I"’v-a packed with tips and tricks for
%0 Fedora” Core 2, SUSE, and Mandrake distributions
I.——/—‘ - =

Linux

Timesaving Techniques’

DUMMIES

—

Susan Douglas
Korry Douglas

?‘mrumors of Red Hat Linux
edora Desktop For Dummies

Linux
Timesaving

Techniques™
FOR

DUMMIES

by Susan Douglas and Korry Douglas

WILEY
Wiley Publishing, Inc.

Linux
Timesaving

Techniques™
FOR

DUMMIES

by Susan Douglas and Korry Douglas

WILEY
Wiley Publishing, Inc.

™

Linux® Timesaving Techniques™ For Dummies®

Published by

Wiley Publishing, Inc.
111 River Street
Hoboken, NJ 07030-5774

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for per-
mission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, e-mail: brandreview@wiley.com.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the Rest of
Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, and related trade dress are trade-
marks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other
countries, and may not be used without written permission. All other trademarks are the property of their
respective owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTA-
TIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FIT-
NESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMO-
TIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY
SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN REN-
DERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS
REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUB-
LISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANI-
ZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF
FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMA-
TION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READ-
ERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Control Number: 2004101962
ISBN: 0-7645-7173-7

Manufactured in the United States of America
109 87654321

1V/SR/QX/QU/IN

WILEY

About the Authors

Susan Douglas is the CEO of Conjectrix, Inc., a software consulting firm specializing in
database- and security-related issues. When she’s not busy at the computer, Susan is
probably throwing pottery, glassblowing, or horseback riding.

Korry Douglas is the Director of Research and Development for Appx Software. When
he’s not working on computers, he’s making elegant sawdust in the woodshop.

Together, they are the coauthors of Red Hat Linux Fedora Desktop For Dummies and
PostgreSQL.

Susan and Korry enjoy life on a farm in rural Virginia where they raise horses and small
livestock. They both telecommute, so they have more time to spend with their 200 or so
animal friends. If they’re not at home, they’re out riding roller coasters.

Authors’ Acknowledgments

We would like to thank all the staff at Wiley who have supported this project, from start
to finish. Without the help and direction of Terri Varveris, organizing this book would
have been an impossible task. Becky Huehls’s editorial help and guidance have kept this
project rolling along on schedule (fairly painlessly, we might add). We also want to
extend a big thanks to the technical editors who’ve kept us honest throughout the
course of the book.

Thanks go also to all the supporting staff at Wiley that we’ve never met. We know you're
out there, and we appreciate your efforts and support.

Thank you also to all the programmers and developers that make open-source software
such an interesting, productive, and fun environment to work in.

Publisher’s Acknowledgments

We're proud of this book; please send us your comments through our online regis-
tration form located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the

following:

Acuquisitions, Editorial, and Media Development Composition

Associate Project Editor: Rebecca Huehls Project Coordinator: Barbara Moore

Acquisitions Editor: Terri Varveris Layout and Graphics: Lauren Goddard, Denny Hager,

Stephanie D. Jumper, Michael Kruzil, Lynsey Osborn,

i Editor: Kim D
Senior Copy Editor: Kim Darosett Jacque Schneider

Technical Editors: Terry Collings, Corey Hynes Proofreaders: Laura Albert, Vicki Broyles,
Editorial Manager: Leah Cameron Brian H. Walls

Media Development Manager: Laura VanWinkle Indexer: Steve Rath

Media Development Supervisor: Richard Graves

Editorial Assistant: Amanda Foxworth

Cartoons: Rich Tennant (www.the5thwave.com)

Publishing and Editorial for Technology Dummies

Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher

Mary Bednarek, Executive Editorial Director

Mary C. Corder, Editorial Director

Publishing for Consumer Dummies

Diane Graves Steele, Vice President and Publisher
Joyce Pepple, Acquisitions Director

Composition Services

Gerry Fahey, Vice President of Production Services

Contents at a Glance

Introduction

1

Part I: Making the Desktop Work for You 5

Technique 1: Finding the Power in
KDE Protocols

Technique 2: Getting GNOME Virtual File
Systems to Do the Work for You

Technique 3: Streamlining Your Work with
File Associations

Technique 4: Prompting Yourself with a
Custom Prompt

Technique 5: Getting There Quick with
Dynamic Shortcuts

Technique 6: Using cd Shortcuts for
Rapid Transit

Technique 7: Typing Less and Doing More
with Handy Automagic Variables

Technique 8: Logging In, Logging Out

Technique 9: Making History (Work for You)
Technique 10: Keeping Your Life Simple with

Aliases and Functions

Part ll: Getting the Most from
Your File System

Technique 11: Sharing Files and Printers in a

Windows World
Technique 12: Finding What You Need

Technique 13: Moving Made Easy
with Archives

Technique 14: Downloading and Uploading
Files in a Snap

Technique 15: Building a Playpen with
User Mode Linux

7

13

18

23

30

34

38
45
50

55

63

65

82

88

94

Part I1l: Good Housekeeping with Linux
Technique 16: Red-lining RPM Queries

Technique 17: Installing Made Easy with RPM
Technique 18: Getting Comfortable with RPM

Technique 19: Keeping Up-to-Date with apt
and Synaptic

Technique 20: Setting Up Automatic Services

Technique 21: Making Your Inner System
Administrator Happy (And Productive)

Technique 22: Spring Cleaning Essentials

Part IV: Tweaking the Kernel on
Your Linux System

Technique 23: Taking Good Care of
Your Kernel

Technique 24: Creating a Custom Kernel

Technique 25: Coping with the SELinux
Security System

Technique 26: Finding Out about Your
System with /proc

Part V: Securing Your Workspace
Technique 27: Closing Those Prying Eyes

Technique 28: Using Encryption for
Extra Security

Technique 29: Securing a Large Network
with Custom Authentication

Technique 30: Customizing Authentication
with PAM

Technique 31: Gaining Privileges
Technique 32: sudo Pseudonyms

Technique 33: Securing Your Connections
with SSH

101
103

108
115

119
126

130

137

149

151
157

164

170

177
179

184

194

203
209
213

218

Part VI: Networking Like a

Professional

Technique 34: Protecting Yourself
with a Firewall

Technique 35: Using VNC to Connect to
Remote Desktops

Technique 36: Streamlining Your Network
Surveillance

Technique 37: Evaluating Your Network
Security with Nessus

Technique 38: Person-to-Person Networking
with IRC

Part VII: Monitoring Your System
Technique 39: Controlling Troublesome
Processes at the Command Line

Technique 40: Taking Care of New
(And Old) Users

Technique 41: Keeping an Eye on
Your System

Part VIII: Serving Up the Internet

and More

Technique 42: Keeping an Apache Server
in Top Form

Technique 43: Keeping an Eye
on Your Servers

Technique 44: Making a MySQL Server
Your SQL Server

Technique 45: Safeguarding Your Apache
Server with SSL Certificates

Technique 46: Retrieving HTTPMail Using
hotway and Evolution

Technique 47: Stopping Spam with
SpamAssassin

Technique 48: Using Webmin to Simplify
Sendmail Configuration

227

229

239

247

255

265
2n

273

282

291

305

307

317

328

340

349

356

364

Part IX: Backing Up Means Never
Having to Say You're Sorry

Technique 49: Getting Ready to Back Up
Your Data

Technique 50: Backing Up Your Data

Technique 51: Quick Backup to
Remote Storage

Technique 52: Archiving Changes with CVS

Part X: Programming Tricks

Technique 53: Using Open-Source APIs
to Save Time

Technique 54: Timesaving PHP Tricks

Technique 55: Using the DDD Graphical
Debugger with Perl

Part XI: The Scary (Or Fun!) Stuff

Technique 56: Burning CD-Rs without
Getting Burned

Technique 57: Search and Destroy
setuid and setgid Programs

Technique 58: Quarantining Suspicious
Programs with UML

Technique 59: Troubleshooting Persnickety
Programs

Technique 60: Securing the Fort with Bastille

Technique 61: Creating a Second Line
of Defense with LIDS

Technique 62: Getting Graphical
with Shell Scripts

Index

369

371
377

386
391

401

403
414

422
429

431

437

443

448
455

467

474

479

Table of Contents

Introduction

Saving Time with This Book
Foolish Assumptions
What'’s in This Book
Part I: Making the Desktop Work for You
Fart II: Getting the Most from Your File System
Part llI: Good Housekeeping with Linux
FPart IV: Tweaking the Kernel
on Your Linux System
Part V: Securing Your Workspace
Part VI: Networking Like a Professional
Part VII: Monitoring Your System
Part VIII: Serving Up the Internet and More
Part IX: Backing Up Means Never
Having to Say You're Sorry
Part X: Programming Tricks
Part XI: The Scary (Or Fun!) Stuff
Icons Used in This Book

Part I: Making the Desktop
Work for You

Technique 1: Finding the Power in
KDE Protocols

Discovering Your Protocols

Working with CD Audio Tracks Using audiocd:
Managing Snapshots with the camera: Protocol
Remote File Management with fish:

Getting Help with help:, info:, and man:

Viewing Your Local Network with the smb:
Protocol

Other KDE Protocols

Technique 2: Getting GNOME Virtual File
Systems to Do the Work for You

Using GNOME VFS Modules

Stacking VFS Modules

Working with Packages: rpm and rpms
Putting VFS to Work at the Command Line
Burning CDs with a VFS

Skinning Your Desktop with VFS

LW Wwh NN — -

N RN Qo LW wWwww

1)}

© 00 N =~

10

11
11

13
13
15
15
17
17
17

Technique 3: Streamlining Your Work with
File Associations

Classifying Data with MIME
Creating KDE File Associations
Creating New MIME Types with GNOME

Technique 4: Prompting Yourself with a
Custom Prompt
Making Basic Prompt Transformations

Adding Dynamically Updated Data
to Your Prompt

Colorizing Your Prompt

Seeing a Red Alert When You Have Superuser
Privileges

Saving Your Work

Technique 5: Getting There Quick with
Dynamic Shortcuts
Completing Names Automatically
Using the Escape Key to Your Advantage
Customizing Completion for Maximum Speed

Technique 6: Using cd Shortcuts for
Rapid Transit

Using cd and Is to Navigate through bash

Setting Your CDPATH Variables to Find
Directories Fast

Remembering Where You've Been with pushd
and popd

Manipulating Your Stack with dirs

Technique 7: Typing Less and Doing More
with Handy Automagic Variables

Show Me the $$: Giving Temporary Files
Unique Names

Streamlining Archive Searches

Turning the Output of a Command into a Variable

with $()
Using $UID and $EUID in Shell Scripts
Getting Quick Access to Programs with $PATH
Customizing Variables for Rapid Transit

18

18
19
20

23
23

24
26

27
28

30

30
31
32

34
34
35

36
36

38

39
39

40
41
42
43

viii Linux Timesaving Techniques For Dummies

Technique 8: Logging In, Logging Qut
Finding the Right Shell Script
Choosing your victims
Timing is everything
Cleaning up made easy
Changing prototype scripts
Customizing Your Autostart File

Technique 9: Making History (Work for You)

Navigating the History List
Scrolling
Summoning a command by number
Searching through history
Customizing the History List

Adjusting key default settings
Filtering the history list

Executing Commands Quickly with
History Variables

Technique 10: Keeping Your Life Simple
with Aliases and Functions

Viewing Your Aliases

Creating Simple Timesaving Aliases

Using Aliases for Complex Commands

Automating Tedious Tasks with Functions
Filtering file searches by file type
Automatic downloading

Monitoring Your System in a Snap

Un-tarring the Easy Way

Part I1: Getting the Most from
Your File System
Technique 11: Sharing Files and Printers
in a Windows World

What Is Samba?

Getting Up and Running with Samba
Checking whether Samba is installed
Enabling Samba

45

45
46
46
47
48
48

50

50
50
51
51
52
52
52

53

55

55
56
57
58
58
58
59
60

63

65

65
66

66
66

Sharing Linux Resources with Other Computers
(SMB Clients)
Adjusting the workgroup name and creating
user accounts
Giving a Windows machine access to your
home directory
Sharing Linux files and directories
with other computers
Hooking Everyone Up to the Printer
Sharing Linux printers with SWAT
Using a Windows printer from Linux
Plugging In to Remote Data
with Linux Programs Quickly

Technique 12: Finding What You Need

Finding Files with locate
Finding Files with find
Qualifying Your Search
with the find Command
Doing updated filename searches
Adding time-based qualifications
Filtering by file size
Joining qualifications with
AND and OR operators
Perusing commonly used qualifications
Acting on What You Find
Cracking open a file’s info with -Is
Displaying specific info with -printf
Checking disk usage by user
Executing commands with find
Building Complex Commands with xargs

Technique 13: Moving Made Easy
with Archives

Creating Archives with File Roller
Inspecting and Extracting Archives
with File Roller
Adding Functionality to tar
with Complex Commands
Building archives from the command line
Archiving complex search results
Backing up an installed package
Uprooting Entire Directory Trees with scp
Splitting Big Files into Manageable Chunks

67
67
68

69
69
69
70

71

13

73
74

75
75
75
76

77
7
78
78
79
79
80
81

82
82
84
85
85
86
86

87

Technique 14: Downloading and
Uploading Files in a Snap

Building Software from Downloaded tarballs
Compiling a tarball: The basic steps
Downloading and compiling SuperKaramba

Versatile Downloading with wget
Mirroring sites with wget
Verifying your bookmarks with wget
Downloading files with wget
Downloading and unpacking in one quick step
wget’s optional flags

Downloading and Uploading with curl

Technique 15: Building a Playpen with
User Mode Linux

Choosing the ADIOS Version of User Mode Linux
Setting Up ADIOS
Downloading ADIOS
Burning ADIOS to CD
Installing ADIOS
Finding Your Way around UML
Connecting to the Internet from an ADIOS VM
Using a GUI with UML
Installing Software into UML
Merging Changes to Your Prototype

Part 111: Good Housekeeping

with Linux

Technique 16: Red-lining RPM Queries

Querying RPM Packages for Content
Digesting Information

Creating a Package Index

Querying for Prerequisites

Don’t Put That in Your Drive; You Don’t Know
Where That’s Been!

Technique 17: Installing Made Easy
with RPM

Dissecting an RPM Package
Using RPM at the Command Line
Removing RPMs

Flagging Down RPM

88
89
89
91
91
92
92

92
93

94
94
95
95
96
96
97
98
98
98
99

101

103

104
105
105
106

106

108

108
109
110
110

Table of Contents

Getting Graphic with RPM

Quick installations from distribution media
with Fedora’s Package Manager
Using SuSE’s package manager to
your advantage
Using Rpmdrake to install from media
Installing from your Konqueror browser

Technique 18: Getting Comfortable
with RPM

Saving Time with --upgrade
Verifying Your System
Reading the Tamper-Proof Seal

Technique 19: Keeping Up-to-Date
with apt and Synaptic
Setting Up Synaptic and apt in a Snap
Keeping Up-to-Date with apt and Synaptic:
The Basics

Upgrading Your Entire Computer
Handy Hints about Synaptic

Changing repositories

Viewing package details

Installing new packages with Synaptic
Importing the Keys to the Repository

Technique 20: Setting Up Automatic
Services

Letting Task Scheduler Work for You
Scheduling a new task
Editing a task
Adding environment variables

Technique 21: Making Your Inner System
Administrator Happy (And Productive)

Reining In Resources with Disk Quotas
Installing the quota RPM package
Enabling file system quotas
Getting your files together
Setting quotas
Reviewing your quotas
Using System Accounting to Keep Track of Users
Setting up system accounting
Looking up user login hours
Checking out command and program usage

110
110

112
113
114

115

115
116
117

19
119

120
122
123
123
123
124
124

126

126
127
128
128

130

130
131
131
132
132
134
134
134
135
135

Technique 22: Spring Cleaning Essentials

Running Down the Runlevels
Runlevel basics
Customizing runlevels in Fedora
Customizing runlevels in SuSE
Customizing runlevels in Mandrake
Customizing runlevels at the command line
Switching to a new runlevel

Disabling Unused Services

Removing Unneeded Services

Removing Old Users and Their Files

Part IU: Tweaking the Kernel
on Your Linux System

Technique 23: Taking Good Care
of Your Kernel

Adding and Removing Kernel Modules
Learning about modules
Installing a module with insmod
Taking care of dependencies automatically
with modprobe and depmod
Loading a module for a slightly different
kernel with insmod and modprobe
Removing modules with rmmod
Manipulating Boot Time Parameters

Technique 24: Creating a Custom Kernel

Reconfiguring Your Kernel — Ready, Set, Go!
Step 1: Making an Emergency Plan, or Boot Disk
Step 2: Finding the Source Code

Step 3: Configuring a New Kernel

Step 4: Customizing the Kernel

Step 5: Building the Kernel

Technique 25: Coping with the SELinux
Security System

Understanding the Principles of SELinux
Everything is an object
Identifying subjects in SELinux
Understanding the security context

Disabling or Disarming SELinux

Playing the Right Role

Finding Out about Your SELinux Policy

Linux Timesaving Techniques For Dummies

137

137
138
138
139
140
141
141
141
143
144

149

151

152
152
152

152

153
154
154

157
158
158
160
160
161
162

164

164
165
165
165
166
167
168

Technique 26: Finding Out about Your
System with /proc

Exploring the Process-Related Entries in /proc
Surveying Your System from /proc

Closing Down Security Gaps with /proc

Popping the Cork: Speeding Up WINE with /proc

Part U: Securing Your Workspace
Technique 27: Closing Those Prying Eyes

Reading and Understanding File Permissions
Controlling Permissions at the Command Line
Changing File Permissions from a Desktop

Technique 28: Using Encryption for
Extra Security

Encryption Made Easy with kgpg and
the KDE Desktop
Creating keys with kRgpg
Sharing your key with the world
Importing a public key from a public-key server
Encrypting and decrypting documents
with drag-and-drop ease
Encrypting Documents with gpg
at the Command Line
Sharing a secret file
Creating a key pair and receiving
encrypted documents
Encrypting documents on your home system
Encrypting E-Mail for Added Security
Encrypting with Ximian Evolution
Setting up Mozilla e-mail for encryption
Sending and receiving encrypted messages
with Mozilla mail

Technique 29: Securing a Large Network
with Custom Authentication
Using Cross-Platform Authentication with
Linux and Windows

Prepping for cross-platform authentication
Setting up cross-platform authentication

170

170
172
174
175

177

179

179
181
182

184

185
185
186
187

188

189
189

189
190
191
191
192

193

194

195
195
196

Using PAM and Kerberos to Serve Up
Authentication
Establishing synchronized system times
Testing your domain name server (DNS)
Setting up a Key Distribution Center
Setting up automatic ticket management
with Kerberos and PAM
Adding users to the Key Distribution Center

Technique 30: Customizing Authentication
with PAM

Understanding Modules and Configuration Files:

The Basics of PAM Authentication

Finding a Module and Customizing Its Rules
Building Good Rules with PAM

Phase

Control level

Module pathname

Arguments
Dissecting a Configuration File
Skipping a Password with PAM

Technique 31: Gaining Privileges
Feeling the Power
Gaining Superuser Privileges
Pretending to Be Other Users
Limiting Privileges with sudo

Technique 32: sudo Pseudonyms

Installing sudo
Adding Up the Aliases
Adding Aliases to the sudo Configuration File
Defining the Alias
Creating a User_Alias
Creating a Runas_Alias
Simplifying group managment
with a Host_Alias
Mounting and unmounting CDs without
the superuser password

Managing access to dangerous commands
with command aliases

197
197
199
199

201
202

203

204
204
204
205
205
205
205
206
208

209
209
210
210
211

213

214
214
214
215

215
215

216
216

216

Table of Contents

Technique 33: Securing Your Connections

with SSH

Using SSH for Top-Speed Connections
Setting Up Public-Key Authentication to
Secure SSH
Generating the key pair
Distributing your public key
Passing on your passphrase
Logging In with SSH and Key Authentication
Starting from the command line
Getting graphic
Creating Shortcuts to Your Favorite
SSH Locations
Copying Files with scp
Secure (And Fast) Port Forwarding with SSH

Part Vl: Networking Like
a Professional

Technique 34: Protecting Yourself
with a Firewall

Finding Your Firewall

Setting up a simple firewall in Mandrake Linux

Setting up a simple firewall in Fedora Linux

Setting up a simple firewall in SuSE Linux
Editing the Rules with Webmin

Starting a Webmin session

Reading the rules with Webmin

Changing the rules

Editing existing rules

Adding a new rule with Webmin

Technique 35: Using VNC to Connect to
Remote Desktops
Sharing Desktops with VNC
Inviting Your Friends to Use Your Desktop

Serving Up a New Desktop with VNC Server
Using tsclient to View Remote Desktops
from Linux
Using tsclient with a VNC server
Using tsclient with an RDP server

XI

218
219

219
219
220
220
221
221
222

222
223
223

227

229

229
230
231
232
233
234
234
236
236
237

239

239
240
241

242
243
243

Xi i Linux Timesaving Techniques For Dummies

Making Cut and Paste Commands Work on a
Remote Desktop
Creating New VNC Desktops on Demand
Switching display managers in SuSE Linux
Switching display managers in Mandrake Linux
Connecting gdm and VNC

Technique 36: Streamlining Your Network
Surveillance

Exploring Your Network with Isof
Running Isof
Interpreting the lsof output
Reading file types
Discovering Network Connections
Other Timesaving Isof Tricks
Packet Sniffing with the Ethereal Network
Analyzer
Starting Ethereal
Capturing packets
Applying filters to screen packets
Peeking in packets

Color-coding packets coming
from your network

Technique 37: Evaluating Your Network
Security with Nessus

Getting Up and Running with Nessus
Installing programs Nessus needs to run
Installing Nessus
Adding a user to Nessus
Generating a certificate

Using Nessus to Scan Your Network
Starting the daemon and the interface
Reading the grim results

Keeping Your Plug-ins Up-to-Date

Technique 38: Person-to-Person
Networking with IRC
Finding the Answers You Seek
in a Linux Chat Room
Chatting in the Fedora Chat Room
Looking for Answers in the SuSE Chat Room

244
245
245
245
246

247

247
248
248
249
249

250

251
251
251
252
253

253

255

256
256
256
257
258
258
259
262
263

265

265
267
268

Finding Fellow Mandrake Users in the Mandrake

Chat Room 268
Customizing KSirc — Who Do You Want
to Be Today? 268

Part Ull: Monitoring Your System 271

Technique 39: Controlling Troublesome

Processes at the Command Line 273
Processing Processes with procps 273
Keeping Track of Process Status with ps,
pstree, and pgrep 274
Using ps to filter process status information 274

Viewing ps output the way you want to see it 275
Making parent-child relationships

stand out in a ps listing 277
Climbing the family tree with pstree 277
Finding processes with pgrep 278

Killing Processes with pkill 280
Killing Processes with killall 280
Closing Windows with xkill 280
Getting Your Processes’ Priorities Straight 281
Technique 40: Taking Care of New (And
0ld) Users 282
Managing Users and Groups with the Fedora/
Mandrake User Manager 283
Adding new users 283
Modifying user accounts 284
Adding groups 285
Filtering users and groups 286
Managing Users and Groups with the SuSE
User Administrator 286
Adding new users 287
Modifying user accounts 289
Adding groups 289
Filtering users and groups 290
Technique 41: Keeping an Eye
on Your System 291
Keeping an Eye on the System Logs 292
Viewing and filtering log files with Fedora
and Mandrake 292

Adding and deleting log files from the viewer 293

Setting up alerts and warnings
Viewing your log files from SuSE
Monitoring your log files from SuSE
Customizing Your Log Files
Keeping an Eye on Resources with
KDE System Guard
Finding and killing runaway processes
Prioritizing processes to smooth
a network bottleneck
Watching your system load
Creating a new worksheet
Creating system resource logs
Displaying network resources

Part VIII: Serving Up the Internet
and More

Technique 42: Keeping an Apache Server
in Top Form

Setting Up Apache — Quick!
Using Synaptic to download and install Apache
Installing Apache from disc

Starting the Apache Service

Building a Quick Web Page with OpenOffice.org

Taking Your Site Public with Dynamic DNS
Understanding how dynamic DNS works
Setting up dynamic DNS
Updating your IP address

Keeping Your Apache Server Up-to-Date

the Easy Way

Installing the Fedora HTTP Configuration tool
Putting the HTTP Configuration tool to work

Technique 43: Keeping an Eye
on Your Servers

Watching Your Web Server Traffic
with apachetop

Installing apachetop

Running and exiting apachetop

Navigating apachetop

Switching among the log files (or watching
several at once)

Changing the display time of apachetop
statistics

294
295
295
296

298
298

300
300
301
302
303

305

307

307
308
309
310
312
313
313
313
314

314
315
315

317

318
318
318
319

319

320

Table of Contents

Monitoring MySQL Server with the MySQL
Control Center

Downloading and installing the MySQL
Control Center
Accessing MySQL Control Center features

Viewing, managing, and repairing a database

with the Databases controls
Putting the Server Administration controls
to work

Adding a new user

Watching Your MySQL Traffic with mtop
Gathering all the packages that mtop needs
Installing mtop
Monitoring traffic

Technique 44: Making a MySQOL Server
Your SQL Server

Building a MySQL Server
Installing the necessary packages
Starting the MySQL server
Replicating MySQL Data
Configuring replication: The three topologies

Setting up replication for a single slave
and master

Choosing a Method to Back Up MySQL Data
Backing Up and Restoring with mysqldump
mysqldump backup options
Backing up multiple databases
Compressing the archive
Restoring a mysqldump archive
Backing Up with File System Tools
Making a mysqlhotcopy of Your Database
Archiving a Replication Slave

Taking Care of Business with
MySQL Administrator
Installing MySQL Administrator
Starting MySQL Administrator
Exploring MySQL Administrator’s tools

Technique 45: Safeguarding Your Apache
Server with SSL Certificates

Understanding the Basics
of How Certificates Work

Choosing an SSL Certificate

320

320
321

321

323
324
325
325
326
326

328

329
329
329
330
330

331
332
332
332
333
333
334
334
334
335

335
335
336
336

340

340
341

xiv

Creating a Certificate Signing Request
Creating a Self-Signed Certificate
Creating a Signing Authority with openssl
Creating a certificate authority
Signing a CSR
Trusting in Trusted Certification Authorities

Exploring Your Certificate Collection
with Mozilla

Technique 46: Retrieving HTTPMail
Using hotway and Evolution

Introducing hotway
Getting Started with hotway

Setting Up Evolution to Read HTTPMail
Accounts with hotway

Ringing the Bells and Blowing the Whistles:
Your Evolution Summary Page

Technique 47: Stopping Spam with
SpamAssassin

Installing SpamAssassin
Installing from the distribution media
Installing from RPM downloads
Starting the service
Fine-Tuning SpamAssassin to Separate
the Ham from the Spam
Customizing settings
Saving your settings
Adding a New Filter to Evolution
Serving Up a Big Bowl of the RulesDuJour

Technique 48: Using Webmin to Simplify
Sendmail Configuration

Registering Your Address

Taming a Sendmail Server

Tweaking Your Configuration Files with Webmin
Serving up mail for multiple domains
Relaying e-mail
Using aliases to simplify mail handling

Linux Timesaving Techniques For Dummies

341
344
345
345
346
347

347

349

349
350

350

353

356

356
357
358
358

358
359
360
361
363

364

364
364
365
366
366
367

Part IX: Backing Up Means Never
Having to Say You've Sorry

Technique 49: Getting Ready to Back Up
Your Data

Deciding What to Archive
Choosing Archive Media
Tape drives
Removable and external disk drives
Removable media
Optical media (CDs and DVDs)
Online storage
Choosing an Archive Scheme
Full backups
Differential backups
Incremental backups
Incremental versus differential backups
Choosing an Archive Program

Technique 50: Backing Up Your Data

Estimating Your Media Needs
Creating Data Archives with tar
Backing up files and directories
Backing up account information
and passwords
Targeting bite-sized backups
for speedier restores
Rolling whole file systems into a tarball
Starting a Differential Backup Cycle
Starting an Incremental Backup Cycle
Restoring from Backup with tar
Backing Up to CD (Or DVD) with cdbackup
Creating the backup
Restoring from a CD or DVD backup

