

XML
Pocket Reference

,TITLE.15229 Page i Wednesday, September 12, 2001 1:12 PM

,TITLE.15229 Page ii Wednesday, September 12, 2001 1:12 PM

XML
 Pocket Reference

Second Edition

 Robert Eckstein
with Michel Casabianca

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.15229 Page iii Wednesday, September 12, 2001 1:12 PM

XML Pocket Reference, Second Edition
by Robert Eckstein with Michel Casabianca

Copyright © 2001, 1999 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA
95472.

Editor: Ellen Siever

Production Editor: Jeffrey Holcomb

Cover Designer: Hanna Dyer

Printing History:

October 1999: First Edition

April 2001: Second Edition

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo
are registered trademarks of O’Reilly & Associates, Inc. The use of the
image of the peafowl in association with XML is a trademark of O’Reilly
& Associates, Inc.

Many of the designations used by manufacturers and sellers to
distinguish their products are claimed as trademarks. Where those
designations appear in this book, and O’Reilly & Associates, Inc. was
aware of a trademark claim, the designations have been printed in caps
or initial caps. While every precaution has been taken in the
preparation of this book, the publisher assumes no responsibility for
errors or omissions, or for damages resulting from the use of the
information contained herein.

0-596-00133-9
[C] [5/01]

,COPYRIGHT.15383 Page iv Wednesday, September 12, 2001 1:12 PM

Table of Contents

Intr oduction ... 1
XML Ter minology ... 2

Unlear ning Bad Habits ... 3
An Overview of an XML Document 5
A Simple XML Document 5
A Simple Document Type Definition (DTD) 9
A Simple XSL Stylesheet 10

XML Reference .. 13
Well-For med XML ... 14
Special Markup ... 14
Element and Attribute Rules 17
XML Reserved Attributes 19

Entity and Character References 20
Document Type Definitions ... 21

Element Declarations .. 22
ANY and PCDATA .. 22
Entities ... 26
Attribute Declarations in the DTD 29
Included and Ignored Sections 34

The Extensible Stylesheet Language 37
For matting Objects ... 38

XSLT Stylesheet Structure ... 39

v

13 September 2001 16:11

Templates and Patterns ... 40
Parameters and Variables 43
Stylesheet Import and Rules of Precedence 44
Loops and Tests .. 45
Numbering Elements .. 46
Output Method ... 47

XSLT Elements ... 48
XPath ... 70

Axes ... 73
Pr edicates .. 74
Functions ... 76
Additional XSLT Functions and Types 79

XPointer and XLink ... 81
Unique Identifiers ... 81
ID References ... 82
XPointer .. 83
XLink ... 87
Building Extended Links 90
XBase .. 96

vi

13 September 2001 16:11

XML Pocket Reference

Introduction
The Extensible Markup Language (XML) is a document-
pr ocessing standard that is an official recommendation of the
World Wide Web Consortium (W3C), the same group respon-
sible for overseeing the HTML standard. Many expect XML
and its sibling technologies to become the markup language
of choice for dynamically generated content, including non-
static web pages. Many companies are alr eady integrating
XML support into their products.

XML is actually a simplified form of Standar d Generalized
Markup Language (SGML), an international documentation
standard that has existed since the 1980s. However, SGML is
extr emely complex, especially for the Web. Much of the credit
for XML’s creation can be attributed to Jon Bosak of Sun
Micr osystems, Inc., who started the W3C working group
responsible for scaling down SGML to a form mor e suitable
for the Internet.

Put succinctly, XML is a meta language that allows you to cre-
ate and format your own document markups. With HTML,
existing markup is static: <HEAD> and <BODY>, for example,
ar e tightly integrated into the HTML standard and cannot be
changed or extended. XML, on the other hand, allows you to
cr eate your own markup tags and configure each to your lik-
ing — for example, <HeadingA>, <Sidebar>, <Quote>, or <Really-

WildFont>. Each of these elements can be defined through
your own document type definitions and stylesheets and
applied to one or more XML documents. XML schemas pro-
vide another way to define elements. Thus, it is important to

Introduction 1

13 September 2001 16:11

realize that there are no “corr ect” tags for an XML document,
except those you define yourself.

While many XML applications currently support Cascading
Style Sheets (CSS), a more extensible stylesheet specification
exists, called the Extensible Stylesheet Language (XSL). With
XSL, you ensure that XML documents are for matted the same
way no matter which application or platform they appear on.

XSL consists of two parts: XSLT (transfor mations) and XSL-FO
(for matting objects). Transfor mations, as discussed in this
book, allow you to work with XSLT and convert XML docu-
ments to other formats such as HTML. Formatting objects are
described briefly in the section “Formatting Objects.”

This book offers a quick overview of XML, as well as some
sample applications that allow you to get started in coding.
We won’t cover everything about XML. Some XML-related
specifications are still in flux as this book goes to print. How-
ever, after reading this book, we hope that the components
that make up XML will seem a little less foreign.

XML Ter minolog y
Befor e we move further, we need to standardize some termi-
nology. An XML document consists of one or more elements.
An element is marked with the following form:

<Body>
This is text formatted according to the Body element
</Body>.

This element consists of two tags: an opening tag, which
places the name of the element between a less-than sign (<)
and a greater-than sign (>), and a closing tag, which is identi-
cal except for the forward slash (/) that appears before the
element name. Like HTML, the text between the opening and
closing tags is considered part of the element and is pro-
cessed according to the element’s rules.

2 XML Pocket Reference

13 September 2001 16:11

Elements can have attributes applied, such as the following:

<Price currency="Euro">25.43</Price>

Her e, the attribute is specified inside of the opening tag and is
called curr ency. It is given a value of Eur o, which is placed
inside quotation marks. Attributes are often used to further
refine or modify the default meaning of an element.

In addition to the standard elements, XML also supports empty
elements. An empty element has no text between the opening
and closing tags. Hence, both tags can (optionally) be com-
bined by placing a forward slash before the closing marker.
For example, these elements are identical:

<Picture src="blueball.gif"></Picture>
<Picture src="blueball.gif"/>

Empty elements are often used to add nontextual content to a
document or provide additional information to the application
that parses the XML. Note that while the closing slash may not
be used in single-tag HTML elements, it is mandatory for
single-tag XML empty elements.

Unlear ning Bad Habits

Wher eas HTML browsers often ignore simple errors in docu-
ments, XML applications are not nearly as forgiving. For the
HTML reader, ther e ar e a few bad habits from which we
should dissuade you:

XML is case-sensitive
Element names must be used exactly as they are defined.
For example, <Paragraph> and <paragraph> ar e not the
same.

Attribute values must be in quotation marks
You can’t specify an attribute value as <pictur e

src=/images/blueball.gif/>, an err or that HTML browsers
often overlook. An attribute value must always be inside

XML Ter minolog y 3

13 September 2001 16:11

single or double quotation marks, or else the XML parser
will flag it as an error. Her e is the correct way to specify
such a tag:

<picture src="/images/blueball.gif"/>

A non-empty element must have an opening and a closing tag
Each element that specifies an opening tag must have a
closing tag that matches it. If it does not, and it is not an
empty element, the XML parser generates an error. In
other words, you cannot do the following:

<Paragraph>
This is a paragraph.
<Paragraph>
This is another paragraph.

Instead, you must have an opening and a closing tag for
each paragraph element:

<Paragraph>This is a paragraph.</Paragraph>
<Paragraph>This is another paragraph.</Paragraph>

Tags must be nested correctly
It is illegal to do the following:

<Italic><Bold>This is incorrect</Italic></Bold>

The closing tag for the <Bold> element should be inside
the closing tag for the <Italic> element to match the near-
est opening tag and preserve the correct element nesting.
It is essential for the application parsing your XML to pro-
cess the hierarchy of the elements:

<Italic><Bold>This is correct</Bold></Italic>

These syntactic rules are the source of many common errors
in XML, especially because some of this behavior can be
ignor ed by HTML browsers. An XML document adhering to
these rules (and a few others that we’ll see later) is said to be
well-for med.

4 XML Pocket Reference

13 September 2001 16:11

An Overview of an XML Document

Generally, two files are needed by an XML-compliant applica-
tion to use XML content:

The XML document
This file contains the document data, typically tagged
with meaningful XML elements, any of which may con-
tain attributes.

Document Type Definition (DTD)
This file specifies rules for how the XML elements,
attributes, and other data are defined and logically related
in the document.

Additionally, another type of file is commonly used to help
display XML data: the stylesheet.

The stylesheet dictates how document elements should be for-
matted when they are displayed. Note that you can apply dif-
fer ent stylesheets to the same document, depending on the
envir onment, thus changing the document’s appearance with-
out affecting any of the underlying data. The separation
between content and formatting is an important distinction in
XML.

A Simple XML Document

Example 1 shows a simple XML document.

Example 1. sample.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE OReilly:Books SYSTEM "sample.dtd">
<!-- Here begins the XML data -->
<OReilly:Books xmlns:OReilly=http://www.oreilly.com>

<OReilly:Product>XML Pocket Reference</OReilly:Product>
<OReilly:Price>12.95</OReilly:Price>

</OReilly:Books>

Let’s look at this example line by line.

In the first line, the code between the <?xml and the ?> is
called an XML declaration. This declaration contains special

XML Ter minolog y 5

13 September 2001 16:11

infor mation for the XML processor (the program reading the
XML), indicating that this document conforms to Version 1.0
of the XML standard and uses UTF-8 (Unicode optimized for
ASCII) encoding.

The second line is as follows:

<!DOCTYPE OReilly:Books SYSTEM "sample.dtd">

This line points out the root element of the document, as well
as the DTD validating each of the document elements that
appear inside the root element. The root element is the outer-
most element in the document that the DTD applies to; it typi-
cally denotes the document’s starting and ending point. In this
example, the <OReilly:Books> element serves as the root ele-
ment of the document. The SYSTEM keyword denotes that the
DTD of the document resides in an external file named sam-
ple.dtd. On a side note, it is possible to simply embed the
DTD in the same file as the XML document. However, this is
not recommended for general use because it hampers reuse
of DTDs.

Following that line is a comment. Comments always begin
with <!- - and end with -->. You can write whatever you want
inside comments; they are ignor ed by the XML processor. Be
awar e that comments, however, cannot come before the XML
declaration and cannot appear inside an element tag. For
example, this is illegal:

<OReilly:Books <!-- This is the tag for a book -->>

Finally, the elements <OReilly:Pr oduct>, <OReilly:Price>, and
<OReilly:Books> ar e XML elements we invented. Like most ele-
ments in XML, they hold no special significance except for
whatever document rules we define for them. Note that these
elements look slightly differ ent than those you may have seen
pr eviously because we are using namespaces. Each element
tag can be divided into two parts. The portion before the
colon (:) identifies the tag’s namespace; the portion after the
colon identifies the name of the tag itself.

6 XML Pocket Reference

13 September 2001 16:11

Let’s discuss some XML terminology. The <OReilly:Pr oduct> and
<OReilly:Price> elements would both consider the
<OReilly:Books> element their par ent. In the same manner, ele-
ments can be grandpar ents and grandchildr en of other ele-
ments. However, we typically abbreviate multiple levels by
stating that an element is either an ancestor or a descendant
of another element.

Namespaces

Namespaces wer e cr eated to ensure uniqueness among XML
elements. They are not mandatory in XML, but it’s often wise
to use them.

For example, let’s pretend that the <OReilly:Books> element
was simply named <Books>. When you think about it, it’s not
out of the question that another publisher would create its
own <Books> element in its own XML documents. If the two
publishers combined their documents, resolving a single (cor-
rect) definition for the <Books> tag would be impossible.
When two XML documents containing identical elements from
dif ferent sources are merged, those elements are said to col-
lide. Namespaces help to avoid element collisions by scoping
each tag.

In Example 1, we scoped each tag with the OReilly name-
space. Namespaces are declar ed using the xmlns:something

attribute, where something defines the prefix of the name-
space. The attribute value is a unique identifier that differ enti-
ates this namespace from all other namespaces; the use of a
URI is recommended. In this case, we use the O’Reilly URI
http://www.or eilly.com as the default namespace, which
should guarantee uniqueness. A namespace declaration can
appear as an attribute of any element, in which case the
namespace remains inside that element’s opening and closing
tags. Here are some examples:

<OReilly:Books xmlns:OReilly=http://www.oreilly.com>
...

</OReilly:Books>

XML Ter minolog y 7

13 September 2001 16:11

<xsl:stylesheet xmlns:xsl=http://www.w3.org>
...

</xsl:stylesheet>

You are allowed to define more than one namespace in the
context of an element:

<OReilly:Books xmlns:OReilly=http://www.oreilly.com
xmlns:Songline=http://www.songline.com>

...
</OReilly:Books>

If you do not specify a name after the xmlns pr efix, the name-
space is dubbed the default namespace and is applied to all
elements inside the defining element that do not use a name-
space prefix of their own. For example:

<Books xmlns=http://www.oreilly.com
xmlns:Songline=http://www.songline.com>

<Book>
<Title>XML Pocket Reference</Title>
<ISBN>0-596-00133-9</ISBN>

</Book>
<Songline:CD>18231</Songline:CD>

</Books>

Her e, the default namespace (repr esented by the URI
http://www.or eilly.com) is applied to the elements <Books>,
<Book>, <T itle>, and <ISBN>. However, it is not applied to the
<Songline:CD> element, which has its own namespace.

Finally, you can set the default namespace to an empty string.
This ensures that there is no default namespace in use within
a specific element:

<header xmlns=
xmlns:OReilly=http://www.oreilly.com
xmlns:Songline=http://www.songline.com>

<entry>Learn XML in a Week</entry>
<price>10.00</price>

</header>

Her e, the <entry> and <price> elements have no default names-
pace.

8 XML Pocket Reference

13 September 2001 16:11

A Simple Document Type Definition (DTD)

Example 2 creates a simple DTD for our XML document.

Example 2. sample.dtd

<?xml version="1.0"?>
<!ELEMENT OReilly:Books (OReilly:Product, OReilly:Price)>
<!ATTLIST OReilly:Books

xmlns:OReilly CDAT A "http://www.oreilly.com">
<!ELEMENT OReilly:Product (#PCDAT A)>
<!ELEMENT OReilly:Price (#PCDAT A)>

The purpose of this DTD is to declare each of the elements
used in our XML document. All document-type data is placed
inside a construct with the characters <!something>.

Each <!ELEMENT> construct declares a valid element for our
XML document. With the second line, we’ve specified that the
<OReilly:Books> element is valid:

<!ELEMENT OReilly:Books
(OReilly:Product, OReilly:Price)>

The parentheses group together the requir ed child elements
for the element <OReilly:Books>. In this case, the <OReilly:Pr od-

uct> and <OReilly:Price> elements must be included inside our
<OReilly:Books> element tags, and they must appear in the
order specified. The elements <OReilly:Pr oduct> and
<OReilly:Price> ar e ther efor e consider ed childr en of
<OReilly:Books>.

