
 <script type="text/javascript">
 var bannerImages = new Array();
 bannerImages[0] = "Banner1.jpg";
 bannerImages[1] = "Banner2.jpg";
 bannerImages[2] = "Banner3.jpg";
 bannerImages[3] = "Banner4.jpg";
 bannerImages[4] = "Banner5.jpg";
 bannerImages[5] = "Banner6.jpg";
 bannerImages[6] = "Banner7.jpg";
 var randomImageIndex = Math.round(Math.random() * 6);
 document.write("<img alt=\"\" src=\"" + ➥

bannerImages[randomImageIndex] + "\">");
 </script>
 </body>
</html>

6803.book Page 41 Wednesday, June 14, 2006 12:33 PM

42 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

And that’s all there is to it. Having the banner change will make it more noticeable to visi-
tors than if you displayed the same banner every time they came to the page—and, of course,
it gives the impression that the site is being updated frequently.

The Array Object’s Methods and Properties
One of the most commonly used properties of the Array object is the length property, which
returns the index one count higher than the index of the last array item in the array. If, for
example, you’re working with an array with elements with indexes of 0, 1, 2, 3, the length will
be 4—which is useful to know if you want to add another element.

The Array object provides a number of methods for manipulating arrays, including meth-
ods for cutting a number of items from an array, or joining two arrays together. We’ll look at the
methods for concatenating, slicing, and sorting next.

Cutting a Slice of an Array

The slice() method is to an Array object what the substring() method is to a String object.
You simply tell the method which elements you want to be sliced. This would be useful, for
example, if you wanted to slice information being passed using a URL.

The slice() method takes two parameters: the index of the first element of the slice, which
will be included in the slice, and the index of the final element, which won’t be. To access the
second, third, and fourth values from an array holding five values in all, we use the indexes 1
and 4:

<html>
 <body>
 <script type="text/javascript">
 // Create and initialize the array
 var fullArray = new Array("One", "Two", "Three",➥

 "Four", "Five");
 // Slice from element 1 to element 4 and store
 // in new variable sliceOfArray
 var sliceOfArray = fullArray.slice(1, 4);
 // Write out new (zero-based) array of 3 elements
 document.write(sliceOfArray[0] + "
");
 document.write(sliceOfArray[1] + "
");
 document.write(sliceOfArray[2] + "
");
 </script>
 </body>
</html>

The new array stores the numbers in a new zero-based array, so slicing indexes 0, 1, and 2
gives us the following:

Two
Three
Four

6803.book Page 42 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 43

The original array is unaffected, but you could overwrite the Array object in the variable by
setting it to the result of the slice() method if you needed to:

fullArray = fullArray.slice(1, 4);

Joining Two Arrays

The Array object’s concat() method allows us to concatenate arrays. We can add two or more
arrays using this method, each new array starting where the previous one ends. Here we’re
joining three arrays: arrayOne, arrayTwo, and arrayThree:

<html>
 <body>
 <script type="text/javascript">
 var arrayOne = new Array("One", "Two", "Three",➥

 "Four", "Five");
 var arrayTwo = new Array("ABC", "DEF", "GHI");
 var arrayThree = new Array("John", "Paul", "George",➥

 "Ringo");
 var joinedArray = arrayOne.concat(arrayTwo, arrayThree);
 document.write("joinedArray has " + joinedArray.length + ➥

" elements
");
 document.write(joinedArray[0] + "
")
 document.write(joinedArray[11] + "
")
 </script>
 </body>
</html>

The new array, joinedArray, has 12 items. The items in this array are the same as they were
in each of the previous arrays; they’ve simply been concatenated together. The original arrays
remain untouched.

Converting an Array to a String and Back

Having data in an array is dead handy when you want to loop through it or select certain ele-
ments. However, when you need to send the data somewhere else, it might be a good idea to
convert that data to a string. You could do that by looping through the array and adding each
element value to a string. However, there is no need for that, as the Array object has a method
called join() that does that for you. The method takes a string as a parameter. This string will
be added in between each element.

<script type="text/javascript">
 var arrayThree = new Array("John", "Paul", "George",➥

 "Ringo");
 var lineUp=arrayThree.join(', ');
 alert(lineUp);
</script>

6803.book Page 43 Wednesday, June 14, 2006 12:33 PM

44 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

The resulting string, lineUp, has the value "John, Paul, George, Ringo". The opposite of
join() is split(), which is a method that converts a string to an array.

<script type="text/javascript">
 var lineUp="John, Paul, George, Ringo";
 var members=lineUp.split(', ');
 alert(members.length);
</script>

Sorting an Array

The sort() method allows us to sort the items in an array into alphabetical or numerical order:

<html>
 <body>
 <script type="text/javascript">
 var arrayToSort = new Array("Cabbage", "Lemon",➥

 "Apple", "Pear", "Banana");
 var sortedArray = arrayToSort.sort();
 document.write(sortedArray[0] + "
");
 document.write(sortedArray[1] + "
");
 document.write(sortedArray[2] + "
");
 document.write(sortedArray[3] + "
");
 document.write(sortedArray[4] + "
");
 </script>
 </body>
</html>

The items are arranged like this:

Apple
Banana
Cabbage
Lemon
Pear

If, however, you lower the case of one of the letters—the A of Apple, for example—then
you’ll end up with a very different result. The sorting is strictly mathematical—by the number
of the character in the ASCII set, not like a human being would sort the words.

6803.book Page 44 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 45

If you wanted to change the order the sorted elements are displayed, you can use the
reverse() method to display the last in the alphabet as the first element:

<script type="text/javascript">
 var arrayToSort = new Array("Cabbage", "Lemon", ➥

"Apple", "Pear", "Banana");
 var sortedArray = arrayToSort.sort();
 var reverseArray = sortedArray.reverse();
 document.write(reverseArray[0] + "
");
 document.write(reverseArray[1] + "
");
 document.write(reverseArray[2] + "
");
 document.write(reverseArray[3] + "
");
 document.write(reverseArray[4] + "
");
</script>

The resulting list is now in reverse order:

Pear
Lemon
Cabbage
Banana
Apple

Making Decisions in JavaScript
Decision making is what gives programs their apparent intelligence. You can’t write a good
program without it, whether you’re creating a game, checking a password, giving the user a set
of choices based on previous decisions they have made, or something else.

Decisions are based on conditional statements, which are simply statements that evaluate
to true or false. This is where the primitive Boolean data type comes in useful. Loops are the
other essential tool of decision making, enabling you to loop through user input or an array, for
example, and make decisions accordingly.

The Logical and Comparison Operators
There are two main groups of operators we’ll look at:

• Data comparison operators: Compare operands and return Boolean values.

• Logical operators: Test for more than one condition.

We’ll start with the comparison operators.

6803.book Page 45 Wednesday, June 14, 2006 12:33 PM

46 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

Comparing Data

Table 2-3 lists some of the more commonly used comparison operators.

Table 2-3. Comparisons in JavaScript

■Caution Beware the == equality operator: it’s all too easy to create errors in a script by using the assign-
ment operator, =, by mistake.

These operators all work with string type data as well as numerical data, and are case
sensitive:

<html>
 <body>
 <script type="text/javascript">
 document.write("Apple" == "Apple")
 document.write("
");
 document.write("Apple" < "Banana")
 document.write("
");
 document.write("apple" < "Banana")
 </script>
 </body>
</html>

Operator Description Example

== Checks whether the left and right operands are equal 123 == 234 returns false.
123 == 123 returns true.

!= Checks whether the left operand is not equal to the
right side

123 != 123 returns false.
123 != 234 returns true.

> Checks whether the left operand is greater than the
right

123 > 234 returns false.
234 > 123 returns true.

>= Checks whether the left operand is greater than or
equal to the right

123 >= 234 returns false.
123 >= 123 returns true.

< Checks whether the left operand is less than the right 234 < 123 returns false.
123 < 234 returns true.

<= Checks whether the left operand is less than, or equal
to, the right

234 <= 123 returns false.
234 <= 234 returns true.

6803.book Page 46 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 47

This is what you should get back:

true
true
false

When evaluating an expression comparing strings, the JavaScript interpreter compares
the ASCII codes for each character in turn of both strings—the first character of each string,
then the second character, and so on. Uppercase A is represented in ASCII by the number 65,
B by 66, C by 67, and so on. To evaluate the expression "Apple" < "Banana", the JavaScript
interpreter tests the comparison by substituting the ASCII code for the first character in
each string: 65 < 66, so A sorts first, and the comparison is true. When testing the expression
"apple" < "Banana", the JavaScript interpreter does the same thing; however, the lowercase let-
ter a has the ASCII code 97, so the expression "a" < "B" reduces to 97 < 66, which is false. You
can do alphabetical comparisons using <, <=, >, >= operators. If you need to ensure that all the
letters are of the same case, you can use the String object’s toUpperCase() and toLowerCase()
methods. Comparison operators, just like the numerical operators, can be used with variables.
If we wanted to compare apple and Banana alphabetically, we’d do this:

<html>
 <body>
 <script type="text/javascript">
 var string1 = "apple";
 var string2 = "Banana";
 string1 = string1.toLowerCase();
 string2 = string2.toLowerCase();
 document.write(string1 < string2)
 </script>
 </body>
</html>

There is something else you need to be aware of when you’re comparing String objects
using the equality operator, though. Try this:

<html>
 <body>
 <script type="text/javascript">
 var string1 = new String("Apple");
 var string2 = new String("Apple");
 document.write(string1 == string2)
 </script>
 </body>
</html>

6803.book Page 47 Wednesday, June 14, 2006 12:33 PM

48 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

You’ll get false returned. In fact, what we’ve done here is compare two String objects rather
than the characters of two string primitives and, as the returned false indicates, two String
objects can’t be the same object even if they do hold the same characters.

If you do need to compare the strings held by two objects, then you can use the valueOf()
method to perform a comparison of the data values:

<html>
 <body>
 <script type="text/javascript">
 var string1 = new String("Apple");
 var string2 = new String("Apple");
 document.write(string1.valueOf() == string2.valueOf());
 </script>
 </body>
</html>

Logical Operators

Sometimes you’ll need to combine comparisons into one condition group. You might want to
check that the information users have given makes sense, or restrict the selections they can
make according to their earlier answers. You can do this using the logical operators shown in
Table 2-4.

Table 2-4. Logical Operators in JavaScript

Once we’ve evaluated the data, we need to be able to make decisions according to the
outcome. This is where conditional statements and loops come in useful. You’ll find that the
operators that we’ve looked at in this chapter are most often used in the context of a condi-
tional statement or loop.

Symbol Operator Description Example

&& And Both conditions must be true. 123 == 234 && 123 < 20 (false)
123 == 234 && 123 == 123 (false)
123 == 123 && 234 < 900 (true)

|| Or Either or both of the conditions
must be true.

123 == 234 || 123 < 20 (false)
123 == 234 || 123 == 123 (true)
123 == 123 || 234 < 900 (true)

! Not Reverses the logic. !(123 == 234) (true)
!(123 == 123) (false)

6803.book Page 48 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 49

Conditional Statements
The if...else structure is used to test conditions and looks like this:

if (condition) {
// Execute code in here if condition is true
} else {
// Execute code in here if condition is false
}
// After if/else code execution resumes here

If the condition being tested is true, the code within the curly braces following the if will
be executed, but won’t if it isn’t. You can also create a block of code to execute should the con-
dition set out in the if not be met, by using a final else statement.

Let’s improve on the currency exchange converter we built earlier on in the chapter and
create a loop to deal with nonnumeric input from the user:

<html>
 <body>
 <script type="text/javascript">
 var euroToDollarRate = 0.872;
 // Try to convert the input into a number
 var eurosToConvert = Number(prompt("How many Euros➥

 do you wish to convert", ""));
 // If the user hasn't entered a number, then NaN
 // will be returned
 if (isNaN(eurosToConvert)) {
 // Ask the user to enter a value in numerals
 document.write("Please enter the number in numerals");
 // If NaN is not returned, then we can use the input
 } else {
 // and do the conversion as before
 var dollars = eurosToConvert * euroToDollarRate;
 document.write(eurosToConvert + " euros is " + ➥

dollars + " dollars");
 }
 </script>
 </body>
</html>

The if statement is using the isNaN()function, which will return true if the value in vari-
able eurosToConvert is not a number.

6803.book Page 49 Wednesday, June 14, 2006 12:33 PM

50 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

■Note Remember to keep error messages as polite and helpful as possible. Good error messages that
inform users clearly what is expected of them make using applications much more painless.

We can create more complex conditions by using logical operators and nesting if
statements:

<html>
 <body>
 <script type="text/javascript">
 // Ask the user for a number and try to convert the
 // input into a number
 var userNumber = Number(prompt("Enter a number between➥

 1 and 10", ""));
 // If the value of userNumber is NaN, ask the user
 // to try again
 if (isNaN(userNumber)) {
 document.write("Please ensure a valid number is ➥

entered");
 // If the value is a number but over 10, ask the
 //user to try again
 } else {
 if (userNumber > 10 || userNumber < 1) {
 document.write("The number you entered is not➥

 between 1 and 10");
 // Otherwise the number is between 1 and 10 so
 // write to the page
 } else {
 document.write("The number you entered was " + userNumber);
 }
 }
 </script>
 </body>
</html>

We know that the number is fine just so long as it is a numeric value and is under 10.

■Note Observe the layout of the code. We have indented the if and else statements and blocks so that
it’s easy to read and to see where code blocks start and stop. It’s essential to make your code as legible
as possible.

6803.book Page 50 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 51

Try reading this code without the indenting or spacing:

<html>
<body>
<script type="text/javascript">
// Ask for a number using the prompt() function and try to make it a number
var userNumber = Number(prompt("Enter a number between 1 and 10",""));
// If the value of userNumber is NaN, ask the user to try again
if (isNaN(userNumber)){
document.write("Please ensure a valid number is entered");
}
// If the value is a number but over 10, ask the user to try again
else {
if (userNumber > 10 || userNumber < 1) {
document.write("The number you entered is not between 1 and 10");
}
// Otherwise the number is between 1 and 10, so write to the screen
else{
document.write("The number you entered was " + userNumber);
}
}
</script>
</body>
</html>

It’s not impossible to read, but even in this short script, it’s harder to decipher which code
blocks belong to the if and else statements. In longer pieces of code, inconsistent indenting or
illogical indenting makes code very difficult to read, which in turn leaves you with more bugs
to fix and makes your job unnecessarily harder.

You can also use else if statements, where the else statement starts with another if state-
ment, like this:

<html>
 <body>
 <script type="text/javascript">
 var userNumber = Number(prompt("Enter a number between➥

 1 and 10", ""));
 if (isNaN(userNumber)){
 document.write("Please ensure a valid number is➥

 entered");
 } else if (userNumber > 10 || userNumber < 1) {
 document.write("The number you entered is not➥

 between 1 and 10");
 } else {

6803.book Page 51 Wednesday, June 14, 2006 12:33 PM

52 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

 document.write("The number you entered was " + ➥

userNumber);
 }
 </script>
 </body>
</html>

The code does the same thing as the earlier piece, but uses an else if statement instead of a
nested if, and is two lines shorter.

Breaking Out of a Branch or Loop

One more thing before we move on: you can break a conditional statement or loop using the
break statement. This simply terminates the block of code running and drops the processing
through to the next statement. We’ll be using this in the next example.

You can have as many if, else, and else ifs as you like, although they can make your code
terribly complicated if you use too many. If there are a lot of possible conditions to check a
value against in a piece of code, then the switch statement, which we’ll look at next, can be
helpful.

Testing Multiple Values: the switch Statement
The switch statement allows us to “switch” between sections of code based on the value of a
variable or expression. This is the outline of a switch statement:

switch(expression) {
 case someValue:
 // Code to execute if expression == someValue;
 break; // End execution
 case someOtherValue:
 // Code to execute if expression == someOtherValue;
 break; // End execution
 case yesAnotherValue:
 // Code to execute if expression == yetAnotherValue;
 break; // End execution
 default:
 // Code to execute if no values matched
}

JavaScript evaluates switch (expression), and then compares it to each case. As soon as a
match is found, the code starts executing at that point and continues through all the case state-
ments until a break is found. It’s often useful to include a default case that will execute if none
of the case statements match. This is a helpful tool for picking up on errors, where, for example,
we expect a match to occur but a bug prevents that from happening.

6803.book Page 52 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 53

The values of the cases can be of any data type, numbers or strings, for example. We can
have just one or as many cases as we need. Let’s look at a simple example:

<html>
 <body>
 <script type="text/javascript">
 // Store user entered number between 1 and 4 in userNumber
 var userNumber = Number(prompt("Enter a number between 1 and 4", ""));
 switch(userNumber) {
 // If userNumber is 1, write out and carry on
 // executing after case statement
 case 1:
 document.write("Number 1");
 break;
 case 2:
 document.write("Number 2");
 break;
 case 3:
 document.write("Number 3");
 break;
 case 4:
 document.write("Number 4");
 break;
 default:
 document.write("Please enter a numeric value between➥

 1 and 4.");
 break;
 }
 // Code continues executing here
 </script>
 </body>
</html>

Try it out. You should just get the number that you’ve entered written out or the sentence
“Please enter a numeric value between 1 and 4.”

This example also illustrates the importance of the break statement. If we hadn’t included
break after each case, execution would have carried on within the block until the end of the
switch. Try removing the breaks and then enter 2. Everything after the match will execute, giv-
ing you this output:

Number 2Number 3Number 4Please enter a numeric value between 1 and 4

6803.book Page 53 Wednesday, June 14, 2006 12:33 PM

54 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

You can use any valid expression inside the switch statement—a calculation, for example:

switch(userNumber * 100 + someOtherVariable)

You can also have one or more statements in between the case statements.

Repeating Things: Loops
In this section, we look at how we can repeat a block of code for as long as a set condition is
true. For example, we might want to loop through each input element on an HTML form or
through each item in an array.

Repeating a Set Number of Times: the for Loop

The for loop is designed to loop through a code block a number of times and looks like this:

for(initial-condition; loop-condition; alter-condition) {
 //
 // Code to be repeatedly executed
 //
}
// After loop completes, execution of code continues here

Like the conditional statement, the for keyword is followed by parentheses. This time, the
parentheses contain three parts separated by a semicolon.

The first part initializes a variable that will serve as the counter to keep track of the number
of loops made. The second part tests for a condition. The loop will keep running as long as this
condition is true. The last part either increments or decrements the counter, created in the first
part, after each loop (the fact that it is after is an important one in programming as you shall see).

For example, take a look at a loop that keeps running for as long as loopCounter is less
than 10:

for(loopCounter = 1; loopCounter <= 10; loopCounter++)

The loop keeps executing as long as the loop condition evaluates to true—for as long as
loopCounter is less than or equal to 10. Once it hits 11, the looping stops and execution of
the code continues at the next statement after the loop’s closing parenthesis.

Let’s look at an example that uses the for loop to run through an array. We’ll use a for loop
to run through an array called theBeatles using a variable called loopCounter to keep the
loop running while the value of loopCounter is less than the length of the array:

<html>
 <body>
 <script type="text/javascript">
 var theBeatles = new Array("John", "Paul", "George",➥

 "Ringo");

6803.book Page 54 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 55

 for (var loopCounter = 0; loopCounter < ➥

theBeatles.length; loopCounter++) {
 document.write(theBeatles[loopCounter] + "
");
 }
 </script>
 </body>
</html>

This example works because we are using a zero-based array in which the items have been
added to the index in sequence. The loop wouldn’t have run if we’d used keywords to store
items in an array like this:

theBeatles["Drummer"] = "Ringo";

Earlier, when we discussed arrays, I stated that the Array object has a property that knows
the length (how many elements). When looping through arrays, such as the previous example,
we use the name of the array followed by a dot and length as the condition. This prevents the loop
from counting beyond the length of the array, which would cause an “Out of Bounds” error.

JavaScript also supports the for..in loop (which has been around since NN2, although IE
has supported it only since IE5). Instead of using a counter, the for...in loop runs though each
item in the array using a variable to access the array. Let’s create an array this way and see how
it works:

<html>
 <body>
 <script type="text/javascript">
 // Initialize theBeatles array and store in a variable
 var theBeatles = new Array();
 // Set the values using keys rather than numbers
 theBeatles["Drummer"] = "Ringo";
 theBeatles["SingerRhythmGuitar"] = "John";
 theBeatles["SingerBassGuitar"] = "Paul";
 theBeatles["SingerLeadGuitar"] = "George";
 var indexKey;
 // Write out each indexKey and the value for that
 // indexKey from the array
 for (indexKey in theBeatles) {
 document.write("indexKey is " + indexKey + "
");
 document.write("item value is " + theBeatles[indexKey] + "

");
 }
 </script>
 </body>
</html>

6803.book Page 55 Wednesday, June 14, 2006 12:33 PM

56 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

The results of the item key in indexKey at each iteration of the loop is written out alongside
the value extracted from the array using that key in the same order as it occurs in the array:

indexKey is Drummer
item value is Ringo

indexKey is SingerRhythmGuitar
item value is John

indexKey is SingerBassGuitar
item value is Paul

indexKey is SingerLeadGuitar
item value is George

Repeating Actions According to a Decision: the while Loop

The loops we have been working with so far take the instruction to stop looping from inside the
script itself. There are likely to be times when you’ll want the user to determine when the loop
should stop, or for the loop to stop when a certain user-led condition is met. The while and
do...while loops are intended for just this sort of situation.

In its simplest form, a while loop looks like this:

while (some condition true) {
 // Loop code
}

The condition inside the curly braces can be anything you might use in an if statement.
We could use some code like this to allow users to enter numbers and stop the entering process
by typing the number 99.

<html>
 <body>
 <script type="text/javascript">
 var userNumbers = new Array();
 var userInput = 0;
 var arrayIndex = 0;
 var message = '';
 var total = 0;
 // Loop for as long as the user doesn't input 99
 while (userInput != 99) {
 userInput = prompt("Enter a number, or 99 to exit",➥

 "99");
 userNumbers[arrayIndex] = userInput;
 arrayIndex++;
 }

6803.book Page 56 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 57

 message += 'You entered the following:\n';
 for (var i = 0; i < arrayIndex-1; i++) {
 message += userNumbers[i] + '\n';
 total += Number(userNumbers[i]);
 }
 message += 'Total: ' + total + '\n';
 alert(message);
 </script>
 </body>
</html>

Here the while loop’s condition is that userInput is not equal to 99, so the loop will con-
tinue so long as that condition is true. When the user enters 99 and the condition is tested, it
will evaluate to false and the loop will end. Note the loop doesn’t end as soon as the user enters
99, but only when the condition is tested again at the start of another iteration of the loop.

There is one small but significant difference between the while loop and the do...while:
the while loop tests the condition before the code is executed, and only executes the code block
if the condition is true, while the do...while loop executes the code block before testing the
condition, only doing another iteration if the condition is true. In short, the do...while loop is
useful when you know you want the loop code to execute at least once before the condition is
tested. We could write our previous example with a do...while loop like this:

<html>
 <body>
 <script type="text/javascript">
 var userNumbers = new Array();
 var message = '';
 var total = 0;
 // Declare the userInput but don't initialize it
 var userInput;
 var arrayIndex = 0;
 do {
 userInput = prompt("Enter a number, or 99 to exit",➥

 "99");
 userNumbers[arrayIndex] = userInput;
 arrayIndex++;
 } while (userInput != 99)
 message+='You entered the following:\n';
 for (var i = 0; i < arrayIndex-1; i++) {
 message += userNumbers[i] + '\n';
 total += Number(userNumbers[i]);
 }
 message += 'Total: ' + total + '\n';
 alert(message);
 </script>
 </body>
</html>

6803.book Page 57 Wednesday, June 14, 2006 12:33 PM

58 C H A P T E R 2 ■ D A T A A N D D E C I S I O N S

We don’t need to initialize userInput because the code inside the loop sets a value for it
before testing it for the first time.

Continuing the Loop

As you’ve already seen, the break statement is great for breaking out of any kind of loop once a
certain event has occurred. The continue keyword works like break in that it stops the execu-
tion of the loop. However, instead of dropping out of the loop, continue causes execution to
resume with the next iteration.

Let’s first alter the previous example so that if the user enters something other than a num-
ber, the value is not recorded and the loop finishes, using break:

<html>
 <body>
 <script type="text/javascript">
 var userNumbers = new Array();
 var userInput;
 var arrayIndex = 0;
 do {
 userInput = Number(prompt("Enter a number, or 99➥

 to exit", "99"));
 // Check that user input is a valid number,
 // and if not, break with error msg
 if (isNaN(userInput)) {
 document.write("Invalid data entered: please➥

 enter a number between 0 and 99 in numerals");
 break;
 }
 // If break has been activated, code will continue from here
 userNumbers[arrayIndex] = userInput;
 arrayIndex++;
 } while (userInput != 99)
 // Next statement after loop
 </script>
 </body>
</html>

Now let’s change it again, so that we don’t break out of the loop but instead just ignore the
user’s input and keep looping, using the continue statement:

<html>
 <body>
 <script type="text/javascript">
 var userNumbers = new Array();
 var userInput;
 var arrayIndex = 0;
 do {
 userInput = prompt("Enter a number, or 99 to exit",➥

 "99");

6803.book Page 58 Wednesday, June 14, 2006 12:33 PM

C H A P T E R 2 ■ D A T A A N D D E C I S I O N S 59

 if (isNaN(userInput)) {
 document.write("Invalid data entered: please ➥

enter a number between 0 and 99 in numerals ");
 continue;
 }
 userNumbers[arrayIndex] = userInput;
 arrayIndex++;
 } while (userInput != 99)
 // Next statement after loop
 </script>
 </body>
</html>

The break statement has been replaced with continue, so no more code will be executed in
the loop, and the condition inside the while statement will be evaluated again. If the condition
is true, another iteration of the loop will occur; otherwise the loop ends.

Use the following rules of thumb in deciding which looping structure to use:

• Use a for loop if you want to repeat an action a set number of times.

• Use a while loop when you want an action to be repeated until a condition is met.

• Use a do...while loop if you want to guarantee that the action will be performed at
least once.

Summary
We’ve covered a lot of ground in this chapter: in fact, we’ve discussed most of the essentials of
the JavaScript language.

You’ve learned how JavaScript handles data and seen that there are a number of data
types: string, number, Boolean, and object, as well as some special types of data like NaN, null,
and undefined. You saw that JavaScript supplies a number of operators that perform opera-
tions on data, such as numerical calculations or joining strings together.

We then looked at how JavaScript allows us to store values using variables. Variables last
for the lifetime of the page, or the lifetime of the function if they are inside a user-created func-
tion and declared locally via the var keyword. We also looked at how to convert one type of data
to another.

Next we worked with three JavaScript built-in objects: the String, Date, and Math objects.
You saw that these provide useful functionality for manipulating strings, dates, and numbers.
I also showed you the Array object, which allows a number of items of data to be stored in a sin-
gle variable.

We finished the chapter by looking at decision making, which provides the logic or intelli-
gence of a programming language. We used if and switch statements to make decisions, using
conditions to test the validity of data and acting upon the findings. Loops also use conditions
and allow us to repeat a block of code for a certain number of times or while a condition is true.

6803.book Page 59 Wednesday, June 14, 2006 12:33 PM

6803.book Page 60 Wednesday, June 14, 2006 12:33 PM

61

■ ■ ■

C H A P T E R 3

From DHTML to DOM
Scripting

In this chapter, you’ll learn what DHTML was, why it is regarded as a bad way to go nowadays,
and what modern techniques and ideas should be used instead. You’ll learn what functions
are, and how to use them. You’ll also hear about variable and function scope and some state-
of-the-art best practices that’ll teach your scripts how to play extremely well with others.

If you are interested in JavaScript and you have searched the Web for scripts, you surely
have come upon the term DHTML. DHTML was one of the big buzz words of the IT and web
development industry in the late 1990s and beginning of the millennium. You may have seen a
lot of tutorials about achieving a certain visual effect on now outdated browsers rather than
explaining why this effect makes sense and what the script does. And that is exactly what
DHTML was about.

■Note DHTML, or Dynamic HTML, was never a real technology or World Wide Web Consortium (W3C) stan-
dard, merely a term invented by marketing and advertising agencies.

DHTML is JavaScript interacting with Cascading Style Sheets (CSS) and web documents
(written in HTML) to create seemingly dynamic pages. Parts of the page had to fly around and
zoom out and in, every element on the page needed to react when the visitor passed over it
with the mouse cursor, and we invented a new way of web navigation every week.

While all this was great fun and a technological challenge, it did not help visitors much.
The “wow” effect lost its impact rather quickly, especially when their browsers were unable to
support it and they ended up on a page that was a dead end for them.

As DHTML sounded like a great term, it did bring out a kind of elitism: JavaScript develop-
ers who were “in the know” did not bother much with keeping the code maintainable, as
anybody who didn’t understand the art of making things move was not worth changing their
code for in any case. For freelance developers, it also meant a steady income, as every change
had to be done by them.

When the big money stopped coming in, a lot of this code got thrown out on the Web for
other developers to use, either as large JavaScript DHTML libraries or as small scripts on script
collection sites. Nobody bothered to update the code, which means that it is unlikely that these
resources are a viable option to use in a modern professional environment.

6803.book Page 61 Friday, June 9, 2006 3:19 PM

62 C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G

Common DHTML scripts have several issues:

• JavaScript dependence and lack of graceful degradation: Visitors with JavaScript
turned off (either by choice or because of their company security settings) will not get
the functionality, but elements that don’t do anything when they activate them or even
pages that cannot be navigated at all.

• Browser and version dependence: A common way to test whether the script can be exe-
cuted was to read out the browser name in the navigator object. As a lot of these scripts
were created when Netscape 4 and Internet Explorer 5 were state-of-the-art, they fail to
support newer browsers—the reason being browser detection that doesn’t take newer
versions into account and just tests for versions 4 or 5.

• Code forking: As different browsers supported different DOMs, a lot of code needed to
be duplicated and several browser quirks avoided. This also made it difficult to write
modular code.

• High maintenance: As most of the look and feel of the script was kept in the script, any
change meant you needed to know at least basic JavaScript. As JavaScript was developed
for several different browsers, you needed to apply the change in all of the different
scripts targeted to each browser.

• Markup dependence: Instead of generating or accessing HTML via the DOM, a lot of
scripts wrote out content via the document.write directive and added to each document
body instead of keeping everything in a separate—cached—document.

All of these stand in a stark contrast to the requirements we currently have to fulfill:

• Code should be cheap to maintain and possible to reuse in several projects.

• Legal requirements like the Digital Discrimination Act (DDA) in the UK and Section 508
in the US strongly advise against or in some cases even forbid web products to be depen-
dent on scripting.

• More browsers, user agents (UAs) on devices such as mobile phones, or assistive tech-
nology helping disabled users to take part in the Web make it impossible to keep our
scripts dependent on browser identification.

• Newer marketing strategies make it a requirement to change the look and feel of a web
site or a web application quickly and without high cost—possibly even by a content
management system.

There is a clear need to rethink the way we approach JavaScript as a web technology, if we still
want to use and sell it to clients and keep up with the challenge of the changing market.

The first step is to make JavaScript less of a show-stopper by making it a “nice to have”
item rather than a requirement. No more empty pages or links that don’t do anything when
JavaScript is not available. The term unobtrusive JavaScript was christened by Stuart
Langridge at http://www.kryogenix.org, and if you enter it in Google, you’ll end up on an
older self-training course on the subject by me.

Unobtrusive JavaScript refers to a script that does not force itself on users or stand in their
way. It tests whether it can be applied and does so if it is possible. Unobtrusive JavaScript is like

6803.book Page 62 Friday, June 9, 2006 3:19 PM

C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G 63

a stagehand—doing what she is good at backstage for the good of the whole production rather
than being a diva who takes the whole stage for herself and shouts at the orchestra and her col-
leagues every time something goes wrong or is not to her liking.

Later on, the term DOM scripting got introduced, and in the aftermath of the @media
conference in London 2004, the WaSP DOM Scripting Task Force was formed. The task force
consists of many coders, bloggers, and designers who want to see JavaScript used in a more
mature and user-centered manner—you can check out what it has to say at http://
domscripting.webstandards.org.

As JavaScript did not have a fixed place in common web development methodologies—
instead being considered as either “something you can download from the web and change” or
“something that will be generated by the editing tool if it is needed”—the term “behavior layer”
came up in various web publications.

JavaScript As “the Behavior Layer”
Web development can be thought of as being made up of several different “layers,” as shown
in Figure 3-1.

Figure 3-1. The different layers of web development

• The behavior layer: Is executed on the client and defines how different elements behave
when the user interacts with them (JavaScript or ActionScript for Flash sites).

• The presentation layer: Is displayed on the client and is the look of the web page (CSS,
imagery).

• The structure layer: Is converted or displayed by the user agent. This is the markup
defining what a certain text or media is (XHTML).

• The content layer: Is stored on the server and consists of all the text, images, and multi-
media content that are used on the site (XML, database, media assets).

• The business logic layer (or back end): Runs on the server and determines what is done
with incoming data and what gets returned to the user.

6803.book Page 63 Friday, June 9, 2006 3:19 PM

64 C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G

Notice that this simply defines what layers are available, not how they interact. For exam-
ple, something needs to convert content to structure (such as XSLT), and something needs to
connect the upper four layers with the business logic.

If you manage to keep all these layers separate, yet talking to each other, you will have suc-
ceeded in developing an accessible and easy-to-maintain web site. In the real development
and business world, this is hardly the case. However, the more you make this your goal, the
fewer annoying changes you’ll have to face at a later stage. Cascading Style Sheets are powerful
because they allow you to define the look and feel of numerous web documents in a single file
that will be cached by the user agent. JavaScript can act in the same fashion by using the src
attribute of the script tag and a separate .js file.

In earlier chapters of this book, we embedded JavaScript directly in HTML documents
(and you may remember that this is tough to do for XHTML documents). This we will not do
from this point on; instead, we’ll create separate JavaScript files and link to them in the head of
the document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html;➥

 charset=iso-8859-1">
 <title>Demo</title>
 <style type="text/css">@import 'styles.css';</style>
 <script type="text/javascript" src="scripts.js"></script>
 <script type="text/javascript" src="morescripts.js"></script>
 </head>
 <body>
 </body>
</html>

We should also try not to use any script blocks inside the document any longer, mainly
because that would mix the structure and the behavior layers and can cause a user agent to
stop showing the page should a JavaScript error occur. It is also a maintenance nightmare—
adding all JavaScript to separate .js files means we can maintain the scripts for a whole site in
one place rather than searching through all the documents.

■Note While Firefox, Safari, and Opera display .js files as text, Microsoft Internet Explorer tries to execute
them. This means that you cannot double-click or point your browser to a JavaScript file to debug it in MSIE—
something that is pretty annoying when debugging code. This instant code execution is a security problem,
which is why Windows XP2 does flag up any JavaScript content in local files as a security issue as shown
in Figure 3-2. Do not get fooled by this—it is your code, and, unless you are a malicious coder, it is not a
security issue.

6803.book Page 64 Friday, June 9, 2006 3:19 PM

C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G 65

Figure 3-2. Microsoft Internet Explorer on Windows XP2 shows a warning message when you try
to execute JavaScript locally.

This separation of JavaScript into its own file makes it simpler to develop a web site that
still works when the script is not available; and if a change in the site’s behavior is needed, it is
easy to change only the script files.

This is one of the bad habits of DHTML squashed: HTML can exist without JavaScript, and
you do not need to scan a lot of documents to find out where a bug occurred. The next bad
habit of DHTML was browser dependence, which we’ll now replace with object detection.

Object Detection vs. Browser Dependence
One way to determine which browser is in use is by testing the navigator object, which reveals
the name and the version of the browser in its appName and appVersion attributes.

For example, the following script gets the browser name and version and writes it out to
the document:

<script type=" text/javascript">
 document.write("You are running " + navigator.appName);
 document.write(" and its version is " + navigator.appVersion);
</script>

On my computer, inside Macromedia HomeSite’s preview mode, this script reports the
following (as HomeSite uses the MSIE engine for previewing HTML).

You are running Microsoft Internet Explorer
and its version is 4.0 (compatible; MSIE 6.0;
Windows NT 5.1; SV1; .NET CLR 1.1.4322)

If I run the same script in Firefox 1.07 on the same computer, I get

You are running Netscape and its version is 5.0 (Windows; en-GB)

6803.book Page 65 Friday, June 9, 2006 3:19 PM

66 C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G

A lot of older scripts use this information to determine whether a browser is capable of
supporting their functionality.

<script type="text/javascript">
 if(browserName.indexOf('Internet Explorer')!=-1
 && browserVersion.indexOf('6')!=-1)
 {
 document.write('<p>This is MSIE 6!</p>');
 }
 else
 {
 document.write('<p>This isn\'t MSIE 6!</p>');
 }
</script>

This appears rather clever at first glance, but as the output of Firefox shows, it is not a bullet-
proof method of finding out which browser is in use. Some browsers like Opera won’t even
reveal themselves to scripts, but appear as Microsoft Internet Explorer instead.

■Tip Opera is by default set up to tell scripts that it is MSIE. The reason for this is that Opera Software didn’t
want its browser to be blocked by web sites that were developed for MSIE only. Sadly enough, a lot of devel-
opment went that route and Opera Software just didn’t want to lose customers or answer a lot of angry
e-mails why its “bad” browser doesn’t work with web site XYZ. However, it also means that Opera doesn’t
show up in browser statistics of web sites and remains unimportant for those who just see the visitor numbers
and what browser they use (a lot of statistics software uses the navigator object). If you are an Opera user
and you want to turn off this preset, press F12 and choose “Identify as Opera” instead of “Identify as Internet
Explorer.”

Reading out the browser name and version—commonly known as browser sniffing—is
not advisable, not only because of the inconsistencies we just encountered, but also because it
makes your script dependent on a certain browser rather than supporting any user agent that
is actually capable of supporting the script.

The solution to this problem is called object detection, and it basically means that we
determine whether a user agent supports a certain object and make this our key differentiator.
In really old scripts, like the first image rollovers, you might have seen something like this:

<script type="text/ javascript">
 // preloading images
 if(document.images)

6803.book Page 66 Friday, June 9, 2006 3:19 PM

C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G 67

 {
 // Images are supported
 var home=new Image();
 home.src='home.gif';
 var aboutus=new Image();
 aboutus.src='home.gif';
 }
</script>

The if condition checks whether the browser understands the images object, and only
runs the code inside the condition if that is the case. For a long time, scripts like these were the
standard way of dealing with images. In newer browsers, a lot of the JavaScript image effects
can be achieved with CSS, effectively rendering scripts of this kind obsolete. However, Java-
Script can manipulate images in ways CSS cannot, and we will come back to this in Chapter 6.

Every browser offers us the document it displays for manipulation, via something called
the Document Object Model, or DOM for short. Older browsers supported their own DOMs,
but there is a standard one, defined by the W3C, that is supported by most browsers these days.
You might have encountered test scripts like this one in the past:

<script type="text/javascript">
 if(document.all)
 {
 // MSIE
 }
 else if (document.layers)
 {
 // Netscape Communicator
 }
 else if (document.getElementById)
 {
 // Mozilla, Opera 6, Safari
 }
</script>

The document.all DOM was invented by Microsoft and supported by MSIE 4 and 5,
while Netscape 4 had its own DOM that supported document.layers. You can test for the W3C-
recommended DOM via document.getElementById, and unless you have a genuine need to
support MSIE versions previous to 5.5 or Netscape 4, it is the only one you really need to test
for in this day and age.

6803.book Page 67 Friday, June 9, 2006 3:19 PM

68 C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G

One problem is that some in-between versions of Opera support the getElementById
object, but fail to support the entire W3C DOM. To determine whether this is the case, test for
support of the createTextNode as well:

<script type="text/javascript">
 if (document.getElementById && document.createTextNode)
 {
 // Mozilla, Opera 6, Safari
 }
</script>

If you embed this test in your scripts in this condition, you can be quite sure that only user
agents that do support DOM scripting will execute what you’ve written. You can save yourself
one code indentation by simply returning if neither of the two conditions is true.

<script type="text/javascript">
 if (!document.getElementById || !document.createTextNode){return;}
 // Other code
</script>

The same idea applies to any other methods to come in the future—as you are checking for
a standard defined by the W3C, there is a big chance that user agents will support it—a much
bigger chance than any other standard different vendors might come up with. You could also
support different user agents on different levels, but this can lead to a lot of code duplication
and less-optimized scripts.

Rather than catering to specific user agents, you test for the UA’s capabilities before you
apply your functionality—a process that is part of a bigger modern web design idea called pro-
gressive enhancement.

Progressive Enhancement
Progressive enhancement is the practice of providing functionality only to those who can see
and use it by starting with a lowest common denominator and then testing whether successive
improvements are supported. Users who don’t have the capability to support those higher fea-
tures will still be able to use the web site perfectly adequately. A comparable real-life process is
to put on your clothes in the morning:

• You start with a naked body that is hopefully in full working condition—or at least in the
same condition as it was yesterday, so that it is no shock to you (we discount PJs and/or
underwear to keep this example easy).

• You may have a wonderful nude body, but it is insufficient in cold weather and might not
appeal to other people around you—you’ll need something to cover it with.

• If there are clothes available, you can check which fit the weather, your mood, the group
of people you’ll be seeing this day, and whether the different garments are in good order,
clean, and are the right sizes.

• You put them on, and you can face the day. If you want to, you can start accessorizing,
but please make sure to take other people into consideration when doing so (too much
perfume might not be a good idea in a crowded train carriage).

6803.book Page 68 Friday, June 9, 2006 3:19 PM

C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G 69

In web development terms, this means the following:

• We start with a valid, semantically correct (X)HTML document with all the content—
including relevant images with text alternatives as alt attributes—and a meaningful
structure.

• We add a style sheet to improve this structure’s appearance, legibility, and clarity—
possibly we even add some simple rollover effects to liven it up a little.

• We add JavaScript:

• The JavaScript starts when the document is loaded, by using the window object’s
onload event handler.

• The JavaScript tests whether the current user agent supports the W3C DOM.

• It then tests whether all the necessary elements are available and applies the desired
functionality to them.

Before you can apply the idea of progressive enhancement in JavaScript, you’ll need
to learn how to access and interact with HTML and CSS from your scripts. I devote two chap-
ters of this book to that task—Chapters 4 and 5. For the moment, however, it is enough to
realize that the object detection we have practiced earlier helps us implement progressive
enhancement—we make sure that only those browsers understanding the right objects will
try to access them.

JavaScript and Accessibility
Web accessibility is the practice of making web sites usable by everybody, regardless of any dis-
abilities they might have—for example, users with visual impairments may well use special
software called screen readers to read out the web page content to them, and users with motor
disabilities may well use a tool of some kind to manipulate the keyboard for navigating around
the web, because they are unable to use the mouse. People with disabilities form a significant
proportion of web users, so companies that choose not to allow them to use their web sites
could well be missing out on a lot of business, and in some countries, legislation (such as
Section 508 in the US) means that any sites that provide a public service have to be accessible,
by law.

So where does JavaScript come into this? Outdated JavaScript techniques can be very bad
for accessibility, because they can mess up the document flow, so, for example, screen readers
cannot read them back to the user properly (especially when essential content is generated by
JavaScript—there’s a chance that the screen reader won’t see it at all!) and thus force users to
use the mouse to navigate their sites (for example, in the case of complicated DHTML whiz-
bang navigation menus). The whole issue goes a lot deeper than this, but this is just to give you
a feel for the area.

■Tip If you want to read more about web accessibility, pick up a copy of Web Accessibility: Web Standards
and Regulatory Compliance, by Jim Thatcher et al. (friends of ED, 2006).

6803.book Page 69 Friday, June 9, 2006 3:19 PM

70 C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G

JavaScript and accessibility is holy war material. Many a battle between disgruntled devel-
opers and accessibility gurus is fought on mailing lists, forums, and in chats, and the two sides
all have their own—very good—arguments.

The developers who had to suffer bad browsers and illogical assumptions by marketing
managers (“I saw it on my cousin’s web site, surely you can also use it for our multinational
portal”) don’t want to see years of research and trial and error go down the drain and not use
JavaScript any longer.

The accessibility gurus point out that JavaScript can be turned off, that the accessibility
guidelines by the W3C seem not to allow for it at all (a lot of confusion on that in the guide-
lines), and that a lot of scripts just assume that the visitors have and can use a mouse with the
precision of a neurosurgeon.

Both are right, and both can have their cake: there is no need to completely remove Java-
Script from an accessible web site.

What has to go is JavaScript that assumes too much. Accessible JavaScript has to ensure
the following:

• The web document has to have the same content with and without JavaScript—no visi-
tor should be blocked or forced to turn on JavaScript (as it is not always the visitor’s
decision whether he can turn it on).

• If there is content or HTML elements that only make sense when JavaScript is available,
this content and those elements have to be created by JavaScript. Nothing is more frus-
trating than a link that does nothing or text explaining a slick functionality that is not
available to you.

• All JavaScript functionality has to be independent of input device—for example, the user
can be able to use a drag-and-drop interface, but should also be able to activate the ele-
ment via clicking it or pressing a key.

• Elements that are not interactive elements in a page (practically anything but links and
form elements) should not become interactive elements—unless you provide a fallback.
Confusing? Imagine headlines that collapse and expand the piece of text that follows
them. You can easily make them clickable in JavaScript, but that would mean that a vis-
itor dependent on a keyboard will never be able to get to them. If you create a link inside
the headlines while making them clickable, even that visitor will be able to activate the
effect by “tabbing” to that link and hitting Enter.

• Scripts should not redirect the user automatically to other pages or submit forms with-
out any user interaction. This is to avoid premature submission of forms—as some
assistive technology will have problems with onchange event handlers. Furthermore,
viruses and spyware send the user to other pages via JavaScript, and this is therefore
blocked by some software these days.

6803.book Page 70 Friday, June 9, 2006 3:19 PM

C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G 71

That is all there is to make a web site with JavaScript accessible. That and, of course, all the
assets of an accessible HTML document like allowing elements to resize with larger font set-
tings, and providing enough contrast and colors that work for the color-blind as well as for
people with normal vision.

Good Coding Practices
Now that I hopefully have gotten you into the mindset of forward-compatible and accessible
scripting, let’s go through some general best practices of JavaScript.

Naming Conventions
JavaScript is case dependent, which means that a variable or a function called moveOption is a
different one than moveoption or Moveoption. Any name—no matter whether it is a function, an
object, a variable, or an array, must only contain letters, numbers, the dollar sign, or the under-
score character, and must not start with a number.

<script type="text/javascript">
 // Valid examples
 var dynamicFunctionalityId = 'dynamic';
 var parent_element2='mainnav';
 var _base=10;
 var error_Message='You forgot to enter some fields: ';

 // Invalid examples
 var dynamic ID='dynamic'; // Space not allowed!
 var 10base=10; // Starts with a number
 var while=10; // while is a JavaScript statement
</script>

The last example shows another issue: JavaScript has a lot of reserved words—basically all
the JavaScript statements use reserved words like while, if, continue, var, or for. If you are
unsure what you can use as a variable name, it might be a good idea to get a JavaScript refer-
ence. Good editors also highlight reserved words when you enter them to avoid the issue.

There is no length limitation on names in JavaScript; however, to avoid huge scripts that
are hard to read and debug, it is a good idea to keep them as easy and descriptive as possible.
Try to avoid generic names:

• function1

• variable2

• doSomething()

6803.book Page 71 Friday, June 9, 2006 3:19 PM

72 C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G

These do not mean much to somebody else (or yourself two months down the line) who
tries to debug or understand the code. It is better to use descriptive names that tell exactly what
the function does or what the variable is:

• createTOC()

• calculateDifference()

• getCoordinates()

• setCoordinates()

• maximumWidth

• address_data_file

As mentioned in previous chapters, you can use underscores or “camelCase” (that is,
camel notation—lowercasing the first word and then capitalizing the first character of each
word after that) to concatenate words; however, camelCase is more common (DOM itself uses
it), and getting used to it will make it a lot easier for you to move on to more complex program-
ming languages at a later stage. Another benefit of camelCase is that you can highlight a
variable with a double-click in almost any editor, while you need to highlight an underscore-
separated name with your mouse.

■Caution Beware the lowercase letter l and the number 1! Most editors will use a font face like courier,
and they both look the same in this case, which can cause a lot of confusion and make for hours of fun trying
to find bugs.

Code Layout
First and foremost, code is there to be converted by the interpreter to make a computer do
something—or at least this is a very common myth. The interpreter will swallow the code with-
out a hiccup when the code is valid—however, the real challenge for producing really good
code is that a human will be able to edit, debug, amend, or extend it without spending hours
trying to figure out what you wanted to achieve. Logical, succinct variable and function names
are the first step to make it easier for the maintainer—the next one is proper code layout.

■Note If you are really bored, go to any coder forum and drop an absolute like “spaces are better than
tabs” or “every curly brace should get a new line.” You are very likely to get hundreds of posts that point out
the pros and cons of what you claimed. Code layout is a hotly discussed topic. The following examples work
nicely for me and seem to be a quite common way of laying out code. It might be a good idea to check whether
there are any contradictory standards to follow before joining a multideveloper team on a project and using
the ones mentioned here.

6803.book Page 72 Friday, June 9, 2006 3:19 PM

C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G 73

Simply check the following code examples; you might not understand now what they do
(they present a small function that opens every link that has a CSS class of smallpopup in a new
window and adds a message that this is what will happen), but just consider which one would
be easier to debug and change?

Without indentation:

function addPopUpLink(){
if(!document.getElementById||!document.createTextNode){return;}
var popupClass='smallpopup';
var popupMessage= '(opens in new window)';
var pop,t;
var as=document.getElementsByTagName('a');
for(var i=0;i<as.length;i++){
t=as[i].className;
if(t&&t.toString().indexOf(popupClass)!=-1){
as[i].appendChild(document.createTextNode(popupMessage));
as[i].onclick=function(){
pop=window.open(this.href,'popup','width=400,height=400');
returnfalse;
}}}}
window.onload=addPopUpLink;

With indentation:

function addPopUpLink(){
 if(!document.getElementById || !document.createTextNode){return;}
 var popupClass='smallpopup';
 var popupMessage= ' (opens in new window)';
 var pop,t;
 var as=document.getElementsByTagName('a');
 for(var i=0;i<as.length;i++){
 t=as[i].className;
 if(t && t.toString().indexOf(popupClass)!=-1){
 as[i].appendChild(popupMessage);
 as[i].onclick=function(){
 pop=window.open(this.href,'popup','width=400,height=400');
 return false;
 }
 }
 }
}
window.onload=addPopUpLink;

6803.book Page 73 Friday, June 9, 2006 3:19 PM

74 C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G

With indentation and curly braces on new lines:

 function addPopUpLink()
 {
 if(!document.getElementById || !document.createTextNode){return;}
 var popupClass='smallpopup';
 var popupMessage= ' (opens in new window)';
 var pop,t;
 var as=document.getElementsByTagName('a');
 for(var i=0;i<as.length;i++)
 {
 t=as[i].className;
 if(t && t.toString().indexOf(popupClass)!=-1)
 {
 as[i].appendChild(document.createTextNode(popupMessage));
 as[i].onclick=function()
 {
 pop=window.open(this.href,'popup','width=400,height=400');
 return false;
 }
 }
 }
 }
 window.onload=addPopUpLink;

I think it is rather obvious that indentation is a good idea; however, there is a big debate
whether you should indent via tabs or spaces. Personally, I like tabs, mainly because they are
easy to delete and less work to type in. Developers that work a lot on very basic (or pretty amaz-
ing, if you know all the cryptic keyboard shortcuts) editors like vi or emacs frown upon that, as
the tabs might display as very large horizontal gaps. If that is the case, it is not much of a prob-
lem to replace all tabs with double spaces with a simple regular expression.

The question of whether the opening curly braces should get a new line or not is another
you need to decide for yourself. The benefit of not using a new line is that it is easier to delete
erroneous blocks, as they have one line less. The benefit of new lines is that the code does look
less crammed. Personally, I keep the opening one on the same line in JavaScript and on a new
line in PHP—as these seem to be the standard in those two developer communities.

Another question is line length. Most editors these days will have a line-wrap option that
will make sure you don’t have to scroll horizontally when you want to see the code. However,
not all of them print out the code properly, and there may be a maintainer later on that has no
fancy editor like that one. It is therefore a good idea to keep lines short—approximately 80
characters.

Commenting
Commenting is something that only humans benefit from—although in some higher program-
ming languages, comments are indexed to generate documentation (one example is the PHP
manual, which is at times a bit cryptic for nonprogrammers exactly because of this). While
commenting is not a necessity for the code to work—if you use clear names and indent your

6803.book Page 74 Friday, June 9, 2006 3:19 PM

C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G 75

code, it should be rather self-explanatory—it can speed up debugging immensely. The previ-
ous example might make more sense for you with explanatory comments:

/*
 addPopUpLink
 opens the linked document of all links with a certain
 class in a pop-up window and adds a message to the
 link text that there will be a new window
*/
function addPopUpLink(){
 // Check for DOM and leave if it is not supported
 if(!document.getElementById || !document.createTextNode){return;}
 // Assets of the link - the class to find out which link should
 // get the functionality and the message to add to the link text
 var popupClass='smallpopup';
 var popupMessage= ' (opens in new window)';
 // Temporary variables to use in a loop
 var pop,t;
 // Get all links in the document
 var as=document.getElementsByTagName('a');
 // Loop over all links
 for(var i=0;i<as.length;i++)
 {
 t=as[i].className;
 // Check if the link has a class and the class is the right one
 if(t && t.toString().indexOf(popupClass)!=-1)
 {
 // Add the message
 as[i].appendChild(document.createTextNode(popupMessage));
 // Assign a function when the user clicks the link
 as[i].onclick=function()
 {
 // Open a new window with
 pop=window.open(this.href,'popup','width=400,height=400');
 // Don't follow the link (otherwise the linked document
 // would be opened in the pop-up and the document).
 return false;
 }
 }
 }
}
window.onload=addPopUpLink;

A lot easier to grasp, isn’t it? It is also overkill. An example like this can be used in training
documentation or a self-training course, but it is a bit much in a final product—moderation is
always the key when it comes to commenting. In most cases, it is enough to explain what some-
thing does and what can be changed.

6803.book Page 75 Friday, June 9, 2006 3:19 PM

76 C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G

/*
 addPopUpLink
 opens the linked document of all links with a certain
 class in a pop-up window and adds a message to the
 link text that there will be a new window
*/
function addPopUpLink()
{
 if(!document.getElementById || !document.createTextNode){return;}

 // Assets of the link - the class to find out which link should
 // get the functionality and the message to add to the link text
 var popupClass='smallpopup';
 var popupMessage=document.createTextNode(' (opens in new window)');

 var pop,t;
 var as=document.getElementsByTagName('a');
 for(var i=0;i<as.length;i++)
 {
 t=as[i].className;
 if(t && t.toString().indexOf(popupClass)!=-1)
 {
 as[i].appendChild(popupMessage);
 as[i].onclick=function()
 {
 pop=window.open(this.href,'popup','width=400,height=400');
 return false;
 }
 }
 }
}
window.onload=addPopUpLink;

These comments make it easy to grasp what the whole function does and to find the spot
where you can change some of the settings. This makes quick changes easier—changes in
functionality would need the maintainer to analyze your code more closely anyway.

Functions
Functions are reusable blocks of code and are an integral part of most programs today, includ-
ing those written in JavaScript. Imagine you have to do a calculation or need a certain
conditional check over and over again. You could copy and paste the same lines of code where
necessary; however, it is much more efficient to use a function.

6803.book Page 76 Friday, June 9, 2006 3:19 PM

C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G 77

Functions can get values as parameters (sometimes called arguments) and can return val-
ues after they finished testing and changing what has been given to them.

You create a function by using the function keyword followed by the function name and
the parameters separated by commas inside parentheses:

function createLink(linkTarget, LinkName)
{
 // Code
}

There is no limit as to how many parameters a function can have, but it is a good idea not
to use too many, as it can become rather confusing. If you check some DHTML code, you can
find functions with 20 parameters or more, and remembering their order when calling those in
other functions will make you almost wish to simply write the whole thing from scratch. When
you do that, it is a good idea to remember that too many parameters mean a lot more mainte-
nance work and make debugging a lot harder than it should be.

Unlike PHP, JavaScript has no option to preset the parameters should they not be
available. You can work around this issue with some if conditions that check whether the
parameter is null (which means “nothing, not even 0” in interpreter speak):

function createLink(linkTarget, LinkName)
{
 if (linkTarget == null)
 {
 linkTarget = '#';
 }
 if (linkName == null)
 {
 linkName = 'dummy';
 }
}

Functions report back what they have done via the return keyword. If a function that’s
invoked by an event handler returns the Boolean value false, then the sequence of events that
is normally triggered by the event gets stopped. This is very handy when you want to apply
functions to links and stop the browser from navigating to the link’s href. We also used this in
the “Object Detection vs. Browser Dependence” section.

Any other value following the return statement will be sent back to the calling code. Let’s
change our createLink function to create a link and return it once the function has finished
creating it.

function createLink(linkTarget,linkName)
{
 if (linkTarget == null) { linkTarget = '#'; }
 if (linkName == null) { linkName = 'dummy'; }

 var tempLink=document.createElement('a');

6803.book Page 77 Friday, June 9, 2006 3:19 PM

78 C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G

 tempLink.setAttribute('href',linkTarget);
 tempLink.appendChild(document.createTextNode(linkName));

 return tempLink;
}

Another function could take these generated links and append them to an element. If
there is no element ID defined, it should append the link to the body of the document.

function appendLink(sourceLink,elementId)
{
 var element=false;
 if (elementId==null || !document.getElementById(elementId))
 {
 element=document.body;
 }
 if(!element) {
 element=document.getElementById(elementId);
 }
 element.appendChild(sourceLink);
}

Now, to use both these functions, we can have another one call them with appropriate
parameters:

function linksInit()
{
 if (!document.getElementById || !document.createTextNode) { return; }
 var openLink=createLink('#','open');
 appendLink(openLink);
 var closeLink=createLink('closed.html','close');
 appendLink(closeLink,'main');
}

The function linksInit() checks whether DOM is available (as it is the only function call-
ing the others, we don’t need to check for it inside them again) and creates a link with a target
of # and open as the link text.

It then invokes the appendLink() function and sends the newly generated link as a param-
eter. Notice it doesn’t send a target element, which means elementId is null and appendLink()
adds the link to the main body of the document.

The second time initLinks() invokes createLink(), it sends the target closed.html
and close as the link text and applies the link to the HTML element with the ID main via the
appendLink() function. If there is an element with the ID main, appendLink() adds the link to
this one; if not, it uses the document body as a fallback option.

6803.book Page 78 Friday, June 9, 2006 3:19 PM

C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G 79

If this is confusing now, don’t worry, you will see more examples later on. For now, it is just
important to remember what functions are and what they should do:

• Functions are there to do one task over and over again—keep each task inside its own
function; don’t create monster functions that do several things at once.

• Functions can have as many parameters as you wish, and each parameter can be of any
type—string, object, number, variable, or array.

• You cannot predefine parameters in the function definition itself, but you can check
whether they were defined or not and set defaults with an if condition. You can do this
very succinctly via the ternary operator, which you will get to know in the next section of
this chapter.

• Functions should have a logical name describing what they do; try to keep the name
close to the task topic, as a generic init(), for example, could be in any of the other
included JavaScript files and overwrite their functions. Object literals can provide one
way to avoid this problem, as you’ll see later in this chapter.

Short Code via Ternary Operator
Looking at the appendLink() function shown earlier, you might get a hunch that a lot of if con-
ditions or switch statements can result in very long and complex code. A trick to avoid some
of the bloating involves using something called the ternary operator. The ternary operator has
the following syntax:

var variable = condition ? trueValue:falseValue;

This is very handy for Boolean conditions or very short values. For example, you can replace
this long if condition with one line of code:

// Normal syntax
var direction;
If(x<200)
{
 direction=1;
}
else
{
 direction=-1
}
// Ternary operator
var direction = x < 200 ? 1 : -1;

6803.book Page 79 Friday, June 9, 2006 3:19 PM

80 C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G

Other examples:

t.className = t.className == 'hide' ? '' : 'hide';
var el = document.getElementById('nav')
 ? document.getElementById('nav')
 : document.body;

You can also nest the ternary selector, but that gets rather unreadable:

y = x <20 ? (x > 10 ? 1 : 2) : 3;
// equals
if(x<20)
{
 if(x>10)
 {
 y=1;
 }
 else
 {
 y=2;
 }
}
else
{
 y=3
}

Sorting and Reuse of Functions
If you have a large number of JavaScript functions, it might be a good idea to keep them in sep-
arate .js files and apply them only where they are needed. Name the .js files according to
what the functions included in them do, for example, formvalidation.js or dynamicmenu.js.

This has been done to a certain extent for you, as there are a lot of prepackaged JavaScript
libraries (collections of functions and methods) that help create special functionality. We will
look at some of them in Chapter 11 and create our own during the next few chapters.

Variable and Function Scope
Variables defined inside a function with a new var are only valid inside this function, not out-
side it. This might seem a drawback, but it actually means that your scripts will not interfere
with others—which could be fatal when you use JavaScript libraries or your own collections.

Variables defined outside functions are called global variables and are dangerous. We
should try to keep all our variables contained inside functions. This ensures that our script will
play nicely with other scripts that may be applied to the page. Many scripts use generic variable
names like navigation or currentSection. If these are defined as global variables, the scripts
will override each other’s settings. Try running the following function to see what omitting a
var keyword can cause:

6803.book Page 80 Friday, June 9, 2006 3:19 PM

C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G 81

<script type="text/javascript">
 var demoVar=1 // Global variable
 alert('Before withVar demoVar is' +demoVar);
 function withVar()
 {
 var demoVar=3;
 }
 withVar();
 alert('After withVar demoVar is' +demoVar);
 function withoutVar()
 {
 demoVar=3;
 }
 withoutVar();
 alert('After withoutVar demoVar is' +demoVar);
</script>

While withVar keeps the variable untouched, withoutVar changes it:

Before withVar demoVar is 1
After withVar demoVar is 1
After withoutVar demoVar is 3

Keeping Scripts Safe with the Object Literal
Earlier we talked about keeping variables safe by defining them locally via the var keyword. The
reason was to avoid other functions relying on variables with the same name and the two func-
tions overwriting each other’s values. The same applies to functions. As you can include several
JavaScripts to the same HTML document in separate script elements your functionality might
break as another included document has a function with the same name. You can avoid this
issue with a naming convention, like myscript_init() and myscript_validate() for your func-
tions. However, this is a bit cumbersome, and JavaScript offers a better way to deal with this in
the form of objects.

You can define a new object and use your functions as methods of this object—this is how
JavaScript objects like Date and Math work. For example:

<script type="text/javascript">
 myscript=new Object();
 myscript.init=function()
 {
 // Some code
 };
 myscript.validate=function()
 {
 // Some code
 };
</script>

6803.book Page 81 Friday, June 9, 2006 3:19 PM

82 C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G

Notice that if you try to call the functions init() and validate(), you get an error, as they don’t
exist any longer. Instead, you need to use myscript.init() and myscript.validate().

Wrapping all your functions in an object as methods is analogous to the programming
classes used by some other languages such as C++ or Java. In such languages, you keep func-
tions that apply to the same task inside the same class, thus making it easier to create large
pieces of code without getting confused by hundreds of functions.

The syntax we used is still a bit cumbersome, as you have to repeat the object name over
and over again. There is a shortcut notation called the object literal that makes it a lot easier.

The object literal has been around for a long time but has been pretty underused. It is
becoming more and more fashionable nowadays, and you can pretty much presume that a
script you find on the web using it is pretty good, modern JavaScript.

What the object literal does is use a shortcut notation to create the object and apply each
of the functions as object methods instead of stand-alone functions. Let’s see our three func-
tions of the dynamic links example as a big object using the object literal:

var dynamicLinks={
 linksInit:function()
 {
 if (!document.getElementById || !document.createTextNode)➥

 { return; }
 var openLink=dynamicLinks.createLink('#','open');
 dynamicLinks.appendLink(openLink);
 var closeLink=dynamicLinks.createLink('closed.html','close');
 dynamicLinks.appendLink(closeLink,'main');
 },
 createLink:function(linkTarget,linkName)
 {
 if (linkTarget == null) { linkTarget = '#'; }
 if (linkName == null) { linkName = 'dummy'; }
 var tempLink=document.createElement('a');
 tempLink.setAttribute('href',linkTarget);
 tempLink.appendChild(document.createTextNode(linkName));
 return tempLink;
 },
 appendLink:function(sourceLink,elementId)
 {
 var element=false;
 if (elementId==null || !document.getElementById(elementId))
 {
 element=document.body;
 }
 if(!element){element=document.getElementById(elementId)}
 element.appendChild(sourceLink);
 }
}

window.onload=dynamicLinks.linksInit;

6803.book Page 82 Friday, June 9, 2006 3:19 PM

C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G 83

As you can see, all the functions are contained as methods inside the dynamicLinks object,
which means that if we want to call them, we need to add the name of the object before the
function name.

The syntax is a bit different; instead of placing the function keyword before the name of
the function, we add it behind the name preceded by a colon. Additionally, each closing curly
brace except for the very last one needs to be followed by a comma.

If you want to use variables that should be accessible by all methods inside the object, you
can do that with syntax that is quite similar:

var myObject=
{
 objMainVar:'preset',
 objSecondaryVar:0,
 objArray:['one','two','three'],
 init:function(){},
 createLinks:function(){},
 appendLinks:function(){}
}

This might be a lot right now, but don’t worry. This chapter is meant as a reference for
you to come back to and remind you of a lot of good practices in one place. We will continue
in the next chapter with more tangible examples, and rip open an HTML document to play
with the different parts.

Summary
You have done it; you finished this chapter, and you should now be able to separate modern
and old scripts when you see them on the Web. Older scripts are likely to

• Use a lot of document.write().

• Check for browsers and versions instead of objects.

• Write out a lot of HTML instead of accessing what is already in the document.

• Use proprietary DOM objects like document.all for MSIE and document.layers for
Netscape Navigator.

• Appear anywhere inside the document (rather in the <head> or included via
<script src="---.js">) and rely on javascript: links instead of assigning events.

You’ve learned about putting JavaScript into stand-alone .js documents instead of embed-
ding it into HTML and thereby separating behavior from structure.

You then heard about using object detection instead of relying on browser names and
what progressive enhancement means and how it applies to web development. Testing user
agent capabilities instead of names and versions will ensure that your scripts also work for user
agents you might not have at hand to test yourself. It also means that you don’t have to worry
every time there is a new version of a browser out—if it supports the standards, you’ll be fine.

6803.book Page 83 Friday, June 9, 2006 3:19 PM

84 C H A P T E R 3 ■ F R O M D H T M L T O D O M S C R I P T I N G

We talked about accessibility and what it means for JavaScript, and you got a peek at a lot
of coding practices. The general things to remember are

• Test for the objects you want to use in your scripts.

• Make improvements in an existing site that already works well without client-side
scripting instead of adding scripts first and adding nonscripting fallbacks later on.

• Keep your code self-contained and don’t use any global variables that might interfere
with other scripts.

• Code with the idea in mind that you will have to hand this code over to someone else to
maintain. This person might be you in three months’ time, and you should be able to
immediately understand what is going on.

• Comment your code’s functionality and use readable formatting to make it easy to find
bugs or change the functions.

This is the lot—except for something called an event handler, which I’ve talked about but
not actually defined. I’ll do so in Chapter 5. But for now, sit back, get a cup of coffee or tea, and
relax for a bit, until you’re ready to proceed with learning how JavaScript interacts with HTML
and CSS.

6803.book Page 84 Friday, June 9, 2006 3:19 PM

85

■ ■ ■

C H A P T E R 4

HTML and JavaScript

In this chapter, you finally get your hands dirty in real JavaScript code. You’ll learn how Java-
Script interacts with the page structure—defined in HTML—and how to receive data and give
back information to your visitors. I start with an explanation of what an HTML document is
and how it is structured and explain several ways to create page content via JavaScript. You’ll
then hear about the JavaScript developer’s Swiss Army knife—the Document Object Model
(DOM)—and how to separate JavaScript and HTML to create now-seamless effects that devel-
opers used to create in an obtrusive manner with DHTML.

The Anatomy of an HTML Document
Documents displayed in user agents are normally HTML documents. Even if you use a server-
side language like ASP.NET, PHP, ColdFusion, or Perl, the outcome is HTML if you want to use
browsers to their full potential. Modern browsers like Mozilla or Safari do also support XML,
SVG, and other formats, but for 99% of your day-to-day web work, you’ll go the HTML or
XHTML route.

An HTML document is a text document that starts with a DOCTYPE that tells the user agent
what the document is and how it should be dealt with. It then uses an HTML element that
encompasses all other elements and text content. The HTML element should have a lang
attribute that defines the language in use (human language, not programming language) and
a dir attribute that defines the reading order of the text (left to right [ltr] for [Indo]European/
American languages or right to left [rtl] for Semitic ones). Inside the HTML element needs to be
a HEAD element with a TITLE element. You can add an optional META element determining what
encoding should be used to display the text—if you haven’t set the encoding on the server. On
the same level as the HEAD element, but after the closing <head> tag, is the BODY—the element
that contains all the page content.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"➥

 "http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
 <head>
 <meta http-equiv="Content-Type"➥

 content="text/html; charset=utf-8" />
 <title>Our HTML Page</title>
 </head>

6803.book Page 85 Wednesday, June 7, 2006 3:31 PM

86 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

 <body>
 </body>
</html>

A markup document like this consists of tags (words or letters enclosed in tag brackets, like
<p>) and text content. Documents should be well formed (meaning that every opening tag
like <p> must be matched by a closing tag like </p>) and validate against the DTD provided. You
can validate documents on the W3C web site (http://validator.w3.org/).

HTML elements are everything in the brackets, <>, with a starting tag like <h1> followed by
content and a closing tag of the same name—like </h1>. Each element can have content in
between the opening and the closing tag. Each element may have several attributes. The
Document Type Definition, or DTD, linked in the DOCTYPE determines the set of tags that are
permitted, how they may be nested, and which attributes each tag may have. The following
example is a P element with an attribute whose name is class. The attribute has the value
intro. The P contains the text “Lorem Ipsum”.

<p class="intro">Lorem Ipsum</p>

A browser checks the DOCTYPE and compares the elements it encounters with the DTD. The
HTML4.01 DTD definition tells it that P is a paragraph and that the class attribute is valid for
this element. It also realizes that the class attribute should check the linked CSS style sheet, get
the definitions for a P with that class, and render it accordingly. Now, what happens if you use
an attribute that is not defined in the DTD—like myattribute?

<p class="intro" myattribute="left">Lorem Ipsum</p>

Nothing—although you technically made a mistake. Browsers are very forgiving and will
not stop rendering even if they encounter unknowns like these, but instead they make the
attribute available in the DOM tree. This makes them very user and developer friendly, but it
makes it hard to advocate proper HTML syntax and standards compliance. There are, however,
several reasons why we should strive for standards compliance—even in HTML generated via
JavaScript:

• It is easier to trace errors when we know the HTML is valid.

• It is easier to maintain documents that adhere to the rules—as you can use a validator to
measure its quality.

• It is a lot more likely that user agents will render or convert your pages properly when
you develop against an agreed standard.

• The final documents can be easily converted to other formats if they are valid HTML.

Now, if we add some more elements to our example HTML and open it in a browser, we get
a rendered output as shown in Figure 4-1:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"➥

 "http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
 <head>
 <meta http-equiv="Content-Type"➥

 content="text/html; charset=utf-8" />

6803.book Page 86 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 87

 <title>DOM Example</title>
 </head>
 <body>
 <h1>Heading</h1>
 <p>Paragraph</p>
 <h2>Subheading</h2>
 <ul id="eventsList">
 List 1
 List 2
 Linked List Item
 List 4

 <p>Paragraph</p>
 <p>Paragraph</p>
 </body>
</html>

Figure 4-1. An HTML document rendered by a browser

A QUICK WORD ON XHTML

You might have glanced at the earlier code examples and got annoyed that I am using HTML 4.01 STRICT
instead of the more modern XHTML. The reason is that more browsers support HTML 4.01 STRICT, and it is as
clean as XHTML when it comes to syntax. Real XHTML documents should be sent as application/XML+XHTML
and not as text/HTML on the server—a step not many developers dare to take, as it means the pages will not
display in MSIE. Once the most common browsers do support real XHTML, it won’t be hard to convert the doc-
uments. For now, 4.01 STRICT does the trick and makes browsers display our documents as the W3C planned
them to be displayed—well, most of them do. Also be aware that I am using uppercase for HTML element
names in the text, like H1, while all elements in the code examples are lowercase—as this is necessary for
XHTML. XML and XHTML are case sensitive, whereas older and lesser strict HTML versions aren’t.

6803.book Page 87 Wednesday, June 7, 2006 3:31 PM

88 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

The user agent “sees” the document a bit differently. The DOM models a document as a
set of nodes, including element nodes, text nodes, and attribute nodes. Both elements and
their text content are separate nodes. Attribute nodes are the attributes of the elements. The
DOM includes other sorts of nodes for other parts of a markup document, but these three—
element nodes, text nodes, and attribute nodes—are the important ones if you keep your
JavaScript and HTML hat on. If you want to see the document through the eyes of the browser,
you can use a tool like the DOM Inspector of Firefox, which shows the document as a tree
structure, as depicted in Figure 4-2.

Figure 4-2. The DOM representation of a document illustrated in the Mozilla DOM Inspector

■Tip You can access the DOM Inspector via Tools ➤ DOM Inspector in the Firefox toolbar or by pressing
Ctrl+Shift+I. It allows you to check each part of the document in detail, and even remove elements, which is
very handy when printing out pages. You can read more about the DOM Inspector in the Appendix, which cov-
ers validation and debugging.

6803.book Page 88 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 89

■Note Notice all the #text nodes between the elements? These are not text we added to the document,
but the line breaks we added at the end of each line. Some browsers see those as text nodes while others
don’t—which can be very annoying when we try to access elements in the document via JavaScript later on.

Figure 4-3 shows another way we can visualize the document tree.

Figure 4-3. The structure of an HTML document

It is very important to recognize HTML for what it is: HTML is structured content and not
a visual construct like an image with elements placed at different coordinates. When you have
a proper, valid HTML document, the sky is the limit, and you can access and change it via
JavaScript. An invalid HTML document might trip up your scripts, no matter how much testing
you do. A classic mistake is using the same id attribute value twice in a single document, which
negates the purpose of having a unique identifier (ID).

Providing Feedback in Web Pages via JavaScript:
The Old School Ways
We already used one way—document.write()—of giving feedback to the user in an HTML doc-
ument by writing out content. We also discussed the problems this method has, namely mixing
the structure and the presentation layer and losing the maintenance benefits of keeping all
JavaScript code in a separate file.

6803.book Page 89 Wednesday, June 7, 2006 3:31 PM

90 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

Using window Methods: prompt(), alert(), and confirm()
A different way of giving feedback and retrieving user-entered data is using methods the
browser offers you via the window object, namely prompt(), alert(), and confirm().

The most commonly used window method is alert(), an example of which appears in
Figure 4-4. What it does is display a value in a dialog (and perhaps play a sound, if the user’s
hardware supports it). The user then has to activate (click with the mouse or hit Enter on the
keyboard) the OK button to get rid of the message.

Figure 4-4. A JavaScript alert (on Firefox on Windows XP)

Alerts look different from browser to browser and operating system to operating system.
As a user feedback mechanism, alert() has the merit of being supported by most user

agents, but it is also a very “in-your-face” and clumsy way of passing information to the user.
An alert is a message that normally bears bad news or warns someone of danger ahead—which
is not necessarily your intention.

Say, for example, you want to tell the visitor to enter something in a search field before
submitting a form. You could use an alert for that:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"➥

 "http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
 <head>
 <meta http-equiv="Content-Type"➥

 content="text/html; charset=utf-8" />
 <title>Search example</title>
 <script type="text/javascript">
 function checkSearch()
 {
 if(!document.getElementById ||➥

 !document.createTextNode){return;}
 if(!document.getElementById('search')){return;}
 var searchValue=document.getElementById('search').value;
 if(searchValue=='')
 {
 alert('Please enter a search term');
 return false;
 }
 else
 {
 return true;

6803.book Page 90 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 91

 }
 }
 </script>
 </head>
 <body>
 <form action="sitesearch.php" method="post"➥

 onsubmit="return checkSearch();">
 <p>
 <label for="search">Search the site:</label>
 <input type="text" id="search" name="search" />
 <input type="submit" value="Search" />
 </p>
 </form>
 </body>
</html>

If a visitor tries to submit the form via the Submit button, he’ll get the alert, and the
browser will not send the form to the server after he activates the OK button. On Mozilla Firefox
on Windows XP, the alert looks like what you see in Figure 4-5.

Figure 4-5. Giving feedback on a form error via an alert

Alerts do not return any information to the script—they simply give a message to the user
and stop any further code execution until the OK button is activated.

This is different for prompt() and confirm(). The former allows visitors to enter something,
and the latter asks users to confirm an action.

■Tip As a debugging measure, alert() is simply too handy not to use. All you do is add an
alert(variableName) in your code where you want to know what the variable value is at that time.
You’ll get the information and stop the rest of the code from executing until the OK button is activated—
which is great for tracing back where and how your script fails. Beware of using it in loops though—there
is no way to stop the loop, and you might have to press Enter a hundred times before you get back to
your editing. There are other debugging tools like Mozilla’s, Opera’s, and Safari’s JavaScript consoles
and Mozilla Venkman—more on these in the Appendix.

6803.book Page 91 Wednesday, June 7, 2006 3:31 PM

92 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

We could extend the earlier example to ask the visitor to confirm a search for the common
term JavaScript (see also Figure 4-6):

 function checkSearch()
 {
 if(!document.getElementById ||➥

 !document.createTextNode){return;}
 if(!document.getElementById('search')){return;}
 var searchValue=document.getElementById('search').value;
 if(searchValue=='')
 {
 alert('Please enter a search term before sending the form');
 return false;
 }
 else if(searchValue=='JavaScript')
 {
 var really=confirm('"JavaScript" is a very common term.\n' +➥

 'Do you really want to search for this?');
 return really;
 }
 else
 {
 return true;
 }
 }

Figure 4-6. Example of asking for user confirmation via confirm()

Notice that the confirm() is a method that returns a Boolean value (true or false) depend-
ing on the visitor activating OK or Cancel. Confirm dialogs are an easy way to stop visitors from
taking really bad steps in web applications. While they are not the prettiest way of asking a user
to confirm a choice, they are really stable and offer some functionality your own confirmation
functions most probably will not have—for example, playing the alert sound.

6803.book Page 92 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 93

Both alert() and confirm() send information to the user, but what about retrieving
information? A simple way to retrieve user input is the prompt() method. This one takes two
parameters, the first one being a string displayed above the entry field as a label and the second
a preset value for the entry field. Buttons labeled OK and Cancel (or something similar) will be
displayed next to the field and the label, as shown in Figure 4-7.

var user=prompt('Please choose a name','User12');

Figure 4-7. Allowing the user to enter data in a prompt

When the visitor activates the OK button, the value of the variable user will be either
User12 (when she hasn’t changed the preset) or whatever she entered. When she activates the
Cancel button, the value will be null.

We can use this functionality to allow a visitor to change a value before sending a form to
the server:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"➥

"http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
 <head>
 <meta http-equiv="Content-Type"➥

 content="text/html; charset=utf-8" />
 <title>Date example</title>
 <script type="text/javascript">
 function checkDate()
 {
 if(!document.getElementById ||➥

 !document.createTextNode){return;}
 if(!document.getElementById('date')){return;}
 // Define a regular expression to check the date format
 var checkPattern=new➥

 RegExp("\\d{2}/\\d{2}/\\d{4}");
 // Get the value of the date entry field
 var dateValue=document.getElementById('date').value;
 // If there is no date entered, don't send the form
 if(dateValue=='')

6803.book Page 93 Wednesday, June 7, 2006 3:31 PM

94 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

 {
 alert('Please enter a date');
 return false
 }
 else
 {
 // Tell the user to change the date syntax either until
 // she presses Cancel or entered the right syntax
 while(!checkPattern.test(dateValue) && dateValue!=null)
 {
 dateValue=prompt('Your date was not in the right format. '➥

 + 'Please enter it as DD/MM/YYYY.', dateValue);
 }
 return dateValue!=null;
 }
 }
 </script>
 </head>
 <body>
 <h1>Events search</h1>
 <form action="eventssearch.php" method="post"➥

 onsubmit="return checkDate();">
 <p>
 <label for="date">Date in the format DD/MM/YYYY:</label>

 <input type="text" id="date" name="date" />
 <input type="submit" value="Check " />

(example 26/04/1975)
 </p>
 </form>
 </body>
</html>

Don’t worry if the Regular Expression and the test() method are confusing you now;
these will be covered in Chapter 9. All that is important now is that we use a while loop with a
prompt() inside it. The while loop displays the same prompt over and over again until either
the visitor presses Cancel (which means dateValue becomes null) or enters a date in the right
format (which satisfies the test condition of the regular expression checkPattern).

6803.book Page 94 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 95

Summary

You can create pretty nifty JavaScripts using the prompt(), alert(), and confirm() methods,
and they have some points in their favor:

• They are easy to grasp, as the methods use the functionality and look and feel of the
browser and offer a richer interface than HTML (specifically, the alert sound, if and
when present, can help a lot of users).

• They are dead easy to implement and only need JavaScript instead of the appropriate
HTML elements—that is also why they are used in bookmarklets/favelets (small scripts
you can call via a bookmark or a favorite that alter the current document—in essence
browser extensions that are available in all JavaScript capable browsers; see
http://www.bookmarklets.com).

• They appear outside and above the current document—which gives them utmost
importance.

However, there are some points that speak against the use of these methods to retrieve data
and give feedback:

• You cannot style the messages, and they obstruct the web page, which does give them
more importance, but also makes them appear clumsy from a design point of view. As
they are part of the user’s operating system or browser UI, they are easy to recognize for
the user, but they break design conventions and guidelines the product may have to
adhere to.

• Feedback does not happen in the web site’s look and feel—which renders the site less
important and stops dead the user’s journey through our usability enhancing design
elements.

• They are dependent on JavaScript—feedback should also be available when JavaScript is
turned off.

• Unless you use Mozilla or older Netscape browsers, there is no way of telling whether
the alert() or the prompt() is from this site or a different one. This is a security problem,
as you could make a prompt() appear on a third-party site and read and transfer user
input to yours. This is one technique of the phenomenon called phishing, and it is a big
security and privacy threat. As some security companies publish information on the
subject, visitors might not trust your site if it uses these feedback and input mechanisms
(http://secunia.com/advisories/15489/).