Restoring from a disc containing
multiple archives

Technique 51: Quick Backup
to Remote Storage
Combining the Power of tar with ssh
for Quick Remote Backups
Testing the ssh connection to the remote host
Creating a tar archive over the ssh connection
Backing up to tape drives on remote machines

369

n

372
372
372
373
373
374
374
374
374
374
375
375
376

377

377
378
378

378

379
379
380
381
382
383
383
384

384

386

387
387
387
388

Backing Up to a Remote Computer with rdist
and ssh
Testing the ssh connection to the remote host
Creating the distfile
Backing up

Technique 52: Archiving Changes with CVS

Getting Started with CVS
Checking whether CVS is installed
Discovering what to use CVS for
Creating a CVS Repository
Populating Your Repository with Files
Checking Files In and Out (Or Playing in Your
Sandbox)
Simplifying CVS with cervisia
Installing cervisia
Putting files in your sandbox
Adding more files to your repository
Committing your changes
Diplomacy 101 — resolving conflicts
Browsing your log files
Marking milestones with tags
Branching off with cervisia

Part X: Programming Tricks

Technique 53: Using Open-Source APIs
to Save Time

Using the libcurl Library (C Programming)
Uploading a File with a Simple Program
Using libcurl
Line 7: Defining functions and data types
Line 14: Calling the initialization function
Lines 18- 21: Defining the transfer
Line 23: Starting the transfer
Line 26: Finishing the upload
Installing the Ming Library
Building a Simple Flash Movie with Ming
Examining the program
Compiling the program
Running the program
Building Interactive Movies with Ming
Examining the program
Compiling the program
Running the program

388
388
389
390

391

392
392
392
392
393

394
395
395
395
396
396
397
397
398
399

401

403
404

404
405
405
405
407
407
407
408
408
410
410
411
411
413
413

Table of Contents

Technique 54: Timesaving PHP Tricks

Doing the curl E-shuffle with PHP
Combining PHP with curl and XML:
An overview
Checking out the XML file
Downloading and displaying the XML file
with a PHP script (and curl)

Sending E-Mail from PHP When Problems
Occur

Technique 55: Using the DDD Graphical
Debugger with Perl

Debugging Perl Code with DDD
Installing and starting DDD
Examining the main window
Reviewing and stepping through source code
Making Stop Signs: Using Breakpoints
to Watch Code
Setting a breakpoint
Modifying a breakpoint
Tracking Variable Values in the Data Window
Opening the data window
Adding a variable to the data window
Changing the display to a table
Using the Backtrace feature
Using the Help menu

Part XI: The Scary (Or Fun!) Stuff

Technique 56: Burning CD-Rs without
Getting Burned

Making Fedora Distribution CDs
Downloading the ISO images
Verifying the checksums
Burning an ISO File to Disc
at the Command Line
Finding the identity of your drive
Running a test burn
Burning the distribution discs
Creating an ISO Image at the Command Line
Burning CDs without Making an ISO First

xv

44
415

415
415

416

420

422

423
423
423
424

425
425
425
426
426
426
427
428
428

429

431

432
432
433

433
433
433
434
434

435

xv i Linux Timesaving Techniques For Dummies

Technique 57: Search and Destroy Keeping the daemons in check 461
setuid and setgid Programs 437 Securing sendmail 461
Closing the gaps in Apache 461
Exploring How setuid and setgid Keeping temporary files safe 462
Can Be Dangerous 437 Building a better firewall 462
Identifying the Potential Troublemakers — Fast 439 Port scanning with Bastille 464
Finding setuid quickly and easily with kfind 439 You're almost done! 465
Finding setuid and setgid programs Keeping Abreast of Security Issues 466
at the command line 440

Deciding to Turn Off setuid or setgid 441 Technique 61: Creating a Second Line
Changing the setuid or setgid Bit 441 of Defense with LIDS 467
Technique 58: Quarantining Suspicious Turning LIDS On and Off 467
Programs with UML 443 Testing LIDS before Applying It to Your System 468
. 1o Understanding the LIDS Access Control List 468
W}_lo Belongs in :]all' 444 Controlling File Access with LIDS 469
Using pML to Jail Programs . add Hiding Processes with LIDS 470
Changing the Default Password to the Jail 446 Running Down the Privilege List 41

Installing New Software and Resolving Conflicts 446

Technique 59: Troubleshooting Persnickety Technique 62: Getting Graphical

Programs 448 with Shell Scripts 474
.) . . Getting Graphical at the Command Line 475
Using Isof to Find Out Which Files Are Open 449 Getting graphical in GNOME 475
Debugging Your Environment with strace 450 Getting graphical with KDE 477
Investigating Programs with ltrace 451 Staying desktop neutral 478
Handy strace and ltrace Options 452
Recording Program Errors with valgrind 453 Indek' 479
Technique 60: Securing the Fort
with Bastille 455
Hardening Your Hat with Bastille 455
Downloading and installing Bastille and
its dependencies 456
Welcome to the Bastille 456
Addressing file permission issues 457
Clamping down on SUID privileges 457
Moving on to account security 458
Making the boot process more secure 459
Securing connection broker 460
Limiting compiler access 460
Limiting access to hackers 460

Logging extra information 460

Introduction

all about taking control of your desktop away from the big corpora-

tions and putting it into the hands of the developers working with
your best interests at heart. The software is freely available on the
Internet for you to download — you can even help develop the projects if
you want to get involved. Decisions about what’s on your desktop aren’t
being made based on the profit margins yielded by the software. Instead,
the best interests of the user are of primary concern to the developers.

l inux is open-source software at it’s finest. Open-source software is

Although open-source software is great, have you ever tried to read the
documentation that comes with it? Some of it is very good, but most of it
is written for geeks, by geeks, and a good part of it is flat-out missing.
Don’t blame the developers — they are doing this for free after all. . . .

Our goal in writing this book is to empower you with some of the
stronger features of Linux (and some great open-source tools) to solve
everyday problems, without the headaches and lost time that go with
trying to figure out how to use the tools. Linux provides simple, fast, and
powerful solutions to meet the demands of day-to-day computer use and
system administration — our goal is to save you time, while making the
tools easy to use.

Saving Time with This Book

The Timesaving Techniques For Dummies books focus on high-payoff
techniques that save you time, either on the spot or somewhere down
the road. And these books get to the point in a hurry, with step-by-step
instructions to pace you through the tasks you need to do, without any
of the fluff you don’t want. We’ve identified more than 60 techniques that
Linux users need to know to make the most of their time. In addition,
each technique includes figures that make following along a breeze.
Decide for yourself how to use this book: Read it cover to cover if you
like, or skip right to the technique that interests you the most.

2 Introduction

In Linux Timesaving Techniques For Dummies, you
can find out how to

v Tame time-consuming tasks: We're letting you in
on more than 60 tips and tricks for your Linux
system, so you can spend more time on creating
great results and less time on fiddling with a fea-
ture so that it works correctly.

v Take your skills up a notch: You're already famil-
iar with the basics of using Linux. Now this book
takes you to the next level, helping you become a
more powerful user.

v Customize Linux to meet your needs: Spending
some upfront time customizing Linux so that it
works faster, more reliably, and more like how
you work on a daily basis can save you time (and
aggravation) later.

v Fine-tune your system: You can fine-tune your
Linux system for better performance and usabil-
ity. Customizing your system to better serve
users saves everyone time.

v Improve your system security: Building a secure
user environment with good user hygiene and
regular backups will save everyone time. With
adequate security in place, your chances of hav-
ing to restore your system are minimized.

v Automate repetitive tasks: You can automate
and schedule repetitive tasks to run while you're
away, and save the bandwidth for the times that
you need it most.

Foolish Assumptions

We assume very little. We do, however, assume you
have a computer that is currently running Fedora,
Mandrake, or SuSE Linux (or that you're considering
a conversion), and that you more than likely are con-
nected to the Internet.

We assume that you know the needs of your users
and the demands of your system. We try to clearly
identify what aspects of a technique are best suited

to an individual user or a large corporate network,
but we assume you know which one you are.

We assume you make backups on a regular basis. If
you don’t, go immediately to Part IX: Backing Up
Means Never Having to Say You're Sorry.

We assume you don’t want to get bogged down in

a lot of useless details, so we concentrate on
getting techniques implemented quickly, without

a lot of overhead spent on theory. That’s a big time-
saver, too.

What’s in This Book

This book is organized into parts — groups of tech-
niques about a common subject that will save you
time and help you get your system running better.
Each technique is written to be independent of the
others, so you only need to implement those tech-
niques that are important to you and your users.
From time to time, we may send you to another tech-
nique to implement a feature that we’ll be using in
our current technique — we just don’t want to waste
valuable space repeating ourselves. Each of the parts
is about a different facet of a Linux system so you
can scan the part title easily, looking for problem-
solving techniques that will help you, quick.

Part I: Making the Desktop Work for You

Part I is full of tips and techniques to help you make
the most of your time at the desktop. Teaching your
system how to recognize file types (so you don’t
have to specify them every time you open a file),
keyboard shortcuts, and customizing your prompt
are included among the techniques. We also include
a rundown on the KDE protocols and the GNOME
virtual file systems — the handy tools that work in a
browser window to access other sources (like cam-
eras or CDs). You'll also find techniques about using
automagic variables and history files to make the
command line simple, easy, and quick.

Part II: Getting the Most from Your File System

This part focuses on moving and sharing data. Using
Windows filesharing across a network, finding the
files you need when you need them, and some quick
downloading techniques are included in this part.
This part also includes a technique about using User
Mode Linux to create a playpen with a built-in copy
of Fedora — handy if you need to jail a server or just
want to experiment with program modifications
safely.

Part lll: Good Housekeeping with Linux

You'll find techniques to help you make the most of
the RPM tool (the Red Hat Package Manager) for
installations, updates, and queries. Part Il also
includes a technique introducing you to Synaptic —
a handy tool that will keep your software current
and up-to-date with just a few clicks of the mouse.
We'll also introduce you to task scheduling tools that
can help you automate administrative tasks to run
without any supervision at all. Everyday timesaving
doesn’t get much better than Part III.

Part IV: Tweaking the Kernel
on Your Linux System

The techniques in Part IV are dedicated to the ker-
nel. We’ll show you how to build a new kernel, clean
up an old kernel, or find out about the condition of
your existing kernel. We’ll also introduce you to SE
Linux — the new security-enhanced kernel fresh
with this release of Fedora.

Part V: Securing Your Workspace

Part V is all about security — we’ll introduce you to
PAM (Pluggable Authentication Modules), and show
you quick ways to encrypt e-mail and files to keep
the prying eyes of snoops out of your personal docu-
ments. We'll also show you how to safeguard your
system by using sudo to dole out the superuser privi-
leges to only those users on your system who need
them. Your system will be a safer place with the
techniques in Part V implemented.

What's in This Book 3

Part VI: Networking Like a Professional

The techniques in Part VI focus on using network
features and network analysis tools to your advan-
tage. We’ll show you how to set up and use remote
desktops from your local system, as well as how to
share desktops with remote users. We'll also show
you how to take care of your network security by
building sturdy but supple firewalls, and how to
harden those firewalls with the network security
analysis tool, Nessus. We'll also show you how to
watch network traffic to see what’s traveling across
your network to your users.

Part Vil: Monitoring Your System

In this part, we’ll introduce you to tools that will
help you keep an eye on your system resources and
control runaway processes. We'll also show you
some quick ways to take care of users and their
accounts — both new users and old.

Part VIII: Serving Up the Internet and More

In Part VIII, we'll focus on server-related issues. We’ll
show you the quick way to build and configure an
Apache Web server, a Sendmail mail server, and a
MySQL database server, as well as how to monitor
your servers once they’re in place. We'll also show
you how to make your new Web site a more secure
place with SSL certificates, and the easy way to cre-
ate your own certificate signing authority. Then we’ll
delve into e-mail — you’ll save a ton of time with

our techniques that help you avoid spam with
SpamAssassin and retrieve your HTTPMail (that’s
Hotmail, MSN, and Lycos mail) with hotway, avoiding
all of the ads and pop-ups that come with most
Internet mail accounts.

Part IX: Backing Up Means Never
Having to Say You're Sorry

The techniques in this part are all about backing up.
Techniques include getting ready to back up your
data, choosing a fast but sturdy backup scheme,
implementing a good backup routine, and backing

4 Introduction

up to remote storage. We’ll also introduce you to
CVS archiving — a great way to keep not only cur-
rent renditions of projects, but also a living history
of a project’s growth.

Part X: Programming Tricks

These techniques will help you save time in your
programming projects. You'll find a technique that
helps you use prewritten, open-source APIs in your
own code to help you cover ground quickly. You'll
also find a technique that focuses on moving data in
and out of your PHP code. We'll also introduce you
to a great graphical debugger (DDD) that will save
you time when you need to debug your code —
that’s the last thing you want to spend too much
time on.

Part XI: The Scary (Or Fun!) Stuff

This part contains a medley of timesaving tech-
niques that will help you burn CDs, find dangerous
programs, create a UML jail, troubleshoot problem
programs, and more. We'll introduce you to Bastille,
a system-hardening, open-source tool that makes
most security schemes look wimpy. We'll also give
you the rundown on LIDS — an under-documented
but powerful security tool that you can use on your
system to create a secure user environment. We’ll

throw in an introduction to Zenity — a handy toolkit
you can use to add graphical prompts to any user
shell scripts you use on your system.

Icons Used in This Book

Each technique in this book has icons pointing to
special information, sometimes quite emphatically.
Each icon has its own purpose.

When there’s a way to save time, either now
or in the future, this icon leads the way. Home
in on these icons when every second counts.

L
iz <&
(é\

This icon points to handy hints that will help
you work through the steps in each technique
or to handy troubleshooting info.

These icons are your trail of breadcrumbs,
leading back to information that you'll want to
remember.

When you see a Warning icon, there’s a
chance your data or your system is at risk. You
won’t see many of these, but when you do,
proceed with caution.

* e @

Part |

Making the Desktop
Work for You

The 5th Wave By Rich Tennant

GRUCRTENNANT
\b\-_
————
.—%\ﬂi
i
¥ ®
i S& Fr
|| = 3 —
o WE S o o ©
R ®
a
7 T
cee ©
ﬂ\

“The funng thin-g 15 he's spent 9 hours
ovganizing his computer desktop .

Finding the Power
in KDE Protocols

Technique

Save Time By

1~ Creating links to allow
quick access to important
data

+* Moving audio and image
files with Konqueror

v fishing for remote files
with a secure connection

v~ Easily accessing local
network information

+~ Reading documentation
— fast!

hen you type a typical URL, such as http://www.google.com/
Wi ndex.html, into your Web browser, you likely don’t think about

how you’re making use of it. That is, you don’t think about
http:// being a protocol, www.google.com being an address that the proto-

col handler knows how to deal with, and index.htm1 identifying a
resource at that address.

If you haven’t thought about URLs and their individual parts for a while,
you may be surprised to find out that KDE adds a number of new protocol
handlers, called KIO slaves, that know how to serve up data from new and
unusual sources, such as CDs and remote systems, through the Konqueror
Web browser.

Using the right protocol saves you the time of manually copying resources
all over the Web. The protocols are a varied bunch. In this technique,

we show you protocols that work with audio CDs or your digital camera,
handle remote file management, manage printers and e-mail, and read
documentation. Check them out — you can save time in lots of ways.

Discovering Your Protocols

Finding out about KDE protocols is not an easy task. They aren’t well
documented, and they can be tough to find. Some are universally helpful,
whereas others are more specialized (such as the LinPoch project at
Tinpoch.sourceforge.net, which lets you interact with Nokia cell phones
from KDE applications). Here’s how to see what protocols are installed
on the following versions of Linux:

v Fedora: Open the KDE Menu and choose System Tools=Info Center;
then click Protocols.
v SuSe: Open the KDE Menu and choose System=>Monitor=’Info Center.

v Mandrake: Open the KDE Menu and choose Systemr>Configuration=>
KDEr>Information=>Protocols.

8 Technique 1: Finding the Power in KDE Protocols

The Available IO Slaves column displays a list of
available protocols. For more information about a

protocol, click the protocol name, and the documen-

tation is displayed in the right column.

Some of the protocols are not documented. If
you find one that sounds interesting, search the
Web to see if someone has written about it.

Depending on which version of KDE you have
and which options are installed, the protocols
you find will vary.

Working with CD Audio
Tracks Using audiocd:

Linux gives you all sorts of ways to rip the tracks
off audio CDs, but we haven’t found anything easier
than KDE'’s audiocd: protocol. This protocol is a
breeze to use:

1. Insert a music CD into your drive.

If your CD player program starts, just close it.

N

Open the Konqueror Web Browser.

3. When Konqueror opens, enter audiocd: / in the

Location bar and press Enter.

If your copy of KDE was compiled with audiocd:
support, the Web browser displays options for
ripping the audio files, as shown in Figure 1-1.

TaBLE 1-1: RippING Aupio FILES WITH AUDIOCD:

(See the preceding section to find out how to
view a list of available protocols.) See Table 1-1
for details on what the options do and how they
work.

Edaudioedy Kanguerar
Lacaion Ede View Ga Eoatmarks Tods Sehings Window Help

A4PH O HEDS wiARME

: b Lgeation: | 5 audioce:) .| 7|
= o=y [N [== o=y I/]
B B & B B B &
! ! ! =

Black Tie whine By Name! 2y Track e Information Oy Yorbis trackil.cda
haise
B I B = I B B
Ha e i i i e
B/ &5 & & 5 &5 &

track02.cda rack03.cda track4.cda trackif.cda Trackdb.cda trackO? cda trackiG.cda

ey i ey i e ey
) =3) = =3 =3
tracki®.cda trackllicda trackll.cda trackl2.cda trackli.cda trackid.cda

20 Hems - 14 Flles (571.3 MR Tatal) - 6 Direciones

* Figure 1-1: The KDE audiocd: protocol.

Not all copies of KDE are created equal. The
copy of KDE currently distributed with Fedora
includes support for copying to .wav, .cda,
and . ogg files, but it doesn’t include the infor-
mation to create MP3s. You can get a copy of
KDE that has MP3 compiled in at www . kde.org.

K

7 Depending on your MP3 player, you may be
(«a able to save lots of time loading files. If your

player can emulate a hard drive, you can open
it with Konqueror and drag your music on and
off the player.

Option What Is It?

How to Use It

CDA Files

By Track
(track0l.wav, track02.wav,...).

Ogg Vorbis

A directory that contains one file for each audio track
on the CD (track01l.cda, track02.cda,...).

A directory that contains one file for each audio track

Drag one of these . cda files to your desktop (or to
another folder), and audiocd: copies the raw
audio track to the new location.

Drag one of these .wav files to your desktop (or to
another folder), and audiocd: converts the audio
track to WAV format.

A directory that contains one file for each audio track, Drag one of these . 0gg files to your desktop (or to
in Ogg Vorbis format (such as 16 Burning Down The
House.ogg, 14 Once In A Lifetime.ogg,...).

another folder), and audiocd: converts the audio
track to Ogg Vorbis format.

Managing Snapshots with the camera: Protocol 9

Option What Is It? How to Use It
MP3 A directory that contains audio tracks Drag an .mp3 file to your desktop (or to another
in MP3 format. folder), and audiocd: converts the audio track to
MP3 format.
By Name A directory that contains audio tracks (with song

names) in WAV format (16 Burning Down The
House.wav, 14 Once In A Lifetime.wav,...). This
directory is similar to By Track, except that you get
to see song titles in the By Name directory (By Track
only shows you the track numbers). You won'’t see a
By Name directory if Konqueror can’t find your CD
in the Web’s cddb database.

Album Name A directory that contains one file for each audio track,
in WAV format (identical to By Name except that the
directory name is the album name).

Managing Snapshots with o 1o e e e T s ot

A4PH O HEDS unAGHE
the camera: pro tocol : -?;Lf;ucn: W camerHE Faatcsmar 320 [FTF mcda].'«-.::_:nm D001 I 1 0H 320 @ | il
re I I3 L=

G IMOOROIE. PG IMOD2005. PG IMOOZMCIPG IMOORIML PG

The camera: protocol treats your digital camera like
it’s just another storage device, only this one is full MBOROIZ IS IO P MR 19
of pictures. camera: gives you thumbnail previews of
the photos on your camera, so you can easily iden-
tify and move your images to where you need them.
Just drag the images to your desktop (or to another
folder). Double-click an image file to open it with
your favorite editor (see Technique 3 to find out how
to choose an editor), and you’re working in a snap.

IMIN2035, JPG (R24.7 KB) JFFG Image

You can also use an image as your desktop ¢ Figure 1-2: The camera: protocol, in action.
wallpaper. Drag the thumbnail to the desktop
and choose Set as Wallpaper from the menu

From here, finding your way around the inside of
that appears.

your camera is just a matter of exploring.

To use the camera: protocol, follow these steps: When we plug in our HP PhotoSmart 320

digital camera and use the camera: protocol,
1. Plug in your digital camera and be sure it’s we see the single directory HP PhotoSmart 320
turned on. (PTP mode). Underneath the HP PhotoSmart
320 folder, our pictures are in a subdirectory

2. Open the Konqueror Web Browser. named store 00010001/DCIM/100HP320.

3. Type camera:/ in the address line and press The directory structure used by your digital
Enter. camera is likely to be different. Use Konqueror
, .) i to find your way around the inside of your
That's all there is to it (see Figure 1-2). camera. After you know where your images

are stored, you should be able to open those

’0 Technique 1: Finding the Power in KDE Protocols

images directly from KDE-friendly applications
like KuickShow and KView.

Don’t bother trying to remember a long, com-
plex URL that corresponds to where your pic-
tures are stored. Instead, drag the folder to
your desktop and choose Link Here. Then,
whenever you want to play with your camera,
plug it in and click the shortcut.

7
B»(«&
&

One thing to note — your pictures reside only in
your camera until you copy them onto your com-
puter. Be sure to store the pictures on your com-
puter before deleting them from your camera. After
you copy the pictures you want to keep, it’s easy to
erase the images from your camera; just delete them
or drag them to the trash like any other file.

Remote File Management
with fish:

fish: is a remote file access protocol. Using fish:,
you can work with files stored on a remote Linux
system as if they were located right on your desktop.
To use fish:, open a KDE browser (Konqueror is a
good choice) and enter fish:// followed by the host
name (or IP address) of the machine you're fishing for.

Under the hood, fish: uses SSH (Secure Shell) to do
its work, so you must have an SSH server up and
running on the remote machine before you can go
fishing. fish: prompts you for a user name and pass-
word on the remote system before allowing you
access to files. After you’'ve connected, you can
interact with the remote files and directories in

the same way you would deal with local files: Drag
them to your desktop, drag them to other folders,
drag them to the trash, or just edit them in place.

Here are some quick things you can do with the
fish: protocol:

v Manage files on another system with the
Konqueror file manager/browser. Using fish:
and Konqueror, you can easily move, copy,

archive, open, and browse remote files the same
way you handle files stored on your computer.

v Open fish: folders on two (or more!) systems
and copy files or even entire directories from one
machine to another by dragging from one win-
dow to another.

v Create a secure link on your local desktop that
points to a remote system. When you open the
link, fish: prompts you for login information
S0 not just anyone can get access via your com-
puter. To create a desktop link, right-click on your
desktop and choose Create Newr>Filer>Link to
Location (URL). Type in a name for your link and
enter a URL in the form fish://computer-name/
directory, for example fish://bastille/home/
freddie/Desktop.

v Edit remote files with KWrite. When you open
aremote file (such as fish://versaille/.
bash_profile), any changes that you make are
automatically saved back to the remote system.

The KDE protocols are a part of KDE, not
Linux. That means that any KDE-friendly appli-
cation (Kate, Konqueror, KMail, and so on) can
use them, but non-KDE applications won't
understand them. You can open a fish: URL
in just about any KDE application, and the
resource appears as if it were on your local
system. Note that not all KDE applications are
protocol-enabled, which means that they
won’t understand fish: URLs. You'll just have
to try out each application.

Getting Help with help:,
info:, and man:

KDE protocols give you fast access to help when you
need it. KDE sports three documentation protocols:
man:, info:, and help:. To use the protocols, open
your Konqueror browser, enter the protocol name in
the Location line, and press Enter. Konqueror will
take you to the top-level index for the protocol you
choose:

v man: When you browse through the man: proto-
col, you see a short index that provides access
to the ten or so sections of the Linux man pages.

The man: protocol is a great way to read man
pages because the documentation is pleas-
antly formatted and cross-referenced.

L/
e {4
&

When you navigate down one level from the
main index, the second level leaves a bit to be
desired. For some reason (we assume that
someone intends to fill in more information
later), it says “no idea” in a column to the right
of the topic list. Just ignore this and click your
topic, and you'll find the information you need.

v info: This protocol gives you access to docu-
mentation written in the Texinfo format, a format
popular with GNU software. Like man:, info:
documentation is cross-referenced and displays
a browsable menu with links that take you to the
documentation you want to read.

v help: This protocol lets you read documentation
in KDE’s documentation format. To find subjects
within help:, type help:/, followed by the topic
name. (For example, help:/kate takes you to the
Kate handbook.) If you need general information
about your KDE environment, a good starting
point is help:///khelpcenter.

) Just like Web page bookmarks that you
can create when surfing the Web, documen-
& tation bookmarks are great navigational time-
savers. Bookmark your favorite man pages
so they're easily accessible the next time you
need them! To create a new bookmark, just

choose Bookmarks->Add Bookmark.

Viewing Your Local Network
with the smb: Protocol

Use the smb: protocol to quickly browse other
machines on your local SMB (Samba and Windows
file/printer sharing) network. Enter smb:/ in the

Other KDE Protocols ’ ’

Konqueror address line and press Return to see the
SMB workgroups in your local network. Click an SMB
workgroup to see all the computers in that work-
group. Click one of the computers, and you see the
resources that computer is willing to share. Just drag
and drop the data you need or make clickable links
to resources — the time you save will amaze you.

¥ Use smb: to create desktop shortcuts to your
(a network locations. Just start your copy of

Konqueror, enter smb: / in the address line,
and press Enter. Choose a workgroup and
then a computer within that workgroup. Now
drag a share name to your desktop. Next time
you need data from that machine, you have it
at the dlick of a button.

Other KDE Protocols

We haven’t covered all the KDE protocols in this
technique. There are quite a few others you can
explore. Check out the ones listed in Table 1-2.

TasLE 1-2: OTHER KDE ProtocoLs

Protocol What You Do with It

print: Manage printers, print jobs, and
print queues from your Web
browser.

devices: Find all your storage devices
here — hard drives, NFS and
Samba file systems, and
removable media.

imap: Send, receive, or just play around

pop3: with your mailbox as if it were a

mailto: local file system.

webdav: Modify a remote Web site or col-

laborate with others over the Web.

You can find more protocols on the Web.
Search for KIO slave at your favorite search
engine.

’2 Technique 1: Finding the Power in KDE Protocols

KDE protocols versus GNOME VFS

KDE has protocols, and GNOME has the VFS (virtual file
system). KDE protocols and GNOME VFS modules do
pretty much the same thing: They make data available
from unconventional sources. The name protoco/ may
seem a bit misleading, but it's called that because the name
of the protocol goes in the protocol part of a URL. We think
that virtual file system is a more straightforward name than
protocol because a virtual file system basically creates
make-believe file systems and lets you use them to quickly
access your data.

Both the KDE protocols and the GNOME VFS work from
within a Web browser, but the GNOME VFS works best at
the command line. We have to admit that we're fond of
KDE for its usability and speed. However, sometimes
GNOME can be a real timesaver, as you discover in
Technique 2.

Getting GNOME
Virtual File Systems

Technigue” to Do the Work

Save Time By

+* Using GNOME virtual file
systems

v Combining VFS modules

v~ Using VFS to work with
packages

+* Burning CDs and DVDs
from a browser

+* Previewing fonts and
themes with Nautilus

for Vou

inux supports a wide variety of physical file systems. A file system’s
Ljob is to make sense of the bytes stored on a disk so that other pro-

grams don’t have to interpret them. A file system module, for exam-
ple, might look at the bytes in sector 52033 on your hard disk and say,
“Hey, that’s a directory.” File system modules also work in the other
direction as well. For example, a program might ask for a listing of the
/tmp directory, and the file system knows how to find that data on the
disk. A file system module creates order out of the billion or more bytes
of chaos on your disk.