Likewise, the <OReilly:Pr oduct> and <OReilly:Price> elements are
declar ed in our DTD:

<!ELEMENT OReilly:Product (#PCDAT A)>
<!ELEMENT OReilly:Price (#PCDAT A)>

Again, parentheses specify requir ed elements. In this case,
they both have a single requir ement, repr esented by #PCDATA.
This is shorthand for parsed character data, which means that
any characters are allowed, as long as they do not include

XML Ter minolog y 9

13 September 2001 16:11

other element tags or contain the characters < or &, or the
sequence]]>. These characters are forbidden because they
could be interpreted as markup. (We’ll see how to get around
this shortly.)

The line <!ATTLIST OReilly:Books xmlns:OReilly CDATA "http://

www.or eilly.com"> indicates that the <xmlns:OReilly> attribute of
the <OReilly:Books> element defaults to the URI associated
with O’Reilly & Associates if no other value is explicitly speci-
fied in the element.

The XML data shown in Example 1 adheres to the rules of this
DTD: it contains an <OReilly:Books> element, which in turn
contains an <OReilly:Pr oduct> element followed by an
<OReilly:Price> element inside it (in that order). Therefor e, if
this DTD is applied to the data with a <!DOCTYPE> statement,
the document is said to be valid.

A Simple XSL Stylesheet

XSL allows developers to describe transformations using XSL
Transfor mations (XSLT), which can convert XML documents
into XSL Formatting Objects, HTML, or other textual output.

As this book goes to print, the XSL Formatting Objects specifi-
cation is still changing; therefor e, this book covers only the
XSLT portion of XSL. The examples that follow, however, are
consistent with the W3C specification.

Let’s add a simple XSL stylesheet to the example:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>
<xsl:template match="/">

<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

10 XML Pocket Reference

13 September 2001 16:11

The first thing you might notice when you look at an XSL
stylesheet is that it is formatted in the same way as a regular
XML document. This is not a coincidence. By design, XSL
stylesheets are themselves XML documents, so they must
adher e to the same rules as well-formed XML documents.

Br eaking down the pieces, you should first note that all
XSL elements must be contained in the appropriate
<xsl:stylesheet> outer element. This tells the XSLT processor
that it is describing stylesheet information, not XML content
itself. After the opening <xsl:stylesheet> tag, we see an XSLT
dir ective to optimize output for HTML. Following that are the
rules that will be applied to our XML document, given by the
<xsl:template> elements (in this case, there is only one rule).

Each rule can be further broken down into two items: a tem-
plate pattern and a template action. Consider the line:

<xsl:template match="/">

This line forms the template pattern of the stylesheet rule.
Her e, the target pattern is the root element, as designated by
match="/". The / is shorthand to repr esent the XML document’s
root element.

The contents of the <xsl:template> element:

<xsl:apply-templates/>

specify the template action that should be perfor med on the
target. In this case, we see the empty element <xsl:apply- tem-

plates/> located inside a element. When the XSLT pro-
cessor transforms the target element, every element inside the
root element is surrounded by the tags, which will
likely cause the application formatting the output to increase
the font size.

In our initial XML example, the <OReilly:Pr oduct> and
<OReilly:Price> elements are both enclosed inside the
<OReilly:Books> tags. Therefor e, the font size will be applied to

XML Ter minolog y 11

13 September 2001 16:11

the contents of those tags. Example 3 displays a more realistic
example.

Example 3. sample.xsl

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3c.org/1999/XSL/Transform"
xmlns:OReilly="http://www.oreilly.com">

<xsl:output method="html">

<xsl:template match="/">
<html>

<body>
<xsl:apply-templates/>

</body>
</html>

</xsl:template>

<xsl:template match="OReilly:Books">

<xsl:text>Books: </xsl:text>

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="OReilly:Product">

<xsl:apply-templates/>

</xsl:template>

<xsl:template match="OReilly:Price">

<xsl:text>Price: $</xsl:text>
<xsl:apply-templates/>

<xsl:text> + tax</xsl:text>

</xsl:template>

</xsl:stylesheet>

12 XML Pocket Reference

13 September 2001 16:11

In this example, we target the <OReilly:Books> element, print-
ing the word Books: befor e it in a larger font size. In addition,
the <OReilly:Pr oduct> element applies the default font size to
each of its children, and the <OReilly:Price> tag uses a slightly
larger font size to display its children, overriding the default
size of its parent, <OReilly:Books>. (Of course, neither one has
any children elements; they simply have text between their
tags in the XML document.) The text Price: $ will precede each
of <OReilly:Price>’s children, and the characters + tax will come
after it, formatted accordingly.

Her e is the result after we pass sample.xsl thr ough an XSLT
pr ocessor:

<html xmlns:OReilly="http://www.oreilly.com">
<body>

Books:

XML Pocket Reference

Price $12.95 + tax

</body>

</html>

And that’s it: everything needed for a simple XML document!
Running the result through an HTML browser, you should see
something similar to Figure 1.

XML Reference
Now that you have had a quick taste of working with XML,
her e is an overview of the more common rules and constructs
of the XML language.

XML Reference 13

13 September 2001 16:11

Figur e 1. Sample XML output

Well-For med XML

These are the rules for a well-formed XML document:

• All element attribute values must be in quotation marks.

• An element must have both an opening and a closing tag,
unless it is an empty element.

• If a tag is a standalone empty element, it must contain a
closing slash (/) befor e the end of the tag.

• All opening and closing element tags must nest correctly.

• Isolated markup characters are not allowed in text; < or &

must use entity refer ences. In addition, the sequence]]>

must be expressed as]]> when used as regular text.
(Entity refer ences ar e discussed in further detail later.)

• Well-for med XML documents without a corresponding
DTD must have all attributes of type CDATA by default.

Special Markup

XML uses the following special markup constructs.

<?xml . . . ?>

<?xml version="number"
[encoding="encoding"]
[standalone="yes|no"] ?>

14 XML Pocket Reference

13 September 2001 16:11

Although they are not requir ed to, XML documents typically
begin with an XML declaration, which must start with the
characters <?xml and end with the characters ?>. Attributes
include:

version

The version attribute specifies the correct version of XML
requir ed to process the document, which is currently 1.0.
This attribute cannot be omitted.

encoding

The encoding attribute specifies the character encoding
used in the document (e.g., UTF-8 or iso-8859-1). UTF-8
and UTF-16 are the only encodings that an XML proces-
sor is requir ed to handle. This attribute is optional.

standalone

The optional standalone attribute specifies whether an
exter nal DTD is requir ed to parse the document. The
value must be either yes or no (the default). If the value is
no or the attribute is not present, a DTD must be declared
with an XML <!DOCTYPE> instruction. If it is yes, no exter-
nal DTD is requir ed.

For example:

<?xml version="1.0"?>
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<? . . . ?>

<?target attribute1="value"
attribute2="value"
... ?>

A processing instruction allows developers to place attributes
specific to an outside application within the document. Pro-
cessing instructions always begin with the characters <? and
end with the characters ?>. For example:

<?works document="hello.doc" data="hello.wks"?>

<? . . . ?> 15

13 September 2001 16:11

You can create your own processing instructions if the XML
application processing the document is aware of what the
data means and acts accordingly.

<!DOCTYPE>

<!DOCTYPE root-element SYSTEM|PUBLIC
["name"] "URI_of_DTD">

The <!DOCTYPE> instruction allows you to specify a DTD for
an XML document. This instruction currently takes one of two
for ms:

<!DOCTYPE root-element SYSTEM "URI_of_DTD">
<!DOCTYPE root-element PUBLIC "name" "URI_of_DTD">

SYSTEM

The SYSTEM variant specifies the URI location of a DTD
for private use in the document. For example:

<!DOCTYPE Book SYSTEM
"http://mycompany.com/dtd/mydoctype.dtd">

PUBLIC

The PUBLIC variant is used in situations in which a DTD
has been publicized for widespread use. In these cases,
the DTD is assigned a unique name, which the XML pro-
cessor may use by itself to attempt to retrieve the DTD. If
this fails, the URI is used:

<!DOCTYPE Book PUBLIC "-//O’Reilly//DTD//EN"
"http://www.oreilly.com/dtd/xmlbk.dtd">

Public DTDs follow a specific naming convention. See
the XML specification for details on naming public DTDs.

<!- - . . . - ->

<!-- comments -->

You can place comments anywhere in an XML document,
except within element tags or before the initial XML process-
ing instructions. Comments in an XML document always start

16 XML Pocket Reference

13 September 2001 16:11

with the characters <!- - and end with the characters -->. In
addition, they may not include double hyphens within the
comment. The contents of the comment are ignor ed by the
XML processor. For example:

<!-- Sales Figures Start Here -->
<Units>2000</Units>
<Cost>49.95</Cost>

CDATA

<![CDAT A[...]]>

You can define special sections of character data, or CDATA,
which the XML processor does not attempt to interpret as
markup. Anything included inside a CDATA section is treated
as plain text. CDATA sections begin with the characters
<![CDATA[and end with the characters]]>. For example:

<![CDAT A[
Im now discussing the <element> tag of documents
5 & 6: "Sales" and "Profit and Loss". Luckily,
the XML processor wont apply rules of formatting
to these sentences!

]]>

Note that entity refer ences inside a CDATA section will not be
expanded.

Element and Attribute Rules

An element is either bound by its start and end tags or is an
empty element. Elements can contain text, other elements, or
a combination of both. For example:

<para>
Elements can contain text, other elements, or
a combination. For example, a chapter might
contain a title and multiple paragraphs, and
a paragraph might contain text and
<emphasis>emphasis elements</emphasis>.

</para>

CDATA 17

13 September 2001 16:11

An element name must start with a letter or an underscore. It
can then have any number of letters, numbers, hyphens, peri-
ods, or underscores in its name. Elements are case-sensitive :
<Para>, <para>, and <pArA> ar e consider ed thr ee dif ferent ele-
ment types.

Element type names may not start with the string xml in any
variation of upper- or lowercase. Names beginning with xml

ar e reserved for special uses by the W3C XML Working
Gr oup. Colons (:) are per mitted in element type names only
for specifying namespaces; otherwise, colons are forbidden.
For example:

Example Comment

<Italic> Legal

<_Budget> Legal

<Punch line> Illegal: has a space

<205Para> Illegal: starts with number

<r epair@log> Illegal: contains @ character

<xmlbob> Illegal: starts with xml

Element type names can also include accented Roman charac-
ters, letters from other alphabets (e.g., Cyrillic, Greek,
Hebr ew, Arabic, Thai, Hiragana, Katakana, or Devanagari),
and ideograms from the Chinese, Japanese, and Korean lan-
guages. Valid element type names can therefor e include <são>,
<peut-êtr e>, <più>, and <niño>, plus a number of others our
publishing system isn’t equipped to handle.

If you use a DTD, the content of an element is constrained by
its DTD declaration. Better XML applications inform you
which elements and attributes can appear inside a specific
element. Otherwise, you should check the element declara-
tion in the DTD to determine the exact semantics.

18 XML Pocket Reference

13 September 2001 16:11

Attributes describe additional information about an element.
They always consist of a name and a value, as follows:

<price currency="Euro">

The attribute value is always quoted, using either single or
double quotes. Attribute names are subject to the same restric-
tions as element type names.

XML Reserved Attributes

The following are reserved attributes in XML.

xml:lang

xml:lang="iso_639_identifier"

The xml:lang attribute can be used on any element. Its value
indicates the language of the body of the element. This is use-
ful in a multilingual context. For example, you might have:

<para xml:lang="en">Hello</para>
<para xml:lang="fr">Bonjour</para>

This format allows you to display one element or the other,
depending on the user’s language prefer ence.

The syntax of the xml:lang value is defined by ISO-639. A two-
letter language code is optionally followed by a hyphen and a
two-letter country code. Traditionally, the language is given in
lowercase and the country in uppercase (and for safety, this
rule should be followed), but processors are expected to use
the values in a case-insensitive manner.

In addition, ISO-3166 provides extensions for nonstandardized
languages or language variants. Valid xml:lang values include
notations such as en, en-US, en-UK, en-cockney, i-navajo, and
x-minbari.

xml:lang 19

13 September 2001 16:11

xml:space

xml:space="default|preserve"

The xml:space attribute indicates whether any whitespace
inside the element is significant and should not be altered by
the XML processor. The attribute can take one of two enumer-
ated values:

pr eserve

The XML application preserves all whitespace (newlines,
spaces, and tabs) present within the element.

default

The XML processor uses its default processing rules when
deciding to preserve or discard the whitespace inside the
element.

You should set xml:space to pr eserve only if you want an ele-
ment to behave like the HTML <pr e> element, such as when it
documents source code.

Entity and Character References
Entity refer ences ar e used as substitutions for specific charac-
ters (or any string substitution) in XML. A common use for
entity refer ences is to denote document symbols that might
otherwise be mistaken for markup by an XML processor. XML
pr edefines five entity refer ences for you, which are substitu-
tions for basic markup symbols. However, you can define as
many entity refer ences as you like in your own DTD. (See the
next section.)

Entity refer ences always begin with an ampersand (&) and
end with a semicolon (;). They cannot appear inside a CDATA
section but can be used anywhere else. Predefined entities in
XML are shown in the following table:

20 XML Pocket Reference

13 September 2001 16:11

Entity Char Notes

& & Do not use inside processing instructions.

< < Use inside attribute values quoted with ".

> > Use after]] in normal text and inside processing
instructions.

" " Use inside attribute values quoted with ".

' Use inside attribute values quoted with .

In addition, you can provide character refer ences for Unicode
characters with a numeric character refer ence. A decimal char-
acter refer ence consists of the string &#, followed by the deci-
mal number repr esenting the character, and finally, a
semicolon (;). For hexadecimal character refer ences, the string
&#x is followed first by the hexadecimal number repr esenting
the character and then a semicolon. For example, to repr esent
the copyright character, you could use either of the following
lines:

This document is © 2001 by OReilly and Assoc.
This document is © 2001 by OReilly and Assoc.

The character refer ence is replaced with the “circled-C” (©)
copyright character when the document is formatted.

Document Type Definitions
A DTD specifies how elements inside an XML document
should relate to each other. It also provides grammar rules for
the document and each of its elements. A document adhering
to the XML specifications and the rules outlined by its DTD is
consider ed to be valid. (Don’t confuse this with a well-formed
document, which adheres only to the XML syntax rules out-
lined earlier.)

Document Type Definitions 21

13 September 2001 16:11

Element Declarations

You must declare each of the elements that appear inside
your XML document within your DTD. You can do so with
the <!ELEMENT> declaration, which uses this format:

<!ELEMENT elementname rule>

This declares an XML element and an associated rule called a
content model, which relates the element logically to the XML
document. The element name should not include < > charac-
ters. An element name must start with a letter or an under-
scor e. After that, it can have any number of letters, numbers,
hyphens, periods, or underscores in its name. Element names
may not start with the string xml in any variation of upper- or
lowercase. You can use a colon in element names only if you
use namespaces; otherwise, it is forbidden.

ANY and PCDATA

The simplest element declaration states that between the
opening and closing tags of the element, anything can appear:

<!ELEMENT library ANY>

The ANY keyword allows you to include other valid tags and
general character data within the element. However, you may
want to specify a situation where you want only general
characters to appear. This type of data is better known as
parsed character data, or PCDATA. You can specify that an
element contain only PCDATA with a declaration such as the
following:

<!ELEMENT title (#PCDAT A)>

Remember, this declaration means that any character data that
is not an element can appear between the element tags.