6803.book Page 95 Wednesday, June 7, 2006 3:31 PM

96 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

Accessing the Document via the DOM
In addition to the window methods you now know about, you can access a web document via the
DOM. In a manner of speaking, we have done that already with the document.write() examples.
The document object is what we want to alter and add to, and write() is one method to do that.
However, document.write() adds a string to the document and not a set of nodes and attributes,
and you cannot separate the JavaScript out into a separate file—document.write() only works
where you put it in the HTML. What we need is a way to reach where we want to change or add
content, and this is exactly what the DOM and its methods provide us with. Earlier on you found
out that user agents read a document as a set of nodes and attributes, and the DOM gives us tools
to grab these. We can reach elements of the document via two methods:

• document.getElementsByTagName('p')

• document.getElementById('id')

The getElementsByTagName('p') method returns a list of all the elements with the name p
as objects (where p can be any HTML element) and getElementById('id') returns us the ele-
ment with the ID as an object. If you are already familiar with CSS, you could compare these
two methods with the CSS selectors for elements and for IDs—tag{} and #id{}.

■Note Similarities with CSS end here, as there is no DOM equivalent of the class selector .class{}.
However, as this might be a handy method to have, some developers have come up with their own solutions
to that problem and created getElementsByClassName() functions.

If you go back to the HTML example we used earlier, you can write a small JavaScript that
shows how to use these two methods:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"➥

 "http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
 <head>
 <meta http-equiv="Content-Type"➥

 content="text/html; charset=utf-8" />
 <title>DOM Example</title>
 <script type="text/JavaScript" src="exampleFindElements.js">
 </script>
 </head>
 <body>
 <h1>Heading</h1>
 <p>Paragraph</p>
 <h2>Subheading</h2>
 <ul id="eventsList">
 List 1
 List 2

6803.book Page 96 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 97

 Linked List Item
 List 4

 <p>Paragraph</p>
 <p>Paragraph</p>
 </body>
</html>

Our script could now read the number of list items and paragraphs in the document by
calling the getElementsByTagName() method and assigning the return value to variables—one
time with the tag name li and the other time with p.

var listElements=document.getElementsByTagName('li');
var paragraphs=document.getElementsByTagName('p');
var msg='This document contains '+listElements.length+' list items\n';
msg+='and '+paragraphs.length+' paragraphs.';
alert(msg);

As Figure 4-8 shows, if you open the HTML document in a browser, you will find that both
values are zero!

Figure 4-8. Unwanted result when trying to reach elements before the page was rendered

There aren’t any list elements because the document has not yet been rendered by the
browser when we try to read its content. We need to delay that reading until the document has
been fully loaded and rendered.

You can achieve this by calling a function when the window has finished loading. The doc-
ument has finished loading when the onload event of the window object gets triggered. You’ll
hear more about events in the next chapter; for now, let’s just use the onload event handler of
the window object to trigger the function:

function findElements()
{
 var listElements = document.getElementsByTagName('li');
 var paragraphs = document.getElementsByTagName('p');
 var msg = 'This document contains ' + listElements.length +➥

 ' list items\n';
 msg += 'and ' + paragraphs.length + ' paragraphs.';
 alert(msg);
}
window.onload = findElements;

6803.book Page 97 Wednesday, June 7, 2006 3:31 PM

98 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

If you open the HTML document in a browser now, you’ll see an alert like the one in
Figure 4-9 with the right number of list elements and paragraphs.

Figure 4-9. Output alert indicating the number of found elements

You can access each of the elements of a certain name like you access an array—once
again bearing in mind that the counter of an array starts at 0 and not at 1:

// Get the first paragraph
var firstpara = document.getElementsByTagName('p')[0];
// Get the second list item
var secondListItem = document.getElementsByTagName('p')[1];

You can combine several getElementsByTagName() method calls to read child elements
directly. For example, to reach the first link item inside the third list item, you use

var➥ targetLink=document.getElementsByTagName('li')[2].getElementsByTagName➥

('a')[0];

This can get pretty messy though, and there are more clever ways to reach child ele-
ments—we’ll get to these in a second. If you wanted to reach the last element, you can use the
length property of the array:

var lastListElement = listElements[listElements.length - 1];

The length property also allows you to loop through elements and change all of them one
after the other:

var linkItems = document.getElementsByTagName('li');
for(var i = 0; i < linkItems.length; i++)
{
 // Do something...
}

Element IDs need to be unique to the document; therefore the return value of
getElementById() is a single object rather than an array of objects.

var events = document.getElementById('eventsList');

You can mix both methods to cut down on the number of elements to loop through. While
the earlier for loop accesses all LI elements in the document, this one will only go through

6803.book Page 98 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 99

those that are inside the element with the ID eventsList (the name of the object with the ID
replaces the document object):

var events = document.getElementById('eventsList');
var eventlinkItems = events.getElementsByTagName('li');
for(var i = 0; i < eventLinkItems.length; i++)
{
 // Do something...
}

With the help of getElementsByTagName() and getElementById(), you can reach every
element of the document or specifically target one single element. As mentioned earlier,
getElementById() is a method of document and getElementsByTagName() is a method of any
element. Now it is time to look at ways how to navigate around the document once you
reached the element.

Of Children, Parents, Siblings, and Values
You know already that you can reach elements inside other elements by concatenating
getElementsByTagName methods. However, this is rather cumbersome, and it means that you
need to know the HTML you are altering. Sometimes that is not possible, and you have to find
a more generic way to travel through the HTML document. The DOM already planned for this,
via children, parents, and siblings.

These relationships describe where the current element is in the tree and whether it
contains other elements or not. Let’s take a look at our simple HTML example once more,
concentrating on the body of the document:

<body>
 <h1>Heading</h1>
 <p>Paragraph</p>
 <h2>Subheading</h2>
 <ul id="eventsList">
 List 1
 List 2
 Linked List Item
 List 4

 <p>Paragraph</p>
 <p>Paragraph</p>
</body>

All the indented elements are children of the BODY. H1, H2, UL, and P are siblings, and the LI
elements are children of the UL element—and siblings to another. The link is a child of the third
LI element. All in all, they are one big happy family.

6803.book Page 99 Wednesday, June 7, 2006 3:31 PM

100 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

However, there are even more children. The text inside the paragraphs, headings, list ele-
ments, and links also consists of nodes, as you may recall from Figure 4-2 earlier, and while
they are not elements, they still follow the same relationship rules.

Every node in the document has several valuable properties.

• The most important is nodeType, which describes what the node is—an element, an
attribute, a comment, text, and several more types (12 in all). For our HTML examples,
only the nodeType values 1 and 3 are important, where 1 is an element node and 3 is a
text node.

• Another important property is nodeName, which is the name of the element or #text if it
is a text node. Depending on the document type and the user agent, nodeName can be
either upper- or lowercase, which is why it is a good idea to convert it to lowercase before
testing for a certain name. You can use the toLowerCase() method of the string object
for that: if(obj.nodeName.toLowerCase()=='li'){};. For element nodes, you can use the
tagName property.

• nodeValue is the value of the node: null if it is an element, and the text content if it is a
text node.

In the case of text nodes, nodeValue can be read and set, which allows you to alter the text
content of the element. If, for example, you wanted to change the text of the first paragraph,
you might think it is enough to set its nodeValue:

document.getElementsByTagName('p')[0].nodeValue='Hello World';

However, this doesn’t work (although—strangely enough—it does not cause an error), as
the first paragraph is an element node. If you wanted to change the text inside the paragraph,
you need to access the text node inside it or, in other words, the first child node of the
paragraph:

document.getElementsByTagName('p')[0].firstChild.nodeValue='Hello World';

From the Parents to the Children
The firstChild property is a shortcut. Every element can have any number of children, listed
in a property called childNodes.

• childNodes is a list of all the first-level child nodes of the element—it does not cascade
down into deeper levels.

• You can access a child element of the current element via the array counter or the item()
method.

• The shortcut properties yourElement.firstChild and yourElement.lastChild
are easier versions of yourElement.childNodes[0] and yourElement.childNodes
[yourElement.childNodes.length-1] and make it quicker to reach them.

• You can check whether an element has any children by calling the method
hasChildNodes(), which returns a Boolean value.

6803.book Page 100 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 101

Returning to the earlier example, you can access the UL element and get information about
its children as shown here:

HTML

<ul id="eventsList">
 List 1
 List 2
 Linked List Item
 List 4

JavaScript:

function myDOMinspector()
{
 var DOMstring='';
 if(!document.getElementById || !document.createTextNode){return;}
 var demoList=document.getElementById('eventsList');
 if (!demoList){return;}
 if(demoList.hasChildNodes())
 {
 var ch=demoList.childNodes;
 for(var i=0;i<ch.length;i++)
 {
 DOMstring+=ch[i].nodeName+'\n';
 }
 alert(DOMstring);
 }
}

We create an empty string called DOMstring and check for DOM support and whether the
UL element with the right id attribute is defined. Then we test whether the element has child
nodes and, if it does, store them in a variable named ch. We loop through the variable (which
automatically becomes an array) and add the nodeName of each child node to DOMString, fol-
lowed by a line break (\n). We then look at the outcome using the alert() method.

If you run this script in a browser, you will see one of the main differences between MSIE
and more modern browsers. While MSIE only shows four LI elements, other browsers like Fire-
fox also count the line breaks in between the elements as text nodes, as you see in Figure 4-10.

6803.book Page 101 Wednesday, June 7, 2006 3:31 PM

102 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

Figure 4-10. Nodes found by our script, including text nodes that in reality are line breaks

From the Children to the Parents
You can also navigate from child elements back to their parents, via the parentNode property.
First let’s make it easier for us to reach the link—by adding an ID to it:

<ul id="eventsList">
 List
 List

 Linked List Item

 List

Now we assign a variable to the link object and read the parent node’s name:

var myLinkItem=document.getElementById('linkedItem');
alert(myLinkItem.parentNode.nodeName);

The result is LI, and if we add another parentNode to the object reference, we’ll get UL, which is
the link’s grandparent element:

alert(myLinkItem.parentNode.parentNode.nodeName);

You can add as many of those as you want—that is, if there are parent elements left in the
document tree and you haven’t reached the top level yet. If you use parentNode in a loop, it is
important that you also test the nodeName and end the loop when it reaches the BODY. Say for
example you want to check whether an object is inside an element with a class called dynamic.
You can do that with a while loop:

var myLinkItem = document.getElementById('linkedItem');
var parentElm = myLinkItem.parentNode;
while(parentElm.className != 'dynamic')

6803.book Page 102 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 103

{
 parentElm = parentElm.parentNode;
}

However, this loop will end in an “object required” error when there is no element with the
right class. If you tell the loop to stop at the body, you can avoid that error:

var myLinkItem = document.getElementById('linkedItem');
var parentElm = myLinkItem.parentNode;
while(!parentElm.className != 'dynamic' && parentElm != 'document.body')
{
 parentElm=parentElm.parentNode;
}
alert(parentElm);

Among Siblings
The family analogy continues with siblings, which are elements on the same level (they don’t
come in different genders like brothers or sisters though). You can reach a different child node
on the same level via the previousSibling and nextSibling properties of a node. Going back to
our list example:

<ul id="eventsList">
 List Item 1
 List Item 2

 Linked List Item

 List Item 4

You can reach the link via getElementById() and the LI containing the link via parentNode.
The properties previousSibling and nextSibling allow you to get List Item 2 and List Item 3
respectively:

var myLinkItem = document.getElementById('linkedItem');
var listItem = myLinkItem.parentNode;
var nextListItem = myLinkItem.nextSibling;
var prevListItem = myLinkItem.previousSibling;

■Note This is a simplified example working only in MSIE; because of the difference of browser implemen-
tations, the next and previous siblings are not the LI elements on modern browsers, but text nodes with the
line break as content.

6803.book Page 103 Wednesday, June 7, 2006 3:31 PM

104 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

If the current object is the last child of the parent element, nextSibling will be undefined
and cause an error if you don’t test for it properly. Unlike with childNodes, there are no short-
cut properties for the first and last siblings, but you could write utility methods to find them;
say, for example, you want to find the first and the last LI in our demo HTML:

window.onload=function()
{
 var myLinkItem=document.getElementById('linkedItem');
 var first=firstSibling(myLinkItem.parentNode);
 var last=lastSibling(myLinkItem.parentNode);
 alert(getTextContent(first));
 alert(getTextContent(last));
}
function lastSibling(node){
 var tempObj=node.parentNode.lastChild;
 while(tempObj.nodeType!=1 && tempObj.previousSibling!=null)
 {
 tempObj=tempObj.previousSibling;
 }
 return (tempObj.nodeType==1)?tempObj:false;
}
function firstSibling(node)
{
 var tempObj=node.parentNode.firstChild;
 while(tempObj.nodeType!=1 && tempObj.nextSibling!=null)
 {
 tempObj=tempObj.nextSibling;
 }
 return (tempObj.nodeType==1)?tempObj:false;
}
function getTextContent(node)
{
 return node.firstChild.nodeValue;
}

Notice that you need to check for nodeType, as the last or first child of the parentNode might
be a text node and not an element.

Let’s make our date checking script less obtrusive by using DOM methods to provide text
feedback instead of sending an alert to the user. First, you need a container to show your error
message:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"➥

 "http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
 <head>

6803.book Page 104 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 105

 <meta http-equiv="Content-Type"➥

 content="text/html; charset=utf-8" />
 <title>Date example</title>
 <style type="text/css">
 .error{color:#c00;font-weight:bold;}
 </style>
 <script type="text/javascript" src="checkdate.js"></script>
 </head>
 <body>
 <h1>Events search</h1>
 <form action="eventssearch.php" method="post"➥

 onsubmit="return checkDate();">
 <p>
 <label for="date">Date in the format DD/MM/YYYY:</label>

 <input type="text" id="date" name="date" />
 <input type="submit" value="Check " />

(example 26/04/1975)
 </p>
 </form>
 </body>
</html>

The checking script more or less stays the same as it was before—the difference is that we
use the SPAN as a means of displaying the error:

function checkDate(){
 if(!document.getElementById || !document.createTextNode){return;}
 var dateField=document.getElementById('date');
 if(!dateField){return;}
 var errorContainer=dateField.parentNode.getElementsByTagName➥

 ('span')[0];
 if(!errorContainer){return;}
 var checkPattern=new RegExp("\\d{2}/\\d{2}/\\d{4}");
 var errorMessage='';
 errorContainer.firstChild.nodeValue=' ';
 var dateValue=dateField.value;
 if(dateValue=='')
 {
 errorMessage='Please provide a date.';
 }
 else if(!checkPattern.test(dateValue))
 {
 errorMessage='Please provide the date in the defined format.';
 }

6803.book Page 105 Wednesday, June 7, 2006 3:31 PM

106 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

 if(errorMessage!='')
 {
 errorContainer.firstChild.nodeValue=errorMessage;
 dateField.focus();
 return false;
 }
 else
 {
 return true;
 }
}

First, test whether DOM is supported and that all the needed elements are there:

 if(!document.getElementById || !document.createTextNode){return;}
 var dateField=document.getElementById('date');
 if(!dateField){return;}
 var errorContainer=dateField.parentNode.getElementsByTagName➥

 ('span')[0];
 if(!errorContainer){return;}

Then define the test pattern and an empty error message. Set the text value of the error
Span to a single space. This is necessary to avoid multiple error messages to display when the
visitor sends the form a second time without rectifying the error.

 var checkPattern=new RegExp("\\d{2}/\\d{2}/\\d{4}");
 var errorMessage='';
 errorContainer.firstChild.nodeValue=' ';

Next is the validation of the field. Read the value of the date field and check whether there
is an entry. If there is no entry, the error message will be that the visitor should enter a date. If
there is a date, but it is in the wrong format, the message will indicate so.

var dateValue=dateField.value;
 if(dateValue=='')
 {
 errorMessage='Please provide a date.';
 }
 else if(!checkPattern.test(dateValue))
 {
 errorMessage='Please provide the date in the defined format.';
 }

All that is left then is to check whether the initial empty error message was changed or not. If
it wasn’t changed, the script should return true to the form onsubmit="return checkDate();"—
thus submitting the form and allowing the back end to take over the work. If the error message
was changed, the script adds the error message to the text content (the nodeValue of the first child

6803.book Page 106 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 107

node) of the error SPAN, and sets the focus of the document back to the date entry field without
submitting the form.

 if(errorMessage!='')
 {
 errorContainer.firstChild.nodeValue+=errorMessage;
 dateField.focus();
 return false;
 }
 else
 {
 return true;
 }

As Figure 4-11 shows, the end result is a lot more visually appealing than the alert message,
and you can style it in any way you want to.

Figure 4-11. Displaying a dynamic error message

Now you know how to access and to change the text value of existing elements. But what if
you want to change other attributes or you need HTML that is not necessarily provided for you?

Changing Attributes of Elements
Once you have reached the element you want to change, you can read and change its attributes
in two ways: an older way—which is more widely supported by user agents—and the way of
using newer DOM methods.

Older and newer user agents allow you to get and set element attributes as object
properties:

var firstLink=document.getElementsByTagName('a')[0];
if(firstLink.href=='search.html')
{
 firstLink.href='http://www.google.com';
}
var mainImage=document.getElementById('nav').getElementsByTagName➥

 ('img')[0];

6803.book Page 107 Wednesday, June 7, 2006 3:31 PM

108 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

mainImage.src='dynamiclogo.gif';
mainImage.alt='Generico Corporation - We do generic stuff';
mainImage.title='Go back to Home';

All the attributes defined in the HTML specifications are available and can be accessed.
Some are read-only for security reasons, but most can be set and read. You can also come up
with your own attributes—JavaScript does not mind. Sometimes storing a value in an attribute
of an element can save you a lot of testing and looping.

■Caution Beware of attributes that have the same name as JavaScript commands—for example, for.
If you try to set element.for='something', it will result in an error. Browser vendors came up with
workarounds for this; in the case of for—which is a valid attribute of the label element—the property name
is htmlFor. Even more bizarre is the class attribute—something we will need a lot in the next chapter. This
is a reserved word; you need to use className instead.

The DOM specifications provide two methods to read and set attributes—getAttribute()
and setAttribute(). The getAttribute() method has one parameter—the attribute name;
setAttribute() takes two parameters—the attribute name and the new value.

The earlier example using the newer methods looks like this:

var firstLink=document.getElementsByTagName('a')[0];
if(firstLink.getAttribute('href') =='search.html')
{
 firstLink.setAttribute('href') ='http://www.google.com';
}
var mainImage=document.getElementById('nav').getElementsByTagName➥

 ('img')[0];
mainImage.setAttribute('src') ='dynamiclogo.gif';
mainImage.getAttribute('alt') ='Generico Corporation - We do generic stuff';
mainImage.getAttribute('title') ='Go back to Home';

This may seem a bit superfluous and bloated, but the benefit is that it is a lot more consis-
tent with other—higher—programming languages. It is also more likely to be supported by
future user agents than the property way of assigning attributes to elements, and they work
easily with arbitrary attribute names.

6803.book Page 108 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 109

Creating, Removing, and Replacing Elements
DOM also provides methods for changing the structure of the document you can use in an
HTML/JavaScript environment (there are more if you do XML conversion via JavaScript). You
can not only change existing elements, but also create new ones and replace or remove old
ones as well. These methods are as follows:

• document.createElement('element'): Creates a new element node with the tag name
element.

• document.createTextNode('string'): Creates a new text node with the node value of
string.

• node.appendChild(newNode): Adds newNode as a new child node to node, following any
existing children of node.

• newNode=node.cloneNode(bool): Creates newNode as a copy (clone) of node. If bool is true,
the clone includes clones of all the child nodes and attributes of the original.

• node.insertBefore(newNode,oldNode): Inserts newNode as a new child node of node
before oldNode.

• node.removeChild(oldNode): Removes the child oldNode from node.

• node.replaceChild(newNode, oldNode): Replaces the child node oldNode of node with
newNode.

■Note Notice that both createElement() and createTextNode() are methods of document; all the oth-
ers are methods of any node.

All of these are indispensable when you want to create web products that are enhanced by
JavaScript but don’t rely exclusively on it. Unless you give all your user feedback via alert, con-
firm, and prompt pop-ups, you will have to rely on HTML elements to be provided to you—like
the error message SPAN in the earlier example. However, as the HTML you need for your Java-
Script to work only makes sense when JavaScript is enabled, it should not be available when
there is no scripting support. An extra SPAN does not hurt anybody—however, form controls
that offer the user great functionality (like date picker tools) but don’t work are a problem.

6803.book Page 109 Wednesday, June 7, 2006 3:31 PM

110 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

Let’s use these methods to counteract a problem that is quite common in web design:
replacing Submit buttons with links. There are two ways to submit form data: a Submit button
or an image button (actually, there are three—if you count hitting the Enter key).

Submit buttons are a thorn in the side of a lot of designers, as you cannot style them con-
sistently across operating systems and browsers. Image buttons are a problem, as they require
a lot of work on sites with localization, and they do not resize when a visitor has a larger font
setting (unless you define their size in ems, which results in unsightly pixelation artifacts).

Links are much nicer, as you can style them with CSS, they resize, and they can be easily
populated from a localized dataset. The problem with links though is that you need JavaScript
to submit a form with them. That is why the lazy or too busy developer’s answer to this
dilemma is a link that simply submits the form using the javascript: protocol (a lot of code
generators or frameworks will come up with the same):

Submit

A lot earlier in this book I established that this is just not an option—as without JavaScript
this will be a dead link, and there won’t be any way to submit the form. If you want to have the
best of both worlds—a simple Submit button for non-JavaScript users and a link for the ones
with scripting enabled—you’ll need to do the following:

1. Loop through all INPUT elements of the document.

2. Test whether the type is submit.

3. If that is not the case, continue the loop, skipping the rest of it.

4. If it is the case, create a new link with a text node.

5. Set the node value of the text node to the value of the INPUT element.

6. Set the href of the link to the invalid javascript:document.forms[0].submit().

7. Replace the input element with the link.

■Note Setting the href attribute to the javascript: construct is not the cleanest way of doing this—in
the next chapter, you’ll learn about event handlers—a much better way to achieve this solution.

6803.book Page 110 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 111

In code, this could be

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"➥

 "http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
 <head>
 <meta http-equiv="Content-Type"➥

 content="text/html; charset=utf-8">
 <title>Example: Submit buttons to links</title>
 <style type="text/css"></style>
 <script type="text/javascript" src="submitToLinks.js"></script>
 </head>
 <body>
 <form action="nogo.php" method="post">
 <label for="Name">Name:</label>
 <input type="text" id="Name" name="Name" />
 <input type="submit" value="send" />
 </form>
 </body>
</html>
function submitToLinks()
{
 if(!document.getElementById || !document.createTextNode){return;}
 var inputs,i,newLink,newText;
 inputs=document.getElementsByTagName('input');
 for (i=0;i<inputs.length;i++)
 {
 if(inputs[i].getAttribute('type').toLowerCase()!='submit')➥

 {continue;i++}
 newLink=document.createElement('a');
 newText=document.createTextNode(inputs[i].getAttribute('value'));
 newLink.appendChild(newText);
 newLink.setAttribute('href','javascript:document.forms[0]➥

 .submit()');
 inputs[i].parentNode.replaceChild(newLink,inputs[i]);
 }
}
window.onload=submitToLinks;

6803.book Page 111 Wednesday, June 7, 2006 3:31 PM

112 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

When JavaScript is available, the visitor gets a link to submit the form; otherwise, he gets a
Submit button, as shown in Figure 4-12.

Figure 4-12. Depending on JavaScript availability, the user gets a link or a button to send the form.

However, the function has one major flaw: it will fail when there are more input elements
following the Submit button. Change the HTML to have another input after the Submit button:

<form action="nogo.php" method="post">
 <p>
 <label for="Name">Name:</label>
 <input type="text" id="Name" name="Name" />
 <input type="submit" value="check" />
 <input type="submit" value="send" />
 </p>
 <p>
 <label for="Email">email:</label>
 <input type="text" id="Email" name="Email" />
 </p>
</form>

You will see that the “send” Submit button does not get replaced with a link. This happens
because you removed an input element, which changes the size of the array, and the loop gets
out of sync with the elements it should reach. A fix for this problem is to decrease the loop
counter every time you remove an item. However, you need to check whether the loop is
already in the final iteration by comparing the loop counter with the length of the array (simply
decreasing the counter would cause the script to fail, as it tries to access an element that is
not there):

function submitToLinks()
{
 if(!document.getElementById || !document.createTextNode){return;}
 var inputs,i,newLink,newText;
 inputs=document.getElementsByTagName('input');
 for (i=0;i<inputs.length;i++)
 {
 if(inputs[i].getAttribute('type').toLowerCase()!='submit')➥

 {continue;i++}
 newLink=document.createElement('a');
 newText=document.createTextNode(inputs[i].getAttribute('value'));

6803.book Page 112 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 113

 newLink.appendChild(newText);
 newLink.setAttribute('href','javascript:document.forms[0]➥

 .submit()');
 inputs[i].parentNode.replaceChild(newLink,inputs[i]);
 if(i<inputs.length){i--};
 }
}
window.onload=submitToLinks;

This version of the script will not fail, and replaces both buttons with links.

■Note There is one usability aspect of forms that this script will break: you can submit forms by hitting the
Enter button when there is a Submit button in them. When we remove all Submit buttons, this will not be pos-
sible any longer. A workaround is to add a blank image button or hide the Submit buttons instead of removing
them. We’ll get back to that option in the next chapter. The other usability concern is whether you should
change the look and feel of forms at all—as you lose the instant recognizability of form elements. Visitors are
used to how forms look on their browser and operating system—if you change that, they’ll have to look for
the interactive elements and might expect other functionality. People trust forms with their personal data and
money transactions—anything that might confuse them is easily perceived as a security issue.

Avoiding NOSCRIPT
The SCRIPT element has a counterpart in NOSCRIPT. This element was originally intended to
provide visitors alternative content when JavaScript was not available. Semantic HTML dis-
courages the use of script blocks inside the document (the body should only contain elements
that contribute to the document’s structure, and SCRIPT does not do that); NOSCRIPT became
deprecated. However, you will find a lot of accessibility tutorials on the Web that advocate the
use of NOSCRIPT as a safety measure. It is tempting to simply add a message inside a <noscript>
tag to the page that explains that you’ll need JavaScript to use the site to its full extent, and it
seems to be a really easy approach to the problem. This is why a lot of developers frowned
upon the W3C deprecating NOSCRIPT or simply sacrificed HTML validity for the cause. How-
ever, by using DOM methods, you can work around the issue.

In a perfect world, there wouldn’t be any web site that needed JavaScript to work—only
web sites that work faster and are sometimes easier to use when scripting is available. In the
real world, however, you will sometimes have to use out-of-the-box products or frameworks
that simply generate code that is dependent on scripting. When reengineering or replacing
those with less obtrusive systems is not an option, you might want to tell visitors that they need
scripting for the site to work.

With NOSCRIPT, this was done quite simply:

<script type="text/javascript">myGreatApplication();</script>
<noscript>
 Sorry but you need to have scripting enabled to use this site.
</noscript>

6803.book Page 113 Wednesday, June 7, 2006 3:31 PM

114 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

A message like that is not very helpful—the least you should do is to allow visitors who cannot
have scripting enabled (for example, workers in banks and financial companies that turn off
scripting as it poses a security threat) to contact you.

Modern scripting tackles this problem from the other side: we give some information and
replace it when scripting is available. In the case of an application dependent on scripting, this
can be

<p id="noscripting">
 We are sorry, but this application needs JavaScript
 to be enabled to work. Please contact us
 If you cannot enable scripting and we will try to help you in other
 ways.
</p>

You then write a script that simply removes it and even use this opportunity to test for DOM
support at the same time.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"➥

 "http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Example: Replacing noscript</title>
 <script type="text/javascript">
 function noscript()
 {
 if(!document.getElementById || ➥

 !document.createTextNode){return;}
 // Add more tests as needed (cookies, objects...)
 var noJSmsg=document.getElementById('noscripting');
 if(!noJSmsg){return;}
 var headline='Browser test succeeded';
 replaceMessage='We tested if your browser is capable of ';
 replaceMessage+='supporting the application, and all checked➥

 out fine. ';
 replaceMessage+='Please proceed by activating the following➥

 link.';
 var linkMessage='Proceed to application.';
 var head=document.createElement('h1');
 head.appendChild(document.createTextNode(headline));

6803.book Page 114 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 115

 noJSmsg.parentNode.insertBefore(head,noJSmsg);
 var infoPara=document.createElement('p');
 infoPara.appendChild(document.createTextNode(replaceMessage));
 noJSmsg.parentNode.insertBefore(infoPara,noJSmsg);
 var linkPara=document.createElement('p');
 var appLink=document.createElement('a');
 appLink.setAttribute('href','application.aspx');
 appLink.appendChild(document.createTextNode(linkMessage));
 linkPara.appendChild(appLink);
 noJSmsg.parentNode.replaceChild(linkPara,noJSmsg);
 }
 window.onload=noscript;
 </script>
 </head>
 <body>
 <p id="noscripting">
 We are sorry, but this application needs JavaScript to be
 enabled to work. Please contact us
 if you cannot enable scripting and we will try to help you in
 other ways
 </p>
 </body>
</html>

You can see that generating a lot of content via the DOM can be rather cumbersome, which
is why for situations like these—where you really don’t need every node you generate as a vari-
able—a lot of developers use innerHTML instead.

Shortening Your Scripts via InnerHTML
Microsoft implemented the nonstandard property innerHTML quite early in the development of
Internet Explorer. It is now supported by most browsers; there has even been talk of adding it
to the DOM standard. What it allows you to do is to define a string containing HTML and assign
it to an object. The user agent then does the rest for you—all the node generation and adding
of the child nodes. The NOSCRIPT example using innerHTML is a lot shorter:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"➥

 "http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
 <head>
 <meta http-equiv="Content-Type"➥

 content="text/html; charset=utf-8">
 <title>Example: Replacing noscript</title>
 <script type="text/javascript">
 function noscript()
 {
 if(!document.getElementById || ➥

 !document.createTextNode){return;}

6803.book Page 115 Wednesday, June 7, 2006 3:31 PM

116 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

 // Add more tests as needed (cookies, objects...)
 var noJSmsg=document.getElementById('noscripting');
 if(!noJSmsg){return;}
 var replaceMessage='<h1>Browser test succeeded<h1>';
 replaceMessage='<p>We tested if your browser is capable of ';
 replaceMessage+='supporting the application, and all checked➥

 out fine. ';
 replaceMessage+='Please proceed by activating the following➥

 link.</p>';
 replaceMessage+='<p>➥

 Proceed to application</p>';
 noJSmsg.innerHTML=replaceMessage;
 }
 </script>
 </head>
 <body>
 <p id="noscripting">
 We are sorry, but this application needs JavaScript to be
 enabled to work. Please contact us
 if you cannot enable scripting and we will try to help you in
 other ways.
 </p>
 </body>
</html>

It is also possible to read out the innerHTML property of an element, which can be extremely
handy when debugging your code—as not all browsers have a “view generated source” feature.
It is also very easy to replace whole parts of HTML with other HTML, which is something we do
a lot when we display content retrieved via Ajax from the back end.

DOM Summary: Your Cheat Sheet
That was a lot to take in, and it might be good to have all the DOM features you need in one
place to copy and have on hand, so here you go.

Reaching Elements in a Document

• document.getElementById('id'): Retrieves the element with the given id as an object

• document.getElementsByTagName('tagname'): Retrieves all elements with the tag name
tagname and stores them in an array-like list

6803.book Page 116 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 117

Reading Element Attributes, Node Values, and Other Node Data

• node.getAttribute('attribute'): Retrieves the value of the attribute with the name
attribute

• node.setAttribute('attribute', 'value'): Sets the value of the attribute with the
name attribute to value

• node.nodeType: Reads the type of the node (1 = element, 3 = text node)

• node.nodeName: Reads the name of the node (either element name or #textNode)

• node.nodeValue: Reads or sets the value of the node (the text content in the case of
text nodes)

Navigating Between Nodes

• node.previousSibling: Retrieves the previous sibling node and stores it as an object.

• node.nextSibling: Retrieves the next sibling node and stores it as an object.

• node.childNodes: Retrieves all child nodes of the object and stores them in an list.
There are shortcuts for the first and last child node, named node.firstChild and
node.lastChild.

• node.parentNode: Retrieves the node containing node.

Creating New Nodes

• document.createElement(element): Creates a new element node with the name element.
You provide the element name as a string.

• document.createTextNode(string): Creates a new text node with the node value of
string.

• newNode =node.cloneNode(bool): Creates newNode as a copy (clone) of node. If bool is
true, the clone includes clones of all the child nodes of the original.

• node.appendChild(newNode): Adds newNode as a new (last) child node to node.

• node.insertBefore(newNode,oldNode): Inserts newNode as a new child node of node
before oldNode.

• node.removeChild(oldNode): Removes the child oldNode from node.

• node.replaceChild(newNode, oldNode): Replaces the child node oldNode of node with
newNode.

• element.innerHTML: Reads or writes the HTML content of the given element as a string—
including all child nodes with their attributes and text content.

6803.book Page 117 Wednesday, June 7, 2006 3:31 PM

118 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

DOMhelp: Our Own Helper Library
The most annoying thing when working with the DOM is browser inconsistencies—especially
when this means you have to test the nodeType every time you want to access a nextSibling, as
the user agent might or might not read the line break as its own text node.

It is therefore a good idea to have a set of tool functions handy to work around these issues
and allow you to concentrate on the logic of the main script instead. There are many JavaScript
frameworks and libraries available on the Web—the biggest and most up to date is probably
prototype (http://prototype.conio.net/).

Let’s start our own helper method library right here and now to illustrate the issues you’d
have to face without it otherwise.

■Note You’ll find the DOMhelp.js file and a test HTML file in the code demo zip file accompanying this
book—the version in the zip has more methods, which will be discussed in the next chapter, so don’t get
confused.

The library will consist of one object called DOMhelp with several utility methods. The fol-
lowing is the skeleton for the utility that we will flesh out over the course of this and the next
chapter.

DOMhelp=
{
 // Find the last sibling of the current node
 lastSibling:function(node){},

 // Find the first sibling of the current node
 firstSibling:function(node){},

 // Retrieve the content of the first text node sibling of the current node
 getText:function(node){},

 // Set the content of the first text node sibling of the current node
 setText:function(node,txt){},

 // Find the next or previous sibling that is an element
 // and not a text node or line break
 closestSibling:function(node,direction){},

 // Create a new link containing the given text
 createLink:function(to,txt){},

 // Create a new element containing the given text
 createTextElm:function(elm,txt){},

6803.book Page 118 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 119

 // Simulate a debugging console to avoid the need for alerts
 initDebug:function(){},
 setDebug:function(bug){},
 stopDebug:function(){}
}

You’ve already encountered the last and first sibling functions earlier in this chapter; the
only thing that was missing in those was a test for whether there really is a previous or next sib-
ling to check before trying to assign it to the temporary object. Each of these two methods
checks for the existence of the sibling in question, and returns false if it isn’t available:

 lastSibling:function(node)
 {
 var tempObj=node.parentNode.lastChild;
 while(tempObj.nodeType!=1 && tempObj.previousSibling!=null)
 {
 tempObj=tempObj.previousSibling;
 }
 return (tempObj.nodeType==1)?tempObj:false;
 },
 firstSibling:function(node)
 {
 var tempObj=node.parentNode.firstChild;
 while(tempObj.nodeType!=1 && tempObj.nextSibling!=null)
 {
 tempObj=tempObj.nextSibling;
 }
 return (tempObj.nodeType==1)?tempObj:false;
 },

Next up is the getText method, which reads out the text value of the first text node of an
element:

 getText:function(node)
 {
 if(!node.hasChildNodes()){return false;}
 var reg=/^\s+$/;
 var tempObj=node.firstChild;
 while(tempObj.nodeType!=3 && tempObj.nextSibling!=null ||➥

 reg.test(tempObj.nodeValue))
 {
 tempObj=tempObj.nextSibling;
 }
 return tempObj.nodeType==3?tempObj.nodeValue:false;
 },

6803.book Page 119 Wednesday, June 7, 2006 3:31 PM

120 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

The first problem we might encounter is that the node has no children whatsoever, there-
fore we check for hasChildNodes. The other problems are embedded elements in the node and
whitespace such as line breaks and tabs being read as nodes by browsers other than MSIE.
Therefore, we test the first child node and jump to the next sibling until the nodeType is text (3),
and the node does not consist solely of whitespace characters (this is what the regular expres-
sion checks). We also test whether there is a next sibling node to go to before we try to assign it
to tempObj. If all works out fine, the method returns the nodeValue of the first text node; other-
wise it returns false.

The same testing pattern works for setText, which replaces the first real text child of the
node with new text and avoids any line breaks or tabs:

 setText:function(node,txt)
 {
 if(!node.hasChildNodes()){return false;}
 var reg=/^\s+$/;
 var tempObj=node.firstChild;
 while(tempObj.nodeType!=3 && tempObj.nextSibling!=null ||➥

 reg.test(tempObj.nodeValue))
 {
 tempObj=tempObj.nextSibling;
 }
 if(tempObj.nodeType==3){tempObj.nodeValue=txt}else{return false;}
 },

The next two helper methods help us with the common tasks of creating a link with a tar-
get and text inside it and creating an element with text inside.

 createLink:function(to,txt)
 {
 var tempObj=document.createElement('a');
 tempObj.appendChild(document.createTextNode(txt));
 tempObj.setAttribute('href',to);
 return tempObj;
 },
 createTextElm:function(elm,txt)
 {
 var tempObj=document.createElement(elm);
 tempObj.appendChild(document.createTextNode(txt));
 return tempObj;
 },

They contain nothing you haven’t already seen here earlier, but they are very handy to have in
one place.

The fact that some browsers read line breaks as text nodes and others don’t means that
you cannot trust nextSibling or previousSibling to return the next element—for example, in
an unordered list. The utility method closestSibling() works around that problem. It needs
node and direction (1 for the next sibling, -1 for the previous sibling) as parameters.

6803.book Page 120 Wednesday, June 7, 2006 3:31 PM

C H A P T E R 4 ■ H T M L A N D J A V A S C R I P T 121

 closestSibling:function(node,direction)
 {
 var tempObj;
 if(direction==-1 && node.previousSibling!=null)
 {
 tempObj=node.previousSibling;
 while(tempObj.nodeType!=1 && tempObj.previousSibling!=null)
 {
 tempObj=tempObj.previousSibling;
 }
 }
 else if(direction==1 && node.nextSibling!=null)
 {
 tempObj=node.nextSibling;
 while(tempObj.nodeType!=1 && tempObj.nextSibling!=null)
 {
 tempObj=tempObj.nextSibling;
 }
 }
 return tempObj.nodeType==1?tempObj:false;
 },

The final set of methods is there to simulate a programmable JavaScript debug console.
Using alert() as a means to display values is handy, but it can become a real pain when you
want to watch changes inside a large loop—who wants to press Enter 200 times? Instead of
using alert(), we add a new DIV to the document and output any data we want to check as new
child nodes of that one. With a proper style sheet, we could float that DIV above the content. We
start with an initialization method that checks whether the console already exists and removes
it if that is the case. This is necessary to avoid several consoles existing simultaneously. We then
create a new DIV element, give it an ID for styling, and add it to the document.

 initDebug:function()
 {
 if(DOMhelp.debug){DOMhelp.stopDebug();}
 DOMhelp.debug=document.createElement('div');
 DOMhelp.debug.setAttribute('id',DOMhelp.debugWindowId);
 document.body.insertBefore(DOMhelp.debug,document.body.firstChild);
 },

The setDebug method takes a string called bug as a parameter. It tests whether the console
already exists and calls the initialization method to create the console if necessary. It then adds
the bug string followed by a line break to the HTML content of the console.

 setDebug:function(bug)
 {
 if(!DOMhelp.debug){DOMhelp.initDebug();}
 DOMhelp.debug.innerHTML+=bug+'\n';
 },

6803.book Page 121 Wednesday, June 7, 2006 3:31 PM

122 C H A P T E R 4 ■ H T M L A N D JA V A S C R I P T

The final method is the one that removes the console from the document if it exists. Notice
that we both need to remove the element and set the object property to null; otherwise testing
for DOMhelp.debug would be true even if there is no console to write to.

 stopDebug:function()
 {
 if(DOMhelp.debug)
 {
 DOMhelp.debug.parentNode.removeChild(DOMhelp.debug);
 DOMhelp.debug=null;
 }
 }

We will extend this helper library over the course of the next chapters.

Summary
After reading this chapter, you should be fully equipped to tackle any HTML document, get the
parts you need, and change or even create markup via the DOM.

You learned about the anatomy of an HTML document and how the DOM offers you what
you see as a collection of element, attribute, and text nodes. You also saw the window methods
alert(), confirm(), and prompt(); these are quick and widely supported—albeit insecure and
clumsy—ways of retrieving data and giving feedback.

You then learned about the DOM, and how to reach elements, navigate between them,
and how to create new content.

In the next chapter, you’ll learn how to deal with presentation issues and to track how a
visitor has interacted with the document in her browser, and to react accordingly via event
handling.

6803.book Page 122 Wednesday, June 7, 2006 3:31 PM

123

■ ■ ■

C H A P T E R 5

Presentation and Behavior
(CSS and Event Handling)

In the last chapter, you took apart an HTML document to see what is under the hood. You
fiddled with some of the cables, exchanged some parts, and got the engine in pristine condi-
tion. Now it is time to take a look at how to give the document a new lick of paint with CSS and
kick-start it via events. If beauty is what you are after, you are in luck, as we start with the pre-
sentation layer.

Changing the Presentation Layer via JavaScript
Every element in the HTML document has as one of its properties a style attribute that is a col-
lection of all its visual properties. You can read or write the attribute’s value, and if you write a
value into the attribute, you will immediately change the look and feel of the element.

■Note Notice that we use the DOMhelp library we created in the previous chapter throughout the whole
chapter (and, indeed, in the rest of the book).

Try this script for starters:

exampleStyleChange.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Example: Accessing the style collection</title>
 <style type="text/css">
 </style>
 <script type="text/javascript" src="DOMhelp.js"></script>
 <script type="text/javascript" src="styleChange.js"></script>
</head>

6803.book Page 123 Friday, June 9, 2006 3:19 PM

124 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

<body>
<h3>Contact Details</h3>
<address>
 Awesome Web Production Company

 Going Nowhere Lane 0

 Catch 22

 N4 2XX

 England

</address>
</body>
</html>

styleChange.js

sc = {
 init:function(){
 sc.head = document.getElementsByTagName('h3')[0];
 if(!sc.head){return;}
 sc.ad = DOMhelp.closestSibling(sc.head,1);
 sc.ad.style.display='none';
 var t = DOMhelp.getText(sc.head);
 var collapseLink = DOMhelp.createLink('#',t);
 sc.head.replaceChild(collapseLink,sc.head.firstChild);
 DOMhelp.addEvent(collapseLink,'click',sc.peekaboo,false)
 collapseLink.onclick = function(){return;} // Safari fix
 },
 peekaboo:function(e){
 sc.ad.style.display=sc.ad.style.display=='none'? '':'none';
 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window,'load',sc.init,false);

■Note Patience is the key; the addEvent() and cancelClick() parts will be explained in the second part
of this chapter. For now, focus on the bold parts of the script.

6803.book Page 124 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 125

The script grabs the first H3 element in the document and gets the ADDRESS element via the
closestSibling helper method of the DOMhelp library (the method makes sure that it retrieves
the next element and not line breaks that are seen as text nodes). It then modifies the display
property of its style collection to hide the address. It replaces the text inside the heading with
a link pointing to the function peekaboo. The link is necessary to allow keyboard users to
expand and collapse the address. While mouse users could easily click the heading, it is not
accessible by tabbing through the document. The peekaboo() function reads the display value
of the style collection of the address and replaces it with an empty string if display is set to
none and with none when the display is set to something other than an empty string—effectively
hiding and showing the address as shown in Figure 5-1.

Figure 5-1. The two states of the address (collapsed and expanded)

■Note You might have encountered scripts in the past that use element.style.display='block' as
the opposite of none. This works for most elements, but simply setting the display value to nothing resets it
to the initial display value—which does not necessarily have to be block; it could be inline or table-row.
If you add an empty string, you leave it to the browser to set the appropriate value; otherwise you’d have to
add a switch block or if conditions for different elements.

6803.book Page 125 Friday, June 9, 2006 3:19 PM

126 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

The style collection contains all the style settings of the current element that you can
modify by using the property notation of the different CSS selectors. A rule of thumb for the
property notation is that you remove the dash in the CSS selector and use camelCase for
the whole selector. For example, line-height becomes lineHeight and border-right becomes
borderRight. Here’s a list of all available properties (notice that float becomes cssFloat!):

• background, backgroundAttachment, backgroundColor, backgroundImage,
backgroundPosition, and backgroundRepeat

• border, borderBottom, borderTop, borderLeft, borderRight, and for each of them style,
width, and color

• color, direction, display, visibility, letterSpacing, lineHeight, textAlign,
textDecoration, textIndent, textTransform, wordSpacing, letterSpacing

• margin, padding (each for top, left, bottom, and right)

• width, height, minWidth, maxWidth, minHeight, maxHeight

• captionSide, emptyCells, tableLayout, verticalAlign

• top, bottom, left, right, zIndex, cssFloat, position, overflow, clip, clear

• listStyle, listStyleImage, listStylePosition, listStyleType

• font, fontFamily, fontSize, fontStretch, fontStyle, fontVariant, fontWeight

You can read and write all of these using getAttribute() and setAttribute(); however,
if you write them, it might be quicker to simply set the style attribute to a string value using
JavaScript object property syntax. For the browser, both of the following examples are the
same, but the latter might be a bit quicker to render and keeps your JavaScript shorter.

var warning=document.createElement('div');

warning.style.borderColor='#c00';
warning.style.borderWidth='1px';
warning.style.borderStyle='solid';
warning.style.backgroundColor='#fcc';
warning.style.padding='5px';
warning.style.color='#c00';
warning.style.fontFamily='Arial';

// is the same as
warning.setAttribute('style' , 'font-family:arial;color:#c00;
padding:5px;border:1px solid #c00;background:#fcc');

6803.book Page 126 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 127

While setting style attributes directly is frowned upon in modern web design (you are
effectively mixing behavior and presentation and you make maintenance a lot harder), there
are situations where you will have to set style attributes directly via JavaScript—for example:

• Fixing browser shortcomings when it comes to CSS support

• Dynamically changing the dimensions of elements to fix layout glitches

• Animating parts of the document

• Creating rich user interfaces with drag-and-drop functionality

■Note You will hear about the first two later on in this chapter; however, you won’t find animation or drag-
and-drop examples here, as these are very advanced JavaScript topics and need a lot of explanation that falls
outside of the scope of this book. You will find examples you can use out-of-the-box in Chapter 11.

For simple styling tasks, you should avoid defining the look and feel in JavaScript in order
to simplify maintenance of your script. In Chapter 3, we talked about the main feature of mod-
ern web development: separation of the development layers.

If you use a lot of style definitions in JavaScript, you mix the presentation and the behavior
layers. If some months down the line the look and feel of your application has to change, you—
or some third-party developer—will have to revisit your script code and change all the settings
in it. This is neither necessary nor advisable, as you can separate the look and feel out into the
CSS document.

You can achieve this separation by dynamically changing the class attribute of elements.
That way you can apply or remove style settings defined in your site’s style sheet. The CSS
designer does not have to worry about your script code, and you don’t have to know about all
the problems browsers have when it comes to supporting CSS. All you need to communicate
is the names of the classes.

For example, to apply a class called dynamic to an element with the ID nav, you change its
className attribute:

var n=document.getElementById('nav');
n.className='dynamic';

■Note Logically, you should also be able to change the class via the setAttribute() method, but
browser support for this is flaky (Internet Explorer does not allow class or style as the attribute), which is
why for the moment it is a good plan to stick with className. The name of the property is className and
not class, as class is a reserved word in JavaScript and results in an error when used as a property.

6803.book Page 127 Friday, June 9, 2006 3:19 PM

128 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

You can remove the class by setting its value to an empty string. Again, removeAttribute()
does not work reliably across different browsers.

As you may be aware, HTML elements can have more than one CSS class assigned to them.
A construct of the following kind is valid HTML—and sometimes a good idea:

<p class="intro special kids">Lorem Ipsum</p>

In JavaScript, you can achieve this by simply appending a value preceded by a space to
the className value. However, there is a danger that browsers will not display your class set-
tings correctly, especially when adding or removing results in leading or trailing spaces in the
className value. The following two examples might not display correctly in some browsers
(especially in MSIE 5 on Macs):

<p class="intro special kids ">Lorem Ipsum</p>
<p class=" intro special kids">Lorem Ipsum</p>

You can work around this problem with a helper method. Writing this helper method
to dynamically add and remove classes should be easy: you append a class value preceded
by a space if the className attribute is not empty and without the space if it is empty. You
remove the class name from the original value just like you would remove a word from a string.
However, as you need to cater to browser problems with orphan spaces, it gets a bit more
complicated than this. The following tool method is included in DOMhelp and allows you to
dynamically add and remove classes from an element. It also allows you to test whether a cer-
tain class is already added to it.

function cssjs(a,o,c1,c2){
 switch (a){
 case 'swap':
 if(!domtab.cssjs('check',o,c1)){
 o.className.replace(c2,c1)
 }else{
 o.className.replace(c1,c2);
 }
 break;
 case 'add':
 if(!domtab.cssjs('check',o,c1)){
 o.className+=o.className?' '+c1:c1;
 }
 break;
 case 'remove':
 var rep=o.className.match(' '+c1)?' '+c1:c1;
 o.className=o.className.replace(rep,'');
 break;
 case 'check':
 var found=false;
 var temparray=o.className.split(' ');
 for(var i=0;i<temparray.length;i++){
 if(temparray[i]==c1){found=true;}
 }

6803.book Page 128 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 129

 return found;
 break;
 }
}

Don’t worry too much about the inner workings of this method—it will get clearer to you
once you master the match() and replace() methods, which will be covered in Chapter 8. For
now, all you need to know is how to use it, and for that you use the method’s four parameters:

• a is the action that has to be taken and has the following options:

• swap replaces one class with another.

• add adds a new class.

• remove removes a class.

• check tests whether the class is already applied or not.

• o is the object you want to add classes to or remove classes from.

• c1 and c2 are the class names—c2 is only needed when the action is swap.

Let’s use the method to recode the earlier example—this time hiding and showing the
address by dynamically applying and removing a class.

exampleClassChange.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Example: Dynamically changing classes</title>
 <style type="text/css">
 @import "dynamic.css";
 </style>
 <script type="text/javascript" src="DOMhelp.js"></script>
 <script type="text/javascript" src="classChange.js"></script>
</head>
<body>
<h3>Contact Details</h3>
<address>
 Awesome Web Production Company

 Going Nowhere Lane 0

 Catch 22

 N4 2XX

 England

</address>
</body>
</html>

6803.book Page 129 Friday, June 9, 2006 3:19 PM

130 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

The style sheet contains, among others, a class called hide that will hide any element it gets
applied to. In this example, you use the off-left technique (http://css-discuss.incutio.com/
?page=screenReaderVisibility) for that, which is possibly the most accessible way of hiding
content. The problem with altering the visibility or display properties to hide elements is
that screen readers helping blind users may not make content available to them, although it is
visible in a browser.

classChange.css (excerpt)

.hide{
 position:absolute;
 top:0;
 left:-9999px;
 height:0;
 overflow:hidden;
}

You specify the name of the class as a parameter at the start of the script, which means that if
someone needs to change the name at a later stage, he won’t have to check the whole script.

If you develop a really complex site with lots of different classes to be added and removed,
you could move them out into their own JavaScript include with their own object. For this
example, such a move would be overkill—but we will come back to this option later.

■Note Notice that DOMhelp already includes the cssjs() method, therefore you don’t need to include it
in this example.

classChange.js

sc={

 // CSS classes
 hidingClass:'hide', // Hide elements

 init:function(){
 sc.head=document.getElementsByTagName('h3')[0];
 if(!sc.head){return;}
 sc.ad=DOMhelp.closestSibling(sc.head,1);

 DOMhelp.cssjs('add',sc.ad,sc.hidingClass);

 var t=DOMhelp.getText(sc.head);
 var collapseLink=DOMhelp.createLink('#',t);
 sc.head.replaceChild(collapseLink,sc.head.firstChild);

6803.book Page 130 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 131

 DOMhelp.addEvent(collapseLink,'click',sc.peekaboo,false)
 collapseLink.onclick=function(){return;} // Safari fix
 },
 peekaboo:function(e){

 if(DOMhelp.cssjs('check',sc.ad,sc.hidingClass)){
 DOMhelp.cssjs('remove',sc.ad,sc.hidingClass)
 } else {
 DOMhelp.cssjs('add',sc.ad,sc.hidingClass)
 }

 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window,'load',sc.init,false);

Helping the CSS Designer
DOM scripting and separating the CSS out into classes that get applied and removed dynami-
cally allows you to make the life of web designers a lot easier. Using DOM and JavaScript allows
you to reach much further into the document than CSS selectors allow you to. One common
request is a way to reach a parent element in CSS for hover effects, for example. In CSS this is
impossible; in JavaScript it is pretty easy to achieve via parentNode. With JavaScript and DOM,
you can provide the designer with dynamic hooks for her style sheet by altering the HTML con-
tent to apply classes and IDs, generate content, or even add and remove whole style sheets by
adding or removing STYLE and LINK elements.

Styling Dynamic Pages Made Easy

It is very important to make it as easy as possible for the designer to create different styles for
the scripting enhanced version of a site and the nonscripting version. The nonscripting version
can be much simpler, and the styles needed for it tend to be fewer (for example, in the HTML
address example you only need link styles defined for inside the H3 when JavaScript is enabled,
as the link is generated via JavaScript). A really easy option to give the designer a unique iden-
tifier when scripting is enabled is to apply a class to the body or to the main element of the
layout.

dynamicStyling.js—used in exampleDynamicStyling.html

sc={

 // CSS classes
 hidingClass:'hide', // Hide elements
 DOMClass:'dynamic', // Indicate DOM support

 init:function(){

6803.book Page 131 Friday, June 9, 2006 3:19 PM

132 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

 // Check for DOM and apply a class to the body if it is supported
 if(!document.getElementById || !document.createElement){return;}
 DOMhelp.cssjs('add',document.body,sc.DOMClass);

 sc.head=document.getElementsByTagName('h3')[0];
 if(!sc.head){return;}
 sc.ad=DOMhelp.closestSibling(sc.head,1);
 DOMhelp.cssjs('add',sc.ad,sc.hidingClass);
 var t=DOMhelp.getText(sc.head);
 var collapseLink=DOMhelp.createLink('#',t);
 sc.head.replaceChild(collapseLink,sc.head.firstChild);
 DOMhelp.addEvent(collapseLink,'click',sc.peekaboo,false)
 collapseLink.onclick=function(){return;} // Safari fix
 },
 peekaboo:function(e){
 if(DOMhelp.cssjs('check',sc.ad,sc.hidingClass)){
 DOMhelp.cssjs('remove',sc.ad,sc.hidingClass)
 } else {
 DOMhelp.cssjs('add',sc.ad,sc.hidingClass)
 }
 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window,'load',sc.init,false);

That way the CSS designer can define in the style sheet which settings to apply when JavaScript
is disabled and overwrite them with others when JavaScript is enabled by using the body with
the class name in a descendant selector:

dynamicStyling.css

*{
 margin:0;
 padding:0;
}
body{
 font-family:Arial,Sans-Serif;
 font-size:small;
 padding:2em;
}

6803.book Page 132 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 133

/* JS disabled */
address{
 background:#ddd;
 border:1px solid #999;
 border-top:none;
 font-style:normal;
 padding:.5em;
 width:15em;
}
h3{
 border:1px solid #000;
 color:#fff;
 background:#369;
 padding:.2em .5em;
 width:15em;
 font-size:1em;
}

/* JS enabled */
body.dynamic address{
 background:#fff;
 border:none;
 font-style:normal;
 padding:.5em;
 border-top:1px solid #ccc;
}
body.dynamic h3{
 padding-bottom:.5em;
 background:#fff;
 border:none;
}
body.dynamic h3 a{
 color:#369;
}

/* dynamic classes */
.hide{
 position:absolute;
 top:0;
 left:-9999px;
 height:0;
}

6803.book Page 133 Friday, June 9, 2006 3:19 PM

134 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

The address example can now—depending on JavaScript and DOM being available or not—
have two completely different looks (one of these having two states) as shown in Figure 5-2.

Figure 5-2. The three states of the address (nondynamic version, collapsed, and expanded)

This works nicely if your site is not overly complex and does not have many dynamic
elements. For more complex sites, you could use a different style sheet for the non-JavaScript
and the JavaScript versions and add the latter via JavaScript. This also has an added benefit:
the low-level user does not have to load a style sheet that isn’t of any use to him. You can add
dynamic style sheets by creating a new LINK element in the head of the document. In this
example, you start by including a low-level style sheet.

exampleStyleSheetChange.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Example: Dynamically applying new Style Sheets </title>
 <style type="text/css">
 @import "lowlevel.css";
 </style>
 <script type="text/javascript" src="DOMhelp.js"></script>
 <script type="text/javascript" src="styleSheetChange.js"></script>
</head>

6803.book Page 134 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 135

<body>
<h3>Contact Details</h3>
<address>
 Awesome Web Production Company

 Going Nowhere Lane 0

 Catch 22

 N4 2XX

 England

</adress>
</body>
</html>

The script checks for DOM support and adds a new link element pointing to the high-level
style sheet:

styleSheetChange.js

sc={
 // CSS classes

 hidingClass:'hide', // Hide elements
 highLevelStyleSheet:'highlevel.css', // Style sheet for dynamic site

 init:function(){

 // Check for DOM and apply a class to the body if it is supported
 if(!document.getElementById || !document.createElement){return;}

 var newStyle=document.createElement('link');
 newStyle.setAttribute('type','text/css');
 newStyle.setAttribute('rel','StyleSheet');
 newStyle.setAttribute('href',sc.highLevelStyleSheet);
 document.getElementsByTagName('head')[0].appendChild(newStyle);

 sc.head=document.getElementsByTagName('h3')[0];
 if(!sc.head){return;}
 sc.ad=DOMhelp.closestSibling(sc.head,1);
 DOMhelp.cssjs('add',sc.ad,sc.hidingClass);
 var t=DOMhelp.getText(sc.head);
 var collapseLink=DOMhelp.createLink('#',t);
 sc.head.replaceChild(collapseLink,sc.head.firstChild);
 DOMhelp.addEvent(collapseLink,'click',sc.peekaboo,false)
 collapseLink.onclick=function(){return;} // Safari fix
 },

6803.book Page 135 Friday, June 9, 2006 3:19 PM

136 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

 peekaboo:function(e){
 if(DOMhelp.cssjs('check',sc.ad,sc.hidingClass)){
 DOMhelp.cssjs('remove',sc.ad,sc.hidingClass)
 } else {
 DOMhelp.cssjs('add',sc.ad,sc.hidingClass)
 }
 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window,'load',sc.init,false);.

The head of the HTML example is the following after the script has executed (you can test
this in Firefox by selecting the whole document via Ctrl+A or Cmd+A and then right-clicking
anywhere and choosing View Selected Source).

exampleStyleSheetChange.html after script execution (excerpt)

<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Example: Using dynamic classes</title>
 <style type="text/css">
 @import "lowlevel.css";
 </style>
 <script type="text/javascript" src="DOMhelp.js"></script>
 <script type="text/javascript" src="styleSheetChange.js"></script>
 <link href="highlevel.css" rel="StyleSheet" type="text/css">
</head>

You might have encountered the dynamic changing of styles earlier. As early as 2001, so-
called style switchers became fashionable. These are small page widgets that allow the user to
choose a page’s look and feel by selecting a style from a given list. Modern browsers have this
option built in—in Firefox, for example, you can choose View ➤ Page Style and get all the avail-
able styles to select from. For MSIE, JavaScript developers came up with a clever trick—if you set
the disabled attribute of a link element, the browser would not apply it. So all you need to do is to
loop through all the link elements of the document and disable all but the chosen one.

The demo exampleStyleSwitcher.html shows how this is done. In the HTML, you define a
main style sheet and alternate style sheets for large print and high contrast.

exampleStyleSwitcher.html (excerpt)

<link href="demoStyles.css" title="Normal"
 rel="stylesheet" type="text/css">
<link href="largePrint.css" title="Large Print"
 rel="alternate stylesheet" type="text/css">
<link href="highContrast.css" title="High Contrast"
 rel="alternate stylesheet" type="text/css">

6803.book Page 136 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 137

The script is not complex. You loop through all LINK elements in the document and for
each one determine whether its attribute is either stylesheet or alternate stylesheet. You
create a new list with links pointing to a function that disables all but the currently chosen style
sheet and add this list to the document.

You start with two properties: one to store the ID of the “style menu” to allow for CSS styl-
ing, and one to store a label to show as the first list item preceding all the available styles.

styleSwitcher.js

switcher={
 menuID:'styleswitcher',
 chooseLabel:'Choose Style:',

An initialization method called init() creates a new HTML list and adds a list item with
the label as text content. You set the ID of the list to the one defined in the property.

styleSwitcher.js (continued)

 init:function(){
 var tempLI,tempA,styleTitle;
 var stylemenu=document.createElement('ul');
 tempLI=document.createElement('li');
 tempLI.appendChild(document.createTextNode(switcher.chooseLabel));
 stylemenu.appendChild(tempLI);
 stylemenu.id=switcher.menuID;

You loop through all the LINK elements in the document. For each element, test for the
value of its rel attribute. If the value is neither stylesheet nor alternate stylesheet, skip this
LINK element. This is necessary to avoid other alternative content offered via the LINK tags—like
an RSS feed—from being disabled.

styleSwitcher.js (continued)

 var links=document.getElementsByTagName('link');
 for(var i=0;i<links.length;i++){
 if(links[i].getAttribute('rel')!='stylesheet' &&
 links[i].getAttribute('rel')!='alternate stylesheet'){
 continue;
 }

Create a new list item with a link for each style and set the text value of the link to the value
of the LINK element’s title attribute. Set a dummy href attribute to make the link appear as a
link; otherwise the user may not recognize the new link as an interactive element.

styleSwitcher.js (continued)

 tempLI=document.createElement('li');
 tempA=document.createElement('a');
 styleTitle=links[i].getAttribute('title');

6803.book Page 137 Friday, June 9, 2006 3:19 PM

138 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

 tempA.appendChild(document.createTextNode(styleTitle));
 tempA.setAttribute('href','#');

Apply an event handler to the link that triggers the setSwitch() method and sends the link
itself as a parameter via the this keyword. You can then continue to add the new list items to
the menu list and append the list to the document body when the loop is complete.

styleSwitcher.js (continued)

 tempA.onclick=function(){
 switcher.setSwitch(this);
 }
 tempLI.appendChild(tempA);
 stylemenu.appendChild(tempLI);
 }
 document.body.appendChild(stylemenu);
 },

In the setSwitch() method, you’ll retrieve the link that was activated as the parameter o.
Loop through all LINK elements, and test each to see whether the title attribute is the same
as the text content of the link (you can safely read the text via firstChild.nodeValue without
testing for the node type, as you generated the links). If the title is different, set the disabled
property of the LINK to true; and if it is the same, set disable to false and the rel attribute to
stylesheet instead of alternate stylesheet. Then stop the link from being followed by return-
ing false.

styleSwitcher.js (continued)

 setSwitch:function(o){
 var links=document.getElementsByTagName('link');
 for(var i=0;i<links.length;i++){
 if(links[i].getAttribute('rel')!='stylesheet' &&
 links[i].getAttribute('rel')!='alternate stylesheet'){
 continue;
 }
 var title=o.firstChild.nodeValue;
 if(links[i].getAttribute('title')!=title){
 links[i].disabled=true;
 } else {
 links[i].setAttribute('rel','stylesheet');
 links[i].disabled=false;
 }
 }
 return false;
 }
}

You can test the functionality by opening exampleStyleSwitcher.html in a browser that
has JavaScript and CSS enabled.

6803.book Page 138 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 139

Paul Sowden pioneered this trick in 2001 at Alistapart.com with his article “Alternative Style:
Working With Alternate Style Sheets” (http://www.alistapart.com/articles/alternate/). As
Netscape 4 (remember this was 2001) did not support this method properly, Daniel Ludwin
came up with “A Backward Compatible Style Switcher” in 2002 (http://www.alistapart.com/
articles/n4switch/), which used document.write instead (a bit of a step backwards in terms of
coding style).

Following comments about the inaccessibility of JavaScript style switchers, Chris Clark
moved the trick server side with his “Build a PHP Switch” article (http://www.alistapart.com/
articles/phpswitch/) in 2002. This method is more stable, but it means you have to reload the
page to apply a new style.

A lot of variants of the same idea came up in between, and in 2005, Dustin Diaz took up the
idea and mixed the stability of the PHP switcher with the slickness of a JavaScript enhanced
interface in his “Unobtrusive Degradable Ajax Style Sheet Switcher” (http://24ways.org/
advent/introducing-udasss), which uses Ajax to bridge the gap.

Style switchers can be a useful feature, especially when you offer styles that might help
users overcome problems like poor eyesight such as larger fonts or a higher contrast between
foreground and background. On the other hand, they can be quite pointless eye candy if you
use them exclusively for the sake of offering different styles.

This evolution of the style switcher idea shows that JavaScript solutions are never set in
stone, but need testing in “the real world” and feedback from users and other developers to be
really applicable in a production environment or a live site. If you surf the web these days,
you’ll see many “experimental” scripts promising a lot but on closer inspection turning out to
be slow, unstable, or just a neat trick that could be done a lot better with another technology.
Just because we can do anything in JavaScript doesn’t mean we should.

Easing the Maintenance

Keeping the whole look and feel out of your scripts and inside the style sheet (and thereby
keeping it the responsibility of the CSS designer) is just half the battle. During maintenance of
a project, the CSS class names might have to change—for example, to support a certain back
end or Content Management System (CMS). One example would be Adobe’s Contribute (a
lightweight CMS that allows for WYSIWYG editing of web sites), which—in a standard configu-
ration—needs classes that should not show up in the editor’s style picker to start with mmhide_.
Therefore, it is important to make it easy for the designer to change the names of your dynam-
ically applied classes. The most basic trick is to keep the class names in their own variables or
parameters. You’ve done that in the earlier examples already. You could have applied the class
names directly:

sc={
 init:function(){
 // Check for DOM and apply a class to the body if it is supported
 if(!document.getElementById || !document.createElement){return;}
 DOMhelp.cssjs('add',document.body, 'dynamic');
 sc.head=document.getElementsByTagName('h3')[0];
 if(!sc.head){return;}
 sc.ad=DOMhelp.closestSibling(sc.head,1);
 DOMhelp.cssjs('add',sc.ad, 'hide');
 var t=DOMhelp.getText(sc.head);

6803.book Page 139 Friday, June 9, 2006 3:19 PM

140 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

 var collapseLink=DOMhelp.createLink('#',t);
 sc.head.replaceChild(collapseLink,sc.head.firstChild);
 DOMhelp.addEvent(collapseLink,'click',sc.peekaboo,false)
 collapseLink.onclick=function(){return;} // Safari fix
 },
 peekaboo:function(e){
 if(DOMhelp.cssjs('check',sc.ad,sc.hidingClass)){
 DOMhelp.cssjs('remove',sc.ad,sc.hidingClass)
 } else {
 DOMhelp.cssjs('add',sc.ad,sc.hidingClass)
 }
 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window,'load',sc.init,false);

Instead, you moved them out of the methods as properties of the main object and com-
mented them to allow those who don’t know JavaScript to change the class names without
endangering the quality or functionality of your methods:

sc={

 // CSS classes
 hidingClass:'hide', // Hide elements
 DOMClass:'dynamic', // Indicate DOM support

 init:function(){
 if(!document.getElementById || !document.createElement){return;}
 DOMhelp.cssjs('add',document.body,sc.DOMClass);
 sc.head=document.getElementsByTagName('h3')[0];
 if(!sc.head){return;}
 sc.ad=DOMhelp.closestSibling(sc.head,1);
 DOMhelp.cssjs('add',sc.ad,sc.hidingClass);
 var t=DOMhelp.getText(sc.head);
 var collapseLink=DOMhelp.createLink('#',t);
 sc.head.replaceChild(collapseLink,sc.head.firstChild);
 DOMhelp.addEvent(collapseLink,'click',sc.peekaboo,false);
 collapseLink.onclick=function(){return;} // Safari fix
 },
 peekaboo:function(e){
 // More code snipped
 }
}
DOMhelp.addEvent(window,'load',sc.init,false);

For smaller scripts and projects that don’t have many different JavaScript includes,
this is enough—if accompanied by some documentation on the matter. If you have a lot of
dynamic classes scattered over several documents, or you are rather paranoid about

6803.book Page 140 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 141

noncoders changing your code, you could use a separate JavaScript include file containing
an object called CSS with all the classes as parameters. Give it an obvious file name like
cssClassNames.js, and document its existence in the project documentation.

cssClassNames.js

css={
 // Hide elements
 hide:'hide',

 // Indicator for support of dynamic scripting
 // will be added to the body element
 supported:'dynamic'
}

You can apply it to the document just like any other of the scripts in use:

exampleDynamicStylingCSSObject.html

<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Example: Importing class names from a CSS names object</title>
 <style type="text/css">
 @import "dynamicStyling.css";
 </style>
 <script type="text/javascript" src="DOMhelp.js"></script>
 <script type="text/javascript" src="cssClassNames.js"></script>
 <script type="text/javascript" src="dynamicStylingCSSObject.js"></script>
 </head>

The practical upshot of this method is that you don’t have to come up with parameter
names for the different CSS class names (which normally contain “class” and are therefore
confusing for programmers). Instead, use the following:

dynamicStylingCSSObject.js

sc={
 init:function(){
 if(!document.getElementById || !document.createElement){return;}

 DOMhelp.cssjs('add',document.body,css.supported);

 sc.head=document.getElementsByTagName('h3')[0];
 if(!sc.head){return;}
 sc.ad=DOMhelp.closestSibling(sc.head,1);

 DOMhelp.cssjs('add',sc.ad,css.hide);

6803.book Page 141 Friday, June 9, 2006 3:19 PM

142 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

 var t=DOMhelp.getText(sc.head);
 var collapseLink=DOMhelp.createLink('#',t);
 sc.head.replaceChild(collapseLink,sc.head.firstChild);
 DOMhelp.addEvent(collapseLink,'click',sc.peekaboo,false);
 collapseLink.onclick=function(){return;} // Safari fix
 },
 peekaboo:function(e){
 // More code snipped
 }
}
DOMhelp.addEvent(window,'load',sc.init,false);

In this example, the cssClassNames.js file uses object literal notation. You could go even
further and get rid of the comments if you use JSON (http://www.json.org/), which is a format
for transferring data from one program or system to another. You will hear more about JSON
and its merits in Chapter 7. For now, it is enough to notice that JSON allows you to make the file
with the class names a lot more readable for humans:

cssClassNameJSON.js

css={
 'hide elements' : 'hide',
 'dynamic scripting enabled' : 'dynamic'
}

Instead of the attribute notation used earlier, you’ll now have to read the data as if it were
an associative array:

dynamicStylingJSON.js

sc={
 init:function(){
 if(!document.getElementById || !document.createElement){return;}

 DOMhelp.cssjs('add',document.body,
 css['dynamic scripting enabled']);

 sc.head=document.getElementsByTagName('h3')[0];
 if(!sc.head){return;}
 sc.ad=DOMhelp.closestSibling(sc.head,1);

 DOMhelp.cssjs('add',sc.ad,css['hide elements']);

6803.book Page 142 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 143

 var t=DOMhelp.getText(sc.head);
 var collapseLink=DOMhelp.createLink('#',t);
 sc.head.replaceChild(collapseLink,sc.head.firstChild);
 DOMhelp.addEvent(collapseLink,'click',sc.peekaboo,false);
 collapseLink.onclick=function(){return;} // Safari fix
 },
 peekaboo:function(e){
 // More code snipped
 }
}
DOMhelp.addEvent(window,'load',sc.init,false);

It is really up to you whether you want to go that far to separate presentation from behav-
ior, but depending on the complexity of the project and the knowledge of the maintenance
staff, it might just prevent a lot of avoidable errors.

Overcoming CSS Support Problems

In the last years, CSS has become more and more important for web development. Complex
nested table layouts, on the decline, are being replaced by lightweight CSS layouts. Further-
more, CSS solutions for effects that were traditionally handled by JavaScript, like image
rollovers and foldout menus, became fashionable and gave the design community a new hope
for being able to create slick, interactive interfaces without having to understand JavaScript.

The problem that many CSS developers had to face sooner or later was lack of support by
legacy browsers or hard-to-understand issues with newer browsers. As CSS is not a programming
language that allows for looping, conditions, or testing of objects before you try to apply them,
you need to rely both on CSS and JavaScript to support some effects. A lot is possible in CSS2 and
CSS3 using pseudo-classes, generated content, and CSS hacks to exclude certain browsers, but
you just cannot rely on them being supported—especially with CSS-problematic browsers like
MSIE 6 still going strong, if not being the market lead. CSS hacks also tend to have the same prob-
lem browser sniffing has: when a new browser comes out, you’ll have to check whether it still
obeys the rules the hack demands. Right now, the beta versions of MSIE 7 require a lot of CSS
developers to unhack their previous code.

A lot of very interesting CSS-only concepts counteract these issues by relying on a
JavaScript fallback to support browsers like MSIE 6.

Multiple Columns with the Same Height

One of the most annoying things about CSS layouts for designers who only dealt with table
layouts before is that, if you use CSS float techniques for columns, they don’t have the same
height, as shown in Figure 5-3.

6803.book Page 143 Friday, June 9, 2006 3:19 PM

144 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

Figure 5-3. The multiple-column height problem

Let’s start with a list of news items, each containing a heading, a “teaser” paragraph, and a
“more” link.

exampleColumnHeightIssue.html (with dummy content)

<ul id="news">

 <h3>News Title 1</h3>
 <p>Description 1</p>
 <p class="more">more link 1</p>

 <h3>News Title 2</h3>
 <p>Description 2</p>
 <p class="more">more link 2</p>

 <h3>News Title 3</h3>
 <p>Description 3</p>
 <p class="more">more link 3</p>

 <h3>News Title 1</h3>
 <p>Description 4</p>
 <p class="more">more link 4</p>

6803.book Page 144 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 145

If you now apply a style sheet that floats the list items and the main list to the left and set
some more text and layout styles, you get a multicolumn layout. The CSS to achieve this is
pretty basic:

columnHeightIssue.css

#news{
 width:800px;
 float:left;
}
#news li{
 width:190px;
 margin:0 4px;
 float:left;
 background:#eee;
}
#news h3{
 background:#fff;
 padding-bottom:5px;
 border-bottom:2px solid #369;
}
#news li p{
 padding:5px;
}

As you can see in the example, each column has a different height, and neither the para-
graphs nor the “more” links are in the same position. This makes the design look uneven and
can confuse the reader. There might be a CSS way to fix this issue (I am always impressed
what kind of hacks and workarounds people find), but let’s use JavaScript to work around this
problem.

The following script—called in the HEAD of the document, will fix the problem:

fixColumnHeight.js—used in exampleFixedColumnHeightIssue.html

fixcolumns={

 highest:0,
 moreClass:'more',

 init:function(){
 if(!document.getElementById || !document.createTextNode){return;}
 fixcolumns.n=document.getElementById('news');
 if(!fixcolumns.n){return;}
 fixcolumns.fix('h3');
 fixcolumns.fix('p');
 fixcolumns.fix('li');
 },

6803.book Page 145 Friday, June 9, 2006 3:19 PM

146 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

 fix:function(elm){
 fixcolumns.getHighest(elm);
 fixcolumns.fixElements(elm);
 },
 getHighest:function(elm){
 fixcolumns.highest=0;
 var temp=fixcolumns.n.getElementsByTagName(elm);
 for(var i=0;i<temp.length;i++){
 if(!temp[i].offsetHeight){continue;}
 if(temp[i].offsetHeight>fixcolumns.highest){
 fixcolumns.highest=temp[i].offsetHeight;
 }
 }
 },
 fixElements:function(elm){
 var temp=fixcolumns.n.getElementsByTagName(elm);
 for(var i=0;i<temp.length;i++){
 if(!DOMhelp.cssjs('check',temp[i],fixcolumns.moreClass)){
 temp[i].style.height=parseInt(fixcolumns.highest)+'px';
 }
 }
 }
}
DOMhelp.addEvent(window, 'load', fixcolumns.init, false);

First, define a parameter to store the height of the highest element and the class used for
the “more” links. (The latter is very important, and will be explained soon.) Inside the init()
method, test for DOM support and if the necessary element with the ID news is available. Store
the element in the property n for reuse in other methods. Then call the fix() method for each
element contained in the list—the headings, the paragraphs, and finally the list items. It is
important to change the list items last, as their maximum heights might have changed when
those of the other elements were fixed.

fixColumnHeight.js (excerpt)

fixcolumns={

 highest:0,
 moreClass:'more',

 init:function(){
 if(!document.getElementById || !document.createTextNode){return;}
 fixcolumns.n=document.getElementById('news');
 if(!fixcolumns.n){return;}
 fixcolumns.fix('h3');
 fixcolumns.fix('p');
 fixcolumns.fix('li');
 },

6803.book Page 146 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 147

The fix() method invokes two additional methods, one to find out the maximum height
to apply to each of the items and another to apply this height.

fixColumnHeight.js (excerpt)

 fix:function(elm){
 fixcolumns.getHighest(elm);
 fixcolumns.fixElements(elm);
 },

The getHighest() method first sets the parameter highest to 0 and then loops through all
the elements inside the list that match the element name that was sent as the elm parameter. It
then retrieves the element’s height by reading the offsetHeight attribute. This attribute stores
the height of the element after it has been rendered by the browser. The method then checks
whether the height of the element is larger than the property highest and sets the property to
the new value if that is the case. That way you find out which element is the highest.

fixColumnHeight.js (excerpt)

 getHighest:function(elm){
 fixcolumns.highest=0;
 var temp=fixcolumns.n.getElementsByTagName(elm);
 for(var i=0;i<temp.length;i++){
 if(!temp[i].offsetHeight){continue;}
 if(temp[i].offsetHeight>fixcolumns.highest){
 fixcolumns.highest=temp[i].offsetHeight;
 }
 }
 },

■Caution It is important that you reset the highest parameter to 0 here, as getHighest() needs
to find the highest of the elements that were sent as a parameter, not of all the elements you fix. If by some
freak accident an H3 is higher than the highest paragraph, you’ll get gaps between the paragraphs and the
“more” links.

The fixElements() method then applies the maximum height to all the elements with the
given name. Notice that you need to test for the class determining the “more” links, as other-
wise the links would get the same height as the highest content paragraph.

6803.book Page 147 Friday, June 9, 2006 3:19 PM

148 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

 fixElements:function(elm){
 var temp=fixcolumns.n.getElementsByTagName(elm);
 for(var i=0;i<temp.length;i++){
 if(!DOMhelp.cssjs('check',temp[i],fixcolumns.moreClass)){
 temp[i].style.height = fixcolumns.highest +'px';
 }
 }
 }

■Note Notice that you need to turn the highest parameter into a number and add a “px” suffix before you
apply it to the height of the element. This is always the case; you cannot simply assign a number without a
unit when it comes to CSS dimensions of elements.

Lacking Support for :hover

The CSS specifications allow you to use the :hover pseudo-class on any element of the docu-
ment, and many browsers support this. This allows the designer to highlight larger parts of the
document or even simulate dynamic foldout navigation menus that were hitherto only possi-
ble with JavaScript. While it is worthy of discussion whether something that is not interactive
without CSS or JavaScript should get a different state when the mouse hovers over it, it is a fea-
ture designers can use a lot—highlighting a current section of a document might make it easier
to read after all.

To see an example, take the list of news items once more and apply a different style sheet.
If you want to highlight a full list item in CSS-2–compliant browsers, all you need to do is define
a hover state on the list item:

listItemRolloverCSS.css (excerpt) used with exampleListItemRollover.html

#news{
 font-size:.8em;
 background:#eee;
 width:21em;
 padding:.5em 0;
}
#news li{
 width:20em;
 padding:.5em;
 margin:0;
}
#news li:hover{
 background:#fff;
}

6803.book Page 148 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 149

On Firefox 1.5, the effect appears as shown in Figure 5-4.

Figure 5-4. A rollover effect in CSS using the :hover pseudo-selector

In MSIE 6, you will not get this effect, as it does not support :hover for list items. However,
it supports JavaScript; which means that you can use the cssjs method to add a class dynami-
cally when the user hovers over the list items:

listItemRollover.css (excerpt)

#news{
 font-size:.8em;
 background:#eee;
 width:21em;
 padding:.5em 0;
}
#news li{
 width:20em;
 padding:.5em;
 margin:0;
}
#news li:hover{
 background:#fff;
}
#news li.over{
 background:#fff;
}

You add the class via the onmouseover and onmouseout event handlers and by using the this
keyword—which we will examine closer later in this chapter.

6803.book Page 149 Friday, June 9, 2006 3:19 PM

150 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

listItemRollover.js (excerpt)

newshl={
 overClass:'over',
 init:function(){
 alert('d');
 if(!document.getElementById || !document.createTextNode){return;}
 var newsList=document.getElementById('news');
 if(!newsList){return;}
 var newsItems=newsList.getElementsByTagName('li');
 for(var i=0;i<newsItems.length;i++){
 newsItems[i].onmouseover=function(){
 DOMhelp.cssjs('add',this,newshl.overClass);
 }
 newsItems[i].onmouseout=function(){
 DOMhelp.cssjs('remove',this,newshl.overClass);
 }
 }
 }
}
DOMhelp.addEvent(window,'load',newshl.init,false);

If you check this example in MSIE 6, you will get the same effect as you get in more modern
browsers.

You can use the pseudo-class selectors of CSS for dynamic effects (:hover, :active, and
:focus), but they only apply their settings to elements contained in the current element (CSS
gurus using Opera 8 or Safari can do a bit more by using these together with sibling selectors,
but this is CSS sorcery beyond the scope of this book).

With JavaScript, you have the whole DOM family (including parentNode, nextSibling,
firstChild, and so on) at your disposal.