GNOME takes the physical file system one step further by introducing
the virtual file system (or VFS for short). A virtual file system performs
the same function as a physical file system except that the underlying
data comes from somewhere beyond your disk. A virtual file system gath-
ers data from an unusual source and makes that data appear as a set of
directories, subdirectories, and data files. Using a VFS, you can peek into
tar, gzip, and RPM archives, treat remote files as if they were local, and
even access CD audio tracks as if they were normal data files. GNOME
also has some handy preview tools that let you view fonts and desktop
themes as if they were normal files.

In this technique, we show you how to save time by using some of the
more useful GNOME VFS modules. When you use the VFS, you don’t have
to waste time finding (and opening) the right program to view a file in an
unconventional location — GNOME does the hard work for you. Whether
you use the VFS in a browser or at the command line, the time you save
and the power you gain will surprise you.

Using GNOME UFS Modules

The GNOME VFS is still evolving, and not all GNOME applications are VFS
savvy. We've found that most (if not all) VFS modules work when you use

’4 Technique 2: Getting GNOME Uirtual File Systems to Do the Work for You

them from the command line, but some fail in
strange and quirky ways when you try to use them
from a browser. If you can’t get a VFS URL to work,
try it at the command line (we show you how in a
moment). If it works there, the problem is in the
browser.

To use a VFS module, simply use the module name
as if it were a protocol. For example, to open a font
that’s installed on your system, you can browse to
the URL fonts://Courier. Finding out which VFS
modules are installed on your system can be tricky:.
The VFS modules are listed in a group of files in
/etc/gnome-vfs-2.0/modules, but just because you
find a module listed there doesn’t mean that the

TasLE 2-1: CommonLy IncLubep VFS MobuLes

module is actually installed. You also have to check
for the library in /usr/1ib/ gnome-vfs-2.0/modules/.
To save you some time, Table 2-1 lists some of the
most commonly included VFS modules.

/proc is a virtual file system that works in either
KDE or GNOME and exposes kernel data — see
Technique 26 for more information.

We cover only a few of the VFS modules dis-
tributed with Linux, but you can find others on
the Web. If you find another module you want
to use, you'll likely need to download and
compile it. See Technique 14 for help with
downloading and compiling programs.

Module Name What It Does

http: Accesses data stored on a Web server

https: Accesses data stored on a secure Web server (typically an e-commerce site)
ftp: Accesses data stored on an FTP server

mailto: Sends e-mail

bzip2: Peeks inside bzip2 archives

cdda: Treats CD audio tracks as if they were normal files

file: Accesses data stored in a local physical file system

nntp: Reads newsgroups by using the network news transport protocol
gzip: Peeks inside gzip archives

dav: Accesses data stored on a WebDAV server

pipe: Accesses data sent to a pipe

ssh: Connects to a remote SSH server

tar: Peeks inside uncompressed tar archives

fonts: Accesses font information

burn: Burns CDs from within a browser

themes: Accesses desktop themes installed on your system

Stacking UFS Modules

GNOME VFS URLs can be stacked together. For
example, if you have an uncompressed tar file located
on a remote system, you can stack a tar URL on top
of an http:// URL to get to the data stored inside.
Suppose that you have an uncompressed tar archive
named /tmp/pics.tar that contains an image named
freddie.jpg and you want to view that picture with
GNOME'’s Eye Of Gnome viewer.

Sure, you could un-tar the archive and tell the viewer
to open the JPG photo (reminding yourself to clean
up all the temporary files after you finish). But you
can save yourself time and trouble by making VFS
worry about those details. Rather than extracting
the image to a temporary location, you can use a
VFS URL like this:

$ eog file:///tmp/pics.tarfftar:/freddie.jpg

Here’s how the pieces of the command fit together.
First, the eog part is the name of the command that
you're running (Eye Of Gnome). Next, you see a typi-
cal URL (file:///tmp/pics.tar) that uses the file:
protocol to open /tmp/pics.tar. Next comes the
magical part: #tar:/freddie. jpg. That tells GNOME
to treat everything that precedes #tar: as a tar
archive and to access the freddie.jpg member
within.

What happens if the picture that you want to view is
stored in a compressed tar archive? Simple, just put

another VFS component (gzip) on the stack, like this:

$ eog file:///tmp/pics.tgzifgzip:ftar:/
freddie.jpg

If the pics.tgz file lives on a remote Web server, you
can combine the http: protocol with gzip: and tar:
like this:

$ eog http://myserver.example.com/pics.
tgzftgzip:#tar:/freddie.jpg

Working with Packages: rpm and rpms ’5

Most of the VFS documentation that you find
@ tells you that you can stack VFS URLs with the
following syntax: urlfurl/suburl. For exam-

ple, if you have a tar archive named /tmp/
foo.tar that contains a file named bar. txt,
the GNOME VFS documentation tells you
that you can access the bar. txt file with the
URL file://tmp/foo.tarfftar/bar.txt.
You can’t — the documentation is wrong.
Instead, you have to use file://tmp/foo.
tarfftar:/bar.txt. Notice the extra :
between tar and /bar.txt. Without that
colon, the fftar/bar.txt component acts like
a named anchor in an HTML document, not
like a VFS module.

Working with Packages:
rpm and rpms

The rpm: VFS module lets you peek inside an RPM
installer file. You can use the rpm: VFS to extract
select files from an RPM package without having to
install the whole thing. rpm: also lets you extract
metadata (such as the name of the package ven-
dor, the target distribution, and copyright) from

a package.

The rpm: module creates a virtual file system that
represents the contents of the RPM file. If you list
the directory of an rpm: URL, you see the name of
each file that would be installed by that RPM. You
also see a number of virtual files that expose the
extra data stored inside the RPM. Here’s an example:

[freddie@bastille] cd /mnt/cdrom/
Fedora/RPMS

[freddie@bastille] gnomevfs-1s file:
gnome-applets-2.4.1-1.1386.rpmffrpm:

-r--r--r-- 1 root root 941 Oct 3 2003
HEADER

-r-xr-xr-x 1 root root 39 Oct 3 2003
INSTALL

-r-xr-xr-x 1 root root 39 Oct 3 2003

UPGRADE

’6 Technique 2: Getting GNOME Uirtual File Systems to Do the Work for You

dr-xr-xr-x 3 root root 0 Oct
INFO

-r--r--r-- 1 root root 0 Oct
INFO/NAME-VERSION-RELEASE

-r--r--r-- 1 root root 0 Oct
INFO/GROUP

-r--r--r-- 1 root root 0 Oct
INFO/BUILDHOST

-r--r--r-- 1 root root 0 Oct
INFO/SOURCERPM

-r--r--r-- 1 root root 0 Oct
INFO/DISTRIBUTION

-r--r--r-- 1 root root 0 Oct
INFO/VENDOR

-r--r--r-- 1 root root 0 Oct
INFO/DESCRIPTION

-r--r--r-- 1 root root 0 Oct
INFO/SUMMARY

dr-xr-xr-x 1 root root 0 Oct
INFO/SCRIPTS

-r--r--r-- 1 root root 0 Oct
INFO/SCRIPTS/POSTIN

-r--r--r-- 1 root root 0 Oct
INFO/SCRIPTS/ALL

-r--r--r-- 1 root root 0 Oct
INFO/PACKAGER

-r--r--r-- 1 root root 0 Oct
INFO/URL

-r--r--r-- 1 root root 0 Oct
INFO/SERTAL

-r--r--r-- 1 root root 0 Oct
INFO/COPYRIGHT

-r--r--r-- 1 root root 0 Oct
INFO/LICENSE

-r--r--r-- 1 root root 0 Oct
INFO/BUILDTIME

-r--r--r-- 1 root root 0 Oct
INFO/RPMVERSION

-r--r--r-- 1 root root 0 Oct
INFO/0S

-r--r--r-- 1 root root 0 Oct
INFO/SIZE

-r--r--r-- 1 root root 0 Oct
INFO/REQUIRENAME

-r--r--r-- 1 root root 0 Oct
INFO/OBSOLETES

-r--r--r-- 1 root root 0 Oct
INFO/PROVIDES

-r--r--r-- 1 root root 0 Oct
INFO/CHANGELOG

-rw-r--r-- 1 root root 63419 Oct

3

3

3

3

3

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

2003

10:28

/etc/gconf/schemas/battstat.schemas

-rw-r--r-- 1 root root 8364 O0Oct 3 10:28
/etc/gconf/schemas/cdplayer.schemas
-rw-r--r-- 1 root root 21092 Oct 3 10:27
/etc/gconf/schemas/charpick.schemas

The first 28 files listed are virtual files, and the rest
are real files that would be installed on your system
if you installed this particular package.

You can extract a single file from an archive by using
gnomevfs-cat, for example:

[freddie@bastille] gnomevfs-cat
file:gnome-applets-
2.4.1-1.1386.rpmffrpm:HEADER

Name : gnome-applets
Relocations: (not relocateable)
Version c2.4.1
Vendor: Red Hat, Inc.
Release 1

Build Date: Fri Oct 3 10:29:07 2003
Install Date: (not installed)

Build Host: daffy.perf.redhat.com
Group : User Interface/Desktops

Source RPM: gnome-applets-

2.4.1-1.src.rpm

Size : 11210002
License: GPL
Signature : DSA/SHA1, Tue Oct 28
19:10:23 2003, Key ID b44269d04f2a6fd2
Packager : Red Hat, Inc.
<http://bugzilla.redhat.com/bugzilla>
URL : http://www.gnome.org/
Summary : Small applications for the

Gnome panel.

Description :

Gnome (GNU Network Object Model
Environment) is a user-friendly set of

applications and desktop tools to be used
in conjunction with a window

manager for the X Window System. The
gnome-applets package provides

small utilities for the Gnome panel.

Notice that you can access both virtual and real files
within the RPM.

The rpms: module (note the s on the end) lets you
treat the database of installed software as a virtual
file system. In other words, when you view the

content of an rpms: URL, you see a list of the pack-
ages (sorted by category) installed on your system.

You can also use the deb: module to play with
Debian Package Manager packages.

Putting UFS to Work at the
Command Line

The GNOME VFS system includes a few VFS-friendly
programs that you can use at the command line (or
within shell scripts):

v gnomevfs-cat: This program is equivalent to the
normal Linux cat command: It writes the contents
of a file to standard output. Unlike the simple cat
command, gnomevfs-cat can deal with VFS URLs.
gnomevfs-cat deals with all of the normal hassle
of downloading, unpacking, and cleaning up tem-
porary files when you're finished. For example:

$ gnomevfs-cat http://myserver.example.
com/index.html > index.htm]l

v gnomevfs-copy: This handy file copy utility is
powerful. When you run this program, you can
specify a URL for the source, the destination, or
both. Just like gnomevfs-cat, gnomevfs-copy
handles the dirty work — it downloads (or
uploads!) files for you, inserts new content into
existing archives, or extracts content from an
archive without all the prep-work and cleanup.
For example, here’s how to copy a file from a
remote Web site to your local system:

$ gnomevfs-copy http://myserver.example.
com/foo.txt file:///tmp/foo.txt

v gnomevfs-info: This program displays tidbits of
information about a given URL. You can see the
modification time, file size, and MIME type. (See
Technique 3 for more information about MIME

types.)
v gnomevfs-1s: This program lists the contents

of a directory accessed through a VFS URL.
gnomevfs-1s is great when you want to browse

Skinning Your Desktop with UFS ’ 7

through an archive (or an RPM package) stored
at a Web site, but you don’t want to download
the file first. For example, to list the contents of
an RPM file, use the following command:

$ gnomevfs-1s http://myserver.example.
com/foor.rpmfrpm:

¥ gnomevfs-mkdir: Use this program to create a
directory with a VFS URL. You'll probably find
this program most useful when you need to cre-
ate a directory on a remote system (using the
http:, smb:, or ftp: protocols).

Burning CDs with a UFS

One of the handiest VFS modules is burn:///, which
lets you burn CDs and DVDs from within the Nautilus
browser. If you have a CD or DVD burner, browse to
burn:///, and Nautilus shows you an empty folder.
From there, to burn a CD you just drag a file to the
folder, insert a blank CD into your drive, and click
Write to CD (on the toolbar). Don’t forget that you
can drag a remote file directly into the burn:///
folder — just open a second Nautilus window and
browse to the server that holds the file you want.

Skinning Your Desktop with UFS

The themes: VFS gives you quick access to the desk-
top themes installed on your system. Browse to
themes:///, and Nautilus shows you all the themes
installed on your system. If you find a theme that
you like, just double-click the preview, and you've
changed your desktop theme.

Another handy VFS is fonts:. The fonts: VFS exposes
all the fonts installed on your system. Browse to
fonts:/// to see thumbnail samples of all the fonts
available on your system (along with the font names).

] If you see a font that you want to use as your
> («a desktop font, right-click the icon and choose
& Set as Application Font from the drop-down
menu.

Streamlining Vour
Work with File

Technigite Associations

Save Time By

v+~ Understanding how
MIME classifies data and
how your files are
affected

+~ Tweaking file associa-
tions in KDE

v~ Creating MIME types
quickly with GNOME

HTML desktop file, and GNOME opens that file in Mozilla. How does

Linux know which program to use? It consults a MIME — not those
folks on street corners wearing striped shirts and tons of makeup, but a
registry of data types that associates a file type with a specific application.

C lick a JPEG file, and KDE opens the image in KuickShow. Click an

The default associations are a fine place to start, but after you develop
your own preferences about which applications you want to use for certain
file types, the defaults can begin to get in your way. You’'ll save time (and
effort) in the long run if you tweak these MIME types to establish quick
links between your data files and your favorite applications. For example,
if you edit a lot of graphics files but have several graphics editors, you
most likely have a favorite. Instead of opening and navigating through
your favorite program every time you have to open a graphics file, give
your favorite editor the highest priority. Double-click the data icons, and
you've opened not only your data, but also your favorite program!

In this technique, we show you how to create new MIME data types and
associate your applications with the data types that you use frequently.
The technique is a little different depending on which desktop environ-
ment (KDE or GNOME) you use, but either way;, it’s quick and easy.

Classifying Data with MIME

Before you start tweaking your file associations, it’s helpful to know

the basics about how MIME works with your files. Originally, MIME
(Multipurpose Internet Mail Extensions) was designed for e-mail clients
to categorize e-mail attachments. Nowadays, it’s used in many other pro-
grams as well, such as Web browsers, graphics utilities, and productivity
tools. The MIME registry performs two distinct functions, but the line
between those functions is pretty blurry:

v MIME looks at a chunk of data (usually a data file) and categorizes it
based on the file extension or based on patterns in the data.

v The MIME registry connects applications and data by associating an
application with each data type.

Thus, opening a file with MIME is a two-step process:
MIME categorizes the data, and then it finds an appli-
cation that knows how to deal with that kind of data.

Typically, a program that knows how to process a
given file type automatically creates MIME associa-
tions for that type, but that’s not always the case:

v If you open a file that doesn’t have a MIME asso-
ciation, Linux prompts you to select a program
to use. You have to do the grunt work of setting
the association yourself.

v You may find that you have more than one appli-
cation that knows how to process a given file
type. For example, text/html is often associated
with both Konqueror and Mozilla. If a MIME type
is associated with more than one application,
Linux chooses the application with the highest
priority when you open that file type. You can
tell Linux which application to use by giving the
program you prefer the highest priority in the
MIME registry:.

Web pages make great desktop links. After
you associate HTML files with your favorite
browser, add the links you use most fre-
quently to your desktop. Double-click a link,
and it opens in your favorite browser.

When you begin customizing your file associations,
you’ll find that MIME data types are arranged in a
tree-structured hierarchy. At the bottom of the tree,
you find the data type definitions themselves. Upper
levels in the tree group similar data types. For exam-
ple, text/htm1 describes the htm1 data type within
the text group. MIME can determine a file’s data
type in two ways:

v By extension: When you open a file such as
backup.tar, MIME searches for the extension
(.tar) in its database of known file types. If it
finds a match, MIME classifies the file by exten-
sion (in this case application/x-tar).

v By content: Several extensions can map to the
same MIME data type; for example, .htm and
.htm1 are both classified as text/htm1. If you

Creating KDE File Associations ’ 9

open a file whose extension is not recognized,
MIME peeks inside the file and tries to recognize
a pattern. For example, all JPEG picture files
include the string JFIF near the beginning of the
file; PNG pictures include the string PNG near
the beginning of the file; and Real Player audio
streams begin with four bytes whose values are
0x2e7261fd.

Creating KDE File Associations

Most applications that create data of a given type
automatically associate with that type, but occasion-
ally you need to adjust those associations. For exam-
ple, say that you frequently work with buttons on
Web sites, so you always design new buttons as
JPEG files in Icon Editor. You can save yourself the
time of poking around in the interface by simply
changing your default JPEG editor from KuickShow
to Icon Editor.

- text file in your favorite editor in a snap with
the KDE desktop. Just right-click on the desk-
top, choose Create New, and then choose Text
File from the list of data type options. Enter a
name for the new file and click OK, and KDE
adds the icon to the desktop. Now, a simple
double-click opens the new file in the editor

you set with file associations.

2 You can use file associations to open a new
=)

&

With MIME, you can associate any number of appli-
cations with a single MIME type, and KDE uses the
application with the highest priority to open data of
that type. It’s easy to change the default program
that opens your data in KDE:

1. In Fedora or SuSE, open the KDE menu and
click Control Center.

If you're using Mandrake, open the KDE Menu
and choose System=>Configuration=>Configure
Your Desktop.

2. On the left side of the Control Center, click KDE
Components and then click File Associations.

20

The File Associations — Control Center dialog
(shown in Figure 3-1) appears, displaying the pre-
defined MIME types in the Known Types area.

O e Resociations - Contrs| Cantes T

File Wiew Help
index | Smmch | Helz Fird filename pattern: Generd | Embeding | [+]
Fllzname Farterns

= Appeamnce & Themes
+ & Desktop
+ B infamation
+ B intemet & Metork
= A KDE Comporenis
Acklress Dok
| -3 Companent Chodser
™ =il associations
| -8 Flle Manager
| = Sewnice Manager
4§ Session Maragper
25 Spell Checher
+ 3 Puripheals
+ S Pover Canira
§ Iy Regioral & Accessibiit
i @ Secwiy & Frivacy
1 I Sourd & Mulimedia

Konmwn Tyoes 5]

=-Image

| Fwegm .& ::}::c Akl
|| M

PG

| fangs
w of

Descriptiorn
JPEG Image

v oy

¥ segraml
il
i webirn

Apglicarion Freference nder

|
|
|
'
1 W x-eps “uickshowy
'

B

(SR mage Viewsar
Wodng con Editcr

i emsad

W epox

Ade.,

i w-pheen-cd

i w-porable-s.,
i eporabie. [+

pefails | E

b [System Admiristration
+ 08 Wab Browsing

il

§

7 —— !

L-|
|

* Figure 3-1: The File Associations - Control Center dialog.

3. Inthe Known Types area, expand the relevant
group to show a list of known image types.

For our example, we click the Image group.

4., Click the file type whose association you want
to set or change.

We click jpeg. The right side of the dialog dis-
plays the current file associations.

5. In the Application Preference Order box, if you
don’t see the application that you want to asso-
ciate with the file type, click the Add button
and use the file chooser to find the program
that you want.

6. In the Application Preference Order box, select
the application you want to make the first pri-
ority, and then click the Move Up button until
the application appears at the top of the list.

In our example, we select Icon Editor and then
click the Move Up button to move Icon Editor to
the top of the list.

7. When you're finished, click Apply to save your
work and close the dialog.

Now, when you open the file type (such as a . jpg,
or .JPG file), KDE opens the file with the applica-
tion you selected (Icon Editor, for example).

Technique 3: Streamlining Your Work with File Associations

With the same dialog that you just used to change
the application preference order, you can also do the
following:

v To associate a new file extension with the
selected MIME type, click the Add button in the
Filename Patterns box. If you need to add a dif-
ferent spelling of a filename extension (which
you probably won’t have to do often), this is the
place to do it.

v Choose the icon to the left of the Filename
Patterns box to change the icon for this type.
Control Center displays a palette of alternate
icons that you can choose from — just click the
one you like.

7 Changing the icon to something you can
remember lets you instantly recognize file
& types in your browser or on your desktop.

Well-behaved KDE applications (such as Kate,
the KDE programmer’s editor) know how to
deal with MIME file associations. If you open a
file whose data type isn’t included in Kate’s
MIME associations, KDE opens the program
you've assigned to that file type in your MIME

registry.

Creating New MIME Types
with GNOME

The GNOME MIME mapping system is a bit more com-
plex than KDE’s. GNOME lets you define an icon for
each MIME type, a default action (such as print, view,
or edit), and a list of applications that know how to
deal with that type. MIME defines a two-level hierar-
chy for data type; for example text/htm1 describes
the html type in the text group. GNOME introduces a
new layer that collects related groups in categories.
This practice is handy in theory, but it makes it a little
harder to find the MIME type you’re looking for.

This next example sets your JPEG editor to xview —
an oldy but a goody that needs special treatment.

xview isn’t included in the Default Action list, so you
need to add it as a custom program. To associate a
new application with an existing MIME type:

1. Open the GNOME menu and choose
Preferences.
2. Click File Types and Programs.

The File Types and Programs dialog, shown in
Figure 3-2, appears.

Descrption | add Eie Type,,
b Ao add Service,..
[DoCumerts Edr..
= Images
Blendar fie Smave
wWiniows bitrap Imane
COM Image
GIF Image
IFF Image:
PN Image
SvGan
TIFF Image
AunnCAD Image |
T —— Bl
s X Come
* Figure 3-2: The File Types and Programs dialog in
GNOME.

If you're using SUSE, open the GNOME menu
and choose Desktop Preferences->Advanced>
File Types and Programs.

3. Click the arrow next to the category you want
to change, and you’ll see the list of MIME types
in that category.

In our case, we chose Images.

If you ever need to add a new MIME type
(one that doesn't already appear in the list of
known types), open the File Types and
Programs dialog, click the Add File Type but-
ton, and follow the on-screen prompts.

4, Click the MIME type you want to change and

then click the Edit button.

Because we want to assocate xview with JPEG
photos, we clicked JPEG Image.

Creating New MIME Types with GNOME 21

The Edit File Type dialog opens, as shown in Figure 3-3.

|
£
Descrption: JPEGimage
MIME type: imagajpeg
Category: mages Chooes..
Filename extensians:
ok Ir=
Ipeg
== Demnave ||
Actions
Wiswer component: View 2e Imags
Default action: Cuslom
PEregram to run: | Browes..

Runin Terminal

X Cancal PoK

* Figure 3-3: The Edit File Type dialog in GNOME.

5. Select Custom from the Default Action drop-
down list.

6. Click the Browse button (to the right of the
Program to Run box), and find the application
that you want to associate with this type.

The xview program is located in /usr/bin/X11,
so we pointed the file chooser to that directory,
highlighted xview, and clicked OK.

xview is now your default JPEG editor, and it has
been added to the Default Action list. Now if you
ever switch to a different default editor again,
you can easily go back to xview because it’s on
the list.

7. If you want to associate an icon with the newly
defined file type, click the No Icon button and
select an icon from the icon palette. Click OK
when you’re finished.

After you choose the icon, your new icon is dis-
played at the top of the Edit File Type dialog.

g By changing the icon to something more
B (@ memorable, you can quickly recognize file
&

types in your browser or on your desktop.

8. Click OK and then click Close to save your
work.

22 Technique 3: Streamlining Your Work with File Associations

You may have noticed that the Edit File Type dialog
has a drop-down list labeled Viewer Component. Most
GNOME-savvy applications can display certain file
types in-line. This means that if you open a file that
has a built-in viewer component, the file is displayed
within your application — you don’t have to stop
what you're doing and open a new application just
to see your data.

For example, if you're using the Evolution e-mail client
(a GNOME-savvy application) and you receive a JPEG

image as an attachment, Evolution allows you to view
the image without firing up an external application —
the image displays in-line.

When you’re modifying MIME types, the Viewer
Component drop-down list is disabled unless
GNOME has a component that can handle your file.
In some cases, GNOME can display your file type
with a number of different components; choose the
one you prefer from the Viewer Component drop-
down list.

Prompting Yourself
with a Custom

Technique Prompt

Save Time By

+~ Keeping useful informa-
tion handy

v~ Colorizing your prompt to
convey useful information

v~ Saving your prompt pref-
erences

+* Warning yourself when
you hold potentially
dangerous privileges

working in the shell. If you haven’t already modified it, your
prompt displays your machine name and current directory. But
why settle for less information than you could really use?

Your prompt is your connection to the Linux world when you’re

Customize your prompt to keep information that you need in plain sight
when you’re working at the command line. You can add information such
as the time, date, number of users, and more. In addition to displaying
system information, your prompt can change colors. If you use multiple
terminal windows connected to multiple machines, use a different-colored
prompt on each machine to give you a quick clue about your location, all
without taking up screen space.

The prompt also reflects your status as a superuser (or as a mere mor-
tal). Keep an eye on your privilege level to prevent damage from the acci-
dental use of privileges. We've included code in this technique to make
the prompt change color when you hold elevated (and thus potentially
dangerous) privileges.

In this technique, we show you how to manipulate your prompt to dis-
play the information that lets you get the job done quickly. Information is
power, and power definitely saves time.

] Long prompts can take up a lot of screen real estate and also consume
- { -a) alot of space on the printed page. In this technique, we show you
& complete prompts that enable you to see useful info quickly and eas-
ily. However, you don’t want to work with these prompts all the time.
In other techniques, we shorten the prompt to $ or # to save space.

Making Basic Prompt Transformations

In the bash shell, the prompt is controlled by a set of environment vari-
ables, the most important of which is $PS1. Change $PS1, and you change
your prompt. The $PS1 variable is displayed when bash is waiting for a
command from you. The $PS?2 variable is also worth mentioning — it’s
displayed when bash needs more input to complete a current task.

2 4 Technique 4: Prompting Yourself with a Custom Prompt

If $PS1 contains a simple text string (such as "Hi,
I'm the prompt"), that string is displayed whenever
a command completes and the shell is waiting for
the next command. Modifying the prompt is easy:
Just enter strings that you want to test and hit Enter,
and the results are displayed instantly. Saving your
changes takes a bit of maneuvering, but we cover
that in the next section. Here’s a quick example of
how to change the prompt:

[freddie@bastille] PS1="Hi, I'm the
prompt "
Hi, I'm the prompt

Notice how the prompt changed from
[freddie@bastille]l to "Hi, I'm the prompt".

Adding Dynamically Updated
Data to Your Prompt

Static prompts, such as the example in the preceding
section, are kind of boring, so bash lets you include
special character sequences (we’ll call them macros)
that represent changing data. Each macro starts with
a backslash and is followed by a single character
that tells bash which chunk of data you want to dis-
play. For example, if you want to display the current
date and time whenever the prompt is displayed,
use the \d (date) and \t (time) macros like this:

[freddie@bastille] PS1="\d \t "
Thu Dec 18 03:37:48

TaBLE 4-1: Hanpy Macros For Your PRompT

You can mix dynamic macros and static text in the
same prompt. To enclose the date and time in brack-
ets, just include the brackets in $PS1:

[freddie@bastille] PSI="[\d \t] "
[Thu Dec 18 03:37:50 1]

It's usually a good idea to end each prompt
with static text (a character like], -, or >) and
a space to make the prompt easier to read.

If you press Enter a few times with this prompt, you
see that the macros in $PS1 are evaluated each time
the prompt is displayed:

[freddie@bastille] PS1="[\d \t] "
[Thu Dec 18 03:37:51]
[Thu Dec 18 03:37:51]
[Thu Dec 18 03:37:58 1]
[Thu Dec 18 03:38:01]

You can include as many macros as you want, in any
order that you want, in $PS1. For example, to display
the current date and time, your user name, your
host name, and the current working directory (in
that order), try this:

[freddie@bastille] PS1="[\d \t \u@\h:\w] "
[Thu Dec 18 03:40:20
freddie@bastille:/home/freddie]

Spacing is important. Be sure to leave some white
space between macros to make the info easier to
read. Table 4-1 lists some of the most useful macros
that you can include in a bash prompt.

Macro What It Does/Displays Timesaving Bonus Info

\a Speaker beep To keep users on their toes, code the $PS? variable to beep when
the user needs to input additional information. Just enter
$PS2="\a >", and the computer beeps when it needs attention!

