

01_579088 ffirs.qxd 3/28/05 11:33 AM Page ii

Professional JavaScript™ for Web Developers

01_579088 ffirs.qxd 3/28/05 11:33 AM Page i

01_579088 ffirs.qxd 3/28/05 11:33 AM Page ii

Professional JavaScript™ for Web Developers

Nicholas C. Zakas

01_579088 ffirs.qxd 3/28/05 11:33 AM Page iii

Professional JavaScript™ for Web Developers
Copyright © 2005 by Wiley Publishing Inc. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 646-8700. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, or online at www.wiley.com/go/permissions.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR
MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR
COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL
WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTIC-
ULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMO-
TIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT
THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PRO-
FESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A
COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOT
THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN
ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR
THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY
PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED
BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services please contact our Customer Care Depart-
ment within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317)
572-4002.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, and Programmer to Programmer
are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates. JavaScript is a
trademark of Sun Microsystems, Inc. in the United States and other countries. All other trademarks are
the property of their respective owners. Wiley Publishing, Inc., is not associated with any product or
vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data is available from the publisher.

ISBN-13: 978-0-7645-7908-0

ISBN-10: 0-7645-7908-8

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

01_579088 ffirs.qxd 3/28/05 11:33 AM Page iv

About the Author
Nicholas C. Zakas is a user interface designer for Web applications, specializing in client-side technolo-
gies such as JavaScript, HTML, and CSS. Nicholas currently works as Senior Software Engineer, Design
Engineering, at MatrixOne, Inc. located in Westford, Massachusetts, USA.

Nicholas has a B.S. in Computer Science from Merrimack College, where he learned traditional pro-
gramming in C and C++. During college, he began investigating the World Wide Web and HTML in his
spare time, eventually teaching himself enough to be hired as Webmaster of a small software company
named Radnet, Inc. in Wakefield, Massachusetts, USA. It was there that Nicholas began learning
JavaScript and working on Web applications.

Nicholas can be reached through his Web site, http://www.nczonline.net/.

01_579088 ffirs.qxd 3/28/05 11:33 AM Page v

Credits
Vice President and Executive Group Publisher:
Richard Swadley

Vice President and Publisher:
Joseph B. Wikert

Acquisitions Editor:
Jim Minatel

Editorial Manager:
Mary Beth Wakefield

Development Editor:
Sharon Nash

Senior Production Editor:
Angela Smith

Technical Editor:
Jean-Luc David, Wiley-Dreamtech India Pvt Ltd

Text Design & Composition:
Wiley Composition Services

01_579088 ffirs.qxd 3/28/05 11:33 AM Page vi

vii

Acknowledgments

It takes more than just one person to write a book of this nature, despite the single name on the front
cover. Without the help of numerous individuals, this book would not have been possible.

First are foremost, thanks to everyone at Wiley Publishing, especially Jim Minatel and Sharon Nash, for
providing all the guidance and support that a new author needs.

Thanks to all those who offered their ideas on what a good JavaScript book should include: Keith
Ciociola, Ken Fearnley, John Rajan, and Douglas Swatski.

A special thanks to everyone who reviewed the subject matter ahead of time: Erik Arvidsson, Bradley
Baumann, Guilherme Blanco, Douglas Crockford, Jean-Luc David, Emil A. Eklund, Brett Fielder, Jeremy
McPeak, and Micha Schopman. All your input was excellent and made for a much better book.

Thanks to Drs. Ed and Frances Bernard for keeping me in tip-top health during the writing of this book
and the past few years.

Last, but certainly not least, thanks to my family, mom, dad, and Greg, and my extremely understanding
girlfriend, Emily. Your love and support helped take me from the proposal to the final published copy.

01_579088 ffirs.qxd 3/28/05 11:33 AM Page vii

01_579088 ffirs.qxd 3/28/05 11:33 AM Page viii

ix

Contents

Acknowledgments vii
Introduction xxi

Chapter 1: What Is JavaScript? 1

A Short History 1
JavaScript Implementations 3

ECMAScript 3
The Document Object Model (DOM) 6
The Browser Object Model (BOM) 9

Summary 9

Chapter 2: ECMAScript Basics 11

Syntax 11
Variables 12
Keywords 15
Reserved Words 15
Primitive and Reference Values 15
Primitive Types 16

The typeof operator 16
The Undefined type 17
The Null type 18
The Boolean type 18
The Number type 18
The String type 20

Conversions 21
Converting to a string 22
Converting to a number 23
Type Casting 24

Reference Types 25
The Object class 26
The Boolean class 27
The Number class 27

02_579088 ftoc.qxd 3/28/05 11:33 AM Page ix

x

Contents

The String class 29
The instanceof operator 32

Operators 33
Unary operators 33
Bitwise operators 37
Boolean operators 43
Multiplicative operators 46
Additive operators 47
Relational operators 49
Equality operators 50
Conditional operator 52
Assignment operators 52
Comma operator 53

Statements 53
The if statement 53
Iterative statements 54
Labeled statements 56
The break and continue statements 56
The with statement 58
The switch statement 58

Functions 59
No overloading 61
The arguments object 62
The Function class 63
Closures 65

Summary 66

Chapter 3: Object Basics 67

Object-Oriented Terminology 67
Requirements of object-oriented languages 68
Composition of an object 68

Working with Objects 68
Declaration and instantiation 68
Object references 69
Dereferencing objects 69
Early versus late binding 69

Types of Objects 70
Native objects 70
Built-in objects 81
Host objects 87

02_579088 ftoc.qxd 3/28/05 11:33 AM Page x

xi

Contents

Scope 88
Public, protected, and private 88
Static is not static 88
The this keyword 89

Defining Classes and Objects 90
Factory paradigm 90
Constructor paradigm 92
Prototype paradigm 93
Hybrid constructor/prototype paradigm 94
Dynamic prototype method 95
Hybrid factory paradigm 96
Which one to use? 97
A practical example 97

Modifying Objects 99
Creating a new method 99
Redefining an existing method 100
Very late binding 101

Summary 102

Chapter 4: Inheritance 103

Inheritance in Action 103
Implementing Inheritance 104

Methods of inheritance 105
A more practical example 111

Alternative Inheritance Paradigms 115
zInherit 116
xbObjects 120

Summary 124

Chapter 5: JavaScript in the Browser 125

JavaScript in HTML 125
The <script/> tag 125
External file format 126
Inline code versus external files 127
Tag placement 128
To hide or not to hide 129
The <noscript/> tag 130
Changes in XHTML 131

02_579088 ftoc.qxd 3/28/05 11:33 AM Page xi

xii

Contents

JavaScript in SVG 133
Basic SVG 133
The <script/> tag in SVG 134
Tag placement in SVG 135

The Browser Object Model 136
The window object 136
The document object 149
The location object 153
The navigator object 155
The screen object 156

Summary 157

Chapter 6: DOM Basics 159

What Is the DOM? 159
Introduction to XML 159
An API for XML 162
Hierarchy of nodes 163
Language-Specific DOMs 166

DOM Support 167
Using the DOM 167

Accessing relative nodes 167
Checking the node type 169
Dealing with attributes 169
Accessing specific nodes 171
Creating and manipulating nodes 173

DOM HTML Features 178
Attributes as properties 178
Table methods 179

DOM Traversal 182
NodeIterator 182
TreeWalker 187

Detecting DOM Conformance 189
DOM Level 3 191
Summary 191

Chapter 7: Regular Expressions 193

Regular Expression Support 193
Using a RegExp object 194
Extended string methods 195

02_579088 ftoc.qxd 3/28/05 11:33 AM Page xii

xiii

Contents

Simple Patterns 197
Metacharacters 197
Using special characters 197
Character classes 199
Quantifiers 201

Complex Patterns 205
Grouping 205
Backreferences 206
Alternation 207
Non-capturing groups 209
Lookaheads 210
Boundaries 210
Multiline mode 212

Understanding the RegExp Object 212
Instance properties 213
Static properties 214

Common Patterns 216
Validating dates 216
Validating credit cards 218
Validating e-mail addresses 222

Summary 223

Chapter 8: Browser and Operating System Detection 225

The Navigator Object 225
Methods of Browser Detection 226

Object/feature detection 226
User-agent string detection 226

A (Not So) Brief History of the User-Agent String 227
Netscape Navigator 3.0 and Internet Explorer 3.0 227
Netscape Communicator 4.0 and Internet Explorer 4.0 229
Internet Explorer 5.0 and higher 230
Mozilla 230
Opera 232
Safari 233
Epilogue 233

The Browser Detection Script 234
Methodology 234
First Steps 234
Detecting Opera 237

02_579088 ftoc.qxd 3/28/05 11:33 AM Page xiii

xiv

Contents

Detecting Konqueror/Safari 239
Detecting Internet Explorer 241
Detecting Mozilla 242
Detecting Netscape Communicator 4.x 243

The Platform/Operating System Detection Script 244
Methodology 244
First steps 245
Detecting Windows operating systems 245
Detecting Macintosh operating systems 247
Detecting Unix operating systems 248

The Full Script 249
Example: A Login Page 252
Summary 259

Chapter 9: All about Events 261

Events Today 261
Event Flow 262

Event bubbling 262
Event capturing 264
DOM event flow 265

Event Handlers/Listeners 266
Internet Explorer 267
DOM 268

The Event Object 270
Locating 270
Properties/methods 271
Similarities 274
Differences 276

Types of Events 279
Mouse events 280
Keyboard events 284
HTML events 286
Mutation events 291

Cross-Browser Events 292
The EventUtil object 292
Adding/removing event handlers 292
Formatting the event object 294
Getting the event object 299
Example 300

Summary 301

02_579088 ftoc.qxd 3/28/05 11:33 AM Page xiv

xv

Contents

Chapter 10: Advanced DOM Techniques 303

Scripting Styles 303
DOM style methods 305
Custom tooltips 307
Collapsible sections 308
Accessing style sheets 309
Computed styles 312

innerText and innerHTML 314
outerText and outerHTML 315
Ranges 317

Ranges in the DOM 317
Ranges in Internet Explorer 329
How practical are ranges? 333

Summary 333

Chapter 11: Forms and Data Integrity 335

Form Basics 335
Scripting the <form/> Element 337

Getting form references 337
Accessing form fields 338
Form field commonalities 338
Focus on the first field 339
Submitting forms 340
Submit only once 341
Resetting forms 342

Text boxes 342
Retrieving/changing a text box value 343
Selecting text 344
Text box events 345
Select text automatically 345
Tab forward automatically 346
Limit textarea characters 347
Allowing/blocking characters in text boxes 349
Numeric text boxes with the up/down arrow keys 354

List Boxes and Combo Boxes 356
Accessing options 357
Retrieving/changing the selected option(s) 357
Adding options 359
Removing options 360

02_579088 ftoc.qxd 3/28/05 11:33 AM Page xv

xvi

Contents

Moving Options 361
Reordering options 361

Creating an Autosuggest Text Box 362
Matching 362
The guts 363

Summary 365

Chapter 12: Sorting Tables 367

The Starting Point — Arrays 367
The reverse() method 369

Sorting a One-Column Table 369
The comparison function 371
The sortTable() function 371

Sorting a Multicolumn Table 373
The comparison function generator 374
Modifying the sortTable() function 375
Sorting in descending order 376
Sorting with different data types 377
Advanced sorting 381

Summary 385

Chapter 13: Drag and Drop 387

System Drag and Drop 387
Drag-and-drop events 388
The dataTransfer object 393
The dragDrop() method 397
Advantages and disadvantages 399

Simulated Drag and Drop 399
The code 400
Creating drop targets 403
Advantages and disadvantages 405

zDragDrop 405
Creating a draggable element 406
Creating a drop target 406
Events 406
Example 408

Summary 409

02_579088 ftoc.qxd 3/28/05 11:33 AM Page xvi

xvii

Contents

Chapter 14: Error Handling 411

The Importance of Error Handling 411
Errors versus Exceptions 412
Error Reporting 413

Internet Explorer (Windows) 413
Internet Explorer (MacOS) 415
Mozilla (all platforms) 416
Safari (MacOS X) 417
Opera 7 (all platforms) 418

Handling Errors 419
The onerror event handler 419
The try...catch statement 423

Debugging Techniques 428
Using alerts 428
Using the Java console 429
Posting messages to the JavaScript console (Opera 7+ only) 430
Throwing your own errors 431
The JavaScript Verifier 432

Debuggers 432
Microsoft Script Debugger 432
Venkman – Mozilla’s debugger 435

Summary 443

Chapter 15: XML in JavaScript 445

XML DOM Support in Browsers 445
XML DOM support in IE 445
XML DOM support in Mozilla 450
Making interfaces play together 455

XPath Support in Browsers 465
Introduction to XPath 466
XPath support in IE 467
XPath support in Mozilla 467

XSLT Support in Browsers 471
XSLT support in IE 473
XSLT support in Mozilla 477

Summary 479

02_579088 ftoc.qxd 3/28/05 11:33 AM Page xvii

xviii

Contents

Chapter 16: Client-Server Communication 481

Cookies 481
Cookie ingredients 482
Other security restrictions 482
Cookies in JavaScript 483
Cookies on the server 485
Passing cookies between client and server 488

Hidden Frames 490
Using iframes 491

HTTP Requests 493
Using headers 495
Copycat implementations 496
Performing a GET request 496
Performing a POST request 497

LiveConnect Requests 498
Performing a GET request 498
Performing a POST request 500

Intelligent HTTP Requests 502
The get() method 502
The post() method 505

Practical Uses 506
Summary 507

Chapter 17: Web Services 509

A Quick Web Service Primer 509
What is a Web service? 509
WSDL 510

Web Services in Internet Explorer 513
Using the WebService component 513
WebService component example 515

Web Services in Mozilla 516
Enhanced privileges 517
Using the SOAP methods 518
Using WSDL proxies 522

A Cross-Browser Approach 525
The WebService object 525
The Temperature Service 527
Using the TemperatureService object 529

Summary 530

02_579088 ftoc.qxd 3/28/05 11:33 AM Page xviii

xix

Contents

Chapter 18: Interacting with Plugins 531

Why Use Plugins? 531
Popular Plugins 532
MIME Types 533
Embedding Plugins 533

Including parameters 534
Netscape 4.x 534

Detecting Plugins 535
Detecting Netscape-style plugins 535
Detecting ActiveX plugins 540
Cross-browser detection 542

Java Applets 543
Embedding applets 543
Referencing applets in JavaScript 544
Writing applets 545
JavaScript-to-Java communication 546
Java-to-JavaScript communication 548

Flash Movies 551
Embedding Flash movies 552
Referencing Flash movies 552
JavaScript-to-Flash communication 553
Flash-to-JavaScript communication 555

ActiveX Controls 558
Summary 561

Chapter 19: Deployment Issues 563

Security 563
The Same Origin Policy 563
Window object issues 564
Mozilla-specific issues 566
Resource limitations 568

Internationalization Concerns 568
Detecting language using JavaScript 569
Strategies 569
String considerations 570

Optimizing JavaScript 573
Download time 573
Execution time 578

02_579088 ftoc.qxd 3/28/05 11:33 AM Page xix

xx

Contents

Intellectual Property Issues 593
Obfuscating 593
Microsoft Script Encoder (IE only) 594

Summary 595

Chapter 20: The Evolution of JavaScript 597

ECMAScript 4 597
Netscape’s proposal 598
Implementations 604

ECMAScript for XML 605
Approach 605
The for each..in Loop 607
New classes 607
Implementations 616

Summary 616

Index 617

02_579088 ftoc.qxd 3/28/05 11:33 AM Page xx

xxi

Introduction

Although once supported by Netscape Enterprise Server and Active Server Pages (ASP) on the server,
JavaScript is primarily a client-side scripting language for use in Web browsers. Its main focus today is
to help developers interact with Web pages and the Web browser window itself.

JavaScript is very loosely based on Java, an object-oriented programming language popularized for use
on the Web by way of embedded applets. Although JavaScript has a similar syntax and programming
methodology, it is not a “light” version of Java. Instead, JavaScript is its own language, finding its home
in Web browsers around the world and enabling enhanced user interaction on Web sites and Web appli-
cations alike.

In this book, JavaScript is covered from its very beginning in the earliest Netscape browsers to the
present-day incarnations flush with support for XML and Web Services. You learn how to extend the
language to suit specific needs and how to create seamless client-server communication without inter-
mediaries such as Java or hidden frames. In short, you learn how to apply JavaScript solutions to
business problems faced by Web developers everywhere.

What Does This Book Cover?
Professional JavaScript for Web Developers provides a developer-level introduction along with the more
advanced and useful features of JavaScript.

Starting at the beginning, the book explores how JavaScript originated and evolved into what it is today.
A detailed discussion of the components that make up a JavaScript implementation follows, with spe-
cific focus on standards such as ECMAScript and the Document Object Model (DOM). The differences in
JavaScript implementations used in different popular Web browsers are also discussed.

Building on that base, the book moves on to cover basic concepts of JavaScript including its version of
object-oriented programming, inheritance, and its use in various markup languages such as HTML. An
in-depth examination of events and event handling is followed by an exploration of browser detection
techniques and a guide to using regular expressions in JavaScript. The book then takes all this knowl-
edge and applies it to creating dynamic user interfaces.

The last part of the book is focused on issues related to the deployment of JavaScript solutions in Web
applications. These topics include error handling, debugging, security, optimization/obfuscation, XML,
and Web Services.

03_579088 flast.qxd 3/28/05 11:34 AM Page xxi

xxii

Introduction

Who Is This Book For?
This book is aimed at three groups of readers:

❑ Experienced developers familiar with object-oriented programming who are looking to learn
JavaScript as it relates to traditional OO languages such as Java and C++.

❑ Web application developers attempting to enhance the usability of their Web sites and Web
applications.

❑ Novice JavaScript developers aiming to better understand the language.

In addition, familiarity with the following related technologies is a strong indicator that this book is
for you:

❑ XML

❑ XSLT

❑ Java

❑ Web Services

❑ HTML

❑ CSS

This book is not aimed at beginners lacking a basic computer science background or those looking to
add some simple user interactions to Web sites. These readers should instead refer to Wrox’s Beginning
JavaScript, Second Edition (Wiley Publishing, Inc., ISBN 0-7645-5587-1).

What You Need to Use This Book
To run the samples in the book, you need the following:

❑ Windows 2000, Windows Server 2003, Windows XP, or Mac OS X

❑ Internet Explorer 5.5 or higher (Windows), Mozilla 1.0 or higher (all platforms), Opera 7.5 or
higher (all platforms), or Safari 1.2 or higher (Mac OS X).

The complete source code for the samples is available for download from the Web site at
http://www.wrox.com/.

How Is This Book Structured?
1. What Is JavaScript?

This chapter explains the origins of JavaScript: where it came from, how it evolved, and what it
is today. Concepts introduced include the relationship between JavaScript and ECMAScript, the
Document Object Model (DOM), and the Browser Object Model (BOM). A discussion of the rele-
vant standards from the European Computer Manufacturer’s Association (ECMA) and the
World Wide Web Consortium (W3C) is also included.

03_579088 flast.qxd 3/28/05 11:34 AM Page xxii

xxiii

Introduction

2. ECMAScript Basics
This chapter examines the core technology upon which JavaScript is built, ECMAScript. This
chapter describes the basic syntax and concepts necessary to write JavaScript code, from declar-
ing variables and functions to using and understanding primitive and reference values.

3. Object Basics
This chapter focuses on the foundations of object-oriented programming (OOP) in JavaScript.
Topics covered include defining custom objects using a variety of different methods, creating
object instances, and understanding the similarities and differences to OOP in JavaScript and Java.

4. Inheritance
This chapter continues the exploration of OOP in JavaScript, describing how inheritance works.
The various methods of achieving inheritance are discussed, and these methods are compared
and contrasted with inheritance in Java.

5. JavaScript in the Browser
This chapter explains how to include JavaScript in Web pages made with a variety of languages,
including Hyper Text Markup Language (HTML), Scalable Vector Graphics (SVG), and XML
User Interface Language (XUL). This chapter also introduces the Browser Object Model (BOM)
and its various objects and interfaces.

6. DOM Basics
This chapter introduces the DOM as implemented in JavaScript. It includes an introduction to
DOM concepts of specific value to Web developers. These concepts are applied later in exam-
ples using HTML, SVG, and XUL.

7. Regular Expressions
This chapter focuses on the JavaScript implementation of regular expressions, which are a pow-
erful tool for data validation and string manipulation. The origins of regular expressions are
explored, as well as its syntax and usage across a variety of programming languages. The chap-
ter ends with an explanation of the similarities and differences in JavaScript’s implementation.

8. Browser and Operating System Detection
This chapter explains the importance of writing JavaScript to run on a variety of Web browsers.
The two methods of browser detection, object/feature detection and user-agent string detection,
are discussed; the advantages and disadvantages of each approach are listed.

9. All about Events
This chapter discusses one of the most important concepts in JavaScript: events. Events are the
main way to tie JavaScript to a Web-user interface regardless of the markup language being
used. This chapter describes the various methods of handling events and the concept of event
flow (including bubbling and capturing).

10. Advanced DOM Techniques
This chapter introduces some of the more advanced features of the DOM, including ranges and
style-sheet manipulation. I give examples of when and how to use these technologies, and I also
discuss how to achieve cross-browser support given the differences in implementations.

03_579088 flast.qxd 3/28/05 11:34 AM Page xxiii

xxiv

Introduction

11. Forms and Data Integrity
This chapter discusses the importance of data validation when using forms. As I introduce tech-
niques for handling validation, I apply concepts introduced earlier, such as regular expressions,
events, and DOM manipulation.

12. Sorting Tables
This chapter applies a number of language features described earlier to accomplish dynamic
sorting of tables on the client. It includes an in-depth discussion of sorting in JavaScript as well
as using events, DOM manipulation, and comparison operators to develop a generic table-
sorting protocol that can be used in a number of different Web browsers.

13. Drag and Drop
This chapter explains the concept of drag and drop as it applies to JavaScript and Web browsers.
The concept of system drag and drop versus simulated drag and drop is discussed, ending with
the creation of a standard drag-and-drop interface that can be used across browsers.

14. Error Handling
This chapter introduces the concept of error handling in JavaScript by discussing the use of the
try...catch statement and the onerror event handler. Other topics explored are the creation
of custom errors using the throw statement and the use of JavaScript debuggers.

15. XML in JavaScript
This chapter presents the features of JavaScript used to read and manipulate eXtensible Markup
Language (XML) data. I explain the differences in support and objects in various Web browsers,
and I offer suggestions for easier cross-browser coding. This chapter also covers the use of
eXtensible Stylesheet Language Transformations (XSLT) to transform XML data on the client.

16. Client-Server Communication
This chapter explores the various JavaScript methods of communicating back to the server. These
methods include the use of cookies and JavaScript-based HTTP requests. This chapter also
explains how to achieve both GET and POST HTTP requests without the use of hidden frames.

17. Web Services
This chapter looks at how to consume Web Services using JavaScript. The different methods
used in Internet Explorer and Mozilla are discussed, along with a basic solution to the problem
of adding Web Service support to browsers that don’t have built-in support.

18. Interacting with Plugins
This chapter explains the various methods of communication between JavaScript and browser
plugins such as Java applets, SVG documents, and ActiveX controls. Other topics include how
to program plugins for use with JavaScript.

19. Deployment Issues
This chapter focuses on what happens after the completion of JavaScript coding. Specifically, it
describes what should happen before you deploy a JavaScript solution on either a Web site or
in a Web application. Topics covered include security issues, internationalization, optimization,
intellectual property protection, and Section 508 compliance.

20. The Evolution of JavaScript
This chapter looks into the future of JavaScript to see where the language is headed.
ECMAScript 4 and XML for ECMAScript are discussed.

03_579088 flast.qxd 3/28/05 11:34 AM Page xxiv

xxv

Introduction

Conventions
To help you get the most from the text and keep track of what’s happening, I’ve used a number of con-
ventions throughout the book.

Tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

As for styles in the text:

❑ We highlight important words when we introduce them

❑ We show keyboard strokes like this: Ctrl+A

❑ We show file names, URLs, and code within the text like so: persistence.properties

❑ We present code in two different ways:

In code examples we highlight new and important code with a gray background.

The gray highlighting is not used for code that’s less important in the present
context or has been shown before.

Source Code
As you work through the examples in this book, you may choose either to type in all the code manually
or to use the source code files that accompany the book. All the source code used in this book is available
for download at http://www.wrox.com. Once at the site, simply locate the book’s title (either by using
the Search box or by using one of the title lists) and click the Download Code link on the book’s detail
page to obtain all the source code for the book.

Because many books have similar titles, you may find it easiest to search by ISBN; for this book the
ISBN is 0-7645-7908-8.

After you download the code, just decompress it with your favorite compression tool. Alternately, you
can go to the main Wrox code download page at http://www.wrox.com/dynamic/books/download.
aspx to see the code available for this book and all other Wrox books.

Errata
We make every effort to ensure that there are no errors in the text or in the code. However, no one is per-
fect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata you may save another
reader hours of frustration and, at the same time, you will be helping us provide even higher quality
information.

Boxes like this one hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

03_579088 flast.qxd 3/28/05 11:34 AM Page xxv

xxvi

Introduction

To find the errata page for this book, go to http://www.wrox.com and locate the title using the Search
box or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you can
view all errata that has been submitted for this book and posted by Wrox editors. A complete book list
including links to each book’s errata is also available at www.wrox.com/misc-pages/booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport.
shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fix the problem in subsequent editions
of the book.

p2p.wrox.com
For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based sys-
tem for you to post messages relating to Wrox books and related technologies and to interact with other
readers and technology users. The forums offer a subscription feature to e-mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

At http://p2p.wrox.com you will find a number of different forums that will help you, not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

1. Go to p2p.wrox.com and click the Register link.

2. Read the terms of use and click Agree.

3. Complete the required information to join as well as any optional information you wish to pro-
vide and click Submit.

4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

After you join, you can post new messages and respond to messages other users post. You can read mes-
sages at any time on the Web. If you would like to have new messages from a particular forum e-mailed
to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to ques-
tions about how the forum software works as well as to see many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

03_579088 flast.qxd 3/28/05 11:34 AM Page xxvi

What Is JavaScript?

When JavaScript first appeared in 1995, its main purpose was to handle some of the input valida-
tion that had previously been left to server-side languages such as Perl. Prior to that time, a round
trip to the server was needed to determine if a required field had been left blank or an entered
value was invalid. Netscape Navigator sought to change that with the introduction of JavaScript.
The capability to handle some basic validation on the client was an exciting new feature at a time
when use of telephone modems (operating at 28.8 kbps) was widespread. Such slow speeds
turned every trip to the server into an exercise in patience.

Since that time, JavaScript has grown into an important feature of every major Web browser on
the market. No longer bound to simple data validation, JavaScript now interacts with nearly all
aspects of the browser window and its contents. Even Microsoft, with its own client-side scripting
language called VBScript, ended up including its own JavaScript implementation in Internet
Explorer from its very earliest version.

In this chapter, you will learn how and why JavaScript came about, from its humble beginnings to
its modern-day, feature-packed implementations. To be able to use JavaScript to its full potential, it
is important to understand its nature, history, and limitations. Specifically, this chapter examines:

❑ The origins of JavaScript and client-side scripting

❑ The different parts of the JavaScript language

❑ The standards related to JavaScript

❑ JavaScript support in popular Web browsers

A Short History
Around 1992, a company called Nombas began developing an embedded scripting language
called C-minus-minus (Cmm for short). The idea behind Cmm was simple: a scripting language

04_579088 ch01.qxd 3/28/05 11:34 AM Page 1

powerful enough to replace macros, but still similar enough to C (and C++) that developers could learn
it quickly. This scripting language was packaged in a shareware product called CEnvi, which first
exposed the power of such languages to developers. Nombas eventually changed the name Cmm to
ScriptEase because the latter sounded “too negative” and the letter C “frightened people” (http://
www.nombas.com/us/scripting/history.htm). ScriptEase is now the driving force behind Nombas
products. When the popularity of Netscape Navigator started peaking, Nombas developed a version of
CEnvi that could be embedded into Web pages. These early experiments were called Espresso Pages, and
they represented the first client-side scripting language used on the World Wide Web. Little did Nombas
know that its ideas would become an important foundation for the Internet.

As Web surfing gained popularity, a gradual demand for client-side scripting languages developed. At
the time, most Internet users were connecting over a 28.8 kbps modem even though Web pages were
growing in size and complexity. Adding to users’ pain was the large number of round-trips to the server
required for simple form validation. Imagine filling out a form, clicking the Submit button, waiting 30
seconds for processing, and then being met with a message telling you that you forgot to complete a
required field. Netscape, at that time on the cutting edge of technological innovation, began seriously
considering the development of a client-side scripting language to handle simple processing.

Brendan Eich, who worked for Netscape at the time, began developing a scripting language called
LiveScript for the upcoming release of Netscape Navigator 2.0 in 1995, with the intention of using it both
in the browser and on the server (where it was to be called LiveWire). Netscape entered into a develop-
ment alliance with Sun Microsystems to complete the implementation of LiveScript in time for release.
Just before Netscape Navigator 2.0 was officially released, Netscape changed the name to JavaScript in
order to capitalize on Java as a new Internet buzzword. Netscape’s gamble paid off and JavaScript
became a must-have from that point on.

Because JavaScript 1.0 was such a hit, Netscape released version 1.1 in Netscape Navigator 3.0. Right
around that time, Microsoft decided to throw its hat into the ring and released Internet Explorer 3.0 with
a JavaScript-clone called JScript (so-called in order to avoid any possible licensing issues with Netscape).
This major step for Microsoft into the realm of Web browsers is now a date that lives in infamy for
Netscape, but it also represented a major step in the development of JavaScript as a language.

After Microsoft threw its hat into the ring, three different JavaScript versions were floating around:
JavaScript in Netscape Navigator, JScript in Internet Explorer, and CEnvi in ScriptEase. Unlike C and
many other programming languages, JavaScript had no standards governing its syntax or features, and
the three different versions only highlighted this problem. With industry fears mounting, it was decided
that the language must be standardized.

In 1997, JavaScript 1.1 was submitted to the European Computer Manufacturers Association (ECMA) as a
proposal. Technical Committee #39 (TC39) was assigned to “standardize the syntax and semantics of a gen-
eral purpose, cross-platform, vendor-neutral scripting language” (http://www.ecma-international
.org/memento/TC39.htm). Made up of programmers from Netscape, Sun, Microsoft, Borland, and other
companies with interest in the future of scripting, TC39 met for months to hammer out ECMA-262, a stan-
dard defining a new scripting language named ECMAScript.

The following year, the International Organization for Standardization and International Electrotechnical
Commission (ISO/IEC) also adopted ECMAScript as a standard (ISO/IEC-16262). Since that time, Web
browsers have tried, with varying degrees of success and failure, to use ECMAScript as a basis for their
JavaScript implementations.

2

Chapter 1

04_579088 ch01.qxd 3/28/05 11:34 AM Page 2

JavaScript Implementations
Although ECMAScript is an important standard, it is not the only part of JavaScript, and certainly not
the only part that has been standardized. Indeed, a complete JavaScript implementation is made up of
three distinct parts (see Figure 1-1):

❑ The Core (ECMAScript)

❑ The Document Object Model (DOM)

❑ The Browser Object Model (BOM)

Figure 1-1

ECMAScript
ECMAScript doesn’t have ties to any browser in particular and, actually, has no methods for user input
or output to speak of. (It is not unlike languages such as C, which rely on external libraries to accomplish
such tasks.) So what is ECMAScript? ECMA-262 (p. 2) describes it like this:

“ECMAScript can provide core scripting capabilities for a variety of host environments, and therefore
the core scripting language is specified...apart from any particular host environment.”

A Web browser is considered a host environment for ECMAScript, but it is not the only host environment.
Indeed, numerous other environments (such as Nombas’s ScriptEase and Macromedia’s ActionScript,
used in both Flash and Director MX) can host ECMAScript implementations. So what does ECMAScript
specify outside of a browser? To put it simply, ECMAScript describes the following:

❑ Syntax

❑ Types

❑ Statements

❑ Keywords

❑ Reserved Words

❑ Operators

❑ Objects

ECMAScript is simply a description, defining all the properties, methods, and objects of a scripting lan-
guage. Other languages implement ECMAScript, as JavaScript does (see Figure 1-2), as the baseline for
functionality.

JavaScript

ECMAScript DOM BOM

3

What Is JavaScript?

04_579088 ch01.qxd 3/28/05 11:34 AM Page 3

Figure 1-2

Each browser has its own implementation of the ECMAScript interface, which is then extended to con-
tain the DOM and BOM (discussed in the following sections). There are other languages that also imple-
ment and extend ECMAScript such as Windows Scripting Host (WSH), ActionScript in Macromedia
Flash and Director, and Nombas ScriptEase.

ECMAScript editions
ECMAScript is separated into editions rather than versions because it is defined in a standard called
ECMA-262. Like any standard, ECMA-262 can be edited and updated. When a major update occurs, a
new edition of the standard is published. The most recent edition of ECMA-262 is edition 3, released in
December of 1999. The first edition of ECMA-262 was essentially the same as Netscape’s JavaScript 1.1
with all browser-specific code removed, but with a few changes. First, ECMA-262 required support
for the Unicode Standard (to support multiple languages). Second, it required that objects be platform-
independent (Netscape’s JavaScript 1.1 actually had different implementations of objects, such as the
Date object, depending on the platform). This was a major reason why JavaScript 1.1 and 1.2 did not
conform to the first edition of ECMA-262.

The second edition of ECMA-262 was largely editorial in nature. The standard was updated in order to
get into strict agreement with ISO/IEC-16262 and didn’t feature any additions, changes, or omissions.
ECMAScript implementations typically don’t use the second edition as a measure of conformance.

The third edition of ECMA-262 was the first real update to the standard. It provides updates to string
handling, the definition of errors, and numeric outputs. It also adds support for regular expressions, new
control statements, try...catch exception handling, and small changes to better prepare the standard for
internationalization. To many, this marked the arrival of ECMAScript as a true programming language.

What does ECMAScript conformance mean?
In ECMA-262, the definition of ECMAScript conformance is laid out. A scripting language must sub-
scribe to four basic tenets:

❑ A conforming implementation must support all “types, values, objects, properties, functions,
and program syntax and semantics” (ECMA-262, p. 1) as they are described in ECMA-262.

❑ A conforming implementation must support the Unicode Character Standard.

❑ A conforming implementation may add “additional types, values, objects, properties, and func-
tions” that are not specified in ECMA-262. ECMA-262 describes these additions as primarily
new objects or new properties of objects not given in the specification.

❑ A conforming implementation may support “program and regular expression syntax” that are
not defined in ECMA-262 (meaning that the built-in regular expression support is allowed to be
altered and extended).

All implementations of ECMAScript must be in agreement with these criteria.

ECMAScript

JavaScript ActionScript ScriptEase

4

Chapter 1

04_579088 ch01.qxd 3/28/05 11:34 AM Page 4

ECMAScript support in Web browsers
Netscape Navigator 3.0 shipped with JavaScript 1.1 in 1996. That same JavaScript 1.1 specification was
then submitted to the ECMA as a proposal for a new standard. With JavaScript’s explosive popularity,
Netscape was very happy to start developing version 1.2. One problem: ECMA hadn’t yet accepted
Netscape’s proposal.

A little after Netscape Navigator 3.0 was released, Microsoft introduced Internet Explorer 3.0. This ver-
sion of IE shipped with JScript 1.0 (Microsoft’s name for its JavaScript implementation), which was sup-
posed to be equivalent to JavaScript 1.1. However, because of undocumented and improperly replicated
features, JScript 1.0 fell far short of JavaScript 1.1.

Netscape Navigator 4.0 was shipped in 1997 with JavaScript 1.2 before the first edition of ECMA-262
was finalized; ECMA-262 was accepted and standardized later that year. As a result, JavaScript 1.2 is not
compliant to the first edition of ECMAScript, even though ECMAScript was supposed to be based on
JavaScript 1.1.

The next update to JScript occurred in Internet Explorer 4.0 with version JScript 3.0 (version 2.0 was
released in Microsoft’s Internet Information Server version 3.0 but was never included in a browser).
Microsoft put out a press release touting JScript 3.0 as the first truly ECMA-compliant scripting language
in the world. At that time, ECMA-262 hadn’t yet been finalized, so JScript 3.0 suffered the same fate as
JavaScript 1.2: It did not comply with the final ECMAScript standard.

Netscape opted to update its JavaScript implementation in Netscape Navigator 4.06. JavaScript 1.3
brought Netscape into full compliance with ECMAScript Edition 1. Netscape added support for the
Unicode standard and made all objects platform-independent while keeping the features that were intro-
duced in JavaScript 1.2.

When Netscape released its source code to the public as the Mozilla project, it was anticipated that
JavaScript 1.4 would be shipped with Netscape Navigator 5.0. However, a radical decision to completely
redesign the Netscape code from the bottom up threw a monkey wrench into the works. JavaScript 1.4
was only released as a server-side language for the Netscape Enterprise Server and never made it into a
Web browser.

Today, all popular Web browsers comply with the third edition of ECMA-262. The following table lists
ECMAScript support in the most popular Web browsers:

Browser ECMAScript Compliance

Netscape Navigator 2.0 –

Netscape Navigator 3.0 –

Netscape Navigator 4.0–4.05 –

Netscape Navigator 4.06–4.79 Edition 1

Netscape 6.0+ (Mozilla 0.6.0+) Edition 3

Internet Explorer 3.0 –

Internet Explorer 4.0 –

Table continued on following page

5

What Is JavaScript?

04_579088 ch01.qxd 3/28/05 11:34 AM Page 5

Browser ECMAScript Compliance

Internet Explorer 5.0 Edition 1

Internet Explorer 5.5+ Edition 3

Opera 6.0–7.1 Edition 2

Opera 7.2+ Edition 3

Safari 1.0+/Konqueror ~2.0+ Edition 3

The Document Object Model (DOM)
The Document Object Model (DOM) is an application programming interface (API) for HTML as well as
XML. The DOM maps out an entire page as a document composed of a hierarchy of nodes. Each part of
an HTML or XML page is a derivative of a node. Consider the following HTML page:

<html>
<head>

<title>Sample Page</title>
</head>
<body>

<p>Hello World!</p>
</body>

</html>

This code can be diagrammed into a hierarchy of nodes using the DOM (see Figure 1-3).

Figure 1-3

Sample Page

Hello World!

title

head

html

p

body

6

Chapter 1

04_579088 ch01.qxd 3/28/05 11:34 AM Page 6

By creating a tree to represent a document, the DOM allows developers an unprecedented level of con-
trol over its content and structure. Nodes can easily be removed, added, and replaced by using the
DOM API.

Why the DOM is necessary
With Internet Explorer 4.0 and Netscape Navigator 4.0 each supporting different forms of Dynamic
HTML (DHTML), developers for the first time could alter the appearance and content of a Web page
without reloading it. This represented a tremendous step forward in Web technology, but also a huge
problem. Netscape and Microsoft each went its own way in developing DHTML, thus ending the period
when Web developers could write a single HTML page that could be accessed by any Web browser.

It was decided that something had to be done to preserve the cross-platform nature of the Web. The fear
was that, if someone didn’t rein in Netscape and Microsoft, the Web would develop into two distinct fac-
tions that were exclusive to targeted browsers. It was then that the World Wide Web Consortium (W3C),
the body charged with creating standards for Web communication, began working on the DOM.

DOM levels
DOM Level 1 became a W3C recommendation in October of 1998. It consisted of two modules: the DOM
Core, which provided a way to map the structure of an XML-based document to allow for easy access to
and manipulation of any part of a document, and the DOM HTML, which extended the DOM Core by
adding HTML-specific objects and methods.

Note that the DOM is not JavaScript-specific, and indeed has been implemented in numerous other lan-
guages. For Web browsers, however, the DOM has been implemented using ECMAScript and now
makes up a large part of the JavaScript language.

Whereas DOM Level 1’s only goal was to map out the structure of a document, DOM Level 2’s aims
were much broader. This extension to the original DOM added support for mouse and user interface
events (long supported by DHTML), ranges, traversals (methods to iterate over a DOM document), and
support for Cascading Style Sheets (CSS) through object interfaces. The original DOM Core introduced
in Level 1 was also extended to include support for XML namespaces.

DOM Level 2 introduced several new modules of the DOM to deal with new types of interfaces:

❑ DOM Views — describes interfaces to keep track of the various views of a document (that is,
the document before CSS styling and the document after CSS styling)

❑ DOM Events — describes interfaces for events

❑ DOM Style — describes interfaces to deal with CSS-based styles

❑ DOM Traversal and Range — describes interfaces to traverse and manipulate a document tree

DOM Level 3 further extends the DOM with the introduction of methods to load and save documents in
a uniform way (contained in a new module called DOM Load and Save) as well as methods to validate a
document (DOM Validation). In Level 3, the DOM Core is extended to support all of XML 1.0, including
XML Infoset, XPath, and XML Base.

7

What Is JavaScript?

04_579088 ch01.qxd 3/28/05 11:34 AM Page 7

When reading about the DOM, you may come across references to DOM Level 0. Note that there is no
standard called DOM Level 0; it is simply a reference point in the history of the DOM (DOM Level 0 is
considered to be the original DHTML supported in Internet Explorer 4.0 and Netscape Navigator 4.0).

Other DOMs
Aside from the DOM Core and DOM HTML interfaces, several other languages have had their own
DOM standards published. The languages are XML-based and each DOM adds methods and interfaces
unique to that language:

❑ Scalable Vector Graphics (SVG) 1.0

❑ Mathematical Markup Language (MathML) 1.0

❑ Synchronized Multimedia Integration Language (SMIL)

Additionally, other languages have developed their own DOM implementations, such as Mozilla’s XML
User Interface Language (XUL). However, only the languages in the preceding list are standard recom-
mendations from W3C.

DOM support in Web browsers
The DOM was already a standard for some time before Web browsers started implementing it. Internet
Explorer took first stab in version 5.0, but it actually didn’t have any realistic DOM support until version
5.5, when it implemented most of DOM Level 1. Internet Explorer hasn’t introduced new DOM function-
ality since that time.

For Netscape, no DOM support existed until Netscape 6 (Mozilla 0.6.0) was introduced. To date, Mozilla
has the best support for the DOM, implementing all of Level 1, nearly all of Level 2, and some parts of
Level 3. (The goal of the Mozilla development team was to build a 100% standards-compliant browser,
and their work paid off.)

Latecomers such as Opera, which didn’t add DOM support until version 7.0, and Safari, which has
implemented most of DOM Level 1, are mostly on par with Internet Explorer 5.5; and in some cases,
they exceed it. However, all the browsers are still a distant second to Mozilla as far as DOM support
goes. The following table shows DOM support for popular browsers:

Browser DOM Compliance

Netscape Navigator 1.0–4.x –

Netscape 6.0+ (Mozilla 0.6.0+) Level 1, Level 2, Level 3 (partial)

Internet Explorer 2.0–4.x –

Internet Explorer 5.0 Level 1 (minimal)

Internet Explorer 5.5+ Level 1 (almost all)

Opera 1.0–6.0 –

Opera 7.0+ Level 1 (almost all), Level 2 (partial)

Safari 1.0+/Konqueror ~2.0+ Level 1

8

Chapter 1

04_579088 ch01.qxd 3/28/05 11:34 AM Page 8

The Browser Object Model (BOM)
The Internet Explorer 3.0 and Netscape Navigator 3.0 browsers feature a Browser Object Model (BOM)
that allows access and manipulation of the browser window. Using the BOM, developers can move the
window, change text in the status bar, and perform other actions that do not directly relate to the page
content. What makes the BOM truly unique, and often problematic, is that it is the only part of a
JavaScript implementation that has no related standard.

Primarily, the BOM deals with the browser window and frames, but generally any browser-specific
extension to JavaScript is considered to be a part of the BOM. Such things include:

❑ The capability to pop up new browser windows.

❑ The capability to move, resize, and close browser windows.

❑ The navigator object, which provides detailed information about the Web browser.

❑ The location object, which gives detailed information about the page loaded in the browser.

❑ The screen object, which gives detailed information about the user’s screen resolution.

❑ Support for cookies.

❑ Internet Explorer extends the BOM to include the ActiveXObject class, which can be used to
instantiate ActiveX objects through JavaScript.

Because no standards exist for the BOM, each browser has its own implementation. There are some de
facto standards, such as having a window object and a navigator object, but each browser defines its own
properties and methods for these and other objects. Chapter 5, “JavaScript in the Browser,” goes into
more detail about the implementation differences.

Summary
This chapter introduced JavaScript as a client-side scripting language for Web browsers. You learned
about the various parts that make up a complete JavaScript implementation:

❑ ECMAScript, the core of JavaScript, describes the language syntax and basic objects.

❑ The Document Object Model (DOM) describes methods and interfaces for working with the
content of a Web page.

❑ The Browser Object Model (BOM) describes methods and interfaces for interacting with the
browser.

Additionally, you explored the history of JavaScript to gain an understanding of how various parts of
the language developed and how browsers historically have dealt with the implementation of standards.

9

What Is JavaScript?

04_579088 ch01.qxd 3/28/05 11:34 AM Page 9

04_579088 ch01.qxd 3/28/05 11:34 AM Page 10

ECMAScript Basics

Some simple JavaScript functionality is easy to accomplish in the browser. Numerous articles on
the Internet show you how to accomplish what many term “stupid Web tricks” using JavaScript.
These tricks include how to pop up notices to the user, swap images, and create simple games.
Although these are all interesting pieces of functionality to add to Web sites, copying and pasting
code doesn’t provide an understanding of why or how something works. This chapter aims to
provide you with a deeper knowledge base about how JavaScript works by examining its core,
ECMAScript.

As described in the previous chapter, ECMAScript provides JavaScript with syntax, operators, and
basic objects necessary to complete common programming tasks.

Syntax
Developers familiar with languages such as Java, C, and Perl will find ECMAScript syntax easy to
pick up because it borrows syntax from each. Java and ECMAScript have several key syntax fea-
tures in common, as well as some that are completely different.

The basic concepts of ECMAScript are the following:

❑ Everything is case-sensitive. Just as with Java, variables, function names, operators, and
everything else is case-sensitive, meaning that a variable named test is different from
one named Test.

❑ Variables are loosely typed. Unlike Java and C, variables in ECMAScript are not given a
specific type. Instead, each variable is defined using the var operator and can be initial-
ized with any value. This enables you to change the type of data a variable contains at any
point in time (although you should avoid doing so whenever possible). Some examples:

var color = “red”;
var num = 25;
var visible = true;

05_579088 ch02.qxd 3/28/05 11:35 AM Page 11

❑ End-of-line semicolons are optional. Java, C, and Perl require that every line end with a semi-
colon (;) to be syntactically correct; ECMAScript allows the developer to decide whether or not
to end a line with a semicolon. If the semicolon is not provided, ECMAScript considers the end
of the line as the end of the statement (similar to Visual Basic and VBScript), provided that this
doesn’t break the semantics of the code. Proper coding practice is to always include the semi-
colons because some browsers won’t run properly without them, but according to the letter of
the ECMAScript standard, both of the following lines are proper syntax:

var test1 = “red”
var test2 = “blue”;

❑ Comments are the same as in Java, C, and Perl. ECMAScript borrowed its comments from
these languages. There are two types of comments: single-line and multiline. The single-line
comments begin with two forward-slashes (//), whereas multiline comments begin with a
forward-slash and asterisk (/*) and end with an asterisk followed by a forward-slash (*/).

//this is a single-line comment

/* this is a multi-
line comment */

❑ Braces indicate code blocks. Another concept borrowed from Java is the code block. Code
blocks are used to indicate a series of statements that should be executed in sequence and are
indicated by enclosing the statements between an opening brace ({) and a closing brace (}).
For example:

if (test1 == “red”) {
test1 = “blue”;
alert(test1);

}

If you are interested in the specifics of ECMAScript’s grammar, The ECMAScript Language Specification
(ECMA-262) is available for download from ECMA’s Web site, at www.ecma-international.org.

Variables
As I mentioned, variables in ECMAScript are defined by using the var operator (short for variable), fol-
lowed by the variable name, such as:

var test = “hi”;

In this example, the variable test is declared and given an initialization value of “hi” (a string).
Because ECMAScript is loosely typed, the interpreter automatically creates a string value for test
without any explicit type declaration. You can also define two or more variables using the same var
statement:

var test = “hi”, test2 = “hola”;

12

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 12

The previous code defines the variable test to have a value of “hi” and the variable test2 to have a
value of “hola”. Variables using the same var statement don’t have to be of the same type, however, as
shown in the following:

var test = “hi”, age = 25;

This example defines test (yet again) in addition to another variable named age that is set to the value
of 25. Even though test and age are two different data types, this is perfectly legal in ECMAScript.

Unlike Java, variables in ECMAScript do not require initialization (they are actually initialized behind
the scenes, which I discuss later). Therefore, this line of code is valid:

var test;

Also unlike Java, variables can hold different types of values at different times; this is the advantage of
loosely typed variables. A variable can be initialized with a string value, for instance, and later on be set
to a number value, like this:

var test = “hi”;
alert(test); //outputs “hi”
//do something else here
test = 55;
alert(test); //outputs “55”

This code outputs both the string and the number values without incident (or error). As mentioned pre-
viously, it is best coding practice for a variable to always contain a value of the same type throughout
its use.

In terms of variables names, a name must follow two simple rules:

❑ The first character must be a letter, an underscore (_), or a dollar sign ($).

❑ All remaining characters may be underscores, dollar signs, or any alphanumeric characters.

All the following variable names are legal:

var test;
var $test;
var $1;
var _tet2;

Of course, just because variable names are syntactically correct doesn’t mean you should use them.
Variables should adhere to one of the well-known naming conventions:

❑ Camel Notation — the first letter is lowercase and each appended word begins with an upper-
case letter. For example:

var myTestValue = 0, mySecondTestValue = “hi”;

13

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 13

❑ Pascal Notation — the first letter is uppercase and each appended word begins with an upper-
case letter. For example:

var MyTestValue = 0, MySecondTestValue = “hi”;

❑ Hungarian Type Notation — prepends a lowercase letter (or sequence of lowercase letters) to
the beginning of a Pascal Notation variable name to indicate the type of the variable. For exam-
ple, i means integer and s means string in the following line:

var iMyTestValue = 0, sMySecondTestValue = “hi”;

The following table list prefixes for defining ECMAScript variables with Hungarian Type Notation.
These prefixes are used throughout the book to make sample code easier to read:

Type Prefix Example

Array a aValues

Boolean b bFound

Float (Number) f fValue

Function fn fnMethod

Integer (Number) i iValue

Object o oType

Regular Expression re rePattern

String s sValue

Variant (can be any type) v vValue

Another interesting aspect of ECMAScript (and a major difference from most programming languages)
is that variables don’t have to be declared before being used. For example:

var sTest = “hello “;
sTest2 = sTest + “world”;
alert(sTest2); //outputs “hello world”

In the previous code, sTest is declared with a string value of “hello”. The next line uses a variable
named sTest2 to create a concatenation of sTest and the string “world”. The variable sTest2 hasn’t
been defined using the var operator; it has just been inserted as if it has already been declared.

When the ECMAScript interpreter sees an identifier that hasn’t been declared, it creates a global variable
with the given name of the identifier and initializes it with the value specified. This is a handy feature of
the language, but it can also be dangerous if you don’t keep track of variables closely. Best practice is
always to declare all variables as you would with other programming languages (for more information
on why you should always declare variables, see Chapter 19, “Deployment Issues”).

14

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 14

Keywords
ECMA-262 describes a set of keywords that ECMAScript supports. These keywords indicate beginnings
and/or endings of ECMAScript statements. By rule, keywords are reserved and cannot be used as vari-
able or function names. Here is the complete list of ECMAScript keywords:

break else new var
case finally return void
catch for switch while
continue function this with
default if throw
delete in try
do instanceof typeof

If you use a keyword as a variable or function name, you will probably be greeted with an error message
like this: “Identifier expected.”

Reserved Words
ECMAScript also defines a number of reserved words. The reserved words are, in a sense, words that are
reserved for future use as keywords. Because of this, reserved words cannot be used as variable or func-
tion names. The complete list of reserved words in ECMA-262 Edition 3 is as follows:

abstract enum int short
boolean export interface static
byte extends long super
char final native synchronized
class float package throws
const goto private transient
debugger implements protected volatile
double import public

If you use a reserved word as a variable or function name, more than likely you will not receive an
error...until a future browser implements one of them. Then the word will be considered a keyword,
and you will get a keyword error.

Primitive and Reference Values
In ECMAScript, a variable can hold one of two types of values: primitive values and reference values.

❑ Primitive values are simple pieces of data that are stored on the stack, which is to say that their
value is stored directly in the location that the variable accesses.

❑ Reference values, on the other hand, are objects that are stored in the heap, meaning that the value
stored in the variable location is a pointer to a location in memory where the object is stored.

15

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 15

When a value is assigned to a variable, the ECMAScript interpreter must decide if it is a primitive or ref-
erence value. To do this, the interpreter tries to determine if the value is one of the ECMAScript primitive
types: Undefined, Null, Boolean, Number, or String. Because each one of these primitive types takes up a
fixed amount of space, it can be stored in the small memory area known as the stack. Doing so allows for
quick look up of variable values.

In many languages, strings are considered a reference type and not a primitive type because a string can
vary in length. ECMAScript breaks from this tradition.

If the value is a reference, then space is allocated on the heap. Because a reference value’s size can vary, it
cannot be placed on the stack because it would reduce the speed of variable lookup. Instead, the value
placed in the variable’s stack space is an address of a location in the heap where the object is stored. This
address does have a fixed size; so storing it in the stack has no negative effect on variable performance
(Figure 2-1).

Figure 2-1

Primitive Types
As mentioned previously, ECMAScript has five primitive types: Undefined, Null, Boolean, Number, and
String. ECMA-262 defines the term type as a set of values, and each of the primitive types defines a range
of values it can contain as well as literal representations of that type. To determine if a value is in the
range of values for a particular type, ECMAScript provides the typeof operator. This operator can be
used to determine if a value represents a primitive type and, if so, which primitive type it represents.

The typeof operator
The typeof operator takes one parameter: the variable or value to check. For example:

string("test")

address(0)

null

boolean(true)

number(11)

Stack

(object)

(object)

(object)

(object)

(object)

Heap

16

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 16

var sTemp = “test string”;
alert(typeof sTemp); //outputs “string”
alert(typeof 95); //outputs “number”

Calling typeof on a variable or value returns one of the following values:

❑ “undefined” if the variable is of the Undefined type.

❑ “boolean” if the variable is of the Boolean type.

❑ “number” if the variable is of the Number type.

❑ “string” if the variable is of the String type.

❑ “object” if the variable is of a reference type or of the Null type.

The Undefined type
As previously mentioned, the Undefined type has only one value, undefined. When a variable is
declared and not initialized, it is given the value of undefined by default.

var oTemp;

The previous line of code declares a variable named oTemp, which has no initialization value. This vari-
able is given a value of undefined, which is the literal representation of the Undefined type. You can
test that the variable is equal to the literal yourself by running this code snippet:

var oTemp;
alert(oTemp == undefined);

This code displays an alert with the word “true”, indicating that these two values are indeed equal.
You can also use the typeof operator to show that the variable has a value of undefined.

var oTemp;
alert(typeof oTemp); //outputs “undefined”

Note that a variable having the value of undefined is different from a value being undefined. However,
the typeof operator doesn’t actually distinguish between the two. Consider the following:

var oTemp;

//make sure this variable isn’t defined
//var oTemp2;

//try outputting

You may wonder why the typeof operator returns “object” for a value that is null.
This was actually an error in the original JavaScript implementation that was then
copied in ECMAScript. Today, it is rationalized that null is considered a place-
holder for an object, even though, technically, it is a primitive value.

17

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 17

alert(typeof oTemp); //outputs “undefined”
alert(typeof oTemp2); //outputs “undefined”

The previous code outputs “undefined” for both variables, even though only one of them (oTemp2) is
undefined. If you try to use oTemp2 with any operator other than typeof, it causes an error because
operators can only be applied to defined variables. For example, this causes an error:

//make sure this variable isn’t defined
//var oTemp2;

//try outputting
alert(oTemp2 == undefined); //causes error

The value undefined is also returned when a function doesn’t explicitly return a value, as in the
following:

function testFunc() {
//leave the function blank

}
alert(testFunc() == undefined); //outputs “true”

The Null type
Another type with just one value, the Null type, has only the special value null, which is also its literal.
The value undefined is actually a derivative of the value null, so ECMAScript defines them as equal to
each other.

alert(null == undefined); //outputs “true”

Even though the values are both true, they are considered to have different meanings. Whereas
undefined is the value assigned when a variable is declared and not initialized, null is the value used
to represent an object that doesn’t exist (which I touched upon briefly in the discussion of the typeof
operator). If a function or method is supposed to return an object, it usually returns null when the
object isn’t found.

The Boolean type
The Boolean type is one of the most frequently used in the language. It has two values, true and false
(which are also the two Boolean literals). Even though false isn’t equal to 0, 0 is converted to false
when necessary, making it safe to use either in a Boolean statement.

var bFound = true;
var bLost = false;

The Number type
The most unique type defined in ECMA-262 is the Number type. The Number type can represent both
32-bit integer and 64-bit floating-point values. A Number type literal is considered any number entered

18

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 18

directly (not accessed from another variable). For example, the following line of code declares a variable
to hold an integer value, which is defined by the literal 55:

var iNum = 55;

Integers can also be represented as either octal (base 8) or hexadecimal (base 16) literals. For an octal lit-
eral, the first digit must be a zero (0), and the following digits can be any octal digit (0 through 7), as in
this line of code:

var iNum = 070; //070 is equal to 56 in decimal

To create a hexadecimal literal, the first digit must be a zero (0) followed by the letter x, followed by any
number of hexadecimal digits (0-9 and A-F). The digits may be in uppercase or lowercase. For example:

var iNum = 0x1f; //0x1f is equal to 31 in decimal
var iNum2 = 0xAB; //0xAB is equal to 171 in decimal

To define a floating-point value, you must include a decimal point and one digit after the decimal point
(for instance, use 1.0 not 1.). This is considered a floating-point number literal. Example:

var fNum = 5.0;

The interesting thing about this form of floating-point literal is that it is actually stored as a string until
it’s needed for calculation.

For very large or very small numbers, floating-point values can be represented using e-notation. In
e-notation, a number is represented by digits (including decimal digits), followed by an e (or an E),
followed by the number of times to multiply it by 10. Confused? Here’s an example:

var fNum = 3.125e7;

This notation represents the number 31250000. You can get this value by converting the e-notation to a
calculation: 3.125 × 107, which is exactly equal to 3.125 × 10 × 10 × 10 × 10 × 10 × 10 × 10.

E-notation can also be used to represent very small numbers, such as 0.00000000000000003, which can be
written as 3e-17 (here, 10 is raised to the –17 power, meaning that you will actually be dividing by 10 17
times). ECMAScript, by default, converts any floating-point number with six or more leading zeros into
e-notation.

Floating-point values are stored in a 64-bit IEEE 754 format, meaning that decimal
values can have up to 17 decimal places. After that, the values are truncated, result-
ing in small mathematical errors.

Even though integers can be represented as octal and hexadecimal literals, all mathe-
matical operations return decimal results.

19

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 19

A few special values are also defined as part of the Number type. The first two are Number.MAX_VALUE
and Number.MIN_VALUE, which define the outer bounds of the Number value set. All ECMAScript
numbers must fall between these two values, without exception. A calculation can, however, result in
a number that does not fall in between these two numbers.

When a calculation results in a number greater than Number.MAX_VALUE, it is assigned a value of
Number.POSITIVE_INFINITY, meaning that it has no numeric value anymore. Likewise a calculation
that results in a number less than Number.MIN_VALUE is assigned a value of Number.NEGATIVE_
INFINITY, which also has no numeric value. If a calculation returns an infinite value, the result cannot
be used in any further calculations.

There is actually a special value for infinity named (you guessed it) Infinity. Number.POSITIVE_
INFINITY has a value of Infinity, whereas Number.NEGATIVE_INFINITY has a value of
–Infinity.

Because an infinite number can be positive or negative, a method can be used to determine if a number
is finite (instead of testing for each infinite number separately). The isFinite() method can be called
on any number to ensure that the number isn’t infinite. For example:

var iResult = iNum* some_really_large_number;
if (isFinite(iResult)) {

alert(“Number is finite.”);
} else {

alert(“Number is infinite.”);
}

The final special number value is NaN, which stands for Not a Number. NaN is an odd special value. In
general, this occurs when conversion from another type (String, Boolean, and so on) fails. For example,
trying to convert the word blue into a number value will fail because there is no numeric equivalent. Just
like the infinity values, NaN cannot be used in mathematical calculations. Another oddity of NaN is that it
is not equal to itself, meaning that the following will return false:

alert(NaN == NaN); //outputs “false”

For this reason, it is not recommended to use the NaN value itself. Instead, the function isNaN() will do
the job quite nicely:

alert(isNaN(“blue”)); //outputs “true”
alert(isNaN(“123”)); //outputs “false”

The String type
The String type is unique in that it is the only primitive type that doesn’t have a definite size. A string
can be used to store zero or more Unicode characters, represented by 16-bit integers (Unicode is an inter-
national character set that is discussed later in this book).

Each character in a string is given a position, starting with the first character in position 0, the second
character in position 1, and so on. This means that the position of the final character in a string is always
the length of the string minus 1 (see Figure 2-2).

20

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 20

Figure 2-2

String literals are specified by using either double quotes (“) or single quotes (‘). This differs from Java,
where double quotes are used to specify strings and single quotes are used to specify characters. However,
because ECMAScript has no character type, it is permissible to use either notation. For example, the follow-
ing two lines are valid:

var sColor1 = “blue”;
var sColor2 = ‘blue’;

The string type also encompasses several character literals, which should be very familiar to Java, C, and
Perl developers. The following table lists the ECMAScript character literals:

Literal Meaning

\n Newline

\t Tab

\b Backspace

\r Carriage return

\f Formfeed

\\ Backslash

\’ Single quote

\” Double quote

\0nnn A character represented by octal code nnn (where n is an
octal digit 0-7)

\xnn A character represented by hexadecimal code nn (where
n is a hexadecimal digit 0-F)

\unnnn A Unicode character represented by hexadecimal code
nnnn (where n is a hexadecimal digit 0-F)

Conversions
One of the most important features of any programming language is the capability to convert between
types, and ECMAScript provides developers with a number of easy conversion routines. Most types
contain methods that provide for simple conversion, and several global methods are available for more
complex conversion. In either case, type conversion is a short, one-step process in ECMAScript.

h e l l o !

0 1 2 3 4 5Position

The string "hello!" has a length of 6.

21

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 21

Converting to a string
The interesting thing about ECMAScript primitive values for Booleans, numbers, and strings is that they
are pseudo-objects, meaning that they actually have properties and methods. For example, to get the
length of a string, you can do the following:

var sColor = “blue”;
alert(sColor.length); //outputs “4”

Even though the value “blue” is a primitive string, it still has a length property holding the size of
the string. To that end, the three main primitive values, Booleans, numbers, and strings, all have a
toString() method to convert their value to a string.

You may be asking, “Isn’t it ridiculously redundant to have a toString() method for a string?” Yes,
it is. But ECMAScript defines all objects, whether they are pseudo-objects representing primitive values
or full-fledged objects, to have a toString() method. Because the string type falls in the category of
pseudo-object, it also must have a toString() method.

The Boolean toString() method simply outputs the string “true” or “false”, depending on the
value of the variable:

var bFound = false;
alert(bFound.toString()); //outputs “false”

The Number toString() method is unique in that it has two modes: default and radix mode. In default
mode, the toString() method simply outputs the numeric value in an appropriate string (whether that
is integer, floating point, or e-notation), like this:

var iNum1 = 10;
var fNum2 = 10.0;
alert(iNum1.toString()); //outputs “10”
alert(fNum2.toString()); //outputs “10”

In default mode, the Number’s toString() method always returns the decimal representation of the
number, regardless of how you originally specified it. Therefore, numbers specified by octal or hexadeci-
mal literals are output as decimal.

When you use the Number’s toString() method in radix mode, it is possible to output the number
using a different base, such as 2 for binary, 8 for octal, or 16 for hexadecimal. The radix is just a fancy
name for the base to convert to, and it is specified as an argument to the toString() method:

var iNum = 10;
alert(iNum1.toString(2)); //outputs “1010”
alert(iNum1.toString(8)); //outputs “12”
alert(iNum1.toString(16)); //outputs “A”

In the previous example, the number 10 is output in three different ways: binary, octal, and hexadecimal.
This functionality can be very useful for dealing with numbers in HTML, which use hexadecimal repre-
sentations for each color.

22

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 22

Calling toString(10) on a number is the same as calling toString(); they both return the deci-
mal equivalent of the number.

Converting to a number
ECMAScript provides two methods for converting non-number primitives into numbers: parseInt()
and parseFloat(). As you may have guessed, the former converts a value into an integer whereas the
latter converts a value into a floating-point number. These methods only work properly when called on
strings; all other types return NaN.

Both parseInt() and parseFloat() look at a string carefully before deciding what its numeric value
should be. The parseInt() method starts with the character in position 0 and determines if this is a
valid number; if it isn’t, the method returns NaN and doesn’t continue. If, however, the number is valid,
the method goes on to the character in position 1 and does the same test. This process continues until
a character isn’t a valid number, at which point parseInt() takes the string (up to that point) and
converts it into a number. For example, if you want to convert the string “1234blue” to an integer,
parseInt() would return a value of 1234 because it stops processing one it reaches the character b.
Any number literal contained in a string is also converted correctly, so the string “0xA” is properly con-
verted into the number 10. However, the string “22.5” will be converted to 22, because the decimal
point is an invalid character for an integer. Some examples:

var iNum1 = parseInt(“1234blue”); //returns 1234
var iNum2 = parseInt(“0xA”); //returns 10
var iNum3 = parseInt(“22.5”); //returns 22
var iNum4 = parseInt(“blue”); //returns NaN

The parseInt() method also has a radix mode, allowing you to convert strings in binary, octal, hexa-
decimal, or any other base into an integer. The radix is specified as a second argument to parseInt(),
so a call to parse a hexadecimal value looks like this:

var iNum1 = parseInt(“AF”, 16); //returns 175

Of course, this can also be done for binary, octal, and even decimal (which is the default mode):

var iNum1 = parseInt(“10”, 2); //returns 2
var iNum2 = parseInt(“10”, 8); //returns 8
var iNum2 = parseInt(“10”, 10); //returns 10

If decimal numbers contain a leading zero, it’s always best to specify the radix as 10 so that you won’t
accidentally end up with an octal value. For example:

var iNum1 = parseInt(“010”); //returns 8
var iNum2 = parseInt(“010”, 8); //returns 8
var iNum3 = parseInt(“010”, 10); //returns 10

In this code, both lines are parsing the string “010” into a number. The first line thinks that the string is
an octal value and parses it the same way as the second line (which specifies the radix as 8). The last line
specifies a radix of 10, so iNum3 ends up equal to 10.

23

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 23

The parseFloat() method works in a similar way to parseInt(), looking at each character starting in
position 0. It also continues until the first invalid character and then converts the string it has seen up to
that point. For this method, however, the decimal point is a valid character the first time it appears. If
two decimal points are present, the second is considered invalid and the parseFloat() method con-
verts the string up until that position. This means that the string “22.34.5” will be parsed into 22.34.

Another difference when using parseFloat() is that the string must represent a floating-point number
in decimal form, not octal or hexadecimal. This method ignores leading zeros, so the octal number 0908
will be parsed into 908, and the hexadecimal number 0xA will return NaN because x isn’t a valid charac-
ter for a floating-point number. There is also no radix mode for parseFloat().

Some examples of using parseFloat():

var fNum1 = parseFloat(“1234blue”); //returns 1234.0
var fNum2 = parseFloat(“0xA”); //returns NaN
var fNum3 = parseFloat(“22.5”); //returns 22.5
var fNum4 = parseFloat(“22.34.5”); //returns 22.34
var fNum5 = parseFloat(“0908”); //returns 908
var fNum6 = parseFloat(“blue”); //returns NaN

Type Casting
It’s also possible to convert values using a process called type casting. Type casting allows you to access a
specific value as if it were of a different type. Three type casts are available in ECMAScript:

❑ Boolean(value) – casts the given value as a Boolean

❑ Number(value) – casts the given value as a number (either integer or floating-point)

❑ String(value) – casts the given value a string

Casting a value using one of these three functions creates a new value that is a direct conversion of the
original. This can lead to some unexpected results.

The Boolean() type cast returns true when the value is a string with at least one character, a number
other than 0, or an object (discussed in the next section); it returns false when the value is an empty
string, the number 0, undefined, or null. The following code snippet can be used to test type casting
as a Boolean:

var b1 = Boolean(“”); //false – empty string
var b2 = Boolean(“hi”); //true – non-empty string
var b3 = Boolean(100); //true – non-zero number
var b4 = Boolean(null); //false - null
var b5 = Boolean(0); //false - zero
var b6 = Boolean(new Object()); //true – object

The Number() type cast works in a manner similar to parseInt() and parseFloat(), except that it
converts the entire value, not just part of it. Remember that parseInt() and parseFloat() only con-
vert up to the first invalid character (in strings), so “4.5.6” becomes “4.5”. Using the Number() type
cast, “4.5.6” becomes NaN because the entire string value cannot be converted into a number. If a string
value can be converted entirely, Number() decides whether to use parseInt() or parseFloat(). The
following table illustrates what happens when Number() is used on various values:

24

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 24

Usage Result

Number(false) 0

Number(true) 1

Number(undefined) NaN

Number(null) 0

Number(“5.5”) 5.5

Number(“56”) 56

Number(“5.6.7”) NaN

Number(new Object()) NaN

Number(100) 100

The last type cast, String(), is the simplest because it can accurately convert any value to a string
value. To execute the type cast, it simply calls the toString() method of the value that was passed in,
which converts 1 to “1”, true to “true”, false to “false”, and so on. The only difference between type cast-
ing as a string and using toString() is that the type cast can produce a string for a null or undefined
value without error:

var s1 = String(null); //”null”
var oNull = null;
var s2 = oNull.toString(); //won’t work, causes an error

Type casting is very helpful when dealing with the loosely typed nature of ECMAScript, although you
should ensure that only proper values are used.

Reference Types
Reference types are commonly referred to as classes, which is to say that when you have a reference
value, you are dealing with an object. The vast number of predefined ECMAScript reference types are
discussed throughout the book. For now, the discussion focuses around the reference types that are
closely related to the primitive types just discussed.

ECMAScript doesn’t actually have classes in the traditional sense. In fact, the word “class” doesn’t
appear in ECMA-262 except to explain that there are no classes. ECMAScript defines “object defini-
tions” that are logically equivalent to classes in other programming languages. This book chooses to use
the term “class” because it is more familiar to most developers.

Objects are created by using the new operator and providing the name of the class to instantiate. For
example, this line creates an instance of the Object class:

var o = new Object();

25

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 25

This syntax is similar to Java, although ECMAScript requires parentheses to be used only if there are one
or more parameters. If there are no parameters, such as in the previous line of code, then the parentheses
can be safely omitted:

var o = new Object;

Chapter 3, “Object Basics,” contains a more in-depth look at objects and their behaviors. This section
focuses on those reference types that have primitive equivalents.

The Object class
The Object class itself isn’t very useful, but you should understand it before moving on to the other
classes. Why is that? Because the Object class in ECMAScript is similar to java.lang.Object in Java:
It is the base class from which all ECMAScript classes inherit. All the properties and methods of the
Object class are also present in the other classes, and so to understand the Object class is to understand
all the others better.

The Object class has the following properties:

❑ constructor — A reference value (pointer) to the function that created the object. For the
Object class, this points to the native Object() function.

❑ prototype — A reference value to the object prototype for this object. Prototypes are discussed
further in Chapter 3. For the all classes, this returns an instance of Object by default.

The Object class also has several methods:

❑ hasOwnProperty(property) — Determines if a given property exists for the object. The
property must be specified as a string (for example, o.hasOwnProperty(“name”)).

❑ isPrototypeOf(object) — Determines if the object is a prototype of another object.

❑ propertyIsEnumerable(property) — Determines if a given property can be enumerated by
using the for...in statement (discussed later in this chapter).

❑ toString() — Returns a primitive string representation of the object. For the Object class,
this value is undefined in ECMA-262 and, as such, differs in each implementation.

❑ valueOf() — Returns the most appropriate primitive value of this object. For many classes,
this returns the same value as toString().

Each of the properties and methods listed previously are designed to be overridden by other classes.

Although the parentheses aren’t required, it’s always best to include them in order
to avoid confusion.

26

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 26

The Boolean class
The Boolean class is the reference type for the Boolean primitive type. To create a Boolean object, you
need only pass in a Boolean value as a parameter:

var oBooleanaobject = new Boolean(true);

Boolean objects override the valueOf() method of the Object class to return a primitive value of
either true or false; the toString() method is also overridden to return a string of “true” or
“false” when called. Unfortunately, not only are Boolean objects of little use in ECMAScript, they can
actually be rather confusing.

The problem typically occurs when trying to use Boolean objects in Boolean expressions. For example:

var oFalseObject = new Boolean(false);
var bResult = oFalseObject && true; //outputs true

In this code, a Boolean object is created with a value of false. That same object is then ANDed with
the primitive value true. In Boolean math, false AND true is equal to false. However, in this line of
code it is the oFalseObject being evaluated, not its value (false). As discussed earlier, all objects are
automatically converted to true in Boolean expressions, so oFalseObject actually is given a value of
true in the expression. Then, true ANDed with true is equal to true.

The Number class
As you might have assumed, the Number class is the reference type for the Number primitive type. To
create a Number object, do the following:

var oNumberObject = new Number(55);

You may recognize the Number class from earlier in this chapter, where the special number values are
discussed (such as Number.MAX_VALUE). All the special values are static properties of the Number class.

To get the Number primitive value for a number object, simply use the valueOf() method:

var iNumber = oNumberObject.valueOf();

Of course, the Number class also has a toString() method, which was discussed at length in the section
on conversions. Aside from the standard methods inherited from the Object class, the Number class has
several methods specifically for working with number values.

Although you should understand that the Boolean object is available, it’s best to use
Boolean primitives only to avoid the problems mentioned in this section.

27

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 27

The toFixed() method returns a string representation of a number with a specified number of decimal
points. For example:

var oNumberObject = new Number(99);
alert(oNumberObject.toFixed(2)); //outputs “99.00”

Here, the toFixed() method is given an argument of 2, which indicates how many decimal places
should be displayed. As a result, the method returns the string “99.00”, filling out the empty decimal
places with 0s. This method can be very useful for applications dealing with currency. The toFixed()
method can represent numbers with 0 to 20 decimal places; other values may cause errors.

Another method related to formatting numbers is the toExponential() method, which returns a string
with the number formatted in e-notation. Just as with toFixed(), toExponential() accepts one argu-
ment, which is the number of decimal places to output. For example:

var oNumberObject = new Number(99);
alert(oNumberObject.toExponential(1)); //outputs “9.9e+1”

This code outputs “9.9e+1” as the result, which you may remember from the earlier explanation, repre-
sents 9.9 x 101. The question is, what if you don’t know the proper format to use for a number: fixed or
exponential? That’s where the toPrecision() method comes in.

The toPrecision() method returns either the fixed or exponential representation of a number, depend-
ing on which makes the most sense. This method takes one argument, which is the total number of digits
to use to represent the number (not including exponents). Example:

var oNumberObject = new Number(99);
alert(oNumberObject.toPrecision(1)); //outputs “1e+2”

In this example, the task is to represent the number 99 with a single digit, which results in “1e+2”, oth-
erwise known as 100. Yes, toPrecision() rounded the number to get as close as possible to the actual
value. Because you can’t represent 99 with any fewer than 2 digits, this rounding had to occur. If, how-
ever, you want to represent 99 using two digits, well, that’s easy:

var oNumberObject = new Number(99);
alert(oNumberObject.toPrecision(2)); //outputs “99”

Of course the output is “99”, because that is the exact representation of the number. But what if you
specify more than the number of digits needed?

var oNumberObject = new Number(99);
alert(oNumberObject.toPrecision(3)); //outputs “99.0”

In this case, toPrecision(3) is exactly equivalent to toFixed(1), outputting “99.0” as the result.

The toFixed(), toExponential(), and toPrecision() methods round up or down to accu-
rately represent a number with the correct number of decimal places.

28

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 28

The String class
The String class is the object representation of a String primitive and is created in the following manner:

var oStringObject = new String(“hello world”);

Both valueOf() and toString() return the String primitive value for a String object:

alert(oStringObject.valueOf() == oStringObject.toString()); //outputs “true”

If you run this code, the output is “true”, indicating that the values are indeed equal.

The String class is one of the more complicated reference types in ECMAScript. As such, this section
focuses only on the basic functionality of the String class. More advanced functionality is split into
suitable topics throughout the book.

The String class has one property, length, which gives the number of characters in the string:

var oStringObject = new String(“hello world”);
alert(oStringObject.length); //outputs “11”

This example outputs “11”, the number of characters in “hello world”. Note that even if the string
contains a double-byte character (as opposed to an ASCII character, which uses just one byte), each char-
acter is still counted as one.

The String class also has a large number of methods. The first two, charAt() and charCodeAt(),
have to do with accessing the individual characters in the string. As described in the section on String
primitives, the first character is in position 0, the second is in position 1, and so on. Both these methods
accept one argument, the position of the character to act on. The charAt() method returns a string con-
taining the character in that position:

var oStringObject = new String(“hello world”);
alert(oStringObject.charAt(1)); //outputs “e”

The character in position 1 of “hello world” is “e”, so calling charAt(1) returns “e”. If instead of the
actual character you want the character code, then calling charCodeAt() is the appropriate choice:

var oStringObject = new String(“hello world”);
alert(oStringObject.charCodeAt(1)); //outputs “101”

This example outputs “101”, which is the character code for the lowercase e character.

Similar to the Boolean object, the Number object is important, but it should be used
sparingly in order to avoid potential problems. Whenever possible, you should use
numeric primitives instead.

29

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 29

Next up is the concat() method, which is used to concatenate one or more strings to the primitive
value of the String object. This method actually returns a String primitive value as a result and leaves
the original String object intact:

var oStringObject = new String(“hello “);
var sResult = oStringObject.concat(“world”);
alert(sResult); //outputs “hello world”
alert(oStringObject); //outputs “hello “

The result of calling the concat() method in the previous code is “hello world”, whereas the con-
tents of the String object remains “hello “. For this reason, it is much more common to use the add
operator (+) to concatenate strings because it more logically indicates the actual behavior:

var oStringObject = new String(“hello “);
var sResult = oStringObject + “world”;
alert(sResult); //outputs “hello world”
alert(oStringObject); //outputs “hello “

So far, you have seen methods of concatenating strings and accessing individual characters in strings,
but what if you are unsure if a character exists in a particular string? That’s where the indexOf() and
lastIndexOf() methods are useful.

Both the indexOf() and lastIndexOf() methods return the position of a given substring within
another string (or –1 if the substring isn’t found). The difference between the two is that the indexOf()
method begins looking for the substring at the beginning of the string (character 0) whereas the
lastIndexOf() method begins looking for the substring at the end of the string. For example:

var oStringObject = new String(“hello world”);
alert(oStringObject.indexOf(“o”)); //outputs “4”
alert(oStringObject.lastIndexOf(“o”)); //outputs “7”

Here, the first occurrence of the string “o” occurs at position 4, which is the “o” in “hello”. The last
occurrence of the string “o” is in the word “world”, at position 7. If there is only one occurrence of “o”
in the string, then indexOf() and lastIndexOf() return the same position.

The next method is localeCompare(), which helps sort string values. This method takes one argument,
the string to compare to, and it returns one of three values:

❑ If the String object should come alphabetically before the string argument, a negative number
is returned (most often this is –1, but it is up to each implementation as to the actual value).

❑ If the String object is equal to the string argument, 0 is returned.

❑ If the String object should come alphabetically after the string argument, a positive number is
returned (most often this is 1, but once again, this is implementation-specific).

Example:

var oStringObject = new String(“yellow”);
alert(oStringObject.localeCompare(“brick”)); //outputs “1”
alert(oStringObject.localeCompare(“yellow”)); //outputs “0”
alert(oStringObject.localeCompare (“zoo”)); //outputs “-1”

30

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 30

In this code, the string “yellow” is compared to three different values, “brick”, “yellow”, and “zoo”.
Because “brick” comes alphabetically before “yellow”, localCompare() returns 1; “yellow” is
equal to “yellow”, so localCompare() returns 0 for that line; “zoo” comes after “yellow”, so
localCompare() returns –1. Once again, because the values are implementation-specific, it is best to
use localCompare() in this way:

var oStringObject1 = new String(“yellow”);
var oStringObject2 = new String(“brick”);
var iResult = sTestString.localeCompare(“brick”);
if(iResult < 0) {

alert(oStringObject1 + “ comes before “ + oStringObject2);
} else if (iResult > 0) {

alert(oStringObject1 + “ comes after “ + oStringObject2);
} else {

alert(“The two strings are equal”);
}

By using this sort of construct, you can be sure that the code works correctly in all implementations.

The unique part of localeCompare() is that an implementation’s locale (country and language) indi-
cates exactly how this method operates. In the United States, where English is the standard language for
ECMAScript implementations, localCompare() is case-sensitive, determining that uppercase letters
come alphabetically after lowercase letters. However, this may not be the case in other locales.

ECMAScript provides two methods for creating string values from a substring: slice() and sub-
string(). Both methods return a substring of the string they act on, and both accept either one or two
arguments. The first argument is the position where capture of the substring begins; the second argu-
ment, if used, is the position before which capture is stopped (which is to say that the character at this
position is not included in the returned value). If the second argument is omitted, it is assumed that the
ending position is the length of the string. Just as with the concat() method, slice() and sub-
string() do not alter the value of the String object itself: They simply return a primitive String value
as the result, leaving the String object unchanged.

var oStringObject = new String(“hello world”);
alert(oStringObject.slice(3)); //outputs “lo world”
alert(oStringObject.substring(3)); //outputs “lo world”
alert(oStringObject.slice(3, 7)); //outputs “lo w”
alert(oStringObject.substring(3,7)); //outputs “lo w”

In this example, slice() and substring() are used in the same manner and, ironically enough, return
the same values. When given just one argument, 3, both methods return “lo world”, as the second “l”
in “hello” is in position 3. When given two arguments, 3 and 7, both methods return “lo w” (the “o”
in “world” is in position 7, so it is not included). Why have two methods that do the exact same thing?
Truthfully, the methods aren’t identical, but they differ only in how they deal with arguments that are
negative numbers.

For the slice() method, a negative argument is treated as the length of the string plus the negative
argument; the substring() method treats a negative argument as 0 (which means that it is ignored).
For example:

var oStringObject= new String(“hello world”);
alert(oStringObject.slice(-3)); //outputs “rld”

31

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 31

alert(oStringObject.substring(-3)); //outputs “hello world”
alert(oStringObject.slice(3, -4)); //outputs “lo w”
alert(oStringObject.substring(3,-4)); //outputs “hel”

Here, you see the main difference between slice() and substring(). When you call each with one
argument, -3, slice() returns “rld” while substring() returns “hello world”. This occurs
because slice(-3) translates into slice(7) for the string “hello world” whereas substring(-3)
translates into substring(0). Likewise, the difference is apparent when using the parameters 3 and –4.
For the slice() method, this translates into slice(3,7), the same as the previous example, which
returns “lo w” as the result. However the substring() method interprets this as substring(3,0),
which is essentially substring(0, 3) because substring() always considers the smaller number as
the start and the larger number as the end. As a result, substring(3,-4) returns “hel”. The bottom
line here is to be clear about how you are using these two methods.

The last set of methods to be discussed involves case conversion. Four methods perform case conver-
sion: toLowerCase(), toLocaleLowerCase(), toUpperCase(), and toLocaleUpperCase(). The
uses for these methods are pretty obvious from their names — two convert the string into all lowercase
and two convert the string into all uppercase. The toLowerCase() and toUpperCase() methods are
the originals, modeled after the same methods in java.lang.String; the toLocaleLowerCase() and
toLocaleUpperCase() methods are intended to be implemented based on a particular locale (in the
same way localeCompare() is intended to be used). In many locales, the locale-specific methods are
identical to the generic ones; however, a few languages apply special rules to Unicode case conversion
(such as Turkish), and this necessitates using the locale-specific methods for proper conversion.

var oStringObject= new String(“Hello World”);
alert(oStringObject.toLocaleUpperCase()); //outputs “HELLO WORLD”
alert(oStringObject.toUpperCase()); //outputs “HELLO WORLD”
alert(oStringObject.toLocaleLowerCase()); //outputs “hello world”
alert(oStringObject.toLowerCase()); //outputs “hello world”

This code outputs “HELLO WORLD” for both toLocaleUpperCase() and toUpperCase(), just as
“hello world” is output for both toLocaleLowerCase() and toLowerCase(). Generally speaking,
if you do not know the language in which the code will be running, it is safer to use the locale-specific
methods.

Remember, all the methods and properties for the String class also apply to String primitive values
because they are pseudo-objects.

The instanceof operator
One of the problems with using reference types to store values has been the use of the typeof operator,
which returns “object” no matter what type of object is being referenced. To provide a solution,
ECMAScript introduced another Java operator: instanceof.

The instanceof operator works in a similar way to the typeof operator: It identifies the type of object
you are working with. Unlike typeof, instanceof requires the developer to explicitly ask if an object is
of a particular type. For example:

var oStringObject = new String(“hello world”);
alert(oStringObject instanceof String); //outputs “true”

32

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 32

Here, the code asks, “Is variable s an instance of the class String?” Yes it is, so the result is “true”.
Although not as versatile as typeof, instanceof does offer enough help for the cases when typeof
returns “object”.

Operators
ECMA-262 describes a set of operators that can be used to manipulate variables. The operators range
from mathematical operators (such as addition and subtraction) and bitwise operators to relational
operators and equality operators. Any time a native action is performed on a value, it is considered
an operator.

Unary operators
Unary operators take only one parameter: the object or value to operate on. They are the simplest opera-
tors in ECMAScript.

delete
The delete operator erases a reference to an object property or method that was previously defined.
Example:

var o = new Object;
o.name = “Nicholas”;
alert(o.name); //outputs “Nicholas”
delete o.name;
alert(o.name); //outputs “undefined”

In this example, the name property is deleted, which means that it is forcibly de-referenced and set
to undefined (which you will remember is the same value a variable has when it is created and not
initialized).

The delete operator cannot be used to delete properties and methods that are not defined by the devel-
oper. For instance, the following line causes an error:

delete o.toString;

Even though toString is a valid name of a method, this code line causes an error because the
toString() method is native to ECMAScript and not developer-defined.

void
The void operator returns undefined for any value. This is typically used to avoid outputting a value
that shouldn’t be output, such as when calling a JavaScript function from an HTML <a> element. To do
this properly, the function cannot return a valid value; otherwise the browser erases the page and dis-
plays only the result of the function. For example:

Click Me

33

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 33

If you place this line of code into an HTML page, and click the link, you see “[Object]” printed on the
screen (Figure 2-3). This occurs because window.open() returns a reference to the newly opened win-
dow (this and other methods of the window are discussed further in Chapter 5, “JavaScript in the
Browser”). That object is then converted to a string for display.

Figure 2-3

To avoid this, use the window.open() call with the void operator:

Click Me

This makes the window.open() call return undefined, which is not a valid value and is not displayed
in the browser window. Remember, functions that have no return value actually return undefined.

Prefix increment/decrement
Two operators taken directly from C (and Java) are prefix increment and prefix decrement. Prefix
increment, which adds one to a number value, is indicated by placing two plus signs (++) in front of a
variable:

var iNum = 10;
++iNum

The second line increments iNum to 11. This is effectively equal to:

var iNum = 10;
iNum = iNum + 1;

Likewise, the prefix decrement subtracts one from a value. The prefix decrement is indicated by two
minus signs (– –) placed before the variable:

var iNum = 10;
--iNum;

In this example, the second line decreases the value of iNum to 9.

When you use prefix operators, note that the increment/decrement takes place before the expression is
evaluated. Consider the following example:

34

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 34

var iNum = 10;
--iNum;
alert(iNum); //outputs “9”
alert(--iNum); //outputs “8”
alert(iNum); //outputs “8”

The second line decrements num, and the third line displays the result (“9”). The fourth line displays
num once again, but this time the prefix decrement is applied in the same statement, which results in
the number “8” being displayed. To prove that all decrements are complete, the fifth line once again
outputs “8”.

The prefix increment and decrement are equal in terms of order of precedence when evaluating a mathe-
matical expression and, therefore, are evaluated left to right. For instance:

var iNum1 = 2;
var iNum2 = 20;
var iNum3 = --iNum1 + ++iNum2; //equals 22
var iNum4 = iNum1 + iNum2; //equals 22

In the previous code, iNum3 is equal to 22 because the expression evaluates to 1 + 21. The variable
iNum4 is also equal to 22 and also adds 1 + 21.

Postfix increment/decrement
Two operators, also taken directly from C (and Java), are the postfix increment and postfix decrement.
They also add one to a number value, as indicated by the two plus signs (++) placed after a variable:

var iNum = 10;
iNum++

As you might expect, postfix decrement subtracts one from a value and is indicated by two minus signs
(– –) placed after the variable:

var iNum = 10;
iNum--;

The second line of code decreases the value of iNum to 9.

Unlike the prefix operators, postfix operators increment or decrement after the containing expression is
evaluated. Consider the following example:

var iNum = 10;
iNum--;
alert(iNum); //outputs “9”
alert(iNum--); //outputs “9”
alert(iNum); //outputs “8”

Just as in the prefix example, the second line decrements iNum, and the third line displays the result (9).
The fourth line displays num once again, but this time the postfix decrement is applied in the same state-
ment. However, because the decrement doesn’t happen until after the expression is evaluated, this alert
also displays the number 9. When the fifth line is executed, the alert displays 8, because the postfix
decrement was executed after line 4 but before line 5.

35

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 35

The postfix increment and decrement are also equal in terms of order of precedence when evaluating a
mathematical expression, and they are both evaluated left to right. For instance:

var iNum1 = 2;
var iNum2 = 20;
var iNum3 = iNum1-- + iNum2++; //equals 22
var iNum4 = iNum1 + iNum2; //equals 22

In the previous code, iNum3 is equal to 22 because the expression evaluates to 2 + 20. The variable
iNum4 is also equal to 22, although it evaluates 1 + 21 because the increment and decrement aren’t com-
pleted until after the value of iNum3 has been assigned.

Unary plus and minus
The unary plus and minus are familiar symbols to most people and operate the same way in
ECMAScript as they do in high school math. The unary plus essentially has no effect on a number:

var iNum= 25;
iNum = +iNum;
alert(iNum); //outputs “25”

In this code, the unary plus is applied to the number 25, which returns the exact same value. Although
unary plus has no effect on numbers, it has an interesting effect on strings: It converts them to numbers.

var sNum = “25”;
alert(typeof sNum); //outputs “string”
var iNum = +sNum;
alert(typeof iNum); //outputs “number”

This code converts a string representation of 25 into the actual number. When the unary plus operates
on strings, it evaluates strings the same way as parseInt() with one major difference: Unless the string
begins with “0x” (indicating a hexadecimal number), the string is converted as if it were decimal. So
“010” is always 10 when converted using unary plus, however, “0xB” is converted to 11.

The unary minus, on the other hand, negates the value of a number (for example, converting 25
into –25):

var iNum= 25;
iNum = -iNum;
alert(iNum); //outputs “-25”

Similar to unary plus, unary minus converts a string into a number with one slight difference: Unary
minus also negates the value. For example:

var sNum = “25”;
alert(typeof sNum); //outputs “string”
var iNum = -sNum;
alert(iNum); //outputs “-25”
alert(typeof iNum); //outputs “number”

36

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 36

The unary minus converted the string “25” into the number –25 in the previous code (unary minus
also acts the same way as unary plus regarding hexadecimal and decimal values, but it also negates
the value).

Bitwise operators
The following set of operators work on numbers at their very base level, with the 32 bits that represent
them. Before examining these operators, I begin with a more detailed look into integers in ECMAScript.

Integers revisited
ECMAScript integers come in two specific flavors: signed (allowing both positive and negative values)
and unsigned (allowing only positive numbers). In ECMAScript, all integer literals are signed by
default. But what exactly does this mean?

Signed integers use the first 31 bits to represent the numeric value of the integer, whereas the 32nd bit
represents the sign of the number, 0 for positive or 1 for negative. The number values can range from
–2147483648 to 2147483647.

You can store signed integers in binary form in two different ways, one for positive numbers and one for
negative numbers. Positive numbers are stored in true binary format, with each of the first 31 bits repre-
senting a power of 2, starting with the first bit (called bit 0), which represents 20; the second bit (bit 1)
represents 21, and so on. If any bits are unused, they are filled with 0s and essentially ignored. For exam-
ple, the number 18 is represented as shown in Figure 2-4.

Figure 2-4

The binary version of 18 uses only the first five bits, which are the significant bits for this number. When
converting a number into a binary string (as discussed earlier), you see only the significant bits:

var iNum = 18;
alert(iNum.toString(2)); //outputs “10010”

This code outputs only “10010” instead of the whole 32-bit representation. The other bits really aren’t
important because using just these five bits makes possible to determine the decimal value (Figure 2-5).

0 1 0 0 1 0

The number 18

Bit 31 Bit 0Filler

37

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 37

Figure 2-5

Negative numbers are also stored in binary code, but in a format called two’s complement. The two’s com-
plement of a number is calculated in three steps:

1. Determine the binary representation of the non-negative version (for example, to find –18, first
determine the binary representation of 18).

2. Find the one’s complement of the number, which essentially means that every 0 must be
replaced with 1 and vice versa.

3. Add 1 to the one’s complement.

To determine the binary representation for –18, you must first take the binary representation of 18,
which is:

0000 0000 0000 0000 0000 0000 0001 0010

Next, take the one’s complement, which is the inverse:

1111 1111 1111 1111 1111 1111 1110 1101

Finally, add 1 to the one’s complement:

1111 1111 1111 1111 1111 1111 1110 1101
1

1111 1111 1111 1111 1111 1111 1110 1110

So, the binary equivalent of –18 is 1111 1111 1111 1111 1111 1111 1110 1110. Keep in mind that the devel-
oper has no access to bit 31 when dealing with signed integers.

The interesting thing about negative integers is that conversion to a binary string does not show the
two’s complement form. Instead, ECMAScript outputs the standard binary code for the number’s abso-
lute value preceded by a minus sign. For example:

var iNum = -18;
alert(iNum.toString(2)); //outputs “-10010”

This code outputs only “-10010” instead of the two’s complement in order to protect bit 31 from being
accessed. To put it simply, ECMAScript aims to deal with integers in such a simple way that developers
need not spend any time worrying about their usage.

1 0 0 1 0
(24x1) + (23x0) + (22x0) + (21x1) + (20x0)

16 + 0 0 02+ + +

18

38

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 38

Unsigned integers, on the other hand, treat the final bit just like the other bits. In this mode, the 32nd bit
doesn’t represent the sign of the number but rather the value 231. Because of this extra bit, unsigned inte-
gers range in value from 0 to 4294967295. For numbers less than or equal to 2147483647, unsigned inte-
gers look the same as positive signed integers; numbers greater than 2147483647 require the use of bit 31
(which is always 0 in a signed positive integer). Unsigned integers only return the significant bits when
they are converted into a binary string.

Remember, all integer literals are stored as signed integers by default. Unsigned integers can only be cre-
ated by using one of the ECMAScript bitwise operators.

Bitwise NOT
The bitwise NOT is represented by a tilde (~) and is one of just a few ECMAScript operators related to
binary mathematics. The bitwise NOT is a three-step process:

1. The operand is converted to a 32-bit number.

2. The binary form is converted into its one’s complement.

3. The one’s complement is converted back to a floating-point number.

Example:

var iNum1 = 25; //25 is equal to 00000000000000000000000000011001
var iNum2 = ~iNum1; //convert to 111111111111111111111111111100110
alert(iNum2); //outputs “-26”

The bitwise NOT essentially negates a number and then subtracts 1 from it, so 25 becomes –26. Really,
the same effect can be achieved by doing this:

var iNum1 = 25;
var iNum2 = -iNum1 – 1;
alert(iNum2); //outputs “-26”

Bitwise AND
The bitwise AND operator is indicated by the ampersand (&) and works directly on the binary form of
numbers. Essentially, bitwise AND lines up the bits in each number and then, using the following rules,
performs an AND operation between the two bits in the same position:

Bit from First Number Bit from Second Number Result

1 1 1

1 0 0

0 1 0

0 0 0

For example, if you wanted to AND the numbers 25 and 3 together, the code looks like this:

39

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 39

var iResult = 25 & 3;
alert(iResult); //outputs “1”

The result of a bitwise AND between 25 and 3 is 1. Why is that? Take a look:

25 = 0000 0000 0000 0000 0000 0000 0001 1001
3 = 0000 0000 0000 0000 0000 0000 0000 0011

AND = 0000 0000 0000 0000 0000 0000 0000 0001

As you can see, only one bit (bit 0) contains a 1 in both 25 and 3. Because of this, every other bit of the
resulting number is set to 0, making the result equal to 1.

Bitwise OR
The bitwise OR operator is indicated by the pipe (|) and also works directly on the binary form of num-
bers. Essentially, bitwise OR follows these rules when evaluating bits:

Bit from First Number Bit from Second Number Result

1 1 1

1 0 1

0 1 1

0 0 0

Using the same example as for bitwise AND, if you want to OR the numbers 25 and 3 together, the code
looks like this:

var iResult = 25 | 3;
alert(iResult); //outputs “27”

The result of a bitwise OR between 25 and 3 is 27:

25 = 0000 0000 0000 0000 0000 0000 0001 1001
3 = 0000 0000 0000 0000 0000 0000 0000 0011

OR = 0000 0000 0000 0000 0000 0000 0001 1011

As you can see, four bits contain 1 in either number, so these are passed through to the result. The binary
code 11011 is equal to 27.

Bitwise XOR
The bitwise XOR operator is indicated by a caret (^) and, of course, works directly on the binary form of
numbers. Bitwise XOR is different from bitwise OR in that it returns 1 only when exactly one bit has a
value of 1. Here is the truth table:

40

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 40

Bit from First Number Bit from Second Number Result

1 1 0

1 0 1

0 1 1

0 0 0

To XOR the numbers 25 and 3 together, use the following code:

var iResult = 25 ^ 3;
alert(iResult); //outputs “26”

The result of a bitwise XOR between 25 and 3 is 26:

25 = 0000 0000 0000 0000 0000 0000 0001 1001
2 = 0000 0000 0000 0000 0000 0000 0000 0011

XOR = 0000 0000 0000 0000 0000 0000 0001 1010

As you can see, four bits contain 1 in either number, so these are passed through to the result. The binary
code 11010 is equal to 26.

Left shift
The left shift is represented by two less-than signs (<<). It shifts all bits in a number to the left by the
number of positions given. For example, if you take the number 2 (which is equal to 10 in binary) and
shifted it 5 bits to the left, you end up with 64 (which is equal to 1000000 in binary):

var iOld = 2; //equal to binary 10
var iNew = iOld << 5; //equal to binary 1000000 which is decimal 64

Note that when the bits are shifted, five empty bits remain to the right of the number. The left shift fills
these bits with the value in the 32nd bit (the sign bit) to make the result a complete 32-bit number
(Figure 2-6).

Figure 2-6

0 1 0

The number 2"Secret" sign bit

0 1 0 0 0 0 0 0

The number 2 shifted to the left 5 bits (the number 64)

Padded with zeros

41

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 41

Note that left shift preserves the sign of the number it’s operating on. For instance, if –2 is shifted to the
left by 5 spaces, it becomes –64, not positive 64. “But isn’t the sign stored in the 32nd bit?” you ask. Yes it
is, but that is behind the scenes of ECMAScript. The developer can never have access to that 32nd bit
directly. Even printing out a negative number as a binary string shows the negative sign (for instance,
–2 is displayed as –10 instead of 10000000000000000000000000000010).

Signed right shift
The signed right shift is represented by two greater-than signs (>>) and shifts all bits in a 32-bit number to
the right while preserving the sign (positive or negative); signed right shift is the exact opposite of left
shift. For example, if 64 is shifted to the right five bits, it becomes 2:

var iOld = 64; //equal to binary 1000000
var iNew = iOld >> 5; //equal to binary 10 with is decimal 2

Once again, when bits are shifted, the shift creates empty bits. This time, the empty bits occur at the left
of the number, but after the sign bit (see Figure 2-7). Once again, ECMAScript fills these empty bits with
the value in the sign bit to create a complete number.

Figure 2-7

Unsigned right shift
The unsigned right shift is represented by three greater-than signs (>>>) and shifts all bits in an
unsigned 32-bit number to the right. For numbers that are positive, the effect is the same as a signed
right shift. Using the same example as for the signed right shift example, if 64 is shifted to the right five
bits, it becomes 2:

var iOld = 64; //equal to binary 1000000
var iNew = iOld >>> 5; //equal to binary 10 with is decimal 2

For numbers that are negative, however, something quite different happens. You see, the unsigned right
shift operator fills all empty bits with the value contained in the 32nd bit. For positive numbers, this bit
is 0; so the empty bits are filled with zero. For negative numbers, however, this bit is 1, meaning that all
empty bits are filled with 1. Because the result of unsigned right shift is an unsigned 32-bit number, you
end up with a very large number. For example, if you shift –64 to the right by five bits, you end up with
2147483616. How does this happen?

0 1 0 0 0 0 0 0

The number 64"Secret" sign bit

0 1 0

The number 64 shifted to the right 5 bits (the number 2)

Padded with zeros

42

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 42

First, look at the true 32-bit representation of –64. To do so, you need to create an unsigned version of the
number, which can be attained by using unsigned right shift with a bit count of 0:

var iUnsigned64 = 64 >>> 0;

Then, to get the actual bit representation, use the toString() method of the Number type with a
radix of 2:

alert(iUnsigned64.toString(2));

This yields a value of 11111111111111111111111111000000, which is the two’s complement representation of
–64 for a signed integer, but it is equal to 4294967232 as an unsigned integer. For this reason, use caution
with the unsigned right shift operator.

Boolean operators
Almost as important as equality operators, Boolean operators are what make a programming language
function. Without the capability to test relationships between two values, statements such as if...else
and loops wouldn’t be useful. There are three Boolean operators: NOT, AND, and OR.

Logical NOT
The logical NOT operator in ECMAScript is the same as in C and Java, indicated by an exclamation
point (!). Unlike logical OR and logical AND operators, the logical NOT always returns a Boolean value.
The logical NOT operator behaves in the following way:

❑ If the operand is an object, false is returned.

❑ If the operand is the number 0, true is returned.

❑ If the operand is any number other than 0, false is returned.

❑ If the operand is null, true is returned.

❑ If the operand is NaN, true is returned.

❑ If the operand is undefined, an error occurs.

This operator is typically used in control loops (discussed later):

var bFound = false;
var i = 0;

while (!bFound) {
if (aValues[i] == vSearchValue) {

bFound = true;
} else {

i++;
}

}

43

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 43

In this example, a Boolean variable (found) keeps track of the success of a search. When the item in
question is located, found is set to true, which causes !found to equal false, meaning that execution
will escape the while loop.

The logical NOT operator is also useful in determining the Boolean equivalent of an ECMAScript vari-
able. In order to do this, you use two logical NOT operators in a row. The first NOT returns a Boolean
value no matter what operand it is given. The second NOT negates that Boolean value and so gives the
true Boolean value of a variable.

var bFalse = false;
var sBlue = “blue”;
var iZero = 0;
var iThreeFourFive = 345;
var oObject = new Object;
document.write(“The Boolean value of bFalse is “ + (!!bFalse));
document.write(“
The Boolean value of sBlue is “ + (!!sBlue));
document.write(“
The Boolean value of iZero is “ + (!!iZero));
document.write(“
The Boolean value of iThreeFourFive is “ +
(!!iThreeFourFive));
document.write(“
The Boolean value of oObject is “ + (!!oObject));

Running this example yields the following output:

The Boolean value of bFalse is false
The Boolean value of sBlue is true
The Boolean value of iZero is false
The Boolean value of iThreeFourFive is true
The Boolean value of oObject is true

Logical AND
The logical AND operator in ECMAScript is indicated by the double ampersand (&&):

var bTrue = true;
var bFalse = false;
var bResult = bTrue && bFalse;

Logical AND behaves as described in the following truth table:

Operand 1 Operand 2 Result

true true true

true false false

false true false

false false false

Logical AND can be used with any type of operands, not just Boolean values. When either operand is
not a primitive Boolean, logical AND does not always return a Boolean value:

44

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 44

❑ If one operand is an object and one is a Boolean, the object is returned.

❑ If both operands are objects, the second operand is returned.

❑ If either operand is null, null is returned.

❑ If either operand is NaN, NaN is returned.

❑ If either operand is undefined, an error occurs.

Just as in Java, logical AND is a short-circuited operation, meaning that if the first operand determines
the result, the second operand is never evaluated. In the case of logical AND, if the first operand is false,
no matter what the value of the second operand, the result can’t be equal to true. Consider the following
example:

var bTrue = true;
var bResult = (bTrue && bUnknown); //error occurs here
alert(bResult); //this line never executes

This code causes an error when the logical AND is evaluated because the variable bUnknown is unde-
fined. The value of variable bTrue is true, so the logical AND operator continued on to evaluate vari-
able bUnknown. When it did, an error occurred because bUnknown is undefined and, therefore, cannot
be used in a logical AND operation. If this example is changed so that a is set to false, the error won’t
occur:

var bFalse = false;
var bResult = (bFalse && bUnknown);
alert(bResult); //outputs “false”

In this code, the script writes out the string “false”, the value returned by the logical AND operator.
Even though the variable bUnknown is undefined, it never gets evaluated because the first operand is
false. You must always keep in mind short-circuiting when using logical AND.

Logical OR
The logical OR operator in ECMAScript is the same as in Java, using the double pipe (||):

var bTrue = true;
var bFalse = false;
var bResult = bTrue || bFalse;

Logical OR behaves as described in the following truth table:

Operand 1 Operand 2 Result

true true true

true false true

false true true

false false false

45

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 45

Just like logical AND, if either operand is not a Boolean, logical OR will not always return a Boolean
value:

❑ If one operand is an object and one is a Boolean, the object is returned.

❑ If both operands are objects, the first operand is returned.

❑ If both operands are null, null is returned.

❑ If either operand is NaN, NaN is returned.

❑ If either operand is undefined, an error occurs.

Also like the logical AND operator, the logical OR operator is short-circuited. In this case, if the first
operand evaluates to true, the second operand is not evaluated. For example:

var bTrue = true;
var bResult = (bTrue || bUnknown);
alert(bResult); //outputs “true”

As with the previous example, the variable c is undefined. However, because the variable bTrue is set
to true, variable bUnknown is never evaluated and thus the output is “true”. If the value of bTrue is
changed to false, an error occurs:

var bFalse = false;
var bResult = (bTrue || bUnknown); //error occurs here
alert(bResult); //this line never executes

Multiplicative operators
This next section deals with the three multiplicative operators: multiple, divide, and modulus. These
operators work in a manner similar to their counterparts in languages such as Java, C, and Perl, but they
also include some automatic type conversions you need to be aware of.

Multiply
The multiply operator is represented by an asterisk (*) and is used, as one might suspect, to multiply two
numbers. The syntax is the same as in C:

var iResult = 34 * 56;

However, the multiply operator also has some unique behaviors when dealing with special values:

❑ If the operands are numbers, regular arithmetic multiply is performed, meaning that two posi-
tives or two negatives equal a positive, whereas operands with different signs yield a negative.
If the result is too high or too low, the result is either Infinity or –Infinity.

❑ If either operand is NaN, the result is NaN.

❑ If Infinity is multiplied by 0, the result is NaN.

❑ If Infinity is multiplied by any number other than 0, the result is either Infinity or
–Infinity, depending on the sign of the second operand.

❑ If Infinity is multiplied by Infinity, the result is Infinity.

46

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 46

Divide
The divide operator is represented by a slash (/) and divides the first operand by the second operand:

var iResult = 66 / 11;

The divide operator, like the multiply operator, has special behaviors for special values:

❑ If the operands are numbers, regular arithmetic division is performed, meaning that two posi-
tives or two negatives equal a positive, whereas operands with different signs yield a negative.
If the result is too high or too low, the result is either Infinity or – Infinity.

❑ If either operand is NaN, the result is NaN.

❑ If Infinity is divided by Infinity, the result is NaN.

❑ If Infinity is divided by any number, the result is Infinity.

❑ Division of a non-infinite number by 0 always equals NaN.

❑ If Infinity is divided by any number other than 0, the result is either Infinity or –
Infinity, depending on the sign of the second operand.

Modulus
The modulus (remainder) operator is represented by a percent sign (%) and is used in the following way:

var iResult = 26 % 5; //equal to 1

Just like the other multiplicative operators, the modulus operator behaves differently for special values:

❑ If the operands are numbers, regular arithmetic division is performed, and the remainder of that
division is returned.

❑ If the dividend is Infinity or the divisor is 0, the result is NaN.

❑ If Infinity is divided by Infinity, the result is NaN.

❑ If the divisor is an infinite number, the result is the dividend.

❑ If the dividend is 0, the result is 0.

Additive operators
The additive operators, add and subtract, are typically the simplest mathematical operators in program-
ming languages. In ECMAScript, however, a number of special behaviors are associated with each
operator.

Add
The add operator (+) is used just as one would expect:

var iResult = 1 + 2;

47

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 47

Just like the multiplicative operators, additive operators also behave in special ways when dealing with
special values. If the two operands are numbers, they perform an arithmetic add and return the result
according to these rules:

❑ If either number is NaN, the result is NaN.

❑ If Infinity is added to Infinity, the result is Infinity.

❑ If –Infinity is added to –Infinity, the result is –Infinity.

❑ If Infinity is added to –Infinity, the result is NaN.

❑ If +0 is added to +0, the result is +0.

❑ If –0 is added to +0, the result is +0.

❑ If –0 is added to –0, the result is –0.

If, however, one of the operands is a string, then the following rules are applied:

❑ If both operands are strings, the second string is concatenated to the first.

❑ If only one operand is a string, the other operand is converted to a string and the result is the
concatenation of the two strings.

For example:

var result1 = 5 + 5; //two numbers
alert(result); //outputs “10”
var result2 = 5 + “5”; //a number and a string
alert(result); //outputs “55”

This code illustrates the difference between the two modes for the add operator. Normally, 5 + 5 equals
10 (a primitive number value), as illustrated by the first two lines of code. However, if one of the operands
is changed to a string, “5”, the result becomes “55” (which is a primitive string value) because the first
operand gets translated to “5” as well.

Subtract
The subtract operator (–) is another that is used quite frequently:

var iResult = 2 – 1;

Just like the add operator, the subtract operator has special rules to deal with the variety of type conver-
sions present in ECMAScript:

❑ If the two operands are numbers, perform arithmetic subtract and return the result.

❑ If either number is NaN, the result is NaN.

To avoid one of the most common mistakes made in JavaScript, always double check
the data types when using the add operator.

48

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 48

❑ If Infinity is subtracted from Infinity, the result is NaN.

❑ If –Infinity is subtracted from –Infinity, the result is NaN.

❑ If –Infinity is subtracted from Infinity, the result is Infinity.

❑ If Infinity is subtracted from –Infinity, the result is –Infinity.

❑ If +0 is subtracted from +0, the result is +0.

❑ If –0 is subtracted from +0, the result is –0.

❑ If –0 is subtracted from –0, the result is +0.

❑ If either of the two operands is not a number, the result is NaN.

Relational operators
The less-than (<), greater-than (>), less-than-or-equal (<=), and greater-than-or-equal (>=) relational oper-
ators perform comparisons between numbers in the same way that you learned in math class. Each of
these operators returns a Boolean value:

var bResult1 = 5 > 3; //true
var bResult2 = 5 < 3; //false

When a relational operator is used on two strings, however, a different behavior occurs. Many expect
that less-than means “alphabetically before” and greater-than means “alphabetically after,” but this is
not the case. For strings, each of the first string’s character codes is numerically compared against the
character codes in a corresponding location in the second string. After this comparison is complete, a
Boolean value is returned. The problem here is that the character codes of uppercase letters are all lower
than the character codes of lowercase letters, meaning that you can run into situations like this:

var bResult = “Brick” < “alphabet”;
alert(bResult); //outputs “true”

In this example, the string “Brick” is considered to be less than the string “alphabet” because the let-
ter B has a character code of 66 and letter a has a character code of 97. To force a true alphabetic result,
you must convert both operands into a common case (upper or lower) and then compare:

var bResult = “Brick”.toLowerCase() < “alphabet”.toLowerCase();
alert(bResult); //outputs “false”

Converting both operands to lowercase ensures that “alphabet” is correct identified as alphabetically
before “Brick”.

Another sticky situation occurs when comparing numbers that are strings, for example:

var bResult = “23” < “3”;
alert(bResult); //outputs “true”

This code will output “true” when comparing the string “23” to “3”. Because both operands are
strings, they are compared by their character codes (the character code for “2” is 50; the character code
for “3” is 51). If, however, one of the operands is changed to a number, the result makes more sense:

49

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 49

var bResult = “23” < 3;
alert(bResult); //outputs “false”

Here, the string “23” is converted into the number 23 and then compared to 3, giving the expected
result. Whenever a number is compared to a string, ECMAScript says that the string should be con-
verted into a number and then numerically compared with the other number. This works well for
cases like the previous example, but what if the string can’t be converted into a number? Consider this
example:

var bResult = “a” < 3;
alert(bResult);

What would you expect this to output? The letter “a” can’t be meaningfully converted into a number.
After all, if you were to use parseInt() on it, NaN would be returned. As a rule, any relational opera-
tion that contains NaN returns false, so this code also outputs false:

var bResult = “a” >= 3;
alert(bResult);

Typically, if two values return false for a less-than operation, they must return true for a greater-than-
or-equal operation, but this is not the case when one number is NaN.

Equality operators
Determining whether two variables are equivalent is one of the most important operations in program-
ming. This is fairly straightforward when dealing with primitive values, but the task gets a little compli-
cated when you take objects into account. To deal with this problem, ECMAScript provides two sets of
operators: equal and not equal to deal with primitive values, and identically equal and not identically
equal to deal with objects.

Equal and not equal
The equal operator in ECMAScript is the double equal sign (==), and it returns true if — and only if —
both operands are equal. The not equal operator is the exclamation point followed by an equal sign (!=),
and it returns true if — and only if — two operands are not equal. Both operators do conversions in
order to determine if two operands are equal.

When performing conversions, follow these basic rules:

❑ If an operand is a Boolean value, convert it into a numeric value before checking for equality.
A value of false converts to 0; whereas a value of true converts to 1.

❑ If one operand is a string and the other is a number, attempt to convert the string into a number
before checking for equality.

❑ If one operand is an object and the other is a string, attempt to convert the object to a string
(using the toString() method) before checking for equality.

❑ If one operand is an object and the other is a number, attempt to convert the object to a number
before checking for equality.

50

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 50

The operators also follow these rules when making comparisons:

❑ Values of null and undefined are equal.

❑ Values of null and undefined cannot be converted into any other values for equality checking.

❑ If either operand is NaN, the equal operator returns false and the not equal operator returns
true. Important note: Even if both operands are NaN, the equal operator returns false because,
by rule, NaN is not equal to NaN.

❑ If both operands are objects, then the reference values are compared. If both operands point to
the same object, then the equal operator returns true. Otherwise, the two are not equal.

The following table lists some special cases and their results:

Expression Value

null == undefined true

“NaN” == NaN false

5 == NaN false

NaN == NaN false

NaN != NaN true

false == 0 true

true == 1 true

true == 2 false

undefined == 0 false

null == 0 false

“5” == 5 true

Identically equal and not identically equal
The brothers of the equal and not equal operators are the identically equal and not identically equal
operators. These two operators do the same thing as equal and not equal, except that they do not convert
operands before testing for equality. The identically equal operator is represented by three equal signs
(===) and only returns true if the operands are equal without conversion. For example:

var sNum = “55”;
var iNum = 55;
alert(sNum == iNum); //outputs “true”
alert(sNum === iNum); //outputs “false”

In this code, the first alert uses the equal operator to compare the string “55” and the number 55 and
outputs “true”. As mentioned previously, this happens because the string “55” is converted to the
number 55 and then compared with the other number 55. The second alert uses the identically equal

51

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 51

operator to compare the string and the number without conversion, and of course, a string isn’t equal to
a number, so this outputs “false”.

The not identically equal operator is represented by an exclamation point followed by two equal signs
(!==) and returns true only if the operands are not equal without conversion. For example:

var sNum = “55”;
var iNum = 55;
alert(sNum != iNum); //outputs “false”
alert(sNum !== iNum); //outputs “true”

Here, the first alert uses the not equal operator, which converts the string “55” to the number 55, mak-
ing it equal to the second operand, also the number 55. Therefore, this evaluates to false because the
two are considered equal. The second alert uses the not identically equal operator. It helps to think of
this operation as saying, “is sNum different from iNum?” The answer to this is yes (true), because sNum
is a string and iNum is a number, so they are very different.

Conditional operator
The conditional operator is one of the most versatile in ECMAScript, and it takes on the same form as
in Java:

variable = boolean_expression ? true_value : false_value;

This basically allows a conditional assignment to a variable depending on the evaluation of the
boolean_expression. If it’s true, then true_value is assigned to the variable; if it’s false, then
false_value is assigned to the variable. For instance:

var iMax = (iNum1 > iNum2) ? iNum1 : iNum2;

In this example, iMax is to be assigned the number with the highest value. The expression states that if
iNum1 is greater than iNum2, iNum1 is assigned to iMax. If, however, the expression is false (meaning
that iNum2 is less than or equal to iNum1), iNum2 is assigned to iMax.

Assignment operators
Simple assignment is done with the equals sign (=) and simply assigns the value on the right to the vari-
able on the left. For example:

var iNum = 10;

Compound assignment is done with one of the multiplicative, additive, or bitwise shift operators fol-
lowed by an equals sign (=). These assignments are designed as shorthand for such common situations as:

var iNum = 10;
iNum = iNum + 10;

The second line of code can be replaced with a compound assignment:

52

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 52

var iNum = 10;
iNum += 10;

Compound assignment operators exist for each of the major mathematical operations and a few others
as well:

❑ Multiply/Assign (*=)

❑ Divide/Assign (/=)

❑ Modulus/Assign (%=)

❑ Add/Assign (+=)

❑ Subtract/Assign (-=)

❑ Left Shift/Assign (<<=)

❑ Signed Right Shift/Assign (>>=)

❑ Unsigned Right Shift/Assign (>>>=)

Comma operator
The comma operator allows execution of more than one operation in a single statement. Example:

var iNum1=1, iNum2=2, iNum3=3;

Most often, the comma operator is used in the declaration of variables.

Statements
ECMA-262 describes several statements for ECMAScript. Essentially, statements define most of the syn-
tax of ECMAScript and, typically, use one or more keywords to accomplish a given task. Statements can
be simple, such as telling a function to exit, or complicated, such as specifying a number of commands to
be executed repeatedly. This section introduces all the standard ECMAScript statements.

The if statement
One of the most frequently used statements in ECMAScript (and indeed, in many languages), is the if
statement. The if statement has the following syntax:

if (condition) statement1 else statement2

The condition can be any expression; it doesn’t even have to evaluate to an actual Boolean value.
ECMAScript converts it to a Boolean for you. If the condition evaluates to true, statement1 is executed;
if the condition evaluates to false, statement2 is executed. Each of the statements can be either a single
line or a code block (a group of code lines enclosed within braces). For example:

53

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 53

if (i > 25)
alert(“Greater than 25.”); //one-line statement

else {
alert(“Less than or equal to 25.”); //block statement

}

You can also chain if statements together like so:

if (condition1) statement1 else if (condition2) statement2 else statement3

Example:

if (i > 25) {
alert(“Greater than 25.”)

} else if (i < 0) {
alert(“Less than 0.”);

} else {
alert(“Between 0 and 25, inclusive.”);

}

Iterative statements
Iterative statements, also called loop statements, specify certain commands to be executed repeatedly
until some condition is met. The loops are often used to iterate the values of an array (hence the name)
or to work though repetitious mathematical tasks. ECMAScript provides four types of iterative state-
ments to aid in the process.

do-while
The do-while statement is a post-test loop, meaning that the evaluation of the escape condition is only
done after the code inside the loop has been executed. This means that the body of the loop is always
executed at least once before the expression is evaluated. Syntax:

do {
statement

} while (expression);

For example:

var i = 0;
do {

i += 2;
} while (i < 10);

It’s considered best coding practice to always use block statements, even if only one
line of code is to be executed. Doing so can avoid confusion about what should be
executed for each condition.