22 XML Pocket Reference

13 September 2001 16:11

Ther efor e, it’s legal to write the following in your XML docu-
ment:

<title></title>
<title>XML Pocket Reference</title>
<title>Java Network Programming</title>

However, the following is illegal with the previous PCDATA

declaration:

<title>
XML <emphasis>Pocket Reference</emphasis>
</title>

On the other hand, you may want to specify that another ele-
ment must appear between the two tags specified. You can
do this by placing the name of the element in the parenthe-
ses. The following two rules state that a <books> element must
contain a <title> element, and a <title> element must contain
parsed character data (or null content) but not another ele-
ment:

<!ELEMENT books (title)>
<!ELEMENT title (#PCDAT A)>

Multiple sequences

If you wish to dictate that multiple elements must appear in a
specific order between the opening and closing tags of a spe-
cific element, you can use a comma (,) to separate the two
instances:

<!ELEMENT books (title, authors)>
<!ELEMENT title (#PCDAT A)>
<!ELEMENT authors (#PCDAT A)>

In the preceding declaration, the DTD states that within the
opening <books> and closing </books> tags, there must first
appear a <title> element consisting of parsed character data. It
must be immediately followed by an <authors> element con-
taining parsed character data. The <authors> element cannot
pr ecede the <title> element.

Document Type Definitions 23

13 September 2001 16:11

Her e is a valid XML document for the DTD excerpt defined
pr eviously:

<books>
<title>XML Pocket Reference, Second Edition</title>
<authors>Robert Eckstein with Michel Casabianca</authors>

</books>

The previous example showed how to specify both elements
in a declaration. You can just as easily specify that one or the
other appear (but not both) by using the vertical bar (|):

<!ELEMENT books (title|authors)>
<!ELEMENT title (#PCDAT A)>
<!ELEMENT authors (#PCDAT A)>

This declaration states that either a <title> element or an
<authors> element can appear inside the <books> element.
Note that it must have one or the other. If you omit both ele-
ments or include both elements, the XML document is not
consider ed valid. You can, however, use a recurr ence opera-
tor to allow such an element to appear more than once. Let’s
talk about that now.

Grouping and recurrence

You can nest parentheses inside your declarations to give
finer granularity to the syntax you’re specifying. For example,
the following DTD states that inside the <books> element, the
XML document must contain either a <description> element or
a <title> element immediately followed by an <author> ele-
ment. All three elements must consist of parsed character
data:

<!ELEMENT books ((title, author)|description)>
<!ELEMENT title (#PCDAT A)>
<!ELEMENT author (#PCDAT A)>
<!ELEMENT description (#PCDAT A)>

Now for the fun part: you are allowed to dictate inside an ele-
ment declaration whether a single element (or a grouping of
elements contained inside parentheses) must appear zero or

24 XML Pocket Reference

13 September 2001 16:11

one times, one or more times, or zero or mor e times. The
characters used for this appear immediately after the target
element (or element grouping) that they refer to and should
be familiar to Unix shell programmers. Occurrence operators
ar e shown in the following table:

Attr ibute Descr iption

? Must appear once or not at all (zero or one times)

+ Must appear at least once (one or more times)

* May appear any number of times or not at all (zero or
mor e times)

If you want to provide finer granularity to the <author> ele-
ment, you can redefine the following in the DTD:

<!ELEMENT author (authorname+)>
<!ELEMENT authorname (#PCDAT A)>

This indicates that the <author> element must have at least one
<author name> element under it. It is allowed to have more
than one as well. You can define more complex relationships
with parentheses:

<!ELEMENT reviews (rating, synopsis?, comments+)*>
<!ELEMENT rating ((tutorial|reference)*, overall)>
<!ELEMENT synopsis (#PCDAT A)>
<!ELEMENT comments (#PCDAT A)>
<!ELEMENT tutorial (#PCDAT A)>
<!ELEMENT reference (#PCDAT A)>
<!ELEMENT overall (#PCDAT A)>

Mixed content

Using the rules of grouping and recurr ence to their fullest
allows you to create very useful elements that contain mixed
content. Elements with mixed content contain child elements

Document Type Definitions 25

13 September 2001 16:11

that can intermingle with PCDATA. The most obvious example
of this is a paragraph:

<para>
This is a <emphasis>paragraph</emphasis> element. It
contains this <link ref="http://www.w3.org">link</link>
to the W3C. Their website is <emphasis>very</emphasis>
helpful.
</para>

Mixed content declarations look like this:

<!ELEMENT quote (#PCDAT A|name|joke|soundbite)*>

This declaration allows a <quote> element to contain text
(#PCDATA), <name> elements, <joke> elements, and/or <sound-

bite> elements in any order. You can’t specify things such as:

<!ELEMENT memo (#PCDAT A, from, #PCDAT A, to, content)>

Once you include #PCDATA in a declaration, any following
elements must be separated by “or” bars (|), and the grouping
must be optional and repeatable (*).

Empty elements

You must also declare each of the empty elements that can be
used inside a valid XML document. This can be done with the
EMPTY keyword:

<!ELEMENT elementname EMPTY>

For example, the following declaration defines an element in
the XML document that can be used as <statuscode/> or
<statuscode></statuscode>:

<!ELEMENT statuscode EMPTY>

Entities

Inside a DTD, you can declare an entity, which allows you to
use an entity refer ence to substitute a series of characters for
another character in an XML document—similar to macros.

26 XML Pocket Reference

13 September 2001 16:11

General entities

A general entity is an entity that can substitute other charac-
ters inside the XML document. The declaration for a general
entity uses the following format:

<!ENTITY name "replacement_characters">

We have already seen five general entity refer ences, one for
each of the characters <, >, &, ', and ". Each of these can be
used inside an XML document to prevent the XML processor
fr om interpr eting the characters as markup. (Incidentally, you
do not need to declare these in your DTD; they are always
pr ovided for you.)

Earlier, we provided an entity refer ence for the copyright
character. We could declare such an entity in the DTD with
the following:

<!ENTITY copyright "©">

Again, we have tied the ©right; entity to Unicode value
169 (or hexadecimal 0xA9), which is the “circled-C” (©) copy-
right character. You can then use the following in your XML
document:

<copyright>
©right; 2001 by MyCompany, Inc.
</copyright>

Ther e ar e a couple of restrictions to declaring entities:

• You cannot make circular refer ences in the declarations.
For example, the following is invalid:

<!ENTITY entitya "&entityb; is really neat!">
<!ENTITY entityb "&entitya; is also really neat!">

• You cannot substitute nondocument text in a DTD with a
general entity refer ence. The general entity refer ence is
resolved only in an XML document, not a DTD docu-
ment. (If you wish to have an entity refer ence resolved in
the DTD, you must instead use a parameter entity refer-
ence.)

Document Type Definitions 27

13 September 2001 16:11

Parameter entities

Parameter entity refer ences appear only in DTDs and are
replaced by their entity definitions in the DTD. All parameter
entity refer ences begin with a percent sign, which denotes
that they cannot be used in an XML document—only in the
DTD in which they are defined. Here is how to define a
parameter entity:

<!ENTITY % name "replacement_characters">

Her e ar e some examples using parameter entity refer ences:

<!ENTITY % pcdata "(#PCDAT A)">
<!ELEMENT authortitle %pcdata;>

As with general entity refer ences, you cannot make circular
refer ences in declarations. In addition, parameter entity refer-
ences must be declared before they can be used.

Exter nal entities

XML allows you to declare an exter nal entity with the follow-
ing syntax:

<!ENTITY quotes SYSTEM
"http://www.oreilly.com/stocks/quotes.xml">

This allows you to copy the XML content (located at the spec-
ified URI) into the current XML document using an external
entity refer ence. For example:

<document>
<heading>Current Stock Quotes</heading>
"es;

</document>

This example copies the XML content located at the URI
http://www.or eilly.com/stocks/quotes.xml into the document
when it’s run through the XML processor. As you might guess,
this works quite well when dealing with dynamic data.

28 XML Pocket Reference

13 September 2001 16:11

Unparsed entities

By the same token, you can use an unparsed entity to declare
non-XML content in an XML document. For example, if you
want to declare an outside image to be used inside an XML
document, you can specify the following in the DTD:

<!ENTITY image1 SYSTEM
"http://www.oreilly.com/ora.gif" NDAT A GIF89a>

Note that we also specify the NDATA (notation data) keyword,
which tells exactly what type of unparsed entity the XML pro-
cessor is dealing with. You typically use an unparsed entity
refer ence as the value of an element’s attribute, one defined
in the DTD with the type ENTITY or ENTITIES. Her e is how
you should use the unparsed entity declared previously:

<image src="image1"/>

Note that we did not use an ampersand (&) or a semicolon (;).
These are only used with parsed entities.

Notations

Finally, notations ar e used in conjunction with unparsed enti-
ties. A notation declaration simply matches the value of an
NDATA keyword (GIF89a in our example) with more specific
infor mation. Applications are free to use or ignore this infor-
mation as they see fit:

<!NOTATION GIF89a SYSTEM "-//CompuServe//NOTATION
Graphics Interchange Format 89a//EN">

Attribute Declarations in the DTD

Attributes for various XML elements must be specified in the
DTD. You can specify each of the attributes with the
<!ATTLIST> declaration, which uses the following form:

<!ATTLIST target_element attr_name attr_type default>

Document Type Definitions 29

13 September 2001 16:11

The <!ATTLIST> declaration consists of the target element
name, the name of the attribute, its datatype, and any default
value you want to give it.

Her e ar e some examples of legal <!ATTLIST> declarations:

<!ATTLIST box length CDAT A "0">
<!ATTLIST box width CDAT A "0">
<!ATTLIST frame visible (true|false) "true">
<!ATTLIST person marital

(single | married | divorced | widowed) #IMPLIED>

In these examples, the first keyword after ATTLIST declar es the
name of the target element (i.e., <box>, <frame>, <person>).
This is followed by the name of the attribute (i.e., length,
width, visible, marital). This, in turn, is generally followed by
the datatype of the attribute and its default value.

Attribute modifiers

Let’s look at the default value first. You can specify any
default value allowed by the specified datatype. This value
must appear as a quoted string. If a default value is not
appr opriate, you can specify one of the modifiers listed in the
following table in its place:

Modifier Description

#REQUIRED The attribute value must be specified with the ele-
ment.

#IMPLIED The attribute value is unspecified, to be determined
by the application.

#FIXED "value" The attribute value is fixed and cannot be changed
by the user.

"value" The default value of the attribute.

With the #IMPLIED keyword, the value can be omitted from
the XML document. The XML parser must notify the applica-
tion, which can take whatever action it deems appropriate at

30 XML Pocket Reference

13 September 2001 16:11

that point. With the #FIXED keyword, you must specify the
default value immediately afterwards:

<!ATTLIST date year CDAT A #FIXED "2001">

Datatypes

The following table lists legal datatypes to use in a DTD:

Type Descr iption

CDATA Character data

enumerated A series of values from which only one can be chosen

ENTITY An entity declared in the DTD

ENTITIES Multiple whitespace-separated entities declared in the
DTD

ID A unique element identifier

IDREF The value of a unique ID type attribute

IDREFS Multiple whitespace-separated IDREFs of elements

NMTOKEN An XML name token

NMTOKENS Multiple whitespace-separated XML name tokens

NOTATION A notation declared in the DTD

The CDATA keyword simply declares that any character data
can appear, although it must adhere to the same rules as the
PCDATA tag. Here are some examples of attribute declarations
that use CDATA:

<!ATTLIST person name CDAT A #REQUIRED>
<!ATTLIST person email CDAT A #REQUIRED>
<!ATTLIST person company CDATA #FIXED "OReilly">

Her e ar e two examples of enumerated datatypes where no
keywords are specified. Instead, the possible values are sim-
ply listed:

<!ATTLIST person marital
(single | married | divorced | widowed) #IMPLIED>

<!ATTLIST person sex (male | female) #REQUIRED>

Document Type Definitions 31

13 September 2001 16:11

The ID, IDREF, and IDREFS datatypes allow you to define
attributes as IDs and ID refer ences. An ID is simply an attribute
whose value distinguishes the current element from all others
in the current XML document. IDs are useful for applications
to link to various sections of a document that contain an ele-
ment with a uniquely tagged ID. IDREFs are attributes that ref-
er ence other IDs. Consider the following XML document:

<?xml version="1.0" standalone="yes"?>
<!DOCTYPE sector SYSTEM sector.dtd>
<sector>

<employee empid="e1013">Jack Russell</employee>
<employee empid="e1014">Samuel Tessen</employee>
<employee empid="e1015" boss="e1013">

Terri White</employee>
<employee empid="e1016" boss="e1014">

Steve McAlister</employee>
</sector>

and its DTD:

<!ELEMENT sector (employee*)>
<!ELEMENT employee (#PCDAT A)>
<!ATTLIST employee empid ID #REQUIRED>
<!ATTLIST employee boss IDREF #IMPLIED>

Her e, all employees have their own identification numbers
(e1013, e1014, etc.), which we define in the DTD with the ID

keyword using the empid attribute. This attribute then forms
an ID for each <employee> element; no two <employee> ele-
ments can have the same ID.

Attributes that only refer ence other elements use the IDREF

datatype. In this case, the boss attribute is an IDREF because it
uses only the values of other ID attributes as its values. IDs
will come into play when we discuss XLink and XPointer.

The IDREFS datatype is used if you want the attribute to refer
to more than one ID in its value. The IDs must be separated
by whitespace. For example, adding this to the DTD:

<!ATTLIST employee managers IDREFS #REQUIRED>

32 XML Pocket Reference

13 September 2001 16:11

allows you to legally use the XML:

<employee empid="e1016" boss="e1014"
managers="e1014 e1013">

Steve McAllister
</employee>

The NMTOKEN and NMTOKENS attributes declare XML name
tokens. An XML name token is simply a legal XML name that
consists of letters, digits, underscores, hyphens, and periods.
It can contain a colon if it is part of a namespace. It may not
contain whitespace; however, any of the permitted characters
for an XML name can be the first character of an XML name
token (e.g., .pr ofile is a legal XML name token, but not a legal
XML name). These datatypes are useful if you enumerate
tokens of languages or other keyword sets that match these
restrictions in the DTD.

The attribute types ENTITY and ENTITIES allow you to exploit
an entity declared in the DTD. This includes unparsed entities.
For example, you can link to an image as follows:

<!ELEMENT image EMPTY>
<!ATTLIST image src ENTITY #REQUIRED>
<!ENTITY chapterimage SYSTEM "chapimage.jpg" NDAT A "jpg">

You can use the image as follows:

<image src="chapterimage">

The ENTITIES datatype allows multiple whitespace-separated
refer ences to entities, much like IDREFS and NMTOKENS allow
multiple refer ences to their datatypes.