\d Weekday (Sun-Sat), month name, and date Handy when you’re pulling all-nighters and you need to know

("Thu Dec 18", for example)

when Saturday morning rolls around.

Macro

What It Does/Displays

Adding Dynamically Updated Data to Your Prompt

25

Timesaving Bonus Info

\D{}

\e

\h

\H

\n
\'s

\t
\T
\@
\A
\u

\W

\w
\\
\ !

\$

Date and/or time in a format of your choosing

Escape character; used for complex strings

Host name up to the first . (dot)

Entire host name

Newline

Shell name — such as bash or csh

Current time in 24-hour (HH:MM:SS) format
Current time in 12-hour (HH:MM:SS) format
Current time in 12-hour (am/pm) format
Current time in 24-hour (HH:MM) format

Current user name

Trailing component of your current
working directory

Entire current working directory
Backslash character

History number

If the effective UID is 0, a #; otherwise a $

The \D macro must be followed by a format string enclosed in
braces. bash interprets the format string by using the same rules
as the strftime library function (see man strftime for more
details). If the format string is empty, the braces are still required,
but bash chooses a display format appropriate to your locale.

Escape characters introduce complex, unfriendly terminal
command sequences. We show you a better way later in this
technique.

If you work on a number of different hosts from the same work-
station, \h can help you remember which one you're currently
connected to.

Similar to \h, but takes up too much screen real estate for our
taste.

Use a new line to create a multiline prompt.

We’ve never found a particularly good use for this one because
we always stick to bash.

Is it 5:00 yet?

Include \u if you need to do work on someone else’s behalf (in
other words, if you're an administrator). That way you won't for-
get who you are and send flaming e-mail using someone else’s
name!

This is probably the most useful macro you could include in a
custom prompt — sort of a “You Are Here” sign.

Similar to \W, but takes up a lot of room on your command line.

Every command that you execute is stored in a history log, and
you can refer to a specific command in the log by its history num-
ber. Include the \ ! macro in your prompt, and you'll see the his-
tory number assigned to each command. (We talk more about
history processing in Technique 9.)

The \ $ macro displays a pound sign (#) if you hold superuser
privileges or a dollar sign ($) if you don’t. You can use the \$
macro to help you remember when you have enough privileges to
seriously damage your system, but we show you a better way in
the section “Seeing a Red Alert When You Have Superuser
Privileges,” later in this technique.

2 6 Technique 4: Prompting Yourself with a Custom Prompt

Colorizing Your Prompt

Changing the color of your prompt may not save you
tons of time, but it can make the prompt more read-
able and convey extra information without taking up
screen real estate.

What kind of information can you encode with
9 («ﬂ colorized prompts? Just about anything. Turn

your prompt green when you're logged into
one host and blue when you're logged into
another. Display your prompt in green when
the system load is low, yellow as it increases,
and red when you're running into resource
bottlenecks. Or, just change the color of your
prompt to a fixed color so that it stands out on
the screen.

You can colorize your prompt two ways. The most
common (but not the most timesaving) way is to
include special “escape” characters (characters that
your terminal window understands, but humans
don’t) in your prompt. For example, the following
string turns your prompt blue:

[freddie@bastille] PSI1="\[\033[0;34m\]
[\u@\hJ\[\033[0m\] "
[freddie@bastille]

Of course, because this is a black-and-white book, you
can’t see the color here, but if you try this example,
you'll see that the prompt turns blue. This method
works, but it has two drawbacks. First, the syntax is
hard to read (and hard to get right in the first place).
Second, this method works only if your terminal
emulator supports ANSI escape sequences — many
terminal emulators (and many terminals) don’t.
Fortunately, you can fix both problems at once by
using tput.

7 When changing the color of your prompt, using
e («a tput makes your prompts portable. That is, if
) you move to another terminal emulator, you
don't have to change prompts. tput also

knows the right escape sequences, so you
don’t have to spend time looking them up.

The blue prompt in the preceding example looks like
this when you use tput:

[freddie@bastille] BLUE=$(tput setaf 4)

[freddie@bastille] BLACK=$(tput setaf 0)

[freddie@bastille] PS1="\[$BLUE\]\u@\h]\
[$BLACKN] "

[freddie@bastille]

The first line uses tput to find the character sequence
that changes the foreground color to blue. The sec-
ond line finds the character sequence that changes
the foreground color to black. Notice that you don’t
need to know the magic escape sequences; tput
keeps a database of terminal descriptions and con-
sults that database to find the sequence that corre-
sponds to the terminal (or terminal emulator) you're
using. The third line patches the $BLUE and $BLACK
sequences into the $PS1 prompt string.

The $PS1 string, however, is still more complicated
than it needs to be — it’s got a few extra \[and \]
sequences. Those extra characters are required so
that bash knows which prompt characters take up
screen real estate and which ones don’t (the invisible
characters must appear between a \[and \] pair).

When you use tput, you can clean up extra
characters a bit more by including those extra
characters in the $BLUE and $BLACK variables:

[freddie@bastille] BLUE="\[$(tput setaf
4)\]"

[freddie@bastille] BLACK="\[$(tput setaf
0\

[freddie@bastille] PS1="$BLUE\u@\h]$BLACK "

[freddie@bastillel]

tput can do much more than just change the foreground
color of the prompt. Table 4-2 shows a few of the more use-
ful tput sequences. (For a complete list, see man tput and
man terminfo.)

Seeing a Red Alert When You Have Superuser Privileges 2 7

TaBLE 4-2: Some USEFUL TPUT SEQUENCES Notice that we used tput sgr0 to restore the text

back to its normal state (default color, no underline,

no bold). That’s usually a good idea when you use

tput to customize your prompt. Otherwise, what-

tput bold Display text in bold font. ever you type in after the colorized prompt will be
colorized as well.

Sequence What You Use It For

tput sgro Reset all formatting.

tput rev Display inverse-colored text (white on black
instead of black on white, for example).

tput smul Start underlining text. Seeinq a Red A[ert When yau
tput rmul Stop underlining text. Ha (/'e Superuser Pri (/i ,eqes

tput setaf Set foreground color.

tput setab Set background color. We mention earlier in this technique that we can
show you a better way to remind yourself that you
These are your choices for foreground and back- hold dangerous superuser privileges. The typical
ground colors: way to distinguish between superuser status and
mere-mortal status is to change one character in
0 Black your prompt (usually the last character) from $ to #.
But that’s a pretty small change and can easily go
1 Red unnoticed. Superuser privileges are dangerous: one
2 Green mistake, and you're looking at hours of cleanup.
3 Yellow Here’s a way to make your privilege level jump out

at you: When you hold superuser privileges, your
prompt is displayed in red, and when you don’t,

5 Magenta your prompt is displayed in blue. The following
steps explain how to make this change:

4 Blue

6 Cyan
7 White 1. Open a terminal window and give yourself
superuser privileges with the su command.
Just find the color you want to use and stick it at the $ su
end of the tput setaf or tput setab command. Password:
su
You can combine the different text effects to produce
colored and underlined prompts, boldface inverse 2. Open the /etc/bashrc file in your favorite
fonts, and any combination of your terminal supports. editor.
For example, you can display an underlined blue # kedit /etc/bashrc

prompt:
If you prefer GNOME, you can use gedit instead:

[freddie@bastille] BLUE="\[$(tput setaf # gedit /etc/bashrc

4HN]"
[freddie@bastille] ULINE="\[$(tput smul)\]1"
[freddie@bastille] RESET="\[$(tput sgr0)\1" If you're using SuSE, modify the
[freddie@bastille]l PSI="$BLUESULINE[L\ /etc/bash.bashrc.local file. If the file
U@\hJ$RESET " doesn't already exist, it is automatically

[freddie@bastille] created when you save your changes.

28 Technique 4: Prompting Yourself with a Custom Prompt

3. Add the following code to the end the file:

function setprompt

{
lTocal BLUE="\[$(tput setaf 4)\1"
lTocal RED="\[$(tput setaf 1)\1"
lTocal RESET="\[$(tput sgr0)\]1"

If 'id -u” returns 0, you have
superuser privileges

if [id -u = 0]

then
PS1="$RED[\u@\h:\WI$RESET "
else
PS1="$BLUE[\u@\h:\WI$RESET "
fi
1
setprompt

4. Save your work and close the editor; you're
finished!

We want to note a couple of interesting points about
this sample code:

v First, you must add this function to the /etc/
bashrc file, not your own personal ~/.bashrc
file. Why? Because you want to modify the
prompt not only for yourself, but also for the
superuser. (Remember, /etc/bashrc is executed
for all users, and ~/.bashrc is executed only
when you log in.)

v Second, notice that we created a shell function
and put most of the code inside that function. By
declaring the $BLUE, $RED, and $RESET variables
as local, they're destroyed as soon as the func-
tion (setprompt) ends. If you don’t wrap the vari-
ables inside a function, you’ll find them in your
list of environment variables and probably won-
der where they came from. We give some more
words of shell-scripting wisdom in Techniques 8
and 10.

Saving Your Work

When you find a prompt that you’d like to keep, you
want to store the $PS1 variable somewhere so that
your prompt returns the next time you log in. The
safest place to set $PS1 is in your ~/.bashrc login
script. (This script is executed every time you start
a new shell.) To save your fancy new prompt:

1. Start your favorite editor (kate, kedit, or the
GNOME Text Editor will do).

2. Open the file /home/user-name/ .bashrc.

Make sure you type in your Linux user name
instead of user-name and make sure you include
the period before the word bashrc. Your .bashrc
file will probably look something like this:

.bashrc
User specific aliases and functions

Source global definitions

if [-f /etc/bashrc 1; then
/etc/bashrc

i

3. Add the following code to the end of the file:

Customize the prompt
BLUE="\[$(tput setaf 4)\]"
ULINE="\[$(tput smul)\]1"
RESET="\[$(tput sgrO)\1"
PS1="$BLUESULINE[\u@\hJ$RESET "

4. Now save your changes and close the editor.

If you want to change the default prompt for newly
created user accounts, give yourself superuser privi-
leges and modify the /etc/skel/.bashrc file.
/etc/skel/.bashrc is copied to a user’s home direc-
tory when his or her user account is created.

Your ~/.bashrc script is executed whenever you log
in. If another user logs in, the .bashrc script in that
user’s home directory is executed. If you want to cus-
tomize the prompt for all users (not just for new
users), store your changes in /etc/bashrc.

Technique 8 spells out the rules for deciding which
login script you want to modify — see that tech-
nique for all the details.

Saving Your Work 2 9

If you're intrigued by the idea of customizing your
bash prompt and want more information, browse
around the bashprompt project Web site at

www.gilesorr.com/bashprompt/howto/
bookl.htm]l

This site offers some great examples and back-
ground information.

Getting There Quick
with Dynamic

Technigiie Shortcuts

Save Time By

v~ Using shortcuts to com-
plete filenames

v~ Using environment vari-
ables to filter results

v~ Customizing name com-
pletion for remote logins

line for pure speed and raw power. Using bash is an obvious choice

when you need to do something fast, but unless you're the perfect
typist, keyboard errors can slow you down — especially if you type faster
backwards (that is, with the Delete key) or if you’re working in a case-
sensitive environment like Linux.

Graphical applications look nice, but it’s hard to beat the command

With a few shortcut keystrokes, bash will complete your command line
for you — we call that feature a dynamic shortcut. Not having to retype
incorrectly entered commands or filenames can save you hours in no
time. With dynamic shortcuts, you make fewer keystrokes . . . and fewer
keystrokes mean fewer wrong keystrokes. In this technique, we show you
how to use shortcuts at the command line to save time and keystrokes
and to avoid typing errors.

Completing Names Automatically

bash knows how to complete filenames, command names, user names,
and host names on your behalf. Try the following steps:

1. Open a terminal window. You can find one in the GNOME or KDE
Menu under System Tools (or System, if your version of GNOME or
KDE doesn’t have a System Tools menu choice).

2. Type the first few letters of the command, variable, or whatever
you’re looking for and press the Tab key twice.

For example, if you type host, a list of commands that start with the
letters host appears. See Table 5-1 for more details on autocompleting
variables, user names, and so on.

3. If you need to narrow down your options further, type the next few
letters of the command and press the Tab key again.

To tell bash how to complete the hostname command, you’d type n. If
you have more than one command that begins with the letters hostn,
bash shows you a list of those commands. Just type enough letters to

TaBLE 5-1: GETTING THE ITEM Y0ou WANT WITH AUTOCOMPLETE

Using the Escape Key to Your Advantage 3 ’

If the Partial Text Begins With ... bash Looks For-... Example
$ A matching environment If you type cd $HO and then press Tab, bash
variable translates that to cd $HOME.
~ (tilde) A matching user name Typing cd ~fre and pressing Tab translates to
cd ~freddie/.
@ A matching host name mail freddie@bas followed by a tab translates to

No special symbol
and, finally, a filename

A command name completion

freddie@bastille.

Typemore /etc/pass and then press Tab, and bash
completes your command as more /etc/passwd.

make the choice unambiguous, and bash will
complete the command name.

4. After bash completes the command name,
press Enter, and the command is executed.

If, at any time, you press the Tab key and nothing hap-
pens (or you just hear a beep), bash either found no
completions or a bunch of completions. (In this con-
text, bunch is a technical term that means some num-
ber greater than one.) If you press Tab a second time,
you see a list of all possible completions (if any exist).

Using the Escape Key to
Vour Advantage

The Tab key completes environment variables, user
names, host names, command names, and filenames.
You can fine-tune bash completions with the Esc key.
Use the Esc key in combination with other keys to
limit the type of completion that bash attempts, or
to view or insert several completions at once. Table
5-2 has all the details.

we’ve never bothered to memorize them all.
Your number-one timesaving friend is the Tab
key. We use it all day long.

] The Esc-key options are very powerful, but
B> (ﬂ

é

bash can complete any filename pattern, not just a
prefix. If you have a few tarballs (that is, files whose

names end in .tgz) in your current directory, add all
of them to the command line like this:

[freddie@bastille] 1s -1 *.tgz <Esc-*>

When you press Esc-*, bash replaces the *.tgz part
with the names of all files matching that pattern.

Environment variables that affect
filename completion

Set the following environment variables to screen out files
you don’t want to include in the completion list:

v FIGNORE: This is a colon-separated list of file suffixes
to ignore during filename completion. For example,
compilers often produce filenames that end in . o. If
you want the filename completion mechanism to
ignore those files, set FIGNORE to . o, like this:

$ export FIGNORE=.o

v HOSTFILE: Use this environment variable to tell the
completion mechanism which hosts to consider when
completing a host name. If you don’t set HOSTFILE,
bash searches the /etc/hosts file. You can use
HOSTFILE to limit host name completion to only
those hosts that you use frequently. If you've created
a file named ~/myhosts that contains the names of
the hosts that you frequent, set HOSTFILE like this:

$ export HOSTFILE=~/myhosts
If you want your environment variables in place every time

you log in, see Technique 8, in which we show you how to
modify your login and logout scripts.

3 2 Technique 5: Getting There Quick with Dynamic Shortcuts

TaBLE 5-2: UsinG ESCAPE FOR COMPLETIONS

What to Press What It Does

Timesaving Bonus Info

Esc-? Displays all possible completions — command
names, filenames, and user names — and presents
them in table form for you to read through and

complete the command.

Esc-? works very much like the Tab key except that it
doesn’t actually complete a word; it just shows you
the possible completions. If you want to see a (very
long) list of all the commands in your search path,
press Esc-? in a blank command line.

Esc-* Inserts all possible completions into your command. This is helpful if you have few possible completions.
Esc-/ Completes the filename to the left of the cursor. Esc-/ attempts filename completion only. That’s
handy when you know you want a filename — you
won'’t get a host name or user name by accident.
Esc-~ Completes the user name to the left of the cursor. Complete user names only — don’t try the other com-
pletion types.
Esc-$ Completes the variable name to the left of the cursor. Complete variable names only — don’t try the other
completion types.
Esc-@ Completes the host name to the left of Complete host names only — don’t try the other
the cursor. completion types. This option is useful when you
need to type a host name, but you don’t have a @
in the command, for example, ssh bastille.
Esc-! Completes the command name to the left of Complete command names only — don’t try the
the cursor. other completion types.

Customizing Completion for
Maximum Speed

Suppose that you take care of a network of comput-
ers and you find yourself logging into remote hosts
by using ssh. To ssh to host bastille, you might
type in ssh b and then press Tab thinking that bash
will fill in the rest of the host name (bastille) for
you. bash doesn’t know that ssh is always followed
by a host name, so instead of doing what you want,
bash goes through its normal search routine trying
to find a matching filename. To tell bash to complete
hostnames for ssh, use the following command:

[freddie@bastille] complete -A hostname ssh

The -A hostname part tells bash that you want to
complete host names (from the /etc/hosts file or
from $HOSTFILE if defined). The ssh part tells bash
which command you want to customize. You can
customize several (probably related) commands at
the same time, for example:

[freddie@bastille] complete -A hostname ssh
sftp rsh ping

This command tells bash to complete host names
for ssh, sftp, rsh, and ping. Of course, you can tell
bash to use other completion types, too:

[freddie@bastille] complete -A username
usermod passwd

This command tells bash to complete user names
after the usermod and passwd commands. The most
useful completion actions are listed in Table 5-3.

TaBLE 5-3: UseruL COMPLETION ACTIONS

Use This Action To Do This

-A command Complete command names (useful for the
which command).

-A directory Complete directory names (perfect for
cd).

-A file Complete filenames.
-A hostname Complete host names.

-A user Complete user names.

bash supports many completion actions in
addition to the ones listed in Table 5-3. See
man bash for more options.

Customizing Completion for Maximum Speed 33

You can also customize completion for a command by
creating filters. If you use OpenOffice.org frequently,
you may want to customize completion for OOWriter
and OOCalc:

[freddie@bastille] complete -G "*.sxw"
oowriter

[freddie@bastille] complete -G "*.sxc"
oocalc

Now when you type oowriter and press Tab, bash
only completes filenames that end in . sxw (the
OOWriter file format). The second command tells
bash to complete OOCalc spreadsheets when you
run oocalc.

Don't forget to save your customizations to
one of the bash startup files. See Technique 8
if you're not sure which file to use.

Using cd Shortcuts
for Rapid Transit

Technique

Save Time By

v~ Using bash (rather than a
graphical interface) for
file management

v~ Getting around your disk
quickly

v~ Defining search paths to
take you places fast

+* Remembering where
you’ve been with pushd
and popd

dow. With all the graphical programs available, you can do virtually

anything without ever having to go near the command line. The
downside of heavy dependence on a graphical interface is that you lose
speed — few graphical programs provide good looks and high power in
the same package.

‘. 7 ou can use Linux for ages without venturing near the terminal win-

Getting around quickly is a matter of knowing the fastest route, whether
you’re using the command line or a browser. bash (the program in charge
of the command line) knows this, and helps out with a bunch of handy
ways to jump to the locations you need when you use the command line.

Backtracking at the command line can be a timesaver, too. In this technique,
we show you how to use pushd and popd to make a retraceable path.
You’ll be moving back and forth through your directories in no time.

We also introduce you to a handy environment variable — CDPATH — that
you can use to make directory changes quickly without searching for the
correct pathnames. The CDPATH variable makes the command line friend-
lier and faster.

Can’t find your way out of a paper bag? After reading this technique,
you’ll know not only where you are, but also where you’ve been and the
quickest way to get where you're going!

Using cd and Is to Navigate through bash

The cd command is the mode of travel through the terminal window.
With cd, you can go anywhere fast:
v To return to your home directory, type cd and press Enter.

v To go to a specific directory, type cd, a space, and the directory name;
then press Enter.

Setting Your CDPATH Variables to Find Directories Fast

v To go to a specific directory (with less typing),
type cd, a space, and the first few characters of
the directory name, and then press Tab to auto-
matically complete the rest of the directory name.
(See Technique 5 for more details.)

v To go to a subdirectory, type cd, a space, and the
subdirectory name; then press Enter.

v To go to the parent directory of the directory
you're in, type cd .. and press Enter.

v To return to the directory you were just in, type
cd - and press Enter.

- directory changes from your history file. Just
press the up- and down-arrow keys to scroll
through the list of commands until you find

the one you need.

2 Use the up-arrow key (T) to recall complex
)

&

To find out where you are, use the pwd command.
Enter pwd at the command line and press Enter, and
bash displays your current directory.

To find the contents of your directory at the com-
mand line, use the 1s command. These are the basic
options:

V¥ 1s -1 gives you expanded information about the
items in your directory.

v 1s -ashows all files — even the hidden ones.

v 1s -t sorts by date changed. (This is handy if
you forget what you've worked on but know
when you worked on it. For example, you're try-
ing to remember what you did on Monday.)

v 1s -Rshows the entire tree listings for directo-
ries within your current directory.

You can also combine the 1s flags. For example,
1s -1a gives you an expanded listing of all the files
in your directory.

With those two basic commands (cd and 15s), you
can navigate through your file system. Now read on
to find out how to pick up some speed.

35

Setting Your COPATH Variables
to Find Directories Fast

The CDPATH variable contains a list of directory
names that bash searches through when you cd to a
directory without providing a complete path.

) The directories in your CDPATH should be the

directories that contain your most commonly
) visited subdirectories. The big timesaver comes
after you've set your CDPATH: Instead of typing

a complex directory name with layers of sub-

directories, you simply cd to the endpoint.

CDPATH should contain a series of directory names,
each separated by a colon. Save your CDPATH variable
to your startup file — ~/ .bashrc — so you don’t have
to type it every time you log in. The following steps
explain how to set up CDPATH in GNOME and KDE.

Files whose names start with a . don’t show
up on normal directory listings. They're there;
you just can’'t see them when you do an 1s.

To set your CDPATH variable, follow these steps:

1. Atthe command line:

If you’re using GNOME, enter gedit ~/.bashrc
and press Enter.

If you're using KDE, enter kate ~/.bashrc and
press Enter.

gedit or kate opens, displaying the contents of
your .bashrc file. If you don’t have a .bashrc
file, the editor creates one for you.

2. Type the following command:

export CDPATH=/home/freddie/work:/etc/
sysconfig

Substitute your most commonly used pathnames
into the preceding string. You can have as many
directories as you need — just remember to sepa-
rate each of them with a colon (:).

36

3. Click Save and then close the editor.

The next time you log in, bash will search
through all the directories included in CDPATH
whenever you use the cd command.

You've just set the search path for your user
account. If you want to define cd paths for other
users, see Technique 8.

If your .bashrc file already has stuff in it, make
room at the top of the file and add CDPATH.
This way, if .bashrc includes other programs,
it's sure to execute the CDPATH command
before moving on to the other programs.

When you're finished, your .bashrc file will look
something like this:

.bashrc

export
CDPATH=/home/freddir/work:/etc/sysconfig

Source global definitions

if [-f /etc/bashrc 1; then
. /etc/bashrc

fi

Be careful with CDPATH if you run a lot of shell
6 scripts (such as configure). Most shell scripts
assume that CDPATH is not defined and get

terribly confused if it is.

It’s important to remember that CDPATH is a search
path. That means that cd starts searching in the first
directory you list in CDPATH, and it stops searching as
soon as it finds the first candidate. If two (or more)
of the directories in CDPATH have identically named
subdirectories, cd will ignore all but the first (unless
you cd to a fully-qualified directory name).

Remembering Where Vou've
Been with pushd and popd

The pushd and popd commands work together to
leave a virtual trail of breadcrumbs so that you can

Technique 6: Using cd Shortcuts for Rapid Transit

find your way back $HOME again (sorry, we usually try
to avoid nerdy puns). You can backtrack quickly
without having to remember where you’ve been.

pushd works exactly like cd except that it records
your current directory on a stack of directory
names. popd removes the most recent entry in the
list and cds to that directory for you. pushd puts a
directory on top of the stack, and popd takes a direc-
tory back off again — in either case, you're always
working at the top of the stack.

Here’s how to use the two commands to retrace your
steps:

1. Use pushd to move to a directory (just as you
would a cd command):

$ pushd /usr/local/src

2. Then pushd to another directory:
$ pushd /tmp

After each pushd, your current location is added
to the front of a directory list displayed above
your prompt. We discuss how this list is useful in
the next section.

3. Enter popd and press Enter.

You return to /usr/local/src.

pushd remembers multiple moves, so you can
popd back as far as you need to.

Manipulating Your
Stack with dirs

Each time you pushd or popd, as explained in the pre-
ceding section, bash automatically executes the dirs
command to display the directory stack above your

prompt. Consider it bonus information from bash —
you may not ask for it, but it’s there, and useful.

You can use the dirs command by itself to make
quick changes to the stack. The basic dirs command

tells you what is on your stack. Use the dirs options
to manipulate the directory stack to your liking:

v dirs -c clears the stack. This is handy if your
stack is getting too long, or if you want to erase
evidence of where you've been.

Manipulating Your Stack with dirs 3 7

dirs -1 takes the abbreviations out of your
stack. By default, bash abbreviates your home
directory to ~.

dirs -p shows you the directories you've visited
in a line-by-line format. This is a quick way to
clearly see where you've been.

Technique

Typing Less and
Doing More with
Handy Automagic
Variables

] orking at the prompt can be a huge timesaver — no graphics
Save Time BV programs to load, no images to refresh, no mouse to chase.

v+~ Using your process ID to
create unique filenames

+* Using command output to

What could be better? Well, less typing for starters. It would

also be nice if you didn’t have to remember things like process IDs or the
complete pathnames of seldom-used commands.

build complex commands Luckily for you (and us), bash can help. bash uses environment variables

v~ Scripting tasks to check
for privileges

to keep information handy. Some environment variables you define your-
self; others (we like to call them “automagic variables”) are defined by
bash. You can use environment variables at the command line or within

1~ Creating search paths for shell scripts. In this technique, we show you a few of the more useful
commands and using bash variables and how to save time by using variables instead of manu-
shortcuts ally typing everything in. Here’s a quick preview of automagic variables’
v~ Creating custom variables possibilities:

v The $$ variable holds the process ID of the bash shell. You can use $$

to create unique filenames that won'’t clash with other users. If you
want to browse through a long directory listing, just redirect the out-
put from 15 into a temporary file named /tmp/$$ and then open that
file (/tmp/$$) with your favorite editor. When you're finished with it,
just delete the temporary file with the command rm /tmp/$$.

Shell scripting everyday tasks can save you a lot of time and key-
strokes. Tasks such as mounting and unmounting CD drives are well
suited to scripting, but your scripts should include some verification
of user privileges. Use $UID and $EUID to screen your script users to
decide if they should be allowed to run that script.

When you need to run a program or shell script, bash needs to know
not only the name of the program but also the location. With $PATH,
you can create search paths for bash so that you need to enter only
the name to run the program. In this technique, we tell you how.

Another automagic variable creates command-line arguments out of
program results. Save time and space by moving data without having
to create files. Just use $() for command substitution, as described
later in this technique.

Show Me the $$: Giving
Temporary Files Unique Names

The $$ variable contains the unique process ID of
the shell you're running. To see the value of $$, just
type in echo $$. You can use this ID to generate
unique names for temporary files.

@ If you have multiple users who create tempo-
B> (ﬂ

rary files, setting a naming standard will save
time (and confusion). Tell all your users to use
$$ to create the names for their temporary
files. Because each process ID is unique, each
filename will be unique. If you're careful to
remove temporary files when you're done
with them, you'll avoid lots of confusion in
the long run.

é

Garbage stacks up: Data directories can grow and
grow when you’re not looking (nature abhors a
vacuum, and so does your disk drive). If you're
browsing through a directory that won't fit on one
screen, you can pipe the output to more like this:

$ 1s-1 | more

A better way to browse through a huge directory
listing is to make a searchable catalog of the files in
that directory, which makes it a lot easier to find the
files you're looking for. To create and edit a file con-
taining the contents of a directory, follow these steps:

1. Navigate to the directory you want to list.
2. Enter1s -1 > /tmp/$$ and press Enter.

The file /tmp/$$ now contains a listing of the
files in your current directory. Of course, because
$$ contains your process ID, you've actually cre-
ated a file with a name like /tmp/5542 (or what-
ever your process ID happens to be).

The > directs the output of a command to the
file listed to the right of >. This technique works
with basically any commands that create output.

Streamlining Archive Searches 3 9

3. Enter gedit /tmp/$$ (if you're using GNOME) or
alternately kate /tmp/$$ (if you're using KDE).

Your new file opens, ready for you to use.