54

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 54

while
The while statement is a pretest loop. This means the evaluation of the escape condition is done before
the code inside the loop has been executed. Because of this, it is possible that the body of the loop is
never executed. Syntax:

while(expression) statement

For example:

var i = 0;
while (i < 10) {

i += 2;
}

for
The for statement is also a pretest loop with the added capabilities of variable initialization before
entering the loop and defining postloop code to be entered. Syntax:

for (initialization; expression; post-loop-expression) statement

For example:

for (var i=0; i < iCount; i++){
alert(i);

}

This code defines a variable i that begins with the value 0. The for loop is entered only if the conditional
expression (i < iCount) evaluates to true, making it possible that the body of the code might not be
executed. If the body is executed, the postloop expression is also executed, iterating the variable i.

for-in
The for-in statement is a strict iterative statement. It is used to enumerate the properties of an object.
Syntax:

for (property in expression) statement

For example:

for (sProp in window) {
alert(sProp);

}

Here, the for-in statement is used to display all the properties of the BOM window object. The method
propertyIsEnumerable(), discussed earlier, is included in ECMAScript specifically to indicate whether
or not a property can be accessed using the for-in statement.

55

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 55

Labeled statements
It is possible to label statements for later use with the following syntax:

label: statement

For example:

start: var iCount = 10;

In this example, the label start can later be referenced by using the break or continue statements.

The break and continue statements
The break and continue statements provide stricter control over the execution of code in a loop. The
break statement exits the loop immediately, preventing any further repetition of the code while the
continue statement exits the current repetition. It does, however, allow further repetition based on
the control expression. For example:

var iNum = 0;

for (var i=1; i < 10; i++) {
if (i % 5 == 0) {

break;
}
iNum++;

}

alert(iNum); //outputs “4”

In the previous code, the for loop is to iterate the variable i from 1 to 10. In the body of loop, an if
statement checks to see if the value of i is evenly divisible by 5 (using the modulus operator). If so, the
break statement is executed and the alert displays “4”, indicating the number of times the loop has
been executed before exiting. If this example is updated to use continue instead of break, a different
outcome occurs:

var iNum = 0;

for (var i=1; i < 10; i++) {
if (i % 5 == 0) {

continue;
}
iNum++;

}

alert(iNum); //outputs “8”

Here, the alert displays “8”, the number of times the loop has been executed. The total number of times
that the loop can possibly be executed is 9, but when i reaches a value of 5, the continue statement is
executed, causing the loop to skip the expression iNum++ and return to the top.

56

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 56

Both the break and continue statements can be used in conjunction with labeled statements to return
to a particular location in the code. This is typically used when there are loops inside of loops, as in the
following example:

var iNum = 0;

outermost:
for (var i=0; i < 10; i++) {

for (var j=0; j < 10; j++) {
if (i == 5 && j == 5) {

break outermost;
}
iNum++;

}
}

alert(iNum); //outputs “55”

In this example one label, outermost, indicates the first for statement. Each loop normally executes
10 times a piece, meaning that the iNum++ statement is normally executed 100 times and, consequently,
iNum should be equal to 100 when the execution is complete. The break statement here is given one
argument, the label to break to. Doing this allows the break statement not just to break out of the inner
for statement (using the variable j) but also out of the outer for statement (using the variable i).
Because of this, iNum ends up with a value of 55 because execution is halted when both i and j are
equal to 5. The continue statement can also be used in the same way:

var iNum = 0;

outermost:
for (var i=0; i < 10; i++) {

for (var j=0; j < 10; j++) {
if (i == 5 && j == 5) {

continue outermost;
}
iNum++;

}
}

alert(iNum); //outputs “95”

In this case, the continue statement forces execution to continue — not in the inner loop, but in the
outer loop. Because this occurs when j is equal to 5, that means the inner loop misses five iterations,
leaving iNum equal to 95.

As you can tell, using labeled statements in conjunction with break and continue can be powerful,
but this practice can also make debugging code a problem, if it is overused. Make sure to always use
descriptive labels and try not to nest more than a handful of loops.

57

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 57

The with statement
The with statement is used to set the scope of the code within a particular object. Its syntax is the
following:

with (expression) statement;

For example:

var sMessage = “hello world”;
with(sMessage) {

alert(toUpperCase()); //outputs “HELLO WORLD”
}

In this code, the with statement is used with a string, so when the toUpperCase() method is called, the
interpreter checks to see if this is a local function. If not, it checks the sMessage pseudo-object to see if
toUpperCase() is a method for it, which it is. The alert then outputs “HELLO WORLD” because the inter-
preter finds the implementation of toUpperCase() on the “hello world” string.

The switch statement
The cousin of the if statement, the switch statement, allows a developer to provide a series of cases for
an expression. The syntax for the switch statement is:

switch (expression) {
case value: statement

break;
case value: statement

break;
case value: statement

break;
...
case value: statement

break;
default: statement

}

Each case says “if expression is equal to value, execute statement”. The break keyword causes code execu-
tion to jump out of the switch statement. Without the break keyword, code execution falls through the
original case into the following one.

The default keyword indicates what is to be done if the expression does not evaluate to one of the
cases (in effect, it is an else statement).

The with statement is a very slow segment of code, especially while the values of
properties are being set. Most of the time, it’s best to avoid using it if possible.

58

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 58

Essentially, the switch statement prevents a developer from having to write something like this:

if (i == 25)
alert(“25”);

else if (i == 35)
alert(“35”);

else if (i == 45)
alert(“45”);

else
alert(“Other”);

The equivalent switch statement is:

switch (i) {
case 25: alert(“25”);

break;
case 35: alert(“35”);

break;
case 45: alert(“45”);

break;
default: alert(“Other”);

}

Two big differences exist between the switch statement in ECMAScript and Java. In ECMAScript, the
switch statement can be used on strings, and it can indicate case by nonconstant values:

var BLUE = “blue”, RED = “red”, GREEN = “green”;

switch (sColor) {
case BLUE: alert(“Blue”);

break;
case RED: alert(“Red”);

break;
case GREEN: alert(“Green”);

break;
default: alert(“Other”);

}

Here, the switch statement is used on the string sColor, whereas the cases are indicated by using the
variables BLUE, RED, and GREEN, which is completely valid in ECMAScript.

Functions
Functions are the heart of ECMAScript: a collection of statements that can be run anywhere at anytime.
Functions are declared with the keyword function, followed by a set of arguments, and finally by the
code to execute enclosed in braces. The basic syntax is:

function functionName(arg0, arg1,...,argN) {
statements

}

59

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 59

For example:

function sayHi(sName, sMessage) {
alert(“Hello “ + name + “,” + sMessage);

}

This function can then be called by using the function name, followed by the function arguments enclosed
in parentheses (and separated by commas, if there are multiple arguments). The code to call the sayHi()
function looks like this:

sayHi(“Nicholas”, “how are you today?”);

This code results in the alert displayed in Figure 2-8.

Figure 2-8

The sayHi() function doesn’t specify a return value, but it requires no special declaration (such as void
is used in Java) to do so. Likewise, a function doesn’t need to explicitly declare a return value type if the
function does indeed return a value. The function need only use the return operator followed by the
value to return:

function sum(iNum1, iNum2) {
return iNum1 + iNum2;

}

The value of the sum function is returned and assigned to a variable like this:

var iResult = sum(1,1);
alert(iResult); //outputs “2”

Another important concept is that, just as in Java, the function stops executing code after a return state-
ment is executed. Therefore, any code that comes after a return statement is not executed. For example,
the alert in the following function is never displayed:

function sum(iNum1, iNum2) {
return iNum1 + iNum2;
alert(iNum1 + iNum2); //never reached

}

It is possible to have more than one return statement in a function, as in this function:

function diff(iNum1, iNum2) {
if (iNum1 > iNum2) {

60

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 60

return iNum1 – iNum2;
} else {

return iNum2 – iNum1;
}

}

The previous function is designed to return the difference between two numbers. To do so, it must
always subtract the smaller number from the larger, which results in an if statement to determine
which return statement to execute.

If a function doesn’t return a value, it can use the return operator without any parameters to exit a func-
tion at any time. Example:

function sayHi(sMessage) {
if (sMessage == “bye”){

return;
}

alert(sMessage);
}

In this code, the alert will never be displayed if the message is equal to the string “bye”.

No overloading
ECMAScript functions cannot be overloaded. This may come as a surprise, considering ECMAScript
closely resembles other higher-level programming languages that support overloading. You can define
two functions with the same name in the same scope without an error; however, the last function
becomes the one that is used. Consider the following example:

function doAdd(iNum) {
alert(iNum + 100);

}

function doAdd(iNum) {
alert(iNum + 10);

}

doAdd(10);

What do you think will be displayed from this code snippet? The alert will show “20”, because the sec-
ond doAdd() definition overwrites the first. Although this can be annoying to a developer, you have a
way to work around this limitation by using the arguments object.

When a function doesn’t explicitly return a value or uses the return statement with-
out a value, the function actually returns undefined as its value.

61

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 61

The arguments object
Within a function’s code, a special object called arguments gives the developer access to the function’s
arguments without specifically naming them. For example, in the sayHi() function, the first argument
is given the name message. The same value can also be accessed by referencing arguments[0], which
asks for the value of the first argument (the first argument is in position 0, the second is in position 1,
and so on.). Therefore, the function can be rewritten without naming the argument explicitly:

function sayHi() {
if (arguments[0] == “bye”) {

return;
}

alert(arguments[0]);
}

The arguments object can also be used to check the number of arguments passed into the function by
referencing the arguments.length property. The following example outputs the number of arguments
each time the function is called:

function howManyArgs() {
alert(arguments.length);

}

howManyArgs(“string”, 45); //outputs “2”
howManyArgs(); //outputs “0”
howManyArgs(12); //outputs “1”

This snippet shows alerts displaying “2”, “0”, and “1” (in that order). In this way, the arguments object
puts the responsibility on the developer to check the arguments that are passed into a function.

Unlike other programming languages, ECMAScript functions don’t validate the number of arguments
passed against the number of arguments defined by the function; any developer-defined function accepts
any number of arguments (up to 255, according to Netscape’s documentation) without causing an
error. Any missing arguments are passed in as undefined; any excess arguments are ignored.

By using the arguments object to determine the number of arguments passed into the function, it is pos-
sible to simulate the overloading of functions:

function doAdd() {
if(arguments.length == 1) {

alert(arguments[0] + 10);
} else if (arguments.length == 2) {

alert(arguments[0] + arguments[1]);
}

}

doAdd(10); //outputs “20”
doAdd(30, 20); //outputs “50”

62

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 62

The function doAdd() adds 10 to a number only if there is one argument; if there are two arguments,
they are simply added together and returned. So doAdd(10) outputs “20” whereas doAdd(30,20) out-
puts “50”. It’s not quite as good as overloading, but it is a sufficient workaround for this ECMAScript
limitation.

The Function class
Perhaps the most interesting aspect of ECMAScript is that functions are actually full-fledged objects.
A Function class represents each and every function a developer defines. The syntax for creating a
function using the Function class directly is as follows:

var function_name = new Function(argument1, argument2,..,argumentN, function_body);

In this form, each of the function arguments is one parameter, with the final parameter being the func-
tion body (the code to execute). Each of these parameters must be a string. Remember this function?

function sayHi(sName, sMessage) {
alert(“Hello “ + sName + “,” + sMessage);

}

It can also be defined like this:

var sayHi = new Function(“sName”, “sMessage”, “alert(\”Hello \” + sName + \”, \” +
sMessage + \”);”);

Admittedly, this form is a little bit harder to write because of the nature of strings, but understand that
functions are just reference types and they always behave as if using the Function class explicitly cre-
ated for them. Remember this example?

function doAdd(iNum) {
alert(iNum + 100);

}

function doAdd(iNum) {
alert(iNum + 10);

}

doAdd(10); //outputs “20”

As you remember, the second function overrides the first, making doAdd(10) output “20” instead of
“110”. This concept becomes a whole lot clearer if this block is rewritten as follows:

doAdd = new Function(“iNum”, “alert(iNum + 100)”);
doAdd = new Function(“iNum”, “alert(iNum + 10)”);
doAdd(10);

Looking at this code, it is clear that the value of doAdd has changed to point to a different object. Yes,
function names are just reference values pointing to a function object and behave just as other pointers
do. It is even possible to have two variables point to the same function:

63

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 63

var doAdd = new Function(“iNum”, “alert(iNum + 10) “);
var alsoDoAdd = doAdd;
doAdd(10); //outputs “20”
alsoDoAdd(10); //outputs “20”

Here, the variable doAdd is defined as a function, and then alsoDoAdd is declared to point to the same
function. Both can then be used to execute the function’s code and output the same result, “20”. So if a
function name is just a variable pointing to a function, is it possible to pass a function as an argument to
another function? Yes!

function callAnotherFunc(fnFunction, vArgument) {
fnFunction(vArgument);

}

var doAdd = new Function(“iNum”, “alert(iNum + 10)”);

callAnotherFunc(doAdd, 10); //outputs “20”

In this example, callAnotherFunction() accepts two arguments: a function to call and an argument
to pass to the function. This code passes the doAdd() function into callAnotherFunction() with an
argument of 10, outputting “20”.

Because functions are reference types, they can also have properties and methods. The one property
defined in ECMAScript is length, which indicates the number of arguments that a function expects.
Example:

function doAdd(iNum) {
alert(iNum + 10);

}

function sayHi() {
alert(“Hi”);

}

alert(doAdd.length); //outputs “1”
alert(sayHi.length); //outputs “0”

The function doAdd() defines one argument to pass in, so its length is 1; sayHi() defines no argu-
ments, so its length is 0. Remember, ECMAScript functions can accept any number of arguments (up to
255) regardless of how many are defined. The length property just gives a convenient way to check
how many arguments are expected by default.

Function objects also have the standard valueOf() and toString() methods shared by all objects.
Both of these methods return the source code for the function and are particularly useful in debugging.
For example:

Even though it’s possible to create a function using the Function constructor, it’s
best to avoid it because it’s slower than defining the function in the traditional man-
ner. However, all functions are considered instances of Function.

64

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 64

function doAdd(iNum) {
alert(iNum + 10);

}

alert(doAdd.toString());

This code outputs the exact text of the doAdd() function (see Figure 2-9).

Figure 2-9

Closures
One of the most misunderstood aspects of ECMAScript is its support for closures. Closures are functions
whose lexical representation includes variables that aren’t evaluated, meaning that functions are capable
of using variables defined outside of the function itself. Using global variables in ECMAScript is a sim-
ple example of a closure. Consider the following example:

var sMessage = “Hello World!”;

function sayHelloWorld() {
alert(sMessage);

}

sayHelloWorld();

In this code, the variable sMessage isn’t evaluated for the function sayHelloWorld() while the scripts is
being loaded into memory. The function captures sMessage for later use, which is to say that the interpreter
knows to check the value of sMessage when the function is called. When sayHelloWorld() is called (on
the last line), the value of sMessage is assigned and the message “Hello World!” is displayed.

Closures can get more complicated, as when you are defining a function inside of another function, as
shown here:

var iBaseNum = 10;

function addNumbers(iNum1, iNum2) {
function doAddition() {

There are a couple of other methods of the Function class that are more relevant to
the discussion of objects and so are described in the next chapter.

65

ECMAScript Basics

05_579088 ch02.qxd 3/28/05 11:35 AM Page 65

return iNum1 + iNum2 + iBaseNum;
}
return doAddition();

}

Here, the function addNumbers() contains a function (the closure) named doAddition(). The internal
function is a closure because it captures the arguments of the outer function, iNum1 and iNum2, as well
as the global variable iBaseNum. The last step of addNumbers() calls the inner function, which adds the
two arguments and the global variable and returns the value. The important concept to grasp here is that
doAddition() doesn’t accept any arguments at all; the values it uses are captured from the execution
environment.

As you can see, closures are a very powerful, versatile part of ECMAScript that can be used to perform
complex calculations. Just as when you use any advanced functionality, exercise caution when using clo-
sures because they can get extremely complex.

Summary
This chapter looked at the basics of ECMAScript:

❑ General syntax

❑ Defining variables using the var keyword

❑ Primitive and reference values

❑ The basic primitive types (Undefined, Null, Boolean, Number, and String)

❑ The basic reference types (Object, Boolean, Number, and String)

❑ Operators and statements

❑ Functions

Understanding ECMAScript is an important part of JavaScript programming, which is why this chapter
is perhaps the most important in this book. A good grasp of the core is vital to comprehending the rest of
the topics in the book.

The next chapter focuses on more of the object-oriented aspects of ECMAScript, including how to create
your own classes and how to establish inheritance.

66

Chapter 2

05_579088 ch02.qxd 3/28/05 11:35 AM Page 66

Object Basics

ECMAScript objects are one of the unique (and useful) features of JavaScript. Chapter 2,
“ECMAScript Basics,” introduced the concept that everything is an object, including functions.
This chapter focuses on how to manipulate and use those objects, as well as how to create your
own objects to add functionality specific to your needs.

Object-Oriented Terminology
ECMA-262 defines an object as an “unordered collection of properties each of which contains a
primitive value, object, or function.” Strictly speaking, this means that an object is an array of val-
ues in no particular order. Although this is ECMAScript’s interpretation, an object is more generi-
cally defined to be a code-based representation of a noun (person, place, or thing).

Each object is defined by a class, which can be thought of as a recipe for an object. The class defines
both the interface of an object (the properties and methods that can be accessed by developers) as
well as the inner workings of the object (the code that makes the properties and methods work).
The compiler or interpreter uses the class to build objects according to its specifications.

When a program uses a class to create an object, the resulting object is said to be an instance of the
class. The only limit to the number of instances that can be created from a single class is the physi-
cal memory limitations of the machine on which the code is running. Each instance behaves the
same way, but each can handle separate sets of data. The process of creating an object instance
from a class is called instantiation.

As I discussed briefly in Chapter 1, ECMAScript has no formal classes. Instead, ECMA-262 describes
object definitions as the recipes for an object. This is a logical compromise for ECMAScript, because
object definitions actually are objects in and of themselves (which I explain shortly). Even though
classes don’t actually exist, this book refers to object definitions as classes because the term is more
familiar to most developers and, functionally, the two are equivalent.

06_579088 ch03.qxd 3/28/05 11:36 AM Page 67

The object definition is contained within a single function called a constructor. The constructor isn’t a
special kind of function; it’s just a regular function that is used to create an object. Later in this chapter,
you learn how to create your own constructors.

Requirements of object-oriented languages
Before a language can be called object-oriented, it must provide four basic capabilities to developers:

1. Encapsulation — the capability to store related information, whether data or methods, together
in an object

2. Aggregation — the capability to store one object inside of another object

3. Inheritance — the capability of a class to rely upon another class (or number of classes) for some
of its properties and methods

4. Polymorphism — the capability to write one function or method that works in a variety of differ-
ent ways

ECMAScript supports all four of these requirements and so is considered to be object-oriented.

Composition of an object
In ECMAScript, objects are composed of attributes, which are either primitive or reference values. If an
attribute contains a function, it is considered to be a method of the object; otherwise, the attribute is con-
sidered a property.

Working with Objects
The previous chapter touched briefly on how to work with objects, but now it’s time to go into more
detail. Objects are created and destroyed throughout the execution of JavaScript code, and understand-
ing the implications of this paradigm is vital to your understanding of the language as a whole.

Declaration and instantiation
Objects are created by using the new keyword followed by the name of the class you wish to instantiate:

var oObject = new Object();
var oStringObject = new String();

The first line creates a new instance of Object and stores it in the variable oObject; the second line cre-
ates a new instance of String and stores it in the variable oStringObject. The parentheses aren’t
required when the constructor doesn’t require arguments, so these two lines could be rewritten as
follows:

var oObject = new Object;
var oStringObject = new String;

68

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 68

Object references
In Chapter 1, the concept of reference types was introduced. In ECMAScript, it is not possible to access
the physical representation of the object; it is only possible to access references to the object. Every time
you create an object, a reference to the object is stored in the variable, not the actual object itself.

Dereferencing objects
ECMAScript has a garbage collection routine, meaning that you don’t have to specifically destroy objects
in order to free up the memory. When there are no remaining references to an object, the object is said to
be dereferenced. When the garbage collector is run, all dereferenced objects are destroyed. The garbage
collector runs whenever a function has completed its code, freeing up all local variables, and at other
not-so-predictable times.

It is possible to forcibly dereference objects by setting all its references equal to null. For example:

var oObject = new Object;
//do something with the object here
oObject = null;

When the variable oObject is set to null, there are no longer any references to the object created in the
first line. This means that the next time the garbage collector is run, this object will be destroyed.

It’s always a good idea to dereference an object as soon as you’re done using it in order to free up mem-
ory. Doing so can also prevent programming errors by ensuring that you aren’t using an object that
should no longer be accessible. Additionally, older browsers (such as IE/Mac) don’t have conscientious
garbage collectors, so objects may not be properly destroyed when a page is unloaded. Dereferencing an
object and all its properties is the best way to ensure proper memory usage.

Early versus late binding
The concept of binding describes the method whereby an object’s interface is bound to an object instance.

Early binding means that properties and methods are defined for an object (via its class) before it is
instantiated so the compiler/interpreter can properly assemble the machine code ahead of time. In lan-
guages such as Java and Visual Basic, early binding allows for the use of IntelliSense (the capability that
gives the developer a list of available properties and methods for a particular object) in development
environments. ECMAScript isn’t strongly typed, so it does not support early binding.

Late binding, on the other hand, means that the compiler/interpreter doesn’t know what type of object is
being held in a particular variable until runtime. With late binding, no check is made to determine the
particular type of object, only whether the object supports the property or method. ECMAScript uses late
binding for all variables, which allows a large amount of object manipulation to occur without penalty.

Be careful to dereference all references to an object. If you have two or more refer-
ences to the same object, all of them must be set to null in order to for you properly
dereference the object.

69

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 69

Types of Objects
In ECMAScript, all objects are not created equal. Generally speaking, three specific types of objects can
be used and/or created.

Native objects
ECMA-262 defines native objects as “any object supplied by an ECMAScript implementation indepen-
dent of the host environment.” Simply put, native objects are the classes (reference types) defined by
ECMA-262. They include all the following:

Object Function Array String
Boolean Number Date RegExp
Error EvalError RangeError ReferenceError
SyntaxError TypeError URIError

Some of these native objects you are already familiar with from the previous chapter (Object, Function,
String, Boolean, and Number), and some will be discussed later in the book. For now, the two native
objects of importance are Array and Date.

The Array class
In ECMAScript, unlike in Java, there is an actual Array class. You create an Array object like this:

var aValues = new Array();

If you know ahead of time how many items you need in the array, you can pass in the array size as a
parameter:

var aValues = new Array(20);

Using either of these two methods, you must populate the array by using bracket notation, similar to
how it is done in Java:

var aColors = new Array();
aColors[0] = “red”;
aColors[1] = “green”;
aColors[2] = “blue”;

Here, an array is created and given three items, “red”, “green”, and “blue”. The array dynamically
grows in size with each additional item

Also, if you know the values that the array should contain, you can specify those as arguments, creating
an Array object with a length equal to the number of arguments. For example, the following line of code
creates an array of three strings:

var aColors = new Array(“red”, “green”, “blue”);

70

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 70

As in strings, the first item in an array is in position 0, the second is in position 1, and so on. To access a
particular item, use square brackets enclosing the position of the item to retrieve. For instance, to output
the string “green” from the array defined previously, you do this:

alert(aColors[1]); //outputs “green”

The full size of the array can be determined by using the length property. Like the same property in
strings, the length property is always one more than the position of the last item, meaning that an array
with three items has items in positions 0 through 2.

var aColors = new Array(“red”, “green”, “blue”);
alert(aColors.length); //outputs “3”

As mentioned previously, the size of an array can grow and shrink as necessary. So, if you wanted to add
another item to the array defined previously, you can just place the value in the next open position:

var aColors = new Array(“red”, “green”, “blue”);
alert(aColors.length); //outputs “3”
aColors[3] = “purple”;
alert(aColors.length); //outputs “4”

In this code, the next open position is 3, so the value “purple” is assigned to it. This addition changes
the length of the array from 3 to 4. But what would happen if you placed a value in position 25 of this
array? ECMAScript fills in all positions from 3 to 24 with the value null; then it places the appropriate
value in position 25, increasing the size of the array to 26:

var aColors = new Array(“red”, “green”, “blue”);
alert(aColors.length); //outputs “3”
aColors[25] = “purple”;
aColors(arr.length); //outputs “26”

You can also define an Array object by using the literal representation, which is indicated by using
square brackets ([and]) and separating the values with commas. For instance, the previous example can
be rewritten in the following form:

var aColors = [“red”, “green”, “blue”];
alert(aColors.length); //outputs “3”
aColors[25] = “purple”;
alert(aColors.length); //outputs “26”

Note that, in this case, the Array class is never mentioned explicitly. The square brackets imply that the
enclosed values are to be made into an Array object. Arrays declared in this way are exactly equal to
arrays declared in the more traditional manner.

Arrays can contain a maximum of 4294967295 items, which should be plenty for
almost all programming needs. If you try to add more than that number, an excep-
tion occurs.

71

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 71

The Array object overrides the toString() and valueOf() methods to return a special string. This
string is made by calling the toString() method on each item in the array and then combining them
using commas. For example, an array with the items “red”, “green”, and “blue” return the string
“red,green,blue” when either of the methods is called.

var aColors = [“red”, “green”, “blue”];
alert(aColors.toString()); //outputs “red,green,blue”
alert(aColors.valueOf()); //outputs “red,green,blue”

Similarly, the toLocaleString() method returns a string made up of the items in the array. The one
difference here is that each of the items’ toLocaleString() methods is called to get the value. In many
cases, this returns the same value as toString(), with the strings joined by commas.

var aColors = [“red”, “green”, “blue”];
alert(aColors.toLocaleString()); //outputs “red,green,blue”

Because developers may also want to create such values out of arrays, ECMAScript provides a method
called join(), whose sole purpose it is to create concatenated string values. The join() method accepts
one argument, which is the string to use between the items. Consider the following example:

var aColors = [“red”, “green”, “blue”];
alert(aColors.join(“,”)); //outputs “red,green,blue”
alert(aColors.join(“-spring-”)); //outputs “red-spring-green-spring-blue”
alert(aColors.join(“][“)); //outputs “red][green][blue”

Here, the join() method is used to create three different string representations of the array. The first,
using the comma, is essentially equal to calling the toString() or valueOf() method; the second and
third use different strings to create odd (and probably not that useful) separators between the array
items. The point to understand is that any string can be used as a separator.

You may be wondering at this point, if the Array has a way to convert itself into a string, does the
String have a way to convert itself into an array? The answer is yes. The String class has a method
called split() that does exactly that. The split() method takes only one parameter. That parameter,
as you probably guessed, is the string that should be considered the separator between items. So, if you
have a string separated by commas, you can do the following to convert it into an Array:

var sColors = “red,green,blue”;
var aColors = sColors.split(“,”);

If you specify an empty string as the separator, the split() method returns an array in which each item
is equal to one character in the string, for example:

var sColors = “green”;
var aColors = sColors.split(“”);
alert(aColors.toString()); //outputs “g,r,e,e,n”

Here, the string “green” is transformed into an array of the strings “g”, “r”, “e”, “e”, and “n”. This
functionality can be useful if you need to parse strings character-by-character.

72

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 72

The Array object has a couple of methods that have equivalents in the String class, namely the con-
cat() and slice() methods. The concat() method works almost exactly the same as it does with
strings: The arguments are appended to the end of the array, and a new Array object (one containing
both the items in the original array and the new items) is returned as the function value. For example:

var aColors = [“red”, “green”, “blue”];
var aColors2 = arr.concat(“yellow”, “purple”);
alert(aColors2.toString()); //outputs “red,green,blue,yellow,purple”
alert(aColors.toString()); //outputs “red,green,blue”

In this example, the strings “yellow” and “purple” are added to the array using the concat()
method. The aColors2 array contains five values whereas the original array, aColors, still contains
only three. This can be proved by calling the toString() method on each array.

The slice() method is also very similar to String class equivalent in that it returns a new array con-
taining the specified items. Just like the String’s method, the Array’s slice() method can accept one
or two arguments: the starting and stopping positions of the items to extract. If only one argument is
present, the method returns all items between that position and the end of the array; if there are two
arguments, the method returns all items between the first position and second position, not including
the item in the second position. For example:

var aColors = [“red”, “green”, “blue”, “yellow”, “purple”];
var aColors2 = arr.slice(1);
var aColors3 = arr.slice(1, 4);
alert(aColors2.toString()); //outputs “green,blue,yellow,purple”
alert(aColors3.toString()); //outputs “green,blue,yellow”

Here, aColors2 contains all the items in arr from position 1 on. Because the string “green” is in position
1, this is the first item in the new array. For aColors3, the slice() method is called with two arguments,
1 and 4. The string “green” is in position 1 and the string “purple” is in position 4, so aColors3 con-
tains “green”, “blue”, and “yellow” because slice() only includes the item immediately before the
last position.

One of the interesting things about the ECMAScript Array class is that it provides methods to make an
array behave like other types of data structures. An Array object, for example, can act just like a stack,
which is one of a group of data structures that restrict the insertion and removal of items. A stack is
referred to as a last-in-first-out (LIFO) structure, meaning that the most recently added item is the first
one removed. The insertion and removal of items in a stack occur at only one point: the top of the stack.

It helps to think of a stack in literal terms, such as a stack of plates. If you want to add a plate to the stack
of plates, you place the plate on top of the stack. When an item is added to a stack data structure, it is
said to be pushed onto the stack; it is added at the top (Figure 3-1).

When it comes time to remove a plate for dinner, what do you do? You remove the top plate from the
stack of plates and put it on the table. Again, the stack data structure works the same way, removing
only the topmost item. When an item is removed from a stack, it is said to be popped from the stack
(Figure 3-2).

73

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 73

Figure 3-1

Figure 3-2

To facilitate such functionality, the Array object provides two methods, push() and pop(). As you
might expect, the push() method adds one or more items to the end of the Array whereas the pop()
method removes the very last item (length – 1) from the array and returns it as the function value.
Consider the following example:

var stack = new Array;
stack.push(“red”);
stack.push(“green”);
stack.push(“yellow”);
alert(stack.toString()); //outputs “red,green,yellow”
var vItem = stack.pop();
alert(vItem); //outputs “yellow”
alert(stack.toString()); //outputs “red,green”

In the previous code, an empty Array object is created and then populated by using the push() method
numerous times (note that even though this example shows only one argument for the push() method,
you can, in fact, pass as many arguments as you wish). After the array is filled, the string value is output
(“red,green,yellow”) to assure that all items have been added. Then, the pop() method is called,

3

1

0

3

2

1

0

2

1

0

2

top

bottom

Pop off the stack

4

1

0

3

2

1

0

3

2

4

1

0

3

2

top

bottom

Push onto the stack

74

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 74

which returns only the last item, “yellow”, and stores it in the variable vItem. The array is then left
with only the strings “red” and “green”.

The push() method is actually the same as manually adding the array items as shown in previous
examples. This example could be rewritten as the following:

var stack = new Array;
stack[0] = “red”;
stack[1] = “green”;
stack[2] = “yellow”;
alert(stack.toString()); //outputs “red,green,yellow”
var vItem = stack.pop();
alert(vItem); //outputs “yellow”
alert(stack.toString()); //outputs “red,green”

The Array also provides methods to manipulate the very first item. The shift() method removes the first
item in the array and returns it as the function value. On the other end of the spectrum, the unshift()
method places an item into the first position of the array, shifting all other items down one position in the
process. Example:

var aColors = [“red”, “green”, “yellow”];
var vItem = aColors.shift();
alert(aColors.toString()); //outputs “green,yellow”
alert(vItem); //outputs “red”
aColors.unshift(“black”);
alert(aColors.toString()); //outputs “black,green,yellow”

In this example, the string “red” is removed (shift()ed) from the array, leaving only “green” and
“yellow”. By using the unshift() method, the string “black” is placed at the front of the array, effec-
tively replacing “red” as the new value in the first position.

By using shift() and push(), it is possible to make an Array object behave like a queue. A queue is a
member of the group of data structures that restricts the insertion and removal of elements. A queue is
referred to as a last-in-last-out (LILO) structure, meaning that the most recently added element is the last
one removed. The insertion of elements always occurs only at the back of the queue whereas the
removal of elements occurs only at the front of the queue.

When you think of a queue, think of a line at the movies. When new people arrive to get tickets, they go
to the back of the line (Figure 3-3). This is traditionally called put or enqueue.

Figure 3-3

1 2 3 4 5

1 2 3 4

1 2 3 4Start

Put

Result

5

75

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 75

They wait their turns, eventually moving to the front of the line where they buy their tickets. After the
purchase is complete, the people leave the front of the line and go into the movies (Figure 3-4). This is
traditionally called get or dequeue.

Figure 3-4

Although the names of the methods aren’t the same, the functionality is the same. You add items to the
queue using the push() method (adding items to the back of the array) and remove items from the
queue by using the shift() method:

var queue = [“red”, “green”, “yellow”];
queue.push(“black”);
alert(queue.toString()); //outputs “red,green,yellow,black”
var sNextColor = queue.shift();
alert(sNextColor); //outputs “red”
alert(queue.toString()); //outputs “green,yellow,black”

In this example, the string “black” is added to the back of the queue by using the push() method. In
order to get the next color, the shift() method is used to retrieve “red”, leaving the queue with only
“green”, “yellow”, and “black”.

Two methods relate to the ordering of items in arrays, the reverse() and sort() methods. The
reverse() method, as one might expect, simply reverses the order of the items in an array. So if you
want to reverse the order of “red”, “green”, “blue”, you do this:

var aColors = [“red”, “green”, “blue”];
aColors.reverse();
alert(aColors.toString()); //outputs “blue,green,red”

The sort() method, on the other hand, arranges the item in the array by sorting them into ascending
order based on their values. To do this sort, transform all values into strings by calling their toString()
method. The items are compared by character code (as I described in the section on using the less-than
operator on strings). For example:

var aColors = [“red”, “green”, “blue”, “yellow”];
aColors.sort();
alert(aColors.toString()); //outputs “blue,green,red,yellow”

2 3 4

2 3 4

1 2 3 4Start

Get

Result

1

76

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 76

This code sorts the strings “red”, “green”, “blue”, and “yellow” into alphabetical order by using
their character codes. Because all values are strings, this sort order is logical. If, however, the values are
numbers, the result becomes bizarre:

var aColors = [3, 32, 2, 5]
aColors.sort();
alert(aColors.toString()); //outputs “2,3,32,5”

When trying to sort the numbers 3, 32, 2, and 5, the sort() method reorders the items into 2, 3, 32, and
5. As mentioned before, this occurs because the numbers are converted to strings and then compared by
character code. This problem can be overcome. I discussed this further in Chapter 12, “Sorting Tables.”

The most complicated method by far is splice(). The purpose of this method is quite simple really: to
insert items into the middle of an array. The variety of ways that splice() uses to insert these items,
however, takes some getting used to:

❑ Deletion — You can delete any number of items from the array by specifying just two parame-
ters, the starting position of the first item to delete and the number of items to delete. For exam-
ple: arr.splice(0, 2) deletes the first two items in the array arr.

❑ Replacement without delete — You can insert items into a specific position by specifying three
parameters: the starting position, 0 (the number of items to delete), and the item to insert. You
can optionally specify fourth, fifth, or any number of other parameters to insert. For example,
arr.splice(2, 0, “red”, “green”) inserts the strings “red” and “green” into the array
arr at position 2.

❑ Replacement with delete — You can insert items into a specific position while simultaneously
deleting items by specifying three parameters: the starting position, the number of items to
delete, and the item to insert. Here, you can also specify extra parameters to insert. The
number of items to insert doesn’t have to match the number of items to delete. For example,
arr.splice(2, 1, “red”, “green”) deletes one item at position 2 and then inserts the
strings “red” and “green” into the array arr at position 2.

As you can tell, the Array class is an extremely versatile and helpful object. Chapter 12 explores using
arrays in a more practical manner, but for now, this information is all you need to know.

The Date class
The Date class in ECMAScript is based on earlier versions of java.util.Date from Java. ECMAScript,
as well as Java, stores the date as the number of milliseconds since 12 AM on January 1, 1970 UTC. UTC
stands for Universal Time Code (also known as Greenwich Mean Time), which is the standard time
upon which all time zones are based. Storing the number of milliseconds ensures that both Java and
ECMAScript were immune from the dreaded “Y2K” problems that plagued older mainframe computers
in the late 1990s. Dates can accurately be represented 285,616 years before or after January 1, 1970, mean-
ing that you won’t have any problems with date storage unless you live to be over 200,000 years old.

To create a new Date object, you simply do the following:

var d = new Date();

77

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 77

This line creates a new Date object with the current date and time. You can also set the date and time
value when creating a new Date object in one of two ways. The first is to just specify the number of
milliseconds since 12 AM on January 1, 1970:

var d = new Date(0);

Two class methods (which would be static methods in Java) called parse() and UTC() can also be used
in conjunction with this method of creating Date objects. The parse() method accepts a string as an
argument and tries to convert that string into a date value (meaning the millisecond representation).
ECMA-262 doesn’t define the date formats that the parse() method accepts, so this is purely imple-
mentation-specific and often locale-specific. For instance, in the United States, most implementations
support the following date formats:

❑ mm/dd/yyyy (such as 6/13/2004)

❑ mmmm dd, yyyy (such as January 12, 2004)

For instance, if you wanted to create a Date object for May 25, 2004, you could use the parse() method
to get the millisecond representation and then pass that value into the Date constructor:

var d = new Date(Date.parse(“May 25, 2004”));

If the string passed in to parse() can’t be turned into a date, the function returns NaN.

The UTC() method also returns the millisecond representation of a date, but with different arguments:
year, month, day of the month, hours, minutes, seconds, and milliseconds. When using this method,
you must always specify the year and month, but the other information is optional. Be very careful
when setting the month because the values go from 0 to 11, where 0 is equal to January and 11 is equal
to December, so to set a date equal to February 5, 2004, you do this:

var d = new Date(Date.UTC(2003, 1, 5));

Here, the 1 represents February, the second month. This is obviously a very important difference to keep
track of when accepting user input to create a date. The other information is as you would expect, with
the possible exception that the hours are given in military time (0 through 23) instead of AM/PM. So, to
set a date equal to February 5, 2004 at 1:05 PM, you use this code:

var d = new Date(Date.UTC(2003, 1, 5, 13, 5));

The second method of creating a date is to specify the same arguments that UTC() accepts directly:

var d = new Date(2003, 1, 5);

The arguments are specified in the same order, and they don’t all need to be present (except for the year
and month).

The Date class is one of the few that overrides toString() and valueOf() differently. The valueOf()
method always return the millisecond representation of the date whereas the toString() method
returns a string in an implementation-specific, human-readable format. For this reason, it is impossible
to depend on the toString() method for any consistent behavior. As an example, in the United States,

78

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 78

Internet Explorer displays February 2, 2003 as “Sat Feb 2 00:00:00 EST 2003” while Mozilla displays it as
“Tue Feb 2 2003 00:00:00 GMT-0400 (Eastern Daylight Time)”.

Several other methods are also designed to create alternate string representations of a particular date:

❑ toDateString() — displays only the date part of a Date (only the month, day, and year) in an
implementation-dependent format

❑ toTimeString() — displays only the time part of a Date (hours, minutes, seconds, and time
zone) in an implementation-dependent format

❑ toLocaleString() — displays the date and time of a Date in a locale-specific format

❑ toLocaleDateString() — displays the date part of a Date value in a locale-specific format

❑ toLocaleTimeString() — displays the time part of a Date in a locale-specific format

❑ toUTCString() — displays the UTC date of a Date in an implementation-specific format

Each of these methods outputs different values in different implementations and locales, and for this
reason, care must be exercised when using them.

In case you haven’t figured it out yet, the Date class relies heavily on the UTC date and time. In
order to indicate a particular time zone’s relationship to UTC, the Date class provides a method called
getTimezoneOffset(). This method returns the number of minutes that the current time zone is ahead
or behind UTC. For instance, getTimezoneOffset() returns 300 for U.S. Eastern Daylight Saving Time,
which is 5 hours (or 300 minutes) behind UTC.

It is possible to determine if a particular time zone makes use of daylight saving time by using the
getTimezoneOffset(). To do this, create a date of January 1 of any year, and then create a date of July
1 in the same year. Then, compare the time zone offset. If the minutes aren’t equal, the time zone uses
daylight saving time; if they are equal, the time zone doesn’t use daylight saving time.

var d1 = new Date(2004, 0, 1);
var d2 = new Date(2004, 6, 1);
var bSupportsDaylightSavingTime = d1.getTimezoneOffset() != d2.getTimezoneOffset();

The remaining methods of the Date class (listed in the following table) are simply used to set and get
particular parts of a date value.

Method Description

getTime() Returns the milliseconds representation of the date.

setTime(milliseconds) Sets the milliseconds representation of the date.

getFullYear() Returns the year of the date, represented by four dig-
its (such as 2004 instead of just 04).

getUTCFullYear() Returns the year of the UTC date, represented by four
digits.

Table continued on following page

79

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 79

Method Description

setFullYear(year) Sets the year of the date, which must be given as a
four-digit year.

setUTCFullYear(year) Sets the year of the UTC date, which must be given as
a four-digit year.

getMonth() Returns the month of the date, represented by the
numbers 0 (for January) through 11 (for December).

getUTCMonth() Returns the month of the UTC date, represented
by the numbers 0 (for January) through 11 (for
December).

setMonth(month) Sets the month of the date, which is any number 0 or
greater. Numbers greater than 11 begin to add years.

setUTCMonth(month) Sets the month of the UTC date, which is any number
0 or greater. Numbers greater than 11 begin to add
years.

getDate() Returns the date, which is the day of the month, of the
date value.

getUTCDate() Returns the date, which is the day of the month, of the
UTC date value.

setDate(date) Sets the day of the month of the date.

setUTCDate(date) Sets the day of the month of the UTC date.

getDay() Returns the day of the week of the date.

getUTCDay() Returns the day of the week of the UTC date.

setDay(day) Sets the day of the week of the date.

setUTCDay(day) Sets the day of the week of the UTC date.

getHours() Returns the hours of the date time.

getUTCHours() Returns the hours of the UTC date time.

setHours(hours) Sets the hours of the date time.

setUTCHours(hours) Sets the hours of the UTC date time.

getMinutes() Returns the minutes of the date time.

getUTCMinutes() Returns the minutes of the UTC date time.

setMinutes(minutes) Sets the minutes of the date time.

setUTCMinutes(minutes) Sets the minutes of the UTC date time.

getSeconds() Returns the seconds of the date time.

getUTCSeconds() Returns the seconds of the UTC date time.

setSeconds(seconds) Sets the seconds of the date time.

80

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 80

Method Description

setUTCSeconds(seconds) Sets the seconds of the UTC date time.

getMilliseconds() Returns the milliseconds of the date time. Note that
this does not refer to the milliseconds since January 1,
1970, but rather the number of milliseconds in the cur-
rent time, such as 4:55:34.20, where 20 is the number
of milliseconds of the time.

getUTCMilliseconds () Returns the milliseconds of the UTC date time.

setMilliseconds (milliseconds) Sets the milliseconds of the date time.

setUTCMilliseconds (millseconds) Sets the milliseconds of the UTC date time.

Built-in objects
ECMA-262 defines a built-in object as “any object supplied by an ECMAScript implementation, indepen-
dent of the host environment, which is present at the start of the execution of an ECMAScript program.”
This means the developer does not need to explicitly instantiate a built-in object; it is already instanti-
ated. Only two built-in objects are defined by ECMA-262: Global and Math (which are also both native
objects because by definition, every built-in object is a native object).

The Global object
The Global object is the most unique in ECMAScript because, for all intents and purposes, it doesn’t
exist. If you try typing the following line, you get an error:

var pointer = Global;

The error would say that Global is not an object, but didn’t I just say that it is an object? Yes. The
main concept to understand is this: In ECMAScript no standalone functions exist; all functions must
be methods of some object to actually exist. So functions covered earlier in this book such as isNaN(),
isFinite(), parseInt(), and parseFloat() only look like they are standalone functions. In reality,
they are all methods of the Global object. But these are not the only methods for the Global object.

The encodeURI() and encodeURIComponent() methods are used to encode URIs (Uniform Resource
Identifiers) to be passed to the browser. To be valid, a URI cannot contain certain characters, such as
spaces. These methods help to encode the URIs so that a browser can still accept and understand them,
replacing all invalid characters with a special UTF-8 encoding.

The encodeURI() method is designed to work on an entire URI (for instance, http://www.wrox.com/
illegal value.htm), whereas encodeURIComponent() is designed to work solely on a segment of a
URI (such as illegal value.htm from the previous URI). The main difference between the two meth-
ods is that encodeURI() does not encode special characters that are part of a URI such as the colon, for-
ward slash, question mark, and pound sign; encodeURIComponent() encodes every non-standard
character it finds. For example:

var sUri = “http://www.wrox.com/illegal value.htm#start”;
alert(encodeURI(sUri));
alert(encodeURIComponent(sUri));

81

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 81

This code outputs two values:

http://www.wrox.com/illegal%20value.htm#start
http%3A%2F%2Fwww.wrox.com%2Fillegal%20value.htm%23start

As you can see, the first URI was left intact except for the space, which was replaced with %20. The second
URI replaced all non-alphanumeric characters with their encoded equivalents, which essentially makes
this URI useless. This is why encodeURI() can be used on full URIs, whereas encodeURIComponent()
can only be used on strings that are appended to the end of an existing URI.

Naturally, there are also two methods to decode URIs that have already been encoded, called
decodeURI() and decodeURIComponent(). As you might expect, these methods do the exact opposite
of their counterparts. The decodeURI() method only decodes characters that have been replaced by
using encodeURI(). For instance %20 is replaced with a space, but %23 is not replaced because it repre-
sents a pound sign (#), which encodeURI() does not replace. Likewise, decodeURIComponent()
decodes all characters encoded by encodeURIComponent(), essentially meaning it decodes all special
values. Example:

var sUri = “http%3A%2F%2Fwww.wrox.com%2Fillegal%20value.htm%23start”;
alert(decodeURI(sUri));
alert(decodeURIComponent(sUri));

This code outputs two values:

http%3A%2F%2Fwww.wrox.com%2Fillegal value.htm%23start
http://www.wrox.com/illegal value.htm#start

In this example, the uri variable contains a string that is encoded using encodeURIComponent(). The
resulting values show what happens when you apply the two decoding methods. The first value is
the output of decodeURI(), which replaced only %20 with a space; the second value is the output of
decodeURIComponent(), which replaces all the special characters.

The final method is perhaps the most powerful in the entire ECMAScript language, the eval() method.
This method works like an entire ECMAScript interpreter and accepts one argument, a string of
ECMAScript (or JavaScript) to execute. For example:

eval(“alert(‘hi’)”);

This line is functionally equivalent to the following:

alert(“hi”);

These URI methods, encodeURI(), encodeURIComponent(), decodeURI(), and
decodeURIComponent(), replace the BOM methods escape() and unescape().
The URI methods are always preferable because they encode all Unicode characters,
whereas the BOM methods encode only ASCII characters correctly. Avoid using
escape() and unescape().

82

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 82

When the interpreter finds an eval() call, it interprets the argument into actual ECMAScript statements
and then inserts it into place. This means that variables can be referenced inside of an eval() call that is
defined outside of its argument:

var msg = “hello world”;
eval(“alert(msg)”);

Here, the variable msg is defined outside of the context of the eval() call, yet the alert is still displayed
with the text “hello world” because the second line is replaced with a real line of code. Likewise, you
can define a function or variables inside of an eval() call that can be referenced by the code outside of
itself:

eval(“function sayHi() { alert(‘hi’); }”);
sayHi();

Here, the sayHi() function is defined inside of an eval() call. Because that call is replaced with the
actual function, it is possible to call sayHi() on the following line.

The Global object doesn’t just have methods, it also has properties. Remember those special values
undefined, NaN, and Infinity? They are all properties of the Global object. Additionally, all native
object constructors are also properties of the Global object. The following table describes all the proper-
ties in more detail.

Property Description

undefined The literal for the Undefined type.

NaN The special Number value for Not a Number.

Infinity The special Number value for an infinite value.

Object Constructor for Object.

Array Constructor for Array.

Function Constructor for Function.

Boolean Constructor for Boolean.

String Constructor for String.

Number Constructor for Number.

Date Constructor for Date.

RegExp Constructor for RegExp.

Table continued on following page

This capability is very powerful, but also very dangerous. Use extreme caution with
eval(), especially when passing user-entered data into it. A mischievous user could
insert values that could compromise your site or application security (this is called
code injection).

83

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 83

Property Description

Error Constructor for Error.

EvalError Constructor for EvalError.

RangeError Constructor for RangeError.

ReferenceError Constructor for ReferenceError.

SyntaxError Constructor for SyntaxError.

TypeError Constructor for TypeError.

URIError Constructor for URIError.

The Math object
The Math object is the built-in object that you wish you had during those high school math classes: It
knows all the formulas for the most complicated mathematical problems, and it can figure them out for
you if you give it the numbers to work with.

The Math object has several properties, consisting mostly of special values in the world of mathematics.
The following table describes these properties:

Property Description

E The value of e, the base of the natural logarithms.

LN10 The natural logarithm of 10.

LN2 The natural logarithm of 2.

LOG2E The base 2 logarithm of E.

LOG10E The base 1 logarithm of E.

PI The value of π.

SQRT1_2 The square root of 1⁄2.

SQRT2 The square root of 2.

Although the meanings and uses of these values is outside the scope of this book, if you know what they
are, they are available when you need them.

The Math object also contains many methods aimed at performing both simple and complex mathemati-
cal calculations.

The methods min() and max() are used to determine which number is the lowest or highest in a group
of numbers. Each of these methods accepts any number of parameters:

var iMax = Math.max(3, 54, 32, 16);
alert(iMax); //outputs “54”

84

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 84

var iMin = Math.min(3, 54, 32, 16);
alert(iMin); //outputs “3”

Out of the number 3, 54, 32, and 16, max() returns the number 54 whereas min() returns the number 3.
These methods are useful to avoid extra loops and if statements to determine the maximum value out
of a group of numbers.

Another method is abs(), which returns the absolute value of a number. The absolute value is the posi-
tive version of a negative number (positive numbers are their own absolute values).

var iNegOne = Math.abs(-1);
alert(iNegOne); //outputs “1”
var iPosOne = Math.abs(1);
alert(iPosOne); //outputs “1”

In this example, abs(-1) returns 1 and so does abs(1).

The next group of methods has to do with rounding decimal values into integers. Three methods,
ceil(), floor(), and round(), handle rounding in different ways.

❑ The ceil() method represents the ceiling function, which always rounds numbers up to the
nearest value.

❑ The floor() method represents the floor function, which always rounds numbers down to the
nearest value.

❑ The round() method represents a standard round function, which rounds up if the number is
more than halfway to the next value (0.5 of the way there) and rounds down if not. This is the
way you were taught to round in elementary school.

To illustrate how each of these methods works, consider using the value 25.5:

alert(Math.ceil(25.5)); //outputs “26”
alert(Math.round(25.5)); //outputs “26”
alert(Math.floor(25.5)); //outputs “25”

For ceil() and round(), passing in 25.5 returns 26, whereas floor() returns 25. Be careful not to use
these methods interchangeably because you could end up with some unexpected results.

Another group of methods relates to the use of exponents. These methods include the following: exp(),
which raises Math.E to a given power; log(), which returns the natural logarithm of a particular num-
ber; pow(), which raises a given number to a given power; and sqrt(), which returns the square root of
a given number.

Essentially, exp() and log() reverse each other, whereas exp() raises Math.E to a specific power and
log() determines what exponent of Math.E is needed to equal the given value. For example:

var iNum = Math.log(Math.exp(10));
alert(iNum);

85

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 85

Here, Math.E is first raised to the power of 10 by using exp(), and then log() returns 10 as the expo-
nent necessary to equal that number. If you are confused, you’re not alone. This type of stuff stumps
high school and college math students worldwide. Chances are if you don’t know what the natural loga-
rithm is, you’ll probably never need to code it.

The pow() method is used to raise a number to a given power, such as raising 2 to the power of 10 (rep-
resented in math as 210):

var iNum = Math.pow(2, 10);

The first argument of pow() is the base number, in this case, 2. The second argument is the power to
raise it to, which is 10 in this example.

The last method in this group is sqrt(), which returns the square root of a given number. It takes only
one argument, which is the number whose square root you want to find. So to find the square root of 4,
you need only this line of code:

var iNum = Math.sqrt(4);
alert(iNum); //outputs “2”

Of course, the square root of 4 is 2, which is output in this code.

You may ask, “What does the square root have to do with exponents?” The square root of a number is
actually that number raised to the one-half power; for example, 2 1/2 is the square root of 2.

There is also a complete set of geometric methods included in the Math object. These are displayed in the
following table.

Method Description

acos(x) Returns the arc cosine of x.

asin(x) Returns the arc sine of x.

atan(x) Returns the arc tangent of x.

atan2(y, x) Returns the arc cosine of y/x.

cos(x) Returns the cosine of x.

sin(x) Returns the sine of x.

tan(x) Returns the tangent of x.

It is not recommended to use Math.E as a base for the pow() method. Always use
exp() for this because it does special calculations to determine the value more
accurately.

86

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 86

Even though these methods are defined by ECMA-262, the results are implementation-dependent because
you can calculate each value in many different ways. Consequently, the precision of the results may also
vary from one implementation to another.

The last method of the Math object is random(). This method returns a random number between the 0
and 1, not including 0 and 1. This is a favorite tool of Web sites that are trying to display random quotes
or random facts upon entry. You can use random() to select numbers within a certain range by using the
following formula:

number = Math.floor(Math.random() * total_number_of_choices + first_possible_value)

The floor() method is used here because random() always returns a decimal value, meaning that mul-
tiplying it by a number and adding another still yields a decimal value. Most of the time, you want to
select a random integer. Because of that, the floor() method is needed. So, if you wanted to select a
number between 1 and 10, the code looks like this:

var iNum = Math.floor(Math.random() * 10 + 1);

You see 10 possible values (1 through 10) with the first possible value being 1. If you want to select a
number between 2 and 10, then the code looks like this:

var iNum = Math.floor(Math.random() * 9 + 2);

There are only nine numbers when counting from 2 to 10, so the total number of choices is 9 with the
first possible value being 2. Many times, it’s just easier to use a function that handles the calculation of
the total number of choices and the first possible value:

function selectFrom(iFirstValue, iLastValue) {
var iChoices = iLastValue – iFirstValue + 1;
return Math.floor(Math.random() * iChoices + iFirstValue);

}

//select from between 2 and 10
var iNum = selectFrom(2, 10);

Using the function, it’s easy to select a random item from an Array:

var aColors = [“red”, “green”, “blue”, “yellow”, “black”, “purple”, “brown”];
var sColor = aColors[selectFrom(0, aColors.length-1)];

Here, the second parameter to selectFrom() is the length of the array minus 1, which (as you remem-
ber) is the last position in an array.

Host objects
Any object that is not native is considered to be a host object, which is defined as an object provided by
the host environment of an ECMAScript implementation. All BOM and DOM objects are considered to
be host objects and are discussed later in the book.

87

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 87

Scope
Programmers in any language understand the concept of scope, meaning the area in which certain vari-
ables are accessible.

Public, protected, and private
In traditional object-oriented programming, a lot of focus is placed on the public and private scopes. An
object’s properties in the public scope can be accessed from outside the object, meaning that after a devel-
oper creates an instance of the object, that property can be used. Properties in the private scope, however,
can only be accessed from within the object itself, meaning that these properties don’t exist to the out-
side world. This also means that subclasses of the class defining the private properties and methods
can’t access them either.

More recently, another scope has become popular: protected. Although different languages have different
rules for the protected scope, it generally is used to define properties and methods that act private except
that they are accessible by subclasses.

The discussion of these scopes in reference to ECMAScript is almost a moot point because only one
scope of these three exists: the public scope. All properties and methods of all objects in ECMAScript are
public. You must take great care, therefore, when defining your own classes and objects. Keep in mind
that all properties and methods are public by default.

This problem has been tackled by many developers online trying to come up with effective property
scoping schemes. Due to the lack of a private scope, a convention was developed to indicate which prop-
erties and methods should be considered private. This convention involves adding two underscores
before and after the actual property name. For example:

obj.__color__ = “red”;

In this code, the color property is intended to be private. Remember, adding these underscores doesn’t
change the fact that the property is public; it just indicates to other developers that it should be consid-
ered private.

Some developers also prefer to use a single underscore to indicate private members, such as
obj._color.

Static is not static
The static scope defines properties and methods accessible all the time from one location. In Java, classes
can have static properties and methods that are accessible without instantiating an object of that class,
such as java.net.URLEncoder, whose function encode() is a static method.

Strictly speaking, ECMAScript doesn’t have a static scope. It can, however, provide properties and meth-
ods on constructors. Remember, constructors are just functions. Functions are objects, and objects can
have properties and methods. For instance:

function sayHi() {
alert(“hi”);

}

88

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 88

sayHi.alternate = function() {
alert(“hola”);

};

sayHi(); //outputs “hi”
sayHi.alternate(); //outputs “hola”

Here, the method alternate() is actually a method on the function sayHi. It is possible to call the
sayHi() as a regular function to output “hi” as well as calling sayHi.alternate() to output “hola”.
Even so, alternate() is considered to be a method of the function sayHi() in the public scope, not a
static method.

The this keyword
One of the most important concepts to grasp in ECMAScript is the use of the this keyword, which is
used in object methods. The this keyword always points to the object that is calling a particular
method, for example:

var oCar = new Object;
oCar.color = “red”;
oCar.showColor = function () {

alert(this.color); //outputs “red”
};

Here, the this keyword is used in the showColor() method of an object. In this context, this is equal
to car, making this code functionality equivalent to the following:

var oCar = new Object;
oCar.color = “red”;
oCar.showColor = function () {

alert(oCar.color); //outputs “red”
};

So why use this? Because you can never be sure of the variable name a developer will use when instan-
tiating an object. By using this, it is possible to reuse the same function in any number of different
places. Consider the following example:

function showColor() {
alert(this.color);

}

var oCar1 = new Object;
oCar1.color = “red”;
oCar1.showColor = showColor;

var oCar2 = new Object;
oCar2.color = “blue”;
oCar2.showColor = showColor;

oCar1.showColor(); //outputs “red”
oCar2.showColor(); //outputs “blue”

89

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 89

In this code, the function showColor() is defined first (using this). Then, two objects (oCar1 and
oCar2) are created, one with a color property set to “red”, and the other with a color property set
to “blue”. Both objects are assigned a property called showColor that points to the original function
named showColor() (note that no naming problem exists because one is a global function and the other
is a property of an object). When calling showColor() on each object, the oCar1 outputs “red” whereas
oCar2 outputs “blue”. This happens because the this keyword in the function is equal to car1 when
oCar1.showColor() is called and equal to oCar2 when oCar2.showColor() is called.

Note that the this keyword must be used when referring to properties of an object. For instance,
showColor() wouldn’t work if it were written like this:

function showColor() {
alert(color);

}

Whenever a variable is referenced without an object or this before it, ECMAScript thinks that it is a
local or global variable. This function then looks for a local or global variable named color, which it
won’t find. The result? The function displays “null” in the alert.

Defining Classes and Objects
The capability to use predefined objects is only one part of an object-oriented language. The true power
comes because you can create your own classes and objects for specific uses. As with many things in
ECMAScript, you can accomplish this in a variety of ways.

Factory paradigm
Because properties of an object can be defined dynamically after its creation, a lot of developers wrote
code similar to the following when JavaScript was first introduced:

var oCar = new Object;
oCar.color = “red”;
oCar.doors = 4;
oCar.mpg = 23;
oCar.showColor = function () {

alert(this.color);
};

In this code, an object is created named car. The object is then given several properties: Its color is red, it
has four doors, and it gets 23 miles per gallon. The last property is actually a pointer to a function, which
means the property is a method. After this code is executed, you can use an object called car. The prob-
lem is that you may need to create more than one instance of a car.

To solve the problem, developers created factory functions, which create and return an object of a specific
type. For example, a function called createCar() could be used to encapsulate the creation of the car
object described previously:

90

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 90

function createCar() {
var oTempCar = new Object;
oTempCar.color = “red”;
oTempCar.doors = 4;
oTempCar.mpg = 23;
oTempCar.showColor = function () {

alert(this.color)
};

return oTempCar;
}

var oCar1 = createCar();
var oCar2 = createCar();

Here, all the previous lines of code are contained within the createCar() function, including one extra
line, which returns the car (oTempCar) as the function value. When this function is called, it creates a
new Object and assigns all the properties necessary to replicate the car object described earlier. Using
this method, it is easy to create two (or more) versions of a car object (oCar1 and oCar2) that have the
exact same properties. Of course, the createCar() function can also be modified to allow the passing in
of default values for the various properties instead of just assigning default values:

function createCar(sColor, iDoors, iMpg) {
var oTempCar = new Object;
oTempCar.color = sColor;
oTempCar.doors = iDoors;
oTempCar.mpg = iMpg;
oTempCar.showColor = function () {

alert(this.color)
};

return oTempCar;
}

var oCar1 = createCar(“red”, 4, 23);
var oCar1 = createCar(“blue”, 3, 25);
oCar1.showColor(); //outputs “red”
oCar2.showColor(); //outputs “blue”

By adding arguments to the createCar() function, it is possible to assign values to the color, doors,
and mpg properties of the car object being created. This leaves two objects with the same properties but
different values for those properties.

As ECMAScript became more formalized, however, this method of creating objects fell out of favor and
is typically frowned upon today. Part of the reason for this was semantic (it doesn’t look as appropriate
as using the new operator with a constructor), and part was functional. The functional problem has to do
with the creation of object methods using this paradigm. In the previous example, every time the
createCar() function is called, a new function is created called showColor(), meaning that every
object has its own version of showColor() when, in reality, each object should share the same function.

91

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 91

Some got around this problem by defining the object methods outside of the factory functions and then
pointing to them:

function showColor() {
alert(this.color);

}

function createCar(sColor, iDoors, iMpg) {
var oTempCar = new Object;
oTempCar.color = sColor;
oTempCar.doors = iDoors;
oTempCar.mpg = iMpg;
oTempCar.showColor = showColor;
return oTempCar;

}

var oCar1 = createCar(“red”, 4, 23);
var oCar2 = createCar(“blue”, 3, 25);
oCar1.showColor(); //outputs “red”
oCar2.showColor(); //outputs “blue”

In this rewritten code, the showColor() function is defined before the createCar() function. Inside
createCar(), the object is assigned a pointer to the already existing showColor() function. Functionally,
this solves the problem of creating duplicate function objects; but semantically, the function doesn’t look
like it is a method of an object.

All these problems led to the creation of developer-defined constructors.

Constructor paradigm
Creating a constructor is just as easy as defining a factory function, if not easier. The first step is selection
of a class name, which becomes the name of the constructor. Traditionally, this name begins with a capi-
tal letter to differentiate it from variable names, which typically begin with lowercase letters. Other than
this difference, a constructor looks a lot like a factory function. Consider the following example:

function Car(sColor, iDoors, iMpg) {
this.color = sColor;
this.doors = iDoors;
this.mpg = iMpg;
this.showColor = function () {

alert(this.color)
};

}

var oCar1 = new Car(“red”, 4, 23);
var oCar2 = new Car(“blue”, 3, 25);

The first difference you may notice is that no object is created inside the constructor; instead, the this
keyword is used. When a constructor is called with the new operator, an object is created before the first
line of the constructor is executed; that object is accessible (at that point) only by using this. It is then
possible to assign properties directly to this that are returned as the function value by default (no need
to explicitly use the return operator).

92

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 92

Creating the object is now much more like general object creation in ECMAScript by using the new oper-
ator with the class name Car. You may be wondering if this paradigm has the same problems as the
previous one with managing functions. The answer is yes.

Just like factory functions, constructors duplicate functions, effectively creating a separate copy of a
function for each object. Also similar to factory functions, constructors can be rewritten with external
functions, but again, semantically they don’t make sense. This is where the prototype paradigm becomes
advantageous.

Prototype paradigm
This paradigm makes use of an object’s prototype property, which is considered to be the prototype
upon which new objects of that type are created. Here, an empty constructor is used only to set up the
name of the class. Then, all properties and methods are assigned directly to the prototype property.
Rewriting the previous example, the code looks like this:

function Car() {
}

Car.prototype.color = “red”;
Car.prototype.doors = 4;
Car.prototype.mpg = 23;
Car.prototype.showColor = function () {

alert(this.color);
};

var oCar1 = new Car();
var oCar2 = new Car();

In this code, the constructor (Car) is defined first and contains no code. The next few lines of code define
the object’s properties by adding them to the prototype property of Car. When new Car() is called,
all the properties of prototype are immediately assigned to the object that was created, meaning that all
instances of Car contain pointers to the same showColor() function. Semantically, everything looks like
it belongs to an object, so the two problems of the previous paradigms have been solved. As an added
bonus, this method allows the use of the instanceof operator to check what kind of object a given vari-
able points to. So the following line outputs true:

alert(oCar1 instanceof Car); //outputs “true”

It seems like this is a great solution. Unfortunately, not everything is better here.

First, you may notice that the constructor has no arguments. When using the prototype paradigm, it is
impossible to set the initial values of properties by passing arguments to the constructor, so both car1
and car2 have color equal to “red”, doors equal to 4, and mpg equal to 23. This means any changes to
the default values must be done after the object is created, which is annoying — but not the end of the
world. The real problem arises when one of the properties points to an object other than a function.
Functions can be shared without any consequences, but objects are rarely meant to be shared across all
instances. Consider the following example:

function Car() {
}

93

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 93

Car.prototype.color = “red”;
Car.prototype.doors = 4;
Car.prototype.mpg = 23;
Car.prototype.drivers = new Array(“Mike”, “Sue”);
Car.prototype.showColor = function () {

alert(this.color);
};

var oCar1 = new Car();
var oCar2 = new Car();

oCar1.drivers.push(“Matt”);

alert(oCar1.drivers); //outputs “Mike,Sue,Matt”
alert(oCar2.drivers); //outputs “Mike,Sue,Matt”

Here, a property called drivers is a pointer to an Array containing two names, Mike and Sue. Because
drivers is a reference value, both instances of Car point to the same array. This means that when
“Matt” is added to car1.drivers, it is also reflected in car2.drivers. Outputting either one of these
pointers results in the string “Mike,Sue,Matt” being displayed.

With so many problems in creating objects, you must be wondering if there is any way to create objects
in a rational way. The answer is to combine the best of both constructor and prototype paradigms.

Hybrid constructor/prototype paradigm
By using both the constructor and prototype paradigms, you can create an object just as you would
when using other programming languages. The concept is very simple: Use the constructor paradigm
to define all nonfunction properties of the object and use the prototype paradigm to define the function
properties (methods) of the object. The result is that functions are only created once, but each object can
have its own instance of object properties. If you once again rewrite this example, the code becomes the
following:

function Car(sColor, iDoors, iMpg) {
this.color = sColor;
this.doors = iDoors;
this.mpg = iMpg;
this.drivers = new Array(“Mike”, “Sue”);

}

Car.prototype.showColor = function () {
alert(this.color);

};

var oCar1 = new Car(“red”, 4, 23);
var oCar2 = new Car(“blue”, 3, 25);

oCar1.drivers.push(“Matt”);

alert(oCar1.drivers); //outputs “Mike,Sue,Matt”
alert(oCar2.drivers); //outputs “Mike,Sue”

94

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 94

Now that’s more like it. All the nonfunction properties are defined in the constructor, meaning that once
again it is possible to assign default values by passing arguments into the constructor. Only one instance
of the showColor() function is being created, so there is no wasted memory. Additionally, when oCar1
adds “Matt” to the drivers array, it has no effect on oCar2’s array, so when it output these arrays,
oCar1.drivers displays “Mike,Sue,Matt” whereas oCar2.drivers displays “Mike,Sue”. Because
the prototype paradigm is used, it is still possible to use the instanceof operator to determine the type
of object.

In case you haven’t figured it out, this paradigm is the dominant form used in ECMAScript because it
combines the positive attributes of the other paradigms without any of the harsh side effects. However,
some developers feel this is still not enough.

Dynamic prototype method
For developers coming from other languages, using the hybrid constructor/prototype paradigm is a lit-
tle jarring. After all, most object-oriented languages provide some sort of visual encapsulation of proper-
ties and methods when defining classes. Consider the following Java class:

class Car {
public String color = “red”;
public int doors = 4;
public int mpg = 23;

public Car(String color, int doors, int mpg) {
this.color = color;
this.doors = doors;
this.mpg = mpg;

}

public void showColor() {
System.out.println(color);

}
}

Java provides a nice wrap of all properties and methods of the Car class, so the code really looks more
like what it does: It defines information for one object. Critics of the hybrid constructor/prototype
paradigm say that it isn’t logical to look for some properties inside of the constructor and others outside
of it. So, the dynamic prototype method was devised to provide a more friendly coding style.

The basic idea behind dynamic prototyping is the same as the hybrid constructor/prototype paradigm:
Nonfunction properties are defined in the constructor, whereas function properties are defined on the
prototype property. The one difference is where the assignment of the methods takes place. Take a look
at the Car class rewritten using dynamic prototyping:

function Car(sColor, iDoors, iMpg) {
this.color = sColor;
this.doors = iDoors;
this.mpg = iMpg;
this.drivers = new Array(“Mike”, “Sue”);

if (typeof Car._initialized == “undefined”) {

95

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 95

Car.prototype.showColor = function () {
alert(this.color);

};

Car._initialized = true;
}

}

The constructor is identical until the line that checks if typeof Car._initialized is equal to “unde-
fined”. This line is the most important part of the dynamic prototype method. If this value is unde-
fined, the constructor continues on to define the methods of the object using the prototype paradigm
and then sets Car._initialized to true. If the value is defined (when it’s true, its typeof is Boolean),
then the methods aren’t created again. Simply put, this method uses a flag (_initialized) to deter-
mine if the prototype has been assigned any methods yet. The methods are only created and assigned
once, and to the delight of traditional OOP developers, the code looks more like class definitions in other
languages.

Hybrid factory paradigm
This paradigm is typically used as a workaround when the previous paradigms don’t work. Here, the
aim is to create a dummy constructor that simply returns a new instance of another type of object. The
code looks very similar to the class paradigm’s factory function:

function Car() {
var oTempCar = new Object;
oTempCar.color = “red”;
oTempCar.doors = 4;
oTempCar.mpg = 23;
oTempCar.showColor = function () {

alert(this.color)
};

return oTempCar;
}

Unlike the classic paradigm, this paradigm uses the new keyword to make it seem like an actual con-
structor is being called:

var car = new Car();

Because the new operator is called within the Car() constructor, the second new operator (called outside
of the constructor) is essentially ignored. The object created inside the constructor is passed back into the
variable car.

This paradigm has the same problems as the classic paradigm regarding memory management of object
methods. It is highly recommended that you avoid using this method unless absolutely necessary (see
Chapter 15, “XML in JavaScript,” for an example of such a case).

96

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 96

Which one to use?
As mentioned previously, the hybrid constructor/prototype paradigm is the one most widely used at
present. That being said, dynamic prototyping is catching on in popularity and is functionally equiva-
lent. Using either of these two methods is perfectly fine. Don’t ever get caught using the classic, con-
structor or prototype paradigms alone, however, because you may introduce problems into code.

A practical example
Part of the appeal of objects is the way they can be used to solve problems. One of the common problems
in ECMAScript is the performance of string concatenation. Similar to other languages, ECMAScript
strings are immutable, meaning that their value cannot be changed. Consider the following code:

var str = “hello “;
str += “world”;

This code actually executes the following steps behind the scenes:

1. Create a string to store “hello “.

2. Create a string to store “world”.

3. Create a string to store the result of concatenation.

4. Copy the current contents of str into the result.

5. Copy the “world” into the result.

6. Update str to point to the result.

Steps 2–6 occur every time a string concatenation is completed, making this a very expensive operation.
If this process is repeated hundreds or even thousands of times, performance suffers. The solution is to
use an Array object to store the strings and then use the join() method (with an empty string as an
argument) to create the final string. Imagine writing this code instead:

var arr = new Array;
arr[0] = “hello “;
arr[1] = “world”;
var str = arr.join(“”);

Using this method, it doesn’t matter how many strings are introduced into the array because the only
concatenation occurs when the join() method is called. At that point, the following steps are executed:

1. Create a string to store the result.

2. Copy each string into the appropriate spot in the result.

Although this solution is good, it could be better. The problem is that the code doesn’t accurately reflect
its intent. To make it more understandable, this functionality can be wrapped in a StringBuffer class:

function StringBuffer() {
this.__strings__ = new Array;

}

97

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 97

StringBuffer.prototype.append = function (str) {
this.__strings__.push(str);

};

StringBuffer.prototype.toString = function () {
return this.__strings__.join(“”);

};

The first thing to note about this code is the strings property, which is intended to be private. It has
only two methods: append() and toString(). The append() method takes an argument and appends
it to the strings array and the toString() method returns the actual concatenated string by using the
array’s join() method. To concatenate a group of strings using a StringBuffer object, use the follow-
ing code:

var buffer = new StringBuffer();
buffer.append(“hello “);
buffer.append(“world”);
var result = buffer.toString();

You can test the performance of the StringBuffer object versus traditional string concatenation with
the following code:

var d1 = new Date();
var str = “”;
for (var i=0; i < 10000; i++) {

str += “text”;
}
var d2 = new Date();

document.write(“Concatenation with plus: “ + (d2.getTime() - d1.getTime()) + “
milliseconds”);

var oBuffer = new StringBuffer();
d1 = new Date();
for (var i=0; i < 10000; i++) {

oBuffer.append(“text”);
}
var sResult = buffer.toString();
d2 = new Date();

document.write(“
Concatenation with StringBuffer: “ + (d2.getTime() -
d1.getTime()) + “ milliseconds”);

The code runs two tests on string concatenation, the first by using the additive operator and the second
by using the StringBuffer. Each operation concatenates 10,000 strings. The dates d1 and d2 are used
to determine how much time it takes to complete the operation. Remember, when you create a new Date
object without any arguments, it is assigned current date and time. To figure out how much time elapsed
during the concatenation, the millisecond representation of the dates (returned by the getTime()
method) are subtracted. This is a common method of measuring JavaScript performance. The results of
this test should show a savings of 100–200% over using the additive operator.

98

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 98

Modifying Objects
Creating your own objects is just part of the fun in ECMAScript. How would you like to modify the
behavior of existing objects? This is completely possible in ECMAScript, so dream up whatever methods
you’d like for a String, Array, Number, or any other object, because the possibilities are endless.

Remember the prototype object from an earlier section in this chapter? You already know that each
constructor has a prototype property that can be used to define methods. What you don’t already
know is that each of the native objects in ECMAScript also has a prototype property that can be used
in the exactly same way.

Creating a new method
You can define a new method for any existing class by using its prototype property, just as you would
with your own classes. For instance, remember the toString() method of Number that outputs a hexa-
decimal string if you pass in 16 as an argument? Wouldn’t it be nicer to have a toHexString() method
to handle the process? It’s simple to create it:

Number.prototype.toHexString = function () {
return this.toString(16);

};

In this context, the this keyword points to the instance of Number and so has full access to all the
Number methods. With this code, it is possible to do this:

var iNum = 15;
alert(iNum.toHexString()); //outputs “F”

Because the number 15 is equal to hexadecimal F, the alert displays “F”. And remember the discussion
about using an Array as a queue? The only thing missing was properly named methods. You can add
enqueue() and dequeue() to Array and just have them call the existing push() and shift() methods
respectively:

Array.prototype.enqueue = function(vItem) {
this.push(vItem);

};

Array.prototype.dequeue = function() {
return this.shift();

};

You can also, of course, add methods that don’t rely on existing methods at all. For example, say that
you want to determine the position of a particular item in an array. You have no native method to do
such a thing. You can easily create a method that does this:

Array.prototype.indexOf = function (vItem) {

for (var i=0; i < this.length; i++) {
if (vItem == this[i]) {

return i;

99

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 99

}
}

return -1;
}

This method, named indexOf() to keep it consistent with the String method of the same name,
searches each item in the array until it finds the equivalent of the item passed in. If the item is found,
the method returns the position; if not, the method returns –1. With this defined, the following code is
possible:

var aColors = new Array(“red”, “green”, “yellow”);
alert(aColors.indexOf(“green”)); //outputs “1”

Lastly, if you want to add a new method to every native object in ECMAScript, you must define it on the
Object’s prototype property. As discussed in the last chapter, all native objects inherit from Object, and
so any changes to Object are reflected in all native objects. For example, if you want to add a method
that outputs the current value of the object in an alert, you do the following:

Object.prototype.showValue = function () {
alert(this.valueOf());

};

var str = “hello”;
var iNum = 25;
str.showValue(); //outputs “hello”
iNum.showValue(); //outputs “25”

Here, both the String and Number objects inherit the showValue() method from Object, displaying
“hello” and “25” when called on their respective objects.

Redefining an existing method
Just as it is possible to define new methods for existing classes, it is also possible to redefine existing
methods. As discussed in the previous chapter, function names are simply pointers to functions, and as
such, can be easily changed to point to other functions. What happens if you change a native method,
such as toString()?

Function.prototype.toString = function () {
return “Function code hidden”;

};

The previous code is perfectly legal and works as expected:

function sayHi() {
alert(“hi”);

}

alert(sayHi.toString()); //outputs “Function code hidden”

100

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 100

You may recall from Chapter 2 that the Function’s toString() method normally outputs the source
code of the function. By overriding that method, you can supply a different string to return (in this case,
“Function code hidden”). But what happened to the original function that toString() was point-
ing to? Well, it has gone on to the garbage collector because it was fully dereferenced. You have no way
to get that original function back, which is why it is always safer to store a pointer to the original method
that you are overriding, just in case you need it later. You may even want to call that original method
under certain circumstances in your new method:

Function.prototype.originalToString = Function.prototype.toString;

Function.prototype.toString = function () {
if (this.originalToString().length > 100) {

return “Function too long to display.”;
} else {

return this.originalToString();
}

};

In this code, the first line saves a reference to the current toString() method in a property called
originalToString. Then, the toString() method is overridden with a custom method. This new
method checks to see if the length of the function source code is longer greater than 100. If so, the
method returns a small error message stating that the function code is too long; otherwise, it returns
the source code by calling originalToString().

Very late binding
Technically speaking, there is no such thing as very late binding. The term is used in this book to describe
a phenomenon in ECMAScript where it is possible to define a method for a type of object after the object
has already been instantiated. For example:

var o = new Object;

Object.prototype.sayHi = function () {
alert(“hi”);

};

o.sayHi();

In most programming languages, you must define object methods well in advance of object instantia-
tion. Here, the sayHi() method is added to the Object class after an instance has been created. Not
only is that unheard of in traditional languages, but the instance of Object is then automatically
assigned the method and it can be used immediately (on the following line).

It is not recommended that you use very late binding because it can be difficult to
keep track of and document. However, you should understand that it is possible.

101

Object Basics

06_579088 ch03.qxd 3/28/05 11:36 AM Page 101

Summary
ECMAScript provides JavaScript implementations with complete object-oriented language capabilities.
In this chapter, you have learned about the three different types of objects defined in ECMA-262: native
objects, built-in objects, and host objects.

You explored the Array and Date objects, learning about their methods, properties, and various quirks.
You also learned about the two built-in objects, Global and Math, as well as gained understanding
about how the Global object is different from others.

This chapter also introduced the capability to define your own objects from the ground up. Several dif-
ferent methods of accomplishing this were explored and their pros and cons discussed.

Finally, you learned how to modify existing objects to include new methods as well as to override exist-
ing methods.

The next chapter finishes up the introduction to the JavaScript Core, ECMAScript, with a discussion of
inheritance.

102

Chapter 3

06_579088 ch03.qxd 3/28/05 11:36 AM Page 102

Inheritance

A truly object-oriented language must support inheritance, the capability of a class to reuse
(inherit) methods and properties from another class. In the previous chapter, you learned how to
define properties and methods of a class, but what if you want two classes to use the same meth-
ods? This is where inheritance comes in.

Inheritance in Action
The easiest way to describe inheritance is through a classic example, geometric shapes. There are
really two types of shapes: ellipses (which are rounded) and polygons (which have a certain num-
ber of sides). Circles are a type of ellipse with one focus; triangles, rectangles, and pentagons are
types of polygons with a different number of sides. A square is a type of rectangle with all sides
equal. This describes a perfect inheritance relationship.

In this example, Shape is the base class (the class to be inherited from) of Ellipse and Polygon. An
Ellipse has one property called foci, indicating the number of foci the Ellipse has. Circle inherits
from Ellipse, so Circle is a subclass of Ellipse and Ellipse is a superclass of Circle. Likewise, Triangle,
Rectangle, and Pentagon are subclasses of Polygon and Polygon is a superclass to each of these
shapes. Finally, Square inherits from Rectangle.

The inheritance relationship is best explained through diagrams, which is where the Universal
Modeling Language (UML) comes in. One of UML’s many purposes is to visually represent com-
plex object relationships such as inheritance. Figure 4-1 is a UML diagram explaining the relation-
ship of Shape to its subclasses:

07_579088 ch04.qxd 3/28/05 11:36 AM Page 103

Figure 4-1

In UML, each box represents a class, indicated by the class name. Lines coming from the top of Triangle,
Rectangle, and Pentagon converge and point at Shape, indicating that each of these classes inherits from
Shape. Likewise, the arrow pointing from Square to Rectangle indicates the inheritance relationship
there.

If you are interested in learning more about UML, refer to Instant UML (Wrox Press, ISBN
1861000871).

Implementing Inheritance
In order to implement inheritance in ECMAScript, you start out with a base class from which to inherit.
All developer-defined classes are candidate base classes. As a security precaution, native or host objects
cannot be base classes; this prevents giving the public access to compiled browser-level code that could
potentially be used in a malicious way.

After the base class has been selected, you can proceed to create its subclasses. It’s completely up to you
whether or not the base class should be used at all. Sometimes, you may want to create a base class that
isn’t intended to be used directly. Instead, it only provides common functionality to subclasses. In this
case, the base class is considered abstract.

Shape

PolygonEllipse

Circle Rectangle PentagonTriangle

Square

104

Chapter 4

07_579088 ch04.qxd 3/28/05 11:36 AM Page 104

Although ECMAScript doesn’t strictly define abstract classes as some other languages do, it sometimes
creates certain base classes that aren’t supposed to be used. Usually these are simply documented as
abstract.

The subclasses you create inherit all properties and methods from the superclass, including the construc-
tor and method implementations. Remember, all the properties and methods are public, so subclasses
may access these directly. Subclasses may add new properties and methods not present in the superclass
or override properties and methods of the superclass with new implementations.

Methods of inheritance
As usual with ECMAScript, you have more than one way to implement inheritance. This is because
inheritance in JavaScript isn’t explicit; it’s emulated. This means that the interpreter doesn’t handle all
the inheritance details. It is up to you, as the developer, to handle inheritance in a way that is most
appropriate for your situation.

Object masquerading
Object masquerading was never intended when the original ECMAScript was conceived. Instead, it
evolved as developers began to understand exactly how functions worked and, specifically, how to use
the this keyword in the context of functions.

The reasoning goes like this: A constructor assigns all properties and methods (with the Constructor
Paradigm of class declaration) using the this keyword. Because a constructor is just a function, you can
make the constructor of ClassA into a method of ClassB and call it. ClassB then receives the properties
and methods defined in ClassA’s constructor. For example, ClassA and ClassB are defined in this way:

function ClassA(sColor) {
this.color = sColor;
this.sayColor = function () {

alert(this.color);
};

}

function ClassB(sColor) {
}

As you remember, the this keyword references the currently created object in a constructor; in a method,
however, this points to the owning object. The theory is that treating ClassA as a regular function instead
of as a constructor establishes a type of inheritance. This can be done in the constructor ClassB like so:

function ClassB(sColor) {
this.newMethod = ClassA;
this.newMethod(sColor);
delete this.newMethod;

}

In this code, the method named newMethod is assigned to ClassA (remember, the name of a function is
just a pointer to it). Then, the method is called, passing the color argument from the ClassB construc-
tor. The final line of code deletes the reference to ClassA so that it cannot be called later on.

105

Inheritance

07_579088 ch04.qxd 3/28/05 11:36 AM Page 105

All new properties and methods must be added after the line that deletes the new method. Otherwise,
you run the risk of overwriting the new properties and methods with those of the superclass:

function ClassB(sColor, sName) {
this.newMethod = ClassA;
this.newMethod(sColor);
delete this.newMethod;

this.name = sName;
this.sayName = function () {

alert(this.name);
};

}

To prove that this works, you can run the following example:

var objA = new ClassA(“red”);
var objB = new ClassB(“blue”, “Nicholas”);
objA.sayColor(); //outputs “red”
objB.sayColor(); //outputs “blue”
objB.sayName(); //outputs “Nicholas”

As an interesting side note, object masquerading supports multiple inheritance, meaning that a class can
inherit from multiple superclasses. Multiple inheritance is represented in UML by showing the previous
superclasses of the subclass as shown in Figure 4-2.

Figure 4-2

For example, if two classes, ClassX and Class Y, exist, and ClassZ wishes to inherit from both, then the
following code can be used:

function ClassZ() {
this.newMethod = ClassX;
this.newMethod();
delete this.newMethod;

this.newMethod = ClassY;

ClassYClassX

ClassZ

106

Chapter 4

07_579088 ch04.qxd 3/28/05 11:36 AM Page 106

this.newMethod();
delete this.newMethod;

}

The one downside to this is that if ClassX and ClassY have a property or method with the same name,
ClassY’s takes priority because it is inherited from last. Besides that minor issue, multiple inheritance
with object masquerading is a breeze.

Because this method of inheritance caught on, the third edition of ECMAScript includes two new meth-
ods of the Function object: call() and apply().

The call() method
The call() method is the method most similar to the classic object-masquerading method. Its first
argument is the object to be used for this. All other arguments are passed directly to the function itself.
For example:

function sayColor(sPrefix, sSuffix) {
alert(sPrefix + this.color + sSuffix);

};

var obj = new Object();
obj.color = “red”;

//outputs “The color is red, a very nice color indeed. “
sayColor.call(obj, “The color is “, “, a very nice color indeed. “);

In this example, the function sayColor() is defined outside of an object, and it references the this key-
word even though it is not attached to any object. The object obj is given a color property equal to
“red”. When call() is, well, called, the first argument is obj, which indicates that the this keyword
in sayColor() should be assigned the value of obj. The second and third arguments are strings. They
are matched up with the prefix and suffix arguments of sayColor(), resulting in the message “The
color is red, a very nice color indeed.” being displayed.

To use this with the object masquerading method of inheritance, just replace the three lines that assign,
call, and delete the new method:

function ClassB(sColor, sName) {
//this.newMethod = ClassA;
//this.newMethod(sColor);
//delete this.newMethod;
ClassA.call(this, sColor);

this.name = sName;
this.sayName = function () {

alert(this.name);
};

}

Here, you want the this keyword in ClassA to be equal to the newly created ClassB object, so this is
passed in as the first argument. The second argument is the color argument, the only one for either
class.

107

Inheritance

07_579088 ch04.qxd 3/28/05 11:36 AM Page 107

The apply() method
The apply() method takes two arguments: the object to be used for this and an array of arguments to
be passed to the function. For example:

function sayColor(sPrefix, sSuffix) {
alert(sPrefix + this.color + sSuffix);

};

var obj = new Object();
obj.color = “red”;

//outputs “The color is red, a very nice color indeed. “
sayColor.apply(obj, new Array(“The color is “,”, a very nice color indeed.”));

This is the same example as before, but now the apply() method is being called. When apply() is
called, the first argument is still obj, which indicates that the this keyword in sayColor() should be
assigned the value of obj. The second argument is an array consisting of two strings, which are matched
up with the prefix and suffix arguments of sayColor(). This also results in the message “The color
is red, a very nice color indeed.” being displayed.

This method is also used in place of the three lines to assign, call, and delete the new method:

function ClassB(sColor, sName) {
//this.newMethod = ClassA;
//this.newMethod(sColor);
//delete this.newMethod;
ClassA.apply(this, new Array(sColor));

this.name = sName;
this.sayName = function () {

alert(this.name);
};

}

Once again, you pass this in as the first argument. The second argument is an array with just one value:
color. You can, alternatively, pass in the entire arguments object of ClassB as the second argument of
the apply() method:

function ClassB(sColor, sName) {
//this.newMethod = ClassA;
//this.newMethod(sColor);
//delete this.newMethod;
ClassA.apply(this, arguments);

this.name = sName;
this.sayName = function () {

alert(this.name);
};

}

Of course, passing in the object of the arguments only works if the order of the arguments in the super-
class constructor is exactly the same as the order of the arguments in the subclass. When this is not the

108

Chapter 4

07_579088 ch04.qxd 3/28/05 11:36 AM Page 108

case, you must create a separate array to place the arguments into the correct order. You could also use
the call() method.

Prototype chaining
The form of inheritance actually intended for use in ECMAScript is prototype chaining. The last chapter
introduced the prototype paradigm for defining classes. Prototype chaining builds off this paradigm to
accomplish inheritance in an interesting way.

In the last chapter, you learned that the prototype object is the template upon which an object is based
when instantiated. To summarize: Any properties or methods on the prototype object will be passed
on all instances of that class. Prototype chaining uses this functionality to accomplish inheritance.

If the classes from the previous example are redefined using the prototype paradigm, they become the
following:

function ClassA() {
}

ClassA.prototype.color = “red”;
ClassA.prototype.sayColor = function () {

alert(this.color);
};

function ClassB() {
}

ClassB.prototype = new ClassA();

The magic in prototype chaining occurs in the highlighted previous line. Here, you are setting the
prototype property of ClassB to be an instance of ClassA. This makes perfect sense because you want
all the properties and methods of ClassA, but you don’t want to have to assign each of them separately
to ClassB’s prototype property. What better way to do this than just to make the prototype into an
instance of ClassA?

Similar to object masquerading, all new properties and methods of the subclass must come after the
assignment of the prototype property because all methods assigned before will be deleted. Why?
Because the prototype property is being completely replaced with a new object; the original object to
which you would have added the methods is destroyed. So to add the name property and the sayName()
method to ClassB, the code looks like this:

function ClassB() {
}

ClassB.prototype = new ClassA();

Note that no parameters are passed into the ClassA constructor call. This is standard
in prototype chaining. Be sure that your constructor functions properly without any
arguments.

109

Inheritance

07_579088 ch04.qxd 3/28/05 11:36 AM Page 109

ClassB.prototype.name = “”;
ClassB.prototype.sayName = function () {

alert(this.name);
};

You can test this code by running the following example:

var objA = new ClassA();
var objB = new ClassB();
objA.color = “red”;
objB.color = “blue”;
objB.name = “Nicholas”;
objA.sayColor(); //outputs “red”
objB.sayColor(); //outputs “blue”
objB.sayName(); //outputs “Nicholas”

As a bonus, the instanceof operator works in a rather unique way in prototype chaining. For all
instances of ClassB, instanceof returns true for both ClassA and ClassB. For example:

var objB = new ClassB();
alert(objB instanceof ClassA); //outputs “true”;
alert(objB instanceof ClassB); //outputs “true”

In the loosely typed world of ECMAScript, this can be an incredibly useful tool, one that is not available
when you use object masquerading.

The downside to prototype chaining is that it has no support for multiple inheritance. Remember, proto-
type chaining involves overwriting the prototype property of the class with another type of object.

Hybrid method
You may have noticed that this method of inheritance uses the constructor paradigm to define classes
without any use of prototyping. The main problem with object masquerading is that you must use the
constructor paradigm, which (as you learned in the last chapter) is not optimal. But if you go with proto-
type chaining, you lose the capability to have constructors with arguments. What’s a developer to do?
The answer is simple: Use both.

In the previous chapter, you learned that the best way to create classes is to use the constructor paradigm
to define the properties and to use the prototype paradigm to define the methods. The same goes for
inheritance; you use object masquerading to inherit properties from the constructor and prototype chain-
ing to inherit methods from the prototype object. Take a look at the previous example rewritten using
both methods of inheritance:

function ClassA(sColor) {
this.color = sColor;

}

ClassA.prototype.sayColor = function () {
alert(this.color);

};

function ClassB(sColor, sName) {

110

Chapter 4

07_579088 ch04.qxd 3/28/05 11:36 AM Page 110

ClassA.call(this, sColor);
this.name = sName;

}

ClassB.prototype = new ClassA();

ClassB.prototype.sayName = function () {
alert(this.name);

};

In this example, inheritance is accomplished with the two highlighted lines. First, in the ClassB con-
structor, object masquerading is used to inherit the color property from ClassA. In the second high-
lighted line, prototype chaining is used to inherit the methods of ClassA. Because this hybrid method
uses prototype chaining, the instanceof operator still works correctly.

The following example tests this code:

var objA = new ClassA(“red”);
var objB = new ClassB(“blue”, “Nicholas”);
objA.sayColor(); //outputs “red”
objB.sayColor(); //outputs “blue”
objB.sayName(); //outputs “Nicholas”

A more practical example
In real Web sites and applications, chances are you won’t be creating classes named ClassA and ClassB.
It’s far more likely that you will create classes that represent specific things, such as shapes. If you con-
sider the shapes example from the beginning of the chapter, the Polygon, Triangle, and Rectangle
classes form a nice set of data to explore.

Creating the base class
Think of the Polygon class first. What sort of properties and methods are necessary? First, it’s important
to know the number of sides the polygon has, so an integer property named sides should be included.
What else might be necessary for a polygon? You may want to determine the area of polygon, so add a
method named getArea() to calculate it. Figure 4-3 shows the UML representation of this class.

Figure 4-3

In UML, properties are represented by the property name and type in the section immediately under the
class name. Methods are located under the properties, indicating the method name and the type of the
return value.

Polygon
sides : integer

getArea(): integer

111

Inheritance

07_579088 ch04.qxd 3/28/05 11:36 AM Page 111

In ECMAScript, the class can be written like this:

function Polygon(iSides) {
this.sides = iSides;

}

Polygon.prototype.getArea = function () {
return 0;

};

Note that the Polygon class isn’t specific enough to be used by itself; getArea() returns 0 because it is
just a placeholder for the subclasses to override.

Creating the subclasses
Now consider the Triangle class. A triangle has three sides, so this class has to override the Polygon
class’s sides property and set it to 3. The getArea() method also has to be overridden to use the area
formula for a triangle, which is 1⁄2 × base × height. But how does the method get the values for base and
height? They must be entered specifically, and so you must create a base property and a height prop-
erty. The UML representation for Triangle is displayed in Figure 4-4.

Figure 4-4

This diagram shows only the new properties and overridden methods of Triangle. If Triangle
doesn’t override getArea(), the method is not listed in the diagram. It would be considered as retained
from Polygon. The complete UML diagram showing the relationship between Polygon and Triangle
(Figure 4-5) makes it a little bit clearer.

Figure 4-5

Triangle
base : integer
height: integer
getArea(): integer

Polygon
sides : integer

getArea(): integer

Triangle
base : integer
height: integer
getArea(): integer

112

Chapter 4

07_579088 ch04.qxd 3/28/05 11:36 AM Page 112

In UML, you never duplicate properties or methods that are inherited unless a method is being overrid-
den (or overloaded, which is not possible in ECMAScript).

The code for the Triangle class is:

function Triangle(iBase, iHeight) {
Polygon.call(this, 3);
this.base = iBase;
this.height = iHeight;

}

Triangle.prototype = new Polygon();
Triangle.prototype.getArea = function () {

return 0.5 * this.base * this.height;
};

Note that the Triangle constructor accepts two arguments, base and height, even though the Polygon
constructor accepts just one, sides. This is because you already know the number of sides in a triangle,
and you don’t want to allow the developer to change that. So, when you use object masquerading, the
number 3 is passed to the Polygon constructor as the number of sides for this object. Then, the values for
base and height are assigned the appropriate properties.

After using prototype chaining to inherit the methods, Triangle then overrides the getArea() method
to provide the custom calculation required for the calculation of triangle areas.

The last class is Rectangle, which also inherits from Polygon. Rectangles have four sides and the area
is calculated by multiplying the length by the width, which are two properties needed for the class.
Rectangle fits into the earlier UML diagram next to Triangle because both have Polygon as a super-
class (see Figure 4-6).

Figure 4-6

The ECMAScript code for Rectangle is as follows:

function Rectangle(iLength, iWidth) {
Polygon.call(this, 4);
this.length = iLength;
this.width = iWidth;

Triangle
base : integer
height: integer
getArea(): integer

Polygon
sides : integer

getArea(): integer

Rectangle
length : integer
width : integer
getArea(): integer

113

Inheritance

07_579088 ch04.qxd 3/28/05 11:36 AM Page 113

}

Rectangle.prototype = new Polygon();
Rectangle.prototype.getArea = function () {

return this.length * this.width;
};

Notice that the Rectangle constructor also doesn’t accept sides as an argument, and once again a con-
stant value (4) is passed directly to the Polygon constructor. Also similar to Triangle, Rectangle
introduces two new properties as arguments to the constructor and then overrides the getArea()
method.

Testing the code
You can test the code created for this example by running the following code:

var triangle = new Triangle(12, 4);
var rectangle = new Rectangle(22, 10);

alert(triangle.sides); //outputs “3”
alert(triangle.getArea()); //outputs “24”

alert(rectangle.sides); //outputs “4”
alert(rectangle.getArea()); //outputs “220”

This code creates a triangle, with a base of 12 and a height of 4, and a rectangle, with a length of 22 and
a width of 10. Then, both the number of sides and the area of each shape are output to prove that the
sides property is being properly filled and the getArea() method is returning the correct value. The
area of the triangle should be 24 and the area of the rectangle should be 220.

What about dynamic prototyping?
The previous example uses the hybrid constructor/prototype paradigm of object definition to show
inheritance, but does it work with dynamic prototyping? The answer is no.

The reason that inheritance doesn’t work with dynamic prototyping is because of the unique nature of
the prototype object. Take a look at the following code (which is incorrect, but important to study
nonetheless):

function Polygon(iSides) {
this.sides = iSides;

if (typeof Polygon._initialized == “undefined”) {

Polygon.prototype.getArea = function () {
return 0;

};

Polygon._initialized = true;
}

}

function Triangle(iBase, iHeight) {

114

Chapter 4

07_579088 ch04.qxd 3/28/05 11:36 AM Page 114

Polygon.call(this, 3);
this.base = iBase;
this.height = iHeight;

if (typeof Triangle._initialized == “undefined”) {

Triangle.prototype = new Polygon();
Triangle.prototype.getArea = function () {

return 0.5 * this.base * this.height;
};

Triangle._initialized = true;
}

}

The previous code illustrates both Polygon and Triangle defined using dynamic prototyping. The mis-
take is in the highlighted line, where Triangle.prototype is set. Logically, this is the correct location;
but functionally, it doesn’t work. Technically, by the time that code is run, the object is already instanti-
ated and tied to the original prototype object. Although changes to that prototype object are reflected
properly with very late binding, replacing the prototype object has no effect on that object. Only future
object instances reflect the change, making the first instance incorrect.

To correctly use dynamic prototyping with inheritance, you must assign the new prototype object out-
side of the constructor, like this:

function Triangle(iBase, iHeight) {
Polygon.call(this, 3);
this.base = iBase;
this.height = iHeight;

if (typeof Triangle._initialized == “undefined”) {

Triangle.prototype.getArea = function () {
return 0.5 * this.base * this.height;

};

Triangle._initialized = true;
}

}

Triangle.prototype = new Polygon();

This code works because the prototype object is assigned before any objects are instantiated.
Unfortunately, this means the code isn’t completely encapsulated in the constructor, which is the main
purpose of dynamic prototyping.

Alternative Inheritance Paradigms
Due to the limitations of ECMAScript inheritance (for instance, lack of a private scope and the inability
to easily access superclass methods), developers around the world have constantly pushed their code to

115

Inheritance

07_579088 ch04.qxd 3/28/05 11:36 AM Page 115

the limit in an effort to create other ways of implementing inheritance. This section examines some of the
alternatives to the standard ECMAScript inheritance paradigms.

zInherit
Prototype chaining essentially copies all methods from an object to a class’s prototype object. But
what if there were a different way to accomplish this? There is. Using the zInherit library (available at
http://www.nczonline.net/downloads), it’s possible to accomplish method inheritance without
using prototype chaining. This small library supports all modern browsers (Mozilla, IE, Opera, Safari)
as well as some older browsers (Netscape 4.x, IE/Mac).

In order to use the zInherit library, you must include zinherit.js using the <script/> tag. Chapter 5,
“JavaScript in the Browser,” discusses including external JavaScript files in detail.

The zInherit library adds two methods to the Object class: inheritFrom() and instanceOf(). As
you may have guessed, the inheritFrom() method does the heavy lifting, copying the methods from
a given class. The following line uses prototype chaining to inherit methods from ClassA to ClassB:

ClassB.prototype = new ClassA();

This line can be replaced with the following:

ClassB.prototype.inheritFrom(ClassA);

The inheritFrom() method accepts one argument, which is the class from which to copy the methods.
Note that, as opposed to prototype chaining, this paradigm doesn’t actually create a new instance of the
class to inherit from, making it a little safer and freeing the developer from worrying about the construc-
tor arguments.

The instanceOf() method is a replacement for the instanceof operator. Because this paradigm
doesn’t use prototype chaining at all, this line of code won’t work:

ClassB instanceof ClassA

The instanceOf() method makes up for this loss, working with inheritFrom() to keep track of all
superclasses:

ClassB.instanceOf(ClassA);

Polygons revisited
The entire polygon example can be rewritten using the zInherit library by replacing just two lines
(highlighted):

The inheritFrom() method call must be used exactly where the prototype assign-
ment normally occurs in order to ensure proper inheritance.

116

Chapter 4

07_579088 ch04.qxd 3/28/05 11:36 AM Page 116

function Polygon(iSides) {
this.sides = iSides;

}

Polygon.prototype.getArea = function () {
return 0;

};

function Triangle(iBase, iHeight) {
Polygon.call(this, 3);
this.base = iBase;
this.height = iHeight;

}

Triangle.prototype.inheritFrom(Polygon);

Triangle.prototype.getArea = function () {
return 0.5 * this.base * this.height;

};

function Rectangle(iLength, iWidth) {
Polygon.call(this, 4);
this.length = iLength;
this.width = iWidth;

}

Rectangle.prototype.inheritFrom(Polygon);

Rectangle.prototype.getArea = function () {
return this.length * this.width;

};

To test this code, you can use the same example as before and add in a couple extra lines to test out the
instanceOf() method:

var triangle = new Triangle(12, 4);
var rectangle = new Rectangle(22, 10);

alert(triangle.sides);
alert(triangle.getArea());

alert(rectangle.sides);
alert(rectangle.getArea());

alert(triangle.instanceOf(Triangle)); //outputs “true”
alert(triangle.instanceOf(Polygon)); //outputs “true”

alert(rectangle.instanceOf(Rectangle)); //outputs “true”
alert(rectangle.instanceOf(Polygon)); //outputs “true”

The last four lines test instanceOf() and should all return true.

117

Inheritance

07_579088 ch04.qxd 3/28/05 11:36 AM Page 117

Dynamic prototyping support
As mentioned earlier, prototype chaining can’t be used in the true spirit of dynamic prototyping, which
is to keep all code for a class inside of its constructor. The zInherit library fixes this problem by allowing
the inheritFrom() method to be called from inside the constructor.

Take a look at the polygon dynamic prototyping example used earlier, now with the addition of the
zInherit library:

function Polygon(iSides) {
this.sides = iSides;

if (typeof Polygon._initialized == “undefined”) {

Polygon.prototype.getArea = function () {
return 0;

};

Polygon._initialized = true;
}

}

function Triangle(iBase, iHeight) {
Polygon.call(this, 3);
this.base = iBase;
this.height = iHeight;

if (typeof Triangle._initialized == “undefined”) {

Triangle.prototype.inheritFrom(Polygon);
Triangle.prototype.getArea = function () {

return 0.5 * this.base * this.height;
};

Triangle._initialized = true;
}

}

function Rectangle(iLength, iWidth) {
Polygon.call(this, 4);
this.length = iLength;
this.width = iWidth;

if (typeof Rectangle._initialized == “undefined”) {

Rectangle.prototype.inheritFrom(Polygon);
Rectangle.prototype.getArea = function () {

return this.length * this.width;
};

Rectangle._initialized = true;
}

}

118

Chapter 4

07_579088 ch04.qxd 3/28/05 11:36 AM Page 118

The two highlighted lines in the previous code implement inheritance from the Polygon class for both
the Triangle and the Rectangle classes. The reason this works is that the prototype object isn’t being
overwritten when using the inheritFrom() method; methods are just being added to it. Using this
method, it’s possible to get around the prototype chaining restriction and implement dynamic prototyp-
ing the way it is intended.

Multiple Inheritance support
One of the most useful features of the zInherit library is its capability to support multiple inheritance,
which is not available using prototype chaining. Again, the key fact that makes this possible is that
inheritFrom() doesn’t replace the prototype object.

The inheritFrom() method must be used in combination with object masquerading in order to inherit
properties and methods. Consider the following example:

function ClassX() {
this.messageX = “This is the X message. “;

if (typeof ClassX._initialized == “undefined”) {

ClassX.prototype.sayMessageX = function () {
alert(this.messageX);

};

ClassX._initialized = true;
}

}

function ClassY() {
this.messageY = “This is the Y message. “;

if (typeof ClassY._initialized == “undefined”) {

ClassY.prototype.sayMessageY = function () {
alert(this.messageY);

};

ClassY._initialized = true;
}

}

Both ClassX and ClassY are small classes, each with one property and one method. Suppose you now
have ClassZ that needs to inherit from both. The class can be defined like this:

function ClassZ() {
ClassX.apply(this);
ClassY.apply(this);
this.messageZ = “This is the Z message. “;

if (typeof ClassZ._initialized == “undefined”) {

ClassZ.prototype.inheritFrom(ClassX);
ClassZ.prototype.inheritFrom(ClassY);

119

Inheritance

07_579088 ch04.qxd 3/28/05 11:36 AM Page 119

ClassZ.prototype.sayMessageZ = function () {
alert(this.messageZ);

};

ClassZ._initialized = true;
}

}

Note that two lines inherit the properties (using the apply() method), and two lines inherit the meth-
ods (using the inheritFrom()) method. As discussed earlier, the order in which the inheritance hap-
pens is important, and it is generally better to always inherit methods in the same order as the properties
(meaning that if properties are inherited from ClassX and then ClassY, the methods should be inher-
ited in that same order).

The following code tests the multiple inheritance example:

var objZ = new ClassZ();
objZ.sayMessageX(); //outputs “This is X message. “
objZ.sayMessageY(); //outputs “This is Y message.”
objZ.sayMessageZ(); //outputs “This is Z message.”

The previous code calls three methods:

1. sayMessageX(), which is inherited from ClassX, accesses the messageX property, also
inherited from ClassX.

2. sayMessageY(), which is inherited from ClassY, accesses the messageY property, also
inherited from ClassY.

3. sayMessageZ(), which is defined in ClassZ, accesses the messageZ property, also defined in
ClassZ.

These three methods should output the appropriate message from the appropriate property, indicating
that the multiple inheritance has succeeded.

xbObjects
Netscape’s DevEdge site (http://devedge.netscape.com) contains a lot of useful information and
scripting tools for Web developers. One such tool is xbObjects (available for download from http://
archive.bclary.com/xbProjects-docs/xbObject/), written by Bob Clary of Netscape
Communications in 2001, when Netscape 6 (Mozilla 0.6) was first released. It supports all
versions of Mozilla since that time as well other modern browsers (IE, Opera, Safari).

Purpose
The purpose of xbObjects is to provide a stronger object-oriented paradigm to JavaScript, allowing not
only for inheritance but also for overloading of methods and the capability to call superclass methods.
To do this, xbObjects requires a number of steps be followed.

First, you must register the class, and in doing so, define which class to inherit from. This is done using
the following call:

_classes.registerClass(“Subclass_Name”, “Superclass_Name”);

120

Chapter 4

07_579088 ch04.qxd 3/28/05 11:36 AM Page 120

Here, the subclass and superclass names are passed in as strings, not as pointers to their constructors.
This call must come before the constructor for the given subclass.

You can also call registerClass() with only the first argument if the new class doesn’t inherit from
another class.

The second step is to call the defineClass() method inside of the constructor, passing in the name of
the class as well as a pointer to what Clary calls a prototype function, which is used to initialize all proper-
ties and methods for the object (more on that later). For example:

_classes.registerClass(“ClassA”);

function ClassA(color) {
_classes.defineClass(“ClassA”, prototypeFunction);

function prototypeFunction() {
//...

}
}

As you can see, the prototype function (aptly named prototypeFunction()) is located inside of the
constructor. Its main purpose is to assign all methods to the class when appropriate (it works like
dynamic prototyping in this way).

The next step (that’s three so far) is to create an init() method for the class. This method is responsible
for setting up all properties for the class and must accept the same arguments as the constructor itself.
By convention, the init() method is always called after the defineClass() method is called. For
example:

_classes.registerClass(“ClassA”);

function ClassA(sColor) {
_classes.defineClass(“ClassA”, prototypeFunction);

this.init(sColor);

function prototypeFunction() {

ClassA.prototype.init = function (sColor) {
this.parentMethod(“init”);
this.color = sColor;

};

}
}

You may have noticed a method named parentMethod() being called in the init() method. This is
the way that xbObjects allows a class to call a superclass method. The parentMethod() accepts any
number of arguments, but the first argument is always the name of the parent class method to call (this
argument must be a string, not a function pointer); all other arguments are passed to the superclass
method.

121

Inheritance

07_579088 ch04.qxd 3/28/05 11:36 AM Page 121

In this case, the superclass init() method is being called first, which is required for xbObjects to work.
Even though ClassA didn’t register a superclass, a default superclass for all classes is created using
xbObjects, which is where this superclass init() method comes from.

The fourth and final step is to add the other class methods inside of the prototype function:

_classes.registerClass(“ClassA”);

function ClassA(sColor) {
_classes.defineClass(“ClassA”, prototypeFunction);

this.init(sColor);

function prototypeFunction() {

ClassA.prototype.init = function (sColor) {
this.parentMethod(“init”);
this.color = sColor;

};

ClassA.prototype.sayColor = function () {
alert(this.color);

};

}
}

Then, you can create an instance of ClassA in the normal way:

var objA = new ClassA(“red”);
objA.sayColor(); //outputs “red”

Polygons reloaded
At this point, surely you’re wondering if you will have a chance to see the polygon example redone
using xbObjects, so here it goes.

First, rewrite the Polygon class, which is very simple:

_classes.registerClass(“Polygon”);

function Polygon(sides) {

_classes.defineClass(“Polygon”, prototypeFunction);

this.init(sides);

function prototypeFunction() {

Polygon.prototype.init = function(iSides) {
this.parentMethod(“init”);
this.sides = iSides;

};

122

Chapter 4

07_579088 ch04.qxd 3/28/05 11:36 AM Page 122

Polygon.prototype.getArea = function () {
return 0;

};

}
}

Next, rewrite the Triangle class, which is the first taste of real inheritance in this example:

_classes.registerClass(“Triangle”, “Polygon”);

function Triangle(iBase, iHeight) {

_classes.defineClass(“Triangle”, prototypeFunction);

this.init(iBase,iHeight);

function prototypeFunction() {
Triangle.prototype.init = function(iBase, iHeight) {

this.parentMethod(“init”, 3);
this.base = iBase;
this.height = iHeight;

};

Triangle.prototype.getArea = function () {
return 0.5 * this.base * this.height;

};
}

}

Note the registerClass() call just before the constructor, where the inheritance relationship is set up.
Also, the first line of the init() method calls the superclass (Polygon) init() with an argument of 3,
which sets the sides property to 3. Other than that, the init() method is very similar: a simple con-
structor, assigning the base and height.

The Rectangle class ends up looking very similar to Triangle:

_classes.registerClass(“Rectangle”, “Polygon”);

function Rectangle(iLength, iWidth) {

_classes.defineClass(“Rectangle”, prototypeFunction);

this.init(iLength, iWidth);

function prototypeFunction() {
Rectangle.prototype.init = function(iLength, iWidth) {

this.parentMethod(“init”, 4);
this.length = iLength;
this.width = iWidth;

}

123

Inheritance

07_579088 ch04.qxd 3/28/05 11:36 AM Page 123

Rectangle.prototype.getArea = function () {
return this.length * this.width;

};

}
}

The main difference between this and the Triangle class (aside from the different registerClass()
and defineClass() calls) is calling the superclass init() method with an argument of 4. Other than
that, the additional length and width properties are added and the getArea() method is overridden.

Summary
This chapter introduced the concept of object inheritance in ECMAScript (and, therefore, in JavaScript)
using object masquerading and prototype chaining. You learned that using these methods together is the
optimal way to establish inheritance between classes.

Finally, a couple of alternate methods of establishing inheritance were introduced: zInherit and xbObjects.
These JavaScript libraries, available free on the Internet, introduce new and different capabilities for object
inheritance.

This wraps up the discussion of ECMAScript, the core of JavaScript. The following chapters build upon
this base and introduce you to more Web-specific aspects of the language.

124

Chapter 4

07_579088 ch04.qxd 3/28/05 11:36 AM Page 124

JavaScript in the Browser

In the preceding chapters, you learned about JavaScript’s core, ECMAScript, and how the basics of
the language work. Beginning with this chapter, the focus switches to using JavaScript inside its
natural habitat: the Web browser.

Web browsers have come a long way since JavaScript was first introduced in Netscape Navigator
2.0. Browsers today are capable of handling a variety of file formats, not just conventional HTML.
Ironically enough, JavaScript is used in most of these file formats as a way to dynamically change
content on the client. This chapter explores how JavaScript fits into HTML and other languages, as
well as introduces you to some basic concepts of the Browser Object Model (BOM).

JavaScript in HTML
Of course, it was HTML that first made use of embedded JavaScript, so the natural first discussion
point is how JavaScript is used in HTML. The evolution of HTML to include JavaScript began with
the introduction of tags to be used in conjunction with JavaScript, as well as the addition of new
attributes for several common parts of HTML.

The <script/> tag
JavaScript is included in HTML pages by using the <script/> tag. Typically located within the
<head/> tag of a page, the <script/> tag was originally defined to have one or two attributes:
language that indicates the scripting language being used and, optionally, src that indicates
an external JavaScript file to include in the page. The language attribute is traditionally set
to JavaScript, but it can also be used to indicate the exact version of JavaScript, such as
JavaScript1.3 (if the language attribute is omitted, the browser defaults to the most current
version of JavaScript available).

08_579088 ch05.qxd 3/28/05 11:37 AM Page 125

Although originally created for JavaScript, the <script/> tag can be used to specify any number of
different client-side scripting languages with the language attribute indicating the type of code being
used. For example, language can be set to VBScript to use Internet Explorer’s VBScript (Windows
only).

JavaScript code can be written free form within a <script/> tag, but only if the src attribute isn’t speci-
fied; when src is specified, the code inside a <script/> tag may not work (depending on the browser).
Example:

<html>
<head>

<title>Title of Page</title>
<script language=”JavaScript”>

var i = 0;
</script>
<script language=”JavaScript” src=”../scripts/external.js”></script>

</head>
<body>

<!-- body goes here -->
</body>

</html>

This example shows both inline JavaScript code and a link to an external JavaScript file. When using the
src attribute, an external JavaScript file is referenced in the same way as images and style sheets.

By convention, external JavaScript files should have a .js extension, although it is not required by most
browsers (this leaves open the possibility of dynamically generating JavaScript code using JSP, PHP, or
another server-side scripting language).

External file format
External JavaScript files have a very simple format. Essentially, they are just plain text files containing
JavaScript code. No <script/> tags are needed inside of external files, because the <script/> tag ref-
erencing the file is present in the HTML page. This makes external JavaScript files look very similar to
source code files for other programming languages.

For example, consider the following inline code:

<html>
<head>

<title>Title of Page</title>
<script language=”JavaScript”>

function sayHi() {
alert(“Hi”);

}
</script>

</head>
<body>

<!-- body goes here -->
</body>

</html>

126

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 126

To externalize the sayHi() function into a file named external.js, you copy the function text itself
(Figure 5-1).

Figure 5-1

Then the HTML code can be updated to include the external file:

<html>
<head>

<title>Title of Page</title>
<script language=”JavaScript” src=”external.js”></script>

</head>
<body>

<!-- body goes here -->
</body>

</html>

Inline code versus external files
When should you write code inline versus writing the code in an external file? Although no hard
and fast rules exist about when to use either method, the general consensus is that large amounts of
JavaScript should never be included inline for a number of reasons:

❑ Security — Anyone can see exactly what the code is doing just by viewing the source of the page.
If a malicious developer examines the code, he might find security holes that could compromise
the site or application. Additionally, copyright and other intellectual property notices can be
included in external files without interrupting the flow of the page.

No rules exist about what you can include in a single JavaScript source file, meaning
that you are free to include any number of class definitions, functions, and so on, in
a single file.

external.js

function sayHi() {
 alert("Hi");
}

127

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 127

❑ Code Maintenance — If JavaScript code is sprinkled throughout various pages, code maintenance
becomes a nightmare. It is much easier to have a directory for all JavaScript files so that when a
JavaScript error occurs, there is no question about where the code is located.

❑ Caching — Browsers cache all externally linked JavaScript files according to specific settings,
meaning that if two pages are using the same file, it is only downloaded once. This ultimately
means faster loading times. Including the same code in multiple pages is not only wasteful, but
also increases the page size and thus increases the download time.

Tag placement
Generally speaking, it is common to place all code and function definitions in the <head/> tag of an
HTML page so that the code is fully loaded and ready for use once the body is rendered. The only code
that should appear within the <body/> tag is code that calls the functions defined previously.

When the <script/> tag is placed inside of the <body/> tag, the script is executed as soon as that part
of the page is downloaded to the browser. This makes it possible to execute JavaScript code before the
entire page is loaded. For example:

<html>
<head>

<title>Title of Page</title>
<script language=”JavaScript”>

function sayHi() {
alert(“Hi”);

}
</script>

</head>
<body>

<script language=”JavaScript”>
sayHi();

</script>
<p>This is the first text the user will see.</p>

</body>
</html>

In this code, the sayHi() method is called before any text is displayed on the page, meaning that the
alert pops up before the text “This is the first text the user will see.” is ever rendered. This method of
calling JavaScript inside the <body/> of a page is not recommended and should be avoided whenever
possible. Instead, it is recommended to use JavaScript only as an event handler in the body of a page,
such as:

<html>
<head>

<title>Title of Page</title>
<script language=”JavaScript”>

function sayHi() {
alert(“Hi”);

}
</script>

</head>
<body>

128

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 128

<input type=”button” value=”Call Function” onclick=”sayHi()” />
</body>

</html>

Here, the <input/> tag is used to create a button that calls sayHi() when clicked. The onclick
attribute specifies an event handler, which is the code that responds to a given event. Events and event
handlers are discussed further in Chapter 9, “All about Events.”

Note that JavaScript begins running as soon as the page begins loading, so it is possible to call function
that doesn’t exist yet. In the previous example, you can cause an error by placing the original
<script/> tag after the function call:

<html>
<head>

<title>Title of Page</title>
</head>
<body>

<script language=”JavaScript”>
sayHi();

</script>
<p>This is the first text the user will see.</p>
<script language=”JavaScript”>

function sayHi() {
alert(“Hi”);

}
</script>

</body>
</html>

This example causes an error because sayHi() is called before it is defined. Because JavaScript is load-
ing top-down, the function sayHi() does not exist until the second <script/> tag is encountered.
Be aware of this problem and, as mentioned previously, use events and event handlers to call your
JavaScript functions.