The NOTATION keyword simply expects a notation that
appears in the DTD with a <!NOTATION> declaration. Here, the
player attribute of the <media> element can be either mpeg or
jpeg:

<!NOTATION mpeg SYSTEM "mpegplay.exe">
<!NOTATION jpeg SYSTEM "netscape.exe">
<!ATTLIST media player

NOTATION (mpeg | jpeg) #REQUIRED>

Document Type Definitions 33

13 September 2001 16:11

Note that you must enumerate each of the notations allowed
in the attribute. For example, to dictate the possible values of
the player attribute of the <media> element, use the following:

<!NOTATION mpeg SYSTEM "mpegplay.exe">
<!NOTATION jpeg SYSTEM "netscape.exe">
<!NOTATION mov SYSTEM "mplayer.exe">
<!NOTATION avi SYSTEM "mplayer.exe">
<!ATTLIST media player

NOTATIONS (mpeg | jpeg | mov) #REQUIRED>

Note that according the rules of this DTD, the <media> ele-
ment is not allowed to play AVI files. The NOTATION keyword
is rarely used.

Finally, you can place all the ATTLIST entries for an element
inside a single ATTLIST declaration, as long as you follow the
rules of each datatype:

<!ATTLIST person
name CDAT A #REQUIRED
number IDREF #REQUIRED
company CDATA #FIXED "OReilly">

Included and Ignored Sections

Within a DTD, you can bundle together a group of declara-
tions that should be ignored using the IGNORE dir ective:

<![IGNORE[
DTD content to be ignored

]]>

Conversely, if you wish to ensure that certain declarations are
included in your DTD, use the INCLUDE dir ective, which has a
similar syntax:

<![INCLUDE[
DTD content to be included

]]>

Why you would want to use either of these declarations is not
obvious until you consider replacing the INCLUDE or IGNORE

34 XML Pocket Reference

13 September 2001 16:11

dir ectives with a parameter entity refer ence that can be
changed easily on the spot. For example, consider the follow-
ing DTD:

<?xml version="1.0" encoding="iso-8859-1"?>
<![%book;[

<!ELEMENT text (chapter+)>
]]>
<![%article;[

<!ELEMENT text (section+)>
]]>
<!ELEMENT chapter (section+)>
<!ELEMENT section (p+)>
<!ELEMENT p (#PCDAT A)>

Depending on the values of the entities book and article, the
definition of the text element will be differ ent:

• If book has the value INCLUDE and article has the value
IGNORE, then the text element must include chapters
(which in turn may contain sections that themselves
include paragraphs).

• But if book has the value IGNORE and article has the value
INCLUDE, then the text element must include sections.

When writing an XML document based on this DTD, you may
write either a book or an article simply by properly defining
book and article entities in the document’s inter nal subset.

Inter nal subsets

You can place parts of your DTD declarations inside the
DOCTYPE declaration of the XML document, as shown:

<!DOCTYPE boilerplate SYSTEM "generic-inc.dtd" [
<!ENTITY corpname "Acme, Inc.">

]>

The region between brackets is called the DTD’s internal sub-
set. When a parser reads the DTD, the internal subset is read
first, followed by the exter nal subset, which is the file refer-
enced by the DOCTYPE declaration.

Document Type Definitions 35

13 September 2001 16:11

Ther e ar e restrictions on the complexity of the internal subset,
as well as processing expectations that affect how you should
structur e it:

• Conditional sections (such as INCLUDE or IGNORE) are not
per mitted in an internal subset.

• Any parameter entity refer ence in the internal subset
must expand to zero or mor e declarations. For example,
specifying the following parameter entity refer ence is
legal:

%paradecl;

as long as %paradecl; expands to the following:

<!ELEMENT para CDAT A>

However, if you simply write the following in the internal
subset, it is considered illegal because it does not expand
to a whole declaration:

<!ELEMENT para (%paracont;)>

Nonvalidating parsers aren’t requir ed to read the external sub-
set and process its contents, but they are requir ed to process
any defaults and entity declarations in the internal subset.
However, a parameter entity can change the meaning of those
declarations in an unresolvable way. Therefor e, a parser must
stop processing the internal subset when it comes to the first
exter nal parameter entity refer ence that it does not process. If
it’s an internal refer ence, it can expand it, and if it chooses to
fetch the entity, it can continue processing. If it does not pro-
cess the entity’s replacement, it must not process the attribute
list or entity declarations in the internal subset.

Why use this? Since some entity declarations are often rele-
vant only to a single document (for example, declarations of
chapter entities or other content files), the internal subset is a
good place to put them. Similarly, if a particular document
needs to override or alter the DTD values it uses, you can
place a new definition in the internal subset. Finally, in the
event that an XML processor is nonvalidating (as we

36 XML Pocket Reference

13 September 2001 16:11

mentioned previously), the internal subset is the best place to
put certain DTD-related information, such as the identification
of ID and IDREF attributes, attribute defaults, and entity decla-
rations.

The Extensible Stylesheet Language
The Extensible Stylesheet Language (XSL) is one of the most
intricate specifications in the XML family. XSL can be broken
into two parts: XSLT, which is used for transformations, and
XSL Formatting Objects (XSL-FO). While XSLT is curr ently in
widespr ead use, XSL-FO is still maturing; both, however,
pr omise to be useful for any XML developer.

This section will provide you with a firm understanding of
how XSL is meant to be used. For the very latest information
on XSL, visit the home page for the W3C XSL working group
at http://www.w3.or g/Style/XSL /.

As we mentioned, XSL works by applying element-formatting
rules that you define for each XML document it encounters. In
reality, XSL simply transforms each XML document from one
series of element types to another. For example, XSL can be
used to apply HTML formatting to an XML document, which
would transform it from:

<?xml version="1.0"?>
<OReilly:Book title="XML Comments">
<OReilly:Chapter title="Working with XML">
<OReilly:Image src="http://www.oreilly.com/1.gif"/>
<OReilly:HeadA>Starting XML</OReilly:HeadA>
<OReilly:Body>
If you havent used XML, then ...

</OReilly:Body>
</OReilly:Chapter>
</OReilly:Book>

to the following HTML:

<HTML>
<HEAD>
<TITLE>XML Comments</TITLE>

The Extensible Stylesheet Language 37

13 September 2001 16:11

</HEAD>
<BODY>
<H1>Working with XML</H1>

<H2>Starting XML</H2>
<P>If you havent used XML, then ...</P>
</BODY>

</HTML>

If you look carefully, you can see a predefined hierarchy that
remains from the source content to the resulting content. To
ventur e a guess, the <OReilly:Book> element probably maps to
the <HTML>, <HEAD>, <TITLE>, and <BODY> elements in
HTML. The <OReilly:Chapter> element maps to the HTML <H1>

element, the <OReilly:Image> element maps to the ele-
ment, and so on.

This demonstrates an essential aspect of XML: each document
contains a hierarchy of elements that can be organized in a
tr ee-like fashion. (If the document uses a DTD, that hierarchy
is well defined.) In the previous XML example, the
<OReilly:Chapter> element is a leaf of the <OReilly:Book> ele-
ment, while in the HTML document, the <BODY> and <HEAD>

elements are leaves of the <HTML> element. XSL’s primary
purpose is to apply formatting rules to a sour ce tr ee, render-
ing its results to a result tree, as we’ve just done.

However, unlike other stylesheet languages such as CSS, XSL
makes it possible to transform the structure of the document.
XSLT applies transformation rules to the document source and
by changing the tree structure, produces a new document. It
can also amalgamate several documents into one or even pro-
duce several documents starting from the same XML file.

Formatting Objects

One area of the XSL specification that is gaining steam is the
idea of for matting objects. These objects serve as universal
for matting tags that can be applied to virtually any arena,
including both video and print. However, this (rather large)
ar ea of the specification is still in its infancy, so we will not

38 XML Pocket Reference

13 September 2001 16:11

discuss it further in this refer ence. For more infor mation
on formatting objects, see http://www.w3.or g/TR/XSL /. The
remainder of this section discusses XSL Transfor mations.

XSLT Stylesheet Structure
The general order for elements in an XSL stylesheet is as
follows:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:import/>
<xsl:include/>
<xsl:strip-space/>
<xsl:preserve-space/>
<xsl:output/>
<xsl:key/>
<xsl:decimal-format/>
<xsl:namespace-alias/>
<xsl:attribute-set>...</xsl:attribute-set>
<xsl:variable>...</xsl:variable>
<xsl:param>...</xsl:param>

<xsl:template match="...">
...

</xsl:template>

<xsl:template name="...">
...

</xsl:template>

</xsl:stylesheet>

Essentially, this ordering boils down to a few simple rules.
First, all XSL stylesheets must be well-formed XML documents,
and each <XSL> element must use the namespace specified by
the xmlns declaration in the <stylesheet> element (commonly
xsl:). Second, all XSL stylesheets must begin with the XSL root
element tag, <xsl:stylesheet>, and close with the corresponding
tag, </xsl:stylesheet>. Within the opening tag, the XSL names-
pace must be defined:

XSLT Stylesheet Structure 39

13 September 2001 16:11

<xsl:stylesheet
version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

After the root element, you can import external stylesheets
with <xsl:import> elements, which must always be first within
the <xsl:stylesheet> element. Any other elements can then be
used in any order and in multiple occurrences if needed.

Templates and Patter ns
An XSLT stylesheet transforms an XML document by applying
templates for a given type of node. A template element looks
like this:

<xsl:template match="pattern">
...

</xsl:template>

wher e patter n selects the type of node to be processed.

For example, say you want to write a template to transform a
<para> node (for paragraph) into HTML. This template will be
applied to all <para> elements. The tag at the beginning of the
template will be:

<xsl:template match="para">

The body of the template often contains a mix of “template
instructions” and text that should appear literally in the result,
although neither are requir ed. In the previous example, we
want to wrap the contents of the <para> element in <p> and
</p> HTML tags. Thus, the template would look like this:

<xsl:template match="para">
<p><xsl:apply-templates/></p>

</xsl:template>

The <xsl:apply-templates/> element recursively applies all other
templates from the stylesheet against the <para> element (the
curr ent node) while this template is processing. Every
stylesheet has at least two templates that apply by default.

40 XML Pocket Reference

13 September 2001 16:11

The first default template processes text and attribute nodes
and writes them literally in the document. The second default
template is applied to elements and root nodes that have no
associated namespace. In this case, no output is generated,
but templates are applied recursively from the node in ques-
tion.

Now that we have seen the principle of templates, we can
look at a more complete example. Consider the following
XML document:

<?xml version="1.0" encoding="iso-8859-1"?>

<!DOCTYPE text SYSTEM "example.dtd">

<chapter>
<title>Sample text</title>
<section title="First section">

<para>This is the first section of the text.</para>
</section>
<section title="Second section">

<para>This is the second section of the text.</para>
</section>

</chapter>

To transfor m this into HTML, we use the following template:

<?xml version="1.0" encoding="iso-8859-1"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html"/>

<xsl:template match="chapter">
<html>

<head>
<title><xsl:value-of select="title"/></title>

</head>
<body>

<xsl:apply-templates/>
</body>

</html>
</xsl:template>

Templates and Patter ns 41

13 September 2001 16:11

<xsl:template match="title">
<center>

<h1><xsl:apply-templates/></h1>
</center>

</xsl:template>

<xsl:template match="section">
<h3><xsl:value-of select="@title"/></h3>
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="para">
<p><xsl:apply-templates/></p>

</xsl:template>

</xsl:stylesheet>

Let’s look at how this stylesheet works. As processing begins,
the current node is the document root (not to be confused
with the <chapter> element, which is its only descendant), des-
ignated as / (like the root directory in a Unix filesystem). The
XSLT processor searches the stylesheet for a template with a
matching pattern in any children of the root. Only the first
template matches (<xsl:template match="chapter">). The first tem-
plate is then applied to the <chapter> node, which becomes
the current node.

The transformation then takes place: the <html>, <head>,
<title>, and <body> elements are simply copied into the docu-
ment because they are not XSL instructions. Between the tags
<head> and </head>, the <xsl:value-of select="title"/> element
copies the contents of the <title> element into the document.
Finally, the <xsl:apply-templates/> element tells the XSL proces-
sor to apply the templates recursively and insert the result
between the <body> and </body> tags.

This time through, the title and section templates are applied
because their patterns match. The title template inserts the
contents of the <title> element between the HTML <center> and
<h1> tags, thus displaying the document title. The section tem-
plate works by using the <xsl:value-of select="@title"> element to
recopy the contents of the current element’s title attribute into

42 XML Pocket Reference

13 September 2001 16:11

the document produced. We can indicate in a pattern that we
want to copy the value of an attribute by placing the at sym-
bol (@) in front of its name.

The process continues recursively to produce the following
HTML document:

<html>
<head>

<title>Sample text</title>
</head>
<body>

<center>
<h1>Sample text</h1>

</center>
<h3>First section</h3>
<p>This is the first section of the text.</p>
<h3>Second section</h3>
<p>This is the second section of the text.</p>

</body>
</html>

As you will see later, patter ns ar e XPath expressions for locat-
ing nodes in an XML document. This example includes very
basic patterns, and we have only scratched the surface of
what can be done with templates. More infor mation will be
found in the section “XPath.”

In addition, the <xsl:template> element has a mode attribute that
can be used for conditional processing. An <xsl:template

match="patter n" mode="mode"> template is tested only when it is
called by an <xsl:apply-templates mode="mode"> element that
matches its mode. This functionality can be used to change
the processing applied to a node dynamically.

Parameters and Variables

To finish up with templates, we should discuss the name

attribute. These templates are similar to functions and can be
called explicitly with the <xsl:call-template name="name"/> ele-
ment, where name matches the name of the template you
want to invoke. When you call a template, you can pass it

Templates and Patter ns 43

13 September 2001 16:11

parameters. Let’s assume we wrote a template to add a footer
containing the date the document was last updated. We could
call the template, passing it the date of the last update this
way:

<xsl:call-template name="footer">
<xsl:with-param name="date" select="@lastupdate"/>
</xsl:call-template>

The call-template declar es and uses the parameter this way:

<xsl:template name="footer">
<xsl:param name="date">today</xsl:param>
<hr/>
<xsl:text>Last update: </xsl:text>
<xsl:value-of select="$date"/>

</xsl:template>

The parameter is declared within the template with the
<xsl:param name="date"> element whose content (today) pro-
vides a default value. We can use this parameter inside the
template by placing a dollar sign ($) in front of the name.

We can also declare variables using the <xsl:variable

name="name"> element, where the content of the element gives
the variable its value. The variables are used like parameters
by placing a dollar sign ($) in front of their names. Note that
even though they are called variables, their values are con-
stant and cannot be changed. A variable’s visibility also
depends on where it is declar ed. A variable that is declared
dir ectly as a child element of <xsl:stylesheet> can be used
thr oughout the stylesheet as a global variable. Conversely,
when a variable is declared in the body of the template, it is
visible only within that same template.

Stylesheet Import and Rules of Precedence

Stylesheets may be imported using the <xsl:import href= "uri">

element, where the hr ef attribute indicates the path of the
stylesheet to be imported. Note that an <xsl:import> statement
must be a direct child of the <xsl:stylesheet> element.

44 XML Pocket Reference

13 September 2001 16:11

Imported stylesheet templates have lower precedence than
templates contained in the file into which they are incorpo-
rated. This means that if two templates compete for the pro-
cessing of an element, the template of the original file takes
pr ecedence over the template of the imported file. Thus,
imported templates can be overridden by redefining them in
the original stylesheet.