If you for example wanted to have a different rollover state when the user hovers over the
links, you can extend the script easily to do so. First you need a new class for the active state:

listItemDoubleRollover.css as used in listItemDoubleRollover.html

#news{
 font-size:.8em;
 background:#eee;
 width:21em;
 padding:.5em 0;
}
#news li{
 width:20em;
 padding:.5em;
 margin:0;
}
#news li:hover{
 background:#fff;

6803.book Page 150 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 151

}
#news li.over{
 background:#fff;
}
#news li.active{
 background:#ffc;
}

Then you need to apply the events to the links inside the list items and change the class
of their parent node’s parent node (as the link in this example is either in a heading or in a
paragraph):

listItemDoubleRollover.js

newshl={
 // CSS classes
 overClass:'over', // Hover state of list item
 activeClass:'active', // Hover state on a link

 init:function(){
 if(!document.getElementById || !document.createTextNode){return;}
 var newsList=document.getElementById('news');
 if(!newsList){return;}
 var newsItems=newsList.getElementsByTagName('li');
 for(var i=0;i<newsItems.length;i++){
 newsItems[i].onmouseover=function(){
 DOMhelp.cssjs('add',this,newshl.overClass);
 }
 newsItems[i].onmouseout=function(){
 DOMhelp.cssjs('remove',this,newshl.overClass);
 }
 }
 var newsItemLinks=newsList.getElementsByTagName('a');
 for(i=0;i<newsItemLinks.length;i++){
 newsItemLinks[i].onmouseover=function(){
 var p=this.parentNode.parentNode;
 DOMhelp.cssjs('add',p,newshl.activeClass);
 }
 newsItemLinks[i].onmouseout=function(){
 var p=this.parentNode.parentNode;
 DOMhelp.cssjs('remove',p,newshl.activeClass);
 }
 }
 }
}
DOMhelp.addEvent(window, 'load', newshl.init, false);

6803.book Page 151 Friday, June 9, 2006 3:19 PM

152 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

The result is two different states for the news item, as shown in Figure 5-5, depending on
the user hovering over the text or over the links.

Figure 5-5. Different rollover states for a single element

Using JavaScript, you can also make the whole news item clickable, and this is where more
events come into play.

If You Have a Hammer, Everything Looks Like a Nail

These few examples should have given you the insight that JavaScript and the DOM is very
powerful when it comes to making the browser behave and allow for effects you’d like to
achieve but cannot because the CSS support is not good enough.

The question, however, is whether it is worth the effort and where to draw the line. There
are a lot of scripts out on the Web that teach MSIE 6 “manners” when it comes to CSS support,
but these might also cause a lot of other issues—from slowing down the page up to opening
security holes.

A lot of times you can get the impression that you are using JavaScript to force the browser
to do things in CSS that were meant to be done in JavaScript in the first place. One example
of this is multilevel drop-down menus. CSS-2–compliant browsers allow for hover effects on
anything, and you can hide and show nested list elements when you move your mouse over
the parent elements. However, the overall support for this is just not large enough, and even
though some CSS designers like Stu Nicholls (http://www.cssplay.com) manage to keyboard-
enable effects for browsers like Opera, Safari, and Mozilla via the :active and :focus pseudo-
selectors, you’d still have to use a script that allows MSIE 6 to do the same.

JavaScript has one big advantage over CSS: communication with the document works in
both directions. While CSS only styles or deals with what is already given, JavaScript can read
values, test for support, check whether elements are available and what they are, and even cre-
ate elements on the fly if they are needed. CSS can only read the document, much like you can
only read a newspaper, but JavaScript can also alter it.

This capability of JavaScript is used by a lot of CSS tricks. Many effects are possible only
with extraneous markup—nested elements, clearing elements, extra images to allow for

6803.book Page 152 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 153

flexible rounded corners, and so on. Therefore, developers started generating these via Java-
Script rather than expecting them in the HTML. This makes the source document appear a lot
cleaner, but for the end user the final DOM tree—including all generated content—is what he
has to deal with. Bloated HTML does not get better by generating the bloat via JavaScript.
Maybe it is sometimes better to look at simplifying an interface or making it more flexible from
the start than trying to make it behave like tables via lots of CSS and JavaScript sorcery.

One final note related to presentation is that a clever DOM script can sometimes help
where you didn’t expect it. An example is Flash movies. For years Flash was advertised as the
JavaScript killer, and recently Bobby van der Sluis has released a script called Unobtrusive
Flash Object (http://www.bobbyvandersluis.com/ufo/), or UFO, that makes the life of Flash
developers a lot easier.

The problem with Flash is that the way some browsers need the Flash movie to be embed-
ded in the document is not standards compliant. XHTML requires an <object> tag to add
multimedia content such as this; to accommodate for older browsers, a lot of developers also
use an additional <embed> tag to add the Flash movie, which is not part of the HTML standard.
Drew McLellan came up with a Flash-only solution for this as early as 2002, and confusingly
called it Flash Satay (http://www.alistapart.com/articles/flashsatay/), but this fix is not
always applicable (and I venture to guess that a lot more people would have learned about it
had Drew called it “Embedding Flash the XHTML way”).

Bobby’s solution uses Unobtrusive JavaScript to replace alternative content with the real
Flash movie when and if it is possible. This also makes it safer if Microsoft is going to go ahead
with turning off its automatic execution of Flash content.

Microsoft plans to allow Flash content to start only once the user has clicked the main
movie instead of starting it automatically. This change in MSIE’s behavior is based on a copy-
right lawsuit between Microsoft and Eolas Technologies and the University of California. The
code for Microsoft’s own solutions to the problem is of rather dubious quality (http://
msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/overview/
activating_activex.asp) as it uses document.write(), and UFO is a clean and clever way
around this issue.

Changing the Document’s Behavior via Event
Handling
Event handling is probably the best thing JavaScript offers a user-interface-focused devel-
oper. It is also one of the most confusing JavaScript topics, not because it is complex, but
because of different browsers implementing event handling in different ways. I will now
explain to you what an event is; show an old, tried, and true approach to dealing with events;
and then explain a newer approach that the W3C recommends. Finally, you’ll learn how to
tweak the W3C-compliant approach to allow browsers that don’t support it to understand
your scripts.

6803.book Page 153 Friday, June 9, 2006 3:19 PM

154 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

Events can be many things, for example:

• The initial loading and rendering of the document

• The loading of an image

• The user clicking a button

• The user pressing a key

• The user moving the mouse over a certain element

■Note Picture an event handler like a motion detector or the contacts of a door bell—if someone moves
closer to the door, the lights are turned on; and if that someone presses the button of the door bell, the circuit
is closed and the ringing mechanism is triggered to play a sound. In the same way, you can detect when
a user hovers the mouse over a link to trigger one function and to trigger another one when the user clicks
this link.

You can apply event handlers to make your scripts aware of what is happening in several
ways. The most obtrusive way is to use inline event calls in the HTML:

more information

A cleaner way was already described in earlier chapters: you identify the element via a
class or an ID and then set the event handler in your script instead. The easiest and most widely
supported way is to apply the event handler directly to the object as a property:

HTML:
more information

JavaScript:
var triggerLink=document.getElementById('info');
triggerlink.onclick=infoWindow;

■Note Notice that there is no need to test for the element with the ID info, as the function can only have
been called by it.

6803.book Page 154 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 155

Triggering events in this way has several issues:

• You don’t send the element to the function; instead you need to find the element again.

• You can only assign one function at a time

• You hijack the event of this element for your script exclusively—methods of other scripts
trying to use this element for other events will not work any longer.

Unless you’ve defined triggerLink as a global variable or object property, the function
infoWindow() will need to find the trigger element before it can be used.

function infoWindow(){
 var url=document.getElementById('info').getAttribute('href');
 // Other code
}

This and the problem of multiple functions connected to one event can be solved by
applying an anonymous function calling your real function(s), which also allows you to send
the current object via the this keyword:

var triggerLink=document.getElementById('info');
triggerlink.onclick=function(){
 showInfoWindow(this.href);
 highLight(this);
 setCurrent(this);
}
function showInfoWindow(url){
 // Other code
}

The third problem remains. Your script, provided it is the last one included in the
document, will override the event triggers of other scripts, which means it won’t easily work
together with other scripts. Therefore you need a way to assign event handlers without overrid-
ing other scripts. This is especially important when you want to call different functions when
the document is loaded.

Simon Willison (http://simon.incutio.com/) found a solution for that using this method
for event handling:

function addLoadEvent(func) {
 var oldonload = window.onload;
 if (typeof window.onload != 'function') {
 window.onload = func;
 } else {
 window.onload = function() {
 oldonload();
 func();
 }
 }
}

6803.book Page 155 Friday, June 9, 2006 3:19 PM

156 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

If you use this tool function to add your function to the page, you will not override the other
functions that should be invoked by the page’s load event. It was and is a big step in the right
direction.

The preceding methods work—to my knowledge—for all browsers that support JavaScript
out there. In particular, if you have to support MSIE 5 on a Mac, this is as far as you can go.
Newer browsers support an improved event model that clearly distinguishes between different
aspects of event handling.

Events in the W3C-Compliant World

■Note The examples in this section need to be executed in a DOM-2–compliant browser. I recommend
Mozilla Firefox version 1.5. MSIE 6 is not DOM-2 compliant, and the examples will not work in it. This part of
the chapter explains how events were defined and meant to work by the W3C. Afterward, we’ll extend these
methods to work with MSIE and other noncompliant browsers.

The W3C DOM-2 and the upcoming DOM-3 specifications approach the event handling
issue a bit differently. First of all, they define different parts of the event’s occurrence up to the
use of the retrieved data in detail:

• The event is what happens, for example, click.

• The event handler, for example onclick, is in DOM-1 the location where the event gets
recorded.

• In DOM-2, this is slightly different—you deal with event target and event listener:

• The event target is where the event occurred, in most cases an HTML element.

• The event listener is a function that deals with that event.

• DOM-3 also brings the concept of event capturing, which has no real browser support
yet. If you really want to understand these, check the W3C specifications (http://
www.w3.org/TR/DOM-Level-3-Events/events.html); I won’t cover event capturing here,
as it is not part of usable JavaScript yet.

Applying Events

You apply an event via the addEventListener() method. This function takes three parameters:
the event as a string and without the “on” prefix, the name of the event listener function
(without parentheses), and a Boolean value called useCapture, which defines whether event
capturing should be used or not. For now, it is safe to set useCapture to false.

If you wanted to apply the function infoWindow() to the link via addEventListener(), you’d
use the following:

var triggerLink=document.getElementById('info');
triggerLink.addEventListener('click', infoWindow, false);

6803.book Page 156 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 157

If you wanted to add a hover effect by calling the function highlight() when the mouse is
over the link and the function unhighlight() when the mouse leaves the link, you can add a
couple more lines:

var triggerLink=document.getElementById('info');
triggerLink.addEventListener('click', infoWindow, false);
triggerLink.addEventListener('mouseout', highlight, false);
triggerLink.addEventListener('mouseover', unhighlight, false);

Checking Which Event Was Triggered Where and How

It may seem that in terms of ease of developing, you are back to square one: you once again
have to find the element to read the href from inside infoWindow(). This is true; however, by
using addEventListener, you prompt standards-compliant browsers to give you the event
object, which you can read out via a parameter called e.

You might have seen this e before and wondered what it was and whether you should trust
an e without knowing where it came from. It is very confusing at first to simply use a parameter
without sending it when you apply the event, but once you learn about the event object, you’ll
never go back to using onevent properties. The event object has many attributes you can use in
the event listener function:

• target: The element that fired the event.

• type: The event that was fired (for example, click).

• button: The mouse button that was pressed: 0 for left, 1 for middle, and 2 for right.

• keyCode/data/charCode: The character code of the key that was pressed. The W3C speci-
fications use data; however, it is not widely supported. Most browsers use charCode
instead, and keyCode is MSIE’s implementation. The good news is that all modern
browsers understand keyCode, which means you can use that for now until data is more
widely supported in user agents.

• shiftKey/ctrlKey/altKey: A Boolean—true if the Shift, Ctrl, or Alt key (respectively) was
pressed.

The full list of what is available is dependent on the event you are listening to. You can find the
whole list of attributes in the DOM-2 specification: http://www.w3.org/TR/DOM-Level-2-Events/
events.html#Events-Registration-interfaces.

Using the Event object, you can easily use one function to deal with several events:

var triggerLink=document.getElementById('info');
triggerLink.addEventListener('click', infoWindow, false);
triggerLink.addEventListener('mouseout', infoWindow, false);
triggerLink.addEventListener('mouseover', infoWindow, false);

6803.book Page 157 Friday, June 9, 2006 3:19 PM

158 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

You can use the same function for all three events and check the event type:

function infoWindow(e){
 switch(e.type){
 case 'click':
 // Code to deal with the user clicking the link
 break;
 case 'mouseover':
 // Code to deal with the user hovering over the link
 break;
 case 'mouseout':
 // Code to deal with the user leaving the link
 break;
}

You could also check the element the event occurred at by checking its nodeName. Notice
that you once again have to use toLowerCase() to avoid cross-browser problems:

function infoWindow(e){
 targetElement=e.target.nodeName.toLowerCase();
 switch(targetElement){
 case 'input':
 // Code to deal with input elements
 break;
 case 'a':
 // Code to deal with links
 break;
 case 'h1':
 // Code to deal with the main heading
 break;
 }
}

Stopping Event Propagation

Assigning events and intercepting them with event listeners also means that you need to take care
of two problems: one is that a lot of events have default actions—click for example might make the
browser follow a link or submit a form, whereas keyup might add a character to a form field.

The other one is called event bubbling, and it basically means that when an event occurs
at an element, it also occurs at all the parent elements of the initial element.

6803.book Page 158 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 159

Event Bubbling

Let’s go back to the HTML markup for the news list:

exampleEventBubble.html

<ul id="news">

 <h3>News Title 1</h3>
 <p>Description 1</p>
 <p class="more">more link 1</p>

 <!-- and so on -->

If you now assign a mouseover event to the links in the list, hovering over them will also trig-
ger any event listener that might be on the paragraphs, the list items, the list, and all the other
elements above that in the node tree right up to the document body. As an example, you’ll see
how to attach event listeners to each of them that point to appropriate functions:

eventBubble.js

bubbleTest={
 init:function(){
 if(!document.getElementById || !document.createTextNode){return;}
 bubbleTest.n=document.getElementById('news');
 if(!bubbleTest.n){return;}

 bubbleTest.addMyListeners('click',bubbleTest.liTest,'li');
 bubbleTest.addMyListeners('click',bubbleTest.aTest,'a');
 bubbleTest.addMyListeners('click',bubbleTest.pTest,'p');

 },
 addMyListeners:function(eventName,functionName,elements){
 var temp=bubbleTest.n.getElementsByTagName(elements);
 for(var i=0;i<temp.length;i++){
 temp[i].addEventListener(eventName,functionName,false);
 }
 },
 liTest:function(e){
 alert('li was clicked');
 },
 pTest:function(e){
 alert('p was clicked');
 },

6803.book Page 159 Friday, June 9, 2006 3:19 PM

160 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

 aTest:function (e){
 alert('a was clicked');
 }
}
window.addEventListener('load',bubbleTest.init,false);

Now all the list items will trigger the liTest() method when they are clicked, all the paragraphs
will trigger the pTest() method, and all the links will trigger the aTest() method.

However, if you click the paragraph, you will get two alerts:

p was clicked
li was clicked

You can prevent this by using the e.stopPropagation() method, which will ensure that
only the event listener applied to the links will get the event. If you change the pTest() method
to the following:

stopPropagation.js—used in exampleStopPropagation.html

pTest:function(e){
 alert('p was clicked');
 e.stopPropagation();
},

the output will be

p was clicked

Event bubbling is not really that problematic, as you are not often likely to assign different lis-
teners to embedded elements instead of to their parents. However, if you want to learn more about
event bubbling and the order of what happens when an event occurs, Peter-Paul Koch has written
an excellent explanation, available at http://www.quirksmode.org/js/events_order.html.

Preventing Default Actions

The other problem you might have is that events on certain elements have default actions.
Links, for example, load another document. You might not want that to happen, and you have
to stop the default action after you’ve executed your event listener function.

6803.book Page 160 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 161

In the DOM-1 event handler model, you did this by returning a false value in the function
that was called:

element.onclick=function(){
 // Do other code
 return false;
}

If you click any of the links in the earlier example, they load the linked document. You can
override this by using the DOM-2 preventDefault() method. Let’s test it by adding it to the
aTest method:

preventDefault.js—used in examplePreventDefault.html

aTest:function (e){
 alert('a was clicked');
 e.stopPropagation();
 e.preventDefault();
}

Clicking the links now just causes the alert to show up:

a was clicked

The links, on the other hand, are not being followed, and you’ll stay on the same page to do
something different with the link data.

For example, you could initially show only the headlines and expand the content when
they are clicked. First, you need some more classes in the style sheet to allow for these changes.

listItemCollapse.css (excerpt)

.hide{
 display:none;
}
li.current{
 background:#ccf;
}
li.current h3{
 background:#69c;
}

6803.book Page 161 Friday, June 9, 2006 3:19 PM

162 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

The script for collapsing the elements is not complex, but uses all the event handling ele-
ments we talked about:

newsItemCollapse.js

newshl={
 // CSS classes
 overClass:'over', // Rollover effect
 hideClass:'hide', // Hide things
 currentClass:'current', // Open item

 init:function(){
 var ps,i,hl;
 if(!document.getElementById || !document.createTextNode){return;}
 var newsList=document.getElementById('news');
 if(!newsList){return;}
 var newsItems=newsList.getElementsByTagName('li');
 for(i=0;i<newsItems.length;i++){
 hl=newsItems[i].getElementsByTagName('a')[0];
 hl.addEventListener('click',newshl.toggleNews,false);
 hl.addEventListener('mouseover',newshl.hover,false);
 hl.addEventListener('mouseout',newshl.hover,false);
 }
 var ps=newsList.getElementsByTagName('p');
 for(i=0;i<ps.length;i++){
 DOMhelp.cssjs('add',ps[i],newshl.hideClass);
 }
 },
 toggleNews:function(e){
 var section=e.target.parentNode.parentNode;
 var first=section.getElementsByTagName('p')[0];
 var action=DOMhelp.cssjs('check',first,newshl.hideClass)?'remove':'add';
 var sectionAction=action=='remove'?'add':'remove';
 var ps=section.getElementsByTagName('p');
 for(var i=0;i<ps.length;i++){
 DOMhelp.cssjs(action,ps[i],newshl.hideClass);
 }
 DOMhelp.cssjs(sectionAction,section,newshl.currentClass);
 e.preventDefault();
 e.stopPropagation();
 },

6803.book Page 162 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 163

 hover:function(e){
 var hl=e.target.parentNode.parentNode;
 var action=e.type=='mouseout'?'remove':'add';
 DOMhelp.cssjs(action,hl,newshl.overClass);
 }
}
window.addEventListener ('load',newshl.init,false);

The results are clickable news headings that show associated news excerpts when you
click them. The “more” links stay unaffected and will send the visitor to the full news article
when clicked (see Figure 5-6).

Figure 5-6. Expanding new items by clicking the headings

Let’s go through the whole script step by step. After defining the CSS class properties and
checking for the necessary elements, you start looping through the list items, grab the first link
(which is the one inside the heading), and assign event listeners for click, mouseover, and
mouseout. The click event should fire the newshl.toggleNews() method, while both mouseout
and mouseover should trigger newshl.hover().

newsItemCollapse.js (excerpt)

 for(i=0;i<newsItems.length;i++){
 hl=newsItems[i].getElementsByTagName('a')[0];
 hl.addEventListener('click',newshl.toggleNews,false);
 hl.addEventListener('mouseover',newshl.hover,false);
 hl.addEventListener('mouseout',newshl.hover,false);
 }

6803.book Page 163 Friday, June 9, 2006 3:19 PM

164 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

You hide all paragraphs inside the list item by applying the hiding class to them:

newsItemCollapse.js (excerpt)

 var ps=newsList.getElementsByTagName('p');
 for(i=0;i<ps.length;i++){
 DOMhelp.cssjs('add',ps[i],newshl.hideClass);
 }

The toggleNews() method grabs the current section by reading out the target of the event
object. The target is the link, which means that if you want to reach the list item, you need to go
up to the next parent node twice.

newsItemCollapse.js (excerpt)

 toggleNews:function(e){
 var section=e.target.parentNode.parentNode;

You read the first paragraph of the list item and check whether it already has the hiding
class assigned to it. If that is the case, define the variable action as remove; otherwise define it
as add. Set another variable called sectionAction and define it as the opposite of action with
the same options.

newsItemCollapse.js (excerpt)

 var first=section.getElementsByTagName('p')[0];
 var action=DOMhelp.cssjs('check',first,newshl.hideClass)?'remove':'add';
 var sectionAction=action=='remove'?'add':'remove';

Loop through all the paragraphs and either remove the hiding class or add it, depending on
the action. Do the same for the section and the current class, but this time use sectionAction.
This effectively toggles the visibility of the paragraphs and the styling of the heading.

newsItemCollapse.js (excerpt)

 var ps=section.getElementsByTagName('p');
 for(var i=0;i<ps.length;i++){
 DOMhelp.cssjs(action,ps[i],newshl.hideClass);
 }
 DOMhelp.cssjs(sectionAction,section,newshl.currentClass);

Stop the link that was initially clicked from being followed by calling preventDefault()
and disallow event bubbling by calling stopPropagation().

6803.book Page 164 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 165

newsItemCollapse.js (excerpt)

 e.preventDefault();
 e.stopPropagation();
 },

The hover method grabs the list item via parentNode and checks the type of the event that
was used to call the method. If the event was mouseout, it defines the action as remove, otherwise
as add. It then applies or removes the class from the list item.

newsItemCollapse.js (excerpt)

 hover:function(e){
 var hl=e.target.parentNode.parentNode;
 var action=e.type=='mouseout'?'remove':'add';
 DOMhelp.cssjs(action,hl,newshl.overClass);
 }

And finally, add an event listener to the window object that fires off newshl.init() when the
window has finished loading.

newsItemCollapse.js (excerpt)

}
window.addEventListener ('load',newshl.init,false);

Now you know how to make something change once clicked in DOM-2–compliant brows-
ers. It is time to think about the other browsers out there, and make sure those get support, too.

Fixing Events for the Non-W3C-Compliant World
Now that you know the theory of event handling (and in part have support in a lot of new
browsers and hopefully those to come), it is time to look at the offenders violating the agreed
standard and learn how to deal with them.

■Note The helper methods here are already contained inside DOMhelp.js, and you can find them there if
you want to use them without DOMhelp.

One of them is MSIE 6, which is actually understandable considering its age and the role it
has to play—both browser and operating system file manager. MSIE has its own event model,
and equivalents for the standard methods are named differently and sometimes behave
differently.

6803.book Page 165 Friday, June 9, 2006 3:19 PM

166 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

Instead of addEventListener(), MSIE has attachEvent(); instead of passing an event
object to each listener, MSIE keeps one global event object in window.event.

A developer named Scott Andrew came up with a portable function called addEvent() that
works around the differences when it comes to adding events:

function addEvent(elm, evType, fn, useCapture) {
// Cross-browser event handling for IE5+, NS6+ and Mozilla/Gecko
// By Scott Andrew
 if (elm.addEventListener) {
 elm.addEventListener(evType, fn, useCapture);
 return true;
 } else if (elm.attachEvent) {
 var r = elm.attachEvent('on' + evType, fn);
 return r;
 } else {
 elm['on' + evType] = fn;
 }
}

The function uses one more parameter than addEventListener(), which is the element
itself. It tests whether addEventListener() is supported and simply returns true when it is able
to attach the event in the W3C-compliant way.

Otherwise, it checks whether attachEvent() is supported (effectively meaning MSIE is
used) and tries to attach the event that way. Notice that attachEvent() does need the “on” pre-
fix for the event. For browsers that support neither addEventListener() nor attachEvent(), like
MSIE on Mac, the function points the DOM-1 property to the function. This effectively over-
writes any other events attached to this element in MSIE on Mac, but at least it works.

■Note There is an ongoing discussion about how addEvent() can be improved—for example, to
support retaining the option to send the current element as a parameter via this—and many clever
solutions have been developed so far. As each has different drawbacks, I won’t go into details here, but
if you are interested, check the comments at the addEvent() recoding contest page at quirksmode.org
(http://www.quirksmode.org/blog/archives/2005/10/_and_the_winner_1.html).

6803.book Page 166 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 167

As MSIE uses a global event, you cannot rely on the event object being sent to your listen-
ers, but you need to write a different function to get the element that was activated. Matters get
confused even further as the properties of window.event are slightly different from the ones of
the W3C event object:

• In Internet Explorer, target is replaced by srcElement.

• button returns different values. In the W3C model, 0 is the left button, 1 is the middle,
and 2 is the right; however, MSIE returns 1 for the left button, 2 for the right, and 4 for the
middle. It also returns 3 when the left and right buttons are pressed together, and 7 for
all three buttons together.

To accommodate these changes, you can use this function:

function getTarget(e){
 var target;
 if(window.event){
 target = window.event.srcElement;
 } else if (e){
 target = e.target;
} else {
 target = null ;
}
 return target;
}

Or more briefly, using the ternary operator:

getTarget:function(e){
 var target = window.event ? window.event.srcElement :
 e ? e.target : null;
 if (!target){return false;}
 return target;
}

6803.book Page 167 Friday, June 9, 2006 3:19 PM

168 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

Safari has a nasty bug (or feature—one is never sure): if you click a link, it does not send the
link, but the text node contained in the link, as the target. A workaround is to check whether
the element’s node name is really a link:

getTarget:function(e){
 var target = window.event ? window.event.srcElement : e ? e.target : null;
 if (!target){return false;}
 if (target.nodeName.toLowerCase() != 'a'){target = target.parentNode;}
 return target;
}

Preventing default actions and event bubbling also needs to accommodate the different
browser implementations.

• stopPropagation() is not a method in MSIE, but a property of the window event called
cancelBubble.

• preventDefault() is not a method either, but a property called returnValue.

This means that you have to write your own stopBubble() and stopDefault() methods:

stopBubble:function(e){
 if(window.event && window.event.cancelBubble){
 window.event.cancelBubble = true;
 }
 if (e && e.stopPropagation){
 e.stopPropagation();
 }
}

■Note Safari supports stopPropagation() but does nothing with it. This means it will not stop the event
from bubbling, and there is no quick way around that. Hopefully this will be fixed in future versions.

stopDefault:function(e){
 if(window.event && window.event.returnValue){
 window.event.cancelBubble = true;
 }
 if (e && e.preventDefault){
 e.preventDefault();
 }
}

6803.book Page 168 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 169

As you normally want to stop both of these things from happening, it might make sense to
collect them into one function:

cancelClick:function(e){
 if (window.event && window.event.cancelBubble
 && window.event.returnValue){
 window.event.cancelBubble = true;
 window.event.returnValue = false;
 return;
 }
 if (e && e.stopPropagation && e.preventDefault){
 e.stopPropagation();
 e.preventDefault();
 }
}

Using these helper methods should allow you to handle events unobtrusively and across
browsers, with one exception:

Safari understands the preventDefault() method but doesn’t implement what it should
do. Therefore, if you add a handler to a link and call cancelClick() in the listener method, the
link will still be followed.

The way around this for Safari is to add another dummy function via the old onevent
syntax that stops the link from being followed. You’ll see this fix in action now. Let’s take the
collapsing headline example again and replace the DOM-2–compliant methods and properties
with the cross-browser helpers:

xBrowserListItemCollapse.js used in exampleXBrowserListItemCollapse.html

newshl = {
 // CSS classes
 overClass:'over', // Rollover effect
 hideClass:'hide', // Hide things
 currentClass:'current', // Open item

 init:function(){
 var ps,i,hl;
 if(!document.getElementById || !document.createTextNode){return;}
 var newsList = document.getElementById('news');
 if(!newsList){return;}
 var newsItems = newsList.getElementsByTagName('li');
 for(i = 0;i<newsItems.length;i++){
 hl = newsItems[i].getElementsByTagName('a')[0];
 DOMhelp.addEvent(hl,'click',newshl.toggleNews,false);
 hl.onclick = DOMhelp.safariClickFix;

6803.book Page 169 Friday, June 9, 2006 3:19 PM

170 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

 DOMhelp.addEvent(hl,'mouseover',newshl.hover,false);
 DOMhelp.addEvent(hl,'mouseout',newshl.hover,false);
 }
 var ps = newsList.getElementsByTagName('p');
 for(i = 0;i<ps.length;i++){
 DOMhelp.cssjs('add',ps[i],newshl.hideClass);
 }
 },
 toggleNews:function(e){
 var section = DOMhelp.getTarget(e).parentNode.parentNode;
 var first = section.getElementsByTagName('p')[0];
 var action = DOMhelp.cssjs('check',first,newshl.hideClass)?'remove':'add';
 var sectionAction = action == 'remove'?'add':'remove';
 var ps = section.getElementsByTagName('p');
 for(var i = 0;i<ps.length;i++){
 DOMhelp.cssjs(action,ps[i],newshl.hideClass);
 }
 DOMhelp.cssjs(sectionAction,section,newshl.currentClass);
 DOMhelp.cancelClick(e);
 },
 hover:function(e){
 var hl = DOMhelp.getTarget(e).parentNode.parentNode;
 var action = e.type == 'mouseout'?'remove':'add';
 DOMhelp.cssjs(action,hl,newshl.overClass);
 }
}
DOMhelp.addEvent(window,'load',newshl.init,false);

■Note hl.onclick = DOMhelp.safariClickFix; could be a simple hl.onclick =
function(){return false;}; however, it will be easier to search and replace this fix once the
Safari development team has sorted the problem out.

The clickable headlines now work across all modern browsers; however, it seems that
you could streamline the script a bit. Right now the examples loop a lot, which is not really

6803.book Page 170 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 171

necessary. Instead of hiding all paragraphs inside the list items individually, it is a lot easier to
simply add a class to the list item and let the CSS engine hide all the paragraphs:

listItemCollapseShorter.css (excerpt)—used in exampleListItemCollapseShorter.html

#news li.hide p{
 display:none;
}
#news li.current p{
 display:block;
}

This way you can get rid of the inner loop through all the paragraphs in the init() method and
replace it with one line of code that applies the hide class to the list item itself as follows:

listItemCollapseShorter.js (excerpt)—used in exampleListItemCollapseShorter.html

newshl={
 // CSS classes
 overClass:'over', // Rollover effect
 hideClass:'hide', // Hide things
 currentClass:'current', // Open item

 init:function(){
 var hl;
 if(!document.getElementById || !document.createTextNode){return;}
 var newsList=document.getElementById('news');
 if(!newsList){return;}
 var newsItems=newsList.getElementsByTagName('li');
 for(var i=0;i<newsItems.length;i++){
 hl=newsItems[i].getElementsByTagName('a')[0];
 DOMhelp.addEvent(hl,'click',newshl.toggleNews,false);
 DOMhelp.addEvent(hl,'mouseover',newshl.hover,false);
 DOMhelp.addEvent(hl,'mouseout',newshl.hover,false);
 hl.onclick = DOMhelp.safariClickFix;
 DOMhelp.cssjs('add',newsItems[i],newshl.hideClass);
 }
 },

6803.book Page 171 Friday, June 9, 2006 3:19 PM

172 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

The next change is in the toggleNews() method. There you replace the loop with a simple
if condition that checks whether the current class is applied to the list item and replaces hide
with current if that is the case and current with hide if it isn’t. This shows or hides all the para-
graphs inside the list item.

listItemCollapseShorter.js (excerpt)—used in exampleListItemCollapseShorter.html

 toggleNews:function(e){
 var section=DOMhelp.getTarget(e).parentNode.parentNode;
 if(DOMhelp.cssjs('check',section,newshl.currentClass)){
 DOMhelp.cssjs('swap',section,newshl.currentClass,
 newshl.hideClass);
 }else{
 DOMhelp.cssjs('swap',section,newshl.hideClass,
 newshl.currentClass);
 }
 DOMhelp.cancelClick(e);
 },

The rest stays the same:

listItemCollapseShorter.js (excerpt)—used in exampleListItemCollapseShorter.html

 hover:function(e){
 var hl = DOMhelp.getTarget(e).parentNode.parentNode;
 var action = e.type == 'mouseout'?'remove':'add';
 DOMhelp.cssjs(action,hl,newshl.overClass);
 }
}
DOMhelp.addEvent(window,'load',newshl.init,false);

Never Stop Optimizing
Analyzing your own code to determine what can be optimized in this way should never cease,
even though it is very tempting in the heat of the moment to merrily code away and create
something too complex for its own good.

Taking a step back, analyzing the problem you want to solve, and reevaluating what’s
already in place is sometimes a lot more beneficial than just plowing on. In this case, the opti-
mization is in leaving the hiding of the elements to the cascade in CSS, rather than looping
through the child elements and hiding them individually.

6803.book Page 172 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 173

When you take another look at code you have created, the following ideas are always good
to keep in the back of your head:

• Any idea that avoids nested loops is a good one.

• Properties of the main object are a good place to store information that is of interest for
several methods—for example, which element is active in site navigation.

• If you find yourself repeating bits of code over and over again, create a new method that
fulfills this task—if you have to change the code in the future, you’ll only have to change
it in one place.

• Don’t traverse the node tree too much. If a lot of elements need to know about some other
element, find it once and store it in a property. This will shorten the code a lot, as some-
thing like contentSection is a lot shorter than elm.parentNode.parentNode.nextSibling.

• A long list of if and else statements might be much easier handled as a switch/case block.

• If something is likely to change in the future, like the Safari stopPropagation() hack,
then it is a good idea to put it in its own method. The next time you see the code and you
spot this seemingly useless method, you’ll remember what was going on.

• Don’t rely on HTML too much. It is always the first thing to change (especially when
there is a CMS involved).

The Ugly Page Load Problem and Its Ugly Solutions
When developers started to use CSS extensively, they soon encountered some annoying
browser bugs. One of them was the flash of unstyled content, otherwise known as FOUC.
(http://www.bluerobot.com/web/css/fouc.asp). This effect shows the page without a style
sheet for a brief moment before applying it.

We now face the same problem with JavaScript-enhanced pages. If you load the example
of the collapsed news items, you’ll see all the news expanded for a brief moment. This brief
moment is the time needed for the document and all its dependencies like images and third-
party content to finish loading.

This has been annoying scripting enthusiasts with a designer’s eye for a long time; the
onload event fired when the page and all contained media like images was loaded, and that was
it—until a lot of clever DOM scripters put their heads together and had a go at it.

Dean Edwards (a name to remember when it comes to highly technical but ingenious
solutions) came up with a script that allows you to execute code before the page has finished
loading all the content elements, thus allowing for a smoother looking interface without things
jumping around. You can test his solution at http://dean.edwards.name/weblog/2005/09/
busted/.

6803.book Page 173 Friday, June 9, 2006 3:19 PM

174 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

The problem with this solution is that it relies heavily on browser-specific code and does
not work on Safari or Opera. This might change in the future, so be sure to visit Dean’s site from
time to time.

A different solution that is supported by all JavaScript-capable browsers, but is a bit dirty
in terms of separation of structure, presentation, and behavior, is to write out the necessary
CSS to hide the elements via document.write() in the document’s HEAD. If you wanted to apply
this to the headline example, all you’d need to do is add the styles for the paragraphs inside the
list item in the HTML document’s head.

exampleListItemCollapseNoFlash.html (excerpt)

<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Example: Collapsing List Items without Flashing</title>
 <style type="text/css">
 @import 'listItemCollapseNoFlash.css';
 </style>
 <script type="text/javascript" src="DOMhelp.js"></script>
 <script type="text/javascript" src="listItemCollapseNoFlash.js"></script>
 <script type="text/javascript">
 document.write('<'+'style type="text/css">');
 document.write('#news li p{display:none;}');
 document.write('<'+'/style>');
 </script>
</head>

■Note The concatenation of the style tags is necessary to avoid validation programs complaining about
invalid HTML.

Both versions are feasible but seem dirty, and so far, I don’t see any really clean solution
for this problem.

Reading and Filtering Keyboard Entries
Probably the most common event for the web you’ll use is click, as it has the benefit of being
supported by every element and can be triggered by both keyboard and mouse if the element
in question can be reached via keyboard.

6803.book Page 174 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 175

However, there is nothing stopping you from checking keyboard entries in JavaScript with
the keyup or keypress handler. The former is the W3C standard; the latter is not in the standards
and occurs after keydown and keyup, but it is well supported in browsers.

As an example of how you could read out and use keyboard entries, let’s write a script that
checks whether the entered data in a form field is purely numbers. You’ve tested and converted
entries to numbers in Chapter 2 already, but this time you want to check the entry while it
occurs rather than after the user submits the form. If the user enters a nonnumerical character,
the script should disable the Submit button and show an error message.

You start with a simple HTML form that has one entry field:

exampleKeyChecking.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
 <title>Example: Checking keyboard entry</title>
 <style type="text/css">
 @import 'keyChecking.css';
 </style>
 <script type="text/javascript" src="DOMhelp.js"></script>
 <script type="text/javascript" src="keyChecking.js"></script>
</head>
<body>
<p class="ex">Keychecking example, try to enter anything but
numbers in the form field below.</p>
<h1>Get Chris Heilmann's book cheaper!</h1>
<form action="nothere.php" method="post">
<p>
 <label for="Voucher">Voucher Number</label>
 <input type="text" name="Voucher" id="Voucher" />
 <input type="submit" value="redeem" />
</p>
</form>
</body>
</html>

And after applying the following script, the browser will check what the user enters and
both show an error message and disable the Submit button when the entry is not a number, as
shown in Figure 5-7.

6803.book Page 175 Friday, June 9, 2006 3:19 PM

176 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

Figure 5-7. Testing an entry while it is being typed in

keyChecking.js

voucherCheck={
 errorMessage:'A voucher can contain only numbers.',
 error:false,
 errorClass:'error',
 init:function(){
 if (!document.getElementById || !document.createTextNode) { return; }
 var voucher=document.getElementById('Voucher');
 if(!voucher){return;}
 voucherCheck.v=voucher;
 DOMhelp.addEvent(voucher, 'keyup', voucherCheck.checkKey, false);
 },
 checkKey:function(e){
 if(window.event){
 var key = window.event.keyCode;
 } else if(e){
 var key=e.keyCode;
 }
 var v=document.getElementById('Voucher');
 if(voucherCheck.error){
 v.parentNode.removeChild(v.parentNode.lastChild);
 voucherCheck.error=false;
 DOMhelp.closestSibling(v,1).disabled='';
 }

6803.book Page 176 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 177

 if(key<48 || key>57){
 v.value=v.value.substring(0,v.value.length-1);
 voucherCheck.error=document.createElement('span');
 DOMhelp.cssjs('add', voucherCheck.error, voucherCheck.errorClass);
 var message = document.createTextNode(voucherCheck.errorMessage)
 voucherCheck.error.appendChild(msg);
 v.parentNode.appendChild(voucherCheck.error);
 DOMhelp.closestSibling(v,1).disabled='disabled';
 }
 }
}
DOMhelp.addEvent(window, 'load', voucherCheck.init, false);

First, you’ll start by defining some properties, like an error message, a Boolean indicating
whether there is an error already displayed, and a class to get applied to the error message. You
test for the necessary element and attach a keyup event pointing to the checkKey() method.

keyChecking.js (excerpt)

voucherCheck={
 errorMessage:'A voucher can only contain numbers.',
 error:false,
 errorClass:'error',
 init:function(){
 if (!document.getElementById || !document.createTextNode) { return; }
 var voucher=document.getElementById('Voucher');
 if(!voucher){return;}
 voucherCheck.v=voucher;
 DOMhelp.addEvent(voucher, 'keyup', voucherCheck.checkKey, false);
 },

The checkKey method determines whether window.event or the event object is in use and
reads out the keyCode in the appropriate manner.

keyChecking.js (excerpt)

checkKey:function(e){
 if(window.event){
 var key = window.event.keyCode;
 } else if(e){
 var key=e.keyCode;
 }

6803.book Page 177 Friday, June 9, 2006 3:19 PM

178 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

It then retrieves the element (in this case via getElementById(), although you could as
easily use DOMhelp.getTarget(e), but why make it more complex than needed?) and checks
whether the error property is true. If it is true, there is already a visible error message and the
Submit button is disabled. In this case, you need to remove the error message, set the error
property to false, and enable the Submit button (which is the next sibling of the input ele-
ment—use closestSibling() here to ensure it is the button and not a line break).

keyChecking.js (excerpt)

 var v=document.getElementById('Voucher');
 if(voucherCheck.error){
 v.parentNode.removeChild(v.parentNode.lastChild);
 voucherCheck.error=false;
 DOMhelp.closestSibling(v,1).disabled='';
 }

You determine that the key that was pressed is not any of the digits from 0 to 9—that is,
that its ASCII code is not between 48 and 57 inclusive.

■Tip You can get the values of each key in any ASCII table, for example, at http://www.whatasciicode.com/.

If the key is not a number key, delete the last key entered from the field value and create a
new error message. Create a new span element, add the class, add the error message, append
it as a new child to the parent of the text entry box, and disable the form button. The last thing
missing is to start voucherCheck.init() when the page has finished loading.

keyChecking.js (excerpt)

 if(key<48 || key>57){
 v.value=v.value.substring(0,v.value.length-1);
 voucherCheck.error=document.createElement('span');
 DOMhelp.cssjs('add',
 voucherCheck.error,
 voucherCheck.errorClass);
 var message = document.createTextNode(voucherCheck.errorMessage)
 voucherCheck.error.appendChild(msg);
 v.parentNode.appendChild(voucherCheck.error);
 DOMhelp.closestSibling(v,1).disabled='disabled';
 }
 }
}
DOMhelp.addEvent(window, 'load', voucherCheck.init, false);

6803.book Page 178 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 179

■Note Normally, it’d be enough to check whether the field contents is a number on every keyup event, but
this demonstrates the power you have with keyboard events.

If you want to read keyboard combinations with Shift, Ctrl, or Alt, you need to check for the
shiftKey, ctrlKey, or altKey event properties in your event listener method, for example:

if(e.shiftKey && key==48){alert('shift and 0');}
if(e.ctrlKey && key==48){alert('ctrl and 0');}
if(e.altKey && key==48){alert('alt and 0');}

The Dangers of Event Handling
With these functions, you can listen and react to any event initiated by the user. You can make
navigations that react to rollovers rather than clicks of the links, you can add keyboard short-
cuts only available to your page, and you can make things react on movements of the mouse.

It is very tempting to use event handling to the fullest and come up with whole new con-
cepts of navigation, user journey flow, and how forms interact with the user. The question is
whether that is a good or a bad thing.

With your own ideas of what is good and usable in mind, you might sometimes consider a
drag-and-drop interface the best there is, but what about users who cannot move a mouse?
You can make anything in the document an interactive element by attaching events; however,
not all user agents will allow the visitor to reach the element without a mouse. A clickable head-
line is not available to keyboard users, but a headline with an embedded link is as the user can
tab to the link, but cannot tab to the headline.

Basic accessibility guidelines and legal requirements make a very strong point that you
have to remain input device independent if you want to create your own rich interfaces with
DOM scripting and HTML.

There is nothing wrong with a drag-and-drop interface, as long as you also allow for key-
board access to it. As you should not rely on JavaScript being available, you’ll need real links on
the draggable elements anyway, which could be enhanced with a click event or even keyboard
access.

Keyboard event handling is another can of worms. While most browsers support keypress
(which is not mentioned in the W3C specs—they favor keyup), you can never know if the key-
board shortcut you want to assign to an element isn’t necessary for another piece of software
on the user’s machine.

Keyboard access is universally part of the operating system, and visitors who need certain
key combinations to use it will not take kindly to your hindering them in their work by hijack-
ing those combinations for your purposes. Clever web applications therefore make their
keyboard shortcuts optional or even customizable by the user.

The same problem occurs in HTML when you use the accesskey attribute. This attribute
tells the browser to activate the element when the key defined in the attribute’s value is pressed
(together with the Alt key on MSIE and Mozilla —via other combinations on other browsers).
In effect, this is adding an event and assigning an event listener that sets the focus of the

6803.book Page 179 Friday, June 9, 2006 3:19 PM

180 C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G)

element or follows the default action of that element. Until recently, it was common practice
and deemed safe to use numerical keys for these attributes—which works, until you have a user
who has special characters in her name and needs to use Alt and the ASCII number of the char-
acter to enter it.

All of this said, research is under way in the area of rich HTML and JavaScript interfaces,
and you can take a look at and use the rich controls developed by IBM and Mozilla at http://
www.mozilla.org/access/dhtml/.

Summary
You’ve made it to the end of this chapter, and I hope it was not too much information at once.

In the first half, we talked about the interaction of CSS and JavaScript, covering the
following:

• How to change presentation in JavaScript via the style collection

• How to help CSS designers by keeping the look and feel of your script in CSS classes

• How to provide the CSS designers with hooks to style the document differently depend-
ing on scripting being enabled or disabled

• An introduction to different third-party style switchers and the idea that published
JavaScript scripts are not necessarily set in stone but can be improved and refined
over time

• How to ease the maintenance of CSS and JavaScript working together by introducing
objects only containing CSS name information

• Fixing a CSS issue with JavaScript—in this chapter’s example, multicolumn displays not
having the same height

• Helping the CSS designer by applying cross-browser hover effects

• The dangers of using JavaScript to create lots of HTML elements to support CSS effects
instead of implementing these effects via JavaScript from the start

We then moved on to what makes web sites click—literally at times—in other words, event
handling. We talked about

• How to apply event handling in old browsers via the DOM-1 onevent properties (like
onclick, onmouseover, and so on)

• What the W3C has to say about events in the DOM-2 specifications and how to use what
they recommend

• How to make noncompliant browsers do the same

• How to avoid display glitches when the page is not fully loaded

• How to deal with keyboard entries

• The dangers of event handling

6803.book Page 180 Friday, June 9, 2006 3:19 PM

C H A P T E R 5 ■ P R E S E N T A T I O N A N D B E H A V I O R (C S S A N D E V E N T H A N D L I N G) 181

This is it—you should now have all the tools you need to go out there and “wow” the
masses with stable, easy-to-maintain, slick JavaScript. In the next chapter, we will go through
some of the most common uses of JavaScript and have a go at developing up-to-date solutions
for them to replace old scripts you may already use.

6803.book Page 181 Friday, June 9, 2006 3:19 PM

6803.book Page 182 Friday, June 9, 2006 3:19 PM

183

■ ■ ■

C H A P T E R 6

Common Uses of JavaScript:
Images and Windows

If you read the last few chapters, you should be well equipped now with your knowledge of
JavaScript and its interaction with CSS and HTML. Now you will learn about some of the most
common uses of JavaScript on the Web these days, and we’ll go through some examples. In
these examples, you’ll see how to ensure that they work independently of other scripts on the
page, and I’ll explain what problems might occur. We’ll also touch on what functionality is
tempting to use but might not be the safest of options.

■Note This chapter consists of a lot of code examples, and you will be asked to open some of them in a browser
to test the functionality for yourself, so if you haven’t been to http://www.beginningjavascript.com yet to
download the code examples for this book, it might be a good time to do so now.

Most of the full code examples here use DOM-2 event handling. This makes them a bit more complex than
their DOM-1 equivalents, but it also makes them work a lot better with other scripts, and they are much more
likely to work in future browsers. Just bear with me, and I promise that by repeatedly using these methods,
you will get the hang of them quite quickly.

The examples are also developed with maintenance and flexibility in mind. This means that everything that
might be changed at a later stage by non-JavaScript-savvy people is stored in properties and that you can
easily have several parts of the same document use the scripts’ functionality. This also adds to the complexity
of some of the scripts, but it is a real-life deliverable most clients ask for.

Images and JavaScript
Dynamic changing of images was most likely the first “wow” effect JavaScript was used for.
When CSS was not supported by browsers yet (and—to be fair—was still in the process of being
defined), JavaScript was the only way to change an image when the user moved the mouse over
it or clicked it. In recent years, more and more of the image effects traditionally achieved via
JavaScript have been replaced by pure CSS solutions that make maintenance a lot easier. We’ll
discuss these later; for now, let’s take a look at the basics of what JavaScript can do to images.

6803.book Page 183 Thursday, June 15, 2006 11:48 AM

184 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

Basics of Image Scripting
In JavaScript you can reach and amend images in two ways: the DOM-2 way via
getElementsByTagName() and getElementById(), or an older way, which involves the
images collection that is stored in a property of the document object. As an example, let’s
take an HTML document with a list of photos:

<ul class="slides">

You can retrieve all these photos in JavaScript to do something to them in both ways:

// Old DOM
var photosOldDOM=document.images;
// New DOM
var photos=document.getElementsByTagName('img');

Both methods result in an array containing all the images as objects. As with any object,
you can read and manipulate their properties. Say, for example, you want to know the alterna-
tive text of the third image. All you need to do is to read out the alt property of the object:

// Old DOM alt property
var photosOldDOM=document.images;
alert(photosOldDOM[2].alt);
// W3C DOM-2 alt attribute
var photos=document.getElementsByTagName('img');
alert(photos[2].getAttribute('alt'));

6803.book Page 184 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 185

Images have several properties, some of which are obvious, but others you may not have
heard about:

• border: The value of the border attribute in the HTML

• name: The name attribute of the img tag

• complete: A property that is true if the image has finished loading (read-only—you can-
not change this attribute)

• height: The height of the image (in pixels—returned as an integer)

• width: The width of the image (in pixels—returned as an integer)

• hspace: The horizontal space around the image

• vspace: The vertical space around the image

• lowsrc: The image preview as defined in the attribute of the same name

• src: The URL of the image

You can use these properties to access and change images dynamically. If you open the
example document exampleImageProperties.html in a browser, you can read and write
the properties of the demonstration image as Figure 6-1 shows.

Figure 6-1. Reading and writing the properties of an image

6803.book Page 185 Thursday, June 15, 2006 11:48 AM

186 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

■Note Notice that if the dimensions of the image have been defined via the HTML width and height
attributes, and you change its source, you don’t automatically change its dimensions. For an example, acti-
vate the Set other picture button in the demo. This can result in unsightly distortion of the other image, as
browsers don’t resize images in a sophisticated way.

Preloading Images
If you use images dynamically in the page for rollover or slide show effects, you’ll want to have
the images already loaded into the browser’s memory cache to give the visitor a smooth expe-
rience. You can do this in several ways. One is to create a new image object for each image you
want to preload when you initialize the page:

kitten = new Image();
kitten.src = 'pictures/kittenflat.jpg';

You’ll see an example of this soon in the “Rollover Effects” section. Some development
tools offer scripts that loop through all the images necessary like Macromedia’s simple
preloader:

function simplePreload() {
 var args = simplePreload.arguments;
 document.imageArray = new Array(args.length);
 for(var i = 0; i < args.length; i++) {
 document.imageArray[i] = new Image;
 document.imageArray[i].src = args[i];
 }
}

If you call this function with the images you want to preload, it’ll create a new array with
all the images in it, loading them one after the other, for example:

simplePreload('pictures/cat2.jpg', 'pictures/dog10.jpg');

A different, scripting-independent, way of preloading images is putting them as 1× 1-pixel
images in the HTML inside a container element that you hide via CSS. This mixes structure
and behavior and has the same issue as any image preloading technique has: You force the vis-
itor to download a lot of images he might not want to see immediately. If you were to use
preloaders, it might be a good option to keep them optional and let the user decide if he wants
to preload all the images.

We’ll keep image preloading brief here, as there is much more to learn about images.

6803.book Page 186 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 187

Rollover Effects
Rollover or hover effects were the absolute craze when JavaScript first got supported widely in
the most common user agents. Many scripts were written, and a lot of small tools came out that
allowed “instant rollover generation without any need to code.”

The idea of a rollover effect is pretty easy: you hover with your mouse over an image and
the image changes, indicating that this is a clickable image and not just eye candy. Figure 6-2
shows a rollover effect.

Figure 6-2. A rollover effect means the element changes its look when the mouse hovers over it.

Rollovers Using Several Images

You can create a rollover effect by changing the src property of the image when the mouse
hovers over it. Old-school rollover effects were tied to the name attribute of the tag and
used the images collection. A construct like this was not uncommon in web pages in the 1990s:

exampleSimpleRollover.html (excerpts)
HTML:

<a href="contact.html"
 onmouseover="rollover('contact','but_contact_on.gif')"
 onmouseout="rollover('contact','but_contact.gif')">
 <img src="but_contact.gif" name="contact"
 width="103" height="28" alt="Contact Us" border="0" />

JavaScript:

function rollover(img, url) {
 document.images[img].src=url;
}

The problem with rollovers was (and still is) that the second image might not be loaded
yet, which is counterproductive. The fact that this is an interactive element is not immediately
obvious—only when the second image is shown—so this would confuse rather than aid the
user in this case. This is why the classic rollover functions like the one that came bundled with

6803.book Page 187 Thursday, June 15, 2006 11:48 AM

188 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

Macromedia Dreamweaver use the image object preloading technique explained earlier in
conjunction with the name attribute:

examplePreloadingRollover.html (excerpts)

<a href="contact.html"
 onmouseover="rollover('contact',1)"
 onmouseout="rollover('contact',0)">
 <img src="but_contact.gif" name="contact"
 width="103" height="28" alt="Contact Us" border="0" />

JavaScript:

contactoff = new Image();
contactoff.src = 'but_contact.gif';
contacton = new Image();
contacton.src = 'but_contact_on.gif';
function rollover(img, state) {
 var imgState = state == 1 ? eval(img + 'on.src') :➥

 eval(img + 'off.src');
 document.images[img].src = imgState;
}

The script creates two new image objects with the names contacton and contactoff. The roll-
over script checks the name of the image and the state of the rollover and uses eval() to
retrieve the correct object and read its src property.

It then sets the src property of the image to the src property retrieved from the object.
You can imagine the amount of code when you want to have 20 rollover images in a page, so
you can see it was necessary to come up with a more advanced and generic way of creating
rollovers.

Daniel Nolan came up with a very clever solution in 2003 as described at http://
www.dnolan.com/code/js/rollover/. His solution uses the file name of the image and
assumes a suffix of “_o” for the rollover state. All you need to add to the image you want
to have a rollover effect for is a class called imgover.

You can replicate the same functionality easily using DOM-2 handlers. First you need
an HTML document that has images with the correct class assigned to them:

exampleAutomatedRollover.html (excerpt)

 Option 1

6803.book Page 188 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 189

 Option 2

 [... code snipped ...]

Then you plan your script. The main object of the script will be called ro for rollover. As
you want to make things as easy as possible for future maintainers, you keep all the bits and
bobs that might change in properties of the main object.

In this script, this is the class that defines which image should get a rollover state and the
suffix of the mouseover image. In this case, you’ll use “roll” and “_on”, respectively. You will
need two methods, one to initialize the effect and one to do the rollover. Furthermore, you
will need an array to store the preloaded images. All of this together makes up the skeleton of
the rollover script:

automatedRollover.js (skeleton)

ro = {
 rollClass : 'roll',
 overSrcAddOn : '_on',
 preLoads : [],
 init : function(){},
 roll : function(e){}
}
DOMhelp.addEvent(window, 'load', ro.init, false);

Let’s start fleshing out the skeleton. First up are the properties and the init method. In it
you predefine a variable called oversrc and store all the images of the document in an array
called imgs. You loop through the images and skip those that don’t have the right CSS class
attached to them.

automatedRollover.js (excerpt)

ro = {
 rollClass : 'roll',
 overSrcAddOn : '_on',
 preLoads : [],
 init : function() {
 var oversrc;
 var imgs = document.images;
 for(var i = 0; i < imgs.length; i++) {
 if(!DOMhelp.cssjs('check', imgs[i], ro.rollClass)) {
 continue;
 }

6803.book Page 189 Thursday, June 15, 2006 11:48 AM

190 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

If the image has the right CSS class attached to it, you read its source attribute, replace the
full stop in it by the suffix defined in the overSrcAddOn property followed by a full stop, and
store the result in the oversrc variable.

automatedRollover.js (continued)

 oversrc = imgs[i].src.toString().replace('.',➥

 ro.overSrcAddOn + '.');

■Note For example, the first image in the document has the src but_1.gif. The value of oversrc with
the suffix property defined here would be but_1_on.gif.

You then create a new image object and store it as a new item of the preLoads array. Set the
src attribute of the new image to oversrc. Use addEvent() from the DOMhelp library to add
an event handler for both mouseover and mouseout that points to the roll method.

automatedRollover.js (continued)

 ro.preLoads[i] = new Image();
 ro.preLoads[i].src = oversrc;
 DOMhelp.addEvent(imgs[i], 'mouseover', ro.roll, false);
 DOMhelp.addEvent(imgs[i], 'mouseout', ro.roll, false);
 }
 },

The roll method retrieves the image the event occurred on via getTarget(e) and stores its
src property in a variable called s. You then test which of the events occurred by reading out the
event type. If the event type was mouseover, you replace the full stop in the file name with the
add-on followed by a full stop, and vice versa if the event was mouseout. You add an event handler
to the window that calls ro.init() when the window has finished loading.

automatedRollover.js (continued)

 roll : function(e) {
 var t = DOMhelp.getTarget(e);
 var s = t.src;
 if(e.type == 'mouseover') {
 t.src = s.replace('.', ro.overSrcAddOn + '.');
 }
 if(e.type == 'mouseout') {
 t.src = s.replace(ro.overSrcAddOn + '.', '.');
 }
 }
}
DOMhelp.addEvent(window, 'load', ro.init, false);

6803.book Page 190 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 191

The outcome of the demo page as shown in Figure 6-3 features rollovers with highlight images
that are already loaded into the browser’s cache when the user hovers over the original ones.

Figure 6-3. The preloaded and automated rollovers

As much as you can try to use clever scripting to preload images, it might not always work.
The user’s browser cache settings or special settings in her connection might make it impossible
to sneakily preload something in the back without really adding the image to the document.
Therefore, it might be a safer option to use a single image for the rollover effect.

Rollover Effects Using a Single Image

When CSS designers started exploring the :hover pseudo-selector to do a bit more than just
changing the underline of a link, CSS-only rollovers were born. These basically mean that you
assign different background images to the link and the hover state of the link.

The same problems occurred—images had to get loaded before they were displayed,
which made the rollover effect flicker or not happen at all. The solution was to take one single
image for both states and use the background-position property to change the location of
the image as shown in Figure 6-4.

Figure 6-4. Rollover effects with background position and CSS

6803.book Page 191 Thursday, June 15, 2006 11:48 AM

192 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

You can see the effect by opening exampleCSSonlyRollover.html in a browser. The CSS in
question constrains the link to a certain size and achieves the rollover effect by shifting the
background image in the hover state to the left via a negative background-position value that
is half the width of the image:

exampleCSSonlyRollover.html (excerpt)

#nav a{
 width:103px;
 padding-top:6px;
 height:22px;
 background:url(doublebutton.gif) top left no-repeat #ccc;
}
#nav a:hover{
 background-position:-103px 0;
}

You can do the same in JavaScript; however, let’s be more creative and do something CSS
cannot do.

Rollover Effects on Parent Elements

Let’s take an HTML list and turn it into a snazzy navigation bar by adding a nice background
image, and then make the links change the background image when you hover over them. The
first thing you need is a background image with all the states of the background as shown in
Figure 6-5.

Figure 6-5. The navigation background with all states (resized)

The HTML for the navigation bar is a list of links. As basic web usability strongly suggests
never linking the current page, the current link is replaced with a tag.

exampleParentRollover.html (excerpt)

<ul id="nav">
 Home
 Documentation
 Products
 Contact Us

6803.book Page 192 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 193

However, as this navigation could be the first level in a multilevel navigation menu, it
might also be that the highlight is not a STRONG element but a class on the list item instead:

<ul id="nav">
 Home
 Documentation
 <li class="current">Products
 Contact Us

Both scenarios have to be taken into account. Explaining the CSS in the demo page is not the
purpose of this book; it suffices to say that you fix the dimensions of the list with the ID nav,
float it to the left, and float all list elements in it.

Instead, let’s go straight into planning the script. You’ll need to define several properties
for the main object (which is called pr for parent rollover): the ID of the navigation list, the
height of the navigation (which is also the height of each of the images and necessary for the
background position), and the optional class that might have been used to highlight the cur-
rent section instead of a tag.

parentRollover.js (excerpt)

pr = {
 navId : 'nav',
 navHeight : 50,
 currentLink : 'current',

You start with an initialization method that checks for DOM support, and whether the
necessary list with the right ID is available.

parentRollover.js (continued)

 init : function() {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 pr.nav = document.getElementById(pr.navId);
 if(!pr.nav){ return; }

The next task is to loop through all the list items contained in this list and check if there is
either a STRONG element inside the item or the item has the “current” class. If either is true, the
script should store the counter for the loop in the current property of the main object. This
property will be used in the rollover method to reset the background to the original state.

parentRollover.js (continued)

 var lis = document.getElementsByTagName('li');

 for(var i = 0; i < lis.length; i++)
 {

6803.book Page 193 Thursday, June 15, 2006 11:48 AM

194 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

 if(lis[i].getElementsByTagName('strong').length > 0 ||
 DOMhelp.cssjs('check', lis[i], pr.currentLink)) {
 pr.current = i;
 }

Each of the list items gets a new property called index, which contains its counter value in
the whole list array. Using this property is a trick that prevents you from having to loop through
all the list items and compare them with the target in the event listener method.

You assign two event handlers pointing to the roll() method: one when the mouse is over
the list item, and another when the mouse leaves the list item.

parentRollover.js (continued)

 lis[i].index = i;
 DOMhelp.addEvent(lis[i], 'mouseover', pr.roll, false);
 DOMhelp.addEvent(lis[i], 'mouseout', pr.roll, false);
 }
 },

The rollover method starts by predefining a variable called pos that later on becomes the
offset value needed to show the correct image. It then calls getTarget() to determine which
element was rolled over and compares the node name of the target with LI. This is a safety
measure because —although you assigned the event handler to the LI—browsers may actually
send the link instead as the event target. The reason might be that a link is an interactive page
element, whereas an LI isn’t, and the browser’s rendering engine considers a link more impor-
tant. You won’t know, but you should be aware of the fact that some user agents will see the
link instead of the list element as the event target.

parentRollover.js (continued)

 roll : function(e) {
 var pos;
 var t = DOMhelp.getTarget(e);
 while(t.nodeName.toLowerCase() != 'li'
 && t.nodeName.toLowerCase() != 'body') {
 t = t.parentNode;
 }

Then, you define the position needed to show the right background image. This position is
either the index value of the list item or the stored current property multiplied with the height
of each image.

6803.book Page 194 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 195

Which of the two gets applied depends on whether the user hovers his mouse over the list
item or not—something you can find out by comparing the event type with mouseover. Set the
style of the navigation’s background position accordingly, and then call the init() method
when the page has finished loading.

parentRollover.js (excerpt)

 pos = e.type == 'mouseover' ? t.index : pr.current;
 pos = pos * pr.navHeight;
 pr.nav.style.backgroundPosition = '0 -' + pos + 'px';
 }
}
DOMhelp.addEvent(window, 'load', pr.init, false);

When you open exampleParentRollover.html in a browser, you can see that rolling over
the different links of the navigation shows the different background images as demonstrated in
Figure 6-6.

Figure 6-6. The navigation in different rollover states

This is a programmatic solution for the problem of rollovers affecting parent elements.
However, it has one problem: if the order of the menu items were to change, the maintainer
would also have to change the image accordingly. This is not a very flexible solution, which is
why you might be better off using dynamically assigned classes to the navigation list to posi-
tion the background image.

The necessary changes to the script affect the properties and the roll() method; the ini-
tialization stays the same. In addition to the currentLink and the navId property, you also
need a class name to add to the navigation list. This new property can be called dynamicLink.

In the roll() method, you check once again whether the event triggering the method was
mouseover, and add or remove a new dynamic class accordingly. This dynamically assigned

6803.book Page 195 Thursday, June 15, 2006 11:48 AM

196 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

and named class consists of the dynamicLink property value and the current index plus one (as
it is easier for humans to have a first class called item1 class instead of item0):

parentCSSrollover.js as used in parentCSSrollover.html (abbreviated)

pr = {
 navId : 'nav',
 currentLink : 'current',
 dynamicLink : 'item',
 init : function() {
 // [... same as in parentRollover.js ...]
 },
 Roll : function(e) {
 // [... same as in parentRollover.js ...]
 var action = e.type == 'mouseover' ? 'add' : 'remove';
 DOMhelp.cssjs(action, pr.nav, pr.dynamicLink + (t.index + 1));
 }
}
DOMhelp.addEvent(window, 'load', pr.init, false);

This way you allow the CSS designer to define the different states for the rollover navigation as
classes in the CSS:

parentCSSrollover.css as used in parentCSSrollover.html (excerpt)

#nav.item1{
 background-position:0 0;
}
#nav.item2{
 background-position:0 -50px;
}
#nav.item3{
 background-position:0 -100px;
}
#nav.item4{
 background-position:0 -150px;
}

This also provides the CSS designer with one more hook to design the navigation: the
dynamic class can be used to define the current rollover or highlight state of the link itself dif-
ferently from item to item.

Slide Shows
Slide shows are small images embedded in the page with previous and next buttons or some-
times even automatic changing of images after a certain time. They are used to illustrate text or
offer different views of a product.

We can distinguish between two kinds of slide shows: embedded ones that have all the
images in the same document and dynamic ones that load the images when they are needed.

6803.book Page 196 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 197

Embedded Slide Shows

Probably the easiest way to add a slide show to a page is to add all the images as a list. You can
then use JavaScript to turn this list into a slide show by hiding and showing the different list items
with the embedded images. The demo document examplePhotoListInlineSlideShow.html
does exactly that, as Figure 6-7 shows.

Figure 6-7. An embedded slide show with JavaScript

The underlying HTML is an unordered list with all the images as list items. Notice that this
also allows you to set a proper alternative text for each of the images.

examplePhotoListInlineSlideShow.html (excerpt)

<ul class="slides">

6803.book Page 197 Thursday, June 15, 2006 11:48 AM

198 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

All future maintainers have to do to change the order of the images or add or delete images
is to change the HTML; there is no need to change the JavaScript at all. Provided that you sup-
ply an appropriate style sheet, visitors without JavaScript will get all the images displayed as
shown in Figure 6-8. Users without style sheets will get a list with image thumbnails.

Figure 6-8. The embedded slide show without JavaScript

One effect of embedding all images in the document is that they will all be loaded when
the visitor loads the page. This could be a good or a bad thing, depending on the visitor’s con-
nection speed. Later on we’ll look at an example that loads the larger images only when the
user clicks smaller ones.

Let’s look at the script that turns this list into a slide show. You will use the DOMhelp
library you developed in previous chapters to work around browser issues and shorten the
code slightly.

As always, the first thing to do is to plan your script. In this case, you should give the CSS
designer and HTML developer several classes as hooks to trigger functionality or define look
and feel:

• A class to indicate that the list should be turned into a slide show

• A class to define the look and feel of the dynamic slide show list

• A class to show elements that were previously hidden

• A class to define the look of the image counter (e.g., image 1 of 3)

• A class to hide elements that should not be there at a certain state of play

6803.book Page 198 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 199

You should also allow the maintainer to change the look and content of the forward and back-
ward links and the text content of the image counter.

As for methods, all you need (apart from the helper methods contained in DOMhelp) is a
global initialization method, a method to initialize each slide show, and one to show a slide. All
of this together makes up the skeleton of your script:

photoListInlineSlides.js (skeleton)

inlineSlides = {

 // CSS classes
 slideClass : 'slides',
 dynamicSlideClass : 'dynslides',
 showClass : 'show',
 slideCounterClass : 'slidecounter',
 hideLinkClass : 'hide',

 // Labels
 // Forward and backward links, you can use any HTML here
 forwardsLabel : '<img src="control_fastforward_blue.png"➥

 alt="next" />',
 backwardsLabel : '<img src="control_rewind_blue.png"➥

 alt="previous" />',
 // Counter text, # will be replaced by the current image count
 // and % by the number of all pictures
 counterLabel : '# of %',

 init : function() {},
 initSlideShow : function(o) {},
 showSlide : function(e) {}
}
DOMhelp.addEvent(window, 'load', inlineSlides.init, false);

■Note Notice that you offer an HTML-based option in the labels for the forward and backward links. This
allows for much more flexible styling of the slide show, as the maintainer can add his own HTML (like images).
Furthermore, if you want to allow the maintainer to change dynamic text like the counter, it might be benefi-
cial to use placeholders like # and % and explain what they will be replaced with.

6803.book Page 199 Thursday, June 15, 2006 11:48 AM

200 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

Let’s go through the methods in the script step by step. First up is the global initialization
method init():

1. Test for DOM support.

2. If the test is successful, loop through all the UL elements of the document.

3. For each UL, check whether it has the class defining it as a slide show (which is stored in
the slideClass property), and skip the rest of the steps performed by this function if it
doesn’t have the class (use continue to do this).

4. If the current UL is to become a slide show, you replace the class defining it as a slide
show with the class defining the dynamic slide show; add a new property called
currentSlide to the list and call the method initSlideShow with the list as a
parameter.

photoListInlineSlides.js (excerpt)

 init : function() {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 var uls = document.getElementsByTagName('ul');
 for(var i = 0; i < uls.length; i++) {
 if(!DOMhelp.cssjs('check', uls[i],➥

 inlineSlides.slideClass)) {
 continue;
 }
 DOMhelp.cssjs('swap', uls[i],inlineSlides.slideClass,➥

 inlineSlides.dynamicSlideClass);
 uls[i].currentSlide = 0;
 inlineSlides.initSlideShow(uls[i]);
 }
 },

You can spare yourself a lot of looping and checking with these tricks. First of all, replacing
the class only when JavaScript is available with another class allows you to hide all the list items
in the CSS instead of looping through them in the initSlideShow() method:

photoListInlineSlides.css (excerpt)

.dynslides li{
 display:none;
 margin:0;
 padding:5px;
}

6803.book Page 200 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 201

Other dynamically assigned CSS classes you have to define to make the slide show work
are a hide class to remove the backward link when the first image is shown or the forward link
when the last image is shown and a show class to overrule the hiding you achieved with the
.dynslides li selector. All the other CSS selectors and properties inside the demo are of a
purely cosmetic nature.

photoListInlineSlides.css (excerpt)

.dynslides .hide{
 visibility:hidden;
}
.dynslides li.show{
 display:block;
}

By storing the current visible image in a property of the list, you don’t need to loop through
all the images and hide them before you show the current one. Instead, all you need to do is to
determine which one will have to be shown, read the property of the parent list element, and
hide the previous image stored in this property.

You then reset the property to the new image, and the next time an image gets shown, the
cycle starts anew. You could have stored the current image in a property of the main object, but
storing it in a property of the list means you allow for several slide shows on the same page.

The initSlideShow() method gets each slide show list as a parameter called o. First, define
the variables you’ll use with the var keyword to make sure they don’t overwrite global variables
with the same name. Then create a new paragraph element to host the forward and backward
links and the image counter and insert it immediately after the list (using o.nextSibling).

photoListInlineSlides.js (continued)

 initSlideShow : function(o) {
 var p, temp, count;
 p = document.createElement('p');
 DOMhelp.cssjs('add', p, inlineSlides.slideCounterClass);
 o.parentNode.insertBefore(p, o.nextSibling);

Next, create the backward link by means of DOMhelp’s createLink method and add the
proper label using innerHTML. Add an event handler to call the showSlide method, hide the link
by applying the appropriate CSS class, and add the link to the newly created paragraph. You’ll
store the link in a property of the list called rew to make it easier to reach it later on.

photoListInlineSlides.js (continued)

 o.rew = DOMhelp.createLink('#', ' ');
 o.rew.innerHTML = inlineSlides.backwardsLabel;
 DOMhelp.addEvent(o.rew, 'click', inlineSlides.showSlide, false);
 DOMhelp.cssjs('add', o.rew,inlineSlides.hideLinkClass);
 p.appendChild(o.rew);

6803.book Page 201 Thursday, June 15, 2006 11:48 AM

202 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

A new SPAN element that acts as the image counter is next. Get the counterLabel property
of the main object and replace the # character with the current list’s currentSlide property
value and add 1 to it (because humans start counting at 1 and not at 0 like computers do).
Replace the % character with the number of LI elements in the list, and add the resulting string
as a new text node to the SPAN before adding it as a new child node to the paragraph.

photoListInlineSlides.js (continued)

 o.count = document.createElement('span');
 temp = inlineSlides.counterLabel.➥

 replace(/#/, o.currentSlide + 1);
 temp = temp.replace(/%/, o.getElementsByTagName('li').length);
 o.count.appendChild(document.createTextNode(temp));
 p.appendChild(o.count);

■Note Notice that you store the counter SPAN in a property of the list, called count. This is pure laziness,
as it saves you having to reach it via getElementsByTagName('span')[0] later on. It also makes the
script less likely to be broken by maintainers who might add other spans inside the list items at a later stage.

Adding the forward link works analogously to adding the backward link, except that the
forwardsLabel property is used as the content and a new property called fwd as the shortcut.

photoListInlineSlides.js (continued)

 o.fwd = DOMhelp.createLink('#', ' ');
 o.fwd.innerHTML = inlineSlides.forwardsLabel;
 DOMhelp.addEvent(o.fwd, 'click', inlineSlides.showSlide, false);
 p.appendChild(o.fwd);

The method concludes with taking the list item that corresponds to the currentSlide
property and adding the show class to it. You could have just used o.firstChild instead, but a
future maintainer might want to initially show a different photo than the first one.

photoListInlineSlides.js (continued)

 temp = o.getElementsByTagName('li')[o.currentSlide];
 DOMhelp.cssjs('add', temp, inlineSlides.showClass);
 },

The showSlide() method defines a variable called action and gets the event target via
getTarget(e). Since you don’t know if the maintainer used an image in the link labels, you
need to find the link by testing whether the nodeName of the target’s parentNode is A. This also

6803.book Page 202 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 203

counteracts the Safari bug of sending the text contained in a link as the target instead of the link
itself. The method then grabs the list the event was triggered in by reading the closestSibling()
of the target’s parentNode.

photoListInlineSlides.js (continued)

 showSlide : function(e) {
 var action;
 var t = DOMhelp.getTarget(e);
 while(t.nodeName.toLowerCase() != 'a'
 && t.nodeName.toLowerCase() != 'body') {
 t=t.parentNode;
 }
 var parentList = DOMhelp.closestSibling(t.parentNode, -1);

■Summary The visitor clicks the content of the link to go one image forward or backward. The event
target could be an image (as it is in this example) or text—or anything else the maintainer of this script put
in the forwardsLabel and backwardsLabel properties. Therefore—and because Safari sends the text
contained in a link as the target rather than the link itself—you need to check for the name of the node and
compare it with A. Then, you take the parent node of this A—which is the paragraph that was newly cre-
ated—and get its previous sibling, which is the UL that contains the images.

Next, you need to find the currentSlide property from the list in question and the total
number of images by checking the length property of the list item array. Hide the previously
shown image by removing the show class.

photoListInlineSlides.js (continued)

 var count = parentList.currentSlide;
 var photoCount = parentList.getElementsByTagName('li').➥

 length - 1;
 var photo = parentList.getElementsByTagName('li')[count];
 DOMhelp.cssjs('remove', photo, inlineSlides.showClass);

Determine whether the link that was activated was the forward link by comparing the target
with the fwd property of the list, and then increment or decrement the counter accordingly.

If the counter is larger than 0, remove the hide class from the backward link; otherwise,
add this class, effectively hiding or showing the link. The same logic applies for the forward
link, although the comparison criteria this time is the counter being less than the total number
of list items. This prevents the backward link from showing on the first slide and the forward
link from showing on the last slide.

6803.book Page 203 Thursday, June 15, 2006 11:48 AM

204 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

photoListInlineSlides.js (continued)

 count = (t == parentList.fwd) ? count+1 : count-1;
 action = (count > 0) ? 'remove' : 'add' ;
 DOMhelp.cssjs(action, parentList.rew,➥

 inlineSlides.hideLinkClass);
 action = (count < photoCount) ? 'remove' : 'add';
 DOMhelp.cssjs(action, parentList.fwd,➥

 inlineSlides.hideLinkClass);

That took care of the links; now you need to increment the counter display. Since the
counter is stored as a property of the list, it is easy to read the first child node of that property—
that is, the text inside the SPAN. You can then use the replace() method of the String object to
replace the first numerical entry (here via a regular expression) with the new image number,
which is count+1—again, because humans do count from 1 and not from 0. Next, reset the
currentSlide property, grab the new photo (remember you changed count), and show the
current photo by adding the show class. All that is left to do is start the init() method when
the window has loaded.

photoListInlineSlides.js (excerpt)

 photo = parentList.getElementsByTagName('li')[count];
 var counterText = parentList.count.firstChild
 counterText.nodeValue = counterText.nodeValue.➥

 replace(/\d/, count + 1);
 parentList.currentSlide = count;
 photo = parentList.getElementsByTagName('li')[count];
 DOMhelp.cssjs('add', photo, inlineSlides.showClass);
 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window, 'load', inlineSlides.init, false);

However, you are not quite finished yet. If you try out the slide show in Safari, you will real-
ize that the forward and backward links do get hidden, but they are still clickable and cause
errors when you try to reach images that are not there.

■Caution This is a common mistake in dynamic web development—hiding things visibly does not neces-
sarily make them disappear for all users. Think of people who are blind, or users of textual browsers (such as
Lynx). And then there are browser bugs and oddities to consider, too.

6803.book Page 204 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 205

Preventing this issue is rather easy though: all you need to amend is the showSlide()
method so as not to do anything when the target that was clicked has the hide CSS class assigned
to it. And when fixing that you might as well add the Safari fix to cancel the default action of the
newly generated links. The demo examplePhotoListInlineSlideShowSafariFix.html incorpo-
rates these changes:

photoListInlineSlidesSafariFix.js

inlineSlides = {

 // CSS classes
 slideClass : 'slides',
 dynamicSlideClass : 'dynslides',
 showClass : 'show',
 slideCounterClass : 'slidecounter',
 hideLinkClass : 'hide',
 // Labels
 // Forward and backward links, you can use any HTML here
 forwardsLabel : '<img src="control_fastforward_blue.png"➥

 alt="next" />',
 backwardsLabel : '<img src="control_rewind_blue.png"➥

 alt="previous" />',
 // Counter text, # will be replaced by the current image count
 // and % by the number of all pictures
 counterLabel : '# of %',

 init : function() {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 var uls = document.getElementsByTagName('ul');
 for(var i = 0; i < uls.length; i++) {
 if(!DOMhelp.cssjs('check', uls[i],➥

 inlineSlides.slideClass)) {
 continue;
 }
 DOMhelp.cssjs('swap', uls[i], inlineSlides.slideClass,➥

 inlineSlides.dynamicSlideClass);
 uls[i].currentSlide = 0;
 inlineSlides.initSlideShow(uls[i]);
 }
 },

6803.book Page 205 Thursday, June 15, 2006 11:48 AM

206 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

 initSlideShow : function(o) {
 var p, temp, count;
 p = document.createElement('p');
 DOMhelp.cssjs('add', p, inlineSlides.slideCounterClass);
 o.parentNode.insertBefore(p, o.nextSibling);
 o.rew = DOMhelp.createLink('#', ' ');
 o.rew.innerHTML = inlineSlides.backwardsLabel;
 DOMhelp.addEvent(o.rew, 'click', inlineSlides.showSlide, false);
 DOMhelp.cssjs('add', o.rew, inlineSlides.hideLinkClass);
 p.appendChild(o.rew);
 o.count = document.createElement('span');
 temp = inlineSlides.counterLabel._
 replace(/#/, o.currentSlide + 1);
 temp = temp.replace(/%/, o.getElementsByTagName('li').length);
 o.count.appendChild(document.createTextNode(temp));
 p.appendChild(o.count);
 o.fwd=DOMhelp.createLink('#', ' ');
 o.fwd.innerHTML = inlineSlides.forwardsLabel;
 DOMhelp.addEvent(o.fwd, 'click', inlineSlides.showSlide, false);
 p.appendChild(o.fwd);
 temp = o.getElementsByTagName('li')[o.currentSlide];
 DOMhelp.cssjs('add', temp,inlineSlides.showClass);
 o.fwd.onclick = DOMhelp.safariClickFix;
 o.rew.onclick = DOMhelp.safariClickFix;
 },
 showSlide : function(e) {
 var action;
 var t = DOMhelp.getTarget(e);
 while(t.nodeName.toLowerCase() != 'a'
 && t.nodeName.toLowerCase() != 'body') {
 t = t.parentNode;
 }
 if(DOMhelp.cssjs('check', t,_
 inlineSlides.hideLinkClass)){
 return;
 }
 var parentList = DOMhelp.closestSibling(t.parentNode, -1);
 var count = parentList.currentSlide;
 var photoCount = parentList.getElementsByTagName('li').length-1;
 var photo = parentList.getElementsByTagName('li')[count];
 DOMhelp.cssjs('remove', photo, inlineSlides.showClass);
 count = (t == parentList.fwd) ? count + 1 : count - 1;
 action = (count > 0) ? 'remove' : 'add' ;
 DOMhelp.cssjs(action, parentList.rew,➥

 inlineSlides.hideLinkClass);
 action = (count < photoCount) ? 'remove' : 'add';

6803.book Page 206 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 207

 DOMhelp.cssjs(action, parentList.fwd,➥

 inlineSlides.hideLinkClass);
 photo = parentList.getElementsByTagName('li')[count];
 var counterText = parentList.count.firstChild
 counterText.nodeValue = counterText.nodeValue.➥

 replace(/\d/, count + 1);
 parentList.currentSlide = count;
 DOMhelp.cssjs('add', photo, inlineSlides.showClass);
 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window, 'load', inlineSlides.init, false);

Turning embedded image lists into slide shows is an effect that degrades nicely on non-
JavaScript user agents, although it is not really image manipulation or even dynamic. The real
power of JavaScript is to avoid page reloads and show larger images in the same document
instead of just showing them in the browser. Let’s take a look at some examples.

Dynamic Slide Shows

Let’s take another HTML list and turn it into an example of a dynamic slide show. Start with the
HTML, this time a list containing thumbnail images linked to larger images:

exampleMiniSlides.html

<ul class="minislides">

 <img src="pictures/minithumbs/dog63.jpg"_
 alt="Dog cooling off in the sand" />

6803.book Page 207 Thursday, June 15, 2006 11:48 AM

208 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

If you open the example in a browser with JavaScript enabled, you get a list of small
thumbnails and a larger image. Clicking the thumbnails will replace the larger image with the
one the thumbnail points to, as shown in Figure 6-9.

Figure 6-9. A slide show with small preview images (thumbnails)

Visitors without JavaScript will only get a row of images linking to larger images, as shown
in Figure 6-10.

Figure 6-10. The slide show with small preview images without JavaScript

Again, let’s plan the skeleton of the script: you define a class to recognize which lists are to
become slide shows, a class to give to the list item that contains the large photo, and an alter-
native text to add to the large photo.

The methods are the same as the last time: one global initialization method, one to initial-
ize each slide show, and one to show the current photo.

miniSlides.js (skeleton)

minislides = {
 // CSS classes
 triggerClass : 'minislides',
 largeImgClass : 'photo',
 // Text added to the title attribute of the big picture
 alternativeText : ' large view',

 init : function(){ },
 initShow : function(o){ },
 showPic : function(e){ }
}
DOMhelp.addEvent(window, 'load', minislides.init, false);

6803.book Page 208 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 209

The CSS for the slide show is pretty simple:

miniSlides.css (excerpt)

.minislides, .minislides * {
 margin:0;
 padding:0;
 list-style:none;
 border:none;
}
.minislides{
 clear:both;
 margin:10px 0;
 background:#333;
}
.minislides,.minislides li{
 float:left;
}
.minislides li img{
 display:block;
}
.minislides li{
 padding:1px;
}
.minislides li.photo{
 clear:both;
 padding-top:0;
}

First, you do a global reset on anything inside the list with the right class and the list itself.
A global reset means setting all margins and paddings to 0 and the borders and list styles to
none. This prevents having to deal with cross-browser differences and also makes the CSS doc-
ument a lot shorter, as you don’t need to reset these values for every element.