To hide or not to hide
When JavaScript was first introduced, only one browser supported it, so concern arose over how the
nonsupporting browsers would deal with the <script/> tag and the code contained within. To that
end, a format was devised to hide code from older browsers (which is a phrase that can still be found in
the source code of a great many Web sites on the Internet today). The following method uses HTML
comments around inline code so that other browsers won’t render the code to the screen:

<script language=”JavaScript”><!-- hide from older browsers
function sayHi() {

alert(“Hi”);
}

//-->
</script>

The first line begins an HTML comment immediately after the opening <script> tag. This works
because the browser still considers the rest of that line as part of HTML, with JavaScript code beginning

129

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 129

on the following line. Next, you see the function definition as usual. The second-to-last line is the most
interesting because it starts with a JavaScript single-line comment (the two forward slashes) and then
continues with the close of the HTML comment (-->). This line is still considered part of the JavaScript
code, so the single-line comment notation is necessary to avoid a syntax error. However, older browsers
only acknowledge the close of the HTML comment and, therefore, ignore all the JavaScript code. A
browser that supports JavaScript, however, just ignores this line and continues on to the closing
</script> tag.

Although this method of code-hiding was very prevalent in the early days of the Web, it is not as neces-
sary today. Presently, most of the popular Web browsers support JavaScript, and those that don’t often
are smart enough to ignore the code on their own. It is completely up to you whether you choose to use
this method, but keep in mind that using external JavaScript files inside of inline code is a much easier
method of hiding code from older browsers.

The <noscript/> tag
Another concern over browsers without JavaScript is how to provide alternate content. Hiding the code
was part of the solution, but developers wanted a way to specify content that should appear only if
JavaScript wasn’t available. The solution came in the form of the <noscript/> tag, that can contain any
HTML code (aside from <script/>). This HTML code is ignored by browsers that support JavaScript
and have it enabled; any browser that doesn’t support JavaScript or has it disabled renders the content
of <noscript/>. For example:

<html>
<head>

<title>Title of Page</title>
<script language=”JavaScript”>

function sayHi() {
alert(“Hi”);

}
</script>

</head>
<body>

<script language=”JavaScript”>
sayHi();

</script>
<noscript>

<p>Your browser doesn’t support JavaScript. If it did support
JavaScript, you would see this message: Hi!</p>

</noscript>
<p>This is the first text the user will see if JavaScript is enabled. If

JavaScript is disabled this is the second text the user will see.</p>
</body>

</html>

In this example, the <noscript/> tag is included with a message telling the user that the browser
doesn’t support JavaScript. Chapter 8, “Browser and Operating System Detection,” explains a practical
way of using <noscript/>.

130

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 130

Changes in XHTML
Recently, with the advent of the XHTML standard (eXtensible HTML), the <script/> tag has under-
gone a change. Instead of the language attribute, the tag is now expected to have a type attribute to
indicate the mime type of the inline code or external file being included; the mime type for JavaScript is
“text/javascript”. For example:

<html>
<head>

<title>Title of Page</title>
<script type=”text/javascript”>

var i = 0;
</script>
<script type=”text/javascript” src=”../scripts/external.js”></script>

</head>
<body>

<!-- body goes here -->
</body>

</html>

Even though many browsers don’t fully support XHTML, most developers are now using the type
attribute in place of the language attribute in anticipation of better XHTML support. Omitting the
language attribute doesn’t cause any problems because, as noted earlier, all browsers default to
JavaScript for the <script/> tag.

The second change in XHTML is the use of CDATA sections. CDATA sections are used in XML (and,
therefore, in XHTML) to indicate text that should not be parsed as tags, allowing the use of special char-
acters such as the less-than (<), greater-than (>), ampersand (&), and double quotes (“) without using
their character entities. Consider the following code:

<script type=”text/javascript”>
function compare(a, b) {

if (a < b) {
alert(“A is less than B”);

} else if (a > b) {
alert(“A is greater than B”);

} else {
alert(“A is equal to B”);

}
}

</script>

This is a fairly simple function, which just compares two numbers, a and b, and then displays a message
indicating their relationship. In XHTML, however, this code is invalid because it uses three special char-
acters, less-than, greater-than, and double-quote. To fix this, you must replace these characters with their
XML entities, <, >, and ", respectively:

<script type=”text/javascript”>
function compare(a, b) {

if (a < b) {
alert("A is less than B");

} else if (a > b) {

131

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 131

alert("A is greater than B");
} else {

alert("A is equal to B");
}

}
</script>

This code raises two problems. First, developers aren’t used to writing code using XML entities. It makes
the code harder to read. Second, this is actually considered a syntax error in JavaScript because the inter-
preter has no idea what the XML entities mean. Using a CDATA section, it is possible to write JavaScript
code in its normal, readable syntax. The official way to include a CDATA section is as follows:

<script type=”text/javascript”><![CDATA[
function compare(a, b) {

if (a < b) {
alert(“A is less than B”);

} else if (a > b) {
alert(“A is greater than B”);

} else {
alert(“A is equal to B”);

}
}

]]></script>

Although this it the official way, remember that XHTML isn’t fully supported by most browsers, which
raises a major problem: This is a JavaScript syntax error because most browsers don’t recognize CDATA
sections yet!

The solution currently being used is a takeoff on the old “hide from older browsers” code. By using
single-line JavaScript comments, you can embed the CDATA section without affecting the syntax of
the code:

<script type=”text/javascript”>
//<![CDATA[

function compare(a, b) {
if (a < b) {

alert(“A is less than B”);
} else if (a > b) {

alert(“A is greater than B”);
} else {

alert(“A is equal to B”);
}

}
//]]>
</script>

This code now works in browsers that don’t support XHTML as well as those that do.

Like the use of the type attribute, the use of CDATA sections in this way is becom-
ing more prevalent as developers prepare for better support of XHTML in browsers.
Ultimately, however, it’s best to include JavaScript using external files in order to
avoid the CDATA problem altogether.

132

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 132

JavaScript in SVG
Scalable Vector Graphics (SVG) is an up-and-coming XML-based language used to draw vector graphics
on the Web. Vector graphics are different from raster (or bitmap) graphics in that they define angles,
lines, and their relationship to each other instead of simply specifying one color per pixel of an image.
The result is an image that looks the same no matter what size the rendering. Vector graphic programs
such as Adobe Illustrator have begun to include SVG export functions as the language gains popularity.

Although no browsers natively support SVG at present (although Mozilla 2.0 will), a number of compa-
nies, notably Adobe and Corel, are making SVG plugins that enable most browsers to display SVG
graphics.

Basic SVG
Introducing SVG as a language is out of the scope of this book; however, it is helpful to understand a
little about the language for the JavaScript discussion.

Here is a simple SVG example:

<?xml version=”1.0”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg xmlns=”http://www.w3.org/2000/svg” xmlns:xlink=”http://www.w3.org/1999/xlink”
width=”100%” height=”100%”>

<desc>
An image of a square and a circle.

</desc>
<defs>

<rect id=”rect1” width=”200” height=”200” fill=”red” x=”10” y=”10”
stroke=”black”/>

<circle id=”circle1” r=”100” fill=”white” stroke=”black” cx=”200”
cy=”200”/>

</defs>
<g>

<use xlink:href=”#rect1” />
<use xlink:href=”#circle1” />

</g>
</svg>

This example places a circle at the lower-right corner of a square (see Figure 5-2).

Note that SVG files begin with the XML prolog <?xml version=”1.0”?>, which indicates that this lan-
guage is XML-based. Following that is the SVG DTD, which is optional but typically included.

The outermost tag is <svg/>, which defines the file as an SVG image. The width and height attributes
can be set to anything, including percentages and pixels, but are set to 100% here for simplicity. Notice
that two XML namespaces are specified, one for SVG and one for XLink. XLink defines the behavior of
links such as href and will most likely be supported in future versions of XHTML. For now, SVG leads
the way in supporting basic XLink.

133

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 133

Figure 5-2

The next tag is <desc/>, which contains a description of the image. You can think of <desc/> as being
similar to the <title/> tag in HTML because it provides a description of what is in the image but does
not render it on the page. Immediately following is the <defs/> tag, which is where you can define
resources and shapes that are to be used later in the image. In this case, a rectangle and a circle are
defined. These shapes won’t be displayed unless specifically used in the actual image.

After <defs/> is the <g/> tag, which is short for group. This <g/> is special because it is the outermost
one and, therefore, encapsulates the visible image. <g/> tags can be used multiple times to form groups
of shapes within the outermost <g/> (think of it as a <div/> in HTML).

In this example, two <use/> tags point to a shape in the <defs/> section. The <use/> tag points its
xlink:href attribute to the ID of a shape (preceded by the pound sign, #) and, therefore, brings the
shape into the visible image. Shapes defined in <defs/> can be used multiple times in the image if you
include multiple <use/> tags. This capability makes SVG a shining example of code reuse among XML-
based languages.

Of course, one of the most exciting parts of SVG is its excellent support for JavaScript that can be used to
manipulate all parts of an SVG image.

The <script/> tag in SVG
SVG adopted a similar version of the <script/> tag for including JavaScript in its pages. This
<script/> tag, however, is different from its HTML sibling:

❑ The type attribute is required. This can be set to text/javascript or text/ecmascript,
though the former is technically the correct one.

❑ The language attribute is illegal. Including this attribute causes SVG code to be invalid.

134

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 134

❑ CDATA sections are required for inline code. Because SVG is a true XML-based language, it
properly supports CDATA sections and, therefore, requires them when inline code uses special
XML characters.

❑ Uses xlink:href instead of src. In SVG, no src attribute is used on a <script/> tag.
Instead, SVG uses the xlink:href attribute to indicate an external file to reference.

For example:

<?xml version=”1.0”?>
<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”
“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd”>
<svg xmlns=”http://www.w3.org/2000/svg” xmlns:xlink=”http://www.w3.org/1999/xlink”
width=”100%” height=”100%”>

<desc>
An image of a square and a circle.

</desc>
<script type=”text/javascript”><![CDATA[

var i = 0;
]]></script>
<script type=”text/javascript” xlink:href=”../scripts/external.js”></script>
<defs>

<rect id=”rect1” width=”200” height=”200” fill=”red” x=”10” y=”10”
stroke=”black”/>

<circle id=”circle1” r=”100” fill=”white” stroke=”black” cx=”200”
cy=”200”/>

</defs>
<g>

<use xlink:href=”#rect1” />
<use xlink:href=”#circle1” />

</g>
</svg>

In this code, the two <script/> tags are correct for SVG. The first, containing inline code, is surrounded
by a CDATA section so no problems arise if you use special characters; the second uses the xlink:href
attribute to reference an external file.

Tag placement in SVG
Because no <head/> area exists in SVG, <script/> tags can be placed nearly anywhere. Typically, how-
ever, they are placed:

❑ Immediately after the <desc/> tag

❑ Inside of the <defs/> tag

❑ Just before the outermost <g/> tag

The <script/> tag cannot be placed inside of shapes, such as <rect/> or <circle/>, nor can they be
placed inside of filters, gradients, or other appearance-defining tags.

135

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 135

The Browser Object Model
You can’t really talk about JavaScript in the browser without talking about the Browser Object Model
(BOM), which provides objects that interact with the browser window independent of the content.

The BOM is made up of a series of objects that are related to one another. Figure 5-3 shows the basic
BOM hierarchy.

Figure 5-3

As you can see, the window object is the center of the BOM universe, with all objects and collections
somehow connecting back to it. I begin the discussion of the BOM with this object.

The window object
The window object represents an entire browser window, but not necessarily the content that the win-
dow contains. Rather, window can be used to move, resize, and otherwise affect the browser that it
represents.

If a page uses framesets, each frame is represented by its own window object and stored in the frames
collection. Within the frames collection, the window objects are indexed both by number (starting at
0, going first left-to-right, then row-by-row) and by the name of the frame. Consider the following
example:

<html>
<head>

<title>Frameset Example</title>

window document

location

history

location

navigator

screenArray

frames

anchors

forms

images

links

Object

KEY

136

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 136

</head>
<frameset rows=”100,*”>

<frame src=”frame.htm” name=”topFrame” />
<frameset cols=”50%,50%”>

<frame src=”anotherframe.htm” name=”leftFrame” />
<frame src=”yetanotherframe.htm” name=”rightFrame” />

</frameset>
</frameset>

</html>

This code creates a frameset with one frame across the top and two frames underneath. Here, the top
frame can be referenced by window.frames[0] or window.frames[“topFrame”], however, you would
probably use the top object instead of window to refer to these frames (making it top.frames[0], for
instance).

The top object always points to the very top (outermost) frame, which is the browser window itself. This
assures that you are pointing to the correct frame. If you then write code within a frame, the window
object referenced in it is a pointer to just that frame.

Because the window object is the center of the BOM universe, it enjoys a special privilege: You don’t
need to explicitly reference it. Whenever a function, object, or collection is referenced, the interpreter
always looks to the window object, so window.frames[0] can be rewritten as just frames[0]. To
understand the various ways to reference the frames in the previous example, refer to Figure 5-4.

Figure 5-4

It is also possible to access a frame directly using its name, such as window.leftFrame. However,
using the frames collection is generally more acceptable because it more accurately represents the
code’s intent.

Another instance of the window object is called parent. The parent object is used with framesets that
load files that are also framesets. Suppose the file named frameset1.htm contains this code:

137

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 137

<html>
<head>

<title>Frameset Example</title>
</head>
<frameset rows=”100,* “>

<frame src=”frame.htm” name=”topFrame” />
<frameset cols=”50%,50%”>

<frame src=”anotherframe.htm” name=”leftFrame” />
<frame src=”anotherframeset.htm” name=”rightFrame” />

</frameset>
</frameset>

</html>

Now what if there is also a file named anotherframeset.htm containing this code?

<html>
<head>

<title>Frameset Example</title>
</head>
<frameset cols=”100,* “>

<frame src=”red.htm” name=”redFrame” />
<frame src=”blue.htm” name=”blueFrame” />

</frameset>
</html>

When the first file, frameset1.htm, is loaded into the browser, it loads anotherframeset.htm into
rightFrame. If code is written in redFrame (or blueFrame), the parent object points to rightFrame in
frameset1.htm. If, however, code is written in topFrame, the parent object actually points to top
because the browser window itself is considered the parent of any top-level frameset.

Figure 5-5 proves this fact by accessing the window object’s name property, which stores the name of the
frame (but will always be blank for top).

One more global window pointer, called self, is always equal to window (yes, a bit redundant, but it’s
included as a better fit with parent. It clarifies that you are not talking about the frame’s parent but the
frame itself.)

If there are no frames in the page, window and self are equal to top and the frames collection has a
length of 0.

It is also possible to chain references to window objects together, such as parent.parent.frames
[“topFrame”], although this is generally frowned upon because any change in the frame structure
results in code errors.

138

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 138

Figure 5-5

Manipulating windows
As mentioned previously, the window object is useful to manipulate browser windows (and frames),
which means as a developer, you are able to move and resize browser windows. Four methods are avail-
able to accomplish this:

❑ moveBy(dx, dy) — moves the browser window dx pixels horizontally and dy pixels verti-
cally relative to its current position. Negative numbers can be used for dx to move the window
to the left and for dy to move the window up.

❑ moveTo(x, y) — moves the browser window so that its upper-left corner is located at position
(x,y) on the user’s screen. Negative numbers can be used, but these move part of the window
off of the visible screen.

❑ resizeBy(dw, dh) — resizes the browser window’s width by dw pixels and its height by dh
pixels relative to the window’s current size. Negative numbers can be used for dw to shrink the
window’s width and for dh to shrink the window’s height.

139

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 139

❑ resizeTo(w, h) — resizes the browser window’s width to w and its height to h. Negative
numbers cannot be used.

For example:

//move the window right by 10 pixels and down by 20 pixels
window.moveBy(10, 20);

//resize the window to have a width of 150 and a height of 300
window.resizeTo(150, 300);

//resize the window to be 150 pixels wider, but leave the height alone
window.resizeBy(150, 0);

//move back to the upper-left corner of the screen (0,0)
window.moveTo(0, 0);

Suppose you went through all this trouble to change the size and position of a window, but you didn’t
keep track of the changes. Now you need to figure out where on the screen the window is located and
what its dimensions are. This is where a lack of standards causes problems.

❑ Internet Explorer provides window.screenLeft and window.screenTop to determine the
position of the window, but doesn’t provide any way of determining the size of the actual win-
dow. The size of the viewport (that area where the HTML page is displayed), can be retrieved
by using document.body.offsetWidth and document.body.offsetHeight, although this
isn’t a standard either.

❑ Mozilla provides window.screenX and window.screenY to determine the position of the win-
dow. It also provides window.innerWidth and window.innerHeight to determine the size of
the viewport, as well as window.outerWidth and window.outerHeight to determine the size
of the browser window itself.

❑ Opera and Safari provide the same facilities as Mozilla.

So the question becomes one of understanding the browsers your users have.

Navigating and opening new windows
Using JavaScript, it is possible to navigate to URLs and open new browser windows using the
window.open() method. This method accepts four arguments: the URL of the page to load in the new
window, the name of the new window (for targeting purposes), a string of features, and a Boolean value
indicating whether the loaded page should take the place of the currently loaded page. Typically, only
the first three arguments are used because the last one has an effect only when calling window.open()
doesn’t open a new window.

Even though moving and resizing browser windows is a cool trick, it should be used
sparingly. Moving and resizing windows has a jarring effect on users and for this
reason is usually avoided in professional Web sites and Web applications.

140

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 140

If window.open() is called with the name of an existing frame as the second argument, the URL is then
loaded into the frame with that name. For example, to load a page into the frame named “topFrame”,
the following code does the trick:

window.open(“http://www.wrox.com/”, “topFrame”);

This line of code behaves as if a user clicked a link with the href set to http://www.wrox.com/ and
the target set to “topFrame”. The special frame names _self, _parent, _top, and _blank are also
valid.

If the name specified isn’t a valid frame name, then window.open() opens a new window with features
based on the third argument (feature string) of the method. If the third argument is missing, a new
browser window is opened as if you had clicked a link with target set to _blank. This means that the
new browser window is displayed with the exact same settings as the default browser window (tool-
bars, location, and statusbar are all visible).

When the third argument is used, it is assumed that a new window should be opened. The feature
string, which is a comma-separated list of settings, defines certain aspects of the newly created window.
The following table displays the various settings:

Setting Values Description

left Number Indicates the left coordinate of the new window.
This cannot be a negative number.*

top Number Indicates the top coordinate of the new window.
This cannot be a negative number.*

height Number Sets the height of the new window. This cannot be
a number less than 100.*

width Number Sets the width of the new window. This cannot be
a number less than 100.*

resizable yes,no Determines if the new window can be resized by
dragging on its border. The default is no.

scrollable yes,no Determines if the new window allows scrolling if
the content cannot be fit in the viewport. The
default is no.

toolbar yes,no Determines if the new window has its toolbar
showing. The default is no.

status yes,no Determines if the new window has its status bar
showing. The default is no.

location yes,no Determines if the new window has its location
(Web address) area showing. The default is no.

*These security features of the browser are discussed in greater detail in Chapter 19, “Deployment Issues.”

141

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 141

As mentioned previously, the feature string is comma-delimited and, therefore, must contain no space
before or after a comma or equal sign. For example, the following string is invalid:

window.open(“http://www.wrox.com/”, “wroxwindow”,
“height=150, width= 300, top=10, left= 10, resizable =yes”);

This string won’t work because of the spaces after the commas and other spaces around a couple of
equal signs. Just remove the spaces and it works fine:

window.open(“http://www.wrox.com/”, “wroxwindow”,
“height=150,width=300,top=10,left=10,resizable=yes”);

The window.open() method returns a window object as its function value that is also the window object
for the newly created window (or for the frame, if the name given is the name of an existing frame).
Using this object, it’s possible to manipulate the new window:

var oNewWin = window.open(“http://www.wrox.com/”, “wroxwindow”,
“height=150,width=300,top=10,left=10,resizable=yes”);

oNewWin.moveTo(100, 100);
oNewWin.resizeTo(200, 200);

Also using this object, it is possible to close the new window using the close() method:

oNewWin.close();

If there is code in the new window, it can close itself by using:

window.close();

This only works in the new window. If you try to call window.close() in the main browser window,
you get a message saying that a script is trying to close the window and asking if you actually want it to
close. The general rule to remember is this: Scripts can close any windows that they open, but no others.

A new window also has a reference to the window that opened it stored in the opener property. The
opener property exists only on the topmost window object of the new window, making it safer to use
top.opener to access it. Example:

var oNewWin = window.open(“http://www.wrox.com/”, “wroxwindow”,
“height=150,width=300,top=10,left=10,resizable=yes”);

alert(oNewWin.opener == window); //outputs “true”

In this example, a new window is opened and then its opener property is tested against the window
object to prove that opener does indeed point to window (this alert displays “true”).

142

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 142

System dialogs
Aside from popping up new browser windows, several other methods pop up information to the user
utilizing methods of the window object: alert(), confirm(), and input().

You are already familiar with the syntax of a call to alert() because it has been used in a large number
of examples up to this point. This method accepts one argument, which is the text to display to the user.
When alert() is called, the browser creates a system message box that displays the given text with an
OK button. For example, the following line of code causes the message box in Figure 5-6 to be displayed:

alert(“Hello world! “);

Figure 5-6

Alert dialogs are typically used when users must be made aware of something that they have no control
over, such as errors. Often alert dialogs are displayed when the user has entered invalid data into a form.

The second type of dialog is displayed by calling confirm(). A confirm dialog looks similar to an alert
dialog in that it displays a message to the user. The main difference between the two is the presence of
a Cancel button along with the OK button in the confirm dialog, which allows the user to indicate if a
given action should be taken. For example, the following line of code displays the confirm dialog shown
in Figure 5-7:

confirm(“Are you sure? “);

Figure 5-7

Opening new windows can be helpful to users in some instances, but generally
speaking it’s better to keep pop-up windows to a minimum. A large industry has
popped up (no pun intended) selling pop-up ads on Web sites, which most users
find incredibly annoying. To this end, many users have installed pop-up blockers
that automatically block all pop-up windows unless the user specifically allows
them. Remember, pop-up blockers don’t know the difference between a legitimate
pop-up window and an advertisement, so it’s always best to warn a user when a
window is going to be popped up.

143

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 143

To determine if the user clicked OK or Cancel, the confirm() method returns a Boolean value: true if
OK was clicked, false if Cancel was clicked. Typical usage of a confirm dialog usually looks like this:

if (confirm(“Are you sure? “)) {
alert(“I’m so glad you’re sure! “);

} else {
alert(“I’m sorry to hear you’re not sure. “);

}

In this example, the confirm dialog is displayed to the user in the first line, which is a condition of the if
statement. If the user clicks OK, an alert is displayed saying, “I’m so glad you’re sure!” If, however, the
Cancel button is clicked, an alert is displayed saying, “I’m sorry to hear you’re not sure.” This type of
construct is often used when the user tries to delete something, such as an e-mail in his or her inbox.

The final dialog is displayed by calling prompt(), and as you might expect, this dialog prompts for
input from the user. Along with OK and Cancel buttons, this dialog also has a text box where the user is
asked to enter some data. The prompt() method accepts two arguments: the text to display to the user
and the default value for the text box (which can be an empty string if you so desire). The following line
results in the window displayed in Figure 5-8 being shown:

prompt(“What’s your name? “, “Michael”);

Figure 5-8

The value in the text box is returned as the function value if the OK button is clicked; if the Cancel but-
ton is clicked, null is returned. The prompt() method is often used like this:

var sResult = prompt(“What is your name? “, “”);
if (sResult != null) {
alert(“Welcome, “ + sResult);

}

I have a few final points to cover regarding these three dialogs. First, all the dialog windows are system
windows, meaning that they may appear different on different operating systems (and sometimes, on
different browsers). This also means that you have no control over the display of the window in terms of
fonts, colors, and so on.

Second, the dialogs are all modal, meaning that the user cannot do anything else in the browser until the
dialog is dismissed by clicking the OK button or Cancel buttons. This is a common method of controlling
user behavior to ensure that important information is delivered in a secure way.

The status bar
The status bar is the area in the bottom border that displays information to the user (see Figure 5-9).

144

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 144

Figure 5-9

Normally, the status bar tells the user when the page is loading and when it has finished loading; however,
it is possible to set its value using two properties of the window object: status and defaultStatus. As
you may have guessed, status changes the status bar text for a moment while defaultStatus changes it
as long as the user is on the page. For example, you may use a default status bar message when the page
first loads:

window.defaultStatus = “You are surfing www.wrox.com. “;

You may also want to display information about a certain link when the user moves the mouse over it:

<a href=”books.htm” onmouseover=”window.status=’Information on Wrox books.’
“>Books

This is especially useful when using a JavaScript URL because browsers, by default, display the value of
the href attribute in the status bar when the user mouses over. Setting window.status can keep the
details of the link implementation from users:

The Statusbar

145

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 145

<a href=”javascript:goSomewhere(1,2,3,4)” onmouseover=”window.status=’Information
on Wrox books.’ “>Books

Intervals and timeouts
Java developers are familiar with the wait() method of objects, which causes the program to stop and
wait a specified amount of time before continuing on to the next line of code. This is a very useful piece
of functionality and, unfortunately, one that JavaScript doesn’t support. But all is not lost. You have a
couple of ways around this issue.

JavaScript supports timeouts and intervals, which effectively tell the browser when certain code should
be executed: Timeouts execute the given code after a specified number of milliseconds; intervals execute
the given code repeatedly, waiting a specified number of milliseconds in between.

Setting a timeout is done using the window’s setTimeout() method. This method accepts two arguments:
the code to execute and the number of milliseconds (1/1000 of a second) to wait before executing it. The
first argument can either be a string of code (as would be used with the eval() function) or a pointer to a
function. For example, both these lines display an alert after one second:

setTimeout(“alert(‘Hello world!’) “, 1000);
setTimeout(function() { alert(“Hello world!”); }, 1000);

Of course, you can also reference a previously defined function:

function sayHelloWorld() {
alert(“Hello world!”);

}

setTimout(sayHelloWorld, 1000);

When you call setTimeout(), it creates a numeric timeout ID, which is similar to a process ID in an
operating system. The timeout ID is essentially an identifier for the delayed process should you decide,
after calling setTimeout(), that the code shouldn’t be executed. To cancel a pending timeout, use the
clearTimeout() method and pass in the timeout ID:

var iTimeoutId = setTimeout(“alert(‘Hello world!’)”, 1000);

//nevermind
clearTimeout(iTimeoutId);

You may be thinking to yourself, “Why would I define a timeout and then cancel it before it executes?”
Consider the tooltips available in most applications today. When you move your mouse over a button, it

Be careful not to overuse the status bar and thereby making it a distraction. For
example, many sites still use the scrolling message code that scrolls text across the
status bar. Not only is this a fairly useless trick, it’s also annoying, very unprofes-
sional, and adds a very amateurish feeling that a Web site or Web application can do
without. Because this book is all about professional JavaScript, the scrolling text
code will not be covered. However, if you are interested in playing around with
scrolling text, check out http://javascript.internet.com/scrolls/, where you
can find a large number of these scripts.

146

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 146

takes a little bit of time before that friendly yellow box appears to tell you what the button does. If you
move your mouse over the button for just a short time and then move it to another button, the tooltip
isn’t displayed. This is precisely why you would cancel a timeout before the code executes: Because you
want to wait a specified amount of time before the code is executed. If the user does something that
would result in a different outcome, you need the flexibility to cancel that timeout.

Intervals work in much the same way except that they repeat the given code indefinitely at specific time
intervals. To set up an interval, use the setInterval() method with the same type of arguments as you
use with setTimeout() — the code to execute and the number of milliseconds to wait between each
execution. For example:

setInterval(“alert(‘Hello world!’) “, 1000);
setInterval(function() { alert(“Hello world!”); }, 1000);

function sayHelloWorld() {
alert(“Hello world!”);

}

setInterval(sayHelloWorld, 1000);

Also similar to timeouts, the setInterval() method creates an interval ID to identify the code to be exe-
cuted. It can be used with the clearInterval() method to prevent any further executions. Obviously,
this is much more important when using intervals because, if left unchecked, they continue to execute
until the page is unloaded. Here is a common example of interval usage:

var iNum = 0;
var iMax = 100;
var iIntervalId = null;

function incNum() {
iNum++;

if (iNum == iMax) {
clearInterval(iIntervalId);

}
}

iIntervalId = setInterval(incNum, 500);

In this code, the number iNum is incremented every 500 milliseconds until it reaches the maximum
(iMax), at which point the interval is cleared. You can use timeouts for this, eliminating the need to keep
track of a timeout ID, by doing the following:

var iNum = 0;
var iMax = 100;

function incNum() {
iNum++;

if (iNum != iMax) {
setTimeout(incNum, 500);

}
}

setTimeout(incNum, 500);

147

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 147

Here, the code uses linked timeouts, meaning that the code being executed by setTimeout() also calls
setTimeout(). If iNum is still not equal to iMax after it is incremented, another setTimeout() call is
made. You don’t have to keep track of the timeout ID or clear it because after the code is executed, the
timeout ID is destroyed.

History
It is possible to access the history of a browser window. The history is the list of places the user has been.
For security reasons, all you can do is navigate through the history; there is no way to get the URLs of
the pages contained in the browser history.

To navigate through history, you don’t need a time machine; you use the window object’s history prop-
erty and its associated methods.

The go() method takes only one parameter: the number of pages to go back or forward. If the number is
negative, you are going backwards through the browser history. If the number is positive you are going
forward (think of it as the difference between the Back and Forward buttons).

So, to go back one page, the following code can be used:

window.history.go(-1);

Of course, the reference to the window object isn’t necessary, so this will do:

history.go(-1);

Most often, this is used to create a custom “Back” button embedded in a Web page, such as:

Back to the previous page

To go forward one page, just use a positive one:

history.go(1);

Alternatively, you can use the back() and forward() methods to accomplish the same thing:

//go back one
history.back();

//go forward one
history.forward();

These may be a little more meaningful because they accurately reflect the behavior of the browser Back
and Forward buttons.

So which method should you use? It’s really depends on the use case. To wait a cer-
tain amount of time before executing a certain set of code, use timeouts. If, however,
you need some code to be executed repeatedly, then use intervals.

148

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 148

Although it’s not possible to see the URLs in the browser history, you can see how many pages are in it
by using the length property:

alert(“There are currently “ + history.length + “ pages in history.”);

This capability is helpful if you want to go back or forward by more than one page and want to know if
that is possible.

The document object
The document object is actually a property of the window object, but as you learned earlier, any property
or method of the window object may be accessed directly, so this line of code will return “true”:

alert(window.document == document);

It is also unique in that it is the only object that belongs to both the BOM and the DOM (the document as
it relates to the DOM is discussed in the next chapter). From the BOM perspective, the document object
is made up of a series of collections that access various parts of the document as well as give information
about the page itself. Once again, because the BOM has no standards guiding implementations, each
browser tends to have slightly different implementations for document; this section focuses on the most
common functionality.

The following table lists some of the common properties for the BOM document object:

Property Description

alinkColor The color for active links as defined by <body alink=”color”>*

bgColor The color for the page background as defined by <body
bgcolor=”color”>*

fgColor The color for text as defined by <body text=”color”>*

lastModified The date the page was last modified as a string

linkColor The color for links as defined by <body link=”color”>*

referrer The URL one position back in the browser history

title The text displayed in the <title/> tag

URL The URL of the currently loaded page

vlinkColor The color for visited links as defined by <body vlink=”color”>*

*These properties are deprecated because they refer to old HTML attributes of the <body/> tag. Style sheet
scripting should be used instead.

The lastModified property retrieves a string representing the date that the page was last modified,
which is of marginal use unless you want to display the last modified date on a home page (which can
also be done using server-side technology). Likewise, the referrer property isn’t very useful unless

149

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 149

you want to track where users are coming from (perhaps to see if someone visited your site via Google
or another search engine). But again, this can also be handled server-side.

The title property is read/write, so you can change the title of your page at any time regardless of
what the HTML contains. This is particularly useful when a site uses a frameset and only one frame is
changing while the overall frameset remains unchanged. Using this property, you can change the title
(which is displayed in the overall browser title bar) to reflect the new page loaded into the frame:

top.document.title = “New page title”;

The URL property is also read/write, so you can use it to retrieve the URL of the current page, or you can
set it to a new URL, which causes the window to navigate there. For example:

document.URL = “http://www.wrox.com/”;

As mentioned previously, the document object also has a number of collections providing access to vari-
ous parts of the loaded page. These collections are outlined in the following table:

Collection Description

anchors Collection of all anchors in the page (represented by)

applets Collection of all applets in the page

embeds Collection of all embedded objects in the page (represented by the
<embed/> tag)

forms Collection of all forms in the page

images Collection of all images in the page

links Collection of all links in the page (represented by <a href=
”somewhere.htm”>)

Similar to the window.frames collection, each of the document collections is indexed both by number
and by name, meaning that you can access an image by document.images[0] or document.images
[“image_name”]. Consider the following HTML page:

<html>
<head>

<title>Document Example</title>
</head>
<body>

<p>Welcome to my home away from home.</p>

<form method=”post” action=”submit.cgi” name=”frmSubscribe”>

<input type=”text” name=”txtEmail” />
<input type=”submit” value=”Subscribe” />

</form>
</body>

</html>

150

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 150

Here are the ways to access various parts of this document:

❑ To access the link, refer to document.links[0].

❑ To access the image, refer to document.images[0] or document.images[“imgHome”].

❑ To access the form, refer to document.forms[0] or document.forms[“frmSubscribe”].

Additionally, all the attributes of links, images, and so on all become properties of the objects. For exam-
ple, document.images[0].src is the code to get the src attribute of the first image.

Finally, several methods exist on the BOM document object. One of the most often used is the write()
method or its sibling writeln(). Each of these methods accepts one argument, which is a string to write
to the document. The only difference is, as you might expect, writeln() adds a new line (\n) character
at the end of the string.

Both methods insert the string content in the location where it is called. The browser then treats the doc-
ument as if the string were part of the normal HTML in the page. Consider the following short page:

<html>
<head>

<title>Document Write Example</title>
</head>
<body>

<h1><script type=”text/javascript”>document.write(“this is a
test”)</script></h1>

</body>
</html>

The page is displayed in the browser as if it were the following:

<html>
<head>

<title>Document Write Example</title>
</head>
<body>

<h1>this is a test</h1>
</body>

</html>

You can use this functionality to dynamically include external JavaScript files as well. For example:

<html>
<head>

<title>Document Example</title>
<script type=”text/javascript”>

document.write(“<script type=\”text/javascript\” src=\”external.js\”>”
+ “</scr” + “ipt>”);

</script>
</head>
<body>

</body>
</html>

151

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 151

This code writes a <script/> tag to the page, which causes the browser to load the external JavaScript
file as it would normally. Note that the string “</script>” is split into two parts (“</scr” and
“ipt>”). This is necessary because anytime the browser sees </script>, it assumes that the code block
is complete (even if it occurs inside of a JavaScript string). Suppose the previous example were written
without breaking up the “</script>” string:

<html>
<head>

<title>Document Example</title>
<script type=”text/javascript”>

document.write(“<script type=\”text/javascript\” src=\”external.js\”>”
+ “</script>”); //this will cause a problem

</script>
</head>
<body>

</body>
</html>

The browser views this page as:

<html>
<head>

<title>Document Example</title>
<script type=”text/javascript”>

document.write(“<script type=\”text/javascript\” src=\”external.js\”>”
</script>
</script>

</head>
<body>

</body>
</html>

As you can see, forgetting to split up the “</script>” string causes major confusion. First, there is a
syntax error inside of the <script/> tag because the document.write() call is missing its closing
parenthesis. Second, there are two </script> tags. This is why you must always break up the
“</script>” string when writing <script/> tags to the page using document.write().

Related closely to write() and writeln() are the open() and close() methods. The open() method
is used to open an already loaded document for writing; the close() method is used to close a docu-
ment opened with open(), essentially telling it to render everything that was written to it. This combi-
nation of methods is typically used to write to either a frame or a newly opened window, such as the
following:

Remember that both write() and writeln() must be called before the page has
been fully loaded in order to insert the content properly. If either method is called
after the page is loaded, it erases the page and displays the content specified.

152

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 152

var oNewWin = window.open(“about:blank”, “newwindow”,
“height=150,width=300,top=10,left=10,resizable=yes”);

oNewWin.document.open();
oNewWin.document.write(“<html><head><title>New Window</title></head>”);
oNewWin.document.write(“<body>This is a new window!</body></html>”);
oNewWin.document.close();

This example opens a blank page (using the native “about:blank” URL) and then writes a new page to
it. To do this appropriately, the open() method is called before the using write(). After the writing is
complete, close() is called to complete the rendering. This technique is useful when you want to dis-
play a page without going back to the server.

The location object
One of the most useful objects in the BOM is location, which is a property of both window and docu-
ment (this is where a lack of standards leads to some real confusion). The location object represents
the URL loaded in a window and, as an added bonus, it also parses the URL into various segments:

❑ hash — If the URL contains a pound sign (#), this returns the content after it (for example,
http://www.somewhere.com/index#section1 has a hash equal to “#section1”).

❑ host — The name of the server (for example, www.wrox.com)

❑ hostname — Most often equal to host, this sometimes eliminates the www. from the front.

❑ href — The full URL of the currently loaded page

❑ pathname — Everything after the host in the URL. For example, the pathname for
http://www.somewhere.com/pictures/index.htm is “/pictures/index.htm”.

❑ port — The port of the request if specified in the URL. By default, most URLs don’t include
the port as part of the URL so this property is typically blank. If a URL is used such as
http://www.somewhere.com:8080/index.htm, the port is equal to 8080.

❑ protocol — The protocol used in the URL. This is everything before the two forward slashes
(//) in the URL. For example, the protocol for http://www.wrox.com is http: and the
protocol for ftp://www.wrox.com is ftp:.

❑ search — Otherwise known as the query string, this is everything after a question mark (?)
in a URL performing a GET request. For example, the search for http://www.somewhere
.com/search.htm?term=javascript is ?term=javascript.

The location.href property is used most often to either get or set the URL of the window (in this
regard, it is similar to document.URL). You can navigate to a new page just by changing its value:

location.href = “http://www.wrox.com/”;

When navigating this way, the new location is added to the history stack after the previous page, mean-
ing that the Back button goes to the page that made this call.

153

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 153

The method assign() accomplishes the same thing:

location.assign(“http://www.wrox.com”);

Either way is fine, but most developers use location.href because it more accurately represents the
intent of the code.

If you don’t want the page containing the script to be accessible in the browser history, you can use the
replace() method. This method does the same thing as assign(), but it takes the extra step of remov-
ing the page containing the script from history, making it inaccessible using the browser Back and
Forward buttons. Try it for yourself:

<html>
<head>

<title>You won’t be able to get back here</title>
</head>
<body>

<p>Enjoy this page for a second, because you won’t be coming back here.</p>
<script type=”text/javascript”>

setTimeout(function () {
location.replace(“http://www.wrox.com/”);

}, 1000);
</script>

</body>
</html>

Load this page in your browser, wait for it to navigate to the new page, and then try hitting the Back
button.

The location object also has a method called reload() that reloads the current page. The two modes for
reload() reload from the browser cache or reload from the server. Which of these two modes is used
depends on the value of one argument: false to load from cache; true to load from the server (if the
argument is omitted, it is considered false).

So, to reload from the server, you use this code:

location.reload(true);

To reload from the cache, you can use either of these lines:

location.reload(false);
location.reload();

The final method of the location object is toString(), which simply returns the value of
location.href. Therefore, the following two lines of code are equal:

Any code located after a reload() call may or may not be executed, depending on
factors such as network latency and system resources. For this reason, it is best to
have reload() as the last line of code.

154

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 154

alert(location);
alert(location.href);

The navigator object
The navigator object is one of the earliest implemented BOM objects, introduced in Netscape
Navigator 2.0 and Internet Explorer 3.0. It contains a significant amount of information about the
Web browser. It is also a property of the window object, and as such, can be referenced either as
window.navigator or just navigator.

Although Microsoft originally objected to the term navigator as being specific to Netscape’s browser,
the navigator object has become a sort of de facto standard for providing information about a Web
browser. (Microsoft does have its own object called clientInformation in addition to the navigator
object, but both provide the exact same data.)

Once again, the lack of standards rears its ugly head with the navigator object because each browser
decides what properties and methods to support. The following table lists the most popular properties
and methods and also which of the four most popular browsers — Internet Explorer, Mozilla, Opera,
and Safari — support them.

Property/Method Description IE Moz Op Saf

appCodeName String representing code name of the browser X X X X
(typically “Mozilla”)

appName String representing official browser name X X X X

appMinorVersion String representing extra version information X – – –

appVersion String representing the browser version X X X X

browserLanguage* String representing the language of the browser X – X –
or operating system

cookieEnabled Boolean indicating if cookies are enabled X X X –

cpuClass String representing the CPU class (“x86”, X – – –
“68K”, “Alpha”, “PPC”, or “Other”)

javaEnabled() Boolean indicating if Java is enabled X X X X

language String representing language of the browser – X X X

mimeTypes Array of mimetypes registered with the browser – X X X

Table continued on following page

Throughout this section, the location object has been used in the examples.
Remember, the location object is a property of both window and document, so
window.location and document.location are equal to each other and can be used
interchangeably.

155

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 155

Property/Method Description IE Moz Op Saf

onLine Boolean indicating if the browser is attached X – – –
to the Internet

oscpu String representing the operating system or the CPU – X – –

platform String representing the computer platform that X X X X
the browser is running on

plugins Array of plugins installed in the browser X X X X

preference() Function used to set browser preferences – X X –

product String representing the name of the product – X – X
(typically “Gecko”)

productSub String representing extra information about – X – X
the product (typically the Gecko version)

opsProfile – – – –

securityPolicy – X – –

systemLanguage* String representing the operating system’s language X – – –

taintEnabled() Boolean indicating if data tainting is enabled X X X X

userAgent String representing the user-agent header string X X X X

userLanguage* String representing the operating system’s language X – – –

userProfile Object allowing access to the browser user profile X – – –

vendor String representing the name of the branded – X – X
browser (typically “Netscape6” or “Netscape”)

vendorSub String representing extra information for the – X – X
branded browser (typically the version of Netscape)

* Most of the time, browserLanguage, systemLanguage, and userLanguage are the same.

The navigator object is extremely helpful in determining what browser is being used to view a page.
A quick search of the Internet reveals any number of methodologies for browser detection, all of which
make extensive use of navigator. Browser and operating-system detection using the navigator object
is discussed in greater detail in Chapter 9.

The screen object
Although most information about the user’s system is hidden for security reasons, it is possible to get a
certain amount of information about the user’s monitor using the screen object (which, you may have
already guessed, is a property of window as well).

156

Chapter 5

08_579088 ch05.qxd 3/28/05 11:37 AM Page 156

The screen object typically contains the following properties (although, as usual, many browsers add
their own properties):

❑ availHeight — the height of the screen (in pixels) available for use by windows. This takes
into account the space needed by operating system elements such as the Windows taskbar.

❑ availWidth — the width of the screen (in pixels) available for use by windows

❑ colorDepth — the number of bits used to represent colors. For most systems, this is 32.

❑ height — the height of the screen in pixels

❑ width — the width of the screen in pixels

The availHeight and availWidth properties are useful when determining the new size for a window.
For example, to fill up the user’s screen, you could use this code:

window.moveTo(0, 0);
window.resizeTo(screen.availWidth, screen.availHeight);

Besides that, most of this data is used in conjunction with site traffic tools to determine the graphical
capabilities of users.

Summary
This chapter introduced using JavaScript inside of Web browsers. It covered how to include JavaScript
code in both HTML and SVG pages, explaining the differences between the two. It also discussed how
XHTML has changed how JavaScript is included in HTML pages and the best way to prepare for the
future in this regard.

Later in the chapter, you learned about the Browser Object Model and the various objects it supplies.
You learned that the window object is the center of the JavaScript universe, and all the other BOM objects
are actually just properties of window.

The chapter explained how to manipulate browser windows and frames, moving and resizing them
using JavaScript. Using the location object, you learned how to access and alter a window’s location
and, using the history object, how to go back and forward to pages the user has already visited.

Finally, you learned how to retrieve information about a user’s Web browser and screen by using the
navigator and screen objects.

157

JavaScript in the Browser

08_579088 ch05.qxd 3/28/05 11:37 AM Page 157

08_579088 ch05.qxd 3/28/05 11:37 AM Page 158

DOM Basics

The Document Object Model (DOM) is perhaps the single greatest innovation on the Web since
HTML was first used to connect related documents together over the Internet. The DOM gives
developers unprecedented access to HTML, enabling them to manipulate and view HTML as an
XML document. The DOM represents the evolution of Dynamic HTML, pioneered by Microsoft
and Netscape, into a true cross-platform, language-independent solution.

What Is the DOM?
Before I discuss exactly what the DOM is, you should know what led to its creation. Although the
DOM was heavily influenced by the rise of Dynamic HTML in browsers, the W3C took a step
backward and first applied it to XML.

Introduction to XML
The eXtensible Markup Language (XML) was derived from an earlier language called Standard
Generalized Markup Language (SGML). SGML’s main purpose was to define the syntax of
markup languages to represent data using tags.

Tags consist of text enclosed between a less-than symbol (<) and a greater-than symbol (>), as in
<tag>. Start tags begin a particular area, such as <start>; end tags define the end of an area. They
look the same as start tags but have a forward slash (/) immediately following the less-than sym-
bol, as in </end>. SGML also defines attributes for tags, which are values assigned inside of the
less-than and greater-than symbols, such as the src attribute in . If
this looks familiar, it should; the most famous implementation of an SGML-based language is the
original HTML.

09_579088 ch06.qxd 3/28/05 11:37 AM Page 159

SGML was used to define the Document Type Definition (DTD) for HTML, and it is still used to write
DTDs for XML. The problem with SGML is its allowances for odd syntax, which makes creating parsers
for HTML a difficult problem:

❑ Some start tags specifically disallow end tags, such as the HTML . Including an end tag
causes an error.

❑ Some start tags have optional or implied end tags, such as the HTML <p>, which assumes a
closing tag when it meets another <p> or several other tags.

❑ Some start tags require end tags, such as the HTML <script>.

❑ Tags can be embedded in any order. For instance, This is a <i> sample
string</i> is okay even though the end tags don’t occur in reverse order of the start tags.

❑ Some attributes require values, such as src in .

❑ Some attributes don’t require values, such as nowrap in <td nowrap>.

❑ Attribute can be defined with or without quotation marks surrounding them, so and are both allowed.

All these issues make creating SGML language parsers a truly arduous task. The difficultly of knowing
when to apply the rules caused a stagnation in the definition of SGML languages. This is where XML
begins to fit in.

XML does away with all the optional syntax of SGML that caused so many developers heartache early
on. In XML, the following rules apply:

❑ Every start tag must have end tag.

❑ An optional shorthand syntax represents both the start and end tags in one. This syntax uses a
forward slash (/) immediately before the greater-than symbol, such as <tag />. An XML parser
interprets this as being equal to <tag></tag>.

❑ Tags must be embedded in an appropriate order, so end tags must mirror start tags, such as
this is a <i>sample</i> string. It helps to think of start and end tags as similar
to open and close parentheses in math: You cannot close the outermost parenthesis without first
closing all the inner ones.

❑ All attributes require values.

❑ All attributes must use quotes around the values.

These rules make an XML parser much simpler to develop and also remove the guesswork of when and
where to apply odd syntax rules. Where SGML failed to gain mainstream acceptance, XML has made
tremendous inroads because of its simplicity. XML has spawned several languages in just the first six
years of its existence, including MathML, SVG, RDF, RSS, SOAP, XSLT, XSL-FO, and the reformulation
of HTML into XHTML.

For a technical comparison of SGML and XML, please see the W3C’s note located at http://
www.w3.org/TR/NOTE-sgml-xml.html.

160

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 160

Today XML is one of the fastest-growing technologies in the world. Its main purpose is to represent data
in a structured way using plain text. In some ways, XML files are not unlike databases, which also repre-
sent a structured view of data. Here is an example XML file:

<?xml version=”1.0”?>
<books>

<!-- begin the list of books -->
<book isbn=”0764543555”>

<title>Professional JavaScript for Web Developers</title>
<author>Nicholas C. Zakas</author>
<desc><![CDATA[

Professional JavaScript for Web Developers brings you up to speed on the latest
innovations in the world of JavaScript. This book provides you with the details of
JavaScript implementations in Web browsers and introduces the new capabilities
relating to recently-developed technologies such as XML and Web Services.

]]></desc>
</book>
<?page render multiple authors ?>
<book isbn=”0764570773”>

<title>Beginning XML, 3rd Edition</title>
<author>David Hunter</author>
<author>Andrew Watt</author>
<author>Jeff Rafter</author>
<author>Jon Duckett</author>
<author>Danny Ayers</author>
<author>Nicholas Chase</author>
<author>Joe Fawcett</author>
<author>Tom Gaven</author>
<author>Bill Patterson</author>
<desc><![CDATA[

Beginning XML, 3rd Edition, like the first two editions, begins with a broad
overview of the technology and then focuses on specific facets of the various
specifications for the reader. This book teaches you all you need to know about XML:
what it is, how it works, what technologies surround it, and how it can best be used
in a variety of situations, from simple data transfer to using XML in your Web
pages. It builds on the strengths of the first and second editions, and provides new
material to reflect the changes in the XML landscape - notably RSS and SVG.

]]></desc>
</book>
<book isbn=”0764543555”>

<title>Professional XML Development with Apache Tools</title>
<author>Theodore W. Leung</author>
<desc><![CDATA[

If you’re a Java programmer working with XML, you probably already use some of the
tools developed by the Apache Software Foundation. This book is a code-intensive
guide to the Apache XML tools that are most relevant for Java developers, including
Xerces, Xalan, FOP, Cocoon, Axis, and Xindice.

]]></desc>
</book>””””””””

</books>

161

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 161

Every XML document begins with the XML prolog, which is the first line in the previous code, <?xml
version=”1.0”?>. This line alone tells parsers and browsers that this file should be parsed based on
the XML rules discussed earlier. The second line, <books>, is the document element, which is the outer-
most start tag in the file (an element is considered the contents of a start tag and end tag). All other tags
must be contained within this one in order to constitute a valid XML file. The second line of the XML
file need not always contain the document element; it can come later if comments or other (???)

The third line in this sample file is a comment, which you may recognize as the same style comment
used in HTML. This is one of the syntax elements XML inherited from SGML.

A little bit farther down the page you find a <desc> tag with some special syntax inside it. The <![CDATA[
]]> code is used to indicate text that should not be parsed, allowing special characters such as less-than
and greater-than to be included without fear of breaking the XML syntax. The text must appear between
<![CDATA[and]]> to be properly shielded from parsing. This is called a Character Data Section or CData
Section for short.

The following line is just before the second book definition:

<?page render multiple authors ?>

Even though this looks like the XML prolog, it is actually considered a different type of syntax called a
processing instruction. The purpose of processing instructions (or PIs for short) is to provide extra infor-
mation to programs that are processing the page, such as XML parsers. PIs are generally free form. Their
only requirement is that a letter must follow the first question mark. After that point, a PI can contain
any sequence of characters aside from the less-than or greater-than symbols.

The most common PI is used to specify a style sheet for an XML file:

<?xml-stylesheet type=”text/css”” href=”MyStyles.css” ?>

This PI is typically placed immediately after the XML prolog and is used by Web browsers to display the
XML data using particular styles.

If you’re interested in learning more about XML and its many uses, consider picking up Beginning
XML, 3rd Edition (Wiley Publishing, Inc., ISBN 0-7645-7077-3).

An API for XML
After XML was defined as a language, the need arose for a way to both represent and manipulate XML
code using common programming languages such as Java.

First came the Simple API for XML (SAX) project for Java. SAX provides an event-based API to parse
XML. Essentially, SAX parsers start out at the beginning of the file and parse their way through the code
in one straight pass, firing events every time it encounters a start tag, end tag, attribute, text, or other
XML syntax. It is up to the developer, then, to determine what to do when each of these events occurs.

SAX parsers are lightweight and fast because they just parse the text and continue on their way. Their
main downside is the inability to stop, go backward, or access a specific part of the XML structure with-
out starting from the beginning of the file.

162

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 162

The Document Object Model (DOM) is a tree-based API for XML. Its main focus isn’t just to parse XML
code, but rather to represent that code using a series of interlinked objects that can be modified and
accessed directly without reparsing the code.

Using the DOM, code is parsed once to create a tree model; sometimes a SAX parser is used to accom-
plish this. After that initial parse, the XML is fully represented in a DOM model, and the original code is
no longer needed. Although the DOM is slower than SAX and requires more overhead because it creates
so many objects, it is the method favored by Web browsers and JavaScript for its ease of use.

Hierarchy of nodes
So what exactly is a tree-based API? When talking about DOM trees (which are called documents), you
are really talking about a hierarchy of nodes. The DOM defines the Node interface as well as a large num-
ber of node types to represent the multiple aspects of XML code:

❑ Document — The very top-level node to which all other nodes are attached

❑ DocumentType — The object representation of a DTD reference using the syntax <!DOCTYPE >,
such as <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.0 Transitional//EN”>. It can-
not contain child nodes.

❑ DocumentFragment — Can be used like a Document to hold other nodes

❑ Element — Represents the contents of a start tag and end tag, such as <tag></tag> or
<tag/>. This node type is the only one that can contain attributes as well as child nodes.

❑ Attr — Represents an attribute name-value pair. This node type cannot have child nodes.

❑ Text — Represents plain text in an XML document contained within start and end tags or
inside of a CData Section. This node type cannot have child nodes.

❑ CDataSection — The object representation of <![CDATA[]]>. This node type can have only
text nodes as child nodes.

❑ Entity — Represents an entity definition in a DTD, such as <!ENTITY foo “foo”>. This
node type cannot have child nodes.

❑ EntityReference — Represents an entity reference, such as ". This node type cannot
have child nodes.

❑ ProcessingInstruction — Represents a PI. This node type cannot have child nodes.

❑ Comment — Represents an XML comment. This node type cannot have child nodes.

❑ Notation — Represents notation defined in a DTD. This is rarely used and so won’t be
included in this discussion.

Note that the DOM is a language-independent API, meaning that it is not tied to
Java, JavaScript, or any other language for implementation. For the purposes of this
book, however, I place most focus on the JavaScript implementation.

163

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 163

A document is made up of a hierarchy of any number of these nodes. Consider the following XML code:

<?xml version=”1.0”?>
<employees>

<!-- only employee -->
<employee>

<name>Michael Smith</name>
<position>Software Engineer</position>
<comments><![CDATA[

His birthday is on 8/14/68.
]]></comments>

</employee>””
</employees>

This code can be represented in a DOM document as displayed in Figure 6-1.

Figure 6-1

In Figure 6-1, each rectangle represents a node in the DOM document tree, with the bold text indicating
the node type and the nonbold text indicating the content of that node.

Both the comment and <employee/> nodes are considered to be child nodes of <employees/> because
they fall immediately underneath it in the tree. Likewise, <employees/> is considered the parent node
of the comment and <employee/> nodes.

Similarly, <name/>, <position/>, and <comments/> are all considered child nodes of <employee/>
and are also considered siblings of each other because they exist at the same level of the DOM tree and
have the same parent node.

DocumentDocument

Element Element employees

Comment Comment only employee Element Element employee

Element Element position Element Element commentsElement Element name

Text Text Software Engineer CDataSectionCDataSectionText Text Michael Smith

Text Text His birthday is on 8/14/68.

164

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 164

The <employees/> node is considered the ancestor of all nodes in this section of the tree, including its
children (the comment and <employee/>) as well as their children (<name/>, <position/>, and so on,
all the way down to the text node “His birthday is on 8/14/68”). The document node is consid-
ered the ancestor of all nodes in the document.

The Node interface defines 12 constants that map to the different node types (and are used by the
nodeType property discussed later):

❑ Node.ELEMENT_NODE (1)

❑ Node.ATTRIBUTE_NODE (2)

❑ Node.TEXT_NODE (3)

❑ Node.CDATA_SECTION_NODE (4)

❑ Node.ENTITY_REFERENCE_NODE (5)

❑ Node.ENTITY_NODE (6)

❑ Node.PROCESSING_INSTRUCTION_NODE (7)

❑ Node.COMMENT_NODE (8)

❑ Node.DOCUMENT_NODE (9)

❑ Node.DOCUMENT_TYPE_NODE (10)

❑ Node.DOCUMENT_FRAGMENT_NODE (11)

❑ Node.NOTATION_NODE (12)

The Node interface also defines a set of properties and methods that all node types contain. These prop-
erties and methods are listed out in the following table:

Property/Method Type/Return Type Description

nodeName String The name of the node; this is defined depending
on the type of node.

nodeValue String The value of the node; this is defined depending
on the type of node.

nodeType Number One of the node type constant values

ownerDocument Document Pointer to the document that this node belongs to

firstChild Node Pointer to the first node in the childNodes list

lastChild Node Pointer to the last node in the childNodes list

childNodes NodeList A list of all child nodes

previousSibling Node Pointer to the previous sibling; null if this is the
first sibling

Table continued on following page

165

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 165

Property/Method Type/Return Type Description

nextSibling Node Pointer to the next sibling; null if this is the last
sibling

hasChildNodes() Boolean Returns true when childNodes contains one or
more nodes

attributes NamedNodeMap Contains Attr objects representing an element’s
attributes; only used for Element nodes

appendChild(node) Node Adds node to the end of childNodes

removeChild(node) Node Removes node from childNodes

replaceChild Node Replaces oldnode in childNodes with
(newnode, oldnode) newnode

insertBefore Node Inserts newnode before refnode in
(newnode, refnode) childNodes

In addition to nodes, the DOM also defines some helper objects, which are used to work with nodes but
are not necessarily part of a DOM document:

❑ NodeList — an array of nodes indexed numerically; used to represent child nodes of an element

❑ NamedNodeMap — an array of nodes indexed both numerically and name; used to represent ele-
ment attributes

These helper objects provide additional access and traversal methods for dealing with DOM document.
Usage specifics are discussed later.

Language-Specific DOMs
Any XML-based language, such as XHTML and SVG, can make use of the core DOM just introduced
because they are technically XML. However, many languages go on to define their own DOMs that
extend the XML core to provide language-specific features.

Along with developing the XML DOM, the W3C concurrently developed a DOM more specific to
XHTML (and HTML). This DOM defines an HTMLDocument and HTMLElement as the basis for the imple-
mentation. Each HTML element is represented by its own HTMLElement type, such as HTMLDivElement
representing <div>, with the exception of a small subset of elements that don’t require special properties
or methods other than those provided by HTMLElement. Throughout the rest of the book, you are intro-
duced to various HTML DOM features as well as to the core XML DOM features.

Regular HTML is not valid XML; however, most modern Web browsers are forgiv-
ing and still parse an HTML document into a proper DOM document (even without
the XML prolog). However, it’s always best to use XHTML code when programming
Web pages to eliminate bad coding habits.

166

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 166

The W3C has also published language-specific DOMs defined for SVG (http://www.w3.org/TR/
SVG), SMIL Animation (http://www.w3.org/TR/smil-animation), and MathML (http://
www.w3.org/TR/MathML2).

DOM Support
As I said previously, not all browsers are at the same level of DOM support. Generally speaking, Mozilla
has the best DOM standards support, supporting almost all DOM Level 2 and parts of DOM Level 3.
Behind Mozilla, Opera and Safari have made significant inroads toward closing the support gap, sup-
porting almost all DOM Level 1 and most of DOM Level 2. Lagging behind the field is Internet Explorer,
whose incomplete implementation of DOM Level 1 leaves much to be desired.

Using the DOM
Even though the document object is considered part of the BOM, it is also is a representation of the HTML
DOM’s HTMLDocument object, which, in turn, is also an XML DOM Document object. Most DOM manipu-
lation in JavaScript makes use of the document object, so that’s a logical place to begin the discussion.

Accessing relative nodes
Consider the following HTML page for the next few sections:

<html>
<head>

<title>DOM Example</title>
</head>
<body>

<p>Hello World!</p>
<p>Isn’t this exciting?</p>
<p>You’re learning to use the DOM!</p>

</body>
</html>

To access the <html/> element (which you should realize is the document element of this file), you can
use the documentElement property of document:

var oHtml = document.documentElement;

Because of an incorrect DOM implementation, Internet Explorer 5.5 returns the
<body/> element for document.documentElement. Internet Explorer 6.0 fixes
this problem.

167

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 167

The variable oHtml now contains an HTMLElement object representing <html/>. If you want to get the
<head/> and <body/> elements using oHtml, this works:

var oHead = oHtml.firstChild;
var oBody = oHtml.lastChild;

You can also use the childNodes property to accomplish the same thing. Just pretend that it’s a regular
JavaScript Array and use square-bracket notation:

var oHead = oHtml.childNodes[0];
var oBody = oHtml.childNodes[1];

You can also get the number of child nodes by using the childNodes.length property:

alert(oHtml.childNodes.length); //outputs “2”

Note that the square-bracket notation is a convenient implementation of the NodeList in JavaScript. The
formal method of retrieving child nodes from the childNodes list is the item() method:

var oHead = oHtml.childNodes.item(0);
var oBody = oHtml.childNodes.item(1);

The HTML DOM also defines document.body as a pointer to the <body /> element:

var oBody = document.body;

With the three variables oHtml, oHead, and oBody, you can play around to determine their relationship
to one another:

alert(oHead.parentNode == oHtml); //outputs “true”
alert(oBody.parentNode == oHtml); //outputs “true”
alert(oBody.previousSibling == oHead); //outputs “true”
alert(oHead.nextSibling == oBody); //outputs “true”
alert(oHead.ownerDocument == document); //outputs “true”

This little snippet of code tests to make sure that the parentNode property of both oBody and oHead
point to oHtml, as well as uses the previousSibling and nextSibling properties to establish their
relationship to one another. The last line assures that the ownerDocument property of oHead actually
does point back to the document.

There is some discrepancy among browsers regarding what is and isn’t a Text node.
Some browsers, such as Mozilla, consider any white space between elements a Text
node; whereas others, such as Internet Explorer, ignore the white space altogether.
Because it’s hard to determine which white space to consider as a Text node using
the Mozilla method, this book uses the Internet Explorer method.

168

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 168

Checking the node type
You can check the type of node by using the nodeType property:

alert(document.nodeType); //outputs “9”
alert(document.documentElement.nodeType); //outputs “1”

In this example, document.nodeType returns 9, which is equal to Node.DOCUMENT_NODE, and docu-
ment.documentElement.nodeType returns 1, which is equal to Node.ELEMENT_NODE.

You can also match up these values with the Node constants:

alert(document.nodeType == Node.DOCUMENT_NODE); //outputs “true”
alert(document.documentElement.nodeType == Node.ELEMENT_NODE); //outputs “true”

This code works in Mozilla 1.0+, Opera 7.0+, and Safari 1.0+. Unfortunately, Internet Explorer doesn’t
support these constant values, so this code causes an error. You can remedy the situation by defining
your own constants that match the node type constants, such as the following:

if (typeof Node == “undefined”) {
var Node = {

ELEMENT_NODE: 1,
ATTRIBUTE_NODE: 2,
TEXT_NODE: 3,
CDATA_SECTION_NODE: 4,
ENTITY_REFERENCE_NODE: 5,
ENTITY_NODE: 6,
PROCESSING_INSTRUCTION_NODE: 7,
COMMENT_NODE: 8,
DOCUMENT_NODE: 9,
DOCUMENT_TYPE_NODE: 10,
DOCUMENT_FRAGMENT_NODE: 11,
NOTATION_NODE: 12

}
}

The other option is to use the integer literals (although this may get confusing because not many people
have memorized the node type values).

Dealing with attributes
As mentioned previously, only Element nodes have attributes even though the Node interface has an
attributes method that is inherited by all node types. The attributes property for an Element node is
a NamedNodeMap, which provides several methods for accessing and manipulating its contents:

❑ getNamedItem(name) — returns the node whose nodeName property is equal to name

❑ removeNamedItem(name) — removes the node whose nodeName property is equal to name
from the list

❑ setNamedItem(node) — adds the node into the list, indexing it by its nodeName property

❑ item(pos) — just like NodeList, returns the node in the numerical position pos

169

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 169

The NamedNodeMap object also has a length property to indicate the number of nodes it contains.

When used to represent attributes, each node in the NamedNodeMap is an Attr node, whose nodeName
property is set to the attribute name. The nodeValue property is set to the attribute value. For example,
suppose you had this element:

<p style=”color: red” id=”p1”>Hello world!</p>

Also, suppose that the variable oP that contains a reference to this element. You can access the value of
the id attribute like this:

var sId = oP.attributes.getNamedItem(“id”).nodeValue;

Of course, you could access this id attribute numerically, which is a little less intuitive:

var sId = oP.attributes.item(1).nodeValue;

You can change the id attribute by setting a new value to the nodeValue property:

oP.attributes.getNamedItem(“id”).nodeValue = “newId”;

Attr nodes also have a value property that is exactly equal (and kept in sync with) the nodeValue
property, as well as a name property that is kept in sync with nodeName. You use any of these properties
to modify or change the attributes.

Because this method is a little bit cumbersome, the DOM also defines three element methods to aid in
the assignment of attributes:

❑ getAttribute(name) — same as attributes.getNamedItem(name).value

❑ setAttribute(name, newvalue) — same as attributes.getNamedItem(name).value =
newvalue

❑ removeAttribute(name) — same as attributes.removeNamedItem(name)

These methods are helpful in that they deal directly with the attribute values, completely hiding the
Attr nodes. So, to retrieve the id attribute of the <p /> used earlier, you can just do this:

var sId = oP.getAttribute(“id”);

And to change the ID, you can do this:

oP.setAttribute(“id”, “newId”);

As you can see, these methods are much less verbose than using the NamedNodeMap methods.

Keep in mind that each of these methods returns an Attr node, not the value of the
attribute.

170

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 170

Accessing specific nodes
You already know how to access parent and child nodes, but what if you want access to a node (or
group of nodes) that are located deep in the document? Certainly, you don’t want to count child nodes
until you get down to what you’re looking for. To help you in this use case, the DOM provides several
methods to enable easy access to specific nodes.

getElementsByTagName()
The Core (XML) DOM defines the method getElementsByTagName()to return a NodeList of all
Element objects whose tagName property is equal to a specific value. In an Element object, the
tagName property is always equal to the name immediately following the less-than symbol — for
example, the tagName of is “img”. The following line of code returns a list of all
elements in a document:

var oImgs = document.getElementsByTagName(“img”);

After storing all of the images in oImgs, you can access them individually in the same way that you access
child nodes, by using either square-bracket notation or the item() method (getElementsByTagName()
returns a NodeList, just like childNodes):

alert(oImgs[0].tagName); //outputs “IMG”

This line of code outputs the tagName of the first image, which is output as “IMG”. For some reason,
most browsers still record the tag name as all uppercase even though XHTML conventions dictate that
tag names must be all lowercase.

But suppose you want to get only the images within the first paragraph of a page. This can be accom-
plished by calling getElementsByTagName() on the first paragraph element, like this:

var oPs = document.getElementsByTagname(“p”);
var oImgsInP = oPs[0].getElementsByTagName(“img”);

You can use this one method to get down to any element in the document or to get all elements in the
document by using an asterisk:

var oAllElements = document.getElementsByTagName(“*”);

This line of code returns all the elements contained in document regardless of their tag names.

getElementsByName()
The HTML DOM defines getElementsByName() to retrieve all elements that have their name attribute
set to a specific value. Consider the following HTML:

Internet Explorer 6.0 doesn’t return all elements when the argument is an asterisk.
You must use document.all instead.

171

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 171

<html>
<head>

<title>DOM Example</title>
</head>
<body>

<form method=”post” action=”dosomething.cgi”>
<fieldset>

<legend>What color do you like?</legend>
<input type=”radio” name=”radColor” value=”red” /> Red

<input type=”radio” name=”radColor” value=”green” /> Green

<input type=”radio” name=”radColor” value=”blue” /> Blue

</fieldset>
<input type=”submit” value=”Submit” />

</form>
</body>

</html>

This page asks the user which color he/she likes. The radio buttons all have the same name, because you
only want to return one value for this field, which is the value attribute of the selected radio button. To
get references to all the radio button elements, you can use the following code:

var oRadios = document.getElementsByName(“radColor”);

You can then manipulate the radio buttons the same way as you can any other element:

alert(oRadios[0].getAttribute(“value”)); //outputs “red”

getElementById()
The second method defined by the HTML DOM is getElementById(), which returns an element with
its id attribute set to a specific value. In HTML, the id attribute is unique — meaning that no two ele-
ments can share the same id. This is undoubtedly the fastest method of retrieving a single specific ele-
ment from the document tree.

Suppose you have the following HTML page:

<html>
<head>

<title>DOM Example</title>
</head>
<body>

<p>Hello World!</p>
<div id=”div1”>This is my first layer</div>

</body>
</html>

Internet Explorer 6.0 and Opera 7.5 have a couple of bugs when using this method.
First, they also return elements that have an id equal to the given name. Second,
they only check <input/> and elements.

172

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 172

To access the <div /> element with the ID “div1”, you can use the getElementsByTagName() like this:

var oDivs = document.getElementsByTagName(“div”);
var oDiv1 = null;
for (var i=0; i < oDivs.length; i++){

if (oDivs[i].getAttribute(“id”) == “div1”) {
oDiv1 = oDivs[i];
break;

}
}

Or, you could use getElementById() like this:

var oDiv1 = document.getElementById(“div1”);

As you can see, this is a much more streamlined way to get a reference to a specific element.

Creating and manipulating nodes
So far, you’ve learned how to access various nodes inside of a document, but that’s just the beginning of
what can be done using the DOM. You can also add, remove, replace, and otherwise manipulate nodes
within a DOM document. This functionality is what makes the DOM truly dynamic.

Creating new nodes
The DOM Document has a number of methods designed to create various types of nodes, even though
the browser document object doesn’t necessarily support each of these methods in all browsers. The fol-
lowing table lists the methods included in DOM Level 1 and which browsers support each one.

Method Description IE MOZ OP SAF

createAttribute Creates an attribute node with X X X –
(name) the given name

createCDATASection Creates a CDATA Section with a – X – –
(text) text child node containing tex

createComment Creates a comment node X X X X
(text) containing text

createDocument Creates a document fragment X X X X
Fragment() node

createElement Creates an element with a tag X X X X
(tagname) name of tagname

Table continued on following page

Internet Explorer 6.0 also returns an element if the given ID matches the name
attribute of an element. This is a bug, and one that you should be very careful of.

173

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 173

Method Description IE MOZ OP SAF

createEntity Creates an entity reference node – X – –
Reference(name) with the given name

createProcessing Creates a PI node with the – X – –
Instruction(target, given target and data
data)

createTextNode(text) Creates a text node containing text X X X X

IE = Internet Explorer 6 for Windows, MOZ = Mozilla 1.5 for all platforms, OP = Opera 7.5 for all platforms,
SAF = Safari 1.2 for MacOS.

The most commonly used methods are createDocumentFragment(), createElement(), and
createTextNode(); the other methods are either not useful (createComment()) or not supported by
enough browsers to be useful at this point in time.

createElement(), createTextNode(), appendChild()
Suppose you have the following HTML page:

<html>
<head>

<title>createElement() Example</title>
</head>
<body>

</body>
</html>

To this page, you want to add the following code using the DOM:

<p>Hello World!</p>

The createElement() and createTextNode() methods can be used to accomplish this. Here’s how.

The first thing to do is create the <p/> element:

var oP = document.createElement(“p”);

Second, create the text node:

var oText = document.createTextNode(“Hello World!”);

Next you need to add the text node to the element. To do this, you can use the appendChild() method,
which was briefly mentioned earlier in the chapter. The appendChild() method exists on every node
type and is used to add a given node to the end of another’s childNodes list. In this case, the text node
should be added to the <p /> element:

oP.appendChild(oText);

174

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 174

You’re not done quite yet. You have created the element and text node and attached them to each other,
but the element still doesn’t have a spot in the document. To actually be visible, the element must be
attached either to the document.body element or one of its children. Once again, you can use the
appendChild() method for this:

document.body.appendChild(oP);

To put all this into a sample you can run, just create a function containing each of these steps and call it
when the page is loaded by using the onload event handler (events will be covered in more detail in the
Chapter 9, “All About Events”):

<html>
<head>

<title>createElement() Example</title>
<script type=”text/javascript”>

function createMessage() {
var oP = document.createElement(“p”);
var oText = document.createTextNode(“Hello World! “);
oP.appendChild(oText);
document.body.appendChild(oP);

}
</script>

</head>
<body onload=”createMessage()”>

</body>
</html>

When you run this code, the message “Hello World!” is displayed as if it were part of the HTML doc-
ument all along.

removeChild(), replaceChild(), and insertBefore()
Naturally, if you can add a node you can also remove a node, which is where the removeChild()
method comes in. This method accepts one argument, the node to remove, and then returns that node as
the function value. So if, for instance, you start out with a page already containing the “Hello World!”
message and you wanted to remove it, you can use the method like this:

<html>
<head>

<title>removeChild() Example</title>
<script type=”text/javascript”>

function removeMessage() {
var oP = document.body.getElementsByTagName(“p”)[0];

At this point, it’s prudent to point out that all DOM manipulation must occur after
the page has fully loaded. It isn’t possible to insert code while a page is loading to
work with the DOM because the DOM tree isn’t fully constructed until the page has
been completely downloaded to the client machine. For this reason, all code must be
executed using the onload event handler.

175

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 175

document.body.removeChild(oP);
}

</script>
</head>
<body onload=”removeMessage()”>

<p>Hello World!</p>
</body>

</html>

When this page is loaded, it displays a blank screen because the message is removed even before you
have a chance to see it. Although this works, it’s always better to use a node’s parentNode property to
make sure you are accessing its real parent:

<html>
<head>

<title>removeChild() Example</title>
<script type=”text/javascript”>

function removeMessage() {
var oP = document.body.getElementsByTagName(“p”)[0];
oP.parentNode.removeChild(oP);

}
</script>

</head>
<body onload=”replaceMessage()”>

<p>Hello World!</p>
</body>

</html>

But what if you want to replace this message with a new one? In that case, you can use the
replaceChild() method.

The replaceChild() method takes two arguments: the node to add and the node to replace. In this
case, you create a new element with a new message and replace the <p /> element with the “Hello
World!” message.

<html>
<head>

<title>replaceChild() Example</title>
<script type=”text/javascript”>

function replaceMessage() {
var oNewP = document.createElement(“p”);
var oText = document.createTextNode(“Hello Universe! “);
oNewP.appendChild(oText);
var oOldP = document.body.getElementsByTagName(“p”)[0];
oOldP.parentNode.replaceChild(oNewP, oOldP);

}
</script>

</head>
<body onload=”replaceMessage()”>

<p>Hello World!</p>
</body>

</html>

176

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 176

This sample page replaces the message “Hello World!” with “Hello Universe!” Note that this code
still uses the parentNode property to ensure the correct parent is being manipulated.

Of course, you may want both messages to appear. If you want the new message to come after the old
message, use the appendChild() method:

<html>
<head>

<title>appendChild() Example</title>
<script type=”text/javascript”>

function appendMessage() {
var oNewP = document.createElement(“p”);
var oText = document.createTextNode(“Hello Universe! “);
oNewP.appendChild(oText);
document.body.appendChild(oNewP);

}
</script>

</head>
<body onload=”appendMessage()”>

<p>Hello World!</p>
</body>

</html>

If, however, you want the new message to come before the old, use the insertBefore() method. This
method accepts two arguments: the new node to add and the node that it should be inserted before. In
this example, the second argument is the <p /> element containing “Hello World!”:

<html>
<head>

<title>insertBefore() Example</title>
<script type=”text/javascript”>

function insertMessage() {
var oNewP = document.createElement(“p”);
var oText = document.createTextNode(“Hello Universe! “);
oNewP.appendChild(oText);
var oOldP = document.getElementsByTagName(“p”)[0];
document.body.insertBefore(oNewP, oOldP);

}
</script>

</head>
<body onload=”insertMessage()”>

<p>Hello World!</p>
</body>

</html>

createDocumentFragment()
As soon as you add nodes to document.body (or one of its ancestors), the page is updated to reflect the
changes. This is fine for a small number of changes, as in the previous examples. However, when a large
amount of data has to be added to the document, it can be a very slow process if it adds changes one-by-
one. To correct this situation, you can create a document fragment to which you attach all new nodes,
and then add the contents of the document fragment to the document.

177

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 177

Suppose you want to create ten new paragraphs. Using the methods you learned previously, you write
this code:

var arrText = [“first”, “second”, “third”, “fourth”, “fifth”, “sixth”, “seventh”,
“eighth”, “ninth”, “tenth”];

for (var i=0; i < arrText.length; i++) {
var oP = document.createElement(“p”);
var oText = document.createTextNode(arrText[i]);
oP.appendChild(oText);
document.body.appendChild(oP);}

This code works just fine, the problem is that it’s making ten calls to document.body.appendChild(),
which causes a refresh of the page each time. This is where the document fragment is useful:

var arrText = [“first”, “second”, “third”, “fourth”, “fifth”, “sixth”, “seventh”,
“eighth”, “ninth”, “tenth”];

var oFragment = document.createDocumentFragment();

for (var i=0; i < arrText.length; i++) {
var oP = document.createElement(“p”);
var oText = document.createTextNode(arrText[i]);
oP.appendChild(oText);
oFragment.appendChild(oP);

}

document.body.appendChild(oFragment);

In this code, each new <p /> element is added to the document fragment. Then, the fragment is passed
in as the argument to appendChild(). The call to appendChild() doesn’t actually append the docu-
ment fragment node itself to the <body /> element; instead, it just appends the fragment’s child nodes.
You can see the obvious performance gains: One call to document.body.appendChild() instead of 10
means only one screen refresh.

DOM HTML Features
The properties and methods of the Core DOM are generic, designed to work with every XML document
in every situation. The properties and methods of the HTML DOM are specific to HTML and make cer-
tain DOM manipulations easier. These include the capability to access attributes as properties in addi-
tion to element-specific properties and methods that can make common tasks, such as building tables,
much more straightforward.

Attributes as properties
For the most part, all attributes are included in HTML DOM elements as properties. For example, sup-
pose you had the following image element:

178

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 178

To get and set the src and border attributes using the Core DOM, you use the getAttribute() and
setAttribute() methods:

alert(oImg.getAttribute(“src”));
alert(oImg.getAttribute(“border”));
oImg.setAttribute(“src”, “mypicture2.jpg”);

oImg.setAttribute(“border”, “1”);

However, using the HTML DOM, you can get and set these values using properties with the same name:

alert(oImg.src);
alert(oImg.border);
oImg.src = “mypicture2.jpg”;
oImg.border = “1”;

The only instance where the attribute name isn’t the same as the property name is in the class attribute,
which specifies a CSS class to apply to an element, such as in the following:

<div class=”header”></div>

Because class is a reserved word in ECMAScript, it cannot be used as a variable, property, or function
name in JavaScript. Therefore, the property is className:

alert(oDiv.className);
oDiv.className = “footer”;

Using properties to modify attributes instead of getAttribute() and setAttribute() affords no real
advantages aside from decreasing the code’s size and making it a little bit easier to read.

Table methods
Suppose you want to create the following HTML table using the DOM:

<table border=”1” width=”100%”> <tbody>
<tr>

<td>Cell 1,1</td>
<td>Cell 2,1</td>

</tr>
<tr>

<td>Cell 1,2</td>
<td>Cell 2,2</td>

</tr>
</tbody>

</table>

Internet Explorer has a major problem with setAttribute(): When you use it,
changes aren’t always reflected correctly. If you are planning on supporting Internet
Explorer, it is best to use the attribute properties as often as possible.

179

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 179

If you want to accomplish this with the Core DOM methods, your code would look something like this:

//create the table
var oTable = document.createElement(“table”);
oTable.setAttribute(“border”, “1”);
oTable.setAttribute(“width”, “100%”);

//create the tbody
var oTBody = document.createElement(“tbody”);
oTable.appendChild(oTBody);

//create the first row
var oTR1 = document.createElement(“tr”);
oTBody.appendChild(oTR1);
var oTD11 = document.createElement(“td”);
oTD11.appendChild(document.createTextNode(“Cell 1,1”));
oTR1.appendChild(oTD11);
var oTD21 = document.createElement(“td”);
oTD21.appendChild(document.createTextNode(“Cell 2,1”));
oTR1.appendChild(oTD21);

//create the second row
var oTR2 = document.createElement(“tr”);
oTBody.appendChild(oTR2);
var oTD12 = document.createElement(“td”);
oTD12.appendChild(document.createTextNode(“Cell 1,2”));
oTR2.appendChild(oTD12);
var oTD22 = document.createElement(“td”);
oTD22.appendChild(document.createTextNode(“Cell 2,2”));
oTR2.appendChild(oTD22);
//add the table to the document body
document.body.appendChild(oTable);

This code is quite verbose and a little hard to follow. To facilitate building tables, the HTML DOM adds
several properties and methods to the <table/>, <tbody/>, and <tr/> elements.

The <table/> element adds the following:

❑ caption — pointer to the <caption/> element (if it exists)

❑ tBodies — collection of <tbody/> elements

❑ tFoot — pointer to the <tfoot/> element (if it exists)

❑ tHead — pointer to the <thead/> element (if it exists)

❑ rows — collection of all rows in the table

❑ createTHead() — creates a <thead/> element and places it into the table

❑ createTFoot() — creates a <tfoot/> element and places it into the table

❑ createCaption() — creates a <caption/> element and places it into the table

❑ deleteTHead() — deletes the <thead/> element

❑ deleteTFoot() — deletes the <tfoot/> element

180

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 180

❑ deleteCaption() — deletes the <caption/> element

❑ deleteRow(position) — deletes the row in the given position

❑ insertRow(position) — inserts a row in the given position in the rows collection

The <tbody/> element adds the following:

❑ rows — collection of rows in the <tbody/> element

❑ deleteRow(position) — deletes the row in the given position

❑ insertRow(position) — inserts a row in the given position in the rows collection

The <tr/> element adds the following:

❑ cells — collection of cells in the <tr/> element

❑ deleteCell(position) — deletes the cell in the given position

❑ insertCell(position) — inserts a cell in the given position in the cells collection

What does all of this mean? Essentially, it means that creating a table can be a lot less complicated if you
use these convenient properties and methods:

//create the table
var oTable = document.createElement(“table”);
oTable.setAttribute(“border”, “1”);
oTable.setAttribute(“width”, “100%”);

//create the tbody
var oTBody = document.createElement(“tbody”);
oTable.appendChild(oTBody);
//create the first row
oTBody.insertRow(0);
oTBody.rows[0].insertCell(0);
oTBody.rows[0].cells[0].appendChild(document.createTextNode(“Cell 1,1”));
oTBody.rows[0].insertCell(1);
oTBody.rows[0].cells[1].appendChild(document.createTextNode(“Cell 2,1”));

//create the second row
oTBody.insertRow(1);
oTBody.rows[1].insertCell(0);
oTBody.rows[1].cells[0].appendChild(document.createTextNode(“Cell 1,2”));
oTBody.rows[1].insertCell(1);
oTBody.rows[1].cells[1].appendChild(document.createTextNode(“Cell 2,2”));
//add the table to the document body
document.body.appendChild(oTable);

In this code, the creation of the <table/> and <tbody/> elements remain the same. What has changed
is the section creating the two rows, which now makes use of the HTML DOM Table properties and
methods. To create the first row, the insertRow() method is called on the <tbody/> element with an
argument of 0, which indicates the position in which the row should be placed. After that point, the row
can be referenced by oTBody.rows[0] because it is automatically created and added into the <tbody/>
element in position 0.

181

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 181

Creating a cell is done in a similar way — calling insertCell() on the <tr/> element and passing in the
position in which the cell should be placed. The cell can then be referenced by oTBody.rows[0].cells[0]
because the cell has been created and inserted into the row in position 0.

Using these properties and methods to create a table makes the code much more logical and readable,
although technically both sets of code are correct.

DOM Traversal
Up until this point, the features discussed have all been part of DOM Level 1. This section introduces
some of the features of DOM Level 2, specifically objects in the DOM Level 2 Traversal and Range speci-
fication relating to traversing a DOM document. These features are only available in Mozilla and
Konqueror/Safari.

NodeIterator
The first object of interest is the NodeIterator, which enables you to do a depth-first search of a DOM
tree, which can be useful if you are looking for specific types of information (or elements) in a page. To
understand what the NodeIterator does, consider the following HTML page:

<html>
<head>

<title>Example</title>
</head>
<body>

<p>Hello World!</p>
</body>

</html>

This page evaluates to the DOM tree represented in Figure 6-2.

When using a NodeIterator, it’s possible to start from the document element, <html/>, and traverse
the entire DOM tree in a systematic way known as a depth-first search. In this method of searching, the
traversal goes as deep as it possibly can from parent to child, to that child’s child, and so on, until it can’t
go any further. Then, the traversal goes back up one level and goes to the next child. For instance, in the
DOM tree shown previously, the traversal first visits <html/>, then <head/>, then <title/>, then the
text node “Example”, before going back up to <body/>. Figure 6-3 displays the complete path for the
traversal.

The best way to think of a depth-first search is to draw a line that starts from the left of the first node and
follows the outline of the tree. Whenever the line passes a node on its left, the node appears next in the
search (this line is indicated by the thick line in Figure 6-3).

182

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 182

Figure 6-2

Figure 6-3

DocumentDocument

Element Element html

Element Element body

Element Element title

Text Text Example

Element Element p

Text Text Hello Element Element b

Text Text World!

Element Element head

1

2

3

4

5

6

7 8

9

DocumentDocument

Element Element html

Element Element body

Element Element title

Text Text Example

Element Element p

Text Text Hello Element Element b

Text Text World!

Element Element head

183

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 183

To create a NodeIterator object, use the createNodeIterator() method of the document object. This
method accepts four arguments:

1. root — the node in the tree that you wish to start searching from

2. whatToShow — a numerical code indicating which nodes should be visited

3. filter — a NodeFilter object to determine which nodes to ignore

4. entityReferenceExpansion — a Boolean value indicating whether entity references should
be expanded

The whatToShow argument determines which nodes to visit by applying one or more of the following
constants:

❑ NodeFilter.SHOW_ALL — show all node types

❑ NodeFilter.SHOW_ELEMENT — show element nodes

❑ NodeFilter.SHOW_ATTRIBUTE — show attribute nodes

❑ NodeFilter.SHOW_TEXT — show text nodes

❑ NodeFilter.SHOW_CDATA_SECTION — show CData section nodes

❑ NodeFilter.SHOW_ENTITY_REFERENCE — show entity reference nodes

❑ NodeFilter.SHOW_ENTITY — show entity nodes

❑ NodeFilter.SHOW_PROCESSING_INSTRUCTION — show PI nodes

❑ NodeFilter.SHOW_COMMENT — show comment nodes

❑ NodeFilter.SHOW_DOCUMENT — show document nodes

❑ NodeFilter.SHOW_DOCUMENT_TYPE — show document type nodes

❑ NodeFilter.SHOW_DOCUMENT_FRAGMENT — show document fragment nodes

❑ NodeFilter.SHOW_NOTATION — show notation nodes

You can combine multiple values by using the bitwise OR operator:

var iWhatToShow = NodeFilter.SHOW_ELEMENT | NodeFilter.SHOW_TEXT;

The filter argument of createNodeIterator() can be used to specify a custom NodeFilter object, but
can also be left null if you don’t want to use it.

To create a simple NodeIterator that visits all node types, use the following:

var iterator = document.createNodeIterator(document, NodeFilter.SHOW_ALL, null,
false);

To move forward and backward in the search, use the nextNode() and previousNode() methods:

var node1 = iterator.nextNode();
var node2 = iterator.nextNode();

184

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 184

var node3 = iterator.previousNode();
alert(node1 == node3); ///outputs “true”

For example, suppose you wanted to list all elements contained within a specific <div/> inside of a
specified area on an HTML page. The following code accomplishes this:

<html>
<head>

<title>NodeIterator Example</title>
<script type=”text/javascript”>

var iterator = null;

function makeList() {
var oDiv = document.getElementById(“div1”);
iterator = document.createNodeIterator(oDiv,

NodeFilter.SHOW_ELEMENT, null, false);

var oOutput = document.getElementById(“text1”);
var oNode = iterator.nextNode();
while (oNode) {

oOutput.value += oNode.tagName + “\n”;
oNode = iterator.nextNode();

}

}

</script>
</head>
<body>

<div id=”div1”>
<p>Hello World!</p>

List item 1
List item 2
List item 3

</div>
<textarea rows=”10” cols=”40” id=”text1”></textarea>

<input type=”button” value=”Make List” onclick=”makeList()” /> </body>

</html>

When the button is clicked, the <textarea/> is filled with the tag names of the elements contained in
div1:

P
B
UL
LI
LI
LI

But suppose you don’t want to include <p/> elements in the results. This can’t be accomplished just by
using the whatToShow argument. In this case, you need a custom NodeFilter object.

185

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 185

A NodeFilter object has only one method: acceptNode(), which returns NodeFilter.FILTER_ACCEPT
if the given node should be visited or NodeFilter.FILTER_REJECT if the given node should not be vis-
ited. However, you cannot create an object using the class NodeFilter because it is an abstract class. In
Java or other languages, you must define a new subclass of NodeFilter, but because this is JavaScript
you can’t do that.

Instead, you just create an object with an acceptNode() method and pass that to the
createNodeIterator() method, like this:

var oFilter = new Object;
oFilter.acceptNode = function (oNode) {

//filter logic goes here
};

To disallow <p/> element nodes, you just check the tagName property and return NodeFilter.
FILTER_REJECT if it’s equal to “P”:

var oFilter = new Object;
oFilter.acceptNode = function (oNode) {

return (oNode.tagName == “P”) ? NodeFilter.FILTER_REJECT :
NodeFilter.FILTER_ACCEPT;
};

If you include this in the previous example, the code becomes the following:

<html>
<head>

<title>NodeIterator Example</title>
<script type=”text/javascript”>

var iterator = null;

function makeList() {
var oDiv = document.getElementById(“div1”);
var oFilter = new Object;
oFilter.acceptNode = function (oNode) {

return (oNode.tagName == “P”) ?
NodeFilter.FILTER_REJECT : NodeFilter.FILTER_ACCEPT;

};

iterator = document.createNodeIterator(oDiv,
NodeFilter.SHOW_ELEMENT, oFilter, false);

var oOutput = document.getElementById(“text1”);
var oNode = iterator.nextNode();
while (oNode) {

oOutput.value += oNode.tagName + “\n”;
oNode = iterator.nextNode();

}

}

186

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 186

</script>
</head>
<body>

<div id=”div1”>
<p>Hello World!</p>

List item 1
List item 2
List item 3

</div>
<textarea rows=”10” cols=”40” id=”text1”></textarea>

<input type=”button” value=”Make List” onclick=”makeList()” /> </body>

</html>

This time when the button is clicked, the <textarea/> is filled with the following:

UL
LI
LI
LI

Note that both “P” and “B” have disappeared from the list. This is because filtering out the <p/> ele-
ment eliminates it and all its ancestors from the iteration search. Because is a child of <p/>, it is
also skipped.

The NodeIterator object presents an orderly way of traversing an entire DOM tree (or just part of it)
from top to bottom. However, you may want to traverse a particular area of the tree and then look at a
node’s sibling or child. In that case, you use a TreeWalker.

TreeWalker
The TreeWalker is like the big brother of NodeIterator: It has all the same functionality (with
nextNode() and previousNode()) but with added traversal methods:

❑ parentNode() — travels to the current node’s parent

❑ firstChild() — travels to the first child of the current node

❑ lastChild() — travels to the last child of the current node

❑ nextSibling() — travels to the next sibling of the current node

❑ previousSibling() — travels to the previous sibling of the current node

To start, you can actually use a TreeWalker just like a NodeIterator by replacing the call to
createNodeIterator() with a call to createTreeWalker(), which accepts the same arguments:

<html>
<head>

<title>TreeWalker Example</title>
<script type=”text/javascript”>

187

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 187

var walker = null;

function makeList() {
var oDiv = document.getElementById(“div1”);
var oFilter = new Object;
oFilter.acceptNode = function (oNode) {

return (oNode.tagName == “P”) ?
NodeFilter.FILTER_REJECT : NodeFilter.FILTER_ACCEPT;

};

walker = document.createTreeWalker(oDiv, NodeFilter.SHOW_ELEMENT,
oFilter, false);

var oOutput = document.getElementById(“text1”);
var oNode = walker.nextNode();
while (oNode) {

oOutput.value += oNode.tagName + “\n”;
oNode = walker.nextNode();

}

}

</script>
</head>
<body>

<div id=”div1”>
<p>Hello World!</p>

List item 1
List item 2
List item 3

</div>
<textarea rows=”10” cols=”40” id=”text1”></textarea>

<input type=”button” value=”Make List” onclick=”makeList()” /> </body>

</html>

Naturally, the true power of a TreeWalker is lost on a simple example such as this; it is much more use-
ful in cases when you don’t want to go straight through the entire DOM tree. For example, suppose you
only want to visit the elements in the HTML page shown previously. You could write a filter that
only accepts elements with the tagName “LI”, or you could use a TreeWalker to do a purposive
traversal:

<html>
<head>

<title>TreeWalker Example</title>
<script type=”text/javascript”>

var walker = null;

function makeList() {
var oDiv = document.getElementById(“div1”);

walker = document.createTreeWalker(oDiv, NodeFilter.SHOW_ELEMENT,
null, false);

188

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 188

var oOutput = document.getElementById(“text1”);
walker.firstChild(); //go to <p>
walker.nextSibling(); //go to
var oNode = walker.firstChild(); //go to first
while (oNode) {

oOutput.value += oNode.tagName + “\n”;
oNode = walker.nextSibling();

}

}

</script>
</head>
<body>

<div id=”div1”>
<p>Hello World!</p>

List item 1
List item 2
List item 3

</div>
<textarea rows=”10” cols=”40” id=”text1”></textarea>

<input type=”button” value=”Make List” onclick=”makeList()” />

</body>
</html>

In this example, the TreeWalker is created and immediately firstChild() is called, which points the
walker at the <p/> element (because <p/> is the first child of div1). When nextSibling() is called on
the next line, the walker goes to , which is the next sibling of <p/>. Then, firstChild() is called
to return the first element under . After it is inside the loop, the nextSibling() method is
used to iterate through the rest of the elements.

When you click the button, the output is the following:

LI
LI
LI

The bottom line is that the TreeWalker is much more useful when you have an idea about the structure
of the DOM tree you will be traversing, whereas a NodeIterator is much more practical when you
don’t know the structure.

Detecting DOM Conformance
As you can tell, there’s a lot to the DOM. For this reason, you have a method to determine which parts
of the DOM are supported by any given implementation. The object is named, ironically enough,
implementation.

189

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 189

The implementation object is a property of a DOM Document, and is, therefore, part of the browser
document object. The sole method of implementation is hasFeature(), which accepts two parame-
ters: the feature to check and the version of that feature. For instance, if you want to check for support
of XML DOM Level 1, the call would be:

var bXmlLevel1 = document.implementation.hasFeature(“XML”, “1.0”);

The following table lists all the DOM features and the corresponding versions to check for:

Feature Supported Description
Versions

Core 1.0, 2.0, 3.0 Basic DOM spelling out the use of a hierarchical tree to repre-
sent documents

XML 1.0, 2.0, 3.0 XML extension of the Core that adds support for CDATA sec-
tions, processing instructions, and entities

HTML 1.0, 2.0 HTML extension of XML that adds support for HTML-
specific elements and entities

Views 2.0 Accomplishes formatting of a document based on certain
styles

StyleSheets 2.0 Relating style sheets to documents

CSS 2.0 Support for Cascading Style Sheets Level 1

CSS2 2.0 Support for Cascading Style Sheets Level 2

Events 2.0 Generic DOM events

UIEvents 2.0 User interface events

MouseEvents 2.0 Events caused by the mouse (click, mouseover, and so on)

MutationEvents 2.0 Events fired when the DOM tree is changed

HTMLEvents 2.0 HTML 4.01 events

Range 2.0 Objects and methods for manipulating a range in a DOM tree

Traversal 2.0 Methods for traversing a DOM tree

LS 3.0 Loading and saving between files and DOM trees
synchronously

LS-Async 3.0 Loading and saving between files and DOM trees
asynchronously

Validation 3.0 Methods to modify a DOM tree and still make it valid

Although it is a nice convenience, the drawback of using implementation.hasFeature() is that the
implementor gets to decide if the implementation is indeed conformant with the various parts of the
DOM specification. It’s very easy to make this method return true for any and all values, but that doesn’t

190

Chapter 6

09_579088 ch06.qxd 3/28/05 11:37 AM Page 190

necessarily mean that the implementation conforms to all the specifications it claims to. At present time,
the most accurate browser is Mozilla, which more or less actually does conform to the DOM specs that
return true for this method.

DOM Level 3
DOM Level 3 was introduced as a W3C Recommendation in April of 2004. To date, no browser has fully
implemented it, although Mozilla has implemented parts. It is unknown at what rate Web browsers will
begin adding their missing DOM features because Internet Explorer hasn’t had an update in nearly four
years (meaning no changes to its level of DOM support). Mozilla has pledged to remain as compliant as
possible moving forward and continues to be the leader in DOM support. However, Opera rewrote its
core browser components to better support the DOM standards and has a newfound zest for keeping
up-to-date with the latest technology. Even Apple’s Safari browser, which is based on Konqueror, is
moving forward with plans to implement as much DOM functionality as possible.

No further development is planned on the DOM after Level 3 rounded out all the missing functionality.
Therefore, browsers now have a finite finish line to reach in order to achieve DOM compliance. One can
only hope that they all reach it someday.

Summary
This chapter introduced the basic interfaces of the Document Object Model (DOM). You learned how the
DOM organizes an XML-based document into a hierarchical tree made up of any number of nodes. You
also learned about the different node type that can be present in a document as well as how to manipu-
late, add, and remove nodes from a DOM tree.

Additionally, this chapter covered HTML DOM-specific features, such as the migrating of attributes into
object properties and table-specific methods that make building HTML easier than using the traditional
DOM methods.

Finally, you learned about the DOM Traversal specification’s NodeIterator and TreeWalker objects
that can be used to traverse DOM trees in a logical way.

The only major parts of the DOM not covered in this chapter were events and event handling, which are
covered in Chapter 9, “All about Events.”

191

DOM Basics

09_579088 ch06.qxd 3/28/05 11:37 AM Page 191

09_579088 ch06.qxd 3/28/05 11:37 AM Page 192

Regular Expressions

Once upon a time, testing for patterns contained within strings was an arduous process. It often
involved using string functions such as charAt() and indexOf(). Languages such as Perl imple-
mented a solution called regular expressions based on a Unix administration tools such as gred
and ed.

Regular expressions are strings with a special syntax indicating the occurrence of specific characters
or substrings within another string. These patterns range from very simple to very complicated and
can be used to do anything from removing white space to validating credit card numbers.

JavaScript has natively supported regular expressions for longer than some high-powered lan-
guages, such as Java, which only introduced native regular expression support in JDK 1.4. Entire
books are written on the subject of regular expressions because they can be very complicated; this
chapter looks specifically at how JavaScript implements regular expressions

Regular Expression Support
JavaScript supports regular expressions through the ECMAScript RegExp class. The constructor for
a RegExp object takes one or two arguments. The first (or only) argument is the string describing
the pattern to match; if there is a second argument, it is a string specifying additional processing
instructions.

The most basic regular expression is a regular string. For instance, to match the word “cat”, you
can define the regular expression like this:

var reCat = new RegExp(“cat”);

10_579088 ch07.qxd 3/28/05 11:38 AM Page 193

This regular expression matches only the first occurrence of the word “cat” in a string, and it is case-
sensitive. To make the regular expression match all occurrences of “cat”, you can add the second argu-
ment to the constructor:

var reCat = new RegExp(“cat”, “g”);

In this line, the second argument “g” is short for global, meaning that the entire string is searching for
occurrences of “cat” instead of stopping after the first occurrence. If you want to make the pattern
case-insensitive, you can add the character “i” to the second argument (“i” is short for insensitive, as
in case-insensitive):

var reCat = new RegExp(“cat”, “gi”);

Some regular expression literals use Perl-style syntax:

var reCat = /cat/gi;

Regular expression literals begin with a forward slash, followed by the string pattern, followed by
another forward slash. If you want to specify additional processing instructions, such as “g” and “i”,
these come after the second forward slash (as in the previous example).

Using a RegExp object
After creating a RegExp object, you apply it to a string. You can use several methods of both RegExp and
String.

The first thing you do with a regular expression is determine if a string matches the specified pattern.
For this simple case, the RegExp object has a method called test(), which simply returns true if the
given string (the only argument) matches the pattern and false if not:

var sToMatch = “cat”;
var reCat = /cat/;
alert(reCat.test(sToMatch)); //outputs “true”

In this example, the alert outputs “true” because the pattern matches the string. Even if the pattern
only occurs once in the string, it is considered a match, and test()returns true. But what if you want
access to the occurrences of the pattern? For this use case, you can use the exec() method.

The RegExp exec() method, which takes a string as an argument, returns an Array containing all
matches. Consider the following example:

var sToMatch = “a bat, a Cat, a fAt baT, a faT cat”;
var reAt = /at/;
var arrMatches = reAt.exec(sToMatch);

Here, arrMatches contains only one item: the first instance of “at” (which is in the word “bat”).
If you want to return all instances of “at”, add the g option:

var sToMatch = “a bat, a Cat, a fAt baT, a faT cat”;
var reAt = /at/g;
var arrMatches = reAt.exec(sToMatch);

194

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 194

In this code, arrMatches contains three items: the “at” from “bat”, “Cat”, and “cat”. To return all
instances of at, regardless of the case, just add the i option:

var sToMatch = “a bat, a Cat, a fAt baT, a faT cat”;
var reAt = /at/gi;
var arrMatches = reAt.exec(sToMatch);

Now arrMatches contains all of the instances of “at”, regardless of position or case. Note that the
instances of “at” with uppercase letters will be stored in arrMatches the same way that they appear
in sToMatch. Here are the contents of the arrMatches array after this code executes:

Index Value From

0 “at” “bat”

1 “at” “Cat”

2 “At” “fAt”

3 “aT” “baT”

4 “aT” “faT”

5 “at” “cat”

The String object has a method called match(), which intentionally mirrors the functionality of the
RegExp object’s exec() method. The main difference is that the method is called on the String object
and the RegExp object is passed in as an argument:

var sToMatch = “a bat, a Cat, a fAt baT, a faT cat”;
var reAt = /at/gi;
var arrMatches = sToMatch.match(reAt);

This code yields the same result as the previous example, with arrMatches containing all the same
items.

A String method calls search() that acts the same way as indexOf(), but uses a RegExp object instead
of a substring. The search() method returns the index of the first occurrence in the string:

var sToMatch = “a bat, a Cat, a fAt baT, a faT cat”;
var reAt = /at/gi;
alert(sToMatch.search(reAt)); //outputs “3”

In this example, the alert will display “3”, because the first occurrence of “at” is at position 3 in the
string. Specifying the regular expression as global (with the g) has no effect when using search().

Extended string methods
Two String methods, discussed earlier in the book, also accept regular expressions as parameters. The
first is the replace() method, which replaces all occurrences of a substring (the first argument) with a
different string (the second argument). For example:

195

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 195

var sToChange = “The sky is red. “;
alert(sToChange.replace(“red”, “blue”)); //outputs “The sky is blue.”

Here, the substring “red” is replaced with the string “blue”, making the output “The sky is blue.”
It is possible to pass in a regular expression as the first argument as well:

var sToChange = “The sky is red.”;
var reRed = /red/;
alert(sToChange.replace(reRed, “blue”)); //outputs “The sky is blue. “

This code has the same result as the previous example, producing the output “The sky is blue.”

You can also specify a function as the second argument of replace(). This function accepts one argu-
ment, the matching text, and returns the text that should replace it. For example:

var sToChange = “The sky is red.”;
var reRed = /red/;
var sResultText = sToChange.replace(reRed, function(sMatch) {

return “blue”;
});

alert(sResultText); //outputs “The sky is blue.”

In this example, the value of sMatch in the function is always “red” (because that is the only pattern
being matched). The first occurrence of “red” is replaced by “blue” because it is the value returned by
the function. Using functions to deal with text replacement in conjunction with regular expressions is
very powerful, enabling you to use all the facilities of JavaScript to determine what the replacement text
should be.

The second method is split(), which splits a string into a number of substrings and returns them in an
array, like this:

var sColor = “red,blue,yellow,green”;
var arrColors = sColor.split(“,”); //split at each comma

The previous code creates an array, arrColors, that contains four items, “red”, “blue”, “yellow”, and
“green”. The same thing can be accomplished using a regular expression instead of the comma:

var sColor = “red,blue,yellow,green”;
var reComma = /\,/;
var arrColors = sColor.split(reComma); //split at each comma

Note the regular expression reComma requires a backslash before the comma character. The comma has
special meaning in regular expression syntax, which you don’t intend as its meaning in this case.

Note that in the previous three examples, you are replacing only the first occurrence
of “red” in the given string. In order to replace all occurrences, you must specify the
expression as /red/g.

196

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 196

Simple Patterns
The patterns used in this chapter so far have all been simple, constructed of string literals. However, a
regular expression has many more parts than just matching specific characters. Metacharacters, charac-
ter classes, and quantifiers are all important parts of regular expression syntax and can be used to
achieve some powerful results.

Metacharacters
In the previous section you discovered that a comma has to be escaped (preceded with a backslash) to
be matched correctly. That’s because the comma is a metacharacter, which is a character that is part of
regular expression syntax. Here are all the regular expression metacharacters:

([{ \ ^ $ |) ? * + .

Any time you want to use one of these characters inside of a regular expression, they must be escaped.
So, to match a question mark, the regular expression looks like this:

var reQMark = /\?/;

Or like this:

var reQMark = new RegExp(“\\?”);

Did you notice the two backslashes in the second line? This is an important concept to grasp: When a
regular expression is represented in this (non-literal) form, every backslash must be replaced with two
backslashes because the JavaScript string parser tries to interpret \? the same way it tries to interpret \n.
To ensure that this doesn’t happen, place two backslashes (called double escaping) in front of the
metacharacter in question. This little gotcha is why many developers prefer to use the literal syntax.

Using special characters
You can represent characters by using their literals or by specifying a character code using either their
ASCII code or Unicode code. To represent a character using ASCII, you must specify a two-digit hexa-
decimal code preceded by \x. For example, the character b has an ASCII code of 98, which is equal to
hex 62; therefore, to represent the letter b you could use \x62:

var sColor = “blue”;
var reB = /\x62/;
alert(reB.test(sColor)); //outputs “true”

In both of these methods, you may not see the advantage of using regular expres-
sions in place of simple strings. Keep in mind that the examples in this section of
the chapter are very simple and are used just for introducing concepts; more com-
plex patterns are discussed later and will truly show the power of using regular
expressions in place of simple strings.

197

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 197

This code matches the letter b in “blue”.

Alternatively, you can specify the character code using octal instead of hex by including the octal charac-
ters after a backslash. For example, b is equal to octal 142, so this will work:

var sColor = “blue”;
var reB = /\142/;
alert(reB.test(sColor)); //outputs “true”

To represent a character using Unicode, you must specify a four-digit hexadecimal representation of the
character code. So b becomes \u0062:

var sColor = “blue”;
var reB = /\u0062/;
alert(reB.test(sColor)); //outputs “true”

Note that to use this method of representing characters with the RegExp constructor, you still need to
include a second backslash:

var sColor = “blue”;
var reB = new RegExp(“\\u0062”)/;
alert(reB.test(sColor)); //outputs “true”

Additionally, there are a number of predefined special characters, which are listed in the following table:

Character Description

\t The tab character

\n The new line character

\r The carriage return character

\f The form feed character

\a The alert character

\e The escape character

\cX The control character corresponding to X

\b Backspace character

\v Vertical tab character

\0 Null character

All of these characters must also be double-escaped in order to use them with the RegExp constructor.

Suppose you want to remove all new line characters from a string (a common task when dealing with
user-input text). You can do so like this:

var sNewString = sStringWithNewLines.replace(/\n/g, “”);

198

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 198

Character classes
Character classes are groups of characters to test for. By enclosing characters inside of square brackets,
you are effectively telling the regular expression to match the first character, the second character, the
third character, or so on. For example, to match the characters a, b, and c, the character class is [abc].
This is called a simple class, because it specifies the exact characters to look for.

Simple classes
Suppose you want to match “bat”, “cat”, and “fat”. It is very easy to use a simple character class for
this purpose:

var sToMatch = “a bat, a Cat, a fAt baT, a faT cat”;
var reBatCatRat = /[bcf]at/gi;
var arrMatches = sToMatch.match(reBatCatRat);

The arrMatches array is now be filled with these values: “bat”, “Cat”, “fAt”, “baT”, “faT”, and
“cat”. You can also include special characters inside simple classes (and any other type of character
class as well). Suppose you replace the b character with its Unicode equivalent:

var sToMatch = “a bat, a Cat, a fAt baT, a faT cat”;
var reBatCatRat = /[\u0062cf]at/gi;
var arrMatches = sToMatch.match(reBatCatRat);

This code behaves the same as it did in the previous example.

Negation classes
At times you may want to match all characters except for a select few. In this case, you can use a negation
class, which specifies characters to exclude. For example, to match all characters except a and b, the charac-
ter class is [^ab]. The caret (^) tells the regular expression that the character must not match the characters
to follow.

Going back to the previous example, what if you only wanted to get words containing at but not begin-
ning with b or c?

var sToMatch = “a bat, a Cat, a fAt baT, a faT cat”;
var reBatCatRat = /[^bc]at/gi;
var arrMatches = sToMatch.match(reBatCatRat);

In this case, arrMatches contains “fAt” and “faT”, because these strings match the pattern of a
sequence ending with at but not beginning with b or c.

Range classes
Up until this point, the character classes required you to type all the characters to include or exclude.
Suppose that you want to match any alphabet character, but you really don’t want to type every letter
in the alphabet. Instead, you can use a range class to specify a range between a and z: [a-z]. The key
here is the dash (-), which should be read as through instead of minus (so the class is read as a through z
not a minus z).

199

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 199

Range classes work whenever the characters you want to test are in order by character code. Consider
the following example:

var sToMatch = “num1, num2, num3, num4, num5, num6, num7, num8, num9”;
var reOneToFour = /num[1-4]/gi;
var arrMatches = sToMatch.match(reOneToFour);

After execution, arrMatches contains four items: “num1”, “num2”, “num3”, and “num4” because they
all match num and are followed by a character in the range 1 through 4.

Combination classes
A combination class is a character class that is made up of several other character classes. For instance,
suppose you want to match all letters a through m, numbers 1 through 4, and the new line character.
The class looks like this:

[a-m1-4\n]

Note that there are no spaces between the different internal classes.

Predefined classes
Because some patterns are used over and over again, a set of predefined character classes is used to
make it easy for you to specify some complex classes. The following table lists all the predefined classes:

Code Equal To Matches

. [^\n\r] Any character except new line and carriage return

\d [0-9] A digit

\D [^0-9] A non-digit

\s [\t\n\x0B\f\r] A white-space character

JavaScript/ECMAScript doesn’t support union and intersection classes as do other
regular expression implementations. This means you can’t make patterns such as
[a-m[p-z]] or [a-m[^b-e]].

You can also negate range classes so as to exclude all characters within a given range.
For example, to exclude characters 1 through 4, the class is [^1-4].

Note that [a-z] matches only lowercase letters unless the regular expression is set
to case insensitive by using the i option. To match only uppercase letters, you must
use [A-Z].

200

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 200

Code Equal To Matches

\S [^\t\n\x0B\f\r] A non-white–space character

\w [a-zA-Z_0-9] A word character (all letters, all numbers, and an underscore)

\W [^a-zA-Z_0-9] A non-word character

Using predefined classes can make pattern matching significantly easier. Suppose you want to match
three numbers, without using \d. Your code looks like this:

var sToMatch = “567 9838 abc”;
var reThreeNums = /[0-9][0-9][0-9]/;
alert(reThreeNums.test(sToMatch)); //outputs “true”

Using \d, the regular expression becomes much cleaner:

var sToMatch = “567 9838 abc”;
var reThreeNums = /\d\d\d/;
alert(reThreeNums.test(sToMatch)); //outputs “true”

Quantifiers
Quantifiers enable you to specify how many times a particular pattern should occur. You can specify
both hard values (for example, this character should appear three times) and soft values (for example,
this character should appear at least once but can repeat any number of times) when setting how many
times a pattern should occur.

Simple quantifiers
The following table lists the various ways to quantify a particular pattern.

Code Description

? Either zero or one occurrence

* Zero or more occurrences

+ One or more occurrences

{n} Exactly n occurrences

{n,m} At least n but no more than m occurrences

{n,} At least n occurrences

For example, suppose you want to match words bread, read, or red. Using the question mark quantifier,
you can create just one regular expression to match all three:

var reBreadReadOrRed = /b?rea?d/;

201

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 201

You can read this regular expression as “zero or one occurrence of b, followed by r, followed by e, followed
by zero or one occurrence of a, followed by d.” The preceding regular expression is the same as this one:

var reBreadReadOrRed = /b{0,1}rea{0,1}d/;

In this regular expression, the question mark has been replaced with curly braces. Inside the curly braces
are the numbers 0, which is the minimum number of occurrences, and 1, which is the maximum. This
expression reads the same way as the previous one; it’s just represented differently. Both expressions are
considered correct.

To illustrate the other quantifiers, suppose you had to create a regular expression to match the strings
“bd”, “bad”, “baad”, and “baaad”. The following table illustrates some possible solutions and which
words each match.

Regular Expression Matches

ba?d “bd”, “bad”

ba*d “bd”, “bad”, “baad”, “baaad”

ba+d “bad”, “baad”, “baad”

ba{0,1}d “bd”, “bad”

ba{0,}d “bd”, “bad”, “baad”, “baaad”

ba{1,}d “bad”, “baad”, “baad”

As you can see, only two of the six expressions adequately solve the problem: ba*d and ba{0,}d. Notice
that these two are exactly equal because the asterisk means 0 or more just as {0,} does. Likewise, the first
and fourth expressions are equal, and the third and sixth expressions are equal.

Quantifiers can also be used with character classes, so if you wanted to match the strings “bead”,
“baed”, “beed”, “baad”, “bad”, and “bed”, the following regular expression would do so:

var reBeadBaedBeedBaadBedBad = /b[ae]{1,2}d/;

This expression says that the character class [ae] can appear a minimum of one time and a maximum
of two times.

Greedy, reluctant, and possessive quantifiers
The three kinds of regular expression quantifiers are greedy, reluctant, and possessive.

A greedy quantifier starts by looking at the entire string for a match. If no match is found, it eliminates
the last character in the string and tries again. If a match is still not found, the last character is again
discarded and the process repeats until a match is found or the string is left with no characters. All the
quantifiers discussed to this point have been greedy.

A reluctant quantifier starts by looking at the first character in the string for a match. If that character
alone isn’t enough, it reads in the next character, forming a string of two characters. If still no match is

202

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 202

found, a reluctant quantifier continues to add characters from the string until either a match is found or
the entire string is checked without a match. Reluctant quantifiers work in reverse of greedy quantifiers.

A Possessive quantifier only tries to match against the entire string. If the entire string doesn’t produce a
match, no further attempt is made. Possessive quantifiers are, in a manner of speaking, a one-shot deal.

What makes a quantifier greedy, reluctant, or possessive? It’s really all in the use of the asterisk, question
mark, and plus symbols. For example, the question mark alone (?) is greedy, but a question mark fol-
lowed by another question mark (??) is reluctant. To make the question mark possessive, append a plus
sign (?+). The following table shows all the greedy, reluctant, and possessive versions of the quantifiers
you’ve already learned.

Greedy Reluctant Possessive Description

? ?? ?+ Zero or one occurrences

* *? *+ Zero or more occurrences

+ +? ++ One or more occurrences

{n} {n}? {n}+ Exactly n occurrences

{n,m} {n,m}? {n,m}+ At least n but no more than m occurrences

{n,} {n,}? {n,}+ At least n occurrences

To illustrate the differences among the three kinds of quantifiers, consider the following example:

var sToMatch =”abbbaabbbaaabbb1234”;
var re1 = /.*bbb/g; //greedy
var re2 = /.*?bbb/g; //reluctant
var re3 = /.*+bbb/g; //possessive

You want to match any number of letters followed by bbb. Ultimately, you’d like to get back as matches
“abbb”, “aabbb”, and “aaabbb”. However, only one of the three regular expressions returns this result,
can you guess which one?

If you guessed re2, congratulations! You now understand the difference between greedy, reluctant, and
possessive quantifiers. The first regular expression, re1, is greedy and so it starts by looking at the
whole string. Behind the scenes, this is what happens:

re1.test(“abbbaabbbaaabbb1234”); //false - no match
re1.test(“abbbaabbbaaabbb123”); //false - no match
re1.test(“abbbaabbbaaabbb12”); //false - no match
re1.test(“abbbaabbbaaabbb1”); //false - no match
re1.test(“abbbaabbbaaabbb”); //true – match!

So the only result that re1 returns is “abbbaabbbaaabbb”. Remember, the dot represents any character,
and b is included, therefore “abbbaabbbaaa” matches the .* part of the expression and “bbb” matches
the bbb part.

203

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 203

For the second regular expression, re2, the following takes place behind the scenes:

re2.test(“a”); //false - no match
re2.test(“ab”); //false - no match
re2.test(“abb”); //false - no match
re2.test(“abbb”); //true – match!
//store this result and start with next letter

re2.test(“a”); //false - no match
re2.test(“aa”); //false - no match
re2.test(“aab”); //false - no match
re2.test(“aabb”); //true – match!
re2.test(“aabbb”); //true – match!
//store this result and start with next letter

re2.test(“a”); //false - no match
re2.test(“aa”); //false - no match
re2.test(“aaa”); //false - no match
re2.test(“aaab”); //true – match!
re2.test(“aaabb”); //false - no match
re2.test(“aaabbb”); //true – match!
//store this result and start with next letter

re2.test(“1”); //false - no match
re2.test(“12”); //false - no match
re2.test(“123”); //false - no match
re2.test(“1234”); //false - no match
//done

Since re2 contains a reluctant quantifier, it returns “abbb”, “aabbb”, and “aaabbb”, just as you’d
expect.

The final regular expression, re3, actually has no result because it’s possessive. Here’s what it does
behind the scenes:

re3.test(“abbbaabbbaaabbb1234”); //false – no match

Because possessive quantifiers only do one test, if that test fails, you get no result. In this case, the
“1234” at the end of the string causes the expression not to match. If the string were simply “abb-
baabbbaaabbb”, then re3 would have returned the same result as re1.

Browser support for possessive quantifiers leaves much to be desired. Internet
Explorer and Opera don’t support possessive quantifiers and throw an error when
you try to use one. Mozilla won’t throw an error, but it treats possessive quantifiers
as greedy.

204

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 204

Complex Patterns
Regular expressions can represent simple patterns, as discussed in the previous sections, or they can rep-
resent complex patterns. Complex patterns are made up of more than just character classes and quanti-
fiers: They are made up of groups, backreferences, lookaheads, and other powerful regular expression
functions. This section introduces these concepts and more, so you can use you regular expressions to
make complex string manipulations easier.

Grouping
So far in this chapter, you’ve learned how to deal with regular expressions on a character-by-character
basis. As you might expect, certain character sequences, instead of containing just individual characters,
repeat themselves. To handle character sequences, regular expressions support grouping.

Grouping is used by enclosing a set of characters, character classes, and/or quantifiers inside of a set of
parentheses. For instance, suppose you wanted to match the string “dogdog”. Using the knowledge
gained up to this point, you might predict the expression would probably look like this:

var reDogDog = /dogdog/g;

Although this is fine, it’s a bit wasteful. What if you don’t know how many occurrences of dog will be in
the string? You can rewrite this expression using grouping such as the following:

var reDogDog = /(dog){2}/g;

The parentheses in this expression say that the sequence “dog” will occur twice in a row. But you’re not
limited to using curly braces with groups; you can use any and all quantifiers:

var re1 = /(dog)?/; //match zero or one occurrences of “dog”
var re2 = /(dog)*/; //match zero or more occurrences of “dog”
var re3 = /(dog)+/; //match one or more occurrences of “dog”

You can even make some pretty complicated groups using a mixture of character literals, character
classes, and quantifiers:

var re = /([bd]ad?)*/; //match zero or more occurrences of “ba”, “da”, “bad”, or
“dad”

And don’t be afraid to put groups inside of groups:

var re = /(mom(and dad)?)/; //match “mom” or “mom and dad”

This expression says that the string “mom” is required, but the entire string “ and dad” can be there
zero or one times. Groups can also be used to make up for language features that JavaScript lacks.