We should point out that using $$ in a filename sim-
ply generates a name that'’s likely to be unique — it
doesn’t actually create a temporary file. You still have
to delete the file when you’re finished with it.

Streamlining Archive Searches

When you need to find a missing file, searching
through tarballs and zip files (with obscure names)
that have accumulated in your download directory
can take eons. You can save time by exposing the
archives’ contents in the easiest and fastest possible
way. Here’s how you do it for different file types:

v Tarballs: To find out what’s in a tarball without
unpacking it, you can easily capture the archive
catalog in a temporary file (and then browse the
catalog with your favorite editor). To do so, use
the following command:

$ tar -ztvf tarballname.tgz > /tmp/$$

This command displays the filenames from a tar-
ball and captures the output to a temporary file
that you can browse at your leisure.

v RPM package: If you want to know which files
are included in an RPM package, you can gener-
ate a list of the filenames with this command:

$ rpm -gpl rpmfilename.rpm > /tmp/$$

v Zip file: Zip files also tend to pile up. To peek
inside a Zip archive, enter the following
command:

$ unzip -1 zipfilename > /tmp/$$

After you have the archive contents in full view, just
check your temporary file for the contents you need.
Cruising through your archives to find missing files
is easy and fast.

40 Technique 7: Typing Less and Doing More with Handy Automagic Variables

] If you have a lot of archives to go through (they
& { @ do accumulate), work with two windows —
) one terminal window and a browser window

open to your temporary directory. You can
open the file with a quick double-click and
drag it to the trash when you're done.

7 If you're a GNOME aficionado, you can use
- { <@ the File Roller tool to peek inside most archives
) instead of creating a temporary file to hold

the catalog. Just open Nautilus, jump to the
directory that holds the archive, and click the
filename.

Turning the Qutput of a
Command into a Variable

with $()

bash has another trick up its sleeve that can save
you a lot of time — it’s called command substitution.
Command substitution turns the output from a com-
mand into a variable. Command substitution is a big
help with simple results, such as sending e-mail to
all the users in a particular group. Command substi-
tution is indispensable for complex jobs like chang-
ing the ownership of all the files extracted from an
archive.

Command substitution is so named because it sub-
stitutes the output from a command into the com-
mand line. To use command substitution, just
surround a command with parentheses and put a
dollar sign in front of it, like this:

$ file $(which bzgrep)
/usr/bin/bzgrep: a /bin/sh script

When bash sees the contruct $ (command), it executes
the command and builds a new command line based
on the output generate by command. The command
file $(which bzgrep) is equivalent to:

$ which bzgrep
scribble down the result (/usr/bin/bzgrep)
$ file whatever you scribbled down

Here’s another example that shows command substi-
tution in action:

1. Set up the variable and the command:
$ NOW=$(date)

The value of $NOW is set to the output of the date
command.

2. To display the value of $NOW, use the echo
command:

$ echo $NOW
Fri Dec 26 13:02:01 EST 2003

Of course, you can shorten that whole sequence to
echo $(date).

g Make command substitution a habit — it cer-
e («s tainly is for us. Command substitution not only
& saves typing but also reduces the chance of

error.

Here’s a good example of how command substitution
can reduce typing errors. When you unpack a tarball,
files are often scattered all over your system. If you
need to change ownership of all those files, your
options are to track down and chown those files one at
a time, or to build a command with the output gener-
ated by another command. Personally, we're more
likely to leave a file out of the list than bash is. The
following command converts the output of the tar
command into a list of filenames for chown to act on:

$ chown freddie $(tar -ztvf
tarballname.tgz)

You've used tar to create list of the files that you're
interested in and then feed that list to chown as a set
of command-line arguments.

tar isn’t the only command that can generate a list
of names. In this next example, we use grep to gen-
erate a list of user names.

The /etc/group file contains one row for each group
you've defined on your system. Each row contains a
group name, a password, a group number, and then
a comma-separated list of the users within that group.
A typical group file will look something like this:

support:x:500:george, fred,barney
operators:x:501:elroy
acctg:X:502:wilma,betty,judy, jane

You can use grep to pull a specific row out of the
group file, like this:

$ grep support /etc/group
support:x:500:george, fred,barney

To extract the user names from a row, use the cut
command to pick out a specific “column.” Because
/etc/group uses a colon to separate columns, you can
extract the user names with the following command:

$ grep support /etc/group | cut -d ':' -f 4
george, fred,barney

The -d ':' part tells cut to use the colon character
as a field separator, and the -f 4 part picks out the
fourth field.

Now you can use command substitution to feed that
list of user names to the mai1 program (maybe send-
ing a message to everyone in the Accounting, or
acctg, department):

$ mail $(grep acctg /etc/group | cut -d
- 4)
Subject: Downtime

The accounting system will be down this
weekend
-- Freddie

names when you need to issue a command

2 Use variables to hold groups of files or user
<8}
that affects the whole group.

If you want to see a preview of your command
after substitution but before execution, press
Esc-Ctrl-E. If the preview looks good, press
Enter to execute the command.

Using SUID and $SEUID in Shell Scripts 4 1

Using SUID and SEUID
in Shell Scripts

When you create a user account, Linux assigns a
numeric user ID to that user. bash stores the user ID
in the $UID variable; your effective user ID is kept in
the $EUID variable. (Your real user ID is always the
same, but your effective user ID changes if you
impersonate another user with the su command.)
For example, user freddie might be logged on with a
$UID of 500, but if freddie uses su to gain superuser
privileges, his $£UID changes from 500 to 0.

A superuser’s $EUID is always 0. This is a quick
and easy way to verify user privileges when
you're writing shell scripts.

You can use $EUID inside a shell script to determine
whether the user running the script holds extra priv-
ileges. For example, it’s easy to write a shell script
that mounts the CD drive for users who have enough
privileges.

If you’re using Fedora or Mandrake, follow these
steps:

1. Open your terminal window and enter the fol-
lowing command:

$ gedit /usr/local/bin/mount-cd

This command opens the gedit editor and cre-
ates a file called mount-cd in the /usr/local/bin
directory.

2. Type in the following text:
{1 /bin/bash

if [[$EUID -eq O 1]

then
mount /dev/cdrom /mnt/cdrom
else

echo "Sorry, you must be a
superuser"

echo "to mount a CD"
fi

42

3. Save the file and close gedit.
4., Atthe command line in the terminal window,
type this command:

chmod a+x /usr/Tocal/bin/mount-cd

This command makes the file executable for
everyone on your system.

If your system is running SuSE Linux, follow these
steps to create a shell script that mounts the CD
drive for users with an effective user ID of 0:

1. Open your terminal window and enter the fol-
lowing command:

$ gedit /usr/local/bin/mount-cd
This command opens the gedit editor and cre-

ates a file called mount-cd in the /usr/local/bin
directory.

2. Type in the following text:
#!/bin/bash

if [[$EUID -eq 0 1]

then
mount /dev/cdrom /media/cdrom
else

echo "Sorry, you must be a
superuser"

echo "to mount a CD"
fi

3. Save the file and close gedit.

A

At the command line in the terminal window,
type this command:

chmod a+x /usr/local/bin/mount-cd

This command makes the file executable for
everyone on your system.

Now if users want to mount a CD by using the
program you just created, all they need to do is
enter mount-cd at the command line. Any user
can run this script, but only those users whose
$EUIDs are 0 (the superusers) can actually mount
a CD.

Technique 7: Typing Less and Doing More with Handy Automagic Variables

Getting Quick Access to
Programs with $PATH

Shell scripts can be big timesavers, but only if you
don’t have to search for them. Populating your $PATH
environment variable with the directories that con-
tain your most commonly used scripts (and other
programs) will save you tons of time (and aggrava-
tion) because you can start programs with just a
program name rather than a complete pathname.

The $PATH variable is a colon-separated list of direc-
tory names that bash searches through to find your
program names. Each user has his or her own $PATH
variable.

It’s a good idea to keep dangerous commands in a
directory that’s not on the average user’s search
path (that is, the user’s $PATH variable). If you don't,
a naive user might accidentally run a damaging pro-
gram when he doesn’t mean to. Keeping dangerous
programs out of the normal search path won'’t stop a
malicious user, but it can save you from accidental
damage.

The superuser’s $PATH should never include a
period (.). The *.’ directory means “the current
directory.” As you cd from directory to direc-

tory, ." changes with you. If “." is in the supe-
ruser’s search path, a malicious user could
drop a Trojan horse into a directory that the
superuser is likely to visit. For example, if a
malcontent knows that the superuser spends
time in the /tmp directory, he could create a
Trojan horse with an innocuous-looking name
like /tmp/1s.

If the superuser cd’s to /tmp and runs the 1s
command, he may be in danger. If *.” appears
early in the search path (earlier than /bin/15s),
the superuser will run the Trojan horse instead
of the real 1s — and he'll be giving the Trojan
superuser privileges too! Some high-security
sites are even more paranoid — they make sure
that the superuser has an empty $PATH, forcing
him to type the complete pathname to every
command.

To set the $PATH environment variable for a user,
follow these steps:

1. Atthe command line, enter gedit
~user/.bashrc and press Enter.

2. When the editor opens, add the following line
to the end of the file:

PATH=$PATH:/foo/bar/baz

Substitute your directory name for
/foo/bar/baz.

The command you just entered appends the
directory to the user’s current search path.

3. Click the Save icon and close the editor.

Now, when this user enters a program name, bash
searches through all the directories listed in $PATH.

You can add as many directories to the user’s
@ path as you'd like, but remember that as you
hand out easy access to commands, you could

invite accidents.

Customizing Variables for
Rapid Transit

All the environment variables you’'ve seen so far

are automagic variables — bash defines them for
you, and they can change value over time. You can
also create custom variables to make your life easier.
For example, we spend a lot of time in the directory
/usr/local/src (that’s where open-source source
code typically lives). In our system-wide login script
(/etc/bashrc), we define an environment variable
named $SRC that equates to /usr/local/src. That
makes it easy to navigate to our workplace — just cd
$SRC and we're there.

Of course, you can use environment variables to

do things other than just cd: You can copy files

(cp $SRC/foo.c $DST/), create archives (tar -zcvf
$SRC/mycode.tgz $SRC/kde/), or just about anything

Customizing Variables for Rapid Transit 43

else. Unfortunately, most graphical programs don’t
know how to deal with environment variables, but
they can sure save you time at the command line.

Just think of the pathnames you use over and over
every day, and you’ll see why custom environment
variables can be a great timesaver.

The following shell script defines a few custom vari-
ables you can use to get somewhere quickly:

File name: setvars.bash

i Define a few shortcuts

#

export SRC=/usr/local/src # cd
$SRC will take me to /usr/local/src

export DESK=~/Desktop # cd

$DESK will take me to my desktop
export ACCTG=/opt/data/accounting 4 cd
$ACCTG will take me to my bookkeeping
data
echo "Your custom variables are ready for
use"

To use the code:

1. Open your favorite editor and create the file
~/setvars.bash.

$ gedit ~/setvars.bash

2. Type in the variables that you want to define
(be sure to put the word export in front of each
one).
export SRC=/usr/local/src
export DESK=~/Desktop
export ACCTG=/opt/data/accounting

Note: Be sure that you don’t have any spaces
before or after the =; otherwise, bash will com-
plain when you try to run your script.

3. Save your work and close the editor.

At the command line, adjust the permissions for the
file you've just created, making it executable:

$ chmod a+x setvars.bash

44 Technique 7: Typing Less and Doing More with Handy Automagic Variables

Now, to execute your program and have your custom
variables ready for use, just put a period (.) and a
space at the beginning of the command line, like this:

$. setvars.bash

Your custom variables are ready for use
$ echo $SRC

/usr/local/src

$

When you run a shell script that defines environ-
ment variables (like this one does), you have to put
a . at the beginning of the command line. The . char-
acter is also known as the source command. In fact,
you can type source setvars.bash instead of using .,
but that’s more typing. If you don’t source (or *.")

the script, bash will start a new shell session, run
your script, and immediately terminate the new shell
session.

Why is immediate termination a problem? Because
the environment variables are defined in the sub-
shell (that new shell session) instead of your shell
session. When the sub-shell ends, your fancy new
variables disappear! The source command tells bash
to execute a script within the current shell instead of
firing up a new shell.

After you create the pathname shortcut, you
can move to your source code directory by
typing cd $SRC and pressing Enter. You're at

your location in a snap!

Logging In,
Logging Out

Techniqie

Save Time By
1 Customizing your shell
scripts

v Changing defaults in shell
scripts for groups of
users

v Customizing your logout
script

v~ Customizing your startup
desktop

and shell scripts that prepare your desktop and command line envi-

ronment. You can customize your command line login scripts to
your liking — for example, set color preferences and language prefer-
ences and set up the information that will be included in your prompt.

Every time you log in, Linux launches a chain of startup programs

You can also arrange for KDE to automatically start programs for you when
you log in. Not having to find all the programs you need to start your day
is a great timesaver. Calendars, terminal windows, word processors, and

even Tux Racer can be there waiting for you after your first cup of coffee.

Linux defines four sets of login/logout scripts. In this technique, we show
you how to decide which scripts you need to change to customize your
work environment when you log in or log out:

v System-wide gdm login/logout scripts
v System-wide shell login scripts
v Per-user shell login/logout scripts

v Skeleton (or prototype) shell login/logout scripts

This technique is all about saving time by having your work environment
ready for you when you need it. Finding the right script to modify at login
or logout is the key to success.

Finding the Right Shell Script

When you want to customize some aspect of your desktop (or command
line) environment, finding just the right script can be tricky. Some scripts
are shared by all users; others are personal scripts that execute for only a
given user. If you're using a desktop environment like KDE or GNOME, your
choices are even more complex. The following sections explain how to
find the right script, when to run your code, and finally how to automati-
cally arrange your desktop just the way you like it, each time you log in.

46 Technique 8: Logging In, Logging Out

Choosing your victims

Start out by deciding how intrusive you want your
change to be. That is, do you want to change every-
one’s settings or just your own?

What files you change depends on which of the fol-
lowing settings you're changing:

v Personal settings: If you change your personal
login/logout scripts, you won'’t interfere with
other users. For example, if you want to change
your own bash prompt (see Technique 4), modify
~/.bashrc. Personal settings are stored in your
home directory.

v New user prototypes: Change the prototype
scripts to provide a starting point for new users
(users whose accounts are created affer you
change the prototypes). For example, modify
/etc/skel/.bashrc (the prototype .bashrc
script) to suggest a default prompt for new
users. When you create a new user account, the
scripts found in /etc/skel are copied to the new
user’s home directory. Prototype scripts are
stored in /etc/skel.

v System-wide settings: If you change system-wide
scripts, you affect every user on your system. If
you want to customize the bash prompt for all
users, modify /etc/bashrc (the system-wide
bashrc script). System-wide settings are stored
in /etc or in a subdirectory of /etc.

If you want to modify shared, system-wide
scripts, you must hold superuser privileges.
However, you don't need extra privileges to

modify your own scripts.

Timing is everything

Next, determine when your code needs to run. Here
the choices start to get complex. You can modify
scripts that execute when you log in, scripts that
execute when you start each new shell, and scripts
that execute when you log out.

Here’s the sequence of scripts that Linux runs when
you log in to a new GNOME or KDE session managed
by gdm (the GNOME display manger):

1. /etc/X11/gdm/Postlogin/Default (system
wide)

2. /etc/X11/gdm/PreSession/Default (system
wide)

3. /etx/X11/xdm/Xsession (system wide)
The first three scripts run with superuser privi-
6 leges even if you log in as a non-privileged
user. Be careful what you do, or you may
introduce vulnerabilities.

4., /etc/profile (system wide)

5. /etc/profile.d/*.sh (system wide)
6. ~/.bash_profile (personal)

7. ~/.bashrc (personal)

8. ~/etc/bashrc (system wide)

On SuSE systems, the first two scripts are found in
/etc/opt/gnome/gdm instead of /etc/X11/gdm.

If you're running SuSE Linux or Mandrake Linux,
you're probably using the KDE display manager
(kdm) instead of GNOME'’s display manager (gdm), and
the login/logout scripts will be different. We recom-
mend using gdm even if you're a KDE user (gdm can
create KDE desktops just like kdm can create GNOME
desktops). See the sections on switching display
managers in SuSE Linux and switching display man-
agers in Mandrake Linux in Technique 35 for more
information.

You'll rarely want to modify any of the first three
scripts (in fact, we have never modified them), but
it’s common to modify /etc/profile. If you're
uncomfortable modifying /etc/profile, just add a
new script to /etc/profile.d/, and bash (actually
/etc/profile) will happily invoke it for you.

@ Saving your customizations in a separate script
(«a (/etc/profile.d/myscript.sh) allows you
to more easily debug and maintain the script
in the future — your script won't be tangled
up in all the “stuff” already in /etc/profile.
Make sure that the name of any script that
you save in /etc/profile.d/ endsin .sh.

é

Every time you start a new bash shell (by opening a
new terminal window or running a shell script), bash
executes these scripts:

1. ~/.bashrc (personal)
2. /etc/bashrc (system wide)

Notice that ~/.bashrc runs every time you start a
new shell. Don’t put any time-consuming tasks in
~/.bashrc, or you'll spend a lot of time waiting for
each shell session to complete its startup code.
~/.bashrc is a great place to define environment
variables (see Technique 7), aliases, and shell func-
tions (see Technique 10).

When you log in to your computer without creating a
new GNOME or KDE session (by sshing from another
computer for example), bash executes these scripts:

1. /etc/profile (system wide)

2. /etc/profile.d/*.sh (system wide)
3. ~/.bash_profile (personal)

4., ~/.bashrc (personal)

5. /etc/bashrc (system wide)

In case you didn’t catch it, there’s a pattern here. Each
time you log in to your computer (whether you start a
new GNOME or KDE session or ssh from another com-
puter), bash runs the profile scripts (/etc/profile,
/etc/profile.sh/*.sh,and ~/.bash_profile). Every
time you start a new shell, bash runs the rc scripts
(~/.bashrc and /etc/.bashrc). To save yourself some
time, be sure to put long-running tasks (such as file
indexing or mail checking) in a profile script and not
in an rc script.

b7

Finding the Right Shell Script

When you log out of a command line ssh session,
bash executes just one file:

~/.bash_logout (personal)

The ~/.bash_logout script is a good place to invoke
cleanup-related tasks. For example, if you have a
habit of creating temporary files, delete them in
~/.bash_logout. You may also want to encrypt sensi-
tive files when you log out (and decrypt them when
you log in) — see Technique 28 for more information
about encrypting and decrypting files.

When you log out of a KDE or GNOME session, gdm
(the GNOME display manager) executes just one file:

/etc/X11/gdm/PostSession/Default

On SuSE systems, the PostSession/Default script is
stored in /etc/opt/gnome/gdm instead of /etc/X11/gdm.

Cleaning up made easy

Notice that the normal ~/.bash_Togout script is
never executed if you use KDE or GNOME — all the
cleanup code that’s stored in ~/.bash_logout is
ignored. That’s a bit inconvenient because you have
to maintain two different logout scripts: one that
executes when you log out from a command line ses-
sion and one that executes when you log out from a
graphical session.

You could try to fix this dual-script problem by creat-
ing a new script (with a name of your choosing) and
invoking that script from ~/.bash_logout and /etc/
X11/gdm/PostSession/Default. That solution would
work, but now you’re maintaining three scripts
instead of one!

Here’s a better solution to the dual-logout-script
problem: Simply modify /etc/X11/gdm/PostSession/
Default so that it invokes ~/.bash_logout for you.
That way, you (and every other user on your sys-
tem) can keep cleanup code in ~/.bash_logout that
runs whether you exit a command line session or a
graphical session.

48

Technique 8: Logging In, Logging Out

Follow these steps to run ~/.bash_logout every time
you log out of your computer:

1. Open a terminal window, give yourself super-
user privileges, and move into the PostSession
directory:
$ su
Password:

cd /etc/X11/gdm/PostSession

If you're running SuSE Linux, cd to /etc/opt/
gnome/gdm instead.

2. Rename the original PostSession/Default script:
mv Default Default.dist

3. Use a text editor to create a new file that
includes the following code:

#1/bin/bash
if [-x $HOME/.bash_logout 1]
then
su -c "$HOME/.bash_logout" $USER
fi

SCRIPTDIR=$(dirname $0)

exec $SCRIPTDIR/Default.dist

4., Save your work to /etc/X11/gdm/
PostSession/Default and close the
editor.

If you're a SuSE user, save your work to /etc/opt/
gnome/gdm/PostSession/Default instead.

After making this change, your ~/.bash_logout
script will run whether you’re using a KDE session, a
GNOME session, or a command line ssh session.

Changing prototype scripts

Have you ever wondered how ~/.bash_profile,
~/.bashrc, and ~/.bash_logout got into your home
directory to begin with? When you create a new user
account, you don’t have to write the login and logout
scripts yourself, but they must come from somewhere,
right? Right! Each time you create a new user account,

Linux copies the prototype scripts from a directory
named /etc/skel (that’s skel as in skeleton).

If you try to look at the /etc/skel directory with a
normal 1s command, it looks empty, but it’s not. All
the files in /etc/skel have names that start with a
period (.), meaning that they are hidden from the
1s command. If you really want to see what’s in
/etc/skel, use 1s -a instead (that -a option tells 1s
to display hidden files as well as normal files). You’ll
see (at least) three files:

v [etc/skel/.bash_profile: Copied to
~/.bash_profile

v [etc/skel/.bashrc: Copied to ~/.bashrc

v [etc/skel/.bash_logout: Copied to
~/.bash_Tlogout

/etc/skel/.bash_profile may be missing if you're
running SuSE Linux. If you want to change a login

(or logout) script inherited by new users, change
the script in /etc/skel. That way, when you create

a new user account, Linux copies the modified script
into the spankin’ new home directory.

Now you know how the Linux login and logout
scripts work. Whenever you feel a need to modify a
login (or logout) script, be sure to ask yourself whom
you want to affect and when your code needs to run.

Customizing Your Autostart File

If you're like us, each time you log in to your graphical
desktop (KDE or GNOME), you launch a few handy
programs: xmms to play some music, Evolution to
read e-mail, and Mozilla to surf the Web. Wouldn't it
be nice if Linux started those programs automati-
cally, every time you logged in to your desktop?

Meet Autostart. Autostart is the KDE way to have
your desktop ready for you every time you log in —
no extra keystrokes or mouse clicks are required.
KDE autostarts the programs you need and has them
waiting for you on your desktop.

Autostart and the login scripts described earlier are
somewhat related: They both prepare your environ-
ment for you. Login scripts set up your command
line environment. Autostart sets up your graphical
environment the way you like it.

Autostart is easy to set up and change. Just open a
few browser windows and surf and drag, and with a
few clicks, Autostart is up and running. To remove
something from the Autostart menu, just drag the
icon to the Trash.

To arrange your desktop with Autostart, follow these
steps:

1. Double-click the Start Here icon on the desktop
to open Konqueror.

2. Surf to the Autostart directory:
/home/username/.kde/Autostart

If you can't see your . kde directory, you can
find it by choosing View=>Show Hidden Files.

3. Double-click the Start Here icon again to open
another Konqueror window.

Now the fun starts!

Customizing Your Autostart File 4 9

4. In the second Konqueror window, start surfing
for the programs you want to see on your
desktop.

Start in the Applications directory, where you’ll
find your tools (and games) in the appropriate
folders.

When you find a program that you want on

. gr
your desktop at login, grab the icon and drag
it to the Autostart folder.

When you drop it, a little dialog opens.
6. In the dialog, choose Link Here.
The icon now appears in the Autostart folder.

7. Repeat Steps 5 and 6 to add additional icons if
you want.

That’s all there is to it. When you reboot, your
tools are there waiting for you!

- Autostart folder again and drag the icons you
don’t want to the Trash. You're just throwing
away links, so the originals are still there if you

need them.

Z To remove startup programs, open the
-

&

Making History
(Work for You)

Technigquie

Save Time By

v~ Using history to recall
previous commands

v~ Including the history
command number in your
bash prompt

v~ Filtering your history file
to prevent accidents

+* Reusing complex com-
mand lines

directories, and files that you work with. The bash shell keeps track

of every command that you type in the history list — including those
commands that you use most frequently. You can take a peek at your his-
tory list in a file named ~/.bash_history, where, by default, bash stores
the most recent 1,000 commands.

I ike any typical Linux user, you likely have a small core of commands,

) If you know how to move in and out of the history list with ease, his-
- { <@ tory can save you a lot of keystrokes. With Linux, you can use the
) history list to recall previous commands, modify them if you need to,
and execute them again without all that typing (and all those typing
mistakes).

In this technique, we show you how to use the history file to save time at
the command line. Less typing = fewer mistakes. Fewer mistakes = more
commands that work the first time. More commands that work the first
time = more time left for other things that you'd rather be doing.

Navigating the History List

To see the history list, type history and press Enter. With the history
list ready and waiting for you, you can move through it in all sorts of
ways. This section explains the different ways to get to the command
you need — quickly. Table 9-1 gives you an overview of your options
and when it’s best to use them.

Scrolling
You can scroll through the list by using the up- and down-arrow keys:
v Up arrow: Recalls commands starting with the most recent and moving

towards the oldest. For example, press the up arrow once to see the
previous command and press it again to see the command before that.

TasLE 9-1: NaviGATING HisToRY QuicKLy

Navigating the History List 5 ’

Navigation Method When It's Useful

Scrolling

Scroll through your history when you know that the command you're looking for is close by. If you have

to scroll through more than five or six commands to find the one you want, use a different method.

Recalling by
command

number at once.

Searching

If you include the history command number in your bash prompt (see Technique 4), you can recall
a specific command by number. That works great if you can see 20 or more commands on your screen

If the command you're looking for is not close by (you've executed a number of commands since the

one you want to recall), press Ctrl-R to search for commands that contain a specific pattern. We show

you how in “Searching through history.”

v Down arrow: Moves in the opposite direction — it
starts at the current command and moves towards
the most recent. (You can’t use the down-arrow
key until you've used the up-arrow key. The down
arrow won’t anticipate your next move and make
up a command for you . . . we wish it did.)

After you find the command that you want, change it
if you need to and then press Enter.

Summoning a command by number

Each command is assigned a number when it’s placed
in the history list. (The first command is command 1,
and the numbers increase from there.) When you type
history and press Enter to see the history list, you
also see that a number precedes each command:

$ history
53 ssh Tlouvre
54 ssh versailles

55 pwd

56 1s -1

57 rm *.tmp

58 mail franklin
59 history

You can use the command number to recall a specific
command. Just type an exclamation point (!) and
follow it with the number of the command that you
want to recall. For example, to recall the ssh command
in freddie’s history, you would enter the following:

$ 154
ssh versailles
[freddie@versailles]

e to your history list, we recommend including
the command number in your bash prompt;
just include \! in $PS1. See Technique 4 for

more information.

z If you want to use command numbers to refer
<€

&

Searching through history

You can also ask bash to search through the history
list on your behalf. Press Ctrl-R to start an incremen-
tal search. As you type each character, bash recalls
the most recent command that includes the charac-
ters you've entered. For example, given the command
history for freddie, an incremental search for ssh
would go like this:

1. Press Ctrl-R.
The prompt changes from [freddie@bastille] to

(reverse-i-search)'"':

2. Type s (the first character in ssh).

bash finds the most recent command that
includes an s (which is history), and the prompt
changes to

(reverse-I-search)'s': history

3. Type s again (the second letter in ssh).

bash finds the most recent command that
includes ss (whichis ssh -A versailles), and
the prompt changes to

(reverse-I-search)'ss': ssh -A
versailles

5 2 Technique 9: Making History (Work for You)

4, If you want the most recent ssh command (ssh
versailles), just press Enter. If you want an
earlier ssh command (ssh louvre), press Ctrl-R
to tell bash to keep looking.

It's easy to make mistakes while you're getting
- («@ familiar with the history command. You can
save a lot of time if you ask bash to show you
each command after expansion but before the
command is executed. The histverify shell
option does the trick; just add shopt -s
histverify to your ~/.bashrc file.

When you're comfortable with the history fea-
ture, you may want to turn off histverify.
You can still press Esc and then Ctrl-E to pre-
view your command line after expansion.

Customizing the History List

bash gives you a lot of control over the history list.
To customize the history list for how you work, you
can modify the defaults and filter out commands
that just get in your way.