Then float the lists and all the list items to the left to make them appear inline rather than
one under the other. You need to float the main list to make sure it contains the others.

Set the images to display as block elements to avoid gaps around them and add padding
on each list item of one pixel to show the background color.

The “photo” list item needs a float clearing to appear below the others. Set its top padding
to 0 to avoid a double line between the smaller images and the big image.

The init() method functions analogously to the one in the last slide show. You test for DOM
support, loop through all the lists in the document, and skip those that don’t have the right class.
The ones that have the right class get sent to the initShow() method as a parameter.

6803.book Page 209 Thursday, June 15, 2006 11:48 AM

210 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

miniSlides.js (excerpt)

 init : function() {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 var lists = document.getElementsByTagName('ul');
 for(var i = 0; i < lists.length; i++) {
 if(!DOMhelp.cssjs('check', lists[i],➥

 minislides.triggerClass)) {
 continue;
 }
 minislides.initShow(lists[i]);
 }
 },

The initShow() method starts by creating a new list item, a new image, and assigning the
large image class to the new list item. It adds the image as a child of the list item and the new
list item as a child of the main list. Together with the CSS defined earlier, this displays the
new image below the others.

miniSlides.js (excerpt)

 initShow : function(o) {
 var newli = document.createElement('li');
 var newimg = document.createElement('img');
 newli.appendChild(newimg);
 DOMhelp.cssjs('add', newli, minislides.largeImgClass);
 o.appendChild(newli);

Then you grab the first image in the list and read its alternative text stored in the alt
attribute. Add this text as the alternative text to the new image, add the text stored in the
alternativeText property to it, and store the resulting string as a title attribute of the
new image.

miniSlides.js (excerpt)

 var firstPic = o.getElementsByTagName('img')[0];
 var alt = firstPic.getAttribute('alt');
 newimg.setAttribute('alt', alt);
 newimg.setAttribute('title', alt + minislides.alternativeText);

Next, retrieve all the links in the list and apply an event pointing to showPic when the user
clicks each link. Store the new image as a property called photo in the list object and set the src
attribute of the newly created image to the target location of the first link.

6803.book Page 210 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 211

miniSlides.js (excerpt)

 var links = o.getElementsByTagName('a');
 for(i = 0; i < links.length; i++){
 DOMhelp.addEvent(links[i], 'click', minislides.showPic,➥

 false);
 links[i].onclick = function() { return false; } // Safari
 }
 o.photo = newimg;
 newimg.setAttribute('src', o.getElementsByTagName('a')[0].href);
 },

Showing the pictures the links point to when they were clicked is a piece of cake. In the
showPic() method, retrieve the event target via getTarget() and get the old picture by reading
out the list’s photo property.

This time you know the element the visitor will click is an image, which is why you don’t
need to loop and test the name of the element. Instead, you go up three parent nodes (A,
LI, and UL) and read the previously stored image. Then you set the alternative text, the title,
and the image src and stop the link’s default behavior via cancelClick(). Add a handler
that fires the init() method when the window has finished loading to complete your mini
slide show.

miniSlides.js (excerpt)

 showPic : function(e) {
 var t = DOMhelp.getTarget(e);
 var oldimg = t.parentNode.parentNode.parentNode.photo;
 oldimg.setAttribute('alt', t.getAttribute('alt'));
 oldimg.setAttribute('title', t.getAttribute('alt') +➥

 minislides.alternativeText);
 oldimg.setAttribute('src', t.parentNode.getAttribute('href'));
 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window, 'load', minislides.init, false);

Summary of Images and JavaScript
This concludes this introduction to images and JavaScript. Hopefully, you are not too over-
whelmed by what is possible and how to approach scripting in this fashion and are interested
in playing with the examples to see what else is possible. Keep these slide shows and how they
work in mind though—at the end of this chapter we will come back to the document embed-
ded slide show and make it play automatically. In Chapter 10, you will see how to develop a
larger JavaScript-enabled gallery.

6803.book Page 211 Thursday, June 15, 2006 11:48 AM

212 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

Things to Remember About Images and JavaScript

• You can do a lot of preloading with the image objects, but it is not a bulletproof
approach. Browser cache settings, broken image links, and proxy servers might mess
with your preload script. A lot of DHTML scripts use image preloader progress bars
before showing the main page. If these scripts fail, all the user gets is a stuck or con-
stantly changing progress bar, which is frustrating.

• While you can access the properties of each image directly, it might not be the best
approach—leave the visuals to the CSS and your scripts will not be changed by others
who might not know what is going on.

• CSS has come a long way since the days of DHTML, and these days it might be a better
approach to help the CSS designer by providing hooks rather than achieving a visual
effect purely by scripting—an example being the parent rollover you saw earlier.

Windows and JavaScript
Spawning new browser windows and altering the current window are very common uses for
JavaScript. These are also very annoying and unsafe, as you can never be sure if the visitor of
your web page can deal with resized windows or will be notified by her user agent when there
is a new window. Think of screen reader users listening to your site or text browser users.

Windows have been used for unsolicited advertising (pop-up windows) and executing
code in hidden windows for data retrieval purposes (phishing) in the past, which is why
browser vendors and third-party software providers have come up with a lot of software
and browser settings to stop this kind of abuse. Mozilla Firefox users can choose whether
they want pop-up windows and what properties of the window can be changed by JavaScript
as shown in Figure 6-11.

Figure 6-11. The advanced JavaScript settings in Mozilla Firefox

Other browsers like MSIE 7 or Opera 8 disallow hiding the location bar in new windows
and can impose size and position constraints on new windows.

6803.book Page 212 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 213

■Note This is a point of agreement between different browser makers wanting to stop security vulnerabil-
ities. Opening a new window without a visible location bar can allow a malicious attacker to open a pop-up
on a third-party site via Cross-Site Scripting (XSS), make it appear as if the window belonged to the site, and
ask users to enter information. More about XSS can be found on Wikipedia: http://en.wikipedia.org/
wiki/XSS.

This is all great news for web surfers, as they can stop unwanted advertising and are less
likely to be fooled into giving away their data to the wrong people. It is not such great news for
you, as it means that when you want to use windows extensively in JavaScript, you have to test
a lot of different scenarios.

Such considerations aside, you can still do a lot with windows and JavaScript. Every
JavaScript-capable browser provides you with an object called window, whose properties are
listed in the next section, as well as some examples on how to use them.

Window Properties

■Note The following list does not show all the window properties available, only those that are supported
across numerous browsers (Mozilla/Firefox, Opera 7 and higher, MSIE 5.5 and higher, and Safari). If a given
property is not supported by a certain browser, I will note that where the property is discussed.

• closed: Boolean if the window was closed or not (read-only)

• defaultStatus: The default status message in the status bar (not supported by Safari)

• innerHeight: The height of the document part of the window

• innerWidth: The width of the document part of the window

• outerHeight: The height of the whole window

• outerWidth: The width of the whole window

• pageXOffset: Current horizontal start position of the document inside the window
(read-only)

• pageYOffset: Current vertical start position of the document inside the window
(read-only)

• status: The text content of the status bar

• name: The name of the window

• toolbar: Property that returns an object with a visible property of true when the win-
dow has a toolbar (read-only)

6803.book Page 213 Thursday, June 15, 2006 11:48 AM

214 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

For example, if you want to obtain the inner size of a window, you could use some of these
properties:

exampleWindowProperties.html (excerpt)

function winProps() {
 var winWidth = window.outerWidth;
 var winHeight = window.outerHeight;
 var docWidth = window.innerWidth;
 var docHeight = window.innerHeight;
 var message = 'This window is ';
 message += winWidth + ' pixels wide and ';
 message += winHeight + ' pixels high.\n';
 message += 'The inner dimensions are:';
 message += docWidth + ' * ' + docHeight + ' pixels';
 alert(message);
}

Some possible output from this function is shown in Figure 6-12.

Figure 6-12. Reading out window properties

There are other properties that are not supported by MSIE and Opera. These are
scrollbars, locationbar, statusbar, menubar, and personalbar. Each of them stores an
object with a read-only visible property having a value of true or false. In order to test
whether the user has a menu bar open, you check the object and the property:

if (window.menubar && window.menubar.visible == true){
 // Code
}

6803.book Page 214 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 215

Window Methods
The window object also has a number of methods, some of which have been discussed in earlier
chapters. The most common ones apart from those that provide user feedback are for opening
new windows and timed execution of functions.

User Feedback Methods

The user feedback methods listed here are covered in detail in Chapter 4.

• alert('message'): Displays an alert

• confirm('message'): Displays a dialog to confirm an action

• prompt('message','preset'): Displays a dialog to enter a value

Opening New Windows

Opening and closing of windows is technically quite easy; however, with browsers suppressing
different properties and methods or badly written pop-up blocking software even blocking
“good” pop-ups, doing so can become a nightmare and needs proper testing. The specifics of
opening new windows are pretty easy. You have four methods at your disposal:

• open('url','name','properties'): Opens a new window called “name”, loads the
URL in it, and sets the window properties

• close(): Closes the window (If the window is not a pop-up window, this will cause a
security alert.)

• blur(): Moves the focus of browser away from the window

• focus(): Moves the focus of browser to the window

The properties string of the open method has a very unique syntax: it lists all the proper-
ties of the window as strings—each consisting of a name and a value joined with an equal
sign—which are separated by commas:

myWindow = window.open('demo.html', 'my', 'p1=v1,p2=v2,p3=v3');

6803.book Page 215 Thursday, June 15, 2006 11:48 AM

216 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

Not all of the properties listed here are supported in all browsers, but they can be used in
most of them:

• height: Defines the height of the window in pixels.

• width: Defines the width of the window in pixels.

• left: Defines the horizontal position of the window on the screen in pixels.

• top: Defines the vertical position of the window on the screen in pixels.

• location: Defines whether the window has a location bar or not (yes or no)—remember
this will be a fixed yes state in future browsers.

• menubar: Defines whether the window has a menu bar or not (yes or no)—this is not sup-
ported by Opera and Safari (being a Mac tool, Safari has no menu bar on the window but
on top of the screen).

• resizable: Defines whether the user is allowed to resize the window in case it is too
small or too big. Opera does not allow this property, so Opera users can resize any
window.

• scrollbars: Defines whether the window has scrollbars or not (yes or no). Opera does
not allow suppressing scrollbars.

• status: Defines whether the window has a status bar or not (yes or no). Opera does not
allow turning off the status bar.

• toolbar: Defines whether the window has a toolbar or not (yes or no)—turning the tool-
bar off is not supported by Opera.

■Note Other Mozilla/Firefox-only properties are hotkeys (which turns the keyboard shortcuts on and off
in a given window), innerHeight and innerWidth (which define the display size as opposed to window
size), and dependent (which determines whether the window should be closed when the window that
opened it is closed). The latter is also supported by Konqueror on Linux.

To open a window that is 200 pixels wide and high and 100 pixels from the top-left corner
of the screen, and then load into it the document grid.html, you have to set the appropriate
properties as shown here:

var windowprops = "width=200,height=200,top=100,left=100";

6803.book Page 216 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 217

You can try to open the window when the page loads:

exampleWindowPopUp.html (excerpt)

function popup() {
 var windowprops = "width=200,height=200,top=100,left=100";
 var myWin = window.open("grid.html", "mynewwin" ,windowprops);
}
window.onload = popup;

Notice that the outcome is slightly different from browser to browser. MSIE 6 shows the win-
dow without any toolbars, MSIE 7 shows the location bar, and Firefox and Opera warn you that
the page is trying to open a new window and asks you whether you want to allow it to do so.

This is handled slightly differently when the window is opened via a link:

exampleLinkWindowPopUp.html

 Open grid

Neither Opera nor Firefox complain about the pop-up window now. However, if
JavaScript is disabled, then there won’t be a new window, and the link doesn’t do anything.
Therefore, you might want to link to the document in the href and send the URL as a
parameter instead.

exampleParameterLinkWindowPopUp.html (excerpts)

function popup(url) {
 var windowprops = "width=200,height=200,top=100,left=100";
 var myWin = window.open(url, "mynewwin", windowprops);
}

 Open grid

Notice the name parameter of window.open() method. This one is seemingly pretty point-
less for JavaScript, as it does not do anything (there is no windows collection that you could use
to reach the window via windows.mynewwin, for example). However, it is used in the HTML
target attribute to make links open their linked documents in the pop-up window instead of
the main window.

6803.book Page 217 Thursday, June 15, 2006 11:48 AM

218 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

In this example, you define the name of the window as “mynewwin”, and you target a link
to open http://www.yahoo.co.uk/ in there:

exampleParameterLinkWindowPopUp.html (excerpts)

function popup(url) {
 var windowprops = "width=200,height=200,top=100,left=100";
 var myWin = window.open(url, "mynewwin", windowprops);
}
Open Yahoo

Unless you use nontransitional XHTML or strict HTML (where target is deprecated), you
can also use the target attribute with a value of _blank to open a new window regardless of the
availability of JavaScript. It is good practice then to tell the visitor that the link is going to open
in a new window inside the link to avoid confusion or accessibility issues:

 Open grid (opens in a new window)

However, as you might want to use strict HTML and XHTML, and you have a lot more con-
trol over the pop-up when using JavaScript, it might be a better solution to not rely on target
but turn links into pop-up links only if and when scripting is available. For that you need some-
thing to hook into and identify the link as a pop-up link. You could for example use a class
called popup.

exampleAutomaticPopupLinks.html (excerpt)

<p>Open grid</p>
<p>Open Yahoo</p>

Planning the script doesn’t entail much: you need the class to trigger the pop-up, the tex-
tual add-on, and the window parameters as properties, an init() method to identify the links
and add the changes, and an openPopup() method to trigger the pop-ups.

automaticPopupLinks.js (skeleton)

poplinks = {
 triggerClass : 'popup',
 popupLabel : ' (opens in a new window)',
 windowProps : 'width=200,height=200,top=100,left=100',
 init : function(){ },
 openPopup : function(e){ },
}

The two methods are pretty basic. The init() method checks for DOM support and loops
through all the links in the document. If the current link has the CSS trigger class, it adds the
label to the link by creating a new text node from the label and adding it as a new child to the
link. It adds an event when the link is clicked pointing to the openPopup() method and applies
the Safari fix to stop the link from being followed in that browser.

6803.book Page 218 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 219

automaticPopupLinks.js (excerpt)

 init : function() {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 var label;
 var allLinks = document.getElementsByTagName('a');
 for(var i = 0; i < allLinks.length; i++) {
 if(!DOMhelp.cssjs('check', allLinks[i],➥

 poplinks.triggerClass)) {
 continue;
 }
 label = document.createTextNode(poplinks.popupLabel);
 allLinks[i].appendChild(label);
 DOMhelp.addEvent(allLinks[i], 'click',➥

 poplinks.openPopup, false);
 allLinks[i].onclick = DOMhelp.safariClickFix;
 }
 },

The openPopup() method retrieves the event target, makes sure that it was a link, and
opens a new window by calling window.open() with the event target’s href attribute as the
URL, a blank name, and the window properties stored in windowProps. It finishes by calling the
cancelClick() method to stop the link from being followed.

automaticPopupLinks.js (excerpt)

 openPopup : function(e) {
 var t = DOMhelp.getTarget(e);
 if(t.nodeName.toLowerCase() != 'a') {
 t = t.parentNode;
 }
 var win = window.open(t.getAttribute('href'), '',➥

 poplinks.windowProps);
 DOMhelp.cancelClick(e);
 }

There is more to this topic, especially when it comes to usability and accessibility con-
cerns, and making sure that pop-up windows are used only when they really are opened and
not blocked by some software or otherwise fail to open; however, going deeper into the matter
is not within the scope of the current discussion. It suffices to say that it is not easy to rely on
pop-ups of any kind in today’s environment.

Window Interaction

Windows can interact with other windows using a number of their properties and methods.
First of all there is focus() and blur(): the former brings the pop-up window to the front, the
latter pushes it to the back of the current window.

6803.book Page 219 Thursday, June 15, 2006 11:48 AM

220 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

You can use the close() method to get rid of windows, and you can reach the window that
opened the pop-up window via the window.opener property. Suppose that you’ve opened two
new windows from a main document:

w1 = window.open('document1.html', 'win1');
w2 = window.open('document2.html', 'win2');

You can hide the first window behind the other by calling its blur() method:

w1.blur();

■Note In online advertising, the trick of opening an unsolicited window and hiding it immediately via
blur() is called a pop-under and is considered by advertisers to be less annoying than pop-up windows,
as they don’t cover the current page. If you’ve ever found several windows you don’t remember opening when
you shut down the browser, this is likely what has happened.

You can close the window by calling its close() method:

w1.close();

If you want to reach the initial window from any of the documents in the pop-ups, you can
do this via

var parentWin = window.opener;

If you want to reach the second window from the first window, you’ll also need to go
through the window.opener, as the second window was opened from this one:

var parentWin = window.opener;
var otherWin = parentWin.w2;

Notice that you need to use the variable name the window was assigned to, and not the window
name.

You can use any of the window methods of any of the windows this way. Say for example
you want to close w2 from within document1.html; you do this by calling

var parentWin = window.opener;
var otherWin = parentWin.w2.close();

You can also call functions of the main window. If the main window has a JavaScript func-
tion that is called demo(), you could reach it from document1.html via

var parentWin = window.opener;
parentWin.demo();

6803.book Page 220 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 221

■Caution If you try to close the initial window with window.opener.close(), some browsers will give
a security alert asking the user if he wants to allow that. This is another security feature to prevent site owners
with malicious intentions spoofing a different web site. A lot of design agencies used to close the original
browser in favor of a window with a predefined size—this is not possible any longer without the aforemen-
tioned security alert, and it might be a good idea to avoid this kind of behavior unless you want to scare or
annoy your visitors.

Changing the Position and the Dimensions of a Window

Each of the methods in the following list has x and y parameters. x is the horizontal position
and y the vertical position in pixels from the top left of the screen. The moveBy(), resizeBy(),
and scrollBy() methods allow for negative values, which would move the window or the con-
tent to the left and up or make the window smaller by the stated amount of pixels.

• moveBy(x,y): Moves the window by x and y pixels

• moveTo(x,y): Moves the window to the coordinates x and y

• resizeBy(x,y): Resizes the window by x and y

• resizeTo(x,y): Resizes the window to x and y

• scrollBy(x,y): Scrolls the window’s content by x and y

• scrollTo(x,y): Scrolls the window’s content to x and y

If you check the example document exampleWindowPosition.html, you can test out the differ-
ent methods as shown in Figure 6-13. Note that this example appears in Firefox. In Opera 8 or
MSIE 7, the small window will have a location bar.

Figure 6-13. Changing the window position and dimension

6803.book Page 221 Thursday, June 15, 2006 11:48 AM

222 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

Animation with Window Intervals and Timeouts

You can use the setInterval() and setTimeout() window methods to allow for timed execu-
tion of code. setTimeout means you wait a certain time before executing the code (once only);
setInterval() executes the code every time the given time period has passed.

• name = setInterval('someCode', x): Executes the JavaScript code passed to it as
someCode every x milliseconds

• clearInterval(name): Cancels the execution of the interval called name (keeps the
code from being executed again)

• name=setTimeout('someCode', x): Executes the JavaScript code someCode once, after
waiting x milliseconds

• clearTimeout(name): Stops the timeout called name if the code hasn’t yet been run

■Note The parameter someCode in setInterval() and setTimeout() is a string and can be any valid
JavaScript code. Usually, it’s most convenient simply to call a function you’ve already defined elsewhere.

Classic examples for the use of these methods are news tickers, clocks, and animation.
However, you can also use them to make your site less obtrusive and more user beneficial.

One example of this is a warning message that vanishes after a certain amount of time. The
demo exampleTimeout.html shows how you can use setTimeout() to display a very obvious
warning message for a short period or allow the user to get rid of it immediately. The HTML has
a paragraph warning the user that the document is out of date:

exampleTimeout.html (excerpt)

<p id="warning">This document is outdated
 and kept only for archive purposes.</p>

A basic style sheet colors this warning red and shows it in bold for non-JavaScript users.
For users that have JavaScript enabled, add a dynamic class that makes the warning a lot more
obvious.

timeout.css

#warning{
 font-weight:bold;
 color:#c00;
}

6803.book Page 222 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 223

.warning{
 width:300px;
 padding:2em;
 background:#fcc;
 border:1px solid #c00;
 font-size:2em;
}

The difference between the two is shown in Figure 6-14.

Figure 6-14. Warning message without and with JavaScript

The user can click the “remove warning” link to get rid of the warning or wait, and it will
vanish automatically after 10 seconds.

The script is pretty easy; you check whether DOM is supported and whether the warning
message with the right ID exists. Then you add the dynamic warning class to the message and
create a new link with an event handler pointing to the removeWarning() method. You append
this link as a new child node to the warning message and define a timeout that automatically
triggers removeWarning() when 10 seconds are over.

timeout.js (excerpt)

warn = {
 init : function() {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 warn.w = document.getElementById('warning');
 if(!warn.w){ return; }
 DOMhelp.cssjs('add', warn.w, 'warning');
 var temp = DOMhelp.createLink('#', 'remove warning');
 DOMhelp.addEvent(temp, 'click', warn.removeWarning, false);
 temp.onclick = DOMhelp.safariClickFix;
 warn.w.appendChild(temp);
 warn.timer = window.setTimeout('warn.removeWarning()', 10000);
 },

6803.book Page 223 Thursday, June 15, 2006 11:48 AM

224 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

All the removeWarning() method needs to do is remove the warning message from the
document, clear the timeout, and stop the default action of the link.

timeout.js (continued)

 removeWarning : function(e){
 warn.w.parentNode.removeChild(warn.w);
 window.clearTimeout(warn.timer);
 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window, 'load', warn.init, false)

One web application that pioneered this kind of effect is Basecamp (http://
www.basecamphq.com/), which highlights the recent changes to the document in yellow
when the page loads and gradually fades out the highlight. You can see the effect rationale
at 37signals (http://www.37signals.com/svn/archives/000558.php) and a demo Java-
Script at YourTotalSite (http://www.yourtotalsite.com/archives/javascript/
yellowfade_technique_for/).

Timeouts are tempting to use on web sites because they give the impression of a very
dynamic site and allow you to transition smoothly from one state to the other.

■Tip There are several JavaScript effect libraries available that offer you premade scripts to achieve
tansition and animation effects. While most of them are very outdated, there are some exceptions, like
script.aculo.us (http://script.aculo.us/) and FACE (http://kurafire.net/projects/face).

However, it might be a good idea to reconsider using a lot of animation and transitions in
your web site. Remember that the code is executed on the user’s computer, and depending on
how old or how busy it is with other tasks, the transitions and animations may look very clumsy
and become a nuisance rather than a richer site experience.

Animations can also be an accessibility issue if the functionality of the site is dependent on
them, as they might make it impossible for some groups of disabled visitors to use the site (cog-
nitive disabilities, epilepsy). The Section 508 accessibility law (http://www.section508.gov/)
states quite clearly that for software development you need to provide an option to turn off
animation:

(h) When animation is displayed, the information shall be displayable in at least one
non-animated presentation mode at the option of the user.

—http://www.section508.gov/index.cfm?FuseAction=Content&ID=12#Software

6803.book Page 224 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 225

However, for web sites this is not formulated as clearly. The W3C accessibility guidelines,
on the other hand, state explicitly in a level-two priority that you should avoid any movement
in web pages.

Until user agents allow users to freeze moving content, avoid movement in pages.

—http://www.w3.org/TR/WCAG10-TECHS/#tech-avoid-movement

Let’s try an example that allows the user to start and stop an animation. Take the embed-
ded slide show developed earlier in the chapter and instead of giving it forward and backward
links, you’ll add a link to start and stop an automated slide show using a setInterval().

The HTML and the CSS will stay the same, but the JavaScript has to change a lot.
If you open exampleAutoSlideShow.html in a browser, you’ll get a slide show with a Play

button that starts the show when you click it. You could easily start the animation when the page
loads, but it is a good idea to leave the choice to the user. This is especially the case when you
need to comply with accessibility guidelines, as unsolicited animation can cause problems for
users suffering from disabilities like epilepsy. Once clicked, the button turns into a Stop button
that stops the slide show when activated. You can see how it looks in Firefox in Figure 6-15.

Figure 6-15. An automatic slide show changing the Play button to a Stop button

You start with the necessary CSS classes, which are the same as in the first slide show
example with the exception of the hide class. As you won’t hide any buttons this time, there is
no need for it.

6803.book Page 225 Thursday, June 15, 2006 11:48 AM

226 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

autoSlides.js (excerpt)

autoSlides = {

 // CSS classes
 slideClass : 'slides',
 dynamicSlideClass : 'dynslides',
 showClass : 'show',
 slideCounterClass : 'slidecounter',

The other properties change slightly; instead of backward and forward labels, you now
need play and stop labels. The counter indicating which picture of how many is currently
shown stays the same. One new property is the delay of the slide show in milliseconds.

autoSlides.js (continued)

 // Labels
 // Play and stop links, you can use any HTML here
 playLabel : '',
 stopLabel : '',
 // Counter text, # will be replaced by the current image count
 // and % by the number of all pictures
 counterLabel : '# of %',

 // Animation delay in milliseconds
 delay : 1000,

The init() method checks for DOM support and adds a new array called slideLists that
will store all the lists that are to be turned into slide shows. This is necessary to be able to tell
the function which list to apply the changes to.

autoSlides.js (continued)

 init : function() {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 var uls = document.getElementsByTagName('ul');
 autoSlides.slideLists = new Array();

First, loop through all the lists in the document and check for the class to turn them into
slide shows. If a list has the class, you initialize the currentSlide property to 0 and store the
loop counter in a new list property called showCounter. Once again, this will be needed to tell
the interval which list to change. You call the initSlideShow() method with the list as a
parameter and add the lists to the slideLists array.

6803.book Page 226 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 227

autoSlides.js (continued)

 for(var i = 0; i < uls.length; i++) {
 if(!DOMhelp.cssjs('check', uls[i],➥

 autoSlides.slideClass)){
 continue;
 }
 DOMhelp.cssjs('swap', uls[i], autoSlides.slideClass,_
 autoSlides.dynamicSlideClass);
 uls[i].currentSlide = 0;
 uls[i]. showIndex = i;
 autoSlides.initSlideShow(uls[i]);
 autoSlides.slideLists.push(uls[i]);
 }
 },

The initSlideShow() method does not differ much from the method of the same name
that you used in photoListInlineSlidesSafariFix.js; the only difference is that you create
one link instead of two and apply the playLabel as the content of the new link:

autoSlides.js (continued)

 initSlideShow : function(o){
 var p, temp ;
 p = document.createElement('p');
 DOMhelp.cssjs('add', p, autoSlides.slideCounterClass);
 o.parentNode.insertBefore(p, o.nextSibling);
 o.play = DOMhelp.createLink('#', ' ');
 o.play.innerHTML = autoSlides.playLabel;
 DOMhelp.addEvent(o.play, 'click', autoSlides.playSlide, false);
 o.count = document.createElement('span');
 temp = autoSlides.counterLabel.replace(/#/, o.currentSlide + 1);
 temp = temp.replace(/%/, o.getElementsByTagName('li').length);
 o.count.appendChild(document.createTextNode(temp));
 p.appendChild(o.count);
 p.appendChild(o.play);
 temp = o.getElementsByTagName('li')[o.currentSlide];
 DOMhelp.cssjs('add', temp,autoSlides.showClass);
 o.play.onclick = DOMhelp.safariClickFix;
 },

The playSlide() method is new, but it starts pretty much like the old showSlide()
method. You check the target and its node name and retrieve the parent list.

6803.book Page 227 Thursday, June 15, 2006 11:48 AM

228 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

autoSlides.js (continued)

 playSlide : function(e) {
 var t = DOMhelp.getTarget(e);
 while(t.nodeName.toLowerCase() != 'a'
 && t.nodeName.toLowerCase() != 'body'){
 t = t.parentNode;
 }
 var parentList = DOMhelp.closestSibling(t.parentNode, -1);

You test if the parent list already has a property called loop. This is the property that stores
the instance of setInterval(). You use a property of the list instead of a variable to allow for
more than one automated slide show in the same document.

You define the string to use in setInterval() as a call of the showSlide() method with the
showIndex property of the parent list as a parameter. This is necessary as setInterval() is a
method of the window object and not in the scope of the main autoSlides object.

You use setInterval() with the delay defined in the autoSlides.delay property and
store it in the loop property before changing the content of the link that was activated to the
Stop button.

autoSlides.js (continued)

 if(!parentList.loop) {
 var loopCall = "autoSlides.showSlide('" +➥

 parentList.showIndex + "')";
 parentList.loop = window.setInterval(loopCall,➥

 autoSlides.delay);
 t.innerHTML = autoSlides.stopLabel;

If the list already has a property called loop, it means the slide show is currently running;
therefore you clear it, set the loop property to null, and change the button back to the Play but-
ton. You then stop the default link behavior by calling cancelClick().

autoSlides.js (continued)

 } else {
 window.clearInterval(parentList.loop);
 parentList.loop = null;
 t.innerHTML = autoSlides.playLabel;
 }
 DOMhelp.cancelClick(e);
 },

6803.book Page 228 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 229

The showSlide() method changes quite drastically, but you will see that some of the ini-
tially confusing parts of the other methods (like what the slideLists array is good for) make
the method rather easy.

Remember that you define in playSlide() that the interval should call the showSlide()
method with the showIndex property of the list as a parameter. You can use this index now to
retrieve the list you need to loop through simply by retrieving the list from the slideLists array.

autoSlides.js (continued)

 showSlide : function(showIndex) {
 var currentShow = autoSlides.slideLists[showIndex];

Once you have the list, you can read out the current slide and the number of slides.
Remove the showClass from the current slide to hide it.

autoSlides.js (continued)

 var count = currentShow.currentSlide;
 var photoCount = currentShow.getElementsByTagName('li').length;
 var photo = currentShow.getElementsByTagName('li')[count];
 DOMhelp.cssjs('remove', photo, autoSlides.showClass);

Increment the counter to show the next slide. Compare the counter with the number of all
the slides and set it to 0 if the last slide was already shown—thus restarting the slide show at the
first slide.

Show the slide by retrieving the list element and adding the show class. Update the counter
and reset the currentSlide property of the list to the new list element.

autoSlides.js (continued)

 count++;
 if(count == photoCount){ count = 0 };
 photo = currentShow.getElementsByTagName('li')[count];
 DOMhelp.cssjs('add', photo, autoSlides.showClass);
 var counterText = currentShow.count.firstChild;
 counterText.nodeValue = counterText.nodeValue.➥

 replace(/\d/, count + 1);
 currentShow.currentSlide = count;
 }
}
DOMhelp.addEvent(window, 'load', autoSlides.init, false);

6803.book Page 229 Thursday, June 15, 2006 11:48 AM

230 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

This complexity is just a taste of what awaits the JavaScript developer when it comes to
animation and timed execution of code. Creating a smooth, stable, cross-browser animation in
JavaScript is tricky and needs a lot of testing and knowledge of browser issues. Luckily, there
are ready-made animation libraries available that help you with this task and have been tested
for stability by a lot of developers with different operating systems and browsers. You’ll get to
know one of them with the examples in Chapter 11.

Navigation Methods of the Browser Window

Following is a list of methods for navigating a browser window:

• back(): Goes back one page in the browser history (If you use frames, this goes back to
the last document without frames, not the last change inside a frame.)

• forward(): Goes one page forward in the browser history (If you use frames, this goes
back to the last document without frames, not the last change inside a frame.)

• home(): Acts as if the user had clicked the home button (only for Firefox and Opera)

• stop(): Stops the loading of the document in the window (not supported by MSIE)

• print(): Starts the browser’s print dialog

It is rather tempting to use these methods to provide navigation on pages that should sim-
ply link back to the previous page via something like the following:

Back to previous page

With accessibility and modern scripting in mind, this means that a user without JavaScript will
have promised to him something that does not exist. A better solution is either to generate a
real “back to previous page” link via server-side includes (SSIs) or to provide an actual HTML
hyperlink to the right document. If neither is possible, use a placeholder and replace it with a
generated link when and if JavaScript is available, as in the following example:

exampleBackLink.html (to reach via exampleForBackLink.html)

HTML:
<p id="back">Please use your browser's back button or
keyboard shortcut to go to the previous page</p>
JavaScript:
function backlink() {
 var p = document.getElementById('back');
 if(p) {
 var newa = document.createElement('a');
 newa.setAttribute('href', '#');

6803.book Page 230 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 231

 newa.appendChild(document.createTextNode➥

 ('back to previous page'));
 newa.onclick = function() { window.back();return false; }
 p.replaceChild(newa, p.firstChild);
 }
}
window.onload = backlink;

■Caution The danger of these methods is that you offer functionality that the browser already provides the
user. The difference is that the browser does it better, as it does support more input devices. In Firefox on a
PC, for example, you can print the document by pressing Ctrl+P, close the window or tab by pressing Ctrl+W,
and move forward and backward in the browser history via Alt and the left or right arrow keys.

Even worse, the functionality offered with these methods is dependent on scripting support. It is up to you to
decide if the preceding method—creating the links invoking these methods, which is probably the cleanest
way to deal with the issue—is worth the effort, or if you should just allow the user to decide how to trigger
browser functionality.

Alternatives to Opening New Windows: Layer Ads

Sometimes there is no way to avoid pop-up windows, as the site design or functionality
requires them, and you just cannot make them work because of the browser issues and options
explained earlier. One workaround is layer ads, which are basically absolutely positioned page
elements put on top of the main content.

Let’s try an example of those. Imagine your company wants to advertise the latest offers
quite obviously when the page is loaded. The easiest way is to add the information at the end
of the document and use a script to turn it into a layer ad, which means that visitors without
JavaScript will still get the information, but nothing that covers the content without giving
them a chance to get rid of it. The HTML can be a simple DIV with an ID (the real links have
been replaced with “#” for the sake of brevity):

exampleLayerAd.html (excerpt)

<div id="layerad">
 <h2>We've got some special offers!</h2>

 TDK DVD-R 8x 50 pack $12
 Datawrite DVD-R 16x 100 pack $50
 NEC 3500A DVD-RW 16x $30

</div>

6803.book Page 231 Thursday, June 15, 2006 11:48 AM

232 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

The CSS designer can style the ad for the non-JavaScript version, and the script will add a
class to allow the ad to show up above the main content. If you call the class dyn, the CSS might
look like this:

layerAd.css (excerpt)

#layerad{
 margin:.5em;
 padding:.5em;
}
#layerad.dyn{
 position:absolute;
 top:1em;
 left:1em;
 background:#eef;
 border:1px solid #999;
}
#layerad.dyn a.adclose{
 display:block;
 text-align:right;
}

The last selector is a style for a dynamic link that the script will add to the ad, allowing the user
to remove it.

The script itself does not contain any surprises. First, define the ID of the ad, the dynamic
class, and the class and the text content of the “close” link as properties.

layerAd.js

ad = {
 adID : 'layerad',
 adDynamicClass : 'dyn',
 closeLinkClass : 'adclose',
 closeLinkLabel : 'close',

The init() method checks for DOM and for the ad and adds the dynamic class to it. It cre-
ates a new link and adds the text and the class of the “close” link to it. It adds an event handler
to this link pointing to the killAd() method and inserts the new link before the first child node
of the ad.

layerAd.js (continued)

 init : function() {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }

6803.book Page 232 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 233

 ad.offer = document.getElementById(ad.adID);
 if(!ad.offer) { return; }
 DOMhelp.cssjs('add', ad.offer, ad.adDynamicClass);
 var closeLink = DOMhelp.createLink('#', ad.closeLinkLabel);
 DOMhelp.cssjs('add', closeLink, ad.closeLinkClass);
 DOMhelp.addEvent(closeLink, 'click', ad.killAd,false);
 closeLink.onclick = DOMhelp.safariClickFix;
 ad.offer.insertBefore(closeLink, ad.offer.firstChild);
 },

The killAd() method removes the ad from the document and cancels the link’s default
behavior.

layerAd.js (continued)

 killAd : function(e) {
 ad.offer.parentNode.removeChild(ad.offer);
 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window, 'load', ad.init, false);

You can test the effect by opening exampleLayerAd.html in a browser; if you have Java-
Script enabled, you’ll see the ad covering the content, as shown in Figure 6-16. You can get rid
of it by using the “close” link.

Figure 6-16. An example of a layer ad

One other common use of pop-up windows is for displaying another document or file
without leaving the current page. Classic examples include a long list of boring terms and con-
ditions or a photo. Especially in the case of photos, a pop-up is a suboptimal solution, as you
can open a window with the same dimensions as the picture, but there will be gaps around the
image because the browser’s internal styles have padding settings on the body. You could work
around this problem by using a blank HTML document with a style sheet that sets the body
margins and padding to 0 and adding the image to the document in the window via JavaScript.
Another option is to show the photo in a newly generated and positioned element covering the
main document. The demo examplePicturePopup.html does that; all the script needs is a class
with a certain name on a link pointing to the photo.

6803.book Page 233 Thursday, June 15, 2006 11:48 AM

234 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

examplePicturePopup.html (excerpt)

Sleeping Dog

The script needs to do something that wasn’t explained here before, namely reading the
position of elements. You cover the main document with an element by positioning the ele-
ment absolutely. As you don’t know where the link pointing to the photo is in the document,
you need to read its position and show the photo there.

But that is for later; first up you need to predefine properties. You need a class that triggers
the script, applying a link class to the link when the photo is shown, and another class to the
element containing the photo. You also need to define a prefix to be added to the link when the
photo is displayed and a property acting as a shortcut reference to the newly created element.

picturePopup.js (excerpt)

pop={
 triggerClass:'picturepop',
 openPopupLinkClass:'popuplink',
 popupClass:'popup',
 displayPrefix:'Hide ',
 popContainer:null,

The init() method checks for DOM support and loops through all the links of the docu-
ment, testing whether they have the right CSS class to trigger the pop-up. For those that do, the
method adds an event handler pointing to the openPopup() method, and then stores the link’s
innerHTML content in a preset property.

picturePopup.js (continued)

 init : function() {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 var allLinks = document.getElementsByTagName('a');
 for(var i = 0; i < allLinks.length; i++) {
 if(!DOMhelp.cssjs('check', allLinks[i],➥

 pop.triggerClass)) {
 continue;
 }
 DOMhelp.addEvent(allLinks[i], 'click', pop.openPopup, false);
 allLinks[i].onclick = DOMhelp.safariClickFix;
 allLinks[i].preset = allLinks[i].innerHTML;
 }
 },

The openPopup() method retrieves the event target and ensures that it is a link. It then
tests whether there is already a popContainer, which would mean that the photo is shown. If
this is not the case, the method adds the prefix to the link’s content and adds the dynamic class
to make the link look different.

6803.book Page 234 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 235

picturePopup.js (continued)

 openPopup : function(e) {
 var t = DOMhelp.getTarget(e);
 if(t.nodeName.toLowerCase() != 'a') {
 t = t.parentNode;
 }
 if(!pop.popContainer) {
 t.innerHTML = pop.displayPrefix + t.preset;
 DOMhelp.cssjs('add', pop.popContainer, pop.popupClass);

The method then creates a new DIV that acts as the photo container, adds the appropriate
class, and adds a new image as a child node of the container DIV. It shows the image by setting
the src attribute of the new image to the value of the href attribute of the original link. The
newly created photo container is then added to the document (as a child of the body element).
Finally, openPopup() calls the positionPopup() method with the link object as a parameter.

picturePopup.js (continued)

 pop.popContainer = document.createElement('div');
 DOMhelp.cssjs('add', t,pop.openPopupLinkClass);
 var newimg = document.createElement('img');
 pop.popContainer.appendChild(newimg);
 newimg.setAttribute('src', t.getAttribute('href'));
 document.body.appendChild(pop.popContainer);
 pop.positionPopup(t);

If the popContainer already exists, all the method does is call the killPopup() method,
reset the link to its original content, and remove the class that indicates that the photo is
shown. Calling cancelClick() prevents the link from simply showing the photo in the
browser.

picturePopup.js (continued)

 } else {
 pop.killPopup();
 t.innerHTML = t.preset;
 DOMhelp.cssjs('remove', t,pop.openPopupLinkClass);
 }
 DOMhelp.cancelClick(e);
 },

The positionPopup() method defines two variables, x and y, initializes them both to 0,
and then reads the height of the element from its offsetHeight property. It next reads the ver-
tical and horizontal position of the element and all its parent elements and adds those to x and
y. The result is the position of the element relative to the document. The method then positions
the photo container below the original link by adding the height of the link to the vertical vari-
able y and altering the popContainer style properties.

6803.book Page 235 Thursday, June 15, 2006 11:48 AM

236 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

picturePopup.js (continued)

 positionPopup : function(o) {
 var x = 0;
 var y = 0;
 var h = o.offsetHeight;
 while (o != null) {
 x += o.offsetLeft;
 y += o.offsetTop;
 o = o.offsetParent;
 }
 pop.popContainer.style.left = x + 'px';
 pop.popContainer.style.top = y + h + 'px';
 },

The killPopup() method removes the popContainer from the document—clearing the
property by setting its value to null—and prevents the default link action from taking place by
calling cancelClick().

■Note You can remove a node from the document by calling the removeChild() method of its parent
node, with the node itself as the child node to remove. However, as you use a property that points to the node
rather than checking for the node itself, you also need to set this property to null.

picturePopup.js (continued)

 killPopup : function(e) {
 pop.popContainer.parentNode.removeChild(pop.popContainer);
 pop.popContainer = null;
 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window, 'load', pop.init, false);

The result is that you can click any image pointing to a photo with the correct class, and it’ll
show the image below it. Figure 6-17 shows an example.

6803.book Page 236 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 237

Figure 6-17. An example of a dynamically displayed photo

The beauty of this approach is that it is not only limited to photos. With just a simple mod-
ification, you can display other documents inside the current one. The trick is to dynamically
add an IFRAME element to the photoContainer and set its src attribute to the document you
want to embed. The demonstration exampleIframeForPopup.html does exactly that to show a
lengthy terms-and-conditions document inside the main one.

The only differences (apart from different property names, as the method does not show a
photo) are in the openPopup method where you add the new IFRAME:

iframeForPopup.js (excerpt)

 var ifr = document.createElement('iframe');
 pop.ifrContainer.appendChild(ifr);
 ifr.setAttribute('src', t.getAttribute('href'));

Figure 6-18 shows what this could look like.

Figure 6-18. An example of a dynamically included and displayed document

6803.book Page 237 Thursday, June 15, 2006 11:48 AM

238 C H A P T E R 6 ■ C O M M O N U S E S O F J A V A S C R I P T : I M A G E S A N D W I N D O W S

Including other documents via IFRAME elements is an easy and well-supported method,
but it is not the most accessible way. What you could do instead is use a server-side language
like PHP to retrieve the content of the document and include it in the current one and use the
same trick the layer ad example earlier uses. For more modern browsers, you can also do this
“on the fly” using Ajax, but that will be explained in its own chapter, Chapter 8.

Summary: Windows and JavaScript
Controlling the current window and opening new ones has traditionally been a large part of
JavaScript development, especially when it comes to web application development. In recent
years, however, due to an increase in restrictions fueled by concerns about browser security
and web surfers simply being fed up with lots of pop-ups and installing blocking software, it
has become progressively harder to use new windows—even if you want to use them for a good
cause. These and accessibility concerns make using multiple browser windows an increasingly
unreliable method of web communication. Luckily, thanks to some of the replacement tech-
niques discussed here (as well as Ajax, to which I devote Chapter 8), there is hardly any need for
them any longer.

Things to Remember About Windows and JavaScript

• Test, test, and test again whether the window you have opened really exists before you
try to do anything to it.

• Always remember that although the windows are on the same screen, they are com-
pletely separate instances of the browser. You need to go via the window.opener if you
want to reach one pop-up from another or a function in the main script from any of the
pop-ups you opened.

• Refrain from trying to control windows by taking away toolbars, moving them around
the screen, or showing and hiding them via blur() and focus(). Most of these capabili-
ties are still available now but are very likely to be blocked in future browsers.

• The web markup language of the future—XHTML—does not support the concept of dif-
ferent browser window instances (which is why the target attribute is deprecated).
While you can circumvent this problem with scripting, it is still a bad idea to use XHTML
STRICT and rely on several windows.

• You can simulate a lot of browser behavior or interactive elements with the window
object methods—like closing and printing a window or moving back in the browser his-
tory. However, it might be better to leave this choice to the user. If you want to offer your
own controls to the user, create these with JavaScript, too. Otherwise, the user will get a
promise you don’t keep when JavaScript is unavailable.

6803.book Page 238 Thursday, June 15, 2006 11:48 AM

C H A P T E R 6 ■ C O M M O N U S E S O F JA V A S C R I P T : I M A G E S A N D W I N D O W S 239

• If you use pop-up windows, tell visitors in the link opening the window that there will be
a new window. This informs visitors with user agents that don’t necessarily support mul-
tiple windows that there might be a change they have to deal with; it also prevents
visitors from accidentally closing the window your web site needs. Years of unsolicited
advertising and pop-ups have conditioned web surfers to immediately close new win-
dows without even glancing at them.

• Employing timed execution of code via the window methods setTimeout() and
setInterval() is a bit like using makeup: as a girl you learn how to put it on; as a
woman you learn when to take it off. You can use both of these methods—and they
are tempting to create all kind of snazzy effects—but you should think of your users,
and ask yourself, “Is there really a need for animation when a static interface might
lead much more quickly to the same result?”

Summary
Well done! You have reached the end of this chapter and should be well equipped now to create
your own JavaScript solutions with images and windows, or—even better—window replace-
ment techniques.

If some of the examples were a bit tough to wrap your head around, don’t get frustrated, as
this is a feeling you’ll experience often as a JavaScript developer. And it does not mean that you
don’t “get it.” Dozens of ways exist to solve any given problem in JavaScript. While there are
much easier ways than those explained here, getting used to this kind of scripting should make
you well equipped for more advanced scripting tasks like using third-party APIs or web appli-
cation development.

In the next chapter, you have the chance to become better acquainted with event and
property handling, as we discuss navigation and forms.

6803.book Page 239 Thursday, June 15, 2006 11:48 AM

6803.book Page 240 Thursday, June 15, 2006 11:48 AM

241

■ ■ ■

C H A P T E R 7

JavaScript and User Interaction:
Navigation and Forms

In this chapter, we will talk about two more common uses of JavaScript: navigation and forms.
Both mean a lot of user interaction and therefore need to be planned and executed thought-
fully. The success of a web site stands and falls with the ease of its navigation, and there is
nothing more frustrating on the Web than a form that is hard to use or impossible to fill out.

■Note This chapter consists of a lot of code examples, and you will be asked to open some
of them in a browser to test the functionality for yourself, so if you haven’t been to http://
www.beginningjavascript.com yet to download the code examples for this book, it might be
a good time to do so now. I am a firm believer in hands-on training when it comes to coding, and it’ll be
easier for you to understand some of the functionality when you can experience it firsthand or—better
yet—fiddle around with it in your own editor.

Navigation and JavaScript
Spicing up web site navigation has been one of the main tasks of DHTML since browsers first
began supporting dynamic changes to the look and feel of page elements. The era of animated
and fading navigation started with DHTML and has yet to end. The idea seemed to be that if the
web page’s navigation was very slick, tech-y, and looked and acted remotely like the LCARS
interfaces on the starship Enterprise, the site must be great. A lot of times, visitors disagreed,
and they would use a site search option, assuming one was provided, once they got bored with
the navigation.

We won’t talk about flashy navigation here; instead you’ll see examples of what you can do
with JavaScript to make page and site navigation more intuitive and less cumbersome while
keeping it as accessible as possible.

6803ch07.fm Page 241 Thursday, June 22, 2006 9:45 PM

242 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

The Fear of the Page Reload
A lot of JavaScript enhancements to forms and web navigation are made to prevent visitors
from having to reload the page or load a lot of pages before reaching the information they
came for. This is an admirable idea and can work wonderfully; however, let’s not forget that
JavaScript can only reach elements of the page when the whole document is loaded and deal
with what is already in the document (that is, unless you use Ajax to load other content on the
fly—more about that in the next chapter).

This means you can create a slick interface that only shows a slice of the overall page con-
tent with JavaScript, but it also means that visitors without JavaScript will have to deal with the
whole amount of data in the document. Before you go completely nuts on enhancing pages,
turn off JavaScript from time to time and see whether you’d be able to cope with the amount of
data available in the document.

The benefit of smaller documents with only a bit of specialized information on them is
that you can use the whole toolkit the browser offers the user: going forward and backward,
bookmarking and printing. This is functionality you might break when you use JavaScript for
navigation or pagination. The less desirable effect is that you have to maintain a lot more doc-
uments and visitors have to load each separately—thus also increasing the server traffic.

It is not evil to use JavaScript to enhance web sites; it is all a matter of moderation and
knowing your audience.

Basics of Navigation and JavaScript
The most basic idea of navigation and JavaScript is that you don’t rely on JavaScript to make
your navigation work. Depending on JavaScript, page or site navigation will block out users
that don’t have JavaScript at their disposal and will also block out search engines.

■Tip The latter is a good argument should you ever have to explain to a nontechnical person why a bunch
of javascript:navigate('page2') links are not a good idea. The notion of site visitors who have Java-
Script disabled as a target group that is worth thinking about is not easy to explain to someone who doesn’t
even know how to turn it off in his browser. Explaining to him that the “big, blind millionaire” Google won’t
index their site is an easier selling point.

A classic example of using JavaScript seemingly to make navigation easier but with the
potential of alienating quite a large a group of visitors is the use of a select box for navigation.
Select boxes are great because they let you offer a lot of options without wasting screen space.
Figure 7-1 shows an open select box; the closed one only uses up one line for all these options.

6803ch07.fm Page 242 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 243

Figure 7-1. Using a select box for navigation

Open the demo page exampleSelectNavigation.html and select one of the options from
the drop-down. If you are connected to the Web and you have JavaScript enabled, you will be
immediately sent to the address you choose. Unfortunately, if you’ve chosen the wrong option,
you don’t get a chance to undo your choice. Without JavaScript, you can select an option, but
nothing happens.

exampleSelectNavigation.html

<form>
<p>
 <select onchange="window.location = this.options[this.selectedIndex].value">
 <option value="#">Please select</option>
 <option value="http://www.apress.com">The publisher</option>
 <option value="http://wait-till-i.com">The author's blog</option>
 <option value="http://icant.co.uk">The author's other articles</option>
 <option value="http://onlinetools.org">Scripts and tools by the author</option>
 </select>
</p>
</form>

Keyboard access is another problem: you normally use the Tab key to access a select box
and press the up and down keys to select the choice you want. In this example, you won’t get
that chance though, as you will be sent to the first option as soon as you press the down arrow
key. The workaround is to press the Alt and down arrow keys together to expand the whole list.
You can then choose your option with the up arrow and down arrow keys and hit Enter to select
it. But did you know that?

The easiest solution to these problems is to never use a change, mouseover, or focus event
to send data to the server or the user to a different web location. It is not accessible for a lot of
visitors and can cause a lot of frustration. It is especially frustrating if there is no indicator that
data is being sent and that the page will change.

Instead, offer a real Submit button, a script that does the same redirection server side, and
a submit handler to redirect via JavaScript when and if it is available.

6803ch07.fm Page 243 Thursday, June 22, 2006 9:45 PM

244 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

exampleSaferSelectNavigation.html (excerpt)

<form method="post" action="redir.php">
<p>
 <label for="url">Please select your destination:</label>
 <select id="url" name="url">
 <option value="http://www.apress.com">The publisher</option>
 <option value="http://wait-till-i.com">The author's blog</option>
 <option value="http://icant.co.uk">The author's other articles</option>
 <option value="http://onlinetools.org">Scripts and tools by the author</option>
 </select>
 <input type="submit" value="Make it so!" />
</p>
</form>

The script is pretty straightforward: you apply an event handler to the first form on submit
that triggers a method. That method reads what choice the user made from the selectedIndex
of the options list with the ID url and redirects the browser there via the window.location
object. You’ll read more about the window.location object in the next section and all about
the selectedIndex and form objects in the “Forms and JavaScript” section of this chapter.

exampleSaferSelectNavigation.html (excerpt)

send = {
 init : function() {
 DOMhelp.addEvent(document.forms[0],
 'submit', send.redirect,
 false);
 },
 redirect : function(e){
 var t = DOMhelp.getTarget(e);
 var url = t.elements['url'];
 window.location.href = url.options[url.selectedIndex].value;
 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window, 'load', send.init, false);

The server-side script to send non-JavaScript users to the other URI could be a simple
header redirect in PHP:

<?php header('Location:' . $_POST[' url']); ?>

If the user has JavaScript enabled, she won’t have to do the round-trip to the server;
instead she’ll get sent to the other web site immediately. You do this by setting the
window.location.href property, which is one part of the built-in browser navigation.

6803ch07.fm Page 244 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 245

Browser Navigation
Browsers give you several objects you can use for automatic redirection or navigation around
the browser’s history. You already encountered the window.back() method in the last chapter.
The window object also provides the properties window.location and window.history.

The window.location object stores the URI of the current element and has the
following properties (in parentheses you see the return value provided if the URI were
http://www.example.com:8080/index.php?s=JavaScript#searchresults):

• hash: The name of the anchor in the URI (#searchresults)

• host: The domain name part of the URI (www.example.com)

• hostname: The domain name including subdomains and port numbers
(www.example.com:8080)

• href: The whole URI string (http://www.example.com:8080/
index.php?s=JavaScript#searchresults)

• pathname: The path name of the URI (/index.php)

• port: The port of the URI (8080)

• protocol: The protocol of the URI (http:)

• search: The search parameters (?s=JavaScript)

All of these properties can be read and written. For example, if you want the search to
change to DOM scripting, you can do this via window.location.search='?DOM scripting'. The
browser will automatically URL-encode the string to DOM%20scripting. You can also send the
user’s browser to another location by changing the window.location.href property.

In addition to these properties, the window.location has two methods:

• reload(): Reloads the current document (the same effect as clicking the Reload button
or pressing F5 or the Ctrl and R keys simultaneously).

• replace(URI): Sends the user to the URI and replaces the current URI with the other one.
The current URI will not be part of the browser history any longer.

■Caution Notice that this is different from the replace() method of the String object, which replaces
a part of a string with another.

You can use reload() to refresh the page in an interval to load new content from the
back end without the user clicking the Reload button. This functionality is quite common in
JavaScript-based chat systems.

Using replace() can be quite annoying, as you break the user’s Back button functionality.
She cannot go back to the current page when she doesn’t like the one you sent her to.

6803ch07.fm Page 245 Thursday, June 22, 2006 9:45 PM

246 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

The list of pages the user visited before reaching the current one is stored in the
window.history object. This object has only one single property, called length, which stores
the number of already visited pages. It has, however, three methods you can use:

• back(): Go back one page in the browser history.

• forward(): Go forward one page in the browser history.

• go(n): Go n steps forward or back in the browser history depending on n being positive
or negative. You can also reload the same page via history.go(0).

The history object only allows you to navigate to the other pages—not read out their URIs or
change them. The exception to the rule is the current page, which gets wiped from the browser
history when you use replace().

As already explained in the previous chapter, you effectively simulate browser functional-
ity by sending the user to other pages via JavaScript, which might be superfluous or thoroughly
confuse the user.

In-Page Navigation
You can use JavaScript to make navigation within the same page more interesting and less
screen-space consuming. In HTML, you can provide in-page navigation via anchors and tar-
gets, both defined with the <a> tag, either with an href attribute for an anchor or a name or id
attribute for a target.

■Note The name attribute for anchors is deprecated in XHTML, and it actually is enough to provide an ID to
link an anchor and target pair. However, to ensure compatibility with older browsers, it might be a good idea
to use it as you will in the following example.

Let’s take a list of internal links in a table of contents linked to different targets further
down the page as an example for in-page navigation:

exampleLinkedAnchors.html (excerpt)

<h1>X - a tool that does Y</h1>
<div id="toolinfo">
 <ul id="toolinfotoc">
 Information
 Demo
 Installation
 Use
 License
 Download

 <div class="infoblock">
 <h2>Information about X</h2>

6803ch07.fm Page 246 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 247

 [... content ...]
 <p class="back">
 Back to
 <acronym title="Table of Contents">TOC</acronym>
 </p>
 </div>
 <div class="infoblock">
 <h2>Demonstration of what
 X can do</h2>
 [... content ...]
 <p class="back">
 Back to
 <acronym title="Table of Contents">TOC</acronym>
 </p>
 </div>
 [... more sections ...]
</div>

You may be thinking that the DIV elements with the class infoblock are not necessary for this
in-page navigation to work. That is only partly true, as MSIE has a very annoying bug when it
comes to named anchors and keyboard navigation.

If you open the demo page exampleLinkedAnchors.html in MSIE, navigate through the dif-
ferent menu items by hitting the Tab key, and choose the section you want by hitting the Enter
key, the browser gets sent to the anchor you choose. However, MSIE does not send the keyboard
focus to this anchor. If you hit the Tab key again, you don’t get to the next link in the document;
instead you get sent back to the menu.

You can fix this problem by—among other tricks—nesting the anchor in an element that
has a defined width. This is what the DIVs are for. You can test this out on the demo page
exampleLinkedAnchorsFixed.html. The practical upshot is that you can use these elements—
in this case the DIVs—for CSS styling.

■Tip If you want to learn more about this problem and other ways to work around it, read the in-depth
article on the subject written by accessibility researcher extraordinaire Gez Lemon at http://
juicystudio.com/article/ie-keyboard-navigation.php.

Now let’s replicate and improve this functionality with a script. What the script should do
is show the menu, but hide all the sections, and only show the one you choose to keep the page
shorter and less overwhelming. The logic is pretty easy:

• Loop through the links in the menu and add click event handlers to show the sections
connected with the menu item.

• In the event listener method, hide the previously shown section and show the current one.

• When initializing the page, hide all the sections and show the first one.

6803ch07.fm Page 247 Thursday, June 22, 2006 9:45 PM

248 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

However, this does not take another aspect of in-page navigation into consideration: the
page could have been requested with a predefined target coming from another link. Try it out
by adding an anchor to the URI—for example, exampleLinkedAnchorsFixed.html#use—in your
browser. You’ll automatically scroll down to the “Using” section. Your script should take this
use case into consideration,.

Let’s start by defining the skeleton of the script. The main object of the script is called iv
for inner navigation—as in is a reserved word in JavaScript, and you want to keep it short.
You’ll need several properties:

• A CSS class to define when the menu is JavaScript enhanced

• A CSS class to highlight the current link in the menu

• A CSS class to show the current section

■Tip You don’t need to hide the sections via JavaScript, but you can use the CSS parent class trick
described in the last chapter.

You’ll need to define properties for the parent element to add the CSS class to and the ID
of the menu to be able to loop through the links.

Two more properties are needed, one to store the currently shown section and one to store
the currently highlighted link.

In terms of methods, you’ll need an init() method, an event listener to get the current
section, and a method to hide the previous section and show the current section.

innerNav.js (skeleton)

iv = {
 // CSS classes
 dynamicClass : 'dyn',
 currentLinkClass : 'current',
 showClass : 'show',

 // IDs
 parentID : 'toolinfo',
 tocID : 'toolinfotoc',

 // Global properties
 current : null,
 currentLink : null,

 init : function(){ },
 getSection : function(e){ },
 showSection : function(o){ }
DOMhelp.addEvent(window, 'load', iv.init, false);

6803ch07.fm Page 248 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 249

The init() method begins with checking whether DOM is supported and all necessary
elements are available. Only then you add the class to the parent element to hide all the
section elements automatically, via CSS.

innerNav.js (excerpt)
 init : function(){
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 iv.parent = document.getElementById(iv.parentID);
 iv.toc = document.getElementById(iv.tocID);
 if(!iv.parent || !iv.toc) { return; }
 DOMhelp.cssjs('add', iv.parent, iv.dynamicClass);

Store a possible URL hash in the variable loc and start looping through all the links in the
menu. Replacing the # in the hash value makes it easier to use it later on, as you can use the
name in a getElementById() without having to remove the hash.

innerNav.js (continued)

 var loc = window.location.hash.replace('#', '');
 var toclinks = iv.toc.getElementsByTagName('a');
 for(var i = 0; i < toclinks.length; i++) {

Compare the current link’s href attribute with loc and store the link in the currentLink
property if they are the same. The string replace() method used here deletes anything but the
anchor name from the href property. This is necessary because getAttribute('href') in some
browsers like MSIE returns the entire link location including the file path, not only what is
inside the HTML href attribute.

innerNav.js (continued)

 if(toclinks[i].getAttribute('href').➥

 replace(/.*#/, '') == loc){
 iv.currentLink = toclinks[i];
 }

Next, add a click event pointing to getSection(). Notice that in this example script you
don’t need to stop the default event—on the contrary, allowing the browser to jump to the sec-
tion will also change the URI in the location bar, and that in turn allows the user to bookmark
the section.

innerNav.js (continued)

 DOMhelp.addEvent(toclinks[i], 'click', iv.getSection, false);
 }

The currentLink property is defined only when one of the links is the same as the hash in
the URI. This means that if the URI has no hash, or has one that points to an anchor that isn’t

6803ch07.fm Page 249 Thursday, June 22, 2006 9:45 PM

250 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

there, you need to define currentLink as the first anchor in the menu instead. The init()
method finishes by calling the showSection() method with the currentLink as a parameter.

innerNav.js (continued)

 if(!iv.currentLink) {
 iv.currentLink = toclinks[0];
 }
 iv.showSection(iv.currentLink);
 },

The event listener method getSection() does not need to do much; all it needs to do is to
determine which link was clicked and send it on to showSection() as a parameter. If it weren’t
for the need to access window.location.hash, these two lines could have been part of the
showSection() method.

innerNav.js (continued)

 getSection : function(e) {
 var t = DOMhelp.getTarget(e);
 iv.showSection(t);
 },

The showSection() method retrieves the link object that was either clicked or defined in
the init() method as the parameter o. The first task is to read the href attribute of this link and
retrieve the anchor name by deleting everything before and including the hash sign via a regu-
lar expression. You then retrieve the section to show by reading the element with the anchor ID
and going up two nodes in the node tree.

innerNav.js (continued)

 showSection : function(o) {
 var targetName = o.getAttribute('href').➥

 replace(/.*#/,'');
 var section = document.getElementById(targetName).➥

 parentNode.parentNode;

6803ch07.fm Page 250 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 251

Why two nodes up? If you remember the HTML, you nested the links inside headings and
nested the headings and the rest of the section inside DIV elements:

exampleLinkedAnchors.html (excerpt)

 Demo
 [... code snipped ...]
 <div class="infoblock">
 <h2>
 Demonstration of what X can do
 </h2>

As getElementById('demo') gives you the link, one node up is the H2 and another one up is
the DIV.

You then need to check whether there is an old section shown and a link highlighted, and
remove the highlight and hide the section by removing the appropriate classes. Then add the
classes for the current link and the current section and set the properties current and
currentLink, making sure that next time showSection() is called it undoes what you did now.

innerNav.js (continued)

 if(iv.current != null){
 DOMhelp.cssjs('remove', iv.current, iv.showClass);
 DOMhelp.cssjs('remove', iv.currentLink, iv.currentLinkClass);
 }
 DOMhelp.cssjs('add', section, iv.showClass);
 DOMhelp.cssjs('add', o,iv.currentLinkClass);
 iv.current = section;
 iv.currentLink = o;
 }
}
DOMhelp.addEvent(window, 'load', iv.init, false);

If you apply this script to the demo HTML page and add an appropriate style sheet, you get
a much shorter page showing the different sections when you click the links. You can see this
for yourself by opening exampleLinkedAnchorsPanel.html in a browser. On Windows XP in Fire-
fox 1.5, the page looks like what you see in Figure 7-2.

6803ch07.fm Page 251 Thursday, June 22, 2006 9:45 PM

252 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

Figure 7-2. A panel interface created from an anchor—target list

Simply applying a different style sheet turns the page into a tabbed interface, as you can
see in exampleLinkedAnchorsTabs.html and in Figure 7-3.

Figure 7-3. A tabbed interface created from an anchor—target list

This is pretty neat for a short script; however, cleaning up the link href and retrieving the
section every time the user clicks one of the options seems repetitive.

A different approach to accomplishing the same task would be to store the links and
the sections in two associative arrays and simply provide showSection() with the name of the
anchor to show and highlight. The demo exampleLinkedAnchorsTabsNamed.html uses this tech-
nique and shows how to apply a mouseover handler for the same effect at the same time.

6803ch07.fm Page 252 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 253

innerNavNamed.js

iv = {
 // CSS classes
 dynamicClass : 'dyn',
 currentLinkClass : 'current',
 showClass : 'show',

 // IDs
 parentID : 'toolinfo',
 tocID : 'toolinfotoc',

The first change is that you need only one current property as well as two new array prop-
erties called sections and sectionLinks, which will store the sections and links later on.

innerNavNamed.js (continued)

 // Global properties
 current : null,
 sections : [],
 sectionLinks : [],
 init : function() {
 var targetName,targetElement;
 if(!document.getElementById || !document.createTextNode){
 return;
 }
 var parent = document.getElementById(iv.parentID);
 var toc = document.getElementById(iv.tocID);
 if(!parent || !toc) { return; }
 DOMhelp.cssjs('add', parent, iv.dynamicClass);
 var toclinks = toc.getElementsByTagName('a');
 for(var i = 0; i < toclinks.length; i++){

Add a mouseover handler in addition to the click and store the href attribute in a property
called targetName for each of the links in the menu.

innerNavNamed.js (continued)

 DOMhelp.addEvent(toclinks[i], 'click', iv.getSection, false);
 DOMhelp.addEvent(toclinks[i], 'mouseover', iv.getSection,➥

 false);
 targetName = toclinks[i].getAttribute('href').➥

 replace(/.*#/,'');
 toclinks[i].targetName = targetName;

6803ch07.fm Page 253 Thursday, June 22, 2006 9:45 PM

254 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

Define the first link as the currently active link by storing it in the presetLink variable and
determine whether the anchor points to an existing element. If it does, store the element in the
sections array and the link in the sectionLinks array. Note that this results in an associative
array, which means you can reach the first section via section['info'].

innerNavNamed.js (continued)

 if(i == 0){ var presetLink = targetName; }
 targetElement = document.getElementById(targetName);
 if(targetElement) {
 iv.sections[targetName] = targetElement.parentNode.parentNode;
 iv.sectionLinks[targetName] = toclinks[i];
 }
 }

Then you can obtain a possible anchor name from the URI hash and call showSection()
initially either with that anchor name or with the one stored in presetLink.

innerNavNamed.js (continued)

 var loc = window.location.hash.replace('#', '');
 loc = document.getElementById(loc) ? loc : presetLink;
 iv.showSection(loc);
 },

The getSection() event () event listener calls showSection() with the value of the
targetName property of the link. This property was set in the init() method earlier.

innerNavNamed.js (continued)

 getSection:function(e){
 var t = DOMhelp.getTarget(e);
 iv.showSection(t.targetName);
 },

All of this makes showSection() a piece of cake, as all it needs to do to reset the last link and
section and set the current ones is to use the arrays to reach the right elements and add or
remove the CSS classes. The current section gets stored in one single property called current
instead of properties for both the section and the link.

6803ch07.fm Page 254 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 255

innerNavNamed.js (continued)

 showSection : function(sectionName){
 if(iv.current != null){
 DOMhelp.cssjs('remove', iv.sections[iv.current],➥

 iv.showClass);
 DOMhelp.cssjs('remove', iv.sectionLinks[iv.current],➥

 iv.currentLinkClass);
 }
 DOMhelp.cssjs('add', iv.sections[sectionName], iv.showClass);
 DOMhelp.cssjs('add', iv.sectionLinks[sectionName],➥

 iv.currentLinkClass);
 iv.current = sectionName;
 }
}
DOMhelp.addEvent(window, 'load', iv.init, false);

There are more options for in-page navigation—for example, you could offer “previous”
and “next” links instead of “back” links to go through the options. If you want to see a script
that does that and also offers several tabbed navigations per page, you can check out DOMtab
at http://onlinetools.org/tools/domtabdata/.

Site Navigation
Web site navigation is a different kettle of fish from page internal navigation. You must be tired
of reading it by now, but there is just no good argument for navigation that is dependent on
JavaScript. Yes, you can use JavaScript to send the user to other locations automatically, but it
is not a safe method, as browsers like Opera and Mozilla allow users to prevent that (malicious
web sites used redirection in the past to send the user to spam sites). Furthermore, it strips you
as the site maintainer of the opportunity to use site metrics software that counts hits and
records how your visitors travel around the site, as not all metrics packages count JavaScript
redirects.

For these reasons, site navigation is basically constrained to enhancing the functionality of
the HTML structure of the menu and adding functionality to it via event handlers. The real
redirection of the user to other pages still needs to happen via links or form submission.

One very logical HTML construct for a web site menu is a nested list:

exampleSiteNavigation.html (excerpt)

<ul id="nav">
 Home
 Products

 CMS solutions

 Mini CMS
 Enterprise CMS

6803ch07.fm Page 255 Thursday, June 22, 2006 9:45 PM

256 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

 Company Portal
 eMail Solutions

 Private POP3/SMTP
 Listservers

 Services

 Employee Training
 Auditing
 Bulk sending/email campaigns

 Pricing
 About Us

 Our offices
 Our people
 Jobs
 Industry Partners

 Contact Us

 Postal Addresses
 Arrange Callback

The reason is that, even without any style sheet, the structure and the hierarchy of the nav-
igation is obvious to the visitor. You can also style the navigation without much hassle, as all
elements are contained in those higher up in the hierarchy, which allows for contextual
selectors.

■Note We’re not going to discuss here whether it makes sense to offer every page of the site in the navi-
gation (as this is traditionally the job of a site map). In the next chapter, we will revisit this topic and offer it as
a choice to the user.

6803ch07.fm Page 256 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 257

Basic web site usability and common sense dictate that the currently shown page should
not link to itself. To keep this from happening, replace the current page link with a STRONG ele-
ment, which also means that users without CSS understand where they are in the navigation,
and you get a chance to style the current page differently as part of the navigation without hav-
ing to resort to CSS classes. Using a STRONG element instead of a SPAN also means that users
without CSS get an obvious indicator which item is the current one.

For example, on the Mini CMS page, the navigation would be as follows:

exampleHighlightedSiteNavigation.html (excerpt)

<ul id="nav">
 Home
 Products

 CMS solutions

 Mini CMS
 Enterprise CMS

You have to do this server side, as it wouldn’t make sense to highlight the current page in
JavaScript (which, of course, wouldn’t be hard to do by comparing all the link href attributes
with the window.location.href).

Expecting this HTML structure allows you to create an Explorer-like expanding and col-
lapsing menu. A menu item that contains other items should show or hide its child items when
you click it. However, the logic of the script is probably a bit different from what you’d expect.
For starters, you don’t have to loop through all the links of the menu. Instead you do the
following:

1. Add a CSS class to the main navigation item that hides all nested lists.

2. Loop through all UL items in the navigation (as those are the nested submenus).

3. Add a CSS class indicating that this list item contains other lists to the parent node of
each UL.

4. Add a click event on the first link inside the parent node.

5. Test whether the parent node contains any STRONG elements and add the class to show
the UL if there is one—thus preventing the submenu the current page is in to be hidden.
You replace the parent class with an open one to show that this section is already
expanded.

6. The click event listener method needs to check whether the first nested UL of the par-
ent node has the show class and remove it if that is the case. It should also replace the
open class with the parent class. If there is no show class, it should do the exact opposite.

6803ch07.fm Page 257 Thursday, June 22, 2006 9:45 PM

258 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

The demo document exampleDynamicSiteNavigation.html does this, with the Mini
CMS page defined as the current page to show the effect. Figure 7-4 shows how this looks in
Firefox 1.5 on Windows XP.

Figure 7-4. A tree menu with JavaScript and CSS

The script’s skeleton is rather short; you define all the necessary CSS classes as properties,
the ID of the navigation as another property, and init() and changeSection() methods to
apply the overall functionality and expand or collapse the sections accordingly.

siteNavigation.js (skeleton)

sn = {
 dynamicClass : 'dyn',
 showClass : 'show',
 parentClass : 'parent',
 openClass : 'open',
 navID : 'nav',
 init : function() {},
 changeSection : function(e) {}
}
DOMhelp.addEvent(window, 'load', sn.init, false);

The init() method defines a variable called triggerLink and checks for DOM support
and whether the necessary navigation element is available before applying the dynamic class
to hide the nested elements.

6803ch07.fm Page 258 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 259

siteNavigation.js (excerpt)

 init : function() {
 var triggerLink;
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 var nav = document.getElementById(sn.navID);
 if(!nav){ return; }
 DOMhelp.cssjs('add', nav, sn.dynamicClass);

It then loops through all the nested UL elements and stores a reference to the first link
inside the parent node as triggerLink. It applies a click event calling the changeSection()
method and adds the parent class to the parent node.

siteNavigation.js (continued)

 var nested = nav.getElementsByTagName('ul');
 for(var i = 0; i < nested.length; i++){
 triggerLink = nested[i].parentNode.getElementsByTagName('a')[0];
 DOMhelp.addEvent(triggerLink, 'click', sn.changeSection,➥

 false);
 DOMhelp.cssjs('add', triggerLink.parentNode, sn.parentClass);
 triggerLink.onclick = DOMhelp.safariClickFix;

The code tests whether the parent node contains a STRONG element and adds the show class
to the UL and the open class to the parent node if that is the case. This prevents the current sec-
tion from being hidden.

siteNavigation.js (continued)

 if(nested[i].parentNode.getElementsByTagName('strong').➥

 length > 0){
 DOMhelp.cssjs('add', triggerLink.parentNode, sn.openClass);
 DOMhelp.cssjs('add', nested[i], sn.showClass);
 }
 }
 },

6803ch07.fm Page 259 Thursday, June 22, 2006 9:45 PM

260 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

All the event listener method changeSection() needs to do is to get the event target, test
whether the first nested UL of the parent node has the show class applied to it, and remove that
UL if that is the case. Furthermore, it needs to change the open class of the parent node to parent
and vice versa.

siteNavigation.js (continued)

 changeSection : function(e){
 var t = DOMhelp.getTarget(e);
 var firstList = t.parentNode.getElementsByTagName('ul')[0];
 if(DOMhelp.cssjs('check', firstList, sn.showClass)) {
 DOMhelp.cssjs('remove', firstList, sn.showClass)
 DOMhelp.cssjs('swap', t.parentNode, sn.openClass,➥

 sn.parentClass);
 } else {
 DOMhelp.cssjs('add', firstList,sn.showClass)
 DOMhelp.cssjs('swap', t.parentNode, sn.openClass,➥

 sn.parentClass);
 }
 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window, 'load', sn.init,false);

This script, applied to the right HTML and styled with an appropriate style sheet, will give
you the expanding and collapsing navigation. The relevant parts of the CSS are as follows:

siteNavigation.css (excerpt)

#nav.dyn li ul{
 display:none;
}
#nav.dyn li ul.show{
 display:block;
}
#nav.dyn li{
 padding-left:15px;
}
#nav.dyn li.parent{
 background:url(plus.gif) 0 5px no-repeat #fff;
}
#nav.dyn li.open{
 background:url(minus.gif) 0 5px no-repeat #fff;
}

6803ch07.fm Page 260 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 261

You can show and hide the nested UL elements by setting the values of their display prop-
erties to block and none, respectively. This also takes the contained links out of the normal
tabbing order: keyboard users won’t have to tab through all the links in the nested lists if they
want to reach the next element on the same hierarchical level without expanding the section.
If they hit Enter first to expand the section, they will be able to navigate through the submenu
links with the Tab key.

All LI elements get a left padding to allow for an indicator image to show that the section
has child links or that it is open. The LI elements with the class open or parent get a background
image to indicate their state.

All of this is pretty nice, but what if you want to provide a link to the parent pages of the
nested sections? The solution is to add a new linked image before each of the parent links that
does the showing and hiding and leaving the link as it is.

The demo page exampleIndicatorSiteNavigation.html shows what this looks like and how
it works. The script does not have to change that much:

siteNavigationIndicator.js (excerpt)

sn = {
 dynamicClass : 'dyn',
 showClass : 'show',
 parentClass : 'parent',
 openClass : 'open',

The first change is that you need two new properties that provide the images to be added
to the parent nodes of the nested lists. These will be added via innerHTML to make it easy for the
maintainer to replace them with other images or even text if desired.

siteNavigationIndicator.js (continued)

 parentIndicator : '<img src="plus.gif" alt="open section"➥

 title="open section">',
 openIndicator:'<img src="minus.gif" alt="close section"➥

 title="close section">',
 navID : 'nav',
 init : function() {
 var parentLI, triggerLink;
 if(!document.getElementById || !document.createTextNode){
 return;
 }
 var nav = document.getElementById(sn.navID);
 if(!nav){ return; }
 DOMhelp.cssjs('add', nav,sn.dynamicClass);
 var nested = nav.getElementsByTagName('ul');
 for(var i = 0; i < nested.length; i++) {

6803ch07.fm Page 261 Thursday, June 22, 2006 9:45 PM

262 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

Instead of taking the first link in the parent node as the trigger link, you create a new link
element, set its href attribute to a simple hash to make it clickable, and add the parent indica-
tor image defined earlier as its content. Then insert the linked image as the first child of the
parent node.

siteNavigationIndicator.js (continued)

 parentLI = nested[i].parentNode;
 triggerLink = document.createElement('a');
 triggerLink.setAttribute('href', '#')
 triggerLink.innerHTML = sn.parentIndicator;
 parentLI.insertBefore(triggerLink, parentLI.firstChild);

The rest of the init() method stays almost as it was, with the difference that you not only
apply the classes when the parent node contains a STRONG element, but also replace the “par-
ent” indicator image with the “open” one.

siteNavigationIndicator.js (continued)

 DOMhelp.addEvent(triggerLink, 'click', sn.changeSection,➥

 false);
 triggerLink.onclick = DOMhelp.safariClickFix;
 DOMhelp.cssjs('add', parentLI, sn.parentClass);
 if(parentLI.getElementsByTagName('strong').length > 0) {
 DOMhelp.cssjs('add', parentLI, sn.openClass);
 DOMhelp.cssjs('add', nested[i], sn.showClass);
 parentLI.getElementsByTagName('a')[0].innerHTML =➥

 sn.openIndicator
 }
 }
 },

The difference in the changeSection() method is that you need to ensure that the event
target was a link and not the image by comparing the node name of the target with A.

siteNavigationIndicator.js (continued)

 changeSection : function(e){
 var t = DOMhelp.getTarget(e);
 while(t.nodeName.toLowerCase() != 'a') {
 t = t.parentNode;
 }

6803ch07.fm Page 262 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 263

The rest of the method stays the same with one difference—you change the content of the
link in addition to applying the different classes.

siteNavigationIndicator.js (continued)

 var firstList = t.parentNode.getElementsByTagName('ul')[0];
 if(DOMhelp.cssjs('check', firstList, sn.showClass)) {
 DOMhelp.cssjs('remove', firstList, sn.showClass);
 DOMhelp.cssjs('swap', t.parentNode, sn.openClass,➥

 sn.parentClass);
 t.innerHTML = sn.parentIndicator;
 } else {
 DOMhelp.cssjs('add', firstList, sn.showClass)
 DOMhelp.cssjs('swap', t.parentNode, sn.openClass,➥

 sn.parentClass);
 t.innerHTML = sn.openIndicator;
 }
 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window, 'load', sn.init, false);

All of this is just one example of enhanced site navigation and is probably the easiest one
to use. Making a multilevel drop-down navigation menu accessible, for example, that also
works for mouse and keyboard users alike is an immense task that is not within the scope of
this book, as it is very advanced DOM scripting.

■Note A very good explanation of why dynamic menus should not work by tabbing through the links but instead
offer cursor-based navigation appears on the Mozilla.org site, where a lot of very gifted developers work on the
issue (while breaking some HTML rules that prove to be in the way of creating dynamic pages in an accessible man-
ner): http://developer.mozilla.org/en/docs/Key-navigable_custom_DHTML_widgets. There is
also commercial script called Ultimate Drop Down Menu (http://www.udm4.com) that gets it right.

Pagination
Pagination means that you cut down a large set of data into several pages. This is normally
done on the back end, but you can use JavaScript to make it quicker to check a long list of
elements.

A demo of pagination is examplePagination.html, which appears in Firefox 1.5 on
Windows XP as shown in Figure 7-5.

6803ch07.fm Page 263 Thursday, June 22, 2006 9:45 PM

264 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

Figure 7-5. Paginating a large set of data rows

The content to be manipulated consists of a set of rows of the same HTML table, which has
the class paginated.

examplePagination.html (excerpt)

<table class="paginated">
<thead>
 <tr>
 <th scope="col">ID</th>
 <th scope="col">Artist</th>
 <th scope="col">Album</th>
 <th scope="col">Comment</th>
 </tr>
</thead>
<tbody>
 <tr>
 <th>1</th>
 <td>Depeche Mode</td>
 <td>Playing the Angel</td>
 <td>They are back and finally up to speed again</td>
 </tr>
 <tr>
 <th>2</th>
 <td>Monty Python</td>

6803ch07.fm Page 264 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 265

 <td>The final Rip-Off</td>
 <td>Double CD with all the songs</td>
 </tr>
 [... and so on ...]
</tbody>
</table>

We used pagination in the last chapter in the slide show example, although the example
showed one item at a time. The logic of pagination with several items is much more complex,
but this example should give you an insight to the tricks you can use.

• You hide all the table rows via CSS.

• You define how many rows should be shown on each page.

• You show the first rows and generate the pagination menu.

• This menu has a “previous” and “next” link and a counter telling the user which slice of
the data is to be shown and how many items there are in total.

• If the current slice is the first, the “previous” link should be inactive; if it is the last, the
“next” link should be inactive.

• The “next” link increases the start value of the slice by the amount defined, and the “pre-
vious” link decreases the start value.

You will use several properties and five methods in this example. It is a good idea to com-
ment the properties to make it easier for future maintainers to alter them to their needs.

pagination.js (skeleton)

pn = {
 // CSS classes
 paginationClass : 'paginated',
 dynamicClass : 'dynamic',
 showClass : 'show',
 paginationNavClass : 'paginatedNav',
 // Pagination counter properties
 // Number of elements shown on one page
 Increase : 5,
 // Counter: _x_ will become the current start position
 // _y_ the current end position and
 // _z_ the number of all data rpws
 Counter : ' _x_ to _y_ of _z_ ',
 // "previous" and "next" links, only text is allowed
 nextLabel : 'next',
 previousLabel : 'previous',

6803ch07.fm Page 265 Thursday, June 22, 2006 9:45 PM

266 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

You use one method to initialize the script, one to generate the extra links and elements
that you need, one to navigate around the “pages” (that is, hide the current result set and show
the next), one to show the current page, and one to alter the pagination menu.

 init : function(){},
 createPaginationNav : function(table){},
 navigate : function(e){},
 showSection : function(table, start){},
 changePaginationNav : function(table, start){}
}
DOMhelp.addEvent(window, 'load', pn.init, false);

Grab a coffee and some cookies, as this is quite a script ahead of you; don’t worry though—
most of it is simple logic.