For most programming languages with strings, a method to trim leading and trailing white space is a stan-
dard offering. JavaScript, however, has been without such a method since its introduction. Fortunately, reg-
ular expressions (with the help of groups) make it easy to create a trim() method for strings.

205

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 205

Expressions to match leading and trailing white space are very simple thanks to the \s character class
that matches all the white space characters:

var reExtraSpace = /^\s+(.*?)\s+$/;

This regular expression looks for one or more occurrences of white space at the beginning of the string,
followed by any number of additional characters (which are captured in a group), followed by one or
more occurrences of white space at the end of the string. By using this in conjunction with the String
object’s replace() method and backreferences, you can define your own trim() method:

String.prototype.trim = function () {
var reExtraSpace = /^\s+(.*?)\s+$/;
return this.replace(reExtraSpace, “$1”);

};

With this method, you can create trimmed versions of strings very easily:

var sTest = “ this is a test “;
alert(“[“ + sTest + “]”); //outputs “ [this is a test] “
alert(“[“ + sTest.trim() + “]”); //outputs “ [this is a test]”

Backreferences
So what do you do with groups after the expression has been evaluated? Each group is stored in a spe-
cial location for later use. These special values, stored from your groups, are called backreferences.

Backreferences are created and numbered by the order in which opening parenthesis characters are
encountered going from left to right. For example, the expression (A?(B? (c?))) creates three back-
references numbered 1 through 3:

1. (A? (B? (c?)))

2. (B? (c?))

3. (c?)

The backreferences can then be used in a couple of different ways.

First, the values of the backreferences can be obtained from the RegExp constructor itself by using the
test(), match(), or search() methods. For example:

var sToMatch = “#123456789”;
var reNumbers = /#(\d+)/;
reNumbers.test(sToMatch);
alert(RegExp.$1); //outputs “123456789”

This example tries to match the pound sign followed by one or more digits. The digits are grouped so
they will be stored. After the test() method is called, all backreferences have been stored on the
RegExp constructor starting with RegExp.$1, which stores the first backreference (it continues with
RegExp.$2 if there is a second, RegExp.$3 if there is a third, and so on). Because the group matches
“123456789”, that is what is stored in RegExp.$1.

206

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 206

You can also include backreferences in the expression that defines the groups. You do this by using the
special escape sequences \1, \2, and so on. For example:

var sToMatch = “dogdog”;
var reDogDog = /(dog)\1/;
alert(reDogDog.test(sToMatch)); //outputs “true”

The regular expression reDogDog creates a group for the word dog, which is then referenced by the spe-
cial escape sequence \1, effectively making the regular expression equal to /dogdog/.

Third, backreferences can be used with the String’s replace() method by using the special character
sequences $1, $2, and so on. The best example to illustrate this functionality is to reverse the order of
two items in a string. Suppose you want to change the string “1234 5678” to “5678 1234”. The fol-
lowing code accomplishes this:

var sToChange = “1234 5678”;
var reMatch = /(\d{4}) (\d{4})/;
var sNew = sToChange.replace(reMatch, “$2 $1”);
alert(sNew); //outputs “5678 1234”

In this example, the regular expression has two groups each with four digits. In the second argument of
the replace() method, $2 is equal to “5678” and $1 is equal to “1234”, corresponding to the order in
which they appear in the expression.

Alternation
Sometimes it gets very difficult to create a pattern that correctly matches all the possibilities you have in
mind. What if you need to match “red” and “black” with the same expression? These words have no
characters in common, so you could write two different regular expressions and test a string against
both, like this:

var sToMatch1 = “red”;
var sToMatch2 = “black”;
var reRed = /red/;
var reBlack = /black/;
alert(reRed.test(sToMatch1) || reBlack.test(sToMatch1)); //outputs “true”
alert(reRed.test(sToMatch2) || reBlack.test(sToMatch2)); //outputs “true”

This gets the job done, but it is a little too verbose. The other option is to use the regular expression alter-
nation operator.

The alternation operator is the same as the ECMAScript bitwise OR, a pipe (|), and it is placed between
two independent patterns, as in this example:

var sToMatch1 = “red”;
var sToMatch2 = “black”;
var reRedOrBlack = /(red|black)/;
alert(reRedOrBlack.test(sToMatch1)); //outputs “true”
alert(reRedOrBlack.test(sToMatch2)); //outputs “true”

207

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 207

In this, reRedOrBlack matches either “red” or “black”, and testing against each string yields “true”.
Because the alternation is contained in a group, whichever alternative is matched is stored in RegExp.$1
for later use (as well as being available as \1 in the expression). In the first test, RegExp.$1 is equal to
“red”; in the second, it is equal to “blue”.

You can specify as many options as you’d like just by adding more alternatives and more alternation
operators:

var sToMatch1 = “red”;
var sToMatch2 = “black”;
var sToMatch3 = “green”;
var reRedOrBlack = /(red|black|green)/;
alert(reRedOrBlack.test(sToMatch1)); //outputs “true”
alert(reRedOrBlack.test(sToMatch2)); //outputs “true”
alert(reRedOrBlack.test(sToMatch3)); //outputs “true”

A more practical use of an OR pattern is to remove inappropriate words from user input, which can be
very important in online forums. By using an OR pattern with the inappropriate words and the replace()
method, you can easily strip out any offensive material before it is posted:

var reBadWords = /badword|anotherbadword/gi;
var sUserInput = “This is a string using badword1 and badword2.”;
var sFinalText = sUserInput.replace(reBadWords, “****”);
alert(sFinalText); //output “This is a string using **** and ****”

This example specifies “badword1” and “badword2” to be inappropriate. The expression reBadWords
uses the OR operator to specify both words (note that both the global and case-insensitive flags are set).
When the replace() method is used, each of the inappropriate words is replaced with four asterisks
(the proverbial four-letter word representation).

You can also replace inappropriate words using an asterisk to replace each letter, meaning that the
replacement text contains the same number of characters as the word in question. This can be done
using a function as the second argument to the replace() method:

var reBadWords = /badword|anotherbadword/gi;
var sUserInput = “This is a string using badword1 and badword2.”;
var sFinalText = sUserInput.replace(reBadWords, function(sMatch) {

return sMatch.replace(/./g, “*”);
});
alert(sFinalText); //output “This is a string using ******* and **************”

In this code, the function passed in as the second argument to replace() actually uses another regular
expression. When the function is executed, sMatch contains one of the inappropriate words. The fastest
way to replace each character with an asterisk is to use the replace() method on sMatch, specifying a
pattern that matches any character (the period) and replacing it with an asterisk (note that the global flag
has been set as well). Techniques such as this can ensure that inappropriate remarks cannot get posted to
your online forum or bulletin board.

208

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 208

Non-capturing groups
Groups that create backreferences are called capturing groups. There are also non-capturing groups, which
don’t create backreferences. In very long regular expressions, storing backreferences slows down the
matching process. By using non-capturing groups, you can have the same flexibility to match sequences
of characters without incurring the overhead of storing the results.

If you want to create a non-capturing group, just add a question mark followed by a colon immediately
after the opening parenthesis:

var sToMatch = “#123456789”;
var reNumbers = /#(?:\d+)/;
reNumbers.test(sToMatch);
alert(RegExp.$1); //outputs “”

The last line of this example outputs an empty string because the group is specified as non-capturing.
Because of this, no backreferences can be used with the replace() method, accessed via the RegExp.$x
variables, or used in the regular expression itself. Look what happens when the following code is run:

var sToMatch = “#123456789”;
var reNumbers = /#(?:\d+)/;
alert(sToMatch.replace(reNumbers, “abcd$1”)); //outputs “abcd$1”

This code outputs “abcd$1” instead of “abcd123456789” because the “$1” code isn’t recognized as a
backreference; instead, it is interpreted literally.

One very popular use of regular expressions is to strip HTML tags out of text. This is typically used on
discussion boards and forums to prevent visitors from including malicious or careless HTML in their
postings. To strip HTML tags using regular expressions is trivial; you just need one simple expression:

var reTag = /<(?:.|\s)*?>/g;

This expression matches a less-than symbol (<) followed by any text (specified in a non-capturing group),
followed by a greater-than symbol (>), which effectively matches all HTML tags. The non-capturing
group is used in this case because it doesn’t matter what appears between the less-than and greater-than
symbols (it all must be removed). You can use the replace() method with this pattern to create your
own stripHTML() method for a String:

String.prototype.stripHTML = function () {
var reTag = /<(?:.|\s)*?>/g;
return this.replace(reTag, “”);

};

To use this method is equally simple:

var sTest = “This would be bold”;
alert(sTest.stripHTML()); //outputs “This would be bold”

209

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 209

Lookaheads
Sometimes you may want to capture a particular group of characters only if they appear before another
set of characters. Using lookaheads makes this process easy.

A lookahead is just what it sounds like: It tells the regular expression evaluator to look ahead any number
of characters without losing its spot. There are both positive and negative lookaheads. Positive lookaheads
check whether a certain set of characters comes next. Negative lookaheads determine if a certain set of
characters does not come next.

A positive lookahead is created by enclosing a pattern between (?= and). Note that this is not a group,
even though it uses parentheses. In fact, groups don’t recognize that lookaheads (either positive or nega-
tive) exist. Consider the following:

var sToMatch1 = “bedroom”;
var sToMatch2 = “bedding”;
var reBed = /(bed(?=room))/;
alert(reBed.test(sToMatch1)); //outputs “true”
alert(RegExp.$1); //outputs “bed”
alert(reBed.test(sToMatch2)); //outputs “false”

In this example, reBed matches “bed” only if it is followed by “room”. Therefore, it matches
sToMatch1 but not sToMatch2. After testing the expression against sToMatch1, this code outputs the
contents of RegExp.$1, which is “bed”, not “bedroom”. The “room” part of the pattern is contained
inside of a lookahead and so isn’t returned as part of the group.

At the other end of the spectrum is a negative lookahead, created by enclosing a pattern between (?!
and). The previous example can be changed to use a negative lookahead to match “bedding” instead
of “bedroom”:

var sToMatch1 = “bedroom”;
var sToMatch2 = “bedding”;
var reBed = /(bed(?!room))/;
alert(reBed.test(sToMatch1)); //outputs “false”
alert(reBed.test(sToMatch2)); //outputs “true”
alert(RegExp.$1); //outputs “bed”

Here, the expression is changed to match “bed” only if “room” doesn’t follow it, so the pattern matches
“bedding” but not “bedroom”. After testing against sToMatch2, RegExp.$1 contains “bed” once
again, not “bedding”.

Boundaries
Boundaries are used in regular expressions to indicate the location of a pattern. The following table lists
the available boundaries:

Although JavaScript supports regular-expression lookaheads, it does not support
lookbehinds, which match patterns such as “match b only if it isn’t pre-
ceded by a”.

210

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 210

Boundary Description

^ Beginning of the line

$ End of the line

\b Word boundary

\B Non-word boundary

Suppose that you want to find a word, but only if it appears at the end of the line. You can use the dollar
sign ($) to indicate this:

var sToMatch = “Important word is the last one.”;
var reLastWord = /(\w+)\.$/;
reLastWord.test(sToMatch);
alert(RegExp.$1); //outputs “one”

The regular expression in this example looks for the last word with one or more word characters preced-
ing a period that appears before the end of the line. When this expression is run against sToMatch, it
returns “one”. You can easily change this expression to get the first word in the line by using the caret
(^) character:

var sToMatch = “Important word is the last one.”;
var reFirstWord = /^(\w+)/;
reFirstWord.test(sToMatch);
alert(RegExp.$1); //outputs “Important”

In this example, the regular expression looks for the beginning of the line followed by one or more word
characters. If a non-word character is encountered, the match stops, returning “Important”. This exam-
ple can be easily updated to use a word boundary instead:

var sToMatch = “Important word is the last one.”;
var reFirstWord = /^(.+?)\b/;
reFirstWord.test(sToMatch);
alert(RegExp.$1); //outputs “Important”

Here, the regular expression uses a reluctant quantifier to specify any character can appear one or more
times before a word boundary (if a greedy quantifier is used, the expression matches the entire string).

Using the word boundary is a great way to extract words from a string.

var sToMatch = “First second third fourth fifth sixth”
var reWords = /\b(\S+?)\b/g;
var arrWords = sToMatch.match(reWords);

The regular expression reWords uses both the word boundary (\b) and the non-white space class (\S)
to extract the words in a sentence. After execution, the arrWords array contains “First”, “second”,
“third”, “fourth”, “fifth”, and “sixth”. Note that the beginning of the line and the end of the line,
normally represented by ^ and $, respectively, both count as word boundaries so “First” and “sixth”
are included in the result. This is not the only way to get all the words in a sentence, however.

211

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 211

It is, in fact, easier to use the word character class (\w):

var sToMatch = “First second third fourth fifth sixth”
var reWords = /(\w+)/g;
var arrWords = sToMatch.match(reWords);

This is just the latest example of how the same functionality can be achieved by different means.

Multiline mode
In the last section, you learned about the beginning and end of the line boundaries. If a string has only
one line, this is very straightforward. But what if there are multiple lines contained in a string? You
could use the split() method to separate the string into an array of lines, but then you’d have to match
the regular expression against each line.

To illustrate the problem, consider the following example:

var sToMatch = “First second\nthird fourth\nfifth sixth”
var reLastWordOnLine = /(\w+)$/g;
var arrWords = sToMatch.match(reLastWordOnLine);

The regular expression in this code wants to match a word at the end of a line. The only match contained in
arrWords is “sixth”, because it is at the end of the string. However, there are two line breaks in sToMatch,
so really both “second” and “fourth” should also be returned. This is where multiline mode comes in.

To specify multiline mode, you need only add an m to the options of the regular expression. Doing so
causes the $ boundary to match the new line character (\n) as well as the actual end of the string. If you
add this option, the previous example returns “second”, “fourth”, and “sixth”:

var sToMatch = “First second\nthird fourth\nfifth sixth”
var reLastWordOnLine = /(\w+)$/gm;
var arrWords = sToMatch.match(reLastWordOnLine);

Multiline mode also changes the behavior of the ^ boundary so that it matches immediately after a new
line character. For example, to retrieve the strings “First”, “third”, and “fifth” from the string in
the example, you can do this:

var sToMatch = “First second\nthird fourth\nfifth sixth”
var reFirstWordOnLine = /^(\w+)/gm;
var arrWords = sToMatch.match(reFirstWordOnLine);

Without specifying multiline mode, the expression would return only “First”.

Understanding the RegExp Object
A regular expression in JavaScript is an object just like everything else. You already know that regular
expressions are represented by the RegExp object, and you also know that it has methods, which have

212

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 212

already been discussed in this chapter. But the RegExp object also has properties, both on the constructor
and on instances of RegExp. Both sets of properties change as patterns are created and tested.

Instance properties
An instance of RegExp has a number of properties that can be of use to developers:

❑ global — A Boolean value indicating whether or not the g option has been set

❑ ignoreCase — A Boolean value indicating whether or not the i option has been set

❑ lastIndex — An integer representing the character position where the next match will be
attempted (only filled after using exec() or test(), otherwise is 0)

❑ multiline — A Boolean value indicating whether the m option has been set

❑ source — The string source of the regular expression. For example, the expression /[ba]*/
returns “[ba]*” as its source.

You don’t typically use the global, ignoreCase, multiline, and source properties because you often
already have the data they provide:

var reTest = /[ba]*/i;
alert(reTest.global); //outputs “false”
alert(reTest.ignoreCase); //outputs “true”
alert(reTest.multiline); //outputs “false”
alert(reTest.source); //outputs “[ba]*”

The really useful property is lastIndex, which tells you how far the regular expression has traveled
along a string before stopping:

var sToMatch = “bbq is short for barbecue”;
var reB = /b/g;
reB.exec(sToMatch);
alert(reB.lastIndex); //outputs “1”
reB.exec(sToMatch);
alert(reB.lastIndex); //outputs “2”
reB.exec(sToMatch);
alert(reB.lastIndex); //outputs “18”
reB.exec(sToMatch);
alert(reB.lastIndex); //outputs “21”

In this example, the regular expression reB is looking for the character b. When it is first executed
against sToMatch, it finds the b in the first position, position 0; therefore, the lastIndex property is set
to 1, which is where the matching picks up when exec() is called again. When it’s called again, the
expression finds the b in position 1, which sets lastIndex to 2. When called a third time, it finds the b
in position 17, setting lastIndex to 18, and so on.

If you want the matching to start at the beginning again, you can always set lastIndex to 0:

var sToMatch = “bbq is short for barbecue”;
var reB = /b/g;

213

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 213

reB.exec(sToMatch);
alert(reB.lastIndex); //outputs “1”
reB.lastIndex = 0;
reB.exec(sToMatch);
alert(reB.lastIndex); //outputs “1”

With the change in this code, both calls to exec() find the b in position 0, so both times, the alert dis-
plays “1” as the value of lastIndex.

Static properties
The static RegExp properties apply to all regular expressions in scope. These properties are also unique
because they each have two names: a verbose name and a short name beginning with a dollar sign. The
properties are listed in the following table.

Verbose Name Short Name Description

input $_ The last string matched against (the string passed in
to exec() or test())

lastMatch $& The last matched characters

lastParen $+ The last matched group

leftContext $` The substring before the last match

multiline $* A Boolean value specifying whether all expressions
should use multiline mode

rightContext $’ The substring after the last match

These properties can be used to tell you specific information about the match just completed using
exec() or test(). Example:

var sToMatch = “this has been a short, short summer”;
var reShort = /(s)hort/g;
reS.test(sToMatch);
alert(RegExp.input); //outputs “this has been a short, short summer”
alert(RegExp.leftContext); //outputs “this has been a “
alert(RegExp.rightContext); //outputs “, short summer”
alert(RegExp.lastMatch); //outputs “short”
alert(RegExp.lastParen); //outputs “s”

This example illustrates how the various properties are used:

❑ The input property is always equal to the string being tested.

❑ RegExp.leftContext contains everything before the first instance of “short” and
RegExp.rightContext contains everything after the first instance of “short”.

❑ The lastMatch property contains the last string that matches the entire regular expression,
which is “short”.

❑ The lastParen property contains the last matched group, which in this case is “s”.

214

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 214

You can also use the short names for these properties, although you must use the bracket notation for
most of them because some names use illegal ECMAScript syntax:

var sToMatch = “this has been a short, short summer”;
var reShort = /(s)hort/g;
reShort.test(sToMatch);
alert(RegExp.$_); //outputs “this has been a short, short summer”
alert(RegExp[“$`”]); //outputs “this has been a “
alert(RegExp[“$’”]); //outputs “, short summer”
alert(RegExp[“$&”]); //outputs “short”
alert(RegExp[“$+”]); //outputs “s”

Keep in mind that every time exec() or test() is called, all these properties (except multiline) are
reset. Example:

var sToMatch1 = “this has been a short, short summer”;
var sToMatch2 = “this has been a long, long summer”;
var reShort = /(s)hort/g;
var reLong = /(l)ong/g;

reShort.test(sToMatch1);
alert(RegExp.$_); //outputs “this has been a short, short summer”
alert(RegExp[“$`”]); //outputs “this has been a “
alert(RegExp[“$’”]); //outputs “, short summer”
alert(RegExp[“$&”]); //outputs “short”
alert(RegExp[“$+”]); //outputs “s”

reLong.test(sToMatch1);
alert(RegExp.$_); //outputs “this has been a long, long summer”
alert(RegExp[“$`”]); //outputs “this has been a “
alert(RegExp[“$’”]); //outputs “, long summer”
alert(RegExp[“$&”]); //outputs “long”
alert(RegExp[“$+”]); //outputs “l”

Here, a second regular expression, reLong, is used after reShort. All the RegExp properties are set to
new values.

The multiline property is a different type of property because it doesn’t depend on the last executed
match. Instead, it sets the m option for every regular expression in scope:

var sToMatch = “First second\nthird fourth\nfifth sixth”
var reLastWordOnLine = /(\w+)$/g;
RegExp.multiline = true;
var arrWords = sToMatch.match(reLastWordOnLine);

When this code completes execution, arrWords contains “second”, “fourth”, and “sixth”, just as if
the m option is used in the regular expression.

Internet Explorer and Opera don’t support RegExp.multiline, so it’s best to use the
m setting on individual expressions instead of trying to set this flag globally.

215

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 215

Common Patterns
On the Web, regular expressions are most often used to validate user input before sending data back to
the server. This is, after all, why JavaScript was initially created.

The patterns most commonly tested for on the Web are the following:

❑ Dates

❑ Credit Cards

❑ URLs

❑ E-mail Addresses

Each of these data types represents a different problem to solve. Some involve numbers only, others
involve non-alphanumeric characters, and still others include characters that can be ignored. By study-
ing these four patterns, you can sharpen your regular expression skills.

Validating dates
For many Web developers, dates are a major headache. Despite the advent of nifty layer-based, pop-up
calendar systems, users really just want to be able to type in a date. Most developers cringe at the idea
of letting a user manually enter a date. Many different date patterns are used around the world, not to
mention the internationalized month and day names! Many sites use three form fields for date entry,
usually comprised of two combo boxes (one with month names, the other with day numbers) and a text
field for the year (although sometimes this, too, is a combo box). Although this approach is okay, it still
leaves users wanting to type in a date, which is much faster than tabbing through three fields and click-
ing up or down to select an item in a combo box.

Think back to Chapter 3, “Object Basics,” and the discussion about Date.parse(), which can parse sev-
eral string patterns into millisecond representations of dates. As a quick review, these are the supported
patterns:

❑ m/d/yyyy (such as 6/13/2004)

❑ mmmm d, yyyy (such as January 12, 2004)

But what if you want to allow users to enter a date in the form dd/mm/yyyy (such as 25/06/2004),
which is popular in Europe? This is where regular expressions can help.

To start discerning a pattern, consider the various ways a date in the format can be represented. For
instance, a month is always two digits, numbers 01 through 12; the day also must always have two digits
that must be numbers 01 through 31. So, the month and day must be two-digit numbers whereas the
year must have four digits. Start with a simple pattern, like this:

var reDate = /\d{1,2}\/\d{1,2}\/\d{4}/;

This pattern matches the basic format of dd/mm/yyyy, but it doesn’t take into account the range of
valid numbers for days or months. The result of this could be a false positive when matched against a
date such as 55/44/2004. To solve this problem, consider a pattern for recording just the day: The first

216

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 216

digit can be any number 0–3 and the second digit (which is required) can be any number 0–9. Therefore,
a logical pattern for the day would be as follows:

var reDay = /[0-3]?[0-9]/;

However, this expression also matches 32 through 39, which are never valid days. By using alternation
and character classes, you can come up with an all-encompassing day pattern:

var reDay = /0[1-9]|[12][0-9]|3[01]/;

This regular expression correctly matches all day values where 0 can be before any number 1 through 9,
but not another 0, or the number can begin with 1 or 2 and can be followed by any number 0 through 9.
Finally, the number can begin with a 3 and be followed by only a 0 or a 1. Now, you move on to format-
ting the month.

The month pattern is very much like the day pattern except without as many options:

var reMonth = /0[1-9]|1[0-2]/;

The pattern presented here matches all numbers 01 through 12, without exception. The last step is to
create a pattern for the year.

Two modes of thinking exist about allowing users to enter the year. The first is to let them enter whatever
year they want (so long as it’s numerical) and let them deal with any problems associated with setting a
due date in the distant future. The second is to limit the valid years to those from 1900 through 2099, with
the logic being that by the time 2099 comes around, chances are any system using this code will have been
put out to pasture a long time ago.

For the purpose of building a complete example, consider the second mode of thought. This can be
accomplished with the following regular expression:

var reYear = /19|20\d{2}/;

All years between 1900 and 2099 will match this pattern, which starts by declaring a year must start with
either 19 or 20 followed by two more digits.

Combining the patterns for the day, month, and year into one, you get:

var reDate = /(?:0[1-9]|[12][0-9]|3[01])\/(?:0[1-9]|1[0-2])\/(?:19|20\d{2})/;

Notice that the complete pattern puts each part of the date into a non-capturing group. This is necessary
to ensure that the alternations don’t run into one another. You can, of course, use capturing groups if you
have the need.

Finally, it’s much easier to use a function to check if a date is valid, so you can wrap the regular expres-
sion and the test in a function called isValidDate():

function isValidDate(sText) {
var reDate = /(?:0[1-9]|[12][0-9]|3[01])\/(?:0[1-9]|1[0-2])\/(?:19|20\d{2})/;
return reDate.test(sText);

}

217

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 217

The isValidDate() function is then called like this:

alert(isValidDate(“5/5/2004”)); //outputs “true”
alert(isValidDate(“10/12/2009”)); //outputs “true”
alert(isValidDate(“6/13/2000”)); //outputs “false”

Validating credit cards
If you own or operate an e-commerce site, chances are you need to deal with credit card validation. Not
every incorrect credit card number is a fraudulent buyer; sometimes people just mistype or hit Enter too
early. To prevent a trip back to the server, you can create some basic patterns to determine if a given
credit card number is valid.

To start, consider a MasterCard credit card number, which must contain 16 digits. Of those 16 digits, the
first two digits must be a number between 51 and 55. A simple pattern is the following:

var reMasterCard = /^5[1-5]\d{14}$/;

Note the use of the caret and dollar sign to indicate the start and end of input to ensure that input
matches the entire string, not just part of it. This pattern is okay, but MasterCard numbers can be entered
either with spaces or dashes between every four digits, such as 5555-5555-5555-5555, which should also
be taken into account.

var reMasterCard = /^5[1-5]\d{2}[\s\-]?\d{4}[\s\-]?\d{4}[\s\-]?\d{4}$/;

Actual credit card number validation requires using the Luhn algorithm. The Luhn algorithm is a
method to validate unique identifiers and is commonly used to validate credit card numbers. To run a
number through the algorithm, however, you must extract the numbers from the user input, which
means adding capturing groups:

var reMasterCard = /^(5[1-5]\d{2})[\s\-]?(\d{4})[\s\-]?(\d{4})[\s\-]?(\d{4})$/;

Now you can begin to build a function to validate a MasterCard number. The first step is to test a given
string against the pattern. If the string matches, then add the four digit groups back into a string (for
example, “5432-1234-5678-9012” should be converted to “5432123456789012”):

function isValidMasterCard(sText) {
var reMasterCard = /^(5[1-5]\d{2})[\s\-]?(\d{4})[\s\-]?(\d{4})[\s\-]?(\d{4})$/;

if (reMasterCard.test(sText)) {

var sCardNum = RegExp.$1 + RegExp.$2 + RegExp.$3 + RegExp.$4;

//Luhn algorithm here

} else {
return false;

}
}

218

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 218

The Luhn algorithm has four steps. The first step is to start at the last digit in the card number and go
backwards digit by digit, adding together all the digits in odd positions (1, 3, and so on). To keep track of
whether the digit is in an even position, it’s easiest to use a Boolean flag (which is called bIsOdd). The
flag starts out true, because the last position is number 15.

It’s helpful to define the Luhn algorithm in a separate function so other functions access it easily:

function luhnCheckSum(sCardNum) {

var iOddSum = 0;
var bIsOdd = true;

for (var i=sCardNum.length-1; i >= 0; i--) {

var iNum = parseInt(sCardNum.charAt(i));

if (bIsOdd) {
iOddSum += iNum;

}

bIsOdd = !bIsOdd;
}

}

The next step is to add the digits in even positions; but there’s a twist: You must first multiply the digit
by two and then, if the result has two digits, you must add them together before adding to the overall
sum. That’s a bit wordy, so consider the credit card number 5432-1234-5678-9012. You have already
added together the digits in the odd positions, which is equal to 4 + 2 + 2 + 4 + 6 + 8 + 0 + 2 = 28. In this
step, you start by multiplying digits by two, which means that 5, 3, 1, 3, 5, 7, 9, and 1 will all be multi-
plied by two, leaving you with 10, 6, 2, 6, 10, 14, 16, and 2. Because 10, 10, 14, and 16 each have two dig-
its, these digits must be added, so you are now left with 1, 6, 2, 6, 1, 5, and 7. It is these numbers that you
add and store, which equals 28.

Putting this algorithm into code, you get this:

function luhnCheckSum(sCardNum) {

var iOddSum = 0;
var iEvenSum = 0;
var bIsOdd = true;

for (var i=sCardNum.length-1; i >= 0; i--) {

var iNum = parseInt(sCardNum.charAt(i));

if (bIsOdd) {
iOddSum += iNum;

} else {
iNum = iNum * 2;
if (iNum > 9) {

iNum = eval(iNum.toString().split(“”).join(“+”));
}
iEvenSum += iNum;

219

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 219

}

bIsOdd = !bIsOdd;
}

}

Adding the else statement to if (bIsOdd) accomplishes adding the odd position digits together. If the
number is greater than 9 (which means it has two digits), the number is transformed using a variety of
methods talked about earlier in the book:

1. The number is transformed into a string using toString().

2. The string is then split into an array of two characters using split(). For example, 12 would be
split into an array of “1” and “2”.

3. The array is combined with a plus sign using join(), so “1” and “2” become “1+2”.

4. The resulting string is then passed in to eval(), which interprets it as literal code (so “1+2” is
added as 1+2 and returns 3).

The very last step is to add the two sums (from the even and odd position digits) and perform a modu-
lus (remainder) operation on the result. If the number is valid, the sum is equally divisible by 10 (so it
will be equal to 20, 30, 40, and so on).

function luhnCheckSum(sCardNum) {

var iOddSum = 0;
var iEvenSum = 0;
var bIsOdd = true;

for (var i=sCardNum.length-1; i >= 0; i--) {

var iNum = parseInt(sCardNum.charAt(i));

if (bIsOdd) {
iOddSum += iNum;

} else {
iNum = iNum * 2;
if (iNum > 9) {

iNum = eval(iNum.toString().split(“”).join(“+”));
}
iEvenSum += iNum;

}

bIsOdd = !bIsOdd;
}

return ((iEvenSum + iOddSum) % 10 == 0);
}

Add this method back into the isValidMasterCard() method, and you’re done:

function isValidMasterCard(sText) {
var reMasterCard = /^(5[1-5]\d{2})[\s\-]?(\d{4})[\s\-]?(\d{4})[\s\-]?(\d{4})$/;

220

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 220

if (reMasterCard.test(sText)) {

var sCardNum = RegExp.$1 + RegExp.$2 + RegExp.$3 + RegExp.$4;

return luhnCheckSum(sCardNum);

} else {
return false;

}
}

You can now pass in MasterCard numbers like this:

alert(isValidMasterCard(“5432 1234 5678 9012”)); //outputs “false”
alert(isValidMasterCard(“5432-1234-5678-9012”)); //outputs “false”
alert(isValidMasterCard(“5432123456789012”)); //outputs “false”

For other types of credit cards, you must know the rules governing their credit card numbers.

Visa card numbers can have either 13 or 16 digits and the first digit must always be 4, therefore, the pat-
tern to match a Visa number (with no spaces) is:

var reVisa = /^(4\d{12}(?:\d{3})?)$/;

A couple of things to note in this pattern:

❑ A non-capturing group surrounds the final three digits of the card number because these three
digits alone aren’t of much use.

❑ The question mark after the non-capturing group indicates that there should be either three
more digits or no more digits.

With the regular expression complete, you just extract the number and apply the Luhn algorithm:

function isValidVisa(sText) {
var reVisa = /^(4\d{12}(?:\d{3})?)$/;

if (reVisa.test(sText)) {
return luhnCheckSum(RegExp.$1);

} else {
return false;

}
}

For more on credit card number patterns and using Luhn’s algorithm, see http://
www.beachnet.com/~hstiles/cardtype.html.

221

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 221

Validating e-mail addresses
Creating a pattern to match all valid e-mail addresses is quite an undertaking. The specification that
defines what a valid e-mail address is, RFC 2822, defines all the following patterns as valid:

❑ john@somewhere.com

❑ john.doe@somewhere.com

❑ John Doe <john.doe@somewhere.com>

❑ “john.doe”@somewhere.com

❑ john@[10.1.3.1]

Realistically, however, you will probably only see the first three variations and only the first two would
ever be entered by a user into a text box on your Web site (or Web application). For this reason, this sec-
tion focuses on validating these two patterns.

You already know the basic format for an e-mail address is a bunch of characters (which can be num-
bers, letters, dashes, dots — pretty much anything but spaces), followed by an at (@) symbol, followed by
more characters. You also know (perhaps only subconsciously), that at least one character must precede
the @ and at least three must come after it, the second of which must be a period (a@a.b is a valid e-mail
address, a@a and a@a. are not).

The text before and after the @ follows the same two rules: It cannot begin or end with a period, and it
cannot have two periods in a row. Therefore, the regular expression is the following:

var reEmail = /^(?:\w+\.?)*\w+@(?:\w+\.?)*\w+$/;

The expression begins with a non-capturing group (?:\w+\.?), which tells you that any number of
word characters can be followed by zero or one periods. This can happen zero or more times (such as
a.b.c.d), so the asterisk is used for that group.

The next part of the expression is \w+@, which ensures that a word character is always before the @.
Immediately after that is the same non-capturing group, (?:\w+\.?), which can also appear zero or
more times, so the asterisk is used. The last part of the regular expression is \w+$, which states that a
word character must be the last character on the line, disallowing e-mail addresses such as “john@doe.”.

Just wrap this pattern in a function and you’re ready to go:

function isValidEmail(sText) {
var reEmail = /^(?:\w+\.?)*\w+@(?:\w+\.?)*\w+$/;
return reEmail.test(sText);

}

This function can be called like so:

alert(“john.doe@somewhere.com”); //outputs “true”
alert(“john.doe@somewhere.”); //outputs “false”

222

Chapter 7

10_579088 ch07.qxd 3/28/05 11:38 AM Page 222

Summary
This chapter introduced the JavaScript/ECMAScript implementation of regular expressions. It covered
the two ways of declaring regular expressions, Perl-style and with the RegExp constructor, as well as the
various properties and methods that can be used with them.

You learned how to create many different types of regular expressions, ranging from simply using char-
acter literals to using character classes, quantifiers, and groups. Additionally, you learned advanced reg-
ular expression techniques such as alternation, lookaheads, boundaries, and multiline mode.

Finally, the chapter showed you how to use regular expressions to solve a variety of problems, including
validating dates, credit card numbers, and e-mail addresses, as well as how to remove excess white
space and superfluous HTML tags from text.

223

Regular Expressions

10_579088 ch07.qxd 3/28/05 11:38 AM Page 223

10_579088 ch07.qxd 3/28/05 11:38 AM Page 224

Browser and Operating
System Detection

A big part of Web programming is identifying target browsers and operating systems. Whether
you are building a simple Web site or a complex Web application, this important information must
be determined before any work begins. Because browsers support different levels of HTML and
JavaScript, often differing across operating systems, you can save time and money by knowing
your targets. This ensures that you won’t include features that aren’t available to your users.

Today, the challenge is even greater with the vast number of Web browsers available on so many
different platforms. Windows users can use Internet Explorer, Mozilla, and Opera; Macintosh
users have Internet Explorer, Mozilla, and now, Safari; Unix users can use Mozilla as well as
Konqueror. Developing for all of them requires a great deal of forethought and a well-planned
approach to dealing with their similarities and differences.

This chapter gives you an in-depth look at JavaScript browser and operating system detection to
prepare you to develop cross-browser solutions.

The Navigator Object
The most important object in client-side browser detection is the navigator object. The naviga-
tor object is one of the earliest BOM objects implemented (beginning in Netscape Navigator 2.0
and Internet Explorer 3.0). As I mentioned in Chapter 5, “JavaScript in the Browser,” it contains a
number of properties that can give you information about the browser, such as the name, version,
and platform.

Although Microsoft objected to the term navigator as being specific to Netscape’s browser, the
navigator object has become a sort of de facto standard for providing information about a Web
browser. (Microsoft does have its own object called clientInformation in addition to the
navigator object, but they both provide similar data.)

11_579088 ch08.qxd 3/28/05 11:38 AM Page 225

Methods of Browser Detection
Like most things in JavaScript, a few different forms of browser detection are available. Presently, two
approaches to browser detection are used: object/feature detection and user-agent string detection. Each
approach has its advantages and disadvantages, and you should understand proper usage of each when
you are deploying your Web solution.

Object/feature detection
Object detection (also called feature detection) is a generic way of determining a browser’s capabilities
rather than the exact make and model of a target browser. Most JavaScript experts point to this method
as the most appropriate one to use because they believe it future proofs scripts against changes that might
make it difficult to determine the exact browser being used.

Object detection involves checking to see if a given object exists before using it. For instance, suppose
you want to use the DOM method document.getElementById(), but you aren’t sure if the browser
supports it. You can use the following code:

if (document.getElementById) {
//the method exists, so use it here

} else {
//do something else

}

The previous code checks whether the method exists. You have learned that a property (or method) that
doesn’t exist returns a value of undefined. You may also remember that the value undefined, when
translated into a Boolean, is equal to false. So, if document.getElementById() doesn’t exist, the code
skips to the else clause; otherwise the first set of code is executed.

This method of detection should be used when you are more concerned with the capabilities of the
browser than you are with its actual identity. Throughout the book, you see examples of object detection
used in specific instances, whereas in other instances another method, user-agent string detection is
most appropriate.

User-agent string detection
User-agent string detection is the oldest browser detection method there is. Every program that accesses
a Web site is required to provide a user-agent string identifying itself to the server. Traditionally, this
information was only accessible from the server in the CGI environment variable HTTP_USER_AGENT
(accessed by $ENV{‘HTTP_USER_AGENT’}). However, JavaScript introduced the userAgent property of
the navigator object to provide client-side access to the user-agent string:

var sUserAgent = navigator.userAgent;

Note that to check for the existence of a function, you must omit the parentheses. If
you include the parentheses, the interpreter tries to call the function, which causes
an error if the function doesn’t exist.

226

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 226

The user-agent string provides a lot of information about a Web browser, including the browser name
and version. This is why Web site traffic evaluation software uses the user-agent string to determine how
many of your visitors are using a particular browser or operating system. The following table displays
some common browsers and their user-agent strings

Browser User-Agent String

Internet Explorer 6.0 Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)
(Windows XP)

Mozilla 1.5 Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.5)
(Windows XP) Gecko/20031007

Firefox 0.92 Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.7)
(Windows XP) Gecko/20040707 Firefox/0.8

Opera 7.54 Opera/7.54 (Windows NT 5.1; U)
(Windows XP)

Safari 1.25 Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en)
(MacOS X) Apple-WebKit/124 (KHTML, like Gecko) Safari/125.1

Just a quick look at these user-agent strings reveals a lot about the browsers that are generating them.
Also, you may notice just how different each browser’s user-agent string is. Opera’s user-agent string is
pretty short whereas Safari’s is extremely long. You may also notice that Internet Explorer’s user-agent
string looks suspiciously like Mozilla’s, and Safari’s says like Gecko. The history of how user-agent
strings developed is a very revealing journey into how browsers have developed over the years.

A (Not So) Brief History
of the User-Agent String

Before you delve into user-agent detection, you should understand why the detection script looks for cer-
tain parts of a user-agent string. Understanding user-agent strings can be very difficult without under-
standing why and how they developed. This section takes a look into the evolution of user-agent strings
from early browser, such as Netscape Navigator 3.0, through modern-day browsers, such as Safari.

Netscape Navigator 3.0 and Internet Explorer 3.0
The browser that spearheaded the popularity of the Web was Netscape Navigator 3.0, which was
released around 1996. The code name of the Netscape engine was Mozilla, and the user-agent string had
a very simple format:

Mozilla/AppVersion (Platform; Security [; OS-or-CPU-Description])

For example, Netscape Navigator 3.0 running on Windows 95 would have the following user-agent string:

Mozilla/3.0 (Win95; I)

227

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 227

The I indicates that this browser has weak security, as opposed to N for no security or U for strong
128-bit security (most modern browsers have 128-bit security in the United States). When running on
Windows, Netscape left off the last section that contained the operating system or CPU description.

Shortly thereafter, Microsoft introduced Internet Explorer (IE) 3.0 with a user-agent string designed to
indicate full compatibility with Netscape Navigator. To accomplish this, IE’s user-agent string began
with the string “Mozilla”, so any server checking for this (as was standard at the time when checking
for Netscape) would allow IE to view the page.

The user-agent string for Internet Explorer 3.0 had the following format:

Mozilla/2.0 (compatible; MSIE [IEVersion]; [OS])

For example, IE 3.02 running on Windows 95 had the following user-agent string:

Mozilla/2.0 (compatible; MSIE 3.02; Windows 95)

In this example, IEVersion is 3.02 and OS is Windows 95. For some reason, Microsoft put in Mozilla/2.0
instead of Mozilla/3.0. History hasn’t determined why this happened, although it was most likely an
oversight. Unfortunately, this error was responsible for a long sequence of user-agent string confusion.

To understand the problem, consider the appVersion property of the navigator object, which returns
everything after the first forward slash in a user-agent string. For Netscape Navigator 3.0, appVersion
returns 3.0 (Win95; I). This value could be passed right into parseFloat() to get the browser ver-
sion. However, for IE 3.0, appVersion returns 2.0 (compatible; MSIE 3.02; Windows 95).
Passing that into parseFloat() returns 2.0, which is incorrect.

Essentially, developers wanted to be able to use one algorithm to check for 3.0-level browsers, such as this:

if (parseFloat(navigator.appVersion) >= 3) {
//do 3.0-level stuff here

}

Because of IE’s user-agent string format, this algorithm had to change:

if (navigator.userAgent.indexOf(“MSIE”) > -1) {

//IE, now check the version
if (navigator.userAgent.indexOf(“MSIE 3.”) > -1) {

//do IE 3.0 browser stuff here
}

} else if (parseFloat(navigator.appVersion) >= 3) {
//do other 3.0 browser stuff here

}

Another problem occurs when you try to determine the operating system from the user-agent string.
Because Netscape and Microsoft decided to represent the same operating system with different strings,
two checks must be used for each operating system, like so:

228

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 228

var isWin95 = navigator.userAgent.indexOf(“Win95”) > -1 ||
navigator.userAgent.indexOf(“Windows 95”) > -1;

But this was only the beginning.

Netscape Communicator 4.0 and Internet Explorer 4.0
Netscape Communicator 4.0 was released in August of 1997 (the name changed from Navigator to
Communicator for this version). Netscape remained true to its original user-agent string format:

Mozilla/AppVersion (Platform; Security [; OS-or-CPU-Description])

With version 4.0 on a Windows 98 machine, the user-agent string looked like this:

Mozilla/4.0 (Win98; I)

And as Netscape released patches and fixes for its browser, the AppVersion (accessible through naviga-
tor.appVersion) was incremented accordingly, as a user-agent string from version 4.79 indicates:

Mozilla/4.79 (Win98; I)

To Netscape’s credit, the method for detecting the version of Netscape Communicator being used
remained the same.

When Internet Explorer 4.0 was released a short time later, Microsoft did developers a favor by updating
the user-agent string, changing the Mozilla version to 4.0 (which matched Netscape’s latest browser).
Except for this minor modification, IE remained with its original user-agent string format of:

Mozilla/4.0 (compatible; MSIE [IEVersion]; [OS])

For example, IE 4.0 running on Windows 98 returned the following user-agent string:

Mozilla/4.0 (compatible; MSIE 4.0; Windows 98)

This change allowed a very simple algorithm to be used when determining if a browser was 4.0-level:

if (parseFloat(navigator.appVersion) >= 4) {
//do 4.0-level stuff here

}

Although IE 4.0 was the only one of the 4.0 family to be released on the Windows platform, IE 4.5 was
released for MacOS shortly thereafter. This gave a glimpse into the future of IE’s user-agent string format.

IE 4.5 for the MacOS stayed true to the IE 4.0 format for user-agent strings, but updated the IE version
number:

Mozilla/4.0 (compatible; MSIE 4.5; Mac_PPC)

The browser version is 4.5, but the Mozilla version is 4.0, forcing developers to adjust their algorithms
when detecting IE/Mac. This is important to keep in mind.

229

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 229

Internet Explorer 5.0 and higher
Microsoft released the next version of IE, 5.0, in 1999. As expected, the user-agent string once again pre-
sented problems. For example, IE 5.0 running on Windows NT 4.0 returned this user-agent string:

Mozilla/4.0 (compatible; MSIE 5.0; Windows NT)

Once again, the IE version was updated, but the Mozilla version was left at 4.0.

This pattern continued as versions 5.5 and 6.0 were released, ultimately leading to a 6.0 user-agent string
similar to this:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT)

Because of this, it’s still necessary to do a separate check for IE.

Mozilla
As part of the development of Netscape 6 (Mozilla), a short document was written up as a specification
for the user-agent string. The new format represented the first departure from Netscape’s original user-
agent string format:

Mozilla/MozillaVersion (Platform ; Security ; OS-or-CPU ; Localization information
?[; PrereleaseVersion] *[; Optional Other Comments]) Gecko/GeckoVersion
[ApplicationProduct/ApplicationProductVersion]

Obviously, a lot of thought went into the user-agent string format. The individual pieces of the user-
agent string are listed in the following table.

String Required? Description

MozillaVersion Yes The version of Mozilla

Platform Yes The type of computer system being used. Possible val-
ues: Windows, Macintosh, X11 (for Unix).

Security Yes The security of the browser. Possible values: N (for no
security), U (for strong security), I (for weak security).

OS-or-CPU Yes Either the operating system the browser is being run
on or the processor type of the computer running the
browser. If the Platform is Windows, this is the version
of Windows (such as WinNT, Win95, and so on). If the
Platform is Macintosh, then this is the CPU (either 68k
or PPC for PowerPC). If the Platform is X11, this is the
Unix operating system name as obtained by the Unix
command uname -sm.

Localization information Yes The language for the browser. Typically en-US in
America.

230

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 230

String Required? Description

Prerelease Version No The version of the open source Mozilla code base
being used in this browser. Note: This was not used
until Mozilla 0.9.2 (Netscape 6.1).

Optional Other Comments No This is space for custom implementations of Mozilla to
add in additional information.

GeckoVersion Yes The version of the Gecko rendering engine being used.
This is a date in the format yyyymmdd.

Application Product No The name of the branded browser using the Mozilla
code. In Netscape 6 releases, this is Netscape6;
Netscape 7 changed it to just Netscape.

Application Product Version No The version of the branded browser using the Mozilla
code.

In order to fully understand exactly what is going on, take a look at an example from Netscape 6.2.1 run-
ning on Windows XP:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:0.9.4) Gecko/20011128
Netscape6/6.2.1

Matching up the various pieces of information:

❑ MozillaVersion is 5.0.

❑ Platform is Windows.

❑ Security is U.

❑ OS-or-CPU is Windows NT 5.1

❑ Localization information is en-US.

❑ PrereleaseVersion is rv:0.9.4.

❑ GeckoVersion is 20011128.

❑ ApplicationProduct is Netscape 6

❑ ApplicationProductVersion is 6.2.1.

It all seems pretty straightforward, right? Then why is MozillaVersion described as 5.0 for Netscape 6.0?
Although no one seems to be sure why this happened, it’s safe to assume that this is a holdover from
when the next planned version of Netscape was 5.0.

Netscape 7.1 was the last version of the Netscape-branded browser. AOL renewed its license agreement
with Microsoft to use Internet Explorer as the AOL software’s built-in browser and then it disbanded the
Netscape team. The Mozilla project still releases new versions of the browser on its own, along with a
friendlier version of Mozilla called Firefox.

231

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 231

Opera
The strongest alternative to IE and Mozilla on most operating systems is Opera.

Opera has a unique approach to its user-agent string. The basic user-agent string has the following format:

Opera/AppVersion (OS; Security) [Language]

Using Opera 7.54 on a Windows XP computer, the user-agent string is the following:

Opera/7.54 (Windows NT 5.1; U) [en]

To its credit, Opera came up with a unique user-agent string to correctly (and simply) identify its Web
browser. The problem comes with another unique browser feature: the capability to disguise itself as
another browser.

Just by using a menu, Opera users can choose to identify the browser as Opera or as one of the various
versions of Internet Explorer and Mozilla, including older Netscape versions. To do this, Opera changes
the user-agent string it reports, as well as adapts some of its other features (including values of the nav-
igator object) to try to emulate the other browsers. However, it doesn’t fully emulate the browsers it
disguises itself as, so it is still important to determine if a browser is actually Opera in disguise.

When Opera is being disguised as Mozilla 5.0, it returns a user-agent string that looks like this:

Mozilla/5.0 (Windows NT 5.1; U) Opera 7.54

As you can see, the application name has changed to Mozilla, and the version is now 5.0, just like
Mozilla’s user-agent string. Note that the string “Opera 7.54” is added towards the end, which still
allows identification of the browser as Opera.

If Opera is disguised as Mozilla 4.78, the user-agent string looks like the following:

Mozilla/4.78 (Windows NT 5.1; U) Opera 7.54

This isn’t too different from the Mozilla 5.0 identification because only the Mozilla version has changed.
The same is true for Mozilla 3.0, which looks like this:

Mozilla/3.0 (Windows NT 5.1; U) Opera 7.54

If Opera is disguised as IE 6.0, the user-agent string changes to this:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1) Opera 7.54

Before version 7.0, Opera could interpret the meaning of Windows operating system
strings. For example, Windows NT 5.1 actually means Windows XP, so in Opera 6.0,
the user agent included Windows XP instead of Windows NT 5.1. In an effort to be
more standards-compliant, version 7.0 started including the officially reported oper-
ating system version instead of an interpreted one.

232

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 232

The important things to note in this string are the following:

1. The Mozilla version is set to 4.0, just like IE 6.0.

2. The string “compatible” is present.

3. The string “MSIE” is present.

These three things accurately mimic IE 5.0’s user-agent string.

Safari
In 2004, Apple introduced its own browser called Safari. Safari is based on another open source project
called KHTML, which is the main component of the Unix-based Konqueror Web browser. Apple created
the Apple Web Kit from KHTML, providing Macintosh developers with their first official Web technol-
ogy platform. Safari was created as an application of the Apple Web Kit and now ships as the default
Web browser with all copies of MacOS X. By doing this, Apple instantly created a segment of the market
that will be using Safari for a long time to come.

The basic format of the Safari user-agent string is the following:

Mozilla/5.0 (Platform; Security; OS-or-CPU; Language)
AppleWebKit/AppleWebKitVersion (KHTML, like Gecko) Safari/SafariVersion

For example:

Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/124 (KHTML, like Gecko)
Safari/125.1

As you can see, this is another long user-agent string. It takes into account not only the version of the
Apple Web Kit but also the Safari version. A point of contention over whether to identify the browser as
Mozilla was solved rather quickly for compatibility reasons. Now, all Safari browsers identify them-
selves as Mozilla 5.0, the same as all Mozilla browsers. The Safari version has typically been the build
number of the browser, not necessarily a representation of the release version number. So although
Safari 1.25 has the number 125.1 in the user-agent string, there may not always be a one-to-one match.

The most interesting and controversial part of this user-agent string is the addition of the string
“(KHTML, like Gecko)” in a pre-1.0 version of Safari. Apple got a lot of pushback from developers
who saw this as a blatant attempt to trick clients and servers into thinking Safari was actually Mozilla
(as if adding Mozilla/5.0 wasn’t enough). Apple’s response was similar to Microsoft’s when the IE user-
agent string came under fire: Safari is compatible with Mozilla, and Web sites shouldn’t block out Safari
users because they appear to be using an unsupported browser.

Epilogue
Even though user-agent string detection can be highly effective in identifying the browser being used, it
does require some research in order to get accurate results. It is because of this tumultuous history that
many developers favor object/feature detection instead of user-agent string detection. However, user-
agent string detection has enough practical uses to warrant learning how to use it effectively.

233

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 233

The Browser Detection Script
The browser detection script described in this section uses the user-agent string detection to identify the
following browsers:

❑ Opera 4.0 and higher

❑ Internet Explorer 4.0 and higher

❑ Mozilla 0.9.2 and higher

❑ Safari 1.0 and higher

❑ Netscape Navigator 4.0 – 4.8x

In addition, the methods developed in this chapter fail gracefully and do not cause JavaScript errors in
older browsers that perhaps don’t support ECMAScript Edition 3 fully.

Methodology
To be practical, it is necessary to detect minimal versions of browsers instead of exact versions. For
instance, this code detects exact versions:

if (isIE5 || isIE6) {
//code

}

It may not seem like a problem now, but what if IE gets up to version 10? You would be required to keep
adding to this code:

if (isIE5 || isIE6 || isIE7 || isIE8 || isIE9 || isIE10) {
//code

}

This obviously is not optimal. However, if you test for minimal versions of browsers, the test remains
the same regardless of how many future versions are released:

if (isMinIE5) {
//code

}

This algorithm never changes, and it represents the way that the browser detection code in this chapter
is developed.

First Steps
The first two steps necessary for browser detection are storing the user-agent string in a local variable
and getting the reported browser version:

var sUserAgent = navigator.userAgent;
var fAppVersion = parseFloat(navigator.appVersion);

234

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 234

A common occurrence in user-agent strings is a version number with multiple decimal points (for exam-
ple, Mozilla 0.9.2). This causes a problem when you are trying to compare browser versions. You already
know that the parseFloat() function is used to convert a string into a floating-point number. In addi-
tion, parseFloat() works by going character-by-character through a string, stopping when it finds a
non-number character. In the case of a version number with multiple decimal points, the non-number
character is the second decimal point. That means using parseFloat() on the string “0.9.2” yields
a floating-point value of 0.9, completely losing .2. That’s not good.

The best method for comparing two versions of this type of string is to compare the value after the deci-
mal point in each. For instance, suppose you want to determine whether 0.9.2 is greater than 0.9.1. The
correct way to do this is to compare 0 to 0, 9 to 9, and 2 to 1. Because 2 is greater than 1, version 0.9.2 is
greater than 0.9.1. Because you perform this operation so often when detecting browser and operating
system versions, it’s logical to encapsulate this logic in a function.

The function compareVersions() accept two string versions as arguments and returns 0 if they are
equal, 1 if the first version is greater than the second, and –1 if the first version is less than the second.
(As you saw earlier in this book, this is a very common way of representing the relationship between
two versions.)

The first step in the function is to convert each version into an array of values. This fastest way to do this
is to use the split() method and pass in the decimal point as the character separator:

function compareVersions(sVersion1, sVersion2) {

var aVersion1 = sVersion1.split(“.”);
var aVersion2 = sVersion2.split(“.”);

}

At this point, aVersion1 contains the numbers for the first version passed in, and aVersion2 contains
the number of the last version passed in. Next, it is necessary to assure that the arrays have the same
number of digits; otherwise, it is very difficult to compare 0.8.4 to 0.9. To do this, first determine which
array has more digits, and then add zeroes to the other array. This results in 0.9 becoming 0.9.0.

function compareVersions(sVersion1, sVersion2) {

var aVersion1 = sVersion1.split(“.”);
var aVersion2 = sVersion2.split(“.”);

if (aVersion1.length > aVersion2.length) {
for (var i=0; i < aVersion1.length - aVersion2.length; i++) {

aVersion2.push(“0”);
}

} else if (aVersion1.length < aVersion2.length) {
for (var i=0; i < aVersion2.length - aVersion1.length; i++) {

aVersion1.push(“0”);
}

}

}

235

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 235

The highlighted block of code contains an if statement testing which array has more items (if they are
equal, no changes are necessary). Both branches of the if statement do the same thing on different
arrays: The first adds zeroes to aVersion2, whereas the second adds zeroes to aVersion1. After this
point, both arrays have an equal number of digits.

The final step is to iterate through the arrays and compare the corresponding digits in each array:

function compareVersions(sVersion1, sVersion2) {

var aVersion1 = sVersion1.split(“.”);
var aVersion2 = sVersion2.split(“.”);

if (aVersion1.length > aVersion2.length) {
for (var i=0; i < aVersion1.length - aVersion2.length; i++) {

aVersion2.push(“0”);
}

} else if (aVersion1.length < aVersion2.length) {
for (var i=0; i < aVersion2.length - aVersion1.length; i++) {

aVersion1.push(“0”);
}

}

for (var i=0; i < aVersion1.length; i++) {

if (aVersion1[i] < aVersion2[i]) {
return -1;

} else if (aVersion1[i] > aVersion2[i]) {
return 1;

}
}

return 0;

}

In this section, a for loop is used to compare the arrays. If a digit in aVersion1 is less than the corre-
sponding digit in aVersion2, the function automatically exits and returns –1. Likewise, if the digit in
aVersion1 is greater than the one from aVersion2, the function exits and returns 1. If all digits are
tested and no value has been returned, the function returns 0, meaning that the two versions are equal.

This function is used like this:

alert(compareVersions(“0.9.2”, “0.9”)); //returns 1
alert(compareVersions(“1.13.2”, “1.14”)); //returns –1
alert(compareVersions(“5.5”, “5.5”)); //returns 0

The first line returns 1 because 0.9.2 is greater than 0.9; the second line returns –1, because 1.13.2 is less
than 1.14; the third line returns 0 because the two versions are equal. This function is used extensively in
this chapter.

236

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 236

Detecting Opera
The simplest and best way to begin browser detection is to start with the problem browsers, such as
Opera and Safari. If you determine that a browser is not one of these, it is much easier to determine
when a browser is legitimately IE or Mozilla.

To begin, consider the possible Opera user-agent strings:

Opera/7.54 (Windows NT 5.1; U)
Mozilla/5.0 (Windows NT 5.1; U) Opera 7.54
Mozilla/4.78 (Windows NT 5.1; U) Opera 7.54
Mozilla/3.0 (Windows NT 5.1; U) Opera 7.54
Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1) Opera 7.54

One thing that jumps out right away is that each of these strings has the word “Opera”. So the easiest
way to determine if the browser is Opera is just to search for that string:

var isOpera = sUserAgent.indexOf(“Opera”) > -1;

When you know you have an Opera browser, you can go ahead and determine the actual version. The
first step is to define several variables to test for the various versions of Opera.

To determine what version of Opera is being used, you can define some variables:

var isMinOpera4 = isMinOpera5 = isMinOpera6 = isMinOpera7 = isMinOpera7_5 = false;

This code uses compound assignment to set each variable to an initial value of false, ensuring that if
the browser is Netscape, these variables return the correct value.

Naturally, you shouldn’t even bother setting these variables unless the browser has been identified as
Opera, so any further evaluation of the browser version needs to take place inside of an if statement:

if (isOpera) {
//version detection here

}

Because of Opera’s disguises, you have two different ways to determine the browser version. If Opera is
using its own user-agent string, the version is contained in fAppVersion, which was defined earlier.
You can check to see if Opera is using a disguise by checking navigator.appName; if it equals “Opera”,
then the browser isn’t using a disguise.

You could also use a regular expression to do this check; however, regular expres-
sions aren’t supported by some earlier browsers and could cause an error when the
line is executing. Using indexOf() ensures that this line works because the method
has been included since the very first version of JavaScript.

237

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 237

The first step is to define a variable to hold the Opera version called fOperaVersion. Then, you can test
to see if Opera is using a disguise. If it isn’t, then just assign fAppVersion to fOperaVersion:

if (isOpera) {
var fOperaVersion;
if(navigator.appName == “Opera”) {

fOperaVersion = fAppVersion;
}

}

The more difficult case is when Opera is using a disguise. For this, you need to use the user-agent string
and extract the version by using a regular expression:

var reOperaVersion = new RegExp(“Opera (\\d+\\.\\d+)”);

This regular expression captures the Opera version, which is one or more numbers, followed by a deci-
mal point, followed by one or more numbers. Note that this regular expression uses the constructor
method and so \d and \. must be double escaped. The constructor method is used for backwards com-
patibility. Even if the browser proves not to be Opera and this code isn’t executed, it may not support the
regular expression literal style (which breaks ECMAScript Edition 1 syntax). This may cause an error.

Using this regular expression with the test() method stores the version in RegExp.$1, which is repre-
sented as RegExp[“$1”] to ensure it won’t break old-style JavaScript syntax.

if (isOpera) {
var fOperaVersion;
if(navigator.appName == “Opera”) {

fOperaVersion = fAppVersion;
} else {

var reOperaVersion = new RegExp(“Opera (\\d+\\.\\d+)”);
reOperaVersion.test(sUserAgent);
fOperaVersion = parseFloat(RegExp[“$1”]);

}
}

At this point, the version of Opera is contained in fOperaVersion. The only thing left is to fill in the
variables:

if (isOpera) {
var fOperaVersion;
if(navigator.appName == “Opera”) {

fOperaVersion = fAppVersion;
} else {

var reOperaVersion = new RegExp(“Opera (\\d+\\.\\d+)”);
reOperaVersion.test(sUserAgent);
fOperaVersion = parseFloat(RegExp[“$1”]);

}

It’s okay to use regular expressions inside this if statement because Opera has sup-
ported regular expressions almost before 4.0, the earliest version this script will detect.

238

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 238

isMinOpera4 = fOperaVersion >= 4;
isMinOpera5 = fOperaVersion >= 5;
isMinOpera6 = fOperaVersion >= 6;
isMinOpera7 = fOperaVersion >= 7;
isMinOpera7_5 = fOperaVersion >= 7.5;

}

This completes the first section of the browser detection code. With just this section, it is possible to
determine if a browser is Opera; and if it is, which version. Next up is the other problem browser: Safari.

Detecting Konqueror/Safari
Both Konqueror and Safari are based on the KHTML project and so can be considered the same. The
problem is that you have no way to tell what version of KHTML the browser is using. Therefore, you can
detect whether KHTML is in use, but you still need to rely on the browser version numbers to indicate
browser capabilities.

To start, take a look at a few KHTML-based user agent strings:

Mozilla/5.0 (compatible; Konqueror/2.2.2; SunOS)
Mozilla/5.0 (compatible; Konqueror/3; Linux; de, en_US, de_DE)
Mozilla/5.0 (compatible; Konqueror/3.1; Linux 2.4.20)
Mozilla/5.0 (compatible; Konqueror/3.2; FreeBSD) (KHTML, like Gecko)
Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/51 (like Gecko) Safari/51
Mozilla/5.0 (Macintosh; U; PPC Mac OS X; es-es) AppleWebKit/106.2 (KHTML, like
Gecko) Safari/100.1
Mozilla/5.0 (Macintosh; U; PPC Mac OS X; en) AppleWebKit/124 (KHTML, like Gecko)
Safari/125.1

The first four strings are from Konqueror; the last two are from Safari. Notice a few things in this mix-
ture. First, not all the user-agent strings contain the string “KHTML”, so it is necessary to search for
“Konqueror” and “AppleWebKit” or “Safari” as well as “KHTML”. Apple suggests that you look for
“AppleWebKit” instead of “Safari” because other developers may embed the Apple Web Kit to create
other browsers. Second, the Konqueror version number has no relation to either the Apple Web Kit or
Safari version numbers.

So to start, you should determine if the browser is KHTML based:

var isKHTML = sUserAgent.indexOf(“KHTML”) > -1
|| sUserAgent.indexOf(“Konqueror”) > -1
|| sUserAgent.indexOf(“AppleWebKit”) > -1;

After isKHTML is set, you can then determine which KHTML browser is being used.

if (isKHTML) {
isSafari = sUserAgent.indexOf(“AppleWebKit”) > -1;
isKonq = sUserAgent.indexOf(“Konqueror”) > -1;

}

239

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 239

Next, set up the variables for the different versions of the browsers:

var isMinSafari1 = isMinSafari1_2 = false;
var isMinKonq2_2 = isMinKonq3 = isMinKonq3_1 = isMinKonq3_2 = false;

To determine the version of Safari, you can either interpret the build number or the Apple Web Kit ver-
sion. As mentioned previously, Apple suggests you only use the Apple Web Kit information. Safari 1.0
uses Apple Web Kit version 85 whereas Safari 1.2 uses version 124. To extract this information, it is again
necessary to use a regular expression.

Looking at the user-agent strings at the beginning of this section, you see that the Apple Web Kit version
can have decimals, but doesn’t always. This makes the regular expression a little bit more complicated
than others in this chapter:

var reAppleWebKit = new RegExp(“AppleWebKit\\/(\\d+(?:\\.\\d*)?)”);

This expression uses a non-capturing group to include the decimal point and numbers after it. Other
than that bit of trickery, the capturing group returns the version:

if (isKHTML) {
isSafari = sUserAgent.indexOf(“AppleWebKit”) > -1;
isKonq = sUserAgent.indexOf(“Konqueror”) > -1;

if (isSafari) {
var reAppleWebKit = new RegExp(“AppleWebKit\\/(\\d+(?:\\.\\d*)?)”);
reAppleWebKit.test(sUserAgent);
var fAppleWebKitVersion = parseFloat(RegExp[“$1”]);

isMinSafari1 = fAppleWebKitVersion >= 85;
isMinSafari1_2 = fAppleWebKitVersion >= 124;

}
}

To determine the version of Konqueror, the regular expression is also a little bit complicated because
Konqueror uses version numbers with zero, one, or two decimal points. Because of this, multiple non-
capturing groups are necessary to capture all the variations.

var reKonq = new RegExp(“Konqueror\\/(\\d+(?:\\.\\d+(?:\\.\\d)?)?)”);

This regular expression says to match the string “Konqueror”, followed by a forward slash, followed by
at least one digit, which may or may not be followed by a decimal point and one or more digits, which
may or may not be followed by another decimal point and one or more digits.

After this value is extracted, it must be tested using the compareVersions() function in order to deter-
mine the minimal browser versions:

if (isKHTML) {
isSafari = sUserAgent.indexOf(“AppleWebKit”) > -1;
isKonq = sUserAgent.indexOf(“Konqueror”) > -1;

if (isSafari) {

240

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 240

var reAppleWebKit = new RegExp(“AppleWebKit\\/(\\d+(?:\\.\\d*)?)”);
reAppleWebKit.test(sUserAgent);
var fAppleWebKitVersion = parseFloat(RegExp[“$1”]);

isMinSafari1 = fAppleWebKitVersion >= 85;
isMinSafari1_2 = fAppleWebKitVersion >= 124;

} else if (isKonq) {

var reKonq = new RegExp(“Konqueror\\/(\\d+(?:\\.\\d+(?:\\.\\d)?)?)”);
reKonq.test(sUserAgent);
isMinKonq2_2 = compareVersions(RegExp[“$1”], “2.2”) >= 0;
isMinKonq3 = compareVersions(RegExp[“$1”], “3.0”) >= 0;
isMinKonq3_1 = compareVersions(RegExp[“$1”], “3.1”) >= 0;
isMinKonq3_2 = compareVersions(RegExp[“$1”], “3.2”) >= 0;

}
}

In this section of the code, check whether the compareVersions() returns a value greater-than or equal
to zero, which indicates that the versions are either equal (if it returns 0) or that the first version is
greater than the second (if it returns 1).

The detection for KHTML-based browsers is complete. You can either just use isKHTML if you don’t care
which browser is being used, or use the more specific variables to determine the browser and version.

Detecting Internet Explorer
As discussed earlier, the IE user-agent string is quite unique. Recall the user-agent string for IE 6.0:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT)

When you compare this to other browsers, two parts stand out as unique: “compatible” and “MSIE”.
This is the basis for detecting IE:

var isIE = sUserAgent.indexOf(“compatible”) > -1
&& sUserAgent.indexOf(“MSIE”) > -1;

This seems to be straightforward, but there is a problem. Take a second look at the Opera user-agent
string when it is disguised as IE 6.0:

Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1) Opera 7.54

See the problem? If you check for only “compatible” and “MSIE”, then Opera disguised as IE also returns
true. The solution is to use the isOpera variable (explained previously) to ensure proper detection:

var isIE = sUserAgent.indexOf(“compatible”) > -1
&& sUserAgent.indexOf(“MSIE”) > -1
&& !isOpera;

Next, define variables for the different IE versions:

var isMinIE4 = isMinIE5 = isMinIE5_5 = isMinIE6 = false;

241

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 241

Just as when you are determining the version of a disguised Opera, using a regular expression is the eas-
iest way to extract IE’s version from the user-agent string:

var reIE = new RegExp(“MSIE (\\d+\\.\\d+)”);

Once again, the pattern looks for one or more numbers, followed by a decimal point, followed by one or
more numbers. Putting that expression into practice, you end up with this code:

if (isIE) {
var reIE = new RegExp(“MSIE (\\d+\\.\\d+);”);
reIE.test(sUserAgent);
var fIEVersion = parseFloat(RegExp[“$1”]);

isMinIE4 = fIEVersion >= 4;
isMinIE5 = fIEVersion >= 5;
isMinIE5_5 = fIEVersion >= 5.5;
isMinIE6 = fIEVersion >= 6.0;

}

And that’s all it takes to detect Internet Explorer. This code works equally well on Windows and
Macintosh. Next up is IE’s main competitor, Mozilla.

Detecting Mozilla
By now, you should be familiar with how this works. Refresh your memory with the Mozilla user-agent
string:

Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:0.9.4) Gecko/20011128
Netscape6/6.2.1

To be thorough, take a look at the Opera user-agent string when it is disguised as Mozilla 5.0:

Mozilla/5.0 (Windows NT 5.1; U) Opera 7.54

Fortunately, you have plenty of ways to determine that this is Mozilla. The glaring item that is clearly
visible is that the Mozilla user-agent string says “Gecko”. If you a look at the Opera Mozilla 5.0
disguise, the string does not appear there. Eureka! That makes this easy:

var isMoz = sUserAgent.indexOf(“Gecko”) > -1;

Up until recently, this was enough to determine if the browser was indeed Mozilla. However, as you saw
earlier, KHTML-based browsers have a user-agent string containing the phrase “like Gecko”, which
would also return true for this test. So it is necessary to make sure that the browser contains “Gecko”
but is not KHTML-based:

var isMoz = sUserAgent.indexOf(“Gecko”) > -1
&& !isKHTML;

The isMoz variable is now accurate, so it’s time to move on to the specific versions.

242

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 242

Depending on which browsers you plan on supporting, you may have different Mozilla versions. For
instance, Netscape 7 is based on Mozilla 1.0 whereas Netscape 7.1 is based on Mozilla 1.4. So, it makes
sense to test for these versions in case some users still have the Netscape-branded browsers. Mozilla 1.5
also is fairly popular, so that would be a good one to include as well:

var isMinMoz1 = sMinMoz1_4 = isMinMoz1_5 = false;

Once again, it is necessary to pull out the actual version number from the user-agent string. In Mozilla’s
case, the Mozilla version is located after the text “rv:” and can contain either one or two decimal points,
so a non-capturing group is also necessary here:

var reMoz = new RegExp(“rv:(\\d+\\.\\d+(?:\\.\\d+)?)”);

It is easy to detect the Mozilla version if you use this value and the compareVersions() function:

if (isMoz) {
var reMoz = new RegExp(“rv:(\\d+\\.\\d+(?:\\.\\d+)?)”);
reMoz.test(sUserAgent);
isMinMoz1 = compareVersions(RegExp[“$1”], “1.0”) >= 0;
isMinMoz1_4 = compareVersions(RegExp[“$1”], “1.4”) >= 0;
isMinMoz1_5 = compareVersions(RegExp[“$1”], “1.5”) >= 0;

}

The last task is to properly detect Mozilla’s predecessor: the original Netscape browser.

Detecting Netscape Communicator 4.x
Although Netscape Communicator is a dinosaur in the light of today’s standards-compliant browsers,
it still has a pretty significant user base around the world.

To start, remember the user-agent string from Netscape Communicator 4.79:

Mozilla/4.79 (Win98; I)

As you can see, the user-agent string doesn’t specifically say that this is Netscape Communicator. All
other browsers include the string “Mozilla” in their user-agent strings, so you can’t just check for that.
The method for detecting Netscape Communicator 4.x is the same one used by Sherlock Holmes: If you
eliminate the impossible, whatever remains, however implausible, must be true. For the purposes of
browser detection, this means you must first determine all the browsers that the user isn’t using:

var isNS4 = !isIE && !isOpera && !isMoz && !isKHTML;

So far so good. Next, there are three additional things to check:

1. That the string “Mozilla” is at the beginning of the user-agent string (at position 0).

2. That the value of navigator.appName is “Netscape”.

3. That the value of navigator.appVersion is greater-than or equal to 4.0, but less than 5.0 (this
value has already been stored in the variable fAppVersion, created way back at the beginning
of the code).

243

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 243

Adding these checks to the code, you get the following:

var isNS4 = !isIE && !isOpera && !isMoz && !isKHTML
&& (sUserAgent.indexOf(“Mozilla”) == 0)
&& (navigator.appName == “Netscape”)
&& (fAppVersion >= 4.0 && fAppVersion < 5.0);

This variable accurately determines if the browser is Netscape Communicator. Next you want to deter-
mine the minimal versions. For this, you should check for version 4.0, 4.5 (which was a major release
with lots of code improvements), 4.7 (another major release), and 4.8 (the last release).

var isMinNS4 = isMinNS4_5 = isMinNS4_7 = isMinNS4_8 = false;

And because Netscape Communicator stores its version number in a logical way, it is very easy to deter-
mine the values for these variables:

if (isNS4) {
isMinNS4 = true;
isMinNS4_5 = fAppVersion >= 4.5;
isMinNS4_7 = fAppVersion >= 4.7;
isMinNS4_8 = fAppVersion >= 4.8;

}

The first variable, isMinNS4, is automatically set to true because this was one of the tests performed
when calculating isNS4. All the other minimal versions must be checked for in the normal way.

This completes the browser detection portion of the script. Next up is platform and operating system
detection.

The Platform/Operating System
Detection Script

Now that you have delved into the world of browser detection at great length, you must meet another
challenge: figuring out the operating system on the client’s machine. Even though the browser compa-
nies say that their browsers act the same across different platforms and operating systems, it is not so.

Take the case of Internet Explorer. On Windows, a powerful interface allows Microsoft ActiveX controls
to be embedded in pages or used in JavaScript. The problem is that these ActiveX controls require
Windows to work. So even though Microsoft says that IE on Unix and Macintosh works the same as IE
on Windows, you know that this is impossible. Therefore, you must, at least, be able to tell which operat-
ing system you are dealing with in order to determine if special accommodations must be made.

Methodology
The method for determining the operating system is to start by looking for the platform. For the pur-
poses of this book, the platforms are divided into three groups: Windows, Macintosh, and Unix.

244

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 244

After the platform is determined, it is then possible to determine some operating system information.
For Windows or Unix, you can actually pull out the operating system version. For Macintosh, however,
you cannot. The Macintosh platform provides information only if the processor is a 68000 chip or a
PowerPC, although Safari includes the string “MacOS X” (but then again, Safari runs only on MacOS X,
so is that really helpful?).

Typically, determining the platform alone is good enough for making appropriate JavaScript branches.
However, sometimes additional operating system information is important, and this script provides
for that.

First steps
So how does one go about determining the platform of the client user? Once again, the navigator
object comes to the rescue with its platform property. But as usual, things aren’t as easy as they seem.
Indeed, each browser provides different information to navigator.platform. For instance, IE and
Netscape Communicator return “Win32” for Windows 32-bit systems, “Mac68k” or “MacPPC” (depend-
ing on the processor) for Macintosh systems. It returns the actual name of the operating system for Unix
systems. On the other hand, Mozilla returns “Windows” for all Windows systems, “Macintosh” for all
Macintosh systems, and “X11” for all Unix systems. So you have a lot of options to check for when
checking the client platform.

Checking for Windows and Macintosh systems is pretty straightforward; you just need to check for the
various strings:

var isWin = (navigator.platform == “Win32”) || (navigator.platform == “Windows”);
var isMac = (navigator.platform == “Mac68K”) || (navigator.platform == “MacPPC”)

|| (navigator.platform == “Macintosh”);

Because browsers return such varying values when a Unix platform is in use, it is necessary to make
sure that the platform isn’t Windows or Macintosh, and then check for “X11” as well:

var isUnix = (navigator.platform == “X11”) && !isWin && !isMac;

After you know what platform you are dealing with, you can try to determine which operating system is
being used.

Detecting Windows operating systems
It seems like every other year a new version of the Windows operating system is released. For a long
time, Microsoft has had two separate versions of Windows: one for home use and one for business use.
The home use version was called simply called Windows. The business version was called Windows NT.
Little overlap occurred between the two versions. The one exception, however, was the user interface. In
2001, Microsoft decided to merge the home and business versions into a new product, Windows XP. This
new operating system combines the stability and security of Windows NT with the user-friendliness of
traditional Windows.

245

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 245

With that brief history lesson out of the way, many different versions of Windows are out there to detect:

❑ Windows 95

❑ Windows 98

❑ Windows NT 4.0

❑ Windows 2000

❑ Windows ME

❑ Windows XP

Luckily, the operating system information is included in the user-agent string, meaning that the browser
gets to decide exactly what is displayed. The following table shows the different strings that are
included in the user-agent string depending on the operating system being used:

IE4+ NS4x Mozilla Opera pre-6 Opera 7+

Windows 95 “Windows “Win95” “Win95” “Windows “Windows
95” 95” 95”

Windows 98 “Windows “Win98” “Win98” “Windows “Windows
98” 98” 98”

Windows NT 4.0 “Windows “WinNT” “WinNT4.0” “Windows “Windows
NT” NT 4.0” NT 4.0”

Windows 2000 “Windows “Windows “Windows “Windows “Windows
NT 5.0” NT 5.0” NT 5.0” 2000” NT 5.0”

Windows ME “Win “Win “Win “Windows “Win 9x
9x 4.90” 9x 4.90” 9x 4.90” ME” 4.90”

Windows XP “Windows “Windows “Windows “Windows “Windows
NT 5.1” NT 5.1” NT 5.1” XP” NT 5.1”

This task begins just like the task of detecting browser versions, by defining some variables:

var isWin95 = isWin98 = isWinNT4 = isWin2K = isWinME = isWinXP = false;

In order to determine each version of Windows, you must check the user-agent string for each value in a
row from the previous table. For example, if you want to check for Windows 98, you must check the
user-agent string for “Windows 98” and “Win98”, which covers all four browsers.

The easiest checks are for the Windows 95, 98, ME, 2000, and XP because they have only two values:

if (isWin) {
isWin95 = sUserAgent.indexOf(“Win95”) > -1

|| sUserAgent.indexOf(“Windows 95”) > -1;
isWin98 = sUserAgent.indexOf(“Win98”) > -1

|| sUserAgent.indexOf(“Windows 98”) > -1;
isWinME = sUserAgent.indexOf(“Win 9x 4.90”) > -1

246

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 246

|| sUserAgent.indexOf(“Windows ME”) > -1;
isWin2K = sUserAgent.indexOf(“Windows NT 5.0”) > -1

|| sUserAgent.indexOf(“Windows 2000”) > -1;
isWinXP = sUserAgent.indexOf(“Windows NT 5.1”) > -1

|| sUserAgent.indexOf(“Windows XP”) > -1;
}

Windows NT 4.0 is a bit more complicated, and it is IE’s fault. It includes the string “Windows NT” only in
its user-agent string, which means that you cannot search on it alone. Why? Because IE identifies Windows
2000 as “Windows NT 5.0” and Windows XP as “Windows NT 5.1”. If you simply searched for
“Windows NT”, the result would be true for all three, and that is not preferred behavior. So for Windows
NT 4.0, you have to search for “Windows NT”, “WinNT”, “WinNT4.0”, and “Windows NT 4.0” and then
make sure that it isn’t the other versions of Windows:

if (isWin) {
isWin95 = sUserAgent.indexOf(“Win95”) > -1

|| sUserAgent.indexOf(“Windows 95”) > -1;
isWin98 = sUserAgent.indexOf(“Win98”) > -1

|| sUserAgent.indexOf(“Windows 98”) > -1;
isWinME = sUserAgent.indexOf(“Win 9x 4.90”) > -1

|| sUserAgent.indexOf(“Windows ME”) > -1;
isWin2K = sUserAgent.indexOf(“Windows NT 5.0”) > -1

|| sUserAgent.indexOf(“Windows 2000”) > -1;
isWinXP = sUserAgent.indexOf(“Windows NT 5.1”) > -1

|| sUserAgent.indexOf(“Windows XP”) > -1;
isWinNT4 = sUserAgent.indexOf(“WinNT”) > -1

|| sUserAgent.indexOf(“Windows NT”) > -1
|| sUserAgent.indexOf(“WinNT4.0”) > -1
|| sUserAgent.indexOf(“Windows NT 4.0”) > -1
&& (!isWinME && !isWin2K && !isWinXP);

}

And there you have it. You have successfully detected the various Windows operating systems.

Detecting Macintosh operating systems
Believe it or not, this is actually an easy part of the trek into the client’s machine. Traditionally, Macintosh
browsers would not tell you the operating system being used; the only information they provided was
whether the Macintosh was using a 68000 processor or a PowerPC processor. Only recently have browsers
begun to report the MacOS X as the operating system, meaning that testing for MacOS X is trustworthy
if you find “MacOS X” in the user-agent string. If it’s not there, however, the user could still be using
MacOS X but not have a browser that reports it. For this reason, it’s best to stick to the old method of
checking the processor.

The following table shows the strings that each browser includes in its user-agent string to indicate the
processor being used:

IE NS4 Mozilla Opera

MacOS (68k) “Mac_68000” “68K” “68K” N/A

MacOS (PPC) “Mac_PowerPC” “PPC” “PPC” “Mac_PowerPC”

247

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 247

First step, of course, is to define the variables:

var isMac68K = isMacPPC = false;

Next, check for the various strings in the user-agent string:

if (isMac) {
isMac68K = sUserAgent.indexOf(“Mac_68000”) > -1

|| sUserAgent.indexOf(“68K”) > -1;
isMacPPC = sUserAgent.indexOf(“Mac_PowerPC”) > -1

|| sUserAgent.indexOf(“PPC”) > -1;
}

With this, you have covered how to determine the Macintosh platform. The only platform left is Unix.

Detecting Unix operating systems
In some ways this is the simplest of the platforms to deal with; in other ways, it is the most difficult. As
you are well aware, Unix comes in many shapes and sizes. There’s SunOS, HP-UX, AIX, Linux, IRIX,
and many more. With each new flavor comes new versioning and different representations in a user-
agent string. In order to avoid being redundant, this section focuses on specifically detecting SunOS and
a few SunOS versions. Using this and the previous information you have been given, you should have
sufficient knowledge to adapt this script to detect any other Unix platforms.

To determine a specific Unix platform, such as SunOS, search the user-agent string for the appropriate
substring. This is actually much easier on Unix, because browsers use the Unix command uname -sm to
include in the user-agent string. Thus, every browser shows the same string for the same operating sys-
tem. Here are some examples for SunOS:

Mozilla/4.0 (compatible; MSIE 6.0; SunOS 5.6 sun4u)
Mozilla/5.0 (X11; U; SunOS 5.6 sun4u; en-US; rv:0.9.4) Gecko/20011128 Netscape6/6.2
Mozilla/4.7 [en] (X11; U; SunOS 5.6 sun4u)
Opera/6.0 (SunOS 5.6 sun4u; U) [en]

Begin by defining a few variables representing the various versions you’re looking for:

var isSunOS = isMinSunOS4 = isMinSunOS5 = isMinSunOS5_5 = false;

For the SunOS, the string to search for is “SunOS”:

if (isUnix) {
isSunOS = sUserAgent.indexOf(“SunOS”) > -1;

}

Next, extract the operating system version by using a regular expression. Because SunOS uses the two-
decimal approach, the expression looks similar to the one used with Mozilla:

var reSunOS = new RegExp(“SunOS (\\d+\\.\\d+(?:\\.\\d+)?)”);

248

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 248

After the version is extracted, you must use the compareVersions() function (explained in a previous
section) to determine the minimum operating system versions:

if (isUnix) {
isSunOS = sUserAgent.indexOf(“SunOS”) > -1;

if (isSunOS) {
var reSunOS = new RegExp(“SunOS (\\d+\\.\\d+(?:\\.\\d+)?)”);
reSunOS.test(sUserAgent);
isMinSunOS4 = compareVersions(RegExp[“$1”], “4.0”) >= 0;
isMinSunOS5 = compareVersions(RegExp[“$1”], “5.0”) >= 0;
isMinSunOS5_5 = compareVersions(RegExp[“$1”], “5.5”) >= 0;

}
}

With that, you can now use isSunOS, isMinSunOS4, isMinSunOS5, and isMinSunOS5_5.

Of course, all this knowledge of browsers and operating systems is useless unless you can come up with
a practical way to use it.

The Full Script
The entire script is listed here for your convenience. Note that the order in which the various checks
appear is very important. The complete script should be stored in a JavaScript such as detect.js.

var sUserAgent = navigator.userAgent;
var fAppVersion = parseFloat(navigator.appVersion);

function compareVersions(sVersion1, sVersion2) {

var aVersion1 = sVersion1.split(“.”);
var aVersion2 = sVersion2.split(“.”);

if (aVersion1.length > aVersion2.length) {
for (var i=0; i < aVersion1.length - aVersion2.length; i++) {

aVersion2.push(“0”);
}

} else if (aVersion1.length < aVersion2.length) {
for (var i=0; i < aVersion2.length - aVersion1.length; i++) {

aVersion1.push(“0”);
}

}

for (var i=0; i < aVersion1.length; i++) {

if (aVersion1[i] < aVersion2[i]) {
return -1;

} else if (aVersion1[i] > aVersion2[i]) {
return 1;

}

249

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 249

}

return 0;

}

var isOpera = sUserAgent.indexOf(“Opera”) > -1;
var isMinOpera4 = isMinOpera5 = isMinOpera6 = isMinOpera7 = isMinOpera7_5 = false;

if (isOpera) {
var fOperaVersion;
if(navigator.appName == “Opera”) {

fOperaVersion = fAppVersion;
} else {

var reOperaVersion = new RegExp(“Opera (\\d+\\.\\d+)”);
reOperaVersion.test(sUserAgent);
fOperaVersion = parseFloat(RegExp[“$1”]);

}

isMinOpera4 = fOperaVersion >= 4;
isMinOpera5 = fOperaVersion >= 5;
isMinOpera6 = fOperaVersion >= 6;
isMinOpera7 = fOperaVersion >= 7;
isMinOpera7_5 = fOperaVersion >= 7.5;

}

var isKHTML = sUserAgent.indexOf(“KHTML”) > -1
|| sUserAgent.indexOf(“Konqueror”) > -1
|| sUserAgent.indexOf(“AppleWebKit”) > -1;

var isMinSafari1 = isMinSafari1_2 = false;
var isMinKonq2_2 = isMinKonq3 = isMinKonq3_1 = isMinKonq3_2 = false;

if (isKHTML) {
isSafari = sUserAgent.indexOf(“AppleWebKit”) > -1;
isKonq = sUserAgent.indexOf(“Konqueror”) > -1;

if (isSafari) {
var reAppleWebKit = new RegExp(“AppleWebKit\\/(\\d+(?:\\.\\d*)?)”);
reAppleWebKit.test(sUserAgent);
var fAppleWebKitVersion = parseFloat(RegExp[“$1”]);

isMinSafari1 = fAppleWebKitVersion >= 85;
isMinSafari1_2 = fAppleWebKitVersion >= 124;

} else if (isKonq) {

var reKonq = new RegExp(“Konqueror\\/(\\d+(?:\\.\\d+(?:\\.\\d)?)?)”);
reKonq.test(sUserAgent);
isMinKonq2_2 = compareVersions(RegExp[“$1”], “2.2”) >= 0;
isMinKonq3 = compareVersions(RegExp[“$1”], “3.0”) >= 0;
isMinKonq3_1 = compareVersions(RegExp[“$1”], “3.1”) >= 0;
isMinKonq3_2 = compareVersions(RegExp[“$1”], “3.2”) >= 0;

}

}

250

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 250

var isIE = sUserAgent.indexOf(“compatible”) > -1
&& sUserAgent.indexOf(“MSIE”) > -1
&& !isOpera;

var isMinIE4 = isMinIE5 = isMinIE5_5 = isMinIE6 = false;

if (isIE) {
var reIE = new RegExp(“MSIE (\\d+\\.\\d+);”);
reIE.test(sUserAgent);
var fIEVersion = parseFloat(RegExp[“$1”]);

isMinIE4 = fIEVersion >= 4;
isMinIE5 = fIEVersion >= 5;
isMinIE5_5 = fIEVersion >= 5.5;
isMinIE6 = fIEVersion >= 6.0;

}

var isMoz = sUserAgent.indexOf(“Gecko”) > -1
&& !isKHTML;

var isMinMoz1 = sMinMoz1_4 = isMinMoz1_5 = false;

if (isMoz) {
var reMoz = new RegExp(“rv:(\\d+\\.\\d+(?:\\.\\d+)?)”);
reMoz.test(sUserAgent);
isMinMoz1 = compareVersions(RegExp[“$1”], “1.0”) >= 0;
isMinMoz1_4 = compareVersions(RegExp[“$1”], “1.4”) >= 0;
isMinMoz1_5 = compareVersions(RegExp[“$1”], “1.5”) >= 0;

}

var isNS4 = !isIE && !isOpera && !isMoz && !isKHTML
&& (sUserAgent.indexOf(“Mozilla”) == 0)
&& (navigator.appName == “Netscape”)
&& (fAppVersion >= 4.0 && fAppVersion < 5.0);

var isMinNS4 = isMinNS4_5 = isMinNS4_7 = isMinNS4_8 = false;

if (isNS4) {
isMinNS4 = true;
isMinNS4_5 = fAppVersion >= 4.5;
isMinNS4_7 = fAppVersion >= 4.7;
isMinNS4_8 = fAppVersion >= 4.8;

}

var isWin = (navigator.platform == “Win32”) || (navigator.platform == “Windows”);
var isMac = (navigator.platform == “Mac68K”) || (navigator.platform == “MacPPC”)

|| (navigator.platform == “Macintosh”);

var isUnix = (navigator.platform == “X11”) && !isWin && !isMac;

var isWin95 = isWin98 = isWinNT4 = isWin2K = isWinME = isWinXP = false;
var isMac68K = isMacPPC = false;
var isSunOS = isMinSunOS4 = isMinSunOS5 = isMinSunOS5_5 = false;

251

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 251

if (isWin) {
isWin95 = sUserAgent.indexOf(“Win95”) > -1

|| sUserAgent.indexOf(“Windows 95”) > -1;
isWin98 = sUserAgent.indexOf(“Win98”) > -1

|| sUserAgent.indexOf(“Windows 98”) > -1;
isWinME = sUserAgent.indexOf(“Win 9x 4.90”) > -1

|| sUserAgent.indexOf(“Windows ME”) > -1;
isWin2K = sUserAgent.indexOf(“Windows NT 5.0”) > -1

|| sUserAgent.indexOf(“Windows 2000”) > -1;
isWinXP = sUserAgent.indexOf(“Windows NT 5.1”) > -1

|| sUserAgent.indexOf(“Windows XP”) > -1;
isWinNT4 = sUserAgent.indexOf(“WinNT”) > -1

|| sUserAgent.indexOf(“Windows NT”) > -1
|| sUserAgent.indexOf(“WinNT4.0”) > -1
|| sUserAgent.indexOf(“Windows NT 4.0”) > -1
&& (!isWinME && !isWin2K && !isWinXP);

}

if (isMac) {
isMac68K = sUserAgent.indexOf(“Mac_68000”) > -1

|| sUserAgent.indexOf(“68K”) > -1;
isMacPPC = sUserAgent.indexOf(“Mac_PowerPC”) > -1

|| sUserAgent.indexOf(“PPC”) > -1;
}

if (isUnix) {
isSunOS = sUserAgent.indexOf(“SunOS”) > -1;

if (isSunOS) {
var reSunOS = new RegExp(“SunOS (\\d+\\.\\d+(?:\\.\\d+)?)”);
reSunOS.test(sUserAgent);
isMinSunOS4 = compareVersions(RegExp[“$1”], “4.0”) >= 0;
isMinSunOS5 = compareVersions(RegExp[“$1”], “5.0”) >= 0;
isMinSunOS5_5 = compareVersions(RegExp[“$1”], “5.5”) >= 0;

}
}

Example: A Login Page
When creating Web applications, the first page a user sees is the login page. Most login pages have at least
two fields: username and password. The purpose, of course, is to keep unauthorized users out. But what
about those users who don’t meet the minimum browser and system requirements for the application?
They really should not be allowed to log in. The solution that many developers choose is to make a login
page that does browser detection before the user is even able to enter a username, password, or any other
information. For this purpose, the browser and operating system detection script works beautifully.

The first step is to decide the minimum requirements for the Web application. For example, suppose that
the Web application is limited to working on Internet Explorer 5.5 and higher on Windows, Mozilla 1.0
or higher on Unix, and Safari 1.0 or higher on Macintosh (these requirements aren’t exactly realistic, but
make for a good example). Keep in mind a certain unspoken requirement: The browser must support
JavaScript; this must also be checked.

252

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 252

Because you are only be scripting for two browsers, by default you should have an error message telling
users that they are using the wrong browser. This displays if there is no JavaScript support, as well as if
the wrong browser or wrong operating system is being used. Here’s a sample:

<html>
<head>

<title>Login</title>
<script type=”text/javascript” src=”detect.js”></script>

</head>
<body>

<form method=”post” action=”DoLogin.jsp”>
<div style=”border: 2px dashed blue; background-color: #dedede; height:

300px; padding: 10px”>
<div id=”divError” style=”position: absolute; left: 20px; top:

100px; “>
This Web application requires one of the following:

Internet Explorer 5.5 or higher for Windows
Mozilla 1.0 or higher for Unix
Safari 1.0 or higher for Macintosh

</div>

</div>
</form>

</body>
</html>

The highlighted section of code contains the actual error message. Note that the entire error message is
contained within a <div/> named divError. Also note that divError has an absolute position. This is
important because the login form lies directly over the error message. However, the login form is invisi-
ble at load time and is only shown if appropriate. Before getting to that, add the code for the login form
right after the error message:

<html>
<head>

<title>Login</title>
<script type=”text/javascript” src=”detect.js”></script>

</head>
<body>

<form method=”post” action=”DoLogin.jsp”>
<div style=”border: 2px dashed blue; background-color: #dedede; height:

300px; padding: 10px”>
<div id=”divError” style=”position: absolute; left: 20px; top:

100px; “>
This Web application requires one of the following:

Internet Explorer 5.5 or higher for Windows
Mozilla 1.0 or higher for Unix
Safari 1.0 or higher for Macintosh

</div>

253

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 253

<div id=”divLogin” style=”position: absolute; left: 20px; top:
100px; visibility: hidden”>

<table border=”0” width=”100%” height=”100%”><tr><td
align=”center”>

<table border=”0”>
<tr>

<td>Username:</td><td><input type=”text”
name=”txtUsername” /></td>

</tr>
<tr>

<td>Password:</td><td><input type=”password”
name=”txtPassword” /></td>

</tr>
<tr>

<td> </td><td><input type=”Submit” value=”Login”
/></td>

</tr>
</table>

</td></tr></table>
</div>

</div>
</form>

</body>
</html>

Now that the pieces are in place, you can use the detection script to check for the appropriate browsers
and operating systems. The code should show the login form and hide the error message if the user has
fulfilled the requirements:

if ((isMinIE5_5 && isWin) || (isMinMoz1 && isUnix) || (isMinSafari1 && isMac)) {
document.getElementById(“divLogin”).style.visibility = “visible”;
document.getElementById(“divError”).style.visibility = “hidden”

}

This code snippet uses the style extensions of the DOM to set the CSS visibility property of each <div/>.
Accessing the CSS style of elements using script is covered fully in Chapter 10, “Advanced DOM
Techniques.”

This code should be executed when the document is loaded, so it should be assigned to the
window.onload event handler. (Don’t worry too much about this now; events and event handlers are
discussed in the next chapter.)

<html>
<head>

<title>Login</title>
<script type=”text/javascript” src=”detect.js”></script>
<script type=”text/javascript”>

window.onload = function () {
if ((isMinIE5_5 && isWin) || (isMinMoz1 && isUnix)

|| (isMinSafari1 && isMac)) {

document.getElementById(“divLogin”).style.visibility = “visible”;
document.getElementById(“divError”).style.visibility = “hidden”

254

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 254

}
};

</script>
</head>
<body>

<form method=”post” action=”DoLogin.jsp”>
<div style=”border: 2px dashed blue; background-color: #dedede; height:

300px; padding: 10px”>
<div id=”divError” style=”position: absolute; left: 20px; top:

100px; “>
This Web application requires one of the following:

Internet Explorer 5.5 or higher for Windows
Mozilla 1.0 or higher for Unix
Safari 1.0 or higher for Macintosh

</div>
<div id=”divLogin” style=”position: absolute; left: 20px; top:

100px; visibility: hidden”>
<table border=”0” width=”100%” height=”100%”><tr><td

align=”center”>
<table border=”0”>

<tr>
<td>Username:</td><td><input type=”text”

name=”txtUsername” /></td>
</tr>
<tr>

<td>Password:</td><td><input type=”password”
name=”txtPassword” /></td>

</tr>
<tr>

<td> </td><td><input type=”Submit” value=”Login”
/></td>

</tr>
</table>

</td></tr></table>
</div>

</div>
</form>

</body>
</html>

As a final step, you can include a special notice just in case the user doesn’t have JavaScript or has dis-
abled it. To do this, you use the <noscript/> tag. Any text within the <noscript/> tag is ignored if the
browser supports JavaScript. If the browser doesn’t support it (or has it disabled), then the text is dis-
played normally. This should be place in divError just after the element:

<html>
<head>

<title>Login</title>
<script type=”text/javascript” src=”detect.js”></script>
<script type=”text/javascript”>

window.onload = function () {
if ((isMinIE5_5 && isWin) || (isMinMoz1 && isUnix)

255

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 255

|| (isMinSafari1 && isMac)) {

document.getElementById(“divLogin”).style.visibility = “visible”;
document.getElementById(“divError”).style.visibility = “hidden”

}
};

</script>
</head>
<body>

<form method=”post” action=”DoLogin.jsp”>
<div style=”border: 2px dashed blue; background-color: #dedede; height:

300px; padding: 10px”>
<div id=”divError” style=”position: absolute; left: 20px; top:

100px; “>
This Web application requires one of the following:

Internet Explorer 5.5 or higher for Windows
Mozilla 1.0 or higher for Unix
Safari 1.0 or higher for Macintosh

<noscript>

<p>This Web application also requires JavaScript (if you are
using one of the above browsers, make sure that JavaScript is enabled).</p>

</noscript>
</div>
<div id=”divLogin” style=”position: absolute; left: 20px; top:

100px; visibility: hidden”>
<table border=”0” width=”100%” height=”100%”><tr><td

align=”center”>
<table border=”0”>

<tr>
<td>Username:</td><td><input type=”text”

name=”txtUsername” /></td>
</tr>
<tr>

<td>Password:</td><td><input type=”password”
name=”txtPassword” /></td>

</tr>
<tr>

<td> </td><td><input type=”Submit” value=”Login”
/></td>

</tr>
</table>

</td></tr></table>
</div>

</div>
</form>

</body>
</html>

256

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 256

Now, all cases are covered. If the user is accessing the page with an incorrect browser, the error message
is displayed (Figure 8-1) because the script will not hide it to show the login form.

Figure 8-1

If the browser being used does not support JavaScript, the code isn’t run and the additional message is
displayed (Figure 8-2).

257

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 257

Figure 8-2

If the correct browser and platform are being used, the script is executed when the page is loaded, hiding
the error message (so the user never sees it) and displaying the login form (Figure 8-3).

258

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 258

Figure 8-3

This is an important part of Web application usability. Many sites provide a generic login form that any
browser can use even though the internal functionality requires a specific browser. This login page
ensures that users of the Web application have the minimum requirements necessary to access all its fea-
tures without making a trip back to the server.

Summary
In this chapter, you’ve learned how to detect browsers, platforms, and operating systems using the navi-
gator object, and more specifically, the browser user-agent string. You built a browser and operating sys-
tem detection script that accurately detects the most common Web browsers and operating systems. The
detection script makes use of skills you’ve learned earlier in the book, such as string manipulation and
regular expressions.

259

Browser and Operating System Detection

11_579088 ch08.qxd 3/28/05 11:38 AM Page 259

The chapter finished up with a practical application of the detection script: ensuring that users of a Web
application have the appropriate minimum browser and platform requirements to log in. The login form
displays an error if the requirements aren’t met; otherwise, it displays the login form normally.

The login form example made use of JavaScript event handling to hide the error message. In the next
chapter, you learn all about events and event handling.

260

Chapter 8

11_579088 ch08.qxd 3/28/05 11:38 AM Page 260

All about Events

JavaScript’s interaction with HTML is handled through events that occur when the user or browser
manipulates a page. When the page loads, that’s an event. When the user clicks a button, that
click, too, is an event. Developers can use these events to execute coded responses, which cause
buttons to close windows, messages to be displayed to users, data to be validated, and virtually
any other type of response imaginable to occur.

When events first appeared in browsers (IE 3.0 and Netscape Navigator 3.0), they focused on mov-
ing some server functionality to the client. At that time, the standard method for accessing the
Internet was through a dial-up connection and modem. With speeds topping out at 56 kbps, each
trip to the server could turn into minutes of down time.

JavaScript is designed to solve this problem by allowing such functionality to take place on the
client, saving a trip to the server. As such, most of the early events centered on the use of forms
and form elements, where simple validation could be more efficiently carried out. Through the
years and browser versions, events continued to grow to support more of the page.

Events Today
As discussed earlier, events are a part of the Document Object Model (DOM). Unfortunately, as
also discussed previously, no events are defined in DOM Level 1 and only in a subset in DOM
Level 2. The full development of events occurred in DOM Level 3, which was finalized in 2004.

With few standards to guide them early on, browsers developers were left to invent their own
event models. Internet Explorer first created and implemented its own event model in version 4.0
(circa 1995) and hasn’t altered it significantly since that time. Of course, no DOM standards existed
at that point, which means Internet Explorer still uses what can be considered a proprietary event
model. Some of its design, however, was eventually folded in the DOM.

12_579088 ch09.qxd 3/28/05 11:39 AM Page 261

When Netscape released its source code into the open source community under the name Mozilla, a key
aim of the developers was to adhere to as many of the standards as possible. When there were gaps in
the standards, the Mozilla group looked at working drafts of the standards to fill them. Because of this,
Mozilla’s event model closely follows the DOM standards.

Latecomers Opera and Safari have also recently embraced the DOM standard event model, leaving
Internet Explorer as the main browser without proper support for the DOM event model.

But even with different DOM implementations between browsers, some basic characteristics remain
the same.

Event Flow
Both the development teams for Internet Explorer 4.0 and Netscape Navigator 4.0 decided that support-
ing events was not enough, so each came up with its own form of event flow. Event flow means that more
than one element on the page can respond to the same event. What happens when you click a button on
the page? In reality, you are clicking the button, its container, and the page as a whole. Logically, each of
the elements should be able to respond to that event in a specific order. The order of events (the event
flow) is the main difference between event support in IE 4.0 and Netscape 4.0.

Event bubbling
For Internet Explorer, the solution was answered by a technique dubbed bubbling. The basic idea of event
bubbling is that the event fires sequentially from the most specific event target to the least specific (the
document object). For instance, you have the following page:

<html>
<head>

<title>Example</title>
</head>
<body onclick=”handleClick()”>

<div onclick=”handleClick()”>Click Me</div>
</body>

</html>

If a user clicks the <div/> element using IE 5.5, the event bubbles in the following order:

1. <div/>

2. <body/>

3. document

Logically, you can think of the event bubbling in this example as it is mapped in Figure 9-1.

262

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 262

Figure 9-1

This manner of flow is called bubbling because, as displayed in the diagram, the event bubbles up the
DOM hierarchy until it reaches the top.

IE changed event bubbling slightly in version 6.0 so that the <html/> element also receives the bubbled
events, allowing for code such as this:

<html onclick=”handleClick()”>
<head>

<title>Example</title>
</head>
<body onclick=”handleClick()”>

<div onclick=”handleClick()”>Click Me</div>
</body>

</html>

In this example, a click on the page bubbles back up to the <html/> element, causing the previous dia-
gram to change as shown in Figure 9-2.

Figure 9-2

bodybody

html

divdiv 1

2

3

bubbling phasebubbling phase

document 4

bodybody

document

divdiv 1

2

3

bubbling phasebubbling phase

263

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 263

Mozilla 1.0 and higher also supports event bubbling, but to another level. Just like IE 6.0, it supports
events on the <html/> element. However, events bubble all the way up to the window object (which is
not a part of the DOM). Using the previous example in Mozilla, clicking the <div/> element causes the
event bubbling displayed in Figure 9-3.

Figure 9-3

Event capturing
While Internet Explorer 4.0 used event bubbling, Netscape Navigator 4.0 used an alternate solution
called event capturing. Event capturing is just the opposite of bubbling; events fire from the least-specific
object (the document object) to the most specific (it was also possible to capture events at the window
level, but that has to be specified explicitly by the developer). Netscape Navigator also doesn’t expose
many elements on the page to events.

Referring again to the previous example, if a user clicks the <div/> element using Netscape 4.x, the
event takes the following path:

1. document

2. <div/>

bodybody

html

divdiv 1

2

3

document 4

windowwindow 5

If you are unsure whether your users will be using IE 5.5 or IE 6.0, it is best to avoid
handling events at the <html/> element level.

264

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 264

Some have also called this the top-down event model because it works from the top of the DOM hierarchy
to the bottom (see Figure 9-4).

Figure 9-4

DOM event flow
The DOM supports both event capturing and event bubbling, but event capturing occurs first. Both
event flows hit all the objects in the DOM, beginning and ending with the document object (most
standards-compliant browsers continue capturing/bubbling up to the window object).

Consider once again the simple example shown earlier. When the <div/> element is clicked in a DOM-
compliant browser, the event flow proceeds as shown in Figure 9-5.

Figure 9-5

Note that because the target of the event (the <div/> element) is the most specific element (and there-
fore, deepest in the DOM tree), it actually receives the event two times in a row, once in the capturing
phase and once in the bubbling phase.

bodybody

document

divdiv 5

6

7

bubbling phasebubbling phase

windowwindow 8

1

2

3

4

capturing phasecapturing phase

divdiv

document

1

2

265

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 265

A unique feature of the DOM event model is that text nodes fire events as well (this is not so in Internet
Explorer). So if you click the text Click Me in the example, the event flow actually looks like Figure 9-6.

Figure 9-6

This is an important concept when you are working with DOM-compliant browsers. Forgetting that text
nodes fire events in the DOM is the number one reason why developers get headaches working with
newer browsers.

Event Handlers/Listeners
Events are certain actions performed either by the user or by the browser itself. These events have names
like click, load, and mouseover. A function that is called in response to an event is called an event handler (or,
as the DOM describes it, an event listener). A function responding to a click event is considered an onclick
event handler. Traditionally, event handlers are assigned in one of two ways: in JavaScript or in HTML.

To assign an event handler in JavaScript, you have to get a reference to the object in question and then
assign a function to the corresponding event handler property like this:

var oDiv = document.getElementById(“div1”);
oDiv.onclick = function () {

alert(“I was clicked”);
};

divdiv

bodybody

(text) 6

7

8

bubbling phasebubbling phase

document 9

windowwindow 10

1

2

3

4

capturing phasecapturing phase

5

266

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 266

Using this method of assignment, the event handler name must be represented in all lowercase letters to
properly respond to the event.

To assign an event handler in HTML, you simply add an event handler attribute to the HTML tag and
include the appropriate script as the attribute value, like so:

<div onclick=”alert(‘I was clicked’)”></div>

With this method, the event handler can have any case, so onclick is equal to onClick, OnClick, and
ONCLICK. (However, if you are using valid XHTML code, event handlers should be defined using all
lowercase letters.)

When you are assigning event handlers in HTML, remember that the code contained in the attribute
value (between the quotes) is wrapped in an anonymous function, so the HTML code actually executes
the following JavaScript:

oDiv.onclick = function () {
alert(“I was clicked”);

};

Look familiar? Yes, it is the same code as the JavaScript example.

These methods both work in all modern browsers, but additional methods can make more than one
event handler per event available. Once again, Internet Explorer contains a proprietary method whereas
the DOM prescribes another.

Internet Explorer
In IE, every element and window object has two methods: attachEvent() and detachEvent(). As the
names indicates, attachEvent() is used to attach an event handler to an event and detachEvent() is
used to detach an event handler. Each method takes two arguments: the name of the event handler to
assign to (for example: onclick) and a function.

[Object].attachEvent(“name_of_event_handler”, fnHandler);
[Object].detachEvent(“name_of_event_handler”, fnHandler);

In the case of attachEvent(), the function is added as an event handler; for detachEvent(), it looks
for the given function in the event handler list and removes it. For example:

var fnClick = function () {
alert(“Clicked!”);

};

var oDiv = document.getElementById(“div”);
oDiv.attachEvent(“onclick”, fnClick); //add the event handler
//do some other stuff here
oDiv.detachEvent(“onclick”, fnClick); //remove the event handler

267

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 267

As previously stated, this method can be used to attach more than one event handler:

var fnClick1 = function () {
alert(“Clicked!”);

};

var fnClick2 = function () {
alert(“Also clicked! “);

};

var oDiv = document.getElementById(“div”);
oDiv.attachEvent(“onclick”, fnClick1);
oDiv.attachEvent(“onclick”, fnClick2);

This code segment causes two alerts to be displayed when you click the <div/> element. The first is
“Clicked!”, followed by “Also clicked!”. The event handlers always execute in the order in which
they are added.

You can also use the traditional JavaScript method of assigning event handlers:

var fnClick1 = function () {
alert(“Clicked!”);

};

var fnClick2 = function () {
alert(“Also clicked! “);

};

var oDiv = document.getElementById(“div”);
oDiv.onclick = fnClick1;
oDiv.attachEvent(“onclick”, fnClick2);

This code is exactly equal to the previous example, and the alerts are displayed in the same order.
Assigning an event handler in the traditional way is considered just another call to attachEvent(),
so the event handlers are still executed in the order in which they are defined.

DOM
The DOM methods addEventListener() and removeEventListener() accomplish the assignment
and removal of event handlers. These methods, unlike IE, take three parameters: the event name, the
function to assign, and whether the handler should be used for the bubbling or capture phase. If the han-
dler is to be used in the capture phase, the third parameter is true; for the bubbling phase, it is false.
Here’s the general syntax:

[Object].addEventListener(“name_of_event”, fnHandler, bCapture);
[Object].removeEventListener(“name_of_event”, fnHandler, bCapture);

To use these methods, you must first get a reference to the object in question and then assign or remove
the event handlers:

var fnClick = function () {
alert(“Clicked!”);

};

268

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 268

var oDiv = document.getElementById(“div1”);
oDiv.addEventListener(“click”, fnClick, false); //add the event handler
//do some other stuff here
oDiv.removeEventListener(“click”, fnClick, false); //remove the event
handler

And just as in IE, you can attach more than one event handler:

var fnClick1 = function () {
alert(“Clicked!”);

};

var fnClick2 = function () {
alert(“Also clicked!”);

};

var oDiv = document.getElementById(“div1”);
oDiv.addEventListener(“onclick”, fnClick1);
oDiv.addEventListener(“onclick”, fnClick2);

This code displays “Clicked!” and then “Also clicked!” when the user clicks on the <div/>.
Similar to IE, the event handlers are executed in the order in which they are defined.

If an event handler is added in the capturing phase using addEventListener(), the capturing phase
must be specified in removeEventListener() for it to be properly removed. For instance, don’t do this:

var fnClick = function () {
alert(“Clicked!”);

};

var oDiv = document.getElementById(“div1”);

//add the event handler in the bubbling phase
oDiv.addEventListener(“click”, fnClick, false);

//do some other stuff here

//try to remove the event handler, but the third parameter is true
//instead false...this will fail, though it won’t cause an error.
oDiv.removeEventListener(“click”, fnClick, true);

Here, the function fnClick is added in the bubbling phase, and then an attempt is made to remove it
from the capture phase. This won’t cause an error, but the function won’t be removed.

If you use the traditional way of assigning a function directly to the event handler property, the event
handler is added in the bubbling phase of the event. For example, the following two lines achieve the
same effect:

oDiv.onclick = fnClick;
oDiv.addEventListener(“click”, fnClick, false);

The direct assignment of an event handler is considered to be just another call to addEventListener(),
so the event handlers are used in the order in which they are specified.

269

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 269

One important difference in direct assignment is that subsequent assignments to the event handler wipe
out the previous assignment:

oDiv.onclick = fnClick;
oDiv.onclick = fnDifferentClick;

In this example, fnClick is assigned as the onclick event handler first, but is then replaced by
fnDifferentClick.

The Event Object
Developers for both browsers knew that it was important to pass information about an event to the
developer. The result was to create an event object that contained information specific to the event that
had just occurred such as:

❑ The object that caused the event

❑ Information about the mouse at the time of the event

❑ Information about the keyboard at the time of the event

Event objects are only created when an event occurs and are made accessible to the event handlers. After
all event handlers have been executed, the event object is destroyed.

As you can probably guess, Internet Explorer and the DOM implement the event object in two
different ways.

Locating
In Internet Explorer, the event object is a property of the window object. This means that an event han-
dler must access the event object in this way:

oDiv.onclick = function () {
var oEvent = window.event;

}

Even though it is a property of the window object, the event object is only accessible when an event
occurs. After all event handlers have been executed, the event object is destroyed.

The DOM standard says that the event object must be passed in as the sole argument of the event han-
dler. So, to access the event object in a DOM-compliant browser (such as Mozilla, Safari, or Opera), you
do the following:

oDiv.onclick = function () {
var oEvent = arguments[0];

}

Of course, you can also name the argument for easier access:

oDiv.onclick = function (oEvent) {
}

270

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 270

Properties/methods
Internet Explorer

Here are the event properties and methods for Internet Explorer (please note: properties and methods
that apply to IE-only technologies and features are not listed):

Property/Method Type R/W Description

altKey Boolean R/W True indicates the ALT key is pressed; false indicates it
is not.

button Integer R/W The mouse button has been clicked for certain mouse
events. Values:
0 – No button is pressed.
1 – Left button is pressed.
2 – Right button is pressed.
3 – Left and right buttons are both pressed.
4 – Middle button is pressed.
5 – Left and middle buttons are both pressed.
6 – Right and middle buttons are both pressed.
7 – Left, middle, and right buttons are all pressed.

cancelBubble Boolean R/W The developer sets this to true to stop the bubbling up
of an event.

clientX Integer R/W The x-coordinate of the mouse pointer within the client
area (excludes toolbars, scrollbars, and so on) when the
event occurs

clientY Integer R/W The y-coordinate of the mouse pointer within the client
area (excludes toolbars, scrollbars, and so on) when the
event occurs

ctrlKey Boolean R/W True indicates the CTRL key is pressed; false indicates
it is not.

fromElement Element R/W The element that the mouse is leaving during some
mouse events

keyCode Integer R/W For the keypress event, indicates the Unicode charac-
ter of the key that was pressed; for the keydown/keyup
events, numeric indicator as to the key that was
pressed.

offsetX Integer R/W The x-coordinate of the mouse pointer relative to the
object that caused the event

offsetY Integer R/W The y-coordinate of the mouse pointer relative to the
object that caused the event

repeat Boolean R True if the keydown event is being fired repeatedly;
false if not

Table continued on following page

271

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 271

Property/Method Type R/W Description

returnValue Boolean R/W The developer sets this to false in order to cancel the
default action for the event.

screenX Integer R/W The x-coordinate of the mouse pointer relative to the
entire computer screen

screenY Integer R/W The y-coordinate of the mouse pointer relative to the
entire computer screen

shiftKey Boolean R/W True indicates the Shift key is pressed; false indicates it
is not.

srcElement Element R/W The element that caused the event.

toElement Element R/W The element that the mouse is entering during some
mouse events.

type String R/W The name of the event.

x Integer R/W The x-coordinate of the mouse pointer relative to the
parent element of the element that caused the event

y Integer R/W The y-coordinate of the mouse pointer relative to the
parent element of the element that caused the event

DOM
The DOM event object contains similar core properties and methods with some important differences.
The following table enumerates them.

Property/Method Type R/W Description

altKey Boolean R/W True indicates the ALT key is pressed; false indicates it
is not.

bubbles Boolean R Indicates if the event bubbles.

button Integer R/W The mouse button that has been pressed for certain
mouse events. Values:
0 – No button is pressed.
1 – Left button is pressed.
2 – Right button is pressed.
3 – Left and right buttons are both pressed.
4 – Middle button is pressed.
5 – Left and middle buttons are both pressed.
6 – Right and middle buttons are both pressed.
7 – Left, middle, and right buttons are all pressed.

cancelable Boolean R Indicates if the event can be cancelled.

cancelBubble Boolean R Indicates whether event bubbling has been cancelled

272

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 272

Property/Method Type R/W Description

charCode Integer R The Unicode value of the character for the key that was
pressed

clientX Integer R The x-coordinate of the mouse pointer within the client
area (excludes toolbars, scrollbars, and so on) when the
event occurs

clientY Integer R The y-coordinate of the mouse pointer within the client
area (excludes toolbars, scrollbars, and so on) when the
event occurs

ctrlKey Boolean R True indicates the CTRL key is pressed; false indicates
it is not.

currentTarget Element R The element that is currently the event target

detail Integer R The number of times the mouse button has been
clicked

eventPhase Integer R The phase of the event, which is one of the following
values:
0 – capturing phase
1 – at target
2 – bubbling phase

isChar Boolean R Indicates if the key that was pressed has a character
associated with it

keyCode Integer R/W Numeric indicator as to the key that was pressed

metaKey Integer R Indicates if the META key has been pressed

pageX Integer R The x-coordinate of the mouse pointer relative to
the page

pageX Integer R The y-coordinate of the mouse pointer relative to
the page

prevent Function N/A You can call this method to prevent the default
Default() behavior for the event.

relatedTarget Element R The secondary target of the event, most often used in
mouse events

screenX Integer R The x-coordinate of the mouse pointer relative to the
entire computer screen

screenY Integer R The y-coordinate of the mouse pointer relative to the
entire computer screen

shiftKey Boolean R True indicates the Shift key is pressed; false indicates it
is not.

Table continued on following page

273

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 273

Property/Method Type R/W Description

stop Function N/A You can call this method to prevent the further
Propagation() propagation (bubbling) of the event.

target Element R The element/object that caused the event

timeStamp Long R The time that this event occurred in milliseconds after
midnight on January 1, 1970

type String R The name of the event

Similarities
Here is a brief roundup of the similarities between the two event objects.

Getting the event type
In order to get the event type in either browser, use the following:

var sType = oEvent.type;

This returns a value such as “click” or “mouseover” and is useful when one function is used as an
event handler for two different events. For example:

function handleEvent(oEvent) {
if (oEvent.type == “click”) {

alert(“Clicked!”);
} else if (oEvent.type == “mouseover”) {

alert(“Mouse Over!”);
}

}

oDiv.onclick = handleEvent;
oDiv.onmouseover = handleEvent;

In this code, the function handleEvent() is assigned as an event handler for both the click and
mouseover events. Inside of the function, the type property is used to determine which course of action
should be taken.

Note that this example uses the DOM method of passing in the event object, but the code inside the
function can also be used in Internet Explorer after the event object has been assigned to oEvent.

Getting the key code (keydown/keyup events)
During a keydown or keyup event, you can retrieve the code for the key that was pressed by using the
keyCode property:

var iKeyCode = oEvent.keyCode;

The keyCode property always contains a code the represents the key pressed, which may or may not
represent a character. For example, the Enter (or Return) key has a keyCode of 13, the space bar has a
keyCode of 32, and the BackSpace key has a keyCode of 8.

274

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 274

Detecting Shift, Alt, Ctrl
To detect if the Shift, Alt, or Ctrl keys are pressed, both IE and the DOM can do the following:

var bShift = oEvent.shiftKey;
var bAlt = oEvent.altKey;
var bCtrl = oEvent.ctrlKey;

Each of these properties contains a Boolean value indicating whether the key is being pressed (each of
these keys also fires a keydown event enabling you to retrieve its keyCode).

Getting the client coordinates
During mouse events, you can retrieve the location of the mouse cursor in relation to the client area by
using the clientX and clientY properties:

var iClientX = oEvent.clientX;
var iClientY = oEvent.clientY;

The client area is the part of the window that displays the Web page (see Figure 9-7). These properties
tell you how far from the edge (in pixels) of that area the mouse is located.

Figure 9-7

Client Area

(clientX,clientY)

275

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 275

Getting the screen coordinates
During mouse events, you can retrieve the location of the mouse cursor in relation to the computer
screen by using the screenX and screenY properties:

var iScreenX = oEvent.screenX;
var iScreenY = oEvent.screenY;

Each of these properties returns an integer representing the number of pixels from the edge of the user’s
screen (see Figure 9-8).

Figure 9-8

Differences
Of course, not everything in Internet Explorer and the DOM is similar. This section describes the differ-
ence that you should be aware of when scripting for cross-browser support.