The rules of precedence can be changed in two ways:

• The <xsl:apply-imports/> element can be used to give
imported templates precedence in the body of a tem-
plate.

• The priority="level" attribute can be given in the opening
<xsl:template> tag. Therefor e, the level of precedence
defined for the template is a real number. The larger the
number, the more precedence the template has. A value
of +1 ensures that the template has precedence over
other templates for which no precedence has been
defined (0 is the default). A value of –1 guarantees that
any other unprioritized template has precedence. Priority
values overrule import precedence.

Stylesheets can also be included in an XSL file with the
<xsl:include href="uri"/> element. The precedence of an
included template is the same as that of the calling stylesheet
templates.

Loops and Tests

To process an entire list of elements at the same time, use the
<xsl:for-each> loop. For example, the following template adds a
table of contents to our example:

<xsl:template name="toc">
<xsl:for-each select="section">
<xsl:value-of select="@title"/>

</xsl:for-each>
</xsl:template>

Templates and Patter ns 45

13 September 2001 16:11

The body of this <xsl:for-each> loop processes all the <sec-

tion> elements that are childr en of the current node. Within
the loop, we output the value of each section’s title attribute,
followed by a line break.

XSL also defines elements that can be used for tests:

<xsl:if test="expr ession">

The body of this element is executed only if the test
expr ession is true.

<xsl:choose>

This element allows for several possible conditions. It is
comparable to switch in the C and Java languages. The
<xsl:choose> element is illustrated as follows:

<xsl:choose>
<xsl:when test="case-1">

<!-- executed in case 1 -->
</xsl:when>
<xsl:when test="case-2">

<!-- executed in case 2 -->
</xsl:when>

<xsl:otherwise>
<!-- executed by default -->

</xsl:otherwise>
</xsl:choose>

The body of the first <xsl:when> element whose test
expr ession is true will be executed. The XSL processor
then moves on to the instructions following the closing
</xsl:choose> element tag, skipping the remaining tests.
The <xsl:otherwise> element is optional; its body is exe-
cuted only if none of the preceding elements were exe-
cuted.

Numbering Elements

XSL provides a simple method for numbering elements with
the <xsl:number> element. Let’s assume we want to number the
sections and paragraphs in a document. We can do this by

46 XML Pocket Reference

13 September 2001 16:11

adding the following code before displaying the section titles
and the content of the paragraphs:

<xsl:number count="sect|para"
level="multiple" format="1.1"/>

<xsl:text>- </xsl:text>

The result is:

1 - First section
1.1 - This is the first section of text.
2 - Second section
2.1 - This is the second section of text.

The count attribute decides which elements should be num-
ber ed. Elements must be separated by a |. The level attribute
specifies the level of numbering and may take one of three
string values: single, multiple, or any. single tells the processor
to number only one level. In this case, paragraph numbers
will not indicate the section number. multiple numbers several
levels, meaning that the first part of the paragraph number is
the section number in our previous example. any tells the pro-
cessor to add numbering without regard to level. Here, the
numbers of the sections and paragraphs are consecutive.

The format attribute indicates the style of numbering. Letters
or numbers may be used, with a separator in between. The
letters may be A or a (for alphabetical numbering in upper- or
lowercase), I or i (for numbering in upper- or lowercase
Roman numerals), or 1 (for numbering in Arabic numerals).
For example, to number sections with Roman numerals and
paragraphs with lowercase letters, use this format attribute:

format="I.a"

Output Method

An XSLT processor can be instructed to produce a specific
type of output with the <xsl:output/> element. For example,
<xsl:output method="html"/> causes the processor to execute
certain transformations needed for the resulting document to

Templates and Patter ns 47

13 September 2001 16:11

be valid HTML. Specifically, it transforms empty tags. For
example, the XML <hr/> tag is converted to the HTML <hr> tag
(for horizontal rules) without a closing slash.

It is also possible to indicate an XML output method
(method="xml"), where the XSLT processor adds the standard
XML header (<?xml version="1.0"?>). It may seem strange to pro-
duce an XML document from another XML document, yet it is
often helpful to convert a document from one DTD to a valid
document for another DTD. Thus, XSLT is also a language for
inter-DTD conversions.

Finally, you can specify a text output method (method="text")
to produce pure text. XSLT has built-in outputs for XML,
HTML, and text, but some processors may support other out-
put methods (sometimes identified by URLs).

We should point out that when you choose the HTML or XML
output method, the processor may remove or rearrange
whitespace in blocks of text (spaces, tabs, and carriage
retur ns). However, ther e ar e several solutions for preserving
whitespace. The first is to indicate the list of elements to be
pr eserved in the <xsl:pr eserve-space elements="list"> element.
The second is to add the indent="no" attribute to the <xsl:out-

put> element to indicate that you do not want the resulting
document to be indented. We should point out, however, that
spaces are no longer preserved in <xsl:text> elements where
content is written as-is in the resulting document. No indent-
ing is produced for the text output method.

XSLT Elements
The following list is an enumeration of XSLT elements.

<xsl:apply-impor ts>

<xsl:apply-imports/>

48 XML Pocket Reference

13 September 2001 16:11

This styles the current node and each of its children using the
imported stylesheet rules, ignoring those in the stylesheet that
per formed the import. Note that the rules don’t apply to the
curr ent node’s siblings or ancestors.

<xsl:apply-templates>

<xsl:apply-templates
[select="node-set-expression"]
[mode="mode"]/>

This specifies that the immediate children (default) or the
selected nodes of the source element should be processed
further. For example:

<xsl:template match="section">
<xsl:apply-templates/>

</xsl:template>

This example processes the children of the selected <section>

element after applying a bold tag. The optional select attribute
deter mines which nodes should be processed:

<xsl:template match="section">
<HR>
<xsl:apply-templates

select="paragraph (@indent)//sidebar"/>
<HR>
<xsl:apply-templates

select="paragraph (@indent)/quote"/>
<HR>

</xsl:template>

This example processes only specific children of the selected
<section> element. In this case, the first target is a <sidebar>

element that is a descendant of a <paragraph> element that has
defined an indent attribute. The second target is a <quote> ele-
ment that is the direct child of a <paragraph> element that has
defined an indent attribute. The optional mode attribute causes
only templates with a matching mode to be applied.

<xsl:apply-templates> 49

13 September 2001 16:11

<xsl:attribute>

<xsl:attribute name="name"
[namespace="namespace"]>
...

</xsl:attribute>

This adds an attribute with the given name to an element in
the result tree. Only one attribute with a particular name can
be added to a specific element. The contents of the
<xsl:attribute> element form the value of the attribute:

<xsl:element name="book">
<xsl:attribute name="title">Moby Dick</xsl:attribute>
<xsl:text>This is about a whale</xsl:text>
</xsl:element>

This creates the following element in the result tree:

<book title="Moby Dick">This is about a whale</book>

The optional namespace attribute specifies a namespace for the
new attribute.

<xsl:attribute-set>

<xsl:attribute-set
name="name"
[use-attribute-sets="list"]/>

This allows the naming of a collection of attributes that can be
applied to elements.

The following example creates an attribute set for images and
applies them with a template:

<xsl:attribute-set name="image">
<xsl:attribute name="border">0</xsl:attribute>
<xsl:attribute name="width">120</xsl:attribute>
<xsl:attribute name="height">60</xsl:attribute>

</xsl:attribute-set>

50 XML Pocket Reference

13 September 2001 16:11

<xsl:template match="image">

</xsl:template>

The use-attribute-sets option allows you to include a list of
other attribute sets in the one being defined.

<xsl:call-template>

<xsl:call-template
name="name">
...

</xsl:call-template>

This function invokes a template by its name. It is possible to
specify parameters in the body of this element. The following
example calls the template image while passing the parameters
width and height:

<xsl:call-template name="image">
<xsl:with-param name="width">120</xsl:with-param>
<xsl:with-param name="height">60</xsl:with-param>

</xsl:call-template>

<xsl:choose>

<xsl:choose>
...

</xsl:choose>

The <xsl:choose> element, in conjunction with the elements
<xsl:when> and <xsl:otherwise>, offers the ability to perfor m
multiple condition tests. For example:

<xsl:template match="chapter/title">
<xsl:choose>

<xsl:when test="[position()=1]">
Start Here:

</xsl:when>
<xsl:otherwise>

Then Read:
</xsl:otherwise>

</xsl:choose>
<xsl:apply-templates/>

</xsl:template>

<xsl:choose> 51

13 September 2001 16:11

This example matches against each of the qualifying <title>

elements, but it must test each <title> element to determine
how to format it. Here, formatting depends on whether the
element is first. The string Start Here: is applied before the first
<title> element, and the string Then Read: is placed before the
others.

<xsl:comment>

<xsl:comment>
...

</xsl:comment>

This inserts a comment into the XML document. For example:

<xsl:comment>English material below</xsl:comment>

is translated into a comment in the XML result tree when it is
pr ocessed:

<!-- English material below -->

<xsl:copy>

<xsl:copy
[use-attribute-sets="list"]>
...

</xsl:copy>

This element copies the current node from the source docu-
ment into the output document. This copies the node itself, as
well as any namespace nodes the node possesses. However, it
does not copy the node’s content or attributes.

The use-attribute-sets attribute contains a whitespace- sepa-
rated list with names of <xsl:attribute-set> elements. These
attribute sets are merged, and all attributes in the merged set
ar e added to the copied element. The use-attribute-sets attribute
can only be used when the node copied is an element node.

52 XML Pocket Reference

13 September 2001 16:11

<xsl:copy-of>

<xsl:copy-of
select="expression"/>

The <xsl:copy-of> instruction inserts the result tree fragment
identified by the select attribute into the output document.
This copies not only the specific node or nodes identified by
the expression, but also all those nodes’ children, attributes,
namespaces, and descendants. (This is how it differs from
xsl:copy.) If the expression selects something other than a
node set or a result tree fragment (e.g., a number), then the
expr ession is converted to its string value, and the string is
output.

<xsl:decimal-for mat>

<xsl:decimal-format
[name ="name"]
[decimal-separator = "char"]
[grouping-separator = "char"]
[infinity = "string"]
[minus-sign = "char"]
[NaN = "string"]
[percent = "char"]
[per-mille = "char"]
[zero-digit = "char"]
[digit = "char"]
[pattern-separator = "char"]/>

The <xsl:decimal-for mat> element defines a pattern by which
the XPath for mat-number() function can convert floating-point
numbers into text strings. The attributes are specified as
follows:

name

The string by which the for mat-number() function identifies
which <xsl:decimal-for mat> element to use. If this attribute
is omitted, then the element establishes the default deci-
mal format used by the for mat-number() function.

<xsl:decimal-for mat> 53

13 September 2001 16:11

decimal-separator

The character that separates the integer part from the
fractional part in a floating-point number. This is a period
(decimal point) in English and a comma in French. It may
be something else again in other languages.

gr ouping-separator

The character that separates groups of digits (e.g., the
comma that separates every three digits in English).

infinity

The string that repr esents IEEE 754 infinity; Infinity by
default.

minus-sign

The character prefixed to negative numbers; a hyphen by
default.

NaN

The string that repr esents IEEE 754 Not a Number; NaN
by default.

per cent

The character that repr esents a percent; % by default.

per-mille

The character that repr esents a per mille; #x2030 by
default.

zer o-digit

The character that repr esents zer o in a format pattern;
0 by default.

digit

The character that repr esents a digit in a format pattern;
by default.

patter n-separator

The character that separates positive and negative sub-
patter ns in a format pattern; a semicolon (;) by default.

54 XML Pocket Reference

13 September 2001 16:11

<xsl:element>

<xsl:element
name="name"
[namespace="URI"]
[use-attribute-sets="list"]>
...

</xsl:element>

This inserts the element <name> into the result document. For
example:

<xsl:element name="book">
<xsl:element name="chapter">

<xsl:text>The Opening of Pandoras Box</xsl:text>
</xsl:element>

</xsl:element>

This creates the following in the result tree:

<book>
<chapter>The Opening of Pandoras Box</chapter>

</book>

Elements without explicit namespaces use the default name-
space of their current context. Also, you can create a name-
space for the element yourself:

<xsl:element name="OReilly:Book"
namespace="http://www.oreilly.com">

This employs the namespace associated with the URI
http://www.or eilly.com with the element. If no namespaces are
associated with the URI, it becomes the default namespace.

The use-attribute-sets attribute contains a whitespace- sepa-
rated list with names of <xsl:attribute-set> elements. These
attribute sets are merged, and all attributes in the merged set
ar e added to the element.

<xsl:element> 55

13 September 2001 16:11

<xsl:fallback>

<xsl:fallback> ... </xsl:fallback>

This element is used in conjunction with extension elements
that aren’t a part of XSLT 1.0. <xsl:fallback> defines a template
to be invoked if the enclosing element is undefined. It’s
possible to test the availability of an element with element-

available().

<xsl:for-each>

<xsl:for-each select="node-set-expression"/>

The <xsl:for-each> dir ective allows you to select any number of
nodes in an XML document that match the same expression
given by select. For example, consider the following XML doc-
ument:

<book>
<chapter>

<title>A Mystery Unfolds</title>
<paragraph>
It was a dark and stormy night...
</paragraph>

</chapter>
<chapter>

<title>A Sudden Visit</title>
<paragraph>
Marcus found himself sleeping...
</paragraph>

</chapter>
</book>

Note there are two <chapter> siblings in the document. Let’s
assume we want to provide an HTML numbered list for each
<title> element that is the direct child of a <chapter> element,
which in turn has a <book> element as a parent. The following
template perfor ms the task:

56 XML Pocket Reference

13 September 2001 16:11

<xsl:template match="book>

<xsl:for-each select="chapter">

<xsl:process select="title">
</xsl:for-each>

</xsl:template>

After formatting, here is what the result looks like:

A Mystery Unfolds
A Sudden Visit

The XSLT processor processes a <title> element in each <chap-

ter> element that is the child of a <book> element. The result is
a number ed list of chapters that could be used for a table of
contents.

<xsl:if>

<xsl:if
test="expression">
...

</xsl:if>

You can use the <xsl:if> conditional to select a specific ele-
ment while inside a template. The <xsl:if> element uses the test

attribute to determine whether to include the contents of an
element. The test attribute takes an expression that tests for a
specific element or attribute. For example:

<xsl:template match="chapter/title">
<xsl:apply-templates/>
<xsl:if test="not([last()])">, </xsl:if>

</xsl:template>

This template matches each qualifying <title> element but
inserts commas only after those that are not the last <title> ele-
ment. The result is a standard comma-separated list.

<xsl:if> 57

13 September 2001 16:11

<xsl:impor t>

<xsl:import href="address"/>

This specifies the URI of an XSL stylesheet whose rules should
be imported into this stylesheet. The import statement must
occur before any other elements in the stylesheet. If a conflict
arises between matching rules, rules in the XSL stylesheet per-
for ming the import take precedence over rules in the
imported stylesheet. In addition, if more than one stylesheet is
imported into this document, the most recently imported
stylesheet takes precedence over stylesheets imported before
it:

<xsl:import href="webpage.xsl"/>

This example imports the stylesheet found in the webpage.xsl
file.