The init() method checks whether DOM is supported and starts looping through all
table elements in the document. It tests whether the table has the right class (defined in the
pn.paginationClass property) and whether it has more rows than you want to show on each
“page” (defined in the pn.increase property). If one of these is not the case, it skips the rest of
the method—effectively not adding any menu.

pagination.js (excerpt)

 init : function() {
 var tablebody;
 if(!document.getElementById || !document.createTextNode){
 return;
 }
 var ts = document.getElementsByTagName('table');
 for(var i = 0;i < ts.length; i++){
 if(!DOMhelp.cssjs('check', ts[i],➥

 pn.paginationClass)){
 continue;
 }
 if(ts[i].getElementsByTagName('tr').length <➥

 pn.increase+1){
 continue;
 }

As the data rows you want to hide don’t include the header row, but only those contained in the
table body, you need to tell the other methods this.

The easiest option is to store only the relevant rows in a property of the table. You grab the
first TBODY in the table and store all of its rows in a datarows property. You also store the number
of all rows in datarowsize and initialize the current property as null.

This property will store the start of the page you want to show. By storing the rows and the
number of rows as properties, you make it easier for other methods to retrieve information
from the table without having to read out this information again from the DOM.

6803ch07.fm Page 266 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 267

pagination.js (excerpt)

 tablebody = ts[i].getElementsByTagName('tbody')[0];
 ts[i].datarows = tablebody.getElementsByTagName('tr');
 ts[i].datarowsize = ts[i].datarows.length;
 ts[i].current = null;

Apply the dynamic class to the table and thus hide all the table rows. Call the
createPaginationNav() method with a reference to the current table as a parameter
to add the “previous” and “next” links, and call showSection() with the table reference
and 0 as parameters to show the first result set.

pagination.js (excerpt)

 DOMhelp.cssjs('add', ts[i], pn.dynamicClass);
 pn.createPaginationNav(ts[i]);
 pn.showSection(ts[i], 0);
 }
 },

The createPaginationNav() method does not contain any surprises; all it does is create
the links and the counter and add the event handlers pointing to the navigate() method. You
start by creating a new paragraph element and adding the pagination menu class to it.

pagination.js (excerpt)

 createPaginationNav : function(table){
 var navBefore, navAfter;
 navBefore = document.createElement('p');
 DOMhelp.cssjs('add', navBefore, pn.paginationMenuClass);

Add a new link to the paragraph with the previousLabel property value as the text content
and a new SPAN element that will display the number of the current result set in between the
“previous” and “next” links. You preset the counter with 1 as the start value, the number of ele-
ments shown on each page as defined in pn.increase as the end value, and the number of all
data rows as the total number. The last element to add to the new paragraph is the “next” link.
You add the new paragraph immediately before the table via parentNode and insertBefore().

pagination.js (excerpt)

 navBefore.appendChild(DOMhelp.createLink('#',➥

 pn.previousLabel));
 navBefore.appendChild(document.createElement('span'));
 counter=pn.counter.replace('_x_', 1);
 counter=counter.replace('_y_', pn.increase);
 counter=counter.replace('_z_', table.datarowsize-1);
 navBefore.getElementsByTagName('span')[0].innerHTML = counter;
 navBefore.appendChild(DOMhelp.createLink('#', pn.nextLabel));
 table.parentNode.insertBefore(navBefore, table);

6803ch07.fm Page 267 Thursday, June 22, 2006 9:45 PM

268 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

It would be good to show the same menu below the table as well. Instead of re-creating all
these elements once more, it is enough to clone the paragraph and insert it after the table via
parentNode, insertBefore(), and nextSibling. Then, store the “previous” and “next” links of
each paragraph as their own table properties to make it easier to change them in other
methods.

pagination.js (excerpt)

 navAfter = navBefore.cloneNode(true);

 table.parentNode.insertBefore(navAfter, table.nextSibling);
 table.topPrev = navBefore.getElementsByTagName('a')[0];
 table.topNext = navBefore.getElementsByTagName('a')[1];
 table.bottomPrev = navAfter.getElementsByTagName('a')[0];
 table.bottomNext = navAfter.getElementsByTagName('a')[1];

You couldn’t apply the event handlers earlier, as cloneNode() does not clone any handlers.
Now you can apply all the handlers and the fixes for Safari to each of the links. The last change
for this method is to store the counters in properties to make it easier for the other methods to
update them.

pagination.js (excerpt)

 DOMhelp.addEvent(table.topPrev, 'click', pn.navigate, false);
 DOMhelp.addEvent(table.bottomPrev, 'click', pn.navigate, false);
 DOMhelp.addEvent(table.topNext, 'click', pn.navigate, false);
 DOMhelp.addEvent(table.bottomNext, 'click', pn.navigate, false);
 table.bottomNext.onclick = DOMhelp.safariClickFix;
 table.topPrev.onclick = DOMhelp.safariClickFix;
 table.bottomPrev.onclick = DOMhelp.safariClickFix;
 table.topNext.onclick = DOMhelp.safariClickFix;
 table.topCounter = navBefore.getElementsByTagName('span')[0];
 table.bottomCounter = navAfter.getElementsByTagName('span')[0];
},

The event listener method navigate() needs to check which link invoked it. The first step
is to retrieve the event target via getTarget() and make sure it is a link by comparing its node
name with A (remember, Safari likes to send the text node inside the link as the event target
instead).

6803ch07.fm Page 268 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 269

pagination.js (excerpt)

 navigate : function(e){
 var start, table;
 var t = DOMhelp.getTarget(e);
 while(t.nodeName.toLowerCase() != 'a'){
 t = t.parentNode;
 }

It then needs to check whether the link is active or not by testing whether it has an href
attribute (you will later turn the “next” or “previous” link off by removing the href attribute). If
there is none, it shouldn’t do anything. The next task is to find the table from the link that is
activated. As there is navigation above and below the table, you need to check whether either
the previous or the next sibling node has the node name of table and define the variable table
accordingly.

pagination.js (excerpt)

 if(t.getAttribute('href') == null ||➥

 t.getAttribute('href') == ''){ return; }
 if(t.parentNode.previousSibling &&➥

 t.parentNode.previousSibling.nodeName.➥

 toLowerCase() == 'table') {
 table = t.parentNode.previousSibling;
 } else {
 table = t.parentNode.nextSibling;
 }

Then determine whether the activated link was either one of the “next” links or one of
the “previous” links, and define start as the current property of the table plus or minus the
defined increase accordingly. You call showSection() with the retrieved table and the start
values as parameters.

pagination.js (excerpt)

 if(t == table.topNext || t == table.bottomNext){
 start = table.current + pn.increase;
 } else if (t == table.topPrev || t == table.bottomPrev){
 start = table.current - pn.increase;
 }
 pn.showSection(table, start);
 },

6803ch07.fm Page 269 Thursday, June 22, 2006 9:45 PM

270 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

The showSection() method calls the changePaginationNav() method to update the links
and the counter and tests whether there is already a current parameter on the table. If there is
one, this means data rows exist that need to be removed. You get rid of them by looping
through the section of the data rows stored in the datarows property and removing the CSS
class defined in showClass().

pagination.js (excerpt)

 showSection : function(table, start){
 var i;
 pn.changePaginationNav(table, start);
 if(table.current != null){
 for(i=table.current; i < table.current+pn.increase; i++){
 if(table.datarows[i]) {
 DOMhelp.cssjs('remove', table.datarows[i], pn.showClass);
 }
 }
 }

You then loop from start to start plus the predefined increase, and add the CSS class to
show these rows in the table. Notice that you need to test whether these rows exist; otherwise,
you might try to reach rows that aren’t there on the last page. (Imagine a list of 22 elements;
clicking the “next” link on the 16–20 page would try to show elements 21 to 25). To make sure
the right slice gets shown the next time the method gets called, all that is left is to define the
current property as the start value.

pagination.js (excerpt)

 for(i = start; i < start + pn.increase; i++){
 if(table.datarows[i]) {
 DOMhelp.cssjs('add', table.datarows[i], pn.showClass);
 }
 }
 table.current = start;
 },

As hinted earlier, the changePaginationNav() method renders the “previous” link on the
first page and the “next” link on the last page inactive. The trick to making links appear but not
clickable is to remove the href attribute.

On the first page, the start value minus the predefined increase would result in a
negative number, which is easy to test. When the number is larger than 0, you add the href
attribute again.

6803ch07.fm Page 270 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 271

pagination.js (excerpt)

 changePaginationNav : function(table, start){
 if(start - pn.increase < 0) {
 table.bottomPrev.removeAttribute('href');
 table.topPrev.removeAttribute('href');
 } else {
 table.bottomPrev.setAttribute('href', '#');
 table.topPrev.setAttribute('href', '#');
 }

If start plus the increase is bigger than the number of rows, you need to remove the “next”
link; otherwise, you need to make it active.

pagination.js (excerpt)

 if(start + pn.increase > table.rowsize - 2) {
 table.bottomNext.removeAttribute('href');
 table.topNext.removeAttribute('href');
 }else{
 table.bottomNext.setAttribute('href', '#');
 table.topNext.setAttribute('href', '#');
 }

Update the counter with the appropriate values (start needs a 1 added to it to make it eas-
ier to understand for humans, and you need to test that the last value is not larger than the
number of existing rows), and you have created a paginated interface from a normal data table.

pagination.js (excerpt)

 var counter = pn.counter.replace('_x_', start+1);
 var last = start + pn.increase;
 if(last > table.datarowsize){ last = table.datarowsize; }
 counter = counter.replace('_y_', last)
 counter = counter.replace('_z_', table.datarowsize)
 table.topCounter.innerHTML = counter;
 table.bottomCounter.innerHTML = counter;
 }
}
DOMhelp.addEvent(window, 'load', pn.init, false);

The logic of pagination stays the same, even if you decide to show and hide list items or
other HTML constructs. You can make it even more complex by showing numbered steps in
between the “previous” and the “next” links instead of the counter, but I leave that to you to
have a go at it.

6803ch07.fm Page 271 Thursday, June 22, 2006 9:45 PM

272 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

Summary of Navigation with JavaScript
Powering a site’s navigation with JavaScript is a very tempting use of your skills, as it is “out
there” and still quite amazing for “wowing” clients with a fancy interface. The main thing to
remember is that you should turn off JavaScript from time to time and see whether your inter-
face still works. The same applies to not using your mouse but trying the keyboard instead.

You can use JavaScript to make large amounts of data like deeply nested navigation menus
easier to grasp and presented to the user in bite-size chunks. However, don’t forget that some
users will get all of the navigation without your script cutting it up into smaller servings. It
might be a good idea to make menu interfaces that use the whole site map as their data source
optional rather than a given. We will take a look at how to do that in the next chapter.

Things to Remember About JavaScript Navigation

• Don’t send the user to another location or send form data without him clicking or acti-
vating an interface element. It is more confusing than helpful and may even be
considered a security threat (if you can do it, anyone can send the user to a site).

• Hiding data does not make it disappear; while you can make a lot of data easy to digest
with a slick interface, some users will still get the whole lot in one serving, and all users—
including those on slow connections—will have to download all of the data.

• It is much safer to piggyback on existing web navigation patterns than to invent new
ones. For example, it was quite easy to turn a working in-page navigation using links and
anchors into a tabbed interface. Creating all the necessary tabs via JavaScript would
have been a lot more hassle.

Forms and JavaScript
On the following pages, you’ll learn how to access, read, and change forms and their elements.
We will not go into the details of validating forms here, as I have devoted Chapter 9 to the topic
of data validation.

We will, however, touch on basic form usability as well as some bad practices and why they
should be avoided. First of all, let’s take a look at the form used in some examples in this chap-
ter and later on in the book:

exampleForm.html (excerpt)

<form method="post" action="send.php">
<fieldset>
 <legend>About You</legend>
 <p><label for="Name">Your Name</label></p>
 <p><input type="text" id="Name" name="Name" /></p>
 <p><label for="Surname">Your Surname</label></p>
 <p><input type="text" id="Surname" name="Surname" /></p>
 <p><label for="email">Your email</label></p>

6803ch07.fm Page 272 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 273

 <p><input type="text" id="email" value="you@example.com"➥

 name="email" /></p>
</fieldset>
<fieldset>
 <legend>Your message</legend>
 <p><label for="subject">Subject</label>
 <select id="subject" name="subject">
 <option value="generalEnquiry" selected="selected">➥

 General question</option>
 <option value="Webdesign">Webdesign</option>
 <option value="Hosting">Hosting</option>
 <option value="Training">Training</option>
 <option value="Partnership">Partnership</option>
 <option value="other">Other</option>
 </select></p>
 <p><label for="otherSubject">specify other subject</label>
 <input type="text" id="otherSubject" name="otherSubject" /></p>
 <p><label for="Message">Your Message</label></p>
 <p><textarea id="Message" name="Message" cols="20" rows="5"></textarea></p>
</fieldset>
<fieldset>
 <legend>Email options</legend>
 <p><input type="checkbox" name="copyMeIn" id="copyMeIn" />
 <label for="copyMeIn">Send me a copy of this email to
 the above address</label></p>
 <p><input type="checkbox" name="newsletter" value="yes"➥

 id="newsletter" />
 <label for="newsletter">Sign me up for the newsletter</label></p>
 <p>Newsletter format:
 <input type="radio" name="newsletterFormat" id="newsHtml"➥

 value="html" checked="checked" />
 <label for="newsHTML">HTML</label>
 <input type="radio" name="newsletterFormat" id="newsPlain"➥

 value="plain"/>
 <label for="newsPlain">Text</label></p>
 <p class="submit"><input type="submit" value="Send Form" /></p>
</fieldset>
</form>

■Note As you can see, this is a valid form for a HTML 4 STRICT document, and all elements are
closed for XHTML compliance should you want to go that way. Notice also that in XML-compliant
HTML you need to write single attributes like selected and checked as selected="selected"
and checked="checked", respectively.

6803ch07.fm Page 273 Thursday, June 22, 2006 9:45 PM

274 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

The form features fieldsets for grouping elements into logical units and labels for connect-
ing explanation texts with specific form elements. This helps a lot with form accessibility, as it
provides logical organization and avoids ambiguity.

Basics of Forms with JavaScript
Reaching and altering forms in JavaScript can be achieved in several different ways. As
always, there is the DOM scripting way of simply reaching the forms and their elements via
getElementsByTagName() and getElementById(), but there is also an object called forms that
contains all the forms in the current document.

This object allows you to reach the forms in the document in three different ways:

• Via their index number where index is an integer, for example, document.forms[2]
for the third form.

• Via their name defined in the name attribute as an object, for example
document.forms.myForm.

• Via their name defined in the name attribute as a string, for example
document.forms['myForm']. This is necessary when the name contains special
characters or spaces, and you cannot notate it as an object.

Form Properties

The forms object itself has only one property, length, and it stores the number of forms in the
document.

Each of the forms, however, has more properties you can use, all of which can be read and
changed:

• action: The script the form data is sent to when the form is submitted

• encoding: The encoding of the form as defined in the enctype attribute of the FORM
element

• method: The submission method of the form—either POST or GET

• name: The name of the form as defined in the name attribute (not in the id!)

• target: The target the form data should be sent to (only important if you use frames or
multiple windows)

Form Methods

The Form object has only two methods:

• reset(): Resets the form to its initial state, which means that all the entries and choices
the user made get undone, and the form shows the initial values defined in the value,
selected, or checked attributes of the individual elements. Be aware of the difference—
reset() does not clear the form, but restores it to its initial state. This is the same effect
a user gets when he activates a Reset button in the form.

• submit(): Submits the form.

6803ch07.fm Page 274 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 275

Both methods simulate browser functionality—namely activating a Reset or a Submit but-
ton—and you should make sure that you don’t use them to take away necessary interactivity
from the user. There is a good reason that forms get submitted when the user clicks a Submit
button or hits Enter on the keyboard—it is the most accessible way, and if you hijack this func-
tionality and submit the form when users interact with other elements, you may force them to
submit the form prematurely.

Form Elements
Every form in the forms collection has as a property an object called elements, which in essence
is an array of all the form elements inside this form (as opposed to all HTML elements). You can
reach the elements the same way you initially reach the forms, via the index number, the object
name, or the name as a string in square brackets:

• var elm = document.forms[0].elements[2];

• var elm = document.forms.myForm.elements.myElement;

• var elm = document.forms.myForm.elements['myElement'];

As you can see in the last example, you can mix and match the notations. You can also use vari-
ables instead of the index numbers or the strings inside the brackets.

The elements collection itself has one read-only property called length. You could, for
example, use this property to loop through all elements in a form and read out their type:

var myForm = document.forms[0];
var formElements = myForm.elements;
var all = formElements.length;
for(var i = 0; i < all; i++) {
 alert(formElements[i].type);
}

Each element inside the collection has several properties; which ones are supported is
dependent on the type of the element. I’ll now list all the properties and list the elements that
support this property in parentheses. We’ll go through the different elements in detail later on
in this chapter:

• checked: Boolean if the element was checked or not (buttons, check boxes, radio
buttons)

• defaultChecked: Boolean if the element was initially checked (check boxes, radio
buttons)

• value: The value of the element as defined in the value attribute (all elements but
select boxes)

• defaultValue: The initial value of the element (text boxes, text areas)

• form: The form the element resides in (read only—all elements)

• name: Name of the element (all elements)

• type: The type of the element (read only—all elements)

6803ch07.fm Page 275 Thursday, June 22, 2006 9:45 PM

276 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

One special element type is the select box, which comes with a collection of its own, a
property called options—but more on this later. Each element has a range of methods that is
also dependent on the type of element. None of these methods expect any parameters.

• blur(): Takes the focus of the user agent away from the element (all elements)

• focus(): Puts the focus of the user agent on the element (all elements)

• click(): Simulates the user clicking the element (buttons, check boxes, file upload
fields, Reset and Submit buttons)

• select(): Selects and highlights the text content of the element (password fields, text
fields, and text areas)

■Note Notice that click() seems at first a bit odd, but can be really helpful if you work on web applica-
tions, and the middle tier of your development environment does things to the submitting process of forms
like Java Spring and .NET do. This is not a JS beginner’s environment though, and so falls outside the scope
of this book.

HTML Attributes Not Contained in the Elements Collection

In addition to the properties of the elements collection, you can read and set (browser settings
permitting of course) the attributes of the element in question once you have reached it via the
forms and elements collections. For example, you could change the size of a text field by chang-
ing its cols and rows attributes:

var myTextBox = document.forms[0].elements[2];
if (myTextBox.type == 'textarea'){
 myTextBox.rows = 10;
 myTextBox.cols = 30;
}

■Tip Notice that it is a good idea to check the type of the element you are manipulating before trying to set
attributes on it, in case they are not available for this element. A SELECT element, for example, does not have
cols or rows attributes.

6803ch07.fm Page 276 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 277

Globally Supported Properties

All form elements initially supported the type, name, form, and value properties. One recent
change is that file upload fields do not support setting value any longer, as it would allow a
malicious scripter to inject her own files to upload to your server when a user on an infected
computer uploads something.

Using form can be quite handy to reach the parent form when you access an element
directly via DOM methods. For example, if you access the e-mail field in the example form via
the DOM:

var mail = document.getElementById('email');

You can reach the form to change one of its properties or submit it either via mail.form or via
mail.parentNode.parentNode.parentNode.

exampleForm.html (excerpt)

<form method="post" action="send.php">
<fieldset>
 [... code snipped ...]
 <p><input type="text" id="email" value="you@example.com" name="email" /></p>
</fieldset>
 [... code snipped ...]
</form>

Depending how deep the element is nested in the form, using form can save you a lot of
trouble counting the nodes and actually makes the script easier to maintain because you are
independent of the HTML. If you want to use node traversal exclusively, you could also use a
recursive loop that checks the nodeName of the parent node to achieve the same independence
of the HTML markup:

var mail = document.getElementById('email');
parentForm = mail.parentNode;
while(parentForm.nodeName.toLowerCase() != 'form') {
 parentForm = parentForm.parentNode;
}

While this is independent of the user agent, it might be overkill in most web sites, as you
can assume that most browsers do offer the forms and elements collections (you can, of course,
test for them to make sure). Using the forms and elements collections also means you support
non–DOM-2 browsers like Netscape 4 or MSIE 4.

6803ch07.fm Page 277 Thursday, June 22, 2006 9:45 PM

278 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

Using blur() and focus()

You can use blur() to take the user agent’s focus away from an element or focus() to set it. The
danger of this is that blur() does not take any target it should set the focus to, which means
that user agents might focus on the next element, the location bar of the browser, or whatever
else they please. For a sighted user with a mouse, this is not much of an issue; however, blind
users relying on assistive technology or keyboard users will have a problem finding their way
around the document again.

You might encounter something like this when you look through the code of some
web sites:

Home

Developers used to do this to stop browsers from showing a blue box (MSIE on Mac) or a dotted
border (MSIE/Mozilla on PC) around the current link. This is a very bad idea, as a keyboard
user wouldn’t know which element she is currently able to reach when hitting Enter.

There are some legitimate reasons to use focus(); however, in most cases, it is not a good
idea to alter the automatic order of form entry. Not every user can see the form, and even users
who can see might not look at it.

Especially in longer forms that expect a lot of different data to enter, you’ll find that people
don’t look on the screen, but touch-type as they read the data from a printout or their credit
card, passports, and so on. It is pretty frustrating to check the form in between and realize you
didn’t fill out the right fields or you are still stuck at an error message that popped up earlier.

Text Fields, Text Areas, Hidden and Password Fields

Text fields, text areas, hidden fields, and password fields are probably the most common fields
you will have to deal with, as they are the ones that users enter text content in.

In addition to the global form element properties, they also support the element proper-
ties value and defaultValue. The difference is that if a user changes the content of the element,
it does change the value property but not the defaultValue. This also means that when you
change the value of the field, the change is visible, but when you change the defaultValue, it
isn’t. If you want to change the element’s default value and make it visible, you need to call the
reset() method immediately afterwards. In the example document, you have a default value
on the e-mail field:

 <p><input type="text" id="email" value="you@example.com"➥

 name="email" /></p>

You could read the value and the default value like this:

var mail= document.getElementById('email');
alert(mail.defaultValue);
alert(mail.value);

6803ch07.fm Page 278 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 279

When the user hasn’t changed anything on the field, both values would be you@example.com.
However, if the user were to enter me@otherexample.com in the field, the two values become
different.

It is tricky to find an example for defaultValue that does not mean you have to do some-
thing with JavaScript that should be the job of the back end. One example could be to test
whether the current domain is German and change the default of the e-mail field to a German
e-mail address. The following code should be executed when the document has loaded:

var mail = document.getElementById('email');
if(window.location.host.indexOf('.de') != -1) {
 mail.defaultValue = 'email@adresse.de';
 mail.form.reset();
}

Notice that you need to call reset() to make the change visible. You can see the change
happening in exampleFormGermanPreset.html (we cheated there to make it visible by excluding
the host test).

■Note For TEXTAREA elements, you read and write the value and defaultValue just like for any other
form text element. However, the HTML tag has no value attribute—the initial and the changed value is the
text contained in between the opening and closing tag.

Text elements allow for a method called select(), which highlights all the text inside them
to ease copying and pasting of text examples. This is often seen as a feature in webzines or
online documentation systems.

Check Boxes

Check boxes are a great way to offer an unambiguous “yes” or “no” choice. They are very easy
to read out on the server side (the form sends the name of the box with the value of the check
box if there is one or “on” if there is none, and doesn’t send the name at all when the user hasn’t
checked the box) and much easier to use than, for example, a radio button group or a select box
with “yes” and “no” options.

In addition to the global element properties described earlier, check boxes have the prop-
erties checked and defaultChecked, both Boolean values indicating whether the option was
chosen. You can read and write both of these properties, but you need to reset the form to
make changes to defaultChecked visible.

One common use of JavaScript in connection with check boxes is offering the user the
opportunity to check all check boxes or reverse the choices made in a lot of check boxes, one
example being in web-based e-mail systems, as shown in Figure 7-6. The logic of these func-
tions is pretty simple: you loop through all elements, test the type of each one, and change the
checked attribute accordingly. You can see a demo of this in exampleFormCheckboxes.html.

6803ch07.fm Page 279 Thursday, June 22, 2006 9:45 PM

280 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

Figure 7-6. Bulk changing of check boxes via JavaScript

There are three buttons in the example that call the same function—changeBoxes()—
when the user clicks them. Each button supplies a different numeric value for the function’s
sole parameter—1 for select all, -1 for invert, and 0 for select none.

exampleFormCheckboxes.html (excerpt)

<input type="button" onclick="changeBoxes(1)" value="select all" />
<input type="button" onclick="changeBoxes(-1)" value="invert selection" />
<input type="button" onclick="changeBoxes(0)" value="select none" />

This allows you to keep the function to change the check boxes simple. Simply loop
through all the elements in the first form found in the page. If the element type is not checkbox,
continue the loop without executing the rest of it.

If the element is a check box, determine whether action is smaller than 0 and reverse the
check box state by changing checked to false when it is true and vice versa. If the action is 0 or
larger, simply set the checked property to the value of action.

exampleFormCheckboxes.html (excerpt)

function changeBoxes(action) {
 var f = document.forms[0];
 var elms = f.elements;
 for(var i = 0; i < elms.length; i++) {
 if(elms[i].type != 'checkbox'){ continue; }
 if(action < 0){
 elms[i].checked = elms[i].checked ? 0 : 1;
 } else {
 elms[i].checked = action;
 }
 }
}

6803ch07.fm Page 280 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 281

If this is confusing, remember that the checked property is a Boolean value. This means
when it is true or 1, it is checked, and when it is false or 0, it is unchecked. If you were to use
only the true or false keywords, you’d have to add another case in the else condition (via the
ternary notation in this case):

function changeBoxes(action) {
 var f = document.forms[0];
 var elms = f.elements;
 for(var i = 0; i < elms.length; i++){
 if(elms[i].type != 'checkbox'){ continue; }
 if(action < 0){
 elms[i].checked = elms[i].checked ? false : true;
 } else {
 elms[i].checked = action == 1 ? true : false;
 }
 }
}

Using the ternary operator, you could even reduce the whole check box logic part of the
script to one line:

function changeBoxes(action) {
 var f = document.forms[0];
 var elms = f.elements;
 for(var i = 0; i < elms.length; i++){
 if(elms[i].type != 'checkbox'){ continue; }
 elms[i].checked = action < 0 ? (elms[i].checked ? 0 : 1) :➥

 action;
 }
}

As a lot of complex form code is not necessarily created by client-side-oriented develop-
ers, there is a high chance you might encounter constructs like this, which is why we took the
opportunity here to show it to you.

Radio Buttons

Radio buttons have their name because they look like the dials on old radios, in case you won-
dered. They act like check boxes, with the difference being that they belong to one group with
the same name, and the user can only choose one exclusively. Radio buttons are very easy to use
for mouse and keyboard users alike, and they are a good replacement for short select boxes in
case you ever run into problems using a select box.

They have the same Boolean checked and defaultChecked properties as check boxes, but
will automatically set the checked property of the other choices to false when you set one.
Again, you can read and write both checked and defaultChecked, and you need to reset the form

6803ch07.fm Page 281 Thursday, June 22, 2006 9:45 PM

282 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

to make changes to defaultChecked appear visually. As the example HTML only has a radio
group of two options, let’s choose a different example:

exampleFormRadioGroup.html (excerpt)

<form method="post" action="send.php">
 <fieldset>
 <legend>Step 1 of 3 - Your favourite Character </legend>
 <p>
 <input type="radio" name="character" id="charC"
 value="Calvin" checked="checked" />
 <label for="charC">Calvin</label>
 </p>
 <p>
 <input type="radio" name="character"
 id="charH" value="Hobbes" />
 <label for="charH">Hobbes</label>
 </p>
 <p>
 <input type="radio" name="character"
 id="charSd" value="Susie Derkins" />
 <label for="charSd">Susie Derkins</label>
 </p>
 <p>
 <input type="radio" name="character"
 id="charS" value="Spaceman Spiff" />
 <label for="charS">Spaceman Spiff</label>
 </p>
 <p>
 <input type="radio" name="character"
 id="charSm" value="Stupendous Man" />
 <label for="charSm">Stupendous Man</label>
 </p>
 </fieldset>
 <p class="submit"><input type="submit" value="Next Step" /></p>
</form>

■Note This is also a good opportunity to show the difference between name and id. While a group of radio
buttons all share the same name (in this case character), they each must get a unique id to allow the labels
to be connected with them. Labels are not only handy for assistive technology like screen readers, but also
make the form much easier to use, as users can click the names next to the check boxes to select them.

6803ch07.fm Page 282 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 283

The demo HTML includes some buttons to show the output of the JavaScript; you can test
it out by opening it in a browser. The script shows how you can deal with radio buttons:

formRadioGroup.js

function setChoice(n) {
 var f = document.forms[0];
 f.character[n].checked = true;
}
function getChoice() {
 var f = document.forms[0];
 var choices = f.elements.character;
 for(var i = 0; i < choices.length; i++){
 if(choices[i].checked){ break; }
 }
 alert('Favourite Character is: ' + choices[i].value);
}

You can access the radio button group as an array with the shared name (in this case
character). Setting an option of a radio group is pretty straightforward: the setChoice() func-
tion takes a number as a parameter (n), reads the first form (forms[0]), and sets the checked
property of the n-th character item to true.

formRadioGroup.js (excerpt)

function setChoice(n) {
 var f = document.forms[0];
 f.character[n].checked = true;
}

If you click the “set choice to Hobbes” button in the example, you see that the highlighted
radio button changes as shown in Figure 7-7.

Figure 7-7. Changing the selected option in a radio group

6803ch07.fm Page 283 Thursday, June 22, 2006 9:45 PM

284 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

Reading the currently selected choice is just as easy: you select the first form, store the
characters list in a new variable called choices, and loop through it. Then, you test the checked
property of each of the elements in the array and break the loop when you find one that returns
true. This is the currently selected radio choice: there can be only one that is selected in any
group of radio buttons sharing the same name.

formRadioGroup.js (continued)

function getChoice() {
 var f = document.forms[0];
 var choices = f.elements.character;
 for(var i = 0; i < choices.length; i++) {
 if(choices[i].checked){ break; }
 }
 alert('Favourite Character is: ' + choices[i].value);
}

Buttons

There are three kinds of buttons in HTML: two that work without scripting, and one that was
included in the specifications to work only in conjunction with scripts.

Authors may create three types of buttons:

submit buttons: When activated, a submit button submits a form. A form may contain
more than one submit button.

reset buttons: When activated, a reset button resets all controls to their initial values.

push buttons: Push buttons have no default behavior. Each push button may have
client-side scripts associated with the element’s event attributes. When an event occurs
(e.g., the user presses the button, releases it, etc.), the associated script is triggered.

—http://www.w3.org/TR/REC-html40/interact/forms.html#buttons

This makes “push buttons”—which are either the input-type button or the button ele-
ment—the perfect trigger element for JavaScript-only functionality.

The Reset and Submit buttons, on the other hand, are very important parts of the form and
shouldn’t be tampered with unless you really have a good reason for the change. One recurring
request is to change the value or the state of the Submit button when the form was submitted
to prevent impatient users from clicking the button twice. You could do this via a click han-
dler; however, the better option is to use a submit handler on the form, as this would also trigger
the change when the form is submitted via the Enter key. Figure 7-8 shows how this might look.

6803ch07.fm Page 284 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 285

Figure 7-8. Changing the style and text content of a Submit button when the form gets sent

All you need to do to achieve this functionality is assign an event handler to the window
that calls an init() function and another one that calls a change() function when the form is
submitted.

This function loops through all the form elements (after retrieving the form via
getTarget()) and checks whether the element is an image or a Submit button. If this is the case,
it disables the button via the disabled attribute and changes the button value to Please wait:

exampleChangeSubmitButton.html (excerpt)

submitChange = {
 init : function() {
 DOMhelp.addEvent(document.forms[0], 'submit',➥

 submitChange.change,false);
 },
 change : function(e){
 var t = DOMhelp.getTarget(e);
 for(var i = 0; i < t.elements.length; i++){
 if(!/submit|image/.test(t.elements[i].type)) { continue; }
 t.elements[i].disabled = true;
 t.elements[i].value = 'Please wait...';
 }
 }
}
DOMhelp.addEvent(window, 'load', submitChange.init ,false);

An image button defined via <input type="image"> acts like a Submit button, the only dif-
ference being that it doesn’t submit its name to the back end but two sets of name-value pairs,
consisting of the original name followed by .x and .y and the coordinates the user clicked as
the values. That way you can perform different actions depending on where the button was
clicked. This information is not readable via JavaScript, only on the back end.

6803ch07.fm Page 285 Thursday, June 22, 2006 9:45 PM

286 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

From a JavaScript point of view, there is not much more you can do with an image input,
except that you can provide a rollover state for it.

Select Boxes

Select boxes are probably the most complex and most versatile of form elements. Designers
love them, as it lets them store a lot of options for the user to choose from in a small screen
space (on the other hand, designers also hate them because they cannot style them with CSS
properly).

Each select box has a list object called options that has several properties:

• length: The number of all options inside this select box.

• selected: Boolean if the option is selected by the user.

• selectedIndex: The index number of the selected element. If no element was selected,
this returns -1 (which actually is a property of the SELECT element but is appropriate to
mention here).

• text: The text content of the option.

• value: The value of the option.

■Note Notice that text and value are properties of each of the options contained in the select box; you
cannot read out the chosen value by reading the value property of the select box object itself—as there is no
such thing.

There are two kinds of select boxes: single-choice select boxes that only allow one exclu-
sive choice and multiple-choice select boxes that allow the user to choose more than one
option by holding down Ctrl and highlighting the options he desires.

■Note Multiple-choice select boxes are a nightmare to use for users with assistive technology or keyboard
users, which is why you might want to consider using a list of check boxes instead. This will also make it eas-
ier to read out the choice on the server side.

6803ch07.fm Page 286 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 287

Reading out single-choice select boxes is pretty easy. For example, take the select box in
the demo form:

exampleSelectChoice.html (excerpt)

<p>
 <label for="subject">Subject</label>
 <select id="subject" name="subject">
 <option value="generalEnquiry" selected="selected">General➥

 question</option>
 <option value="Webdesign">Webdesign</option>
 <option value="Hosting">Hosting</option>
 <option value="Training">Training</option>
 <option value="Partnership">Partnership</option>
 <option value="other">Other</option>
 </select>
</p>

The quickest way to reach the select box is to use the name of the element instead of the
index. The reason is that the element type of select boxes could be either select-one or select-
multiple depending on whether or not the multiple attribute is set. Once you get to the correct
object, you can use its selectedIndex property to read out the chosen option and display the
value or the text of the option by using the selectedIndex as the list counter:

exampleSelectChoice.html (excerpt)

function checkSingle() {
 var f = document.forms[0];
 var selectBox = f.elements['subject'];
 var choice = selectBox.selectedIndex;
 alert('You chose ' + selectBox.options[choice].text)
}

In the case of multiple-choice select boxes, this isn’t enough, as the user might have cho-
sen more than one option (selectedIndex will return only the first choice).

6803ch07.fm Page 287 Thursday, June 22, 2006 9:45 PM

288 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

Instead of using selectedIndex, you’ll have to loop through all the options and test the
selected property of each one:

exampleSelectChoice.html (excerpt)

function checkMultiple() {
 var f = document.forms[0];
 var selectBox = f.elements['multisubject'];
 var choices=[];
 for(var i = 0; i < selectBox.options.length; i++) {
 if(selectBox.options[i].selected == 1) {
 choices.push(selectBox.options[i].text);
 }
 }
 alert(choices.join(','));
}

You can reach the select box via its name in the elements collection, and create a new array
called choices (the [] is a shortcut notation for new Array()). Loop through each of the options
of the select box and check whether its selected property is true. Where that is the case, push
the option’s text value as a new array item into choices. Then convert the array to a string
using the array’s join() method and display it.

This way of reading the values would also work with a single-choice select box; however, it
might be overkill depending on the number of options available. You can put both methods
together in a more generic function by reading out the choices depending on the type of the
element:

exampleSelectChoice.html (excerpt)

function getSelectValue(fieldName) {
 var f = document.forms[0];
 var selectBox = f.elements[fieldName];
 if(selectBox.type == 'select-one') {
 var choice = selectBox.selectedIndex;
 alert('You chose ' + selectBox.options[choice].text);
 } else {
 var choices = [];
 for(var i = 0;i < selectBox.options.length; i++){
 if(selectBox.options[i].selected == 1) {
 choices.push(selectBox.options[i].text);
 }
 }
 choices.join(',');
 alert(choices);
 }
}

6803ch07.fm Page 288 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 289

Adding, Replacing, and Removing Options

Select boxes are unique as form elements go, insofar as they allow you to add or remove
options programmatically. You can add a new option by using the Option constructor and
including it in the list of options:

extraOption = new Option(value, text, defaultSelected, selected);

If you want, for example, to add “DOM scripting” as a subject to the list, you can do so
like this:

exampleSelectChoice.html (excerpt)

function addOption(fieldName) {
 var f = document.forms[0];
 var selectBox = f.elements[fieldName];
 var extraOption = new Option('DOM scripting', 'domscripting', 0, 0);
 selectBox.options[selectBox.options.length] = extraOption;
}

You can remove an option by setting it equal to null:

exampleSelectChoice.html (excerpt)

function removeOption(fieldName,i) {
 var f = document.forms[0];
 var selectBox = f.elements[fieldName];
 selectBox.options[i] = null;
}

Replacing options is as easy; simply set the old option to the new one:

exampleSelectChoice.html (excerpt)

function replaceOption(fieldName, i) {
 var f = document.forms[0];
 var selectBox = f.elements[fieldName];
 var extraOption = new Option('DOM scripting', 'domscripting',➥

 0 ,0);
 selectBox.options[i] = extraOption;
}

Inserting an option before another option is a bit more problematic, as you need to copy
all the options before you rewrite the options collection. The function insertBeforeOption()
takes two parameters: the name of the form element and the index of the option you want to
insert the new option before. You start by defining two loop counters called i and j and a blank
array called opts before finding the select box and creating the new option.

6803ch07.fm Page 289 Thursday, June 22, 2006 9:45 PM

290 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

exampleSelectChoice.html (excerpt)

function insertBeforeOption(fieldName, n) {
 var i = 0, j = 0, opts = [],
 var f = document.forms[0];
 var selectBox = f.elements[fieldName];
 var extraOption = new Option('DOM scripting',➥

 'domscripting', 0,0);

Then store the options of the select box in a variable called old and loop through them,
creating a new option for each of them and assigning their properties to the new option.

exampleSelectChoice.html (continued)

 var old = selectBox.options;
 for(i = 0; i < old.length; i++) {
 opts[i] = new Option(old[i].text, old[i].value,➥

 old[i].defaultSelected, old[i].selected);
 }

The new list will be one element longer, which is why you increase the length property
before looping through the new list. You test whether the loop counter is the same as the
parameter sent to the function and insert the new option if this is the case.

exampleSelectChoice.html (continued)

 old.length++;
 for(i = 0; i < old.length; i++) {
 if(i == n) {
 old[i] = extraOption;

Otherwise, you set the option to the old option and increase the j counter variable. Notice
you need a second counter here because you cannot change the variable i during the loop.
As the new option list will be one item bigger, you need to use j to get the value stored in the
opts array.

6803ch07.fm Page 290 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 291

exampleSelectChoice.html (continued)

 } else {
 old[i] = opts[j];
 j++;
 }
 }
}

Depending on the number of options in the select box, this could become a rather slow
and demanding script. You can achieve the same effect a lot quicker and with less code by
using the DOM:

exampleSelectChoice.html (excerpt)

function insertBeforeOptionDOM(fieldName, i) {
 var selectBox = document.getElementById(fieldName);
 if(!selectBox){ return false; }
 var opt = selectBox.getElementsByTagName('option');
 var extraOption = document.createElement('option');
 extraOption.setAttribute('value', 'domscripting');
 extraOption.appendChild(document.createTextNode(➥

 'DOM Scripting'));
 selectBox.insertBefore(extraOption, selectBox.options[i]);
}

Select boxes are a big part of web application development and have traditionally been the
interface for sorting two lists by moving elements back and forth.

Interactive Forms: Hiding and Showing Dependent Elements
One really cool thing about JavaScript and forms is that you can make forms a lot more engag-
ing and dynamic than they are “out-of-the-box.” It is tempting to make everything interact
with each other and immediately send a form without expecting the user to click a Submit but-
ton or press Enter. The danger of this is not only do you sacrifice support for user agents other
than visual ones, but also users may send data prematurely.

6803ch07.fm Page 291 Thursday, June 22, 2006 9:45 PM

292 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

When it comes to simply changing the interface or the number of options displayed in a
form, it is quite safe to use change handlers. Let’s use the demo form as an example. You might
have noticed that there are some fields that have a logical connection: the “other subject” text
field only makes sense when the “Other” option has been selected, and the choice to receive
the newsletter as HTML or plain text comes into play only when the user has chosen to sub-
scribe to the newsletter.

exampleDynamicForm.html (excerpt)

<form method="post" action="send.php">
 [... code snipped ...]
 <p><label for="subject">Subject</label>
 <select id="subject" name="subject">
 <option value="generalEnquiry" selected="selected">General➥

 question</option>
 <option value="Webdesign">Webdesign</option>
 <option value="Hosting">Hosting</option>
 <option value="Training">Training</option>
 <option value="Partnership">Partnership</option>
 <option value="other">Other</option>
 </select></p>
 <p><label for="otherSubject">specify other subject</label>
 <input type="text" id="otherSubject" name="otherSubject" /></p>
 [... code snipped ...]
 <p><input type="checkbox" name="newsletter" value="yes"➥

 id="newsletter" />
 <label for="newsletter">Sign me up for the newsletter</label></p>
 <p>Newsletter format:
 <input type="radio" name="newsletterFormat" id="newsHtml"➥

 value="html" checked="checked" />
 <label for="newsHTML">HTML</label>
 <input type="radio" name="newsletterFormat" id="newsPlain"➥

 value="plain"/>
 <label for="newsPlain">Text</label></p>

With a script you can hide these options and make them appear only when the user has
selected the appropriate option. Figure 7-9 shows how that looks in a browser.

6803ch07.fm Page 292 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 293

Figure 7-9. Showing and hiding form elements depending on user choices

You define a class to apply to the elements you want to hide and the IDs of the two
dynamic elements as properties of a main object called df.

dynamicForm.js

df = {
 hideClass : 'hide',
 letterOption : 'newsletter',
 subjectOption : 'subject',

The init() method checks for DOM support and whether the necessary elements are
available.

dynamicForm.js (continued)

 init : function() {
 if(!document.getElementById || !document.createTextNode){
 return;
 }
 df.news = document.getElementById(df.letterOption);
 df.subject = document.getElementById(df.subjectOption);
 if(!df.subject || !df.news){ return; }

6803ch07.fm Page 293 Thursday, June 22, 2006 9:45 PM

294 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

Next you need to find the elements to hide. By using the DOMhelp method
closestSibling(), you can make sure you don’t try to hide line breaks but the elements that
you actually want to reach. Store the elements in properties of the main object to make them
accessible to the event handler methods.

You can hide the elements by adding the hiding class to them and assign a click event
handler that points to the letterChange() method to the check box and a change handler that
points to subjectChange() to the select box.

dynamicForm.js (continued)

 df.newsOpt = DOMhelp.closestSibling(df.news.parentNode, 1);
 df.subjectOpt = DOMhelp.closestSibling(df.subject.➥

 parentNode, 1);
 DOMhelp.cssjs('add', df.newsOpt, df.hideClass);
 DOMhelp.cssjs('add', df.subjectOpt, df.hideClass);
 DOMhelp.addEvent(df.news, 'click', df.letterChange, false);
 DOMhelp.addEvent(df.subject, 'change', df.subjectChange, false);
 },

You retrieve the check box via getTarget() in the letterChange() method before testing its
checked property. If the property is checked, you remove the hiding class; otherwise you add it.

dynamicForm.js (continued)

 letterChange : function(e){
 var t = DOMhelp.getTarget(e);
 var action = t.checked ? 'remove' : 'add';
 DOMhelp.cssjs(action, df.newsOpt, df.hideClass);
 },

The subjectChange() method works the same way; you retrieve the target and check
whether the fifth option is the selected one (that is, whether selectedIndex is equal to 4). If it is,
you remove the hiding class from the optional element; otherwise you add it. As an extra, the
method sets the focus of the browser to the newly shown element so that users can immedi-
ately start typing.

6803ch07.fm Page 294 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 295

dynamicForm.js (continued)

 subjectChange : function(e) {
 var t = DOMhelp.getTarget(e);
 var action = t.selectedIndex == 5 ? 'remove' : 'add';
 DOMhelp.cssjs(action, df.subjectOpt, df.hideClass);
 if(action == 'remove') {
 df.subjectOpt.getElementsByTagName('input')[0].focus();
 }
 }
}
DOMhelp.addEvent(window, 'load', df.init, false);

Showing and hiding the connected elements is one way to make parts of a form connected
to other options. A different approach is to keep them visible but add a disabled attribute. This
makes them impossible to change for the user, and the browser shows them grayed out.

This is a bit less versatile than just hiding elements, as the disabled attribute is only appli-
cable to input, textarea, select, option, optgroup, and button. Figure 7-10 shows how the form
looks with disabled elements in Firefox on Windows.

Figure 7-10. Disabling elements instead of hiding them

6803ch07.fm Page 295 Thursday, June 22, 2006 9:45 PM

296 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

The main difference in the script is that you have to target each input element you want to
disable individually. In the case of the radio buttons, this means that you have to go through a
loop. The changes in the script are highlighted in bold and should be self-explanatory:

dynamicFormDisable.js

df = {
 hideClass : 'hide',
 letterOption : 'newsletter',
 subjectOption : 'subject',
 init : function() {
 if(!document.getElementById || !document.createTextNode){
 return;
 }
 df.news = document.getElementById(df.letterOption);
 df.subject = document.getElementById(df.subjectOption);
 if(!df.subject || !df.news){ return; }
 df.newsOpt = DOMhelp.closestSibling(df.news.parentNode, 1);
 df.newsOpt = df.newsOpt.getElementsByTagName('input');
 for(var i = 0; i < df.newsOpt.length; i++){
 df.newsOpt[i].disabled = 1;
 }
 df.subjectOpt = DOMhelp.closestSibling(df.subject.parentNode, 1);
 df.subjectOpt = df.subjectOpt.getElementsByTagName('input')[0];
 df.subjectOpt.disabled = 1;
 DOMhelp.addEvent(df.news, 'click', df.letterChange, false);
 DOMhelp.addEvent(df.subject, 'change', df.subjectChange, false);
 },
 letterChange : function(e){
 var i;
 var t = DOMhelp.getTarget(e);
 var disable = t.checked ? null: 1 ;
 for(i = 0; i < df.newsOpt.length; i++) {
 df.newsOpt[i].disabled = disable;
 }
 },
 subjectChange : function(e){
 var t = DOMhelp.getTarget(e);
 if(t.selectedIndex == 5) {
 df.subjectOpt.disabled = null;
 df.subjectOpt.focus();
 } else {
 df.subjectOpt.disabled = 1;
 }
 }
}
DOMhelp.addEvent(window, 'load', df.init, false);

6803ch07.fm Page 296 Thursday, June 22, 2006 9:45 PM

C H A P T E R 7 ■ J A V A S C R I P T A N D U S E R I N T E R A C T I O N : N A V I G A T I O N A N D F O R M S 297

The practical upshot of using disabled is that these elements cannot be reached via tab-
bing any longer either—something that is still possible with elements that are hidden (unless
you hide them by setting display to none as shown earlier in the site navigation section).

Custom Form Elements
Given enough skill and testing time, you can use JavaScript to extend the normal form controls
browsers provide the user with your own custom controls and even make them keyboard
accessible. Especially in web application development, this might be a true necessity.

I won’t go into developing your own custom elements here, but I will touch on the subject
in Chapter 11 again. For now, you can take a look at what the development teams at Yahoo
(http://developer.yahoo.com/yui/slider/examples/slider.html) and Mozilla (http://
www.mozilla.org/access/dhtml/#examples) have come up with and give out for free.

Summary of Forms and JavaScript
I hope this gave you insight as to what is possible with forms and JavaScript. You have learned
about the different properties and methods of forms themselves and each of the elements that
they may contain with their individual properties and methods. You’ve seen in detail how to
deal with select boxes and how you could make a form more dynamic by hiding elements that
are dependent on others and only showing them when the other elements are activated or
have the right value.

Things to Remember About Forms and JavaScript

• Try not to go overboard on what you can do with forms. See whether the form is still
usable with a keyboard once you’re done spicing it up. In particular, longer forms are
more likely to be filled out by tabbing from field to field rather than by clicking the differ-
ent elements and then editing them.

• Don’t automatically submit a form with an event handler—forms can be submitted
by clicking the Submit button or by hitting Enter. Don’t take these options away from
the user.

• While the older form collections forms and elements are not up-to-date DOM scripting
techniques (as they are HTML dependent, whereas all the other DOM methods could
also be applied to an XML string), they might be the easier option to use on generic or
generated forms where you cannot control the IDs or the number of elements. Looping
through one elements list is a lot easier than looping through all child elements of a form
and comparing them with the possible element names or looping through the input,
textarea, and select element collections individually.

Summary
You now should be able to handle the most common uses of JavaScript and come back to this
and the previous chapter when you need to refresh your memory of how to deal with images,
windows, navigation, and forms.

6803ch07.fm Page 297 Thursday, June 22, 2006 9:45 PM

298 C H A P T E R 7 ■ JA V A S C R I P T A N D U S E R I N T E RA C T I O N : N A V I G A T I O N A N D F O R M S

In the next chapter, we will leave the world of browser and client-side scripting and focus
on how we can make JavaScript talk to the back end and server-side scripts. This will also
enable you to take a look at that new kid on the scripting block: Ajax.

6803ch07.fm Page 298 Thursday, June 22, 2006 9:45 PM

299

■ ■ ■

C H A P T E R 8

Back-End Interaction
with Ajax

You finally reached the chapter where I am going to talk about the new amazing JavaScript-
related phenomenon, Ajax. The good news is that you can use Ajax to create really nice, slick
interfaces, and you can extend JavaScript’s reach much further than the browser and the cur-
rently displayed document.

The not-so-good news is that Ajax depends on the XMLHTTPRequest, XHR object for short (or
its Microsoft equivalent), and that one has “HTTP” written all over it. What this means is that
you cannot use any Ajax examples without a server, and furthermore you will have to have
some basic knowledge of server-side scripting to use Ajax (unless you use one of the out-of-
the-box packages available—more on those in the “Summary” section of the chapter).

It also means that using Ajax robs JavaScript of one of its strengths: to be able to create
interfaces that work offline and on the file system of a computer or even from a CD or memory
stick. However, the benefits of Ajax make up for this.

If you don’t want to transfer files back and forth between your local computer and a
remote computer to test your code, the best option is to install a local server. This is not as
tough as it seems at first glance, as nowadays there are a lot of prepackaged servers available (it
was a nightmare in the 1990s, especially on Windows).

My personal favorite is XAMPP, which can be downloaded at http://www.apachefriends.org/.
You can get an installer and follow the instructions to have your own server up and running in a mat-
ter of minutes.

XAMPP installs Apache 2, MySQL, PHP, and all the add-ons you will ever need and is avail-
able for many platforms. It also comes with an FTP and e-mail server, a statistics package, and
many more options, and it is constantly kept up-to-date by the maintainers of Apache Friends
(http://www.apachefriends.org). Oh and yes, it is free, of course.

■Tip Again, to avoid frustration with the rest of the chapter, you should try out for yourself the many code
examples in this chapter to see what I am talking about. The difference in comparison with the other chapters
is that the code examples will not work locally on a computer on the file system; they require a server, as Ajax
needs the HTTP protocol to work. If you don’t want to install a server but you are online, you can go to this
book’s homepage at http://www.beginningjavascript.com/ where you’ll be able to see all the code
examples in action.

6803.book Page 299 Thursday, June 15, 2006 11:48 AM

300 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

When and if you install XAMMP, you can unpack the chapter examples in a directory—
called, for example, jsbook—in the htdocs directory of the server installation, which could be
c:\xammp\htdocs\. To see the examples, you open a browser and type in http://localhost/
jsbook/ as the location.

■Tip In addition to the official help FAQs at http://www.apachefriends.org/en/faq-xampp.html,
there is also a nice step-by-step explanation of how to install XAMPP (and WordPress) on a computer running
Windows XP available at http://www.tamba2.org.uk/wordpress/xampp/.

Household Cleaning Liquid, Football Club, or
Flash Gordon’s Spacecraft: What Is Ajax?
Ajax stands for Asynchronous JavaScript and XML, a term that was coined by Jesse James Gar-
rett at Adaptive Path in February 2005 (http://www.adaptivepath.com/publications/essays/
archives/000385.php). It describes a methodology of developing web applications in a way dif-
ferent from the traditional one.

According to the article, traditional web apps and sites work synchronously—every time
you follow a link, or when you submit a form, the browser sends the data to the server, the
server (hopefully) responds, and the whole page gets refreshed.

■Note This is not necessarily true, as older web apps like the Microsoft Outlook web interface work
with frames and only reload smaller parts of the whole interface that way, but let’s not be picky; and for
heaven’s sake let frames be a thing of the past when web connection speeds were below the 56K of a
standard modem.

Ajax applications work asynchronously, which means that you send data back and forth
between the user agent and the server without reloading the whole page. You replace only the
parts of the page that change. You can also send several requests out and go on scrolling and
using the page while the other parts load in the background.

One good comparison is that Ajax is to traditional web pages what instant messaging is to
e-mails: immediate feedback, with no long waiting times and with more options to communi-
cate. Figure 8-1 shows the flow of Ajax applications in comparison to traditional web sites and
web applications.

6803.book Page 300 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 301

Figure 8-1. Ajax vs. traditional request

At first glance, this appears to add an extra layer of complexity to the whole matter. How-
ever, the really cool thing about it is that the communication between the Ajax engine and the
browser happens via JavaScript and not via page reloads.

In practical terms, this means for the end user less waiting for pages to load and render,
and easier interaction with the page, as you can request data and still read the text or look at the
other content on the page.

This makes for a much slicker interface, as you could, for example, give feedback on a login
form without changing the whole site while being able to test for the right entries on the server
or in a database.

Let’s have a go at a simple example. The demo file exampleXHR.html uses Ajax (well, with-
out the X, as there is no XML involved) to load and display files from the server when the user
clicks a link as shown in Figure 8-2.

6803.book Page 301 Thursday, June 15, 2006 11:48 AM

302 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

Figure 8-2. Loading external files via Ajax

The magic wand behind all of this is an object called XMLHttpRequest, or XHR for short. This
is a nonstandard object insofar as it is not part of an official standard on the W3C site (it is a
working draft at the moment: http://www.w3.org/TR/XMLHttpRequest/), but it is supported
across all modern browsers (Safari, Mozilla/Firefox, Opera). MSIE does not support XHR, but
uses an ActiveX control instead. The good news is that the ActiveX control works the same way.

■Caution The problem with this is when a user has JavaScript enabled but ActiveX disabled in MSIE,
he won’t be able to experience your Ajax efforts. Keep this in mind if you create Ajax solutions and get user
bug reports.

6803.book Page 302 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 303

Let’s go through the example step by step so you can see what the different parts do. The
HTML contains links pointing to text files and calls the simplexhr.doxhr method with two
parameters: an ID of an HTML element to send the text to and the URL of the text:

exampleXHR.html (excerpt)

 <a href="perfect_day.txt"
 onclick="simplexhr.doxhr('txtcontainer1', this.href);➥

 return false;">
 Perfect Day

 <a href="great_adventure.txt"
 onclick="simplexhr.doxhr('txtcontainer1', this.href);➥

 return false;">
 Great Adventure

■Note Notice that these links are not totally unobtrusive and up to the standard of the rest of the code
examples in this book, but at least they work without JavaScript—the browser will simply show the text files
when scripting is not available. It is very tempting, especially when using out-of-the-box Ajax libraries, to cre-
ate scripting-dependent links. No matter how cool the technology is, this is never a good idea.

simpleXHR.js

simplexhr = {
 doxhr : function(container, url) {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 simplexhr.outputContainer = document.getElementById(container);
 if(!simplexhr.outputContainer){ return; }

6803.book Page 303 Thursday, June 15, 2006 11:48 AM

304 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

The script starts by checking for the DOM and whether the element you want to write
content into is available. If it is, it gets stored in a property called outputContainer to make it
available for all other methods in the script.

simpleXHR.js (continued)

 var request;
 try{
 request = new XMLHttpRequest();
 } catch (error) {
 try {
 request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (error) {
 return true;
 }
 }

Define a new variable called request and use the try and catch construct to see which XHR
version is supported. Try assigning a new XMLHttpRequest() for Mozilla and Safari; if that is not
supported, an error occurs that triggers the catch statement (you can learn more about try and
catch() in the appendix of this book). This one tries to assign the Microsoft ActiveX object
instead. If that is not available either, the method returns true, which means the browser will
just follow the link and show the text in the browser.

If the assignment was successful, you have a new XMLHttpRequest object at your disposal.

■Note For a complete list of methods, handlers, and properties of the XMLHttpRequest object, you
can consult the documentation at XULPlanet (http://www.xulplanet.com/references/objref/
XMLHttpRequest.html) or Microsoft (http://msdn.microsoft.com/library/en-us/xmlsdk/html/
xmobjpmexmlhttprequest.asp), respectively.

6803.book Page 304 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 305

The first step is to call the open() method to start the connection with the server and
retrieve or send data. The open() method takes five parameters, three of which are optional:

request = open(requestMethod, url[, sync, [name, [password]]]);

• The requestMethod parameter can be (among some other options that would exceed the
scope of this chapter) either GET or POST, and corresponds to the method attribute of a
FORM element. The GET method is much easier, but also less secure, just as it is with forms
and server-side data handling (data sent via GET is visible in the URL and can be easily
manipulated there by others).

• The url parameter is the location of the file on your server.

■Note XMLHttpRequest does not allow you to load content from other servers, as that would be a big
security problem. Imagine any JavaScript embedded into an e-mail or web site being able to send off any data
from your computer or retrieve more code from a server. There is a way to load third-party content, though,
by using a proxy script on the server—more on that later in the XML example.

• The sync parameter is optional and is a Boolean that defines whether the request should
be sent asynchronously or synchronously. It is hard-wired to true—which means the
request will be sent asynchronously. Synchronous requests would lock up the browser.

• The name and password parameters are optional and only necessary when the file you try
to call requires user authentication.

In this case, you will retrieve files only from the server, and to do that you use GET as the
request method and the file’s location as the url parameter, omitting the optional parameters.

simpleXHR.js (continued)

 request.open('get', url);

6803.book Page 305 Thursday, June 15, 2006 11:48 AM

306 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

The readyState property of the request object contains a numeric value that describes
what is happening to the connection. It is incremented throughout the connection attempt.
The different possible values for readyState and their corresponding request states are as
follows:

• 0: There is no connection—it is uninitialized.

• 1: The connection is loading.

• 2: The data was loaded.

• 3: The connection is interactive.

• 4: The connection is complete—the data was sent and retrieved.

Every time the status changes, XHR triggers a readystatechange event. You can use the
corresponding onreadystatechange event handler to invoke a method in which you can test
against the possible values of readyState and take the appropriate action.

simpleXHR.js (continued)

 request.onreadystatechange = function() {
 if(request.readyState == 1) {
 simplexhr.outputContainer.innerHTML = 'loading...';
 }

Once the request is initialized (readyState equals 1), it is a very good idea to give the user
some feedback that there are things happening in the background. In this example, the script
displays a “loading...” message inside the HTML output element as shown in Figure 8-3.

Figure 8-3. Notifying the user that the request was sent and is under way

6803.book Page 306 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 307

The other states cannot be read safely cross-browser, which is why we skip 2 and 3 and
check whether the request was finished by comparing readyState with 4.

simpleXHR.js (continued)

 if(request.readyState == 4) {
 if (/200|304/.test(request.status)) {
 simplexhr.retrieved(request);
 } else {
 simplexhr.failed(request);
 }
 }

When the request is complete, you check another property called status, which stores the
status of the request. The status is the standard HTTP response code of the request. It is 0 when
the connection cannot be established and 404 when the file is not found.

■Note For a complete list of standard HTTP response codes, see http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html.

If the status is either 200 (all OK) or 304 (not modified), the file has been retrieved and you
can do something with it. In the case of this demo script, you call the retrieved() method. If
the status is any other value, you call failed().

simpleXHR.js (continued)

 }
 request.send(null);
 return false;
 },

The send() method sends your request to the server and can take request parameters to
send to the server-side script being invoked. If you don’t have any parameters to send, it is
safest to set it to null. (Internet Explorer accepts send() without any parameters, but this can
cause problems in Mozilla browsers.) Finally, setting the method’s return value to false stops
the link from being followed.

simpleXHR.js (continued)

 failed : function(requester) {
 alert('The XMLHttpRequest failed. Status: ' + requester.status);
 return true;
 },

6803.book Page 307 Thursday, June 15, 2006 11:48 AM

308 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

If the request didn’t succeed, the failed() method shows an alert() dialog telling the user
about the problem. (This is not very clever or pretty, but should do for the moment.) Returning
true after the user has clicked the dialog’s OK button causes the link to be followed. You can
test this by opening the file exampleXHR.html locally in a browser (without the http:// protocol)
and clicking the links. As there is no HTTP transmission, any request will fail with code 0 as
shown in Figure 8-4.

Figure 8-4. Notifying the user that the XMLHttpRequest failed

However, if all went well with the request, the retrieved() method takes over:

simpleXHR.js (continued)

 retrieved : function(requester) {
 var data = requester.responseText;
 data = data.replace(/\n/g, '
');
 simplexhr.outputContainer.innerHTML = data;
 return false;
 }
}

This method enables you to obtain and use the data sent back from the XMLHttpRequest.
The data can be read out in two different formats: responseText and responseXML, the differ-
ence between these being the type of output—responseText returns a string, and responseXML
will return an XML object. You can use all the usual string properties and methods on
responseText (length, indexOf(), replace(), etc.), and all the DOM methods on responseXML
(getElementsByTagName(), getAttribute(), and so on).

In this example, you merely retrieve text and use the String.replace() method to convert
all line breaks, \n, into BR elements. Then you can write out the changed string as innerHTML to
the outputContainer and return false to stop the normal link behavior.

In many cases, it is sufficient to use responseText and write out data via innerHTML. It is also
a lot quicker and less work for the user’s browser and CPU than using XML and DOM to convert
the objects back into HTML.

6803.book Page 308 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 309

■Note The Ajax acronym doesn’t really work for these examples, as the process lacks the XML component.
For this reason, this approach is known as AHAH and is defined as a microformat with code examples at
http://microformats.org/wiki/rest/ahah.

Et Tu, Cache?
Normally the browser cache is our friend. The browser stores downloaded files in it, which
means the user doesn’t have to download our scripts over and over again. However, in the case
of Ajax, caching can cause problems.

Safari is the main offender, as it caches the response status and does not trigger the
changes (remember that the status returns the HTTP code 200, 304, or 404) any longer. How-
ever, avoiding issues with caching is pretty simple: before calling the send() method, add
another header to the request. This header tells the browser to test whether the data has
changed since a certain date. Which date you set doesn’t matter, as long as it is in the past,
for example, at the time of this writing:

request.setRequestHeader('If-Modified-Since', 'Thu, 06 Apr 2006➥

00:00:00 GMT');
request.send(null);

Putting the X Back into Ajax
If you use responseXML, you can use DOM methods to turn the received XML into HTML. The
demo exampleXMLxhr.html does this. As a data source, take the album collection used in the
pagination example in the last chapter in XML format:

albums.xml (excerpt)

<?xml version="1.0" encoding="utf-8"?>
<albums>
 <album>
 <id>1</id>
 <artist>Depeche Mode</artist>
 <title>Playing the Angel</title>
 <comment>They are back and finally up to speed again</comment>
 </album>
 <album>
 <id>2</id>
 <artist>Monty Python</artist>
 <title>The final Rip-Off</title>
 <comment>Double CD with all the songs</comment>
 </album>
 [... more albums snipped ...]
</albums>

6803.book Page 309 Thursday, June 15, 2006 11:48 AM

310 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

You want to retrieve this data via XHR and display it as a table in the page. Figure 8-5 shows
the different stages of the request.

Figure 8-5. Retrieving and showing XML data as a table

The main part of the script does not have to change:

simpleXMLxhr.js

simplexhr = {
 doxhr : function(container, url) {
 if(!document.getElementById || !document.createTextNode){
 return;
 }
 simplexhr.outputContainer = document.getElementById(container);
 if(!simplexhr.outputContainer) { return; }
 var request;
 try {
 request = new XMLHttpRequest();
 } catch(error) {
 try {
 request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (error) {
 return true;
 }
 }
 request.open('get', url,true);

6803.book Page 310 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 311

 request.onreadystatechange = function() {
 if(request.readyState == 1) {
 simplexhr.outputContainer.innerHTML = 'loading...';
 }
 if(request.readyState == 4) {
 if(request.status && /200|304/.test(request.status)) {
 simplexhr.retrieved(request);
 } else {
 simplexhr.failed(request);
 }
 }
 }
 request.setRequestHeader('If-Modified-Since',➥

 'Wed, 05 Apr 2006 00:00:00 GMT');
 request.send(null);
 return false;
 },

The difference is in the retrieved() method that reads the data via responseXML and writes
out a data table using the XML as the source of content. Remove the loading message and use
the DOM createElement() and createTextNode() methods to create the main table:

simpleXMLxhr.js (continued)

 retrieved : function(requester) {
 var data = requester.responseXML;
 simplexhr.outputContainer.removeChild(➥

 simplexhr.outputContainer.firstChild);
 var i, albumId, artist, albumTitle, comment, td, tr, th;
 var table = document.createElement('table');
 var tablehead = document.createElement('thead');
 table.appendChild(tablehead);
 tr = document.createElement('tr');
 th = document.createElement('th');
 th.appendChild(document.createTextNode('ID'));
 tr.appendChild(th);
 th=document.createElement('th');
 th.appendChild(document.createTextNode('Artist'));
 tr.appendChild(th);
 th = document.createElement('th');
 th.appendChild(document.createTextNode('Title'));
 tr.appendChild(th);
 th=document.createElement('th');
 th.appendChild(document.createTextNode('Comment'));
 tr.appendChild(th);
 tablehead.appendChild(tr);
 var tablebody = document.createElement('tbody');
 table.appendChild(tablebody);

6803.book Page 311 Thursday, June 15, 2006 11:48 AM

312 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

Notice that when you create tables on the fly, MSIE will not display them unless you nest
the rows and cells in a TBODY element. Firefox won’t mind.

Next, loop over all the album elements of the data that was retrieved.

simpleXMLxhr.js (continued)

 var albums = data.getElementsByTagName('album');

 for(i = 0 ; i < albums.length; i++) {

For each album, you read the contents of the XML nodes by their tag name and retrieve
their text content via firstChild.nodeValue.

simpleXMLxhr.js (continued)

 tr = document.createElement('tr');
 albumId = data.getElementsByTagName('id')[i].➥

 firstChild.nodeValue;
 artist = data.getElementsByTagName('artist')[i].➥

 firstChild.nodeValue;
 albumTitle = data.getElementsByTagName('title')[i].➥

 firstChild.nodeValue;
 comment = data.getElementsByTagName('comment')[i].➥

 firstChild.nodeValue;

You use this information to add the data cells to the table via createElement(),
createTextNode(), and appendChild().

simpleXMLxhr.js (continued)

 td = document.createElement('th');
 td.appendChild(document.createTextNode(albumId));
 tr.appendChild(td);
 td = document.createElement('td');
 td.appendChild(document.createTextNode(artist));
 tr.appendChild(td);
 td = document.createElement('td');
 td.appendChild(document.createTextNode(albumTitle));
 tr.appendChild(td);
 td = document.createElement('td');
 td.appendChild(document.createTextNode(comment));
 tr.appendChild(td);
 tablebody.appendChild(tr);
 }

6803.book Page 312 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 313

Add the resulting table as a new child element to the output container, and return false to
stop the link from loading the XML as a new document. The failed() method stays the same.

simpleXMLxhr.js (continued)

 simplexhr.outputContainer.appendChild(table);
 return false;
 },
 failed : function(requester) {
 alert('The XMLHttpRequest failed. Status: ' + requester.status);
 return true;
 }
}

You can see that by doing the “right thing” in terms of DOM scripting, scripts can get
rather convoluted. You could cut down the amount of code by using tool methods to create the
table rows, but that would mean even more processing, as the methods would have to be called
from within a loop.

If you know the XML structure like you do in this example, it is probably a lot faster and eas-
ier to use innerHTML and string methods to convert the data. The demo exampleXHRxmlCheat.html
does exactly that. Most of the script stays the same, but the retrieved() method is a lot shorter:

simpleXMLxhrCheat.js (excerpt)

 retrieved : function(requester){
 var data = requester.responseText;
 simplexhr.outputContainer.removeChild(➥

 simplexhr.outputContainer.firstChild);
 var headrow = '<tr><th>ID</th><th>Artist</th><th>➥

 Title</th><th>Comment</th></tr>';
 data = data.replace(/<\?.*\?>/g, '')
 data = data.replace(/<(\/*)id>/g, '<$1th>')
 data = data.replace(/<(\/*)(artist|title|comment)>/g, '<$1td>')
 data = data.replace(/<(\/*)albums>/g, '<$1table>')
 data = data.replace(/<(\/*)album>/g, '<$1tr>');
 data = data.replace(/<table>/g, '<table>' + headrow);
 simplexhr.outputContainer.innerHTML = data;
 return false;
 },

You retrieve the data as responseText, remove the “loading...” message, and then create a
header table row as a string and store it in the variable headrow. Since responseText is a string,
you can use the String.replace() method to change the XML elements.

Start by removing the XML prologue by deleting anything beginning with <? and ending
with ?>.

6803.book Page 313 Thursday, June 15, 2006 11:48 AM

314 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

■Note This example uses regular expressions, which you may not know yet, but which we will talk about
in more detail in the next chapter. It suffices to say that regular expressions are delimited with slashes and
match a certain pattern of text. If there are parentheses inside the slashes, these strings will be stored in vari-
ables starting with $; these can be used in the replacement string to stand in for the substrings that match
the pattern. For example, the regular expression pattern /<(\/*)id>/g matches everything that starts with
a <, followed by an optional / (which is stored as $1 if it is found), followed by the string id and the closing >
character. The second parameter, <$1th>, writes out either <th> or </th>, depending on the original id tag
being the opening or closing tag. Rather than use regular expressions, you could perform simple string
replacement instead:

data = data.replace('<id>', '<th>');
data = data.replace('</id>', '</th>');

Replace the other elements according to this scheme: every albums element becomes a
table, every album a tr, every id a th; artist, title, and comment become a td each. Append the
headrow string to <table> and store the end result in the outputContainer element using
innerHTML.

Replacing XML with JSON
While XML is the undisputed champion of data transfer formats—it is text based and you can
ensure validity and systems being able to talk to each other via DTDs, XML Schemata, or
RELAX NG—Ajax fans have become more and more aware that it can be quite a drag to convert
XML to JavaScript objects.

Instead of reading an XML file as XML and parsing it via the DOM or reading it as text and
using regular expressions, it would be a lot easier and less straining to the system to have the data
in a format that JavaScript can use directly. This format is called JSON (http://json.org/) and is
basically a dataset in object literal notation. The demo exampleJSONxhr.html uses the XML of the
earlier example as JSON:

<albums>
 <album>
 <id>1</id>
 <artist>Depeche Mode</artist>
 <title>Playing the Angel</title>
 <comment>They are back and finally up to speed again</comment>
 </album>
 <album>
 <id>2</id>
 <artist>Monty Python</artist>
 <title>The final Rip-Off</title>
 <comment>Double CD with all the songs</comment>
 </album>
 <album>
 <id>3</id>

6803.book Page 314 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 315

 <artist>Ms Kittin</artist>
 <title>I.com</title>
 <comment>Good electronica</comment>
 </album>
</albums>

Converted to JSON, this is as follows:

albums.json

{
 'album':
 [
 {
 'id' : '1',
 'artist' : 'Depeche Mode',
 'title' : 'Playing the Angel',
 'comment' : 'They are back and finally up to speed again'
 },
 {
 'id' : '2',
 'artist' : 'Monty Python',
 'title' : 'The final Rip-Off',
 'comment' : 'Double CD wiid all the songs'
 },
 {
 'id' : '3',
 'artist' : 'Ms Kittin',
 'title' : 'I.com',
 'comment' : 'Good electronica'
 }
]
}

The benefit is that the data is already in a format that JavaScript can understand, and all
you need to do to convert it to objects to display is to use the eval method on the string:

exampleJSONxhr.js (excerpt)

 retrieved : function(requester) {
 simplexhr.outputContainer.removeChild(➥

 simplexhr.outputContainer.firstChild);
 var content = '<table><thead>';
 content += '<tr><th>ID</th><th>Artist</th>';
 content += '<th>Title</th><th>Comment</th>';
 content += '</tr></thead><tbody>';
 var data = eval('(' + requester.responseText + ')');

6803.book Page 315 Thursday, June 15, 2006 11:48 AM

316 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

This will give you all the content as objects that you can access via either property notation
or associative array notation (the latter is shown in the id example, the former in all the others):

exampleJSONxhr.js (excerpt)

 var albums = data.album;
 for(var i = 0; i < albums.length; i++) {
 content += '<tr><td>' + albums[i]['id'] + '</td>';
 content += '<td>' + albums[i].artist + '</td>';
 content += '<td>' + albums[i].title + '</td>';
 content += '<td>' + albums[i].comment + '</td></tr>';
 }
 Content += '</tbody></table>';
 simplexhr.outputContainer.innerHTML = content;
 return false;
 },

For files on your own server, using JSON instead of XML is a lot quicker (in tests it proved
up to ten times faster); however, using eval() can be dangerous if you use JSON from a third-
party server, as it executes any JavaScript code and not only JSON data.

You can avoid this danger by using a parser that makes sure that only data gets converted
into objects and malicious code does not get executed. An open-source version is available at
http://www.json.org/js.html. We’ll come back to JSON in Chapter 11.

Using Server-Side Scripts to Reach Third-Party Content
As mentioned earlier, it is impossible for security reasons to use XHR to load content from other
servers. If you want to retrieve for example RSS feeds from other servers, you need to use a
server-side script that loads them for you.

■Note This is a common myth about Ajax: it does not replace server-side code but is backed up by it and
offers a slicker interface to it. XHR in itself can only retrieve data from the same server or send information to
server-side scripts. You couldn’t, for example, access a database in JavaScript—unless the database pro-
vider offers an output as JavaScript, and you include it in its own script tag.

6803.book Page 316 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 317

The server-side component is a pass-through or proxy script that takes a URL, loads the
content of the document, and sends it back to the XHR. The script needs to set the right header
to tell the XHR that the data it returns is XML. If the file cannot be found, the script returns an
XML error string instead. The following example uses PHP, but any server-side language can
perform the same task:

loadrss.php

<?php
// Set the XML header
header('Content-type: text/xml');
// Define an error message in case the feed cannot be found
$error='<?xml version="1.0"?><error>Cannot find feed</error>';
// Clear the contents
$contents = '';
// Read the url variable from the GET request
$rssurl = $_GET['url'];
// Test if the url starts with http to prevent surfers
// from calling and displaying local files
if(preg_match('/^http:/', $rssurl)) {
 // Open the remove file, and store it contents
 $handle = @fopen($rssurl, "rb");
 if($handle == true){
 while (!feof($handle)) {
 $contents .= fread($handle, 8192);
 }
 fclose($handle);
 }
}
// If the file has no channel element, delete contents
if(!preg_match('/<channel/', $contents)){ $contents = ''; }
// Return either the contents or the error
echo $contents == '' ? $error : $contents;
?>

The demo exampleExternalRSS.html uses this script to retrieve the latest headlines in RSS
format from the Yahoo web site.

6803.book Page 317 Thursday, June 15, 2006 11:48 AM

318 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

The relevant part in the HTML is the link that calls the doxhr() method with the element to
output the news in and the RSS URI as parameters:

exampleExternalRSS.html (excerpt)

<p>
 <a href="http://rss.news.yahoo.com/rss/topstories"
 onclick="return readrss.doxhr('newsContainer',this.href)">
 Get Yahoo news

</p>
<div id="newsContainer"></div>

■Note RSS is an acronym for Really Simple Syndication, and it is in essence XML with content in it that
you want to share with the world—typically news headlines. The specifications for RSS are available
at http://blogs.law.harvard.edu/tech/rss, and you can read more about its benefits at Wikipedia:
http://en.wikipedia.org/wiki/RSS_%28file_format%29.

The important detail in this example is that RSS is a standardized format, and you know
the XML structure—even if you get it from a third-party web site. Every valid RSS document
contains—among many other things—an items element with nested item elements. Each of
these contains at least a title describing and a link pointing to the full piece of information.
You can use these to show a list of clickable headlines that send the user to the Yahoo site
where she can read the full news article as shown in Figure 8-6.

Figure 8-6. Retrieving and showing RSS feed data

6803.book Page 318 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 319

The script is once again a simple XHR. The difference is that instead of linking to the URL
directly, you pass it to the PHP script as a GET parameter:

externalRSS.js

readrss = {
 doxhr:function(container, url) {
 [... code snipped as it is the same as in the last example ...]
 request.open('get', 'loadrss.php?url=' + encodeURI(url));
 request.setRequestHeader('If-Modified-Since',➥

 'Wed, 05 Apr 2006 00:00:00 GMT');
 request.send(null);
 return false;
 },

The retrieved() function needs to change. First, it deletes the “loading...” message from
the output container and retrieves the data in XML format using responseXML. Since the PHP
script returns an error message in XML format, you need to test whether the returned XML
contains an error element. If this is the case, read the node value of the first child of the first
error element and write it to the outputContainer surrounded by a paragraph tag.

externalRSS.js (continued)

 retrieved : function(requester) {
 readrss.outputContainer.innerHTML = '';
 var data = requester.responseXML;
 if(data.getElementsByTagName('error').length > 0) {
 var error = data.getElementsByTagName('error')[0].➥

 firstChild.nodeValue;
 readrss.outputContainer.innerHTML = '<p>' + error + '</p>';

If there is no error element, retrieve all the item elements contained in the returned XML and
check the length of the resulting list. If there is less than one item, return from the method, and
allow the link to load the XML document in the browser. This is a necessary step to ensure that the
RSS returned was valid—as you didn’t check this in the server-side script.

externalRSS.js (continued)

 } else {
 var items = data.getElementsByTagName('item');
 var end = items.length;
 if(end < 1){ return; }

6803.book Page 319 Thursday, June 15, 2006 11:48 AM

320 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

If there are items to be displayed, you define the necessary variables and loop through
them. As some RSS feeds have lots of entries, it makes sense to constrain how many you dis-
play; in this case, you choose 5. You read the link and the title for each item and add a new list
item with an embedded link with this information as its href attribute and text content, respec-
tively. Notice that this example simply assembles a string of HTML; you could, of course, go the
“cleaner” way and create elements and apply text nodes.

externalRSS.js (continued)

 var item, feedlink, name, description, content = '';
 for(var i = 0; i < 5; i++) {
 feedlink = items[i].getElementsByTagName('link').item(0).➥

 firstChild.nodeValue;
 name = items[i].getElementsByTagName('title').item(0).➥

 firstChild.nodeValue;
 item = '' + name + '';
 content += item;
 }

Insert the final content string inside a UL tag within the outputContainer, and you have
clickable headlines with fresh Yahoo news.

externalRSS.js (continued)

 readrss.outputContainer.innerHTML = '' + content + '';
 return false;
 }

The rest of the script remains unchanged; the failed() method only displays an alert
when the XHR doesn’t succeed.

externalRSS.js (continued)

 },
 failed : function(requester) {
 alert('The XMLHttpRequest failed. Status: ' + requester.status);
 return true;
 }
}

XHR on Slow Connections
One problem that might occur is that the connection of an XHR can take a long time, and
the user sees a loading message with nothing happening at all. You can avoid this issue by
using window.timeout() to stop the execution after a certain amount of time. The demo
exampleXHRtimeout.html shows an example using this technique.

The default setting for the request is 10 milliseconds, which will cause the timeout
as shown in Figure 8-7. You can use the second link in the example to set the timeout to

6803.book Page 320 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 321

10 seconds and try again, and—pending your connection not being dead slow or Yahoo being
down—you will get the headlines.

Figure 8-7. Allowing an XHR connection to time out

The differences in the script are that you need a property to define how long to wait before
a timeout is triggered, one to store the window.timeout, and a Boolean property that defines
whether there was a timeout or not. The latter has to be inside the doxhr() method, as it needs
to get initialized every time doxhr() is called.

XHRtimeout.js

readrss = {
 timeOutDuration : 10,
 toolong : false,
 doxhr : function(container, url) {
 readrss.timedout = false;
 if(!document.getElementById || !document.createTextNode){
 return;
 }
 readrss.outputContainer = document.getElementById(container);
 if(!readrss.outputContainer){ return; }
 var request;
 try {
 request = new XMLHttpRequest();
 } catch(error) {
 try {
 request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch(error) {
 return true;
 }
 }

In the onreadystatechange event listener, you add the timeout and assign it to the toolong
property of the main object. Inside the timeout you define an anonymous function that checks
the readyState and compares it with 1. This is the scenario when the defined time has passed,
and the request is still on the first stage rather than the fourth and final one. When this hap-
pens, call the abort() method of the request, set the timedout property to true, and write out a
message to the display element that the request took too long.

6803.book Page 321 Thursday, June 15, 2006 11:48 AM

322 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

XHRtimeout.js (continued)

 request.onreadystatechange = function() {
 if(request.readyState == 1) {
 readrss.toolong = window.setTimeout(function(){
 if(request.readyState == 1) {
 readrss.timedout = true;
 request.abort(); // Stop, Hammer Time!
 readrss.outputContainer.innerHTML = 'The request➥

 took too long';
 }
 },
 readrss.timeOutDuration
);
 readrss.outputContainer.innerHTML = 'loading...';
 }

When the request has successfully ended and there wasn’t any timeout (which is stored in
the timedout property), you clear the timeout.

XHRtimeout.js (continued)

 if(request.readyState == 4 && !readrss.timedout) {
 window.clearTimeout(readrss.toolong);
 if(/200|304/.test(request.status)) {
 readrss.retrieved(request);
 } else {
 readrss.failed(request);
 }
 }
 }
 request.open('get', 'loadrss.php?url='+encodeURI(url));
 request.setRequestHeader('If-Modified-Since',➥

 'Wed, 05 Apr 2006 00:00:00 GMT');
 request.send(null);
 return false;
 },

The rest of the script stays the same.