(screenX,screenY)

276

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 276

Getting the target
The object at the center of an event is called the target. Suppose that you assigned an onclick event han-
dler to a <div/> element. When the click events fires, the <div/> element is considered the target.

In IE, the target is contained in the srcElement property of the event object:

var oTarget = oEvent.srcElement;

In DOM-compliant browsers, the target is contained in the target property:

var oTarget = oEvent.target;

Getting the character code
Earlier you saw that both IE and the DOM support an event object property called keyCode, which
returns a numeric code for the key that was pressed. If the key represents a character (unlike Shift, Ctrl,
and so on), IE’s keyCode property returns the character code of the character (which is its Unicode
equivalent):

var iCharCode = oEvent.keyCode;

In DOM-compliant browsers, a separation occurs between the code of the key that was pressed and the
character code. To get the character code, use the charCode property:

var iCharCode = oEvent.charCode;

You can then use this value to get the actual character by passing it to the String.fromCharCode()
method:

var sChar = String.fromCharCode(oEvent.charCode);

If you are unsure as to whether the key that was pressed contains a character, you can use the isChar
property:

if (oEvent.isChar) {
var iCharCode = oEvent.charCode;

}

IE targets can only be elements, document, or window; DOM-compliant browsers
also allow text nodes to be targets.

IE on Macintosh also supports both the srcElement and target attributes.

277

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 277

Preventing the default behavior for an event
To prevent the default behavior for an event in IE, you must set the returnValue property to false:

oEvent.returnValue = false;

In Mozilla, you just call the preventDefault() method:

oEvent.preventDefault();

You may think, “When would I ever want to prevent the default behavior of an event?” Actually pre-
venting the default behavior can be helpful in several situations.

First, use it when you want to prevent the user from using the context menu that appears when he or
she right-clicks the page. To do this, you prevent the default behavior of the contextmenu event, by
doing this:

document.body.oncontextmenu = function (oEvent) {
if (isIE) {

oEvent = window.event;
oEvent.returnValue = false;

} else {
oEvent.preventDefault();

}
};

In addition, you may want to prevent the default behavior of text boxes when a key is pressed to reject a
certain character, or forestall a button’s action unless certain criteria are met. This is a very powerful fea-
ture and I discuss it further later in the book.

Stopping event propagation (bubbling)
To prevent the event from propagating/bubbling in IE, you must set the cancelBubble property to true:

oEvent.cancelBubble = true;

In Mozilla, you just call the stopPropagation() method:

oEvent.stopPropagation ();

Stopping the event propagation prevents the event handlers for the other objects in the event flow from
being executed. Consider this example:

<html onclick=”alert(‘html’)”>
<head>

<title>Event Propagation Example</title>
</head>
<body onclick=”alert(‘body’)”>

<input type=”button” value=”Click Me” onclick=”alert(‘input’)” />
</body>

</html>

278

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 278

When the button is clicked on this page, three alerts are displayed one after another: “input”, “body”,
and “html”. This happens, of course, because the event bubbles up from the <input/> element to
<body/> and then to <html/>. If, however, you stop the event propagation at the button, things change:

<html onclick=”alert(‘html’)”>
<head>

<title>Stopping Event Propagation Example</title>
<script type=”text/javascript” src=”detect.js”></script>
<script type=”text/javascript”>

function handleClick(oEvent) {
alert(“input”);
if (isIE) {

oEvent.cancelBubble = true;
} else {

oEvent.stopPropagation();
}

}
</script>

</head>
<body onclick=”alert(‘body’)”>

<input type=”button” value=”Click Me” onclick=”handleClick(event)” />
</body>

</html>

When this example is executed and the button is clicked, you only see the “input” alert and none of
the others because the propagation has been stopped. In order to do this correctly, you make use of the
browser detection code from the last chapter.

You may also notice that the <input/> element passes in the event object as an argument to the
handleClick() function. This works in all browsers because the event object is created as soon as
the event happens and is a global variable at this point.

Types of Events
The events that occur in a browser can be grouped into several specific types, depending on the object
the event is fired from and what triggered the event to fire. The DOM specification defines the following
event groups:

❑ Mouse Events are fired when the user uses the mouse to perform certain actions.

❑ Keyboard Events are fired when the user types on the keyboard.

❑ HTML Events are fired when certain changes occur to the browser window or specific client-
server interaction occurs.

❑ Mutation Events are fired when a change occurs to the underlying DOM structure.

279

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 279

Mouse events
Mouse events are the most commonly used group of events on the Web. They include the following:

❑ click — Occurs when the user clicks the left mouse button (not if the right mouse button is
used). Also occurs when focus is on a button and the user presses the Enter key.

❑ dblclick — Occurs when the user double clicks the left mouse button (not if the right mouse
button is used).

❑ mousedown — Occurs when the user pushes any mouse button down.

❑ mouseout — Occurs when the cursor is over an element and the user moves it outside the
boundaries of the element.

❑ mouseover — Occurs when the cursor is outside of an element and the user moves it over the
element.

❑ mouseup — Occurs when the user releases any mouse button.

❑ mousemove — Occurs repeatedly when the cursor is over an element.

All elements on a page support the mouse events. This simple example illustrates all the mouse events:

<html>
<head>

<title>Mouse Events Example</title>
<script type=”text/javascript”>

function handleEvent(oEvent) {
var oTextbox = document.getElementById(“txt1”);
oTextbox.value += “\n” + oEvent.type;

}
</script>

</head>
<body>

<p>Use your mouse to click and double click the red square.</p>
<div style=”width: 100px; height: 100px; background-color: red”

onmouseover=”handleEvent(event)”
onmouseout=”handleEvent(event)”
onmousedown=”handleEvent(event)”
onmouseup=”handleEvent(event)”
onclick=”handleEvent(event)”
ondblclick=”handleEvent(event)” id=”div1”></div>

<p><textarea id=”txt1” rows=”15” cols=”50”></textarea></p>
</body>

</html>

This code displays a red square and a text box. When you interact with the red square using your mouse,
the text box displays the events that are fired. Note that just one function is used as an event handler for
all events. It simply outputs the type of event into the text box.

280

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 280

Using the mouseover and mouseout events is a popular way to change the appearance of something on
the page, such as an image. This is a very simple technique, but is still very frequently used:

<img src=”image1.gif” onmouseover=”this.src=’image2.gif’”
onmouseout=”this.src=’image1’.gif” />

In this code snippet, the onmouseover and onmouseout event handlers are filled with just a single line.
Notice the use of the this object to change the src property of the image? This is one of the hidden
truths of event handlers: An event handler is considered a method of the object on which it is assigned.
Therefore, the this object can be used to access the event target (which is helpful, in this instance,
because it avoids a browser detect). When the mouseover event fires, the image’s src property is set to
image2.gif, which presumably is different from image1.gif; when the mouseout event fires, the src
property is set back to image1.gif.

Event properties
For each mouse event, the following properties are filled in on the event object:

❑ Coordinate properties (such as clientX and clientY, and so on)

❑ The type property

❑ The target (DOM) or srcElement (IE) property

❑ The shiftKey, ctrlKey, altKey, and metaKey (DOM) properties

❑ The button property (only on mousedown, mousemove, mouseout, mouseover, and mouseup
events)

Each of these properties gives some information about the mouse event that just occurred. You are
already familiar with the type property, but if the other properties are added into event handling, you
begin to get a more complete picture of the event that occurred:

<html>
<head>

<title>Mouse Events Example</title>
<script type=”text/javascript”>

function handleEvent(oEvent) {
var oTextbox = document.getElementById(“txt1”);
oTextbox.value += “\n>” + oEvent.type;
oTextbox.value += “\n target is “ + (oEvent.target ||

oEvent.srcElement).id;
oTextbox.value += “\n at (“ + oEvent.clientX + “,” +

oEvent.clientY + “) in the client”;
oTextbox.value += “\n at (“ + oEvent.screenX + “,” +

oEvent.screenY + “) on the screen”;
oTextbox.value += “\n button down is “ + oEvent.button;

var arrKeys = [];
if (oEvent.shiftKey) {

arrKeys.push(“Shift”);
}

281

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 281

if (oEvent.ctrlKey) {
arrKeys.push(“Ctrl”);

}

if (oEvent.altKey) {
arrKeys.push(“Alt”);

}

oTextbox.value += “\n keys down are “ + arrKeys;

}
</script>

</head>
<body>

<p>Use your mouse to click and double click the red square.</p>
<div style=”width: 100px; height: 100px; background-color: red”

onmouseover=”handleEvent(event)”
onmouseout=”handleEvent(event)”
onmousedown=”handleEvent(event)”
onmouseup=”handleEvent(event)”
onclick=”handleEvent(event)”
ondblclick=”handleEvent(event)” id=”div1”></div>

<p><textarea id=”txt1” rows=”15” cols=”50”></textarea></p>
</body>

</html>

This example is an update of the previous one with more information displayed in the text box. Here,
the properties just mentioned are output in addition to the event type. One line to take note of is where
the code (oEvent.target || oEvent.srcElement).id appears. Remember that when the logical
OR operator is used with two objects, it always returns either the first or the non-null object. In this
case, it is used to determine which property holds the event target and then to return the id attribute.

For mouseover and mouseout events have additional properties. In IE, the property fromElement con-
tains the element the cursor moved from and toElement contains the element that the cursor moved to.
For mouseover, toElement is always equal to srcElement whereas on mouseout, fromElement is
always equal to srcElement. You can test this for yourself:

<html>
<head>

<title>IE Mouse Events Example</title>
<script type=”text/javascript”>

function handleEvent(oEvent) {
var oTextbox = document.getElementById(“txt1”);
oTextbox.value += “\n>” + oEvent.type;
oTextbox.value += “\n target is “ + oEvent.srcElement.tagName;

Opera 7.5 has a bug when detecting the various keys (Shift, Ctrl, and Alt). It incor-
rectly reports a Shift key as a Ctrl key and vice versa. Additionally, it doesn’t detect
the Alt key at all. Use these properties with caution if you plan on supporting Opera.

282

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 282

if (oEvent.fromElement) {
oTextbox.value += “\n fromElement is “ +

oEvent.fromElement.tagName;
}

if (oEvent.toElement) {
oTextbox.value += “\n toElement is “ +

oEvent.toElement.tagName;
} }

</script>
</head>
<body>

<p>Use your mouse to click and double click the red square.</p>
<div style=”width: 100px; height: 100px; background-color: red”

onmouseover=”handleEvent(event)”
onmouseout=”handleEvent(event)”
onmousedown=”handleEvent(event)”
onmouseup=”handleEvent(event)”
onclick=”handleEvent(event)”
ondblclick=”handleEvent(event)” id=”div1”></div>

<p><textarea id=”txt1” rows=”15” cols=”50”></textarea></p>
</body>

</html>

Because of this redundancy, the DOM supports only one event property called relatedTarget for
both mouseover and mouseout. On a mouseover event, relatedTarget points to the element that cur-
sor moved from; on a mouseout event, relatedTarget points to the element that cursor moved to. You
can modify the previous example to test this:

<html>
<head>

<title>DOM Mouse Events Example</title>
<script type=”text/javascript”>

function handleEvent(oEvent) {
var oTextbox = document.getElementById(“txt1”);
oTextbox.value += “\n>” + oEvent.type;
oTextbox.value += “\n target is “ + oEvent.target.tagName;
oTextbox.value += “\n relatedTarget is “ +

oEvent.relatedTarget.tagName;
}

</script>
</head>
<body>

<p>Use your mouse to click and double click the red square.</p>
<div style=”width: 100px; height: 100px; background-color: red”

onmouseover=”handleEvent(event)”
onmouseout=”handleEvent(event)”
onmousedown=”handleEvent(event)”
onmouseup=”handleEvent(event)”
onclick=”handleEvent(event)”
ondblclick=”handleEvent(event)” id=”div1”></div>

<p><textarea id=”txt1” rows=”15” cols=”50”></textarea></p>
</body>

</html>

283

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 283

Sequencing
It takes a mousedown event followed by a mouseup event on the same target before a click event fires.
Likewise, to get a dblclick event to fire, it takes the following sequence of events on the same target:

1. mousedown

2. mouseup

3. click

4. mousedown

5. mouseup

6. click

7. dblclick

When moving the mouse from one object to another, the first event to fire is mouseout (on the object that
the mouse is moving away from). Next, the mousemove event fires on the object between these two.
Finally, the mouseover event fires on the object the mouse is moving to.

Keyboard events
Keyboard events are caused by user action on the keyboard. The keyboard events are the following:

❑ keydown — Occurs when the user presses a key on the keyboard. It also occurs repeatedly as
the key is being held down.

❑ keypress — Occurs when the user presses a key on the keyboard that results in a character
(disregards keys like Shift and Alt). It also occurs repeatedly as the key is being held down.

❑ keyup — Occurs when the user releases a key that was down.

These events are most easily seen as you type in a text box, although all elements support keyboard events:

<html>
<head>

<title>Key Events Example</title>
<script type=”text/javascript”>

function handleEvent(oEvent) {
var oTextbox = document.getElementById(“txt1”);
oTextbox.value += “\n>” + oEvent.type;

}
</script>

</head>
<body>

<p>Type some characters into the first textbox.</p>
<p><textarea id=”txtInput” rows=”15” cols=”50”

onkeydown=”handleEvent(event)”
onkeyup=”handleEvent(event)”
onkeypress=”handleEvent(event)”></textarea></p>

<p><textarea id=”txt1” rows=”15” cols=”50”></textarea></p>
</body>

</html>

284

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 284

Event properties
For each keyboard event, the following event properties are filled in:

❑ The keyCode property

❑ The charCode property (DOM only)

❑ The target (DOM) or srcElement (IE) property

❑ The shiftKey, ctrlKey, altKey, and metaKey (DOM) properties

Note that pressing the Shift, Ctrl, Alt, or Meta keys causes a keydown event in addition to setting the
appropriate property to true. The following example tests these properties:

<html>
<head>

<title>Key Events Example</title>
<script type=”text/javascript”>

function handleEvent(oEvent) {
var oTextbox = document.getElementById(“txt1”);
oTextbox.value += “\n>” + oEvent.type;
oTextbox.value += “\n target is “ + (oEvent.target ||

oEvent.srcElement).id;
oTextbox.value += “\n keyCode is “ + oEvent.keyCode;
oTextbox.value += “\n charCode is “ + oEvent.charCode;

var arrKeys = [];
if (oEvent.shiftKey) {

arrKeys.push(“Shift”);
}

if (oEvent.ctrlKey) {
arrKeys.push(“Ctrl”);

}

if (oEvent.altKey) {
arrKeys.push(“Alt”);

}

oTextbox.value += “\n keys down are “ + arrKeys;
}

</script>
</head>
<body>

<p>Type some characters into the first textbox.</p>
<p><textarea id=”txtInput” rows=”15” cols=”50”

onkeydown=”handleEvent(event)”
onkeyup=”handleEvent(event)”
onkeypress=”handleEvent(event)”></textarea></p>

<p><textarea id=”txt1” rows=”15” cols=”50”></textarea></p>
</body>

</html>

285

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 285

Sequencing
When the user presses a character key once, the following sequence of events occurs:

1. keydown

1. keypress

2. keyup

If the user presses a non-character key once, such as Shift, the following event sequence takes place:

1. keydown

2. keyup

If the user presses a character key and holds it down, keydown and keypress are fired repeatedly, one
after the other, until the key is released; if the user presses and holds down a non-character key, only the
keydown event fires repeatedly. You can test this out using the previous example.

HTML events
The HTML events group makes up a large number of the remaining events from the original event
model created by developers of IE 4.0 and Netscape 4.0. It includes the following:

❑ The load event, which fires on a window when the page has been completely loaded, on a
frameset when all frames have been completely loaded, on an element when it has been
completely loaded, or on an <object /> element when it has been completely loaded.

❑ The unload event, which fires on a window when the page has been completely unloaded, on a
frameset when all frames have been completely unloaded, or on an <object/> element when it
has been completely unloaded.

❑ The abort event, which fires on an <object/> element if it is not fully loaded before the user
stops the download process.

❑ The error event, which fires on a window when a JavaScript error occurs, on an ele-
ment if the image specified cannot be loaded, on an <object/> element if it cannot be loaded,
or on frameset if one or more frames cannot be loaded. This event is discussed in Chapter 14,
“Error Handling.”

❑ The select event, which fires when the user selects one or more characters in a text box (either
<input/> or <textarea/>). This event is discussed further in Chapter 11, “Forms and Data
Integrity.”

❑ The change event, which fires on a text box (either <input/> or <textarea/>) when it loses
focus and the value has changed since the textbox got focus, and on a <select/> element when
its value is changed. This event is discussed further in Chapter 11.

❑ The submit event, which fires on a <form/> when a Submit button (<input type=”submit”/>)
is clicked. This event is discussed further in Chapter 11.

❑ The reset event, which fires on a <form/> when a Reset button (<input type=”reset”/>) is
clicked. This event is discussed further in Chapter 11.

286

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 286

❑ The resize event, which fires on a window or frame when it is resized.

❑ The scroll event, which fires on any element with a scrollbar when the user scrolls it. The
<body/> element contains the scrollbar for a loaded page.

❑ The focus event, which fires on any element or on the window itself when it gets focus (the user
clicks on it, tabs to it, or otherwise interacts with it).

❑ The blur event, which fires on any element or on the window itself when it loses focus.

The load and unload events
The load event is probably used most often because DOM manipulation can’t take place until the entire
page has been loaded. Two methods define an onload event handler for a window. First, you can use
JavaScript and assign it to the window object:

<html>
<head>

<title>Onload Example</title>
<script type=”text/javascript”>

window.onload = function () {
alert(“Loaded”);

};
</script>
<body>
</body>

</html>

The second way is to assign it in the HTML on the <body/> element:

<html>
<head>

<title>Onload Example</title>
<body onload=”alert(‘Loaded’)”>
</body>

</html>

Confused? The problem here is that the load event actually happens on the window, which is why the
event handler is defined on the window object using JavaScript. In HTML, however, there is no code rep-
resentation of the window object, so the HTML gurus decided that the handler should be assigned on
the <body/> element and then placed on the window object behind the scenes. So, if you set the onload
event handler on the <body/> element and then check the window.onload property, you see the follow-
ing code has been placed there:

<html>
<head>

<title>Onload Example</title>
<script type=”text/javascript”>

function handleLoad() {
alert(window.onload);

}
</script>
<body onload=”handleLoad()”>
</body>

</html>

287

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 287

Can you still assign an event handler to document.body.onload? Yes, you can. The problem is that
document.body doesn’t exist until the page has loaded the <body/> tag. This means that if you try to
assign the event handler in the <head/> element, where it should be done, you get an error. Try it for
yourself:

<html>
<head>

<title>Onload Example</title>
<script type=”text/javascript”>

document.body.onload = function () {
alert(“loaded”);

}
</script>
<body>
</body>

</html>

If you run this code, you get an error saying that document.body isn’t defined. So, it is always best to
assign the onload event handler to the window object.

The unload event can be handled the same way, either by assigning the event handler to the window
object or by assigning it in the <body/> element. The unload event fires when you navigate from one
page to another (by clicking a link or using the Back/Forward buttons) or when you close the browser
window:

<html>
<head>

<title>OnUnload Example</title>
</head>
<body onunload=”alert(‘Goodbye’)”>
</body>

</html>

The resize event
At times your Web page may change depending on the size of the browser window. For this case, you
can use the resize event to determine when to change these dynamic elements.

Similar to the load and unload events, the event handler for the resize event must be assigned either to
the window object using JavaScript code or to the <body/> element in HTML:

<html>
<head>

<title>OnResize Example</title>

You have very short amount of time in which to execute the event handler code
before the window is closed or the next page takes control, so it’s usually best to
avoid using an onunload event handler. The best reason to use onunload is to deref-
erence objects that were used on the page; any functionality more complicated than
this should be avoided.

288

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 288

</head>
<body onresize=”alert(‘Resizing’)”>
</body>

</html>

The actual resize event occurs at different times depending on the browser being used. In Internet
Explorer and Opera, the resize event occurs as soon as a change occurs in the size of the browser. As
soon as the window border is moved one pixel, the event fires. In Mozilla, the resize event fires only
after you have stopped resizing the window. Try out the previous example in a few different browsers.

The resize event also fires when you maximize or minimize the window.

The scroll event
You may also want to keep track of when a user scrolls the window (or another element) in order to
ensure something remains visible on the screen at all times. By using the scroll event, this is easy:

<html>
<head>

<title>OnScroll Example</title>
</head>
<body onscroll=”alert(‘Scrolling’)”>

<p>Try scrolling this window.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>

</body>
</html>

You can also assign the event handler to the window.onscroll property:

<html>
<head>

<title>OnScroll Example</title>
<script type=”text/javascript”>

window.onscroll = function () {
alert(“scrolling”);

}
</script>

</head>
<body>

<p>Try scrolling this window.</p>
<p> </p>
<p> </p>

289

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 289

<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>

</body>
</html>

You can also use this event in conjunction with several properties of the <body/> element, namely
scrollLeft, which tells you how far the window has scrolled horizontally, and scrollTop, which tells
you how far the window has scrolled vertically:

<html>
<head>

<title>OnScroll Example</title>
<script type=”text/javascript”>

window.onscroll = function () {
var oTextbox = document.getElementById(“txt1”);
oTextbox.value += “\nscroll is at “ + document.body.scrollLeft + “

horizontally and “ + document.body.scrollTop + “ vertically.”;
}

</script>
</head>
<body>

<p>Try scrolling this window.</p>
<p><textarea rows=”15” cols=”50” id=”txt1”></textarea>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>

</body>
</html>

In this example, a text box is used to track the scrollLeft and scrollTop properties so you can see
the changes accurately. This works on all major browsers and can be used to create cool effects like a
watermark that always appears at the top of the page:

<html>
<head>

<title>OnScroll Example</title>

290

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 290

<script type=”text/javascript”>
window.onscroll = function () {

var oWatermark = document.getElementById(“divWatermark”);
oWatermark.style.top = document.body.scrollTop;

}
</script>

</head>
<body>

<p>Try scrolling this window.</p>
<div id=”divWatermark” style=”position: absolute; top: 0px; right: 0px;

color: #cccccc; width: 150px; height: 30px; background-color: navy”>Watermark</div>
<p>Line 1</p>
<p>Line 2</p>
<p>Line 3</p>
<p>Line 4</p>
<p>Line 5</p>
<p>Line 6</p>
<p>Line 7</p>
<p>Line 8</p>
<p>Line 9</p>
<p>Line 10</p>
<p>Line 11</p>
<p>Line 12</p>

</body>
</html>

In this example, a <div/> specified with absolute positioning is the watermark. It starts out at the top of
the page, and as the window scrolls, it must stay there. To handle this, a simple piece of code is added to
the onscroll event handler that moves the watermark equal to the scrollTop property, which has the
effect of always keeping it in the upper-right corner of the window.

Mutation events
Mutation events, although part of the DOM standard, have yet to be implemented in any major browser.
As such, the following information is intended to provide a brief look into what the standard defines
and not to discuss how these events might be used.

The mutation events include the following:

❑ DOMSubtreeModified — fires when the subtree of a document or element is modified by
either adding or removing nodes

❑ DOMNodeInserted — fires when a node is inserted as a child of another node

❑ DOMNodeRemoved — fires when a node is removed as a child of another node

❑ DOMNodeRemovedFromDocument — fires when a node is removed from a document

❑ DOMNodeInsertedIntoDocument — fires when a new node is inserted into a document

The purpose of these events is to provide a language-independent event paradigm for use in all XML-
based languages (such as XHTML, SVG, and newer languages like MathML).

291

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 291

Cross-Browser Events
Up until this point, you have seen many different types of browser and feature detection used in each
example. In actual code, you want to try to minimize the number of times you use such detection in the
main section of code. To achieve this, most developers come up with a cross-browser approach to events
so that all the browser and feature detection is done behind the scenes. This section guides you through
the creation of such an approach.

The purpose of the cross-browser code in this section is to equalize, as much as possible, the differences
between the IE event model and the DOM event model, allowing one set of code to run across all major
browsers almost identically. Of course, some limitations exist, such as IE’s lack of support for bi-directional
event flow, but it is still possible to cover 80 to 90% of all cases.

The EventUtil object
Whenever you are planning on creating multiple functions that are used in the same task, it’s always
best to create a container object to manage them. Doing so makes it easy to figure out where the function
is defined when debugging.

In this case, the EventUtil object is the container for all the event-related functions defined in this sec-
tion. Because there are no properties and you only need one instance of this object, there’s no need to
define a class:

var EventUtil = new Object;

Adding/removing event handlers
As you saw earlier, IE uses the attachEvent() method to assign any number of event handlers to an
element, whereas the DOM uses addEventListener(). The first method of the EventUtil object cre-
ates a common way to assign event handlers and is called addEventHandler() (so as not to be con-
fused with either browser’s implementation). This method accepts three arguments: the object to assign
the event handler to, the name of the event to handle, and the function to assign. Because IE doesn’t sup-
port event capturing, this method assigns event handlers during bubbling only. Inside the body of the
method is a simple detection algorithm designed to use the correct functionality at the correct time:

EventUtil.addEventHandler = function (oTarget, sEventType, fnHandler) {
if (oTarget.addEventListener) { //for DOM-compliant browsers

oTarget.addEventListener(sEventType, fnHandler, false);
} else if (oTarget.attachEvent) { //for IE

oTarget.attachEvent(“on” + sEventType, fnHandler);
} else { //for all others

oTarget[“on” + sEventType] = fnHandler;
}

};

The code in this method uses feature detection to determine which way to add an event handler. The
first branch of the if statement is for DOM-compliant browsers that support the addEventListener()
method. When the browser is DOM-compliant, the event handler is added using addEventListener()
with the last parameter equal to false, specifying the bubbling phase.

292

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 292

In the second part of the if statement, another feature detect is done for IE’s attachEvent() method.
Note that in order to work properly, you must prepend the string “on” in front of the event type
(remember, the attachEvent() method accepts the name of the event handler, not the name of the
event, as the first parameter).

The else clause is simply used for all browsers that are neither DOM- nor IE-compliant. There aren’t too
many browsers that fit these criteria, so chances are this branch won’t be used very much.

Of course, you can’t just add event handlers; you must also create a way to remove them. To this end,
the EventUtil object gets another method called removeEventHandler(). As you may expect, this
method accepts the same parameters as addEventHandler() and uses pretty much the same algorithm:

EventUtil.removeEventHandler = function (oTarget, sEventType, fnHandler) {
if (oTarget.removeEventListener) { //for DOM-compliant browsers

oTarget.removeEventListener(sEventType, fnHandler, false);
} else if (oTarget.detachEvent) { //for IE

oTarget.detachEvent(“on” + sEventType, fnHandler);
} else { //for all others

oTarget[“on” + sEventType] = null;
}

};

As you can see, this code mirrors the addEventHandler() code almost exactly, complete with corre-
sponding feature detects. The only big difference is in the final else statement, where the event handler
is set to null and doesn’t use the fnHandler argument at all.

These methods can be used as shown in the following example:

<html>
<head>

<title>Add/Remove Event Handlers Example</title>
<script type=”text/javascript”>

var EventUtil = new Object;
EventUtil.addEventHandler = function (oTarget, sEventType,

fnHandler) {
if (oTarget.addEventListener) {

oTarget.addEventListener(sEventType, fnHandler, false);
} else if (oTarget.attachEvent) {

oTarget.attachEvent(“on” + sEventType, fnHandler);
} else {

oTarget[“on” + sEventType] = fnHandler;
}

};

EventUtil.removeEventHandler = function (oTarget, sEventType,
fnHandler) {

if (oTarget.removeEventListener) {
oTarget.removeEventListener(sEventType, fnHandler, false);

} else if (oTarget.detachEvent) {
oTarget.detachEvent(“on” + sEventType, fnHandler);

} else {
oTarget[“on” + sEventType] = null;

293

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 293

}
};

function handleClick() {
alert(“Click!”);
var oDiv = document.getElementById(“div1”);
EventUtil.removeEventHandler(oDiv, “click”, handleClick);

}

window.onload = function() {
var oDiv = document.getElementById(“div1”);
EventUtil.addEventHandler(oDiv, “click”, handleClick);

}
</script>

</head>
<body>

<div id=”div1” style=”background-color: red; width: 100px; height:
100px”></div>

</body>
</html>

In this code, the onload event handler assigns an onclick event handler to the <div/> with the ID
“div1”. When you click on the <div/>, you get the alert that says “Click!”, and then the event han-
dler is removed. Any time that you click the <div/> after that, there will be no alert.

Formatting the event object
One of the best ways to deal with the discrepancies between event objects in IE and the DOM is to make
them behave as similarly as possible. Because more browsers use the DOM event model, it only makes
sense to make the IE event model match the DOM event model more closely.

The following table is a comparison of DOM and IE event object properties and methods. Often, the
event objects and methods are capable of doing the same thing (such as blocking default behaviors), but
they are implemented in different ways. This table shows the IE way of doing some of the DOM behav-
iors. Although you cannot accurately copy all the properties into IE (such as bubbles or cancelable),
it is possible to come up with an equivalent method for most.

DOM Property/Method IE Property/Method

altKey altKey

bubbles -

button button

cancelBubble cancelBubble

cancelable -

charCode keyCode

clientX clientX

294

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 294

DOM Property/Method IE Property/Method

clientY clientY

ctrlKey ctrlKey

currentTarget -

detail -

eventPhase -

isChar -

keyCode keyCode

metaKey -

pageX -

pageX -

preventDefault() returnValue = false;

relatedTarget fromElement

toElement

screenX screenX

screenY screenY

shiftKey shiftKey

stopPropagation() cancelBubble = true;

target srcElement

timeStamp -

type type

To start, define a new method for EventUtil called formatEvent(), which accepts one parameter, the
event object:

EventUtil.formatEvent = function (oEvent) {
return oEvent;

}

The first thing to do is check for IE on Windows using the browser detection script from the previous
chapter. In this case, you must check for the specific browser because this script is targeted at fixing a
problem only in IE on Windows:

EventUtil.formatEvent = function (oEvent) {
if (isIE && isWin) {

}
return oEvent;

};

295

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 295

To make this easy, just go straight down the table of properties and methods and try to make IE comply
with the DOM model. The altKey property is already there, the bubbles property cannot be recreated,
the button property is there, the cancelBubble property is there, and the cancelable property cannot
recreated — that brings up the charCode property.

As mentioned earlier, in IE the character code is contained in the keyCode property on the keypress
event; otherwise it’s the correct value. So, if the type of event is keypress, it’s logical to create a
charCode property that is equal to keyCode; otherwise, the charCode property should be set to 0:

EventUtil.formatEvent = function (oEvent) {
if (isIE && isWin) {

oEvent.charCode = (oEvent.type == “keypress”) ? oEvent.keyCode : 0;
}
return oEvent;

};

Continuing down the table, the clientX, clientY, and ctrlKey properties are all the same in IE as in
the DOM. We can’t accurately recreate currentTarget or detail, so leave those off. However, you can
put a value for eventPhase. This property is always equal to 2 for the bubbling phase because that is all
IE supports:

EventUtil.formatEvent = function (oEvent) {
if (isIE && isWin) {

oEvent.charCode = (oEvent.type == “keypress”) ? oEvent.keyCode : 0;
oEvent.eventPhase = 2;

}
return oEvent;

};

Next in the table is the isChar property, which is true if the charCode property is not 0:

EventUtil.formatEvent = function (oEvent) {
if (isIE && isWin) {

oEvent.charCode = (oEvent.type == “keypress”) ? oEvent.keyCode : 0;
oEvent.eventPhase = 2;
oEvent.isChar = (oEvent.charCode > 0);

}
return oEvent;

};

The keyCode property is the same in both browsers, and the metaKey property cannot be recreated in
IE, so that brings up pageX and pageY. Although the IE event object doesn’t have equivalent properties,
these properties can be calculated by taking the clientX and clientY values and augmenting them
with the scrollLeft and scrollTop values of the document body:

EventUtil.formatEvent = function (oEvent) {
if (isIE && isWin) {

oEvent.charCode = (oEvent.type == “keypress”) ? oEvent.keyCode : 0;
oEvent.eventPhase = 2;
oEvent.isChar = (oEvent.charCode > 0);
oEvent.pageX = oEvent.clientX + document.body.scrollLeft;
oEvent.pageY = oEvent.clientY + document.body.scrollTop;

296

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 296

}
return oEvent;

};

The preventDefault() method is next. Just define a method for the event object that sets its
returnValue to false:

EventUtil.formatEvent = function (oEvent) {
if (isIE && isWin) {

oEvent.charCode = (oEvent.type == “keypress”) ? oEvent.keyCode : 0;
oEvent.eventPhase = 2;
oEvent.isChar = (oEvent.charCode > 0);
oEvent.pageX = oEvent.clientX + document.body.scrollLeft;
oEvent.pageY = oEvent.clientY + document.body.scrollTop;
oEvent.preventDefault = function () {

this.returnvalue = false;
};

}
return oEvent;

};

Note the use of the this object. In the context of an event object method, this refers to the event object.

The relatedTarget property can be either the fromElement or toElement property depending on the
event type:

EventUtil.formatEvent = function (oEvent) {
if (isIE && isWin) {

oEvent.charCode = (oEvent.type == “keypress”) ? oEvent.keyCode : 0;
oEvent.eventPhase = 2;
oEvent.isChar = (oEvent.charCode > 0);
oEvent.pageX = oEvent.clientX + document.body.scrollLeft;
oEvent.pageY = oEvent.clientY + document.body.scrollTop;
oEvent.preventDefault = function () {

this.returnValue = false;
};

if (oEvent.type == “mouseout”) {
oEvent.relatedTarget = oEvent.toElement;

} else if (oEvent.type == “mouseover”) {
oEvent.relatedTarget = oEvent.fromElement;

}
}
return oEvent;

};

The screenX, screenY, and shiftKey properties are all the same, so no work there. That brings up the
stopPropagation() method, which simply involves setting cancelBubble to true:

EventUtil.formatEvent = function (oEvent) {
if (isIE && isWin) {

oEvent.charCode = (oEvent.type == “keypress”) ? oEvent.keyCode : 0;
oEvent.eventPhase = 2;

297

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 297

oEvent.isChar = (oEvent.charCode > 0);
oEvent.pageX = oEvent.clientX + document.body.scrollLeft;
oEvent.pageY = oEvent.clientY + document.body.scrollTop;
oEvent.preventDefault = function () {

this.returnValue = false;
};

if (oEvent.type == “mouseout”) {
oEvent.relatedTarget = oEvent.toElement;

} else if (oEvent.type == “mouseover”) {
oEvent.relatedTarget = oEvent.fromElement;

}

oEvent.stopPropagation = function () {
this.cancelBubble = true;

};
}
return oEvent;

};

Up next is the target property, which is exactly equivalent to IE’s srcElement property:

EventUtil.formatEvent = function (oEvent) {
if (isIE && isWin) {

oEvent.charCode = (oEvent.type == “keypress”) ? oEvent.keyCode : 0;
oEvent.eventPhase = 2;
oEvent.isChar = (oEvent.charCode > 0);
oEvent.pageX = oEvent.clientX + document.body.scrollLeft;
oEvent.pageY = oEvent.clientY + document.body.scrollTop;
oEvent.preventDefault = function () {

this.returnValue = false;
};

if (oEvent.type == “mouseout”) {
oEvent.relatedTarget = oEvent.toElement;

} else if (oEvent.type == “mouseover”) {
oEvent.relatedTarget = oEvent.fromElement;

}

oEvent.stopPropagation = function () {
this.cancelBubble = true;

};

oEvent.target = oEvent.srcElement;
}
return oEvent;

};

For the time property, you just create a Date object with the current date/time and get the milliseconds:

EventUtil.formatEvent = function (oEvent) {
if (isIE && isWin) {

oEvent.charCode = (oEvent.type == “keypress”) ? oEvent.keyCode : 0;

298

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 298

oEvent.eventPhase = 2;
oEvent.isChar = (oEvent.charCode > 0);
oEvent.pageX = oEvent.clientX + document.body.scrollLeft;
oEvent.pageY = oEvent.clientY + document.body.scrollTop;
oEvent.preventDefault = function () {

this.returnValue = false;
};

if (oEvent.type == “mouseout”) {
oEvent.relatedTarget = oEvent.toElement;

} else if (oEvent.type == “mouseover”) {
oEvent.relatedTarget = oEvent.fromElement;

}

oEvent.stopPropagation = function () {
this.cancelBubble = true;

};

oEvent.target = oEvent.srcElement;
oEvent.time = (new Date).getTime();

}

return oEvent;
};

Because the type property is the same in both IE and the DOM, this is the end of the method. However,
this method isn’t intended to be used alone. Instead, it is intended to be used inside of another method
that gets a reference to the event object.

Getting the event object
Unfortunately, IE and the DOM use very different methods to get the event object. In IE, the event
object is tied to the window object although in the DOM it is independent of any other object and is
passed in as an argument. Because of this, it is very difficult to make IE’s event model act like Mozilla’s,
or vice versa. Instead of trying to make one like the other, you can create a new method that can be used
by both browsers called getEvent().

The getEvent() method accepts no arguments and its sole purpose is to return the event object. The
first case it deals with is IE, checking for the existence of window.event and then using formatEvent()
before returning the event object:

EventUtil.getEvent = function() {
if (window.event) {

return this.formatEvent(window.event);
}

};

Next up is the DOM case. Remember, DOM-compliant browsers pass the event object as an argument
to the event handler. This is when it pays to remember that a function is actually an object that has prop-
erties. In this case, the property of interest is called caller.

299

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 299

Every function has a caller property that contains a pointer to the method that is calling it. For
instance, if funcA() calls funcB(), funcB.caller is equal to funcA. Assuming that an event handler
calls EventUtil.getEvent(), then EventUtil.getEvent.caller points to the event handler itself.

Remember in Chapter 2, “ECMAScript Basics,” you learned about the arguments property of a func-
tion. Because the caller property is a pointer to a function, you can access the arguments property
of the event handler. The event object is always the first argument in an event handler, which means
you can access arguments[0] in the event handler to get the event object:

EventUtil.getEvent = function() {
if (window.event) {

return this.formatEvent(window.event);
} else {

return EventUtil.getEvent.caller.arguments[0];
}

};

This method can now be used inside of an event handler as shown here:

oDiv.onclick = function () {
var oEvent = EventUtil.getEvent();

};

It’s best to put all the EventUtil code defined in the last few sections into a separate file called
eventutil.js to make it easy to include this script in any page.

Example
This code is rewritten from an example in the Mouse Events section:

<html>
<head>

<title>Mouse Events Example</title>
<script type=”text/javascript” src=”detect.js”></script>
<script type=”text/javascript” src=”eventutil.js”></script>
<script type=”text/javascript”>

EventUtil.addEventHandler(window, “load”, function () {
var oDiv = document.getElementById(“div1”);

EventUtil.addEventHandler(oDiv, “mouseover”, handleEvent);
EventUtil.addEventHandler(oDiv, “mouseout”, handleEvent);
EventUtil.addEventHandler(oDiv, “mousedown”, handleEvent);
EventUtil.addEventHandler(oDiv, “mouseup”, handleEvent);
EventUtil.addEventHandler(oDiv, “click”, handleEvent);
EventUtil.addEventHandler(oDiv, “dblclick”, handleEvent);

});

function handleEvent() {
var oEvent = EventUtil.getEvent();

300

Chapter 9

12_579088 ch09.qxd 3/28/05 11:39 AM Page 300

var oTextbox = document.getElementById(“txt1”);
oTextbox.value += “\n>” + oEvent.type;
oTextbox.value += “\n target is “ + oEvent.target.tagName;
if (oEvent.relatedTarget) {

oTextbox.value += “\n relatedTarget is “
+ oEvent.relatedTarget.tagName;

}
}

</script>
</head>
<body>

<p>Use your mouse to click and double click the red square.</p>
<div style=”width: 100px; height: 100px; background-color: red”

id=”div1”></div>
<p><textarea id=”txt1” rows=”15” cols=”50”></textarea></p>

</body>
</html>

This example works in all DOM-compliant browsers as well as those that are IE-compliant, making use
of the target and relatedTarget attributes of the newly formatted event object.

Summary
This chapter introduced the concept of events in JavaScript. You learned the difference between an
event, which is the occurrence of an action, and an event handler, which is a function assigned to execute
when an event occurs. You learned about the different ways to assign event handlers as well as the dif-
ferent methods used by Internet Explorer and the DOM standard for assigning multiple event handlers
to the same event.

The concept of event flow was introduced in this chapter and the two different event flows, bubbling
and capturing, were explained.

You then explored the event object, which is used to give the developer information about a particular
event. The chapter showed you how Internet Explorer and the DOM each support different event
objects. You also learned the different categories of events: mouse events, keyboard events, HTML
events, and mutation events.

The last section of the chapter walked you through the creation of a cross-browser library for events,
enabling you to use one set of methods to access the event object and add/remove event handlers with-
out the need for browser detection.

301

All about Events

12_579088 ch09.qxd 3/28/05 11:39 AM Page 301

12_579088 ch09.qxd 3/28/05 11:39 AM Page 302

Advanced DOM Techniques

Although the basic DOM is pretty straightforward, you can manipulate a document’s underlying
DOM tree in several ways. First, you can make use of several nonstandard properties and methods
available in modern browsers, as well as little-known and underused DOM standard interfaces.

This chapter highlights the browser features that make this possible. Some of the interfaces dis-
cussed in this chapter are defined by the DOM and some are not, but they all enhance your ability
manipulate DOM documents and nodes.

Scripting Styles
When Cascading Style Sheets (CSS) were introduced 1996, they completely changed the way
developers formatted their HTML pages. Instead of using HTML tags such as and ,
pages began using CSS to define the appearance of fonts and other items. The natural next step for
CSS support was to make styles accessible from JavaScript.

Internet Explorer 4.0 introduced a style object for each element on a page to manage that element’s
CSS-defined styles. The DOM eventually adopted this approach as a standard way to access an ele-
ment’s style information.

Today, the style object contains a property for each CSS style, albeit with some different format-
ting. All one-word CSS styles are represented by a property with the same name (for example, the
color style is represented by style.color); two-word styles are represented by the first word
followed by the capitalized second word with no dashes (for example, the background-color
style is represented as style.backgroundColor). The following table lists some popular CSS
attributes and their JavaScript style object equivalents:

13_579088 ch10.qxd 3/28/05 11:39 AM Page 303

CSS Style Attribute JavaScript Style Property

background-color style.backgroundColor

color style.color

font style.font

font-family style.fontFamily

font-weight style.fontWeight

To change a style’s value using JavaScript, simply assign a CSS string to the style object property. For
example, the following code changes the CSS border attribute of a <div/> to “1px solid black”:

var oDiv = document.getElementById(“div1”);
oDiv.style.border = “1px solid black”;

It is possible to retrieve the value of any inline styles (those assigned by using the HTML style
attribute) by using the style object as well. For example, the following page displays the background
color of a <div/> by clicking a button:

<html>
<head>

<title>Style Example</title>
<script type=”text/javascript”>

function sayStyle() {
var oDiv = document.getElementById(“div1”);
alert(oDiv.style.backgroundColor);

}
</script>

</head>
<body>

<div id=”div1” style=”background-color: red; height: 50px; width:
50px”></div>

<input type=”button” value=”Get Background Color” onclick=”sayStyle()” />
</body>

</html>

This same technique can be used to apply rollover effects when the user moves the mouse over a given
element on the page. Although CSS Level 2 provides the :hover pseudo-class to provide rollover effects
on all elements, it is not supported by all browsers on all elements. To overcome this lack of support, just
use the style object:

<html>
<head>

<title>Style Example</title>
</head>
<body>

<div id=”div1”
style=”background-color: red; height: 50px; width: 50px”
onmouseover=”this.style.backgroundColor = ‘blue’”

304

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 304

onmouseout=”this.style.backgroundColor = ‘red’”></div>
</body>

</html>

When you move the mouse over the red <div/>, it changes to blue; when you mouse out, it returns to
red. Note that the event handlers use the this keyword to refer to the <div/> itself and gain access to
its style object.

The style object also has a property called cssText that contains the CSS string describing the style of
the element:

<html>
<head>

<title>Style Example</title>
</head>
<body>

<div id=”div1”
style=”background-color: red; height: 50px; width: 50px”
onclick=”alert(this.style.cssText)”></div>

</body>
</html>

When you click on the <div/> in this example, the text “background-color: red; height: 50px;
width: 50px” displays.

DOM style methods
The DOM also described several methods for the style object, all designed to interact with individual
parts of the CSS style definition:

❑ getPropertyValue(propertyName) — Returns the string value of the CSS property
propertyName. The property must be specified in CSS style, such as “background-color”
instead of “backgroundColor”.

❑ getPropertyPriority() — Returns the string “important” if the CSS property
“!important” is specified in the rule; otherwise it returns an empty string

❑ item(index) — Returns the name of the CSS property at the given index, such as
“background-color”

❑ removeProperty(propertyName) — Removes propertyName from the CSS definition

❑ setProperty(propertyName, value, priority) — Sets the CSS property propertyName
to value with the given priority (either “important” or an empty string)

Here’s a simple example:

<html>
<head>

<title>Style Example</title>
<script type=”text/javascript”>

function useMethods() {

305

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 305

var oDiv = document.getElementById(“div1”);
alert(oDiv.style.item(0)); //outputs “background-color”
alert(oDiv.style.getPropertyValue(“background-color”));
alert(oDiv.style.removeProperty(“background-color”);

}
</script>

</head>
<body>

<div id=”div1” style=”background-color: red; height: 50px; width:
50px”></div>

<input type=”button” value=”Use Methods” onclick=”useMethods()” />
</body>

</html>

When the button is clicked on this page, three things happen. First, the item in the first position (position
0) is displayed, which is “background-color” because it comes first in the style attribute of the
<div/>. Second, the current value of background-color (red) is displayed. Finally, the background-
color property is removed altogether, effectively making the <div/> invisible.

These methods can be used in place of the various style object properties to accomplish the same thing.
For example, this returns the background color of the <div/>:

<html>
<head>

<title>Style Example</title>
<script type=”text/javascript”>

function sayStyle() {
var oDiv = document.getElementById(“div1”);
alert(oDiv.style.getPropertyValue(“background-color”));

}
</script>

</head>
<body>

<div id=”div1” style=”background-color: red; height: 50px; width:
50px”></div>

<input type=”button” value=”Get Background Color” onclick=”sayStyle()” />
</body>

</html>

This is a rewrite of the rollover effect using the style methods:

<html>
<head>

<title>Style Example</title>
</head>
<body>

<div id=”div1”
style=”background-color: red; height: 50px; width: 50px”
onmouseover=”this.style.setProperty(‘background-color’, ‘blue’, ‘’)”
onmouseout=”this.style.setProperty(‘background-color’, ‘red’, ‘’)”>

</div>
</body>

</html>

306

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 306

Custom tooltips
Another interesting use of the style object is to create custom tooltips, which are those helpful yellow
boxes that appear when you move a mouse over an image button. By using the title attribute, HTML
elements can provide plain text tooltips, such as this:

Wrox

However, these plain text tooltips may not be enough. Suppose you want to create a tooltip with bold or
italic text, or maybe even an image, you can do so by creating a hidden <div/> that is displayed only
when the mouse moves over its designated target. This is essentially the same as the rollover code, with
one extra step: moving the <div/> into a position close to the mouse. To correctly position the <div/>,
you can make use of the clientX and clientY properties of the event object. Note that because these
properties are available in all instances of the event object, you don’t need to use the EventUtil object
created earlier in the book:

<html>
<head>

<title>Style Example</title>
<script type=”text/javascript”>

function showTip(oEvent) {
var oDiv = document.getElementById(“divTip1”);
oDiv.style.visibility = “visible”;
oDiv.style.left = oEvent.clientX + 5;
oDiv.style.top = oEvent.clientY + 5;

}

function hideTip(oEvent) {
var oDiv = document.getElementById(“divTip1”);
oDiv.style.visibility = “hidden”;

}
</script>

</head>
<body>

<p>Move your mouse over the red square.</p>
<div id=”div1”

style=”background-color: red; height: 50px; width: 50px”
onmouseover=”showTip(event)” onmouseout=”hideTip(event)”></div>

<div id=”divTip1”
style=”background-color: yellow; position: absolute; visibility:

hidden; padding: 5px”>
Custom Tooltip

More details can go here.

</div>
</body>

</html>

The DOM style methods are not supported by Internet Explorer. For this reason, it is
best to use properties of the style object to get and set CSS properties.

307

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 307

This example passes the event object into the showTip() and hideTip() methods directly (as discussed
in the previous chapter). When showTip() is called, divTip1 is first made visible by setting style.
visibility to “visible”. Then, the function moves divTip1 into position by setting style.left and
style.top equal to event.clientX and event.clientY. To ensure that the tip doesn’t appear directly
under the cursor, five pixels are added to both the left and top coordinates. The hideTip() function sim-
ply sets style.visibility back to “hidden” so that the tip is no longer visible.

Collapsible sections
Using a similar technique, it’s possible to create collapsible sections on a Web page. This type of func-
tionality has become increasingly popular over the past few years to hide certain settings and fields until
needed. The popularity of this user interface paradigm continues to grow, and it is now added to the
Windows XP file system shell.

The basic idea of collapsible sections is that you can click somewhere to either display or hide a section
of the screen. When one section collapses, all others shift their position to move into the empty space.
Using the CSS display attribute can accomplish the same thing. When display is set to none, the ele-
ment is effectively removed from the flow of the page and the page is redrawn as if the element doesn’t
exist. This is different from setting visibility to hidden, which simply hides the element, creating an
empty space where the element resides.

Typically, collapsible sections are arranged into a title bar, which always remains visible, and a content
section, which is expanded or collapsed. To mimic this on the Web, you can use a couple of <div/>
elements: one for the header and one for the content. You also need a small function to toggle the
expand/collapse of the content. Throw this all together and you get the following example:

<html>
<head>

<title>Style Example</title>
<script type=”text/javascript”>

function toggle(sDivId) {
var oDiv = document.getElementById(sDivId);
oDiv.style.display = (oDiv.style.display == “none”) ? “block” :

“none”;
}

</script>
</head>
<body>

<div style=”background-color: blue; color: white; font-weight: bold;
padding: 10px; cursor: pointer”

onclick=”toggle(‘divContent1’)”>Click Here</div>
<div style=”border: 3px solid blue; height: 100px; padding: 10px”

id=”divContent1”>This is some content
to show and hide.</div>
<p> </p>
<div style=”background-color: blue; color: white; font-weight: bold;

padding: 10px; cursor: pointer”
onclick=”toggle(‘divContent2’)”>Click Here</div>

<div style=”border: 3px solid blue; height: 100px; padding: 10px”
id=”divContent2”>This is some content

to show and hide.</div>
</body>

</html>

308

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 308

This page displays two collapsible sections. The two <div/> elements that are displayed or hidden are
named divContent1 and divContent2. When the toggle() function is called, the ID of the <div/>
to act on is passed in as an argument. If the <div/> has style.display equal to none (meaning that
it is not displayed), the value is switched to block (the default for <div/> elements); otherwise,
style.display is set to none. This effectively creates collapsible sections on a Web page.

Accessing style sheets
The style object is useful for getting the CSS style of an element using the style attribute. What it can-
not do is represent the CSS style of an element as defined by a CSS rule or class defined outside of the
style attribute, such as in a <style/> element or an external style sheet. The following example illus-
trates the problem:

<html>
<head>

<title>Runtime Style Example</title>
<style type=”text/css”>

div.special {
background-color: red;
height: 10px;
width: 10px;
margin: 10px;

}
</style>
<script type=”text/javascript”>

function getBackgroundColor() {
var oDiv = document.getElementById(“div1”);
alert(oDiv.style.backgroundColor);

}
</script>

</head>
<body>

<div id=”div1” class=”special”></div>
<input type=”button” value=”Get Background Color”

onclick=”getBackgroundColor()” />
</body>

</html>

In this code, the style for the <div/> is defined in the class special. When you click the button and
getBackgroundColor() is called, the alert displays an empty string because the CSS data isn’t stored
there; it is stored in the class. So the question becomes, how do you access the CSS class?

The first step is to get a reference to the style sheet in which the class is defined. To do this, use the
document.styleSheets collection, which contains references to all the style sheets in an HTML page,
including all <style/> elements (which are considered to be full-fledged style sheets by JavaScript).
The DOM specifies a style sheet object as having the following properties:

❑ disabled — Indicates whether the style sheet is disabled.

❑ href — The URL of the style sheet for externally referenced files; for <style/> elements this
should be null, although Mozilla returns the URL of the HTML page.

309

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 309

❑ media — A list of media types that can use the style sheet, as specified by the HTML media
attribute. Internet Explorer incorrectly implements this property as a string containing the exact
contents of the media attribute.

❑ ownerNode — The DOM node specifying the style sheet (either a <link/> or <style/> ele-
ment). Internet Explorer doesn’t support this property.

❑ parentStyleSheet — If the style sheet is included by the CSS @import statement, this points
to the style sheet in which the statement occurs.

❑ title — The title assigned to the style sheet by the HTML title attribute, which can be used on
both <link/> and <style/>.

❑ type — The mime type of the style sheet; usually this is text/css for CSS.

Accessing the individual rules in a style sheet is a little bit tricky because of browser differences. The
DOM specifies a collection called cssRules for each style sheet, which contains all the CSS rules defined
in the style sheet. Mozilla and Safari correctly implement this standard, although Internet Explorer has
named the collection rules. Consequently, before working with rules in style sheets, you must use an
object detect to determine which collection name to use:

var oCSSRules = document.styleSheets[0].cssRules || document.styleSheets[0].rules;

Each rule contains a selectorText property that returns all the text for a CSS rule before an opening
curly brace. Recall the CSS rule from the previous example:

div.special {
background-color: red;
height: 10px;
width: 10px;
margin: 10px;

}

The selectorText property for this rule is div.special (although Internet Explorer actually capital-
izes all tag names, so it would be DIV.special).

Rules also contain a style property, which is a style object just like those found on elements. Therefore,
the previous example can be updated to report the correct background color by using the style object on
the CSS rule instead of the one on the <div/> itself:

<html>
<head>

<title>Accessing Style Sheets Example</title>
<style type=”text/css”>

div.special {
background-color: red;

Opera doesn’t support JavaScript style sheet access or manipulation. Safari provides
limited support, but can’t access disabled style sheets those with the rel attribute
set to “alternate stylesheet”.

310

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 310

height: 10px;
width: 10px;
margin: 10px;

}
</style>
<script type=”text/javascript”>

function getBackgroundColor() {
var oCSSRules = document.styleSheets[0].cssRules ||

document.styleSheets[0].rules;
alert(oCSSRules[0].style.backgroundColor);

}
</script>

</head>
<body>

<div id=”div1” class=”special”></div>
<input type=”button” value=”Get Background Color”

onclick=”getBackgroundColor()” />
</body>

</html>

When the button is clicked for this example, an alert correctly displays the background color based on
the rule defined as div.special.

The style object on a rule isn’t read-only; you can modify it as well. But this is where you must be care-
ful, because modifying a CSS rule affects all elements using it on that page. Consider this example:

<html>
<head>

<title>Accessing Style Sheets Example</title>
<style type=”text/css”>

div.special {
background-color: red;
height: 10px;
width: 10px;
margin: 10px;

}
</style>
<script type=”text/javascript”>

function changeBackgroundColor() {
var oCSSRules = document.styleSheets[0].cssRules ||

document.styleSheets[0].rules;
oCSSRules[0].style.backgroundColor = “blue”;

}
</script>

</head>
<body>

<div id=”div1” class=”special”></div>
<div id=”div2” class=”special”></div>
<div id=”div3” class=”special”></div>
<input type=”button” value=”Change Background Color”

onclick=”changeBackgroundColor()” />
</body>

</html>

311

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 311

In this example, three <div/> elements have a CSS class of “special”. When the button is clicked,
style.backgroundColor is set to “blue”, thus changing the background color of all three elements.
Because of this side effect, it is always better to modify the style object of an individual element instead
of the one on a CSS rule. Changes to an element’s style object override the corresponding setting on the
CSS rule:

<html>
<head>

<title>Accessing Style Sheets Example</title>
<style type=”text/css”>

div.special {
background-color: red;
height: 10px;
width: 10px;
margin: 10px;

}
</style>
<script type=”text/javascript”>

function changeBackgroundColor() {
var oDiv = document.getElementById(“div1”);
oDiv.style.backgroundColor = “blue”;

}
</script>

</head>
<body>

<div id=”div1” class=”special”></div>
<div id=”div2” class=”special”></div>
<div id=”div3” class=”special”></div>

<input type=”button” value=”Change Background Color”
onclick=”changeBackgroundColor()” />

</body>
</html>

This example changes the background color of only the first <div/> by modifying its style object; the
other <div/> elements are unaffected by the change.

Computed styles
In addition to the style object of elements and CSS rules is the computed style of an element. The com-
puted style is made up of all the style information from inline styles and CSS rules to give a true indica-
tion of how the element is being represented on the screen. As usual, Internet Explorer and the DOM
differ in their implementations.

Computed styles in IE
Microsoft offers a currentStyle object on each element that includes all properties from the element
background-color object as well the properties from any relevant CSS rule’s style object. The
currentStyle object works in the exact same way as the style object, with all the same properties
and methods. This means that even if a background color is defined in a CSS rule, currentStyle.
backgroundColor still contains the correct value:

312

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 312

<html>
<head>

<title>Computed Style Example</title>
<style type=”text/css”>

div.special {
background-color: red;
height: 10px;
width: 10px;
margin: 10px;

}
</style>
<script type=”text/javascript”>

function getBackgroundColor() {
var oDiv = document.getElementById(“div1”);
alert(oDiv.currentStyle.backgroundColor);

}
</script>

</head>
<body>

<div id=”div1” class=”special”></div>
<input type=”button” value=”Get Background Color”

onclick=”getBackgroundColor()” />
</body>

</html>

In this example, clicking the button displays the computed background color (red) even though the
background color is defined in the div.special rule.

Keep in mind that all properties of the currentStyle object are read-only, and you cause an error if you
try to assign a value. This happens because the currentStyle object is a summation of all applicable
styles from the element and CSS rules; it is not a living, breathing object. To make style changes dynami-
cally, you must use the style object as discussed previously.

Computed styles in the DOM
The DOM provides a method called getComputedStyle() that creates a style-like object based on a
given element. The method accepts two parameters, the element to get the style for and a pseudo-element,
such as :hover or :first-letter (it can also be null if not needed). You can access this method from the
document.defaultView object, which is used to represent the currently rendered view of the document
(document.defaultView is not supported in Internet Explorer or Safari).

You can rewrite the previous example using DOM methods like this:

<html>
<head>

<title>Computed Style Example</title>
<style type=”text/css”>

div.special {
background-color: red;
height: 10px;
width: 10px;
margin: 10px;

313

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 313

}
</style>
<script type=”text/javascript”>

function getBackgroundColor() {
var oDiv = document.getElementById(“div1”);
alert(document.defaultView.getComputedStyle(oDiv,

null).backgroundColor);
}

</script>

</head>
<body>

<div id=”div1” class=”special”></div>
<input type=”button” value=”Get Background Color”

onclick=”getBackgroundColor()” />
</body>

</html>

DOM-compliant browsers running this example display the background color in an alert when the but-
ton is clicked.

innerText and innerHTML
Despite the advantages that the DOM brought to dynamically modifying documents, it wasn’t enough
for the developers at Microsoft. Internet Explorer 4.0 introduced two properties on all elements designed
to ease the manipulation of the document called innerText and innerHTML.

The innerText property is designed to modify text between a starting and ending tag. For example,
suppose you have an empty <div/> element that you wanted to change to <div>New text for the
div.</div>. Using the DOM, you do this:

oDiv.appendChild(document.createTextNode(“New text for the div.”));

This code isn’t difficult, but it is a bit verbose. Using innerText, you can just do this:

oDiv.innerText = “New text for the div.”;

Using innerText, the code is much simpler and easier to understand. Additionally, innerText auto-
matically HTML-encodes any less-than, greater-than, quote, and ampersand characters so you never
have to worry about them:

oDiv.innerText = “New text for the <div/>.”;

Note that although some browsers support this functionality, the manner in which
values are represented can differ. For example, Mozilla translates all colors into RGB
form (rgb(255,0,0) for red), whereas Opera translates all colors into their hexa-
decimal representations (#ff0000 for red). It’s always best to test your functionality
on a number of browsers when using getComputedStyle().

314

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 314

This line of code results in <div>New text for the <div/>.</div>. But what if you want to
include HTML tags inside of the element as well? That’s where innerHTML comes in.

The innerHTML property enables you to assign HTML strings to an element without worrying about
creating elements using the DOM methods. For example, suppose an empty <div/> needs to become
<div>Hello World</div>. Using the DOM, this is the code you use:

var oStrong = document.createElement(“strong”);
oStrong.appendChild(document.createTextNode(“Hello”));
var oEm = document.createElement(“em”);
oEm.appendChild(document.createTextNode(“World”));
oDiv.appendChild(oStrong);
oDiv.appendChild(document.createTextNode(“”)); //space between “Hello” and “World”
oDiv.appendChild(oEm);

Using innerHTML, the code becomes this:

oDiv.innerHTML = “Hello World”;

Seven lines of code down to one line of code, that’s the power of innerHTML!

You can also use innerText and innerHTML to get the contents of an element. If an element has only
text, innerText and innerHTML return the exact same value. If, however, it has elements and text,
innerText returns only the text portions, and innerHTML returns the HTML code for all elements and
text. The following table lists the different values for innerText and innerHTML based on certain code.

Code innerText innerHTML

<div>Hello world</div> “Hello world” “Hello world”

<div>Hello world</div> “Hello world” “Hello world”

<div></div> “” “”

Ultimately, this means that you can strip out all HTML tags from a given element by setting innerText
to equal itself:

oDiv.innerText = oDiv.innerText;

outerText and outerHTML
Along with innerText and innerHTML, Internet Explorer 4.0 also introduced outerText and
outerHTML, which do exactly the same thing as their inner counterparts except that they replace the

Even though they are not part of the DOM standard, most modern browsers, includ-
ing Internet Explorer, Opera, and Safari, support innerText and innerHTML;
Mozilla supports only innerHTML.

315

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 315

node in question. For example, setting outerText on a <div/> removes it and replaces it with a text node.
Consider the following line of code:

oDiv.outerText = “Hello world!”;

This single line of code is the same as this set of DOM manipulations:

var oText = document.createTextNode(“Hello world! “);
var oDivParent = oDiv.parentNode;
oDivParent.replaceChild(oText, oDiv);

The outerText property has the same rules as the innerText property in that it replaces all less-than,
greater-than, quote, and ampersand characters with their HTML entities. Similarly, outerHTML behaves
the same as innerHTML, creating all the necessary DOM nodes represented by the HTML string:

oDiv.outerHTML = “<p>This is a paragraph.</p>”;

This line of code performs the following DOM modifications:

var oP = document.createElement(“p”);
oP.appendChild(document.createTextNode(“This is a paragraph. “));
var oDivParent = oDiv.parentNode;
oDivParent.replaceChild(oP, oDiv);

Whereas outerText and outerHTML provide developers with a lot of power, they don’t clearly indicate
exactly what is happening (the code doesn’t read). Many developers shy away from using outerText
and outerHTML because they can lead to bigger headaches down the road if something goes wrong.
Generally speaking, you’re safer using the DOM methods, whose meanings are much clearer.

Both these properties can also be used to get the contents of an element. The outerText property
always returns the same value as innerText, regardless of the element contents. On the other hand,
outerHTML returns the full HTML code for the element, including the element itself. The following table
lists the different values for outerText and outerHTML based on certain code.

Code outerText outerHTML

<div>Hello world</div> “Hello world” “<div>Hello world</div>”

<div>Hello
world</div> “Hello world” “<div>Hello world</div>”

<div></div> “” “<div></div>”

Similar to innerText, you can use outerText in a unique way. By setting outerText equal to itself, you
actually remove the element and replace it with a text node containing all the text inside the element:

<html>
<head>

<title>OuterText Example</title>
<style type=”text/css”>

div.special {

316

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 316

background-color: red;
padding: 10px;

}
</style>
<script type=”text/javascript”>

function useOuterText() {
var oDiv = document.getElementById(“div1”);
oDiv.outerText = oDiv.outerText;
alert(document.getElementById(“div1”));

}
</script>

</head>
<body>

<div id=”div1” class=”special”>This is my original text</div>
<input type=”button” value=”Use OuterText” onclick=”useOuterText()” />

</body>
</html>

When you click the button in this example, the <div/> is replaced with a text node containing This is my
original text. You can tell that the <div/> no longer exists by using document.getElementById() to
look for div1 again. In this example, the result of the function (null) is displayed in an alert.

Ranges
To allow an even greater measure of control over a page, you can use something called a range. A range
can be used to select a section of a document regardless of node boundaries (note that the selection
occurs behind the scenes and cannot be seen by the user).

Ranges are helpful when regular DOM manipulation isn’t specific enough to change a document. And
as usual, there are two different implementations of ranges: one from the DOM and one from Internet
Explorer.

Ranges in the DOM
DOM Level 2 defines a method called createRange() to, well, create ranges. In DOM-compliant
browsers, this method belongs to the document object, so a new range can be created like this:

var oRange = document.createRange();

Just like nodes, a range is tied directly to a document. To determine if the document supports DOM-style
ranges, you can use the hasFeature() method discussed in Chapter 6, “DOM Basics.”

var supportsDOMRanges = document.implementation.hasFeature(“Range”, “2.0”);

The outerText and outerHTML properties are supported in Internet Explorer and
Opera only.

317

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 317

If you plan to use DOM ranges, it is always best to make this check first and wrap your code in an if
statement:

if (supportsDOMRange) {
var oRange = document.createRange();

//range code here
}

Simple selection in DOM ranges
The simplest way to select a part of the document using a range is to use either selectNode() or
selectNodeContents(). These methods each accept one argument, a DOM node, and fill a range with
information from that node.

The selectNode() method selects the entire node, including its children, whereas
selectNodeContents() selects all of the node’s children. For example, consider the following:

<p id=”p1”>Hello World</p>

This code can be accessed using the following JavaScript:

var oRange1 = document.createRange();
var oRange2 = document.createRange();
var oP1 = document.getElementById(“p1”);
oRange1.selectNode(oP1);
oRange2.selectNodeContents(oP1);

The two ranges in this example contain different sections of the document: oRange1 contains the <p>
element and all its children, whereas oRange2 contains the element and the text node World (see
Figure 10-1).

Figure 10-1

Whenever you create a range, a number of properties are assigned to it:

❑ startContainer — The node within which the range starts (the parent of the first node in the
selection)

❑ startOffset — The offset within the startContainer where the range starts. If
startContainer is a text node, comment node, or CData node, the startOffset is the num-
ber of characters skipped before the range starts; otherwise, the offset is the index of the first
child node in the range.

<p id="pl">Hello World</p>

<p id="pl">Hello World</p>

oRange1.selectNode(oP1)

oRange2.selectNodeContents(oP1)

318

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 318

❑ endContainer — The node within which the range ends (the parent of the last node in the
selection)

❑ endOffset — The offset within the endContainer where the range ends (follows the same
rules as startOffset)

❑ commonAncestorContainer — The first node within which both startContainer and
endContainer exist

These properties are all read-only and are designed to give you additional information about the range.

When you use selectNode(), the startContainer, endContainer, and commonAncestorContainer
are all equal to the parent node of the node that was passed in; startOffset is equal to the index of the
given node within the parent’s childNodes collection, whereas endOffset is equal to the startOffset
plus one (because only one node is selected).

When you use selectNodeContents(), startContainer, endContainer, and commonAncestor
Container are equal to the node that was passed in; startOffset is equal to 0; endOffset is equal
to the number of child nodes (node.childNodes.length).

The following example illustrates these properties:

<html>
<head>

<title>DOM Range Example</title>
<script type=”text/javascript”>

function useRanges() {
var oRange1 = document.createRange();
var oRange2 = document.createRange();
var oP1 = document.getElementById(“p1”);
oRange1.selectNode(oP1);
oRange2.selectNodeContents(oP1);

document.getElementById(“txtStartContainer1”).value =
oRange1.startContainer.tagName;

document.getElementById(“txtStartOffset1”).value =
oRange1.startOffset;

document.getElementById(“txtEndContainer1”).value =
oRange1.endContainer.tagName;

document.getElementById(“txtEndOffset1”).value = oRange1.endOffset;
document.getElementById(“txtCommonAncestor1”).value =

oRange1.commonAncestorContainer.tagName;

document.getElementById(“txtStartContainer2”).value =
oRange2.startContainer.tagName;

document.getElementById(“txtStartOffset2”).value =
oRange2.startOffset;

document.getElementById(“txtEndContainer2”).value =
oRange2.endContainer.tagName;

document.getElementById(“txtEndOffset2”).value = oRange2.endOffset;
document.getElementById(“txtCommonAncestor2”).value =

oRange2.commonAncestorContainer.tagName;
}

</script>

319

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 319

</head>
<body><p id=”p1”>Hello World</p>

<input type=”button” value=”Use Ranges” onclick=”useRanges()” />
<table border=”0”>
<tr>

<td>
<fieldset>

<legend>oRange1</legend>
Start Container: <input type=”text” id=”txtStartContainer1”

/>

Start Offset: <input type=”text” id=”txtStartOffset1” />

End Container: <input type=”text” id=”txtEndContainer1” />

End Offset: <input type=”text” id=”txtEndOffset1” />

Common Ancestor: <input type=”text” id=”txtCommonAncestor1”

/>

</fieldset>

</td>
<td>

<fieldset>
<legend>oRange2</legend>
Start Container: <input type=”text” id=”txtStartContainer2”

/>

Start Offset: <input type=”text” id=”txtStartOffset2” />

End Container: <input type=”text” id=”txtEndContainer2” />

End Offset: <input type=”text” id=”txtEndOffset2” />

Common Ancestor: <input type=”text” id=”txtCommonAncestor2”

/>

</fieldset>

</td>
</tr>
</table>

</body>
</html>

Figure 10-2 displays the result when this example is run in a DOM-compliant browser, such as Mozilla.

As you can see, oRange1’s startContainer, endContainer, and commonAncestorContainer are equal
to the <body/> element because the <p/> element is wholly contained within it. Also, startOffset is
equal to 0, because the <p/> element is the first child of <p/>, and endOffset is equal to 1, meaning that
the range is over before the second child node (which is index 1).

Looking over at oRange2’s information gathered by selectNodeContents(), startContainer,
endContainer, and commonAncestorContainer are equal to the <p/> element itself because you are
selecting its children. The startOffset is equal to 0, because the selection begins with the first child
node of <p/>. The endOffset is equal to 2 because there are two child nodes of <p/>: and the text
node World.

320

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 320

Figure 10-2

Several methods help you get more specific with selections while still setting these properties for you.
These are the following:

❑ setStartBefore(refNode) — Sets the starting point of the range to begin before refNode (so
refNode is the first node in the selection). The startContainer property is set to refNode’s
parent and the startOffset property is set to the index of refNode within its parent’s
childNodes collection.

❑ setStartAfter(refNode) — Sets the starting point of the range to begin after refNode (so
refNode is not part of the selection; rather, its next sibling is the first node in the selection). The
startContainer property is set to refNode’s parent and the startOffset property is set to
the index of refNode within its parent’s childNodes collection plus one.

❑ setEndBefore(refNode) — Sets the ending point of the range to begin before refNode (so
refNode is not part of the selection; its previous sibling is the last node in the selection). The
endContainer property is set to refNode’s parent and the endOffset property is set to the
index of refNode within its parent’s childNodes collection.

321

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 321

❑ setEndAfter(refNode) — Sets the ending point of the range to begin before refNode (so
refNode is the last node in the selection). The endContainer property is set to refNode’s par-
ent and the endOffset property is set to the index of refNode within its parent’s childNodes
collection plus one.

Using any of these methods, all properties are assigned for you. However, it is possible to assign these
values directly in order to make complex range selections.

Complex selection in DOM ranges
Creating complex ranges requires the use of range setStart() and setEnd() methods. Both methods
accept two arguments: a reference node and an offset. For setStart(), the reference node becomes the
startContainer, and the offset becomes the startOffset; for setEnd(), the reference node becomes
the endContainer, and the offset becomes the endOffset.

Using these methods, it is possible to mimic selectNode() and selectNodeContents(). For example,
the useRanges() function in the previous example can be rewritten using setStart() and setEnd():

function useRanges() {
var oRange1 = document.createRange();
var oRange2 = document.createRange();
var oP1 = document.getElementById(“p1”);

var iP1Index = -1;
for (var i=0; i < oP1.parentNode.childNodes.length; i++) {

if (oP1.parentNode.childNodes[i] == oP1) {
iP1Index = i;
break;

}
}

oRange1.setStart(oP1.parentNode, iP1Index);
oRange1.setEnd(oP1.parentNode, iP1Index + 1);
oRange2.setStart(oP1, 0);
oRange2.setEnd(oP1, oP1.childNodes.length);

//textbox assignments here
}

Note that to select the node (using oRange1), you must first determine the index of the given node (oP1)
in its parent node’s childNodes collection. To select the node contents (using oRange2), no calculations
are necessary. But you already know easier ways to select the node and node contents; the real power
here is to be able to select only parts of nodes.

Recall the very first example mentioned in this section, selecting llo from Hello and Wo from World in
the HTML code <p id=”p1”>Hello World</p>. Using setStart() and setEnd(), this is
quite easy to accomplish.

322

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 322

The first step in the process is to get references to the text nodes containing Hello and World using the
regular DOM methods:

var oP1 = document.getElementById(“p1”);
var oHello = oP1.firstChild.firstChild;
var oWorld = oP1.lastChild;

The Hello text node is actually a grandchild of <p/> because it’s apparently , so you can use
oP1.firstChild to get and oP1.firstChild.firstChild to get the text node. The World text
node is the second (and the last) child of <p/>, so you can use oP1.lastChild to retrieve it.

Next, create the range and set the appropriate offsets:

var oP1 = document.getElementById(“p1”);
var oHello = oP1.firstChild.firstChild;
var oWorld = oP1.lastChild;
var oRange = document.createRange();

oRange.setStart(oHello, 2);
oRange.setEnd(oWorld, 3);

For setStart(), the offset is 2, because the first l in Hello is in position 2 (starting from H in position
0). For setEnd(), the offset is 3, indicating the first character that should not be selected, which is r in
position 3. (There is actually a space in position 0. See Figure 10-3.)

Figure 10-3

Because both oHello and oWorld are text nodes, they become the startContainer and endContainer
for the range so that the startOffset and endOffset accurately look at the text contained within each
node instead of looking for child nodes, which is what happens when an element is passed in. The
commonAncestorContainer is the <p/> element, which is the first ancestor that contains both nodes.

Of course, just selecting sections of the document isn’t very useful unless you can interact with the
selection.

There is a bug in Mozilla’s implementation of the DOM Range (bug #135928) that
causes an error to occur when you try to use setStart() and setEnd() with the
same text node. This bug has been resolved and this fix is included in a future
Mozilla release.

<p id="pl">Hello World</p>

Range

0 1234 0 1 2345

323

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 323

Interacting with DOM range content
When a range is created, internally it creates a document fragment node onto which all the nodes in the
selection are attached. Before this can happen, however, the range must make sure that the selection is
well-formed.

You just learned that it is possible to select the entire area from the first letter l in Hello to the o in
World, including the end tag (see Figure 10-4). This would be impossible using the normal DOM
methods described earlier in the book.

Figure 10-4

The reason a range can get away with this trick is that it recognizes missing opening and closing tags.
In the previous example, the range calculates that a start tag is missing inside the selection, so the
range dynamically adds it behind the scenes, along with a new end tag to enclose He, thus altering
the DOM to the following:

<p>Hello World</p>

The document fragment contained within the range is displayed in Figure 10-5.

Figure 10-5

With the document fragment created, you can manipulate the contents of the range using a variety of
methods.

The first method is the simplest to understand and use: deleteContents(). This method simply deletes
the contents of the range from the document. In the previous example, calling deleteContents() on the
range leaves this HTML in the page:

<p>Herld</p>

Because the entire document fragment is removed, the range is kind enough to place the missing
tag into the document so it remains well-formed.

llo

DocumentFragment

Wo

<p>Hello World</p>
Range

324

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 324

extractContents() is similar to deleteContents(). It also removes the range selection from the
document and returns the range’s document fragment as the function value. This allows you to insert
the contents of the range somewhere else:

var oP1 = document.getElementById(“p1”);
var oHello = oP1.firstChild.firstChild;
var oWorld = oP1.lastChild;
var oRange = document.createRange();

oRange.setStart(oHello, 2);
oRange.setEnd(oWorld, 3);
var oFragment = oRange.extractContents();

document.body.appendChild(oFragment);

In this example, the fragment is extracted and added to the end of the document’s <body/> element
(remember, when a document fragment is passed into appendChild(), only the fragment’s children are
added, not the fragment itself). What you see in this example is the code Herld at the top of the
page, and llo Wo at the bottom of the page.

Another option is to leave the fragment in place, but create a clone of it that can be inserted elsewhere in
the document by using cloneContents():

var oP1 = document.getElementById(“p1”);
var oHello = oP1.firstChild.firstChild;
var oWorld = oP1.lastChild;
var oRange = document.createRange();

oRange.setStart(oHello, 2);
oRange.setEnd(oWorld, 3);
var oFragment = oRange.cloneContents();

document.body.appendChild(oFragment);

This method is very similar to deleteContents() because both return the range’s document fragment.
This results in llo</> Wo being added to the end of the page; the original HTML code remains intact.

Inserting DOM range content
The previous three methods all dealt with removing information from the range in one way or another.
It is also possible to add content to the range using a couple of different methods.

The insertNode() method enables you to insert a node at the beginning of the selection. Suppose you
wanted to insert the following HTML code into the range defined in the previous section:

Inserted text

The document fragment and accompanying changes to the range selection do not
happen until one of these methods is called. The original HTML remains intact right
up until that point.

325

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 325

The following code accomplishes this:

var oP1 = document.getElementById(“p1”);
var oHello = oP1.firstChild.firstChild;
var oWorld = oP1.lastChild;
var oRange = document.createRange();

var oSpan = document.createElement(“span”);
oSpan.style.color = “red”;
oSpan.appendChild(document.createTextNode(“Inserted text”));

oRange.setStart(oHello, 2);
oRange.setEnd(oWorld, 3);
oRange.insertNode(oSpan);

Running this JavaScript effectively creates the following HTML code:

<p id=”p1”>HeInserted textllo World</p>

Note that the is inserted just before the llo in Hello, which is the first part of the range selec-
tion. Also note that the original HTML didn’t add or remove elements because none of the methods
introduced in the previous section were used. You can use this technique to insert helpful information,
such as an image next to links that open in a new window.

Along with inserting into the range, it is possible to insert content surrounding the range by using the
surroundContents() method. This method accepts one parameter, which is the node that surrounds
the range contents. Behind the scenes, the following steps are taken:

1. The contents of the range are extracted (similar to extractContents()).

2. The given node is inserted into the position in the original document where the range was.

3. The contents of the document fragment is added to the given node.

This sort of functionality is useful online to highlight certain words in a Web page, like this:

var oP1 = document.getElementById(“p1”);
var oHello = oP1.firstChild.firstChild;
var oWorld = oP1.lastChild;
var oRange = document.createRange();

var oSpan = document.createElement(“span”);
oSpan.style.backgroundColor = “yellow”;

oRange.setStart(oHello, 2);
oRange.setEnd(oWorld, 3);
oRange.surroundContents(oSpan);

The previous code highlights the range selection with a yellow background.

326

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 326

Collapsing a DOM Range
To empty a range, (that is, to have it select no part of the document), you collapse it. Collapsing a range
resembles the behavior of a text box. When you have text in a text box, you can highlight an entire word
using the mouse. However, if you left-click the mouse again, the selection is removed and the cursor is
located between two letters. When you collapse a range, you are setting its locations between parts of a
document, either at the beginning of the range selection or at the end. Figure 10-6 illustrates what hap-
pens when a range is collapsed.

Figure 10-6

You can collapse a range by using the collapse() method, which accepts a single argument: a Boolean
value indicating which end of the range to collapse to. If the argument is true, then the range is col-
lapsed to its starting point; if false, the range is collapsed to its ending point. To determine if a range is
collapsed, you can use the collapsed property:

oRange.collapse(true); //collapse to the starting point
alert(oRange.collapsed); //outputs “true”

Testing whether a range is collapsed is helpful if you aren’t sure if two nodes in the range are next to
each other. For example, consider this HTML code:

<p id=”p1”>Paragraph 1</p><p id=”p2”>Paragraph 2</p>

If you don’t know the exact makeup of this code (because, perhaps, it is automatically generated), you
might try creating a range like this:

var oP1 = document.getElementById(“p1”);
var oP2 = document.getElementById(“p2”);
var oRange = document.createRange();
oRange.setStartAfter(oP1);
oRange.setStartBefore(oP2);
alert(oRange.collapsed); //outputs “true”

In this case, the created range is collapsed because there is nothing between the end of p1 and the begin-
ning of p2.

<p>Hello World</p>
Original Range

<p>Hello World</p>
Collapsed to beginning

<p>Hello World</p>
Collapsed to end

327

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 327

Comparing DOM ranges
If you have more than one range, you can use the compareBoundaryPoints() method to determine if
the ranges have any boundaries (start or end) in common. The method accepts two arguments: the range
to compare to and how to compare, which is a constant value:

❑ START_TO_START (0) — Compares the starting point of the first range to the starting point of
the second

❑ START_TO_END (1) — Compares the starting point of the first range to the end point of the
second

❑ END_TO_END (2) — Compares the end point of the first range to the end point of the second.

❑ END_TO_START (3) — Compares the end point of the first range to the start point of the second

The compareBoundaryPoints() method returns –1 if the point from the first range comes before the
point from the second range, 0 if the points are equal, or 1 if the point from the first range comes after
the point from the second range.

For example:

var oRange1 = document.createRange();
var oRange2 = document.createRange();
var oP1 = document.getElementById(“p1”);
oRange1.selectNodeContents(oP1);
oRange2.selectNodeContents(oP1);
oRange2.setEndBefore(oP1.lastChild);
alert(oRange1.compareBoundaryPoints(Range.START_TO_START, oRange2)); //outputs 0
alert(oRange1.compareBoundaryPoints(Range.END_TO_END, oRange2)); //outputs 1;

In this code, the starting points of the two ranges are exactly the same because both use the default value
from selectNodeContents(); therefore, the method returns 0. For oRange2, however, the end point is
changed using setEndBefore(), making the end point of oRange1 come after the end point of
oRange2 (see Figure 10-7), so the method returns 1.

Figure 10-7

Cloning DOM ranges
If you find the need, you can duplicate any range by calling the cloneRange() method. This method
creates an exact duplicate of the range on which it is called:

var oNewRange = oRange.cloneRange();

The new range contains all of the same properties as the original and can be modified without affecting
the original in any way.

<p id="pl">Hello World</p>
oRange2

oRange1

328

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 328

Clean up
When you are done using a range, it is best to call the detach() method to free up system resources.
This isn’t required because dereferenced ranges are picked up by the garbage collector eventually. If,
however, the range is used initially and then no longer required, calling detach() ensures that it isn’t
taking up any more memory than necessary:

oRange.detach();

Ranges in Internet Explorer
Internet Explorer has a non-standard way of dealing with ranges, which can nonetheless be very effec-
tive as long as you understand the differences.

To begin, ranges in IE are called text ranges because they are intended primarily to deal with text (not
specifically DOM nodes). To create a range, you must call createTextRange() on a <body/>,
<button/>, <input/>, or <textarea/> element (not on the document itself):

var oRange = document.body.createTextRange();

Creating a range in this way allows it to be used anywhere on the page (creating a range on one of the
other specified elements limits the range to working on that element).

Simple selection in IE ranges
The simplest way to select an area of the page is to use the findText() method of the range. This
method finds the first instance of a given text string and moves the range to surround it. Once again,
consider the following HTML code:

<p id=”p1”>Hello World</p>

To select Hello, you can use the following code:

var oRange = document.body.createTextRange();
var bFound = oRange.findText(“Hello”);

After the second line of code, the text Hello is contained within the range. You can test this by using the
range’s text property (which returns the text contained in the range) or checking the returned value of
findText(), which is true if the text was found:

alert(bFound);
alert(oRange.text);

To move the range through the document, you can use the second parameter of the findText() method,
which is a number indicating the direction to continue searching: A negative number indicates that the
search should go backwards, whereas a positive number indicates that the search should go forward. So,
to find the first two instances of Hello in a document, you could use this code:

var bFound = oRange.findText(“Hello”);
var bFoundAgain = oRange.findText(“Hello”, 1);

329

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 329

The closest thing to the DOM’s selectNode() is IE’s moveToElementText(), which accepts a DOM
element as an argument and selects all the element’s text, including HTML tags:

var oRange = document.body.createTextRange();
var oP1 = document.getElementById(“p1”);
oRange.moveToElementText(oP1);

To test that this works, you can use the htmlText property, which returns all the HTML contained
within the range:

alert(oRange.htmlText);

Ranges in IE don’t have any other properties that are dynamically updated as the range selection changes,
although a parentElement() method behaves the same as the DOM’s commonAncestorContainer
property:

var oCommonAncestor = oRange.parentElement();

Complex selection in IE ranges
One of the complex parts of complex range selection in IE is that you must use one of the simple methods
of selection first. After the range is in a relatively correct position, you can use move(), moveStart(),
moveEnd(), and expand() to further position the range.

Each of these methods accepts two arguments: the type of units to move and the number of units to
move. The type of units to move is one of the following string values:

❑ “character” — Moves a point by one character

❑ “word” — Moves a point by one word (a sequence of non-whitespace characters)

❑ “sentence” — Moves a point by one sentence (a sequence of characters ending with a period,
question mark, or exclamation point)

❑ “textedit” — Moves a point to the start or end of the current range selection

The moveStart() method moves the starting point of the range by the given number of units, whereas
the moveEnd() method moves the endpoint of the range by the given number of units:

oRange.moveStart(“word”, 2); //move the start point by two words
oRange.moveEnd(“character”, 1); //move the ending point by two words

You can also use the expand() method to normalize the range. The expand() method makes sure that
any partially selected units become fully selected. For example, if you selected only the middle two char-
acters of a word, you can call expand(“word”) to ensure that the entire word is enclosed by the range.

The move() method first collapses the range (making the start and end point equal) and then moves the
range by the specified number of units:

oRange.move(“character”, 5); //move over five characters

After using move(), you must use either moveEnd() to once again make a selection.

330

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 330

Interacting with IE range content
Interacting with a range’s content in IE is done through either the text property or the pasteHTML()
method.

The text property, which you used previously to retrieve the text content of the range, can also be used
to set the text content of the range. For example:

var oRange = document.body.createTextRange();
oRange.findText(“Hello”);
oRange.text = “Howdy”;

If you run this code against the same Hello World code shown earlier, the resulting code is the following:

<p id=”p1”>Howdy World</p>

Note that all the HTML tags remained intact when setting the text property. If you want to insert more
content than just plain text, you can use pasteHTML() to insert HTML code. For instance:

var oRange = document.body.createTextRange();
oRange.findText(“Hello”);
oRange.pasteHTML(“Howdy”);

If you run this code, the following is the resulting HTML :

<p id=”p1”>Howdy World</p>

Collapsing an IE range
Ranges in IE have a collapse() method that works exactly the same as the DOM method: Pass in true
to collapse the range to the beginning and false to collapse the range to the end.

oRange.collapse(true);

Unfortunately, no corresponding collapsed property tells you whether a range is already collapsed.
Instead, you must use the boundingWidth property, which returns the width (in pixels) of the range. If
boundingWidth is equal to 0, the range is collapsed:

var bIsCollapsed = (oRange.boundingWidth == 0);

The boundingHeight, boundingLeft, and boundingTop properties also give information about the
range location, although these are less helpful than boundingWidth.

It is not recommended to use pasteHTML() when the range contains HTML code
because this causes unpredictable results and often results in improperly formed
HTML.

331

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 331

Comparing IE ranges
Ranges in IE have a similar capability to the DOM range’s compareBoundaryPoints() method called
compareEndPoints(). This method accepts two arguments: the type of comparison and the range to
compare to. Unlike the DOM implementation, the type of comparison in IE is one of the following
strings: “StartToStart”, “StartToEnd”, “EndToEnd”, and “EndToStart”. These comparisons are identically
equal to the comparable ones in DOM ranges.

Also similar to the DOM, compareEndPoints() returns –1 if the first range boundary occurs before the
second range’s boundary, 0 if they are equal, and 1 if the first range boundary occurs after the second
range boundary. Once again, consider using the Hello World HTML code from the previous example.
The following code creates two ranges, one that selects “Hello World” (including the tags) and
one that selects “Hello” (also including the tags, see Figure 10-7):

var oRange1 = document.body.createTextRange();
var oRange2 = document.body.createTextRange();
oRange1.findText(“Hello World”);
oRange2.findText(“Hello”);
alert(oRange1.compareEndPoints(“StartToStart”, oRange2)); //outputs 0
alert(oRange1.compareEndPoints(“EndToEnd”, oRange2)); //outputs 1;

Similar to the example in “Comparing DOM Ranges,” the first and second range share the same starting
point, so compareEndPoints() returns 1; oRange1’s end point occurs after oRange2’s endpoint, so
compareEndPoints() returns 1.

IE also has two additional methods for comparing ranges: isEqual(), which determines if two ranges
are identically equal, and inRange(), which determines if a range occurs inside of another range:

var oRange1 = document.body.createTextRange();
var oRange2 = document.body.createTextRange();
oRange1.findText(“Hello World”);
oRange2.findText(“Hello”);
alert(“oRange1.isEqual(oRange2): “ + oRange1.isEqual(oRange2)); //outputs “false”
alert(“oRange1.inRange(oRange2): “ + oRange1.inRange(oRange2)); //outputs “true”

This example uses the same ranges as in the previous example to illustrate these methods. You already
know that the ranges are not equal because the end points are different; to be equal, the ranges must
share both start and end points. So the first alert displays “false”. However, oRange2 is actually inside
of oRange1, because its end point occurs before oRange1’s end point but after oRange1’s start point. For
this reason, the second alert displays “true”, telling you oRange2 is in oRange1.

Cloning an IE range
Similar to the DOM, it is possible to create exact duplicates (clones) of a given range by calling the
duplicate() method:

var oNewRange = oRange.duplicate();

All properties from the original range are carried over into the newly created one.

332

Chapter 10

13_579088 ch10.qxd 3/28/05 11:39 AM Page 332

How practical are ranges?
The dissimilarities between the DOM and IE range implementations make it difficult to create cross-
browser solutions, which is perhaps why many developers shy away from using ranges at all. When
evaluating your own usage, it’s important to understand your target audience, what browsers they will
be using, and if there is a nonrange way to create the same effect.

Ranges can provide very useful functionality on Web pages. Some pages use ranges to highlight certain
words on a page based on a series of search terms, so the user can easily find the words he or she is
searching for. Another use, popular among advertisers, is to turn certain words into links (for instance,
turning the word computer into a link to a computer manufacturer or the word JavaScript to a description
of the language).

Summary
This chapter introduced several new ways to manipulate a document’s DOM tree.

First, you learned how to affect the CSS style of elements on a Web page. Several examples were dis-
cussed, including hover effects and custom tooltips. You learned how to access the style definitions of
elements as well as CSS rules, and in doing so, saw their difference from computed styles.

The next section introduced innerText, innerHTML, outerText, and outerHTML. You learned how
innerText can be used to change the text content of a DOM element and how innerHTML can be used
to change the HTML content of a DOM element. Likewise, you learned how outerText and outerHTML
can be used to replace a DOM element altogether (either with plain text or HTML code, respectively).

Lastly, you learned about ranges. The differences between DOM ranges and ranges in Internet Explorer
were discussed, and several examples were given to show the similarities between the two.

333

Advanced DOM Techniques

13_579088 ch10.qxd 3/28/05 11:39 AM Page 333

13_579088 ch10.qxd 3/28/05 11:39 AM Page 334

Forms and Data Integrity

Form elements were created to address the need for the user to send data back to the server. The
answer they provided came in the form (no pun intended) of Web forms, using the HTML <form/>,
<input/>, <select/>, and <textarea/> elements. Using these elements, browsers can render
text boxes, combo boxes, and other user input controls to allow communication from the client to
the server.

Although the Web has developed at a rapid pace, Web forms have remained virtually unchanged.
Although a new standard called XForms looms on the horizon, no browser has made a move to
adopt it natively, and so Web forms today rely on JavaScript to augment the built-in behavior.

In this chapter, you learn how to use JavaScript to extend the behavior and usability of common
Web forms to include the functionality that today’s users expect.

Form Basics
An HTML form is defined by using the <form/> element, which has several attributes:

❑ method — Indicates whether the browser should sent a GET request or a POST request

❑ action — Indicates the URL to which the form should be submitted

❑ enctype — The way the data should be encoded when sent to the server. The default is
application/x-www-url-encoded, but it may be set to multipart/form-data if the
form is uploading a file.

❑ accept — Lists the mime types the server will handle correctly when a file is uploaded

❑ accept-charset — Lists the character encodings that are accepted by the server when
data is submitted

14_579088 ch11.qxd 3/28/05 11:40 AM Page 335

A form can contain any number of input elements:

❑ <input/> — The main HTML input element. The type attribute determines what type of input
control is displayed:

❑ “text” — A single-line text box

❑ “radio” — A radio button

❑ “checkbox” — A check box

❑ “file” — A file upload text box

❑ “password” – A password text box (where characters are not displayed as you type)

❑ “button” — A generic button that can be used to cause a custom action

❑ “submit” — A button whose sole purpose is to submit the form

❑ “reset” — A button whose sole purpose is to reset all fields in the form to their
default values

❑ “hidden” — An input field that isn’t displayed on screen

❑ “image” — An image that is used just like a Submit button

❑ <select/> — Renders either a combo box or a list box composed of values defined by
<option/> elements

❑ <textarea/> — Renders a multiline text box in a size determined by the rows and cols
attributes.

Here is a simple form using the various input elements:

<html>
<head>

<title>Sample Form</title>
</head>
<body>

<form method=”post” action=”handlepost.jsp”>
<!-- regular textbox -->
<label for=”txtName”>Name:</label>

<input type=”text” id=”txtName” name=”txtName” />

<!-- password textbox -->
<label for=”txtPassword”>Password:</label>

<input type=”password” id=”txtPassword” name=”txtPassword” />

<!-- age comboxbox (drop-down) -->
<label for=”selAge”>Age:</label>

<select name=”selAge” id=”selAge”>

<option>18-21</option>
<option>22-25</option>
<option>26-29</option>
<option>30-35</option>
<option>Over 35</option>

</select>

336

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 336

<!-- multiline textbox -->
<label for=”txtComments”>Comments:</label>

<textarea rows=”10” cols=”50” id=”txtComments”

name=”txtComments”></textarea>

<!-- submit button -->
<input type=”submit” value=”Submit Form” />

</form>
</body>

</html>

In this example, five form fields are described: a regular text box, a password text box, a combo box, a
multiline text box, and a Submit button. Note that with the exception of the Submit button, each field is
preceded by a <label/> element. This element is used behind the scenes to logically tie a label to a par-
ticular form field. This feature is very useful for screen readers used by visually impaired users. The for
attribute indicates the ID of the form field it identifies. Because of this, each form field should have name
and id equal to the same value (name is submitted to the server; id identifies the element on the client).

Each type of form field can be manipulated using JavaScript. The <form/> element itself can also be
controlled using JavaScript to provide further control over transmission of data.

Scripting the <form/> Element
Using JavaScript with the <form/> element is different from using other HTML elements. You aren’t
limited to just using the core DOM methods to access forms; you can access both the <form/> element
itself and the form fields in a few different ways. This section covers the basic information you need to
begin scripting forms.

Getting form references
Before scripting a form, you first must get a reference to the <form/> element. This can be done in a
number of different ways.

First, you can use the typical method of locating an element in a DOM tree, that is, use
getElementById() and pass in the form’s ID:

var oForm = document.getElementById(“form1”);

Alternately, you can use the document’s forms collection and reference the form either by its position in
the forms collection or by its name attribute:

var oForm = document.forms[0]; //get the first form
var oOtherForm = document.forms[“formZ”]; //get the form whose name is “formZ”

Any of these methods for retrieving a form reference is acceptable (they all return the same thing, after all).

337

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 337

Accessing form fields
Every form field, whether it is a button, text box, or other, is contained in the form’s elements collec-
tion. You can access the various fields in the collection by using their name attributes or their positions
in the collection:

var oFirstField = oForm.elements[0]; //get the first form field
var oTextbox1 = oForm.elements[“textbox1”];//get the field with the name “textbox1”

In the shorthand version for accessing an element by its name, every form field becomes a property of
the form itself and can be accessed directly by using its name:

var oTextbox1 = oForm.textbox1; //get the field with the name “textbox1”

If the name has a space in it, use bracket notation instead:

var oTextbox1 = oForm[“text box 1”]; //get the field with the name “text box 1”

Form field commonalities
All form fields (except for hidden fields) contain common properties, methods, and events:

❑ The disabled property is used both to indicate whether the control is disabled as well as to
actually disable the control (a disabled control doesn’t allow any user input, but gives no visual
indication that the control is disabled).

❑ The form property is a pointer back to the form of which the field is a part.

❑ The blur() method causes the form field to lose focus (by shifting the focus elsewhere).

❑ The focus() method causes the form field to gain focus (the control is selected for keyboard
interaction).

❑ The blur event occurs when the field loses focus; the onblur event handler is then executed.

❑ The focus event occurs when the field gains focus; the onfocus event handler is then executed.

For example:

var oField1 = oForm.elements[0];
var oField2 = oForm.elements[1];

//set the first field to be disabled
oField1.disabled = true;

//set the focus to the second field
oField2.focus();

Of course, you can still use document.getElementById() with a form field’s ID to
retrieve it directly. The methods discussed in this section are most useful when you
need to iterate over all the fields in a single form.

338

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 338

//is the form property equal to oForm?
alert(oField1.form == oForm); //outputs “true”

These properties, methods, and events can come in handy when advanced functionality is needed, such
as when you want to move the focus to the first field.

Focus on the first field
When a form is displayed on a Web page, the focus is typically not on the first control. It’s easy to
change this with a generic script that can be used on any form page.

Many developers just put the following in the page’s onload event handler:

document.forms[0].elements[0].focus();

This works in most situations, but consider the problem when the first element in the form is a hidden
field, an element that doesn’t support the focus() method. In this case, you’d be greeted with a JavaScript
error. The key is to set the focus to the first visible form field, and you can write a short method for that.

All the methods pertaining to forms in this chapter are written to an object called FormUtil for easy
encapsulation:

var FormUtil = new Object;

The FormUtil object is only intended to keep similar functions grouped together; you may choose to
provide these methods in a separate object or on their own.

The method to set the focus on the first field first checks to ensure that a form exists on the page. It does
this by checking the value of document.forms.length:

FormUtil.focusOnFirst = function () {
if (document.forms.length > 0) {

//...
}

};

After you know at least one form is present, you can start to iterate through the form fields until you
find the first one that isn’t hidden.

FormUtil.focusOnFirst = function () {
if (document.forms.length > 0) {

for (var i=0; i < document.forms[0].elements.length; i++) {
var oField = document.forms[0].elements[i];
if (oField.type != “hidden”) {

oField.focus();

Hidden fields only support the form property, but none of the methods or events
common to form fields.

339

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 339

return;
}

}
}

};

This method can then be called in the onload event handler:

<body onload=”FormUtil.focusOnFirst()”>

Submitting forms
In regular HTML, you submit the form by using a Submit button or an image that acts like a Submit
button:

<input type=”submit” value=”Submit” /> <!-- submit button -->
<input type=”image” src=”submit.gif” /> <!-- image button -->

When the user clicks either one of these buttons, the form is submitted without requiring any additional
coding. If you press Enter on the keyboard when one of these types of buttons is present, the browser
submits the form as if the button were clicked.

You can test to see if a form is submitting by providing an alert for the action attribute:

<form method=”post” action=”javascript:alert(‘Submitted’)”>

This submits the form to the JavaScript function, which just pops up an alert with the word “Submitted”
in it. This is helpful to test form submission because it doesn’t actually involve going back to the server.

If you want to submit the form without using one of the previously mentioned buttons, you can use the
submit() method. The submit() method is part of the DOM definition of a <form/> element and can
be used anywhere on a page. To use this method, you must first get a reference to the <form/> element
either by using getElementById() or by using the document.forms collection. Each of the following
three lines is an acceptable way to reference a form:

oForm = document.getElementById(“form1”);
oForm = document.forms[“form1”];
oForm = document.forms[0];

After getting the form reference, you can just call the submit() method directly:

oForm.submit();

Be careful when using this method. In slow-loading pages, it is possible that the
user may start typing into a field before the page has been fully loaded. When the
focus is then set to the first field, it disrupts the user’s input. To prepare for this
issue, first check for a value in the first field; if one is there, don’t set the focus to it.

340

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 340

You can actually mimic the behavior of a Submit button by creating a generic button and assigning its
onclick event handler to submit the form:

<input type=”button” value=”Submit Form” onclick=”document.forms[0].submit()” />

Before the form is submitted, but after a Submit button is clicked, the submit event is fired and the
onsubmit event handler is executed. Using the onsubmit event handler, it is possible to stop form sub-
mission, which is especially useful if client-side validation is necessary before the form can be submitted.
Using the event methods mentioned earlier in the book, you can cancel the event and prevent the form
submission:

function handleSubmit() {
var oEvent = EventUtil.getEvent();
oEvent.preventDefault();

}

This method can then be called from a form’s onsubmit event handler:

<form method=”post” action=”javascript:alert(‘Submitted’)”
onsubmit=”handleSubmit()”>

When you try to submit a form using the Submit button or the Image button, the form is not submitted.

Submit only once
A constant problem in Web forms is that users get very impatient when submitting a form. If the form
doesn’t disappear right away when they click the Submit button, users often click multiple times. The
problems this causes vary from creating duplicate requests to charging a credit card more than once. The
solution is a very simple one: After the user clicks the Submit button, you disable it. Here’s how: Use a
regular button, not a Submit button, and disable the button after the user clicks it. So instead of using
this code:

<input type=”submit” value=”Submit” />

use this code:

<input type=”button” value=”Submit”
onclick=”this.disabled=true; this.form.submit()” />

When this button is clicked, it is disabled by setting the disabled property to true. Then, the form is
submitted (note that the code uses the this keyword to reference the button and the form property to
reference the form that it’s a part of). This code can also be encapsulated in a function, if you so desire.

The onsubmit event handler enables you to validate a form before submission, but
only if you use one of the two types of buttons mentioned previously. When using
the submit() method, the submit event isn’t fired, so all validation should be done
prior to making the call.

341

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 341

Resetting forms
If you want to provide the user a way to reset all form fields to their default values, you can use an
HTML Reset button:

<input type=”reset” value=”Reset Values” />

Similar to a Submit button, a Reset button requires no scripting for the browser to know what to do
when it is clicked. Also similar to the Submit button, a reset event fires when the button is clicked:

<form method=”post” action=”javascript:alert(‘Submitted’) “ onreset=”alert(‘I am
resetting’) “>

Of course, you can also use the onreset event handler to cancel the form reset.

The form does have a reset() method that can reset the form directly from script without using a Reset
button:

<input type=”button” value=”Reset” onclick=”document.forms[0].reset()” />

Unlike submit(), using reset() still fires the reset event and the onreset event handler is still
executed.

Text boxes
Two flavors of text boxes are used in HTML: a single-line version, <input type=”text”/>, and a
multiline version, <textarea/>.

The <input/> element must have its type attribute set to “text” in order to display a text box. You
then use the size attribute to specify how wide the text box should be in terms of visible characters (for
instance, setting size to “10” means that only 10 characters are visible at one time). The value attribute
specifies the initial value of the text box and the maxlength attribute specifies how many characters are

Resetting a form has fallen out of favor among Web developers because an increas-
ing number of users have mistakenly reset the form instead of submitting it (often
the Submit and Reset buttons are next to each other). If a form contains information
in form fields when it is first loaded, a Reset button can be helpful because it resets
the fields to their initial values. For forms that initially load without any information
in form fields, it is recommended to avoid using a Reset button.

You may be wondering why you can’t just use a Submit button and disable it using
onclick. The answer is that the button actually disables before the form is submit-
ted, which then prevents the form from being submitted at all.

342

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 342

allowed in the text box. So to create a text box that can display 25 characters at a time but has a maxi-
mum length of 50, the following code can be used:

<input type=”text” size=”25” maxlength=”50” value=”initial value” />

The <textarea/> element always renders a multiline text box. To specify how large the text box should
be, you can use the rows attribute, which specifies the height of the text box in number of characters,
and the cols attribute, which specifies the width in number of characters (similar to size for an
<input/> element). Unlike <input/>, the initial value of a <textarea/> must be enclosed between
<textarea> and </textarea>, as shown here:

<textarea rows=”25” cols=”5”>initial value</textarea>

Also unlike the <input/> element, a <textarea/> cannot specify the maximum number of characters
allowed.

Retrieving/changing a text box value
Even though they are different elements, both <input type=”text”/> and <textarea/> support the
same property, value, to retrieve the text contained in the text box. Consider the following example:

<html>
<head>

<title>Retrieving a Textbox Value Example</title>
<script type=”text/javascript”>

function getValues() {
var oTextbox1 = document.getElementById(“txt1”);
var oTextbox2 = document.getElementById(“txt2”);
alert(“The value of txt1 is \”” + oTextbox1.value + “\”\n” +

“The value of txt2 is \”” + oTextbox2.value + “\””);

}
</script>

</head>
<body>

<input type=”text” size=”12” id=”txt1” />

<textarea rows=”5” cols=”25” id=”txt2”></textarea>

<input type=”button” value=”Get Values” onclick=”getValues()” />

</body>
</html>

This example displays two text boxes, a single-line and a multiline, as well as a button. When you click
the button, an alert is displayed showing the values contained in each text box. Try typing into each text
box a couple of times and then click the button.

Because the value property is a string, you can use all the properties and methods of a string. For exam-
ple, you can get the length of text inside a text box by using the length property:

<html>
<head>

<title>Retrieving a Textbox Length Example</title>

343

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 343

<script type=”text/javascript”>
function getLengths() {

var oTextbox1 = document.getElementById(“txt1”);
var oTextbox2 = document.getElementById(“txt2”);
alert(“The length of txt1 is “ + oTextbox1.value.length + “\n”

+ “The length of txt2 is “ + oTextbox2.value.length);

}
</script>

</head>
<body>

<input type=”text” size=”12” id=”txt1” />

<textarea rows=”5” cols=”25” id=”txt2”></textarea>

<input type=”button” value=”Get Lengths” onclick=”getLengths()” />

</body>
</html>

This example uses the length property of the value to determine how many characters are in each
text box.

The value property can also be used to assign a new value to a text box:

<html>
<head>

<title>Changing a Textbox Value Example</title>
<script type=”text/javascript”>

function setValues() {
var oTextbox1 = document.getElementById(“txt1”);
var oTextbox2 = document.getElementById(“txt2”);
oTextbox1.value = “first textbox”;
oTextbox2.value = “second textbox”;

}
</script>

</head>
<body>

<input type=”text” size=”12” id=”txt1” />

<textarea rows=”5” cols=”25” id=”txt2”></textarea>

<input type=”button” value=”Set Values” onclick=”setValues()” />

</body>
</html>

In this example, clicking the button sets the first text box to “first textbox” and the second text box
to “second textbox”.

Selecting text
Both text box types support a method called select(), which selects all the text in the text box. In order
to work, the text box must have focus. To ensure that the text box has focus, you should always call
another method, focus(), before calling select(). (This isn’t required in all browsers, but it’s safer to
always call focus() first.) For example:

344

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 344

<html>
<head>

<title>Select Text Example</title>
<script type=”text/javascript”>

function selectText() {
var oTextbox1 = document.getElementById(“txt1”);
oTextbox1.focus();
oTextbox1.select();

}
</script>

</head>
<body>

<input type=”text” size=”12” id=”txt1” value=”initial value” />

<input type=”button” value=”Select Text” onclick=”selectText()” />

</body>
</html>

This example displays a text box and a button. When you click the button, the text in the text box is
selected.

Text box events
Both text box types support the previously mentioned form-field blur and focus events along with two
others: change and select.

❑ change — Occurs when the text box loses focus after the user changed the value (does not fire
if you change the value setting the value property).

❑ select — Occurs when one or more characters have been selected, either manually or by
using the select() method.

Note the difference between the change event and the blur event. The blur event fires whenever the text
box loses focus; the change event fires when the text box loses focus as well, but only if the text in the text
box has changed. If the text is the same and the text box loses focus, only the blur event is fired; if the text
has changed, the change event fires first, followed by the blur event. Try it out to better get the hang of it:

<input type=”text” name=”textbox1” value=””
onblur=”alert(‘Blur’)” onchange=”alert(‘Change’)”/>

The select event, on the other hand, has nothing to do with the focus of the text box. This event fires
when one or more characters are selected by the user or when the select() method is called. You can
experiment with it:

<input type=”text” name=”textbox1” value=”” onselect=”alert(‘Select’)”/>

Select text automatically
When a user is entering information into a traditional desktop application, it is not uncommon for the
entire contents of a text box to be highlighted when the user tabs into it. This can be accomplished on
both an input-style text box and a textarea in HTML very easily: Just add the code “this.select()” to
the control’s onfocus event handler:

345

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 345

<input type=”text” onfocus=”this.select()” />
<textarea onfocus=”this.select()”></textarea>

It’s a small change, but it can provide big usability gains for users. If you want to apply this behavior
automatically to all text boxes on a screen, you can use the following function:

FormUtil.setTextboxes = function() {
var colInputs = document.getElementsByTagName(“input”);
var colTextAreas = document.getElementsByTagName(“textarea”);

for (var i=0; i < colInputs.length; i++){
if (colInputs[i].type == “text” || colInputs [i].type == “password”) {

colInputs[i].onfocus = function () { this.select(); };
}

}

for (var i=0; i < colTextAreas.length; i++){
colTextAreas[i].onfocus = function () { this.select(); };

}
};

This function starts by getting all instances of <input/> and <textarea/> in the document. The first
for loop iterates through all the <input/> tags to find the text box and password fields (password
fields are text boxes, too). The function then adds an anonymous function containing the select code
to the field’s onfocus event handler (optionally, you can use the EventUtil.addEventHandler()
method). The second for loop does the same onfocus assignment for all textareas on the page.

Tab forward automatically
When a text box can only accept a certain number of characters, wouldn’t it make sense to automatically
tab to the next field? This is done quite frequently when entering data such as social security numbers or
product ID numbers. This behavior is easy to mimic in JavaScript. This script requires that the
maxlength attribute of the text box be used, such as:

<input type=”text” maxlength=”4” />

The basic idea is to determine when the maximum number of characters is entered into a text box and
then call the focus() method on the next field. To do this, another method is necessary:

FormUtil.tabForward = function(oTextbox) {

var oForm = oTextbox.form;

//make sure the textbox is not the last field in the form
if (oForm.elements[oForm.elements.length-1] != oTextbox

&& oTextbox.value.length == oTextbox.getAttribute(“maxlength”)) {

for (var i=0; i < oForm.elements.length; i++) {
if (oForm.elements[i] == oTextbox) {

for(var j=i+1; j < oForm.elements.length; j++) {
if (oForm.elements[j].type != “hidden”) {

oForm.elements[j].focus();
return;

346

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 346

}
}
return;

}
}

}
};

The FormUtil.tabForward() method takes one argument, the text box to check. Inside the method, a
reference to the owning form is extracted by using the text box’s form property. Next, the method checks
to see if the text box is the last element in the form by comparing it to the element in the last position. If
the text box passes this test, it is then tested to see if it has reached the maximum number of allowable
characters by using the text box’s maxlength attribute. If the text box doesn’t have the maximum num-
ber of characters yet, the method exits quietly; otherwise, the first loop is entered.

The first for loop’s sole purpose is to locate the text box in the form.elements collection. When it is
found, a problem similar to the one encountered in the previous section pops up: What if the next ele-
ment is a hidden field? That’s where the second loop comes in, as it iterates up through the remaining
form elements until it finds the first non-hidden field. When that field is found, the user focus is set to it,
and the method is exited via the return statement.

This method must be called after each character has been entered into the text box, so you need to use
the onkeyup event handler (the keyup event, you may recall, fires after the character has been placed
into the text box; the keypress event fires before):

<input type=”text” maxlength=”4” onkeyup=”FormUtil.tabForward(this) “ />

Note that the this keyword is being used to pass into the method a pointer to the text box. Suppose you
want the user to enter a U.S.-format phone number (three digits, three digits, four digits). You could cre-
ate three text boxes like this:

<input type=”text” id=”txtAreaCode” maxlength=”3”
onkeyup=”FormUtil.tabForward(this)” />

<input type=”text” id=”txtExchange” maxlength=”3”
onkeyup=”FormUtil.tabForward(this)” />

<input type=”text” id=”txtNumber” maxlength=”4”
onkeyup=”FormUtil.tabForward(this)” />

As soon as the user finishes entering the numbers in one text box, the focus moves to the next, so the
user never has to use the Tab key or the mouse to move between fields.

Limit textarea characters
Although the <input/> element text boxes can easily limit the number of characters allowed, the
<textarea/> elements cannot do this because they do not have a maxlength property. The solution is
to create some JavaScript to mimic the maxlength property. Ultimately, you want to be able to do the
following:

<textarea rows=”10” cols=”25” maxlength=”150”></textarea>

347

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 347

This is the first method of the chapter dealing directly with text boxes (the previous sections have had
methods that work between text boxes and the rest of the form), and so it is time for a new wrapper
object to encapsulate the coming methods:

var TextUtil = new Object();

The first method for this object is called isNotMax(), which returns true when the maximum number
of characters hasn’t yet been reached or false if it has. The reasoning for this is explained in a moment.
First, take a look at the code:

TextUtil.isNotMax = function(oTextArea) {
return oTextArea.value.length != oTextArea.getAttribute(“maxlength”);

}

As you can see, this method is very simple: just an equality comparison between the length of the text
in the text box and the maxlength attribute. Note that even though maxlength isn’t a valid HTML
attribute for the <textarea/> element, you can still retrieve its value by using getAttribute().

Next, the method call must be inserted into the text box’s onkeypress event handler. Remember, the
keypress event fires before a character is inserted into the text box, which is exactly what you must
stop to enforce the maximum character limit. Here’s what the code looks like:

<textarea rows=”10” cols=”25” maxlength=”150”
onkeypress=”return TextUtil.isNotMax(this)”></textarea>

Notice that the return value of isNotMax() is being returned to the event handler. This is an older
way of preventing the default behavior for an event. When the text length is less than the maxlength
attribute, the method returns true, indicating that the keypress event should continue normally. As
soon as the maximum length has been reached, the method returns false, preventing the character
from being added to the text box.

This method can be used in conjunction with FormUtil.tabForward() to allow the same skip ahead
functionality using <textarea/> elements.

You may be wondering why the code doesn’t use the standard preventDefault()
method of the event object to block the keypress event. The simple answer is that
a bug in Mozilla’s handling of the keypress events causes preventDefault() to
malfunction. In order to make this a truly cross-browser solution, the faulty function-
ality had to be eliminated. The code in this example works in all DOM-compliant
browsers, including Internet Explorer, Safari, Opera, as well as Mozilla.

You add extra attributes frequently in this chapter; however, if you are using the
strict implementation of XHTML, the page is considered invalid if it contains an
unexpected attribute. Depending on your specific requirements, it may be necessary
to add a JavaScript property to the element’s DOM node or to pass in the extra infor-
mation directly to a function instead of using the attribute in HTML.

348

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 348

Allowing/blocking characters in text boxes
In handling data entry, you must limit the data that a user can enter. For instance, if a field requires a
number and a user enters a letter, it should be recognized as invalid. Before JavaScript, a round trip to
the server was necessary to do this type of validation. With JavaScript, not only can the client validate
user data, it can also prevent the user from ever entering invalid data.

Blocking invalid characters
The first method is to block invalid characters only. Because many fields within one form require differ-
ent types of characters to be entered, you must be able to specify the characters to block on a field-by-
field basis. The ideal way to do this would be to add an attribute to the HTML <input/> element that
specifies the invalid characters, such as this:

<input type=”text” invalidchars=”0123456789” />

The previous example would ideally block the numbers 0 through 9 from being entered into the text box.
Of course, first you need a method to use for this purpose.

The TextUtil.block() method accepts two arguments: the text box to act on and the event object.
Just like TextUtil.isNotMax(), this method is called in the onkeypress event handler, and it returns
true when the character should be allowed or false if it should not. The body of the method contains
only four lines of code:

TextUtil.blockChars = function (oTextbox, oEvent) {

oEvent = EventUtil.formatEvent(oEvent);

var sInvalidChars = oTextbox.getAttribute(“invalidchars”);
var sChar = String.fromCharCode(oEvent.charCode);

var bIsValidChar = sInvalidChars.indexOf(sChar) == -1;

return bIsValidChar || oEvent.ctrlKey;
};

Notice the use of the EventUtil.formatEvent() method defined earlier in the book, which is necessary
whenever the event object is passed directly into a method without using the EventUtil.getEvent()
method. After the event object is properly formatted, the method stores the invalidchars attribute in a
variable and then extracts the character to be entered in the text box using the charCode property and
String.fromCharCode(). At that point, the invalid characters are stored in sInvalidChars and the
character to be inserted is stored in sChar. The only thing left to do is to determine if that character exists
inside the sInvalidChars string by using the indexOf() method. You’ll recall that indexOf() returns
–1 if the substring (or in this case, the character) doesn’t exist in the string. So bIsValidChar true
when the character doesn’t exist in sInvalidChars. The return statement returns the logical OR of
bIsValidChar and oEvent.ctrlKey. The OR condition is necessary because if the Ctrl key is down
when a character is pressed (such as Ctrl + C for copy), this method would block it. So, if the character is
valid, the method returns true, and if the Ctrl key is down, it returns true.

349

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 349

To use this method, insert it into the HTML code for a text box (either <input/> or <textarea/>) along
with the invalidchars attribute:

<input type=”text” invalidchars=”0123456789”
onkeypress=”return TextUtil.blockChars(this, event) “ />

<textarea rows=”10” cols=”25” invalidchars=”0123456789”
onkeypress=”return TextUtil.blockChars(this, event)” />

This one function can be used to block characters in a variety of useful ways:

<!-- block all numbers -->
<input type=”text” onkeypress=”return FormUtil.block(this, event)”

invalidchars=”0123456789” />

<!-- block all uppercase letters -->
<input type=”text” onkeypress=”return FormUtil.block(this, event) “

invalidchars=”ABCDEFGHIJKLMNOPQRSTUVWXYZ” />

<!-- block all lowercase letters -->
<input type=”text” onkeypress=”return FormUtil.block(this, event)”

invalidchars=”abcdefghijklmnopqrstuvwxyz” />

<!-- block spaces -->
<input type=”text” onkeypress=”return FormUtil.block(this, event)”

invalidchars=” “ />

Allowing valid characters
Naturally, the other method of restricting user input is to only allow certain characters in a text box.
Once again, the easiest way to accomplish this is to add an HTML attribute to a text box:

<input type=”text” validchars=”0123456789” />

This example would allow the numbers 0 through 9 only, and no other characters. Naturally, you’ll need
to have an allowChars() method that does the opposite of the blockChars() method:

TextUtil.allowChars = function (oTextbox, oEvent) {

oEvent = EventUtil.formatEvent(oEvent);

var sValidChars = oTextbox.getAttribute(“validchars”);
var sChar = String.fromCharCode(oEvent.charCode);

var bIsValidChar = sValidChars.indexOf(sChar) > -1;

return bIsValidChar || oEvent.ctrlKey;
};

As you can see, the allowChars() has a lot in common with blockChars(): It accepts the text box and
the event object as arguments; it formats the event object using EventUtil.formatEvent(); it stores
the character that will be entered into the text box in a variable using String.fromCharCode(). The

350

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 350

main difference between the two is that allowChars() is looking for the validchars attribute and
returns true only if sChar is contained in sValidChars. Once again, keep in mind that, if the Ctrl key
is down, the user is performing some sort of function on the text box, so the method has to return true.
The method is even used in a similar manner, by returning a value to the onkeypress event handler:

<input type=”text” validchars=”0123456789”
onkeypress=”return TextUtil.allowChars(this, event)” />

<textarea rows=”10” cols=”25” validchars=”0123456789”
onkeypress=”return TextUtil.allowChars(this, event)” />

The previous text boxes only allow numerals to be entered (no spaces, letters, or anything else). This
functionality can also be used in a number of creative ways:

<!-- only allow positive integers -->
<input type=”text” validchars=”0123456789”

onkeypress=”return FormUtil.allow(this, event)” />

<!-- only allow “Y” or “N” -->
<input type=”text” validchars=”YN”

onkeypress=”return FormUtil.allow(this, event)” />

Don’t forget the paste
One aspect of text validation that most developers forget about is that the user can paste a value into the
text box. In the blockCars() and allowChars() methods, it is assumed that the user is typing in the
characters one by one, so they check each character as it comes in. When a user pastes a value, an entire
string is being placed in the text box. You have two ways to deal with validating pasted values: Either
don’t allow pasting or validate the text box when it loses focus.