Adjusting key default settings

Here are the defaults that you'll likely want to modify:

v To adjust the number of commands that bash
remembers, use $HISTSIZE.

v To set the number of commands that bash
remembers from session to session, use
$HISTFILESIZE.

v To change the location of the saved history
file from the default (~/.bashrc), modify the
$HISTFILE environment variable.

See the previous technique (Technique 8) to find out
how to make your preferences permanent so they
take effect every time you log in.

Filtering the history list

You can also filter out certain commands from the
history list. After you've used the history feature
awhile, you’ll probably notice that some commands
really don’t belong in the history list. Here are a few
examples:

v It’s redundant to maintain the history command
itself in the history list.

v It’s unnecessary to record exit commands. (The
exit command will log you out of the shell.)

v It’s alittle dangerous to keep rm commands
(or other data-destroying commands) in your
history list because you might recall them by
accident.

You filter out those nasty (or just plain annoying)
commands with the $HISTIGNORE variable. Set
$HISTIGNORE to a colon-separated list of patterns to
exclude from the history list. To filter out the com-
mands we just mentioned, use this:

$ export HISTIGNORE="history:exit:rm *"

You may also want to filter out repeated commands.
To do so, include the magic character & in
$HISTIGNORE:

$ export HISTIGNORE="&:history:exit:rm *"

Occasionally, you'll type in a command that you know
you don’t want stored in the history list (maybe
you're restoring files from an archive and you don’t
want to risk doing it again later by accident). To
exclude from the history list any command that
starts with a space or tab, add the pattern [\t]1*

to $HISTIGNORE (be sure to include the space
between [and \):

$ export HISTIGNORE=
"[\tl*:&:history:exit:rm *"

Executing Commands Quickly with History Variables

Now, whenever you type in a command that you want
to exclude from the history list, just put a space (or a
tab) at the beginning of the command line.

Executing Commands Quickly
with History Variables

$HOME is the name of your home directory, $PWD is the
name of your current working directory, and so on.
The history command adds a few more variables to
the mix. The history variables let you treat a previ-
ous command, or part of a previous command, as a
variable. Master the use of these automagic vari-
ables, and you’ll save time by not having to spot and
fix typing mistakes.

For a quick refresher course in automagic vari-
ables, check out Technique 7. It tells you about
the predefined variables that bash makes
available for your use.

Most variable names in bash start with a $
character, but the history variable names all
start with !.

The !! variable contains the text of the last com-

mand. If you type !'! at the command line, bash reex-
ecutes your last command:

$ ps

PID TTY TIME CMD
5562 pts/4 00:00:00 bash
12442 pts/4 00:00:00 ps
$ 1!

PID TTY TIME CMD
5562 pts/4 00:00:00 bash
12464 pts/4 00:00:00 ps

) Of course, if you all you want to do is reex-
- { 4@ ecute the previous command, you'd probably
& just press the up-arrow key and then Enter
rather than use ! !. The real timesaving advan-
tage of !! is that it contains the text of the

53

previous command, which you can use to
create new commands. If you have a complex
command that you use frequently, you can
save that command into a file with a meaningful
name and save yourself the effort of re-creating
the command the next time you need it.

Here’s an example of how you can use !! to create
new commands. You can use the tar command to
move a directory structure, but the syntax of the
command is a bit hairy:

$ tar -cf - * | (cd $DST ; tar -xf -)
After you've executed that command, use !! to
recall the command and save it to a file:

$ echo "!!" > $HOME/bin/movedir
$ chmod u+x $HOME/bin/movedir

The next time you want to move a directory, just
type movedir and press Enter.

Here are some other handy tricks you can do with
automagic variables:

v Dial up a command number quickly. In
Technique 4, we show you how to include the
history command number in your bash prompt.
Here’s the payoff. You can refer to a command by
its command number with !n. If you display the
history command number in your prompt, you
can easily recall complex commands by number.

[10281# w -hsf

franklin :0 2:23m Chromium
georgette pts/1 0:02m mailx
freddie pts/2 0:0s w -hsf
[1029]1# ki11all Chromium

(103014 !1028

franklin :0 0:01m bash
georgette pts/1 0:02m mailx
freddie pts/2 0:0s w -hsf

v See your command before you execute it. The
Esc, Ctrl-E trick works with history variables,

5 4 Technique 9: Making History (Work for You)

too. To see your command after variable expan- TABLE 9-2: HiSTORY VARIABLES
sion but before execution, just press Esc followed . -
Variable Meaning
by Ctrl-E:
I i
[10311# !1029 (now press Esc Ctrl-E) o Previous command
[1031]# ki11all Chromium I'n Command number n
1 Peel off parts of commands with word designa- I-n Current command number minus n commands

(!-11is the previous command, ! -2 is the com-

. Y n also refer rts of a previ
tors. You can also reter to parts of a previous mand before that, and so on)

command by adding a word designator to the end
of the history variable. The most useful word Itext Most recent command that starts with text
designators are $ to refer to the last argument in

1?text Most recent command that includes text

a command, and * to refer to all arguments. For

example, to create a new directory and then

move there, use this: . .

Speaking the lingo

$ mkdir /usr/local/src/coolcode

$ cd I1$ Seasoned propeller-heads pronounce ! as “bang,” not

$ pwd “exclamation point.” So, !! is pronounced “bang bang.”

Jusr/local/src/coolcode The * character is pronounced “splat.” You can, of course,

combine these to come up with witty phrases like “bang

Table 9-2 shows the complete list of history variables. bang splat.” If you enter a room where people are using
Remember that you can include a word designator language like this, back away slowly.

after the variable name to refer to part of a command.

Keeping VYour Life
Simple with Aliases

Tethnigile and Functions

Save Time By

v+~ Using the predefined
aliases that come with
bash

v Making aliases for com-
mon commands

+* Correcting your spelling
with aliases

v~ Using functions to auto-
mate downloading and
installing

you spend less time typing. You can create aliases that give mean-

ingful names to obscure commands; provide extra safety when
you’re doing something dangerous; create an abbreviation for a long,
complex command; or just correct typing mistakes.

ﬁ n alias is a command line shortcut. Creating an alias means that

A function is a series of commands designed to perform a task. Functions
can work with aliases to make it easy to automate tedious and time-
consuming tasks. A function can be one or two lines long, or can grow
into extremely complex programs that involve user interaction and error
checking. In this technique, we include functions that make it easy to
monitor your system with a few quick keystrokes and automate the com-
plex task of exploring and unzipping archives.

In this technique, we’'ve included some of our favorite aliases and func-
tions. Without them, we’d be correcting our spelling all day long. Use
them or create your own from our examples to save keystrokes and time
at the command line.

Viewing Your Aliases

Viewing your aliases is simple. bash is often configured with a few prede-
fined aliases, so you can test this command even if you haven’t created
any user-defined aliases yet. To view the aliases in your shell, just type
alias and press Enter:

$ alias

alias 1.="1ls -d .* --color=tty'
alias 11="1s -1 --color=tty"'
alias 1s='ls --color=tty’

alias vi='vim'

You may see a few more (or less) depending on which Linux packages
you've installed. The first three aliases in the preceding list provide
shortcuts for common variations of the 1s command, which you can see
in Table 10-1.

56

TaBLE 10-1: THE LS SHORTCUTS

Type bash Expands To To Do This

1. 1s -d .* --color=tty Listdirectory names and
hidden files (files whose
names start with a .
[period]) and colorize

the on-screen output

11 1s -1 --color=tty Display a detailed direc-

tory listing (in color)

1s 1s --color=tty Display the content of a
directory in short format

(in color)

The fourth predefined alias is there for old UNIX
users who are accustomed to using the vi editor.
Linux doesn’t include vi anymore, but it does
include a much-improved replacement called vim.
That old habit of typing in vi now starts the new
program, vim.

These are just a few of the timesaving aliases that
you may find in your shell. Read on to find out how
to create a few aliases yourself.

Creating Simple Timesaving
Aliases

Creating a new alias is easy. Here’s an example that
creates an alias to fix our most common typing error:

$ alias pdw=pwd

Now, whenever we want to know our current work-
ing directory and we accidentally type in pdw, bash
helps out by translating the typo into the correct pwd
command.

bash expands an alias only if it’s the first word in the
command line. Some of our favorite aliases fix
spelling mistakes, create shortcuts, and help us out
when we’re forgetful.

Technique 10: Keeping Your Life Simple with Aliases and Functions

These are some common spelling corrections you
might want to include in your alias list:

alias pdw=pwd
alias mroe=more
alias fiel=file

You may want to add an alias that translates old
familiar commands into Linux form:

alias dir="1s -1"

Navigational aliases are handy, too:

alias up="cd ..

You can create aliases for commonly used (but cum-
bersome) commands, such as unpacking tarballs:

alias unpack="tar -zxvf "

To display a list of programs that have open network
connections (for example, Web browsers or stream-
ing audio), create this alias:

alias netcon="netstat -p | grep -v'”unix"'"

Create an alias that protects you against accidents.
For example, the rm command (remove file) usually
does its work without any more input from you.
But, if you include a -i on the command line, rm
asks you to confirm each file that it wants to delete.
That can be a lifesaver if you ever type rm * .tgz
instead of rm *.tgz. (The extra space after the * in
the first command tells rm to delete everything in
your directory — which is probably not what you
wanted.)

alias rm="rm -i"
alias cp="cp -i"
alias mv="mv -i"

7 Turning dangerous commands into safe com-
B> (481

mands can save you a lot of time. Most users
would agree that restoring from a backup is
not an enjoyable way to spend an afternoon.

&

To save your aliases, use your favorite editor to
add them to the ~/ .bashrc file. This way,
each time you log in, your aliases are there

when you need them. To add system-wide
aliases, check out Technique 8.

Using Aliases for Complex
Commands

You can also create aliases that execute complex
commands. For example, the following alias con-
verts all GIF files in the current directory into PNG
form:

alias cnv="'for fi in *.gif; do giftopnm
$fi | pnmtopng > ${fi%%.gif}.png; done’

Aliases make it easy to create customized com-
mands that are preconfigured with the arguments
and options that you most frequently use. The find
command is a great candidate for an alias or two
because it’s such a complex command (see
Technique 12). Here are two aliases that do the
heavy lifting for you:

alias f='find .
alias fi='find .

-name’
-iname’

After defining these aliases, you can search for a file
(by name) like this:

$ f myfile.sh
./tmp/myfile.sh

Or, use the second alias to search for a filename
without regard to letter case:

$ fi myfile.sh
./tmp/myfile.sh
./work/MyFile.sh

Using Aliases for Complex Commands 5 7

Viewing your alias

When bash sees an alias name at the beginning of the com-
mand line, it replaces the alias name with the body of the
alias. Normally, the substitution happens behind the scenes,
and you can't see it. If you want to see the substitution before
you press the Enter key, just press Esc-E. For example, if you
type fi myfile.sh and then press Esc-E, bash replaces
your command line with find . -name myfile.sh.

Anything that could legally follow the alias body
can follow the alias name. This means that you can
include additional options on the command line
when you use an alias. For example:

$ f myfile.sh -1s
819 8 -rw-rw-r-- 1 freddie freddie 5104
Feb 26 06:57./tmp/myfile.sh

bash aliases have one weakness: You can’t move
command line arguments to other parts of the com-
mand. For example, consider this alias:

-type f -print0 | xargs

alias gf="find .
-0 -e grep -n -e

The gf alias combines find and grep to search for
specific text in all the files in a directory tree. You
can use the alias like this:

$ gf Martini

./recipes/drinks.txt:200: the perfect
Martini

./spystories/bond.htm1:22: I prefer my
Martinis shaken, not stirred

The gf alias works great as long as you want to
search every file in a directory tree, but what if you
want to search through .txt files and ignore .htm1
files? You can’t do that with an alias because the
-name qualifier has to go in the middle of the com-
mand line; it can’t be at the end. Instead, you need a
function, which we explain how to create in the next
section.

5 8 Technique 10: Keeping Your Life Simple with Aliases and Functions

Automating Tedious Tasks
with Functions

A bash function is like an alias on steroids. A func-
tion has none of the restrictions of an alias. You can
execute many commands within a bash function,
and you can pass arguments to a function and use
those arguments wherever you need them.

Filtering file searches by file type

Here’s another version of gf, this time written as a
function instead of an alias:

function gfn ()

{
find . -name "$2" -print0 | xargs -0 -e
grep -n -e $1

}

This function, which we’ve called gfn to distinguish
it from the gf alias, expects two arguments. The first
argument is a filename pattern, such as "*.c", that
specifies which files you want to search. The second
argument to gfn is the text that you want to search
for. If you want to search through all the files in your
current directory, just use the pattern "*" (the dou-
ble quotes are important). Now you can search for
text in . txt files like this:

$ gfn Martini "*.txt"
./recipes/drinks.txt:200: the perfect
Martini

The $1 variable holds the first command line
argument (Martini), and $2 holds the second
("*.txt"). With a function, you can use the

command line arguments wherever you need
them. (With an alias, the arguments get tacked
onto the end of the command line.)

Automatic downloading

In its most basic form, a function is a name that
you give to a sequence of one or more commands.
Functions are perfect for automating tasks that you

find yourself doing over and over again. If you often
download, configure, and build software from the
Web, you can save time by creating a simple function
to automate that task:

function loadcode ()
it
wget -q -0 - $1 | tar -zxvf -

cd $(basename $1 .tar.gz)
./configure

make
1

The Toadcode function expects a single argument, the
URL for a tarball that you want to download and
install. To use this function, open your favorite edi-
tor, type the text for the 1oadcode function as shown,
and save your changes to ~/. funcs.sh (which is just
a random filename we’re using for this example).
Now, use the source command to install Toadcode
into your shell:

$ source ~/funcs.sh

Next, find a package that you want to install and
then run the 1oadcode function like this:

$ Toadcode
ftp://ftp.gnu.org/gnu/barcode/barcode-
0.98.tar.gz

barcode-0.98/
barcode-0.98/CVS/
barcode-0.98/Changelog
barcode-0.98/COPYING
barcode-0.98/Makefile.in
barcode-0.98/INSTALL
barcode-0.98/barcode.h

The Toadcode function has four commands inside

it. The first command uses wget to download the
tarball and feeds the download to tar for unpacking.
When you unpack a tarball like barcode-0.98.tar.gz,
the content is stored in a subdirectory named
barcode-0.98; the second command moves into that
directory. The last two commands do the GNU-install

two-step: configure (in this case, with all the default
options) and make. When 1oadcode completes, just
give yourself superuser privileges and do a make
install.

Toadcode is just a name that you've given to a
sequence of commands. The commands execute one
after the other, and if something goes wrong, the
script just keeps going. You can improve this func-
tion by adding a bit of error checking:

function loadcode ()
{
if (wget -g -0 - $1 | tar -zxvf -)

then
cd $(basename $1 .tar.gz) || return 1
./configure && make

else

echo "Can't download $1"
fi
}

Now if something goes wrong, 1oadcode fails instead
of continuing on its merry (and misleading) way. The
new version of 1oadcode shows three ways to check
for error conditions:

v The first command is now wrapped inside an if
statement. If the wget or tar commands fail (that
is, if they exit with a result code of 0), 1Toadcode
jumps to the else clause and displays a friendly
error message. If the wget and tar commands
succeed, Toadcode jumps into the then clause.

v The cd command can fail if the tarball that you're
unpacking doesn’t follow the usual naming con-
vention. To catch that sort of problem, Toadcode
uses the | | (logical or) operator to exit if the cd
command fails. You can read that command as
“either cd successfully or return 1.”

v The configure command can also fail if you
don’t have all the prerequisites for the package
you're installing. In this case, 1oadcode uses the
&& operator to catch a configuration failure. You
can read that command as “configure and, if
that succeeds, make.”

59

Monitoring Your System in a Snap

Adding a timer to loadcode

Aliases and functions can work together. Here’s an alias that
makes your computer beep when loadcode is finished
running (assuming you have a properly configured audio
card). It's kind of like the timer on a microwave.

alias beep='tput bel'

Invoke beep inside the Toadcode module, or just use it on
the command line, like this:

$ loadcode
ftp://ftp.gnu.org/gnu/barcode/barcode-
0.98.tar.gz ; beep

You'll hear a beep when Toadcode has finished its work
(Toadcode can take a while to run if you have a slow net-
work connection).

Monitoring Vour System
in a Snap

So far, you've seen functions and aliases designed to
work with the command line, but you can also spawn
graphical programs from the command line. Here is
an alias that spawns a new xterm window that dis-
plays the output of the top command (sort of a
build-it-yourself system monitor):

alias xtop="xterm -e top &"

After defining this alias, just type xtop to open a new
window that runs the top command (see Figure 10-1).

If you want to run a program that has a more com-
plex command line, just define a function. For exam-
ple, the following function opens a new window that
displays the last few lines of a file and continues to
display new text as it’s added to the file:

function xtail ()
{

xterm -e "tail -f $1" &
}

60 Technique 10: Keeping Your Life Simple with Aliases and Functions

srazer 0,70, 0.5, 051
bl
ftieq dessit ldle
ot 0.0%
AEL nFE

LAEA40< cackad

00 werzeerys
i Ejoarsale
Fhaial

90 kjerle
el

mrEofocsosoonoe HE

BE&
AEEALY 2EEY

00 sendkall

¢ Figure 10-1: Running top in its own window.

If you have superuser privileges, you can use xtai
to watch the system log file:

xtail /var/log/messages

Un-tarring the Easy Way

You can also save time by creating self-adjusting
functions that adapt to command line arguments.

LisTing 10-1: CHooSING THE RIGHT PROGRAM BASED ON FiLE TYPE

You know that the tar command (at least the GNU
version of tar) can handle uncompressed, gzip-
compressed, and bzip2-compressed archives. It’s
easy to create a wrapper function that invokes tar
with the right set of flags based on the archive that
you give it. The tar1s function (see Listing 10-1) uses
the file command to determine whether the given
archive is compressed and, if so, which compression
method was used. tarls is much longer than the
other functions in this technique, so we've included
two timesaving features in this listing:

v Local variables that hold intermediate results:
You could rewrite this function without the local
variables, but it would be much more time-
consuming to maintain.

v Comments that help future maintainers under-
stand our rationale: bash syntax can get awfully
cryptic, and you'll save yourself a lot of time in
the future by commenting your code now.

function tarls ()
{

Figure what type of file we are working with.

local filetype
local tartype

Tocal tarflags

Given an argument like:

dicons.tgz

filetype will contain

i icons.tgz: gzip compressed data

filetype=$(file "$1")
Now strip the leading filename

from $filetype, leaving
gzip compressed data

Output from the file command

$filetype without filename
local compresstype # First word from $tartype

Flags given to the tar command

Un-tarring the Easy Way 6 ’

tartype=${filetypefs$l:}

Finally, grab the first word
from $tartype, leaving
gzip

compresstype=$(echo $tartype | cut -d ' ' -f 1)

case $compresstype in

gzip) tarflags=-ztvf;;

bzip2) tarflags=-jtvf;;

POSIX) tarflags=-tvf;;

*) echo "Unknown archive type"; return 1;;
esac;

tar $tarflags $1

Part Il

Getting the Most from
Your File System

The 5th Wave By Rich Tennant
[eremernas

“60 far he's called up 3 cobya, 2 pythons,and a
bunch of kinks, but still not the file we're
lookiryg for !

Shaving Files and
Printers in a

Teéhnique Windows World

Save Time By

+* Using SWAT to configure
Samba

v~ Getting Linux files from
Windows

v Getting to your Linux
printers from Windows

+* Using Windows data from
Linux

machines, a couple of Windows machines, and a Mac or two are

combined to create a network that is fast, versatile, and user
friendly. We're not trying to suggest that Linux isn’t the best thing since
sliced bread, but in reality, a complete conversion to a Linux-only net-
work isn’t always possible. Sometimes, the Penguin just has to learn how
to get along with Windows.

Most networks sport an assortment of computers. A few Linux

The need to share data across a network is nothing new, but with more
networks being made up of assorted machines, the open-source software
movement has grown to include a lot of excellent (and might we add,
free) software that knows how to deal with data sharing — programs that
let you share data and hardware across your network painlessly and fast.

In this technique, we show you how to share data and printers across
your network. Saving time, saving money . . . all in all, creating a friendlier
world.

What Is Samba?

Most people think of the Brazilian dance when they hear the word samba.
We prefer to think of the triplochiton scleroxylon (commonly known as
the Samba tree), a west African tree having axillary cymose panicles. We
have no idea what a cymose panicle is, axillary or otherwise.

In the Linux world, Samba is a suite of resource-sharing utilities included
in most Linux distributions. You use Samba to share Linux file systems,
directories, files, and printers with other hosts on your network. Samba
is designed specifically to work with the Microsoft Windows file-sharing
and printer-sharing features. Two hosts are involved in every Samba con-
nection: The server makes a resource available to clients, and the client
accesses the resource shared by a server. A Linux host can act as a
client, as a server, or as both.

66 Technique 11: Sharing Files and Printers in a Windows World

Under the hood, Samba clients interact with Samba
servers by using a protocol called SMB (Server
Message Block). SMB is also known as CIFS (Common
Internet File System). A server can expose two kinds
of resources: printers and shares. A share is a direc-
tory (and all the subdirectories underneath it). A
printer is, well, a printer.

Samba has been around awhile, and it’s very stable.
You can use Samba to share resources even if you

don’t have any Windows computers in your network.

Samba lets you expose resources to the rest
6 of the world. We specifically chose the word
expose to remind you that Samba can share

secrets that you may not want to share. It's
easy to make Samba reasonably secure, but
it's also easy to make Samba insecure. See
Technique 37 for some helpful tips about
hardening your system against malicious
(or accidental) abuse.

Getting Up and Running
with Samba

Before you can use Samba to share printers, direc-
tory trees, or both, you have to do a little upfront
work. The following sections help you check your
installation and then enable Samba.

Checking whether Samba is installed

The first step in preparing to use Samba is making
sure that you have all the parts installed. Samba is
typically distributed in five separate packages, but
the exact details vary by distribution:

V¥ samba-client contains the software required to
act as a Samba client.

V¥ samba contains the software required to act as a
Samba server.

¥ samba-common contains files required by both
samba and samba-client.

v samba-doc contains the documentation for
Samba.

V¥ samba-swat is a browser-based configuration
utility for Samba.

If you want your computer to act as a Samba
server (that is, if you want to expose data or
printers located on your computer), you must
install the samba (or samba-server) package.
However, we recommend installing all the
packages because it makes life a lot easier.

If you install all four packages, your com-
puter can act as a Samba client or a Samba
server, and you'll have a nice configuration
tool as well.

To find out if Samba is already installed on your
Fedora host, open a terminal window and type in the
following command:

$ rpm -q samba samba-client samba-common
samba-swat samba-doc

SuSE aficionados should use the command:

$ rpm -q samba samba-client samba-doc

If you are running Mandrake Linux, type in:

$ rpm -q samba-server samba-client samba-
common samba-swat samba-doc

If rpm reports that any packages are not installed, dig
out your OS install media and install them.

Enabling Samba

Samba runs as a service process, hanging around in
the background waiting for client requests. After you
have Samba installed, you have to enable it to start
the Samba server. If you're running Fedora, follow
these steps to enable the Samba service:

1. Open the GNOME or KDE main menu.

2. Choose System Settings->Server Settings=>
Services.

Sharing Linux Resources with Other Computers (SMB Clients)

3. Enter the superuser password if requested.

4. Scroll through the list on the left until you see
the SWAT check box.

5. Select the SWAT box.

That tells Linux to automatically start the SWAT
service whenever you boot your machine. (See
the next section for more on SWAT.)

6. Scroll back up until you see the SMB service.
7. Select the SMB box next to SMB.

This tells Linux to automatically start the SMB
service whenever you boot your machine.

8. Click Start (in the toolbar), and a window
appears telling you that the SMB service has
started. Click OK to close the window.

9. Click Save to save your changes.
70. Press Ctrl-Q to quit (or just close the dialog).

If you're using Mandrake, start the services at the
command line with the commands:

/sbin/service smb start
/sbin/service swat start

If you're using SuSE, you can start the services at the
command line with the commands:

/etc/init.d/smb start
/etc/init.d/swat start

Now it’s time for a little configuration work. Don’t
worry, configuring Samba is as easy as swatting flies.

Sharing Linux Resources with
Other Computers (SMB Clients)

After you install and start Samba, as described in the
previous section, you can start configuring all the
computers so that they can share resources, which
is what this section is all about.

67

Samba is controlled primarily by the /etc/samba/
smb.conf configuration file. If you were to peek at
that file immediately after you install Samba (which
we don’t recommend), you may find it a tad bit
intimidating: It’s nearly 300 lines long and has all
sorts of options and parameters that you typically
don’t need.

Fortunately, Samba has a graphical configuration
tool called SWAT that makes it much easier to man-
age Samba. SWAT runs a mini-HTTP server on your
host (listening for connection requests on port 901)
and manages the Samba configuration file (/etc/
samba/smb.conf) and the Samba password file (/etc/
samba/smbpasswd) for you.

The first time you run SWAT, it installs a new configu-
ration file that exposes any printers installed on
your Linux host along with the users’ home directo-
ries. You still have to adjust the workgroup name (if
necessary) and create Samba user accounts. Then
you can share the resources on your Linux computer
with other Windows and Linux computers on your
network. The following sections contain all the
details.

Adjusting the workgroup name
and creating user accounts

Before a remote computer can access the data that
you expose on your Linux host, the remote com-
puter must prove its identity to Samba. Computers
authenticate themselves by sending a workgroup
name, a user name, and a password to your Samba
server. Of course, you have to tell Samba which
workgroup names and user names are valid and
assign a password to each user account.

To adjust the workgroup name and create user
accounts, follow these steps:

1. Open your Konqueror browser.

- 2 a To open Konqueror, double-click Start Here on
A your desktop.

68 Technique 11: Sharing Files and Printers in a Windows World

2. To connect to SWAT, enter http://localhost:
901 in the Location field and press Enter.

A dialog appears prompting you for a user name
and password. You must log in as root and pro-
vide the superuser password. If you don’t, SWAT
allows you to log in, but you won’t be able to do
anything except read the documentation.

3. Click Globals.

)

Scroll down to the Workgroup box.

The default value for Workgroup is MYGROUP. If
you already have a Windows workgroup, enter
the workgroup’s name here. If not, choose a
name (MYGROUP is a reasonable choice) and
type it into the Workgroup box.

5. Click Commit Changes to write your changes to
the /etc/smb.conf file.

6. Click Password.

The password management page appears. This
page lets you create new Samba users, delete
them, and enable and disable their accounts. Use
the top part of the page to manage the Samba
server. The bottom part of the page (labeled
Client/Server Password Management) lets you
change passwords on other (client) hosts.

7. Type your user name into the User Name field
and enter a password into the New Password
and Re-type New Password fields.

SMB clients must provide the user name and
password that you enter here before they can
access the resources that you export (we’ll show
you how to share specific resources a little later
in this technique).

8. Click Add New User.
9. Click Enable User.

That’s it! If everything went well, Samba is up and
running, and you can access your Linux home direc-
tory (~) from an SMB client. To verify that every-
thing’s working, follow these steps:

-

Open a terminal window.

2. Type smbclient //localhost/$USER and press
Enter.

If you see a message like Connection to
localhost failed, the Samba server is config-
ured, but not actually running. In this case, log
back into SWAT (with your Web browser), click
Status, and then click Restart All.

3. Type in the password that you assigned to your
Samba account and press Enter.

You're greeted with a new prompt (smb: \>) that
indicates you're running the smbclient program,
connected to your home directory. You can type
1s to see a directory listing, cd to move to a sub-
directory, and help for a complete command list.
Type exit when you’re finished.

The smbclient program is useful in a pinch (we use
it just to make sure everything is configured prop-
erly), but you really want to mount your new share
on another computer, which we cover next.

Giving a Windows machine access to
your home directory

If your other computer is a Linux machine, sit tight,
and we’ll show you how to mount an SMB share in a
few moments. If your other machine is a Windows

host, follow these directions to mount the new share:

1. On your Windows desktop, right-click My
Computer or Network Neighborhood and
choose Map Network Drive from the pop-up
menu.

2. Type your host name and share name into the
Folder field.

Windows expects SMB share names to start with
two backslashes, then the host name (or IP
address) of the SMB server, a single backslash,
and the share name. For example, if your Linux
host is named bastille and you want to mount
the home directory of user frank1in, you would
enter the folder name \\bastille\franklin.