6803.book Page 322 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 323

A Larger Ajax Example: Connected Select Boxes
Let’s take a look at a larger Ajax example—I call it that although you won’t be using XML. Con-
nected select boxes are a classic example of what JavaScript can do for you to make an interface
faster. One common use for them is the flight offer web site, where you choose one airport in a
select box and the page immediately shows you the destination airports that are available from
this airport in a second select box. Traditionally, this is achieved by keeping all the airport con-
nection data in JavaScript arrays and manipulating the options arrays of the select elements.
Changing the first airport select box would automatically change the second one to the avail-
able destinations.

This is very nice when you have a mouse and you have JavaScript available; however, it can
be pretty frustrating when one of the two is missing, or even impossible when neither is avail-
able. This example will show how you can create interdependent select boxes that work
without a mouse and JavaScript, and will not reload the whole page when JavaScript is
available.

The trick is to make the functionality work on the server side and then add the JavaScript
and XHR tricks to stop the whole page from reloading. As you don’t know whether the user really
can cope with this, you can even make it optional instead of a given.

■Note This approach to Ajax is more accessibility aware than the original one. The reason is that you don’t
want to make the biggest DHTML mistake once again—using a technology without considering those who
cannot deal with it. Jeremy Keith coined this approach HIJAX in his DOM scripting book, but it hasn’t gotten
as much public awareness as the Ajax term has by now. Ajax is hot, and it is tough to put a slight dent into
people’s expectations by pointing out that you cannot rely on it being possible for all users.

The first step is to create a server-side script that does all the functionality. As this is not a
book about PHP, we won’t get into too much detail here. Suffice to say that the main document
exampleSelectBoxes.php includes a smaller PHP script, selectBoxes.php. The latter contains
all the airport data as arrays (but could as easily go to a database to retrieve them) and writes
out the different states of the interface depending on the user selecting a choice and sending
the form as shown in Figure 8-8.

6803.book Page 323 Thursday, June 15, 2006 11:48 AM

324 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

Figure 8-8. Connected select boxes

The main page features the form with a DIV with an id you can use for the XHR output:

exampleSelectBoxes.php (excerpt)

<form action="exampleSelectBoxes.php" method="post">
 <div id="formOutput">
 <?php include('selectBoxes.php');?>
 </div>
 <p class="submit"><input type="submit" name="select"
 id="select" value="Choose" /></p>
</form>

■Note Notice that this example uses POST as the method to send the data. This will make your XHR code
a bit harder, but it is a good idea to try this, as most web applications will work with POST instead of GET.

6803.book Page 324 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 325

The PHP script will return an HTML interface you can hook into at each stage of the
process:

• If there hasn’t been any form data sent yet, it displays one select box with the ID airport
listing all the airports in the dataset.

• If there was an airport chosen and sent to the server, the script displays the chosen air-
port inside a strong element and as a hidden form field. It also displays the possible
destination airports for this choice as a select box with the ID destination. Furthermore,
it creates a link pointing back to the main document to start a new selection with the
ID back.

• If the user chooses an airport and a destination and sent them back to the server, the
script just hints at more functionality, as you don’t need more for this example. How-
ever, it offers the link back to the initial page.

If JavaScript is available, the script should do the following:

• Create a new check box in the form that allows to user to turn on Ajax functionality—in
this case only reloading the section of the form that is created by selectBoxes.php.

• If that check box has been selected, the script should override the normal submit pro-
cess of the form with a function called by an event handler. As a loading indicator, it
should change the text of the Submit button to “loading”.

• It should also add a search parameter to the link back to the first stage to ensure that
when the user hits that link, he won’t have to select the check box again.

Let’s start with the skeleton of the script. You need a label for the check box, a class for the
paragraph containing it (not really necessary, but it allows for styling), and the IDs of the form
elements container and the link back to the start of the process.

As methods, you need an init() method, the main XHR method with the retrieval and fail-
ure handlers, and cancelClick() and addEvent() for event handling.

selectBoxes.js (skeleton)

dynSelect = {
 AJAXlabel : 'Reload only the results, not the whole page',
 AJAXofferClass : 'ajax',
 containerID : 'formOutput',
 backlinkID : 'back',
 init : function(){},
 doxhr : function(e){},
 retrieved : function(requester, e){},
 failed : function(requester){},
 cancelClick : function(e){},
 addEvent : function(elm, evType, fn, useCapture){}
}
dynSelect.addEvent(window, 'load', dynSelect.init, false);

6803.book Page 325 Thursday, June 15, 2006 11:48 AM

326 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

Now start to flesh out the skeleton:

selectBoxes.js

dynSelect = {
 AJAXlabel : 'Only reload the results, not the whole page',
 AJAXofferClass : 'ajax',
 containerID : 'formOutput',
 backlinkID : 'back',

The init() method tests whether the W3C DOM is supported, retrieves the first form, and
stores the Submit button with the ID select in a property—this is necessary to remove the but-
ton on the last step. It then creates a new paragraph and applies the class for the Ajax trigger
defined earlier.

selectBoxes.js (continued)

 init : function(){
 if(!document.getElementById || !document.createTextNode){
 return;
 }
 var f = document.getElementsByTagName('form')[0];
 dynSelect.selectButton = document.getElementById('select');
 var p = document.createElement('p');
 p.className = dynSelect.AJAXofferClass;

Next on the agenda is the check box to offer the option to turn on Ajax. Set the name and
ID of the check box to xhr and determine whether the current URI already has the ?ajax search
string. If it has, preset the check box to already selected (this is necessary to ensure that the link
back to the first step does not stop the Ajax enhancements from working).

selectBoxes.js (continued)

 dynSelect.cb = document.createElement('input');
 dynSelect.cb.setAttribute('type', 'checkbox');
 dynSelect.cb.setAttribute('name', 'xhr');
 dynSelect.cb.setAttribute('id', 'xhr');
 if(window.location.search != '') {
 dynSelect.cb.setAttribute('defaultChecked', 'checked');
 dynSelect.cb.setAttribute('checked', 'checked');
 }

Add the check box to the new paragraph, and a label with the appropriate text following it.
The new paragraph becomes the first child node of the form, and you apply an event handler
that triggers the dohxhr() method when the form is submitted.

6803.book Page 326 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 327

selectBoxes.js (continued)

 p.appendChild(dynSelect.cb);
 var lbl = document.createElement('label');
 lbl.htmlFor = 'xhr';
 lbl.appendChild(document.createTextNode(dynSelect.AJAXlabel));
 p.appendChild(lbl);
 f.insertBefore(p, f.firstChild);
 dynSelect.addEvent(f, 'submit', dynSelect.doxhr, false);
 },

The dohxr() method tests whether the check box has been ticked and simply returns when
it isn’t. If it is, you define two variables for the current airport and the current destination and
store the output element in a property. You test whether the output container exists and return
if it doesn’t.

selectBoxes.js (continued)

 doxhr : function(e) {
 if(!dynSelect.cb.checked){ return; }
 var airportValue, destinationValue;
 dynSelect.outputContainer = document.getElementById(➥

 dynSelect.containerID);
 if(!dynSelect.outputContainer){ return; }

Here is the XHR code, defining the correct object and setting the onreadystage event
listener.

selectBoxes.js (continued)

 var request;
 try {
 request = new XMLHttpRequest();
 } catch(error) {
 Try {
 request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch(error) {
 return true;
 }
 }
 request.onreadystatechange = function() {
 if(request.readyState == 1) {
 dynSelect.selectButton.value = 'loading...';
 }

6803.book Page 327 Thursday, June 15, 2006 11:48 AM

328 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

 if(request.readyState == 4) {
 if(request.status && /200|304/.test(request.status)) {
 dynSelect.retrieved(request);
 } else{
 dynSelect.failed(request);
 }
 }
 }

Determine whether the document contains the airport and destination select boxes; if so,
store their current states in the variables airportValue and destinationValue. Notice that you
need to check the type of the airport field in the second stage of the flight selection process,
since it is a hidden field.

selectBoxes.js (continued)

 var airport = document.getElementById('airport');
 if(airport != undefined) {
 if(airport.nodeName.toLowerCase() == 'select') {
 airportValue = airport.options[airport.selectedIndex].value;
 } else {
 airportValue = airport.value;
 }
 }
 var destination = document.getElementById('destination');
 if(destination) {
 destinationValue = destination.options➥

 [destination.selectedIndex].value;
 }

Since the form is sent using POST and not GET, you need to define the request a bit
differently. First of all, you need to assemble the request parameters as a string (this is the
trail of variables on the URI when the send method is GET, e.g., http://www.example.com/
index.php?search=DOM&values=20&start=10).

selectBoxes.js (continued)

 var parameters = 'airport=' + airportValue;
 if(destinationValue != undefined) {
 parameters += '&destination=' + destinationValue;
 }

6803.book Page 328 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 329

Next, open the request. In addition to the modified header to prevent caching, you also
need to tell the server that the content type is application/x-www-form-urlencoded; then you
transmit the length of all the request parameters as the value to accompany Content-length.
You also need to tell the server to close the connection once it has finished retrieving all the
data. Unlike GET requests, send() needs a parameter when you POST, which is the URI-encoded
parameters.

selectBoxes.js (continued)

 request.open('POST', 'selectBoxes.php');
 request.setRequestHeader('If-Modified-Since',➥

 'Wed, 05 Apr 2006 00:00:00 GMT');
 request.setRequestHeader('Content-type',➥

 'application/x-www-form-urlencoded');
 request.setRequestHeader('Content-length', parameters.length);
 request.setRequestHeader('Connection', 'close');
 request.send(encodeURI(parameters));

■Note Don’t beat yourself up if you don’t know all that is going on here; it is after all server and HTTP code,
and you are just starting with JavaScript. Chances are you will never really have to grasp what all that means,
as long as you use it this way.

If you are on the page before the last one and both an airport and a destination are avail-
able, remove the Submit button to prevent errors.

■Note This is a cosmetic step for this example. A real application should work through the following steps,
too, but you don’t need to go that far now.

Finally, invoke cancelClick() to prevent normal form submission.

selectBoxes.js (continued)

 if(airport && destination) {
 var sendButton = document.getElementById('select');
 sendButton.parentNode.removeChild(sendButton);
 }
 dynSelect.cancelClick(e);
 },

6803.book Page 329 Thursday, June 15, 2006 11:48 AM

330 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

The retrieved() method doesn’t differ much from the other examples. Undo what you
have done in the previous step by changing the Submit button’s value back to Select before
retrieving the responseText of the request and replacing the old form elements with the new
ones. Add ?ajax to the href of the link pointing back to the first step to make sure that activat-
ing this link will not turn off the previously selected functionality (by now you know the user
wants the Ajax interface).

selectBoxes.js (continued)

 retrieved : function(requester, e) {
 dynSelect.selectButton.value = 'Select';
 var content = requester.responseText;
 dynSelect.outputContainer.innerHTML = content;
 var backlink = document.getElementById(dynSelect.backlinkID);
 if(backlink) {
 var url = backlink.getAttribute('href');
 backlink.setAttribute('href', url+'?ajax');
 }
 dynSelect.cancelClick(e);
 },

The rest of the script consists of the familiar failed(), cancelClick(), and addEvent() util-
ity methods.

selectBoxes.js (continued)

 failed : function(requester){
 alert('The XMLHttpRequest failed. Status: ' + requester.status);
 return true;
 },
 cancelClick : function(e){
 [... code snipped ...]
 },
 addEvent: function(elm, evType, fn, useCapture){
 [... code snipped ...]
 }
}
dynSelect.addEvent(window, 'load', dynSelect.init, false);

This example shows that Ajax is very dependent on server code. If you know what you will get
back, then it is easy to create a useful and attractive interface.

6803.book Page 330 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 331

You can also use the Ajax approach in an unobtrusive and optional manner to make older
effects more eye-catching and targeted better to those who want them. In the previous chapter, you
developed a dynamic navigation that collapsed and expanded nested links, and I promised you
that we’d come back to that example, which we do in the following section.

Optional Dynamic Ajax Menus
One of the problems dynamic navigation has is that you may offer the user too many choices.
It is pretty tempting to consider a menu easy to use when you can see it collapsed, and you can
collapse and expand sections to navigate through it, but it is a different story when you turn off
JavaScript and CSS and you see all the links at once. Now also consider the kind of visitors who
listen to your web site because they cannot see, or those who need to zoom only a part of the
screen to navigate around the page.

Wouldn’t it be much more useful to give visitors the choice to enable an enhanced
dynamic menu and give only the minimum necessary menu structure to those who choose
otherwise?

Recall the menu structure you used in the previous chapter:

navigation.php

<ul id="nav">
 Home
 Products

 CMS solutions

 Mini CMS
 Enterprise CMS

 Company Portal
 eMail Solutions

 Private POP3/SMTP
 Listservers

 Services

6803.book Page 331 Thursday, June 15, 2006 11:48 AM

332 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

 Employee Training
 Auditing
 Bulk sending/email campaigns

 Pricing
 About Us

 Our offices
 Our people
 Jobs
 Industry Partners

 Contact Us

 Postal Addresses
 Arrange Callback

I’ve already said that displaying the menu item corresponding to the current page as a
STRONG element is a very good idea. Let’s take that idea further and strip down the menu to what
is actually necessary. What this means is that you’ll remove all the nested elements from menu
items other than the current one (or its parent). For example, on the company portal page this
would be as follows:

<ul id="nav">
 Home
 Products

 CMS solutions
 Company Portal
 eMail Solutions

 Services
 Pricing
 About Us
 Contact Us

6803.book Page 332 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 333

For a top-level item like that corresponding to the products page, the code will be even less:

<ul id="nav">
 Home
 Products
 Services
 Pricing
 About Us
 Contact Us

You could easily do this in JavaScript by now; however, that would defeat the purpose of the
exercise, as visitors without JavaScript would still get the full menu.

Instead, you’ll use a server-side script in PHP that does this for you. On every page
this script

• Loads the navigation template

• Checks through all the links and replaces the one that matches the current file name
with a STRONG element (via regular expressions)

• Checks whether there is an ?ajax parameter sent via GET and if not removes all nested
lists that are not inside an LI item that also contains a STRONG element

We will not go into the details of the script here, as this is not a PHP book; if you want to
have a look, the script is called globals.php and is located in the navigation folder of the code
download for this chapter.

Using this script, you can offer users a fully functional menu without any unnecessary
links, as shown in Figure 8-9.

Figure 8-9. The basic navigation without JavaScript

6803.book Page 333 Thursday, June 15, 2006 11:48 AM

334 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

You can now use JavaScript to offer the user a more advanced navigation menu that shows
the complete site map and loads the content via XHR instead of reloading the whole page. To
achieve this, you can reuse the dynamic navigation script developed in the previous chapter
and add one line that triggers the collapsing and expanding functionality only when there is a
search parameter called ajax in the URI for the current page:

siteNavigationIndicator.js (changes)

sn={
 init : function() {
 if(window.location.search.indexOf('ajax') == -1){ return; }
 [... code snipped ...]
 },

The main script will have to do the following:

• Add a new list item to the navigation with a link that allows the user to turn Ajax func-
tionality on or off (select a basic or an enhanced navigation).

• If there is no ajax parameter in the URI, stop and let the back end create and change the
navigation.

• Otherwise, attach event handlers on all the links in the navigation, loading the linked
documents in an output container via XHR instead of reloading the page.

• Replace the old STRONG element with a link pointing to the right document and the XHR
handler when another link is activated.

• Replace that other link with a STRONG element and expand and highlight the menu sec-
tion in which the link is located.

■Note This means that you need to know which document the links replacing the STRONG elements should
point to. You can do this by storing the file name (without the .php extension, since class names cannot con-
tain full stops) in the class attribute of the STRONG. This is not the cleanest of options, but other than using
invalid HTML with a made-up attribute, it is the only way. The PHP script provides you with that functionality
on the highlighted menu item.

You start with a bunch of properties—the ID of the menu, the trigger as a blank property,
and its ID and labels for both states. The trigger will become a list item in the menu that turns
the Ajax functionality and the enhanced navigation on or off. Depending on the state, the dif-
ferent labels will be the link text. Furthermore, you define the ID of the output element and the
message displayed when the XHR is loading the content.

6803.book Page 334 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 335

XHRSiteNav.js

Xhrsitenav = {
 navID : 'nav',
 trigger : null,
 triggerID : 'AJAXtrigger',
 triggerLabel : 'Switch to advanced navigation',
 downLabel : 'Switch to basic navigation',
 output : 'content',
 loadingMessage : '<img src="../indicator_big.gif"➥

 alt="loading..." />',

The init() method needs to test for all the necessary elements, call createTrigger() to
add the link to the menu, and not do anything else when there is no ajax search parameter in
the current URL.

XHRSiteNav.js (continued)

 init : function() {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 xhrsitenav.nav = document.getElementById(sn.navID);
 if(!xhrsitenav.nav) { return; }
 xhrsitenav.outputContainer = document.getElementById(➥

 xhrsitenav.output);
 if(!xhrsitenav.outputContainer){ return; }
 xhrsitenav.createTrigger();
 if(window.location.search.indexOf('ajax') == -1){ return; }

Loop through all the links but the last one and those links having only a hash mark (#) as
the href attribute; assign a click event handler pointing to the xhr method for each one. Since
the last link is the trigger, you need to skip the last one; the links having only # as their href
attribute values are the ones added by the dynamic menu script.

XHRSiteNav.js (continued)

 var navlinks = xhrsitenav.nav.getElementsByTagName('a');
 for(var i = 0; i < navlinks.length - 1; i++){
 if(navlinks[i].href == '#'){ continue; }
 DOMhelp.addEvent(navlinks[i], 'click', xhrsitenav.xhr, false);
 navlinks[i].onclick = DOMhelp.safariClickFix;
 }

6803.book Page 335 Thursday, June 15, 2006 11:48 AM

336 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

You then take the link inside the trigger and remove anything after and including the ques-
tion mark. This means that if the user clicks the link, it’ll turn off both the Ajax and the dynamic
menu functionality. You also change the link text to the label text for the basic navigation.

XHRSiteNav.js (continued)

 var triggerlink = xhrsitenav.trigger.getElementsByTagName(a')[0];
 triggerlink.href = triggerlink.href.replace(/\?.*/, '');
 triggerlink.innerHTML = xhrsitenav.downLabel;
 },

The xhr() method needs to get the current link via getTarget() and ensure the event tar-
get is a link by comparing it with the right nodeName.

XHRSiteNav.js (continued)

 xhr : function(e){
 var t = DOMhelp.getTarget(e);
 while(t.nodeName.toLowerCase() != 'a') {
 t = t.parentNode;
 }

It uses parentNode to retrieve the list item the link resides in and checks whether the item
contains a STRONG element. If there is a STRONG element, xhr() highlights the current section via
the parameters defined in the dynamic menu script. It calls removeOldHighlight() to undo any
other highlights and retrieve the url to load into the content container element.

XHRSiteNav.js (continued)

 var parentLI = t.parentNode;
 if(t.parentNode.getElementsByTagName('ul').length > 0) {
 var firstList = t.parentNode.getElementsByTagName('ul')[0];
 DOMhelp.cssjs('add', firstList, sn.showClass)
 DOMhelp.cssjs('swap', parentLI, sn.openClass, sn.parentClass);
 parentLI.getElementsByTagName('a')[0].innerHTML =➥

 sn.openIndicator;
 }
 var url = xhrsitenav.removeOldHighlight(t);

The remainder of xhr()and its helper methods, retrieved() and failed(), are unchanged
from the other examples in this chapter.

6803.book Page 336 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 337

XHRSiteNav.js (continued)

 var request;
 try {
 request = new XMLHttpRequest();
 } catch(error) {
 try {
 request = new ActiveXObject('Microsoft.XMLHTTP');
 } catch(error) {
 return true;
 }
 }
 request.open('get', url, true);
 request.onreadystatechange = function() {
 if(request.readyState == 1){
 xhrsitenav.outputContainer.innerHTML =➥

 xhrsitenav.loadingMessage;
 }
 if(request.readyState == 4) {
 if(request.status && /200|304/.test(request.status)) {
 xhrsitenav.retrieved(request);
 } else {
 xhrsitenav.failed(request);
 }
 }
 }
 request.setRequestHeader('If-Modified-Since', ➥

 'Wed, 05 Apr 2006 00:00:00 GMT');
 request.send(null);
 DOMhelp.cancelClick(e);
 return false;
 },
 retrieved : function(requester, e) {
 var data = requester.responseText;
 xhrsitenav.outputContainer.innerHTML = data;
 DOMhelp.cancelClick(e);
 return false;
 },
 failed : function(requester) {
 alert('The XMLHttpRequest failed. Status: ' + requester.status);
 return true;
 },

6803.book Page 337 Thursday, June 15, 2006 11:48 AM

338 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

The createTrigger() method checks whether there is already a trigger defined and cre-
ates a new one if necessary. The trigger is the list item containing the link that allows the user
to switch between the different navigation states. There shouldn’t be any surprises in this
method—it could have been part of the init() method, after all. It might be a good idea to keep
functionality like this in own methods, should other scripts need to add the trigger once more.

XHRSiteNav.js (continued)

 createTrigger : function() {
 if(!xhrsitenav.trigger) {
 xhrsitenav.trigger = document.createElement('li');
 xhrsitenav.trigger.id = xhrsitenav.triggerID;
 var loc = xhrsitenav.shorturl(window.location.href);
 var newlink = DOMhelp.createLink(loc + '?ajax=1',➥

 xhrsitenav.triggerLabel);
 xhrsitenav.trigger.appendChild(newlink);
 xhrsitenav.nav.appendChild(xhrsitenav.trigger);
 }
 },

The removeOldHighlight() method is called by the xhr() method. It replaces the current
STRONG element inside the navigation with a link and vice versa. For the STRONG element that
gets replaced by a link, the method sets the href attribute to the STRONG element’s class name
suffixed with “.php” and attaches the event handler to call xhr() when the user clicks the link.

XHRSiteNav.js (continued)

 removeOldHighlight : function(o) {
 var highlight = xhrsitenav.nav.getElementsByTagName('strong')[0];
 var current = highlight.className + '.php';
 var newlink = document.createElement('a');
 newlink.appendChild(document.createTextNode➥

 (highlight.innerHTML));
 newlink.setAttribute('href', current);
 DOMhelp.addEvent(newlink, 'click', xhrsitenav.xhr, false);
 newlink.onclick = DOMhelp.safariClickFix;
 highlight.parentNode.replaceChild(newlink, highlight);

For the link retrieved as the parameter o, the method calls a helper method named
shorturl() that cleans out excess data from the link’s href (you only need the file name, not
the whole path that href returns). It then creates a new STRONG element, removes the .php file
extension, and stores the resulting string in the STRONG element’s className property. It prefixes
the url with the name of the directory where the content pages are stored, and returns the
complete url to xhr() in order to load the correct content.

6803.book Page 338 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 339

XHRSiteNav.js (continued)

 var shorturl = xhrsitenav.shorturl(o.getAttribute('href'));
 var st = document.createElement('strong');
 st.className = shorturl.replace('.php', '');
 st.innerHTML = o.innerHTML;
 o.parentNode.replaceChild(st, o);
 var url = 'content/' + shorturl;
 return url;
 },

The shorturl() helper method removes anything before the last slash from the string it got
as a parameter and returns the result.

XHRSiteNav.js (continued)

 shorturl : function(url) {
 return url.replace(/.*\//g, '');
 }
}
DOMhelp.addEvent(window, 'load', xhrsitenav.init, false);

If the user chooses the enhanced navigation, he’ll get a tree menu that loads the content in
the page without reloading the whole document as shown in Figure 8-10.

Figure 8-10. The enhanced XHR navigation

6803.book Page 339 Thursday, June 15, 2006 11:48 AM

340 C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X

This is an example of how you can make high-end JavaScript functionality optional
instead of hoping that visitors can deal with it. It is not a very common approach, as it adds an
extra level of complexity to the interface; but depending on the audience of your product, it
might give a good impression and also tells visitors that once they have chosen the advanced
navigation, they cannot expect it to offer the same experience as a static one does—for exam-
ple, Back button functionality and bookmarking.

Summary
I hope this has given you an insight into what can be done with JavaScript and XMLHttpRequest to
create dynamic connections between the back end and the browser without reloading the page.

As cool as Ajax is, there are some things to keep in mind:

• Primarily, Ajax was invented as a methodology to develop web applications, and not web
sites. It might be overkill to “Ajax-ify” every small form and menu.

• Ajax is a connector between client-side scripting and the back end; it is only as powerful
as the back-end script or the information is.

• Ajax is confined to scripts and data sources on the same server as the script using it,
unless you use a pass-through script on the server or you have a third-party service that
offers data in JSON format, such as http://del.icio.us does.

• It is very tempting and easy to create an Ajax application that looks impressive but is very
obtrusive—relying on the mouse and on JavaScript being available. Creating an Ajax
interface that is accessible is a much harder task.

Ajax is currently “hot,” and a lot of very gifted developers are working on frameworks and
libraries that can help you to create Ajax applications quickly without having to know all the ins
and outs of it—using them may even prevent you from repeating mistakes these developers
have made themselves in the past. The number of libraries available is staggering, and it can be
hard to tell which one is the right one for the task at hand.

Leland Scott has done an amazing job researching dozens of different Ajax libraries on the
Web and comparing them in terms of cross-browser and cross-platform compatibility: http:/
/www.musingsfrommars.org/2006/03/ajax-dhtml-library-scorecard.html.

Here is a sampling of the best-known and most popular libraries with some information as
to their capabilities and goals:

• DOJO (http://www.dojotoolkit.org/) is one of the most mature and most popular
DHTML/Ajax toolkits now available. The only issue is that there is not a huge examples
section.

• prototype (http://prototype.conio.net/) is a very powerful and much appreciated
framework; however, it comes with neither documentation nor examples, which is why
several prototype spin-offs are more likely to be usable for you as follows:

• script.aculo.us (http://script.aculo.us/) is probably the best-documented library
available. Dozens of examples and explanations help you find your way around the
library quite quickly.

6803.book Page 340 Thursday, June 15, 2006 11:48 AM

C H A P T E R 8 ■ B A C K - E N D I N T E R A C T I O N W I T H A J A X 341

• moofx (http://moofx.mad4milk.net/) was especially developed with size in mind.
The entire library is only 3KB and offers lots of visual tricks and effects, along with a
basic Ajax engine.

• Rico (http://openrico.org/rico/home.page) was developed with web applications in
mind and features a panel bar, a data grid, and some effects, as well as an Ajax engine
of its own.

• S@rdalya (http://www.sarmal.com/sardalya/Default.aspx) is a newer library that is
very modular. It is constantly being updated. S@dalya’s developer is also very active on
evolt’s thelist mailing list (http://lists.evolt.org/).

• The Yahoo User Interface library (http://developer.yahoo.com/yui/index.html),
created and maintained by Yahoo, provides good documentation and examples, making
it easy to take your first steps with Ajax. You’ll find a support mailing list at http://
groups.yahoo.com/group/ydn-javascript/.

• Sarissa (http://sarissa.sourceforge.net/doc/) helps when you need to work with
XML; it allows you to convert XML to strings easily, and from one XML document to
another, using XSLT.

In the next chapter, we will finally take a closer look at regular expressions and how to use
them to validate data. You will learn how to create a contact form as an example application
and maybe reuse some of the XHR functionality achieved here to make it slicker than your
usual run-of-the-mill contact form.

6803.book Page 341 Thursday, June 15, 2006 11:48 AM

6803.book Page 342 Thursday, June 15, 2006 11:48 AM

343

■ ■ ■

C H A P T E R 9

Data Validation Techniques

In this chapter, you will learn about using JavaScript to validate data entered by the user or
coming from other systems. You already heard a lot about this in Chapter 2, which dealt with
decisions involving data, and we will use some of that knowledge and extend it here.

I’ll start with a quick introduction of the pros and cons of JavaScript validation and go
on to explaining different techniques, starting with string and mathematical validation tech-
niques and building up gradually to the developer’s Swiss Army Knife: pattern matching with
regular expressions.

You will then get to know different means of spotting what parts of a form need validating,
how to ease the maintenance of form validation, and how to display validation output. We’ll
finish with an Ajax example of how to suggest possible values.

Historically, JavaScript books for beginners will tell you about all the ins and outs of client-
side validation and what you can do to validate data before it is sent to the server. I deliberately
kept this to the bare minimum. The reason is that it simply is not safe to rely on JavaScript val-
idation (as you’ll see in the upcoming section), and you can spend hours writing functions to
validate when you really should rely on the server-side component of your web site to do the
validation and use JavaScript as a first sanity check of the data coming from the user. You will
learn about techniques to use server-side component validation rules in JavaScript though.

Pros and Cons of Client-Side JavaScript
Validation
Validating user entries via JavaScript is great for several reasons:

• It saves the user a page reload when he enters incorrect data; and you can save the
state of the variables, so the user does not have to enter all the data again, just the incor-
rect data.

• It cuts down on server traffic, as there is no round-trip to the back end in case of an error.

• It makes the interface more responsive, as it gives the user immediate feedback.

6803.book Page 343 Friday, June 16, 2006 8:19 PM

344 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

On the other hand, validating with JavaScript has several issues:

• It cannot be trusted as the one and only means of validation (JavaScript could not be
available or could even be deliberately turned off to circumvent your validation
measures).

• It promotes the notion that validating input is an easy process—it isn’t, yet it is very cru-
cial to the security and usability of your product. A lot of web forms are no fun to use
because the usability aspect of validation has not been taken care of. Entering data is
hard enough, so don’t make it harder for the user than necessary by expecting the data
in formats that are not easily understandable or by using methods of error reporting that
are in the user’s way (for example, alert messages and client-side validation that makes
it impossible to send the form without JavaScript) rather than preventing him from mak-
ing mistakes.

• It could happen that the user agent does not notify the user of dynamic changes to the
document—this is the case with very old screen readers for users with visual
impairments.

• Unless you share validation rules on the client and server side (you’ll get an example of
how to do that during the course of the chapter), it means twice the maintenance should
a validation rule change.

• If you don’t want to make your validation rules visible—say to prevent spam or for
authentication purposes—there is no way to do that in JavaScript.

A Quick Reminder About Protecting Content
with JavaScript
Validation is one thing, protecting content with a password or obfuscating it via encryption is
another. If you look around the web, you will find a lot of examples that promise that you can
protect a web page from being available with a JavaScript password. Normally these scripts are
something like this:

examplePassword.html

var pw = prompt('Enter Password', '');
if(pw != 'password123') {
 alert('Wrong password');
 window.location = 'boo.html' ;
} else {
 window.location = 'creditCardNumbers.html';
}

6803.book Page 344 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 345

The one and only cracking skill needed to work around this protection is to look at the
page source, or—if the protection is in its own JavaScript file—open that in a browser or text
editor. In some cases, where there is no redirection to the correct page, but only to the wrong
one, simply turning off JavaScript will get you through.

There are seemingly more clever protection methods that use the password as a part of the
file name:

var pw = prompt('Enter Password' , '');
window.location = 'page' + pw + '.html';

These can be cracked by finding out which files are available on the server—because either
the directory listing hasn’t been turned off (which is amazingly often the case—for proof just
perform a Google search on “index of /mp3”—including the quotation marks) or the page can
be found in counter statistics or in the cache of either the browser or Google.

The same applies to obfuscating (making something unreadable by encrypting or replac-
ing words) content and scripts. Anything that was protected by JavaScript can be cracked with
it—given enough time and determination. Just don’t waste your time with it.

■Note JavaScript is a language that is executed on the client computer most of the time, which makes it
far too easy for a malicious attacker to work around your protection methods. In the case of right-click pre-
vention scripts to protect images and text from being copied, you will most likely alienate normal visitors and
get nothing but a dry chuckle out of real attackers.

Packing JavaScript with something like Dean Edward’s packer (http://dean.edwards.
name/packer/) to make really heavy scripts shorter is another issue though, and might be a
good idea at times—for example, if you want to use a large library script on a high-traffic site.

The One-Size-Fits-All Validation Myth
Validation of user entry can be pretty straightforward—for example, ensuring that a field in a
form has some data in it, a select box option has been chosen, or a check box was ticked. How-
ever, when it comes to more complex forms of data like dates and times, there is just no catch-all
validation approach. A lot of ready-made scripts are available on the Web, and every develop-
ment framework or IDE comes with out-of-the-box generic form validation solutions that
promise to solve any problem for you.

The sad fact is that most of them are rather convoluted or just don’t hold up to their promise.
Good web forms are as much a user interface and usability matter as they are a technical issue.
Knowing your audience and their environment is very important. This is why I don’t give you a
lot of “silver bullet” examples of validation here, but explain which tools to use to write your own
validation scripts.

6803.book Page 345 Friday, June 16, 2006 8:19 PM

346 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

The biggest mistake a lot of client-side validation tutorials and ready-made solutions
make is not considering localization.

• My birthday in American notation is 4/26/1975, in Europe 26/04/1975; others might
write it as 26. April 1975 or Apr. 26, 1975.

• Numbers are displayed as 1,000.95 in England and America, whereas Germans write and
enter 1.000,95.

• Americans and the English write 1pm or 1am, whereas other Europeans go for 13.00
or 1.00.

• English post codes have syntax like N16 5UN, American ZIP codes 12345 and an optional
-1234, whereas in Germany the post codes used to be four digits before the reunion and
are now five digits.

• Testing whether telephone numbers are only numerical is not enough, as people might
provide the optional country codes or extension numbers, like +44 (0)208 11111-1122.

Interestingly, enough back-end solutions and frameworks like .NET, Spring, and Mono
have these issues sorted out for you already, and you can define your displays and validation
rules in localization files. This means that if you work in an environment that uses these, it
might be a good idea to share validation rules with the back end. We will come back to this in
the “Sharing Validation Rules” section.

Basic JavaScript Validation with String and
Numeric Methods
The easiest form of validating user entry is using string and numeric methods. I’ve covered a lot
of these in Chapter 2 when I talked about data types and conditions, but I’ll recap them here.

String Validation Methods
The string methods most useful for validation are the following:

• charAt(n): Returns the character at the nth position in the string, starting at 0.

• charCodeAt(n): Returns the Latin-1 ASCII character value at the nth position in the string
starting at 0.

• indexOf(search): Returns the position of search inside the main string. Returns -1 if the
search cannot be found.

• lastIndexOf(search): Returns the last position of search inside the main string. Returns
-1 if the search cannot be found.

• slice(start,end): Returns the part of the string in between start and end. If you don’t
provide an end value, it returns the rest of the string.

• split(search): Splits the string into an array with the parts of the main string surround-
ing search as the elements. The search term itself is not part of this array.

6803.book Page 346 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 347

• substr(start,n): Returns the string that is n characters long beginning at start.

• substring(start,end): Returns the part of the string in between start and end.

The other, more powerful, string methods, search, replace, and match, work with regular
expressions. I will talk about those shortly.

You can use the string methods, for example, to check whether a value is a valid number:

exampleCheckNumberString.html (excerpts)

<form onsubmit="return isNumber()">
 <p>
 <label for="total">Total</label>
 <input type="text" name="total" id="total" />
 </p>
 <p><input type="submit" value="send" /></p>
</form>

function isNumber() {
 var currentCode;
 var total = document.getElementById('total');
 if(!total) { return false; }
 total = total.value;
 if(total.length == 0) {
 alert('Field is empty');
 return false;
 }
 if(total.indexOf('-') != -1 && total.substring(0,1) != '-' ||
 total.lastIndexOf('-') != total.indexOf('-')) {
 alert('A number can only have a minus at the beginning');
 return false;
 }
 if(total.indexOf('.') != -1 &&
 total.lastIndexOf('.') != total.indexOf('.')) {
 alert('A number can only have one decimal point');
 return false;
 }
 for(var i = 0; i < total.length; i++) {
 currentCode = total.charCodeAt(i);
 if(currentCode != 45 && currentCode !=46 &&
 currentCode < 48 || currentCode > 57) {
 alert('Only Numbers are allowed');
 return false;
 }
 }
 return true;
}

6803.book Page 347 Friday, June 16, 2006 8:19 PM

348 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

Let’s go through the script and see what is going on there.

exampleCheckNumberString.html

function isNumber () {
 var currentCode;
 var total = document.getElementById('total');
 if(!total){ return false; }
 total = total.value;

You define a variable called currentCode and get the value of the form element with the
ID total.

exampleCheckNumberString.html (continued)

 if(total.length == 0) {
 alert('Field is empty');
 return false;
 }

Next, you test whether a value was entered for the field by verifying that the length of the value
is not 0; if it is, you stop the form submission by returning false after displaying an error
message.

exampleCheckNumberString.html (continued)

 if(total.indexOf('-') != -1 && total.substring(0,1) != '-' ||
 total.lastIndexOf('-') != total.indexOf('-')) {
 alert('A number can only have a minus at the beginning');
 return false;
 }

As valid numbers should only have a minus as the first nondigit character (theoretically, it
could also be a + or a ., but who would enter that?), you test whether the value contains a minus
(indexOf() does not return -1) and whether it is the first character using substring(). This is
not enough though, as the user might have entered -12-12, which means you must also check
whether the lastIndexOf() is different from indexOf(). This can only be the case when there is
more than one minus sign. If there is more than one minus or it is not at the beginning, you
show an error and return false.

exampleCheckNumberString.html (continued)

 if(total.indexOf('.') != -1 &&
 total.lastIndexOf('.') != total.indexOf('.')) {
 alert('A number can only have one decimal point');
 return false;
 }

The same logic applies to the decimal point; there can be only one in a valid number.

6803.book Page 348 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 349

exampleCheckNumberString.html (continued)

 for(var i = 0; i < total.length; i++) {
 currentCode = total.charCodeAt(i);
 if(currentCode != 45 && currentCode != 46 &&
 currentCode < 48 || currentCode > 57) {
 alert('Only Numbers are allowed');
 return false;
 }
 }

Use the charCodeAt() method to test whether there are any invalid characters in the value.
Only minus signs (45), decimal points (46), or the number characters 0 to 9 (48 to 57) are
allowed. Loop through the string one character at a time and if there is any character whose
ASCII code is outside this range, display an error message and return false;.

exampleCheckNumberString.html (continued)

 return true;
}

If all went well, you return true, which sends the form data to the server.
A more complex example is to test for valid e-mail syntax. An e-mail must contain only one

@, and the preceding user name part may not start with a period or a hyphen and may not end
with a period. The domain part after the @ may not start or end with a period or hyphen. Both
parts may only contain the characters from a to z, 0 to 9, periods, underscores, and hyphens.

exampleCheckEmailString.html

function isEmail() {
 var mail = document.getElementById('email');
 var error = '';
 if(!mail){ return false; }
 var mailstring = mail.value;

You start by checking for the necessary form field and retrieving its value. Define a variable
called error to store error messages. In this example, you need this only to constrain line
length, but in the form example at the end of the chapter, we will come back to this.

exampleCheckEmailString.html (continued)

 if(mailstring.length == 0) {
 error = 'You didn\'t enter a value';
 alert(error);
 return false;
 }

Test whether the user entered an e-mail by comparing the value length with 0; display an
alert and cancel the form submission if there is nothing in the field.

6803.book Page 349 Friday, June 16, 2006 8:19 PM

350 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

exampleCheckEmailString.html (continued)

 if(mailstring.indexOf('@') == -1) {
 error = 'This email has no @ sign';
 alert(error);
 return false;
 } else if(mailstring.lastIndexOf('@') != mailstring.➥

 indexOf('@')) {
 error = 'An email may only contain one @ sign.';
 alert(error);
 return false;
 }

Test whether the e-mail contains an @ sign using indexOf() and that it only has one of
these by comparing the values returned by indexOf() and lastIndexOf().

exampleCheckEmailString.html (continued)

 var chunks = mailstring.split('@');
 var n = chunks[0];

Split the e-mail string at the @ sign to retrieve the user name and the domain parts to check
them separately. You define n as the first “chunk,” which is the user name.

exampleCheckEmailString.html (continued)

 if(n.substring(0,1) == '.' || n.substring(0,1) == '-' ||
 n.substr(n.length-1, 1) == '.') {
 error = 'The user name may not start with a period or hyphen';
 error += ' and may not end with a period';
 alert(error);
 return false;
 }

As the user name may not start with a period or a hyphen, nor end with a period, you test
these conditions via substring() and substr().

■Note This shows that using substr() is the shorter option when testing for characters at the end
of the string. To test for the last character, use string.substr(string.length-1, 1) and not
string.substring(string.length-1, string.length).

6803.book Page 350 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 351

Display an error and stop the form from submitting if the email is invalid.

exampleCheckEmailString.html (continued)

 if(!checkValidCharacters(n)) {
 error = 'The email name contains invalid characters';
 alert(error);
 return false;
 }

The name may only contain numbers, letters, dashes, underscores, and periods. The util-
ity function checkValidCharacters() takes care of validating this and returns true or false
accordingly. If there are invalid characters in the user name, you advise the user of this and
cancel the form submission.

exampleCheckEmailString.html (continued)

 n = chunks[1];
 if(n.substring(0, 1) == '.' || n.substring(0, 1) == '-' ||
 n.substr(n.length-1, 1) == '-' ||
 n.substr(n.length-1, 1) == '.') {
 error = 'The domain name may not start or end with a hyphen ➥

 or period';
 alert(error);
 return false;
 }

Then take the second “chunk,” which is the domain part of the e-mail, and make sure that
neither the start nor the end of the string is a hyphen or a period. Otherwise, alert the user and
cancel the form submission.

exampleCheckEmailString.html (continued)

 if(!checkValidCharacters(n)) {
 error = 'The domain name contains invalid characters';
 alert(error);
 return false;
 }
 return true;
}

Test the domain for invalid characters and return true—thus sending the form data to the
server—if everything is OK.

6803.book Page 351 Friday, June 16, 2006 8:19 PM

352 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

exampleCheckEmailString.html (continued)

function checkValidCharacters(n) {
 for(var i = 0; i < n.length; i++) {
 currentCode = n.charCodeAt(i);
 if(currentCode == 45 || currentCode == 46 ||
 currentCode == 95 ||
 (currentCode > 96 && currentCode < 123) ||
 (currentCode > 47 && currentCode < 58)) {
 continue;
 } else {
 return false;
 }
 }
 return true;
}

In the utility function checkValidCharacters(), you loop through the entire length of the string
(sent as the parameter n) and make sure that the charCode of each of the characters in the string
does not fall outside the range of permitted characters. The function returns false if the character
is neither a hyphen (45) nor a period (46) nor an underscore (96) nor any character from a to z (97
to 122) nor any character from 0 to 9 (48 to 57). Otherwise, it returns true.

The number checking example seems a bit convoluted, and indeed it is. For numeric vali-
dation and comparison, you are normally a lot better off using numeric validation methods.

Numeric Validation Methods

• Number(): Tries to convert the value of the variable inside the parentheses into a number.

• isNaN(n): Tests whether n is a number (float or integer) and returns true if it isn’t.

• parseFloat(n): Tries to convert n to a floating point number. It parses the string char-
acter by character from left to right, until it encounters a character that cannot be used
in a number. It then stops at that point and evaluates this string as a number. If the first
character cannot be used in a number, the result is NaN - Not A Number.

• parseInt(n): Converts n to an integer by removing any fractional part without round-
ing the number up or down. Any nonnumeric characters passed to the function will be
discarded. If the first character is not +, –, or a digit, the result is NaN.

Whenever the validation in question is a mathematical one, like testing for a real number,
the mathematical methods are much easier to use. The isNumber() function mentioned earlier
is a lot simpler if you rewrite it to use isNaN(), which is a method that returns true when its
parameter is not a number:

6803.book Page 352 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 353

exampleCheckNumberMath.html (excerpt)

function isNumber() {
 var total = document.getElementById('total');
 if(!total){ return false; }
 total = total.value;
 if(total.length == 0) {
 alert('Field is empty');
 return false;
 }
 if(isNaN(total)) {
 alert('Please enter a number');
 return false;
 }
 return true;
}

A more complex example is to check whether a date is the right format. The big problem
with dates is that they don’t follow a straight algorithm; things would be a lot easier if there
were 10 days to a month, 10 months in a year, and so on. As it stands, you need to check for a
lot of details:

• Is the month between 1 and 12?

• Does the day exist in the month—for example, 31.04.2000? (It doesn’t.)

• Is the year a leap year, which makes the 29th of February possible?

Let’s go through an example step by step:

exampleCheckDateMath.html (excerpt)

function isValidDate() {
 var leap;
 var datestring = document.getElementById('date');
 if(!datestring){ return false; }
 datestring = datestring.value;
 if(datestring.length == 0) {
 alert('Field is empty');
 return false;
 }

You start with predefining a variable for leap years, reading the value of the date field, and
check whether there is any content in the field.

6803.book Page 353 Friday, June 16, 2006 8:19 PM

354 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

exampleCheckDateMath.html (continued)

 if(datestring.length != 10 && datestring.indexOf('/')== -1 ||
 datestring.indexOf('/') != 2 ||
 datestring.lastIndexOf('/') != 5){
 alert('The date is not in the format dd/mm/yyyy');
 return false;
 }

You continue to check whether the date is in the right format by checking the string length
and ensuring that the slashes are at the right positions.

exampleCheckDateMath.html (continued)

 var chunks = datestring.split('/');
 var day = chunks[0];
 var month = chunks[1];
 var year = chunks[2];

You then split the date into day, month, and year to validate them separately.

exampleCheckDateMath.html (continued)

 if((month < 1) || (month > 12)) {
 alert('The month must be in between 01 and 12');
 return false;
 }

The month is pretty easy; all you need to test is whether it is larger than 1 and smaller
than 12.

exampleCheckDateMath.html (continued)

 if(day < 1) {
 alert('The day cannot be negative');
 return false;
 }

The first day check is to weed out negative days, which could have slipped through the ear-
lier formatting test.

6803.book Page 354 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 355

exampleCheckDateMath.html (continued)

 if((year % 4 == 0) || (year % 100 == 0) || (year % 400 == 0)) {
 leap = 1;
 }
 if((month == 2) && (leap == 1) && (day > 29)) {
 alert('This month does not have that many days');
 return false;
 }
 if((month == 2) && (leap != 1) && (day > 28)) {
 alert('This month does not have that many days');
 return false;
 }

For February, you need to check whether the date is a leap year or not. Leap years are those
that can be divided by 4, 100, or 400 without resulting in a floating point number. Therefore,
you check the modulo (%) of these calculations and compare it with 0. If the year is a leap year,
February can have 29 days; otherwise it can only have 28.

exampleCheckDateMath.html (continued)

 if((day > 31) && ((month == "01") || (month == "03") ||
 (month == "05") || (month == "07") || (month == "08") ||
 (month == "10") || (month == "12"))) {
 alert('This month does not have that many days');
 return false;
 }
 if((day > 30) && ((month == "04") || (month == "06") ||
 (month == "09") || (month == "11"))) {
 alert('This month does not have that many days');
 return false;
 }
 return true;
}

For the rest of the months, you need to determine whether the day entered is over 30 or 31
and whether the month has that many days. As JavaScript has no knuckles to count on, you
need to hard-wire these comparisons. If all goes well, you return true to send the form off to the
server.

It seems cumbersome to have to hard-wire all these comparisons, and indeed it is. If you
remember, JavaScript has a Date object that has all this logic already in it. Therefore, you can
harness this to make the validation of a form a lot shorter:

6803.book Page 355 Friday, June 16, 2006 8:19 PM

356 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

exampleCheckDateObj.html (excerpt)

function isValidDate() {
 var datestring = document.getElementById('date');
 if(!datestring){ return false; }
 datestring = datestring.value;
 if(datestring.length == 0) {
 alert('Field is empty');
 return false;
 }
 if(datestring.length != 10 && datestring.indexOf('/') == -1 ||
 datestring.indexOf('/') != 2 || datestring.lastIndexOf('/') != 5) {
 alert('The date is not in the format dd/mm/yyyy');
 return false;
 }

You start the same way, testing whether the field exists, whether data has been entered,
and whether the entry is in the right format.

exampleCheckDateObj.html (continued)

 var chunks = datestring.split('/');
 var testDate = new Date(chunks[2], chunks[1]-1, chunks[0]);
 if(testDate.getDate() == chunks[0]) {
 if (testDate.getMonth()+1 == chunks[1]) {
 if(testDate.getFullYear() == chunks[2]) {
 return true;
 } else {
 alert("This is not a valid year.");
 }
 } else {
 alert("This is not a valid month.");
 }
 } else {
 alert("This is not a valid date.");
 }
 return true;
}

You split the date into its components and create a new Date with these settings (notice
that you need to subtract 1 from the month). Then compare the values that the getter methods
of the Date object return with the day, the month, and the year, and alert the user of an error if
these don’t match—the Date methods do all the testing for you! You need to add 1 to the month
to match the human/computer readable offset, though.

6803.book Page 356 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 357

■Tip Get yourself well acquainted with the JavaScript Math and Date objects. A lot of times you don’t have
to come up with clever code yourself, but you can piggyback on functionality they already provide you with.

Regular Expressions
Regular expressions help you match a string against a character pattern and are great for vali-
dation of user entry or changing document content. They are not confined to JavaScript, and
are present in other languages like Perl, PHP, and UNIX server scripts. They are amazingly
powerful, and if you talk to Perl or PHP enthusiasts and server administrators, you’ll be amazed
how often they can replace a 50-line switch/case or if/else construct you wrote in JavaScript
with a single regular expression. Many editing environments also feature “find” and “search
and replace” functionality, allowing the use of regular expressions.

Regular expressions are the cat’s pajamas once you get your head around them; however,
at first sight a construct like /^[\w]+(\.[\w]+)*@([\w]+\.)+[a-z]{2,7}$/i (which checks
whether a string is a valid e-mail syntax) can strike fear into the faint of heart. The good news is
that it is not as tough as it looks.

Syntax and Attributes
Imagine you want to search for the string “cat” in text. As a regular expression, you can define
this in two different formats:

// String notation; notice that you must not use quotation marks!
var searchTerm = /cat/;
// Object constructor
var searchTerm = new RegExp('cat');

If you use this expression on a string via the match(), search(), exec(), or test() method,
it’ll return anything that has “cat” in it—regardless of the location in the string—like catalog,
concatenation, or scat.

If you want to only match the word “cat” as a string without anything else around it, you
need to use a ^ to indicate the start and $ for the end:

var searchTerm = /^cat$/;
var searchTerm = new RegExp('^cat$');

You can also omit either the start indicator, ̂ , or the end indicator, $.This would match cat,
catalog, or catastrophe:

var searchTerm = /^cat/;
var searchTerm = new RegExp('^cat');

6803.book Page 357 Friday, June 16, 2006 8:19 PM

358 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

This would find polecat or wildcat:

var searchTerm = /cat$/;
var searchTerm = new RegExp('cat$');

 If you want to find “cat” regardless of case—for example, to match “cat”, “Catherine”, or
“CAT”—you need to use the i attribute following the second slash. This causes the case to be
ignored:

var searchTerm=/cat/i;
var searchTerm=new RegExp('cat','i');

If you have a string that could have the word “cat” in it several times, and you want to get
all matches as an array, you need to add the parameter g for “global”:

var searchTerm = /cat/g;
var searchTerm = new RegExp('cat','g');

By default, regular expressions match patterns only in single-line strings. If you want to
match a pattern in a multiline string, use the parameter m for “multiline.” You can also mix
them, and the order is not important:

var searchTerm = /cat/gim;
var searchTerm = new RegExp('cat', 'mig');

Wildcard Searches, Constraining Scope, and Alternatives
The period character (.) plays the role of the joker card in regular expressions; it stands for “any
character.” (This can be confusing, as in advanced web searches or on the DOS and UNIX com-
mand line it is the asterisk, *.)

var searchTerm = /c.t/gim;
var searchTerm = new RegExp('c.t', 'mig');

This matches “cat”, “cot”, “CRT”, and even nonsense strings like “c#t” and “c!T”, or those
including spaces like “c T” or “c\tt”. (Remember that \t is the tab character.)

This might be too much flexibility for your needs, which is why you can use square brack-
ets to limit the scope of the choices only to those you want to offer:

var searchTerm = /c[aou]t/gim;
var searchTerm = new RegExp('c[aou]t', 'mig');

You can match “cat”, “cot”, or “cut” in all upper- and lowercase versions with this regular
expression. You can also provide ranges within the brackets like a-z to match all lowercase let-
ters, A-Z to match all uppercase letters, and 0-9 to match digits.

■Caution Notice that regular expressions match the characters of the numbers, not their value. A regular
expression with [0-9] would return 0200 as a valid four-digit number.

6803.book Page 358 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 359

If you want, for example, to find any word all in lowercase, followed immediately by a word
in uppercase, you’ll use

var searchTerm = /[a-z][A-Z]/g;
var searchTerm = new RegExp('[a-z][A-Z]', 'g');

You can use the ̂ character inside the brackets to exclude an option from the search. If you
wanted to avoid “cut”, for example, you can use

var searchTerm = /c[^u]t/g;
var searchTerm = new RegExp('c[^u]t', 'g');

Brackets only match one character at a time, which is why you couldn’t match something
like “cost”, “coast”, or “cast” with this expression. If you want to match several options, you can
use the pipe character (|) inside parentheses, which functions like a logical OR:

var searchTerm = /c(^u|a|o|os|oas|as)t/g;
var searchTerm = new RegExp('c(^u|a|o|os|oas|as)t', 'g');

This now matches “cat”, “cot”, “cost”, “coast”, and “cast”, but not “cut” (because of
the ^u).

Restricting the Number of Characters with Quantifiers
In many cases, you want to allow for a range of characters, like a to z, but you want to restrict
their number. For this you can use quantifiers in regular expressions, as listed in Table 9-1.

Table 9-1. Quantifier Notations in Regular Expressions

■Note Adding the ? after each of these means that the regular expression should match them but as few
times as possible.

For example, if you wanted to match the syntax of a serial number that consists of two
groups of four characters, each separated with dashes, you’d use

var searchTerm = /[a-z|0-9]{4}\-[a-z|0-9]{4}/gim;
var searchTerm = new RegExp('[a-z|0-9]{4}\-[a-z|0-9]{4}', 'mig');

Notation Number of Times Possible

* 0 or 1 time(s)

+ 1 or more time(s)

? 0 or 1 time(s)

{n} n times

{n,m} n to m times

6803.book Page 359 Friday, June 16, 2006 8:19 PM

360 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

■Note Notice that you need to escape characters that are to be used literally, and not with any special
meaning they might have in a regular expression pattern, like the dash in this case. You can do this by pre-
ceding the character with a backslash, \. Characters that need to be escaped are -, +, /, (,), [,], *, {, },
and ?. For example, /c.t/ matches “cat” or “cot” or “c4t”, whereas /c\.t/ only matches “c.t”.

Word Boundaries, Whitespace, and Other Shortcuts
All of these different options can result in pretty convoluted regular expressions, which is why
there are some shortcut notations available. You may remember the special character notation
for whitespace in Chapter 2, like \n for a line break and \t for a tab character. The same are
available for regular expressions, as Table 9-2 shows.

Table 9-2. Shortcut Notations for Regular Expressions

For example, if you want to test for a US Social Security number, which is a nine-digit
number with dashes following the third and the fifth digits (e.g., 456-33-1234), you can use the
following regular expression, with optional dashes (using the ? quantifier), as the user might
not enter them:

var searchTerm = /[0-9]{3}\-?[0-9]{2}\-?[0-9]{4}/;
var searchTerm = new RegExp('[0-9]{3}\-?[0-9]{2}\-?[0-9]{4}', '');

Alternatively, you can use the shortcut notation for digits:

var searchTerm = /\d{3}\-?\d{2}\-?\d{4}/;
var searchTerm = new RegExp('\\d{3}\-?\\d{2}\-?\\d{4}', '');

Be aware that if you use the shortcut notations inside quotation marks or in the construc-
tor notation, you’ll need to precede them with double backslashes, not single ones, as you need

Notation Equivalent Notation Meaning

\d [0-9] Only integers

\D [^0-9] All characters but integers

\w [a-zA-Z0-9_] All alphanumeric characters and the underscore

\W [^a-zA-Z0-9_] All nonalphanumeric characters

\b N/A Word boundary

\B N/A Not word boundary

\s [\t\n\r\f\v] All whitespace

\S [^\t\n\r\f\v] No whitespace

6803.book Page 360 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 361

to escape them! With this knowledge, you should be well equipped to write your own regular
expressions. As proof, let’s go back to the example in the beginning paragraph of this section:

var validEmail = /^[\w]+(\.[\w]+)*@([\w]+\.)+[a-z]{2,7}$/i

E-mails can be pretty straightforward, like me@example.com, or more complex, like
chris.heilmann.webdev@example.museum. This regular expression should return both as
valid e-mails.

It tests whether the string starts with a group of one or more word characters, ^[\w]+, fol-
lowed by a group of 0 or more word characters preceded by a period, (\.[\w]+)*, before the @
sign. After the @ sign, the string might have one or more groups of one or more word characters
followed by a period, ([\w]+\.)+, and it’ll end in a string that has in between two and seven
characters. This last string is the domain, which could be something short like de or longer like
name or museum. Notice that by allowing several words followed by a period, you also make sure
that e-mails like user@open.ac.uk are recognized.

Methods Using Regular Expressions
There are several methods that take regular expressions as parameters. The expression itself—
the things inside the slashes or the RegExp constructor—is called a pattern, as it matches what
you want to retrieve or test for.

• pattern.test(string): Tests whether the string matches the pattern and returns true
or false.

• pattern.exec(string): Matches the string and the pattern one time and returns an array
of matches or null.

• string.match(pattern): Matches the string and the pattern and returns the resulting
matches as an array of strings or null.

• string.search(pattern): Matches the string and the pattern and returns the positions
of the positive matches. If the string does not match any of the pattern, the search
returns -1.

• string.replace(pattern, replaceString): Matches the string against the pattern and
replaces every positive match with replaceString.

• string.split(pattern, limit): Matches the string against the pattern and splits it
into an array with the substrings surrounding the pattern matches as array items. The
optional limit parameter cuts down the number of array elements.

The Power of Parenthesis Grouping
You might remember that to group an expression, you use parenthesis, (). This not only
groups the pattern, but also stores the results in special variables you can use later on. This is
especially handy when you use it in conjunction with the replace() method. The results are
stored in variables named $1 through $9, which means you can use up to nine parenthetical
groupings in each regular expression. If you want to exclude a group from this, you precede it
with ?:.

6803.book Page 361 Friday, June 16, 2006 8:19 PM

362 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

For example, if you have a list of names in the format Surname, Name and you want to
convert each entry in the list into Name Surname format, you can do the following:

exampleNameOrder.html

names=[
 'Reznor, Trent',
 'Eldritch, Andrew',
 'Clark, Anne',
 'Almond,Marc'
];
for(i = 0; i < names.length; i++) {
 alert(names[i].replace(/(\w+)+,\s?(\w+)/g, '$2 $1'));
}

The pattern matches any word preceding the comma (followed by an optional white-
space character) and the following word, and stores both in variables. The replacement string
reverses the order by using the $ variables.

A more complex example is to print the URL of every external link of a content area behind
the link:

exampleShowURL.html

showURLs = function(){
 var ct = document.getElementById('content');
 var searchTerm = '(<a href="((?:http|https|ftp):\/\/';
 searchTerm += '(?:[\\w]+\.)+[a-z]{2,7})">';
 searchTerm += '(?:\\w|\\s|\\.)+<\/a>)';
 var pattern = new RegExp(searchTerm, 'mgi');
 ct.innerHTML = ct.innerHTML.replace(pattern, '$1 ($2)');
}

You start the pattern with a set of parentheses to store the whole construct in the variable
$1 and match the start of a link <a href=". You follow up with a set of parentheses surrounding
what is inside the href attribute, which is a URL starting with either http, https, or ftp, not stor-
ing this group in a variable (as this set of parentheses is preceded by ?:), followed by a colon
and two slashes (that need to be escaped), followed by a URL ending in a domain (this is the
same pattern used in the e-mail checking example).

You close the parentheses, storing everything inside the link’s href attribute in $2, and
match everything inside the link element (which could be one or more words, whitespace,
or a period) but don’t store it in a variable. Then close the main group after the closing
and use replace to replace every link with the pattern matches, which in effect will turn
example into
example (http://www.example.com).

6803.book Page 362 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 363

Regular Expression Resources
As with any programming language, there are dozens of ways to reach the same goal, and I
don’t want to just give examples to copy and paste when getting your head around regular
expressions will get you so much further.

There are many online resources that list patterns according to their task:

• The Regular Expression Library (http://regexlib.com/) has a searchable database of
patterns.

• At Regular-Expressions.info, (http://www.regular-expressions.info/), you’ll find a
very extensive tutorial on regular expressions.

• RegEx Advice (http://regexadvice.com/) has a good forum and blogs on regular
expressions.

In terms of books, there’s Regular Expressions Pocket Reference by Tony Stubblebine
(O’Reilly, 2003) and the very extensive Mastering Regular Expressions by Jeffrey Friedl
(O’Reilly, 2002).

For the more UNIX-inclined user, there is Regular Expression Recipes: A Problem-Solution
Approach by Nathan A. Good (Apress, 2004).

Summary of Validation Methods
In real-life scripting situations, you are never likely to stick to one of the preceding methods,
but use a mixture of them all to reach your goal as quickly as possible. There are no fixed rules
for what to use when, but some hints and benefits might be good to remember:

• Regular expressions only match characters; you cannot do calculations with them (at
least not in JavaScript; PHP offers the e switch, which evaluates matches as PHP code).

• Regular expressions have the benefit of being language independent—you can use the
same rules on the server and the client side (you’ll see an example of that later in the
“Sharing Validation Rules” section). Both the string and the mathematical methods are
fixed to JavaScript and may not be the same in other languages.

• It is very easy to match large ranges of options in regular expressions, with strings that
can get messy very quickly, unless the ranges are following a simple rule, like A to Z or
0 to 9.

• If you have to validate numbers, most of the time it is not worth the effort using string or
regular expression validation; just stick to testing the values mathematically. Strings are
too forgiving, as you cannot compare values and do calculations with them. The only
options you have are determining the string length and testing for special characters.

• There is no shame in using out-of-the-box patterns and methods developed by others.
Many of these have been tested by dozens of developers in different development
environments.

6803.book Page 363 Friday, June 16, 2006 8:19 PM

364 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

Form Validation Techniques
We’ll now talk about some of the techniques you can use with forms, spotting which fields
need validation and how to tell the user that something is amiss. The list of examples is by far
not complete—newer technologies, better browsers, and behavior patterns of users change
constantly, and what might be a utopian idea right now may be normal in a year’s time, or even
already normal with some users. The best option you have in choosing which measures are
correct is to watch your users and get their feedback. Don’t make too many assumptions—
there are more than enough hardly usable forms out there.

Designating Mandatory Fields
There are several methods you can use to designate form elements as mandatory and requiring
validation. We’ll now discuss the most common ones and the issues associated with each of
them before we continue with different examples of how to give validation feedback.

■Note Chris Campbell at Particletree published a similar list some time ago called
“A Guide to Unobtrusive JavaScript Validation” (http://particletree.com/features/
a-guide-to-unobtrusive-javascript-validation/). The article and the comments are a
very good read if you want to know more.

The Hidden Field Method
The traditional approach to identifying required fields uses a hidden field called mandatory or
something similar, which lists all mandatory fields by name. This allows you to use the same
information for both server-side and client-side processing. One very common form mailing
script, Matt Wright’s formmail.pl (http://www.scriptarchive.com/formmail.html), uses this
method.

Validating such a form with client-side JavaScript requires simply getting the value of this
hidden field, splitting it up using the comma or other delimiter character into an array, and
testing whether each and every one of the fields exist before sending its ID to the validation
method:

exampleHiddenFieldForm.html (excerpt)

<p class="submit">
 <input type="submit" name="send" value="Send Form" />
 <input type="hidden" name="mandatory" id="mandatory"
 value="email,Message,subject,Name" />
</p>

6803.book Page 364 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 365

hiddenFieldForm.js (excerpt)

init:function() {
 [... code snipped ...]
 var mandatory = document.getElementById('mandatory');
 if(!mandatory){ return; }
 hfv.mandatory = mandatory.value.split(',');
 [... code snipped ...]
},
send:function(e) {
 [... code snipped ...]
 for(var i = 0; i < hfv.mandatory.length; i++) {
 if(!document.getElementById(hfv.mandatory[i])) { continue; }
 hfv.checkValue(hfv.mandatory[i]);
 }
 [... code snipped ...]
},

The send() method loops over all the items of the array that was generated by splitting the
value of the field with the name mandatory at the comma and checks whether an element with
the ID of the current item value exists before sending it to a tool method called checkValue().

The Indicator Element Method
Basic usability dictates that mandatory fields should be clear to the user, which is why the
HTML needs to have an indicator to mark mandatory fields, traditionally in the form of an
asterisk after the label text.

This is something you could use as a means of spotting which fields are mandatory. You
loop through all the SPAN elements in the form and test whether their class is mandatory. If this
is the case, you grab the ID of the element to validate from the for attribute of its LABEL (notice
that the name of the property is not for but htmlFor!):

exampleAsteriskForm.html (excerpts)

<p>
 <label for="Name">Your Name
 *</label>
</p>
<p>
 <label for="Message">Your Message
 *</label>
</p>

6803.book Page 365 Friday, June 16, 2006 8:19 PM

366 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

asteriskForm.js (excerpt)

init:function() {
 hfv.mandatory = [];
 [... code snipped ...]
 hfv.f = document.getElementsByTagName('form')[0];
 var msgs = hfv.f.getElementsByTagName('span');
 for(var i = 0; i < msgs.length; i++) {
 if(DOMhelp.cssjs('check', msgs[i], 'mandatory')) {
 hfv.mandatory.push(msgs[i].parentNode.htmlFor);
 }
 }
 [... code snipped ...]
},

The CSS Classes Method
Another approach is to give the fields that are mandatory appropriate CSS classes and test
for these.

exampleClassesForm.html (excerpts)

<p>
 <input type="text" id="Name" name="Name" class="mandatory" />
</p>
<p>
 <input type="text" id="email" name="email" class="mandatory" />
</p>

In the script, you’ll have to loop through all form fields and check whether they have the
right class. You could also use the DOM-2 methods, but then you need several loops, checking
for INPUT, SELECT, and TEXTAREA elements.

classesForm.js (excerpt)

hfv.f = document.getElementsByTagName('form')[0];
 var msgs = hfv.f.elements;
 for(var i = 0; i < msgs.length; i++) {
 if(DOMhelp.cssjs('check', msgs[i], 'mandatory')) {
 hfv.mandatory.push(msgs[i].id);
 }
}

The Custom Attribute Method
The very experimental custom attribute method was explained by Peter-Paul Koch
(http://www.quirksmode.org) in his “JavaScript Triggers” article on A List Apart (http://

6803.book Page 366 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 367

www.alistapart.com/articles/scripttriggers/) in February 2005. We won’t go into an exam-
ple here, but what it means is that you come up with nonstandard attributes for elements like

<input type="text" name="name" id="name" required="true" />

You can then use getAttribute() in your script to check for these attributes and act
accordingly. You can even extend this idea to allow for maintenance of the validation rules
in HTML:

<input type="text" name="name" id="name" required="true"
error="Please enter a Name at least 5 characters long"
 pattern="/.{5}/" />

The main issue of this method is that you reinvent HTML, and you will have to come up
with a custom DTD for it. David Eisenberg explains how to do that in “Validating a Custom
DTD” (http://www.alistapart.com/articles/customdtd/).

Failures of These Methods
All of these methods have the same problem: you keep validation rules in HTML and JavaScript
and in the back-end script separately, which means double maintenance. Furthermore, all but
the “hidden field” method make the HTML cater to JavaScript exclusively, as the back-end
script cannot determine which fields are mandatory by means of a class or a SPAN.

Sharing Validation Rules
A much cleaner approach is to keep all the validation rules and feedback messages in one spot.
You could use XML to store the information and use XHR to retrieve it, but this is rather error-
prone. An easier solution is to use JSON:

validationRules : {
 'Name' : {
 'error' : 'Please enter a name',
 'pattern' : /.{10}/i
 },
 'subject' : {
 'error' : 'Please choose a subject',
 'pattern' : /.{5}/i
 },
 'Message' : {
 'error' : 'Please enter a message at least 20 characters long',
 'pattern' : /.{20}/i
 },
 'email' : {
 'error' : 'Please enter a valid email',
 'pattern' : /^[\w-]+(\.[\w-]+)*@([\w-]+\.)+[a-zA-Z]{2,7}$/i
 }
}

6803.book Page 367 Friday, June 16, 2006 8:19 PM

368 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

You can retrieve all the mandatory elements by looping through the JSON object:

for(i in validationRules) {
 // i will be Name, subject, Message, email
 if(!document.getElementById(i)) { continue; }
 toplist.checkValue(i);
}

Retrieving the patterns and error messages is as easy; an alert(validationRules
['email']['error']) would result in an alert stating “Please enter a valid email”.

You can also generate the JSON string on the back end. For example, in PHP:

validationRules.php

<?php
$validationRules = array (
 'Name' => array (
 'error' => 'Please enter a name',
 'pattern' => '/.{10}/i'
),
 'subject' => array (
 'error' => 'Please choose a subject',
 'pattern' => '/.{10}/i'
),
 'Message' => array (
 'error' => 'Please enter a message at least 20 characters long',
 'pattern' => '/.{20}/i'
),
 'email' => array (
 'error' => 'Please enter a valid email',
 'pattern' => '/^[\w-]+(\.[\w-]+)*@([\w-]+\.)+[a-zA-Z]{2,7}$/i'
)
);
if(isset($_GET['json'])) {
 header('Content-type:text/javascript');
 echo 'validationRules = {';
 foreach(array_keys($validationRules) as $a) {
 echo '\''.$a.'\' : {'."\n";
 foreach(array_keys ($validationRules[$a]) as $b) {
 if($b == 'pattern') {
 echo '\'' . $b . '\' : ' . $validationRules[$a][$b].➥

 ',' . "\n";

6803.book Page 368 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 369

 } else {
 echo '\'' . $b . '\' : \'' . $validationRules[$a][$b].➥

 '\',' . "\n";
 }
 }
 echo '},' . "\n";
 }
 echo '};';
}
?>

Don’t worry if the syntax is confusing; what is important to know is that if a different PHP script
includes this one, it’ll get the validation rules as a PHP array; but if you include the PHP script with
a json parameter as a JavaScript, you’ll have the validationRules object at your disposal. This is
what the part in bold does by sending a text/javascript header to the browser and writing out the
array data in the right format. Without the text/javascript header, the browser would not recog-
nize the string returned from the PHP as JavaScript, so you can see it is a very important aspect of
writing out JavaScript using server-side languages.

Using this functionality is as easy as including the PHP script as a JavaScript in the head of
the document:

<script type="text/javascript" src="validationRules.php?json=1"></script>

We’ll use this in a second in the first example on how to give users validation feedback

Giving Users Validation Feedback
We’ve already covered some methods of giving feedback in Chapter 4 and in Chapter 7, and we
will now go through one form validation example in detail and list the necessary changes to the
script in the other options.

We will not repeat the most obvious and probably oldest method—JavaScript alerts—as
they’ve been covered, and you should know by now how to use them. Instead, let’s take a look
at some prettier examples.

Showing a List of Erroneous Fields
In this method, you show the user a list of fields that contain errors. This is a traditional feed-
back of back-end scripts, which show the list above the form after the page has loaded. As you
don’t reload the page when you validate with JavaScript, it might be a better idea to show the
list where the user is—at the bottom of the form above the Submit button. Figure 9-1 shows
how that might look. You can see the example for yourself by opening exampleTopList.html on
your localhost—which must be a server running PHP, like XAMPP or Apache, as explained ear-
lier in Chapter 8.

6803.book Page 369 Friday, June 16, 2006 8:19 PM

370 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

Figure 9-1. Showing a list of erroneous fields above the Submit button

You start by embedding the rule set in the head of the HTML:

exampleTopList.html (excerpt)

<script type="text/javascript" src="validationRules.php?json=1"></script>

You should plan your script starting with the skeleton of properties and methods:

topList.js (skeleton)

toplist = {
 error:[],
 errorMessage : null,
 errorClass : 'error',
 errorTitle : 'Please fix the following problems:',
 sendButtonID : 'send',
 init:function(){},
 send:function(e){},
 flushErrors:function(){},
 checkValue:function(o){ }
}

You’ll need an error array that will store all the errors that occurred in the form. You pre-
define an errorMessage as null, which will become the message above the Submit button. The
errorTitle and the errorClass will be shown above the list of errors and the class applied to
define the look and feel. The sendButtonID is necessary to find the Submit button.

The methods are pretty standard for a form submission script: an init() method to apply
the event handler when the form is submitted, an event listener send() method, a method to

6803.book Page 370 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 371

remove older error messages (as the user will not reload the page but may enter data several
times because the script stops the page from reloading when there is an error), and a tool
method to check the value of each mandatory form field.

I’ll now go through the script step by step and explain what the different methods do.

toplist.js

toplist = {
 error:[],
 errorMessage : null,
 errorClass : 'error',
 errorTitle : 'Please fix the following problems:',
 sendButtonID : 'send',
 init:function() {
 toplist.sendButton = document.getElementById(toplist.➥

 sendButtonID);
 if(!toplist.sendButton) { return; }
 toplist.f = document.getElementsByTagName('form')[0];
 DOMhelp.addEvent(toplist.f, 'submit', toplist.send, false);
 },

There are no surprises in the init() method; you check whether the Submit button exists,
retrieve the first form in the document, and apply a submit handler pointing to send.

toplist.js (continued)

 send:function(e) {
 toplist.flushErrors();
 for(var i in validationRules) {
 if(!document.getElementById(i)) { continue; }
 toplist.checkValue(i);
 }

Call the flushErrors() method to remove any error messages that might already be visible
and loop through the validationRules JSON object. Determine whether each of the mandatory
elements exists and call the checkValue() method with the element’s ID as a parameter.

toplist.js (continued)
 if(toplist.error.length > 0) {
 toplist.errorMessage = document.createElement('div');
 toplist.errorMessage.className = toplist.errorClass;
 var errorTitle = document.createElement('h2');
 errorTitle.appendChild(document.➥

 createTextNode(toplist.errorTitle));
 toplist.errorMessage.appendChild(errorTitle);
 entry = document.createElement('ul');
 toplist.errorMessage.appendChild(entry);
 toplist.errorList = entry;

6803.book Page 371 Friday, June 16, 2006 8:19 PM

372 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

The utility method checkValue() adds new elements to the error array if there are prob-
lems with some of the fields, which is why you check whether its length is larger than 0 before
you start assembling the error message.

Next, create a DIV, store it in the errorMessage property, and apply the error class to it to
make it style-able. Create an H2 and add the text stored in the errorTitle property as the text
content of this heading. Add the heading to the errorMessage DIV, create a new UL element, and
add the UL to errorMessage. Then store the newly created UL in the errorList property.

toplist.js (continued)

 for(i = 0; i < toplist.error.length; i++) {
 entry = document.createElement('li');
 entry.appendChild(document.➥

 createTextNode(toplist.error[i]));
 toplist.errorList.appendChild(entry);
 }

Loop through the error array and create a new list item containing the text of each error
before appending it as a child node to the errorList UL.

toplist.js (continued)

 var sendPara = toplist.sendButton.parentNode;
 sendPara.parentNode.insertBefore(toplist.errorMessage, sendPara);
 DOMhelp.cancelClick(e);
 }
 },

Now, retrieve the parent element of the form’s Send button and insert the error message
as a new sibling element in front of it. Since there was an error, cancel the form submission by
calling cancelClick().

toplist.js (continued)

 flushErrors : function() {
 toplist.error = [];
 if(toplist.errorMessage) {
 toplist.errorMessage.parentNode.removeChild(➥

 toplist.errorMessage);
 toplist.errorMessage = null;
 }
 },

The flushErrors() method redefines the error array as an empty array and tests whether
there is already an existing errorMessage. If there is, it removes the document node and sets the
object to null.

6803.book Page 372 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 373

toplist.js (continued)

 checkValue : function(o) {
 var elm = document.getElementById(o);
 switch(elm.type) {
 case 'text' :
 if(!validationRules[o]['pattern'].test(elm.value)) {
 toplist.error.push(validationRules[o]['error']);
 }
 break;
 case 'textarea' :
 if(!validationRules[o]['pattern'].test(elm.value)) {
 toplist.error.push(validationRules[o]['error']);
 }
 break;

The checkValue() method does the real validation tasks, and starts by retrieving the ele-
ment with the ID that was sent as a parameter. There is no need to test whether the element
exists, as you’ve already done that in the send method. You retrieve the element type and start
a switch statement that tests for the different form elements accordingly.

In the cases of text and textarea as the type, you take the element’s value attribute and
test it against the pattern stored in the validationRules object. If the pattern does not match,
you add a new item to the error array with the error message associated with the element ID as
the value.

■Note The parameter o is the ID of the element, which means if you use validationRules['Name']
['pattern'], for example, you get /.{10}/i as the result, which is a regular expression pattern that tests
whether the name is at least ten characters long. If you use validationRules['Name']['error'], you get
'Please enter a name', which is the error message you put into the new item of the error array.

toplist.js (continued)

 case 'select-one' :
 var curelm = elm.options[elm.selectedIndex].value;
 if(elm.selectedIndex == 5) {
 curelm = document.getElementById('otherSubject').value;
 }
 if(!validationRules[o]['pattern'].test(curelm)) {
 toplist.error.push(validationRules[o]['error']);
 }
 break;
 }
 }
}
DOMhelp.addEvent(window, 'load', toplist.init, false);

6803.book Page 373 Friday, June 16, 2006 8:19 PM

374 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

In the case of the select box—which in this example is a single select box, therefore the
type is select-one—you need to retrieve the value of the selected option via the options array
and the selectedIndex property. As the form offers an “other” option, you need to check
whether it was chosen and take the value of the text field otherSubject instead.

Both the select value and the other subject gets tested with the pattern stored in the
validationRules object and added as an error if it doesn’t match. Add an event handler to
the window executing the init() method when the window has finished loading, and voilà,
you’ve created a form that is validated using JavaScript and shows a list of errors until the user
has entered the correct sort of data in all mandatory fields.

Replacing the Main Form with a Clickable Error Message
A different approach is to hide the form when the validation brings up errors and show a warn-
ing message with a link back to the form, as illustrated in Figure 9-2. You can see the example
for yourself by opening exampleHideForm.html on your localhost.

Figure 9-2. Hiding the form and offering a link back to it

The differences are not that many:

hideform.js used in exampleHideForm.html

 toplist = {
 error:[],
 errorMessage : null,
 errorClass : 'error',
 errorTitle : 'Please fix the following problems:',
 errorLink : 'Back to form',
 errorLinkClass : 'errorlink',
 init:function() {
 [... code snipped ...]
 },

You need two new properties: one to store the link text and another to define a CSS class to
style the link to close the message.

6803.book Page 374 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 375

hideform.js (continued)

 send:function(e) {
 toplist.flushErrors();
 for(var i in toplist.validationRules) {
 [... code snipped ...]
 }
 if(toplist.error.length > 0) {
 [... code snipped ...]
 for(i = 0; i < toplist.error.length; i++) {
 [... code snipped ...]
 }
 entry = document.createElement('li');
 var closeLink = DOMhelp.createLink('#', ➥

 toplist.errorLink);
 DOMhelp.addEvent(closeLink, 'click', ➥

 toplist.flushErrors, false);
 closeLink.onclick = DOMhelp.safariClickFix;
 entry.appendChild(closeLink);
 entry.className = toplist.errorLinkClass;
 toplist.errorList.appendChild(entry);
 toplist.f.style.display = 'none';
 toplist.f.parentNode.insertBefore(toplist.errorMessage, toplist.f);
 DOMhelp.cancelClick(e);
 }
 },

In the send() method, you need to add an additional list item and create a link with the
errorLink property as text. You apply a click handler pointing to the flushErrors() method,
add the CSS class, and add the new list item to the errorList. You hide the main form by setting
its style display property to none (alternatively, you could have added a dynamic CSS class to
hide the form).

hideform.js (continued)

 flushErrors : function() {
 toplist.error = [];
 if(toplist.errorMessage) {
 toplist.errorMessage.parentNode.➥

 removeChild(toplist.errorMessage);
 toplist.errorMessage = null;
 }
 toplist.f.style.display = 'block';
 },
 [... code snipped ...]
 DOMhelp.addEvent(window, 'load', toplist.init, false);

6803.book Page 375 Friday, June 16, 2006 8:19 PM

376 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

The flushErrors() message now needs to set the display property of the form back to
block, and indicate that all the changes are necessary and the rest of the script stays as it was.

Highlighting Erroneous Fields Individually
Especially with larger forms, it makes a lot more sense to display error messages directly next
to the fields that have an error. Figure 9-3 shows what that looks like, and you can see it yourself
by opening exampleErrorFields.html on your localhost.