Blocking paste
Blocking the user’s capability to paste is very easy to accomplish, but you must cover all bases. A user
can paste in two ways: by clicking Paste on the text box context menu (when right-clicking on it) or by
holding the Ctrl key and pressing V.

In Internet Explorer, the solution is very simple because there is a paste event. If the onpaste event
handler prevents the default behavior, no paste works no matter how the user tries to do it:

<input type=”text” onkeypress=”return allow(this, event) “ validchars=”0123456789”
onpaste=”return false” />

For other browsers, the process is a little more involved. The first thing to do is block the context menu,
which can be accomplished by returning false from the oncontextmenu event handler.

<input type=”text” onkeypress=”return allow(this, event) “ validchars=”0123456789”
onpaste=”return false” oncontextmenu=”return false” />

Next, you need to block pasting when the user presses Ctrl and V. The part that makes this easy is that
pressing Ctrl and V causes the keypress event to fire, so its possible to use the allowChars() and
blockChars() methods with some modifications:

351

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 351

TextUtil.blockChars = function (oTextbox, oEvent, bBlockPaste) {

oEvent = EventUtil.formatEvent(oEvent);

var sInvalidChars = oTextbox.getAttribute(“invalidchars”);
var sChar = String.fromCharCode(oEvent.charCode);

var bIsValidChar = sInvalidChars.indexOf(sChar) == -1;

if (bBlockPaste) {
return bIsValidChar && !(oEvent.ctrlKey && sChar == “v”);

} else {
return bIsValidChar || oEvent.ctrlKey;

}
};

TextUtil.allowChars = function (oTextbox, oEvent, bBlockPaste) {

oEvent = EventUtil.formatEvent(oEvent);

var sValidChars = oTextbox.getAttribute(“validchars”);
var sChar = String.fromCharCode(oEvent.charCode);

var bIsValidChar = sValidChars.indexOf(sChar) > -1;

if (bBlockPaste) {
return bIsValidChar && !(oEvent.ctrlKey && sChar == “v”);

} else {
return bIsValidChar || oEvent.ctrlKey;

}
};

Notice that the same code is added to both methods. First, a third argument is added, bBlockPaste,
which must be set to true if you want to block pasting in a text box. Then, an if statement is added at
the end of each method, to check whether pasting should be blocked. If so, the return value is true only
if the character is valid and Ctrl + V hasn’t been pressed. If pasting shouldn’t be blocked, the return
statement from the original method is used.

To use the new methods, just add the third argument:

<input type=”text” validchars=”0123456789”
onpaste=”return false” oncontextmenu=”return false”
onkeypress=”return TextUtil.allowChars(this, event, true)” />

<textarea rows=”10” cols=”25” validchars=”0123456789”
onpaste=”return false” oncontextmenu=”return false”
onkeypress=”return TextUtil.allowChars(this, event, true)” />

Even though the third argument is defined, you can still use these methods with only the first two argu-
ments, because an undefined value is considered false when used in the if statement and won’t
block pasting.

352

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 352

Validating onblur
If you don’t want to block the user’s capability to paste, you must validate the input in another way. The
easiest way to do this is to create an onblur event handler that won’t let the user move to another field
until the value in the text box is valid. This necessitates two additional methods: one to use with
blockChars() and one to use with allowChars().

The companion function for blockChars() is called blurBlock(), and it accepts the text box as its
only argument. Here’s the code:

TextUtil.blurBlock = function(oTextbox) {

var sInvalidChars = oTextbox.getAttribute(“invalidchars”);
var arrInvalidChars = sInvalidChars.split(“”);

for (var i=0; i< arrInvalidChars.length; i++){
if (oTextbox.value.indexOf(arrInvalidChars[i]) > -1) {

alert(“Character ‘“ + arrInvalidChars[i] + “‘ not allowed.”);
oTextbox.focus();
oTextbox.select();
return;

}
}

};

The first step in this method is the same as in blockChars(): You must get the invalid characters from
the invalidchars attribute. Because all the text in the text box must be validated (not just a single char-
acter), it’s necessary to test for each invalid character individually, so the next step in the method splits
the invalid character string into an array of characters (you’ll recall that using split() with an empty
string argument returns an array of the characters). Then, the method loops through each invalid charac-
ter to see if it exists in the text box. When an invalid character is found, an alert is displayed telling the
user that the given character is invalid. The focus is then set back to the text box and its contents are
selected. The method exits at that point, because so long as there is one invalid character, there’s no
need to check for any others (you may also choose to look for all invalid characters before exiting).

This method is inserted into the onblur event handler like this:

<input type=”text” onkeypress=”return TextUtil.blockChars(this, event)”
invalidchars=”0123456789” onblur=”TextUtil.blurBlock(this)” />

You must use onpaste=”return false” as well as the allowChars() and
blockChars() methods because you cannot block the Ctrl + V keystroke in Internet
Explorer.

353

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 353

A similar method is needed to use with allowChars(). This method, called blurAllow(), is almost
exactly the same as blurBlock(), only it makes sure that every character in the text box is valid:

TextUtil.blurAllow = function(oTextbox) {

var sValidChars = oTextbox.getAttribute(“validchars”);
var arrTextChars = oTextbox.value.split(“”);

for (var i=0; i< arrTextChars.length; i++){
if (sValidChars.indexOf(arrTextChars[i]) == -1) {

alert(“Character ‘“ + arrTextChars[i] + “‘ not allowed.”);
oTextbox.focus();
oTextbox.select();
return;

}
}

};

Notice this method begins by retrieving the valid characters from the validchars attribute, just as in
allowChars(). The next step is to split the text in the text box into an array of characters because each
character must be checked for validity. The method loops through the array, checking to see if each char-
acter is contained in the sValidChars string. When it encounters a character that isn’t valid (meaning
that indexOf() returns –1, indicating that the given character doesn’t exist in sValidChars), an alert is
displayed showing the illegal character. Then, just as in blurBlock(), focus is shifted to the text box,
text is selected, and the method exits. This method is used like this:

<input type=”text” onkeypress=”return TextUtil.allowChars(this, event)”
validchars=”0123456789” onblur=”TextUtil.blurAllow(this)” />

The end result of this is a way that does not prevent a user from pasting illegal values, but it ensures that
if an illegal value is pasted in, the user is notified right away.

Numeric text boxes with the up/down arrow keys
Suppose you’ve implemented a numbers-only text box using the TextUtil.allowChars() method,
but that still isn’t enough to make your users happy. What they really want is the capability to press the
up arrow and down arrow keys in order to increment and decrement the number. To address this, use
the onkeydown event handler.

You may be wondering why this code uses the onblur event handler instead of
onchange. Logically, because the change event fires when the value in a text box
changes and then the text box loses focus, this would seem to be the perfect way to
check for pasted values. Consider what happens as this code is executed. First, the
user pastes an illegal value into the text box and tries to tab to the next field. The
change event fires here, as will blur. The user is presented with an alert saying that
an illegal character has been found, and focus is shifted back to the text box. For some
reason, the user doesn’t fix the illegal character, but instead tabs forward once again.
This time, the change event doesn’t fire because the value in the text box hasn’t
changed since it got focus. The blur event, however, still fires.

354

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 354

You may ask, why not just use the onkeypress event handler again? The answer is that the keypress
event only fires for those keys that represent characters in a text box. Because the arrow keys don’t cause
a character to be put into the text box, the keypress event won’t fire. The keydown event, however, fires
no matter what kind of key is pressed.

To make sure you’re only dealing with the up and down arrow keys, use the keyCode property of event.
The code for the up arrow is 38 and the code for the down arrow is 40. All other keys can be ignored:

TextUtil.numericScroll = function (oTextbox, oEvent) {

oEvent = EventUtil.formatEvent(oEvent);
var iValue = oTextbox.value.length == 0 ? 0 :parseInt(oTextbox.value);

if (oEvent.keyCode == 38) {
oTextbox.value = (iValue + 1);

} else if (oEvent.keyCode == 40){
oTextbox.value = (iValue - 1);

}
};

Once again, the EventUtil.formatEvent() method is used to ensure the event object is properly for-
matted. The next step is to determine the integer value of the text. If there is some text in the text box, the
parseInt() function is used to convert the value; otherwise, the value is assumed to be zero. Then, the
keyCode property of the event is tested to see whether it’s the up arrow or down arrow. Depending on
the keyCode, the integer value is either incremented or decremented and then placed in the text box. The
method must be used in conjunction with the allowChars() (and either way of dealing with pasted
values) to ensure that only numeric values are present in the text box.

The method is used like this:

<input type=”text” onkeypress=”return TextUtil.allowChars(this, event)”
validchars=”0123456789” onblur=”TextUtil.blurAllow(this)”
onkeydown=”TextUtil.numericScroll(this, event)” />

This simple addition now enables the up and down keys to change the numeric value of the text box.
What else could you possibly want? How about a minimum value and a maximum value? By adding
two custom attributes, min and max, and updating the method, you can add the capability to specify a
minimum and maximum value to scroll to:

TextUtil.numericScroll = function (oTextbox, oEvent) {

oEvent = EventUtil.formatEvent(oEvent);
var iValue = oTextbox.value.length == 0 ? 0 :parseInt(oTextbox.value);

var iMax = oTextbox.getAttribute(“max”);
var iMin = oTextbox.getAttribute(“min”);

if (oEvent.keyCode == 38) {
if (iMax == null || iValue < parseInt(iMax)) {

oTextbox.value = (iValue + 1);
}

} else if (oEvent.keyCode == 40){

355

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 355

if (iMin == null || iValue > parseInt(iMin)) {
oTextbox.value = (iValue - 1);

}
}

};

The few lines added to the method do some very specific things. First, the minimum and maximum val-
ues are retrieved from the custom attributes. Then, when each key is tested, a test checks whether the min-
imum and maximum values have been specified. If the attributes haven’t been specified, iMax and iMin
are equal to null. If they aren’t null, parseInt() is called to get the integer value of the attributes. This
value is then compared with the value in the text box to determine it is should be changed (incremented
or decremented) or not.

To use this functionality, just add either the min attribute or the max attribute (or both) to the <input/> tag:

<input type=”text” onkeypress=”return TextUtil.allowChars(this, event)”
validchars=”0123456789” onblur=”TextUtil.blurAllow(this)”
onkeydown=”TextUtil.numericScroll(this, event)”
max=”100” min=”0” />

Using this code, the values will stop incrementing and decrementing when either of these limits is hit.

List Boxes and Combo Boxes
List boxes and combo boxes are created using the HTML <select/> element. By default, the browser
renders the <select/> element as a combo box:

<select name=”selAge” id=”selAge”>
<option value=”1”>18-21</option>
<option value=”2”>22-25</option>
<option value=”3”>26-29</option>
<option value=”4”>30-35</option>
<option value=”5”>Over 35</option>

</select>

The value attribute of each <option/> is used to determine the value for the control as a whole; the
selected option gives its value to the control (so it can be sent to the server).

To render this same code as a list box, you need only add the size attribute and indicate how many
items you want visible at the same time. For example, the following displays a list box with three items
visible at once.

<select name=”selAge” id=”selAge” size=”3”>
<option value=”1”>18-21</option>
<option value=”2”>22-25</option>
<option value=”3”>26-29</option>
<option value=”4”>30-35</option>
<option value=”5”>Over 35</option>

</select>

356

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 356

Because both controls use the same HTML code, it’s possible to manipulate them using the same
JavaScript code. Naturally, the first step to manipulating either is to get a reference from the document
either by using document.getElementById() or accessing it in the document.forms collection:

oListbox = document.getElementById(“selAge”);
oListbox = document.forms[“form1”].selAge;
oListbox = document.forms[0].selAge;

For this section, the methods you create are all attached to a common object called ListUtil, in order to
keep them straight (similar to the EventUtil object created earlier in the book). ListUtil is just a sim-
ple object to which the methods are attached:

var ListUtil = new Object();

Accessing options
The HTML DOM defines each <select/> element to have a collection called options, which is the list
of all <option/> elements for the control. To get the display text and value of an <option/>, you can
use normal DOM functionality:

alert(oListbox.options[1].firstChild.nodeValue); //output display text
alert(oListbox.options[1].getAttribute(“value”)); //output value

However, it is easier to use two special <option/> properties that are defined in the HTML DOM: text,
which returns the display text, and value, which returns the value attribute. These two properties are
provided for backwards compatibility with older BOM functionality used to manipulate options.

alert(oListbox.options[1].text); //output display text
alert(oListbox.options[1].value); //output value

Each <option/> also has an index property, indicating its position in the options collection:

alert(oListbox.options[1].index); //outputs “1”

Of course, because options is a collection, you can use its length property to determine how many
options exist:

alert(“There are “ + oListbox.options.length + “ in the list.”);

But how do you know which option is currently selected?

Retrieving/changing the selected option(s)
The <select/> element has an attribute, selectedIndex, which always contains the index of the cur-
rently selected option (or –1 if no options are selected).

alert(“The index of the selected option is “ + oListbox.selectedIndex);

357

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 357

It is possible, however, to select more than one option in a list box (but not in a combo box) by setting the
multiple attribute of the <select/> element to “multiple”:

<select name=”selAge” id=”selAge” size=”3” multiple=”multiple”>
<option value=”1”>18-21</option>
<option value=”2”>22-25</option>
<option value=”3”>26-29</option>
<option value=”4”>30-35</option>
<option value=”5”>Over 35</option>

</select>

If multiple options are selected, selectedIndex contains the index of the first selected item, but that
really doesn’t help. What you need is a way to get the indexes of all the selected options. For this, you
need a custom method, which is the first for the ListUtil object.

The getSelectedIndexes() method takes advantage of another special property of the <option/>
element: the selected property. The HTML DOM defines the selected property as a Boolean value
indicating whether the individual option is selected. So, all that is necessary is to loop through the
options of a list box and test to see if they are selected or not. If so, you need to save that index into an
array that will ultimately hold the indices of all selected options.

This method needs only one argument, the list box to check:

ListUtil.getSelectedIndexes = function (oListbox) {
var arrIndexes = new Array;

for (var i=0; i < oListbox.options.length; i++) {
if (oListbox.options[i].selected) {

arrIndexes.push(i);
}

}

return arrIndexes;
};

The getSelectedIndexes() method can then be used to either retrieve the indexes of the selected
options or, using the length of the returned array, to determine how many options are selected:

var oListbox = document.getElementById(“selListbox”);
var arrIndexes = ListUtil.getSelectedIndexes(oListbox);

alert(“There are “ + arrIndexes.length + “ option selected.”
+ “The options have the indexes “ + arrIndexes + “.”);

This code first gets a reference to the list box with the ID “selListbox” and then retrieves the selected
indexes and stores them in arrIndexes. The alert displays the a message indicating the number of
selected options as well as displaying their indexes (remember, the toString() method of an Array
object returns all items in a comma-separated string).

358

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 358

Adding options
If you don’t load any options into a list box or combo box using HTML, you can do so using JavaScript.

To start, define a method with three arguments: the list box to work on, the name of the option to add,
and the value of the option to add.

ListUtil.add = function (oListbox, sName, sValue) {
//...

}

Next, create an <option/> element using the DOM methods and assign the option name by creating a
text node:

ListUtil.add = function (oListbox, sName, sValue) {

var oOption = document.createElement(“option”);
oOption.appendChild(document.createTextNode(sName));

//...
}

The option value is actually not required, so you should only add it if the argument has been passed in.
To do this, ensure that arguments.length is equal to 3, and if so, set the value attribute:

ListUtil.add = function (oListbox, sName, sValue) {

var oOption = document.createElement(“option”);
oOption.appendChild(document.createTextNode(sName));

if (arguments.length == 3) {
oOption.setAttribute(“value”, sValue);

}

//...
}

The last step is to add the new option to the list box by using the appendChild() method:

ListUtil.add = function (oListbox, sName, sValue) {

var oOption = document.createElement(“option”);
oOption.appendChild(document.createTextNode(sName));

if (arguments.length == 3) {

Even though intended for multiple-selection list boxes, the getSelectedIndexes()
method works in both single-selection list boxes and combo boxes, returning an
array with only one item: the value of selectedIndex.

359

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 359

oOption.setAttribute(“value”, sValue);
}

oListbox.appendChild(oOption);

}

This method can be used like this:

var oListbox = document.getElementById(“selListbox”);

ListUtil.add(oListbox, “New Display Text”); //add option with no value
ListUtil.add(oListbox, “New Display Text 2”, “New value”); //add option with value

Removing options
JavaScript provides the capability to not only add options, but to remove them as well. There is an old
way of removing an option from a list box, which is simply to use the options collection and set the
option in question to be equal to null:

oListbox.options[1] = null;

Once again, this is BOM functionality; things can be done in a much more logical sense using the HTML
DOM, which provides a remove() method for the <select/> element. You just pass in the index of the
option to remove:

var oListbox = document.getElementById(“selListbox”);
oListbox.remove(0); //remove the first option

If you are so inclined, you may choose to wrap this into a ListUtil method so that you can do both add
and remove the same way:

ListUtil.remove = function (oListbox, iIndex) {
oListbox.remove(iIndex);

}

The code can then be rewritten like this:

var oListbox = document.getElementById(“selListbox”);
ListUtil.remove(oListbox, 0); //remove the first option

If you want to remove all the options in a list box, you can just call remove() on each option:

ListUtil.clear = function (oListbox) {
for (var i=oListbox.options.length-1; i >= 0; i--) {

ListUtil.remove(oListbox, i);
}

};

360

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 360

This method removes all options by iterating in reverse order. This is necessary because every time an
option is removed, the index property of each option is reset to the proper position. For this reason, it is
always best to remove the option with the highest index first and work your way back to the option with
the lowest index. Otherwise, you must keep track of multiple changing indexes.

Moving Options
In early JavaScript, moving options from one list box to another was a rather arduous process that
involved removing the option from the first list box, creating a new option with the same name and value,
then adding that new option to the second list box. Fortunately, the DOM provides a much more concise
way of doing things. Using DOM methods, it’s possible to literally move an option from the first list box
into the second list box by using the appendChild() method. If you pass an element that is already in the
document into this method, the element is removed from its parent and put into the position specified.

The method to execute this functionality accepts three arguments: the list box that the option currently
resides in, the list box to move the option to, and the index of the option to move. The method can then
take the option in the given index (assuming it exists) and move it to the second list box:

ListUtil.move = function (oListboxFrom, oListboxTo, iIndex) {
var oOption = oListboxFrom.options[iIndex];

if (oOption != null) {
oListboxTo.appendChild(oOption);

}
}

It is then possible to move a given option from one list box to another by using code such as the
following:

var oListbox1 = document.getElementById(“selListbox1”);
var oListbox2 = document.getElementById(“selListbox2”);
ListUtil.move(oListbox1, oListbox2, 0); //move the first option

This code moves the first option from oListbox1 into oListbox2 (the new option appears at the
bottom of oListbox2).

Reordering options
To reorder options in a list box, moving a particular option either up or down, two methods are neces-
sary, one to shift an option up and one to shift an option down. Each method takes two arguments: the
list box to act on and the index of the option to move. Both also make use of the DOM insertBefore()
method to reorder the <option/> elements.

Moving options is the same as removing them in that the index property of each
option is reset into the proper position, so you should always move the option with
the highest index first.

361

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 361

Start with the shiftUp() method, which moves an option up one spot in the list box:

ListUtil.shiftUp = function (oListbox, iIndex) {
if (iIndex > 0) {

var oOption = oListbox.options[iIndex];
var oPrevOption = oListbox.options[iIndex-1];
oListbox.insertBefore(oOption, oPrevOption);

}
};

This method first checks to make sure the index of the option to move is greater than 0 because, of course,
you cannot move the first option up one spot. The option with the given index is stored in the variable
oOption and the option before it is stored in oPrevOption. Last, the insertBefore() method is called
to move oOption before oPrevOption. The method to move an option down one spot is very similar:

ListUtil.shiftDown = function (oListbox, iIndex) {
if (iIndex < oListbox.options.length - 1) {

var oOption = oListbox.options[iIndex];
var oNextOption = oListbox.options[iIndex+1];
oListbox.insertBefore(oNextOption, oOption);

}
};

In this case, you must first get the collection of options in order to make sure that iIndex isn’t the last posi-
tion in the list (because you can’t move the last option down any further). The option in position iIndex is
stored in oOption; the option in the next position is stored in oNextOption. Using insertBefore(),
oNextOption is placed before oOption in the list box.

These two methods can be used as in the following example:

var oListbox = document.getElementById(“selListbox”);
ListUtil.shiftUp(oListbox,1); //move the option in position 1 up one spot
ListUtil.shiftDown(oListbox,2); //move the option in position 2 down one spot

Creating an Autosuggest Text Box
Let’s face it, people really don’t enjoy filling out forms, especially when values need to be typed in.
That’s why applications like Microsoft Outlook incorporate autosuggest text boxes, which are text boxes
that examine the first few characters a user has typed and then suggests a word (or multiple words)
from a given list that may complete his entry. Web browsers also work in this way when you are typing
a Web address. With a little bit of JavaScript trickery, it’s possible to create the same type of behavior in
Web forms.

Matching
The first step in the process is to write a method to search an array of strings and return all values that
begin with a certain set of letters (for example, if you pass in a, the method returns all values in the array
beginning with the letter a). This method is called TextUtil.autosuggestMatch() and takes two
arguments: the text to match and the array of values to match against.

362

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 362

TextUtil.autosuggestMatch = function (sText, arrValues) {

var arrResult = new Array;

if (sText != “”) {
for (var i=0; i < arrValues.length; i++) {

if (arrValues[i].indexOf(sText) == 0) {
arrResult.push(arrValues[i]);

}
}

}

return arrResult;

};

The first step in this method is to create an array to return all matching values. Next, the method checks
to ensure that the string to match isn’t empty (an empty string is always considered to be present in
any string). If the string isn’t empty, a simple for loop is used to check each value to see if it begins
with the string. To determine this, the indexOf() method is used. When indexOf() returns 0, it means
that the string is present at the beginning of the value, so it should be added to the result array. Finally,
the array of matching values is returned.

The guts
With the matching method complete, it’s time to create the most important part of the script: the
TextUtil.autosuggest() method. This method takes three arguments: the text box to act on, an array
of possible values, and the ID of a list box in which the suggestions should be displayed. Assuming that
the array of values is called arrValues, the call looks like this:

<input type=”text”
onkeyup=”TextUtil.autosuggest(this, arrValues, ‘lstSuggestions’)” />

The onkeyup event handler is used because the keyup event fires after a character has been entered into
the text box, allowing the suggestions to be made on the most recent change to the text box. The method
is defined as follows:

TextUtil.autosuggest = function (oTextbox, arrValues, sListboxId) {

var oListbox = document.getElementById(sListboxId);
ListUtil.clear(oListbox);

var arrMatches = TextUtil.autosuggestMatch(oTextbox.value, arrValues);

for (var i=0; i < arrMatches.length; i++) {
ListUtil.add(oListbox, arrMatches[i]);

}

};

This method begins by getting a reference to the list box with the ID of sListboxId. The list box is then
cleared of all prior options by using the ListUtil.clear() method explained earlier in the chapter.

363

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 363

Next, the method calls TextUtil.autosuggestMatch() to get the matching values for the string in the
text box. The last step is to iterate through the matching values and add them to the list box by using the
ListUtil.add() method.

To use this method, you must set up a text box and list box on a page along with an array of values to
use. The values should be in alphabetical order so that they appear in alphabetical order when sug-
gested to the user. Here’s an example page:

<html>
<head>

<title>Autosuggest Textbox Example</title>
<script type=”text/javascript” src=”listutil.js”></script>
<script type=”text/javascript” src=”textutil.js”></script>
<script type=”text/javascript”>

var arrColors = [“red”, “orange”, “yellow”, “green”, “blue”, “indigo”,
“violet”, “brown”, “black”, “tan”, “ivory”, “navy”,
“aqua”, “white”, “purple”, “pink”, “gray”, “silver”];

arrColors.sort();

function setText(oListbox, sTextboxId) {
var oTextbox = document.getElementById(sTextboxId);
if (oListbox.selectedIndex > -1) {

oTextbox.value =
oListbox.options[oListbox.selectedIndex].text;

}
}

</script>
</head>
<body>

<p>Type in a color in lowercase:

<input type=”text” value=”” id=”txtColor”
onkeyup=”TextUtil.autosuggest(this, arrColors, ‘lstColors’)” />

<select id=”lstColors” size=”5” style=”width: 200px”
onclick=”setText(this, ‘txtColor’)”></select>

</p>
</body>

</html>

In this example, an array of colors called arrColors is defined. Because the values aren’t in alphabetical
order, the sort() method is called after the array is created. It is this array that is referenced by
TextUtil.autosuggest(). The list box with the ID “lstColors” contains the suggestions for what
the user may want to type. This list box also has an onclick event handler that simply sets the text box
value to the currently selected option (this is for convenience, although it isn’t a necessary part of the
autosuggest functionality). The setText() method takes two arguments: the list box and the ID of the
text box. The method then gets a reference to the text box and sets its value to the currently selected
value in the list box.

364

Chapter 11

14_579088 ch11.qxd 3/28/05 11:40 AM Page 364

Summary
In this chapter you explored many ways to enhance Web forms. You learned how to use JavaScript to
reset and submit a form. This included ensuring that the form is submitted only one time. You also
explored different ways to access elements in a form.

You learned a great deal about text boxes, including how to allow or disallow certain characters. Further,
you discovered how to prevent a user from pasting invalid values into a text box and how to validate a
text box value using the onblur event handler.

List boxes and combo boxes were introduced and various methods of manipulation were discussed,
including how to add new options, remove existing options, and move options within a single list box
and between two list boxes.

Finally, all this knowledge is used to create an autosuggest text box that presents the user with a number
of suggestions after he has typed in a few characters. In the next few chapters, you’ll learn more about
how to enhance the usability of Web pages using JavaScript.

The autosuggest functionality described in this section is case-sensitive. To make a
case-insensitive version, you should convert all values in the array to lowercase and
then compare these values against the value of the text box (which should also be
converted to all lowercase).

365

Forms and Data Integrity

14_579088 ch11.qxd 3/28/05 11:40 AM Page 365

14_579088 ch11.qxd 3/28/05 11:40 AM Page 366

Sorting Tables

In most applications, sorting lists and tables is a normal procedure that you might use on a daily
basis. When you checking your e-mail, you probably have the table set up to sort by descending
order on the date column, placing the most recent e-mails at the top. It was only a matter of time
before this paradigm made its way onto the Web.

Traditionally, sorting on the Web involves a round-trip to the server with the request indicating
which column should be sorted and in what direction. However, JavaScript enables you to create
the same functionality on the client. Using JavaScript, it’s possible to use sortable tables and also
eliminate the need for costly server-side processing.

The Star ting Point — Arrays
Back in Chapter 3, “Object Basics,” you were introduced to the Array object and its sort() method.
You may remember that the sort() method sorts in ascending order by the ASCII character code of
each item, meaning that numbers are also sorted by their string equivalents:

var arr = [3, 32, 2, 5]
arr.sort();
alert(arr.toString()); //outputs “2,3,32,5”

The previous example displays “2,3,32,5” when the array is output. Luckily, JavaScript doesn’t
leave you stranded. The sort() method can also be given a single argument: a comparison func-
tion to tell the sorting algorithm when one value is greater than, less than, or equal to another value.

A comparison function is a function with a specific algorithm. It’s helpful to take a look at a basic
comparison function before continuing with the explanation:

function comparison_function(value1, value2) {
if (value1 < value 2) {

15_579088 ch12.qxd 3/28/05 11:40 AM Page 367

return –1;
} else if (value1 > value2) {

return 1;
} else {

return 0;
}

};

As you can see, a comparison function compares two values, which is why a comparison function
always has two arguments. If the first argument should come before the second argument, the function
returns –1. If the first argument should come after the second argument, the function returns 1. If, how-
ever, the arguments are equal, the function returns 0. The comparison function is used in the sort()
method like this:

arr.sort(comparison_function);

The basic comparison function pattern described previously sorts an array in ascending order. To sort in
descending order, you just reverse 1 and –1:

function comparison_function_desc(value1, value2) {
if (value1 < value 2) {

return 1;
} else if (value1 > value2) {

return -1;
} else {

return 0;
}

};

If this pattern sounds familiar, that’s because the String’s localeCompare() method works the same
way. So if you are sorting an array of strings, you can use this method directly:

function compareStrings(string1, string2) {
return string1.localeCompare(string2);

}

This function causes an array of strings to be sorted in ascending order. To sort an array in descending
order, just put a negative sign in front of the call:

function compareStringsDesc(string1, string2) {
return -string1.localeCompare(string2);

}

By adding the negation operator, 1 becomes –1, –1 becomes 1, and 0 remains unchanged.

Now, go back to the previous example, in which numbers are sorted incorrectly. You can easily remedy
the problem by writing a comparison function that transforms the arguments into numbers first and
then compares them:

function compareIntegers(vNum1, vNum2) {
var iNum1 = parseInt(vNum1);
var iNum2 = parseInt(vNum2);

368

Chapter 12

15_579088 ch12.qxd 3/28/05 11:40 AM Page 368

if (iNum1 < iNum2) {
return –1;

} else if (iNum1 > iNum2) {
return 1;

} else {
return 0;

}
}

If you apply this comparison function to the earlier example, the correct result is returned:

var arr = [3, 32, 2, 5]
arr.sort(compareIntegers);
alert(arr.toString()); //outputs “2,3,5,32”

This example now outputs the numbers in correct order (2, 3, 5, 32).

The reverse() method
You were introduced to the reverse() method, which simply reverses the order of the items in an
array, in Chapter 3, “Object Basics.” In this chapter, you learn that the reverse() method is an essential
part of sorting.

So, if you use a comparison function that sorts in ascending order, you can easily change the sort to
descending order by using the reverse() method after the sort() method:

var arr = [3, 32, 2, 5]
arr.sort(compareIntegers);
alert(arr.toString()); //outputs “2,3,5,32”
arr.reverse();
alert(arr.toString()); //outputs “32,5,3,2”

Of course, this is an extra step added to the sorting process, and there is certainly nothing wrong with
creating two comparison functions whenever sorting is necessary. Just keep in mind that whenever an
array is already sorted in one direction, it is much faster to use reverse() to sort it in the opposite
direction than it is to call sort() once again.

Sorting a One-Column Table
Now you begin the task at hand, sorting a table. The simplest case is to sort a table with just one column
and, therefore, just one data type. The best way to set up a table for sorting is to create a <thead/> ele-
ment for the table header rows and a <tbody/> element for the rows that contain data:

<table border=”1” id=”tblSort”>
<thead>

<tr>
<th>Last Name</th>

</tr>
</thead>

369

Sorting Tables

15_579088 ch12.qxd 3/28/05 11:40 AM Page 369

<tbody>
<tr>

<td>Smith</td>
</tr>
<tr>

<td>Johnson</td>
</tr>
<tr>

<td>Henderson</td>
</tr>
<tr>

<td>Williams</td>
</tr>
<tr>

<td>Gilliam</td>
</tr>
<tr>

<td>Walker</td>
</tr>

</tbody>
</table>

With this setup, it’s easy to distinguish between the header rows and the data rows (obviously, you don’t
want to sort the header rows along with the data, so this is an important distinction). Using the table’s
tBodies collection (which you may remember from earlier in the book), you can get a reference to the
<tbody/> element as well as to the rows it contains:

var oTBody = oTable.tBodies[0];
var colDataRows = oTBody.rows;

To get the value in a table cell using the DOM is a bit involved, although not necessarily difficult. Each of
the <tr/> elements contained in the rows collection contains a child <td/> element. Each <td/> element
has a child text node that contains the actual value to be sorted on. Figure 12-1 shows this DOM hierarchy.

Figure 12-1

<td><td>

<tr><tr>

<tbody><tbody>

<tr><tr>

Smith

370

Chapter 12

15_579088 ch12.qxd 3/28/05 11:40 AM Page 370

In order to retrieve the value Smith from the table defined previously, you use this code:

var sSmith = colDataRows[0].cells[0].firstChild.nodeValue;

This methodology can be used to retrieve the value contained in each row, which is what you need in
order to create a comparison function for sorting.

The comparison function
The interesting thing about this comparison function is that it sorts <tr/> elements by using a value
contained within the row, meaning that you must retrieve that value from within the function. After
these values are retrieved, you can just use localeCompare() to compare them:

function compareTRs(oTR1, oTR2) {
var sValue1 = oTR1.cells[0].firstChild.nodeValue;
var sValue2 = oTR2.cells[0].firstChild.nodeValue;

return sValue1.localeCompare(sValue2);
}

This comparison function sorts the table rows by the value in the first cell (index 0). Next, you use this
comparison function with the table.

The sortTable() function
The sortTable() function does most of the heavy lifting. It accepts one argument, which is the ID of
the table to sort. Naturally, this means the first step in the function must be to retrieve a DOM reference
to the table as well as to locate the data rows:

function sortTable(sTableID) {
var oTable = document.getElementById(sTableID);
var oTBody = oTable.tBodies[0];
var colDataRows = oTBody.rows;
//...

}

The problem at this point is how to sort the rows in colDataRows. Remember, rows is a DOM collec-
tion, not an array and, therefore, it doesn’t have the sort() method. The only solution is to create an
array and fill it with the <tr/> elements, sort that array, and finally place the rows in order using the
DOM. So first, you iterate through the <tr/> elements and add them to an array:

function sortTable(sTableID) {
var oTable = document.getElementById(sTableID);
var oTBody = oTable.tBodies[0];
var colDataRows = oTBody.rows;
var aTRs = new Array;

for (var i=0; i < colDataRows.length; i++) {
aTRs.push(colDataRows[i]);

}

//...
}

371

Sorting Tables

15_579088 ch12.qxd 3/28/05 11:40 AM Page 371

This section of code creates an array called aTRs and fills it with references to the <tr/> elements. Doing
this doesn’t remove the <tr/> elements from the table because you are only storing pointers, not the
actual elements.

The next step is to sort the array using the compareTRs() function:

function sortTable(sTableID) {
var oTable = document.getElementById(sTableID);
var oTBody = oTable.tBodies[0];
var colDataRows = oTBody.rows;
var aTRs = new Array;

for (var i=0; i < colDataRows.length; i++) {
aTRs.push(colDataRows[i]);

}

aTRs.sort(compareTRs);

//...
}

After this, all the <tr/> elements are in order in the array, but the order on the page hasn’t changed. To
actually change the order on the page, you add each row back in order. The fastest way to do this is to
create a document fragment and add all <tr/> elements to it in the correct order. Then, you can use
appendChild() to add all the child nodes from the document fragment back into the <tbody/> element.

function sortTable(sTableID) {
var oTable = document.getElementById(sTableID);
var oTBody = oTable.tBodies[0];
var colDataRows = oTBody.rows;
var aTRs = new Array;

for (var i=0; i < colDataRows.length; i++) {
aTRs[i] = colDataRows[i];

}

aTRs.sort(compareTRs);

var oFragment = document.createDocumentFragment();
for (var i=0; i < aTRs.length; i++) {

oFragment.appendChild(aTRs[i]);
}

oTBody.appendChild(oFragment);
}

This code creates a document fragment and adds all the <tr/> elements to it, which effectively removes
them from the table (Figure 12-2). Then, the children of the fragment are added back to the <tbody/>
element. Remember, when you use appendChild() and pass it a document fragment, all the child
nodes of the fragment are appended, not the fragment itself.

372

Chapter 12

15_579088 ch12.qxd 3/28/05 11:40 AM Page 372

Figure 12-2

All that’s left to do is to call the function when the user clicks on the column header. You can do this in
any number of ways, but the simplest is just to add the function call as the <th/> element’s onclick
event handler:

<table border=”1” id=”tblSort”>
<thead>

<tr>
<th onclick=”sortTable(‘tblSort’)”

style=”cursor:pointer”>Last Name</th>
</tr>

</thead>
<tbody>

<!-- data rows -->
</tbody>

</table>

Also note the style attribute has been set to cursor:pointer, which ensures that the cursor turns into
the hand pointer when the user mouses over the column header.

At this point, you just click on the column header to sort all the last names in alphabetical order.

Sorting a Multicolumn Table
In practice, it’s very rare to have a single-column table, which is why the next task is to sort a table with
more than one column. Suppose you added a second column to the table in the previous example, per-
haps to display the first name of a person in addition to the last name:

<table border=”1” id=”tblSort”>
<thead>

<tr>
<th>Last Name</th>
<th>First Name</th>

</tr>
</thead>
<tbody>

<tr>

<tr><tr>

<tbody><tbody>

<tr><tr>

<tr><tr>

Fragment

<tr><tr>

373

Sorting Tables

15_579088 ch12.qxd 3/28/05 11:40 AM Page 373

<td>Smith</td>
<td>John</td>

</tr>
<tr>

<td>Johnson</td>
<td>Betty</td>

</tr>
<tr>

<td>Henderson</td>
<td>Nathan</td>

</tr>
<tr>

<td>Williams</td>
<td>James</td>

</tr>
<tr>

<td>Gilliam</td>
<td>Michael</td>

</tr>
<tr>

<td>Walker</td>
<td>Matthew</td>

</tr>
</tbody>

</table>

Of course, the functions from the previous section only worked with one column, so modifications are
needed.

The comparison function generator
Earlier in the book, it was mentioned that functions are just like any other type in JavaScript, meaning
that they can be passed as arguments to other functions or returned as a function value. In this chapter,
you have already seen a function passed to another function (the sort() method); now it’s time to look
at a function that returns a function.

The major limitation of the comparison function is its acceptance of two — and only two — arguments,
meaning that additional information can’t be passed in. To get around this, you can create a comparison
function generator, which is a separate function that returns a comparison function.

Because the compareTRs() must know which the column’s values to compare, it is necessary to pass in
an additional argument: the index of the column to act on. Using a comparison function generator, it’s
possible to pass this extra value into the comparison function:

function generateCompareTRs(iCol) {

return function compareTRs(oTR1, oTR2) {
var sValue1 = oTR1.cells[iCol].firstChild.nodeValue;
var sValue2 = oTR2.cells[iCol].firstChild.nodeValue;

return sValue1.localeCompare(sValue2);
};

}

374

Chapter 12

15_579088 ch12.qxd 3/28/05 11:40 AM Page 374

The generateCompareTRs() function takes only one argument, which is the index of the column to act
on. It returns as its function value another function that looks suspiciously like compareTRs(). Note
that the iCol argument, even though it isn’t defined within the comparison function, is used within the
comparison function. You may recognize this as a closure (discussed back in Chapter 2, “ECMAScript
Basics”). The variable iCol is captured by the comparison function and, therefore, can be used when it is
returned by generateCompareTRs().

With the function defined, you can generate any comparison function necessary to sort a column:

var compareTRs = generateCompareTRs(0);
var compareTRs1 = generateCompareTRs(1);
var compareTRs2 = generateCompareTRs(2);

The first line in the previous code generates the exact same compareTRs() function you first defined in
the previous section. The second and third lines generate a comparison function that compares the sec-
ond and third columns, respectively. Of course, you don’t need to assign the comparison function to a
variable; it can just be passed directly into the sort() method:

aTRs.sort(generateCompareTRs(0));

In fact, this is how the sortTable() function must be modified to work with multiple columns.

Modifying the sortTable() function
Because there are multiple columns to deal with, the sortTable() function must now accept
another argument indicating the index of the column to sort. Then, it can pass that value into the
generateCompareTRs() function to sort the appropriate column:

function sortTable(sTableID, iCol) {
var oTable = document.getElementById(sTableID);
var oTBody = oTable.tBodies[0];
var colDataRows = oTBody.rows;
var aTRs = new Array;

for (var i=0; i < colDataRows.length; i++) {
aTRs[i] = colDataRows[i];

}

aTRs.sort(generateCompareTRs(iCol));

var oFragment = document.createDocumentFragment();
for (var i=0; i < aTRs.length; i++) {

oFragment.appendChild(aTRs[i]);
}

oTBody.appendChild(oFragment);
}

With these two changes, it’s now possible to pass in which column to sort. Don’t forget, this change also
needs to be included on the column headers in the table:

375

Sorting Tables

15_579088 ch12.qxd 3/28/05 11:40 AM Page 375

<table border=”1” id=”tblSort”>
<thead>

<tr>
<th onclick=”sortTable(‘tblSort’, 0)”

style=”cursor:pointer”>Last Name</th>
<th onclick=”sortTable(‘tblSort’, 1)”

style=”cursor:pointer”>First Name</th>
</tr>

</thead>
<tbody>

<!-- data rows -->
</tbody>

</table>

Of course, this function isn’t limited to tables with just two columns. Any table with any number of
columns can take advantage of it, just so long as you remember to pass in the correct column index to
the function.

Sorting in descending order
In the first two examples, you learned how to sort single column and multicolumn tables in ascending
order. Now, it’s time to learn how to sort the table columns in descending order.

First and foremost, consider the expected behavior of a sortable table. When you sort a column in, say,
Microsoft Outlook, you click on the column header. When you do this, the column is sorted in ascending
order. If you then click on the column header a second time, the column sorts into descending order. This
functionality is pretty standard in user interface design, so you really want to mimic it in your tables.

You can already sort each column in ascending order, so you’re halfway there. The crux of this problem
is that, on the second click, you want to sort in descending order. This means that in order to sort in
descending order, you must already have clicked on the column header once (so the column is already
sorted in ascending order). You can simply reverse the order (using the reverse() method) of the col-
umn to sort in descending order.

To make this change, it’s necessary to once again modify the sortTable() function.

Modifying the sortTable() function
In order to create a descending sort, it is necessary to store the column index passed into the function for
later reference. To do this, you can create an expando property on the table. An expando property is an
extra JavaScript property that is added to an object during runtime. The expando property in this exam-
ple is called sortCol, and it simply stores the index of the column that was sorted last:

function sortTable(sTableID, iCol) {
var oTable = document.getElementById(sTableID);
var oTBody = oTable.tBodies[0];
var colDataRows = oTBody.rows;
var aTRs = new Array;

for (var i=0; i < colDataRows.length; i++) {
aTRs[i] = colDataRows[i];

}

376

Chapter 12

15_579088 ch12.qxd 3/28/05 11:40 AM Page 376

aTRs.sort(generateCompareTRs(iCol));

var oFragment = document.createDocumentFragment();
for (var i=0; i < aTRs.length; i++) {

oFragment.appendChild(aTRs[i]);
}

oTBody.appendChild(oFragment);
oTable.sortCol = iCol;

}

Next, code must be added to check whether the column index being passed in is the same as the last
sorted column index. If they are equal, the array should just be reversed instead of sorted:

function sortTable(sTableID, iCol) {
var oTable = document.getElementById(sTableID);
var oTBody = oTable.tBodies[0];
var colDataRows = oTBody.rows;
var aTRs = new Array;

for (var i=0; i < colDataRows.length; i++) {
aTRs[i] = colDataRows[i];

}

if (oTable.sortCol == iCol) {
aTRs.reverse();

} else {
aTRs.sort(generateCompareTRs(iCol));

}

var oFragment = document.createDocumentFragment();
for (var i=0; i < aTRs.length; i++) {

oFragment.appendChild(aTRs[i]);
}

oTBody.appendChild(oFragment);
oTable.sortCol = iCol;

}

The best thing about this change is that it doesn’t require any changes in the HTML. So now when the
user clicks a column header once, it sorts into ascending order as always. When the user clicks the col-
umn header a second time, it is sorted in descending order. If the user clicks it a third time, the order
reverses once again, sorting in ascending order. But so far this only works with strings. What about other
data types?

Sorting with different data types
Although sorting strings is a good start, many times you may want to sort a column that contains other
data types. Because the DOM text nodes always contain string values, that means the data must be con-
verted before any sorting can be done. To do this, it’s necessary to create a conversion function.

377

Sorting Tables

15_579088 ch12.qxd 3/28/05 11:40 AM Page 377

Creating a conversion function
A conversion function is relatively simple: You need two arguments, one for the value to be converted
and one indicating what type of conversion should take place. Generally speaking, three conversions are
frequently used: convert to integer, convert to float, and convert to date. Of course, if you need a string,
no conversion is necessary.

For this conversion function, the second argument is a string indicating the type of conversion to do:

❑ “int” to convert to an integer

❑ “float” to convert to a float

❑ “date” to convert to a date

❑ Any other value always returns a string

Here’s the function:

function convert(sValue, sDataType) {
switch(sDataType) {

case “int”:
return parseInt(sValue);

case “float”:
return parseFloat(sValue);

case “date”:
return new Date(Date.parse(sValue));

default:
return sValue.toString();

}
}

This function uses the switch statement to determine the value of sDataType (remember, the switch
statement works on all types in JavaScript). When sDataType is “int”, parseInt() is called on
sValue and the result is returned; when sDataType is “float”, parseFloat() is called and the result
is returned. If sDataType is “date”, then Date.parse() is used in conjunction with the Date construc-
tor to create and return a new Date object. If sDataType is any other value, the function returns
sValue.toString(), to ensure that a string value is returned. This means that if sDataType is
“string”, null, or any other value, convert() always returns a string. For example:

var sValue = “25”;
var iValue = convert(sValue, “int”);
alert(typeof iValue); //outputs “number”
var sValue2 = convert(sValue, “string”);
alert(typeof sValue2); //outputs “string”
var sValue3 = convert(sValue);
alert(typeof sValue3); //outputs “string”
var sValue4 = convert(sValue, “football”);
alert(typeof sValue4); //outputs “string”

In this example, convert() is used to convert the string “25” into an integer, meaning that when
typeof is called against it, the value returned is “number”. If, however, the second argument is

378

Chapter 12

15_579088 ch12.qxd 3/28/05 11:40 AM Page 378

“string”, the returned value is a string and typeof returns “string”. A string is also returned when
the second argument is omitted and when the second argument is “football”.

With the conversion function complete, you must modify the rest of the code to use it.

Modifying the code
The first step is to modify the generateCompareTRs() function, which now must accept an additional
argument indicating the data type to use when comparing values. Then, the values from the table must
be converted into the appropriate data type within the comparison function:

function generateCompareTRs(iCol, sDataType) {

return function compareTRs(oTR1, oTR2) {
var vValue1 = convert(oTR1.cells[iCol].firstChild.nodeValue,

sDataType);
var vValue2 = convert(oTR2.cells[iCol].firstChild.nodeValue,

sDataType);

//...
};

}

This change to generateCompareTRs() once again takes advantage of JavaScript’s support of closures,
passing the sDataType argument directly into the comparison function. Unfortunately, you can no
longer use the localeCompare() method to return the appropriate function value because numbers
and dates don’t support it. Because you can’t be sure which type of value is being stored, and it doesn’t
make sense to handle each data type’s comparisons differently, it’s best just to use less-than and greater-
than to determine which value to return:

function generateCompareTRs(iCol, sDataType) {

return function compareTRs(oTR1, oTR2) {
var vValue1 = convert(oTR1.cells[iCol].firstChild.nodeValue,

sDataType);
var vValue2 = convert(oTR2.cells[iCol].firstChild.nodeValue,

sDataType);

if (vValue1 < vValue2) {
return –1;

} else if (vValue1 > vValue2) {
return 1;

} else {
return 0;

}
};

}

It may not always be necessary to distinguish between integer and floating-point
values when sorting. Most of the time, simply converting all numbers to floating-
point is sufficient. The code in this chapter uses both types of numbers for illustra-
tive purposes only.

379

Sorting Tables

15_579088 ch12.qxd 3/28/05 11:40 AM Page 379

Using this methodology, the comparison function returns the correct value no matter which data type is
being used.

Next, you modify the sortTable() function to use the new comparison function generator. To do so,
this function also must accept an additional argument indicating the data type to use for the compari-
son. Then, this data type must be passed into the generateCompareTRs() function.

function sortTable(sTableID, iCol, sDataType) {
var oTable = document.getElementById(sTableID);
var oTBody = oTable.tBodies[0];
var colDataRows = oTBody.rows;
var aTRs = new Array;

for (var i=0; i < colDataRows.length; i++) {
aTRs[i] = colDataRows[i];

}

aTRs.sort(generateCompareTRs(iCol, sDataType));

var oFragment = document.createDocumentFragment();
for (var i=0; i < aTRs.length; i++) {

oFragment.appendChild(aTRs[i]);
}

oTBody.appendChild(oFragment);
oTable.sortCol = iCol;

}

With the JavaScript code all done, it’s time to add extra data to the table for the various data types:

<table border=”1” id=”tblSort”>
<thead>

<tr>
<th onclick=”sortTable(‘tblSort’, 0)”

style=”cursor:pointer”>Last Name</th>
<th onclick=”sortTable(‘tblSort’, 1)”

style=”cursor:pointer”>First Name</th>
<th onclick=”sortTable(‘tblSort’, 2, ‘date’)”

style=”cursor:pointer”>Birthday</th>
<th onclick=”sortTable(‘tblSort’, 3, ‘int’)”

style=”cursor:pointer”>Siblings</th>
</tr>

</thead>
<tbody>

It’s important not to use the equality operator (==) in this case. Although it works for
strings and numbers (both integer and float), it won’t work for dates. Remember,
dates are objects, not primitive values. This means that the equality operator com-
pares the objects to see if they are the same; it does not compare the values of the
Date objects. However, the less-than and greater-than symbols use the valueOf()
method of the Date objects to compare their milliseconds representation.

380

Chapter 12

15_579088 ch12.qxd 3/28/05 11:40 AM Page 380

<tr>
<td>Smith</td>
<td>John</td>
<td>7/12/1978</td>
<td>2</td>

</tr>
<tr>

<td>Johnson</td>
<td>Betty</td>
<td>10/15/1977</td>
<td>4</td>

</tr>
<tr>

<td>Henderson</td>
<td>Nathan</td>
<td>2/25/1949</td>
<td>1</td>

</tr>
<tr>

<td>Williams</td>
<td>James</td>
<td>7/8/1980</td>
<td>4</td>

</tr>
<tr>

<td>Gilliam</td>
<td>Michael</td>
<td>7/22/1949</td>
<td>1</td>

</tr>
<tr>

<td>Walker</td>
<td>Matthew</td>
<td>1/14/2000</td>
<td>3</td>

</tr>
</tbody>

</table>

Note that the code in the column headers has also been updated to include the new data type argument.
For the first two columns, you don’t have to change the function call because both columns contain
strings. The third and fourth columns, however, contain dates and integers, respectively. For each of
these column headers, you must include the data type argument.

Advanced sorting
At this point, you’ve already learned how to sort different data types in the same table in both ascending
and descending order. Unfortunately, it’s very rare that a table contains only regular data types. The
truth is that you will always end up with links, images, or some other sort of HTML in tables; and users
will still want to sort. The most common situation is probably a column that contains icons. Whether the
icon is indicative of something (for instance, an attachment on an e-mail) or just decorative, people want
to be able to sort by it. The previous code does not support such a thing, but that can be fixed.

381

Sorting Tables

15_579088 ch12.qxd 3/28/05 11:40 AM Page 381

The concept
Keep in mind is that each cell in a table must have a sortable value, meaning a value that is a string, inte-
ger, float, or date. Because all HTML code can’t be converted directly into one of these data types, you
need to specify an alternate value to sort by. This can be accomplished by adding an extra attribute on
each <td/> that contains HTML, like this:

<td value=”blue”></td>

Because this table cell contains an image, you normally wouldn’t be able to sort it. However, the addition
of the value attribute specifies that the value to sort is “blue”, not the contents of the <td/> element.

And as you learned earlier, it is possible to access this new attribute using the DOM getAttribute()
method:

var sValue = oTD.getAttribute(“value”);

Now, it isn’t necessary to add a value attribute to every cell in a table, because this gives you a lot of
redundant information. You should only add the attribute to those table cells containing HTML code.
For example, the following table lists filenames along with their associated icons. Note that only the first
column uses the extra value attribute:

<table border=”1” id=”tblSort”>
<thead>

<tr>
<th>Type</th>
<th>Filename</th>

</tr>
</thead>
<tbody>

<tr>
<td value=”doc”></td>
<td>My Resume.doc</td>

</tr>
<tr>

<td value=”xls”></td>
<td>Fall Budget.xls</td>

</tr>
<tr>

<td value=”pdf”></td>
<td>How to be a better programmer.pdf</td>

</tr>
<tr>

<td value=”doc”></td>
<td>My Old Resume.doc</td>

</tr>
<tr>

<td value=”txt”></td>
<td>Notes from Meeting.txt</td>

</tr>
<tr>

<td value=”zip”></td>
<td>Backups.zip</td>

382

Chapter 12

15_579088 ch12.qxd 3/28/05 11:40 AM Page 382

</tr>
<tr>

<td value=”xls”></td>
<td>Spring Budget.xls</td>

</tr>
<tr>

<td value=”doc”></td>
<td>Job Description - Web Designer.doc</td>

</tr>
<tr>

<td value=”pdf”></td>
<td>Saved Web Page.pdf</td>

</tr>
<tr>

<td value=”doc”></td>
<td>Chapter 1.doc</td>

</tr>
</tbody>

</table>

However, this new attribute alone doesn’t solve the problem. You must also update the JavaScript code
to take advantage of the value attribute.

Modifying the code
This final modification to the code determines whether to get the sortable value from the <td/> element’s
text or from the value attribute. Here’s the updated code:

function generateCompareTRs(iCol, sDataType) {

return function compareTRs(oTR1, oTR2) {

var vValue1, vValue2;

if (oTR1.cells[iCol].getAttribute(“value”)) {
vValue1 = convert(oTR1.cells[iCol].getAttribute(“value”),

sDataType);
vValue2 = convert(oTR2.cells[iCol].getAttribute(“value”),

sDataType);
} else {

vValue1 = convert(oTR1.cells[iCol].firstChild.nodeValue,
sDataType);

vValue2 = convert(oTR2.cells[iCol].firstChild.nodeValue,
sDataType);

}

As mentioned earlier in the book, adding custom attributes to HTML tags is not
allowed using the strict representation of XHTML. You may alternately want to pro-
vide the value for a table cell using the title attribute (if the value will make sense
to the user) or by providing an invisible <div/> inside the table cell that contains
the value.

383

Sorting Tables

15_579088 ch12.qxd 3/28/05 11:40 AM Page 383

if (vValue1 < vValue2) {
return –1;

} else if (vValue1 > vValue2) {
return 1;

} else {
return 0;

}
};

}

Basically, vValue1 and vValue2 are defined to have no initial value. Then, you check to see if the cell in
the first row has a value attribute defined by using getAttribute(), which will return null when the
attribute doesn’t exist. When placed in the if statement, null is evaluated as false and a non-null
value is evaluated as true. Therefore, if the value attribute exists, both vValue1 and vValue2 are
assigned the value of the attribute for oTR1 and oTR2, respectively. If the value attribute doesn’t exist,
then vValue1 and vValue2 are assigned the value contained inside the table cell.

The only thing left to do is to add the sorting calls to the HTML code:

<table border=”1” id=”tblSort”>
<thead>

<tr>
<th onclick=”sortTable(‘tblSort’, 0)”

style=”cursor:pointer”>Type</th>
<th onclick=”sortTable(‘tblSort’, 1)”

style=”cursor:pointer”>Filename</th>
</tr>

</thead>
<tbody>

<tr>
<td value=”doc”></td>
<td>My Resume.doc</td>

</tr>
<tr>

<td value=”xls”></td>
<td>Fall Budget.xls</td>

</tr>
<tr>

<td value=”pdf”></td>
<td>How to be a better programmer.pdf</td>

</tr>
<tr>

<td value=”doc”></td>
<td>My Old Resume.doc</td>

</tr>
<tr>

<td value=”txt”></td>
<td>Notes from Meeting.txt</td>

</tr>
<tr>

<td value=”zip”></td>
<td>Backups.zip</td>

</tr>

384

Chapter 12

15_579088 ch12.qxd 3/28/05 11:40 AM Page 384

<tr>
<td value=”xls”></td>
<td>Spring Budget.xls</td>

</tr>
<tr>

<td value=”doc”></td>
<td>Job Description - Web Designer.doc</td>

</tr>
<tr>

<td value=”pdf”></td>
<td>Saved Web Page.pdf</td>

</tr>
<tr>

<td value=”doc”></td>
<td>Chapter 1.doc</td>

</tr>
</tbody>

</table>

This HTML code sorts both columns by using strings; therefore, the third argument isn’t necessary when
calling sortTable(). Even though the first column contains images, the code uses the value attribute to
sort it in both ascending and descending order.

Summary
This chapter explored using JavaScript to move more server-based functionality onto the client: sorting
HTML tables. You learned about using comparison functions along with the Array’s sort() method to
define custom sort order. With this knowledge, you went on to sort columns with string values in
ascending order.

Next, you learned how to sort in descending order by using the reverse() method of the Array. Then,
columns with different values were introduced for sorting as well. After you wrote a small conversion
function, you were able to sort integers, floats, and dates in table columns. Lastly, you learned how to
account for table cells that contained HTML instead of simple text values.

Along the way, you learned about closures in JavaScript, which allow generated functions to contain ref-
erences to variables that are seemingly out of scope. Using closures, you saw how the seemingly limited
definition of comparison functions could be extended to allow the usage of additional data to determine
which of two values should occur first.

385

Sorting Tables

15_579088 ch12.qxd 3/28/05 11:40 AM Page 385

15_579088 ch12.qxd 3/28/05 11:40 AM Page 386

Drag and Drop

One of the biggest improvements in computer usability was the proliferation of drag-and-drop
behavior, allowing users to drag something from one spot on the screen and drop it somewhere
else to either create an action or simply move the item. This paradigm, developed by XEROX, was
first incorporated into consumer technology in Mac OS 1.0 and since that time has been incorpo-
rated in most personal computer operating systems (including Windows). When Dynamic HTML
was first introduced, developers around the world starting experimenting with drag-and-drop
functionality using JavaScript.

Drag and drop is a buzzword in usability, so adding this functionality to your Web site or Web
application can win major points with customers and clients. At present time, you can accomplish
drag and drop in two ways using JavaScript: system drag and drop and simulated drag and drop.

System Drag and Drop
System drag and drop is what you probably do on a daily basis when using your Windows,
Macintosh, or other graphical operation system: You drag something from one area of the screen
and drop it somewhere else. To delete a file, you drag it to the trash (Macintosh) or the recycle bin
(Windows); to move a file from one folder to another, you just drag the file from where it is and
drop it into its new home. System drag and drop works because it has help from the operating sys-
tem to complete its task. Currently, only one Web browser on one platform supports system drag
and drop in Web pages, and that is Internet Explorer on Windows (although Mozilla supports it in
XUL-based pages).

A system drag and drop can move in between windows and frames because the drag action is
handled by the operating system. You can drag an image from a Web browser onto your desktop
or into another browser. When you drag it onto your desktop, you download the image; when you
drag it into another browser, the browser displays the image. The communication between the
browser and the desktop (or other browser) is handled by the operating system.

16_579088 ch13.qxd 3/28/05 11:40 AM Page 387

In Internet Explorer version 4.0, only two items on a Web page could initiate a system drag: an image or
some text. When dragging an image, you just simply held the mouse button down and then moved it;
with text, you first highlighted some text and then you could drag it the same way as you would drag an
image. In IE 4.0, the only valid drop target was a text box.

In version 5.0, Internet Explorer extended its drag-and-drop capabilities by adding new events and
allowing nearly anything on a Web page to become a drop target. Version 5.5 went a little bit further
by allowing nearly anything to become draggable (IE 6.0 supports this functionality as well).

Drag-and-drop events
The drag-and-drop events Microsoft added to Internet Explorer enable you to control nearly every
aspect of a system drag-and-drop operation. The tricky part is determining where each event is fired:
Some fire on the dragged item; others fire on the drop target.

Dragged item events
When an item is dragged, the following events fire (in this order):

1. dragstart

2. drag

3. dragend

At the moment you hold a mouse button down and begin to move the mouse, the dragstart event
fires on the item that is being dragged. By default, this event fires on an image or text selection being
dragged. The cursor changes to the no-drop symbol (a circle with a line through it) indicating that the
item cannot be dropped on itself. You can use the ondragstart event handler to run JavaScript code as
the dragging begins.

After the dragstart event fires, the drag event fires and continues firing so long as the object is being
dragged. You can think of this event as similar to mousemove (which also fires repeatedly as the mouse is
moved). When the dragging stops (because you drop the item onto either a valid or invalid drop target)
the dragend event fires.

The following example shows how to use the ondragstart, ondrag, and ondragend event handlers:

<html>
<head>

<title>System Drag And Drop Example</title>
<script type=”text/javascript”>

function handleDragDropEvent(oEvent) {
var oTextbox = document.getElementById(“txt1”);
oTextbox.value += oEvent.type + “\n”;

The system drag-and-drop functionality discussed in this section pertains to
Internet Explorer for Windows only; the Macintosh version of IE never developed
the drag-and-drop functionality to this extent because of its separation from the
operating system.

388

Chapter 13

16_579088 ch13.qxd 3/28/05 11:40 AM Page 388

}
</script>

</head>
<body>

<form>
<p>Try dragging the image.</p>
<p><img src=”images/smiley.gif” alt=””

ondragstart=”handleDragDropEvent(event)”
ondrag=”handleDragDropEvent(event)”
ondragend=”handleDragDropEvent(event)” /></p>

<p><textarea rows=”10” cols=”25” readonly=”readonly”
id=”txt1”></textarea></p>

</form>
</body>

</html>

This example assigns ondragstart, ondrag, and ondragend event handlers to an image. When you
drag the image, the following text box displays the events each time one occurs. You end up seeing
something like this in the text box:

dragstart
drag
drag
drag
drag
drag
drag
dragend

Play around with this example for a while until you get the hang of these events.

Drop Target Events
When an item is dragged over a valid drop target, the dragenter event (similar to the mouseover
event) fires. Immediately after the dragenter event fires, the dragover event fires and continues to fire
as the item is being dragged within the boundaries of the drop target. When the item is dragged outside
of the drop target, dragover stops firing and the dragleave event is fired (similar to mouseout). If the
dragged item is actually dropped on the target, the drop event fires instead of dragleave.

This example explores the drop target events:

<html>
<head>

<title>System Drag And Drop Example</title>
<script type=”text/javascript”>

function handleDragDropEvent(oEvent) {
var oTextbox = document.getElementById(“txt1”);

On any browsers other than IE on Windows, the event handlers in the previous
example are ignored. Keep this in mind if you plan on implementing a system drag-
and-drop solution.

389

Drag and Drop

16_579088 ch13.qxd 3/28/05 11:40 AM Page 389

oTextbox.value += oEvent.type + “\n”;
}

</script>
</head>
<body>

<form>
<p>Try dragging the text from the left textbox to the right one.</p>
<p><input type=”text” value=”drag this text” />
<input type=”text” ondragenter=”handleDragDropEvent(event)”

ondragover=”handleDragDropEvent(event)”
ondragleave=”handleDragDropEvent(event)”
ondrop=”handleDragDropEvent(event)” /></p>

<p><textarea rows=”10” cols=”25” readonly=”readonly”
id=”txt1”></textarea></p>

</form>
</body>

</html>

The previous example provides two text boxes to work with the events and one to announce the events
as they occur. When you drag the text from the text box on the left to the one on the right, the
<textarea/> fills up with events as they fire. If you drag the text over the text box and then drag it
back out, you see events like this:

dragenter
dragover
dragover
dragover
dragover
dragover
dragleave

Otherwise, if you drop the text into the second text box, you see something like this:

dragenter
dragover
dragover
dragover
dragover
dragover
drop

Note that when you drop the text into the second text box, the highlighted text actually moves into it.

Using all drag-and-drop events
The tricky part of handling system drag and drop is understanding the relationship between the dragged
item events and the drop target events. Generally speaking, the dragged item events always fire first,
except in the case of the drop event, which fires before dragend. The following example allows you to
explore the relationship between these sets of events:

<html>
<head>

<title>System Drag And Drop Example</title>
<script type=”text/javascript”>

390

Chapter 13

16_579088 ch13.qxd 3/28/05 11:40 AM Page 390

function handleDragDropEvent(oEvent) {
var oTextbox = document.getElementById(“txt1”);
oTextbox.value += oEvent.type + “\n”;

}
</script>

</head>
<body>

<p>Try dragging the text from the left textbox to the right one.</p>
<form>
<p><input type=”text” value=”drag this text”

ondragstart=”handleDragDropEvent(event)”
ondrag=”handleDragDropEvent(event)”
ondragend=”handleDragDropEvent(event)” />

<input type=”text” ondragenter=”handleDragDropEvent(event)”
ondragover=”handleDragDropEvent(event)”
ondragleave=”handleDragDropEvent(event)”
ondrop=”handleDragDropEvent(event)” /></p>

<p><textarea rows=”10” cols=”25” readonly=”readonly”
id=”txt1”></textarea></p>

</form>
</body>

</html>

As you can tell, this example combines the functionality of the previous two examples, monitoring both
the dragged item events and the drop target events. When you drag text into the right text box from the
left, you see an event listing like this:

dragstart
drag
drag
drag
dragenter
drag
dragover
drag
dragover
drag
drop
dragend

Note that because you start dragging away from the drop target, only the dragged item events fire ini-
tially. When you drag the text over the drop target, the dragenter event fires, followed by drag and
then dragover. These two events fires repeatedly while you are still dragging over the drop target.
When you drop onto the target, the drop event fires and is immediately followed by dragend. This com-
pletes the drag and drop sequence.

If you don’t drop onto the target, you see a series of events more like this:

dragstart
drag
drag
drag
dragenter

391

Drag and Drop

16_579088 ch13.qxd 3/28/05 11:40 AM Page 391

drag
dragover
drag
dragover
drag
dragleave
drag
drag
drag
dragend

In this case, you dragged the text over the right text box, and then dragged it back out, so the dragleave
event fires, followed by the drag event. When you finally stop dragging the text, the dragend event fires.

By default, text boxes (<input/> or <textarea/>) are the only valid drop targets on a Web page,
although it is possible to create a drop target from any item by altering the behavior of the dragover
and dragenter events.

Creating your own drop target
When you try to drag some text (or an image) over an invalid drop target, you see a special cursor (a cir-
cle with a line through it) indicating that you cannot drop. Even though all elements support the drop
target events, by default, their behavior is to not allow dropping. For example:

<html>
<head>

<title>System Drag And Drop Example</title>
<script type=”text/javascript”>

function handleDragDropEvent(oEvent) {
var oTextbox = document.getElementById(“txt1”);
oTextbox.value += oEvent.type + “\n”;

}
</script>

</head>
<body>

<p>Try dragging the text from the textbox to the red square.
No drop target events fire.</p>
<form>
<p><input type=”text” value=”drag this text”

ondragstart=”handleDragDropEvent(event)”
ondrag=”handleDragDropEvent(event)”
ondragend=”handleDragDropEvent(event)” />

<div style=”background-color: red; height: 100px; width: 100px”
ondragenter=”handleDragDropEvent(event)”
ondragover=”handleDragDropEvent(event)”
ondragleave=”handleDragDropEvent(event)”
ondrop=”handleDragDropEvent(event)”></div></p>

<p><textarea rows=”10” cols=”25” readonly=”readonly”
id=”txt1”></textarea></p>

</form>
</body>

</html>

392

Chapter 13

16_579088 ch13.qxd 3/28/05 11:40 AM Page 392

In this example, all the dragged item events fire, but no drop target event fires when you drag the text
over the red <div/>. In order to turn the <div/> into a valid drop target, you must override the default
behavior of dragenter and dragover. Because this is IE-specific, you can just set the
oEvent.returnValue attribute to false:

<html>
<head>

<title>System Drag And Drop Example</title>
<script type=”text/javascript”>

function handleDragDropEvent(oEvent) {
var oTextbox = document.getElementById(“txt1”);
oTextbox.value += oEvent.type + “\n”;

switch(oEvent.type) {
case “dragover”:
case “dragenter”:

oEvent.returnValue = false;
}

}
</script>

</head>
<body>

<p>Try dragging the text from the textbox to the red square.
Drop target events fire now.</p>
<form>
<p><input type=”text” value=”drag this text”

ondragstart=”handleDragDropEvent(event)”
ondrag=”handleDragDropEvent(event)”
ondragend=”handleDragDropEvent(event)” />

<div style=”background-color: red; height: 100px; width: 100px”
ondragenter=”handleDragDropEvent(event)”
ondragover=”handleDragDropEvent(event)”
ondragleave=”handleDragDropEvent(event)”
ondrop=”handleDragDropEvent(event)”></div></p>

<p><textarea rows=”10” cols=”25” readonly=”readonly”
id=”txt1”></textarea></p>

</form>
</body>

</html>

In this example, when you drag the text over the red <div/>, the cursor changes to a pointer with a
plus sign next to it, indicating that this is a valid drop target. By default, the dragenter and dragover
events for the <div/> don’t allow dropping, so if you prevent the default behavior you allow the
<div/> to become a drop target. After dragenter and dragover are fired, dragleave and drop are
also enabled.

The dataTransfer object
Simply dragging and dropping isn’t of any use unless data is actually being affected. To aid in the trans-
mission of data via drag and drop, Internet Explorer 5.0 introduced the dataTransfer object, which
exists as a property of event and is used to transfer string data from the dragged item to the drop target
(the dataTransfer object is still used in IE 6.0).

393

Drag and Drop

16_579088 ch13.qxd 3/28/05 11:40 AM Page 393

Because it is a property of event, the dataTransfer object doesn’t exist except within the scope of an
event handler, specifically, an event handler for a drag-and-drop event. Within an event handler, you can
use the object’s properties and methods to work with your drag-and-drop functionality.

Methods
The dataTransfer object has two methods: getData() and setData(). As you might expect,
getData() is capable of retrieving a value stored by setData(). Two types of data can be set: plain text
and URLs. The first argument for setData(), and the only argument of getData(), is a string indicat-
ing which type of data is being set, either “text” or “URL”. For example:

oEvent.dataTransfer.setData(“text”, “some text”);
var sData = oEvent.dataTransfer.getData(“text”);
oEvent.dataTransfer.setData(“URL”, “http://www.wrox.com/”);
var sURL = oEvent.dataTransfer.getData(“URL”);

It should be noted that two spaces can be used to store data: one for text and one for a URL. If you make
repeated calls to setData(), you are always overwriting the data stored in the space specified.

The data stored in the dataTransfer object is only available up until the drop event. If you do not
retrieve the data in the ondrop event handler, the dataTransfer object is destroyed and the data is lost.

When you drag text from a text box, the operating system calls setData() and stores the dragged text
in the “text” format. It is possible to retrieve this value when it is dropped on a target. Consider the fol-
lowing example:

<html>
<head>

<title>System Drag And Drop Example</title>
<script type=”text/javascript”>

function handleDragDropEvent(oEvent) {

switch(oEvent.type) {
case “dragover”:
case “dragenter”:

oEvent.returnValue = false;
break;

case “drop”:
alert(oEvent.dataTransfer.getData(“text”));

}
}

</script>
</head>
<body>

<p>Try dragging the text from the textbox to the red square.
It will show you the selected text when dropped.</p>
<p><input type=”text” value=”drag this text” />
<div style=”background-color: red; height: 100px; width: 100px”

ondragenter=”handleDragDropEvent(event)”
ondragover=”handleDragDropEvent(event)”
ondrop=”handleDragDropEvent(event)”></div></p>

</body>
</html>

394

Chapter 13

16_579088 ch13.qxd 3/28/05 11:40 AM Page 394

This is essentially the same as the last example, with the exception that the call to the dataTransfer
.getData() method retrieves the text that was being dragged. When you drop that text onto the red
<div/>, this example pops up an alert displaying the text you were dragging.

You may be wondering, what would happen if you used getData() with the argument “URL” instead
of “text”? In this example, it would return a null value because the data is stored as text and, there-
fore, must be retrieved as text.

If instead you were to drag a link onto the red <div/>, you could use getData() with the “URL” format
to retrieve the link:

<html>
<head>

<title>System Drag And Drop Example</title>
<script type=”text/javascript”>

function handleDragDropEvent(oEvent) {

switch(oEvent.type) {
case “dragover”:
case “dragenter”:

oEvent.returnValue = false;
break;

case “drop”:
alert(oEvent.dataTransfer.getData(“URL”));

}
}

</script>
</head>
<body>

<p>Try dragging the link to the red square.
It will show you the URL when dropped.</p>
<p>Wrox Home Page
<div style=”background-color: red; height: 100px; width: 100px”

ondragenter=”handleDragDropEvent(event)”
ondragover=”handleDragDropEvent(event)”
ondrop=”handleDragDropEvent(event)”></div></p>

</body>
</html>

When you begin dragging a link, the browser calls setData() and stores the href attribute as a URL.
Using getData() and asking for the URL format, you can retrieve this value. So what is really the dif-
ference between the text and URL format?

When you specify data to be stored as text, it gets no special treatment whatsoever. In a manner of
speaking, “it’s just dumb text.” When you specify data to be stored as a URL, however, it is treated just
like a link on a Web page, meaning that if you drop it onto another browser window, the browser will
navigate to that URL. This is discussed further later on.

dropEffect and effectAllowed
The dataTransfer object can be used to do more than simply transport data to and fro; it can also be
used to determine what type of actions can be done with the dragged item and the drop target. You
accomplish this by using two properties: dropEffect and effectAllowed.

395

Drag and Drop

16_579088 ch13.qxd 3/28/05 11:40 AM Page 395

The dropEffect property is set on the drop target to determine which type of drop behavior is allowed.
These are four possible values:

❑ “none” — A dragged item cannot be dropped here. This is the default value for everything but
text boxes.

❑ “move” — Indicates that the dragged item should be moved to the drop target.

❑ “copy” — Indicates that the dragged item should be copied to the drop target.

❑ “link” — Indicates that the drop target will navigate to the dragged item (but only if it is a URL).

Each of these values causes a different cursor to be displayed when an item is dragged over the drop
target. It is up to you, however, to actually cause the actions indicated by the cursor. In other words,
nothing is automatically moved, copied, or linked without your direction intervention. The only thing
you get for free is the cursor change. In order to use the dropEffect property, it must be set in the
ondragenter event handler for the drop target.

The dropEffect property is useless unless you also set the effectAllowed property on the dragged
item. This property indicates which dropEffect is allowed for the dragged item. The possible values
are the following:

❑ “uninitialized” — No action has been set for the dragged item.

❑ “none” — No action is allowed on the dragged item.

❑ “copy” — Only dropEffect “copy” is allowed.

❑ “link” — Only dropEffect “link” is allowed.

❑ “move” — Only dropEffect “move” is allowed.

❑ “copyLink” — dropEffects “copy” and “link” are allowed.

❑ “copyMove” — dropEffects “copy” and “move” are allowed.

❑ “linkMove” — dropEffects “link” and “move” are allowed.

❑ “all” — All dropEffects are allowed.

This property must be set inside the ondragstart event handler.

Suppose you want to allow a user to move text from a text box into a <div/>. You must set both
dropEffect and effectAllowed to “move”. But alas, the text won’t automatically move itself because
the default behavior for the drop event on a <div/> is to do nothing. If you override the default behav-
ior, the text is automatically removed from the text box. It is then up to you to insert it into the <div/>
using the innerHTML property:

<html>
<head>

<title>System Drag And Drop Example</title>
<script type=”text/javascript”>

function handleDragDropEvent(oEvent) {

switch(oEvent.type) {
case “dragstart”:

396

Chapter 13

16_579088 ch13.qxd 3/28/05 11:40 AM Page 396

oEvent.dataTransfer.effectAllowed = “move”;
break;

case “dragenter”:
oEvent.dataTransfer.dropEffect = “move”;
oEvent.returnValue = false;
break;

case “dragover”:
oEvent.returnValue = false;
break;

case “drop”:
oEvent.returnValue = false;
oEvent.srcElement.innerHTML =

oEvent.dataTransfer.getData(“text”);
}

}
</script>

</head>
<body>

<p>Try dragging the text in the textbox to the red square.
The text will be “moved” to the red square.</p>
<p><input type=”text” value=”drag this text”

ondragstart=”handleDragDropEvent(event)” />
<div style=”background-color: red; height: 100px; width: 100px”

ondragenter=”handleDragDropEvent(event)”
ondragover=”handleDragDropEvent(event)”
ondrop=”handleDragDropEvent(event)”></div>

</p>

</body>
</html>

In this example, you can drag text from the text box and drop it onto the red <div/>. The text is removed
from the text box because the default behavior of the drop event is overridden. The text is then inserted
into the <div/> by using the innerHTML property.

If you were to change dropEffect and effectAllowed to “copy”, the text in the text box would
remain and would be duplicated in the <div/>.

The dragDrop() method
You already know how to create your own drop targets, so now it’s time to learn about creating your
own draggable items. In IE 5.5, the dragDrop() method can be applied to almost any HTML element.
You can initiate a system drag event by calling dragDrop() and, therefore, allow normally undraggable
items to fire dragstart, drag, and dragend events.

The trick is to call dragDrop() at the correct time. To do this, it is best to use the onmousemove event
handler to initiate the drag, like this:

oElement.onmousemove = function (oEvent) {
if (oEvent.button == 1) {

397

Drag and Drop

16_579088 ch13.qxd 3/28/05 11:41 AM Page 397

oElement.dragDrop();
}

};

By using the event.button property, you’re making sure that the left mouse button is down while the
mouse is moving, which is typically when an object begins to be dragged.

The next step is to use the dataTransfer object in the element’s ondragstart event handler to deter-
mine the action of the dragged item. For example, you could make a <div/> that, when dragged into a
text box, inserts text:

<html>
<head>

<title>System Drag And Drop Example</title>
<script type=”text/javascript”>

function handleMouseMove(oEvent) {
if (oEvent.button == 1) {

oEvent.srcElement.dragDrop();
}

}

function handleDragDropEvent(oEvent) {
oEvent.dataTransfer.setData(“text”, “This is a red square”);

}
</script>

</head>
<body>

<p>Try dragging the red square into the textbox.</p>
<p><div style=”background-color: red; height: 100px; width: 100px”

onmousemove=”handleMouseMove(event)”
ondragstart=”handleDragDropEvent(event)”>This is a red square</div>

</p>
<form>
<p><input type=”text” value=”” /></p>
</form>

</body>
</html>

When you drag the red <div/> in this example, the text “This is a red square” is set to the dataTransfer
object. So if you drop the square into the text box, that text is instantly inserted as if it had been dragged
from another text box. You could even drag the red <div/> into another browser window’s text box and
the same thing would occur.

If you choose to store a URL instead of just text, it’s possible to drag the red square into another browser
window and have the browser navigate to the page specified:

<html>
<head>

<title>System Drag And Drop Example</title>
<script type=”text/javascript”>

function handleMouseMove(oEvent) {
if (oEvent.button == 1) {

398

Chapter 13

16_579088 ch13.qxd 3/28/05 11:41 AM Page 398

oEvent.srcElement.dragDrop();
}

}

function handleDragDropEvent(oEvent) {
oEvent.dataTransfer.setData(“URL”, “http://www.wrox.com/”);

}
</script>

</head>
<body>

<p>Try dragging the red square into another browser window.</p>
<p><div style=”background-color: red; height: 100px; width: 100px”

onmousemove=”handleMouseMove(event)”
ondragstart=”handleDragDropEvent(event)”>http://www.wrox.com</div>

</p>
</body>

</html>

In this example, dragging the red <div/> into another browser window causes the browser to navigate
to the Wrox home page, http://www.wrox.com.

Advantages and disadvantages
Obviously, system drag and drop in Internet Explorer is a very powerful piece of functionality, enabling
you to tap into what is truly an operating-system function. The power to drag information across
frames, as well as across browser windows, opens up a whole new world of possibilities for JavaScript
developers. You must, however, be using Internet Explorer 5.0 or higher on Windows.

If you need to develop a drag-and-drop solution that works across multiple browsers, then system drag
and drop is not the way to go. Despite the fact that this solution is so easy to use, no other browsers have
made any moves to include such functionality, and that is not likely to change anytime in the near
future. For those who only develop for Internet Explorer, this solution works pretty well; for others, the
answer is to simulate drag-and-drop functionality.

Simulated Drag and Drop
Simulated drag and drop has been around since Internet Explorer 4.0 and Netscape Navigator 4.0 intro-
duced support for Dynamic HTML. The basic idea is simple: You create an absolutely positioned layer
that can be moved along with the mouse. In practice, it’s a bit more complicated to get the true drag-
and-drop feel to come across to users.

The method for this type of drag and drop is an extension of the classic cursor trail script. You may remem-
ber coming across a Web page where your cursor was followed by an image. This is quite easy to do:

<html>
<head>

<title>Simulated Drag And Drop Example</title>
<script type=”text/javascript”>

399

Drag and Drop

16_579088 ch13.qxd 3/28/05 11:41 AM Page 399

function handleMouseMove(oEvent) {
var oDiv = document.getElementById(“div1”);
oDiv.style.left = oEvent.clientX;
oDiv.style.top = oEvent.clientY;

}

</script>
<style type=”text/css”>

#div1 {
background-color: red;
height: 100px;
width: 100px;
position: absolute;

}
</style>

</head>
<body onmousemove=”handleMouseMove(event)”>

<p>Try moving your mouse around.</p>
<p><div id=”div1”></div> </p>

</body>
</html>

In this example, a red <div/> follows the cursor around. Every time the cursor moves, the <div/> is
positioned at the same position, making its upper-left corner equal to the point of the cursor. Note that
the onmousemove event handler is assigned for the <body/> element, not for the <div/>. This is
because you must track the mouse movement over the entire page, not just within the <div/>.

To simulate drag and drop, the <div/> shouldn’t just move around on its own; the drag must be initi-
ated and stopped. This is where the code gets a little bit tricky and requires the use of the EventUtil
object from earlier in the book.

The code
The first step is to create three functions: one to handle each of three mouse events (mousemove, mouse-
down, and mouseup). The function that handles mousedown is assigned to the <div/> (or the element to be
dragged). When the user’s mouse button is pushed down over the <div/>, this function assigns the event
handlers for mousemove and mouseup on document.body. When the user releases the mouse button, the
dragging stops and the event handlers for mousemove and mouseup are removed. Here’s the code:

<html>
<head>

<title>Simulated Drag And Drop Example</title>
<script type=”text/javascript” src=”eventutil.js”></script>
<script type=”text/javascript”>

function handleMouseMove() {
var oEvent = EventUtil.getEvent();
var oDiv = document.getElementById(“div1”);
oDiv.style.left = oEvent.clientX;
oDiv.style.top = oEvent.clientY;

}

400

Chapter 13

16_579088 ch13.qxd 3/28/05 11:41 AM Page 400

function handleMouseDown() {
EventUtil.addEventHandler(document.body, “mousemove”,

handleMouseMove);
EventUtil.addEventHandler(document.body, “mouseup”,

handleMouseUp);
}

function handleMouseUp() {
EventUtil.removeEventHandler(document.body, “mousemove”,

handleMouseMove);
EventUtil.removeEventHandler(document.body, “mouseup”,

handleMouseUp);
}

</script>
<style type=”text/css”>

#div1 {
background-color: red;
height: 100px;
width: 100px;
position: absolute;

}
</style>

</head>
<body>

<p>Try dragging the red square.</p>
<p><div id=”div1” onmousedown=”handleMouseDown()”></div> </p>

</body>
</html>

As you can see, handleMouseDown() simply adds the onmousemove and onmouseup event handlers
whereas handleMouseUp() removes the event handlers. Doing this prevents the dragging functionality
from working by mistake. In this example, the only thing that can initiate the drag is the user holding
the mouse button down on the <div/>.

When you try this out, note that the upper-left corner of the <div/> always lines up with the cursor,
which is okay, but it’s a little jarring to users. Ideally, the <div/> should look like it was picked up by the
cursor, meaning that the point where the user clicked should be where the cursor appears to remain,
even though the <div/> is moving (see Figure 13-1).

Figure 13-1

User initially clicks here When being dragged,
the cursor ends up here

401

Drag and Drop

16_579088 ch13.qxd 3/28/05 11:41 AM Page 401

Some calculations can be done to make the cursor appear in the proper position. To do this, you capture
the difference between where the <div/> is located and where the cursor is located when it is initially
clicked (in the handleMouseDown() function). You compare the clientX and clientY properties of the
event object to the offsetLeft and offsetTop properties of the <div/> (see Figure 13-2).

Figure 13-2

The differences between the x and y coordinates must be stored outside of the functions so that each
function can have access to the values. The variables to store these differences are called iDiffX and
iDiffY, and they are initialized in the handleMouseDown() function before the event handlers are
added to document.body. Then, in handleMouseMove(), these values are subtracted from clientX
and clientY, respectively, to move the <div/> into the correct position:

var iDiffX = 0;
var iDiffY = 0;

function handleMouseMove() {
var oEvent = EventUtil.getEvent();
var oDiv = document.getElementById(“div1”);
oDiv.style.left = oEvent.clientX - iDiffX;
oDiv.style.top = oEvent.clientY - iDiffY;

}

function handleMouseDown() {
var oEvent = EventUtil.getEvent();
var oDiv = document.getElementById(“div1”);
iDiffX = oEvent.clientX - oDiv.offsetLeft;
iDiffY = oEvent.clientY - oDiv.offsetTop;

EventUtil.addEventHandler(document.body, “mousemove”, handleMouseMove);
EventUtil.addEventHandler(document.body, “mouseup”, handleMouseUp);

}

402

Chapter 13

16_579088 ch13.qxd 3/28/05 11:41 AM Page 402

function handleMouseUp() {
EventUtil.removeEventHandler(document.body, “mousemove”, handleMouseMove);
EventUtil.removeEventHandler(document.body, “mouseup”, handleMouseUp);

}

Making these changes allows the <div/> to be dragged in a nicer-looking way.

Creating drop targets
Now that you know how to drag an element around the screen, all you need is a place to drop it.
Creating a drop target for simulated drag and drop involves checking the coordinates of the mouse to
see if it is located inside the boundaries of the drop target.

Like the dragged item, the drop target is also absolutely positioned so you can use the element’s
offsetLeft, offsetTop, offsetHeight, and offsetWidth properties to determine the x and y coordi-
nates of each corner. The function isOverDropTarget() is designed to encapsulate this evaluation by
taking a set of coordinates as arguments and returning true if the coordinates are within the drop target.

function isOverDropTarget(iX, iY) {
var oTarget = document.getElementById(“divDropTarget”);
var iX1 = oTarget.offsetLeft;
var iX2 = iX1 + oTarget.offsetWidth;
var iY1 = oTarget.offsetTop;
var iY2 = iY1 + oTarget.offsetHeight;

return (iX >= iX1 && iX <= iX2 && iY >= iY1 && iY <= iY2);
}

The first line in the function gets a reference to the element with the ID of “divDropTarget”. The fol-
lowing lines determine the two x coordinates and two y coordinates. The last line tests to see if the coor-
dinate arguments are located within the drop target, returning true if so or false if not.

function handleMouseUp() {
var oEvent = EventUtil.getEvent();
EventUtil.removeEventHandler(document.body, “mousemove”, handleMouseMove);
EventUtil.removeEventHandler(document.body, “mouseup”, handleMouseUp);

if (isOverDropTarget(oEvent.clientX,oEvent.clientY)) {
alert(“dropped!”);
var oDiv = document.getElementById(“divDropTarget”);
var oTarget = document.getElementById(“div2”);
oDiv.style.left = oTarget.offsetLeft;
oDiv.style.top = oTarget.offsetTop;

}
}

The highlighted section of code shows an alert if the cursor is over the designated drop target. Then, the
dragged element is positioned into the upper-left corner of the drop target so it appears to snap into
place. Of course, if you have more than one item to drag onto a drop target, you must create some sort

403

Drag and Drop

16_579088 ch13.qxd 3/28/05 11:41 AM Page 403

of logic to ensure that each item is arranged appropriately, but this is enough to get you started. Here is
how all the code looks when put together:

<html>
<head>

<title>Simulated Drag And Drop Example</title>
<script type=”text/javascript” src=”eventutil.js”></script>
<script type=”text/javascript”>

var iDiffX = 0;
var iDiffY = 0;

function handleMouseMove() {
var oEvent = EventUtil.getEvent();
var oDiv = document.getElementById(“div1”);
oDiv.style.left = oEvent.clientX - iDiffX;
oDiv.style.top = oEvent.clientY - iDiffY;

}

function handleMouseDown() {
var oEvent = EventUtil.getEvent();
var oDiv = document.getElementById(“div1”);
iDiffX = oEvent.clientX - oDiv.offsetLeft;
iDiffY = oEvent.clientY - oDiv.offsetTop;

EventUtil.addEventHandler(document.body, “mousemove”,
handleMouseMove);

EventUtil.addEventHandler(document.body, “mouseup”, handleMouseUp);
}

function handleMouseUp() {
var oEvent = EventUtil.getEvent();
EventUtil.removeEventHandler(document.body, “mousemove”,

handleMouseMove);
EventUtil.removeEventHandler(document.body, “mouseup”,

handleMouseUp);

if (isOverDropTarget(oEvent.clientX,oEvent.clientY)) {
alert(“dropped!”);
var oDiv = document.getElementById(“div1”);
var oTarget = document.getElementById(“divDropTarget”);
oDiv.style.left = oTarget.offsetLeft;
oDiv.style.top = oTarget.offsetTop;

}
}

function isOverDropTarget(iX, iY) {
var oTarget = document.getElementById(“divDropTarget”);
var iX1 = oTarget.offsetLeft;
var iX2 = iX1 + oTarget.offsetWidth;
var iY1 = oTarget.offsetTop;
var iY2 = iY1 + oTarget.offsetHeight;

404

Chapter 13

16_579088 ch13.qxd 3/28/05 11:41 AM Page 404

return (iX >= iX1 && iX <= iX2 && iY >= iY1 && iY <= iY2);
}

</script>
<style type=”text/css”>

#div1 {
background-color: red;
height: 100px;
width: 100px;
position: absolute;
z-index: 10;

}

#divDropTarget {
background-color: blue;
height: 200px;
width: 200px;
position: absolute;
left: 300px;

}
</style>

</head>
<body>

<p>Try dragging the red square onto the blue square.</p>
<div id=”div1” onmousedown=”handleMouseDown(event)”></div>
<div id=”divDropTarget”></div>

</body>
</html>

Advantages and disadvantages
The major advantage of simulated drag and drop is that it works across DOM-compliant browsers, such
as Internet Explorer 5.0+, Mozilla 1.0+, Safari 1.0+, and Opera 7.0+. This strategy is known to work
across multiple platforms, as well, because it uses basic DOM functionality.

Of course, simulated drag and drop doesn’t give you the hooks into the operating system that system
drag and drop provides. You can’t affect text or links being dragged by the user, and the dragged ele-
ments can only be dragged within a given window or frame. However, for most use cases, simulated
drag and drop gets the job done.

zDragDrop
You’ve seen that simulating drag and drop takes a fair amount of JavaScript. You may be wondering,
“Isn’t there some sort of JavaScript library that handles all this for me?” The answer is the zDragDrop
library, freely available from http://www.nczonline.net/downloads/. This library provides a set of
objects that encapsulate much of the simulated drag-and-drop process. You need only include the file
zdragdroplib.js in your page to take advantage of the functionality.

405

Drag and Drop

16_579088 ch13.qxd 3/28/05 11:41 AM Page 405

Creating a draggable element
The zDraggable class can be used to make any absolutely-positioned DOM element draggable. The con-
structor takes two arguments, the DOM element to make draggable and a set of constraints determining
how the element can be dragged. The second argument is made up of one or more special values.

To make an element draggable horizontally only, use zDraggable.DRAG_X as the second argument:

var oDiv = document.getElementById(“divToDrag”);
var oDraggable = new zDraggable(oDiv, zDraggable.DRAG_X);

To make an element draggable vertically only, use zDraggable.DRAG_Y as the second argument:

var oDiv = document.getElementById(“divToDrag”);
var oDraggable = new zDraggable(oDiv, zDraggable.DRAG_Y);

If the element must be dragged in both directions, use the bitwise OR operator to combine the two values:

var oDiv = document.getElementById(“divToDrag”);
var oDraggable = new zDraggable(oDiv, zDraggable.DRAG_X | zDraggable.DRAG_Y);

Because the zDraggable constructor expects a DOM element as an argument, you can use this code
only after the page has completely loaded.

Creating a drop target
Using the zDragDrop library, you must explicitly set a drop target for a draggable element. To start, create
a zDropTarget object like this:

var oDivTarget = document.getElementById(“divDropTarget”);
var oDropTarget = new zDropTarget(oDiv);

After you have created the drop target, you can add it to the draggable element by using the
addDropTarget() method. For example:

var oDivToDrag = document.getElementById(“divToDrag”);
var oDivTarget = document.getElementById(“divDropTarget”);

var oDraggable = new zDraggable(oDiv, zDraggable.DRAG_X | zDraggable.DRAG_Y);
var oDropTarget = new zDropTarget(oDiv);

oDraggable.addDropTarget(oDropTarget);

With this code set up, it’s now possible to use the zDragDrop library’s built-in events to manage the
dragging and dropping.

Events
Although not as robust as Internet Explorer’s drag-and-drop events, the zDragDrop library does offer a
few basic events that can make dealing with simulated drag and drop a little bit easier.

406

Chapter 13

16_579088 ch13.qxd 3/28/05 11:41 AM Page 406

The zDraggable object supports three events:

❑ dragstart — Occurs immediately before beginning to drag the element.

❑ drag — Fires continuously while the element is being dragged.

❑ dragend — Fires after the element has stopped being dragged, regardless of whether it has
been dropped on a valid drop target.

The zDropTarget object supports only one event, drop, which occurs when a draggable item is
dropped onto it.

To make use of these events, the zDragDrop library uses DOM-style event handlers that can be assigned
using the addEventListener() method. Unlike the DOM, it has only two arguments: the type of event
to handle and the event-handling function. For example, the following code assigns an event handler to
a zDropTarget object that will display the message “dropped” when an item is dropped:

oDropTarget.addEventListener(“drop”, function () {
alert(“dropped”);

});

It’s also possible to remove event handlers by using removeEventListener() with the same arguments:

function handleDragEnd() {
alert(“drag end”);

}

oDraggable.addEventListener(“dragend”, handleDragEnd);

//other code here

oDraggable.removeEventListner(“dragend”, handleDragEnd);

The zDragDrop library also supports an event object that contains extra information about a given
event. The properties of this event object are:

❑ type – The type of event that occurred (such as “drag” or “dragend”).

❑ target — The object that caused the event (a zDraggable or zDropTarget).

❑ timeStamp — The date and time, in milliseconds, when the event occurred.

❑ relatedTarget — The other object related to the event. When the drop event fires on a
zDropTarget, this is always equal to the zDraggable object that was dropped on it.

❑ cancelable — Indicates whether the event can be cancelled.

Additionally, the event object supports one method, preventDefault(), which can be used to prevent
the default behavior of an event. Currently, the only event that can be prevented is dragstart.

The event object is passed into an event-handler function as the only argument, so you can access it
this way:

407

Drag and Drop

16_579088 ch13.qxd 3/28/05 11:41 AM Page 407

oDraggable.addEventListener(“dragstart”, function (oEvent) {
alert(oEvent.type + “ occurred at “ + oEvent.timeStamp);
oEvent.preventDefault();

});

Example
To recreate the effect of the drop target example from the previous section, you can make use of several
other methods built in to the zDragDrop library:

❑ zDraggable.moveTo(x, y) — Moves the zDraggable element to the position x,y.

❑ zDropTarget.getLeft() — Returns the left coordinate of the drop target.

❑ zDropTarget.getTop() — Returns the top coordinate of the drop target.

If you use these methods along with the event handling functionality of zDragDrop, the code becomes
much cleaner:

<html>
<head>

<title>Simulated Drag And Drop Example</title>
<script type=”text/javascript” src=”zdragdroplib.js”></script>
<script type=”text/javascript”>

function doLoad() {
var oDraggable = new zDraggable(document.getElementById(“div1”),

zDraggable.DRAG_X | zDraggable.DRAG_Y);
var oDropTarget =

new zDropTarget(document.getElementById(“divDropTarget”));

oDraggable.addDropTarget(oDropTarget);

oDropTarget.addEventListener(“drop”, function (oEvent) {
oEvent.relatedTarget.moveTo(oDropTarget.getLeft(),

oDropTarget.getTop());
});

}

</script>
<style type=”text/css”>

#div1 {
background-color: red;
height: 100px;
width: 100px;
position: absolute;
z-index: 10;

}

#divDropTarget {
background-color: blue;
height: 200px;
width: 200px;

408

Chapter 13

16_579088 ch13.qxd 3/28/05 11:41 AM Page 408

position: absolute;
left: 300px;

}
</style>

</head>
<body onload=”doLoad()”>

<p>Try dragging the red square onto the blue square.</p>
<div id=”div1”></div>
<div id=”divDropTarget”></div>

</body>
</html>

As you can see, the JavaScript section of this code is markedly smaller than that of the example in the
previous section. The first two lines of JavaScript create the zDraggable and zDropTarget objects.
Then, the drop target is registered to the zDraggable object by using addDropTarget(). Finally, an
event handler for the drop event is added to the drop target. That event handler moves the draggable
element to the upper-left corner of the drop target by making use of the previously mentioned methods.
Remember, the relatedTarget property of the event object is equal to the draggable element when
used in a drop event.

Of course, all this code must be called after the page has been loaded, so the onload event handler is
used for that purpose.

Summary
This chapter introduced the concept of drag and drop in a Web browser and explained the difference
between system drag and drop and simulated drag and drop.

You learned about Internet Explorer’s built-in system drag-and-drop functionality, and that it is the only
browser that supports system drag and drop from Web pages. The various events and methods pro-
vided by IE to work with system drag and drop were also discussed, as well as strategies for dragging
text and links.

Next you learned about simulated drag and drop, a way to use the DOM to move elements around that
gives the appearance of drag-and-drop functionality. You were shown how to build a simple drag-and-
drop example.

Lastly, you were introduced to the zDragDrop library, a free JavaScript library that encapsulates a great
deal of simulated drag-and-drop functionality. Using this library, you learned how to create a drag-and-
drop example making use of the custom objects, methods, and events.

409

Drag and Drop

16_579088 ch13.qxd 3/28/05 11:41 AM Page 409

16_579088 ch13.qxd 3/28/05 11:41 AM Page 410

Error Handling

Traditionally, JavaScript has been known as a language filled with confusing error messages such
as Object Expected and Illegal Syntax with nothing more than a line number to identify its origin.
Debugging such messages was a painful experience at best, which is why the version 4 browsers
(Internet Explorer 4.0 and Netscape Navigator 4.0) included some basic error-handling functional-
ity. Shortly thereafter, an answer came from the ECMA in the form of ECMAScript, third edition.

This latest edition of ECMAScript added exception handling capabilities modeled after its big
brother, Java. Using some of the reserved words from the second edition of ECMAScript, the third
edition implements the try...catch...finally construct as well as the throw operator.

This chapter explores both the browser-based error-handling capabilities as well as ECMAScript’s
exception-handling features.

The Importance of Error Handling
In early browsers (such as Internet Explorer 3.0 and Netscape Navigator 3.0), there was no error
handling. Typically, functions return an invalid value (often null, false, or –1, depending on the
use case) to indicate that an error has occurred. Consider the following code:

var iLoc = findItem(colorarray, “blue”);
if (iLoc == -1) {

alert(“The item doesn’t exist. “);
} else {

alert(“The item is in location “ + iLoc + “.”);
}

In this case, the function findItem() returns a –1 (an invalid value) when the given string doesn’t
exist. Presumably, a valid value is a number greater than or equal to 0. But why did the function
return the invalid value? Does the string “blue” simply not exist in colorarray? Or is there

17_579088 ch14.qxd 3/28/05 11:41 AM Page 411

some other reason, perhaps, that the array has no items in it? There is no way to know why the invalid
value was returned. Errors and error handling help eliminate this conundrum.

With the incorporation of error handling into JavaScript, Web developers now have the ability to better
control code. Good error-handling techniques allow smooth developing, debugging, and deploying of
scripts. In many ways, such techniques are actually more important in JavaScript than other program-
ming languages because it lacks a standard development environment, such as Visual Studio.NET for
the .NET Framework or NetBeans for Java development, to guide developers.

Errors versus Exceptions
When talking about errors in programming, you really have only two categories of primary concern:
syntax errors and runtime errors.

Syntax errors, also called parsing errors, occur at compile time for traditional programming languages
and at interpret time for JavaScript. These errors are a direct result of an unexpected character in the
code and thus prevent it from being fully compiled/interpreted. For example, the following line causes
a syntax error because it is missing a closing parenthesis:

document.write(“test”;

When a syntax error occurs, the code cannot be executed. In JavaScript, only the code contained within
the same thread as the syntax error is affected. Code in other threads and other externally referenced
files still execute appropriately assuming nothing in them depends on the code containing the error.

Runtime errors, also called exceptions, occur during execution (after compilation/interpretation). In this
case, the problems are not with the syntax of the code. Rather, an operation attempting to complete is
illegal in some way. Example:

window.openMySpecialWindow();

In the previous code, an attempt is made to access a method of the window object named
openMySpecialWindow. Syntactically this line is correct, however, no such method exists. This
causes the browser to return an exception.

Exceptions only affect the thread in which they occur, allowing other JavaScript threads to continue nor-
mal execution. Consider the following HTML page:

<html>
<head>

<title>Exception Test</title>
<script type=”text/javascript”>

function handleLoad() {
window.openMySpecialWindow();
alert(“Loaded”);

}

function handleClick() {
alert(“Clicked”);

}

412

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 412

</script>
</head>
<body onload=”handleLoad()”>

<input type=”button” value=”Click Me” onclick=”handleClick()” />
</body>

</html>

When this page loads, the handleLoad() function is called and an exception occurs when trying to call
a non-existent method of the window object. That thread is then exited so the alert(“Loaded”); line is
never executed. When the user clicks on the button, however, the handleClick() function is still called
and an alert displays the text “Clicked.”

Error Reporting
Because each browser has its own built-in JavaScript interpreter (including its own mechanisms for
tracking down errors while interpreting), each reports errors in different ways: Some pop up an error
message; others simply log the message to a JavaScript console. Regardless of the method used, be
aware of where this data is located on your target browsers. Browsers such as Internet Explorer, Mozilla,
Safari, and Opera each have their own unique ways of presenting this data. This section guides you to
the error message information for each of them.

Internet Explorer (Windows)
Microsoft’s flagship browser, Internet Explorer for Windows, is capable of reporting errors in a couple of
different ways. By default, Internet Explorer pops up a dialog with the error details (Figure 14-1) and
asks if you want to continue running scripts on the page. This is misleading, because clicking either Yes
or No allows other scripts to continue running.

Figure 14-1

If the browser has a debugger (such as Microsoft Script Debugger, which is discussed later in this chap-
ter), the dialog offers the option to debug the script or ignore it (Figure 14-2). Clicking Yes on this dialog
brings you into the debugger; clicking No simply closes the dialog.

413

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 413

Figure 14-2

The other option is to not pop up an error dialog. This setting can be enabled by going to Internet
Options, clicking on the Advanced tab, and unchecking “Display a notification about every script error”
(Figure 14-3).

Figure 14-3

This setting causes Internet Explorer to display a small yellow icon with an X over it in the lower-left cor-
ner of the browser window whenever an error occurs (Figure 14-4). Double-clicking the icon brings up a
dialog displaying the typical error information (message, URL, and line number). This dialog also enables
you (by using the Previous button) to see any errors that occurred before the one being displayed.

414

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 414

Figure 14-4

Internet Explorer (MacOS)
By default, Internet Explorer on the Macintosh doesn’t show JavaScript errors. To turn on this feature, go
to the Preferences dialog (available under Edit ➪ Preferences). Under the Web Browser section on the
left side of the window, click Web Content. In the lower part of the window, you see a check box labeled
Enable Scripting; immediately underneath is a check box labeled Show Scripting Error Alerts. Checking
this box causes the browser to pop up an error message when a JavaScript error occurs.

Be aware that the line number given isn’t always accurate. If the code causing the
error is inline, then the line number correctly identifies the line number in the
HTML file where the error occurs; if the code causing the error is in an external file,
the line number is typically off by one line, so an error that is purported to have
occurred on line 5 actually occurred on line 4.

415

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 415

The problem with IE/Mac’s error alerts is that it doesn’t give an accurate line number for external scripts
(the line number is typically the line in the HTML file where the script has been referenced). In extreme
cases, it may be more useful to insert the script inline for testing purposes.

Mozilla (all platforms)
Mozilla features a JavaScript console that logs not only errors, but warnings as well. To access the
JavaScript console, look under Tools ➪ Web Development ➪ JavaScript Console in Mozilla 1.0+ (prior
to 1.0, the JavaScript console was located under Tasks ➪ Tools ➪ JavaScript Console).

Just like its predecessor Netscape Navigator, Mozilla allows you to type javascript: into the address
box to open the JavaScript console instead of accessing it from the menu.

The JavaScript console reports three types of messages: errors, strict warnings, and messages. Errors are
either syntax or runtime errors (anything that stops script execution), and they are reported with the
error message, the filename, and the line number on which the error occurred (Figure 14-5). Strict warn-
ings occur when the code does something illegal, but the interpreter works around it allowing the script
to continue running (such problems include redefining a previously defined variable). Messages are
purely informational and often are a result of internal Mozilla processing, not JavaScript.

Figure 14-5

416

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 416

Safari (MacOS X)
Macintosh’s Safari browser has perhaps the worst support for JavaScript errors and debugging. By
default, it offers no JavaScript error reporting to the end user. In order to enable error reporting, follow
these steps:

1. Open a command line shell.

2. Execute the following: defaults write com.apple.Safari IncludeDebugMenu 1.

3. Restart Safari.

4. Under the Debug menu, check Log JavaScript Exceptions (Figure 14-6).

5. Start Console.app under Application/Utilities.

Figure 14-6

After completing these steps, JavaScript errors are logged to the Console.app window (Figure 14-7).
Unfortunately, the messages are less than useful without a URL or line number to help locate the cause
of any given error. However, it is the best Safari can offer at this point.

417

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 417

Figure 14-7

Opera 7 (all platforms)
Similar to Mozilla, Opera 7 features a JavaScript console to aid in debugging. The console is accessible
under Window ➪ Special ➪ JavaScript Console. The console (Figure 14-8) provides the most data out of
available browsers including the error type, error code, error message, the thread that the error occurred
in, and a stack trace (labeled Backtrace in the window) indicating the origins of the error.

Figure 14-8

418

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 418

It is possible to have the JavaScript console come up whenever there is an error by going into Tools ➪

Preferences, and then clicking on Multimedia. You’ll see a check box titled Enabled JavaScript, along with
a button labeled JavaScript Options..... If you click the button, a new dialog pops up (see Figure 14-9), one
of the options is Open JavaScript Console on Error. When this check box is checked (it is unchecked by
default), the JavaScript console pops up whenever there is an error.

Figure 14-9

Handling Errors
Understanding errors is just part of the solution; understanding how to handle those errors is the other
part. Instead of using multiple if..else statements, JavaScript offers two specific ways to handle
errors. The Browser Object Model includes the onerror event handler on both the window object and
on images, whereas ECMAScript defines the try...catch construct, another statement borrowed from
Java, to deal with exceptions. This section outlines the advantages and disadvantages of each approach.

The onerror event handler
The onerror event handler was the first feature to facilitate error handling for JavaScript. The error
event is fired on the window object whenever an exception occurs on the page. Example:

<html>
<head>

<title>OnError Example</title>
<script type=”text/javascript”>

window.onerror = function () {
alert(“An error occurred. “);

}
</script>

</head>
<body onload=”nonExistentFunction()”>
</body>

</html>

419

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 419

In this example, an exception occurs when an attempt is made to call nonExistentFunction(),
which doesn’t exist. When this happens, the alert is displayed containing the message, “An error
occurred.” Unfortunately, the browser’s error message is also displayed. To hide the error from the
browser (and thus prevent it from reporting the error), the onerror event handler must return a value
of true:

<html>
<head>

<title>OnError Example</title>
<script type=”text/javascript”>

window.onerror = function () {
alert(“An error occurred. “);
return true;

}
</script>

</head>
<body onload=”nonExistentFunction()”>
</body>

</html>

Extracting error information
Simply knowing that an error occurred is of little use to a programmer without the error details.
Fortunately, the onerror event handler provides three pieces of information to identify the exact
nature of the error:

❑ Error message — The same message that the browser would display for the given error

❑ URL — The file in which the error occurred

❑ Line number — The line number in the given URL that caused the error

This information is passed as three parameters into the onerror event handler and can be accessed
like this:

<html>
<head>

<title>OnError Example</title>
<script type=”text/javascript”>

window.onerror = function (sMessage, sUrl, sLine) {
alert(“An error occurred:\n” + sMessage + “\nURL: “ + sUrl +

“\nLine Number: “ + sLine);
return true;

}
</script>

</head>
<body onload=”nonExistentFunction()”>
</body>

</html>

Using this code, it is possible to create custom JavaScript error dialogs that mimic the functionality of
browser-error dialogs.

420

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 420

Image loading errors
The window object isn’t the only one that supports the onerror event handler; images do too. When
an image fails to load for any reason (for example, the file does not exist), the error event fires on the
images. You can set the onerror event handler for an image either in HTML or through script. For
example:

<html>
<head>

<title>Image Error Test</title>
</head>
<body>

<p>The image below attempts to load a file that doesn’t exist.</p>
<img src=”blue.gif”

onerror=”alert(‘An error occurred loading the image.’)” />
</body>

</html>

This example assigns the onerror event handler directly in the HTML. Because the image “blue.gif”
doesn’t exist, the alert is displayed letting the user know the image didn’t load completely. In order to
assign the event handler using a script, you must wait until after the page has loaded before setting the
image’s src attribute:

<html>
<head>

<title>Image Error Test</title>
<script type=”text/javascript”>

function handleLoad() {
document.images[0].onerror = function () {

alert(“An error occurred loading the image.”);
};

document.images[0].src = “blue.gif”;
}

</script>
</head>
<body onload=”handleLoad()”>

<p>The image below attempts to load a file that doesn’t exist.</p>

</body>
</html>

In this example, the first image isn’t assigned an src attribute in the HTML. When the page is loaded,
however, the image is first assigned an onerror event handler and then has its src property set to
“blue.gif”, which doesn’t exist. The alert displays once again, indicating the image didn’t load.

Unlike the onerror event handler for the window object, the image’s onerror event
handler doesn’t pass any arguments for extra information.

421

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 421

Handling syntax errors
The onerror event handler isn’t just good for dealing with exceptions; it is also the only way to deal
with syntax errors.

To do so, the event handler must be the first code that appears in the page. Why the first? If a syntax
error occurs before the event handler has been set up, that event handler will never be set up.
Remember, a syntax error completely stops code execution. Consider the following example:

<html>
<head>

<title>OnError Example</title>
<script type=”text/javascript”>

alert(“Syntax error. “;
window.onerror = function (sMessage, sUrl, sLine) {

alert(“An error occurred:\n” + sMessage + “\nURL: “ + sUrl +
“\nLine Number: “ + sLine);

return true;
}

</script>
</head>
<body onload=”nonExistentFunction()”>
</body>

</html>

Because the highlighted line (which is a syntax error) occurs before the onerror event handler is
assigned, the browser reports the error directly. The code immediately following the error is not inter-
preted (because the thread is exited) so when the load event fires and the nonExistentFunction() is
called, the browser reports that error as well. If this page is rewritten to place the onerror event-handler
assignment before the syntax error, two alerts are displayed: one showing the syntax error and one
showing the exception.

<html>
<head>

<title>OnError Example</title>
<script type=”text/javascript”>

window.onerror = function (sMessage, sUrl, sLine) {
alert(“An error occurred:\n” + sMessage + “\nURL: “ + sUrl +

“\nLine Number: “ + sLine);
return true;

}
alert(“Syntax error. “;

</script>
</head>
<body onload=”nonExistentFunction()”>
</body>

</html>

422

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 422

The try...catch statement
ECMAScript, third edition, introduced another feature from Java, the try...catch statement for browsers
that support ECMAScript 3 (see Chapter 1, “What Is JavaScript?”). The basic syntax is the following:

try {
//code to run
[break;]

} catch ([exception]) {
//code to run if an exception occurs and the expression is matched
[break;]

} [finally {
//code that is always executed regardless of an exception occurring

}]

For example:

try {
window.nonExistentFunction();
alert(“Method completed. “);

} catch (exception) {
alert(“An exception occurred.”);

} finally {
alert(“End of try...catch test.”);

}

While running a try...catch statement, the interpreter first enters the code block immediately after
the try keyword. In the previous example, the line window.nonExistantFunction(); is executed,
which causes an error (because no method named nonExistantFunction exists for the window object). At
that point, execution immediately exits the try clause and goes into the catch clause, completely skip-
ping over any further lines of code (the alert(“Method completed.”); line is skipped). The alert
in the catch clause is displayed, and then execution moves into the finally clause to display that alert.

Unlike Java, the ECMAScript standard specifies only one catch clause per try...catch statement.
Because JavaScript is only loosely typed, you have no way to specify a particular type of exception in
the catch clause. All errors, regardless of type, are handled by a single catch clause.

The major problem with using the onerror event handler is that it is part of the
BOM, and as such, has no standards governing its behavior. To this end, there is a
pretty significant difference between the way browsers handle errors using this
event. For example, when the error event occurs in Internet Explorer, normal code
execution continues: All variables and data are retained and remain accessible from
within the onerror event handler. In Mozilla, however, normal code execution
ends, and all variables and data existing prior to the error occurring are destroyed,
making it difficult to truly evaluate the error.

Safari and Konqueror do not support the onerror event handler on the window
object but they do support it on images.

423

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 423

The code in the finally clause behaves the same way as the finally clause in Java, containing code
that should be executed whether or not an exception occurs. This is useful for closing open connections
and freeing up resources. For instance:

connection.open();
try {

connection.send(data);
} catch (exception) {

alert(“An exception occurred.”);
} finally {

connection.close();
}

Nested try...catch statements
It is possible for an error to occur inside the catch clause of a try...catch statement. In this case,
using nested try...catch statements is the answer. Consider the following example

try {
eval(“a ++ b”); //causes error

} catch (oException) {
alert(“An exception occurred. “);
try {

var aErrors = new Array(10000000000000000000000); //causes error
aErrors.push(exception);

} catch (oException2) {
alert(“Another exception occurred.”);

}
} finally {

alert(“All done.”);
}

In this example, an error is thrown immediately and the first alert is displayed. When execution contin-
ues in the first catch clause, another error is thrown because of the attempt to create an array with too
many elements. Execution goes to the second catch clause and displays the second alert before continu-
ing on into the finally clause.

The Error object
So what exactly is it that the catch statement catches? Just as Java has a base class Exception to throw,
JavaScript has a base class called Error to throw. An Error object has the following properties:

❑ name — A string indicating the type of error

❑ message — The actual error message

Mozilla’s extensions to ECMAScript include the capability to add more than one
catch clause per try...catch statement. However, because this extension exists
only in Mozilla, it is not recommended.

424

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 424

The name of the Error object corresponds to its class (because Error is just a base class), which is one of
the following:

Class Occurs When

EvalError An error occurs in the eval() function.

RangeError A number value is greater than or less than the numbers that can be repre-
sented in JavaScript (Number.MAX_VALUE and Number.MIN_VALUE).

ReferenceError An illegal reference is used.

SyntaxError A syntax error occurs inside of an eval() function call. All other syntax
errors are reported by the browser and cannot be handled with a
try...catch statement.

TypeError A variable’s type is unexpected.

URIError An error occurs in the encodeURI() or the decodeURI() function.

The message property of an Error object is the browser-generated error message indicating the nature
of the error. Because this property is browser-specific, the same error can generate a different error mes-
sage in different browsers. Consider the following line of code:

eval(“a ++ b”);

This line alone causes a SyntaxError to be thrown because the ++ symbol isn’t valid in this context. The
error message from Internet Explorer 6 is “Expected ‘;’” whereas Mozilla 1.5 provides “missing ;
before statement.”

The message property can be used to display a more meaningful message to users while preventing the
browser from reporting the error directly:

try {
window.nonExistentFunction();
alert(“Method completed.”);

} catch (oException) {
alert(“An exception occurred: “ + oException.message);

} finally {
alert(“End of try...catch test.”);

}

Both Mozilla and Internet Explorer have extended the Error object to suit their own
needs. Mozilla provides a fileName property to indicate which file the error occurred
in, a lineNumber property indicating the line that the error occurred on, and a stack
property containing the call stack up to the point of the error; Internet Explorer pro-
vides a number property to indicate the error number.

425

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 425

Determining the type of error
Despite being limited to only one catch clause per try...catch statement, you have a couple of easy
ways to determine the type of error that was thrown. The first is to use the name property of the Error
object:

try {
eval(“a ++ b”); //causes SyntaxError

} catch (oException) {
if (oException.name == “SyntaxError”) {

alert(“Syntax Error: “ + oException.message);
} else {

alert(“An unexpected error occurred: “ + oException.message);
}

}

The second way is to use the instanceof operator and use the class name of different errors:

try {
eval(“a ++ b”); //causes SyntaxError

} catch (oException) {
if (oException instanceof SyntaxError) {

alert(“Syntax Error: “ + oException.message);
} else {

alert(“An unexpected error occurred: “ + oException.message);
}

}

Raising exceptions
The third edition of ECMAScript also introduced the throw statement to raise exceptions purposely. The
syntax is the following:

throw error_object;

The error_object can be a string, a number, a Boolean value, or an actual object. All the following
lines are valid:

throw “An error occurred.”;
throw 50067;
throw true;
throw new Object();

It is also possible to throw an actual Error object. The constructor for the Error object takes only one
parameter, the error message, making it possible to do the following:

throw new Error(“You tried to do something bad.”);

All the other classes of Error are also available to developers:

throw new SyntaxError(“I don’t like your syntax.”);
throw new TypeError(“What type of variable do you take me for?”);
throw new RangeError(“Sorry, you just don’t have the range.”);
throw new EvalError(“That doesn’t evaluate.”);

426

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 426

throw new URIError(“Uri, is that you?”);
throw new ReferenceError(“You didn’t cite your references properly.”);

Practically speaking, an error would be thrown in a situation where normal execution could not con-
tinue, such as this:

function addTwoNumbers(a, b) {
if (arguments.length < 2) {

throw new Error(“Two numbers are required.”);
} else {

return a + b;
}

}

In the previous code, the function requires two numbers to execute properly. If two arguments are not
passed in, the function throws an error indicating that the calculation cannot be completed.

Developer-thrown exceptions are caught inside of try...catch statements just like an error thrown by
the browser itself. Consider the following code, which catches a developer-thrown exception:

function addTwoNumbers(a, b) {
if (arguments.length < 2) {

throw new Error(“Two numbers are required.”);
} else {

return a + b;
}

}

try {
result = addTwoNumbers(90);

} catch (oException) {
alert(oException.message); //outputs “Two numbers are required.”

}

Additionally, because browsers don’t generate Error objects (they always generate one of the more spe-
cific Error objects, such as RangeError), it is easy to differentiate between an error thrown by the
developer and one thrown by the browser using either one of the techniques discussed earlier:

function addTwoNumbers(a, b) {
if (arguments.length < 2) {

throw new Error(“Two numbers are required.”);
} else {

return a + b;
}

}

try {
result = addTwoNumbers(90, parseInt(“z”));

} catch (oException) {
if (oException instanceof SyntaxError) {

alert(“Syntax Error: “ + oException.message);
} else if (oException instanceof Error) {

alert(oException.message);
}

}

427

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 427

Note that the check for the instanceof Error must be the last condition in the if statement because
all the other error classes inherit from it (so a SyntaxError returns true when testing instanceof
Error).

Debugging Techniques
Before JavaScript debuggers were readily available, developers had to use creative methods to debug
their code. This led to the placement of strategically placed alerts, using LiveConnect to access the Java
console, using the JavaScript console, and throwing custom errors. Each of these techniques has its
advantages and disadvantages. Which one should you use? This section explains which debugging tech-
nique is right for you.