<xsl:include>

<xsl:include href="address"/>

This specifies the name of an XSL stylesheet that is to be
included in the document. The include pr ocessing will replace
the <xsl:include> statement with the contents of the file.
Because the included document has been inserted in the
referring stylesheet, any included rules have the same prefer-
ence as those in the referring stylesheet (compare to
<xsl:import>):

<xsl:include href="chapterFormats.xsl"/>

<xsl:key>

<xsl:key name="name"
match="pattern"
use="expression"/>

58 XML Pocket Reference

13 September 2001 16:11

Keys are comparable to identifiers in XML. This element is
used in <xsl:stylesheet> to create a refer ence to elements speci-
fied by the pattern and expression values. For example:

<xsl:key name="chap" match="chapter" use="@title"/>

This element creates a key named chap to identify chapters by
title. You can then refer ence a chapter with an XPath function
such as:

key("chap", "The XSL Language")

<xsl:message>

<xsl:message [terminate="yes|no"]>
...

</xsl:message>

The <xsl:message> instruction asks the XSLT processor to send
a message to the user or calling program. Exactly what it does
with those messages depends on the processor. One common
use of <xsl:message> is to print debugging information.

If the ter minate attribute is present and has the value yes, then
the XSLT processor should halt after the message has been
deliver ed and acted on.

<xsl:namespace-alias>

<xsl:namespace-alias
stylesheet-prefix="prefix1"
result-prefix="prefix2"/>

The <xsl:namespace-alias> element declares that one name-
space URI (pr efix1) in the stylesheet should be replaced by a
dif ferent namespace URI (pr efix2) in the result tree. Either
attribute value can be set to #default to indicate that the non-
pr efixed default namespace is to be used.

<xsl:namespace-alias> 59

13 September 2001 16:11

<xsl:number>

<xsl:number
[value = "expression"]
[count = "pattern"]
[from = "pattern"]
[level = "single|multiple|any"]
[format = "letter/digit"]
[lang = "langcode"]
[letter-value = "alphabetic|traditional"]
[grouping-separator = "char"]
[grouping-size = "number"] />

This element inserts a formatted integer into the result tree.
The value of this number can be determined by the attributes
or generated by the XSLT processor. The attributes are
described as follows:

value

This attribute contains an XPath expression retur ning the
number to be formatted. If necessary, the number is
rounded to the nearest integer. Most commonly, the value

attribute is omitted, in which case the number is calcu-
lated from the position of the current node in the source
document. The position is calculated as specified by the
level, count, and fr om attributes.

count

This attribute contains a pattern that specifies which
nodes should be counted at those levels. The default is to
count all nodes of the same node type (element, text,
attribute, etc.) and name as the current node.

fr om

This attribute contains a pattern identifying the node from
which counting starts; that is, it says which node is
number 1.

level

This attribute can be set to single (all preceding siblings of
the ancestor of the current node that match the count pat-

60 XML Pocket Reference

13 September 2001 16:11

ter n), multiple (for nested counting of each type of ances-
tor of the current node that match the count patter n), or
any (count all nodes in the document that match the count

patter n and precede the current node). The default is sin-

gle.

for mat

This attribute determines how the list will be numbered.
For mat tokens include:

• 1, 2, 3, 4, 5, 6

• 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12

• A, B, C, D . . . Z, AA, AB, AC . . .

• a, b, c, d . . . z, aa, ab, ac . . .

• i, ii, iii, iv, v, vi, vii, viii, ix, x, xi . . .

• I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII . . .

You can change the starting point as well. For instance,
setting the format token to 5 would create the sequence
5, 6, 7, 8, 9.

lang

This contains the RFC 1766 language code describing the
language in which the number should be formatted (e.g.,
en or fr).

letter-value

The default is traditional. However, you can set this to
alphabetic to indicate that a format of I should start the
sequence I, J, K, L, M, N rather than I, II, III, IV, V, VI.

gr ouping-separator

This specifies the character that separates groups of dig-
its. For instance, in English this is customarily the comma
that separates every three digits, as in 2,987,667,342. In
Fr ench a space is used instead so this number would be
written as 2 987 667 342.

<xsl:number> 61

13 September 2001 16:11

gr ouping-size

This specifies the number of digits in each group. In most
languages, including English, digits are divided into
gr oups of three. However, a few languages use groups of
four instead.

<xsl:otherwise>

<xsl:otherwise>...</xsl:otherwise>

This attribute specifies the default case in an <xsl:choose> ele-
ment. See the “<xsl:choose>” entry earlier in this refer ence
section.

<xsl:output>

<xsl:output
[method = "xml|html|text"]
[version = "nmtoken"]
[encoding = "encoding_name"]
[omit-xml-declaration = "yes|no"]
[standalone = "yes|no"]
[doctype-public = "public_id"]
[doctype-system = "system_id"]
[cdata-section-elements = "element1 element2 ..."]
[indent = "yes|no"]
[media-type = "string"]/>

The <xsl:output> element helps determine the exact formatting
of the XML document produced when the result tree is stored
in a file, written onto a stream, or otherwise serialized into a
sequence of bytes. It has no effect on the production of the
result tree itself. The following attributes are defined:

method

The default method is xml, which simply implies that the
serialized output document will be a well-formed parsed
entity or XML document. If method is set to html, or if the
method attribute is not present and the root element of
the output tree is <html>, then empty element tags such
as
 ar e converted to
 when output, and a variety
of other changes are to attempt to generate HTML that is

62 XML Pocket Reference

13 September 2001 16:11

mor e compatible with existing browsers. The text method
only outputs the contents of the text nodes in the output
tr ee. It strips all markup. XSLT processors are also
allowed to recognize and support other values such as
TeX or RTF.

version

This contains a name token that identifies the version of
the output method. In practice, this has no effect on the
output.

encoding

This contains the name of the encoding the outputter
should use, such as ISO-8859-1 or UTF-16.

omit-xml-declaration

If this has the value yes, then no XML declaration is
included. If it has the value no or is not present, then an
XML declaration is included.

standalone

This sets the value of the standalone attribute in the XML
declaration. Like that attribute, it must have the value yes

or no.

doctype-public

This specifies the public identifier used in the document
type declaration.

doctype-system

This specifies the system identifier used in the document
type declaration.

cdata-section-elements

This is a whitespace-separated list of the qualified ele-
ment names in the result tree whose contents should be
emitted using a CDATA section rather than a character
refer ence.

indent

If this has the value yes, the processor is allowed (but not
requir ed) to insert extra whitespace to attempt to “pretty-
print” the output tree. The default is no.

<xsl:output> 63

13 September 2001 16:11

media-type

This specifies the MIME media type of the output, such as
text/html or text/xml.

<xsl:param>

<xsl:param
name="name"
[select="expression"]>
...

</xsl:param>

An <xsl:param> element binds its contents to the specified
name, which can be called from and included in a template.
As a top-level element, <xsl:param> pr ovides a default value
used if the named parameter is not supplied when a
stylesheet is called. An <xsl:param> element may also appear
inside an <xsl:template> element to receive the values of the
parameters passed in with <xsl:with-param>, and to provide a
default value good only inside that template for the case
wher e a proper <xsl:with-param> element is not used. If the
select attribute is included, its value becomes the default value
of the parameter, in which case the value of the content
should be empty.

<xsl:preser ve-space>

<xsl:preserve-space
elements="element1 element2 ..."/>

This declares one or more XML elements in which all white-
space located between the opening and closing tags is pre-
served; hence, the XML processor will not remove it. By
default, whitespace is not removed from elements; <xsl: pre-

serve-space> can override any elements declared in the
<xsl:strip-space> dir ective:

<xsl:preserve-space elements="title"/>

64 XML Pocket Reference

13 September 2001 16:11

<xsl:processing-instr uction>

<xsl:processing-instruction
name="name">
...

<xsl:processing-instruction>

The <xsl:pr ocessing-instruction> element inserts a processing
instruction into the result tree. This element cannot be used to
generate an XML declaration; use <xsl:output> for that. The
name attribute specifies the target of the processing instruc-
tion.

<xsl:sor t>

<xsl:sort
select = "expression"
[data-type = "text|number"]
[lang = "langcode"]
[order = "ascending|descending"]
[case-order = "upper-first|lower-first"]/>

The <xsl:sort> instruction appears as a child of either <xsl:apply-

templates> or <xsl:for-each>. It changes the order of the context
node list from document order to some other order, such as
alphabetic. Multiple-key sorts (for example, sort by last name,
then by first name, then by middle name) can be perfor med
with multiple <xsl:sort> elements in descending order of
importance of the keys. The following attributes are defined:

select

This contains the key to sort by.

data-type

By default, sorting is purely alphabetic. However, alpha-
betic sorting leads to strange results with numbers. For
instance, 10, 100, and 1000 all sort before 2, 3, and 4.
You can specify numeric sorting by setting the data-type

attribute to number.

<xsl:sor t> 65

13 September 2001 16:11

lang

Sorting is language dependent. The language can be
adjusted by setting the lang attribute to an RFC 1766 lan-
guage code. The default language is system dependent.

or der

This specifies the order by which strings are sorted. The
value can be either descending or ascending. The default is
ascending.

case-or der

The case-order attribute can be set to upper-first or lower-

first to specify whether uppercase letters sort before low-
ercase letters or vice versa. The default depends on the
language.

<xsl:strip-space>

<xsl:strip-space
elements="element1 element2 ..."/>

This declares an XML element or list of elements in which all
whitespace located between the opening and closing tags is
insignificant and should be removed by the XSL processor:

<xsl:strip-space elements="title"/>

Note that this is not necessarily the same as the
xml:space="default" attribute, which allows the XSL processor
mor e fr eedom to decide how to handle whitespace.

<xsl:stylesheet>

<xsl:stylesheet
version = "number"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
[id = "id"]
[extension-element-prefixes = "prefix1 prefix2..."]
[exclude-result-prefixes = "prefixa prefixb..."]>
...

</xsl:stylesheet>

66 XML Pocket Reference

13 September 2001 16:11

The <xsl:stylesheet> element is the root element for XSLT
stylesheets. The contents of this element must first contain any
<xsl:import> elements, followed by any other top-level ele-
ments in any order. <xsl:stylesheet> uses the following
attributes:

version

The version number of XSLT used by the stylesheet.

xmlns:xsl

This attribute contains a standard namespace declaration
that maps the prefix xsl to the namespace URI
http://www.w3.or g/1999/XSL/T ransform. The prefix can
be changed if necessary. This attribute is technically
optional, but de facto requir ed.

id

Any XML name that’s unique within the stylesheet and is
of type ID.

extension-element-pr efixes

A whitespace-separated list of namespace prefixes used
by extension elements in this document.

exclude-r esult-pr efixes

A whitespace-separated list of namespace prefixes whose
declarations should not be copied into the output docu-
ment. If a namespace is needed in the output, it will be
copied regardless.

<xsl:template>

<xsl:template
[match = "pattern"]
[priority = "number"]
[name = "name"]
[mode = "mode"]>
...

</xsl:template>

The <xsl:template> top-level element is the key to all of XSLT.
The match attribute contains a pattern against which nodes are
compar ed as they’re processed. If the pattern is the best

<xsl:template> 67

13 September 2001 16:11

match for a node, then the contents are instantiated and
inserted into the output tree. This element uses the following
attributes:

match

A patter n against which nodes can be compared. This
patter n is a location path that uses the abbreviated XPath
syntax. Only the child and attribute axes may be used.
The // separator may also be used.

priority

A number. In the event that more than one template
matches a given node, the one that most specifically
matches the node is chosen. If several templates match a
node with the same level of specificity, then the template
with the highest value of the priority attribute is instanti-
ated. If several matching templates have equal priorities,
then the last one in the stylesheet is chosen (the proces-
sor may also throw an error in this situation).

name

A name by which this template can be invoked from an
<xsl:call-template> element rather than by node matching.

mode

The template’s mode. If the <xsl:template> element has a
mode, then this template is only matched when the mode

attribute of the calling instruction matches the value of
this mode attribute.

<xsl:text>

<xsl:text>
[disable-output-escaping="yes|no"]>
...

</xsl:text>

This inserts text verbatim into the document. For example:

<xsl:text>The price is $20.00.</xsl:text>

68 XML Pocket Reference

13 September 2001 16:11

is inserted into the XML document as:

The price is $20.00.

XML special characters (such as & and <) included in the con-
tent of this element are escaped (i.e., replaced by character
entities) in the output by default. The attribute disable-output-

escaping can be set to yes to disable this behavior.

<xsl:value-of>

<xsl:value-of select="expression">
[disable-output-escaping="yes|no"]/>

This extracts a specific value from a source tree. The select

attribute is a single pattern-matching expression that resolves
to the value of a string, an element, or an attribute:

<xsl:template match="index">
This index is <xsl:value-of select="@(type)">
<xsl:apply-templates/>

</xsl:template>

The select attribute extracts the value of an element or
attribute in the source tree and prints it verbatim in the result
tr ee. XML special characters (such as & and <) included in the
content of this element are escaped (i.e., replaced by charac-
ter entities) in the output by default. The attribute disable-out-

put-escaping can be set to yes to disable this behavior.

<xsl:variable>

<xsl:variable
name="name"
[select="expression"]>
...

</xsl:variable>

The top-level <xsl:variable> element binds a name to a value of
any type (string, number, node set, etc.). The value can then
be derefer enced elsewher e in the stylesheet using the form
$name in attribute value templates. Once a variable name has
been assigned a value, it cannot change. The select attribute is

<xsl:variable> 69

13 September 2001 16:11

an optional expression that sets the value of the variable. If
<xsl:variable> has a select attribute, then it must be an empty
element.

<xsl:when>

<xsl:when
test="expression">
...

</xsl:when>

This is a conditional for testing in an <xsl:choose> element. See
the “<xsl:choose>” entry earlier in this refer ence section.

<xsl:with-param>

<xsl:with-param
name="name"
[select="expression"]>
...

</xsl:with-param>

The <xsl:with-param> element passes a named parameter to a
template that expects it. It can be a child either of <xsl:apply-

templates> or <xsl:call-template>. The parameter is received in
the <xsl:template> by an <xsl:param> element with the same
name. If a template expects to receive a particular parameter
and doesn’t get it, then it can take the default from the value
of the <xsl:param> element instead.

XPath
XPath is a recommendation of the World Wide Web Consor-
tium (W3C) for locating nodes in an XML document tree.
XPath is not designed to be used alone but in conjunction
with other tools, such as XSLT or XPointer. These tools use
XPath intensively and extend it for their own needs through
new functions and new basic types.

70 XML Pocket Reference

13 September 2001 16:11

XPath provides a syntax for locating a node in an XML docu-
ment. It takes its inspiration from the syntax used to denote
paths in filesystems such as Unix. This node, often called the
context node, depends on the context of the XPath expres-
sion. For example, the context of an XSLT expr ession found
in an <xsl:template match="para"> template will be the selected
<para> element (recall that XSLT templates use XPath expres-
sions). This node can be compared to a Unix shell’s current
dir ectory.