Figure 9-3. Highlighting individual error fields

The script is slightly different; the send, flushErrors(), and checkValue() methods have to
change, and you need a new method called addErrorMessage() that adds the error message
where the error occurred.

errorFields.js

ef = {
 error:[],
 errorMessage : null,
 errorClass : 'error',
 errorTitle : 'Please fix the marked issues',
 init : function() {
 ef.sendButton = document.getElementById('send');
 if(!ef.sendButton){ return; }
 ef.f = document.getElementsByTagName('form')[0];
 DOMhelp.addEvent(ef.f, 'submit', ef.send, false);
 ef.f.onsubmit = function(){ return false; }
 },

6803.book Page 376 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 377

The properties and the init() method stay the same as in the toplist example.

errorFields.js (continued)

 send:function(e) {
 ef.flushErrors();
 for(var i in validationRules) {
 if(!document.getElementById(i)) { continue; }
 ef.checkValue(i);
 }
 if(ef.error.length > 0) {
 ef.errorMessage = document.createElement('div');
 ef.errorMessage.className = ef.errorClass;
 var errorTitle = document.createElement('h2');
 errorTitle.appendChild(document.➥

 createTextNode(ef.errorTitle));
 ef.errorMessage.appendChild(errorTitle);
 var sendPara = ef.sendButton.parentNode;
 sendPara.parentNode.insertBefore(ef.errorMessage, sendPara);
 DOMhelp.cancelClick(e);
 }
 },

The send method is a lot shorter, as you don’t need to create the error list; just the main
errorMessage element with the heading in it.

errorFields.js (continued)

 checkValue : function(o) {
 var elm = document.getElementById(o);
 switch(elm.type) {
 case 'text ' :
 if(!validationRules[o]['pattern'].test(elm.value)) {
 ef.error.push(validationRules[o]['error']);
 ef.addErrorMsg(elm, validationRules[o]['error']);
 }
 break;
 case 'textarea' :
 if(!validationRules[o]['pattern'].test(elm.value)) {
 ef.error.push(validationRules[o]['error']);
 ef.addErrorMsg(elm, validationRules[o]['error']);
 }
 break;
 case 'select-one' :
 var curelm = elm.options[elm.selectedIndex].value;
 if(elm.selectedIndex == 5) {
 curelm = document.getElementById('otherSubject').value;
 }

6803.book Page 377 Friday, June 16, 2006 8:19 PM

378 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

 if(!validationRules[o]['pattern'].test(curelm)) {
 ef.error.push(validationRules[o]['error']);
 ef.addErrorMsg(elm, validationRules[o]['error']);
 }
 break;
 }
 },

The changes in the checkValue() method are that in addition to adding the error to the
error array, you also call the new addErrorMsg() method with the element and the error text as
parameters.

errorFields.js (continued)

addErrorMsg : function(o, msg) {
 var errorMsg = document.createElement('span');
 errorMsg.className = ef.errorClass;
 errorMsg.appendChild(document.createTextNode(msg));
 o.parentNode.insertBefore(errorMsg, o);
 },

The addErrorMsg method creates a new SPAN element, adds the error class to make it style-
able, and adds the error text as a text node. It then inserts the new SPAN before the element with
the error.

errorFields.js (continued)

 flushErrors:function() {
 var elm;
 ef.error = [];
 if(ef.errorMessage) {
 ef.errorMessage.parentNode.removeChild(ef.errorMessage);
 ef.errorMessage = null;
 }
 for(var i in validationRules) {
 elm = document.getElementById(i);
 if(!elm) { continue; }
 if(elm.previousSibling &&
 elm.previousSibling.nodeName.toLowerCase() == 'span' &&
 elm.previousSibling.className == ef.errorClass) {
 elm.parentNode.removeChild(elm.previousSibling);
 }
 }
 }
}
DOMhelp.addEvent(window, 'load', ef.init, false);

6803.book Page 378 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 379

These changes mean that there is no single new element showing the errors but one at
each erroneous field. This means that the flushErrors() method needs to loop through all
mandatory fields and check whether there is a previous sibling node that is a SPAN and has the
right class applied to it. If all of this is true, it removes that node.

Instant Validation Feedback
All of the preceding examples validate when the form is submitted, which is—as mentioned in
earlier chapters—the most accessible way of validating forms. However, it does not hurt to
make forms a bit more interactive if you still validate on submission. If the user realizes her
errors and remedies them immediately, the submission validation will not trigger any errors
anyways. The demo exampleDynamicFields.html validates fields immediately after you change
them, and you can test it by opening it on your localhost.

The script needs a new method called sendField() and some minor changes in the init()
method:

dynamicFields.js

df = {
 error : [],
 errorMessage : null,
 errorClass : 'error',
 errorTitle : 'Please fix the marked issues',
 init : function() {
 var elm;
 df.sendButton = document.getElementById('send');
 if(!df.sendButton) { return; }
 df.f = document.getElementsByTagName('form')[0];
 DOMhelp.addEvent(df.f, 'submit', df.send,false);
 df.f.onsubmit = function() { return false; }
 for(var i in validationRules) {
 elm = document.getElementById(i);
 if(!elm){ continue; }
 DOMhelp.addEvent(elm, 'blur', df.sendField, false);
 }
 },

In addition to the submit handler on the form, you need to loop through all the mandatory
fields and add a blur handler to the field pointing to sendField() as the event listener. If you
only want feedback when the user changes the field rather than when he leaves it, you could
also use a change handler.

6803.book Page 379 Friday, June 16, 2006 8:19 PM

380 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

dynamicFields.js (continued)

 sendField : function(e) {
 var t = DOMhelp.getTarget(e);
 if(t.previousSibling &&
 t.previousSibling.nodeName.toLowerCase() == 'span' &&
 t.previousSibling.className == df.errorClass) {
 t.parentNode.removeChild(t.previousSibling);
 }
 df.checkValue(t.id);
 },

The sendField() method needs to retrieve the current element via getTarget(). It then
removes any error message that might already be visible the same way flushErrors() does it
and calls checkValue() with the ID of the element as a parameter. That is all there is to it.

dynamicFields.js (continued)

 send : function(e) {
 [... code snipped ...]
 },
 flushErrors : function() {
 [... code snipped ...]
 },
 checkValue : function(o) {
 [... code snipped ...]
 },
 addErrorMsg : function(o, msg) {
 [... code snipped ...]
 }
}
DOMhelp.addEvent(window, 'load', df.init, false);

The rest of the script remains unchanged.

6803.book Page 380 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 381

Other Dynamic Validation Methods
It is very tempting to make every field validate immediately when the user changes it, and you
can do a lot with Ajax and the proper back-end datasets or functionality. One great example is
to include suggestions of what data is valid while you enter a form.

Google Suggest (http://www.google.com/webhp?complete=1) was one of the first examples
of web forms to do that. It offers you searches other users have already done with the number of
possible results as shown in Figure 9-4.

Figure 9-4. Google Suggest showing possible results while you type

Offering suggestions this way is not hard to do, and you can use the knowledge from the pre-
vious chapters to create a suggestion form element. The demo exampleContactSuggest.html does
just that. It uses Ajax to read an XML file containing contact names and compares them with
what the user enters while she types. Figure 9-5 shows one possible outcome.

Figure 9-5. Offering data dynamically from an XML dataset

6803.book Page 381 Friday, June 16, 2006 8:19 PM

382 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

The XML data is very simple:

contacts.xml

<?xml version="1.0" encoding="utf-8"?>
<contacts>
 <name>Bill Gates</name>
 <name>Linus Torvalds</name>
 <name>Douglas Coupland</name>
 <name>Ridley Scott</name>
 <name>George Lucas</name>
 <name>Dan Akroyd</name>
 <name>Sigourney Weaver</name>
 <name>Tim Burton</name>
 <name>Katie Jane Garside</name>
 <name>Winona Ryder</name>
</contacts>

In a real-life example you might want to add a contact element around each name and add
other data, like e-mail, extension, and department.

The script uses the XHR you’ve seen in the last chapter mixed with some regular
expressions:

contactSuggest.js

cs = {
 init : function() {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 cs.f = document.getElementById('contact');
 if(!cs.f) { return; }
 cs.output = document.createElement('span');
 cs.f.parentNode.insertBefore(cs.output, cs.f.nextSibling)
 DOMhelp.addEvent(cs.f, 'keyup', cs.check, false);
 },

You test for DOM support and whether there is a field with the ID contact. If both are a
given, you create a new SPAN element and add it after the field with the ID contact. You add an
event handler on keyup that triggers the check() event listener method.

6803.book Page 382 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 383

contactSuggest.js (continued)

 check : function(e) {
 if(window.event) {
 var key = window.event.keyCode;
 } else if(e) {
 var key = e.keyCode;
 }
 if(key == 8) { return; }
 if(key == 40) {
 cs.f.value = cs.output.innerHTML.replace(/\s\(.*\)$/, '');
 cs.output.innerHTML = '';
 return;
 }
 cs.doxhr('contacts.xml');
 },

This method finds out which key was pressed, and returns when it is the Backspace (8). If
the user hit the down arrow key (40), it removes anything starting with a space and ending in a
parenthesis from the content of the SPAN and copies it into the form field. It then deletes the
content of the SPAN and returns. If the user pressed any other key, the check() method invokes
the doxhr() method with contacts.xml as the URI to load.

contactSuggest.js (continued)

 doxhr : function(url) {
 var request;
 try{
 request = new XMLHttpRequest();
 } catch (error){
 try{
 request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (error) {
 return true;
 }
 }
 request.open('get', url, true);
 request.onreadystatechange = function() {
 if(request.readyState == 4) {
 if (request.status && /200|304/.test(request.status)) {
 cs.retrieved(request);

6803.book Page 383 Friday, June 16, 2006 8:19 PM

384 C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S

 } else {
 cs.failed(request);
 }
 }
 }
 request.setRequestHeader('If-Modified-Since', ➥

 'Wed, 05 Apr 2006 00:00:00 GMT');
 request.send(null);
 return false;
 },

There is no change to the xhr() method; you create an XMLHttpRequest and load the URI sent as
a parameter.

contactSuggest.js (continued)

 retrieved : function(requester) {
 var v;
 var pattern = new RegExp('^'+cs.f.value, 'i');
 var data = requester.responseXML;
 var names = data.getElementsByTagName('name');
 for(var i = 0; i < names.length; i++) {
 v = names[i].firstChild.nodeValue;
 if(pattern.test(v)) {
 cs.output.innerHTML = v + ' (cursor down to copy)';
 break;
 }
 }
 },

The retrieved method creates a regular expression that tests whether something starts
with the value of the contact field. It reads the content of contacts.xml from responseXML,
retrieves all the names using getElementsByTagName(), and loops through them. If any of the
names matches the pattern, it writes the text content of the name followed by the message
“(cursor down to copy)” into the SPAN and stops the loop.

contactSuggest.js (continued)
 failed : function(requester) {
 alert('The XMLHttpRequest failed. Status: ' + requester.status);
 return true;
 }
}
DOMhelp.addEvent(window, 'load', cs.init, false);

6803.book Page 384 Friday, June 16, 2006 8:19 PM

C H A P T E R 9 ■ D A T A V A L I D A T I O N T E C H N I Q U E S 385

If there is an error, the user is informed via an alert. When the window has finished loading the
document, the method cs.init() is called.

For a small number of contacts, using XHR is probably not worth the effort, and you’d be
better off importing the data in JSON format and spare yourself the server round-trips every
time the user hits a key. However, this example could also use a database to retrieve the right
contact.

Summary
I hope that you feel quite confident to write your own form validation scripts and regular
expressions after this chapter. It is not that hard to do, but as said before, it is too easy to take
validation lightly or assume too many givens.

Form validation is as much a usability problem as it is a technical issue. You have to make
sure that your validation methods make sense in the technical environment you are dealing
with and that the solution fits the regulations of the product. Many online forms these days
have to adhere to accessibility guidelines or sometimes even bespoke regulations (for example,
when you work on local government sites). If your validation mechanism requires the user to
see the form or use a mouse, then you will not be able to fulfill these guidelines.

It is very tempting to use the most modern approach and make everything dynamic in web
sites these days. Be aware of restrictions and usage patterns of the audience you want to reach,
and ensure that everything works without JavaScript, and you’ll make both your clients and
yourself happy.

In the next chapter, we’ll take on a larger project and create a dynamic image gallery pow-
ered by the back end and spiced up with CSS, JavaScript, and Ajax.

6803.book Page 385 Friday, June 16, 2006 8:19 PM

6803.book Page 386 Friday, June 16, 2006 8:19 PM

387

■ ■ ■

C H A P T E R 1 0

Modern JavaScript Case Study:
A Dynamic Gallery

In this chapter, you will learn how to develop a JavaScript-enhanced thumbnail gallery backed
up by a PHP script. You’ll start with techniques of static galleries and how to enhance them and
move on to a gallery that uses PHP and Ajax to pull images dynamically from the server.

■Note You can download the demo code of this chapter or see the results online at http://
www.beginningjavascript.com. As the chapter contains image galleries, the download is on the
larger side, but it allows you to see all the code—including the server-side PHP—on your local server.

Basics of Thumbnail Galleries
Let’s start at the basics first and plan our thumbnail gallery. I pondered for a long time whether
I should include one in this book, as it has become almost cliché for JavaScript and CSS books
to have galleries as examples. However, I wrote this chapter to give an example of how you can
spice up a very common solution like a thumbnail gallery with modern scripting and CSS and
stay independent of the both of them. Many examples—especially CSS-only galleries—look
great and work in modern browsers; however, they don’t degrade well and don’t really deliver
what a thumbnail gallery is supposed to deliver.

6803.book Page 387 Wednesday, June 21, 2006 8:40 PM

388 C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y

What Is a Thumbnail Gallery and
What Should It Do?
The idea of a thumbnail gallery goes back to the times when browsers started to support images,
and connection speeds on the Web could be measured in the single kilobits. The job of such a
gallery was and still is to give an overview of what images are available by providing a smaller pre-
view of each image in the gallery. “Smaller” means smaller in dimensions but also—and most
importantly—smaller in file size. This means that a visitor who is only interested in one picture in
your gallery does not need to download all images, only the one he is interested in—saving both
him time and you server traffic. A lot of CSS-only or JavaScript/HTML thumbnail galleries fail to
do this and assume that every user wants to download the lot to see one image. You can offer
downloading of all the images, but it should be an option rather than a requirement. The worst
thumbnail galleries resize photos via HTML attributes or CSS to thumbnails, thus forcing visitors
to download the large images to see them as bad-quality thumbnails. Resizing images by altering
their dimensions in CSS, via JavaScript, or by (ab)using HTML attributes does not result in good-
quality thumbnails; it is simply laziness and a bad idea.

If you want to offer thumbnail galleries in their original sense, you need to generate
smaller thumbnail pictures of the large images you want to show. You can do that either as a
batch process before you upload the gallery or on the fly via scripting on the server.

■Tip There are a lot of thumbnail-generation and batch-generation tools available. Good—and most
importantly free—ones are Google’s Picasa (available at http://picasa.google.com/) and IrfanView
(available at http://www.irfanview.com/). Generating thumbnails on the server can be easily achieved
with PHP and the GD library. I’ve written an article how to do that, available at http://icant.co.uk/
articles/phpthumbnails/, and there is a great premade PHP class called phpThumb() available at
http://phpthumb.sourceforge.net/. As this is a book about JavaScript, I will not get into the details of
image generation via PHP, although it is amazingly handy for online galleries.

Static Thumbnail Galleries
Traditional thumbnail galleries offer the small thumbnail images inside a table or a list. Each of
the thumbnails links to a page with the large image that in return links back to the thumbnail
gallery or offers previous and next image links.

6803.book Page 388 Wednesday, June 21, 2006 8:40 PM

C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y 389

If there are a lot of images, the thumbnail pages may be paginated, showing a certain num-
ber of thumbnails at a time and offering navigation forward and backward through the whole
collection. With purely static galleries, this means you have to generate all the thumbnail
pages, and one for each photo, which is a lot of work initially and a lot of files to transfer to the
server on every update of the gallery.

Faking Dynamic Galleries with JavaScript
You can use JavaScript to turn a static thumbnail gallery into a seemingly dynamic gallery by
applying event handlers to all the thumbnails. When a thumbnail is clicked, you cover the
thumbnails with a new element containing the large image. Keep the gallery accessible to
non-JavaScript users by linking the thumbnail to the large picture and simply showing this in
the browser:

exampleFakeDynamic.html (excerpt)

<ul id="thumbs">

 [... more thumbnails ...]

■Tip You might as well use tables or definition lists for thumbnail galleries, as tables degrade better
because they remain multicolumn constructs even in non-CSS browsers and definition lists are semantically
correct, too. For the examples in this chapter, I used a simple list to keep things easy and allow the thumbnails
to take up as much space as is available on the screen.

6803.book Page 389 Wednesday, June 21, 2006 8:40 PM

390 C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y

You can test the effect by opening the demo exampleFakeDynamic.html. Let’s go through
the functionality step by step, starting with a skeleton for the script:

fakeDynamic.js (skeleton)

fakegal = {
 // IDs
 thumbsListID : 'thumbs',
 largeContainerID : 'photo',
 // CSS classes
 closeClass : 'close',
 nextClass : 'next',
 prevClass : 'prev',
 hideClass : 'hide',
 showClass : 'show',
 // Labels
 closeLabel : 'close',
 prevContent : '',
 nextContent : '',

 init : function(){ },
 createContainer : function(){},
 showPic : function(e){ },
 setPic : function(pic){ },
 navPic : function(e){ }
DOMhelp.addEvent(window, 'load', fakegal.init, false);

You need

• The ID of the element containing all the thumbnails

• An ID to assign to the large picture container

• CSS classes for the link to remove the large picture

• The links to navigate through the large pictures

• Classes to show and hide elements

• A label to tell the user that the link hides the large picture

• Labels for the next and previous picture links

6803.book Page 390 Wednesday, June 21, 2006 8:40 PM

C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y 391

In terms of methods, you need

• A method to initialize the functionality

• A utility method that initially creates the image container

• A method to show the picture

• A method to set the picture to be shown

• A method to navigate to the next or previous picture

The method setting the picture to be shown, setPic(), is necessary because both the
showing method, showPic(), and the navigation method, navPic(), change the image in the
container.

fakeDynamic.js

fakegal = {
 // IDs
 thumbsListID : 'thumbs',
 largeContainerID : 'photo',
 // CSS classes
 closeClass : 'close',
 nextClass : 'next',
 prevClass : 'prev',
 hideClass : 'hide',
 showClass : 'show',
 // Labels
 closeLabel : 'close',
 prevContent : '',
 nextContent : '',
 init:function() {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 fakegal.tlist = document.getElementById(fakegal.thumbsListID);
 if(!fakegal.tlist){ return; }
 var thumbsLinks = fakegal.tlist.getElementsByTagName('a');
 fakegal.all = thumbsLinks.length;
 for(var i = 0 ; i < thumbsLinks.length; i++) {
 DOMhelp.addEvent(thumbsLinks[i], 'click', ➥

 fakegal.showPic, false);
 thumbsLinks[i].onclick = DOMhelp.safariClickFix;
 thumbsLinks[i].i = i;
 }
 fakegal.createContainer();
 },

6803.book Page 391 Wednesday, June 21, 2006 8:40 PM

392 C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y

The init() method tests whether DOM is supported and retrieves the element that con-
tains the thumbnails. It then loops through all the links after storing the number of all links in
a property called all (this is necessary later on to avoid a next link on the last image). It applies
an event handler pointing to showPic() to each link in the thumbnail list and stores its index
number in a new property called i before calling createContainer() to add the necessary
image container element to the document.

fakeDynamic.js (continued)

 createContainer : function() {
 fakegal.c = document.createElement('div');
 fakegal.c.id = fakegal.largeContainerID;

You start the createContainer() method by creating a new DIV element, storing it in a
property called c, and assigning the large image container ID to it.

fakeDynamic.js (continued)

 var p = document.createElement('p');
 var cl = DOMhelp.createLink('#', fakegal.closeLabel);
 cl.className = fakegal.closeClass;
 p.appendChild(cl);
 DOMhelp.addEvent(cl, 'click', fakegal.setPic, false);
 cl.onclick = DOMhelp.safariClickFix;
 fakegal.c.appendChild(p);

Create a new paragraph and insert a link into it with the closeLabel as text content. Assign
an event handler pointing to setPic() to the link, apply the Safari fix, and add the paragraph to
the container element.

fakeDynamic.js (continued)

 var il = DOMhelp.createLink('#', '');
 DOMhelp.addEvent(il, 'click', fakegal.setPic, false);
 il.onclick = DOMhelp.safariClickFix;
 fakegal.c.appendChild(il);

Now add another—empty—link to the container with an event handler calling setPic().
This link will later surround the large picture, making it clickable and thus possible for key-
board users to get rid of it.

6803.book Page 392 Wednesday, June 21, 2006 8:40 PM

C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y 393

fakeDynamic.js (continued)

 fakegal.next = DOMhelp.createLink('#', '');
 fakegal.next.innerHTML = fakegal.nextContent;
 fakegal.next.className = fakegal.nextClass;
 DOMhelp.addEvent(fakegal.next, 'click', fakegal.navPic, false);
 fakegal.next.onclick = DOMhelp.safariClickFix;
 fakegal.c.appendChild(fakegal.next);

 fakegal.prev = DOMhelp.createLink('#', '');
 fakegal.prev.innerHTML = fakegal.prevContent;
 fakegal.prev.className = fakegal.prevClass;
 DOMhelp.addEvent(fakegal.prev, 'click', fakegal.navPic, false);
 fakegal.prev.onclick = DOMhelp.safariClickFix;
 fakegal.c.appendChild(fakegal.prev);

Two more links need to be added to show the previous and the next image, respectively,
both with event handlers pointing to navPic().

fakeDynamic.js (continued)

 fakegal.tlist.parentNode.appendChild(fakegal.c);
 }

Add the new container to the parent node of the thumbnail list, and the show can begin.

fakeDynamic.js (continued)

 showPic : function(e) {
 var t = DOMhelp.getTarget(e);
 if(t.nodeName.toLowerCase() != 'a') {
 t = t.parentNode;
 }
 fakegal.current = t.i;
 var largePic = t.getAttribute('href');
 fakegal.setPic(largePic);
 DOMhelp.cancelClick(e);
 },

In the event listener method showPic(), retrieve the target and determine whether it really
is a link by testing the nodeName. Then store the i property that was assigned to each thumbnail
link in the init() method as the value of a new property, current, of the main object to tell all
other methods which picture is currently shown. Retrieve the link’s href attribute and call the
setPic() method with the href as a parameter before stopping the browser from following
the link via cancelClick().

6803.book Page 393 Wednesday, June 21, 2006 8:40 PM

394 C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y

fakeDynamic.js (continued)

 setPic : function(pic) {
 var a;
 var picLink = fakegal.c.getElementsByTagName('a')[1];
 picLink.innerHTML = '';

The setPic() method takes the second link inside the image container (which is the
link after the closing link) and removes any content that this link might have by setting its
innerHTML property to an empty string. This is necessary to avoid more than one picture show-
ing at a time.

fakeDynamic.js (continued)

 if(typeof pic == 'string') {
 fakegal.c.className = fakegal.showClass;
 var i = document.createElement('img');
 i.setAttribute('src' , pic);
 picLink.appendChild(i);

You compare the type of the parameter pic with string, since the method may be called
with a URL as the parameter or without it. If there is a parameter that is a valid string, you add
the show class to the container to show it to the user and add a new image to it with the pic
parameter as its source.

fakeDynamic.js (continued)

 } else {
 fakegal.c.className = '';
 }

If there isn’t a parameter of the type string, you remove any class from the picture con-
tainer, thus hiding it.

fakeDynamic.js (continued)

 a = fakegal.current == 0 ? 'add' : 'remove';
 DOMhelp.cssjs(a, fakegal.prev, fakegal.hideClass);
 a = fakegal.current == fakegal.all-1 ? 'add' : 'remove';
 DOMhelp.cssjs(a, fakegal.next, fakegal.hideClass);
 },

6803.book Page 394 Wednesday, June 21, 2006 8:40 PM

C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y 395

Test to see whether the current property of the main object is equal to 0, and hide the pre-
vious picture link if this is the case. Do the same with the next picture link and compare current
with the number of all thumbnails (stored in all). Hide or show each link by adding or remov-
ing the hide class.

fakeDynamic.js (continued)

 navPic : function(e) {
 var t = DOMhelp.getTarget(e);
 if(t.nodeName.toLowerCase() != 'a') {
 t = t.parentNode;
 }
 var c = fakegal.current;
 if(t == fakegal.prev) {
 c -= 1;
 } else {
 c += 1;
 }
 fakegal.current = c;
 var pic = fakegal.tlist.getElementsByTagName('a')[c];
 fakegal.setPic(pic.getAttribute('href'));
 DOMhelp.cancelClick(e);
 }
}
DOMhelp.addEvent(window, 'load', fakegal.init, false);

Retrieve a reference to the link that was clicked (by getting the event target via DOMhelp’s
getTarget() and ensuring the nodeName is A), and determine whether the link is the previous
link by comparing this node to the one stored in the prev property. Increment or decrement
current depending on which link was activated. Then call setPic() with the href attribute of
the new current link and prevent the browser from following the activated link by calling
cancelClick().

All that is left is to add a style sheet; the result might appear as shown in Figure 10-1.

6803.book Page 395 Wednesday, June 21, 2006 8:40 PM

396 C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y

Figure 10-1. Using JavaScript to simulate a server-controlled dynamic image gallery

Displaying Captions
Thumbnail galleries are visual constructs, but it is still a good idea to think about alternative
text and image captioning. Not only will these make your gallery accessible to blind users, but
they also allow for searching the thumbnail data and indexing it through search engines.

Many tools like Google’s Picasa allow for dynamic captioning and addition of alternative
text. You could use XHR to create something similar, but as this is a book about JavaScript, and
how to store the entered data on the server would need some explanation, it is not a relevant
example. Instead, let’s modify the “fake” gallery so that it displays captions.

You’ll use the image’s title attribute as a caption for the image; this means that the static
HTML needs proper alternative text and title data.

6803.book Page 396 Wednesday, June 21, 2006 8:40 PM

C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y 397

exampleFakeDynamicAlt.html (excerpt)

<ul id="thumbs">

 <img src="galleries/animals/tn_dog2.jpg"
 title="This square is mine"
 alt="Dog in a shady square" />

 <img src="galleries/animals/tn_dog3.jpg"
 title="Sleepy bouncer"
 alt="Dog on the steps of a shop" />

 [... More thumbnails ...]

The script itself does not have to change much; basically all it needs is an extra paragraph
in the generated image container and alterations of the methods to send the caption and alter-
native text data to the large image container.

fakeDynamicAlt.js

fakegal = {
 // IDs
 thumbsListID : 'thumbs',
 largeContainerID : 'photo',
 // CSS classes
 closeClass : 'close',
 nextClass : 'next',
 prevClass : 'prev',
 hideClass : 'hide',
 closeLabel : 'close',
 captionClass : 'caption',
 // Labels
 showClass : 'show',
 prevContent : '',
 nextContent : '',

6803.book Page 397 Wednesday, June 21, 2006 8:40 PM

398 C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y

The first change is a cosmetic one: you add a new CSS class that will be applied to the caption.

fakeDynamicAlt.js (continued)

 init : function() {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 fakegal.tlist = document.getElementById(fakegal.thumbsListID);
 if(!fakegal.tlist) { return; }
 var thumbsLinks = fakegal.tlist.getElementsByTagName('a');
 fakegal.all = thumbsLinks.length;
 for(var i = 0; i < thumbsLinks.length; i++) {
 DOMhelp.addEvent(thumbsLinks[i], 'click',➥

 fakegal.showPic, false);
 thumbsLinks[i].onclick = DOMhelp.safariClickFix;
 thumbsLinks[i].i = i;
 }
 fakegal.createContainer();
 },
 showPic : function(e) {
 var t = DOMhelp.getTarget(e);
 if(t.nodeName.toLowerCase() != 'a') {
 t = t.parentNode;
 }
 fakegal.current = t.i;
 var largePic = t.getAttribute('href');
 var img = t.getElementsByTagName('img')[0];
 var alternative = img.getAttribute('alt');
 var caption = img.getAttribute('title');
 fakegal.setPic(largePic, caption, alternative);
 DOMhelp.cancelClick(e);
 },

6803.book Page 398 Wednesday, June 21, 2006 8:40 PM

C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y 399

The init() method remains unchanged, but the showPic() method needs to read the
alternative text and the title attribute of the image, in addition to the href attribute of the link,
and send all three of them as parameters to setPic().

fakeDynamicAlt.js (continued)
 setPic : function(pic, caption, alternative) {
 var a;
 var picLink = fakegal.c.getElementsByTagName('a')[1];
 picLink.innerHTML = '';
 fakegal.caption.innerHTML = '';
 if(typeof pic == 'string') {
 fakegal.c.className = fakegal.showClass;
 var i = document.createElement('img');
 i.setAttribute('src', pic);
 i.setAttribute('alt' ,alternative);
 picLink.appendChild(I);
 } else {
 fakegal.c.className = '';
 }
 a = fakegal.current == 0 ? 'add' : 'remove';
 DOMhelp.cssjs(a, fakegal.prev, fakegal.hideClass);
 a = fakegal.current == fakegal.all-1 ? 'add' : 'remove';
 DOMhelp.cssjs(a, fakegal.next, fakegal.hideClass);
 if(caption != '') {
 var ctext = document.createTextNode(caption);
 fakegal.caption.appendChild(ctext);
 }
 },

The setPic() method now takes three parameters instead of one—the source of the large
picture, the caption, and the alternative text. The method needs to delete any caption that may
already be visible, set the alternative text attribute of the large picture, and display the new
caption.

6803.book Page 399 Wednesday, June 21, 2006 8:40 PM

400 C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y

fakeDynamicAlt.js (continued)

 navPic : function(e) {
 var t = DOMhelp.getTarget(e);
 if(t.nodeName.toLowerCase() != 'a') {
 t = t.parentNode;
 }
 var c = fakegal.current;
 if(t == fakegal.prev) {
 c -= 1;
 } else {
 C += 1;
 }
 fakegal.current = c;
 var pic = fakegal.tlist.getElementsByTagName('a')[c];
 var img = pic.getElementsByTagName('img')[0];
 var caption = img.getAttribute('title');
 var alternative = img.getAttribute('alt');
 fakegal.setPic(pic.getAttribute('href'), caption, alternative);
 DOMhelp.cancelClick(e);
 },

The navPic() method, just like the init() method, needs to retrieve the alternative text,
the caption, and the source of the large picture and send them to setPic().

fakeDynamicAlt.js (continued)

 createContainer : function() {
 fakegal.c = document.createElement('div');
 fakegal.c.id = fakegal.largeContainerID;

 var p = document.createElement('p');
 var cl = DOMhelp.createLink('#', fakegal.closeLabel);
 cl.className = fakegal.closeClass;
 p.appendChild(cl);
 DOMhelp.addEvent(cl, 'click', fakegal.setPic, false);
 cl.onclick = DOMhelp.safariClickFix;
 fakegal.c.appendChild(p);

 var il = DOMhelp.createLink('#', '');
 DOMhelp.addEvent(il, 'click', fakegal.setPic, false);
 il.onclick = DOMhelp.safariClickFix;
 fakegal.c.appendChild(il);

6803.book Page 400 Wednesday, June 21, 2006 8:40 PM

C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y 401

 fakegal.next = DOMhelp.createLink('#', '');
 fakegal.next.innerHTML = fakegal.nextContent;
 fakegal.next.className = fakegal.nextClass;
 DOMhelp.addEvent(fakegal.next, 'click', fakegal.navPic, false);
 fakegal.next.onclick = DOMhelp.safariClickFix;
 fakegal.c.appendChild(fakegal.next);

 fakegal.prev = DOMhelp.createLink('#', '');
 fakegal.prev.innerHTML = fakegal.prevContent;
 fakegal.prev.className = fakegal.prevClass;
 DOMhelp.addEvent(fakegal.prev, 'click', fakegal.navPic, false);
 fakegal.prev.onclick = DOMhelp.safariClickFix;
 fakegal.c.appendChild(fakegal.prev);

 fakegal.caption = document.createElement('p');
 fakegal.caption.className = fakegal.captionClass;
 fakegal.c.appendChild(fakegal.caption);

 fakegal.tlist.parentNode.appendChild(fakegal.c);
 }
}
DOMhelp.addEvent(window, 'load', fakegal.init, false);

The createContainer() method needs only one small change, which is creating a new
paragraph in the container to host the caption.

As you can see, creating dynamic galleries with JavaScript means generating a lot of HTML
elements and reading and writing of attributes. It is up to you to decide whether it is worth the
hassle or not. This gets even worse when you want to offer pagination of the thumbnails.

Instead of doing all of this in JavaScript, you could do it on the back end (for example, with
PHP or ASP.NET) and offer a fully functional gallery to all users, and only improve it via XHR and
JavaScript.

Dynamic Thumbnail Galleries
Real dynamic thumbnail galleries use URL parameters, instead of lots of static pages, and cre-
ate the pagination and show the thumbs or the large images depending on these parameters.

The demo examplePHPgallery.php works that way, and Figure 10-2 shows what this might
look like.

6803.book Page 401 Wednesday, June 21, 2006 8:40 PM

402 C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y

Figure 10-2. A dynamic PHP-driven thumbnail gallery example with thumbnail pagination and
previous and next image preview on the large picture page

This gallery is fully functional and accessible without JavaScript, but you may not want to
reload the whole page every time the user clicks a thumbnail. Using XHR, you can offer both.
Instead of using the original PHP document, you use a cut-down version that only generates
the content you need, in this case gallerytools.php. I won’t go into details of the PHP script;
suffice to say that it does the following for you:

• It reads the contents of a folder the link in the main menu points to, checks it for images,
and returns ten at a time as a HTML list with thumbnails linked to the large images.

• It adds a pagination menu that shows which ten of how many images in total are dis-
played and offers previous and next links.

• If any of the thumbnails is clicked, it returns the HTML of the large image and a menu
showing the next and the previous thumbnail.

6803.book Page 402 Wednesday, June 21, 2006 8:40 PM

C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y 403

You use this output to overwrite the HTML output of the original PHP script as shown in the
demo examplePHPXHRgallery.php. Without JavaScript, it does the same as examplePHPgallery.php;
however, when JavaScript is available, it will not reload the whole document, but only refresh
the gallery itself. You achieve this by replacing the links in the content section with links to
gallerytools.php and XHR calls instead of reloading the whole page.

dyngal_xhr.js

dyngal = {
 contentID : 'content',
 originalPHP : 'examplePHPXHRgallery.php',
 dynamicPHP : 'gallerytools.php',
 init : function() {
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 dyngal.assignHandlers(dyngal.contentID);
 },

You start by defining your properties:

• The ID of the element that contains the content that should be replaced with the HTML
returned from gallerytools.php

• The file name of the original script

• The file name of the script that returns the data you call via XHR

The init() method tests for DOM support and calls the assignHandlers() method with
the content element ID as a parameter.

■Note In this case, you only replace one content element; however, as there may be situations where you
want to replace numerous different sections of the page, it is a good idea to create separate methods for tasks
like these.

6803.book Page 403 Wednesday, June 21, 2006 8:40 PM

404 C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y

dyngal_xhr.js (continued)

 assignHandlers : function(o) {
 if(!document.getElementById(o)){ return; }
 o = document.getElementById(o);
 var gLinks = o.getElementsByTagName('a');
 for(var i = 0; i < gLinks.length; i++) {
 DOMhelp.addEvent(gLinks[i], 'click', dyngal.load, false);
 gLinks[i].onclick = DOMhelp.safariClickFix;
 }
 },

The assignHandlers() method tests whether the element with the ID that was sent as a
parameter exists, and then loops through all the links in the element. Next, it adds an event
handler pointing to the load method and applies the Safari fix to prevent that browser from fol-
lowing the original link (remember—the preventDefault() method used in cancelClick() is
supported by Safari, but does not stop the link from being followed due to a bug in Safari).

dyngal_xhr.js (continued)

 load : function(e) {
 var t = DOMhelp.getTarget(e);
 if(t.nodeName.toLowerCase() != 'a') {
 t = t.parentNode;
 }
 var h = t.getAttribute('href');
 h = h.replace(dyngal.originalPHP, dyngal.dynamicPHP);
 dyngal.doxhr(h, dyngal.contentID);
 DOMhelp.cancelClick(e);
 },

In the load method, you retrieve the event target and make sure it is a link. You then read
the href attribute of the link and replace the original PHP script name with the dynamic one
that only returns the content you need. You call the doxhr() method with the href value and
the content element ID as parameters and stop the link propagation by calling cancelClick().

dyngal_xhr.js (continued)

 doxhr : function(url, container) {
 var request;
 try{
 request = new XMLHttpRequest();
 } catch(error) {
 try {
 request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (error) {
 return true;

6803.book Page 404 Wednesday, June 21, 2006 8:40 PM

C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y 405

 }
 }
 request.open('get', url, true);
 request.onreadystatechange = function() {
 if(request.readyState == 1) {
 container.innerHTML = 'Loading...';
 }
 if(request.readyState == 4) {
 if(request.status && /200|304/.test(request.status)) {
 dyngal.retrieved(request, container);
 } else {
 dyngal.failed(request);
 }
 }
 }
 request.setRequestHeader('If-Modified-Since',➥

 'Wed, 05 Apr 2006 00:00:00 GMT');
 request.send(null);
 return false;
 },
 retrieved : function(request, container) {
 var data = request.responseText;
 document.getElementById(container).innerHTML = data;
 dyngal.assignHandlers(container);
 },
 failed : function(request) {
 alert('The XMLHttpRequest failed. Status: ' + requester.status);
 return true;
 }
}
DOMhelp.addEvent(window, 'load', dyngal.init, false);

The XHR methods are the same as those you used in Chapter 8. The only difference is that
you need to call the assignHandlers() method again, as you replaced the original content and
as a result lost the event handlers on the links.

■Note PHP and JavaScript are a powerful combination. Once you have mastered JavaScript, it might be a
good idea to look into PHP, as without knowledge of a server-side language Ajax is less fun. PHP can do what
JavaScript cannot—reach files on the server and read their names and properties, and even reach content
from third-party servers. PHP syntax is similar to that of JavaScript in some respects, and the nature of the
language makes it easy to take the first steps without having to deal with compilers or command-line inter-
faces to build your scripts.

6803.book Page 405 Wednesday, June 21, 2006 8:40 PM

406 C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y

Creating an Image Badge from a Folder
Let’s have a go at another small gallery example using PHP and JavaScript/XHR before we look
at some ready-made third-party code and online services in the next chapter.

If you already use Flickr (http://www.flickr.com) or you read blogs a lot, you may have
encountered Flickr badges, which are small galleries showing the latest photos the maintainer
of the site has uploaded to the system. Figure 10-3 shows my blog as an example.

Figure 10-3. My latest photos on Flickr as a badge on my blog

Let’s spice up the idea of a badge by allowing the user to navigate through the thumbnails
with previous and next links and showing the large photo by clicking the thumbnail. The demo
exampleBadge.html does this, and Figure 10-4 shows how it looks with two badge galleries in
Firefox on Windows XP.

6803.book Page 406 Wednesday, June 21, 2006 8:40 PM

C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y 407

Figure 10-4. Two image folders as badge galleries

When creating scripts like these, it is a good idea to keep the HTML as easy as possible. The
less you expect from the maintainer, the more likely it is that people will use your script. In this
case, all the maintainer needs to do to add a badge gallery to the HTML document is to add an
element with the class badge and a link pointing to the folder containing the images:

exampleBadge.html (excerpt)

<p class="badge">Animals</p>
<p class="badge">Buildings</p>

As JavaScript cannot check a folder on the server for files, you need a PHP script to do this for
you. The file badge.php does so and returns thumbnails as list items.

6803.book Page 407 Wednesday, June 21, 2006 8:40 PM

408 C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y

■Note The following is a quick explanation of the PHP script. This is not JavaScript, but I hope you appre-
ciate some insight into the workings of the tools the upcoming badge script uses.

badge.php

<?php
$c = preg_match('/\d+/', $_GET['c']) ? $_GET['c'] : 5;
$s = preg_match('/\d+/', $_GET['s']) ? $_GET['s'] : 0;
$cd = is_dir($_GET['cd']) ? $_GET['cd'] : '';

You define three variables: $c, which stores the number of thumbnails to be shown; $s,
which is the index of what is currently the first thumbnail in the list of all thumbnails; and
$cd, which is the folder URL on the server. The $_GET array of PHP stores all the parameters of
the URL, which means that if the URL were to be badge.php?c=3&s=0&cd=animals, $_GET['c']
would be 3, $_GET['s'] would be 0, and $_GET['cd'] would be animals. You can use regular
expressions to make sure that $c and $s are integers and preset to 5 and 0, respectively, and the
is_dir() function of PHP to make sure that $cd really is an available folder.

badge.php (continued)

if($cd != '') {
 $handle = opendir($cd);
 if(preg_match('/^tn_.*(jpg|jpe|jpeg)$/i', $file)) {
 $images[] = $file;
 }
 }
 closedir($handle);

If the folder is available, you start reading out each file in the folder with the opendir()
method and test whether the file is a thumbnail by matching its name with the pattern
^tn_.*(jpg|jpe|jpeg)$ (starts with tn_ and ends with either jpg, jpe, or jpeg). If the file is a
thumbnail, add it to the images array. When there are no files left in the folder, close the folder
by calling the closedir() method.

badge.php (continued)

 $imgs = array_slice($images, $s, $c);
 if($s > 0) {
 echo '<li class="badgeprev">';
 echo '<a href="badge.php?c='.$c;
 echo '&s=' . ($s-$c) . '&cd='.$cd.'">';
 echo 'previous';
 } else {
 echo '<li class="badgeprev">previous';
 }

6803.book Page 408 Wednesday, June 21, 2006 8:40 PM

C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y 409

You use the array_slice() method of PHP to reduce the array down to the chosen images
($c images starting at $s) and test whether $s is larger than 0. If it is, write out a list element with
the class badgeprev that has the right parameters in the link’s href attribute. If it isn’t, write out
a SPAN inside the list item instead of a link.

badge.php (continued)

 for($i=0; $i<sizeof($imgs); $i++) {
 echo ''.
 '<img src="' . $cd . $imgs[$i] . '" alt="' . $imgs[$i] .
 '" />';
 }

Loop through the images and display an IMG element inside a link pointing to the large
image for each array item. You can retrieve the link to the large image by removing the tn_
string of the array element’s value with str_replace().

badge.php (continued)

 if(($c+$s) <= sizeof($images)) {
 echo '<li class="badgenext">';
 echo '<a href="badge.php?c=' . $c . '&s=' . ($s + $c);
 echo '&cd=' . $cd . '">next';
 } else {
 echo '<li class="badgenext">next';
 }
}
?>

Test whether $c and $s together are less than the number of all images in the folder and
display a link if it is or a SPAN if it isn’t.

As you can see, the programming syntax and logic of JavaScript and PHP is pretty similar,
which is one of the reasons for the success of PHP. Let’s now create the JavaScript that uses this
PHP script to turn the links into image badges.

badge.js

badge = {
 badgeClass : 'badge',
 containerID : 'badgecontainer',

You define the CSS class used to specify the badge links and the ID of the image container
showing the large picture as properties of the main object badge.

6803.book Page 409 Wednesday, June 21, 2006 8:40 PM

410 C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y

badge.js (continued)

 init : function() {
 var newUL, parent, dir, loc;
 if(!document.getElementById || !document.createTextNode) {
 return;
 }
 var links = document.getElementsByTagName('a');
 for(var i = 0; i < links.length; i++) {
 parent = links[i].parentNode;
 if(!DOMhelp.cssjs('check', parent, badge.badgeClass)) {
 continue;
 }

You test for DOM support and loop through all links in the document, testing whether a
particular link’s parent node has the badge class assigned to it. If it doesn’t, you skip this link.

badge.js (continued)

 newUL = document.createElement('ul');
 newUL.className = badge.badgeClass;
 dir=links[i].getAttribute('href');
 loc = window.location.toString().match(/(^.*\/)/g);
 dir = dir.replace(loc, '');
 badge.doxhr('badge.php?cd=' + dir, newUL);
 parent.parentNode.insertBefore(newUL, parent);
 parent.parentNode.removeChild(parent);
 i--;
 }

You create a new list element and add the badge class to it. You retrieve the link’s href
attribute, read the window location, and remove anything in the window.location before the
last / from the href attribute value. This is necessary to make the script work in Microsoft
Internet Explorer.

■Note You might remember that the link is Animals,
and if you have the script on your localhost, for example, at http://localhost/book/mybook/
Chapter10_A_Dynamic_gallery/exampleBadge.html, Mozilla returns the href attribute value
as galleries/animals/. MSIE, however, returns http://localhost/book/mybook/
Chapter10_A_Dynamic_gallery/galleries/animals/, and you need to remove the excess
data, as badge.php expects only the folder name as the URL.

You call the doxhr() method with the correct URL and the newly created list as parame-
ters, and add the list before the parent element of the current link. You then remove the link’s
parent element with the DOM method removeChild() and decrease the loop counter by one

6803.book Page 410 Wednesday, June 21, 2006 8:40 PM

C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y 411

(you loop through all the links of the document, which means that when you remove one of
them, the counter needs to decrease to stop the loop from skipping the following link).

badge.js (continued)

 badge.container = document.createElement('div');
 badge.container.id = badge.containerID;
 document.body.appendChild(badge.container);
 },

You create a new DIV as the container for the large image, set its ID, and add it to the body
of the document.

badge.js (continued)

 doxhr : function(url, container) {
 var request;
 try {
 request = new XMLHttpRequest();
 } catch (error) {
 try {
 request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (error) {
 return true;
 }
 }
 request.open('get', url, true);
 request.onreadystatechange = function() {
 if(request.readyState == 1) {
 }
 if(request.readyState == 4) {
 if(request.status && /200|304/.test(request.status)) {
 badge.retrieved(request, container);
 } else{
 badge.failed(request);
 }
 }
 }
 request.setRequestHeader('If-Modified-Since', ➥

 'Wed, 05 Apr 2006 00:00:00 GMT');
 request.send(null);
 return false;
 },
 retrieved : function(request, container) {
 var data = request.responseText;
 container.innerHTML = data;
 badge.assignHandlers(container);
 },

6803.book Page 411 Wednesday, June 21, 2006 8:40 PM

412 C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y

 failed : function(requester) {
 alert('The XMLHttpRequest failed. Status: ' + requester.status);
 return true;
 },

The Ajax/XHR methods remain largely unchanged, the only difference being that when the
data is successfully retrieved, the assignHandlers() method is called with the list item as a
parameter.

badge.js (continued)

 assignHandlers : function(o) {
 var links = o.getElementsByTagName('a');
 for(var i = 0; i < links.length; i++) {
 links[i].parent = o;
 if(/badgeprev|badgenext/.test(links[i].parentNode.➥

 className)) {
 DOMhelp.addEvent(links[i], 'click', badge.load, false);
 } else {
 DOMhelp.addEvent(links[i], 'click', badge.show, false);
 }
 }
 },

The assignHandlers() method loops through all the links in the element sent as the
parameter o. It stores this element as a new property in each link called parent and tests
whether the link has the class badgeprev or badgenext, which, as you may remember, are added
by badge.php to the previous and next links. If the CSS class is there, assignHandlers() adds an
event handler pointing to the load method; otherwise it adds an event handler pointing to the
show method, as some links need to navigate through the thumbnails and others need to show
the large image.

badge.js (continued)

 load : function(e) {
 var t = DOMhelp.getTarget(e);
 if(t.nodeName.toLowerCase() != 'a') {
 t = t.parentNode;
 }
 var dir = t.getAttribute('href');
 var loc = window.location.toString().match(/(^.*\/)/g);
 dir = dir.replace(loc, '');
 badge.doxhr('badge.php?cd=' + dir, t.parent);
 DOMhelp.cancelClick(e);
 },

6803.book Page 412 Wednesday, June 21, 2006 8:40 PM

C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y 413

The load method retrieves the event target and makes sure it is a link. It retrieves the href
attribute value of the event target and cleans it up before calling the doxhr method with the
element stored in the link’s parent property as the output container. You stop the link from
being followed by calling DOMhelp’s cancelClick().

badge.js (continued)

 show : function(e) {
 var t = DOMhelp.getTarget(e);
 if(t.nodeName.toLowerCase() != 'a') {
 t = t.parentNode;
 }
 var y = 0;
 if(self.pageYOffset) {
 y = self.pageYOffset;
 } else if (document.documentElement &&
 document.documentElement.scrollTop) {
 y = document.documentElement.scrollTop;
 } else if(document.body) {
 y = document.body.scrollTop;
 }
 badge.container.style.top = y + 'px';
 badge.container.style.left = 0 + 'px';

In the show method you once again retrieve the event target and test that it is a link. You
then position the large image container on the screen. As you don’t know where in the docu-
ment the badge will be, the safest method to show the image is to read out the scroll position of
the document. To achieve this, you need to do bit of object detection for different browsers.

■Note Firefox, Safari, and Opera store the current vertical scrolling position in a property of the window object
called pageYOffset, MSIE without a proper HTML DOCTYPE stores it in the body.scrollTop of the document
object, and MSIE with a proper HTML DOCTYPE and Firefox store it in the documentElement.scrollTop prop-
erty of the document object.

You test for all these eventualities and position the image container accordingly by set-
ting the left and top properties of its style attribute collection. This way you can always be sure
that the large image will be visible in the user’s browser window.

6803.book Page 413 Wednesday, June 21, 2006 8:40 PM

414 C H A P T E R 1 0 ■ M O D E R N J A V A S C R I P T C A S E S T U D Y : A D Y N A M I C G A L L E R Y

badge.js (continued)

 var source = t.getAttribute('href');
 var newImg = document.createElement('img');
 badge.deletePic();
 newImg.setAttribute('src', source);
 badge.container.appendChild(newImg);
 DOMhelp.addEvent(badge.container, 'click', badge.deletePic,➥

 false);
 DOMhelp.cancelClick(e);
 },

You read the href attribute of the link and create a new IMG element. You remove any large
image that may already be shown by calling the deletePic() method and set the new image’s
src attribute to the href of the link. You add the new image as a child node to the image con-
tainer, apply an event handler that calls deletePic() when the user clicks the image, and stop
the link from being followed by calling cancelClick().

badge.js (continued)

 deletePic : function() {
 badge.container.innerHTML = '';
 }
}
DOMhelp.addEvent(window, 'load', badge.init, false);

All the deletePic method needs to do is to set the innerHTML property of the container ele-
ment to an empty string, thus removing the large image.

Summary
In this chapter, you learned how to enhance already existing HTML structures or dynamic
server-side scripts for thumbnail galleries with JavaScript either to become dynamic or to
appear more dynamic by not loading the whole document when the user chooses another
image or thumbnail subset.

Galleries are always fun to create and to come up with new and flashier solutions for, and
I hope that by learning some of the tricks presented in this chapter you feel confident to play
around with them and come up with your own gallery ideas.

6803.book Page 414 Wednesday, June 21, 2006 8:40 PM

415

■ ■ ■

C H A P T E R 1 1

Using Third-Party JavaScript

As you’ll have gathered by now, when you create a JavaScript application, you don’t need to
reinvent the wheel and recode all the functionality from scratch every time—JavaScript has
many, many functions available for you to use, and you can create your own reusable functions
and objects, too. But it goes even further than that—you can also make use of third-party code
libraries and APIs, and there are many available on the Web these days. But it’s knowing where,
why, and how that’s the key, and that’s where this chapter comes in.

In this chapter, we will take a look at some ready-made content and code available on the
Web these days. We’ll quickly talk about the different kinds of resources you can find on the Web
to make your JavaScript development easier: content in RSS format, REST services, APIs, code
generators, and libraries. We’ll take a look at a code library and try some examples, check how to
add an interactive map to your web site in a matter of minutes using the Google Maps API, and
take a closer look at Yahoo’s User Interface Library.

What the Web Offers You
We are currently living in pretty exciting times as developers. Over the last few years, the out-
look of companies in terms of sharing content and technology has changed drastically. In the
past, every company guarded its content and code as if it were made of platinum, and getting
any information about the workings of a system or how to communicate with it was a painful
and long-winded process including price negotiations, nonworking demonstrations, Power-
Point presentations, preview code, and other marketing collateral.

A lot of these closed source ideas still prevail, and even maintainers of personal web sites
wonder how they can make sure nobody can save their images or copy their code and content.
We’ve discussed the issues and misconceptions of this approach over the last chapters and will
not dwell on it. Instead, we will look at the modern outlook of forward-thinking companies
who are going in quite the opposite direction. For example, many content providers like media
agencies have realized that when they offer their news in lightweight, easy-to-syndicate for-
mats like RSS, people will use them to display headlines on their web sites and drive traffic and
users to their sites.

Furthermore, e-commerce companies like eBay, PayPal, and Amazon realize that if they
allow programmatic access to their services, people will sell more things online, as they can
offer content-specific products on their web sites without having to send their visitors to third-
party web sites. And last but not least, companies have started realizing that if you share the
technologies you use with the world, you get a lot of quality feedback, you get your products
tested in the most adverse environments (as every developer’s computer and connection is

6803.book Page 415 Thursday, June 15, 2006 2:24 PM

416 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

different), and you attract a lot of talent that you may want to hire at a later stage. With a devel-
oper network, you see immediately what a person can do instead of having to rely on his CV.

As a developer, this means that if you take a look around the Web, you find an amazing
amount of content and technology to play with for free. A good proof of concept is the web site
Don’t Meet Your Heroes (http://www.dontmeetyourheroes.com), which is full of web design and
web development content that is always up to date due to being syndicated from various RSS
feeds from different blogs and magazines. The site therefore offers a lot to the reader, and the
maintainers don’t need to spend time writing or researching the content. If the maintainers
stumble upon a nice piece of content, it is simple to add, and they also offer a facility for visitors
to recommend a resource. The maintainers don’t have much to do, the owners of the listed
resource pages get more readers, and the visitors of the site find up-to-date content already
collated for them in one spot. Everybody wins.

The Web is also littered with countless third-party JavaScript libraries, which can be
downloaded and plugged into your applications, allowing you access to a lot of powerful func-
tionality with very little effort. We’ll look at some examples of these later on in the chapter by
looking at jQuery and the Yahoo User Interface Library.

Code Snippets, RSS Feeds, APIs, and Libraries
Probably the oldest type of third-party JavaScript available on the Web are scripts you simply
embed into a web site. These could be

• Counters recording how many people visit your site, like StatCounter (http://
www.statscounter.com/)

• Advertising programs like Google AdSense (https://www.google.com/adsense/)

• Previews of your own content added to a product like the Flickr or Yahoo Answers badge

• Search tools like TheFreeDictionary’s double-click script (double-click any word in your
web site to search for it in TheFreeDictionary—http://www.thefreedictionary.com/
lookup.htm#script)

Another example is script generators that create JavaScripts for you depending on
parameters you define. Google AdSense has this feature, and there are dozens of free script
generators out on the Web (some are listed at http://www.scriptsearch.com/JavaScript/
Scripts/Generators/). You’d want to handle these script generators especially with care, as a
lot of them are outdated and create obtrusive code.

This is a general issue with premade third-party JavaScript. Most such scripts need to be
embedded in the body of the document rather than the head and are optimized for perform-
ance rather than valid syntax or unobtrusiveness. Many counter scripts also use browser
sniffing to determine the user agent (reading out the navigator data instead of using object
detection) and are therefore rather inaccurate.

6803.book Page 416 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 417

RSS Feeds and REST APIs
I’ve covered RSS feeds in Chapter 8 already, but it is worth mentioning them again here, as it is
amazing what kind of information you can find on the Web for you to use:

• There are hardly any news agencies that don’t offer RSS feeds of the latest happenings.
Prominent examples of those that do are CNN (http://www.cnn.com/services/rss),
Reuters (http://today.reuters.com/rss/newsrss.aspx), and the very geeky The Register
(http://www.theregister.co.uk/odds/about/feeds/).

• You can get image feeds from Flickr, for example, pictures of San Francisco (http://
flickr.com/photos/tags/sanfrancisco/) and from blogs that deal mainly with images
like Cute Overload (http://mfrost.typepad.com/cute_overload/rss.xml).

• You can get Podcast information at Podcast Networks (http://www.podcast.net/) and
Odeo (http://odeo.com/) in case you want to offer something for those who like to listen
rather than read.

The really great service several web sites offer is REST APIs, which allow you to get exactly
the information you need.

■Note An API (http://www.webopedia.com/TERM/A/API.html) is an application program interface,
which is a set of routines and tools to build software applications. Basically, you have a set of methods,
objects, and properties to use that allow you to piggyback on the functionality of another program or even
operating system. In a sense, you’ve used an API in this book a lot—the browser API that allows you to access
the window object with all its methods and the DOM, which allows you to alter and read the document. We’ll
get to an API example later on in this chapter when we talk about Google Maps.

I could fill an entire book by going into detail about REST, so a detailed discussion is out of
scope here. If you are interested, you can read up on it at Wikipedia (http://en.wikipedia.org/
wiki/Representational_State_Transfer). What REST APIs do is allow you to define in the URL
whatever kind of information you want. This could be as simple as adding different data to the
URL, for example, to reach different entries of Wikipedia:

• http://en.wikipedia.org/wiki/Javascript

• http://en.wikipedia.org/wiki/DOM_scripting

Or it can become rather sophisticated, where the API allows you to define the output format of
the data and other parameters, for example in Yahoo Search: http://api.search.yahoo.com/
WebSearchService/V1/webSearch?appid=YahooDemo&query=webstandards. This searches for the term
“webstandards” in the Yahoo Database and returns an XML string of results. By default, it returns
ten results; however, you can limit it to two by adding a parameter: http://api.search.yahoo.com/
WebSearchService/V1/webSearch?appid=YahooDemo&query=webstandards&results=2.

6803.book Page 417 Thursday, June 15, 2006 2:24 PM

418 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

The API also allows for other parameters like the start of the search result section you want
to see or the output format. For example, if you want the results 10 to 15 for the search term “web-
standards” in JSON format, you can have that: http://api.search.yahoo.com/WebSearchService/
V1/webSearch?appid=YahooDemo&query=webstandards&results=5&start=10&output=json.

You can use this information directly in JavaScript by sending a callback function name as
a parameter to the API:

<script type="text/javascript">
 function results(d) {
 for(i in d.ResultSet.Result) {
 alert(d.ResultSet.Result[i].Title);
 }
}</script>
<script type="text/javascript" ➥

src="http://api.search.yahoo.com/➥

WebSearchService/V1/webSearch?appid=YahooDemo➥

&query=webstandards&results=5&start=10&➥

output=json&callback=results"></script>

In short, a REST API allows you to retrieve information from a system in the easiest form,
by assembling a static URL, and in the most complex form, to send parameters to customize
the output format of that data and call different methods to retrieve different kind of data.

Examples of REST APIs
One example of a REST API is Yahoo’s HotJobs, which allows you to put together a URL to retrieve
job offers tailored to your location in the following format: http://hotjobs.yahoo.com/rss/
version/country/state/city/category/keywords.

For example:

• This URL searches for JavaScript jobs all across the US and returns an RSS feed:
http://hotjobs.yahoo.com/rss/0/USA/-/-/-/javascript.

• This URL returns any jobs in Los Angeles, CA: http://hotjobs.yahoo.com/rss/0/USA/
CA/Los+Angeles/-/-.

• And this example returns new media and Internet jobs in San Jose: http://
hotjobs.yahoo.com/rss/0/USA/CA/San+Jose/NEW/-.

Another example is Upcoming.org, which is a shared event calendar that lists gigs,
exhibitions, and other social events and offers a REST API. For example, you could find all
the upcoming events in the following places:

• London, England: http://upcoming.org/metro/uk/london/london/

• New York City: http://upcoming.org/metro/us/ny/nyc/

6803.book Page 418 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 419

The BBC currently offers a prototype of a REST API at http://www0.rdthdo.bbc.co.uk/
services/api/ that will be part of their other developer offers at http://backstage.bbc.co.uk/
once it has matured enough. This API allows you to browse the BBC program schedule in RSS
format. BBC has an Ajax example application available at http://www0.rdthdo.bbc.co.uk/
services/api/examples/ajax/doc.html.

■Note You can find more information about REST (Ajax related) in a couple of Christian Gross’s books—
Ajax Patterns and Best Practices (Apress, 2006) and Ajax and REST Recipes (Apress, to be published
late 2006).

Using a Library: Short, Shorter, jQuery
One of the main reasons for code libraries is that developers want to make it easier for other
developers to achieve day-to-day coding tasks. You’ve done that in this book with the DOM-
help library by creating utility methods to work around browser inconsistencies and solve
reoccurring tasks. What you haven’t done is provide your own coding syntax or any other
means of reaching elements in the page than the DOM. If you had done that, you could have
come up with much shorter code, but also sacrificed the recognition effect of “normal” Java-
Script syntax and made development dependent on the knowledge of the library.

There is a trend, however, in JavaScript development to go that route, and many of the
large libraries like Rico (http://openrico.org/) and prototype (http://prototype.conio.net/)
become more and more daunting in terms of learning the library-specific code syntax and
rules in order to achieve a task. Probably the most daring approach in this direction is jQuery
(http://jquery.com/), which comprises a single JavaScript file weighing in at only 16K that you
add to the head of your documents. It provides you with an amazing amount of utility methods
to achieve web-specific tasks. The code you have to write to work with jQuery is very confusing
to JavaScript beginners or developers who haven’t dabbled in languages like Ruby, Python, or
Java yet. However, it is very powerful all the same once you get your head around it.

The concept of jQuery is to offer quick access to any element of the document, and to get
this access you have a utility method called $ (of all things) that takes either

• A DOM construct, for example, $(document.body)

• A CSS selector, for example, $('p a'), which is every link inside a paragraph in the
document

• An XPath expression, for example, $(" //a[@rel='nofollow'] "), which matches every
link in the document with an attribute called rel that has the value of nofollow

6803.book Page 419 Thursday, June 15, 2006 2:24 PM

420 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

■Note XPath is a W3C standard language to reach parts of an XML document, normally used in connection
with XSLT or XPOINTER (http://www.w3.org/TR/xpath). As modern HTML should conform to XML syntax
rules (all tags closed, all elements lowercase, attribute values in quotation marks, and single attributes
defined as name/value pairs), you can use XPath to find parts of the HTML document, too. Together with XSLT,
it is a very powerful tool to convert one XML format to another.

The other trick jQuery has up its sleeve to achieve very short code is a concept called
chainable methods, which you already know from the DOM. You can add each method to the
last one by concatenating them with a full stop. Instead of

$p = $('p');
$p.addClass('test');
$p.show();
$p.html('example');

You can use

$('p').addClass('test').show().html('example');

Both of these examples do the same: take every paragraph of the document, add a CSS
class called test, show the paragraph (in case it was hidden), and change the HTML content of
the paragraph to “example”. What jQuery provides you with is an amazing number of these
very short-named methods that are tailored to fulfill day-to-day web application development
tasks. There is good documentation and examples available on the jQuery site (http://
jquery.com/docs/) and on Mark Constable’s site (http://markc.renta.net/jquery/).

Let’s take a look at an example. If you are a developer and you write tutorials, you often
have to show code examples in HTML pages. You wrap them in PRE and CODE elements to make
whitespace in the code appear in the right format, like this:

exampleJQuery.html (excerpt)

<h1>Showing and hiding a code example with jQuery</h1>
<p>The code</p>
<pre><code>
 [... code example ...]
</code></pre>
<p>The CSS</p>
<pre><code>
 [... code example ...]
</code></pre>

Let’s now write a script in jQuery that will generate links preceding the code examples that
allow for expanding and collapsing the examples instead of simply showing them, as demon-
strated in Figure 11-1.

6803.book Page 420 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 421

Figure 11-1. Showing and hiding code examples with jQuery

jqueryTest.js
$(document) . ready (
 function() {
 $('pre').before('<p><a class="trigger"➥

 href="#">Show code</p>');
 $('pre').hide();
 $('a.trigger').toggle (
 function() {
 $(this.parentNode.nextSibling).slideDown('slow');
 $(this).html('Hide Code');
 },
 function() {
 $(this.parentNode.nextSibling).slideUp('slow');
 $(this).html('Show Code');
 }
)
 }
)

As you can see, the code is amazingly short, but also rather complex in terms of syntax.
Let’s go through the example bit by bit so you can understand what is going on:

jqueryTest.js (excerpt)

$(document) . ready (
 function() {

The $(document).ready () method is an event handler that calls the function provided as
a parameter (in this case an anonymous function) when the document is ready to be manipu-
lated. This means that everything that follows in this script is executed when the document has
loaded—and that means only the document and not all the embedded assets in it like images.

6803.book Page 421 Thursday, June 15, 2006 2:24 PM

422 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

As you may remember, we talked in Chapter 5 about the ugly effect of the page content show-
ing up before you can hide it. This method works around that problem.

jqueryTest.js (continued)

 $('pre').before('<p><a class="trigger"➥

 href="#">Show code</p>');
 $('pre').hide();

You take every PRE element in the document and use the before() method to add a string
of HTML in the DOM tree before this element, in this case, a paragraph with an embedded link
with the class trigger. You use the hide() method of jQuery to hide all PRE elements (hide() sets
the CSS attribute display to none).

jqueryTest.js (continued)

 $('a.trigger').toggle (

You use the CSS selector a.trigger to match all links with the class trigger (which hope-
fully are only the ones the script added via the before() method) and use the toggle() method.
This method alternately executes the two functions provided as parameters when the user
clicks the element. The first parameter is an anonymous function that shows the previously
hidden code example and changes the link text to “Hide Code” and vice versa.

jqueryTest.js (continued)

 function() {
 $(this.parentNode.nextSibling).slideDown('slow');
 $(this).html('Hide Code');
 },

You can use several jQuery methods to show and hide elements, the most basic being
show() and hide(). A more advanced effect is produced using slideDown() and slideUp(),
which show the element in a line-by-line animation. Both of these methods take a parameter
that indicates the speed of the animation, which can be slow, normal, or fast. In order to reach
the PRE element to show or hide, you need to use the $(this) construct, which returns the event
target of toggle(). This means you can use this.parentNode.nextSibling to reach the PRE as
the links are nested in a paragraph. You can change the content of the link itself via $(this) and
the html() method, which takes a string of HTML as the sole parameter and changes the ele-
ment’s innerHTML property.

6803.book Page 422 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 423

jqueryTest.js (continued)

 function() {
 $(this.parentNode.nextSibling).slideUp('slow');
 $(this).html('Show Code');
 }
)
 }
)

The other case of toggle() in this example uses slideUp() to slowly hide the code example
and changes the text of the link back to “Show Code”.

A really great extension for jQuery (implementations or extensions for jQuery are called
plug-ins) is the Ajax plug-in. This plug-in allows for dead-easy Ajax implementations via the
load(), $.get(), and $.post() methods as explained at http://jquery.com/docs/ajax/. For
example, if you want to create the PRE elements and load the real code examples into them
when the user clicks a link, this is pretty easy to do. Check the demo exampleJQueryAjax.html to
see the following script in action:

jqueryTestAjax.js

$(document) . ready (
 function() {
 $('a.codeExample').each (
 function(i) {
 $(this).after('<pre class="codeExample">➥

 <code></code></pre>');
 }
)
 $('pre.codeExample').hide();
 $('a.codeExample').toggle (
 function() {
 if(!this.old){
 this.old = $(this).html();
 }
 $(this).html('Hide Code');
 parseCode(this);
 },
 function() {
 $(this).html(this.old);
 $(this.nextSibling).hide();
 }

6803.book Page 423 Thursday, June 15, 2006 2:24 PM

424 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

)
 function parseCode(o){
 if(!o.nextSibling.hascode){
 $.get (o.href,
 function(code){
 code=code.replace(/&/mg,'&');
 code=code.replace(/</mg,'<');
 code=code.replace(/>/mg,'>');
 code=code.replace(/\"/mg,'"');
 code=code.replace(/\r?\n/g,'
');
 code=code.replace(/

/g,'
');
 code=code.replace(/ /g,' ');
 o.nextSibling.innerHTML='<code>'+code+'</code>';
 o.nextSibling.hascode=true;
 }
);
 }
 $(o.nextSibling).show();
 }
 }
)

Let’s go through this script step by step:

jqueryTestAjax.js (excerpt)

$(document) . ready (
 function() {

You start once again with the ready() method and an anonymous function (you might as
well create a named function and call it via the ready() method).

jqueryTestAjax.js (continued)

 $('a.codeExample').each (
 function(i) {
 $(this).after('<pre class="codeExample">➥

 <code></code></pre>');
 }
)
 $('pre.codeExample').hide();

6803.book Page 424 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 425

You use one of jQuery’s iterator methods, each(), to loop through all links that have the
CSS class codeExample. You then create PRE elements with the class codeExample and embedded
CODE elements after each of these links via the after() method and the $(this) selector before
hiding all PRE elements with the codeExample class using jQuery’s hide() method.

jqueryTestAjax.js (continued)

 $('a.codeExample').toggle (
 function() {
 if(!this.old){
 this.old = $(this).html();
 }
 $(this).html('Hide Code');
 parseCode(this);
 },
 function() {
 $(this).html(this.old);
 $(this.nextSibling).hide();
 }
)

You use toggle() to show and hide the code examples; however, unlike the last script, you
store the original text of the link in a property called old when you show the code and replace
the link text with “Hide Code”. You then invoke the function parseCode() with the link as a
parameter when you show the code. When you hide the code, you restore the original link text
by setting the link text back to the value stored in the old parameter before hiding the PRE ele-
ment with jQuery’s hide() method.

jqueryTestAjax.js (continued)

 function parseCode(o){
 if(!o.nextSibling.hascode){
 $.get (o.href,
 function(code){

This function tests whether the PRE element following the link (which is its next sibling) has
a property called hascode, which you will set once the code has been loaded for the first time.
This is necessary to avoid the script loading the code every time the user clicks the link, instead
loading it only once. You then use the $.get() method with the link’s href attribute value and
an anonymous function as parameters. This will effectively send an XHR request that loads the
linked document and invokes the function once the document has been loaded. You send a
parameter called code, which will contain the content of the document that was loaded via XHR.

6803.book Page 425 Thursday, June 15, 2006 2:24 PM

426 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

jqueryTestAjax.js (continued)

 code=code.replace(/&/mg, '&');
 code=code.replace(/</mg, '<');
 code=code.replace(/>/mg, '>');
 code=code.replace(/\"/mg, '"');
 code=code.replace(/\r?\n/g, '
');
 code=code.replace(/

/g, '
');
 code=code.replace(/ /g, ' ');
 o.nextSibling.innerHTML = '<code>'+code+'</code>';
 o.nextSibling.hascode = true;

You then use regular expressions to replace all ampersands, tag brackets, and quotation
marks with their numbered HTML entities, line breaks with
, and spaces with their HTML
entity before adding the result inside a CODE element as the innerHTML property of the PRE ele-
ment. You set the hascode property to true to ensure that the next time the user clicks the link
to show the code, the $.get() construct is skipped.

jqueryTestAjax.js (continued)

 }
);
 }
 $(o.nextSibling).show();
 }
 }
)

All that is left to do is to show the PRE element using jQuery’s show() method. Notice that
you need to do that outside the $.get() construct to make sure the code gets shown the second
and consecutive times the user chooses to show the code.

Dangers of jQuery and Other Libraries Using Their Own Syntax
It is amazing how many day-to-day web application and web development tasks you can fulfill
easily and quickly with jQuery. However, if you were to hand this document over to a third-
party developer for maintenance, she’d have to know about jQuery or she would be completely
lost. This is one of the dangers of using libraries. Instead of relying on JavaScript syntax and
rules, you add an extra layer of necessary knowledge to the process. It is up to you to decide
whether the benefits the library offers are worth that.

The other issue is that a lot of code library examples are not unobtrusive, but were made to
show what the library can do. It is very tempting to expect JavaScript to be available when using
and explaining libraries. Make sure you don’t make this mistake. Libraries are there to make

6803.book Page 426 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 427

the development process quicker and easier, not make us dependent on them or repeat mis-
takes we’ve done with libraries in the past already—creating applications and web sites that
don’t work without JavaScript.

Next we’ll look at using the Google Maps API to create mapping applications.

Using an API: Adding a Map to Your Site
with Google Maps
Google Maps (http://maps.google.com) is probably the web application that got the whole
Ajax craze rolling. It provides the user with maps that can be moved around, zoomed, and—the
implementation permitting—even annotated. You can show the location you want to see as
maps, as satellite pictures, or as a mixture of both.

Google allows web developers to use Google Maps on their own web sites by means of an
API. In order to use the API, you need to sign up for a free developer key at its homepage:
http://www.google.com/apis/maps/. Here you will also find the documentation and many
examples of how to use Google maps. The key will enable you to use maps on a single domain
or subfolder in this domain. The examples in this chapter use a key that works with localhost,
which means you need to run them in your local server via http://localhost/ and not from the
file system.

Once you have obtained the developer key, you can link to the JavaScript that contains
all the map’s code in the head of your document. The “your key” in bold should be replaced
with the key you obtained from Google—if you try the example code on a different server than
localhost, you will have to change the key in the example files.

<script src="http://maps.google.com/maps?file=api_
&v=2&key=your key" type="text/javascript">
</script>

■Caution This URL might change in the future, so be sure to check the API homepage should your exam-
ples fail to work out all of a sudden. The part that is likely to change is the v parameter in the URL, which is
the version of the API.

The next step you need to take is to get the latitude and longitude value of the location you
want to display. If you are in the US, you are in luck, as there is a free service that converts addresses
to these values available at http://geocoder.us/. For example, if you want to show the location of
Paramount Studios in Hollywood, California, which is located at 5555 Melrose Avenue, you can get
the data from http://geocoder.us/demo.cgi?address=5555+Melrose+Ave%2C+Hollywood%2C+CA.

6803.book Page 427 Thursday, June 15, 2006 2:24 PM

428 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

The result is

Address
5555 Melrose Ave
Los Angeles CA 90038
Latitude
34.083517 °
N 34 ° 5' 0.7"
Longitude
-118.321951 °
W 118 ° 19' 19.0"

An even easier solution is to use the REST APIs at http://www.localsearchmaps.com
(explained at http://emad.fano.us/blog/?p=277) and http://www.zeesource.net/maps/
geocoding.do. The former returns code that is compatible with the Google Maps API (sadly
enough at the moment outdated code for the old API, but this might have changed by the time
this book comes out), and the latter returns a series of comma-separated lines with the longi-
tude and latitude information—both return worldwide information, not only for the US.

When you have the information, you can start adding your own map to your web site. As
an example for an international location, let’s use my street in the north of London, England.
The coordinates of my street are 51.5623° latitude and –0.0934° longitude. Using this informa-
tion and the methods provided for you by the API, it is easy to show a map of my area.

You start with an HTML element to contain the map. You can add content in this element
that is displayed when JavaScript is not available or the browser isn’t supported. This content
could be any HTML, text, or even a static image of the same map. The latter is a nice option to
ensure backwards compatibility; you just need to ensure not to tell the user anywhere in the
text that the map is dynamic, because it might not be.

exampleGoogleMaps.html (Excerpt)

<div id="map">
 <p>Here you should see an interactive map, but you
 either have scripting disabled or your browser
 is not supported by Google Maps.</p>
</div>

6803.book Page 428 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 429

Make sure that you give that element dimensions in the CSS, as otherwise the map will
behave erratically.

googleMaps.css

#map{
 width:400px;
 height:300px;
 border:1px solid #999;
 margin:1em;
}

To add the map to your HTML document, embed the following script (either inline or in a
SCRIPT element) after you add the main Google Maps code as explained earlier.

googleMaps.js

function addMap() {
 if (GBrowserIsCompatible()) {
 var mapContainer = document.getElementById('map');
 var map = new GMap2(mapContainer);
 var point = new GLatLng(51.5623, -0.0934);
 map.setCenter(point, 13);
 }
}
window.onload = addMap;
window.onunload = GUnload;

The GBrowserIsCompatible() function of the API tests whether the browser can support
Google Maps and returns true if that is the case. You call your own function addMap() when the
document has finished loading and the function GUnload() provided by the API when the win-
dow gets closed (as closing the window triggers the unload event). The latter is necessary
because the maps use a lot of event handling, which might slow down MSIE because of its
memory-leak issues.

■Tip You can learn more about MSIE’s memory leaking and workarounds at http://javascript.
weblogsinc.com/2005/03/07/javascript-memory-leaks/.

6803.book Page 429 Thursday, June 15, 2006 2:24 PM

430 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

You add the map by calling the GMap2() method, which creates a new map object. The
method takes the element to insert the map into as the parameter, in this case the element with
the ID map. You can add as many maps as you want to a document.

You define a new point with the GLatLng() method that takes the latitude and longitude
values as parameters. You then center the map at this point via the setCenter() method, which
takes the point to center the map and the zoom level (1 to 17) as parameters. This is all it takes
to have an interactive map as shown in Figure 11-2 on your page.

Figure 11-2. A plain map with Google Maps

Without the usual controls shown on http://maps.google.com and other dynamic map
web sites (zooming, panning, changing the type of the map), this map could be confusing to
users, as nothing indicates that this is an interactive map rather than a static image. Therefore,
it makes sense to add the controls using the addControl() method of the API.

googleMapsControls.js

function addMap() {
 if (GBrowserIsCompatible()) {
 var mapcontainer = document.getElementById('map');
 var map = new GMap2(mapcontainer);
 map.addControl(new GSmallMapControl());
 map.addControl(new GMapTypeControl());
 map.addControl(new GScaleControl());
 map.addControl(new GOverviewMapControl());
 var point = new GLatLng(51.5623, -0.0934);
 map.setCenter(point, 13);
 }
}
window.onload = addMap;
window.onunload = GUnload;

The addControl() method takes an instance of the control’s object as its sole parameter.
This example adds a GSmallMapControl(), which consists of the arrows that pan the map

6803.book Page 430 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 431

around and the + and – buttons to zoom in and out. The GMapTypeControl() creates the three
buttons to show the map, a satellite photo, or a hybrid—which means a satellite photo with
road names. The GScaleControl() displays the scale of the map on the bottom left next to the
Google logo, and last but not least the GOverviewMapControl() provides the overview rectangle
on the bottom right. The outcome is shown in Figure 11-3.

Figure 11-3. A map with controls

At the time of writing, the overview control invoked by GOverviewMapControl() has one
problem: the API places the control outside the map on the bottom-right corner of the screen.
In order to make the overview appear on the map, you need to apply the following fix:

googleMapsControlsFixed.js

function addMap() {
 if (GBrowserIsCompatible()) {
 var mapContainer = document.getElementById('map');
 var map = new GMap2(mapContainer);
 map.addControl(new GSmallMapControl());
 map.addControl(new GMapTypeControl());
 map.addControl(new GScaleControl());
 map.addControl(new GOverviewMapControl());
 var point = new GLatLng(51.5623, -0.0934);
 map.setCenter(point, 13);
 var overview = document.getElementById('map_overview');
 mapContainer.style.position = 'relative';
 overview.style.position = 'absolute';
 mapContainer.appendChild(overview);
 }
}
window.onload = addMap;
window.onunload = GUnload;

6803.book Page 431 Thursday, June 15, 2006 2:24 PM

432 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

The API creates the overview control element as a <div> with the ID map_overview. It does
that with any map; if the map has the ID myMap, the ID of the overview control would be
myMap_overview. You can use this information to position the control absolutely and the main
map DIV relatively, and append the overview control as a child to mapContainer. This will keep
the control inside the main map.

The map now displays the area that I live in, but you cannot tell where I am. To highlight
points in the map, you can use the GMarker() method, which needs a point as the parameter.
The addOverlay() method of the map adds the marker at the position of the point.

googleMapsMarker.js

function addMap() {
 if (GBrowserIsCompatible()) {
 var mapContainer = document.getElementById('map');
 var map = new GMap2(mapContainer);
 var point = new GLatLng(51.5623, -0.0934);
 map.setCenter(point, 13);
 var marker = new GMarker(point);
 map.addOverlay(marker);
 }
}
window.onload = addMap;
window.onunload = GUnload;

This change shows a red marker icon at the location you define as the point, as shown in
Figure 11-4. You can set as many markers on a map as you want.

Figure 11-4. A map with a marker

The API also allows you to add event handlers to the map and each of its elements. For
example, if you want to show an information window when the user clicks the marker (as
markers are clickable by default), you can use the GEvent.addListener() method. This method
takes the element to add an event, the event, and the function to call as parameters, much like

6803.book Page 432 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 433

addEvent() does. In the function that adds the message, you create a new text node of the doc-
ument and use the openInfoWindow() method of the map with the point and the new text node
as parameters to display the information window as shown in Figure 11-5.

exampleGoogleMapsMarkerEvent.js

function addMap() {
 if (GBrowserIsCompatible()) {
 var mapContainer = document.getElementById('map');
 var map = new GMap2(mapContainer);
 var point = new GLatLng(51.5623, -0.0934);
 map.setCenter(point, 13);
 var marker = new GMarker(point);
 map.addOverlay(marker);
 GEvent.addListener(marker, 'click', addMessage);
 }
 function addMessage() {
 var message = 'This is where Chris lives';
 var msgNode = document.createTextNode(message);
 map.openInfoWindow(point, msgNode);
 }
}
window.onload = addMap;
window.onunload = GUnload;

Figure 11-5. A map with a marker and an information window

■Tip You can use HTML inside the information window, just use the openInfoWindowHtml() method
instead of openInfoWindow().

6803.book Page 433 Thursday, June 15, 2006 2:24 PM

434 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

Another really cool option of Google maps is that you can set the zoom level with the
setZoom() method, and you can move the map center to another location by using the panTo()
method. Furthermore, the openInfoWindowHtml() method allows you to define a function to
call when the user closes the information window, and you don’t need to use your own event
handler for that (technically, this is of course also done with an event handler, but the API does
that for you). The syntax of this functionality is a bit odd: you add a JSON object as the last
parameter to the openInfoWindowHtml() method, that, among others, has a property called
onCloseFn, which has the name of the function that should get called when the user closes the
window as a value.

Let’s use setZoom(), panTo(), and openInfoWindowHtml() with the third parameter to create
an interactive map that opens a window when the user clicks the initial marker, zooms the map
out when he closes that window, moves the map to a different location, and opens another
window there.

googleMapsPan.js

function addMap() {
 if (GBrowserIsCompatible()) {
 var mapContainer = document.getElementById('map');
 var map = new GMap2(mapContainer);
 var home = new GLatLng(51.5623, -0.0934);
 var work = new GLatLng(51.5138, -0.1284);
 var homeMarker = new GMarker(home);
 var workMarker = new GMarker(work);
 var homeMessage = 'This is where Chris lives';
 var workMessage = 'This is where Chris works';
 map.setCenter(home, 13);
 map.addOverlay(homeMarker);
 map.addOverlay(workMarker);
 function addMessage() {
 map.openInfoWindowHtml(home, homeMessage,
 { onCloseFn : goToWork });
 }
 function goToWork() {
 map.setZoom(12);
 map.panTo(work)
 map.openInfoWindowHtml(work, workMessage,
 { onCloseFn : backToHome });
 }
 function backToHome(){
 map.panTo(home)
 map.openInfoWindowHtml(home, homeMessage,
 { onCloseFn : goToWork });
 map.setZoom(13);
 }

6803.book Page 434 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 435

 GEvent.addListener(homeMarker, 'click', addMessage);
 }
}
window.onload = addMap;
window.onunload = GUnload;

The result is shown in Figure 11-6.

Figure 11-6. Panning from one map location to a different one

The example needs to zoom out one level to pan smoothly to the other location. If the
point you give panTo() as a parameter is outside the currently visible map, the API will simply
render a new map with this location as the center. If you keep both start and end point on the
same map, it will animate the map and move there smoothly.

Let’s go through the script step by step:

googleMapsPan.js (excerpt)

function addMap() {
 if (GBrowserIsCompatible()) {
 var mapContainer = document.getElementById('map');
 var map = new GMap2(mapContainer);

You test whether the browser supports Google maps and define mapContainer as the ele-
ment that gets converted into a map. You create a new map by calling the GMap2() constructor
with mapContainer as the parameter.