Using alerts
The most popular (although the most unwieldy) method of debugging is the placement of alerts strategi-
cally throughout code. For example:

function test_function() {
alert(“Entering function.”);

var iNumber1 = 5;
var iNumber2 = 10;

alert(“Before calculation.”);
var iResult = iNumber1 + iNumber2;
alert(“After calculation.”);

alert(“Leaving function.”);
}

JavaScript developers around the world turn to alerts as a quick and dirty approach for debugging. The
most popular way is to show alerts with descriptive text, as in the previous example. Some also use a
numbering method, starting the first alert at 0, the second at 1, and so on, to see where the code breaks.

This approach requires a lot of cleanup because you must remove the extra alerts when your debugging
is complete. Another problem occurs when dealing with infinite loops: If your script is causing an infi-
nite or long-running loop, alerts could keep popping up and prevent you from closing the browser. For
this reason, using alerts for debugging is best kept to small code segments.

All browsers report a developer-thrown error, but the way the error message is dis-
played may differ slightly. Internet Explorer 6 only displays the error messages
when throwing the Error object; otherwise, it simply says Exception thrown and
not caught without giving any of the details specified; Mozilla, however, reports
Error: uncaught exception: and then calls the toString() method of the object
that was thrown.

428

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 428

Using the Java console
In browsers that support LiveConnect (interaction between Java and JavaScript, discussed later in the
book), you can use the Java console to log messages to yourself just as you can in Java.

For example, in Java you can log messages to the console window by doing this:

System.out.println(“Message”);

In JavaScript, you can do the same by expanding the System variable into its full java.lang.System
notation:

java.lang.System.out.println(“Message”);

Placing calls like this into a function is a great way to track code execution:

function test_function() {
java.lang.System.out.println(“Entering function.”);

var iNumber1 = 5;
var iNumber2 = 10;

java.lang.System.out.println(“Before calculation.”);
var iResult = iNumber1 + iNumber2;
java.lang.System.out.println(“After calculation.”);

java.lang.System.out.println(“Leaving function.”);
}

To see the output, select Tools ➪ Java Console. You see the output after the default Java console output
(Figure 14-10).

Figure 14-10

429

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 429

Posting messages to the JavaScript console (Opera 7+ only)
In Opera 7+, it’s possible to write message directly to the JavaScript console by using the
opera.postError() method:

function test_function() {
opera.postError(“Entering function.”);

var iNumber1 = 5;
var iNumber2 = 10;

opera.postError (“Before calculation.”);
var iResult = iNumber1 + iNumber2;
opera.postError (“After calculation.”);

opera.postError (“Leaving function.”);
}

Even though the method is called postError, it can be used to post any message to the JavaScript console
(see Figure 14-11).

Figure 14-11

The Opera JavaScript console works in the same way as the Java console when used for debugging. The
only problem is, of course, that this code must be removed for use in other browsers.

Mozilla, Safari, and Opera all support LiveConnect; Internet Explorer does not.

430

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 430

Throwing your own errors
One of the best ways to manage debugging and errors in JavaScript code is to throw your own errors.
Now, you may be thinking, “How do I reduce errors by causing errors?” The idea is that you throw spe-
cific errors that tell you exactly what error occurred instead of relying on JavaScript’s cryptic object
expected error messages. Doing so can cut down debugging time dramatically. Consider a function
designed to divide one number by another:

function divide(iNum1, iNum2) {
return iNum1.valueOf() / iNum2.valueOf();

}

This function assumes several things. First, it assumes that two arguments are passed in; second, it
assumes that both arguments are numbers. But if you make a call that breaks these assumptions, such as
divide(“a”), you end up with an error message like undefined’ is not an object or iNum2 has
no properties. Add some specific error messages, and the problem becomes clear:

function divide(iNum1, iNum2) {
if (arguments.length != 2) {

throw new Error(“divide() requires two arguments.”);
} else if (typeof iNum1 != “number” || typeof iNum2 != “number”) {

throw new Error(“divide() requires two numbers for arguments.”);
}

return iNum1.valueOf() / iNum2.valueOf();
}

In this case, if you call divide(“a”), you’ll get an error saying divide() requires two arguments;
if you call divide(“a”, “b”), you get an error saying divide() requires two numbers for
arguments. In both cases, these messages give you much more information than the default JavaScript
error messages and make debugging much easier.

Because of the amount of code required to check for errors and throw messages, many developers create
their own assert() function. Many programming languages have an assert() method built-in, and
it’s also easy to create your own:

function assert(bCondition, sErrorMessage) {
if (!bCondition) {

throw new Error(sErrorMessage);
}

}

The assert() function simply tests to see if the first argument evaluates to false and, if so, throws an
error with the given error message. You can then use assert() like this:

function divide(iNum1, iNum2) {
assert(arguments.length == 2, “divide() requires two arguments.”);
assert(typeof iNum1 == “number” && typeof iNum2 == “number”,

“divide() requires two numbers for arguments.”);

return iNum1.valueOf() / iNum2.valueOf();
}

431

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 431

As you can see, this reduces the amount of code contained in the divide() function and also makes it
clearer what the developer was thinking when writing this function.

The JavaScript Verifier
Douglas Crockford, a software engineer, wrote a small tool called jslint — The JavaScript Verifier. The
purpose of jslint is to point out unprofessional JavaScript syntax and possible syntax errors. You simply
paste your JavaScript code (either pure JavaScript code or code enclosed in a <script/> tag) into a text
box and click the jslint button. The tool then outputs warnings and errors about your code underneath.

The types of warnings provided by jslint are in line with the professional standards mentioned through-
out this book. You receive a warning if the code contains an inappropriate coding technique, such as the
following:

❑ A statement (if, for, while, and so on) that doesn’t use block notation (see Chapter 2,
“ECMAScript Basics”)

❑ A line that doesn’t end with a semicolon

❑ A var statement declaring a variable name that is already in use

❑ The with statement (for reasons to avoid with, see Chapter 2)

The JavaScript Verifier is available online at http://www.crockford.com/javascript/jslint.html,
and it can also be downloaded in its original source code for your own use.

Debuggers
Programmers used to developing in languages such as C, C++, Java, and Perl know that debugging is
an important part of the development process. These developers rely heavily on debuggers for such pro-
gramming languages to aid in tracking down errors in their code. Most languages offer some type of
debugger, from simple command line programs to exhaustive GUI layouts. Although JavaScript itself
doesn’t have a debugger, both Internet Explorer and Mozilla have debuggers available.

Microsoft Script Debugger
The Microsoft Script Debugger is a free utility available from Microsoft’s Web site. To download it, go to
http://www.microsoft.com/downloads/search.aspx?categoryid=10 and type script debugger
into the Search box. The results list comes up with Script Debugger for Windows NT, 2000, XP. Click that
link and click the Download button. Run the installation program and then restart Internet Explorer.
Notice a new menu item that appears under the View menu called Script Debugger. This provides
options for running the debugger.

Running
You can run the Microsoft Script Debugger in a number of ways. First, you can open it directly by select-
ing View ➪ Script Debugger ➪ Open, which opens the debugger with no information loaded. The second
method is to select View ➪ Script Debugger ➪ Break at Next Statement, which opens the debugger before

432

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 432

the next JavaScript command on the page is executed. The debugger is brought up with the file that con-
tains the executing JavaScript. Using this method, the line about to be run is highlighted in yellow. Lastly,
you can use the JavaScript debugger command to bring up the debugger from anywhere in your code:

var iSum = 1 + 2;
debugger;
var iProduct = iSum * 10;

When the code encounters the debugger command, code execution is halted and the debugger is
opened (making it very similar to the Break At Next Statement option).

The Window
The Microsoft Script Debugger is actually made up of a single window with three smaller utility win-
dows (see Figure 14-12).

Figure 14-12

The first utility window is labeled Running Documents. This window displays all instances of Internet
Explorer that are currently running, as well as all the documents that are loaded into each instance. By
clicking on the plus sign next to an icon, you can see not only the HTML file that is loaded, but also all
its associated JavaScript files. You can then bring up the source of any file by double-clicking on it in the
window.

The second utility window is labeled Call Stack and, as you might assume, this displays the call stack up
to the current breakpoint in the code. Double-clicking on an entry in the Call Stack window brings up
the source code for the function.

433

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 433

The last utility window is labeled Command Window and is very similar to the Immediate window in
Visual Studio. Here, you can type in JavaScript commands in the context of the executed code to check
the values of variables. To do this, simply type the variable whose value you want to see followed by a
semicolon. For instance, to get the URL of the window, type:

window.location.href;

When you hit the Enter key, the line of code is evaluated and the value displayed.

Breakpoints and stepping
The Debug toolbar (Figure 14-13) contains all the options you need to step through JavaScript code and
set breakpoints.

Figure 14-13

To set a breakpoint in your code, load the file into Internet Explorer and then open the debugger. Find
the file you want to debug in the Running Documents window and double-click it. Then, go to the line
of code you want to stop on and click the Set Breakpoint button (the white hand) in the toolbar. The line
is then highlighted in yellow, and a yellow arrow is placed in the margin. Then, go back and reload the
page in Internet Explorer and run the command; execution stops at the specified point and the debugger
takes over.

At that point, you can do several things. If you want to step through the code, you can use the Step Into
(which executes the code line by line, stopping after each one), Step Over (which doesn’t follow code
execution into functions), and Step Out (which moves execution outside of the function to the place
where the function was called).

If you want to continue normal execution of the code until the next breakpoint, click the Run button; if
you want to stop debugging altogether, click the Stop Debugging button to prevent any further stoppage
in the code’s execution.

Run and Stop Debugging

Run to Next Breakpoint

Break at Next Statement

Step Over

Set Breakpoint

Step Into

Step Out of

Clear All Breakpoints

434

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 434

Venkman – Mozilla’s debugger
The Mozilla debugger, Venkman (named after the character Peter Venkman of the Ghostbusters movies),
is a free utility for Mozilla-based browsers (including Firefox). To install, open up your Mozilla browser
and go to http://www.hacksrus.com/~ginda/venkman/. At this address, you find a list of all the
Venkman builds. Click the Install link next to the latest version. You are prompted to continue the instal-
lation because Venkman is an unsigned Mozilla plugin. Click Install Now. Restart the browser and you
notice a new entry under the Tools ➪ Web Development menu.

Running
To run Venkman, click Tools ➪ Web Development ➪ JavaScript Debugger to manually open the win-
dow. When you do so, the Venkman window automatically loads all the files containing JavaScript into
the debugger.

You can also use the debugger command in your code. It works with Microsoft’s Script Debugger. Any
time you include the debugger command, the debugger opens up at that line of code and stops execution.

Unlike Internet Explorer, Mozilla never asks you if you’d like to debug an error.

The Window
The Venkman window (Figure 14-14) is much more complicated than the Microsoft Script Debugger, but
also a lot more powerful.

The window is made up of several smaller windows (or views) containing various information about
the scripts you are inspecting. Each view is made up of several common components, as illustrated in
Figure 14-15.

The Microsoft Script Debugger is, ironically enough, buggy. On machines using
Windows 2000 and later, the Script Debugger seems to have problems staying acti-
vated. It’s not uncommon to use the debugger during one Windows session, shut
down the computer, and return only to find that the menu items in Internet Explorer
have disappeared. If this happens, go into Internet Options and click on the
Advanced Tab. Select the check box labeled Disable Script Debugging and click the
Apply button. Then, uncheck the check box and click the OK button. Most of the
time, this re-enables the debugger.

435

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 435

Figure 14-14

Figure 14-15

Dock/Undock CloseTitle

Foreground Pane Background Pane

436

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 436

Each view consists of the following:

❑ A small square in the upper-left corner. Clicking this square causes the view to dock or undock
from the main window. You can also drag this square into another view’s square to combine
views into one tabbed view.

❑ A title for the view

❑ An X in the upper-right corner, used to close the view. (You can always bring the view back by
choosing View ➪ Show/Hide and then the appropriate view.)

❑ A content area, displaying a list or other information about the script

❑ An optional tabset. If more than one view exists in the same area, the debugger adds a tabset to
allow you to switch back and forth between the views.

The entire interface is completely configurable to allow you to rearrange, resize, and otherwise manipu-
late the Venkman window to best suite your needs.

Eight views are available in Venkman, and each is just as powerful as the last:

1. Loaded Scripts — Displays the files that contain JavaScript, whether they are HTML or external
JavaScript files. Each file can then be expanded to show the functions contained within, com-
plete with the function name and the line on which the function begins.

2. Open Windows — Displays all browser windows (and tabs) Mozilla has open. Under each
window is the HTML file that is loaded, and under that is a list of JavaScript files. You can shift
the focus of the debugger to a particular window by right-clicking on a given file and selecting
Set As Evaluation Object.

3. Local Variables — When a breakpoint is encountered, this view fills up with all the variables
available in the scope of the executing code. If a variable contains an object, you can expand the
variable name to see all the object’s properties as well. To change a value of a variable while
stopped at a breakpoint, just double-click the variable name and enter a new value.

4. Watches — Displays a list of watches for the debugger session. Watches work by watching vari-
ables to see when their values change. When a value changes, it’s updated in the Watches view
(Watches will be discussed further later on).

5. Breakpoints — Displays a list of breakpoints registered for the debugger session.

6. Call Stack — When a breakpoint is encountered, this view shows the call stack (the sequence of
function calls that led to the breakpoint).

7. Source Code — Displays the source code for any file containing JavaScript code.

8. Interactive — A traditional-style command line interface to the debugger. In this view, you can
control nearly every part of the debugger with text commands.

The Loaded Scripts pane
By default, the Loaded Scripts pane is displayed in the upper-left corner of the debugger window. It dis-
plays the location of the scripts currently loaded into the debugger. This includes any scripts contained
in HTML pages as well as external JavaScript files.

437

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 437

Under each file (JavaScript or HTML) is a list of functions that exist within that file. In Figure 14-16, the
example using the throw operator is loaded, so you can see the function addTwoNumbers() as well as
the line number that the function begins on within the file. If you double-click on the file (or right-click
and select Find File), the source code of the file is displayed in the Source Code pane. If you double-click
on a function (or right-click and select Find Function), that function becomes highlighted in the source
code pane.

Figure 14-16

For each file in the Loaded Scripts pane, you can determine whether the script contained within it
should be debugged or not. Just right-click on the file and select File Options. A submenu appears
(Figure 14-17) giving you complete control over debugging and profiling (discussed later in the chapter).

Figure 14-17

If you don’t want to debug any code in the file, click Don’t Debug Contained Functions (by default, all
functions are debugged). This menu also allows you to prevent debugging of eval() or timeout code by
selecting Don’t Debug Eval/Timeout.

By default, Venkman tries to show only the files you have loaded into the browser; however, it is capable
of loading all files that the browser loaded behind the scenes in addition to your own. You see all the
loaded browser files by unchecking Exclude Browser Files on the context menu. Also by default, the
pane only shows one instance of each file that is loaded; you can override this by unchecking Exclude
Duplicates on the context menu.

438

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 438

Each function in the Loaded Scripts pane also has a certain level of control. By right-clicking on the func-
tion, a context menu similar to that of the file is presented. Under Function Options, you can click Don’t
Debug to force the debugger to ignore that one function instead of the entire file. This gives you an opti-
mal level of control over the debugging process.

Breakpoints
Among the several ways to set up breakpoints in Venkman, the fastest and easiest way is to double-click
on the file containing the script to debug. When that code shows up in the Source Code view, scroll
down to the line on which you want to set the breakpoint on and click the left margin next to the line
(a dash is next to any line where a breakpoint can be set). You see a B, meaning that a hard breakpoint
has been set, or an F, meaning that the debugger could only set a future breakpoint (see Figure 14-18).
A future breakpoint is created when the script has already been unloaded from memory, but it becomes
a hard breakpoint the next time the script is loaded (if you reload the browser, for example).

Figure 14-18

You can always create a future breakpoint by double-clicking in the left margin instead of single clicking,
but you cannot force a hard breakpoint if, after one click, a future breakpoint is set.

The second way to set a breakpoint or future breakpoint is to use the command-line interface and the
/break command (to set a hard breakpoint) or /fbreak command (to set a future breakpoint). Both
commands take two arguments: the filename to set the breakpoint in and the line number to set the
breakpoint on. For example:

/break ThrowExample.htm 7

This command sets a breakpoint on line 7 in the file matching ThrowExample.htm. For the filename, you
don’t need to type in the full path or even the full filename. Just a few characters are needed to uniquely
identify the file among all the files that are loaded into Venkman. Just the first few letters of the filename
are usually enough:

/break Thr 7

After a breakpoint has been created (using either method), it is stored in the Breakpoints view under the
filename. Hard and future breakpoints are stored separately, so you may see two different entries for the
same file (as in Figure 14-19). Only hard breakpoints can be viewed by function name and line; future
breakpoints are listed only as filename and line number.

439

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 439

Figure 14-19

You also have many options to clear a breakpoint. First, you can click on the B or F in the left margin
until it turns back to a dash. You can also right-click on the Breakpoints view to call up a context menu
where you can select whether to clear a hard breakpoint, a future breakpoint, all hard breakpoints, or all
future breakpoints.

The last method is to use the command line interface again and use the /clear command (to clear hard
breakpoints) or the /fclear command (to clear future breakpoints). These commands accept the same
arguments as /break and /fbreak: the filename and the line number to clear. Once again, the full file-
name isn’t necessary, so the following two lines accomplish the same thing:

/clear ThrowExample.htm 7
/clear Thr 7

You can clear all hard breakpoints using the /clear-all command and all future breakpoints using the
/fclear-all command.

Stepping through the code
As with breakpoints, you have numerous ways to step through your source code. The simplest way is to
use the debug toolbar (Figure 14-20), which is prominently displayed at the top of the Venkman window.

Figure 14-20

The debug toolbar is made up of five buttons: Stop, Continue, Step Over, Step Into, and Step Out. The
Stop button stops the currently active script without executing any further lines of code. If no code is
being executed, three white dots appear over the Stop button to indicate that the debugger is not currently

When you clear a hard breakpoint, it automatically becomes a future breakpoint.
That means you must first clear all hard breakpoints and then all future breakpoints
to effectively eliminate all breakpoints.

440

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 440

running any code. The Continue button resumes executing the script and continues until the natural end
of the script or a breakpoint is encountered. The last three buttons are standard Step Over, Step Into, and
Step Out commands.

All these actions can also be performed in the Interactive view by using the commands in the following
table.

Debug Button Text Command

Stop /stop

Continue /cont

Step Over /next

Step Into /step

Step Out /finish

When code execution is stopped on a particular line, that line is highlighted in yellow in the Source
Code view. Additionally, the function containing that line is displayed with a yellow arrow in the Call
Stack view (Figure 14-21).

Figure 14-21

The Call Stack view always has a generic __toplevel__ item to represent the global scope from which
the first function was called.

Watches
One of the unique features of Venkman is its capability to set up variable watches. Watches literally
watch variables for changes in their values and display them in the Watches view.

To add watches, you can select a variable in the Local Variables view, right-click, and select Add Watch
Expression. You can also use the /watch-expr command in the Interactive view to do the same thing:

/watch-expr variable_name

441

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 441

Adding a watch adds a variable into the Watches view. The Watches view behaves in the exact same way
as the Local Variables view, displaying the value of each variable when available and enumerating all
properties of each object.

Profiling
One of the unique features of Venkman is its profiling capability. If you turn on profiling, Venkman
begins keeping track of each function, how many times it’s called, and how long each call takes.

You can turn profiling on and off by clicking the Profile button on the toolbar. A green checkmark
appears on the Profile button when Venkman is profiling; no checkmark appears when it is not profiling.
After Venkman is in profiling mode, run your script. When you are satisfied with your tests, select
Profile ➪ Save Profile Data As. You are presented with a Save File dialog where you can save the profile
data to view later.

By default, the dialog suggests you save the file in HTML format. This is a bug; you should save the file
as plain text.

When you profile your script, each function gets a section in the file that looks like this:

<file:/C:/Chapter%2014/Examples/ThrowExample.htm>

ThrowExample.htm: 1000 - 5000 milliseconds

Function Name: addTwoNumbers (Lines 5 - 10)
Total Calls: 1 (max recurse 0)
Total Time: 4696.75 (min/max/avg 4696.75/4696.75/4696.75)

Each section begins with the location of the file containing the function and is followed by each function
contained in the file. Each function is displayed with the following:

❑ The lines it appears on

❑ The total number of calls to the function and the maximum recursion level reached (identified
by max recurse)

❑ The total amount of time (in milliseconds) it took to run the function along with the minimum
time for a call, the maximum time for a call, and the average time for a call

This information is incredibly useful for detecting bottlenecks in your code.

Unfortunately, the profile data includes data about the browser and debugger itself, so you need to read
through it all to get to the information you want.

Watches in Venkman are tied to variable names, not directly to variables, so if you
have two variables with the same name in different scopes, both of their values are
displayed in the Watches view when appropriate.

442

Chapter 14

17_579088 ch14.qxd 3/28/05 11:41 AM Page 442

You can also determine which functions are profiled. To set an entire file so that it won’t be profiled,
right-click on the file in the Loaded Scripts view and select File Options ➪ Don’t Profile Contained
Functions. If you want to disable profiling for a single function, right-click on the function in the Loaded
Scripts view and select Function Options ➪ Don’t Profile.

Summary
This chapter introduced the many aspects of errors and error handling in JavaScript. The onerror event
handler was covered, including the creation of your own error-message windows. You also learned how
to use the try...catch statement to trap errors in progress. An in-depth discussion of the Error object
followed, introducing you to how you can throw your own JavaScript errors.

Next, several debugging techniques were discussed, ranging from using alerts and Java console messages
to throwing your own errors. You also learned how to create your own assert() function to make throw-
ing your own errors easier.

Finally, you were introduced to the JavaScript debuggers for Internet Explorer and Mozilla. You learned
how to download, install, and run each debugger in its browser, as well as how to use the debugger to
set breakpoints and step through code.

443

Error Handling

17_579088 ch14.qxd 3/28/05 11:41 AM Page 443

17_579088 ch14.qxd 3/28/05 11:41 AM Page 444

XML in JavaScript

With the rising popularity of XML, JavaScript developers were clamoring for a way to make use
of it in client-side Web development. When the fourth-generation browsers were released, many
developers began writing their own objects for the manipulation of XML using JavaScript. Hearing
the call, some browser developers boldly pushed toward adding support for XML and XML-
related language on the client side.

XML DOM Support in Browsers
Even though XML and the DOM have become an important part of Web development, there are
still only two browsers that support client-side XML manipulation. Not surprisingly, they are the
two most popular browsers in the world: Internet Explorer and Mozilla.

XML DOM support in IE
When looking to add XML support to Internet Explorer, Microsoft looked outside of JavaScript to
their ActiveX-based library called MSXML. MSXML was developed to provide developers with
the first DOM implementation for Windows. As an ActiveX control, MSXML could be used in con-
junction with Visual Basic, C++, and other Windows-based development environments. It made
sense to use what the company was already offering as the basis for client-side XML support.

To create an ActiveX object using JavaScript, Microsoft introduced a class called ActiveXObject.
The constructor for ActiveXObject takes one argument, which is the string identifying the
ActiveX object to instantiate. For example, the first version of the XML DOM object was called
Microsoft.XmlDom. To create a new instance of this object, you would do this:

var oXmlDom = new ActiveXObject(“Microsoft.XmlDom”);

18_579088 ch15.qxd 3/28/05 11:42 AM Page 445

After this line is executed, the oXmlDom object behaves like any other DOM Document, complete with all
the properties and methods discussed earlier in the book.

When developers first started using this method of XML manipulation, it was problematic because the
user often did not have MSXML installed. Most of the time, developers had to download the library
from Microsoft directly. However, Internet Explorer 5.0 fixed this problem by shipping with MSXML,
thus ensuring anyone using IE 5.0 or higher could make use of this functionality.

DOM creation
With each new version of MSXML, a new version of the XML DOM object was created, each with its
own unique name. The most recent and final version of MSXML is 5.0, meaning that the following XML
DOM implementations now exist:

❑ Microsoft.XmlDom (original)

❑ MSXML2.DOMDocument

❑ MSXML2.DOMDocument.3.0

❑ MSXML2.DOMDocument.4.0

❑ MSXML2.DOMDocument.5.0

Naturally, you want the most recent version of the XML DOM whenever possible because of improve-
ments in speed and enhanced support for features such as validation. However, if you try to create an
ActiveX object that doesn’t exist on the client machine, IE throws an error and stops all processing. So,
to be sure you are using the correct version of the XML DOM and to avoid any unsightly errors, create a
function that tries each XML DOM string and captures any errors that occur:

function createXMLDOM() {

var arrSignatures = [“MSXML2.DOMDocument.5.0”, “MSXML2.DOMDocument.4.0”,
“MSXML2.DOMDocument.3.0”, “MSXML2.DOMDocument”,
“Microsoft.XmlDom”];

for (var i=0; i < arrSignatures.length; i++) {
try {

var oXmlDom = new ActiveXObject(arrSignatures[i]);

return oXmlDom;

} catch (oError) {
//ignore

}
}

throw new Error(“MSXML is not installed on your system.”);
}

This function contains an array of all the possible XML DOM strings, called arrSignatures, sorted in
descending order from most recent to least recent. The for loop tries to create an XML DOM object by

446

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 446

using the string in position i and assigned it to the variable oXmlDom. If that version of the XML DOM
isn’t present on the user’s machine, it causes an error, which is caught by the try...catch statement and
ignored. When that error occurs, the line return oXmlDom is completely skipped, and the for loop starts
again. Only if the XML DOM object is successfully created is it returned as the function value. If, on the
other hand, each version of the XML DOM is tested and no version is available, the function throws its
own error telling the user that MSXML isn’t installed on the system and processing cannot continue.

By using this function, you can be sure that the XML DOM version you are using is the most recent:

var oXmlDom = createXMLDOM();

Loading XML
Now that you have an XML DOM object, you load some XML into it. Microsoft’s XML DOM comes with
two methods for loading XML: loadXML() and load().

The loadXML() method enables you to enter an XML string directly into the XML DOM:

oXmlDom.loadXML(“<root><child/></root>”);

The load() method is used to load an XML file from the server. Rather, the load() method can load an
XML file stored on the same server as the page that contains the JavaScript, meaning that you can’t load
XML from someone else’s server.

There are two modes of loading a file: synchronous and asynchronous. When you load a file in syn-
chronous mode, the JavaScript code waits for the file to be fully loaded before executing the next line of
code; a file loaded in asynchronous mode won’t wait, so you need to use an event handler to determine
when the file has been fully loaded.

By default, files are loaded asynchronously. To set files to load synchronously, just set the async prop-
erty to false:

oXmlDom.async = false;

You can then use the load() method by passing in the name of the file to load:

oXmlDom.load(“test.xml”);

After this line executes, oXmlDom contains a DOM Document representing the XML file, so you can use
all the DOM properties and methods:

alert(“Tag name of the root element is “ + oXmlDom.documentElement.tagName);
alert(“The root element has this many children: “ +

oXmlDom.documentElement.childNodes.length);

The code to create an XML DOM in Internet Explorer causes an error in any other
browser. Therefore, you must do a browser detect before attempting to create the
XML DOM in this way.

447

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 447

To load the file asynchronously, use the readyState property and the onreadystatechange event
handler.

The readyState property has five possible values:

❑ 0 — The DOM hasn’t been initialized with any information.

❑ 1 — The DOM is loading data.

❑ 2 — The DOM has completed loading the data.

❑ 3 — The DOM may be used although some sections may not be available.

❑ 4 — The DOM is completely loaded and ready to be used.

Whenever the readyState property changes from one value to another, the readystatechange event
is fired. If you use the onreadystatechange event handler, you are notified when the DOM has been
fully loaded:

oXmlDom.onreadystatechange = function () {
if (oXmlDom.readyState == 4) {

alert(“Done”);
}

};

You must assign the onreadystatechange event handler before you call the load() method, as shown
in the following:

oXmlDom.onreadystatechange = function () {
if (oXmlDom.readyState == 4) {

alert(“Done”);
}

};

oXmlDom.load(“test.xml”);

Now when the file is completely loaded, you see the alert Done.

Whether you choose to load files synchronously or asynchronously, the load() method can be used
with a partial, relative, or full path to the XML file, such as in the following:

oXmlDom.load(“test.xml”);
oXmlDom.load(“../test.xml”);
oXmlDom.load(“http://www.mydomain.com/test.xml”);

The partial and relative paths are always calculated from the page using the XML DOM object, just as a
link or image would be.

You may note that the event handler code uses oXmlDom instead of the this keyword.
This is a peculiarity of ActiveX objects in JavaScript: The this keyword doesn’t
always work as expected. To avoid any problems, it’s best to use the full variable
name in the event handler.

448

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 448

Retrieving XML
After you’ve gotten XML into a DOM, it’s logical to assume you must be able to get that XML back out.
Microsoft made this easy by adding an xml property for every node, including a document node, which
returns its representative XML code as a string. So to retrieve the XML that you just loaded is simple:

oXmlDom.load(“test.xml”);
alert(oXmlDom.xml);

You can also retrieve the XML for a particular node:

var oNode = oXmlDom.documentElements.childNodes[1];
alert(oNode.xml);

The xml property is read-only and causes an error if you try to assign a value to it.

Parsing errors
When you try to load XML into an XML DOM object, whether by using loadXML() or load(), there’s
the possibility that the XML isn’t well-formed. To provide for this, the Microsoft XML DOM has a prop-
erty called parseError that contains all the information about any errors encountered while parsing
XML code.

The parseError property is actually an object with the following properties:

❑ errorCode — Numeric code indicating the type of error that occurred (0 when there’s no error)

❑ filePos — Position within the file where the error occurred

❑ line — The line on which the error occurred

❑ linepos – The character on the line where the error occurred

❑ reason — A plain text explanation of the error

❑ srcText — The code that caused the error

❑ url — The URL of the file that caused the error (if available)

When the parseError property is used by itself, it returns the value of errorCode, meaning that you
can check for errors by doing this:

if (oXmlDom.parseError != 0) {
//there were errors, do something about it here

}

Always check that the error code is not equal to 0, rather than if it’s greater than or less than 0, because
error codes can be either positive or negative.

You can use the parseError object to create your own error dialogs:

if (oXmlDom.parseError != 0) {
var oError = oXmlDom.parseError;

alert(“An error occurred:\nError Code: “

449

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 449

+ oError.errorCode + “\n”
+ “Line: “ + oError.line + “\n”
+ “Line Pos: “ + oError.linepos + “\n”
+ “Reason: “ + oError.reason);

}

Another option is to throw your own errors:

if (oXmlDom.parseError != 0) {
var oError = oXmlDom.parseError;

throw new Error(oError.reason + “ (at line “ + oError.line
+ “, position “ + oError.linepos + “)”);

}

Regardless of how you end up representing errors, it’s always best to check the XML DOM for errors
immediately after it’s loaded.

XML DOM support in Mozilla
As with many other things, Mozilla supports a more standard version of the XML DOM than Internet
Explorer. The XML DOM in Mozilla is actually part of its JavaScript implementation, meaning that it
not only evolves with the browser, but it is also readily available on all platforms that Mozilla supports.
Unlike Internet Explorer, which has no XML DOM support on the Macintosh or Unix, Mozilla’s support
crosses all platform boundaries. Additionally, Mozilla’s XML DOM implementation supports DOM
Level 2 functionality, unlike Microsoft’s, which supports only DOM Level 1.

DOM creation
The DOM standard specifies that a method called createDocument() be available as part of the docu-
ment.implementation object. Mozilla follows this specification exactly, enabling you to create an XML
DOM like this:

var oXmlDom = document.implementation.createDocument(“”,””, null);

The three arguments for createDocument() are the namespace URL for the document, the tag name for
the document element, and a document type object (always null, because no support exists for the doc-
ument type object in Mozilla). The previous line of code creates an empty XML DOM. To create an XML
DOM with a document element, just specify the tag name as the second argument:

var oXmlDom = document.implementation.createDocument(“”,”root”, null);

The MSXML ActiveX controls are available only on Windows; therefore, Internet
Explorer on the Macintosh cannot make use of this functionality. Windows XP
Service Pack 2 introduces new security restrictions on many ActiveX controls, but
MSXML is not one of them (all controls in MSXML are considered to be secure).

450

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 450

This line of code creates an XML DOM that represents the XML code <root/>. If you specify a names-
pace URL in the first argument, you can further define the document element:

var oXmlDom = document.implementation.createDocument(“http://www.wrox.com”,
“root”, null);

This line of code creates an XML DOM representing <a0:root xmlns:a0=”http://www.wrox.com”
/>. Mozilla automatically creates a namespace named a0 to represent the URL you entered for the
namespace.

Loading XML
Unlike Microsoft’s XML DOM, Mozilla’s only supports one method for loading data: load(). The
load() method in Mozilla works exactly the same as the load() method in Internet Explorer. All you
need is to specify the XML file to load and whether to load it synchronously or asynchronously (default).

To load the XML file synchronously, the code is essentially the same as in IE:

oXmlDom.async = false;
oXmlDom.load(“test.xml”);

If you want to load a file asynchronously, things are a little bit different.

Mozilla doesn’t support Microsoft’s readyState property on the XML DOM (indeed, readyState isn’t
part of the DOM Level 3 Load and Save specification upon which Mozilla’s implementation is based).
Instead, Mozilla’s XML DOM fires a load event when the file has been fully loaded, meaning that you
must use the onload event handler to determine when DOM is ready:

oXmlDom.onload = function () {
alert(“Done”);

};

oXmlDom.load(“test.xml”);

Unfortunately, Mozilla’s XML DOM doesn’t support the loadXML() method. To parse an XML string
into a DOM, you must use the DOMParser object:

var oParser = new DOMParser();
var oXmlDom = oParser.parseFromString(“<root/>”, “text/xml”);

This code creates an XML DOM that represents <root/>. The DOMParser object is created in the first line,
and the second line uses its only method, parseFromString(), to create the XML DOM. This method
accepts two arguments, the XML string to parse and the content type of the string. To parse XML code, the
content type can be “text/xml” or “application/xml”; any other content type is ignored (although it
is possible to parse XHTML code using the content type “application/xhtml+xml”).

Prior to version 1.4, Mozilla only supported asynchronous loading of external files.
In 1.4, Mozilla introduced the async property and the capability to load files
synchronously.

451

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 451

Because the XML DOM is part of Mozilla’s JavaScript implementation, it is possible to add a loadXML()
method. The actual class for the XML DOM is called Document, so adding a new method is as easy as
using the prototype object:

Document.prototype.loadXML = function (sXml) {
//function body

};

Then, use the DOMParser to create a new XML DOM:

Document.prototype.loadXML = function (sXml) {

var oParser = new DOMParser();
var oXmlDom = oParser.parseFromString(sXml, “text/xml”);

//...

};

Next, the original document must be emptied of its contents. You can do this by using a while loop and
removing all the document’s child nodes:

Document.prototype.loadXML = function (sXml) {

var oParser = new DOMParser();
var oXmlDom = oParser.parseFromString(sXml, “text/xml”);

while (this.firstChild) {
this.removeChild(this.firstChild);

}

//...

};

Remember, because this function is a method, the this keyword refers to the XML DOM object. After all
the children have been removed, all the children of oXmlDom must be imported into the document (using
importNode()) and added as children (using appendChild()):

Document.prototype.loadXML = function (sXml) {

var oParser = new DOMParser();
var oXmlDom = oParser.parseFromString(sXml, “text/xml”);

while (this.firstChild) {
this.removeChild(this.firstChild);

}

for (var i=0; i < oXmlDom.childNodes.length; i++) {
var oNewNode = this.importNode(oXmlDom.childNodes[i], true);
this.appendChild(oNewNode);

}

};

452

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 452

As long as you include this code, you can use the loadXML() method in Mozilla the same way as in IE.

Retrieving XML
Remember that Microsoft’s XML DOM provides an xml property that allows easy access to the underly-
ing XML code. Because this property is not part of the standard, Mozilla doesn’t support it. Instead,
Mozilla has the XMLSerializer object, which is used for the same purpose:

var oSerializer = new XMLSerializer();
var sXml = oSerializer.serializeToString(oXmlDom, “text/xml”);

This simple code snippet creates the XML code for oXmlDom by using the XMLSerializer’s only
method: serializeToString(). The serializeToString() method accepts the node to serialize and
the content type as arguments. Once again, the content type can be “text/xml” or “application/xml”.
Using this object, it’s possible to synthesize the xml property for Mozilla using a little-known method
called defineGetter().

The defineGetter() method exists only in Mozilla and is used to define a getter function for a property,
meaning that when the property is accessed in read mode, this function is called and the return value is
assigned to the property. For example:

var sValue = oXmlNode.nodeValue; //read mode
oXmlNode.nodeValue = “New value”; //write mode

The first line of code uses the nodeValue property in read mode, meaning that the interpreter is reading
the value from the property. If a getter function is defined, it is run and its value returned. The second
line of code uses nodeValue in write mode, meaning that a value is being assigned to it. If a setter func-
tion is defined (the opposite of a getter function), then it is called with New value as an argument. Yes,
there is also a defineSetter() method, but it’s unnecessary here.

This method, defineGetter(), is hidden by using the JavaScript standard for private properties and
methods — using double underscores before and after the name:

oObject.__defineGetter__(“propertyName”, function() { return “propertyValue”; });

As you can see, defineGetter() takes two arguments: the name of the property and the function to
call. Whatever you specify as the property name cannot be used as a regular property. For example, you
should never do this:

oObject.propertyName = “blue”;
oObject.__defineGetter__(“propertyName”, function() { return “propertyValue”; });

Typically getter and setter functions are defined in pairs, although you can effectively create a read-only
property by assigning just a getter. This is way to create the xml property.

This code will cause an error in IE, where no Document object exists. To prevent this,
use a browser detect around the code.

453

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 453

Because the xml property needs to be available on every type of node in a document, it’s best to add it to
the Node class itself (remember, all other node types inherit from Node):

Node.prototype.__defineGetter__(“xml”, function () {
var oSerializer = new XMLSerializer();
return oSerializer.serializeToString(this, “text/xml”);

});

The function assigned to the xml property is very simple, and the only change from the earlier example
is that this is the first argument for the serializeToString() method (remember, in this context
this refers to the node). If you include this code in a page, it’s possible to use this custom xml property
in the same manner as Microsoft’s xml property:

oXmlDom.load(“test.xml”);
alert(oXmlDom.xml);

var oNode = oXmlDom.documentElements.childNodes[1];
alert(oNode.xml);

Parsing errors
When an error occurs in the parsing of an XML file, the XML DOM creates a document explaining the
error. Suppose you ran the following code:

var oParser = new DOMParser()
var oXmlDom = oParser.parseFromString(“<root><child></root>”);

Although no error is thrown, oXmlDom shows you the error. In this case, it presents this code:

<parsererror xmlns=”http://www.mozilla.org/newlayout/xml/parsererror.xml”>
XML Parsing Error: not well-formed
Location: file://c:/Chapter 15/examples/MozillaXmlDomExample.htm
Line Number 5, Column 1:<sourcetext><root><child></root>
--------------^</sourcetext>
</parsererror>

So to determine if there’s an error in the parsing of XML code, you must test the tag name of the docu-
ment element:

if (oXmlDom.documentElement.tagName != “parsererror”) {
//continue on, no errors

} else {
//do something else, there was an error

}

This code must also be surrounded by a browser detect because it only works in
Mozilla.

454

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 454

Unfortunately, the only way to get specific error information is to parse the error message text. The easi-
est way to do this is to use a regular expression:

var reError = />([\s\S]*?)Location:([\s\S]*?)Line Number (\d+), Column
(\d+):<sourcetext>([\s\S]*?)(?:\-*\^)/;

This rather long regular expression pulls all the relevant information out of the XML code. The first captur-
ing group retrieves the error message, the second retrieves the filename, the third retrieves the line number,
the fourth retrieves the column number, and the fifth retrieves the source code that caused the error (with-
out the trailing dashes and caret). To use this to create an error message, just use the test() method:

var reError = />([\s\S]*?)Location:([\s\S]*?)Line Number (\d+), Column
(\d+):<sourcetext>([\s\S]*?)(?:\-*\^)/;

if (oXmlDom.documentElement.tagName == “parsererror”) {
reError.test(oXmlDom.xml);
alert(“An error occurred:\nDescription: “

+ RegExp.$1 + “\n”
+ “File: “ + RegExp.$2 + “\n”
+ “Line: “ + RegExp.$3 + “\n”
+ “Line Pos: “ + RegExp.$4 + “\n”
+ “Source: “ + RegExp.$5);

}

Making interfaces play together
Developing with the XML DOM is only useful if you have a cross-browser solution. As you can see, the
IE and Mozilla implementations differ enough to cause significant problems for you when you are
developing. The only solution is to come up with a common way to use the XML DOM that works in
both browsers.

Modifying DOM creation
The first step is to create a common way for IE and Mozilla to create an XML DOM object. The easiest
way to do this is to create a pseudo-class that enables you to create an XML DOM like this:

var oXmlDom = new XmlDom();

Of course, to make this work, you need browser detection going on inside the constructor for XmlDom:

function XmlDom() {
if (window.ActiveXObject) {

//IE-specific code
} else if (document.implementation && document.implementation.createDocument) {

//DOM-specific code
} else {

throw new Error(“Your browser doesn’t support an XML DOM object.”);
}

}

455

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 455

This code uses object/feature detection to determine which way to go. Because Internet Explorer on
Windows is the only browser that supports the ActiveXObject class, that is a fair way to test for IE. The
second test is a generic one determining if the browser supports the DOM standard createDocument()
method. Even though Mozilla is the only browser that currently supports this, it’s conceivable that other
browsers may adopt this functionality in the future, so testing in this way makes the code future-proof. If
neither statement evaluates to true, then the constructor throws an error indicating no XML DOM object
is available.

The IE branch
For the IE section of the constructor, just insert the code from the createXMLDOM() function earlier in
the chapter:

function XmlDom() {
if (window.ActiveXObject) {

var arrSignatures = [“MSXML2.DOMDocument.5.0”, “MSXML2.DOMDocument.4.0”,
“MSXML2.DOMDocument.3.0”, “MSXML2.DOMDocument”,
“Microsoft.XmlDom”];

for (var i=0; i < arrSignatures.length; i++) {
try {

var oXmlDom = new ActiveXObject(arrSignatures[i]);

return oXmlDom;

} catch (oError) {
//ignore

}
}

throw new Error(“MSXML is not installed on your system.”);

} else if (document.implementation && document.implementation.createDocument) {
//DOM-specific code

} else {
throw new Error(“Your browser doesn’t support an XML DOM object.”);

}
}

That’s all you do for this to work in IE. The more complicated part has to do with Mozilla.

The Mozilla branch
The first step in the Mozilla branch is to create the XML DOM object using createDocument():

function XmlDom() {
if (window.ActiveXObject) {

var arrSignatures = [“MSXML2.DOMDocument.5.0”, “MSXML2.DOMDocument.4.0”,
“MSXML2.DOMDocument.3.0”, “MSXML2.DOMDocument”,
“Microsoft.XmlDom”];

for (var i=0; i < arrSignatures.length; i++) {

456

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 456

try {

var oXmlDom = new ActiveXObject(arrSignatures[i]);

return oXmlDom;

} catch (oError) {
//ignore

}
}

throw new Error(“MSXML is not installed on your system.”);

} else if (document.implementation && document.implementation.createDocument) {

var oXmlDom = document.implementation.createDocument(“”,””,null);
return oXmlDom;

} else {
throw new Error(“Your browser doesn’t support an XML DOM object.”);

}
}

The next task is to make Mozilla support the readyState property and the onreadystatechange
event handler. This requires you to make some additional changes to the Document class.

First, add a readyState property and initialize it to 0.

Document.prototype.readyState = 0;

Next, create an onreadystatechange property and assign it the value of null:

Document.prototype.onreadystatechange = null;

Whenever the readyState property changes, the onreadystatechange function must be called. To
facilitate this, it’s best to create a method:

Document.prototype.__changeReadyState__ = function (iReadyState) {
this.readyState = iReadyState;

if (typeof this.onreadystatechange == “function”) {
this.onreadystatechange();

}
};

This method takes the new ready state as an argument and assigns it to the readyState property. Be
sure you check that onreadystatechange is actually a function before calling it (otherwise, this causes
an error). Because this method shouldn’t be called outside of the Document object, it uses the JavaScript
notation for a private method (leading and trailing double underscores).

Internet Explorer’s XML DOM supports five ready states, but there is no way to mimic all of them for
Mozilla. Really, the only important value for readyState is 4, which indicates that the XML DOM is

457

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 457

completely loaded and ready for use. This value is easy to mimic by assigning an onload event handler.
It’s also easy to simulate readyState 1, which indicates that the XML DOM has just started loading.
The other ready states aren’t as important and even more difficult — if not impossible — to simulate.

The two methods that affect the readyState property are loadXML() and load(). The loadXML()
method is easy to update because it’s your creation. Just add two lines of code:

Document.prototype.loadXML = function (sXml) {

this.__changeReadyState__(1);

var oParser = new DOMParser();
var oXmlDom = oParser.parseFromString(sXml, “text/xml”);

while (this.firstChild) {
this.removeChild(this.firstChild);

}

for (var i=0; i < oXmlDom.childNodes.length; i++) {
var oNewNode = this.importNode(oXmlDom.childNodes[i], true);
this.appendChild(oNewNode);

}

this.__changeReadyState__(4);
};

The updated loadXML() method sets the readyState to 1 at the beginning and 4 at the end.

To update the load() method, start by creating a pointer to the original load method:

Document.prototype.__load__ = Document.prototype.load;

Next, define a new load() method that sets the readyState property to 1 and then calls the original
load() method:

Document.prototype.load = function (sURL) {
this.__changeReadyState__(1);
this.__load__(sURL);

};

In order to set the readyState property to 4 at the right time, use the onload event handler. Because
you can only assign an event handler after the XML DOM object has been instantiated, this must take
place back in the XmlDom constructor:

function XmlDom() {
if (window.ActiveXObject) {

var arrSignatures = [“MSXML2.DOMDocument.5.0”, “MSXML2.DOMDocument.4.0”,
“MSXML2.DOMDocument.3.0”, “MSXML2.DOMDocument”,
“Microsoft.XmlDom”];

for (var i=0; i < arrSignatures.length; i++) {
try {

458

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 458

var oXmlDom = new ActiveXObject(arrSignatures[i]);

return oXmlDom;

} catch (oError) {
//ignore

}
}

throw new Error(“MSXML is not installed on your system.”);

} else if (document.implementation && document.implementation.createDocument) {

var oXmlDom = document.implementation.createDocument(“”,””,null);

oXmlDom.addEventListener(“load”, function () {
this.__changeReadyState__(4);

}, false);

return oXmlDom;

} else {
throw new Error(“Your browser doesn’t support an XML DOM object.”);

}
}

Now the Mozilla XML DOM properly supports the readyState property (for values of 0, 1, and 4), the
onreadystatechange event handler, the loadXML() method, and the xml property. The following
example works in both IE and Mozilla:

var oXmlDom = new XmlDom();
oXmlDom.onreadystatechange = function () {

if (oXmlDom.readyState == 4) {
alert(oXmlDom.xml);

}
};

oXmlDom.load(“test.xml”);

The main difference between the two is how the two XML DOMs handle errors. But this can be remedied.

Error handling
The last step is to create a parseError object for Mozilla. Once again, it’s not possible to provide every
IE property, but you have enough information in the Mozilla parser error XML to mimic most of them.

To begin, this object must be created in the XmlDom constructor with all its initial values set:

function XmlDom() {
if (window.ActiveXObject) {

var arrSignatures = [“MSXML2.DOMDocument.5.0”, “MSXML2.DOMDocument.4.0”,
“MSXML2.DOMDocument.3.0”, “MSXML2.DOMDocument”,
“Microsoft.XmlDom”];

459

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 459

for (var i=0; i < arrSignatures.length; i++) {
try {

var oXmlDom = new ActiveXObject(arrSignatures[i]);

return oXmlDom;

} catch (oError) {
//ignore

}
}

throw new Error(“MSXML is not installed on your system.”);

} else if (document.implementation && document.implementation.createDocument) {

var oXmlDom = document.implementation.createDocument(“”,””,null);

oXmlDom.parseError = {
valueOf: function () { return this.errorCode; },
toString: function () { return this.errorCode.toString() }

};

oXmlDom.__initError__();

oXmlDom.addEventListener(“load”, function () {
this.__changeReadyState__(4);

}, false);

return oXmlDom;

} else {
throw new Error(“Your browser doesn’t support an XML DOM object.”);

}
}

This code uses object literal notation to create the parseError object in order to save space. The valueOf()
method is defined to return the errorCode property, which is the same as IE’s implementation; the
toString() method also returns the errorCode property, but as a string primitive. The initError()
method initializes all the parseError object’s properties. Here’s the code:

Document.prototype.__initError__ = function () {
this.parseError.errorCode = 0;
this.parseError.filepos = -1;
this.parseError.line = -1;
this.parseError.linepos = -1;
this.parseError.reason = null;
this.parseError.srcText = null;
this.parseError.url = null;

};

The next step is to check for a parsing error. This must be done in both the load() and loadXML() meth-
ods because a parsing error can occur in either one. Because it’s bad coding practice to have the same code
in two places, it’s best to create a new method to handle parsing errors:

460

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 460

Document.prototype.__checkForErrors__ = function () {

if (this.documentElement.tagName == “parsererror”) {

var reError = />([\s\S]*?)Location:([\s\S]*?)Line Number (\d+), Column
(\d+):<sourcetext>([\s\S]*?)(?:\-*\^)/;

reError.test(this.xml);

this.parseError.errorCode = -999999;
this.parseError.reason = RegExp.$1;
this.parseError.url = RegExp.$2;
this.parseError.line = parseInt(RegExp.$3);
this.parseError.linepos = parseInt(RegExp.$4);
this.parseError.srcText = RegExp.$5;

}
};

Note that the errorCode is set to –999999 no matter what error occurs. Trying to map all of Microsoft’s
error codes would be a tedious and unnecessary task. Most of the time, you just check to see if parseError
is anything other than 0, not necessarily a particular number.

Next, the load() and loadXML() methods must be updated to use initError() (to clear all error val-
ues before parsing begins) and checkForErrors() (to check for any parsing errors when the parsing
has completed):

function XmlDom() {
if (window.ActiveXObject) {

var arrSignatures = [“MSXML2.DOMDocument.5.0”, “MSXML2.DOMDocument.4.0”,
“MSXML2.DOMDocument.3.0”, “MSXML2.DOMDocument”,
“Microsoft.XmlDom”];

for (var i=0; i < arrSignatures.length; i++) {
try {

var oXmlDom = new ActiveXObject(arrSignatures[i]);

return oXmlDom;

} catch (oError) {
//ignore

}
}

throw new Error(“MSXML is not installed on your system.”);

} else if (document.implementation && document.implementation.createDocument) {

var oXmlDom = document.implementation.createDocument(“”,””,null);

oXmlDom.parseError = {
valueOf: function () { return this.errorCode; },

461

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 461

toString: function () { return this.errorCode.toString() }
};

oXmlDom.__initError__();

oXmlDom.addEventListener(“load”, function () {
this.__initError__();
this.__changeReadyState__(4);

}, false);

return oXmlDom;

} else {
throw new Error(“Your browser doesn’t support an XML DOM object.”);

}
}

Document.prototype.load = function (sURL) {
this.__initError__();
this.__changeReadyState__(1);
this.__load__(sURL);

};

Document.prototype.loadXML = function (sXml) {

this.__initError__();
this.__changeReadyState__(1);

var oParser = new DOMParser();
var oXmlDom = oParser.parseFromString(sXml, “text/xml”);

while (this.firstChild) {
this.removeChild(this.firstChild);

}

for (var i=0; i < oXmlDom.childNodes.length; i++) {
var oNewNode = this.importNode(oXmlDom.childNodes[i], true);
this.appendChild(oNewNode);

}

this.__checkForErrors__();
this.__changeReadyState__(4);

};

Notice that initError() is always called before the readyState is set to 1. Likewise, checkForErrors()
is always called just before readyState is set to 4 (which is why it must be called in the onload event
handler). These methods must called in order because onreadystatechange is called each time the
readyState changes. If there is old data in the parseError object, it must be reset before onreadystate-
change is called, otherwise the old data could cause confusion. Along the same lines, the parseError
object must contain the right data after readyState changes to 4 because all processing should be done
by then.

462

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 462

With this code added, it’s now possible to write one set of code that runs in both Internet Explorer and
Mozilla to handle parsing errors:

var oXmlDom = new XmlDom();
oXmlDom.onreadystatechange = function () {

if (oXmlDom.readyState == 4) {

if (oXmlDom.parseError != 0) {
var oError = oXmlDom.parseError;
alert(“An error occurred:\nError Code: “

+ oError.errorCode + “\n”
+ “Line: “ + oError.line + “\n”
+ “Line Pos: “ + oError.linepos + “\n”
+ “Reason: “ + oError.reason);

}
}

};

oXmlDom.load(“errors.xml”);

This example loads an XML file with errors in it. When the readyState property is set to 4 (the file is
loaded and parsed), the value of parseError is checked to see if it isn’t equal to zero (which indicates
an error). If an error has occurred, an alert is displayed with the error code, line number, line position
(column number), and reason for the error.

The complete code
In this chapter, I jumped around a lot as I developed the code. Here’s a look at the complete code (note
that it makes use of the browser detection code created earlier in the book):

function XmlDom() {
if (window.ActiveXObject) {

var arrSignatures = [“MSXML2.DOMDocument.5.0”, “MSXML2.DOMDocument.4.0”,
“MSXML2.DOMDocument.3.0”, “MSXML2.DOMDocument”,
“Microsoft.XmlDom”];

for (var i=0; i < arrSignatures.length; i++) {
try {

var oXmlDom = new ActiveXObject(arrSignatures[i]);

return oXmlDom;

} catch (oError) {
//ignore

}
}

throw new Error(“MSXML is not installed on your system.”);

} else if (document.implementation && document.implementation.createDocument) {

463

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 463

var oXmlDom = document.implementation.createDocument(“”,””,null);

oXmlDom.parseError = {
valueOf: function () { return this.errorCode; },
toString: function () { return this.errorCode.toString() }

};

oXmlDom.__initError__();

oXmlDom.addEventListener(“load”, function () {
this.__checkForErrors__();
this.__changeReadyState__(4);

}, false);

return oXmlDom;

} else {
throw new Error(“Your browser doesn’t support an XML DOM object.”);

}
}

if (isMoz) {

Document.prototype.readyState = 0;
Document.prototype.onreadystatechange = null;

Document.prototype.__changeReadyState__ = function (iReadyState) {
this.readyState = iReadyState;

if (typeof this.onreadystatechange == “function”) {
this.onreadystatechange();

}
};

Document.prototype.__initError__ = function () {
this.parseError.errorCode = 0;
this.parseError.filepos = -1;
this.parseError.line = -1;
this.parseError.linepos = -1;
this.parseError.reason = null;
this.parseError.srcText = null;
this.parseError.url = null;

};

Document.prototype.__checkForErrors__ = function () {

if (this.documentElement.tagName == “parsererror”) {

var reError = />([\s\S]*?)Location:([\s\S]*?)Line Number (\d+), Column
(\d+):<sourcetext>([\s\S]*?)(?:\-*\^)/;

reError.test(this.xml);

this.parseError.errorCode = -999999;
this.parseError.reason = RegExp.$1;

464

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 464

this.parseError.url = RegExp.$2;
this.parseError.line = parseInt(RegExp.$3);
this.parseError.linepos = parseInt(RegExp.$4);
this.parseError.srcText = RegExp.$5;

}
};

Document.prototype.loadXML = function (sXml) {

this.__initError__();

this.__changeReadyState__(1);

var oParser = new DOMParser();
var oXmlDom = oParser.parseFromString(sXml, “text/xml”);

while (this.firstChild) {
this.removeChild(this.firstChild);

}

for (var i=0; i < oXmlDom.childNodes.length; i++) {
var oNewNode = this.importNode(oXmlDom.childNodes[i], true);
this.appendChild(oNewNode);

}

this.__checkForErrors__();

this.__changeReadyState__(4);

};

Document.prototype.__load__ = Document.prototype.load;

Document.prototype.load = function (sURL) {
this.__initError__();
this.__changeReadyState__(1);
this.__load__(sURL);

};

Node.prototype.__defineGetter__(“xml”, function () {
var oSerializer = new XMLSerializer();
return oSerializer.serializeToString(this, “text/xml”);

});

}

XPath Support in Browsers
Because XML was being used for so many kinds of data, it became necessary to create a means to locate
data inside of XML code. The answer to this problem is XPath, which is a small language used specifi-
cally to locate a single node or multiple nodes that match a particular pattern. Although an in-depth dis-
cussion of XPath is beyond the scope of this book, a brief introduction is in order.

465

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 465

Introduction to XPath
Every XPath expression has two parts: a context node and a node pattern. The context node provides the
context from which the node pattern should begin. The node pattern is a string made up of one or more
node selectors.

For instance, consider the following XML document:

<?xml version=”1.0”?>
<employees>

<employee title=”Software Engineer”>
<name>Nicholas C. Zakas</name>

</employee>
<employee title=”Salesperson”>

<name>Jim Smith</name>
</employee>

</employees>

And consider this XPath expression:

employee/name

If the context node is <employees/>, then the previous XPath expression matches both <name>Nicholas
C. Zakas</name> and <name>Jim Smith</name>. In the expression, both employee and name refer to
tag names of XML elements in the order in which they appear from the context node; the slash indicates a
parent-to-child relationship. In essence, the XPath expression says, “Starting from <employees/>, match
any <name/> elements located under any <employee/> element that is a child of the reference node.”

To select only the first <employee/> element’s <name/> element, the XPath expression is the following:

employee[position() = 1]/name

In XPath, the square brackets notation is used to provide more specific information about an element.
This example uses the XPath position() function, which returns the element’s position under its
parent element. The first child node is in position 1, so comparing position() to 1 matches only the
first <employee/> element. Then, the slash and name match the <name/> element under that first
<employee/> element.

You can use a variety of ways to match elements in addition to their names and positions. Suppose you
want to select all <employee/> elements with the title attribute equal to “Salesperson”, the XPath
expression would be the following:

employee[@title = “Salesperson”]

In this expression, the @ symbol is short for attribute.

XPath is a very powerful expression that can make finding specific nodes within a DOM Document
much easier. Because of this, both IE and Mozilla made sure to include XPath support in their DOM
implementations.

If you’d like to learn more about XPath, consider picking up XPath 2.0: Programmer’s Reference (Wiley
Publishing, Inc., ISBN 0-7645-6910-4).

466

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 466

XPath support in IE
Microsoft saw fit to build XPath support right into the XML DOM object. Each node has two methods
that can be used to retrieve nodes matching an XPath pattern: selectNodes(), which returns a collec-
tion of nodes matching a pattern, and selectSingleNode(), which returns the first node that matches
a given pattern.

Using the same data as the previous section, you can select all <name/> elements that are children of an
<employee/> element by using the following code:

var lstNodes = oXmlDom.documentElement.selectNodes(“employee/name”);

Because selectNodes() is called as a method of oXmlDom.documentElement, the document element
is considered the context node for the XPath expression. The method returns a NodeList containing all
elements that match the given pattern, meaning that you can iterate through the elements like so:

for (var i=0; i < lstNodes.length; i++) {
alert(lstNodes[i]);

}

Even if there are no matches to a given pattern, a NodeList is still returned. If it is empty, its length
property is equal to 0.

If you want only the first element matching the pattern, then selectSingleNode() is the method to use:

var oElement = oXmlDom.documentElement.selectSingleNode(“employee/name”);

The selectSingleNode() method returns an Element as the function value if found, otherwise it
returns null.

XPath support in Mozilla
As you may have guessed, Mozilla supports the XPath according to the DOM standard. A DOM Level 3
addition called DOM Level 3 XPath defines interfaces to use for evaluating XPath expressions in the
DOM. Unfortunately, this standard is more complicated than Microsoft’s fairly straightforward
approach.

Although a handful of XPath-related objects exist, the two most important ones are XPathEvaluator
and XPathResult. An XPathEvaluator is used to evaluate an XPath expression with a method named,
appropriately enough, evaluate().

The evaluate() method takes five arguments: the XPath expression, the context node, a namespace
resolver, the type of result to return, and an XPathResult object to fill with the result (usually null).

The result of selectNodes() is a living list. So, if you update the document with
another element that matches the XPath expression, that element is automatically
added to the NodeList in the appropriate position.

467

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 467

The third argument, the namespace resolver, is necessary only when the XML code uses an XML names-
pace, and so typically is left as null. The fourth argument, the type of result to return, is one of 10 con-
stants values:

❑ XPathResult.ANY_TYPE — Returns the type of data appropriate for the XPath expression

❑ XPathResult.ANY_UNORDERED_NODE_TYPE — Returns a node set of matching nodes,
although the order may not match the order of the nodes within the document

❑ XPathResult.BOOLEAN_TYPE — Returns a Boolean value

❑ XPathResult.FIRST_ORDERED_NODE_TYPE — Returns a node set with only one node, which
is the first matching node in the document

❑ XPathResult.NUMBER_TYPE — Returns a number value

❑ XPathResult.ORDERED_NODE_ITERATOR_TYPE — Returns a node set of matching nodes in
the order in which they appear in the document. This is the most commonly used result type.

❑ XPathResult.ORDERED_NODE_SNAPSHOT_TYPE — Returns a node set snapshot, capturing the
nodes outside of the document so that any further document modification doesn’t affect the
node list. The nodes in the node set are in the same order as they appear in the document.

❑ XPathResult.STRING_TYPE — Returns a string value

❑ XPathResult.UNORDERED_NODE_ITERATOR_TYPE — Returns a node set of matching nodes,
although the order may not match the order of the nodes within the document

❑ XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE — Returns a node set snapshot, capturing the
nodes outside of the document so that any further document modification doesn’t affect the node
set. The nodes in the node set are not necessarily in the same order as they appear in the document.

The type of result you specify determines how to retrieve the value of the result. Here’s a typical example:

var oEvaluator = new XPathEvaluator();
var oResult = oEvaluator.evaluate(“employee/name”, oXmlDom.documentElement, null,

XPathResult.ORDERED_NODE_ITERATOR_TYPE, null);

if (oResult != null) {
var oElement = oResult.iterateNext();
while(oElement) {

alert(oElement.tagName);
oElement = oResult.iterateNext();

}
}

This example uses the XPathResult.ORDERED_NODE_ITERATOR_TYPE result, which is the most com-
monly used result type. If no nodes match the XPath expression, evaluate() returns null; otherwise, it
returns an XPathResult object. If the result is a node iterator, whether it be ordered or unordered, you
use the iterateNext() method repeatedly to retrieve each matching node in the result. When there are
no further matching nodes, iterateNext() returns null. Using a node iterator, it’s possible to create a
selectNodes() method for Mozilla:

Element.prototype.selectNodes = function (sXPath) [
var oEvaluator = new XPathEvaluator();
var oResult = oEvaluator.evaluate(sXPath, this, null,

468

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 468

XPathResult.ORDERED_NODE_ITERATOR_TYPE,
null);

var aNodes = new Array;

if (oResult != null) {
var oElement = oResult.iterateNext();
while(oElement) {

aNodes.push(oElement);
oElement = oResult.iterateNext();

}
}

return aNodes;

};

The selectNodes() method is added to the Element class to mimic the behavior in IE. When evaluate()
is called, it uses the this keyword as the context node (which is also how IE works). Then, a result array
(aNodes) is filled with all the matching nodes. You can use this new method like so:

var aNodes = oXmlDom.documentElement.selectNodes(“employee/name”);
for (var i=0; i < aNodes.length; i++) {

alert(aNodes[i].xml);
}

If you specify a snapshot result type (either ordered or unordered), you must use the snapshotItem()
and snapshotLength() methods, as in the following example:

var oEvaluator = new XPathEvaluator();
var oResult = oEvaluator.evaluate(“employee/name”, oXmlDom.documentElement, null,

XPathResult.ORDERED_NODE_SNAPSHOT_TYPE, null);

if (oResult != null) {
for (var i=0; i < oResult.snapshotLength; i++) {

alert(oResult.snapshotItem(i).tagName);
}

}

In this example, snapshotLength returns the number of nodes in the snapshot and snapshotItem()
returns the node in a given position in the snapshot (similar to length and item() in a NodeList).

The XPathResult.FIRST_ORDERED_NODE_TYPE result returns the first matching node, which is accessi-
ble through the singleNodeValue property:

var oEvaluator = new XPathEvaluator();
var oResult = oEvaluator.evaluate(“employee/name”, oXmlDom.documentElement, null,

XPathResult.FIRST_ORDERED_NODE_TYPE, null);

alert(oResult.singleNodeValue.xml);

As you may have guessed, this code can be used to mimic the IE selectSingleNode() method:

469

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 469

Element.prototype.selectSingleNode = function (sXPath) {
var oEvaluator = new XPathEvaluator();
var oResult = oEvaluator.evaluate(sXPath, this, null,

XPathResult.FIRST_ORDERED_NODE_TYPE, null);

if (oResult != null) {
return oResult.singleNodeValue;

} else {
return null;

}
}

This method can then be used the same as the one in IE:

var oNode = oXmlDom.documentElement.selectSingleNode(“employee/name”);
alert(oNode);

The last section of XPathResult types are the Boolean type, number type, and string type. Each of these
result types returns a single value using the booleanValue, numberValue, and stringValue proper-
ties, respectively. For the Boolean type, the evaluation typically returns true if at least one node matches
the XPath expression and returns false otherwise:

var oEvaluator = new XPathEvaluator();
var oResult = oEvaluator.evaluate(“employee/name”, oXmlDom.documentElement, null,

XPathResult.BOOLEAN_TYPE, null);
alert(oResult.booleanValue);

In this example, if any nodes match “employee/name”, the booleanValue property is equal to true.

For the number type, the XPath expression must use an XPath function that returns a number, such as
count(), which counts all the nodes that match a given pattern:

var oEvaluator = new XPathEvaluator();
var oResult = oEvaluator.evaluate(“count(employee/name)”, oXmlDom.documentElement,

null, XPathResult.BOOLEAN_TYPE, null);
alert(oResult.numberValue);

This code outputs the number of nodes that match “employee/name” (which is 2). If you try using this
method without one of the special XPath functions, numberValue is equal to NaN.

For the string type, the evaluate() method finds the first node matching the XPath expression, then
returns the value of the first child node, assuming the first child node is a text node. If not, the result is
an empty string. Here’s an example:

var oEvaluator = new XPathEvaluator();
var oResult = oEvaluator.evaluate(“employee/name”, oXmlDom.documentElement, null,

XPathResult.STRING_TYPE, null);

alert(oResult.stringValue);

The previous code outputs “Nicholas C. Zakas”, because that is the first text node in the first
<name/> element under an <employee/> element.

470

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 470

If you feel like living dangerously, you can use the XPathResult.ANY_TYPE. By specifying this result
type, evaluate() returns the most appropriate result type based on the XPath expression. Typically,
this result type is a Boolean value, number value, string value, or an unordered node iterator. To deter-
mine which result type has been returned use the resultType property:

var oEvaluator = new XPathEvaluator();
var oResult = oEvaluator.evaluate(“employee/name”, oXmlDom.documentElement, null,

XPathResult.STRING_TYPE, null);

if (oResult != null) {
switch(oResult.resultType) {

case XPath.STRING_TYPE:
//handle string type
break;

case XPath.NUMBER_TYPE:
//handle number type
break;

case XPath.BOOLEAN_TYPE:
//handle boolean type
break;

case XPath.UNORDERED_NODE_ITERATOR_TYPE:
//handle unordered node iterator type
break;

default:
//handle other possible result types

}
}

As you can tell, XPath evaluation in Mozilla is much more complicated than IE, but also much more
powerful. By using the custom selectNodes() and selectSingleNode() methods, you can perform
XPath evaluation in both browsers using the same code.

XSLT Support in Browsers
A sibling language to XML, eXtensible Stylesheet Language Transformations (XSLT) allows the manipula-
tion and transformation of XML code into almost any other text-based form. Presently, many developers
use XSLT to transform XML into HTML, but this is just one use (see Figure 15-1).

Figure 15-1

XML XSLT HTML

Text

Other XML
Formats

471

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 471

XSLT files are called style sheets and are made up of a number of templates. A template pertains to a spe-
cific part of an XML file (using XPath) and determines what text is output for that section. By defining
templates for various elements and conditions, and XSLT style sheet becomes a sort of XML parser. For
example, consider the XML used earlier:

<?xml version=”1.0”?>
<employees>

<employee title=”Software Engineer”>
<name>Nicholas C. Zakas</name>

</employee>
<employee title=”Salesperson”>

<name>Jim Smith</name>
</employee>

</employees>

Now suppose you’d like to display the list of employees in the following HTML format:

<html>
<head>

<title>Employees</title>
</head>
<body>

Nicholas C. Zakas, Software Engineer
Jim Smith, Salesperson

</body>

</html>

Essentially, you just want to pull the contents of the <name/> element out and put it into an unordered
list. Then you want to pull out the title attribute of <employee/> and place it next to the name inside of
a element. To make this happen, you can create an XSLT style sheet:

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”html” />

<xsl:template match=”/”>
<html>

<head>
<title>Employees</title>

</head>
<body>

<xsl:apply-templates select=”*” />

</body>

</html>
</xsl:template>

<xsl:template match=”employee”>
<xsl:value-of select=”name” />, <xsl:value-of select=”@title”

/>

472

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 472

</xsl:template>

</xsl:stylesheet>

As you can see, XSLT is actually another language based on XML. The document element is
<xsl:stylesheet/>, which also specifies the version of XSLT being used (1.0) and the namespace URL.
Without this information, an XSLT processor can’t properly use the style sheet.

The next line contains the <xsl:output/> element, which specifies the rules by which the output
should be handled. For the method attribute, three possible values exist: html, xml, and text. When you
use “html”, the parser treats the output as HTML, meaning that the strict XML rules are not applied;
“xml” forces all XML rules to be applied to the output, whereas “text” only outputs the content con-
tained outside of elements.

Next come the templates. The first template matches the document element, as indicated by match=”/”.;
the / XPath expression always refers to the document element. There is HTML code inside the template,
right up until the <xsl:apply-templates/> element, which tells the parser to apply any matching
templates to the child nodes (which is an XPath expression for any child node). Because a template is
defined that matches that pattern, processing continues.

Inside the second template, notice the element. Immediately following is the <xsl:value-of/>
element, which is used to output a value from the source XML. The select attribute is another XPath
expression, “name”, which tells the transformer to output the text value of the <name/> element (which
is the text contained inside of it). After that, there’s a comma, then the opening tag, followed by
another <xsl:value-of/> element. This time, the select attribute points to the title attribute of
<employee/> and so the transformer outputs that value.

When this XSLT style sheet is run against the XML file, the result is the HTML shown previously.
Although this is a simple example, it does show some of the unique capabilities of XSLT.

If you’d like to learn more about XSLT, consider picking up XSLT 2.0: Programmer’s Reference, 3rd
Edition (Wiley Publishing, Inc., ISBN 0-7645-6909-0).

XSLT support in IE
Beginning with MSXML 3.0, Internet Explorer fully supports XSLT 1.0. If you are still using Internet
Explorer 5.0 or 5.5, you should install a new version of MSXML manually; if you are using IE 6.0, then
you already have at least MSXML 3.0.

The simplest way to conduct an XSLT transformation is to load the source XML and the XSLT file each
into their own DOMs and then use the proprietary transformNode() method:

oXmlDom.load(“employees.xml”);
oXslDom.load(“employees.xslt”);
var sResult = oXmlDom.transformNode(oXslDom);

This example loads a DOM with XML and a DOM with the XSLT style sheet (note that you can load XSLT
into an XML DOM because it is just another form of XML). Then, the third line calls the transformNode()
method on the document, passing in the DOM containing the XSLT code as its only argument. The vari-
able sResult is then filled with a string resulting from the transformation.

473

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 473

You don’t need to start the transformation from the document level; every node has the
transformNode() method. The following are all valid:

sResult = oXmlDom.documentElement.transformNode(oXslDom);
sResult = oXmlDom.documentElement.childNodes[1].transformNode(oXslDom);
sResult = oXmlDom.getElementsByTagName(“name”)[0].transformNode(oXslDom);
sResult = oXmlDom.documentElement.firstChild.lastChild.transformnode(oXslDom);

If you call transformNode() from anywhere other than the document element, you start the transfor-
mation at that spot. The XSLT style sheet, however, still has access to the full XML document from which
that node came.

The more complicated way to use XSLT in IE is to use an XSL template and processor. To do so, you
must use a few more ActiveX controls from the MSXML library. First, the XSLT file must be loaded into
a free-threaded DOM document, which behaves just like a regular DOM document but is thread-safe:

var oXslDom = new ActiveXObject(“MSXML2.FreeThreadedDOMDocument”);
oXslDom.async = false;
oXslDom.load(“employees.xsl”);

After the free-threaded DOM document is created and loaded, it must be assigned to an XSL template,
which is another ActiveX object:

var oTemplate = new ActiveXObject(“MSXML2.XSLTemplate”);
oTemplate.stylesheet = oXslDom;

The XSL template is then used to create an XSL processor (you guessed it, another ActiveX object):

var oProcessor = oTemplate.createProcessor();

With the processor created, you set the input property equal to the XML DOM node to transform and
then call the transform() method:

oProcessor.input = oXmlDom;
oProcessor.transform();

The resulting string is then accessible from the output property:

var sResult = oProcessor.output;

All this code mimics the functionality of transformNode(). You may be wondering why anyone would
use the XSL template/processor methodology if it does the same thing as transformNode(). The answer
is that the processor allows you more control over XSLT.

For example, XSLT style sheets accept parameters that can be passed in and used as local variables.
Consider the following style sheet:

<?xml version=”1.0”?>
<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”html” />

474

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 474

<xsl:param name=”message” />

<xsl:template match=”/”>
<html>

<head>
<title>Employees</title>

</head>
<body>

<xsl:apply-templates select=”*” />

<p>Message: <xsl:value-of select=”$message” /></p>

</body>
</html>

</xsl:template>

<xsl:template match=”employee”>
<xsl:value-of select=”name” />, <xsl:value-of select=”@title”

/>
</xsl:template>

</xsl:stylesheet>

This style sheet adds two lines of code. The first is an <xsl:param/> element that defines a parameter
named message. The second line outputs the message by using the <xsl:value-of/> element (the
dollar sign indicates that this is a local variable, not an element or an attribute).

To set the value of message, you use the addParameter() method before calling transform(). The
addParameter() method takes two arguments, the name of the parameter to set (as specified in
<xsl:param/>’s name attribute) and the value to assign it (most often a string, but can be a number or
Boolean as well):

oProcessor.input = oXmlDom.documentElement;
oProcessor.addParameter(“message”, “Hello World!”);
oProcessor.transform();

By setting a value for the parameter, the output now becomes the following:

<html>
<head>

<title>Employees</title>
</head>
<body>

Nicholas C. Zakas, Software Engineer
Jim Smith, Salesperson

<p>Message: Hello World!</p>

</body>
</html>

475

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 475

As you can see, the value passed in through JavaScript is correctly output to the HTML result. If you use
parameters in this way, you can make style sheets more extensible by incorporating different behaviors
based on parameters.

Another advanced feature of the XSL processor is the capability to set a mode of operation. In XSLT,
it’s possible to define a mode for a template. When a mode is defined, the template isn’t run unless
<xsl:apply-templates /> is specifically called with its mode attribute. For example:

<xsl:stylesheet version=”1.0” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”>

<xsl:output method=”html” />

<xsl:param name=”message” />

<xsl:template match=”/”>
<html>

<head>
<title>Employees</title>

</head>
<body>

<xsl:apply-templates select=”*” />

<p>Message: <xsl:value-of select=”$message” /></p>

</body>
</html>

</xsl:template>

<xsl:template match=”employee”>
<xsl:value-of select=”name” />, <xsl:value-of select=”@title”

/>
</xsl:template>

<xsl:template match=”employee” mode=”position-first”>
<xsl:value-of select=”@title” />, <xsl:value-of select=”name”

/>
</xsl:template>

</xsl:stylesheet>

This style sheet defines a template with its mode attribute set to “position-first” (note that you can
name a mode whatever you want; there are no predefined modes). Inside of this template, the employee’s
position is output first, and the employee name is output second. In order to use this template, the
<xsl:apply-templates/> element must have its mode set to “position-first” as well. If you use
this style sheet, it has the same output as the previous one, displaying the employee name first and the
position second. If, however, you use this style sheet and set the mode to “position-first” using
JavaScript, it outputs the employee’s position first:

oProcessor.input = oXmlDom;
oProcessor.addParameter(“message”, “Hello World!”);
oProcessor.setStartMode(“position-first”);
oProcessor.transform();

476

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 476

The setStartMode() method accepts only one argument, which is the mode to set to. Just like
addParameter(), this must be called before transform().

If you are going to do multiple transformations using the same style sheet, you can reset the processor
after each transformation. When you call the reset() method, the input and output properties are
cleared and the processor is ready to be used again:

oProcessor.reset();

Because the processor has compiled the XSLT style sheet, it is faster to make repeat transformations ver-
sus using transformNode().

XSLT support in Mozilla
Beginning in Mozilla 1.2, a new object called XSLTProcessor has been available to JavaScript developers
in order to enable client-side XSLT transformations. This object uses Mozilla’s built-in XSLT processor,
Transformiix, to enable this functionality.

The first step in the transformation is to load both the XML and XSLT into DOMs:

oXmlDom.load(“employees.xml”);
oXslDom.load(“employees.xslt”);

Then, create the XSLTProcessor and use the importStylesheet() method to assign the XSLT DOM:

var oProcessor = new XSLTProcessor()
oProcessor.importStylesheet(oXslDom);

The last step is to call either transformToDocument() or transformToFragment() with the XML
DOM as an argument to produce a result. As you may have guessed, transformToDocument() returns
a new DOM document as its result and transformToFragment() returns a new document fragment as
its result. Generally speaking, you should use transformToDocument() unless you intend to add the
result directly to an existing document; then you should use transformToFragment().

When using transformToDocument(), just pass in the XML DOM and use the result as another com-
pletely different DOM:

var oResultDom = oProcessor.transformToDocument(oXmlDom);
alert(oResultDom.xml);

When using transformToFragment(), pass in the XML DOM as well as the document you intend to
add the result to. This ensures that the new document fragment is valid in the destination document:

MSXML only supports XSLT 1.0. Development on MSXML has stopped since the
movement to the .NET framework. It is expected that, at some point in the future,
JavaScript will have access to the XML and XSLT .NET objects.

477

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 477

var oResultFragment = oProcessor.transformToDocument(oXmlDom, document);
var oDiv = document.getElementById(“divResult”);
oDiv.appendChild(oResultFragment);

In the previous example, the processor creates a fragment owned by the document object. This enables
the fragment to be added to a <div/> element existing in the page.

This all makes perfect sense when the output method for XSLT is either HTML or XML, but what about
when the output is text? To solve this problem, Mozilla creates an XML document with a single element,
<transformiix:result/>, that contains all the text output. So, using text output from an XSLT file still
results in a valid document or document fragment.

Keeping this in mind, it’s possible to create a transformNode() method for Mozilla:

Node.prototype.transformNode = function (oXslDom) {

var oProcessor = new XSLTProcessor();
oProcessor.importStylesheet(oXslDom);

var oResultDom = oProcessor.transformToDocument(this);
var sResult = oResultDom.xml;

if (sResult.indexOf(“<transformiix:result”) > -1) {
sResult = sResult.substring(sResult.indexOf(“>”) + 1,

sResult.lastIndexOf(“<”));
}

return sResult;
};

This method creates a result document using the given XSLT DOM. The resulting XML code is then stored
in sResult using the xml property defined earlier in the chapter. That code is then checked to see if it
contains <transformiix:result/>. If it does, then the XML part is stripped out (by taking only the
string between the first greater-than symbol and the last less-than symbol). Lastly, sResult is returned.
Using this method, you can create code to run in both Mozilla and IE:

var oXmlDom = new XmlDom();
var oXslDom = new XmlDom();

oXmlDom.async = false;
oXslDom.async = false;

oXmlDom.load(“employees.xml”);
oXslDom.load(“employees.xslt”);

alert(oXmlDom.transformNode(oXslDom));

The XSLTProcessor in Mozilla also allows you to set XSLT parameters. The setParameter() method
accepts three arguments: the namespace URI, the parameter local name, and the value to set. Typically,
the namespace URI is null and the local name is simply the parameter’s name. This method must be
called prior to transformToDocument() or transformToFragment():

478

Chapter 15

18_579088 ch15.qxd 3/28/05 11:42 AM Page 478

var oProcessor = new XSLTProcessor()
oProcessor.importStylesheet(oXslDom);
oProcessor.setParameter(null, “message”, “Hello World!”);
var oResultDom = oProcessor.transformToDocument(oXmlDom);

Two other methods are related to parameters, getParameter() and removeParameter(), which are
used to get the current value of a parameter and remove the parameter value, respectively. Each method
takes the namespace URI (once again, typically null) and the local name of the parameter:

var oProcessor = new XSLTProcessor()
oProcessor.importStylesheet(oXslDom);
oProcessor.setParameter(null, “message”, “Hello World! “);

alert(oProcessor.getParameter(null, “message”); //outputs “Hello World!”
oProcessor.removeParameter(null, “message”);

var oResultDom = oProcessor.transformToDocument(oXmlDom);

These methods aren’t used often and are provided mostly for convenience.

Summary
This chapter introduced you to the client-side XML capabilities of Internet Explorer and Mozilla. The
first topic covered was the use of an XML DOM model on the client side using the MSXML library in IE
and a native, DOM-compliant interface in Mozilla. You learned the differences between the two models,
as well as a way to bridge that gap to make your code more straightforward.

Next, you learned about each browser’s support for XPath, a language designed to locate specific parts
of an XML document. This section included discussion on the different implementations in IE and
Mozilla. You learned that IE chose a non-standard API, whereas Mozilla chose to follow the DOM Level
3 XPath specification. Again, methods of creating a standard cross-browser approach were discussed.

The last topic discussed was the concept of JavaScript XML manipulation and transformation using
XSLT. You learned about the two ways to accomplish XSLT transformations using JavaScript in IE,
through the transformNode() method and the XSLProcessor object. You also learned about Mozilla’s
XSLTProcessor object and how it compares to IE’s implementation. Using XSLTProcessor, you
learned how to create a transformNode() method for use in Mozilla.

Remember, the material covered in this chapter only works in Internet Explorer and Mozilla because
other browsers have not yet implemented any JavaScript support for XML, XPath, and XSLT.

479

XML in JavaScript

18_579088 ch15.qxd 3/28/05 11:42 AM Page 479

18_579088 ch15.qxd 3/28/05 11:42 AM Page 480

Client-Server
Communication

Traditionally, JavaScript had no interaction with the server at all; it merely performed operations
on the client and then got out of the way to allow the server to do its job. As the Web progressed,
however, JavaScript was required to send data back to the server and/or receive a response. This
need led to several methods of establishing such communication.

Cookies
Despite reports in newspapers and magazines citing security issues, a cookie is nothing more than
a small amount of information that a Web page places on a user’s machine. Cookies have tradi-
tionally been used to store login information so that users aren’t required to log in each time they
access a restricted page from the same machine (the ubiquitous Remember Me check box on many
login pages).

Because a cookie is unique to a user, Web sites can determine when a user has returned to the site,
as well as what pages he visits; this is where the privacy concerns arise. Yes, a cookie can be used
to track where you go on an individual Web site, but it cannot be used to grab personal informa-
tion (such as credit card numbers, e-mail addresses, and so on), as many novices think.

Cookies were the first method of client-server interaction that JavaScript took advantage of. Every
time the browser makes a request to a server, the cookies for that server are sent along with any
other information. This enables JavaScript to set a cookie on the client that a server can read later.

19_579088 ch16.qxd 3/28/05 11:42 AM Page 481

Cookie ingredients
No chocolate chips and sugar here! These cookies are made up of small pieces of information:

❑ Name — Each cookie is represented by a unique name. This name can be made up of letters,
numbers, and underscores. Unlike JavaScript variables, cookie names are not case-sensitive, so
myCookie and MyCookie are considered to be the same. In reality, however, it’s always best to
treat the cookie names as case-sensitive because some server software may treat them as such.

❑ Value — The string value stored in the cookie. This value must be encoded using
encodeURIComponent() before being stored in order to avoid losing data or corrupting the
cookie. The total number of bytes stored in the name and value combined cannot exceed 4095
bytes, or roughly 4 KB.

❑ Domain — For security purposes, Web sites cannot access cookies created by other domains.
When a cookie is created, the domain is stored as a part of the cookie. It is possible to override
this setting, however, to allow a different Web site to access the cookie, although that is typically
not the case.

❑ Path — Another security feature of cookies, paths restrict access of a cookie to a particular
directory on a Web server. For example, you can specify that the cookie only accessible from
http://www.wrox.com/books so pages at http://www.wrox.com can’t access it even though
the request comes from the same domain.

❑ Expiration — When the cookie should be deleted. By default, all cookies are deleted when the
browser closes; however, it is possible to set another time for the deletion. This value is set as a
date in GMT format (using the toGMTString() method of the Date object) and specifies an
exact time when the cookie should be deleted. Because of this, a cookie can remain on a user’s
machine even after the browser is closed. When you set an expiration time that has already
occurred, the cookie is deleted immediately.

❑ Secure Flag — A true/false value indicating whether the cookie can be accessed only from
secure sites (those using SSL and the https protocol). Setting this value to true provides
another layer of protection to ensure the cookie isn’t accessible by other Web sites.

Other security restrictions
To ensure that cookies aren’t used maliciously, browsers place certain restrictions on cookie usage:

❑ Each domain can only store up to 20 cookies on a user’s machine.

❑ The total size of the cookie cannot exceed 4096 bytes.

❑ The total number of cookies allowed on a user’s machine is 300.

In addition, newer browsers place strict control on cookies, allowing the user to block all cookies, block
cookies from unknown sites, or be alerted every time a cookie is being created.

482

Chapter 16

19_579088 ch16.qxd 3/28/05 11:42 AM Page 482

Cookies in JavaScript
Dealing with cookies in JavaScript is a little complicated because of a notoriously poor interface. The
document object has a property called cookie, which is a single string containing all cookies accessible
by the given page. The cookie property is also unique in that setting it to a specific value only alters the
cookies available to the page; it doesn’t actually change the value of cookie itself. This functionality is
part of the BOM and, as such, isn’t guided by any sort of specifications (which explains its lack of logic).

To create a cookie, you must create a string in the following format:

cookie_name=cookie_value; expires=expiration_time; path=domain_path;
domain=domain_name; secure

Only the first part of the string, specifying the name and value, is mandatory to set a cookie; all other
parts are optional. This string is then set to the document.cookie property to create the cookie. For
example, to set a simple cookie, use the following:

document.cookie = “name=Nicholas”;
document.cookie = “book=” + encodeURIComponent(“Professional JavaScript”);

Reading the value of document.cookie gives access to these cookies, along with all others accessible
from the given page. If you display the value of document.cookie after running the two lines of the
previous code, it equals “name=Nicholas; book=Professional%20JavaScript”. Even if other
cookie attributes are specified, such as an expiration time, document.cookie only returns the name
and value of each cookie with a semicolon separating the cookies.

Because creating and reading cookies requires remembering this format, most developers use functions
to handle the details. The function to create a cookie is the easiest:

function setCookie(sName, sValue, oExpires, sPath, sDomain, bSecure) {
var sCookie = sName + “=” + encodeURIComponent(sValue);

if (oExpires) {
sCookie += “; expires=” + oExpires.toGMTString();

}

if (sPath) {
sCookie += “; path=” + sPath;

}

if (sDomain) {
sCookie += “; domain=” + sDomain;

}

if (bSecure) {
sCookie += “; secure”;

}

document.cookie = sCookie;
}

483

Client-Server Communication

19_579088 ch16.qxd 3/28/05 11:42 AM Page 483

The setCookie() function systematically builds up a cookie string based on the arguments passed in.
Only the first two arguments are required, so the function checks to make sure that each argument exists
before it’s added to the cookie string. The third argument is expected to be a Date object so the
toGMTString() method can be called. At the end of the function, the document.cookie is set with
the cookie string. This function is used as follows:

setCookie(“name”, “Nicholas”);
setCookie(“book”, “Professional JavaScript”, new Date(Date.parse(“Jan 1, 2006”)));
setCookie(“message”, “Hello World! “, new Date(Date.parse(“Jan 1, 2006”)),

“/books”, “http://www.wrox.com”, true);

The next function, getCookie(), retrieves the value of a cookie when the name is passed in:

function getCookie(sName) {

var sRE = “(?:;)?” + sName + “=([^;]*);?”;
var oRE = new RegExp(sRE);

if (oRE.test(document.cookie)) {
return decodeURIComponent(RegExp[“$1”]);

} else {
return null;

}

}

This function uses a regular expression built out of the name of the cookie. Regular expressions are the
easiest way to extract a particular value from document.cookie because of the cookie string format. If
there’s only one cookie, then the string is a simple name and value pair, and the value is all the characters
after the equal sign up to the end of the string. If more cookies follow, they are separated by semicolons.
This means that the value for any cookie (other than the last one) comprises all characters after the equal
sign but before the next semicolon. The regular expression makes it easy to take all this into account, set-
ting up a capturing group to retrieve the cookie value. You can then get the values of cookies like so:

var sName = getCookie(“name”);
var sBook = getCookie(“book”);
var sMessage = getCookie(“message”);

The last function is deleteCookie(), which immediately removes a cookie from the system. As men-
tioned previously, setting its expiration time to a past date can accomplish this. In order have this work,
however, the path and domain information must be the same as when you created the cookie, so these
must also be arguments:

function deleteCookie(sName, sPath, sDomain) {
setCookie(sName, “”, new Date(0), sPath, sDomain);

}

Because setCookie() sets all the same information as deleteCookie(), it makes sense just to use it
and pass in an expiration date that already occurred (in this case, January 1, 1970).

Using these functions, it’s easy to manipulate cookies using JavaScript. Even if the server creates cookies,
JavaScript can still read them, which is where the real power lies.

484

Chapter 16

19_579088 ch16.qxd 3/28/05 11:42 AM Page 484

Cookies on the server
Of course, using cookies for client-server communication requires additional logic on the server. Server-
side technologies such as JSP, ASP.NET, and PHP provide built-in functionality to read, write, and other-
wise manipulate cookies. Using JavaScript and one of these server-side languages, you can pass data
back and forth using cookies.

JSP
Java Server Pages (JSP) provides a very easy interface for handling cookies. The request object, which is
instantiated automatically when a JSP is executed, has a method called getCookies() that returns an
array of Cookie objects. Each Cookie object has the following methods (from the Javadoc documentation):

❑ getComment() — Returns the comment describing the purpose of this cookie, or null if the
cookie has no comment

❑ getDomain() — Returns the domain name set for this cookie

❑ getMaxAge() — Returns the maximum age of the cookie, specified in seconds; by default, -1
indicates the cookie will persist until browser shutdown.

❑ getName() — Returns the name of the cookie

❑ getPath() — Returns the path on the server to which the browser returns this cookie

❑ getSecure() — Returns true if the browser is sending cookies only over a secure protocol, or
false if the browser can send cookies using any protocol.

❑ getValue() — Returns the value of the cookie

❑ getVersion() — Returns the version of the protocol this cookie complies with

❑ setComment(String purpose) — Specifies a comment that describes a cookie’s purpose.

❑ setDomain(String pattern) — Specifies the domain within which this cookie should be
presented

❑ setMaxAge(int expiry) — Sets the maximum age of the cookie in seconds

❑ setPath(String uri) - Specifies a path for the cookie to which the client should return the
cookie

❑ setSecure(boolean flag) — Indicates to the browser whether the cookie should only be
sent using a secure protocol, such as HTTPS or SSL

❑ setValue(String newValue) — Assigns a new value to a cookie after the cookie is created

❑ setVersion(int v) — Sets the version of the cookie protocol this cookie complies with

To get a specific cookie, it’s also necessary to create a function to iterate through each cookie to deter-
mine which one you want:

<%!
public static Cookie getCookie(HttpServletRequest request, String name) {

Cookie[] cookies = request.getCookies();

if (cookies != null) {

485

Client-Server Communication

19_579088 ch16.qxd 3/28/05 11:42 AM Page 485

for (int i=0; i < cookies.length; i++) {
if (cookies[i].getName().equals(name)) {

return cookies[i];
}

}
} else {

return null;
}

}
%>

When this code is inserted into a JSP, you can retrieve the value of a cookie by doing the following:

<%
Cookie nameCookie = getCookie(request, “name”);
System.out.println(“Name is “ + nameCookie.getValue());
%>

Creating a cookie is equally easy in the JSP world. To create a new cookie, simply instantiate a new
Cookie object and pass in the name and value. Then, add it to the user’s system by using the
addCookie() method of the response object:

<%
Cookie nameCookie = new Cookie(“name”, “Nicholas”);
response.addCookie(nameCookie);

%>

Alternately, you can add additional data to the cookie before storing it:

<%
Cookie nameCookie = new Cookie(“name”, “Nicholas”);
nameCookie.setDomain(“http://www.wrox.com”);
nameCookie.setPath(“/books”);
response.addCookie(nameCookie);

%>

To delete a specific cookie, you must first retrieve it and then set its expiration to 0 (JSP cookies use the
number of milliseconds as the expiration value):

<%
Cookie cookieToDelete = getCookie(“name”);
cookieToDelete.setMaxAge(0);
response.addCookie(cookieToDelete);

%>

ASP.NET
ASP.NET handles cookies in a very similar way to JSP. The Request object (automatically created for
each ASP.NET page) contains a Cookies collection from which all cookies can be read. Each cookie is an
instance of HttpCookie, which has the following properties:

486

Chapter 16

19_579088 ch16.qxd 3/28/05 11:42 AM Page 486

❑ Name — The name of the cookie

❑ Value — The value of the cookie

❑ Expires — The date when the cookie expires

❑ Path — The path for the cookie

❑ Domain — The domain for the cookie

❑ Secure — A Boolean indicating whether the cookie is secure

Other properties of HttpCookie are used when cookies store multiple values, but since those cookies
won’t work in concert with the JavaScript code in this chapter, they are not listed here.

To read a cookie, you can access it by its name in the Cookies collection:

Dim cookie as HttpCookie
Dim cookieValue as String
cookie = Request.Cookies(“name”)
cookieValue = cookie.Value

This example reads a cookie with the name “name” and assigns the value to the variable cookieValue.

To create a new cookie, create a new instance of HttpCookie and pass the name and value to the construc-
tor. Then, you set any other properties for the cookie before saving it with a call to Response.SetCookie():

Dim cookie as HttpCookie = New HttpCookie(“name”, “Nicholas”);
cookie.Expires = #1/1/2006#;
Response.SetCookie(cookie);

Note that the Expires property expects a DateTime object, not a numeric value as in JSP.

To delete a cookie, just set the Expires property to a date in the past:

cookie.Expires = DateTime.Now.addDays(-1);

PHP
PHP’s cookie functions are very straightforward, as is most of the PHP language. To create a cookie,
PHP provides a setcookie() function that takes the same arguments as the JavaScript setCookie()
function described in this chapter. The main difference is that the expiration date is specified as a num-
ber, just as it is in JSP:

bool setcookie (string name [, string value [, int expire [, string path
[, string domain [, bool secure]]]]])

Calling the function is very easy:

<?php
setcookie(“name”, “Nicholas”);
setcookie(“book”, “Professional JavaScript”);

?>

487

Client-Server Communication

19_579088 ch16.qxd 3/28/05 11:42 AM Page 487

The one restriction on setting cookies in PHP is that it must be done before anything is output to the
client. This is similar to the way the header() function works. For instance, this code won’t work:

<html>
<head>

<?php
setcookie(“name”, “Nicholas”);
setcookie(“book”, “Professional JavaScript”);

?>

To retrieve the value of a cookie in PHP, use the $_COOKIE associative array with the name of the cookie
as the key:

<?php
$name = $_COOKIE[“name”];
$book = $_COOKIE[“book”];

?>

Note that you cannot retrieve the value of a cookie created with setcookie() until the next page loads,
meaning that is the following code is impossible:

<?php
setcookie(“name”, “Nicholas”);
setcookie(“book”, “Professional JavaScript”);
$name = $_COOKIE[“name”];
$book = $_COOKIE[“book”];

?>

To delete a cookie in PHP, just use the setcookie() method and set the expiration time to 0:

<?php
setcookie(“name”, “”, 0);

?>

Passing cookies between client and server
To communicate to JavaScript, often the server creates a cookie (perhaps in a servlet or other application
running on the server) just before a response is sent out. The page that is loaded now has JavaScript
designed to retrieve the cookie value.

For example, suppose you are creating a feedback form on a Web site where the user is required to enter
a name, e-mail address, and the feedback message. You can make this more user-friendly by allowing
the users to save their names and e-mail addresses so the next time they visit and want to leave feed-
back, both fields are already filled in. Typically, you do this with a Remember Me check box, as in the
following form:

<form name=”feedbackForm” method=”post” action=”submitfeedback.php”>
<p>Name: <input type=”text” name=”personName” />

E-mail Address: <input type=”text” name=”personEmail” />

488

Chapter 16

19_579088 ch16.qxd 3/28/05 11:42 AM Page 488

Feedback: <textarea rows=”10” cols=”50” name=”feedbackText”>
</textarea>

<input type=”checkbox” name=”rememberMe” value=”yes” /> Remember Me

<input type=”submit” value=”Submit Feedback” />

</form>

The server-side code (in this case, written in PHP) looks something like this:

<?php
//send e-mail
mail(“you@yourdomain.com”, “User Feedback”, $feedbackText,

“From: feedback@{$_SERVER[‘SERVER_NAME’]}”);

//if flag is set, set cookies
if ($rememberMe == “yes”) {

setcookie(“personName”, $personName, time() + 1000 * 60 * 60 * 24 * 365);
setcookie(“personEmail”, $personEmail, time() + 1000* 60 * 60 * 24 * 365);

}
?>
<!-- thank you message goes here -->

This PHP code first sends the feedback e-mail using PHP’s mail() function and then checks to see if the
user wants to be remembered, meaning that the value of $rememberMe equals yes. If so, cookies are
used to store the user’s name and e-mail address. Both cookies are set to expire a year after the current
day by using the PHP time() function and adding the value of 365 days in milliseconds (1000 millisec-
onds x 60 seconds x 60 minutes x 24 hours x 365 days).

In PHP, the values of form fields are made accessible as variables with the same name as the form field,
so the value in the text box named personName is accessible as a string variable $personName.

Remember to include at least the getCookie() function on the feedback form page to retrieve the value
of each cookie. Then, in the onload event handler, look for a cookie containing user information and, if
you find it, assign that information back into the form.

window.onload = function () {

var sName = getCookie(“personName”);
var sEmail = getCookie(“personEmail”);

if (sName && sEmail) {
var oForm = document.forms[“feedbackForm”];
oForm.personName.value = sName;
oForm.personEmail.value = sEmail;

}
};

This JavaScript code checks to see if both the person’s name and e-mail address have been stored in cook-
ies. If they have, the values are assigned to the appropriate fields in the form. Now, your users won’t have
to type in the same contact information each time they send feedback (well, at least for a year).

489

Client-Server Communication

19_579088 ch16.qxd 3/28/05 11:42 AM Page 489

Hidden Frames
A trick that developers have used for a long time is the hidden frame method. The basic idea is to create a
frame that is 0 pixels high (thus, it’s hidden) that can be used by JavaScript to communicate with the
server. This type of communication requires two parts: a JavaScript object to handle the communication
on the client side and a special page that handles the communication on the server side.

As a very simple example, start out with a frameset:

<html>
<head>

<title>Hidden Frame Example</title>
</head>
<frameset rows=”*,0”>

<frame src=”HiddenFrameExampleMain.htm” name=”mainFrame” />
<frame src=”HiddenFrameExampleBlank.htm” name=”hiddenFrame” />

</frameset>
</html>

This frameset is made up of two rows, the second of which has a height of 0 (in Netscape 4.x, frames
can’t be 0 pixels high, so the frame is still visible). The first frame is where the user is interacting; the sec-
ond is the hidden frame used to communicate with the server. By default, the second frame is loaded
with a blank HTML page.

In the first frame, two functions are defined: one to send the request to the server and one to handle the
response. The function that sends the request, called getServerInfo(), just assigns a URL to the hid-
den frame:

function getServerInfo() {
parent.frames[“hiddenFrame”].location.href = “HiddenFrameExampleCom.htm”’

}

This function is capable, of course, of attaching extra parameters to the request’s query string.

The second function, called handleResponse(), is called when the hidden frame returns from the server.
This function can do anything you want to deal with the data that is returned, but for this example, the
data is just displayed in an alert:

function handleResponse(sResponseText) {
alert(“The server returned: “ + sResponseText);

}

The page that handles the hidden requests must output a normal HTML page with a <textarea/> ele-
ment enclosing the returned data. Using <textarea/> makes it easy to deal with multiple lines of data,
which is difficult to do when outputting the data directly into JavaScript. This page must also call the
handleResponse() function in the main frame with the data that was returned:

<html>
<head>

<title>Hidden Frame Example (Response)</title>
<script type=”text/javascript”>

490

Chapter 16

19_579088 ch16.qxd 3/28/05 11:42 AM Page 490

window.onload = function () {
parent.frames[0].handleResponse(

document.forms[“formResponse”].result.value);
};

</script>

</head>
<body>

<form name=”formResponse”>
<textarea name=”result”>This is some data coming from the

server.</textarea>
</form>

</body>
</html>

The important part about this window is the onload event handler, which calls the handleResponse()
function from the first frame, passing in the value contained in the <textarea/> element. It’s very
important that the handleResponse() function be called no matter what, even if there is an error, to
prevent the JavaScript in the main frame from hanging while waiting for a response.

The previous code shows data already inserted into the <textarea/> for illustrative purposes; in
reality, this data would be output by some server-side logic.

When the getServerInfo() function is called in the main frame, the request is sent through the hidden
frame, and the data is passed back through the handleResponse() function and is displayed in an
alert. This is obviously a very simplistic example, but it illustrates the basic idea. The added bonus is
that this form of client-server communication works in any browser that supports framesets and
JavaScript (including older browsers like Netscape Navigator 4.x).

Using iframes
The hidden frame method evolved with the introduction of iframes into HTML. An iframe is a frame that
can be inserted anywhere in an HTML document, completely disconnected from any frameset. With this
innovation, developers changed the hidden frame method to create hidden iframes on the fly for the
purpose of communicating with the server.

To make use of iframes, you must make some changes to the getServerInfo() function:

var oHiddenFrame = null;

function getServerInfo() {
if (oHiddenFrame == null) {

oHiddenFrame = document.createElement(“iframe”);
oHiddenFrame.name = “hiddenFrame”;
oHiddenFrame.id = “hiddenFrame”;
oHiddenFrame.style.height = “0px”;
oHiddenFrame.style.width = “0px”;
oHiddenFrame.style.position = “absolute”;
oHiddenFrame.style.visibility = “hidden”;
document.body.appendChild(oHiddenFrame);

}

491

Client-Server Communication

19_579088 ch16.qxd 3/28/05 11:42 AM Page 491

setTimeout(function () {
frames[“hiddenFrame”].location.href = “HiddenFrameExampleCom2.htm”;

}, 10);
}

The first change is the addition of a global variable names oHiddenFrame. Because the same frame can
be used repeatedly for requests, there’s no reason to keep creating new iframes for each request. Instead,
this global variable holds a reference to the iframe when it’s created. When getServerInfo() is called,
it first checks to see if an iframe already exists by checking the value of oHiddenFrame. If it doesn’t exist,
the frame is created using the DOM createElement() method.

Creating the iframe using the DOM is very specific. Both the name and id attribute must be set to equal
“hiddenFrame” in order for this to work in most browsers (some require name to be set, others require
id). Next, the appearance of the frame is specified to have a height and width of 0, an absolute position,
and visibility set to “hidden”. All these changes are necessary to ensure that this new addition to the
document doesn’t disrupt the display. Lastly, the iframe is added to the document body.

When the iframe has been created and added, it takes most browsers (notably Mozilla and Opera) a cou-
ple of milliseconds to recognize it as a new frame in the frames collection. To take this into account, the
setTimeout() function is used to create a wait of 10 milliseconds before the request is sent. By the time
the request executes, the browsers recognizes the new frame, and it’s sent off without a hitch.

The only modification necessary to the page providing the response is to use parent instead of
parent.frames[0] to call handleResponse():

<html>
<head>

<title>Hidden Frame Example (Response)</title>
<script type=”text/javascript”>

window.onload = function () {
parent.handleResponse(document.forms[“formResponse”].result.value);

};
</script>

</head>
<body>

<form name=”formResponse”>
<textarea name=”result”>This is some data coming from the

server.</textarea>
</form>

</body>
</html>

Now calling getServerInfo() has the exact same effect as the previous example using the traditional
hidden frame technique. This technique requires, of course, that the browser support iframes in the first
place, which leaves older browsers like Netscape Navigator 4.x out of the loop.

492

Chapter 16

19_579088 ch16.qxd 3/28/05 11:42 AM Page 492

HTTP Requests
In many modern browsers, it’s possible to initiate HTTP requests directly from JavaScript and get the
result back in JavaScript, completely eliminating the need for hidden frames and other such trickery.

At the center of this exciting new capability is an object Microsoft created called the XML HTTP request.
This object came along with MSXML but wasn’t fully explored until recently. Essentially, an XML HTTP
request is a regular HTTP request with added functionality for sending and receiving XML code.

To create a new XML HTTP request in Internet Explorer, you must once again use an ActiveXObject:

var oRequest = new ActiveXObject(“Microsoft.XMLHTTP”);

Like the XML DOM in IE, the XML HTTP request object has multiple versions, so a function is necessary
to make sure you’re using the most recent one:

function createXMLHTTP() {

var arrSignatures = [“MSXML2.XMLHTTP.5.0”, “MSXML2.XMLHTTP.4.0”,
“MSXML2.XMLHTTP.3.0”, “MSXML2.XMLHTTP”,
“Microsoft.XMLHTTP”];

for (var i=0; i < arrSignatures.length; i++) {
try {

var oRequest = new ActiveXObject(arrSignatures[i]);

return oRequest;

} catch (oError) {
//ignore

}
}

throw new Error(“MSXML is not installed on your system.”);
}

After you have created it, you can use the open() method to specify the request to send. This method
takes three arguments: the type of request to send (GET, POST, or any other HTTP method supported by
the server); the URL of the request; and a Boolean indicating whether the request should be sent asyn-
chronously or not (the same as you do with the XML DOM load() method). For example:

oRequest.open(“get”, “example.txt”, false);

After opening the request, you must send it by using the send() method. This method always requires
an argument, which can be null most of the time:

oRequest.send(null);

If you choose to make the request synchronously (setting the third argument to false), the JavaScript
interpreter waits for the request to return. When the response comes back, it fills the status property

493

Client-Server Communication

19_579088 ch16.qxd 3/28/05 11:42 AM Page 493

with the HTTP status of the request (200 is good, 404 means the page wasn’t found, and so on). It also
fills the statusText property with a message describing the status and the responseText property
with the text received back from the server. Additionally, if the text is XML, it fills the responseXML
property, which is an XML DOM object constructed from the returned text. For example:

var oRequest = createXMLHTTP();
oRequest.open(“get”, “example.txt”, false);
oRequest.send(null);
alert(“Status is “ + oRequest.status + “ (“ + oRequest.statusText + “)”);
alert(“Response text is: “ + oRequest.responseText);

This example gets a plain text file and displays its contents. The status and statusText are also
displayed.

Requesting an XML file also fills the responseXML property:

var oRequest = createXMLHTTP();
oRequest.open(“get”, “example.xml”, false);
oRequest.send(null);
alert(“Status is “ + oRequest.status + “ (“ + oRequest.statusText + “)”);
alert(“Response text is: “ + oRequest.responseText);
alert(“Tag name of document element is: “ +

oRequest.responseXML.documentElement.tagname);

This example shows the tag name of the document element loaded into the responseXML property.

If you decide to send an asynchronous request, you must use the onreadystatechange event handler
to see when the readyState property is equal to 4 (the same as with the XML DOM). All the same
properties and methods are used, with the slight alteration that the response properties can’t be used
until the request has completed:

var oRequest = createXMLHTTP();
oRequest.open(“get”, “example.txt”, true);
oRequest.onreadystatechange = function () {

if (oRequest.readyState == 4) {
alert(“Status is “ + oRequest.status + “ (“ + oRequest.statusText + “)”);
alert(“Response text is: “ + oRequest.responseText);

}
}
oRequest.send(null);

This example doesn’t work when run locally: It must be run on a server because the
XML HTTP object relies on the server-reported mime type to determine if the
requested file is an XML document.

If you run this example locally, the status is 0 and the statusText is “Unknown”
because a local file read isn’t an actual HTTP request.

494

Chapter 16

19_579088 ch16.qxd 3/28/05 11:42 AM Page 494

As in the synchronous calls, the status, statusText, and responseText properties are filled with data.

With asynchronous calls, it’s possible to cancel the request altogether by calling the abort() method
before the readyState reaches 4:

var oRequest = createXMLHTTP();
oRequest.open(“get”, “example.txt”, true);
oRequest.onreadystatechange = function () {

if (oRequest.readyState == 3) {
oRequest.abort();

} else if (oRequest.readyState == 4) {
alert(“Status is “ + oRequest.status + “ (“ + oRequest.statusText + “)”);
alert(“Response text is: “ + oRequest.responseText);

}
}
oRequest.send(null);

In this example, the alerts are never displayed because the request is aborted when readyState is 3.

Using headers
Every HTTP request sends along with it a group of headers with additional information. In everyday
browser use, these headers are hidden because they aren’t needed by the end user. However, these head-
ers can be quite necessary to developers, and so the XML HTTP request object provides methods to get
and set them.

The first is a method called getAllResponseHeaders(), which returns a string containing all the
headers attached to the response. Here’s a sample of the type of information returned by
getAllResponseHeaders():

Date: Sun, 14 Nov 2004 18:04:03 GMT
Server: Apache/1.3.29 (Unix)
Vary: Accept
X-Powered-By: PHP/4.3.8
Connection: close
Content-Type: text/html; charset=iso-8859-1

From this header information, you can tell that the server is running Apache on Unix with PHP support
and the file being returned is an HTML file. If you want to retrieve only one of the headers, you can use
the getResponseHeader() method with the name of header to retrieve. For example, to retrieve the
value of the “Server” header, you can do this:

var sValue = oRequest.getResponseHeader(“Server”);

Reading request headers is just part of the equation; the other part is setting your own headers on the
request before it’s sent.

Using the setRequestHeader() method, you can set headers on the XML HTTP request before it’s sent
out. For example:

oRequest.setRequestHeader(“myheader”, “yippee”);
oRequest.setRequestheader(“weather”, “warm”);

495

Client-Server Communication

19_579088 ch16.qxd 3/28/05 11:42 AM Page 495

Assuming that you have some server-side logic designed to take these headers into account, you can
provide some additional functionality and/or evaluation of requests.

Copycat implementations
This object proved to be so popular among Web developers that other browser makers copied the imple-
mentation. Mozilla was the first of the copycats, creating a JavaScript object called XMLHttpRequest that
behaves exactly the same as Microsoft’s version. Both Safari (as of 1.2) and Opera (as of 7.6) copied Mozilla’s
implementation, creating their own XMLHttpRequest objects.

To allow creation of an XML HTTP request in a common way, just add this simple wrapper class to your
pages:

if (typeof XMLHttpRequest == “undefined” && window.ActiveXObject) {
function XMLHttpRequest() {

var arrSignatures = [“MSXML2.XMLHTTP.5.0”, “MSXML2.XMLHTTP.4.0”,
“MSXML2.XMLHTTP.3.0”, “MSXML2.XMLHTTP”,
“Microsoft.XMLHTTP”];

for (var i=0; i < arrSignatures.length; i++) {
try {

var oRequest = new ActiveXObject(arrSignatures[i]);

return oRequest;

} catch (oError) {
//ignore

}
}

throw new Error(“MSXML is not installed on your system.”);
}

}

This code allows you to use the following line to create an XML HTTP request in all browsers that support it:

var oRequest = new XMLHttpRequest();

After this point, the XML HTTP request can be used in all supporting browsers as described in the previ-
ous sections.

Performing a GET request
The most common type of request on the Web is a GET request. Every time you enter a URL into your
browser and click Go, you are sending a GET request to a server.

Parameters to a GET request are attached to the end of the URL with a question mark, followed by
name/value pairs separated by an ampersand. For example:

496

Chapter 16

19_579088 ch16.qxd 3/28/05 11:42 AM Page 496

http://www.somewhere.com/page.php?name1=value1&name2=value2&name3=value3

Each name and value must be encoded for use in a URL (in JavaScript, this can be done using
encodeURIComponent()). The URL has a maximum size of 2048 characters (2 MB). Everything after
the question mark is referred to as the query string, and these parameters are accessible by server-side
pages.

To send a GET request using the XML HTTP request object, just place the URL (with all parameters) into
the open() method and make sure this first argument is “get”:

oRequest.open(“get”, “http://www.somewhere.com/page.php?name1=value1”, false);

Because the parameters must be added to the end of an existing URL, it’s helpful to have a function that
handles all the details:

function addURLParam(sURL, sParamName, sParamValue) {
sURL += (sURL.indexOf(“?”) == -1 ? “?” : “&”);
sURL += encodeURIComponent(sParamName) + “=” + encodeURIComponent(sParamValue);
return sURL;

}

The addURLParam() function takes three arguments: the URL to add the parameters to, the parameter
name, and the parameter value. First, the function checks to see if the URL already contains a question
mark (to determine if other parameters already exist). If it doesn’t, then the function appends a question
mark; otherwise, it adds an ampersand. Next, the name and value are encoded and appended to the end
of the URL. The last step is to return the updated URL.

This function can be used to build up a URL for a request:

var sURL = “http://www.somwhere.com/page.php”;
sURL = addURLParam(sURL, “name”, “Nicholas”);
sURL = addURLParam(sURL, “book”, “Professional JavaScript”);
oRequest.open(“get”, sURL, false);

You can then handle the response as usual.

Performing a POST request
The second most common type of HTTP request is a POST. Typically, POST requests are used when
entering data into a Web form because they are capable of sending much more data (around 2 GB) than
GET requests.

Just like a GET request, the parameters for a POST request must be encoded for use in a URL and sepa-
rated with an ampersand, although the parameters aren’t attached to the URL. When sending a POST
request, you pass in the parameters as an argument to the send() method:

oRequest.open(“post”, “page.php”, false);
oRequest.send(“name1=value1&name2=value2”);

497

Client-Server Communication

19_579088 ch16.qxd 3/28/05 11:42 AM Page 497

It also helps to have a function for formatting the parameters for a POST request:

function addPostParam(sParams, sParamName, sParamValue) {
if (sParams.length > 0) {

sParams += “&”;
}
return sParams + encodeURIComponent(sParamName) + “=”

+ encodeURIComponent(sParamValue);
}

This function is similar to the addURLParam() function, although addPostParam() deals with a string
of parameters instead of a URL. The first argument is the existing list of parameters, the second argu-
ment is the parameter name, and the third is the parameter value. The function checks whether the
length of the parameters string is longer than 0. If so, then it adds an ampersand to separate the new
parameter. Otherwise, it returns the parameter string with the new name and value added. Here’s a brief
example of its use:

var sParams = “”;
sParams = addPostParam(sParams, “name”, “Nicholas”);
sParams = addPostParam(sParams, “book”, “Professional JavaScript”);
oRequest.open(“post”, “page.php”, false);
oRequest.send(sParams);

Even though this looks like a valid POST request, a server-side page expecting a POST actually won’t
interpret this code correctly. That’s because all POST requests sent by a browser have the “Content-
Type” header set to “application/x-www-form-urlencoded”. Fortunately, that can be easily cor-
rected using the setRequestHeader() method:

var sParams = “”;
sParams = addPostParam(sParams, “name”, “Nicholas”);
sParams = addPostParam(sParams, “book”, “Professional JavaScript”);
oRequest.open(“post”, “page.php”, false);
oRequest.setRequestHeader(“Content-Type”, “application/x-www-form-urlencoded”);
oRequest.send(sParams);

Now this example works just like a form POSTed from a Web browser.

LiveConnect Requests
Netscape Navigator introduced a concept called LiveConnect, a capability that enables JavaScript to inter-
act with and use Java classes. To work, the user must have a Java Runtime Environment (JRE) installed,
and Java must be enabled in the browser. Almost all modern browsers (with Internet Explorer being the
major exception) support LiveConnect, which provides access to all the HTTP-related libraries that Java
offers.

Performing a GET request
If you know how to perform a GET request using Java, it’s very easy to convert the request into a
LiveConnect script. The first step is to create a new instance of java.net.URL:

498

Chapter 16

19_579088 ch16.qxd 3/28/05 11:42 AM Page 498

function httpGet(sURL) {

var oURL = new java.net.URL(sURL);

//...
}

Note that when you use LiveConnect, you must furnish the complete name of the class, including the
package, to instantiate a Java object. After the URL is created, you open up an input stream and create a
reader to get the data back. The preferred way to do this is to create an InputStreamReader and then a
BufferedReader based on it:

function httpGet(sURL) {

var oURL = new java.net.URL(sURL);
var oStream = oURL.openStream();
var oReader = new java.io.BufferedReader(new

java.io.InputStreamReader(oStream));

//...
}

With the buffered reader created, all that’s left to do is read the data back from the server. A buffered
reader gets data line-by-line, so you create a variable to build up the response into the full text. This
response text variable (named sResponseText) must start out as an empty string, not null, so that
string concatenation can be used to build the result:

function httpGet(sURL) {

var oURL = new java.net.URL(sURL);
var oStream = oURL.openStream();
var oReader = new java.io.BufferedReader(new

java.io.InputStreamReader(oStream));
var sResponseText = “”;

var sLine = oReader.readLine();
while (sLine != null) {

sResponseText += sLine + “\n”;
sLine = oReader.readLine();

}

//...
}

Because the buffered reader returns lines, each line must be appended with a new line character to
ensure that it remains in the same form, as it should. The last steps are to close the reader and return
the response text:

function httpGet(sURL) {

var oURL = new java.net.URL(sURL);
var oStream = oURL.openStream();

499

Client-Server Communication

19_579088 ch16.qxd 3/28/05 11:42 AM Page 499

var oReader = new java.io.BufferedReader(new
java.io.InputStreamReader(oStream));

var sResponseText = “”;

var sLine = oReader.readLine();
while (sLine != null) {

sResponseText += sLine + “\n”;
sLine = oReader.readLine();

}

oReader.close();
return sResponseText;

}

Now this function can be used to send a GET request using the same addURLParam() function defined
earlier:

var sURL = “http://www.somwhere.com/page.php”;
sURL = addURLParam(sURL, “name”, “Nicholas”);
sURL = addURLParam(sURL, “book”, “Professional JavaScript”);
var sData = httpGet(sURL);

Unfortunately, you don’t get all the same information, such as status, when using LiveConnect. Also,
this function creates a synchronous call without the option of creating an asynchronous one. But the
advantage is that this works in Netscape Navigator 4.x and most versions of Opera, as well as any other
browser that supports LiveConnect.

Performing a POST request
As discussed earlier, POST requests are slightly different from GET requests in their format and behav-
ior. However, it’s possible to send a POST request just as easily as a GET request using LiveConnect. To
start, you provide a URL and a parameters string (using addPostParam() from earlier in the chapter).
Then, you create another java.net.URL instance. Unlike last time, this code uses a Connection object
to facilitate the request:

function httpPost(sURL, sParams) {

var oURL = new java.net.URL(sURL);
var oConnection = oURL.openConnection();

//...
}

Next, you must determine the settings on the connection. Because a POST request is considered
bi-directional, the connection must be set up to accept input and output by using the setDoInput()

Unlike the XML HTTP request object, LiveConnect requires you to enter the com-
plete URL for the request, starting with http://. This is because the Java objects
don’t have any sort of context for resolving relative URLs.