3. Click Finish.

4, If prompted, enter your Samba user name and
password and click OK.

After a short delay, a window appears (on your
Windows desktop) displaying the contents of your
Linux home directory. You can drag and drop files,
copy them, print them, or create new ones. Just
remember: The Samba-hosted files you see on your
Windows computer are actually stored on your
Linux computer.

Sharing Linux files and directories
with other computers

The standard configuration that SWAT chooses
exposes home directories (and all printers). SWAT
makes it easy to create new SMB shares for other
directories (even other devices) on your Linux com-
puter. To share your CD drive with others, follow
these steps:

1. To connect to SWAT, open your Web browser
and jump to http://localhost:901.

2. Log in as user root when prompted.
3. Click Shares.
The share manager page appears.

4. Type CD-Drive into the field next to the Create
Share button.

You can choose any name you like for the share
name, but don’t get foo fancy. In particular, don’t
include a forward slash or a backward slash in
your share name — SWAT will let you do it, but
you won't be able to mount that share from
another computer.

5. Click Create Share.
The share parameter page appears.

6. Enter a descriptive name (such as Shared
CD Drive) in the Comment field.

Hooking Everyone Up to the Printer 69

7. Type /mnt/cdrom in the Path field (if you’re run-
ning SuSE Linux, type /media/cdrom instead).

8. Click Commit Changes (near the top of the
page).

Now you should be able to remotely access your

CD drive from another computer. Note that you still
have to mount the CD (mount /dev/cdrom) from your
Linux host before others can see it. See the section,
“Plugging In to Remote Data with Linux Programs
Quickly” later in this technique for more details.

Hooking Everyone Up
to the Printer

Samba can expose printers as easily as it shares files
and directories. In fact, Samba automatically shares
your Linux printers with anyone in your SMB work-
group. You can also access (from Linux) printers that
are connected to Windows computers. In this section,
we show you how to manage Samba printer shares.

Sharing Linux printers with SWAT

If you have any printers connected to your Linux
computer (and you've configured them), Samba
automatically shares them with other computers in
your workgroup; you don’t have to expose them
yourself. Samba discovers the printers on your com-
puter by reading the /etc/printcap file. Normally,
you don’t edit the printcap file yourself; you let a
KDE or GNOME helper do that for you.

If you have a printer that you don’t want to share,
you can use SWAT to hide it from other computers:

1. To connect to SWAT, open your Web browser
and jump to http://localhost:901.
2. Login as user root when prompted.
3. Click Printers.

The printer manager page appears.

70 Technique 11: Sharing Files and Printers in a Windows World

4. Click Choose Printer.
The printer parameters page appears.

5. Scroll to the bottom of the page and change
Available to No.

6. Click Commit Changes.

Using a Windows printer from Linux

Using a remote printer makes life much easier when
you're working on a network. Sharing resources
saves a small company not only dollars, but also lots
of time in potential maintenance. Sharing a printer
means that if Freddie’s printer breaks, he can use
Roberta’s printer and still get his work done on time
without shuffling disks, data, or cables.

If you're accessing Windows-hosted resources from a
Linux host, you don’t need to install the Samba
server — just the client. Now, with a few quick
clicks, you’ll have access to a network printer.
Follow these steps:

1. Click the printer icon on your taskbar.

The GNOME Print Manager window opens
(see Figure 11-1).

2. If you have no printers loaded, you're asked
if you want to run the configuration tool.
Click OK.

| GNOME Frint Manager -E %

¥ Question (= 1|

Printer Edit View Halp

@ Mo printers found. Run the printer configuration tool?

Dok |

[INo Printers

* Figure 11-1: The GNOME Print Manager.

3. You’re prompted for the superuser password.
Enter the password and click OK.

4. Click New.

After a short delay, the Add a New Print Queue
dialog opens, as shown in Figure 11-2.

lhd Add & new print queue E x|

Add a new print queue

On the following screens, you will be asked to provide basic
information for adding a new print queue. ¥ou wil be able to
edit the more advanced options afterwards.

Nothing will be done to your settings until you hit "Finish” on
the last screen.

3 Help

* Figure 11-2: The Add a New Print Queue dialog.

. # cCancel | | <f Back | | onrward|

5. Click Forward.

6. When the next dialog opens, type in a name
and a description for your printer. Click
Forward again.

7. In the next dialog (see Figure 11-3), select the
SMB queue type and highlight the network
share that you want to use.

Queue type
|Share [Cumment | = 5
pecify...
b KAGA
b W2KSVR-VMWARE
I MAYNARD [=]
3 Help 3 cancel || < Back | [Eorward

* Figure 11-3: Select the SMB queue type and highlight the
network share.

8. Click Forward.

The Authentication dialog opens, as shown in
Figure 11-4.

Plugging In to Remote Data with Linux Programs Quickly 71

¥ Add a new print queue eEx
Queue type
o e atio =k

Select a queus typ
Warkgroup: | WORKGROUP

Share Server KAGA 1 e |
[kaGa Share: | 251 '
User name: | susan
localps
Password: ‘”‘””|
SHREEY]

—— # cancel o oK |
3 pelp W Cancel [< Back | > Eorward |

¢ Figure 11-4: The Authentication dialog.

9. Enter the user name and password you use to
log into the Windows computer and click OK.

70. In the next dialog that opens, use the list box
(initially labeled Generic) to choose your
printer type and model.

711. Click Finish, and print a test page to verify that
the printer is properly configured.

To print on the remote printer, just click the printer
button usually found on the toolbar, or navigate
through the File menu. The Print dialog opens to
let you adjust the properties of your print job

(see Figure 11-5).

fu Print - Kongueror

—Printer
Name: [Lexy
Stare: Idle (accepting |obs)

Type: Remote printer quewe on kobe
Location;

"”?H_ j Properties...

[Preview
Comment:

Print system curently used | Generlc UNIX LPD Print System (default) '|

Mo plugin infermarion avallable
v Expand| |Q System Oplions... |m Help | |3 Cancel

* Figure 11-5: The Print setup dialog.

Plugging In to Remote Data
with Linux Programs Quickly

Mounting a remote directory on your local system is
a great way to use your favorite Linux programs with

Windows data (or data stored on another Linux com-
puter). Just add a quick line or two to the /etc/
fstab file, and Linux mounts a network share with
just one command.

In a typical Linux system, you have to hold super-
user privileges to mount a file system. That’s very
secure, but not very convenient. If you want a non-
privileged user to be able to mount his or her own
home directory, you need to give some extra privi-
leges to the SMB mount program (see Technique 27
for more information about file permissions and
privileges):

1. At the command line, give yourself superuser
privileges.
2. Change permissions for smbmnt:

chmod u+s /usr/bin/smbmnt

3. Change ownership for smbmnt:
Chown root /usr/bin/smbmnt

Granting privileges to programs (instead of to
users) can create security risks should some
hacker discover a flaw in the smbmnt program.

Be sure to check out Technique 57 to decide
whether privileged programs are right for you.

Now, if you add a line or two to your /etc/fstab
file, mounting a remote SMB share is a snap. To edit
the file, follow these steps:

1. Open a terminal window and give yourself
superuser privileges with the su command.

2. Type kwrite /etc/fstab and press Enter.

A KWrite window opens, with /etc/fstab
displayed.

3. Add a line at the end of the file that reads like
this:

//bastille/freddie
smbfs

/mnt/bastille \
noauto,user 0 0

72

Technique 11: Sharing Files and Printers in a Windows World

You need to customize the entry in this step as 4. Save the file and close KWrite.
follows:)

You're ready to mount a share!
» The first field, //bastille/freddie, describes

the device to be mounted. This is the computer
name, followed by the remote directory name.

The second field, /mnt/bastille, defines the
mount point. This is the directory on your
computer where the content of the remote
directory will appear. The mount point can be
anywhere in your directory tree that you
would like your share to be, but you need to
create the directory and set the privileges
before you mount it.

The third field is the file system type: smbfs.
Many file system types work with Linux, but
smbfs is the choice for what you're doing.

The fourth field, noauto, user, describes the
options to invoke for this mount. Set the
noauto option to tell Linux not to mount this
file system at boot time (you never want to
auto-mount a network share), and set the
user option to permit a nonprivileged user to
mount the share.

The fifth field works with the backup com-
mand. You don’t want to be backing up this
share remotely, so set it to 0.

The sixth field indicates whether the file sys-
tem of the share should be checked at boot
time. Again, pass on this option and set it to 0.

Need more information about the fstab file?
For the fastest route to this info, type man
fstab at the command line and press Enter.
All the documentation is at your fingertips.
Use the up- and down-arrow keys to scroll
through the documentation, and when you're
finished, press q to quit.

Need the documentation in a nicer format?
Double-click the Start Here icon on your desk-
top and enter man: / in the Location line. You
might need to search a bit for the documenta-
tion, but it's more readable and includes hyper-
links to other information related to your topic.
Oh, and fstab is documented in Section 5.

Now, to mount the new share, just use the mount
command at the command line:

$ mount //bastille/freddie

Access your new share just like it’s a part of your
local machine. You can work on it with all your
favorite Linux programs or copy files back and forth
effortlessly.

7 If you're graphically inclined, use Konqueror to
e- { <@ navigate your new file system. It works just
& like a part of your local machine now.

Finding What
Vou Need

Technique

Save Time By
~ Locating files by name

v~ Finding files by their quali-
fications and attributes

v Finding out who's hogging
the disk space

v Executing simple com-
mands with find and
exec

v~ Building complex com-
mands with find and
Xargs

e’ve all been there — you create a new file, and then you forget
where you put it and what you called it. How do you find it again?
Fortunately Linux has a few options for finding lost data fast.

In this technique, we introduce you to the find command. find can
search through your file system looking for files based upon a diverse set
of qualifications that you can combine to create complex searches. With
find, you can search for your file based on information like the modifica-
tion date, the file size, ownership, and other file attributes. find also
works with the xargs command to build complex commands based on
search results. We also show you how to use the Tocate command to
search through a system-maintained catalog of files and how to update
that catalog to be sure it contains current entries.

We've also included a diskusage utility that you can use in conjunction
with find to play “find the disk hog.” If you need to free up resources,
this is a quick way to find out who’s using all the space.

This technique is all about finding files fast, with whatever information
you have on hand. You know what you need to find. You might not
remember it’s name, but we’ll help you find it anyway.

Finding Files with locate

Every night, an automatically scheduled program waltzes across your
disk drive(s) and records all the filenames it can find in a database. The
locate command searches through that database to find files with a
particular name.

7 If you find your installation of Linux is missing the 1ocate command,
e { -a) you can add it by installing the appropriate RPM package: for SuSE,
) install findutils-locate-version.rpm; for Mandrake, install
slocate-version.rpm; for Fedora, install slocate-version.rpm.

74 Technique 12: Finding What You Need

You can use locate to find data files, directories, or
programs. For example, if you can’t remember where
the ifconfig program is located, just type Tocate
ifconfig and press Enter. You instantly see a list of
all the files on your system whose names include
ifconfig:

$ locate ifconfig
/usr/share/man/man8/ifconfig.8.gz
/usr/share/man/de/man8/ifconfig.8.9z
/usr/share/man/fr/man8/ifconfig.8.9z
/usr/share/man/pt/man8/ifconfig.8.gz
/sbin/ifconfig

That’s pretty close but not exactly what you were
looking for. Save some time by using a regular
expression (also known as a filename pattern) to
narrow down the results:

$ locate -r "/ifconfig$"
/sbin/ifconfig

The -r flag tells Tocate to expect a regular expres-
sion. In this case, you want a list of all filenames
where /ifconfig appears at the end of the name.
($ means end of name; see man -S 7 regex for a
complete list of valid regular expressions.)

- searches through a database rather than the
complete file system. It's a great tool for sim-

ple filename searches.

Z The Tocate command runs quickly because it
<

&

Like anything that’s simple and easy, the Tocate
command has a few drawbacks:

v The database becomes outdated quickly if you
add, delete, or rename many files during the day.
If you have superuser privileges, you can update
the database yourself. Use the same command
that the nightly update job executes:

/etc/cron.daily/slocate.cron.

v The database is incomplete because the nightly
database update excludes several directories
(/tmp, /var/tmp, /usr/tmp, /afs, and /net) and
remote file systems.

If you don’t have superuser privileges, or your
search requirements are more complex than the sim-
ple filename matching that 1ocate provides, you
need to use the find command, which is discussed
next.

Finding Files with find

The find command is one of the most complex and
useful commands that you'll find in Linux. find
searches through a file system looking for files that
fit a pattern (which you define) and then performs
an action on those files. The most frequently used
find command searches for a file with a specific
name, starting in the current directory:

$ find . -name drinks.txt -print ./recipes/
drinks.txt

When you use the find command, you have to pro-
vide three pieces of information:

v Location: Where to start searching. Typically,
you specify . to start searching in the current
directory or / to start searching at the root of
your file system tree. If you list multiple direc-
tory names, find searches in all those directory
trees.

v Qualifications: Which files should be included in
the result. In the example, freddie is looking for a
file named drinks.txt. See the next section for
details on handy qualifiers.

v Actions: What you want find to do when it
locates a qualifying file. In the example, -print
simply echoes the relative pathname of the file.
See “Acting on What You Find,” later in this chap-
ter, for details on putting actions to good use.

Qualifying Your Search with the find Command 75

Oualifying Your Search
with the find Command

find gives you a wide variety of qualifiers, and this
section delves into the more timesaving ones. For
details on using qualifiers with find, see the preced-
ing section.

Doing updated filename searches

Two of the most frequently used qualifiers are -name
and -1iname, both of which must be followed by a
filename pattern:

v -name tells find to operate on any files that
match the given pattern.

¥ -iname does the same except that it ignores case
differences.

You can use the normal shell wildcards with -name
and -iname. For example, -name "*.c" matches any
filenames that end with . c. If you include wildcards,
you must surround the filename pattern with quotes
to prevent the shell from expanding them before
find gets a chance to see it.

The -name and -iname qualifiers make find
very similar to the Tocate command. Tocate
searches through a database of filenames,
whereas find searches through the file sys-
tem. find gives you more up-to-date results
but takes much longer to perform a thorough
search.

Adding time-based qualifications

You can also search for files based on time of last
access, content-modification time, or attribute-
modification time. The content-modification time of
a file is updated whenever you write to that file. The
attribute-modification time of a file is updated when-
ever you make a change to the file’s attributes (by
changing ownership or permissions, for example).

Table 12-1 lists qualifications that select files based
on their timestamps.

TaBLE 12-1: QUALIFICATIONS THAT SEARCH FOR TIMESTAMPS

Qualification ~ What It Finds

-atime n True if the file was last accessed n days ago

-amin n True if the file was last accessed n minutes
ago

-ctime n True if the file’s attributes were last changed
n days ago

-cmin n True if the file’s attributes were last changed
n minutes ago

-mtime n True if the file’s contents were last changed
n days ago

-mmin n True if the file’s contents were last changed

n minutes ago

To find files in your home directory (and all subdi-
rectories) that were last changed a week ago, use
this command:

$ find ~ -mtime 7 -print

If you run this command, you may be surprised by
the results. -mtime 7 does not show you all the files
modified in the previous seven days; it shows the
files modified exactly seven days ago. To locate files
modified in the previous seven days (yesterday, or
the day before, or the day before that, . . .), specify
-mtime -7 (note the minus sign in front of the 7), as
follows:

$ find ~ -mtime -7 -print

You can read that command as “find files where the
date of last modification is less than seven days
ago.” Now suppose you change the command to this:

$ find ~ -mtime +7 -print

76 Technique 12: Finding What You Need

You see a list of files whose dates of last modifica-
tion are greater than seven days ago. You can find
files modified within a range of dates by using both
the + and - signs. For example, to find all files modi-
fied four or five days ago, use this command:

$ find ~ find . -mtime +3 -mtime -6 -print
Read this command as “modified more than three
days ago but less than six days ago.”

You can use the -atime qualifier to find unused (or at
least not recently used) user files on your system:

$ find / -atime +90 -print

Filtering by file size

The find command also lets you filter files based on
their size. The -size n qualifier selects any files
whose size is n.

The + and - tricks that you can use for time qualifica-
tions work with -size qualifications, too: -size +n
selects all files larger than n, and -size -n selects all
files smaller than n. When you use -size n, you can
specify n in terms of bytes, kilobytes, or 512-byte
blocks:

v To specify a byte count, follow -size n with a c.

v To specify a number of kilobytes (1024 bytes),
follow -size n with the letter k.

v The default unit is 512-byte blocks, but you can
make your intention explicit with a suffix of b.

As find examines each file, it rounds the file’s size
up to the nearest unit (kilobyte or block) and then
applies the qualifier. For example, -size 2k selects
files between 1025 and 2048 bytes long.

Table 12-2 shows a few examples using the -size
qualifier.

TaBLE 12-2: ExampLES USING THE -SizE QUALIFIER

Command Result

-size 2048c Files exactly 2048 bytes long

-size +2048c Files 2049 bytes or larger

-size -2048c Files smaller than 2048 bytes

-size 2k Files between 1024 and 2048 bytes long

-size +2k Files larger than 2048 bytes

-size -2k Files smaller than 1025 bytes

-size +1k Files larger than 1024 bytes and smaller
-size -3k than 2049 bytes

The rounding that find performs can be confusing,
so we’ve written a short shell function that trans-
lates a value like 2M (megabytes) or 3G (gigabytes)
into the equivalent number of bytes. Listing 12-1
shows the unit function.

LisTING 12-1: THE unIT FUNCTION

function unit ()

{
Extract the last character from
the first (and only) parameter.
1
Given a value like 5M, the suffix
is the character 'M'

suffix=${1l: -1: 1}

Remove the suffix from the argument
and we should be left with number
units ('5' if we were given 5M)

count=${1%%$suffix}

case $suffix in
K| k) echo $(expr $count * 1024)c;;
MIm) echo $(expr $count *
1048576)c; ;
G|g) echo $(expr $count *
1073741824)c;;

*) echo $1"c"
esac;

Qualifying Your Search with the find Command

Use the unit function to make find behave a bit more

predictably. For example, the following command

$ find ~ -size +$(unit 2M) -print

translates into

$ find ~ -size +2097152c -print

Press Esc-E to view the translated command line
before you press Enter. (Notice that unit included
the c suffix, which forces find to turn off its funky
rounding trick.) The unit function translates kilo-
bytes (K or k), megabytes (M or m), and gigabytes
(G or 9g).

Joining qualifications with
AND and OR operators

By joining qualifications, you can get more mileage
out of the find command.

- z a To quickly find large files that haven’'t been
& used in a while, combine -size and -atime.

For example, use the following command to search
for files 5 megabytes or larger that haven’t been
used in the last 30 days:

$ find ~ -size +$(unit 5M) -atime +30
-print

TaBLE 12-3: CommonLy USED QUALIFIERS

77

By default, find joins multiple qualifiers together
with the AND operator. Given two qualifiers —
-size +$(unit 5M) and -atime +30 — a file qualifies
only if it meets both criteria.

You can also join qualifiers with the OR operator. To
find all files that are either empty or haven’t been
used in a while (or both), stick an -or between the
qualifiers, like this:

$ find ~ -size 0 -or -atime +30 -print

With the -or operator, a file must meet either

(or both) of the qualifiers to be selected. You can
also use -not to reverse a qualifier (for example,
-not -size 0) and -and to explicitly and qualifiers
together. Use quoted parentheses to build complex
expressions. For example, the following command
finds large files (larger than 5M) that have not been
accessed in the previous 30 days and adds empty
files to the list as well:

find / "(" -size +$(unit 5M) -and -atime
+30 ")" -or -empty -1s

The -empty qualifier is a synonym for -size 0.

Perusing commonly used qualifications

Table 12-3 shows the most commonly used qualifiers.

Qualifier Result

-name pattern
-iname pattern

-regex EXPI‘GSSfOﬁ

Select files that match the given filename pattern.
Select files that match the given filename pattern, ignoring differences in letter case.

Select files that match the given pathname regular expression (similar to -name except that

-regex matches the entire path where -name matches only the filename).

-iregex expression

Select files that match the given pathname regular expression, ignoring differences in letter case

(similar to -iname except that - iregex matches the entire path where -name matches only the

filename).
-atime [+]|-1n
-ctime [+]|-1n
-mtime [+]|-1n

Select files that have been accessed (-atime), attribute-changed (-ctime), or content-changed
(-mtime) n days ago. If n is preceded by a +, select files last accessed more than n days ago. If n
is preceded by a -, select files last accessed within that previous n days.

(continued)

78 Technique 12: Finding What You Need

TaBLE 12-3 (continued)

Qualifier Result

-amin [+]-1n
-cmin [+]-1n
-mmin [+]-1n
-daytime
rather than exactly 24 hours ago.
-size [+]|-1 n
select files smaller than n.
-empty Select empty files and directories.

-type filetype

Same as above except that n specifies minutes instead of days.

Measure -atime, -ctime, -mtime, -amin, -cmin, and -mmin from the beginning of the current day

Select files n bytes long. If n is preceded by a +, select files larger than n. If n is preceded by a -,

Select files of the given filetype. filetype may be b to select block devices, c to select charac-

ter devices, d to select directories, p to select named pipes, f to select regular files, 1 to select

symbolic links, or s to select sockets.

-user username
-group groupname

-nouser
-ngroup

-perm [+]-]
permissions

Select files owned by the given username or groupname.

Select orphan files (that is, files owned by users or groups that no longer exist on your system).

Select files based on their permissions. The most useful values for permissions are
-perm +ug+s; this matches any files that are setuid or setgid and could be used to

impersonate other users (see Technique 57 for more information).

-xdev
remote file systems.

Select files only on the given file system. Use this option to avoid searching other disk drives and

Acting on What You Find

As we mention earlier in “Finding Files with find,”
actions tell find what to do when it finds a qualifying
file. The -print command that you’ve been tacking
on the end of each find command displays the name
of each qualifying file, but find can do a whole lot
more than that. The following sections give you the
timesaving highlights.

Cracking open a file's info with -Is

You can use the -1s action to see more details about
each selected file:

$ find ~ -size +$(unit 5M) -print
/home/freddie/bigdatafile
/home/freddie/tmp/deleteme

$ find ~ -size +$(unit 5M) -1s

35525 8204 -rw-rw-r-- 1 freddie freddie
8388608 Dec 20 09:52
/home/freddie/bigdatafile

44201 6156 -rw-rw-r-- 1 freddie freddie
6291457 Dec 20 09:52
/home/freddie/tmp/deleteme

-1s gives you far more details than are provided by
-print. -1s displays the following columns (from left
to right):

v The file’s inode number (a number that uniquely
identifies each file within its file system)

The number of 1K blocks consumed by the file
The file’s type and permissions

The number of hard links to the file

The file’s owner

A W W W W

The file’s size (in bytes)

v The date and time of the most recent modification

v The file’s name

Displaying specific info with -printf

In most cases, the -1s action gives you more infor-
mation than you really need. You can use the
-printf action to view only those nuggets of knowl-
edge that you want. To use -printf, you have to
follow the action with directives that specify the
information you want to display. For example, take
a look at the following command:

find ~ -size +(unit 5M) -printf %p %s %u

This command displays the file’s complete pathname
(%p), size in bytes (%s), and owner (%u), like this:

$ find ~ -size +$(unit 5M) -printf %p %s %u
/home/freddie/bigdatafile 8388608 freddie
/home/freddie/tmp/deleteme 6291457 freddie

-printf offers a wide variety of directives (see man

find for a complete list), but we show you only a few
of the more useful ones in Table 12-4.

TaBLE 12-4: CommON PRINTF DIRECTIVES

Directive =~ Meaning

-%p Complete pathname of the selected file

-%f Same as %p with the leading directory names
stripped off

%h Same as %p with the filename stripped off
the end

%U Name of the user who owns the selected file

%U Numeric user ID of the user who owns the
selected file

%S Size of file (in bytes)

Checking disk usage by user

The -printf action is extremely useful when you
want to feed the results from a find command into

Acting on What You Find 79

another program. With -printf, you can customize
the output from a find command to fit the needs of
the program that you're running. Listing 12-2 shows
a shell script that summarizes disk usage by user.

LisTinGg 12-2: Disk USAGE

f#1/bin/bash
f# Filename: diskusage

Create three arrays, each indexed by
numeric user ID

i $sizes[] will accumulate the disk
space consumed by each user

i $uids[] will store the numeric
user ID for each user

i $users[] will store the user name

for each user

The caller will send us lines of the
form
i numeric-user-id filesize username

while read uid filesize user

do
Find the current amount of space
used by this $uid
size=${sizes[$uidl:-0}

Add the space consumed by this
file and store it back

in $sized[$uid]

let sizes[$uid]l=$filesize+$size

Store the numeric user ID and
user name too
uids[$uidl=%uid
users[$uid]=$user

done

We've now accumulated all of the disk
space usage
for the caller, display the results

for uid in ${uids[*]}

do
printf "%15d\t%s\n" ${sizes[$uid]l}
${users[$uid]l}

done

80 Technique 12: Finding What You Need

To use the diskusage script, follow these steps:
1. Open your favorite editor and type in the text
shown in Listing 12-2.

2. Save your script to a file named diskusage in a
directory that’s included in your search path.

/usr/local/bin is usually a good place.

3. Use chmod to make the file executable:

chmod a+x /usr/local/bin/diskusage

To use diskusage, use the find command to locate
the files that you're interested in and use -printf to
create the output required by diskusage:

$ find /home -type f -printf "%U %s %u\n"

| diskusage
211128211 franklin
602579 1001
4525391478 root
8756011463 freddie

Whenever find locates a qualifying file, it feeds the
owner ID, file size, and owner name to diskusage.
diskusage adds up the disk space consumed by each
user and prints the results when find stops feeding
it. The nice thing about this combination is that you
can select files so many ways with find, and no mat-
ter which qualifiers you choose, diskusage happily
sums things up for you. For example, you can change
the previous command to see disk space, by user,
that hasn’t been accessed within the last 30 days:

$ find /home -type f -atime +30 -printf
"%U %s %u\n" | diskusage

128211 franklin
602579 1001
4000324962 root
22315532 freddie

If you compare these results with the previous
results, you'll see that although freddie is a disk hog,
he’s at least using the data that he’s storing. User
1001, on the other hand, hasn’t even logged in dur-
ing the last month.

] When diskusage displays a numeric user ID
- { <@ instead of a user name, the user account has
& probably been deleted. This is a quick and
easy way to find abandoned files and recycle
disk space.

Executing commands with find

It’s time to switch gears and look at a very power-
ful (and occasionally dangerous) feature of find:
the -exec action.

You've seen that the -print, -1s, and -printf
actions display information about selected files. The
-exec action executes a program of your choosing
with the files that find has selected. Suppose that
you're a system administrator and one of your
coworkers has recently left the company. Your task
is to find all the files owned by that user (call him
ted) and give them to user franklin. The -user qual-
ifier will locate the files that you're interested in, and
-exec will execute a command (in this case, chown)
on each of those files:

$ find / -user ted -exec chown franklin
o

This command may look a bit cryptic to you (it sure
looks cryptic to us). find executes the -exec action
once for each selected file. When find executes
the command, it replaces {} with the name of the
selected file. You must include a quoted semicolon
at the end of the command (';"). You can probably
imagine all sorts of uses for the -exec action —
removing old files, moving certain files to other
locations, fixing permissions, and so on.

Never, never, never use the -exec action with-
out first viewing the list of qualified files with

-1s or -print. Never. Make sure that you

know exactly which files will be acted upon.
To avoid running find twice (once to see which files

are selected and again to execute the required com-
mands), use the -ok action instead of -exec. When

you use -ok, find asks if you want to execute each
command. If you answer y (or Y, or yes, or Yes, .. .),
find executes the command. If you answer anything
else, find moves on to the next file.

When you select a large number of files, executing
the -exec (or -ok) action on each file, one at a time,
can be painfully slow. Many Linux commands can
process multiple files in a single pass, and you can
use find to produce the argument list for those
commands.