6803.book Page 435 Thursday, June 15, 2006 2:24 PM

436 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

googleMapsPan.js (continued)

 var home = new GLatLng(51.5623, -0.0934);
 var work = new GLatLng(51.5138, -0.1284);
 var homeMarker = new GMarker(home);
 var workMarker = new GMarker(work);
 var homeMessage = 'This is where Chris lives';
 var workMessage = 'This is where Chris works';

You define two new points using latitude and longitude information retrieved from one
of the services mentioned earlier and define two markers using GMarker(). One is where I live
and the other one is where I work. You define two messages telling the web page visitor what
these points are.

googleMapsPan.js (continued)

 map.setCenter(home, 13);
 map.addOverlay(homeMarker);
 map.addOverlay(workMarker);

You show the map by calling the setCenter() method with the home point and a zoom
level of 13 as parameters. You then use the addOverlay() method to display markers on the
map for each point—home and work.

googleMapsPan.js (continued)

 function addMessage() {
 map.openInfoWindowHtml(home, homeMessage,
 { onCloseFn : goToWork });
 }

Next, you need to define some functions before adding the handlers that will invoke
them—otherwise the API won’t work. The addMessage() function uses the openInfoWindowHtml()
method to show the message that the first marker is where I live when the user clicks the
marker. Notice the difference from the first marker example: this time you need to use
{ onCloseFn : goToWork } as the third parameter to add a handler that will invoke the
goToWork() function when the user closes the message window.

■Note The syntax of this parameter is pretty confusing, and the only reason I can think of for this is the
Google developers wanted the third parameter to be as flexible as possible without having to add another
parameter in the specs. As it is now, it is an object with literal notation, and onCloseFn is one of the possible
properties. There are more, which you can look up in the API documentation at http://www.google.com/
apis/maps/documentation/.

6803.book Page 436 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 437

googleMapsPan.js (continued)

 function goToWork() {
 map.setZoom(12);
 map.panTo(work)
 map.openInfoWindowHtml(work, workMessage,
 { onCloseFn : backToHome });
 }
 function backToHome(){
 map.panTo(home)
 map.openInfoWindowHtml(home, homeMessage,
 { onCloseFn : goToWork });
 map.setZoom(13);
 }

The goToWork() function uses the setZoom() method to set the zoom level of the map to 12
to ensure that both the home and the work marker are on the same visible section of the map.
This makes the API scroll the map smoothly to the other section when you call panTo() with the
work point as the sole parameter. Once the API pans the map to the work location, you show
an information window that invokes backToHome() when the user closes it, again using the third
parameter of openInfoWindowHtml().

The backToHome() function does the same but in reverse. It tells the API to pan the map
back to the home point, open an information window there that invokes goToWork() when the
user closes it, and set the zoom level of the map back to 13.

googleMapsPan.js (continued)

 GEvent.addListener(homeMarker, 'click', addMessage);
 }
}
window.onload = addMap;
window.onunload = GUnload;

This example should get you going and give you a small insight into the world of Google
Maps. The API offers a lot more options, like defining different-looking markers, your own over-
lays, and more methods to play with. The documentation is available at http://www.google.com/
apis/maps/documentation/ and seems to be thoroughly maintained to stay up to date with the
changes in the API.

■Note Maps are hot at the moment, and a lot of developers use Yahoo Maps or Google Maps to create
so-called mashups. These are applications that mix (mash together) several online applications that offer APIs
to create a new one. Examples are maps that show events, current news, or weather conditions at certain loca-
tions. You can find a whole list of mashups of the different map APIs at http://www.programmableweb.com/.

6803.book Page 437 Thursday, June 15, 2006 2:24 PM

438 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

Full Service: The Yahoo Developer Network and
User Interface Library
Yahoo, being one of the oldest Internet content and service providers, has taken an interesting
step by offering the Yahoo Developer Network to web developers. The network homepage is
http://developer.yahoo.com, and there you can find a listing of all Yahoo APIs, RSS feeds,
and REST services. The really interesting approach is that the REST results are also available
in JSON format in many cases, which means that you can embed them as data in a SCRIPT
element without having to use Ajax at all. There is also a JavaScript developer center at
http://developer.yahoo.com/javascript/, which lists services, articles, and code examples
on how to use what Yahoo and its companies can offer you.

The Developer Network also includes design patterns, which supply information on how
to approach a certain web design task and solutions for it, and a library to develop JavaScript-
enhanced web sites and applications from the ground up—including premade CSS for differ-
ent layouts and font-sizing issues. This library is called the Yahoo User Interface Library, or YUI
for short, and you can download it at http://developer.yahoo.com/yui/. In the download zip
file, you can find the library files in the build folder, the documentation in the docs folder, and
examples in the examples folder. The library consists of several components that each have to
be included as their own <script> tags. The components are available either as readable Java-
Script files, for example yahoo.js, or as file-size-optimized versions with file names ending in
-min, for example, yahoo-min.js. The latter have no whitespace and are compacted to result in
much smaller files.

Currently, the library consists of the following components:

• An Animation component to animate and fade elements in and out

• A Connection Manager to create Ajax applications

• A DOM component to reach and change elements and dynamically apply CSS classes

• A Drag & Drop component

• An Event component for event handling

• An Autocomplete control for form fields

• A Calendar control to pick dates for forms

• A Container control that creates scriptable page elements that can be positioned to
cover the current document

• A Menu control to create dynamic menus

• A Slider control

• A Treeview control

Let’s have a go at using some of these to replicate and enhance some of the solutions
already discussed in the other chapters.

6803.book Page 438 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 439

Bouncy Headlines Using YUI
Let’s use the YUI and its components to create a fancier example of clickable headlines. The
demo exampleBouncyHeadlines.html uses the DOM, the Event, and the Animation components
to show and hide the content below the headlines in an animation when the user clicks the
headlines. The animation reveals the content, pushing the rest down the page, smoothly fading
it in from white to the final color. Figure 11-7 shows what this looks like.

Figure 11-7. Smooth animation and fading of content using YUI libraries

At first glance, the script does look rather overwhelming, but it is pretty easy to use the
library scripts once you understand what they do. I will just mention the features here, not all
the options you have, as those would fill a chapter on its own; the YUI documentation will be
kept up to date, and you can read about changes and new options there.

bouncyHeadlines.js

YAHOO.namespace('bh');
bh = {
 triggerClass:'show',
 init : function() {
 var listitems, i, content;
 bh.headings = document.getElementById('headlines');
 if(!bh.headings){ return; }
 listitems = bh.headings.getElementsByTagName('h3');
 for(i = 0; i < listitems.length; i++) {
 content = listitems[i].parentNode.➥

 getElementsByTagName('p')[0];
 content.defaultHeight = content.offsetHeight;
 listitems[i].content=content;
 YAHOO.util.Event.addListener(listitems[i], 'click',➥

 bh.toggle);
 }

6803.book Page 439 Thursday, June 15, 2006 2:24 PM

440 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

 },
 toggle : function() {
 var attributes, anim;
 var c = this.content;
 if(c.shown) {
 attributes = {
 height: { from : c.defaultHeight, to : 0},
 opacity: { from : 1, to : 0 }
 };
 anim = new YAHOO.util.Anim(c, attributes, .6,➥

 YAHOO.util.Easing.easeBoth);
 anim.animate();
 anim.onComplete.subscribe(bh.toggleCustom);
 } else {
 YAHOO.util.Dom.addClass(c, 'shown');
 attributes = {
 height: { from:0, to:c.defaultHeight },
 opacity: { from:0, to:1 }
 };
 anim = new YAHOO.util.Anim(c, attributes, .6,➥

 YAHOO.util.Easing.backOut);
 anim.animate();
 anim.onComplete.subscribe(bh.toggleCustom);
 }
 },
 toggleCustom:function() {
 var c=this.getEl();
 c.shown = c.shown ? false : true;
 },
 hideContents : function() {
 YAHOO.util.Dom.addClass('headlines', 'dynamic');
 }
}
YAHOO.util.Event.onAvailable('headlines', bh.hideContents);
YAHOO.util.Event.addListener(window, 'load', bh.init);

You start with defining a namespace for your main object and the object itself (in this case,
call it bh for bouncy headlines). The namespace definition is optional; however, it provides an
extra level of ensuring your script does not interfere with others and that it was built upon the
YUI and may be part of a larger application at a later stage. You define a property called
triggerClass, which is the class to show the news item once the user clicks the headline.

6803.book Page 440 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 441

bouncyHeadlines.js (excerpt)

YAHOO.namespace('bh');
bh = {
 triggerClass:'show',

You start the initialization method init() by defining the variables listitems, i, and
content and store the element with the ID headlines in the property headings of the main
object bh. If there is no element with the ID headlines, you stop the rest of the script from exe-
cuting using return; otherwise you define listitems as the array of all H3 elements inside the
element with the ID headlines.

bouncyHeadlines.js (continued)

 init : function() {
 var listitems, i, content;
 bh.headings = document.getElementById('headlines');
 if(!bh.headings){ return; }
 listitems = bh.headings.getElementsByTagName('h3');

You loop through all the list items and define content as the first paragraph element inside
the parent node of the current headline. You read out the height of the paragraph by reading
out the offsetHeight property and store it in a new property of the paragraph element called
defaultHeight. This is necessary to tell the animation method later on how high the paragraph
was initially and what to set it to at the end of the animation. You store the paragraph as a new
property called content to the list item, to make it easy to retrieve it in other methods, and add
an event that triggers the listener method toggle() when the user clicks the headline.

bouncyHeadlines.js (continued)

 for(i = 0; i < listitems.length; i++) {
 content = listitems[i].parentNode.➥

 getElementsByTagName('p')[0];
 content.defaultHeight = content.offsetHeight;
 listitems[i].content=content;
 YAHOO.util.Event.addListener(listitems[i], 'click',➥

 bh.toggle);
 }
 },

In the toggle() method, you’ll see why the addListener() method of the YUI is great. Instead
of having to use the event object e, retrieving the element that was activated via getTarget() and
hacking around browser issues, all you need to retrieve the object that triggered the event is the
this keyword, as YUI’s addListener() sets this one for you automatically, which is one of the
things that Scott Andrew LePera’s addListener() function fails to do. You define the variables
attributes and anim and retrieve the paragraph to animate via this.content—as this returns the

6803.book Page 441 Thursday, June 15, 2006 2:24 PM

442 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

headline that was clicked, and you store the paragraph in a property called content. You read out
the property shown of the paragraph—which will indicate whether the paragraph is visible or
not—and if the property is not set, you add the CSS class shown to the paragraph to make it visible.
Adding and removing classes is achievable via the addClass() method of the DOM utilities inside
the YUI, which takes the element and the class name as arguments.

bouncyHeadlines.js (continued)

 toggle : function() {
 var attributes, anim;
 var c = this.content;
 if(!c.shown) {
 YAHOO.util.Dom.addClass(c, 'shown');

You can then start animating the paragraph. Animating an object with the YUI is dead
easy: you set the attributes of the animation as a JSON object with each attribute having either
a from and to property or a by property. The former animates the object from one state to the
other, and the latter animates the object by a certain amount (in case you just want to change
it instead of having a fixed start and end value). In this example, you’ll animate the height of the
paragraph from 0 to the original height and the opacity from 0 to 1, effectively making the par-
agraph show line by line and getting darker as it does so. You retrieve the end value of the
height animation by reading out the defaultHeight property of the paragraph you defined in
the init() method earlier.

bouncyHeadlines.js (continued)

 attributes = {
 height: { from : 0, to : c.defaultHeight },
 opacity: { from:0, to:1 }
 };

Once you’ve set the attributes, you can invoke a new animation object via the Anim() utility
method of the YUI. This method takes four parameters—the object to animate, the animation
attributes (that you just defined), the duration of the animation (in this case 600 milliseconds),
and the method to provide the values needed to animate the object. The latter could be several
properties of the Easing utility of the YUI, which provides values that ensure a smooth anima-
tion. Animating objects on a screen does not only mean increasing a variable from a start value
to an end value; if you start an animation slowly and get faster in your iterations or start faster
and slow down towards the end, it will look a lot smoother and more natural. Calculating these
transitions and making sure they work smoothly with different monitors and computers can be
tricky work, and the YUI developers have done that for you already. The Easing utility has sev-
eral objects that contain these values:

• easeIn, easeOut, and easeBoth, which begin slower, end slower, or both respectively

• backIn backOut, and backBoth, which begin below the start value or above the end value
and return to the correct values smoothly

6803.book Page 442 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 443

To show the paragraph, you can use backOut to make it appear smoothly, show some extra
pixel lines below it, and snap back to the right height until the real value is reached. You start the
animation by invoking the animate() method of the animation object (in this case anim). The anim
object also has an onComplete event that you can subscribe to via onComplete.subscribe() and
tell it to invoke the toggleCustom() method when the animation reached the final values.

bouncyHeadlines.js (continued)

 anim = new YAHOO.util.Anim(c, attributes, .6,➥

 YAHOO.util.Easing.backOut);
 anim.animate();
 anim.onComplete.subscribe(bh.toggleCustom);

If the paragraph is already visible (indicated by the shown property being set), you ani-
mate it the other way around. You start at an opacity value of 1 and at a paragraph height of
defaultHeight and decrease both until they reach 0. Instead of backOut, use easeBoth to make
the disappearance of the paragraph less jumpy.

bouncyHeadlines.js (continued)

 } else {
 attributes = {
 height: { from : c.defaultHeight, to : 0},
 opacity: { from : 1, to : 0 }
 };
 anim = new YAHOO.util.Anim(c, attributes, .6,➥

 YAHOO.util.Easing.easeBoth);
 anim.animate();
 anim.onComplete.subscribe(bh.toggleCustom);
 }
 },

The toggleCustom() event listener method needs to retrieve the element that was ani-
mated (the paragraph) and toggle its shown property. As the onComplete.subscribe() method
runs within the scope of the animation object you created as a new instance using the
YAHOO.util.Anim() constructor, you can retrieve the object and all its properties and methods
using the this keyword. This means you can retrieve the element using the getEl() method,
which is part of every animation object that was created with the YUI Anim() method.

bouncyHeadlines.js (continued)

 toggleCustom:function() {
 var c=this.getEl();
 c.shown = c.shown ? false : true;
 },

6803.book Page 443 Thursday, June 15, 2006 2:24 PM

444 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

The last thing your script needs is a method that initially hides all the paragraphs and calls
the init() method. You hide the paragraphs by adding a new CSS class to the headlines ele-
ment using addClass().

bouncyHeadlines.js (continued)

 hideContents : function() {
 YAHOO.util.Dom.addClass('headlines', 'dynamic');
 bh.init();
 }
}

Instead of calling the hideContents() method to initially hide the paragraphs using a
normal load event on the window, the YUI has another trick up its sleeve: the onAvailable()
method, which tries to reach the element with the ID you provide as a property before the win-
dow has finished loading and calls the function provided as a second parameter once the
element is available. The practical upshot of this is that you can hide the paragraphs without
having to resort to hacks like inline CSS as discussed in Chapter 5.

bouncyHeadlines.js (continued)

YAHOO.util.Event.onAvailable('headlines', bh.hideContents);

I hope that this example has given you a quick overview of the power of the DOM, Event,
and Animation components of the YUI. Each has its own examples and full documentation in
the zip file you download from the homepage and are well worth trying out and amending
yourself.

Replacing Pop-Up Windows Using the YUI Connection Manager
and Container Components
Let’s take a look at two more components of the YUI library: Connection Manager, which deals
with Ajax calls, and Container, which allows for modular windows and elements that cover the
page. The Connection Manager is a very powerful part of the YUI as it allows you to create Ajax
requests in a really easy syntax:

• You define a handler object that has two properties, success and failure, both of which
point the Ajax request to functions provided as the property values.

• You define the functions to respond to these handlers, and you can use all the response
data of an XHR call like you’ve seen in Chapter 8.

• You instantiate the XHR with the YAHOO.util.Connect.asyncRequest() method, which
takes the request method, the URL, and the handler object as parameters.

6803.book Page 444 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 445

The following short example loads the file demotext.html when the window has finished
loading:

exampleXUIAjax.html (excerpt)

var handlers = {
 success: success,
 failure: failure
}
function success(t) {
 alert(t.responseText);
}
function failure(t) {
 alert('There was an error: ' + t.statusText);
}
window.onload = function() {
 call = YAHOO.util.Connect.asyncRequest('GET', 'demotext.html',➥

 handlers);
}

You can monitor the connection’s status via the YAHOO.util.Connect.isCallInProgress()
method, which returns true when the call is still in progress. If you want to time out a connec-
tion after a certain number of seconds, you could use the YAHOO.util.Connect.abort() method
together with a window.timeOut(). Both the isCallInProgress() and the abort() methods take
the variable name of the connection (in the preceding example call) as a parameter.

The Container tools allow you to create dynamic elements that have a certain relationship
to the current document. You can create modules, which are scriptable page elements; over-
lays, which cover the document; tooltips, which appear when you hover over an element;
panels, which can be moved around by the user like a new browser window; and dialogs, which
replace the window methods alert(), confirm(), or prompt() or even allow for their own forms
to cover the document. The really amazing feature of Container is that it fixes a lot of problems
you encounter when you try to hand-roll your own dialogs or panels:

• You can center the modules automatically on the currently visible part of the browser.

• The user can move the modules around by dragging the header of the panel, but you can
prevent her from shifting the panel outside the currently visible document section.

• You can apply effects to make the panel appear and disappear smoothly.

• You can apply drop shadows to the panels.

• You can apply a fix to prevent form elements in the document from being visible
although the element covers them. This is a very common problem with overlay ele-
ments in MSIE.

6803.book Page 445 Thursday, June 15, 2006 2:24 PM

446 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

Let’s take both library components and some DOM trickery to simulate a browser pop-up
window that resides in the same document, loads and displays a document via Ajax, and allows
the user to move it around and close it. Figure 11-8 shows the result.

Figure 11-8. Simulating a pop-up window with YUI library components

As this is a rather top-of-the-difficulty-stage exercise, you need to include almost all com-
ponents of the library in the HTML document:

examplePopUpReplace.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<html dir="ltr" lang="en">
<head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=utf-8">
 <title>Example: Using YUI to replace pop-up windows</title>
 <script type="text/javascript" src="yahoo-min.js"></script>
 <script type="text/javascript" src="event-min.js"></script>
 <script type="text/javascript" src="dom-min.js"></script>
 <script type="text/javascript" src="dragdrop-min.js"></script>
 <script type="text/javascript" src="container-min.js"></script>
 <script type="text/javascript" src="connection-min.js"></script>
 <script type="text/javascript" src="animation-min.js"></script>
 <script type="text/javascript" src="popUpReplace.js"></script>
 <style type="text/css">
 @import 'reset-min.css';
 @import 'fonts-min.css';
 @import 'popUpReplace.css';
 </style>
</head>

6803.book Page 446 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 447

<body>
 <a href="demotext.html"
 onclick="makeRequest(this);return false">Load Demo Text
 <div id="win">
 <div class="hd"></div>
 <div class="bd"></div>
 </div>
</body>
</html>

Notice that this example is not really unobtrusive: you are using an inline onclick handler
and creating HTML that is scripting dependent—the <div> with the ID of win will become your
simulated pop-up. You could create these easily via the DOM and the Event library compo-
nents, but let’s concentrate on using Connection Manager and Container now. The onclick
handler sends the link as a parameter to the function makeRequest(), which reads out the link’s
href attribute and starts a new Ajax request with the handleSuccess() and handleFailure()
functions as event handlers.

examplePopUpReplace.js

function makeRequest(o) {
 var sUrl = o.href;
 var request = YAHOO.util.Connect.asyncRequest('GET', sUrl,
 {
 success : handleSuccess,
 failure : handleFailure
 }
);
}

The handleSuccess() method retrieves the content of the linked document and checks
whether the responseText is not undefined before creating the simulated pop-up with a new
instance of the YAHOO.widget.Panel() constructor method. This method takes two parameters:
the ID of the element that should be turned into a panel, and the panel attributes as a JSON
object. The ID of the panel is win in this case.

examplePopUpReplace.js (continued)

function handleSuccess(o) {
 if(o.responseText !== undefined) {
 panel = new YAHOO.widget.Panel (
 "win",

There is an amazing number of properties a panel can have, and they are all listed in the
documentation at http://developer.yahoo.com/yui/container/panel/#config. In this exam-
ple, let’s choose an effect to fade the panel in and out smoothly and set the effect duration to
half a second. The constraintoviewport property defines whether the user should be allowed

6803.book Page 447 Thursday, June 15, 2006 2:24 PM

448 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

to drag the panel outside the currently visible browser section or not. Setting it to true ensures
that there won’t be any ugly scrollbars when the user drags the panel too far to the right or
down. The Panel() method automatically allows the user to drag the panel around when you
set draggable to true and creates a link to hide the panel when you set close to true. As you’ll
be changing the content of the panel, it is a good idea to hide it by setting the visible property
to false. When you defined all the parameters, you can invoke the render() method of the new
panel to create all the necessary HTML elements and apply all the event handlers.

examplePopUpReplace.js (continued)

 {
 effect : {
 effect : YAHOO.widget.ContainerEffect.FADE,
 duration : 0.5
 },
 constraintoviewport : true,
 close : true,
 visible : false,
 draggable : true
 }
);
 panel.render();

The parameter o that the function handleSuccess() retrieved from the Ajax call contains all
the connection data, and you can retrieve the text content of the document that was loaded via
o.responseText. Before you can use this data to populate the simulated pop-up panel, you
need to clean it out, as you only need the title information for the panel’s title bar and the body
content for the content. Everything else, from DOCTYPE to styles and script blocks, has to go. You
could use regular expressions for that, but there is another way. First of all, you need to replace
the BODY element in the text with a <div> with an ID of popupbody. This is necessary because set-
ting the data as it is as innerHTML to an element would remove the BODY element—since there
can be only one BODY in a browser window. To replace the BODY element with the <div>, you use
regular expressions.

examplePopUpReplace.js (continued)

 var content = o.responseText;
 content = content.replace(/<body>/, ➥

 '<div id="popupbody">');
 content = content.replace(/<\/body>/, '</div>');

You next retrieve the second <div> inside the element with an ID of win (which is the panel
body) and set its innerHTML property to the changed content. Then you can easily retrieve the
title via getElementsByTagName() and the body content via getElementById().

examplePopUpReplace.js (continued)

 var win = document.getElementById('win');
 var windowbody = win.getElementsByTagName('div')[1];

6803.book Page 448 Thursday, June 15, 2006 2:24 PM

C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T 449

 windowbody.innerHTML=content;
 var title = win.getElementsByTagName('title')[0].innerHTML;
 var body = document.getElementById('popupbody').innerHTML;

You set the panel’s body and header content using the setBody() and setHeader() meth-
ods (the former conveniently overrides the rest of the content you don’t need) and show the
panel by invoking the show() method.

examplePopUpReplace.js (continued)

 panel.setBody(body);
 panel.setHeader(title);
 panel.show();
 }
}

All that is left to do is to define the handleFailure() method that tells the user when the
linked document could not be loaded.

examplePopUpReplace.js (continued)

function handleFailure(o){
 if(o.responseText !== undefined) {
 alert('Couldn\'t load the content: ' + o.statusText);
 }
}

Yahoo User Interface Library Summary
The YUI is a really interesting library to use, especially because it offers much more than just a
lot of methods that make your life easier like other libraries do, as it tries to give a lot of docu-
mentation and examples and also CSS layout and typography resources to quickly put together
a JavaScript-enhanced web site or web application that works with all modern browsers.

The number of people involved in the library and the discussions on the mailing list are sure
to make the library even better over time and make testing new components a lot easier. Right
now the library is still young, and the documentation is daunting at times, but it is pretty easy to
ask a question on the mailing list, and many developers are eager to help you out—in more prob-
lematic cases or when you have a request or an idea to extend the library, you will also quite
surely find a Yahoo web developer dealing with the library to answer you—probably in the future
even me. In comparison with other libraries, especially jQuery, you need to produce a lot more
code in YUI to achieve several effects; however, what YUI does is keep the syntax to JavaScript
standards and does not change the way you do loops or iterations. At first sight, YUI-driven code
can look very complex, and the number of YAHOO.something.somethingElse statements can be
confusing. The longer you work with it, the easier it becomes on the eye, and you start appreciat-
ing the way methods and properties are named according to what they do or what part of the
library they belong to.

6803.book Page 449 Thursday, June 15, 2006 2:24 PM

450 C H A P T E R 1 1 ■ U S I N G T H I R D - P A R T Y J A V A S C R I P T

Summary
I hope this chapter has given you a taste of what is out there at the moment, and I am sure that
this is simply the beginning of a longer experience of shared content, information, and ser-
vices. Many developers spend a lot of time creating wonderful code just to realize that there is
already another product out there that does exactly the same, but better; however, that is not
much of a problem—it is through communication and trial and error that we become better in
what we do.

You can learn a lot and help the community a great deal by keeping your eyes open and
looking at the services available out there, especially giving feedback from your point of view as
to how easy some services or libraries are to use. It is far too tempting to consider one’s own
code perfect, and it is sometimes not until someone else shows you how to break it that you
realize it’s not. This works both ways. And you shouldn’t be put off by your shortcomings—
keep at it, and you will get better. Don’t be shy—keep participating in the JavaScript
community.

6803.book Page 450 Thursday, June 15, 2006 2:24 PM

451

■ ■ ■

A P P E N D I X

Debugging JavaScript

In this appendix, I will introduce you to some tricks and tools to debug your JavaScript code.
It is very important to get acquainted with debugging tools, as programming consists to a large
extent of trying to find out what went wrong a particular time. Some browsers help you with
this problem; others make it harder by having their debugging tools hidden away or returning
cryptic error messages that confuse more than they help. Some of my favorites include philo-
sophical works like “Undefined is not defined” or the MSIE standard “Object doesn’t support
this property or method.”

Common JavaScript Mistakes
Let’s start with some common mistakes that probably every JavaScript developer has made
during his career. Having these in the back of your head when you check a failing script might
make it a lot quicker to spot the problem.

Misspellings and Case-Sensitivity Issues
The easiest mistakes to spot are misspellings of JavaScript method names or properties. Clas-
sics include getElementByTagName() instead of getElementsByTagName(), getElementByID()
instead of getElementById() and node.style.colour (for the British English writers). A lot of
times the problem could also be case sensitivity, for example, writing keywords in mixed case
instead of lowercase.

If(elm.href) {
 var url = elm.href;
}

There is no keyword called If, but there is one called if. The same problem of case sensi-
tivity applies to variable names:

var FamilyGuy = 'Peter';
var FamilyGuyWife = 'Lois';
alert('The Griffins:\n'+
 familyGuy + ' and ' +
 FamilyGuyWife);

This will result in an error message stating “familyGuy is not defined”, as there is a variable
called FamilyGuy but none called familyGuy.

6803.book Page 451 Thursday, June 15, 2006 2:24 PM

452 A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T

Trying to Access Undefined Variables
We talked about it in the first chapter of the book—you define variables either by declaring
them with or without an additional var keyword (the latter is necessary to define the scope of
the variable).

Stewie = "Son of Peter and Lois";
var Chris = "Older Son of Peter and Lois";

If you try to access a variable that hasn’t been defined yet, you’ll get an error. The alert()
in the following script throws an error as Meg is not defined yet.

Peter = "The Family Guy";
Lois = "The Family Guy's Wife";
Brian = "The Dog";
Stewie = "Son of Peter and Lois";
Chris = "Older Son of Peter and Lois";
alert(Meg);
Meg = "The Daughter of Peter and Lois";

This is easy when it is an obvious example like this one, but how about trying to guess
where the bug in the following example is?

exampleFamilies.html

function getFamilyData(outptID, isTree, familyName) {
 var father, mother, child;
 switch(familyName) {
 case 'Griffin':
 father = "Peter";
 mother = "Lois";
 child = "Chris";
 break;
 case 'Flintstone':
 father = "Fred";
 mother = "Wilma";
 child = "Pebbles";
 break;
 }
 var out = document.getElementById(outputID);
 if(isTree) {
 var newUL = document.createElement('ul');
 newUL.appendChild(makeLI(father));
 newUL.appendChild(makeLI(mother));
 newUL.appendChild(makeLI(child));
 out.appendChild(newUL);

6803.book Page 452 Thursday, June 15, 2006 2:24 PM

A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T 453

 } else {
 var str = father + ' ' + mother + ' ' + child;
 out.appendChild(document.createTextNode(str));
 }
}
getFamilyData('tree', true, 'Griffin');

Microsoft Internet Explorer tells you that there is an error in line 23—“‘outputID’ is unde-
fined,” as shown in Figure A-1.

Figure A-1. MSIE showing an error on line 23

However, if you look at the code in line 23 as shown in Figure A-2, nothing seems to
be wrong.

Figure A-2. The code shown in UltraEdit with a highlight on line 23

The culprit is a typo in the function parameter, highlighted in Figure A-3, which means
that outputID is not defined but outptID is.

6803.book Page 453 Thursday, June 15, 2006 2:24 PM

454 A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T

Figure A-3. The misspelled function parameter that caused the error

Typos in parameters are a very confusing bug, as browsers tell you the error occurred in
the line where the variable is used and not where you made the mistake.

Incorrect Number of Closing Braces and Parentheses
Another very common mistake is not closing curly braces or keeping an orphaned closing
brace in the code when deleting some lines. Say, for example, you don’t need the isTree option
any longer and you remove it from the code:

exampleCurly.html

function getFamilyData(outputID, familyName) {
 var father, mother, child;
 switch(familyName) {
 case 'Griffin':
 father = "Peter";
 mother = "Lois";
 child = "Chris";
 break;
 case 'Flintstone':
 father = "Fred";
 mother = "Wilma";
 child = "Pebbles";
 break;
 }
 var out = document.getElementById(outputID);
 var newUL = document.createElement('ul');
 newUL.appendChild(makeListElement(father));
 newUL.appendChild(makeListElement(mother));
 newUL.appendChild(makeListElement(child));

6803.book Page 454 Thursday, June 15, 2006 2:24 PM

A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T 455

 out.appendChild(newUL);
 }
}
getFamilyData('tree', true, 'Griffin');

The orphan closing brace shown in bold will cause a “syntax error in line 30.” The same
problem occurs when you don’t close all the braces in a construct, a mistake that can easily
happen when you don’t indent your code:

exampleMissingCurly.html

function testRange(x, start, end) {
if(x <= end && x >= start) {
if(x == start) {
alert(x + ' is the start of the range');
}
if(x == end) {
alert(x + ' is the end of the range');
}
if(x! = start && x != end) {
alert(x + ' is in the range');
} else {
alert(x + ' is not in the range');
}
}

Running this example will cause an “expected ‘}’ in line 27” error, which is the last line of
the script block. This means that somewhere inside the conditional construct we forgot to add
a closing curly brace. Where the missing brace is supposed to be is rather hard to find, but a lot
easier when the code is properly indented.

exampleMissingCurlyFixed.html

function testRange(x, start, end) {
 if(x <= end && x >= start) {
 if(x == start) {
 alert(x + ' is the start of the range');
 }
 if(x == end) {
 alert(x + ' is the end of the range');
 }
 if(x != start && x != end) {
 alert(x + ' is in the range');
 }
 } else {
 alert(x + ' is not in the range');
 }
}

6803.book Page 455 Thursday, June 15, 2006 2:24 PM

456 A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T

The previously missing curly brace is shown in bold (following the “is in the range” alert()
message).

Not closing or closing too many parentheses is another common problem. This happens
when you nest functions in if() conditions and later on delete some of them. For example:

if (all = parseInt(getTotal()){ doStuff(); }

This causes an error, as you forgot to close the parentheses of the condition itself.

if (all = parseInt(getTotal())){ ... }

It can also happen when you nest too many methods and returns:

var elm=grab(get(file).match(/<id>(\w+)<\/id>/)[1];

This one lacks the closing parentheses after the [1]:

var elm=grab(get(file).match(/<id>(\w+)<\/id>/)[1]);

In general, this kind of concatenation of functions is not good coding style, but there are
situations where you will encounter examples like this one. The trick is to count the opening
and the closing parentheses from left to right—good editors also highlight opening and closing
parentheses automatically.

You could also write a utility function to do this for you, which in itself is a test of your
attention to detail when it comes to coding syntax:

exampleTestingCodeLine.html

function testCodeLine(c) {
 if(c.match(/\(/g).length !=
 c.match(/\)/g) .length) {
 alert('closing) missing');
 }
}
c = "var elm=grab(get('demo.xml')" +
 ".match(/<id>(\w+)<\/id>/)[1]);";
testCodeLine(c);

Concatenation Gone Wrong
Concatenation is happening a lot when you use JavaScript to output HTML. Make sure that
you don’t forget the + signs in between the different parts to concatenate to a whole.

father = "Peter";
mother = "Lois";
child = "Chris";
family = father+" "+mother+" "child;

6803.book Page 456 Thursday, June 15, 2006 2:24 PM

A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T 457

The preceding lacks one addition sign before the child variable:

father = "Peter";
mother = "Lois";
child = "Chris";
family = father+" "+mother+" "+child;

Another obstacle is to make sure you don’t concatenate the wrong data types.

father = "Peter";
fAge = 40;
mother = "Lois";
mAge = 38;
child = "Chris";
cAge = 12;
family = father + ", " + mother +
 " and " + child + " Total Age: " +
 fAge + mAge + cAge;
alert(family);

This will not show the desired result, but this instead:

Peter, Lois and Chris Total Age: 403812

The mistake is that you concatenate strings and numbers as the + operator works from left
to right. You need to add parentheses around the age term:

father = "Peter";
fAge = 40;
mother = "Lois";
mAge = 38;
child = "Chris";
cAge = 12;
family = father + ", " + mother +
 " and " + child + " Total Age: " +
 (fAge + mAge + cAge);
alert(family);

This results in the desired outcome:

Peter, Lois and Chris Total Age: 90

6803.book Page 457 Thursday, June 15, 2006 2:24 PM

458 A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T

Assigning Instead of Testing the Value of a Variable
When testing the value of a variable, it is all too easy to assign it instead of testing it: all you need
to do is forget an equal sign.

if(Stewie = "talking") {
 Brian.hear();
}

This will entice Brian to hear all the time, not only when Stewie has something to say;
however, adding one equal sign does make Brian hear only when Stewie talks:

if(Stewie == "talking") {
 Brian.hear();
}

Tracing Errors with alert() and
“Console” Elements
The easiest way to trace errors is to use alert() wherever you want to test a certain value. The
alert() method will stop the script execution (with the exception of Ajax calls that might still be
going on in the background) and provide you with information about the value of a certain vari-
able, and you can deduce if that value is correct or if it is the cause of the error. In some instances,
using an alert() is not the right option, for example, if you want to trace the change of several
values while looping through an array. Depending on the size of the array, this can become
tedious, as you need to press Enter every time you want to get rid of the alert() and commence
to the next array item. A workaround for this problem is coming up with your own debugging
console or logging elements. Most JavaScript libraries come with a logging sublibrary (DOJO has
dojo.logging, at http://manual.dojotoolkit.org/index.html#infrastructure; Mochikit has Log-
ging, at http://mochikit.com/doc/html/MochiKit/Logging.html), and the DOMhelp library we
put together in this book is no exception. You can use the initDebug(), setDebug(), and
stopDebug() methods to simulate a debugging console. Simply add a style for the element with
the ID DOMhelpdebug and use the methods to show the element and write content to it. For
example:

exampleDebugTest.html (excerpt)

#DOMhelpdebug{
 position:absolute;
 top:0;
 right:0;
 width:300px;
 height:200px;
 overflow:scroll;
 background:#000;
 color:#0F9;
 white-space:pre;
 font-family:courier,monospace;

6803.book Page 458 Thursday, June 15, 2006 2:24 PM

A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T 459

 padding:1em;
}
html>body #DOMhelpdebug{
 position:fixed;
 min-height:200px;
 height:200px;
 overflow:auto;
}

exampleDebugTest.html (excerpt)

<script type="text/javascript"
 src="../DOMhelp.js"></script>
<script type="text/javascript">
 function DOMDebugTest(){
 DOMhelp.initDebug();
 for(var i = 0; i < 300; i++) {
 DOMhelp.setDebug(i + ' : ' + (i % 3 == 0) + '\n');
 }
 }
 DOMhelp.addEvent(window, 'load', DOMDebugTest, false);
</script>

This example loops through the numbers 0 to 299 and displays whether the number can
be divided by 3 without resulting in a floating point number. Instead of hitting Enter 300 times,
all you need to do to see the results is to scroll in the “console window” you created with the
earlier styles.

Error Handling with try and catch()
You can test scripts using the try ... catch construct. Simply add the code you want to test
inside a try condition and if there is an error, the code inside catch() will be executed. For
example:

exampleTryCatch.js

try{
 alert('this is a code example');
 alert(myVariable);
} catch(exceptionObject) {
 // Predefine empty output
 var errorString = '';
 for(i in exceptionObject) {
 errorString += i + ':' + exceptionObject[i] + '\n';
 }
 alert(errorString);
}

6803.book Page 459 Thursday, June 15, 2006 2:24 PM

460 A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T

The catch() method retrieves an Exception object as a parameter when an error occurs
inside the try statement. You can give this object any variable name; in this example we call
it exceptionObject. Depending on the error and the browser, this object will have different
properties, and the properties that are the same across browsers will have different values. On
MSIE 6 on Windows XP, the preceding code shows the bug—which is the second alert() trying
to display an undefined variable—the following way:

name:TypeError
message:'myVariable' is undefined
number:-2146823279
description:'myVariable' is undefined

On Firefox 1.5.0.3 on Windows XP:

message:myVariable is not defined
fileName:file:///c:/exampleTryCatch.html
lineNumber:11
stack:@file:///c:/exampleTryCatch.html:11
name:ReferenceError

On Opera 8.54 on Windows XP:

message:Statement on line 4: Reference to undefined variable: myVariable
Backtrace:
 Line 4 of inline#1 script in
 file://localhost/C:/exampleTryCatch.html
 alert(myVariable);
opera#sourceloc:4

If you try a different error, you will get the same properties, but different values. Let’s try to
call a function that doesn’t exist by misspelling alert().

6803.book Page 460 Thursday, June 15, 2006 2:24 PM

A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T 461

exampleTryCatchTypo.js

try{
 allert('this is a code example');
}
catch(exceptionObject) {
 var errorString = '';
 for(i in exceptionObject) {
 errorString += i + ':' + exceptionObject[i] + '\n';
 }
 alert(errorString);
}

The results on MSIE 6 are the following:

name:TypeError
message:Object expected
number:-2146823281
description:Object expected

On Firefox 1.5.0.3:

message:allert is not defined
fileName:file:///c:/exampleTryCatchTypo.html
lineNumber:10
stack:@file:///c:/exampleTryCatchTypo.html:10
name:ReferenceError

On Opera 8.54:

message:Statement on line 3: Reference to undefined variable: allert
Backtrace:
Line 3 of inline#1 script in
file://localhost/C://exampleTryCatchTypo.html
allert("this is a code example");
opera#sourceloc:3

6803.book Page 461 Thursday, June 15, 2006 2:24 PM

462 A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T

Using try and catch in a debugging process can be very helpful, and depending on the
browser, you can easily spot the problem.

■Note Notice that Opera reports the line number of the code inside the SCRIPT element, while Firefox
reports the line number of the whole HTML document. MSIE leaves you in suspense where the error might
have occurred when using try and catch().

However, as the construct in itself is JavaScript, you cannot debug JavaScript syntax errors
with it:

exampleTryCatchFailing.js

try{
 alert('this is a code example'));
} catch(exceptionObject) {
 var errorString = '';
 for(i in exceptionObject) {
 errorString += i + ':' + exceptionObject[i] + '\n';
 }
 alert(errorString);
}

The extra closing parenthesis after the first alert() is a syntax error that will cause the
browser to show its built-in error messaging and stop the script from executing instead of exe-
cuting the code inside the catch construct.

Sequential Uncommenting
Another very easy way to trace an error is to comment out the whole script and uncomment it
function by function or—if it is a single function—line by line. Test the script every time you
uncomment a line by reloading it in a browser, and you will quickly get to the one that causes
the error. This can take time though, and it would be much easier to know roughly where the
error occurs, which is why you need to rely on your browser to give you this information.

6803.book Page 462 Thursday, June 15, 2006 2:24 PM

A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T 463

Error Reporting in Browsers
Browsers help you to different degrees to debug your code. Following is a roundup of different
browsers and their means of displaying errors and locating their origin. As I wanted to give an
overview of different browsers you can use, I will not go into much further detail about the dif-
ferent add-ons for each of them. Instead, I will provide you with some information and URLs
where to get these add-ons and to read their documentation for yourself. The reason for this is
not laziness on my behalf, but the fact that the number of browser add-ons and debugging
tools for JavaScript increased a lot in the last year, with the advent of Ajax making JavaScript
interesting again to a broader audience. Therefore, detailed explanations of a certain tool
might be outdated once this book hits the shops.

Microsoft Internet Explorer 6
MSIE6 is probably still the most common browser on Windows these days. If you’re a developer,
though, it doesn’t help you much—most of the time it throws errors other browsers don’t.

Older versions of MSIE (4 and 5 on PC) showed a report window every time a JavaScript
error occurred. This feature has been turned off in newer versions; you can turn it back on
in the Browsing section of the Advanced tab under Tools ➤ Internet Options as shown in
Figure A-4.

Figure A-4. Turning on error reporting in Microsoft Internet Explorer

6803.book Page 463 Thursday, June 15, 2006 2:24 PM

464 A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T

As the error messages provided by MSIE can be rather cryptic, like “Object does not sup-
port this method or property,” and if MSIE is your only option for development, you might
want to download the free Microsoft script debugger at http://www.microsoft.com/downloads/
details.aspx?familyid=2F465BE0-94FD-4569-B3C4-DFFDF19CCD99&displaylang=en. The
Microsoft Script Debugger is a debugging suite that allows you to set break points that stop the
script execution until you tell it to go on. You can also use it to read the values of variables and
change them while the script is running. All of this works outside the browser, which means
you don’t need to resort to the tricks mentioned earlier like alert(), own debugging consoles,
or sequentially comment out of parts of code. An introduction to the Microsoft Script Debug-
ger is available at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
sdbug/Html/sdbug_1.asp.

Safari
Apple’s flagship browser seemingly does not help you at all with JavaScript debugging. I said
“seemingly” because there is a debugging menu in Safari that is very handy; the only problem
is that it is hidden by default.

Enabling the debugging menu can be done in two ways: either via the command line or by
installing the Safari enhancer. The command-line solution is pretty straightforward.

1. Close Safari.

2. Enter % defaults write com.apple.Safari IncludeDebugMenu 1 in the Operating
System console (Applications ➤ Utilities ➤ Console) and hit Enter.

3. Restart Safari.

You’ll see that you have a new Debug menu option in the top menubar as shown in
Figure A-5. Among many other useful features like a DOM tree viewer and the chance to simu-
late other browsers for web sites that block out Safari, you have the options either to log
JavaScript errors to the OS console or to show errors in a JavaScript console window.

If you prefer a graphical user interface to change Safari, download the Safari enhancer
shown in Figure A-6 at http://www.versiontracker.com/dyn/moreinfo/macosx/17776 and tick
the box that states Activate Debugging Menu before pressing the Apply All Settings button.

6803.book Page 464 Thursday, June 15, 2006 2:24 PM

A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T 465

Figure A-5. The debugging menu of Safari

Figure A-6. Enabling the debugging menu with Safari Enhancer

6803.book Page 465 Thursday, June 15, 2006 2:24 PM

466 A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T

Opera 8.5
Opera not only comes with options to quickly turn off all kinds of browser support (JavaScript,
cookies, plug-ins, pop-ups) by pressing F12, which helps immensely to test whether your web
page is dependent on JavaScript or not, it also has a built-in JavaScript console that gives very
detailed error reports. You can turn on the console via Tools ➤ Advanced ➤ JavaScript console
as shown in Figure A-7.

Figure A-7. Showing the JavaScript console in Opera

Firefox 1.5.0.3
Firefox stays silent and doesn’t bother the visitor by reporting JavaScript errors. However, it
comes with a very powerful JavaScript console, which you can show by selecting Tools ➤
JavaScript console on the main toolbar as shown in Figure A-8.

6803.book Page 466 Thursday, June 15, 2006 2:24 PM

A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T 467

■Note Don’t be confused if your Firefox browser doesn’t have the same options as shown in Figure A-8;
some of them are dependent on extensions I installed. However, you should have the JavaScript console.

Figure A-8. Showing the JavaScript console in Firefox

Once activated, the JavaScript console is visible in its own browser window, which lists the
JavaScript errors that occur in any page you open in any of your Firefox windows or tabs. It is
quite amazing to see how many errors accumulate when you surf the Web a bit with the con-
sole open. The error in exampleMissingCurly.html would display as shown in Figure A-9.

Figure A-9. The Firefox JavaScript console showing an error

You can either show errors, warnings, and messages, or filter the list for each of them.
Clicking the Clear button will wipe the list clean. You can even evaluate any JavaScript by past-
ing it into the code box and clicking the Evaluate button.

6803.book Page 467 Thursday, June 15, 2006 2:24 PM

468 A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T

By default, the JavaScript console will open in a new window, but there is a trick you can
use to show it in the sidebar instead.

1. Make sure the bookmarks toolbar is visible by selecting View ➤ Toolbars ➤ Bookmarks
Toolbar.

2. Right-click the toolbar and select New Bookmark.

3. Add the information shown in Figure A-10. The location must be chrome://global/
content/console.xul, but you can name the bookmark anything you like.

4. Make sure the Load this bookmark in the sidebar option is activated.

This will add a new bookmark button to the toolbar that opens the JavaScript console in
the sidebar when you click it.

Figure A-10. A trick to make Firefox show the JavaScript console in the sidebar

This should get you started in spotting errors quickly in Firefox; however, it is only the tip of
the iceberg when it comes to great helpers available for this browser. Mozilla and Firefox can be
easily improved with extensions written in JavaScript and an XML-based language called XUL.

6803.book Page 468 Thursday, June 15, 2006 2:24 PM

A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T 469

Developers keep churning out new extensions and putting them on the Web. Two of those are
very handy for you as a JavaScript developer:

The Web Developer Extension

The Web Developer extension is a toolbar by Chris Pederick that is available at http://
www.chrispederick.com/work/webdeveloper/. This toolbar allows you to quickly toggle Java-
Script support (which you can do otherwise via Tools ➤ Options ➤ Content ➤ Enable
JavaScript), show HTML generated by JavaScript in the Source Viewer, populate forms auto-
matically with data, edit the page’s style sheet on the fly, and choose from many more options.
It is a “Swiss Army Knife” for web development.

FireBug

If you thought the JavaScript console of Opera, Safari, and Firefox was handy, get the FireBug
extension by Joe Hewitt (who is also responsible for the DOM inspector that is part of the
default Firefox installation) at http://www.joehewitt.com/software/firebug/. The FireBug
extension is visible in the bottom right of the browser window and either shows a warning icon
with the number of errors in the console or a green icon indicating that everything is OK. If
there are errors, you can click the icon (or press F12) to open the FireBug console in the bottom
half of the browser window as shown in Figure A-11.

Figure A-11. The FireBug extension with open console

The features of FireBug are too many to mention here. Whatever is happening to the
document, you can see it in the console. It shows the DOM structure, the applied CSS, the
dimensions and properties of elements, events assigned to elements, the return values of Ajax
requests, and much, much more. In the DOM inspector mode, you are even able to change the
document on the fly to test changes quickly in a remote document. This is for testing purposes
only—you cannot save the changes on the remote server, of course.

6803.book Page 469 Thursday, June 15, 2006 2:24 PM

470 A P P E N D I X ■ D E B U G G I N G J A V A S C R I P T

Venkman

Mozilla’s answer to the Microsoft Script Debugger is called Venkman and is available at https://
addons.mozilla.org/firefox/216/. Venkman is a full debugging suite that allows you to watch
variables, set debugging points, and really go down into the depths of JavaScript development.
Explaining all the features of Venkman would fill its own chapter, and for day-to-day JavaScript
tasks, it may be overkill to use. If you want to know all the features of Venkman and how to use it,
check the walkthrough provided on the homepage at http://www.mozilla.org/projects/
venkman/venkman-walkthrough.html. Another good start is the introductory article “Learning
Venkman” by Svend Tofte, available at http://www.svendtofte.com/code/learning_venkman/.
The newest versions of the aforementioned FireBug extension also include a debugger like
Venkman, which makes it obsolete in some way; however, it is worth mentioning as it is in use
in some companies.

JSLint and JSUNIT
Some browser-independent tools are available that could also help you with JavaScript devel-
opment. One is the online JavaScript verifier JSLint by Douglas Crockford, available at http://
www.jslint.com/lint.html. JSLint is a tool written in JavaScript that verifies scripts in terms
of syntactical validity and tries to ensure good coding style. As “good coding style” is a subjec-
tive matter, you may want to take JSLint reports with a grain of salt. JavaScript development
happens mostly in browser environments, and from time to time you need to bend the rules
or cut corners to make a script work faster or work around browser issues. That being said, it
is still a great tool to find ways to optimize your scripts in terms of cleanliness of code if you
don’t have to cut corners. The great thing about JSLint is that it gives you a full analysis of your
script, including reports on global variables and how many times different functions have
been called.

If you come from a back-end coding environment, you may have already used or at least
heard about unit testing (http://en.wikipedia.org/wiki/Unit_testing). In a very small nut-
shell, unit testing means that you write test cases for all your methods and functions, and a
“testing harness” allows you to run all these tests in succession when you press a button. This
way you can ensure that your code works as you define the test cases it has to fulfill before you
develop the code. For Java, there is JUnit; for PHP, there is PHPUnit; and yes, for JavaScript
there is JSUnit, available at http://www.jsunit.net/.

Summary
All in all, debugging JavaScript is much easier these days than it was some years ago, and espe-
cially in the Firefox extension world it is very important to keep your eyes open, as new
products that you may profit from are released almost weekly. The renaissance of JavaScript as
part of the Ajax methodology has also made development IDE vendors a lot more aware of the
need for good JavaScript debugging tools. Products that were traditionally meant exclusively
for Java or .NET development are beginning to add support for JavaScript that goes beyond
color-coding the sources.

6803.book Page 470 Thursday, June 15, 2006 2:24 PM

471

Index

■Special Characters
#text nodes, 89

$1 variable, 362

$(document).ready () method, 421

$.get() method, 425

% operator, 21

&& operator, 48

* operator, 21

*/ syntax, JavaScript, 8

/* syntax, JavaScript, 8

// syntax, JavaScript, 8

\\ escape sequence, 20

|| operator, 48

+ operator, 21, 23

++ operator, 21

!= operator, 46

== operator, 46

> operator, 46

>= operator, 46

\' escape sequence, 20

/ operator, 21

! operator, 49

■A
abort() method, 321, 445

accessibility, 69–71

accesskey attribute, 179

addEvent() method, 166, 190, 325, 330, 433

addEventListener() method, 156, 166

addListener() method, 441

addMap() function, 429

addOverlay() method, 432, 436

ADDRESS element, 125

advantages of JavaScript, 5–6

after() method, 425

Ajax, back-end interaction with

and caching, 309

connected select boxes, 323–331

optional dynamic Ajax menus, 331–340

overview, 299–309

replacing XML with JSON, 314–316

turning XML into HTML, 309–314

using server-side scripts to reach
third-party content, 316–320

XHR on slow connections, 320–322

alert() method, 10, 90–95, 101, 121, 308, 452,
456, 458–459

Anim() method, 442–443

animate() method, 443

animation, 222–230

APIs (application programming interfaces), 4

appendChild() method, 312

application/x-www-form-urlencoded
content type, 329

appName attribute, 65

appVersion attribute, 65

Array data type, 30

array_slice() method, 409

arrays

Array object

converting array to string and back,
43–44

cutting slice of array, 42–43

joining two arrays, 43

overview, 42

sorting array, 44–45

overview, 39–42

6803index.fm Page 471 Friday, June 23, 2006 9:06 AM

472 ■I N D E X

asynchronously, 300

attachEvent() method, 166

attributes of elements

changing, 107–108

reading, 117

■B
\b escape sequence, 20

back() method, 230, 246

background image, 192

background-position property, 191

before() method, 422

behavior layer, JavaScript as

object detection vs. browser dependence,
65–68

overview, 63–65

progressive enhancement, 68–69

block property, 261

blocking software, 238

blur() method, 215, 219–220, 238, 276, 278

BODY element, 448

Boolean data type, 18, 45

border property, 185

 line breaks, 426

braces, closing, 454–456

brackets (<>), 86

branches, breaking out of, 52

break statement, 52, 58

browser cache settings, 212

browser window, navigation methods of

layer ads, 231–238

overview, 230–231

browsers

browser dependence vs. object detection,
65–68

error reporting in

Firefox, 466–470

Microsoft Internet Explorer, 6 (MSIE6),
463–464

Opera, 466

overview, 463

Safari, 464–465

vendors, 212

business logic layer, 63

button, 295

button attribute, event object, 157

buttons, radio buttons, 281–284

■C
caching, 309

camel notation, 24

camelCase, 72

Campbell, Chris, 364

cancelClick() method, 169, 211, 219, 228,
325, 329–330, 372, 393, 395, 404,
413–414

captions, displaying in thumbnail galleries,
396–401

Cascading Style Sheets (CSS), 61, 64

easing maintenance, 139–143

overview, 131

styling dynamic pages, 131–139

support problems

:hover pseudo-class, 148–152

multiple columns with same height,
143–148

overview, 143

thumbnail galleries, 388

case statements, 52

case-sensitivity issues, 451

catch() method, 459–462

CDATA commenting syntax, 7

ceil() function, Math object, 37

CGI (Common Gateway Interface), 3

chainable methods, 420

character encoding method, 20

charAt(n) method, 346

charCodeAt() method, 346, 349

check boxes, 279–281

checked attribute, 273, 279

6803index.fm Page 472 Friday, June 23, 2006 9:06 AM

473■I N D E X

Find it faster at http://superindex.apress.com

checked property, 275, 279–281, 283–284, 294

childNodes property, 100

children, 99–100

Clark, Chris, 139

click() method, 276

click event, 163, 247, 249, 257, 259, 294

click event handler, 335

client-side validation, pros and cons of,
343–344

close() method, 215, 220

closestSibling() method, 120, 125, 178,
203, 294

closing braces, incorrect number of, 454–456

CMS (Content Management System), 139

CODE element, 420, 426

code execution, 9–11

code layout, 72–74

code library, 426

coding syntax, 24

cols attribute, 276

columns, multiple with same height, 143–148

commenting, 74–76

complete property, 185

composite data types, 30

concat() method, Array object, 43

concatenation, 27, 456–457

concatenation operator, 23

conditional statements, 17

breaking out of branch or loop, 52

overview, 49–52

confirm() method, 90–95, 215

console elements, tracing errors with,
458–459

constraintoviewport property, 447

Content-length, 329

continue keyword, 58

converting array to string and back, 43–44

converting different types of data, 26–30

Cross-Site Scripting (XSS), 213

CSS. See Cascading Style Sheets

CSS class, 248, 257, 398

cssjs method, 149

curly braces {} syntax, 8

custom attribute, 366–367

custom elements, 297

cutting slice of array, 42–43

■D
data comparison, 45–48

data conversion, 26–30

data types, 17

Date object, 30, 355–356

overview, 34

using, 35–37

DDA (Digital Discrimination Act), 6, 62

Debug menu option, 464

debugging

common mistakes

assigning instead of testing value of
variable, 458

concatenation gone wrong, 456–457

incorrect number of closing braces and
parentheses, 454–456

misspellings and case-sensitivity
issues, 451

overview, 451

trying to access undefined variables,
452–454

error handling with try and catch(),
459–462

error reporting in browsers

Firefox, 466–470

Microsoft Internet Explorer, 6 (MSIE6),
463–464

Opera, 466

overview, 463

Safari, 464–465

JSLint and JSUNIT, 470

overview, 451

Find it faster at http://superindex.apress.com

6803index.fm Page 473 Friday, June 23, 2006 9:06 AM

474 ■I N D E X

debugging (continued)

sequential uncommenting, 462

tracing errors with alert() and console
elements, 458–459

decision making

comparing data, 46–48

conditional statements

breaking out of branch or loop, 52

overview, 49–52

logical operators, 48

loops

continuing, 58–59

for loop, 54–56

overview, 54

while loop, 56–58

overview, 45

switch statement, 52–54

testing multiple values, 52–54

delimiters, 18

Developer Network, 438

DHTML, 5

Diaz, Dustin, 139

Digital Discrimination Act (DDA), 6, 62

dimensions of windows, 221

disabled attribute, 136, 285, 295

disabled property, 138

disadvantages of JavaScript, 5–6

display property, 125, 130

DOCTYPE element, 85–86

document object, 12, 15, 96, 184, 413

Document Object Model. See DOM

Document Type Definition (DTD), 86

document.createElement() method, 109, 117

document.createTextNode() method,
109, 117

documentElement.scrollTop property, 413

document.getElementById('id') element, 116

document.getElementsByTagName
('tagname') element, 116

document.write() method, 15, 41, 89, 96, 174

DOJO toolkit, 340

DOM (Document Object Model), 67, 85

accessing document via, 96–99

creating new nodes, 117

methods, 277

navigating between nodes, 117

overview, 116

reaching elements in document, 116

reading element attributes, node values,
and other node data, 117

scripting, 63, 289

DOM-2 event handling, 183

DOMhelp library, 123, 190, 198, 419

do.while loop, 56, 59

drag-and-drop interface, 179

dyn class, 232

dynamic Ajax menus, 331–340

dynamic class, 127, 267

dynamic pages, styling, 131–139

dynamic slide shows, 207–211

dynamic technology syntax, 3

■E
each() method, 425

Easing utility, 442

Edward, Dean, 345

Eisenberg, David, 367

element node, 100

element.innerHTML node, 117

elements, 39, 297

attributes of, changing, 107–108

creating, removing, and replacing

avoiding NOSCRIPT, 113–115

DOM features, 116–117

overview, 109–113

shortening scripts via innerHTML,
115–116

buttons, 284–286

check boxes, 279–281

overview, 275–276

6803index.fm Page 474 Friday, June 23, 2006 9:06 AM

475■I N D E X

Find it faster at http://superindex.apress.com

radio buttons, 281–284

select boxes, 286–291

text fields, text areas, hidden and
password fields, 278–279

using blur() and focus(), 278

reading element attributes, node values,
other node data, 117

elements collection, 276–277, 288

else condition, 281

else statement, 9, 15

<embed> tag, 153

embedded slide shows, 197–207

enctype attribute, 274

error handling, with try and catch(), 459–462

error reporting, in browsers

Firefox, 466–470

Microsoft Internet Explorer, 463–464

Opera, 466

overview, 463

Safari, 464–465

escape sequence, 19

escape sequences, 19–20

eval() method, 188, 315–316

event bubbling, 158

event capturing, 156

event handling

changing document's behavior via

events in W3C-compliant world,
156–165

fixing events for non-W3C-compliant
world, 165–172

overview, 153–156

reading and filtering keyboard entries,
174–179

ugly page load problem, 173–174

dangers of, 179–180

event listener, 156

event object, 157

event target, 156

Exception object, 460

exec() method, 357

explanatory comments, 75

■F
\f escape sequence, 20

failed() method, 307–308, 313, 320, 330, 336

false keyword, 281

feedback

data validation

highlighting erroneous fields
individually, 376–379

instant validation feedback, 379–380

overview, 369

replacing main form with clickable error
message, 374–376

showing list of erroneous fields, 369–374

user feedback methods, 215

in web pages, 89–95

filtering keyboard entries, 174–179

FireBug, 469

Firefox, error reporting in

FireBug, 469

overview, 466–469

Venkman, 470

Web Developer extension, 469

firstChild property, 100

flash of unstyled content (FOUC), 173

Flash Satay, 153

Flickr, 417

Flickr badges, 406

floor() function, Math object, 37

focus() method, 215, 219, 238, 276, 278

focus event, 243

focus pseudo-selector, 152

for attribute, 365

for keyword, 54

for loop, 54–56, 59, 98

for.in loop, 55

FORM element, 274, 305

Form object, 274

6803index.fm Page 475 Friday, June 23, 2006 9:06 AM

476 ■I N D E X

form property, 275, 277

form validation techniques

CSS classes method, 366

custom attribute method, 366–367

designating mandatory fields, 364

failures of these methods, 367

hidden field method, 364–365

indicator element method, 365–366

overview, 364

sharing validation rules, 367–369

formmail.pl script, 364

forms, 297

collection, 275–277

custom elements, 297

elements

buttons, 284–286

check boxes, 279–281

globally supported properties, 277

HTML attributes not contained in
elements collection, 276

overview, 275–276

radio buttons, 281–284

select boxes, 286–291

text fields, text areas, hidden and
password fields, 278–279

using blur() and focus(), 278

interactive, 291–297

methods, 274–275

overview, 272–274

properties, 274

forms object, 274

forward() method, 230, 246

FOUC (flash of unstyled content), 173

Friedl, Jeffrey, 363

function keyword, 77, 83

functions, 11, 76–80

calling, 11

creating own, 11

functionality, reusable code block
wrappers, 11

sorting and reuse of, 80

variables and function scope, 80–81

■G
GBrowserIsCompatible() function, 429

GET method, 305, 324

GET parameter, 319

getAttribute() method, 108, 126, 249, 367

getEl() method, 443

getElementById() method, 96, 98–99, 103,
184, 249, 251, 274, 448, 451

getElementById object, 68

getElementsByClassName() method, 96

getElementsByTagName() method, 96–99,
184, 274, 384, 448, 451

getTimezoneOffset() method, 37

GEvent.addListener() method, 432

GLatLng() method, 430

global reset, 209

global variable, 80

GMap2() method, 430, 435

GMapTypeControl() method, 431

GMarker() method, 432, 436

go(n) method, 246

Good, Nathan A., 363

Google AdSense, 416

Google Maps, 427–432, 434–437

Google Suggest, 381

GOverviewMapControl() method, 431

GScaleControl() method, 431

GSmallMapControl() method, 430

GUnload() function, 429

■H
handleFailure() method, 447, 449

handleSuccess() method, 447–448

hasChildNodes() method, 100, 120

hash property, 245

6803index.fm Page 476 Friday, June 23, 2006 9:06 AM

477■I N D E X

Find it faster at http://superindex.apress.com

HEAD element, 85

<head> tag, 85

height attribute, 186

height property, 185

hidden fields, 278–279, 364–365

hide() method, 422, 425

HIJAX, 323

history object, 246

home() method, 230

host property, 245

hostname property, 245

hover method, 165

:hover pseudo-class, 148–152

href attribute, 110, 137, 235, 246, 249–250,
252–253, 257, 262, 269–270, 320, 330,
335, 338, 393, 399, 404, 410, 413–414,
425, 447

href property, 245

hspace property, 185

HTML, 87

accessing document via DOM, 96–99

anatomy of HTML document, 85–89

changing attributes of elements, 107–108

children, 99–102

creating, removing, and replacing
elements

avoiding NOSCRIPT, 113–115

DOM features, 116–117

DOMhelp, 118–122

overview, 109–113

shortening scripts via innerHTML,
115–116

overview, 85

parents, 99–103

providing feedback in web pages, 89–95

siblings, 99–100, 103–107

turning XML into, 309–314

html() method, 422

HTML 4.01 STRICT, 87

HTML element, 85, 428

.html file extension, 9

■I
id attribute, 89, 101, 246, 282

if() method, 456

if condition, 67, 79, 172

If keyword, 451

if statement, 9, 14, 49, 56

IFRAME elements, 237

images

image scripting basics, 184–186

overview, 183

preloading, 186

rollover effects

dynamic slide shows, 207–211

embedded slide shows, 197–207

overview, 187

on parent elements, 192–196

slide shows, 196

using several images, 187–191

using single image, 191–192

images object, 67

IMG element, 409, 414

index numbers, 40, 274

index property, 194

indexKey, 56

indexOf() method, 32, 346, 348, 350

innerHeight property, 213

innerHTML, 261

innerHTML method, 308, 313–314

innerHTML property, 115–116, 394, 414, 422

innerWidth property, 213

in-page navigation, 246–255

input element, 54, 295–297

<input type="image">, 285

insertBefore() method, 267–268

instant validation feedback, 379–380

interactive forms, 291–297

6803index.fm Page 477 Friday, June 23, 2006 9:06 AM

478 ■I N D E X

IrfanView, 388

isCallInProgress() method, 445

isNaN() method, 49, 352

isNumber() method, 352

item() method, 100

■J
JavaScript object property syntax, 126

JavaScript overview, 1–4

definition, 4

functions, 11

objects, 12–13

problems and merits of, 5–6

reasons for using despite reliability
problems, 6–7

running JavaScript, 9

simple example, 13–15

in web page and essential syntax

code execution, 9–11

functions, 11

JavaScript syntax, 8–9

overview, 7

what it is, 4

JavaScript Triggers article, 366

join() method, 43, 288

joining two arrays, 43

jQuery, 419–427

.js file, 64, 80

JSLint, 470

JSON, replacing XML with, 314–316

JSUNIT, 470

■K
Keith, Jeremy, 323

Keyboard access, 243

keyboard entries, reading and filtering,
174–179

keyboard event handling, 179

keyCode/data/charCode attribute, event
object, 157

keydown handler, 175

keypress handler, 175

Koch, Peter-Paul, 160, 366

■L
label element, 108

lang attribute, 85

Langridge, Stuart, 62

lastIndexOf() method, 32, 346, 348, 350

layer ads, 231–238

Learning Venkman article, 470

Lemon, Gez, 247

length property, 31, 98, 203, 246, 274, 286, 290

line break (\n), 101

line-wrap option, 74

links, 110

literal values, 23

LiveScript, 4

load event, 156

load method, 404, 412–413

local variables, 23

location property, 245

logical operators, 45, 48

loops, 17

breaking out of, 52

continuing, 58–59

for loop, 54–56

overview, 54

while loop, 56–58

lowsrc property, 185

Ludwin, Daniel, 139

■M
Macromedia Dreamweaver, 188

mandatory field, 364–365

map_overview, 432

mapContainer, 435

maps, adding to sites with Google Maps,
427–432, 434–437

mashups, 437

Mastering Regular Expressions book, 363

6803index.fm Page 478 Friday, June 23, 2006 9:06 AM

479■I N D E X

Find it faster at http://superindex.apress.com

match() method, 129, 347, 357

Math object, 30, 357

generating random number, 38

overview, 37

rounding numbers, 37–38

META element, 85

methods

of forms, 274–275

of String object, 32–34

of window object

animation with window intervals and
timeouts, 222–230

changing position and dimensions of
window, 221

navigation methods of browser window,
230–238

opening new windows, 215–221

overview, 215

user feedback methods, 215

microformat, 309

Microsoft Internet Explorer (MSIE), 5, 64,
463–464

Microsoft Script Debugger, 464

misspellings, 451

moofx, 341

mouseout event, 163

mouseover event, 159, 163, 243

mouseover handler, 252–253

moveBy(x,y) window, 221

multicolumn layout, 145

multiple attribute, 287

■N
\n (line break), 101

name attribute, 187, 246, 274, 282, 284

name property, 185, 213, 274–275, 277

naming conventions, 71–72

navigation

browser navigation, 245–246

in-page navigation, 246–255

overview, 241–244

pagination, 263–271

site navigation, 255–263

navigator data, 416

navigator object, 65

nested loops, 173

Netscape Navigator (NN) browser, 4

new keyword, 32

nextSibling node, 118, 120

Nicholls, Stu, 152

node parameter, 120

node tree, 173

nodeName object, 100, 102, 277, 336,
393, 395

node.nextSibling node, 117

node.nodeName attribute, 117

node.nodeType attribute, 117

node.nodeValue attribute, 117

node.parentNode node, 117

node.previousSibling node, 117

nodes, 117

node.setAttribute('attribute', 'value')
attribute, 117

nodeType node, 118

nodeType object, 100

nodeValue object, 100

Nolan, Daniel, 188

NOSCRIPT element, 113–115

<noscript> tag, 7, 113

Null data type, 18

number, 18

Number() method, 28, 36, 352

Number data type, 18, 23

numbers

random, generating, 38

rounding, 37–38

numeric validation methods, 352–357

■O
obfuscating, 345

Object data type, 30

6803index.fm Page 479 Friday, June 23, 2006 9:06 AM

480 ■I N D E X

object detection, vs. browser dependence,
65–68

object literal, 82

<object> tag, 153

object-oriented programming (OOP), 3

objects

Date object

overview, 34

using, 35–37

Math object

generating random number, 38

overview, 37

rounding numbers, 37–38

String object

creating, 31–32

methods of, 32–34

overview, 30

obj.removeChild(oldNode) method, 109

offsetHeight attribute, 147

offsetHeight property, 235, 441

onAvailable() method, 444

onchange event handlers, 70

onclick handler, 447

onCloseFn property, 434

onComplete event, 443

onComplete.subscribe() method, 443

one-size-fits-all validation myth, 345–346

onevent properties, 157

onevent syntax, 169

onload event, 97, 173

onload event handler, window object, 69

onmouseout event handler, 149

onmouseover event handler, 149

onreadystatechange event, 306, 321

openInfoWindow() method, 433

openInfoWindowHtml() method, 434,
436–437

opening new windows, 215–221

Opera, 66, 217, 466

operators, 21–23

optgroup, 295

Option constructor, 289

options arrays, 323, 374

options object, 286

options property, 276

outerHeight property, 213

outerWidth property, 213

■P
P element, 86

<p></p> tags, 3

pageXOffset property, 213

pageYOffset property, 213

pageYOffset window object, 413

pagination, 263–271

Panel() method, 448

panTo() method, 435, 437

parameters, 11, 77

parentheses, 22

grouping, 361–362

incorrect number of, 454–456

parentNode, 102, 131, 165, 267–268, 336

parents, 100–103

parseFloat() method, 28, 352

parseInt() function, 28, 37, 352

password fields, 278–279

password parameters, 305

pathname property, 245

period character (.), 358

php file extension, 338

PHP script, 405, 408

phpThumb() class, 388

Picasa, 388, 396

Podcast Networks, 417

pop-up windows, 444–449

port property, 245

POST method, 305, 324, 328

6803index.fm Page 480 Friday, June 23, 2006 9:06 AM

481■I N D E X

Find it faster at http://superindex.apress.com

PRE element, 420, 422, 425

preloading images, 186

presentation layer, changing, 123–131. See
also Cascading Style Sheets

preventDefault() method, 161, 164, 168, 404

previousSibling node, 120

previousSibling property, 103

primitive data types, 18

print() method, 230

problems with JavaScript, 5–6

progressive enhancement, 68–69

prompt() method, 24–25, 33, 90–95, 215

properties of forms, 274

properties string, 215

protocol property, 245

prototype, 340

proxy servers, 212

push buttons, 284

■Q
quantifiers, 359

quotation marks, 18

■R
\r escape sequence, 20

radio buttons, 281–284

random() method, Math object, 38

random number, generating, 38

readability/functionality, 25

reading keyboard entries, 174–179

ready() method, 424

readyState property, 306–307, 321

readystatechange event, 306

RegEx Advice, 363

RegExp constructor, 361

Regular Expression Library, 363

regular expressions

constraining scope, 358–359

methods using, 361

overview, 357

parenthesis grouping, 361–362

resources, 363

restricting number of characters with
quantifiers, 359–360

syntax and attributes, 357–358

whitespace, 360–361

wildcard searches, 358–359

word boundaries, 360–361

rel attribute, 137

reload()method, 245

removeAttribute() method, 128

removeChild() method, 236, 410

render() method, 448

replace() method, 129, 204, 245–246, 249, 361

reset() method, 274, 278–279

reset buttons, 284

responseText method, 308, 313, 330

responseXML method, 308–309, 319

REST APIs, 417–419

return keyword, 77

reuse of functions, 80

reverse() method, 45

Rico, 341

rollover effects

dynamic slide shows, 207–211

embedded slide shows, 197–207

overview, 187

on parent elements, 192–196

slide shows, 196

using several images, 187–191

using single image, 191–192

round() function, Math object, 37

rounding numbers, 37–38

rows attribute, 276

RSS feeds, 417–418

■S
S@rdalya, 341

Safari browser, 168, 404, 464–465

Sarissa, 341

6803index.fm Page 481 Friday, June 23, 2006 9:06 AM

482 ■I N D E X

Scott, Leland, 340

screen object, 13, 15

screen readers, 69

script block, 9

SCRIPT element, 113, 429, 438, 462

<script> tags, 7, 9, 64, 438

script.aculo.us, 340

scrollbars, 216

search() method, 347, 357

search property, 245

select() method, 276, 279

select boxes, 242, 286–291, 323–331

SELECT element, 276, 297, 323, 366

selected attribute, 273

selected property, 286, 288

selectedIndex property, 286–287, 374

select-one type, 374

semicolon syntax, JavaScript, 8

send() method, 307, 309, 329, 365, 370,
375–377

sequential uncommenting, 462

server-side includes (SSIs), 230

server-side scripts, using to reach third-party
content, 316–320

setAttribute() method, 108, 126

setBody() method, 449

setCenter() method, 430, 436

setDebug() method, 121, 458

setHeader() method, 449

setInterval() method, 222, 228, 239

setTimeout() method, 222, 239

setZoom() method, 434, 437

Sharing Validation Rules section, 346

short code via ternary operator, 79–80

shortcut notation, 82

shortening scripts via innerHTML, 115–116

siblings, 103–107

site navigation, 255–263

slice() method, 42, 346

slide shows

dynamic, 207–211

embedded, 197–207

slideDown() method, 422

slideUp() method, 422

Sluis, Bobby van der, 153

sorting array, 44–45

Sowden, Paul, 139

SPAN element, 202, 257, 267, 365, 367,
378–379, 382–384, 409

split() method, 44

src attribute, 64, 210, 235, 237, 414

src property, 185, 187–188, 190

SSIs (server-side includes), 230

static thumbnail galleries, 388–389

status property, 213, 307, 309

stop() method, 230

stopBubble() method, 168

stopDefault() method, 168

stopPropagation() method, 164, 168

str_replace() method, 409

String() constructor, 32

string data type

escape sequences, 19–20

overview, 18–19

String object, 47, 204, 245

creating, 31–32

methods of, 32–34

overview, 30

string parameter, 394

string type, 394

string validation methods, 346–352

string.match(pattern), 361

String.replace() method, 308, 313, 361

STRONG element, 192–193, 257, 259, 262,
332–334, 336, 338

structure layer, 63

Stubblebine, Tony, 363

STYLE and LINK element, 130

6803index.fm Page 482 Friday, June 23, 2006 9:06 AM

483■I N D E X

Find it faster at http://superindex.apress.com

style attribute, 123

style attributes, 127

style collection, 125

style switchers, 136

stylesheet attribute, 138

styling dynamic pages, 131–139

submit() method, 274

Submit button, 91, 110, 113, 178, 284, 370

submit handler, 243, 379

substr() method, 350

substring() method, 32, 42, 347–348, 350

subtraction operator, 27

switch statement, 52–54, 79

switch/case block, 173

switch/case line, 357

sync parameter, 305

syntax error, 19

■T
\t escape sequence, 20

table node, 269

table value, 269

<table> parameter, 314

tags, 86

target attribute, 157, 217, 238

target property, 274

TBODY element, 266, 312

ternary operator, 79–80

test() method, 94, 357

text areas, 278–279

text browser users, 212

text fields, 278–279

text option, 287

text property, 286

TEXTAREA element, 279, 295, 297, 366, 373

text/javascript header, 369

Thatcher, Jim, 69

third-party content, using server-side scripts
to reach, 316–320

third-party JavaScript

adding maps to sites with Google Maps,
427–432, 434–437

code libraries, 419–427

examples of REST APIs, 418–419

jQuery, 419–427

overview, 415–416

RSS feeds and REST APIs, 417–418

Yahoo User Interface (YUI)

bouncy headlines using, 439–444

replacing pop-up windows using YUI
connection manager and container
components, 444–449

this keyword, 138, 149, 155, 443

thumbnail galleries

creating image badge from folder, 406–414

displaying captions, 396–401

dynamic, 401–405

faking, 389–396

overview, 387–388

static, 388–389

title attribute, 138, 210, 396, 399

TITLE element, 85

toDateString() method, 37

Tofte, Svend, 470

toggle() method, 422, 441

toLowerCase() method, 47, 158

toolbar property, 213

toString() method, 37

toUpperCase() method, String object, 47

true keyword, 281, 284

try statement, 304, 460

try...catch construct, 459–462

type attribute, event object, 157

type element, 280

type property, 275, 277

typeof() operator, 27, 31

6803index.fm Page 483 Friday, June 23, 2006 9:06 AM

484 ■I N D E X

■U
UAs (user agents), 5, 62, 212

\uDDDD escape sequence, 20

UFO (Unobtrusive Flash Object), 153

UL element, 99, 101, 200, 257, 259–261, 320

uncommenting, 462

Undefined data type, 18

undefined variables, 452–454

Unobtrusive Flash Object (UFO), 153

unobtrusive JavaScript, 62, 153

Upcoming.org, 418

url parameter, 305

useCapture Boolean value, 156

user agents (UAs), 5, 62, 212

user feedback mechanism, 90

user feedback methods, 215

■V
validate() function, 82

validation techniques

client-side validation, pros and cons of,
343–344

feedback

highlighting erroneous fields
individually, 376–379

instant validation feedback, 379–380

overview, 369

replacing main form with clickable error
message, 374–376

showing list of erroneous fields, 369–374

form validation techniques

CSS classes method, 366

custom attribute method, 366–367

designating mandatory fields, 364

failures of these methods, 367

hidden field method, 364–365

indicator element method, 365–366

overview, 364

sharing validation rules, 367–369

numeric validation methods, 352–357

one-size-fits-all validation myth, 345–346

overview, 343

protecting content, 344–345

regular expressions

constraining scope, 358–359

methods using regular expressions, 361

overview, 357

power of parenthesis grouping, 361–362

resources, 363

restricting number of characters with
quantifiers, 359–360

syntax and attributes, 357–358

whitespace, 360–361

wildcard searches, 358–359

word boundaries, 360–361

string validation methods, 346–352

validationRules object, 369, 373–374

value attribute, 373

value option, 287

value property, 275, 277–278, 286

valueOf() method, 48

var keyword, 24, 80, 201, 452

variables, 23–26

assigning instead of testing value of, 458

declaring, 24

and function scope, 80–81

initializing, 24

undefined, trying to access, 452–454

Venkman, 470

visibility property, 130

vspace property, 185

■W
WaSP DOM Scripting Task Force, 63

Web Developer extension, Firefox, 469

while loop, 56–59, 94, 102

whitespace, 120, 360–361

width attribute, 186

width property, 185

wildcard searches, 358–359

6803index.fm Page 484 Friday, June 23, 2006 9:06 AM

485■I N D E X

Find it faster at http://superindex.apress.com

Willison, Simon, 155

window methods, 239

window object, 25, 90, 97, 165, 213, 215,
238, 245, 413

window parameters, 218

window property, 245

window.back() method, 245

window.history object, 246

window.history property, 245

window.location object, 244–245

window.location.href property, 244–245

window.open() method, 217, 219

window.opener property, 220

window.opener.close() method, 221

windows

animation with window intervals and
timeouts, 222–230

changing position and dimensions of, 221

navigation methods of browser window

layer ads, 231–238

overview, 230–231

opening new windows, 215–221

overview, 212–213

properties, 213–214

user feedback methods, 215

window.timeout() method, 320

word boundaries, 360–361

Wright, Matt, 364

■X
XAMPP installs, 299

XHR, 310, 316, 319–323, 334, 382, 385,
396, 401–403

XHR object, 299, 302

XHTML, 7, 87

XML

replacing with JSON, 314–316

turning into HTML, 309–314

XMLHttpRequest object, 302, 304–305, 340

\xNN escape sequence, 20

XSS (Cross-Site Scripting), 213

■Y
Yahoo User Interface (YUI)

bouncy headlines using, 439–444

replacing pop-up windows, 444–449

YAHOO.util.Anim() constructor, 443

YAHOO.util.Connect.abort() method, 445

YAHOO.util.Connect.asyncRequest()
method, 444

YAHOO.util.Connect.isCallInProgress()
method, 445

YAHOO.widget.Panel() constructor
method, 447

YUI. See Yahoo User Interface

■Z
zero-based array, 42

6803index.fm Page 485 Friday, June 23, 2006 9:06 AM

FIND IT FAST
with the Apress SuperIndex ™

Quickly Find Out What the Experts Know

L eading by innovation, Apress now offers you its SuperIndex™, a turbocharged

companion to the fine index in this book. The Apress SuperIndex™ is a keyword

and phrase-enabled search tool that lets you search through the entire Apress library.

Powered by dtSearch™, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic

of your choice from a vast array of Apress titles. The Apress SuperIndex™ is the

perfect tool to find critical snippets of code or an obscure reference. The Apress

SuperIndex™ enables all users to harness essential information and data from the

best minds in technology.

No registration is required, and the Apress SuperIndex™ is free to use.

1 Thorough and comprehensive searches of over 300 titles

2 No registration required

3 Instantaneous results

4 A single destination to find what you need

5 Engineered for speed and accuracy

6 Will spare your time, application, and anxiety level

Search now: http://superindex.apress.com

forums.apress.com
FOR PROFESSIONALS BY PROFESSIONALS™

JOIN THE APRESS FORUMS AND BE PART OF OUR COMMUNITY. You’ll find discussions that cover topics

of interest to IT professionals, programmers, and enthusiasts just like you. If you post a query to one of our

forums, you can expect that some of the best minds in the business—especially Apress authors, who all write

with The Expert’s Voice™—will chime in to help you. Why not aim to become one of our most valuable partic-

ipants (MVPs) and win cool stuff? Here’s a sampling of what you’ll find:

DATABASES

Data drives everything.

Share information, exchange ideas, and discuss any database
programming or administration issues.

INTERNET TECHNOLOGIES AND NETWORKING

Try living without plumbing (and eventually IPv6).

Talk about networking topics including protocols, design,
administration, wireless, wired, storage, backup, certifications,
trends, and new technologies.

JAVA

We’ve come a long way from the old Oak tree.

Hang out and discuss Java in whatever flavor you choose:
J2SE, J2EE, J2ME, Jakarta, and so on.

MAC OS X

All about the Zen of OS X.

OS X is both the present and the future for Mac apps. Make
suggestions, offer up ideas, or boast about your new hardware.

OPEN SOURCE

Source code is good; understanding (open) source is better.

Discuss open source technologies and related topics such as
PHP, MySQL, Linux, Perl, Apache, Python, and more.

PROGRAMMING/BUSINESS

Unfortunately, it is.

Talk about the Apress line of books that cover software
methodology, best practices, and how programmers interact with
the “suits.”

WEB DEVELOPMENT/DESIGN

Ugly doesn’t cut it anymore, and CGI is absurd.

Help is in sight for your site. Find design solutions for your
projects and get ideas for building an interactive Web site.

SECURITY

Lots of bad guys out there—the good guys need help.

Discuss computer and network security issues here. Just don’t let
anyone else know the answers!

TECHNOLOGY IN ACTION

Cool things. Fun things.

It’s after hours. It’s time to play. Whether you’re into LEGO®

MINDSTORMS™ or turning an old PC into a DVR, this is where
technology turns into fun.

WINDOWS

No defenestration here.

Ask questions about all aspects of Windows programming, get
help on Microsoft technologies covered in Apress books, or
provide feedback on any Apress Windows book.

HOW TO PARTICIPATE:

Go to the Apress Forums site at http://forums.apress.com/.

Click the New User link.

	
	
	
	
	
	
	
	
	
	
	
	
	
	