Given our earlier XML examples, it is possible to write the fol-
lowing expressions:

chapter

Selects the <chapter> element descendants of the context
node

chapter/para

Selects the <para> element descendants of the <chapter>

element children of the context node

../chapter

Selects the <chapter> element descendants of the parent of
the context node

./chapter

Selects the <chapter> element descendants of the context
node

*

Selects all element children of the context node

*/para

Selects the <para> grandchildr en of the context node

.//para

Selects the <para> element descendants (children, chil-
dr en of children, etc.) of the context node

/para

Selects the <para> element children of the document root
element

XPath 71

13 September 2001 16:11

In addition, XPath recognizes the at symbol (@) for selecting
an attribute instead of an element. Thus the following expres-
sions can be used to select an attribute:

para/@id

Selects the id attribute of the <para> element descendants
of the context node

@*

Selects all the attributes in the context node

Paths can be combined using the | operator. For example,
intr o | chapter selects the <intr o> and <chapter> elements of the
childr en of the context node.

Certain functions can also be included in the path. The func-
tions must retur n a node or set of nodes. The functions avail-
able are:

Function Selection

node() Any node (of any type)

text() Text node

comment() Comment node

processing-instr uction() Pr ocessing-instruction node

id(id) Node whose unique identifier is id

The id() function is especially helpful for locating a node by
its unique identifier (recall that identifiers are attributes
defined by the DTD). For example, we can write the expres-
sion id("xml-r ef")/title to select the <title> element whose parent
has the xml-r ef identifier.

The preceding examples show that the analogy with file paths
is rather limited. However, this syntax for writing an XPath
expr ession is a simplification of the more complete XPath syn-
tax where an axis precedes each step in the path.

72 XML Pocket Reference

13 September 2001 16:11

Axes

Axes indicate the direction taken by the path. In the previous
examples, the syntactic qualifiers such as / for root, .. for par-
ent, and // for descendant, are abbr eviations that indicate the
axis of the node search. These are some of the simple axes on
which to search for a node.

XPath defines other search axes that are indicated by a prefix
separated from the rest of the XPath expression (called loca-
tion-steps) by a double colon. For example, to indicate that
we requir e a para node to be the parent of the context node
in the document, we could write the expression pr eced-

ing::para. XPath defines 13 axes:

Axis Selection

self The context node itself (abbre viated as .)

child The children of the context node (by default)

descendant The descendants of the context node; a
descendant is a child, or a child of a child, and
so on

descendant-or-self Same as the descendant, but also contains the
context node (abbreviated as //)

parent The parent of the context node (abbreviated as
..)

ancestor The ancestors of the context node

ancestor-or-self The same nodes as the ancestor, plus the con-
text node

following-sibling Siblings (having the same parent as the context
node) in the same document that are after the
context node

preceding-sibling Siblings in the same document that are befor e
the context node

following All nodes in the same document that are after
the context node

preceding All nodes in the same document that are befor e
the context node

XPath 73

13 September 2001 16:11

Axis Selection

attribute The attributes of the context node (abbreviated
as @)

namespace The namespace nodes of the context node

It is possible to write the following expressions:

ancestor::chapter

Selects the <chapter> elements that are ancestors of the
context node

following-sibling::para/@title

Selects the title attributes of <para> elements in siblings of
the context node that follow it in document order

id('xpath')/following::chapter/node()

Selects all the nodes in the <chapter> element following
the element with the xpath identifier in document order

The result of an XPath expression is a node-set. It may be
helpful to filter a node-set with predicates.

Predicates

A predicate is an expression in square brackets that filters a
node-set. For example, we could write the following
expr essions:

//chapter[1]

Selects the first <chapter> element in the document

//chapter[@title='XPath']

Selects the <chapter> element in the document where the
value of the title attribute is the string XPath

//chapter[section]

Selects the <chapter> elements in the document with a
<section> child

<para[last()]>

Selects the last <para> element child of the context node

74 XML Pocket Reference

13 September 2001 16:11

Note that a path in a predicate does not change the path pre-
ceding the predicate, but only filters it. Thus, the following
expr ession:

/book/chapter[conclusion]

selects a <chapter> element that is a child of the <book> ele-
ment at the root of the document with a descendant of type
conclusion, but not a <conclusion> element itself.

Ther e may be more than one predicate in an expression. The
following expression:

/book/chapter[1]/section[2]

selects the second section of the first chapter. In addition, the
order of the predicates matters. Thus, the following expres-
sions are not the same:

chapter[example][2]

Selects the second <chapter> that includes <example> ele-
ments

chapter[2][example]

Selects the second <chapter> element if it includes at least
one <example> element

An expression can include logical or comparison operators.
The following operators are available:

Operator Meaning

or Log ical or

and Logical and

not() Negation

= != Equal to and differ ent fr om

< <= Less than and less than or equal to

> >= Mor e than and more than or equal to

XPath 75

13 September 2001 16:11

The character < must be entered as < in expressions. Paren-
theses may be used for grouping. For example:

chapter[@title = 'XPath']

Selects <chapter> elements where the title attribute has the
value XPath

chapter[position() < 3]

Selects the first two <chapter> elements

chapter[position() != last()]

Selects <chapter> elements that are not in the last position

chapter[section/@title='examples' or subsection/@title= 'examples']

Selects <chapter> elements that include <section> or <sub-

section> elements with the title attribute set to examples

XPath also defines operators that act on numbers. The
numeric operators are +, –, *, div (division of real numbers),
and mod (modulo).

Functions

In the previous examples we saw such XPath functions as
position() and not(). XPath defines four basic types of functions
that retur n: booleans (true or false), numbers (real numbers),
strings (strings of characters), and node-sets. The functions are
gr ouped based on the datatypes they act upon.

The following functions deal with node-sets (optional argu-
ments are followed by a question mark):

last()

Retur ns the total number of nodes of which the context
node is a part

position()

Retur ns a number that is the position of the context node
(in document order or after sorting)

76 XML Pocket Reference

13 September 2001 16:11

count(node-set)

Retur ns the number of nodes contained in the specified
node-set

id(name)
Retur ns the node with the identifier name

local-name([node-set])

Retur ns a string that is the name (without the namespace)
of the first node in document order of the node-set, or the
context-node, if the argument is omitted

namespace-uri([node-set])

Retur ns a string that is the URI for the namespace of the
first node in document order of the node-set, or the con-
text node, if the argument is omitted

name([node-set])

Retur ns a string that is the full name (with namespace) of
the first node in document order of the node-set, or the
context node, if the argument is omitted

The following functions deal with strings:

string(object)

Converts its argument object, which can be of any type, to
a string.

concat(str1, str2, . . .)

Retur ns the concatenation of its arguments.

starts-with(str1, str2)

Retur ns true if the first argument string (str1) starts with
the second argument string (str2).

contains(str1, str2)

Retur ns true if the first argument string (str1) contains the
second argument string (str2).

substring-befor e (str1, str2)

Retur ns the substring of the first argument string (str1)
that precedes the first occurrence of the second argument
string (str2).

XPath 77

13 September 2001 16:11

substring-after (str1, str2)

Retur ns the substring of the first argument string (str1)
that follows the first occurrence of the second argument
string (str2).

substring(str, num[, length])

Retur ns the substring of the first argument (str) starting at
the position specified by the second argument (num) with
the length specified in the third. If the third argument is
not specified, the substring continues to the end of the
string.

string-length(str)

Retur ns the number of characters in the string.

nor malize-space(str)

Retur ns the argument string with whitespace normalized
by stripping any leading and trailing whitespace and
replacing sequences of whitespace characters by a single
space.

translate(str1, str2, str3)

Retur ns the first argument string (str1) with occurrences of
characters in the second argument string (str2) replaced
by the character at the corresponding position in the third
argument string (str3).

The following functions deal with boolean operations:

boolean(object)

Converts its argument (object), which can be of any type,
to a boolean

not(boolean)

Retur ns true if its argument evaluates as false

true()

Retur ns true

false()

Retur ns false

78 XML Pocket Reference

13 September 2001 16:11

lang(str)

Retur ns true if the language of the document (or the clos-
est ancestor indicating the language) is the language
passed in the argument (str)

The following functions deal with numbers:

number([obj])

Converts its argument (obj), which can be of any type, to
a number (using the context node if the argument is
omitted.)

sum(node-set)

Retur ns the sum of the result of converting every node in
the node-set to a number. If any node is not a number, the
function retur ns NaN (not a number).

floor(num)

Retur ns the largest integer that is not greater than the
argument (num).

ceiling(num)

Retur ns the smallest integer that is not less than the argu-
ment (num).

round(num)

Retur ns the integer that is closest to the argument (num).

These functions can be used not only in XPath expressions,
but in XSLT elements as well. For example, to count the num-
ber of sections in a text, we could add the following to a
stylesheet:

<xsl:text>The number of sections is </xsl:text>
<xsl:value-of select="count(//section)"/>

Additional XSLT Functions and Types

XSLT defines additional functionality for its own needs. One
featur e is a new datatype (in addition to the four datatypes
defined by XPath): the result tree fragment. This datatype is
comparable to a node-set, except that its nodes are in a tree

XPath 79

13 September 2001 16:11

rather than an unorganized collection. All the operations that
ar e per mitted for node-sets are per mitted for tree fragments.
However, you cannot use the /, //, or [] operators on result
tr ee fragments.

XSLT also defines additional functions:

document(obj[, node-set])

Retur ns a node-set that comprises the document whose
URI (related to the second, optional argument) was
passed as the first argument obj. If the second argument
is omitted, the context node is used.

key(str, obj)

Retur ns the node-set of the nodes keyed by obj in the key
named str (see the section “XSLT Elements” for an exam-
ple).

for mat-number(num, str1[, str2])

Retur ns a string containing the formatted value of num,
according to the format-patter n string in str1 and the deci-
mal-for mat string in str2 (or the default decimal- for mat
if there is no third argument).

curr ent()

Retur ns the current node.

unparsed-entity-uri(str)

Retur ns the URI of the unparsed entity given by str.

generate-id(node-set)

Generates a unique ID for the first node in the given
node-set.

system-pr operty(str)

Retur ns the value of the system property passed as a
string str. The system properties are: xsl:version (the ver-
sion of XSLT implemented by the processor), xsl:vendor (a
string identifying the vendor of the XSL processor), and
xsl:vendor-url (the vendor’s URL).

80 XML Pocket Reference

13 September 2001 16:11

XPointer and XLink
The final pieces of XML we cover are XPointer and XLink.
These are separate standards in the XML family dedicated to
working with XML links. Before we delve into them, however,
we should warn you that the standards described here are not
final as of publication time.

It’s important to remember that an XML link is only an asser-
tion of a relationship between pieces of documents; how the
link is actually presented to a user depends on a number of
factors, including the application processing the XML docu-
ment.

Unique Identifiers

To create a link, we must first have a labeling scheme for XML
elements. One way to do this is to assign an identifier to spe-
cific elements we want to refer ence using an ID attribute:

<paragraph id="attack">
Suddenly the skies were filled with aircraft.
</paragraph>

You can think of IDs in XML documents as street addresses:
they provide a unique identifier for an element within a docu-
ment. However, just as there might be an identical address in
a dif ferent city, an element in a differ ent document might
have the same ID. Consequently, you can tie together an ID

with the document’s URI, as shown here:

http://www.oreilly.com/documents/story.xml#attack

The combination of a document’s URI and an element’s ID

should uniquely identify that element throughout the uni-
verse. Remember that an ID attribute does not need to be
named id, as shown in the first example. You can name it any-
thing you want, as long as you define it as an XML ID in the
document’s DTD. (However, using id is preferr ed in the event
that the XML processor does not read the DTD.)

XPointer and XLink 81

13 September 2001 16:11

Should you give an ID to every element in your documents?
No. Odds are that most elements will never be refer enced. It’s
best to place IDs on items that a reader would want to refer to
later, such as chapter and section divisions, as well as impor-
tant items, such as term definitions.

ID References

The easiest way to refer to an ID attribute is with an ID refer-
ence, or IDREF. Consider this example:

<?xml version="1.0" standalone="yes"?>
<DOCTYPE document [

<!ELEMENT document (employee*)>
<!ELEMENT employee (#PCDAT A)>
<!ATTLIST employee empnumber ID #REQUIRED>
<!ATTLIST employee boss IDREF #IMPLIED>

]>
<employee empnumber="emp123">Jay</employee>
<employee empnumber="emp124">Kay</employee>
<employee empnumber="emp125" boss="emp123">Frank</employee>
<employee empnumber="emp126" boss="emp124">Hank</employee>

As with ID attributes, an IDREF is typically declared in the
DTD. However, if you’r e in an environment where the proces-
sor might not read the DTD, you should call your ID refer-
ences IDREF.

The chief benefit of using an IDREF is that a validating parser
can ensure that every one points to an actual element; unlike
other forms of linking, an IDREF is guaranteed to refer to
something within the current document.

As we mentioned earlier, the IDREF only asserts a relationship
of some sort; the stylesheet and the browser will determine
what is to be done with it. If the referring element has some
content, it might become a link to the target. But if the refer-
ring element is empty, the stylesheet might instruct the
br owser to perfor m some other action.

As for the linking behavior, remember that in HTML a link can
point to an entire document (which the browser will

82 XML Pocket Reference

13 September 2001 16:11

download and display, positioned at the top) or to a specific
location in a document (which the browser will display, usu-
ally positioned with that point at the top of the screen). How-
ever, linking changes drastically in XML. What does it mean to
have a link to an entire element, which might be a paragraph
(or smaller) or an entire group of chapters? The XML applica-
tion attempts some kind of guess, but the display is best con-
tr olled by the stylesheet. For now, it’s best to simply make a
link as meaningful as you can.

XPointer

XPointer is designed to resolve the problem of locating an
element or range of elements in an XML document. It is possi-
ble to do this in HTML if the element is refer enced by an
 tag. Here, a link is made for the section of
the document using the tag.

Fragment-identifier syntax

As we saw earlier, XML has this type of functionality through
its unique identifiers. It is possible to locate an element with
an identifier using a link such as the following:

document.xml#identifier

wher e identifier is a valid XPointer fragment identifier. How-
ever, this form is a simplification that is tolerated for compati-
bility with previous versions. The most common syntax for an
XPointer fragment identifier is:

document.xml#xpointer(xpath)

Her e xpath is an expression consistent with the XPath specifi-
cation. It is the right thing to do in this case because it can be
used to locate a node-set within a document. The link docu-

ment.xml#identifier can be rewritten as:

document.xml#xpointer(id("identifier"))

XPointer and XLink 83

13 September 2001 16:11

Ther e is a third possible form made up of a whole number
separated by slashes. Each whole number selects an n th child
fr om its predecessor in the expression.

Several fragment identifiers can be combined by placing them
one after the other. For example:

document.xml#xpointer(...)xpointer(...)...

The application must evaluate the fragments, from left to
right, and use the first valid fragment. This functionality is
useful for two reasons:

• It offers several solutions, the first of which is based on
suppositions that may prove to be false (and produce an
err or). For example, we can try to locate a fragment in a
document using an identifier, then (if no ID was defined)
using the attribute value with the name id. We would
write the fragment:

xpointer(id("conclusion"))xpointer(//*[@id=conclusion])

• It also allows for future specifications. If an XPointer
application encounters an expression that does not begin
with xpointer, it will simply ignore it and move on to the
next expression.