Building Complex Commands
with xargs

The xargs command builds long command lines for
you. xargs reads filenames from the output of
another command (like find) and builds commands
by using those filenames. For example, look at the
following command:

$ echo /tmp/icons.tar | xargs tar -tvf

xargs reads the filename from the echo command
and constructs the new command:

Building Complex Commands with xargs 81

$ tar -tvf /tmp/icons.tar

xargs isn’t particularly useful when you need to
process a single filename, but find usually produces
a whole mess of filenames. To use find and xargs
together, craft a find command that locates the files
that you're interested in and use the action -print0
to echo the selected filenames. Pipe the output of
the find command to xargs like this:

$ find /home -user ted -print0 | xargs -0
-e grep -n "secret password"

When you execute this command, find lists the
names of all files owned by user ted and feeds that
list to xargs, and xargs then constructs (and exe-
cutes) a grep command for you. xargs tries to group
many files into a single command. If you find the
three files /home/ted/secrets, /home/ted/mail, and
/home/ted/work, for example, xargs executes the
command:

grep "secret password" /home/ted/secrets
/home/ted/mail /home/ted/work

rather than three separate commands.

Moving Made Easy
with Archives

Technique

Save Time By

v~ Creating and extracting
archives with File Roller

v~ Sending compressed
e-mail attachments

v Using tar atthe com-
mand line with find and
rpm to build complex
archives

v~ Uprooting entire directory
trees with scp

v~ Splitting large files for
easy uploading

effort that it takes to move a single file. An archive is a file that

contains other files. You can build an archive out of just about any-
thing: text files, programs, pictures, audio files, and even other archives.
Archives are easy to build, and you can compress an archive to help
speed up data transfers. For example, a tarball is nothing more than an
archive built with the tar command.

ﬁ rchiving data makes it easy to move multiple files with the same

Using good tools to create archives saves time. In this technique, we
introduce you to File Roller, a handy feature that’s included with GNOME.
With File Roller, you can not only create an archive, but also inspect an
archive’s contents before unpacking it. You can save time by choosing
just the portions of archives that you need to unpack.

The tar command creates archives at the command line and works well
with the RPM query commands and the find command. We show you
how to use tar in powerful combinations to build complex, custom
archives.

The sp1it command can split large files or archives into bite-sized pieces
for transferring. If a connection drops midtransfer, you can resend only
the portion of the file that didn’t make it. We also show you how to use
checksums to make sure that your entire file got to its destination.

Every day is moving day on a computer, and doing a good job packing
makes moving easier. Good labels on neat packages make it easier to find
things when you need to unpack them again. In this technique, we show
you tools and tricks that make moving easier.

Creating Archives with File Roller

You can e-mail multiple files just as easily as a single file when you bun-
dle the files together in an archive. Creating compressed archives for
e-mail attachments saves time and bandwidth for both the sender and
the receiver.

g If you're running the GNOME desktop, File
B> («a Roller is probably installed automatically. If
& you need to add File Roller, you'll find it (in
most Linux distributions) in an RPM pack-
age called file-roller-version.rpm. See
Technique 17 for help installing RPM packages.

GNOME'’s File Roller is the easy way to browse and
choose the files to include in an archive. To make a
tarball using File Roller, follow these steps:

1. Open the Main Menu and choose Run
Command.

The Run Command dialog, shown in Figure 13-1,
opens.

nRun Command - KDeskiop

A Enter the name of the application you want to run or
= the URL you want 1o view.

Command: | [® |
Ciptions == { ;I Cancel

* Figure 13-1: The Run Command dialog.

KDE and GNOME auto-launch File Roller if
you've configured your MIME database. (See
Technique 3 for more information on MIME.)

2. Enter file-roller in the Command field and
click Run.

The File Roller window opens ready to build a
tarball (see Figure 13-2).

3. Click New on the toolbar to open the New
Archive file chooser (see Figure 13-3).

4. In the Archive Type drop-down list, select the
type you want to create.

In this case, choose the Tar Compressed with
gzip option.

5. Enter your tarball name in the Selection field
and click OK.

Now it’s time to add files to your archive.

Creating Archives with File Roller 83

6. Click Add (on the toolbar) to open the file
chooser window. Use the file chooser to browse
directories for the files that you want to
include and then add them to the tarball.

Double-click a selection to add it to the archive.
To add additional files to an archive, click Add on
the toolbar, and double-click the next file to be
included.

hd File Roller
Archive Edit Wiew Help

§ @ @ B

Mew Open Add Extract View Stop

& Up | Location:

* Figure 13-2: The File Roller window.

W File Roller =0X
Archive Edit Wiew Help
T 7 : =
B B @ @ o
Maw Open Add Extract View Stop

& Up | Location

¥ow Archive PR

| New Folder Delete File I Rename File |

thomefsusan * |

|Fnlgers | 2 Ellas

4 ST17IT4004.png

uf aaa

autocutsel 0.6.2/ AA2.A5C

Daskrop/ autocutsel-0.6.2.tar.gz

evolution/ balsa-2.0.15-1.i385.rpm

example) balsa-2.0.15-1.1385.rpr. tar

jailf [=] | BEb =

Archive typa: | Automatic

Selection: home/susan

W Cancel
L -

* Figure 13-3: The New Archive file chooser.

8 4 Technique 13: Moving Made Easy with Archives

won't get any smaller. One serving of com- (or files) from it by following these steps:

You can include a tarball in an archive, but it After you open an archive, you can extract a file
pression per file, please.

1. Highlight the file(s) in the list and click Extract.
7. When you're finished adding files to the

archive, close the File Roller window. The Extract dialog opens, as shown in

Figure 13-4.
The archive is waiting for you in the directory —
. . . ¥ wu-ftpd-current.tar.gz
you created it in, which is usually your home Acive Edit vir, pevsires
dlrectory._Just attach the archive to your e-mail =
and send it off. New _Open hemersusan [] Erowse
& Up | Location:
| |Hnnkmark5 v|
. . . Name -
7 Use File Roller to create archives to send via ldoc e
. . . Jhamejsusanjtmp
- («a SSH or FTP. Multiple files are easier to manage [makefiles
P when they’re bundled, and compressing the s
data makes it travel faster. gs”""“"
il
['- indent.pro & Add to Bookmarks | | == Remove
[bulld Files Actions
I . d E - © All fles 4] Re-create folders
nspect’nq an xtract’nq ! " config.guess (@) Selected files [/] Ovenante existing files

Archives with File Roller Do | O oy

" | config.sub
0

. . . . l_'—
File Roller makes it easy to inspect and extract files e [@ [cancel | |
from archives. With just a few quick clicks, you can
see the contents of the files included in an archive or
extract the portion of the archive you need.

_| wiew destination folder after extraction

¢ Figure 13-4: The Extract dialog.

. . . . 2. In the Destination Folder field, type the name
7 The F|I_e Rollel.- is espe_clally handy if you share of the folder where you want to save the
- («a data via _e-l?mll. Use File Roller to check out extracted files, or from the Bookmarks list,
) the archive’s contents before you take the R
. . choose a bookmark to use for the destination.
time to unpack it.

Add often-used directories — such as ~/tmp —
to the Bookmarks list. Later, when you need
one of these directories, just double-click the

To open an archive with File Roller, follow these steps:

1. Open the Main Menu and choose Run directory to select it as the destination folder.
Command.
2. Enter file-roller in the Command field and 3. If you highlighted more than one file before
click Run. you clicked Extract in Step 1, choose from the

followi ti in the Fil :
3. Click Open on the toolbar to open the file oflowing options in the tiles area

chooser. » All Files: Unpack the entire archive.

4. Use the file chooser to locate the archive you » Selected Files: Extract the files highlighted on
want to open. Highlight the archive name and the previous screen (hold down Shift to select
click OK. multiple files).

The contents of the archive appear in the File » Files: Specify files by name, or groups by

Roller window. using wildcards (such as *.png or *. txt).

Adding Functionality to tar with Complex Commands 85

4. Check the Re-create Folders box to restore the
folder structure.

didn’t want to re-create folders. If you don't
select the Re-create Folders check box, all

the subdirectories and their contents end up
in your current directory. Cleaning up the
unpacked pile of structureless files wastes time.

z We've never encountered a case where we
B+

5. Check the Overwrite Existing Files box to
replace any file with a duplicate name in your
folder.

6. Check the Do Not Extract Older Files box to
preserve the most recent copy of the file.

If the copy on your computer is more current
than the archived copy, the older file is not
extracted. This option works only if the
Overwrite Existing Files option is checked.

7. Check the View Destination Folder After
Extraction box to open a file manager window
with your newly unpacked archive.

8. When you’re ready, click OK to unpack the
file(s).

If the destination folder doesn't already exist,
File Roller asks if you want to create it.

included in a tarball before unpacking it. To do
so, right-click the filename and choose View
File from the drop-down menu to display the
file's contents. If the file looks questionable,
don't open it!

? Inspect suspicious-looking files that are
)

&

Adding Functionality to tar
with Complex Commands

The File Roller enables you to quickly and easily

build or unpack archives, but sometimes using the
command line with the tar command is the way to
go. The following sections explain how combining

the tar command with other functions can give you
extra power when you need it.

Building archives from the command line

You can build simple archives (containing one file or
many) with the tar command. Here is a basic tar
command to create a gzip-compressed archive:

$ tar -zcvf archivename filestoarchive

If you want to archive multiple files, just list them at
the end of the command line (separate the names
with a space character).

] Compressing an archive increases the time it
a («

takes to create the archive. If you don't need
to transfer the file over the Web or if the data
is already compressed (such as RPMs), skip the
-z or - j options when you create the archive.

&

tar has a lot of powerful options, the most useful of
which are listed in Table 13-1.

TaBLE 13-1: USEruL TAR OPTIONS
Option What It Does

-z Compress to (or uncompress from) gzip
form.

-J Compress to (or uncompress from) bzip2
form.

e Create an archive.

- X Extract from an archive.

-t Display a list of the files in the archive.

-V Verbose — tell me what you're doing.

-f file Write to (or read from) the archive file.

Enter man tar at the command line for a complete
listing of tar options and flags.

The GNU man pages are handy, but they can
be a bit overwhelming at times. Take a deep
breath and remember that you can close the

page at any time by entering q.

8 6 Technique 13: Moving Made Easy with Archives

Archiving complex search results

Use the pipe character (|) to combine programs
like find and rpm with the tar command to create
archives that contain the results of complex
searches.

Using tar with find can seem complex, but it is very
useful. One example of a combined command is as
follows:

$ find / -user freddie | tar -zcvf
fredfiles -T -

This command finds all the files owned by the user
Freddie and sends the output (the list of filenames)
to the tar command. The -T - portion of the com-
mand instructs tar to read the list of filenames from
its standard input (which, in this case, is the output
of the find command) rather than from the com-
mand line.

For more in-depth information about using the find
command, see Technique 12.

Backing up an installed package

Use tar with rpm to create a backup of an installed
package. To back up an installed copy of the webmin
package, use this command:

$ rpm -q1 webmin | tar -cvf webminbackup
,T,

7
(a For more information about using rpm queries,
A see Technique 16.

Uprooting Entire Directory
Trees with scp

Sometimes, you need to move more than a single
file — you need to move an entire directory tree

(a directory and all the files and subdirectories
underneath it). When that’s the case, use scp to get
the job done quickly and easily. For example:

v lIf you carry your work to and from the office on a
laptop, use the scp to copy files from your laptop
to your home computer (and back again).

v You can also use the scp -r command to quickly
move a user from one machine to another.

v If you're upgrading to a new system, scp -ris an
easy way to quickly transfer your work with no
disruptions.

scp was designed to copy files from one com-
puter to another. You can also use scp to copy
a file from one place to another within your

computer, just like you would use cp. We find
scp to be much more intuitive when it comes
to copying directory trees.

To move a directory tree with scp, open your termi-
nal window and enter this command:

$ scp -r user@host:source user@host:
destination

That’s all there is to it. The -r flag tells scp to copy
source and everything underneath it.

Table 13-2 highlights two options worthy of mention.

TaBLE 13-2: WORTHWHILE ScP OPTIONS
What It Does

-C Compresses the data stream for faster
transfers.

Option

-1 Timit Throttles file transfers to no more than
17imitK bits per second. (Use this option if
you're sharing a network connection and you

don’t want to hog all the bandwidth).

Getting familiar with scp (and its secure shell
i («& cousin, ssh) is definitely worth the time. scp is

a fast, secure, and easy way to move files and
archives from one location to another. scp and
ssh share many command-line options
because scp is built from ssh. For more infor-
mation about ssh, see Technique 33.

Splitting Big Files into
Manageable Chunks

While you’re working across the Web or across a net-
work, the inevitable happens: You lose the network
connection mid-upload. You have to go all the way
back to the beginning and start the transfer over.

ISPs are known to place limits on the size of incom-
ing files. E-mails with oversized attachments are
returned undelivered and unseen by the recipients.
How can you get around that?

To transfer a large file to a user with limited access
(or over a questionable connection), use the sp1it
command. sp1it doesn’t actually speed up the trans-
fer, but it does speed up the recovery if a connection
drops.

split breaks a file (any file — archives, pictures,
data ... you name it) into segments that you can
reassemble on the other end.

To reassemble the split file accurately, all the
@ pieces must be included. split can't tell if
they're all there or not — it just re-assembles

what it has. If great-aunt Gertrude’s nose looks
a bit off, you may have lost a segment.

Use the following command to break a file into
1-megabyte segments for transfer:

$ split --bytes=1lm filetosplit
segmentprefix

sp1it appends the segmentprefix with a unique suf-
fix. When it’s finished, you still have the original file,
but you also have a set of 1 megabyte segments. If
you started with a 2.5 megabyte file, you end up with
three segments: The first two contain 1 megabyte
each, and the third file contains the leftovers.

Splitting Big Files into Manageable Chunks

87

It’s a good idea to calculate an MD5 checksum on
the original file to compare it to the reassembled
result. Save the number generated by the following
command — you’ll need it later:

$ mdSsum filetosplit

md5 stands for message digest #5. It's a cryp-
tographic program that’s good at detecting
differences between files. It's kind of like a fin-
gerprint for a file.

®

[/ Send the checksum with the attachments or
(ﬂ save them to compare to the checksum of the

reassembled file. If the checksums match, you
can be sure that the entire file was received
and reassembled.

&

It’s easy to move all the segments securely with one
scp command:

$ scp segmentprefix.* user@host:directory

- to log in to the remote machine, and use cd
to move to the directory containing the

segments.

2 To rebuild the file after the upload, use ssh
a

&

To reassemble the segments, enter this command:

$ cat segmentprefix.* > filename

cat rebuilds the file into its original structure.

After the file is rebuilt, run a new MD5 checksum and
compare it to the fingerprint of the original file. The
two fingerprints should be identical.

$ md5sum originalfilename
If you've sent the sp1it file to a friend

running Windows, the type command will
concatenate sp1it files on Windows.

Downloading and
Uploading Files

Technique Ma Snap

Save Time By

v~ Building software from
downloaded tarballs

v Mirroring Web sites with
wget

v~ Verifying your bookmarks
with a wget spider

1~ Setting $http_proxy to
increase download speed

v~ Using curl for unmanned
uploads

ing something on the Web. When you use the Internet, you're con-

stantly moving data. Using the right tools to upload and download
files can make a huge difference in the time it takes you to get the job
done.

The Internet is pervasive. Few days go by when we aren’t research-

In this technique, we walk you through downloading and compiling a
software tarball. You can find tarballs all over the Web, with great, time-
saving software just waiting to be downloaded. The example we show
you is for another timesaver — SuperKaramba — that just happens to be
fun, too.

When it comes to moving data around, don’t overlook the command line.
Using wget to create mirrors of Web sites you visit frequently is a great
way to save time — you don’t have to wait for page downloads, and you
can take the entire site with you when you travel. You can even schedule
wget to perform mirror updates at night, when the network traffic is low.
Now that’s a timesaver.

wget also has a few other tricks up its sleeve for downloading. It can play
spider, cruising the Web sites in your bookmarks or links files checking to
see if all the links still work. wget doesn’t give up on downloads if a con-
nection drops. It’s a persistent agent and will try again to complete a
download.

We also show you how to use curl to manage file uploads. Unlike ftp,
curl manages uploads with just one entry at the command line. You can
schedule your uploads, just like your downloads, to happen without your
help.

Building Software from Downloaded tarballs

Free software packages are all over the Web. Many packages are available
in RPM format, but some of the really good stuff only comes wrapped up
in a tarball that you have to compile yourself.

No problem — you can deal with tarballs. First, we
give you the basic steps and then we explain how to
use those steps for SuperKaramba.

Compiling a tarball: The basic steps
The basic steps don’t vary much for most software
you find on the Web:

1. Download the tarball.

Unpack the tarball (see Technique 13 for more
information).

w

Use configure to determine the software
needs.

Use the make command to run the compiler.

“r ™

Run make install to run the install script for
the package.

If there are any variations in the procedure or any
software prerequisites, the download page should
include instructions specific to the package.

Downloading and compiling SuperKaramba

SuperKaramba is a tool that builds custom desktop
features. In this section, we present the basic steps
for downloading and compiling SuperKaramba as a
fun and useful example of how you apply the basic
steps to an actual program.

propeller-heads) can create desktop acces-
sories fast. Use SuperKaramba to display infor-
mation you've read over the Internet, create
custom toolbars, or create virtual pets (Chia-
Penguins perhaps?). You can download some
pretty cool, ready-to-run SuperKaramba
resources, too!

? With SuperKaramba, anyone (not just the
E)

7 If you're running SuSE, you're in luck —
B («s SuperKarambea is already included with the
KDE desktop in a standard installation. If
you're running SuSE, just open the main
menu and choose Systemr>Desktop Applet>
karamba.

Building Software from Downloaded tarballs 8 9

If you're running Mandrake, you'll find
SuperKaramba is included with the standard
distribution, but you need to install it. You
may want to download and compile your own
version anyway, to check out the most recent
features as they develop.

To build SuperKaramba, follow these steps:

1. Open your browser and surf to

netdragon.sourceforge.net

2. Click the Download SuperKaramba link at the
bottom of the page.

3. Scroll down to the Official Releases and click
the link for SuperKaramba source code.

available? Well, if the RPM package that you
find isn’t from an official source, the integrity
of the software may be questionable.
Although it is possible for someone to intro-
duce a Trojan horse into source code (just like
a prebuilt version), it doesn’'t happen often.
RPM packages are platform specific, and the
platform you need may not be available.

z Why use a tarball when an RPM package is
g}

4, Click the link for the most recent release:
$ superkaramba-0.33.tar.gz

5. The download page instructs you to choose a
mirror site near you. Click the link for the
site nearest you and then save the file to your
desktop.

6. Open a terminal window and move to your
Desktop directory:

$ cd ~/Desktop

7. Unpack the tarball with the following command:
$ tar -zxvf superkaramba-0.33.tar.gz

8. Move into the superkaramba-0.33 directory:
$ cd superkaramba-0.33

90

Technique 14: Downloading and Uploading Files in a Snap

Enter the following command:

$./configure --prefix=$(kde-config
-prefix)

configure determines the correct set of tools
and compiler options to customize the software
for your computer.

The --prefix=$(kde-config -prefix) por-
tion of the command is unique to KDE. Use
configure --help to get more configuration
options for KDE and non-KDE programs.

If configure complains about any problems, now
is the time to correct them. configure does
remarkably well at describing the cause of any
problem it encounters. If you see an error mes-
sage that just doesn’t seem to make sense, type
the text of the message in to Google and you’re
likely to find a solution waiting for you some-
where out there on the Web.

Installing a SuperKaramba theme

After you install SuperKaramba, we suggest grabbing a
theme or two to see how easy this program makes chang-
ing your desktop. SuperKaramba themes are different from
other desktop themes. They're active desktop decorations —
little accessories for your desktop that actually function.

One desktop applet that we really like is Liquid Weather++.
You could go to KDE-Took.org and spend hours looking
through the pages of Karamba themes — do that later. To
find Liquid Weather++ quickly, go to www.google.com and
search for Liquid Weather Karamba, and follow the link.

To download and unpack Liquid Weather++, follow these
steps:

1. Open your favorite browser and surf to the
download site for Liquid Weather++.

2. Click the download link and save the tarball to
your desktop.

Notice that this tarball is different; it ends with the
.bz?2 file extension. Different flavors of tarballs exist —

10. Enter this command: gzips and bzips. Gzips and bzips are basically the
$ make same, but bzips generally offer better compression
and download speed. You can unzip either kind
make runs the compiler for you. The compiler is with Linux.
translating the source code into a program one . .
bit at a time. The make program coordinates the 3. Open your terminal window and move to the
build — think of it as the job site foreman. Desktop directory.
$ cd Deskto
71. Give yourself superuser privileges: P
$ su 4. Create a themes directory with this command:
$ mkdir themes
Enter the superuser password when prompted.
12. Enter this command: 5. Move to the themes directory:
make install b cd themes
make install runs the install script for the pack- G Ll t.he T A DL L G
age. Depending on the package you're installing, $ tar -jxvf ../tarball
Elr;igitearﬂ;t(i:g: tni?gl[l)lg ise ascélt‘t';;:iglfsz?pymg This extracts the tarball into the themes directory.
accounts, and so on. To start SuperKaramba, open the Main Menu and choose
73. Turn in your superuser privileges with the exit Run Command. Enter superkaramba in the Command

command.

field and click Run. The SuperKaramba window opens, as
shown in the following figure.

After SuperKaramba is installed, you can use it to
decorate your desktop. See the sidebar, “Installing a
SuperKaramba theme” for details.

K Vreicome 1o SuperRarampa™"" " R HE

o 1
Karamba

Exi Superaamba _|

To run Liquid Weather, click Open on the SuperKaramba
menu page. Browse to ~/Desktop/themes/1iquid_
weather_plus and choose 1iquid weather.theme
from the files listed. Double-click the icon to open a
weather report on your desktop (see the following figure).

To customize Liquid Weather, right-click on the weather
screen and choose Configure Themer=>Enter Your Location’s
Code. Enter your zip code (or weather code if you're in
Britain) and choose OK, and the weather forecast is
updated to your region.

Versatile Downloading
with wget

wget uses the HTTP, HTTPS, and FTP protocols from
the command line to retrieve files or Web sites. wget
is handy if you have a slow or undependable Internet
connection. If a connection drops partway through a
download, wget keeps trying. If the server allows it,
wget will continue the download where it left off.

Versatile Downloading with wget 9 ’

wget has a lot of options that combine to make it a
versatile download tool. You can use it in the follow-
ing ways:

v For recursive Web site downloads
For updating Web site mirrors

As a spider to verify links

For executing scheduled downloads

As a persistent agent to download large files

] wget works quietly in the background with no
(«a further input from you. You can schedule wget

(with Task Scheduler) to start downloads when
network use is at its lowest so that you don't
interfere with other users. For more informa-
tion about scheduling tasks with Task
Scheduler, check out Technique 20.

Mirroring sites with wget

You might wonder why anyone would mirror a Web
site. Many generous people who support the open
source movement help provide the world with extra
information and closer, quicker downloads by set-
ting up servers and creating sites that mirror and
distribute open source software and information.

You can also use site mirrors for quicker access to
sites that you use often. Not only do you have
quicker access to the site, but you can also take it
with you anywhere you go — even without a Web
connection.

Download an entire Web site recursively with the
following command:

$ wget -r -k http://www.website.com

The -r in this command stands for recursive (mean-
ing that wget copies the directory you name and all
the files and subdirectories underneath it) — by
default, wget copies five levels of subdirectories to
your local system. The -k (or --convert-Tinks if you
want to type it out) redirects the links on those five
levels to refer back to your local system. If you leave

92

out the -k option, the documents that you download
will still point back to the original Web site.

If you find yourself setting up a site mirror, either for
internal use or for the world, you’ll want to keep it
up-to-date. Schedule a job (with Task Scheduler) to
run every night:

$ wget -r --mirror -k
http://www.website.com

The --mirror option checks your copy of the site
against the version published on the Web, and down-
loads only those files that have changed.

Verifying your bookmarks with wget

If you're anything like us, your bookmark collection
is, well, a mess. Bookmarks accumulate over time
and pages that you may have been interested in a
few months (or years) ago might not be there any
more. It’s a good idea to weed out obsolete links now
and then just to keep your bookmark collection
under control. Use wget to check all the links on
your bookmarks or links page, with one easy com-
mand. To make wget impersonate a spider and inves-
tigate links, use this command:

$ wget --spider --force-html -i
bookmarks.html

wget visits each link, and reports successful or
unsuccessful connections for each entry in your
bookmarks page.

the command locate -i bookmark to
generate a list of all the files with the word
bookmark in their name.

7 Forget where you left your bookmarks? Use
g (43

&

Downloading files with wget

To use wget to download a file from an FTP server,
enter the following command:

$ wget ftp://www.sitename.com/filename

Technique 14: Downloading and Uploading Files in a Snap

If the download is interrupted, resume the download
with this command:

$ wget -c ftp://www.sitename.com/filename

The -c option instructs wget to resume the down-
load where it left off.

Downloading and unpacking in one quick step

You can redirect the output of a wget download to a
tar command to download and unpack in one easy
step:

$ wget -0 - http://tarball | tar -zxvf -

The -0 option redirects the output to the tar com-
mand. tar then unpacks it to a subdirectory in your
current directory.

wget's optional flags

Dozens of flags work with wget — we’ve noted a few
in Table 14-1. For a complete list, type man wget at
the command line.

TaBLE 14-1: HANDY WGET OPTIONS

Option What It Does

-b Goes to background after starting.
-q Turns off the output of wget

-V Displays long debugging messages.
-nv Displays errors or basic info only.
-t count Tries count times before giving up.
-nc Doesn’t overwrite files.

One other option worthy of mention is
--limit-rate=bandwidth. Use this flag to limit
the download speed so you don’t steal all the
bandwidth away from other users on your
system.

$ wget --limit-rate=20k

The preceding command limits the download rate to
20 kilobytes per second — a very generous gesture if
you’re sharing a network link.
) If you use a proxy server to connect to the
i (@ Internet, wget can use it, too. wget uses the
) $http_proxy environment variable to find
your proxy server. Enter the command
$ export http_proxy proxyaddress:port
at the command line to set the environment
variable. Add this environment variable to
your bash startup script to run the command
each time you log in.

Downloading and Uploading
with curl

curl (a client for URL) works with the HTTP and FTP
protocols to download or upload files. curl is an
easy way to upload files when you’re maintaining a
Web site, or to keep files synchronized with the work
of remote employees.

[curl is a powerful download tool, too. For
S («&

more information about the features of curl,
) type man curl at the command line.
When you upload with ftp, you have to drive the
entire process. You have to enter passwords, type in
the put commands one at a time, and disconnect
when you're finished. Unlike ftp, curl can do its
job without additional user input. You can also
schedule cur1 to do large uploads when the network
is quietest — you’ll get the best throughput and
provide the least aggravation to other users.

To upload a file with cur1, enter this command:

$ curl -T uploadfile
ftp://ftp.sitename.com/filename

Downloading and Uploading with curl 93

Replace uploadfile with your local filename and
substitute the ftp sitename information into the
command, and the file is on its way. That’s all there
is to it.

g Set up an ftp server where remote employees’
e- { 4@ can save their work. Schedule a nightly job on
& the remote employees’ machines to keep up-
to-date with their important files — and they
won't have to babysit the upload!

If you create an ftp server to hold your employees’
nightly updates, you’ll want that server to be secure.
To use curl to upload a file to a secure site, use the
following command:

$ curl -T uploadfile -u user:passwd
ftp://ftp.sitename.com/filename

curl gives you the option to update single files, mul-
tiple files, or entire systems with a single command.
When you combine the powerful uploads that you
can get with cur1 with the scheduling features of
Task Scheduler, you'll find lots of ways to save time!

Visit the CURL Web site at curl.haxx.se for
a complete overview of the curl project.

The basics of URL syntax

Have you ever wondered what that string of characters you
type into your Web browser is made of?

A simple address like http://www.wiley.com tells the
browser to use the http protocol to connect to a host
named wiley.com.

A more complex address like http://www.wiley.com/
newbooks.htm1 tells your browser to open the newbooks .
htm1 resource at the host wiley.com.

An ftp URL often contains a user name and password
for the ftp server. The address ftp://freddie:FuNkY@
bastille/mixers.html tells ftp that the user freddie,
with a password of FuNkY, wants to log into bastille to
access the resource mixers.html.

Building a Playpen
with User Mode

Technigile Linux

Save Time By

v~ Creating a virtual work
environment with User
Mode Li