As we mentioned earlier, the XPointer application is responsi-
ble for link rendering, but it is also responsible for error han-
dling. If the link’s URL is wrong or if the fragment identifier is
not valid, it is up to the application to manage the situation
(by displaying an error message, for example).

XPointer datatypes

Earlier we showed you how to locate an XML node within a
document. XPointer goes even further by defining the point,
range, and position (location) types:

Point
Can precede or follow a node (point of type node) or a
character (thus, a point of type character).

84 XML Pocket Reference

13 September 2001 16:11

Range
Is defined as the content of a document between two
points (where the starting point cannot be located after
the ending point within a document). A range cannot be
reduced to a set of nodes and characters because it can
include fragments of the former.

Position
Is a generalized concept of the node. It can be a node, a
point, or a range.

Equipped with these new datatypes, XPointer can set out to
locate a resource in an XML document.

Manipulation of points, ranges, and positions

A range is defined using the to operator. This operator is
enclosed in starting points (to the left) and ending points (to
the right). The second point is calculated using the first point
as a refer ence. For example, to make a range from the begin-
ning of the first paragraph to the end of the last paragraph in
a section where the ID is XPointer, you would write:

xpointer(id("XPointer")/para[1] to
id("XPointer")/para[last()])

or:

xpointer(id("XPointer")/para[1] to
following-sibling::para[last()])

A range defined this way may be compared with the selection
a user can make in a document with a mouse.

Naturally, XPointer also has functions to manipulate points
and ranges. The available functions are:

string-range(positions, string[, of fset][, length])

This function can be used to search for strings in a docu-
ment and retur n a set of positions where they appear.
The first argument is an XPath expression — a set of posi-
tions where the search must take place. The second is the
string being searched. To search for the string XML in

XPointer and XLink 85

13 September 2001 16:11

<chapter> elements where the title attribute is XPointer, we
would write the expression:

string-range(//chapter[@title=XPointer], "XML")

To index the word XML by pointing to the first occur-
rence of the word in an element such as <para>, use the
following expression:

string-range(//para, "XML")[1]

This function takes two other optional arguments. The
third argument, of fset, is a number that indicates the first
character to be included in the result range offset from
the beginning of the string searched for. The fourth argu-
ment, length, gives the length of the result range. By
default, of fset has a value of 1, thus the result range
begins before the first character in the string. length has a
default value such that the result range covers the entire
string searched.

range(positions)

This function takes an XPath expression and retur ns a set
of ranges (a location set) where each includes the posi-
tions passed as parameters. It can be used to convert a
set of positions (which may be nodes) to a set compris-
ing ranges only.

range-inside(positions)

This function takes an XPath expression and retur ns a set
of ranges (a location set) for each of the positions passed
as arguments.

start-point(positions)

This function takes an XPath expression and retur ns the
starting point of the range for each of the positions
passed as arguments. The result is a set of points.

end-point(positions)

This function takes an XPath expression and retur ns the
end point of the range for each of the positions passed as
arguments. The result is a set of points.

86 XML Pocket Reference

13 September 2001 16:11

her e()

This function is defined only within an XML document. It
retur ns a unique position comprising the element con-
taining the XPointer expression or the attribute that con-
tains it.

origin()

This function can be used only for links triggered by the
user. It retur ns the element’s position to the original link.

XLink

Now that we know about XPointer, let’s take a look at some
inline links:

<?xml version="1.0"?>
<simpledoc xmlns:xlink="http://www.w3.org/1999/xlink">
<title>An XLink Demonstration</title>
<section id="target-section">

<para>This is a paragraph in the first section.</para>
<para>More information about XLink can be found at

<reference xlink:type="simple"
xlink:href="http://www.w3.org">
the W3C
</reference>.

</para>
</section>
<section id="origin-section">

<para>
This is a paragraph in the second section.
</para>
<para>
You should go read

<reference xlink:type="simple"
xlink:href="#target-section">
the first section
</reference>

first.
</para>

</section>
</simpledoc>

The first link states that the text “the W3C” is linked to the
URL http://www.w3.or g. How does the browser know? Simple.

XPointer and XLink 87

13 September 2001 16:11

An HTML browser knows that every <a> element is a link
because the browser has to handle only one document type. In
XML, you can make up your own element type names, so the
br owser needs some way of identifying links.

XLink provides the xlink:type attribute for link identification. A
br owser knows it has found a simple link when any element
sets the xlink:type attribute to a value of simple. A simple link is
like a link in HTML—one-way and beginning at the point in
the document where it occurs. (In fact, HTML links can be
recast as XLinks with minimal effort.) In other words, the con-
tent of the link element can be selected for traversal at the other
end. Returning to the source document is left to the browser.

Once an XLink processor has found a simple link, it looks for
other attributes that it knows:

xlink:hr ef

This attribute is deliberately named to be familiar to any-
one who’s used the Web before. Its value is the URI of
the other end of the link; it can refer to an entire docu-
ment or to a point or element within that document. If
the target is in an XML document, the fragment part of
the URI is an XPointer.

This attribute must be specified, since without it, the link
is meaningless. It is an error not to include it.

xlink:r ole

This describes the nature of the object at the other end of
the link. XLink doesn’t predefine any roles; you might
use a small set to distinguish differ ent types of links in
your documents, such as cross-r efer ences, additional
reading, and contact information. A stylesheet might take
a dif ferent action (such as presenting the link in a differ-
ent color) based on the role, but the application won’t do
anything automatically.

88 XML Pocket Reference

13 September 2001 16:11

xlink:title

A title for the resource at the other end of the link can be
pr ovided, identical to HTML’s title attribute for the <a>

element. A GUI browser might display the title as a tool
tip; an aural browser might read the title when the user
pauses at the link before selecting it. A stylesheet might
also make use of the information, perhaps to build a list
of refer ences for a document.

xlink:show

This attribute suggests what to do when the link is tra-
versed. It can take the following values:

embed

The content at the other end of the link should be
retrieved and displayed where the link is. An exam-
ple of this behavior in HTML is the element,
whose target is usually displayed within the docu-
ment.

replace

When the link is activated, the browser should
replace the current view with a view of the resource
targeted by the link. This is what happens with the
<a> element in HTML: the new page replaces the
curr ent one.

new

The browser should somehow create a new context,
if possible, such as opening a new window.

other

This value specifies behavior that isn’t described by
the other values. It is up to the application to deter-
mine how to display the link.

none

This specifies no behavior.

You do not need to give a value for this attribute.
Remember that a link primarily asserts a relationship
between data; behavior is best left to a stylesheet. So

XPointer and XLink 89

13 September 2001 16:11

unless the behavior is paramount (as it might be in some
cases of embed, it is best not to use this attribute.

xlink:actuate

The second of the behavioral attributes specifies when
the link should be activated. It can take the following val-
ues:

onRequest

The application waits until the user requests that the
link be followed, as the <a> element in HTML does.

onLoad

The link should be followed immediately when it is
encounter ed by the application; this is what most
HTML browsers do with elements, unless the
user has turned off image loading.

other

The link is activated by other means, not specified
by XLink. This is usually defined by other markup in
the document.

none

This indicates no information about the activation of
the link and may be used when the link has no cur-
rent meaningful target or action.

Building Extended Links

XLink has much more to offer, including links to multiple doc-
uments and links between disparate documents (where the
XML document creating the links does not even contain any
links).

Extended links

An XLink application recognizes extended links by the pres-
ence of an xlink:type="extended" attribute that distinguishes it
fr om a simple link (such as those used in HTML). An
extended link may have semantic attributes (xlink:r ole and
xlink:title) that function just as they do for a simple link.

90 XML Pocket Reference

13 September 2001 16:11

In addition, an extended link may be one of four types as
defined by its xlink:type="type" attribute:

resour ce

Supplies the local resource for the link (generally the text
used to materialize the link)

locator

Supplies a URI for the remote document participating in
the link

ar c

Supplies a description of the potential paths among the
documents participating in the extended link

title Supplies a label for the link

Consider this example of an extended link supplying an XML
bibliography:

<biblio xlink:type="extended">
<text xlink:type="resource"

xlink:role="text">XML Bibliography</text>
<book xlink:type="locator" xlink:role="book"

xlink:href="xmlgf.xml"
xlink:title="XML Pocket Reference"/>

<book xlink:type="locator" xlink:role="book"
xlink:href="lxml.xml"

xlink:title="Learning XML"/>
<author xlink:type="locator" xlink:role="author"

xlink:href="robert-eckstein.xml"
xlink:title="Robert Eckstein"/>

<author xlink:type="locator" xlink:role="author"
xlink:href="erik-ray.xml"

xlink:title="Erik Ray"/>
<arc xlink:type="arc"/>

</biblio>

The extended link will probably be repr esented graphically as
a menu with an entry for each element, except for the last
one (arc), which has no graphical repr esentation. However,
the graphical repr esentation of the link is the application’s
responsibility. Let’s look at the role of each of the elements.

XPointer and XLink 91

13 September 2001 16:11

Resource elements

Resource elements, which include the xlink:type="r esource"

attribute, define a local resource that participates in a link. An
extended link that includes a resource is considered inline
because the file in which it is found participates in a link. A
link that has no resource is called out-of-line.

XLink applications use the following attributes:

Attr ibute Descr iption

xlink:type resource (fixed value)

xlink:r ole Role of this resource in the link (used by arcs)

xlink:title Text used by the XLink application to repr esent this
resource

In our example, the <text> element supplies the text to be dis-
played to repr esent the link.

Locator elements

Locator elements have the xlink:type="locator" attribute and use
a URI to point to a remote resource. XLink applications use
the following locator attributes:

Attr ibute Descr iption

xlink:type locator (fixed value)

xlink:hr ef URI of the resource pointed to

xlink:role Role resource pointed to (used by arcs)

xlink:title Text the XLink application uses to graphically repr esent
the resource

In our example, we use two kinds of locators: those with a
role of book that point to documents describing publications,
and those with a role of author that point to a biography.
Her e, the role is important because it tells the XLink applica-
tion the potential traversals among resources.

92 XML Pocket Reference

13 September 2001 16:11

Arc elements

Arc elements have the xlink:type="arc" attribute and determine
the potential traversals among resources, as well as the behav-
ior of the XLink application during such traversals. Arc ele-
ments may be repr esented as arrows in a diagram, linking
resources that participate in an extended link.

XLink applications use the following arc attributes:

Attr ibute Descr iption

xlink:type arc (fixed value)

xlink:fr om Indicates the role of the resource of the originating
arc

xlink:to Indicates the role of the resource of the destination
arc

xlink:show new, replace, embed, other, or none: tells the XLink
application how to display the resource to which the
arc is pointing

xlink:actuate onLoad, onRequest, other, or none: tells the XLink appli-
cation the circumstances under which the traversal is
made

xlink:arcr ole Role of the arc

xlink:title Text that may be used to repr esent the arc

The values of the xlink:show and xlink:actuate attributes have
the same meaning as they do with simple links.

Let’s go back to our example of the bibliography, where we
could define the following arc:

<arc xlink:from="text" xlink:to="book"
xlink:show="new" xlink:actuate="onRequest"/>

The arc creates a link from the text displayed by the navigator
(a resource where the role is text) to the descriptive page from
the book (remote resource where the role is book). It also
indicates that the page must be displayed in a new window
(xlink:show="new") when the user clicks the mouse button
(xlink:actuate="onRequest").

XPointer and XLink 93

13 September 2001 16:11

To include the author’s biography in the card for the book,
we will define the following arc:

<arc xlink:from="book" xlink:to="author"
xlink:show="embed" xlink:actuate="onLoad"/>

xlink:show="embed" indicates that the destination of the arc (the
biography) must be included in the card for the book (origin
of the arc) and that the destination must be included when
the book page is loaded (xlink:actuate="onLoad").

Finally, we need to indicate that the absence of the xlink:fr om

or xlink:to attribute indicates that the origin or destination of
the arc corr esponds to all the roles defined in the link. Thus,
the arc in our example (<arc xlink:type="arc"/>) authorizes all
the traversals possible among the resources of the extended
link.

Title elements

Elements with a type of <title> tell the XLink application the
title of the extended link. This element is needed when you
want titles to have markers (for example, to put the text in
bold) or if you want to provide titles in multiple languages. A
<title> element must have the xlink:type="title" attribute.

As there may be a large number of attributes for the elements
participating in an extended link, we recommend using the
default values in the DTD. This eliminates the need to include
fixed-value attributes for an element.

For example, because the xlink:type attribute of the <biblio>

element always has extended as the value, we could declare
the <biblio> element in the DTD as follows:

<!ELEMENT biblio (text, book+, author+, arc+)>
<!ATTLIST biblio xlink:type (extended) #FIXED "extended">

We would not need to indicate the type, and if we proceed
the same way for the other elements in the extended link, we
could write the following link:

94 XML Pocket Reference

13 September 2001 16:11

<biblio>
<text>XML Bibliography</text>
<book xlink:href="xmlgf.xml"

xlink:title="XML Pocket Reference"/>
<book xlink:href="lxml.xml"

xlink:title="Learning XML"/>
<author xlink:href="robert-eckstein.xml"

xlink:title="Robert Eckstein"/>
<author xlink:href="erik-ray.xml"

xlink:title="Erik Ray"/>
<arc/>

</biblio>

By limiting ourselves to the strict minimum (attributes where
the value is fixed do not need to be written), we gain read-
ability.

Linkbases

As indicated earlier, an extended link with no resource-type
element (local resource) is described as being out-of-line.
Ther efor e, this type of link is not defined in any files to which
it points. It may be convenient to regr oup extended links in
XML files called linkbases.

This raises the question as to the location of such XML files. If
we have no way of finding the linkbases associated with a
given file (not provided in the W3C specification), we must
indicate the URI in one of the files participating in the link.
This is possible thanks to the xlink:r ole attribute with the value
xlink:extended-linkset.

The XLink application recognizes the attribute and can look
for the associated linkbase where the URI is indicated by the
xlink:hr ef attribute. For example, to link the linkbase of the
URI linkbase.xml to an XML file, we could use an element
with the following syntax:

<linkbase>
<uri xlink:role="XLink:extended-linkset"

xlink:href="linkbase.xml"/>
</linkbase>

XPointer and XLink 95

13 September 2001 16:11

We can indicate as many linkbases in a file as we want. A
linkbase can itself contain a refer ence to another linkbase. It is
up to the XLink application to manage circular refer ences and
limit the depth of the search for linkbases.

XBase

XBase is a W3C specification currently in development. XBase
can be used to change the base of URIs in an XML document
(which, by default, is the document’s directory). XLink proces-
sors take XBase into consideration in order to manage URIs,
using the xml:base="URI" attribute as follows:

<base xml:base="http://www.oreilly.com/bdl/"/>
<linkbase>

<uri xlink:role="xlink:extended-linkset"
xlink:href="linkbase.xml"/>

</linkbase>

The linkbase.xml linkbase is searched for in the http://www.
or eilly.com/bdl/ dir ectory, not in the directory of the docu-
ment where the request was made to load the linkbase.

Loading of the base continues in the nodes that descend from
the node in which the base is defined (this is the same behav-
ior as the xml:lang and xml:space attributes).

96 XML Pocket Reference

13 September 2001 16:11