500

Chapter 16

19_579088 ch16.qxd 3/28/05 11:42 AM Page 500

and setDoOutput() methods. Additionally, the connection shouldn’t use any cached data, so
setUseCaches() is given an argument of false. Just as with the XML HTTP request object, you must
set the “Content-Type” header to the appropriate value using the setRequestProperty() method:

function httpPost(sURL, sParams) {

var oURL = new java.net.URL(sURL);
var oConnection = oURL.openConnection();

oConnection.setDoInput(true);
oConnection.setDoOutput(true);
oConnection.setUseCaches(false);
oConnection.setRequestProperty(“Content-Type”,

“application/x-www-form-urlencoded”);

//...
}

After the connection has been set up, it’s possible to get an output stream for the request. It’s on the out-
put stream that you place the parameter string using the writeBytes() method. After that, a call to
flush() sends the data along, and the stream can be closed:

function httpPost(sURL, sParams) {

var oURL = new java.net.URL(sURL);
var oConnection = oURL.openConnection();

oConnection.setDoInput(true);
oConnection.setDoOutput(true);
oConnection.setUseCaches(false);
oConnection.setRequestProperty(“Content-Type”,

“application/x-www-form-urlencoded”);

var oOutput = new java.io.DataOutputStream(oConnection.getOutputStream());
oOutput.writeBytes(sParams);
oOutput.flush();
oOutput.close();

//...
}

The next part of the function gets the input stream for the connection and reads the data in, line-by-line,
similar to the httpGet() function. Then, the input stream is closed, and the response text returned as
the function value:

function httpPost(sURL, sParams) {

var oURL = new java.net.URL(sURL);
var oConnection = oURL.openConnection();

oConnection.setDoInput(true);
oConnection.setDoOutput(true);
oConnection.setUseCaches(false);

501

Client-Server Communication

19_579088 ch16.qxd 3/28/05 11:42 AM Page 501

oConnection.setRequestProperty(“Content-Type”,
“application/x-www-form-urlencoded”);

var oOutput = new java.io.DataOutputStream(oConnection.getOutputStream());
oOutput.writeBytes(sParams);
oOutput.flush();
oOutput.close();

var sLine = “”, sResponseText = “”;

var oInput = new java.io.DataInputStream(oConnection.getInputStream());
sLine = oInput.readLine();

while (sLine != null){
sResponseText += sLine + “\n”;
sLine = oInput.readLine();

}

oInput.close();

return sResponseText;
}

Using this function, you can submit a POST request like the following:

var sParams = “”;
sParams = addPostParam(sParams, “name”, “Nicholas”);
sParams = addPostParam(sParams, “book”, “Professional JavaScript”);
var sData = httpPost(“http://www.somewere.com/reflectpost.php”,sParams);

Intelligent HTTP Requests
With two completely different ways of doing HTTP requests, it’s helpful to have a common set of func-
tions to avoid headaches. First, you determine whether you can use the XML HTTP request object or not.
To check, see if the type of XMLHttpRequest is equal to “object” or if window.ActiveXObject is
valid:

var bXmlHttpSupport = (typeof XMLHttpRequest == “object” || window.ActiveXObject);

Next, create a placeholder object named Http to contain the methods:

var Http = new Object;

The get() method
The first method is called, simply, get(), and its purpose is to perform a GET request on a specific URL.
This method has two arguments: the URL to send the request to and a callback function. Callback func-
tions are used in many programming languages to notify the developer when a request has concluded.
For the get() method, the callback function has the following format:

502

Chapter 16

19_579088 ch16.qxd 3/28/05 11:42 AM Page 502

function callback_function(sData) {
//interpret data here

}

The callback function is passed the data retrieved from the HTTP request as its only argument, sData.
You are then free to do as you please with the result. In order to use the callback function, you must con-
sider a couple of details.

First, when using the XML HTTP request object to perform a GET, it’s easy to set up a callback function
by using an asynchronous request and calling the function when the readyState is equal to 4:

Http.get = function (sURL, fnCallback) {

if (bXmlHttpSupport) {

var oRequest = new XMLHttpRequest();
oRequest.open(“get”, sURL, true);
oRequest.onreadystatechange = function () {

if (oRequest.readyState == 4) {
fnCallback(oRequest.responseText);

}
}
oRequest.send(null);

}

//...

};

This section of code uses JavaScript closures to allow the callback function, fnCallback, to be used in
the onreadystatechange event handler. Because fnCallback is just a function, it’s called like any
other function and passed the responseText of the request when readyState is 4.

If there is no support for the XML HTTP request, you must check whether LiveConnect is enabled.
Unfortunately, no property or setting indicates whether LiveConnect can be used. The only way to tell is
to ensure that Java is enabled in the browser by using the navigator.javaEnabled() method and
determine whether the type of java and java.net are not undefined:

Http.get = function (sURL, fnCallback) {

if (bXmlHttpSupport) {

var oRequest = new XMLHttpRequest();
oRequest.open(“get”, sURL, true);
oRequest.onreadystatechange = function () {

if (oRequest.readyState == 4) {
fnCallback(oRequest.responseText);

}
}
oRequest.send(null);

503

Client-Server Communication

19_579088 ch16.qxd 3/28/05 11:42 AM Page 503

} else if (navigator.javaEnabled() && typeof java != “undefined”
&& typeof java.net != “undefined”) {

//LiveConnect code here
}

};

After you have determined if LiveConnect can be used, it’s time to use the httpGet() function. To make
the call almost asynchronous, use the setTimeout() function to delay its start for a short time; then call
the callback function with the httpGet() call as its argument.

Http.get = function (sURL, fnCallback) {

if (bXmlHttpSupport) {

var oRequest = new XMLHttpRequest();
oRequest.open(“get”, sURL, true);
oRequest.onreadystatechange = function () {

if (oRequest.readyState == 4) {
fnCallback(oRequest.responseText);

}
}
oRequest.send(null);

} else if (navigator.javaEnabled() && typeof java != “undefined”
&& typeof java.net != “undefined”) {

setTimeout(function () {
fnCallback(httpGet(sURL));

}, 10);
}
//...

};

The only thing left to do is to provide a message for those unfortunate users whose browsers can’t make
HTTP requests from JavaScript:

Http.get = function (sURL, fnCallback) {

if (bXmlHttpSupport) {

var oRequest = new XMLHttpRequest();
oRequest.open(“get”, sURL, true);
oRequest.onreadystatechange = function () {

if (oRequest.readyState == 4) {
fnCallback(oRequest.responseText);

}
}
oRequest.send(null);

} else if (navigator.javaEnabled() && typeof java != “undefined”
&& typeof java.net != “undefined”) {

504

Chapter 16

19_579088 ch16.qxd 3/28/05 11:42 AM Page 504

setTimeout(function () {
fnCallback(httpGet(sURL));

}, 10);
} else {

alert(“Your browser doesn’t support HTTP requests.”);
}

};

With this completed, it’s now possible to send a GET request using common code in a variety of
browsers:

var sURL = “http://www.somewhere.com/page.php”;
sURL = addURLParam(sURL, “name”, “Nicholas”);
sURL = addURLParam(sURL, “book”, “Professional JavaScript”);
Http.get(sURL, function(sData) {

alert(“Server sent back: “ + sData);
});

Remember, because LiveConnect requires you to enter the full URL for the request, you must always
supply the full URL with the Http.get() method, just in case the browser uses LiveConnect.

The post() method
The post() method works similarly to the get() method, except it needs three arguments: the URL, the
parameters string, and the callback function. For simplicity’s sake, a callback function for post() uses
the same format as the one used for get().

The method itself is also remarkably similar to get(), using the same if..else statements. The only
differences are the setting of the request header, the number of arguments, and the fact that the method
sends a POST request instead of a GET. Here’s the method:

Http.post = function (sURL, sParams, fnCallback) {

if (bXmlHttpSupport) {

var oRequest = new XMLHttpRequest();
oRequest.open(“post”, sURL, true);
oRequest.setRequestHeader(“Content-Type”,

“application/x-www-form-urlencoded”);
oRequest.onreadystatechange = function () {

if (oRequest.readyState == 4) {
fnCallback(oRequest.responseText);

}
}
oRequest.send(sParams);

} else if (navigator.javaEnabled() && typeof java != “undefined”
&& typeof java.net != “undefined”) {

setTimeout(function () {
fnCallback(httpPost(sURL, sParams));

505

Client-Server Communication

19_579088 ch16.qxd 3/28/05 11:42 AM Page 505

}, 10);
} else {

alert(“Your browser doesn’t support HTTP requests.”);
}

};

Using this method, it’s now possible to perform POST requests in a variety of browsers using the same
code:

var sURL = “http://www.somewhere.com/page.php”;
var sParams = “”;
sParams = addPostParam(sParams, “name”, “Nicholas”);
sParams = addPostParam(sParams, “book”, “Professional JavaScript”);
oHttp.post(sURL, function(sData) {

alert(“Server sent back: “ + sData);
});

Once again, always supply the full URL when using this method.

Practical Uses
Although all this client-server communication stuff is really cool, it also has some practical applications.
You can, for example, create a search page that never unloads. It simply makes a request to get new data
for each new search you submit. This is the model used by Amazon.com’s new Web search engine, A9
(http://www.a9.com).

After your first A9 search, you can choose to add images, movies, books, and other information to your
search results by clicking on the various options on the right of the screen. As you do, a new area in the
page opens up, and new search results are loaded using the hidden iframe technique discussed earlier in
the chapter.

Several Web sites use JavaScript client-server communication to provide search results. One such site,
the Bitflux blog (http://blog.bitflux.ch/), uses a XML HTTP request objects for its LiveSearch capa-
bility. This cool technique uses the onkeypress event handler to detect what the user types into the
search box. For each new letter entered into the text box, the site does a search and displays its results in
a layer directly on the page, without ever reloading the page.

Another good use for this type of communication is to provide functionality that isn’t available in
JavaScript. For instance, you may want to validate some data the user has entered against a database.
Using the onblur event handler, you can make a request back to the database to determine if the value
is valid, and then present an error message to the user if is the data is not valid. The possibilities really
are endless.

506

Chapter 16

19_579088 ch16.qxd 3/28/05 11:42 AM Page 506

Summary
In this chapter you learned all about JavaScript client-server communication. The chapter began with a
discussion of the oldest form of client-server communication involving JavaScript: cookies. You learned
that cookies are small pieces of data stored on the user’s machine that can be used for a variety of pur-
poses. Because cookies are accessible to both the server and through JavaScript, this provides a unique
way for the two to communicate.

The chapter then moved on to make requests back to the server using hidden frames. The implementa-
tion of this technique using both hidden frames and iframes was discussed.

You then learned how newer browsers enable you to make HTTP requests directly back to the server
from JavaScript without the need for hidden frames. The XML HTTP request object was introduced, and
you learned how to send both GET and POST requests to the server. For those browsers that don’t sup-
port XML HTTP requests, you learned about using LiveConnect, the capability to interface with Java
from JavaScript, to send GET and POST requests.

Lastly, you learned how to create a cross-browser method of executing both GET and POST requests.
This method takes advantage of the browser’s built-in capabilities, whether these use the XML HTTP
request or LiveConnect to make the requests.

507

Client-Server Communication

19_579088 ch16.qxd 3/28/05 11:42 AM Page 507

19_579088 ch16.qxd 3/28/05 11:42 AM Page 508

Web Services

In the past two years, Web services have become a hot topic. Thanks to Microsoft’s .NET initiative,
developers are now able to create, deploy, and access Web services quickly and easily. The idea is
simple: Servers can provide (publish) Web services over the Internet. Any developer can access this
functionality from a program, seamlessly providing the functionality encapsulated by the Web ser-
vice. But Web services aren’t available only to compiled programs; they are also available to Web
pages using JavaScript.

A Quick Web Service Primer
Understanding what Web services are is the key to understanding how to use them. This section
covers some of the basics.

What is a Web service?
Think of a Web service as a function call, only this function exists on a server while being called
from the client. This necessitates that messages be sent back and forth between the client (called
the consumer) and the server. These messages are in a format called SOAP (Simple Object Access
Protocol), which is an XML-based wrapper for Web service messages. The SOAP message is trans-
ferred using a standard HTTP request (although other protocols can be used as well) with a couple
of special request headers:

❑ SOAPAction — Gives a specific SOAP action to take if there are multiple possible actions.
If only one action is possible, this is typically left as an empty string.

❑ Content-Type — Set to text/xml

20_579088 ch17.qxd 3/28/05 11:42 AM Page 509

The SOAP message itself is contained inside an envelope, which is used to transfer the Web service call to
and from the server. A typical SOAP message looks like this:

<soap:Envelope xmlns:n=”custom namespace goes here”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<soap:Body soap:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
<!-- method-specific XML goes here -->

</soap:Body>

</soap:Envelope>

In the case of the client sending the message, the XML in <soap:Body/> includes a method to call and
parameters. When the server sends the message, <soap:Body/> includes the result(s) of the call. The
result can be a single value or a complex data type with multiple values.

Naturally, it is important that the client sends the SOAP message in the correct format, but how does a
developer know how to format the message? This is where WSDL comes in.

WSDL
Web Services Description Language (WSDL, pronounced wizdel) is used to describe the capabilities, for-
mat, and other important information about Web services. WSDL files define the various operations a
Web service provides. Operations are specific remote functions that can be called for a given service (a Web
service can have one or more operations). It helps to think of a Web service as an object with one or more
methods; the object itself represents the service whereas the operations are considered the methods.

The basic sections of a WSDL file are the following:

❑ Types — Defines the types used for the Web service calls. These types are based on XML
Schema data types and can represent simple types — such as numbers or strings — or complex
types, similar to objects that have properties.

❑ Messages — Defines the input arguments and the output value for a given operation. Each
operation gets two message definitions, one for the operation request and one for the response.

❑ Port Type — Defines the operations that are available from the Web service.

❑ Bindings — Defines the format of the messages sent and received with each operation.

❑ Service — Defines how to access the Web service operations.

A standard WSDL file has the following format:

<definitions name=”name_of_service”
targetNamespace=”target_namespace”
xmlns:tns=”location_of_wsdl”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”

510

Chapter 17

20_579088 ch17.qxd 3/28/05 11:42 AM Page 510

xmlns=”http://schemas.xmlsoap.org/wsdl/”>
<types>

<!-- custom types defined here -->
</types>
<message name=”request_name”>

<!-- parameters -->
</message>
<message name=”response_name”>

<!-- return value(s) -->
</message>
<portType name=”porttype_name”>

<operation name=”method_name”>
<input message=”tns:request_name” />
<output message=”tns:response_name” />

</operation>
</portType>
<binding name=”binding_name” type=”tns:porttype_name”>

<soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http”
/>

<operation name=”method_name”>
<soap:operation soapAction=”soap_action” />
<input>

<soap:body use=”encoded” namespace=”urn_string”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” />

</input>
<output>

<soap:body use=”encoded” namespace=”urn_string”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” />

</output>
</operation>

</binding>
<service name=”service_name”>

<documentation><!-- description of service --></documentation>
<port name=”port_name” binding=”tns:binding_name”>

<soap:address location=”webservice_url” />
</port>

</service>
</definitions>

As you can tell, WSDL files can be very complex and actually aren’t intended for the human eye. The
intended use of these files is to provide programs (and their components) with enough information to
call the Web service operations on their own. With most Web service toolkits, you never have to write a
WSDL file; it is automatically generated for you.

Sometimes, however, you must locate certain pieces of information within a WSDL file in order to access
a Web service (depending on the type of development you are doing). The important pieces of informa-
tion in a WSDL file are the following:

❑ The name of the method you want to call (method_name)

❑ The SOAP action (soap_action)

❑ The target namespace for the input of the method you want call (urn_string)

511

Web Services

20_579088 ch17.qxd 3/28/05 11:42 AM Page 511

❑ The port name (port_name)

❑ The location of the service (webservice_url)

To understand how to find this information, it’s best to look at a real WSDL file.

The Temperature Service is a Web service provided by XMethods (http://www.xmethods.net), a pub-
lic Web service publisher as well as a directory of publicly accessible Web services. This service accepts a
five-digit U.S. zip code and then returns the current temperature for that area. The WSDL file for the
Temperature Service looks like this:

<definitions name=”TemperatureService”
targetNamespace=”http://www.xmethods.net/sd/TemperatureService.wsdl”
xmlns:tns=”http://www.xmethods.net/sd/TemperatureService.wsdl”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns=”http://schemas.xmlsoap.org/wsdl/”>

<message name=”getTempRequest”>
<part name=”zipcode” type=”xsd:string” />

</message>
<message name=”getTempResponse”>

<part name=”return” type=”xsd:float” />
</message>
<portType name=”TemperaturePortType”>

<operation name=”getTemp”>
<input message=”tns:getTempRequest” />
<output message=”tns:getTempResponse” />

</operation>
</portType>
<binding name=”TemperatureBinding” type=”tns:TemperaturePortType”>

<soap:binding style=”rpc” transport=”http://schemas.xmlsoap.org/soap/http”
/>

<operation name=”getTemp”>
<soap:operation soapAction=”” />
<input>

<soap:body use=”encoded” namespace=”urn:xmethods-Temperature”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” />

</input>
<output>

<soap:body use=”encoded” namespace=”urn:xmethods-Temperature”
encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/” />

</output>
</operation>

</binding>
<service name=”TemperatureService”>

<documentation>Returns current temperature in a given U.S.
zipcode</documentation>

<port name=”TemperaturePort” binding=”tns:TemperatureBinding”>
<soap:address

location=”http://services.xmethods.net:80/soap/servlet/rpcrouter” />
</port>

</service>
</definitions>

512

Chapter 17

20_579088 ch17.qxd 3/28/05 11:42 AM Page 512

The pertinent information (highlighted previously) from this file is the following:

❑ The only operation is called getTemp.

❑ The SOAP action for getTemp is “” (an empty string).

❑ The target namespace for the input to getTemp is urn:xmethods-Temperature.

❑ The name of the port is TemperaturePort.

❑ The service location is http://services.xmethods.net:80/soap/servlet/rpcrouter.

Depending on the type of consumer used to access Web services, you may need to know some or all the
previous information.

Web Services in Internet Explorer
The folks over at Microsoft were kind enough to create an HTML component (also called a behavior)
that hides a lot of the ugly details from developers who wish to consume Web services. An HTML com-
ponent is essentially a COM component defined using XML and JavaScript. HTML components can
have properties, methods, and support custom events, making them ideal for creating functionality that
doesn’t exist in the browser by default. The downside is that only Internet Explorer supports HTML
components, and thus Microsoft’s WebService component does not work in other browsers. The
WebService component is available for free from Microsoft’s Web site (http://msdn.microsoft.com/
library/default.asp?url=/workshop/author/webservice/webservice.asp).

Using the WebService component
After the webservice.htc file is downloaded, place it in the directory with your JavaScript files. You
can then access the functionality by applying it to an HTML element. To do this, use the style attribute
and the custom behavior CSS attribute:

<div style=”behavior(webservice.htc)”></div>

After doing this, the HTML element takes on all the properties, methods, and events of the WebService
component. To use the component as a JavaScript object, just assign an ID to the element:

<div id=”service” style=”behavior(webservice.htc)”></div>

Then use the document.getElementById() method to retrieve a reference:

var oService = document.getElementById(“service”);

Next, you need to specify a Web service to use by calling useService(). The useService() method
accepts two parameters: the WSDL file describing the service and a friendly name for the service. A typi-
cal call looks like this:

oService.useService(sUrl, “FriendlyName”);

513

Web Services

20_579088 ch17.qxd 3/28/05 11:42 AM Page 513

When this method is called, the component downloads the WSDL file and uses it to create JavaScript
objects and methods to access the Web service. This functionality is available through an object identi-
fied by the friendly name specified in the useService() method:

var oSpecificService = oService.FriendlyName;

This object has a method, callService(), that makes the actual request to the server. The method
accepts a function name to call and any number of parameters to pass to that function. When executed,
callService() returns a call ID that is necessary when you want to retrieve a value from the result.
The format for this method call is as follows:

iCallID = oService.FriendlyName.callService(sFuncName, sParam0, sParam1..sParamN);

The Web service call is then made asynchronously, so JavaScript execution won’t stop and wait for the
response from the server. Instead, you must use the onresult event handler to handle the response. You
can either assign the event handler right in the HTML or by using JavaScript. Using HTML, just treat
onresult as if it were any other event handler:

<div id=”service” style=”behavior(webservice.htc)” onresult=”alert(‘Done’) “></div>

To assign the event handler using JavaScript, assign the function directly to the onresult property:

oService.onresult = function () {
alert(“Done”);

};

When the result event is fired, it creates an event object with a special property called result. This
property contains an object with all the details about the response. The properties of result are listed in
the following table:

Property Name Data Type Description

error Boolean True if an error occurred during the call

errorDetail Object An object that contains all the information about an
error, if one occurs. The two properties of interest are
the code that returns the error code and the string that
returns a human-readable error message.

id Number The call ID created by callService()

raw String The raw SOAP code being sent back from the server

SOAPHeader Array An array of headers used for the call

value Variant The value returned by the call. This may be a simple data
type, like a number or string, or it could be an object.

So how do you use this object? Here’s a simple example:

var iCallID = -1;

oService.onresult = function () {

514

Chapter 17

20_579088 ch17.qxd 3/28/05 11:42 AM Page 514

var oResult = window.event.result;

if (oResult.id == iCallID) {
if (oResult.error) {

alert(“An error occurred: “ + oResult.errorDetail.string);
} else {

alert(“Received back: “ + oResult.value);
}

}
};

iCallID = oService.FriendlyName.callService(...);

In this code, the onresult event handler first checks whether the result it’s handling is the response for
the appropriate request (in this way, a single WebService object can handle multiple requests). If the ID
of the result matches the call ID, the result is processed. The function ensures that there are no errors; if
an error occurs, the detailed error message is returned; otherwise the returned value is displayed.

Of course, it is up to you if you want to use the value property directly or use the raw property to parse
the returned SOAP code on your own.

WebService component example
This example uses the Temperature Service described in the sample WSDL earlier in the chapter. Because
the Microsoft WebService component requires you to know only the WSDL location and the name of the
operation you want to call, you don’t need the WSDL to get this working.

The Web page for this example consists of a text box (with the ID “txtZip”) and a button (labeled “Get
Temperature”). The user enters a zip code into the text box and then clicks the button to get the temper-
ature in that zip code (he calls the Web service). Of course, you also need an element to which you can
assign the WebService component. Here is the HTML:

<html>
<head>

<title>IE Web Service Example</title>
<script type=”text/javascript”>

//...
</script>

</head>
<body>

<p><input type=”text” id=”txtZip” size=”10” /><input type=”button”
value=”Get Temperature” onclick=”callWebService()” />

<div id=”service” style=”behavior:url(webservice.htc)”
onresult=”onWebServiceResult()”></div>

</body>
</html>

The JavaScript to run this page is fairly simple:

var iCallID = null;
var sWSDL = “http://www.xmethods.net/sd/2001/TemperatureService.wsdl”;

515

Web Services

20_579088 ch17.qxd 3/28/05 11:42 AM Page 515

function callWebService() {

var sZip = document.getElementById(“txtZip”).value;
var oService = document.getElementById(“service”);

oService.useService(sWSDL, “Temperature”);
iCallID = oService.Temperature.callService(“getTemp”, sZip);

}

function onWebServiceResult() {
var oResult = event.result;

if (oResult.id == iCallID) {

var oDiv = document.getElementById(“divResult”);

if (oResult.error) {
alert(“An error occurred:” + oResult.errorDetail.string);

} else {
alert(“It is currently “ + oResult.value

+ “ degrees in that zip code.”);
}

}
}

The first function, callWebService(), gets the zip code from the text box and calls the Web service. It
first loads the WSDL file with the friendly name Temperature. The next line uses the callService()
method, passing in the operation name and the zip code.

The other function, onWebServiceResult(), displays the result of the call. This function uses the same
basic algorithm as the example earlier to check whether the result ID is equal to the call ID. It then reports
either an error or the returned value.

Web Services in Mozilla
Beginning in Mozilla 1.0, Web developers have had access to Web services. Mozilla currently supports
two ways of handling Web services: using a low-level SOAP API or using WSDL proxy objects (intro-
duced in Mozilla 1.4). Before exploring the WSDL-based functionality, it’s important to understand the
basic SOAP API.

Windows XP Service Pack 2 has some significant effects on the WebService compo-
nent. First, you must specify that files ending with .htc are served with a mime type
of text/x-component (this must be done on the server). Second, the WebService
component is forbidden access to external Web sites, meaning that you can only
access Web services hosted on the same server as the page attempting to call them.

516

Chapter 17

20_579088 ch17.qxd 3/28/05 11:42 AM Page 516

Enhanced privileges
Contacting a different server using JavaScript is expressly prohibited in Mozilla for security reasons.
This is certainly troublesome given that the very nature of Web services requires contacting different
servers. There is the capability, however, to have the user approve a script and allow it cross-domain
access. By default, Mozilla installations don’t allow this type of advanced privilege (once again, for secu-
rity reasons). You can, however, override this setting in the all.js configuration file (which is located in
Program Files\Mozilla\defaults\pref on Windows-based machines).

Open up all.js in any text editor and find the following line:

pref(“signed.applets.codebase_principal_support”, false);

Change this line to:

pref(“signed.applets.codebase_principal_support”, true);

After setting this preference, you must close all running Mozilla instances and restart the browser. This
is only the first step. The second step is to request the Universal Browser Read privilege, which allows
cross-domain communication. Here’s how:

try {
netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”);

} catch (e) {
alert(“Script not signed.”);

}

When the second line is executed, the user is presented with a dialog box explaining that the script
would like enhanced privileges. The user can then click Yes to allow the privileges, or No to deny them
(Figure 17-1).

Figure 17-1

If the user clicks Yes, the code continues on; if the user clicks No, an error occurs and, in the previous
example, the alert indicates to the script that the privilege has been denied.

517

Web Services

20_579088 ch17.qxd 3/28/05 11:42 AM Page 517

Using the SOAP methods
Mozilla provides a very large amount of SOAP functionality, but because this is an older API, only the
most common usage is discussed here.

The basis of Mozilla’s SOAP functionality is the SOAPCall object. This object embodies the entire Web
service request and response. The SOAPCall object is created just like any other object:

var oSoapCall = new SOAPCall();

The next step is to set the location of the Web service by assigning it to the SOAPCall object’s
transportURI property:

oSoapCall.transportURI = “http://address_of_service”;

This address is not the address of the WSDL, as it is in Internet Explorer. Instead, this is the actual URL
for the Web service itself (as defined in the WSDL element <soap:address location=”http://
address_of_service” /> element).

After setting the location of the service, you create an array to handle the SOAP parameters. This is just a
regular array filled with SOAPParameter objects. The SOAPParameter constructor takes two arguments:
the value of the parameter, and the name (in that order). The array can contain any number of parame-
ters and is created like this:

var arrParams = new Array;
arrParams[0] = new SOAPParameter(“value”, “name”);

Next you create the SOAPCall object’s encode() method on the array, which encodes the parameters
for proper transmission. For this method, you need to know the name of the operation and the target
namespace:

oSOAPCall.encode(0, “operation_name”, “target_namespace”, 0, null,
arrParams.length, arrParams);

The arguments are:

❑ The version of SOAP used:

❑ 0 for version 1.1

❑ 1 for version 1.2

❑ 65535 if the version is unknown

Note that you cannot assume that users have their browsers set up to allow the
UniversalBrowserRead privilege. If you plan on using this method of Web service
invocation, you must create a signed script (explained more fully in Chapter 19,
“Deployment Issues”). Also note that this is Mozilla-specific code that does not run
properly in IE, so it is important to do a browser detect before requesting a signature
for your script.

518

Chapter 17

20_579088 ch17.qxd 3/28/05 11:42 AM Page 518

❑ The operation name (such as “getTemp”)

❑ The target namespace.

❑ The number of header blocks provided for the request

❑ An array of SOAPHeaderBlock objects (not required for most Web services)

❑ The number of parameters being passed

❑ Any array of SOAPParameter objects

Lastly, use the asyncInvoke() method to make the call to the server. This method takes only one argu-
ment, a function that is called when the Web service returns a result. If you have a function named
onWebServiceResult, the code looks like this:

oSoapCall.asyncInvoke(onWebServiceResult);

The callback function itself has the following format:

function onWebServiceResult(oResponse, oSoapCall, iError) {
//...

}

Callback functions accept three arguments: a SOAPResponse object, the SOAPCall object, and an error
code. The SOAPResponse object contains all the information about a successful request. The properties
are listed in the following table.

Property Description

actionURI The SOAPAction header string (may be an empty string)

body The <Body/> element of the SOAP response

encoding A SOAPEncoding object indicating the encoding of the response

envelope The <Envelope/> element of the SOAP response

fault A SOAPFault object if a fault occurs; null otherwise

header The <Header/> element of the SOAP response or null if it doesn’t exist

message A DOM document for the SOAP response

methodName The name of the method invoked. Most of the time, this is the tag name
of the element represented by the body property (typically “Body”).

targetObjectURI The target namespace of the response

version The SOAP version number (if it can be obtained from the envelope). One
of the following constants: 0 for version 1.1, 1 for version 1.2, and 65535
if the version is unknown.

The second argument of the callback function is the same instance of SOAPCall that was used to make the
request. The third argument is an error code that indicates a problem with the client-server communication;

519

Web Services

20_579088 ch17.qxd 3/28/05 11:42 AM Page 519

when there is no error, this is equal to 0. If the Web service itself causes the error, a SOAPFault object is cre-
ated and stored in the fault property of the SOAPResponse.

If there is a communication error, the error code is a number other than 0. If the Web service itself causes
an error, then the oResponse.fault object is not null. This object has faultString and faultCode
properties that provide additional details about the fault.

If there isn’t an error or a fault, you must get the data from the SOAP response. To do this, use the
getParameters() method of the SOAPResponse object, which returns an array of the parameters
returned by the Web service:

var oParamCount = null;
var arrParams = oResponse.getParameters(false, oParamCount);

The first parameter of the getParameters() method indicates whether the response is in RPC format
or not. It is false for non-RPC and true for RPC (although using false works most of the time). The
second parameter is just an object that is filled with the number of parameters returned. In many cases,
the parameter count isn’t necessary because the number of parameters can be determined by using the
length property on the returned array, and so typically the call is made like this:

var arrParams = oResponse.getParameters(false, {});

Note that, in this case, the second parameter is an object literal without a reference. The second parame-
ter must be included even if it isn’t used, so this is acceptable.

Each parameter has an element property that gives you access to the corresponding element in the
SOAP response. This is an XML element with all the methods and attributes of any XML element. To get
the string value of a parameter, you typically do something like this:

var sValue = arrParams[0].element.firstChild.nodeValue;

What you do with the value after that point, of course, is up to you.

To use the Temperature Service with the Mozilla SOAP objects, you need several pieces of information: the
Web service URL and the target namespace. Remember that this information is located in the WSDL file:

var sURL = “http://services.xmethods.net:80/soap/servlet/rpcrouter”;
var sTargetNamespace = “urn:xmethods-Temperature”;

The HTML for this example is the same as the IE example, with the exclusion of the extra <div/> ele-
ment needed for the WebService component.

It is also possible to call the service synchronously by using the invoke() method,
which returns a SOAPResponse object as its function value.

520

Chapter 17

20_579088 ch17.qxd 3/28/05 11:42 AM Page 520

Once again, the first function is named callWebService(). The first step must be a request for
enhanced privileges as described previously. If the privileges aren’t given, there’s no point in the func-
tion continuing, so it returns. If the privileges are enabled, then the zip code is retrieved and placed in a
SOAPParameter array. Lastly, the SOAP call is created and made asynchronously:

function callWebService() {

try {
netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”);

} catch (e) {
alert(e);
return false;

}

var sZip = document.getElementById(“txtZip”).value;

var arrParams = new Array;
arrParams[0] = new SOAPParameter(sZip, “zipcode”);

var oSoapCall = new SOAPCall();
oSoapCall.transportURI = sURL;
oSoapCall.encode(0, “getTemp”, sTargetNamespace, 0, null,

arrParams.length, arrParams);
oSoapCall.asyncInvoke(onWebServiceResult);

}

Next, the onWebServiceResult() function handles the response. Most of the function is dedicated to
determining if an error occurred during the Web service call:

function onWebServiceResult(oResponse,oSoapCall,iError) {

if (iError != 0) {
alert(“An unspecified error occurred.”);

} else if (oResponse.fault != null) {
alert(“An error occurred (code=” + oResponse.fault.faultCode

+ “, string=” + oResponse.fault.faultString + “)”);
} else {

var oParams = oResponse.getParameters(false, {});
alert(“It is currently “ + oParams[0].element.firstChild.nodeValue

+ “ degrees in that zip code.”);
}

}

The first step in this function is to check the error code iError. If it’s not equal to 0, that means there
isn’t a response to evaluate, so an error message is displayed. If the error code is 0, the next step is to
determine that there wasn’t a SOAP error. This ensures that the fault property is null (if it’s not, a
detailed error message is displayed).

When the two other conditions fail, the response must be valid. So, the value of the first parameter is
displayed in a user-friendly message.

521

Web Services

20_579088 ch17.qxd 3/28/05 11:42 AM Page 521

Using WSDL proxies
As you can tell, using the Mozilla SOAP functionality is quite a process and requires a bit of research
(looking at the WSDL file) to use properly. Additionally, the hassle of signing a script for cross-domain
communication isn’t something developers really want to deal with. Being a forward-looking organiza-
tion, Mozilla realized this and came up with an answer: WSDL proxies.

The basic idea of WSDL proxies is that SOAP requests should be allowed to go through provided that
they are valid. In the case of Web services, the server is only vulnerable insofar as it’s vulnerable to any
Web service consumer. Presumably, each server publishes only functionality that can’t hurt itself. With
this in mind, it was decided that if the Web service request could be flagged as such, it should be allowed
to communicate with other servers. This resulted in the WSDL proxies introduced in Mozilla 1.4.

A WSDL proxy is essentially an object that represents a Web service by creating operations as methods
of the proxy. You can specify the methods to make calls either synchronously or asynchronously, but all
methods of a proxy must use the same synchronicity (all are synchronous or all are asynchronous — you
can’t pick and choose).

Unfortunately, using WSDL proxies isn’t as straightforward as using the low-level SOAP functionality or
the Microsoft WebService component.

To begin, you create a WebServiceProxyFactory:

var oFactory = new WebServiceProxyFactory();

The factory’s only implemented method (there are others in the documentation) is createProxyAsync(),
which creates a proxy asynchronously, so as not to interfere with regular JavaScript processing. The
method accepts the following arguments:

❑ The location of the WSDL file

❑ The port name

❑ A qualifier, which is always set to an empty string (this argument is only used when the object
is used at the C++ level of Mozilla)

❑ A Boolean value indicating whether the methods of the created proxy should be called
asynchronously

❑ A callback object whose methods are notified when certain events occur during proxy creation

That last argument, the callback object, must have two methods: onLoad(), which is called when the
proxy has been loaded completely, and onError(), which is called if an error occurs during proxy cre-
ation. Each method accepts one argument. The onLoad() method is passed the created proxy object;
the onError() method is passed an error message.

Typically, the callback object is created using object literal notation, such as the following:

var oCallbackObject = {
onLoad: function (oCreatedProxy) {

//...
},

522

Chapter 17

20_579088 ch17.qxd 3/28/05 11:42 AM Page 522

onError: function (sMessage) {
//...

}
}

This object is passed into the createProxyAsync() method as in the following:

oFactory.createProxyAsync(“wsdl_location”, “port_name”, “”, true, oCallbackObject);

The createProxyAsync() method should always be called within a try..catch statement because it
throws an error if the method fails for any reason.

After this method is called, a new thread is started to load the WSDL proxy. When loaded, the onLoad()
method is called and the new proxy is passed in. If you are only making a single Web service call, you
may want to have this method call the specific operation. Otherwise, you’ll probably want to store a ref-
erence to the proxy, such as this one, for later use:

var oProxy = null;

var oCallbackObject = {
onLoad: function (oCreatedProxy) {

oProxy = oCreatedProxy;
},

onError: function (sMessage) {
alert(sMessage);

}
}

In this example, a global variable named oProxy is created that stores the created proxy. In the
onLoad() method, the created proxy is assigned into oProxy so it can be accessed in other functions.

Even though you can specify whether the proxy operations are called synchronously or asynchronously,
the synchronous calls don’t always work. It’s always best to use asynchronous calls.

To call an operation asynchronously requires yet another callback object. This object must have a call-
back method for each operation you intend to call. The name of the callback method is always the
name of the operation followed by Callback (for instance, the callback method for getTemp is called
getTempCallback). This method receives as its arguments the response data from the Web service call.
To understand this better, it’s best to take a look at an example.

This example once again uses the Temperature Service. The important pieces of information are the
WSDL file location and the port name. Here are the global variables:

var oProxy = null;
var sWSDL = “http://www.xmethods.net/sd/2001/TemperatureService.wsdl”;
var sPort = “TemperaturePort”;

Next, you need a callback object for creation of the proxy. This simply assigns the created proxy to the
oProxy variable and assigns a callback object for the operations using the setListener() method:

523

Web Services

20_579088 ch17.qxd 3/28/05 11:42 AM Page 523

var oProxyCreateCallback = {
onLoad: function(oCreatedProxy) {

oProxy = oCreatedProxy;
oProxy.setListener(oGetTempCallback);

},

onError: function(sError) {
alert(sError);

}
};

The callback object for operations is called oGetTempCallback, and looks like this:

var oGetTempCallback = {
getTempCallback: function (iDegrees) {

alert(“It is currently “ + iDegrees + “ degrees in that zip code.”);
}

}

As you can see, the only method is getTempCallback(). Because the Web service simply returns a
number, the first (and only) argument contains a simple number. The argument is named iDegrees,
but, in practice, it doesn’t matter what you name the argument. This method is called as soon as
getTemp returns a value and displays the temperature in a user-friendly message.

Next, a function is needed to create the WSDL proxy. In many cases, it’s best to create the proxy during
the page’s onload event handler because of the asynchronous nature of proxy creation, so this example
assigns the function directly to window.onload:

function createProxy() {
try {

var oFactory = new WebServiceProxyFactory();
oFactory.createProxyAsync(sWSDL, sPort, “”, true, oProxyCreateCallback);

} catch (oError) {
alert(oError.message);

}
}

window.onload = createProxy;

This function creates a WebServiceProxyFactory and uses it to create a proxy, assigning the location
of the WSDL file, the port name, and the callback object. It also specifies all methods to be called
asynchronously.

Last is the callWebService() function. The function first checks that the proxy has been created before
attempting to make the call. If the proxy has been created, then getTemp() is called as a method of the
proxy and the zip code is passed in:

function callWebService() {

if (oProxy) {
var sZip = document.getElementById(“txtZip”).value;
oProxy.getTemp(sZip);

524

Chapter 17

20_579088 ch17.qxd 3/28/05 11:42 AM Page 524

} else {
alert(“Proxy not available.”);

}

}

When getTemp() is called in this function, another thread is started to make the Web service call. The
result is passed into the oGetTempCallback object. This function is called when the user clicks the Get
Temperature button (this example uses the same HTML page as the previous examples).

The way this code executes is very non-linear (see Figure 17-2), but it gets the job done.

Figure 17-2

A Cross-Browser Approach
Once again, the differences in how browsers access Web services are so vast that you can’t create a cross-
browser method using the current browser functionality. But because Web services are nothing more
than standard HTTP requests with a special format, it’s possible to create a cross-browser approach
using the XML HTTP request object. For this to work, you use the browser detection script and the script
creating a XMLHttpRequest constructor for Internet Explorer explained earlier in the book.

The WebService object
Each Web service is unique, so how can you possibly develop a standard way to use them? The answer
is to create a generalized template object definition that can be overridden to make it more specific. This
template object is called WebService and is defined this way:

2
var oProxyCreateCallback = {
 onLoad: function(...) {
 ...
 },
 ...
}

function createProxy() {
 ...
}

var oGetTempCallback = {
 getTempCallback: function() {
 ...
 }
};

function callWebService() {
 ...
}

1

4

3

525

Web Services

20_579088 ch17.qxd 3/28/05 11:42 AM Page 525

function WebService() {
this.action = “”;
this.url = “”;

}

WebService.prototype.buildRequest = function () {
return “”;

};

WebService.prototype.handleResponse = function (sSOAP) {
};

WebService.prototype.send = function () {

if (isMoz) {
try {
netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”);
} catch (oError) {

alert(oError);
return false;

}
}

var oRequest = new XMLHttpRequest;
oRequest.open(“post”, this.url, false);
oRequest.setRequestHeader(“Content-Type”, “text/xml”);
oRequest.setRequestHeader(“SOAPAction”, this.action);
oRequest.send(this.buildRequest());

if (oRequest.status == 200) {
return this.handleResponse(oRequest.responseText);

} else {
throw new Error(“Request did not complete, code “ + oRequest.status);

}
};

The WebService object is the basis of cross-browser Web service support. It has two properties: the URL
for the SOAP request (url) and the SOAP action (action). Both properties are initialized to null; sub-
classes fill these in as needed. The buildRequest() method is intended to build the SOAP message
string; but in this case, it just returns an empty string. The handleResponse() method receives the
SOAP message from the response and returns the appropriate value.

The send() method does the heavy lifting for this functionality. First, if the browser is Mozilla, you
must request the UniversalBrowserRead privilege. Then, an XMLHttpRequest object is created
(remember, this code uses the wrapper for IE), and the SOAP request is built up. This request includes
opening a request to the specified URL, setting the content type to “text/xml” and setting the SOAP
action. Then, the buildRequest() method is called to get the SOAP message and send it using the
XMLHttpRequest’s send() method.

Lastly, if the request returns a status of 200, the text returned is interpreted by the handleResponse()
and that value is returned. Otherwise, an error is thrown. The intent is to allow you to use a WebService
object like this:

526

Chapter 17

20_579088 ch17.qxd 3/28/05 11:42 AM Page 526

var oService = new WebService();
var vResult = oService.send();
alert(“Service returned “ + vResult);

This object, of course, doesn’t have enough information to be used on its own. However, it can be used
to create a wrapper for any other Web service.

The Temperature Service
Once again, it’s time to take a look at the Temperature Service. To do this, the TemperatureService
object inherits from WebService and defines both the url and action properties:

function TemperatureService() {
WebService.apply(this);
this.url = “http://services.xmethods.net:80/soap/servlet/rpcrouter”;
this.zipcode = “”;

}

TemperatureService.prototype = new WebService();

Remember that the SOAP action for the Temperature Service is actually an empty string, so the default
value (inherited from WebService) is fine. A new property, zipcode, is used to store the zip code to check.

For the buildRequest() method, you first determine the format for the SOAP request. This can easily
be done for any Web service by using the WSDL analyzer tool available at XMethods (http://www
.xmethods.net/ve2/Tools.po). These methods enable you to see the request and response formats
for any Web service with a WSDL file.

The SOAP request for the Temperature Service looks like this:

<soap:Envelope xmlns:n=”urn:xmethods-Temperature”
xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xs=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
<soap:Body soap:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

<n:getTemp>
<zipcode xsi:type=”xs:string”><!-- zipcode here --></zipcode>

</n:getTemp>
</soap:Body>

</soap:Envelope>

A whole lot of information is contained in this simple SOAP request, but the important line (which is
highlighted) is where the zip code should be entered. The buildRequest() method must create this
SOAP string with the zip code inserted:

TemperatureService.prototype.buildRequest = function () {
var oBuffer = new StringBuffer();

oBuffer.append(“<soap:Envelope xmlns:n=\”urn:xmethods-Temperature\” “);
oBuffer.append(“xmlns:soap=\”http://schemas.xmlsoap.org/soap/envelope/\” “);

527

Web Services

20_579088 ch17.qxd 3/28/05 11:42 AM Page 527

oBuffer.append(“xmlns:soapenc=\”http://schemas.xmlsoap.org/soap/encoding/\” “);
oBuffer.append(“xmlns:xs=\”http://www.w3.org/2001/XMLSchema\” “);
oBuffer.append(“xmlns:xsi=\”http://www.w3.org/2001/XMLSchema-instance\”>”);
oBuffer.append(“<soap:Body soap:encodingStyle=”);
oBuffer.append(“\”http://schemas.xmlsoap.org/soap/encoding/\”>”);
oBuffer.append(“<n:getTemp><zipcode xsi:type=\”xs:string\”>”);
oBuffer.append(this.zipcode);
oBuffer.append(“</zipcode></n:getTemp></soap:Body></soap:Envelope>”);

return oBuffer.toString();
};

Because the SOAP request string is so long, this method uses the StringBuffer() object created earlier
in the book to build up the string. Note that the zipcode property is used here to insert the zip code in
question instead of passing it in as an argument. If the zip code is passed in as an argument, you must
rewrite the send() method to take this into account; this way, the send() method can be used as-is.

The handleResponse() method expects to receive a SOAP response string as its only argument. Once
again, this format can be determined by using the WSDL analyzer tool from XMethods:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV=”http://schemas.xmlsoap.org/soap/envelope/”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<SOAP-ENV:Body>
<ns1:getTempResponse

SOAP-ENV:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:ns1=”urn:xmethods-Temperature”>

<return xsi:type=”xsd:float”><!--returned value--></return>
</ns1:getTempResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Despite all the extra code, the only part of interest is what is contained within the <return/> element.
The easiest way to extract that data from the string is to use a regular expression; there’s no need for
expensive DOM parsing and operations in this case (for more complicated Web services, however, that
may be an option). After the value is extracted, the parseFloat() function can be used to get the
floating-point value:

TemperatureService.prototype.handleResponse = function (sResponse) {
var oRE = /<return .*?>(.*)<\/return>/gi;
oRE.test(sResponse);
return parseFloat(RegExp[“$1”]);

};

The only thing left to do is modify the send() method to accept an argument (the zip code) because the
zipcode property must be assigned for the method to function properly (remember, the send() method
calls buildRequest(), which uses the zipcode property to create the SOAP string).

To accomplish this, you first must create a pointer to the original send() method:

TemperatureService.prototype.webServiceSend = TemperatureService.prototype.send;

528

Chapter 17

20_579088 ch17.qxd 3/28/05 11:42 AM Page 528

This line of code creates a property called webServiceSend that points to the send() function. This
procedure makes it possible to redefine send() without losing the original functionality:

TemperatureService.prototype.send = function (sZipcode) {
this.zipcode = sZipcode;
return this.webServiceSend();

};

The first thing the new send() method does is assign the zipcode property. Then, it returns the
result of the webServiceSend() method (which is a call to the original send() method). The
TemperatureService object can be used like this:

var oService = new TemperatureService();
var fResult = oService.send(“90210”);
alert(“Temperature is “ + fResult + “degrees”);

Using the TemperatureService object
To recreate the temperature example one more time, the code is much simpler:

<html>
<head>

<title>Cross-Browser Web Service Example</title>
<script type=”text/javascript” src=”detect.js”></script>
<script type=”text/javascript” src=”stringbuffer.js”></script>
<script type=”text/javascript” src=”http.js”></script>
<script type=”text/javascript” src=”webservice.js”></script>
<script>

function callWebService() {
var sZip = document.getElementById(“txtZip”).value;
var oService = new TemperatureService();
var fResult = oService.send(sZip);

alert(“It is currently “ + fResult + “ degrees in that zip code.”);
}

</script>
</head>
<body>

<p><input type=”text” id=”txtZip” size=”10” />
<input type=”button” value=”Get Temperature” onclick=”callWebService()” />
</p>

</body>
</html>

As you can see, the callWebService() function is greatly simplified in this example. The zip code is
obtained from the text box; then the TemperatureService object is created, and the zip code is passed
into the send() method, which returns the temperature in degrees. An alert is then displayed indicating
the temperature.

529

Web Services

20_579088 ch17.qxd 3/28/05 11:42 AM Page 529

Summary
Web services are a new technology and, indeed, a new technology for JavaScript. In this chapter, you
learned how two browsers, Internet Explorer and Mozilla, are trying to give JavaScript developers access
to Web service functionality.

You learned how Microsoft created an HTML component to encapsulate Web service calls. This
WebService component reads Web service information from a WSDL file and develops a friendly object
to handle the requests and responses.

You also learned how Mozilla is still developing its Web service functionality. It provides a low-level
SOAP API and also WSDL proxies. Issues of cross-domain security and advanced privileges are also dis-
cussed as they relate to Web services.

Lastly, you were introduced to a cross-browser Web service solution that, although not pretty, can pro-
vide a common interface for use in both Internet Explorer and Mozilla.

530

Chapter 17

20_579088 ch17.qxd 3/28/05 11:42 AM Page 530

Interacting with Plugins

The Web is much more than HTML and images. Today, Web sites across the world make use of
many different types of plugins. Plugins give Web browsers the capability to embed small (and
sometimes large) programs or objects into a page without interfering with the underlying HTML.
When a browser encounters content inside of an <object/> element, it hands over rendering
responsibility to the associated plugin.

Originally, the plugin of choice was a Java applet. Applets allowed Web developers to include Java
functionality directly in a Web page. Since that time, many more plugins have been developed.
This chapter focuses on the most popular plugins used today and how you can use JavaScript to
interact with them.

Why Use Plugins?
In the beginning, Web pages were fairly static creations. Before the advent of the DOM, after a page
was loaded its appearance remained the same until it was unloaded. Traditional developers lived in
a world of dynamic interfaces, where everything the user did caused a change on the screen, but
when they turned to the Web, they found the environment severely lacking in dynamism. Then
came Java.

Java originally wasn’t designed for use in Web browsers because, at the time of its inception, the
World Wide Web was nothing but a concept. However, as the Internet and the Web gained popu-
larity, the original Java developers saw the opportunity to enrich the Web browsing experience by
using Java. The result was an experimental browser called HotJava, which was written by Sun
Microsystems as a proof of concept for how Java applets could be embedded into Web pages. For
the first time ever, Web pages were no longer static; instead, there was movement, user interaction
without page reloading, and a bright new future for the Web.

Around the same time, Netscape began developing an architecture for helper applications. The basic
idea was to enable the browser to recognize the mime type of information and then launch the

21_579088 ch18.qxd 3/28/05 11:43 AM Page 531

appropriate application to view the content. When Netscape 2.0 was introduced, it featured a new
plugin architecture, essentially providing the capability to embed these helper applications directly
into Web pages.

Since that time, Web browsers have come a long way. All browsers today allow Java applets to be
embedded in pages, along with a whole host of other plugins. Of course, dynamic pages can be created
today using the DOM, so is there really any reason to use plugins? The answer is yes.

Plugins continue to push the envelope for Web page interaction, offering a whole host of advantages
over built-in browser technology. Although many browsers have built-in HTTP request capabilities for
JavaScript, the only way to have true bi-directional client-server communication using sockets is through
plugins. Likewise, the only way to embed and animate vector graphics is through the use of plugins. As
an added bonus, most plugins work across browsers without any problem.

The bottom line is that plugins are able to provide functionality that the browsers either can’t or won’t
provide natively. Because companies don’t have to wait for a browser to be updated in order to update a
plugin, plugins are an attractive option for many developers.

Popular Plugins
Many plugins are popular today on the World Wide Web. The most notable are the following:

❑ Macromedia Flash Player — Macromedia Flash provides vector graphic-based animation and
an ever-increasing amount of complex functionality that can be embedded in Web pages using
the Flash Player. Flash has arguably become the most popular use of a plugin. Some Web sites
are written entirely in Flash. The Flash Player is shipped with almost every Web browser and
works on Windows, MacOS, Linux, and most Unix systems.

❑ Java Plugin — Still one of the leaders in plugin technology, the Java plugin enables you to
embed Java applets in Web pages. It works on almost all platforms.

❑ Apple Quicktime — Enables the embedding of Apple Quicktime videos in Web pages.
Quicktime videos can be standard, start-to-finish videos or Quicktime VR (Virtual Reality)
movies that allow the user to pan around a 3D room. Quicktime is available for Windows
and MacOS.

❑ Real Player — Real Player was the early leader in delivering streaming audio and video over
the Internet. Today, it’s in a tight race with Quicktime and Windows Media Player (see follow-
ing) for control of streaming media. It does a good job — with support for almost every com-
puting platform.

❑ Windows Media Player — Not to be outdone, Microsoft offers its own embeddable movie player
featuring the Windows Media Player. Although it is capable of handling Quicktime movies and its
own format, the Windows Media Player is available only on Windows operating systems.

❑ Adobe SVG Viewer — Scalable Vector Graphics (SVG) is a new XML-based language for creat-
ing vector graphics. Although browsers still don’t support the language natively, Adobe has
taken up the battle and introduced the SVG Viewer, which can be used to embed SVG images in
Web pages. The SVG Viewer is currently available on most platforms, with support for Internet
Explorer and Netscape 4.x; Mozilla support is not yet available.

532

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 532

❑ ActiveX Objects — ActiveX objects are everywhere in Internet Explorer. You can use them from
JavaScript and you can embed them in Web pages. Although not technically a plugin, because
ActiveX support exists in Internet Explorer itself, ActiveX objects are embedded into a Web page
the same way as other plugins.

❑ Macromedia Shockwave — Before there was Flash, there was Shockwave. Shockwave plays
files created in Macromedia Director, a multimedia programming environment allowing devel-
opers to create interactive demos, games, and other advanced content. Although not as popular
since Flash gained notoriety, Shockwave is still available on both Windows and MacOS.

MIME Types
When talking about plugins, the concept of MIME types is central. MIME stands for Multipurpose
Internet Mail Extension, a simple text string originally designed to determine the format of e-mail
attachments. From that humble beginning, MIME types (also called content types) have grown into the
de facto standard for identifying file formats on the Internet.

Each MIME type is made up of a media type and a subtype. The media type can be application, image,
audio, video, text, message, model, and multipart. The subtype is typically a more unique identifier,
specifying anything from the type of compression scheme used to the file extension. The media type
and subtype are separated by a forward-slash (/), such as text/css, which tells the browser (or other
Internet application) that the file is plain text and is also a CSS style sheet. Browser plugins work by
mapping themselves to specific MIME types, telling the browser that when this specific type of file has
to be handled, it should be done by the plugin.

Naturally, several MIME types are handled by the browser itself, such as text/javascript (JavaScript
files), text/css (CSS style sheets), image/gif (GIF-encoded images), image/jpeg (JPEG-encoded
images), text/xml (XML files), and text/html (HTML files). Many others, however, are handled by
plugins.

Embedding Plugins
To embed a plugin into a Web page, HTML offers the <object/> element. At the very least, <object/>
requires four attributes:

❑ type — The MIME type of the file or object being embedded

❑ data — The URL of a file to load into the object

❑ width — The horizontal space the object should take up in the page

❑ height — The vertical space the object should take up in the page

The browser internally equates the MIME type of a file with a particular plugin, so setting the type
attribute is enough to tell the browser which plugin to load. For example, the content type for a Flash file
is application/x-shockwave-flash, so the following code is all you need to embed a Flash movie:

<object type=”application/x-shockwave-flash” data=”myflashmovie.swf”
width=”100” height=”100”></object>

533

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 533

If there is no registered plugin for the MIME type, the browser may (depending on which one you are
using) offer to install the correct plugin for the file. Many browsers also look for the pluginspage
attribute, which is an unofficial attribute of <object/> (it doesn’t exist in the HTML specification).
This attribute specifies where to find the plugin for the embedded object if it isn’t already on the user’s
machine. Example:

<object type=”application/x-shockwave-flash” data=”myflashmovie.swf”
pluginspage=”http://www.macromedia.com/shockwave/download/download.cgi?P1_Prod_Vers
ion=ShockwaveFlash”

width=”100” height=”100”></object>

Including parameters
Sometimes an object requires additional parameters before it can start running. To specify parameters for
an embedded object, use the <param/> element with its name and value attributes:

<object type=”application/x-shockwave-flash” data=”myflashmovie.swf”
width=”100” height=”100”>

<param name=”message” value=”Hello World!” />
</object>

Each object can have any number of parameters. Including parameters that aren’t necessary doesn’t
have any negative effect.

Netscape 4.x
The old Netscape 4.x browsers don’t support the <object/> element, so you use the old Netscape pro-
prietary <embed/> element. The <embed/> element accepts most of the same attributes as <object/>
(indeed, <object/> was modeled after <embed/>), except the src attribute is used instead of data:

<embed type=”application/x-shockwave-flash” src=”myflashmovie.swf”
width=”100” height=”100”>

<param name=”message” value=”Hello World!” />
</embed>

As you can see, this approach is very similar to using <object/>. The problem is that newer browsers
don’t support this element (it has officially been deprecated). So if you plan on supporting Netscape 4.x,
the preferred solution is to use <object/> with an <embed/> element inside of it, such as in the following:

<object type=”application/x-shockwave-flash” data=”myflashmovie.swf”
width=”100” height=”100”>

<param name=”message” value=”Hello World!” />
<embed type=”application/x-shockwave-flash” src=”myflashmovie.swf”

width=”100” height=”100”>
<param name=”message” value=”Hello World!” />

</embed>
</object>

Using this approach, the newer browsers ignore the <embed/> element and use <object/> to embed
the file; Netscape 4.x ignores <object/> and uses <embed/> to embed the file.

534

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 534

Detecting Plugins
As with most Web technology, two types of plugins are available: those from Microsoft and those from
others. The Microsoft way uses ActiveX technology, which you may remember as the way to create
XML-related objects; the other way has been called Netscape-style plugins because Netscape Navigator
introduced the concept of plugins to the Web. Until recently, Internet Explorer supported Netscape-style
plugins in addition to ActiveX controls. Beginning with Internet Explorer 5.5 Service Pack 2 (Windows
only), however, Microsoft eliminated support for the Netscape-style plugins.

The main difference between the two types of plugins is the architecture. ActiveX plugins are built on
Microsoft’s ActiveX platform whereas Netscape-style plugins are built on top of the Netscape Plugin
API. Originally, every browser (including Internet Explorer) was forced to support the Netscape-style
plugins because Netscape was the dominant browser and only compatible browsers could compete.
Although many will speculate why Microsoft ended support for Netscape-style plugins, it has created
a clear rift in the world of plugins. Many plugin developers are required to create both Netscape-style
plugins and ActiveX wrappers for these plugins in order to support Internet Explorer.

Today, browsers are separated into those that don’t support Netscape-style plugins (such as Internet
Explorer on Windows) and those that do (such as Mozilla, Opera, Safari, and many other browsers).

Because of these differences, you have different ways of detecting whether a plugin is installed on a
given browser.

Detecting Netscape-style plugins
Since Netscape 3.0, many browsers (notably those based on Mozilla) allow JavaScript to determine
which MIME types are mapped to plugins, ultimately enabling you to determine if a given plugin is
installed. This is determined through the help of the window.mimeTypes collection.

Two types of Netscape-style plugins exist: the style used in Netscape 4.x and the newer Gecko style used
in Mozilla. The details of the differences are of no consequence to JavaScript developers because both
styles are accessed the same way.

Each MIME type registered to a plugin is present in window.mimeTypes, indexed both by number and
by MIME type, allowing you to access a MIME type directly or to iterate through the collection. An
object with four properties represents each MIME type:

❑ description — A description of the type of file represented by the MIME type

❑ enabledPlugin — Reference to a plugin object with information about the specific plugin

❑ suffixes — The file suffixes associated with this MIME type (such as mapping .gif to
image/gif)

❑ type — The MIME type

You can print out a list of all visible MIME types and their descriptions by running a simple script:

<html>
<head>

<title>MIME Types Example</title>

535

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 535

</head>
<body>

<script type=”text/javascript”>

if (navigator.mimeTypes) {
document.writeln(“<h3>Supported MIME Types:</h3>”);
document.writeln(“”);
for (var i=0; i < navigator.mimeTypes.length; i++) {

document.writeln(“” + navigator.mimeTypes[i].type + “ (“
+ navigator.mimeTypes[i].description + “, “
+ navigator.mimeTypes[i].suffixes + “)”);

}
document.writeln(“”);

}
</script>

</body>
</html>

This example doesn’t print out any information about enabledPlugin, which is another object with
another set of properties:

❑ description — A description of the plugin

❑ filename — The plugin filename

❑ length — The number of MIME types associated with the plugin

❑ name — The name of the plugin

It’s worth noting that not every MIME type has a plugin associated with it, meaning that enabledPlugin
can be null. The example can be updated to include plugin information keeping this in mind:

<html>
<head>

<title>MIME Types Example</title>
</head>
<body>

<script type=”text/javascript”>

if (navigator.mimeTypes) {
document.writeln(“<h3>Supported MIME Types:</h3>”);
document.writeln(“”);
for (var i=0; i < navigator.mimeTypes.length; i++) {

document.writeln(“” + navigator.mimeTypes[i].type + “ (“
+ navigator.mimeTypes[i].description + “, “
+ navigator.mimeTypes[i].suffixes + “)”);

if (navigator.mimeTypes[i].enabledPlugin) {
var oPlugin = navigator.mimeTypes[i].enabledPlugin;
document.writeln(“”);
document.writeln(“Name: “ + oPlugin.name + “”);
document.writeln(“” + oPlugin.description + “”);
document.writeln(“MIME types supported: “

+ oPlugin.length + “”);

536

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 536

document.writeln(“Filename: “ + oPlugin.filename
+ “”);

document.writeln(“”);
}

}
document.writeln(“”);

}
</script>

</body>
</html>

This example outputs each MIME type complete with its plugin information (if one is available).

Just like the previous example, this page prints out the MIME types that are numerically indexed. Some
MIME types are indexed only by the MIME type string, and these are not accessible using this approach.
For instance, text/html is a registered MIME type with the browser, but it does not appear in the list
generated from the previous code. However, you can explicitly test for it:

alert(navigator.mimeTypes[“text/html”] != null);

These invisible MIME types are typically those handled by the browser itself and usually don’t have a
plugin registered to them. A simple page can be used to test any MIME type you can dream up:

<html>
<head>

<title>MIME Types Example</title>
<script type=”text/javascript”>

function findPlugin() {
var sType = document.getElementById(“txtMimeType”).value;

if (navigator.mimeTypes) {
if (navigator.mimeTypes[sType]) {

if (navigator.mimeTypes[sType].enabledPlugin) {
alert(“The MIME type \”” + sType

+ “\” uses the plugin \””
+ navigator.mimeTypes[sType].enabledPlugin.name
+ “\”.”);

} else {
alert(“The MIME type \”” + sType

+ “\” has no registered plugin.”);
}

} else {
alert(“The MIME type \”” + sType

+ “\” is not registered.”);
}

} else {
alert(“Browser doesn’t support navigator.mimeTypes.”);

}
}

</script>

537

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 537

</head>
<body>

<p>Type the name of the <acronym title=”Multipurpose Internet Mail
Extension”>MIME</acronym>

you want to check and click the Find Plugin button.</p>
<p><input type=”text” id=”txtMimeType” />
<input type=”button” value=”Find Plugin” onclick=”findPlugin()” /></p>

</body>
</html>

The HTML page listed previously allows you to enter a MIME type into a text box and click a button
to determine if a MIME type is registered. If so, you can tell whether it has a browser plugin. The
findPlugin() function retrieves the value from the text box and first checks to see if the navigator
.mimeTypes collection exists. If it does, then the function continues on to see if the MIME type is
defined. If it is, you can tell whether it has a plugin installed.

You can extract the methodology to test for a plugin that handles a particular MIME type into a separate
function:

function hasPluginForMimeType(sMimeType) {
if (navigator.mimeTypes) {

return navigator.mimeTypes[sMimeType].enabledPlugin != null;
} else {

return false;
}

}

Then, you can check for the existence of a given plugin like so:

if (hasPluginForMimeType(“application/x-shockwave-flash”)) {
alert(“The Flash plugin is installed.”);

} else {
alert(“The Flash plugin is not installed.”);

}

It’s also possible to retrieve a list of all registered plugins without using the MIME types. The
navigator.plugins collection contains all plugins, indexed by name and by number, available for
the given browser. Each entry in the collection is a plugin object equivalent to the one referenced by
enabledPlugin for each MIME type. So, if you know the name of a plugin (equivalent to its name
property), you can access it directly:

var oFlashPlugin = navigator.plugins[“Shockwave Flash”];

Otherwise, you can iterate through the plugins to print out the information about each one. A simple
page can also be used to do this:

<html>
<head>

<title>Plugins Example</title>
</head>
<body>

<script type=”text/javascript”>

538

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 538

if (navigator.mimeTypes) {
document.writeln(“<h3>Loaded Plugins:</h3>”);
document.writeln(“”);
for (var i=0; i < navigator.plugins.length; i++) {

document.writeln(“” + navigator.plugins[i].name + “ (“
+ navigator.plugins[i].description + “)”);

}
document.writeln(“”);

}
</script>

</body>
</html>

This page prints out a list of all registered plugins and their descriptions. But the plugin object holds a
secret; it is actually a collection of MIME types, meaning that MIME types for the plugin can be accessed
like this:

var oMimeType = navigator.plugins[0][0];

This line of code accesses the first MIME type supported by the first plugin. So now, you can update the
previous example to include the registered MIME types for each plugin:

<html>
<head>

<title>Plugins Example</title>
</head>
<body>

<script type=”text/javascript”>

if (navigator.mimeTypes) {
document.writeln(“<h3>Loaded Plugins:</h3>”);
document.writeln(“”);
for (var i=0; i < navigator.plugins.length; i++) {

document.writeln(“” + navigator.plugins[i].name + “ (“
+ navigator.plugins[i].description + “)”);

document.writeln(“”);

for (var j=0; j < navigator.plugins[i].length; j++) {
document.writeln(“” + navigator.plugins[i][j].type +

“”);
}

document.writeln(“”);
}
document.writeln(“”);

}
</script>

</body>
</html>

Now this example displays each plugin’s name and description, followed by a list of supported MIME
types.

539

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 539

The last thing to be aware of is that the navigator.plugins collection can sometimes become out of
date, or stale, as the user is downloading a plugin required for viewing your page. To prepare for this
possibility, you should always start out by refreshing navigator.plugins by calling the refresh()
method. This method accepts one argument, a Boolean value, indicating whether the browser should
reload the page (or pages) using an embedded object; to reload the pages, pass in true, otherwise, pass
in false. For example:

navigator.plugins.refresh(true); //reload all pages using plugins

Making this simple call could save you some heartache later on.

Detecting ActiveX plugins
Because Internet Explorer plugins are just ActiveX controls, all you need to know is the name of the con-
trol to detect if it is installed. Earlier in this book, you saw some code to detect the latest version of the
Microsoft XML DOM. This same methodology can be used for any IE plugin. But how do you find the
name of the ActiveX control you’re interested in?

Microsoft has a tool called the OLE/COM Object Viewer that can be used to find the ActiveX control
name for all ActiveX controls installed on your computer. You can download this tool for free from
http://www.microsoft.com/downloads/details.aspx?FamilyID=5233b70d-d9b2-4cb5-
aeb6-45664be858b6&displaylang=en. After it is installed, it provides a list of all OLE, COM, and
ActiveX objects installed on your machine as well as important information about each one. It may take
some time to look through all of the installed objects, but once you find the one you’re looking for, all the
pertinent information is displayed (Figure 18-1).

The important piece of information is listed as VersionIndependentProgID, which gives you the name
of the generic ActiveX control that creates the most recent version of the control. The ProgID listed typi-
cally gives you a version-specific control name, which helps to determine if a specific version is installed
(although it doesn’t always list the highest version available). The following table lists the version-
independent and version-specific ActiveX control names for several popular plugins.

Presently, Netscape Navigator 3.0+, Opera 5.0+, Safari 1.0, Internet Explorer 5.0+
(Macintosh only), Internet Explorer 3.0-5.5 SP 1 (Windows), and all Mozilla-based Web
browsers support this functionality; Internet Explorer 5.5 SP 2+ on Windows does not,
even though it creates both navigator.plugins and navigator.mimeTypes (each is
a collection with zero items).

540

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 540

Figure 18-1

Plugin Version-Independent Version-Specific Names
Name

Adobe (Acrobat) Reader PDF.PdfCtrl PDF.PdfCtrl.5
PDF.PdfCtrl.6

Adobe SVG Viewer Adobe.SVGCtl Adobe.SVGCtl.2
Adobe.SVGCtl.3

Macromedia Flash Player ShockwaveFlash. ShockwaveFlash.ShockwaveFlash.6
ShockwaveFlash ShockwaveFlash.ShockwaveFlash.7

ShockwaveFlash.ShockwaveFlash.8
ShockwaveFlash.ShockwaveFlash.9

Real Player 5 RealPlayer. (none)
RealPlayer(tm)
ActiveX Control
(32-bit)

Real Video 5 RealVideo. (none)
RealVideo(tm)
ActiveX Control
(32-bit)

Table continued on following page

541

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 541

Plugin Version-Independent Version-Specific Names
Name

Real Player G2 rmocx.RealPlayer rmocx.RealPlayer G2 Control.1
G2 Control

Quicktime Quicktime.Quicktime Quicktime.Quicktime.1

Windows Media Player WMPlayer.OCX WMPlayer.OCX.7
WMPlayer.OCX.8

To make use of the ActiveX control name, try to create the given object using an ActiveXObject. For
example:

function detectFlashInIE() {
try {

new ActiveXObject(“ShockwaveFlash.ShockwaveFlash”);
return true;

} catch (oError) {
return false;

}
}

This function’s purpose is to determine if the Flash Player is installed. To do so, it tries to create the
ActiveXObject with the name ShockwaveFlash.ShockwaveFlash. If this is successful, the next line
executes and the function returns true. If the object can’t be created, the error is caught and the function
returns false. This same basic algorithm can be used for any plugin with an ActiveX wrapper.

Cross-browser detection
Unfortunately, you have no easy way to establish cross-browser plugin detection in a generic way. In
order to accurately detect if a plugin is available, you must know both the MIME type and the ActiveX
control name. Most of the time, developers just create specific detection functions that include both
pieces of information, such as the following:

function detectFlash() {
if (navigator.mimeTypes.length > 0) {

return navigator.mimeTypes[“application/x-shockwave-flash”].enabledPlugin
!= null;

} else if (window.ActiveXObject) {
try {

new ActiveXObject(“ShockwaveFlash.ShockwaveFlash”);
return true;

} catch (oError) {
return false;

}

This method of plugin detection works only in Internet Explorer 5.0 and higher for
Windows.

542

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 542

} else {
//no way to detect!
return false;

}
}

This function uses object detection to determine which methodology to use. If navigator.mimeTypes is
available, then the function checks for an installed plugin using Netscape-style plugin detection. If, on
the other hand, it’s possible to create ActiveXObject objects, it uses the IE-style of detection. If neither
of these options is available (which isn’t very likely), the function just returns false.

To detect specific plugins, you can customize this algorithm and create a whole host of plugin detection
functions.

Java Applets
The oldest form of plugin, the Java applet has recently been redefined to work with the generic browser
plugin framework. Previously, applets had to be loaded using the <applet/> element. HTML 4.0 depre-
cated <applet/>, favoring <object/> as the sole means for embedding plugins. To aid in this move,
Sun Microsystems created the Java Plugin, which is included as part of the Java Runtime Environment
(JRE) and is available at http://java.sun.com/.

Embedding applets
Embedding an applet requires you to use the nonstandard code property of <object/> to specify the
class to load. Although all browsers should work when using data for the same purpose, the reality is
that support isn’t yet universal. So, in the interest of cross-browser compatibility, it’s best to use code
in this way:

<object type=”application/x-java-applet”
code=”ExampleApplet.class” width=”100” height=”100” id=”ExampleApplet”>

</object>

Note the mime type for Java applets is application/x-java-applet. By specifying this, you are sure
that the browser will use the most appropriate (and available) version of the Java plugin. You can
optionally specify the exact version required by adding it to the end of the mime type. For example, to
specify version 1.4.2 (from JRE 1.4.2), add “jpi-version=1.4.2”:

<object type=”application/x-java-applet;jpi-version=1.4.2”
code=”ExampleApplet.class” width=”100” height=”100” id=”ExampleApplet”>

</object>

Macromedia provides a Flash Detection Kit, available at http://www.macromedia
.com/software/flash/download/detection_kit/, which can be used to produce
cross-browser HTML and JavaScript for embedding Flash movies.

543

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 543

In this mime type, JPI is short for Java PlugIn and it ensures that the applet is not run unless the plugin
on the user’s computer is exactly equal to version 1.4.2. So even if the user has version 1.4.3, the applet
does not run. For this reason, it’s best to omit the plugin version to avoid any annoyance for your users.

The applet class can be contained within a JAR (Java Archive) file. In that case, specify the JAR file by
using the archive attribute:

<object type=”application/x-java-applet”
archive=”ExampleArchive.jar”
code=”ExampleApplet.class” width=”100” height=”100” id=”ExampleApplet”>

</object>

To support Netscape Navigator 4.x, you use the original <applet/> element. To ensure that the code
works in all browsers, you can embed <applet/> inside of <object/> (similar to the way you can
place <embed/> inside of <object/>). However, doing so requires the use of the IE-proprietary
<comment/> element. Although Mozilla and other browsers ignore content inside of <object/>, IE
doesn’t, and could end up rendering two copies of the same applet. Inserting the <comment/> element
tells IE to ignore the extra content:

<object type=”application/x-java-applet”
code=”ExampleApplet.class” width=”100” height=”100” id=”ExampleApplet”>

<comment>
<applet code=”ExampleApplet.class” width=”100” height=”100”

name=”ExampleApplet”></applet>
</comment>

</object>

Referencing applets in JavaScript
After an applet has been included in an HTML page, you need a way to access it via JavaScript.
Traditionally, applets were referenced through the document.applets collection, which indexed all
<applet/> elements by their name attribute and position in the document (similar to document.forms
and document.frames). For example, to get a reference to an applet with the name attribute set to
“ExampleApplet”, you could do the following:

var oApplet = document.applets[“ExampleApplet”];

However, if you use the <object/> element to embed applets, the document.applets collection doesn’t
include it. When using <object/>, you can access the applet using document.getElementById():

var oApplet = document.getElementById(“ExampleApplet”);

If you are using both <object/> and <applet/> for compatibility with older browsers, you should use
a function to determine the appropriate method:

function getApplet(sName) {
if (document.getElementById) {

return document.getElementById(sName);
} else {

return document.applets[sName];
}

544

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 544

}

var oApplet = getApplet(“ExampleApplet”);

After you have a reference to the applet, you can actually access all the applet’s public methods directly
from JavaScript, such as:

oApplet.appletPublicMethod();

This opens up all kinds of functionality to JavaScript by using a Java applet as a host environment;
JavaScript can control anything that can be done within the applet.

Writing applets
To write a Java applet, you must first download the Java Development Kit (JDK) from Sun’s Web site
(http://java.sun.com/j2se/). It is up to you whether you use a development environment or a
plain text editor to write the applet, but all applets have one thing in common: they must inherit from
java.applet.Applet. (You can, however, create a Swing-based Java applet by inheriting from
javax.swing.JApplet, which inherits from java.applet.Applet).

Here’s a small example applet:

import java.applet.Applet;
import java.awt.Graphics;
import java.awt.HeadlessException;

public class ExampleApplet extends Applet {

private String message = “Hello World!”;

public ExampleApplet() throws HeadlessException {
super();

}

public void paint(Graphics g) {
g.drawString(message, 20, 20);

}

public void setMessage(String message) {
this.message = message;
repaint();

}
}

This applet simply displays the text “Hello World!” on the applet. The paint() method controls
what is displayed when the applet is first loaded, and it receives a Graphics object as its sole argument.
The Graphics object is a representation of the visual area of the applet with methods to draw onto the
applet, such as drawString(), which draws the given text at the x and y coordinates specified.

The applet defined previously also has a private property called message, which is initialized to “Hello
World!” This property can be changed by calling setMessage(), which is accessible from JavaScript

545

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 545

because it is a public method. The method simply assigns the specified string to the message property,
then calls repaint(), which clears the display of the applet and calls the paint() method again.

Applets only require a default constructor (which throws a HeadlessException if the operating system
doesn’t have a graphical interface). If the applet’s purpose is solely to provide Java functionality to
JavaScript, you can just add public methods and set the applet to a width and height of 0 in the HTML.
If, however, the applet is to display something, you most likely need to defined a paint() method.

After the applet is defined and saved in a file with a .java extension, compile the file using the javac
utility from the command line:

javac ExampleApplet.java

This command creates a file with a .class extension (the previous example creates
ExampleApplet.class). The .class file must be placed in a Web server directory to allow
HTML pages to access it.

JavaScript-to-Java communication
Now that you have an applet with a public method, you can include it in a Web page and access it via
JavaScript. The following example uses ExampleApplet from the previous section and shows how
JavaScript can be used to change the message displayed in the applet:

<html>
<head>

<title>Applet Example</title>
<script>

function changeAppletMessage() {
var oApplet = document.getElementById(“ExampleApplet”);
var oTextbox = document.getElementById(“txtMessage”);
oApplet.setMessage(oTextbox.value);

}
</script>

</head>
<body>

<p>Enter the message you want to see in the applet.</p>
<p><input type=”text” id=”txtMessage” size=”10” />
<input type=”button” value=”Set Message” onclick=”changeAppletMessage()” />
</p>

<object type=”application/x-java-applet” code=”ExampleApplet.class”
width=”100” height=”100” border=”1” id=”ExampleApplet”>

<comment>
<applet code=”ExampleApplet.class” width=”100” height=”100”

name=”ExampleApplet”></applet>
</comment>

</object>
</body>

</html>

546

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 546

This example presents the user with a text box where a new message can be entered. When the user
clicks the Set Message button, it calls the changeAppletMessage() function, which gets a reference to
the applet and retrieves the text from the text box. Then, the function calls the applet’s setMessage()
method, passing in the entered text. The message displayed in the applet changes from “Hello
World!” to whatever the user enters (sometimes this happens quickly, sometimes slowly).

Type conversion
Although JavaScript-to-Java communication is a powerful tool for developers, it is not without its issues.
In the previous example, a string was passed from JavaScript to a Java method without issue. That’s
because the JavaScript String object maps directly to the Java String object. The same is true for any
primitive value in JavaScript because they all have equivalent primitive types in Java. You can run into
trouble when trying to pass objects into a Java method because no equivalent class exists. For this rea-
son, it’s always best that any method you create for use with JavaScript accept only primitive values.

Handling Java exceptions
Exceptions are much more common in Java than in JavaScript, so you must be aware when they could
possibly occur. When accessing an applet method that could cause an error, you can prepare by wrap-
ping the call in try..catch statement. Yes, the JavaScript try..catch statement catches exceptions
thrown by an applet.

Suppose you change the ExampleApplet to throw an error if setMessage() is passed a zero-length
string, such as:

import java.applet.Applet;
import java.awt.Graphics;
import java.awt.HeadlessException;

public class ExampleApplet2 extends Applet {

private String message = “Hello World!”;

public ExampleApplet2() throws HeadlessException {
super();

}

public void paint(Graphics g) {
g.drawString(message, 20, 20);

}

public void setMessage(String message) throws Exception {
if (message.length()== 0) {

throw new Exception(“Message must have at least one character.”);
}

this.message = message;
repaint();

}
}

547

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 547

It would then be possible to catch a thrown error using the JavaScript try..catch statement:

var oApplet = document.getElementById(“ExampleApplet”);
var oTextbox = document.getElementById(“txtMessage”);

try {
oApplet.setMessage(oTextbox.value);

} catch (oError) {
alert(“Error caught!”);

}

Because of differences in browsers, it’s not easy to say what will be returned by oError. Internet
Explorer returns a JavaScript object representing the Java exception, whereas Mozilla returns the Java
exception object itself. The two browsers have different ways to access the error information: In IE, the
oError.message property displays the Java exception message; in Mozilla, the toString() method
returns a string of Java exceptions, but doesn’t contain the original exception method. In most cases,
however, it’s enough to know that an error occurred.

Security restrictions
Although Java is more powerful than JavaScript, it doesn’t have free reign over the browser when included
in a Web page. Java applets must follow a strict set of rules set out by the browser. (The rules are different
in every browser, although several rules are fairly common.) This behavior is called sandboxing.

First, applets are not allowed access to the user’s file system. This prevents a major security problem if a
malicious applet writer gets an unsuspecting user to open a page containing the applet. By default, this
isn’t possible.

Second, applets aren’t allowed to access resources across domains. This is the same security restriction
placed on the XML HTTP requests discussed earlier in the book.

It is possible to get around these restrictions by digitally signing the applet. When an applet is signed, a
dialog is presented to the user asking whether the signature is valid and, in turn, whether the applet
should be allowed enhanced privileges not available otherwise. If the signature is accepted, the restric-
tions mentioned previously are lifted.

You can read more about applet security and signing at http://java.sun.com/developer/
technicalArticles/Security/Signed/.

Java-to-JavaScript communication
Not only can JavaScript access methods contained in a Java applet, an applet can actually access JavaScript
objects and functions as well by using LiveConnect. LiveConnect was mentioned earlier as a way for
JavaScript to access Java objects, but it can also be used to more closely integrate applets and JavaScript
using a special Java package: netscape.javascript.

This package contains two classes: JSObject, which is a Java representation of a JavaScript object, and
JSException, which represents a JavaScript error. However, the JSObject is really the focus of Java-to-
JavaScript communication.

548

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 548

The JSObject class has the following methods:

❑ getMember(String name) — Retrieves a named property of an object. Equivalent to
oObject.property or oObject[“property”] in JavaScript. The returned value is a Java
Object.

❑ getSlot(int index) — Retrieves a numbered property of an object (mostly for use with
JavaScript arrays). Equivalent to oObject[index]. The returned value is a Java Object.

❑ setMember(String name, Object value) — Sets the value of a named property.

❑ setSlot(int index, Object value) — Sets the value of a numbered property.

❑ removeMember(String name) — Removes the value of a named property.

❑ call(String methodName, Object args[]) — Calls the method with the given name and
passes in the arguments contained in the array of Objects. The returned value is a Java Object.

❑ eval(String code) — Evaluates a string of JavaScript code in the context of the object; simi-
lar to JavaScript’s eval() function. The returned value is a Java Object.

❑ equals(Object object) — Determines if the object is equal to another.

One static method for JSObject, called getWindow(), accepts a Java Applet object as an argument
and returns a JSObject representation of the JavaScript window object.

Using JSObject and LiveConnect takes a little getting used to. Suppose you want to retrieve the cur-
rently loaded URL. In JavaScript, this simply requires one line of code:

var sURL = window.location.href

In Java, it becomes a bit more involved:

JSObject window = JSObject.getWindow(this);
JSObject location = (JSObject) window.getMember(“location”);
String sURL = location.getMember(“href”).toString();

The first line gets a reference to the JavaScript window object (the argument, this, represents the applet
from which the function is being called). The second line retrieves a pointer to the location object by
using getMember(). Because getMember() returns an Object, it has to be cast as a JSObject in order to
get access to the JSObject methods. The last line uses getMember() to get the value of href, which is
also returned as an Object, meaning that toString() must be called to get the string value. Obviously,
the Java code for accessing JavaScript objects is a bit verbose, but it gets the job done.

To use LiveConnect in an applet, you must import the package netscape.javascript. It’s not neces-
sary to distribute the package with your applet because it is built in to the Java plugin. So, just add the
following line to your .java file and begin coding:

import netscape.javascript.*;

549

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 549

Here’s an example applet that makes use of the LiveConnect package:

import java.applet.Applet;
import java.awt.Graphics;
import java.awt.HeadlessException;
import netscape.javascript.*;

public class ExampleApplet3 extends Applet {

public ExampleApplet3() throws HeadlessException {
super();

}

public void paint(Graphics g) {
JSObject window = JSObject.getWindow(this);
JSObject document = (JSObject) window.getMember(“document”);
JSObject location = (JSObject) window.getMember(“location”);

g.drawString(“Title: “ + document.getMember(“title”), 10, 20);
g.drawString(“URL: “ + location.getMember(“href”), 10, 40);

window.eval(“getMessageFromApplet(\”Hello from the Java applet!\”)”);

}
}

This applet uses the applet’s paint() method to interact with the page’s JavaScript. The method begins
by getting references to the window, document, and location objects using the methodology discussed
previously. Next, the applet draws the title of the page (retrieved from document.title) and the URL
of the page (from location.href) onto the applet canvas.

Lastly, the window’s eval() method is used to evaluate a call to getMessageFromApplet(), which is a
JavaScript function that must be defined in the HTML page containing the applet. If the function doesn’t
exist when the applet is initialized, then a JSException occurs.

When including an applet that uses the LiveConnect package, you must set a special parameter to allow
it access to the HTML document. The parameter’s name is mayscript, and it should be set to true:

<object type=”application/x-java-applet” code=”ExampleApplet3.class”
width=”100” height=”100” id=”ExampleApplet”>

<param name=”mayscript” value=”true” />
</object>

If you are using the old <applet/> element, then just include mayscript as an attribute:

<applet code=”ExampleApplet3.class” mayscript=”mayscript”
width=”100” height=”100” name=”ExampleApplet”>

</applet>

550

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 550

Back to the example, the getMessageFromApplet() function does nothing more than display the argu-
ment that was passed. Here’s the complete HTML code for the page:

<html>
<head>

<title>Applet Example</title>
<script>

function getMessageFromApplet(sMessage) {
alert(“Applet says: “ + sMessage);

}
</script>

</head>
<body>

<p>This page defines a function that is called by the applet once
it is loaded.</p>
<object type=”application/x-java-applet” code=”ExampleApplet3.class”

width=”400” height=”50” id=”ExampleApplet”>
<param name=”mayscript” value=”true” />

</object>
</body>

</html>

When this page is loaded, the applet displays the page title (Applet Example) and the URL you are
viewing the example from. Then, you should see an alert displaying the message “Applet says:
Hello from the Java applet!”

You can also use call() to execute getMessageFromApplet():

Object[] args = new Object[1];
args[0] = “Hello from the Java applet!”;
window.call(“getMessageFromApplet”, args);

Because getMessageFromApplet() is a global function, it’s considered a method of window and, there-
fore, can be called using the call() method.

Flash Movies
What began as a way to embed small, vector-based animations on Web pages has grown into a develop-
ment environment for entire Web sites and Web applications. Macromedia Flash has evolved into more
than just a tool for animations, but an entire development environment designed for use on the Web.

Flash movies, as they are called, are created using Macromedia’s proprietary Flash and Flash MX devel-
opment environments (although many graphics programs now feature an Export to Flash feature based
on Macromedia’s Open SWF initiative). Because of its ubiquity, the Flash plugin now ships with most
browsers, meaning that most users never have to download the plugin manually to enjoy the benefits
(unless an upgrade is made available, of course).

551

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 551

Embedding Flash movies
To embed a Flash movie into an HTML page, use the <object/> element:

<object type=”application/x-shockwave-flash” data=”myflashmovie.swf”
width=”100” height=”100” id=”FlashMovie”></object>

Mozilla-based browsers won’t display this properly, so you need to add a movie parameter set to the
same URL as the data attribute:

<object type=”application/x-shockwave-flash” data=”myflashmovie.swf”
width=”100” height=”100” id=”FlashMovie”>

<param name=”movie” value=”myflashmovie.swf” />
</object>

Of course, if you want to support Netscape 4.x, include the <embed/> element:

<object type=”application/x-shockwave-flash” data=”myflashmovie.swf”
width=”100” height=”100” id=”FlashMovie”>

<param name=”movie” value=”myflashmovie.swf” />
<embed type=”application/x-shockwave-flash” src=”myflashmovie.swf”

width=”100” height=”100” quality=”high” name=”FlashMovie”>
</embed>

</object>

Referencing Flash movies
Just like Java applets, Flash movies can be referenced in a couple of different ways depending on how
you embed them (using document.getElementById() for <object/> or document.embeds for
<embed/>). The following function can be used to retrieve a reference to a Flash movie regardless of the
embedding process used:

function getFlashMove(sName) {
if (document.getElementById) {

return document.getElementById(sName);
} else {

return document.embeds[sName];
}

}

This function can be called like so:

var oFlashMovie = getFlashMovie(“FlashMovie”);

After you have a reference to the movie, it’s possible to communicate back and forth using JavaScript.

552

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 552

JavaScript-to-Flash communication
Flash movies provide a number of standard methods that can be accessed by JavaScript:

❑ GetVariable(variable_name) — Retrieves the value of a Flash movie variable

❑ GotoFrame(frame_number) — Sets the current Flash frame to the given frame number

❑ IsPlaying()— Indicates whether the Flash movie is current playing

❑ LoadMovie(layer_num, url) — Loads a Flash movie at the given URL into the given Flash
layer

❑ Pan(x, y, mode) — Pans a zoomed movie to the given coordinate. The mode argument is either
0, to consider the coordinates as pixel values, or 1, to consider the coordinates as percentages.

❑ PercentLoaded()— Returns the percent of the Flash movie that has been loaded (a number 0
to 100)

❑ Play() — Plays the movie from the current position

❑ Rewind() — Sets the movie back to the first frame

❑ SetVariable(variable_name, value) — Sets the value of a Flash movie variable

❑ SetZoomRect(left, top, right, bottom) — Sets the rectangle to zoom in on

❑ StopPlay() — Stops the Flash movie

❑ TotalFrames() — Returns the total number of frames in the Flash movie

❑ Zoom(percent) — Zooms in by a given percentage

These methods work directly on the movie object itself, so to stop a movie named ExampleMovie, you can
do this:

var oFlashMovie = getFlashMovie(“ExampleMovie”);
oFlashMovie.StopPlay();

To get the total number of frames in the movie, use TotalFrames(). However, you must be aware of
some cross-browser compatibility issues. In Internet Explorer on Windows, there is a bug where
TotalFrames is an integer value instead of a function. It is necessary to check for this using typeof to
determine if TotalFrames is a number or a function for cross-browser functionality:

function getTotalFrames(sName) {
var oFlashMovie = document.getElementById(sName);

if (typeof oFlashMovie == “function”) {
return oFlashMovie.TotalFrames();

} else {
return oFlashMovie.TotalFrames;

}
}

553

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 553

Using SetVariable() and GetVariable(), it’s possible to pass information to and get information
from a Flash movie. For this to work, the Flash movie must have a variable that is watched for a value
change. The simplest way to do this is to create a text field and tie its value to a variable (by selecting
Dynamic Text from the Flash Properties panel and entering the name of the variable). Then, you can get
the value of the variable using GetVariable() and change its value using SetVariable(). Both meth-
ods require the name of the variable in relation to its timeline. So, to access a variable named message
in the main timeline, the first argument for both methods is “/:message”, where “/” represents the
default timeline, the colon indicates a part of the timeline to access, and message is the variable name.
For example:

var sOriginalMessage = oFlashMovie.GetVariable(“/:message”);
oFlashMovie.SetVariable(“/:message”, “my new message”);

Some methods also work on a specific timeline in the movie:

❑ TCallFrame(timeline, frame_number) — Executes the action in the Eframe that is in the
given position

❑ TCallLabel(timeline, frame_label) — Executes the action in the frame represented by
the given label

❑ TCurrentFrame(timeline) — Returns the position of the current frame in the timeline

❑ TCurrentLabel(timeline) — Returns the label of the current frame in the timeline

❑ TGetProperty(timeline, property_constant) — Returns the value of the property indi-
cated by the property constant (discussed later) as a string

❑ TGetPropertyAsNumber(timeline, property_constant) — Returns the value of the
property indicated by the property constant as a number

❑ TGotoFrame(timeline, frame_number) — Sets the movie to the frame in the given position
in the timeline

❑ TGotoLabel(timeline, frame_label) — Sets the movie to the frame with the given label
in the timeline

❑ TPlay(timeline) — Plays the movie on the given timeline

❑ TSetProperty(timeline, property_constant, value) — Sets the value of the property
indicated by the property constant as a string

❑ TStopPlay(timeline) — Stops the movie on the given timeline

The TGetProperty(), TGetPropertyAsNumber(), and TSetProperty() methods all use constants to
indicate the property to get or set. Because the constants are only accessible from within Flash, JavaScript
must always use the numeric value. The constants are listed in the following table:

Flash Constant Value Description

X_POS 0 The x-coordinate of the movie

Y_POS 1 The y-coordinate of the movie

X_SCALE 2 Horizontal scaling

554

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 554

Flash Constant Value Description

Y_SCALE 3 Vertical scaling

CURRENT_FRAME 4 The position of the current frame in the movie

TOTAL_FRAMES 5 The total number of frames in the movie

ALPHA 6 The opacity of the movie (number between 0 and 100)

VISIBLE 7 If the movie is visible or not

WIDTH 8 The width of the movie

HEIGHT 9 The height of the movie

ROTATION 10 The rotation of the movie in degrees

TARGET 11 The timeline name (same as first argument of any of the
timeline-specific methods)

FRAMES_LOADED 12 The number of frames currently loaded

NAME 13 The name of the movie

DROP_TARGET 14 The name of the drop target inside the movie, if one exists

URL 15 The URL of the movie

HIGH_QUALITY 16 If the movie is in high-quality rendering mode or not
(1 for true, 0 for false)

FOCUS_RECT 17 Whether or not a focus rectangle should be displayed
(1 for true, 0 for false)

SOUND_BUF_TIME 18 The amount of time that sound should be buffered to
produce uninterrupted playback

When using the timeline-specific methods, the first argument is always the name of the timeline to act
on. The default timeline is represented by a single forward slash:

var iXPos = oFlashMovie.TGetProperty(“/”, 0);

The first argument is always mirrored by the TARGET property:

var sTarget = oFlashMovie.TGetProperty(“/”, 11);
alert(sTarget == “/”); //outputs true

Because Flash uses an ECMAScript-based scripting language called ActionScript, the interaction with
JavaScript is seamless.

Flash-to-JavaScript communication
Flash also has the capability to interact with JavaScript that exists on the HTML page in which it is
embedded. When using the <object/> element to embed the Flash movie, this capability is enabled by

555

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 555

default. If you are using the <embed/> element, even for backwards compatibility, you must add a spe-
cial attribute called swLiveConnect:

<object type=”application/x-shockwave-flash” data=”myflashmovie.swf”
width=”100” height=”100”>

<param name=”message” value=”Hello World! “ />
<embed type=”application/x-shockwave-flash” src=”myflashmovie.swf”

width=”100” height=”100” swLiveConnect=”true”>
<param name=”message” value=”Hello World!” />

</embed>
</object>

With the attribute set, you can be assured that the Flash-to-JavaScript communication channel is open.

Flash provides two different ways to achieve this interaction: getURL() and fsCommand(). Both can
send only primitive values to JavaScript, and each has its own strengths and weaknesses.

getURL()
The getURL() function is a generic way of interacting with the browser. It can be used to open up a
document in the browser window (or in a new window) similar to window.open() is JavaScript. For
example, you can open www.wrox.com in a new browser window with the following code:

getURL(“http://www.wrox.com”, “_blank”);

Because getURL() simply passed the given URL to the browser, it can accept javascript: URLs as
well. For example, suppose you have a function, getMessageFromFlash(), that accepts a string as its
only argument and then displays that string in an alert, such as in the following:

function getMessageFromFlash(sMessage) {
alert(“Flash says: \”” + sMessage + “\”.”);

}

Inside of the Flash movie, create a button and assign the following ActionScript to it:

on(release) {
getURL(“javascript:getMessageFromFlash(\”Hello from Flash!\”)”);

}

When you export the movie and embed it in the HTML page containing getMessageFromFlash(),
clicking on the button pops up the JavaScript alert displaying the text “Hello from Flash!”

The getURL() function is the simplest way to call JavaScript from Flash, although you have another
way to do this.

fscommand()
Using fscommand() in Flash is like sending a message to JavaScript. This message consists of a com-
mand (indicating the action the movie is expecting) and a single argument (although Flash allows you to
enter more than one argument, this isn’t handled correctly by JavaScript). A typical call from inside a
Flash movie looks like this:

556

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 556

on(release) {
fscommand(“send_message”, “the message”);

}

In order for JavaScript to handle this command, a special function must be defined. This function must
begin with the name (or ID) of the Flash movie object and be followed by _DoFSCommand, such as the
following:

function ExampleMovie_DoFSCommand(sCommand, vArgument) {
...

}

The function always accepts two arguments, the command and an argument. The command is always a
string, but the argument may be any primitive type. All calls to fscommand() are routed to this func-
tion, so, by providing different commands, you can determine what action should be taken with
JavaScript. For example:

function ExampleMovie_DoFSCommand(sCommand, vArgument) {
switch(sCommand) {

case “change_color”:
//change the color of something
break;

case “change_height”:
//change the height of something
break;

//etc.
}

When using any browser other than Internet Explorer, this function is called when fscommand() is exe-
cuted. For Internet Explorer, another function is needed.

For reasons unknown, the Flash Player routes fscommand() calls in Internet Explorer to VBScript, not
JavaScript. VBScript is an IE-only technology that allows developers to use Visual Basic code to script
Web pages. Originally intended to compete with JavaScript, VBScript never gained the popularity or
support from other browsers that would have enabled it to be a true rival. Instead, it was remanded to
niche developers working on IE-only solutions.

In order to avoid writing a lot of VBScript, you can just write a simple function that passes the command
and the argument back to the JavaScript function. This code must be enclosed in its own <script/> ele-
ment with the language attribute set to “VBScript”. The VBScript function takes the same form as the
JavaScript function, although it ends with _FSCommand instead of _DoFSCommand:

<script language=”VBScript”>
Sub ExampleMovie_FSCommand(ByVal sCommand, ByVal vArgument)

call ExampleMovie_DoFSCommand(sCommand, vArgument)
end sub

</script>

557

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 557

All non-IE browsers ignore this code block because “VBScript” is unrecognized as a scripting lan-
guage; therefore, it’s safe to include this in your cross-browser pages (although it is still recommended
that this reside in the <head/> element to prevent rendering of the code as plain text). Another alterna-
tive is to place the VBScript into an external file (ending in .vbs) and load it into the page like this:

<script language=”VBScript” src=”example.vbs”></script>

Because of the intricate workings of fscommand(), many developers simply choose to use getURL() for
JavaScript communication.

ActiveX Controls
In Internet Explorer on Windows, you can embed ActiveX controls in the page by using the <object/>
element. To do this, you need to know the class ID of the ActiveX control you wish to embed (this infor-
mation can be gleaned using the OLE/COM Object Viewer) and insert it as the classid attribute:

<object classid=”activex_class_id” id=”ActiveXControl”></object>

Not all ActiveX controls behave properly when embedded in a Web page. Indeed, some of them trigger
security warnings in Internet Explorer and possibly in software such as antivirus programs. However, a
few ActiveX controls were designed to work appropriately and safely in Web pages. One such compo-
nent is the tabular data control.

The tabular data control has no visual component to it, so it is an invisible object on your page. At first
glance, it hardly looks exciting — especially when compared to what you can do with Java and Flash.
At second glance, however, the tabular data control reveals some powerful functionality that allows
JavaScript to use database-like functionality.

Specifically, the tabular data control allows you to use a flat text file as if it were a database table. You tell
the control what the value delimiter character is, and it parses the text file into a series of rows and values.

To create a tabular data control on a page, you must use the class ID “CLSID:333C7BC4-460F-11D0-
BC04-0080C7055A83” (retrieved using the OLE/COM Object Viewer) and give the object an ID:

<object classid=”CLSID:333C7BC4-460F-11D0-BC04-0080C7055A83” id=”TextData”>
</object>

Next, you must specify the DataURL parameter, which indicates where the text file is located (this can be
either a relative or complete URL), and the FieldDelim parameter, which indicates what the delimiter is
between two values in the same row (most often this is a comma):

ActiveX-based plugins do not work on any non-Windows browser because ActiveX
is a Windows-specific technology. On Windows XP Service Pack 2, any ActiveX con-
trol that attempts to contact an outside server or is capable of accessing a local file
triggers a warning.

558

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 558

<object classid=”CLSID:333C7BC4-460F-11D0-BC04-0080C7055A83” id=”TextData”>
<param name=”DataURL” value=”Names.txt” />
<param name=”FieldDelim” value=”,” />

</object>

Lastly, if the file in question uses the first row as headers, you should set the UseHeader parameter to
true, which doesn’t include the first row in the data values and also enables you to reference columns
by name as well as position:

<object classid=”CLSID:333C7BC4-460F-11D0-BC04-0080C7055A83” id=”TextData”>
<param name=”DataURL” value=”Names.txt” />
<param name=”FieldDelim” value=”,” />
<param name=”UseHeader” value=”true” />

</object>

This code says to load the tabular data control with the data in Names.txt that has a field delimiter of
“,” and use the headers as a key for each column.

Here’s a sample Names.txt file:

first_name,last_name
Nicholas,Zakas
Michael,Smith
Joyce,Anderson
Benjamin,Johnson
Amy,Jones

The first column is named first_name, and the second column is named last_name. On each row,
commas, as indicated by using the FieldDelim parameter, separate the values.

The page’s load event does not fire until the tabular data control has fully loaded its data, so it’s safe to
use the onload event handler to determine when the data is available. At that point, you retrieve the
recordset created by accessing the recordset property of the control:

window.onload = function () {
oDataset = document.getElementById(“TextData”).recordset;

};

This code creates a global variable named oDataset that points to the recordset containing all the data.

You can iterate through the recordset by using the moveFirst(), moveLast(), moveNext(), and
movePrevious() methods in combination with the EOF (end of file) and BOF (beginning of file) mark-
ers. For example, here’s a basic code outline to iterate through the recordset starting from the first record
and ending with the last:

oDataset.moveFirst();

while (!oDataset.EOF) {

//do something with the data here

oDataset.moveNext();
}

559

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 559

The first step in the previous code is to set the recordset to the first record. The while loop then tests
EOF, which is true when the end of the file has been reached. Inside of the loop is where the data pro-
cessing occurs before moving on to the next record.

It’s also possible to move backwards through the recordset using the opposite methods:

oDataset.moveLast();

while (!oDataset.BOF) {

//do something with the data here

oDataset.movePrevious();
}

This code starts from the last record and works its way back to the first. The BOF property is equal to
true when you reach the beginning of the file.

To get at the data, use the fields() method of the recordset with the column name (either first_name
or last_name in the previous example) or the position of the column, starting at 0, in the table. This
method returns an object representing the field that has a value property with the actual value. So to
display the first name for each person in Names.txt, the following code can be used:

oDataset.moveFirst();

while (!oDataset.EOF) {

alert(oDataset.fields(0).value);

oDataset.moveNext();
}

You could also use first_name instead of 0:

oDataset.moveFirst();

while (!oDataset.EOF) {

alert(oDataset.fields(“first_name”).value);

oDataset.moveNext();
}

In this way, you can move through the recordset and get all the data you need.

The tabular data control is a useful component if you have the luxury of developing only for Internet
Explorer on Windows. It has a great many uses for it, many more than can be discussed in this context.
Its tie to both Internet Explorer as a browser and Windows as a platform has, however, greatly inhibited
its use and adoption in Web development. Presently, such solutions are best suited for Intranet applica-
tions where the user base can be kept to those using IE on Windows exclusively.

560

Chapter 18

21_579088 ch18.qxd 3/28/05 11:43 AM Page 560

Summary
This chapter introduced the concept of plugins and how to use JavaScript to communicate with them.
You learned about the two different styles of plugins, ActiveX and Netscape-style, as well as how to
embed each into a Web page.

Next, Java applets and their use on the Web were discussed. You learned how JavaScript, via LiveConnect,
can access public methods of Java applets and how Java applets can be programmed to call JavaScript
directly.

From that point, you learned about Macromedia Flash and how to embed Flash movies in HTML pages.
You learned about the large number of JavaScript methods capable of controlling Flash movies as well as
how to pass data to and receive data from them. Additionally, you learned the two ways to call JavaScript
from inside Flash movies using getURL() and fscommand().

The chapter finished up by discussing embedded ActiveX controls and the tabular data control specifi-
cally. You learned how to load data from a flat text file into the tabular data control and how to access
that data from within JavaScript.

561

Interacting with Plugins

21_579088 ch18.qxd 3/28/05 11:43 AM Page 561

21_579088 ch18.qxd 3/28/05 11:43 AM Page 562

Deployment Issues

So the JavaScript for your Web application or Web site has been coded, you’ve fully debugged it,
and you’ve made sure that it works in each of your target browsers. The time is coming for deploy-
ment, and that introduces a whole host of new issues. Although you can test on various operating
systems with various browsers, seemingly little things can cause unexpected browser behavior. It
might be an operating system service pack; it could be a bug patch for a browser; or it could be a
difference in cross-platform behavior. All these fall under the umbrella of deployment issues: things
you need to worry about when setting up a system outside of your development environment.

Security
One of the biggest issues for any Web-based system, whether it be purely informational or an online
storefront, is security. JavaScript is filled with security checks to prevent malicious scripts from
attacking your computer, but specific security measures are also taken by each browser. Mozilla, for
instance, has an entirely unique security model involving signed scripts and enhanced privileges. If
you understand which security measures apply to all browsers and which are browser-specific you
can create more secure JavaScript.

The Same Origin Policy
It was briefly mentioned earlier in the book that JavaScript can only communicate with pages
from the same domain. For example, a script running on Wrox’s home page (www.wrox.com)
cannot interact with any browser window or frame containing a page from Mozilla’s Web site
(www.mozilla.org). This security measure is known as the Same Origin Policy.

Two scripts are considered to have the same origin if the containing pages:

❑ Use the same protocol (such as http://)

❑ Use the same port (typically port 80)

❑ Have the same domain name

22_579088 ch19.qxd 3/28/05 11:43 AM Page 563

If all three of these conditions aren’t met, the two scripts are not allowed to interact. For instance, a script
running on www.wrox.com cannot access a page from p2p.wrox.com because these are considered dif-
ferent domain names (even though p2p.wrox.com is technically a subdomain of www.wrox.com). This
same script can’t access pages from www.wrox.com:8080 because it has a different port number or from
about:blank because it’s a different protocol (not http://).

The effect on BOM and DOM scripting
These rules affect the way you can interact with the BOM and the DOM. For instance, you cannot access
the document object for any page from a different origin, meaning that you can’t access any of the DOM
structure. The following two lines illustrate the issue:

alert(frames[1].location.href);
alert(frames[1].document.location.href); //fails

The previous code should output two alerts, each displaying the URL of the page in the second frame
(the frame at index 1). You may recall from earlier in the book that both the window and document
objects have a location object as a property. If the script using these two lines of code is from a differ-
ent origin than the page contained in the frame, the second line of code fails because the script cannot
access the document.location object or any of its properties. The script can, however, access the win-
dow.location object (represented by frames[1].location) and can still access all the other proper-
ties of the window.

You may also remember from earlier in the book that the XML HTTP Request object (in all browsers)
and the Web Service functionality work only with resources from the same domain; this is yet another
instance where the Same Origin Policy takes effect. It also applies to plugins.

The exception to the rule
Common logic dictates that www.wrox.com and p2p.wrox.com belong to the same domain, so they
should be able to communicate with one another. As it turns out, the browser developers agree and have
provided a way to allow such communication.

In the pages from each subdomain, a single line of script can be included to circumvent the Same Origin
Policy. This is done by setting the document.domain property as shown here:

document.domain = “wrox.com”;

This simple line of code then eliminates all the security blocks for JavaScript communication. Note, how-
ever, that you can set the domain only to a value already in the URL, so a page from www.wrox.com can-
not set the domain to mozilla.org, because that is a violation of the Same Origin Policy.

Window object issues
A number of measures protect end users from malicious scripts attempting to use windows.

First and foremost, windows cannot be opened off screen or smaller than 100 x 100. If you specify coor-
dinates that are off the screen, the window is automatically placed on the screen in a location close to
where you specified, but with enough space to see the entire window. Likewise, if you try to open a

564

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 564

window smaller than 100 x 100, the window automatically opens up to 100 x 100. These rules, although
seemingly impractical, help to ensure that users are always aware of windows popped up from scripts.

You also can’t open windows that are larger than the user’s desktop. You can’t, for instance, open a win-
dow that is 1600 x 1200 on a screen that is 1024 x 768.

These same window position and dimension rules apply after the window has been created. You cannot
move a pop-up window off screen using moveBy() or moveTo(), nor can you resize the window to be
smaller than 100 x 100 or to be larger than the desktop using resizeBy() and resizeTo().

Also a window cannot be closed using the close() method unless the window was opened using win-
dow.open(). If you try to close a window that wasn’t opened by script, a dialog is displayed asking for
the user’s permission to close to the window.

Most browsers now come with pop-up blockers built-in. Many non-technical users actually have no idea
whether or not pop-up blocking is turned on. Keep this in mind when designing your Web solution.

Typically, pop-up blockers work by blocking all pop-up windows that occur without user interaction,
meaning that you can’t open up a new window during events such as load and unload; pop-up win-
dows can only be opened during events such as click and keypress. However, some pop-up blockers
that block all pop-up windows without regard for user interaction. So how can you tell if one of your
pop-up windows has met with an untimely block?

The window.open() method typically returns a pointer to the newly created window. If the window
was blocked, window.open() usually returns null:

var oWindow = window.open(“page.htm”, “mywindow”);

if (oWindow == null) {
alert(“Your popup blocker won’t allow you access to this window.”);

} else {
//continue on

}

Some browsers (such as Mozilla) allow the end user to decide whether scripts
should be allowed to move and resize windows.

Internet Explorer on Windows XP Service Pack 2 exhibits a slightly different behav-
ior. It enables you to open windows off screen or at small sizes if the site you are vis-
iting is listed as trusted in Internet Options. Trusted sites are typically those accessed
using https://, but not necessarily. For any untrusted site, you receive a security warn-
ing if the site attempts to open the window. If you allow the pop-up, it has all the tra-
ditional limitations (can’t be opened off screen, can’t be opened to a very small size).

565

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 565

The preceding code displays a message to the user when the window has been blocked. In general, it’s
always best to make sure the method returned doesn’t return null whenever you open a window.

This method works well for Windows XP Service Pack 2’s IE pop-up blocker, Mozilla’s pop-up blocker,
and the Google Toolbar pop-up blocker. For others, you may need to surround the window.open() call
in a try..catch block (because some other pop-up blockers actually cause JavaScript errors instead of
just returning null).

Mozilla-specific issues
As part of the Netscape Communicator code overhaul, Mozilla introduced several new security mecha-
nisms for ensuring the authenticity and safety of scripts embedded in Web pages. The first involves
activating enhanced privileges.

Privileges
Various security-related capabilities are arranged into privileges. In order to use these privileged
functions, you must request permission from the user using netscape.security.Privilege
Manager.enablePrivilege().

Mozilla provides guidance to developers regarding the proper use of privileges in a document entitled
“JavaScript Security: Signed Scripts” (available at http://www.mozilla.org/projects/security/
components/signed-scripts.html). In this document, Jesse Ruderman lists the following available
privileges for Mozilla:

Privilege Description

UniversalBrowserRead Enables the browser to circumvent the Same Origin Policy
and read resources outside of the current domain.

UniversalBrowserWrite Enables the browser to circumvent the Same Origin Policy
and write to resources outside of the current domain.

UniversalXPConnect Allows access to the browser API using XPConnect.

UniversalPreferencesRead Allows reading of user preferences using
navigator.preferences.

UniversalPreferencesWrite Allows setting of user preferences using
navigator.preferences.

CapabilityPreferencesAccess Allows reading/setting of preferences governing security.
To read one of these preferences, you also need Universal-
BrowserRead; to set one, you also need Universal-
BrowserWrite.

UniversalFileRead Allows opening of browser windows using the file://
protocol.

In order to enable a privilege, you must pass in one of these values to the enablePrivilege() method:

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”);

566

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 566

You may remember this line of code from Chapter 17, “Web Services.” This privilege was necessary in
order to complete the Web Service calls. The UniversalBrowserRead privilege also allows you to
access the URLs in the browser’s history, such as the following:

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”);

for (var i=0; i < history.length; i++){
alert(history[i]);

}

This script outputs the URL of each page in the browser’s history, as stored in the history object.

As soon as you have completed the use of privileged actions, it’s best to disable the privilege to ensure
that no malicious scripts can use the privilege:

netscape.security.PrivilegeManager.enablePrivilege(“UniversalBrowserRead”);

for (var i=0; i < history.length; i++){
alert(history[i]);

}

netscape.security.PrivilegeManager.disablePrivilege(“UniversalBrowserRead”);

The UniversalBrowserWrite privilege is perhaps the most interesting because it enables you to avoid
the window restrictions mentioned earlier in this chapter. When this privilege is enabled, you can:

❑ Resize windows to be less than 100 x 100 or greater than the user’s desktop size.

❑ Move windows off screen.

❑ Create windows without a window title.

❑ Close a window using close() regardless of how the window was opened.

If a privilege is requested and not accepted, then the JavaScript Console displays a message saying,
“User did not grant privilege”.

Signed scripts
In order to use the extended privileges, your script must be signed. JavaScript files can be signed in the
same manner as applets, and doing so allows access to these privileges. Signing a script involves obtain-
ing a digital certificate from a security firm that authenticates the script’s location, publisher, and usage.
When a signed script is loaded, the browser displays a message asking if the signed script should be
allowed to access the extended privileges it may use.

The Mozilla Foundation provides SignTool to aid in the signing of scripts. This small utility packages a
script into a JAR file along with its digital certificate. In order to use signed scripts, the containing HTML
page must be accessed using a URL with the following format:

jar:http://www.yourdomain.com/signedscripts.jar!/page.htm

When the script is properly signed and accessed with an appropriate URL, the user just accepts the digi-
tal certificate; he is not required to allow each privilege as it is enabled.

567

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 567

If the script isn’t signed appropriately, it won’t run. The JavaScript Console displays the same message
the user sees when he doesn’t allow an extended privilege (“User did not grant privilege”).
For more information on signed scripts in Mozilla, see http://www.mozilla.org/projects/
security/components/signed-scripts.html.

Codebase Principals
Another way to access the extended privileges is to enable Codebase Principals. This policy determines
the safety of a given script based on where it’s loaded from (its codebase). Presumably, a script is safe if it
is being loaded from the same server as the HTML page. This is not exactly a safe assumption, which is
why all Mozilla browsers come with Codebase Principals disabled. It is purposely difficult to enable so
that the average user won’t turn on Codebase Principals by mistake.

Codebase Principals should only be used for testing and debugging of a script that will eventually be
signed.

Resource limitations
If you’re a software developer or a software user, you’re probably aware that some programs can end up
overreaching their memory limit, making your machine run more slowly, become unstable, and sometimes
crash. It was decided by browser companies that JavaScript would not affect the user’s computer in this
detrimental way. For this reason, browsers only run up to one million lines of JavaScript is any one call.

One million sounds like a lot of lines (probably more lines than you’ll ever need), but every once in a
while you may find yourself bumping up against this limit. When this happens, the browser notifies you
in some way: Internet Explorer pops up a dialog box telling you that a script is causing the browser to
run slowly and asks if you would like to continue running the script; Mozilla simply opts out of the cur-
rent operation and places an error message in the JavaScript Console.

The one million lines aren’t cumulative, so you don’t need to worry if you have scripts that run when
the user clicks on different parts of the page. This restriction exists only within a single function call to
prevent problems such as infinite loops and infinite recursion.

Internationalization Concerns
If you are planning to create a Web site that can be accessed from anywhere in the world, or a Web appli-
cation that can be installed anywhere in the world, internationalization is a concern. Entire libraries,
available in numerous programming languages, help you with internationalization of software, ranging
from typical C++ applications to Web-based systems. Companies spend hundreds of hours examining
their Web sites and Web applications for internationalization purposes, but they often forget to examine
JavaScript code.

There is no way to sign scripts on Internet Explorer or on any other browser. Internet
Explorer does offer some advanced security through the use of HyperText
Applications (HTAs). For more information on using HTAs, refer to http://
msdn.microsoft.com/workshop/author/hta/overview/htaoverview.asp.

568

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 568

Detecting language using JavaScript
In Chapter 5, “JavaScript in the Browser,” you were introduced to the navigator object and its proper-
ties. One of the properties that has not been discussed in detail is the language property, which returns
the language and country code in which the browser is currently operating (for example, “en-us” for
United States English):

var sLang = navigator.language; //won’t work in IE

Mozilla, Opera, and Safari/Konqueror all support this property, but Internet Explorer does not.

Instead, Internet Explorer provides three properties: browserLanguage (indicates the language being
used by the browser), userLanguage (essentially identical to browserLanguage), and systemLanguage
(indicating the language of the operating system). The userLanguage property is essentially the same as
language, so you can make a simple addition to the previous code to detect the language for all
browsers:

var sLang = navigator.language || navigator.browserLanguage;

Using this code, you can determine if someone is viewing your page from a browser with an unsupported
language setting and take appropriate action, such as redirecting the visitor to a more appropriate page:

if (sLang.toLowerCase() == “fr”) {
document.location.replace(“index_fr.htm”);

}

This code checks to see if the language is French (represented as “fr”), and if so, it redirects to another page.

Strategies
The most important step in internationalizing your JavaScript is to avoid hard-coded strings. For example,
don’t do this:

alert(“The date you entered is incorrect.”);

In this example, the string “The date you entered is incorrect.” is hard-coded. When a value is
hard-coded, its value cannot be changed without directly editing the line that uses it. Compare this with
the following example:

var sIncorrectDateMessage = “The date you entered is incorrect.”;

//more code here

alert(sIncorrectDateMessage);

You may have noticed that this code uses toLowerCase() on the language string.
This is necessary because capitalization is not consistent across browsers. Some
report United States English as “en-us”, whereas others use “en-US”.

569

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 569

This example places the message string into a variable called sIncorrectDateMessage. All other inter-
nationalized strings should be stored alongside this variable so you can change any and all values in
only one place.

The best way to handle internationalized strings is to separate all strings into a separate JavaScript file
(similar to the way JSP applications use properties files). Each language you support should have its own
JavaScript file. For example, suppose you have three languages to support: English (language code en),
German (de), and French (fr). Each language should have its own JavaScript file containing any strings
necessary for the Web site or Web application. The easiest way to do this is to give each file a filename that
differs only in the language code. For example, these filenames make selecting the correct file easy:

❑ Strings_en.js

❑ Strings_de.js

❑ Strings_fr.js

Then, using a little server-side logic, you can ensure that the correct one is included. In PHP, you could
do this:

$supported = array(“en”,”de”,”fr”);

if (in_array($lang, $supported)) {
$filename = “Strings_$lang.js”;

} else {
$filename = “Strings_en.js”;

}

<script type=”text/javascript”
src=”scripts/<?php echo $filename ?>”></script>

This example assumes a variable named $lang contains the language to use and then matches it up
against an array of supported languages ($supported). If the language is supported, the JavaScript file
for that language is loaded; otherwise, the default (English) language script is loaded. This ensures that
the correct JavaScript string values are used for the given language and that there is a default language
to fall back on if an unsupported language is encountered.

String considerations
The first edition of ECMAScript introduced support for Unicode characters (which number upwards of
65,000 as compared to 128 ASCII characters), effectively assuring that ECMAScript can handle strings of
any kind, including typically problematic double-byte characters.

What exactly is Unicode?
According to the official Unicode home page, “Unicode provides a unique number for every character,
no matter what the platform, no matter what the program, no matter what the language.”

Unicode was developed to provide a common encoding to handle all the characters that exist in the world.
Prior to Unicode, each language had its own encoding, meaning that characters in different languages

570

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 570

could be represented by the same code, so the letter A in English could use the same code as a different let-
ter in a different language (obviously, not optimal).

Unicode represents characters as a 16-bit number, allowing for over 65,000 possible characters, making it an
ideal solution to internationalization concerns. Additionally, the first 128 Unicode characters are, in fact, the
128 ASCII characters, making compatibility with older English-language applications much easier.

Representation in JavaScript
All Unicode characters, including ASCII, are represented in Unicode as a four-digit hexadecimal value
prefixed with a \u to indicate a Unicode character. For example, \u0045 is the Unicode form of the E
(which can also be represented using ASCII syntax as \x45).

This representation of characters can be used in comments and strings in JavaScript just as you use spe-
cial characters like \n. For example:

alert(“\u0048\u0045\u004C\u004C\u004F \u0057\u004F\u0052\u004C\u0044”);

Not sure what this line does? It presents an alert with the text “HELLO WORLD” to the user. Using the
Unicode character set, you can create messages in any number of languages. Even though the plain text
form of such messages isn’t human readable, it’s still the only way to deal with multibyte characters
from other languages.

Browser versus operating system support
Just because JavaScript can display and understand Unicode characters doesn’t necessarily mean the
operating system can. Why should this concern Web developers who care only about what the browser
supports, you may ask? The answer is because JavaScript uses some operating system functionality to
do its job, although most developers never realize it. For internationalization, you must be aware of this
very important boundary.

Any time you use alert(), confirm(), or prompt(), you are using an operating system dialog box.
Unless the client operating system has foreign language support installed, you end up with a dialog full
of gibberish. Most of the time, the browser reflects the language of the operating system, however you
never can tell what individuals with do with their browsers.

When using operating system dialogs with internationalization, be aware that these problems can occur.
When dealing with a distributed Web application, it may be enough to inform the customer of this limi-
tation; on public Web sites, however, it may be best to avoid using these dialogs altogether.

Error-proofing strings
Oftentimes in internationalized Web pages, developers try to pass strings from a server-side variable
into a JavaScript variable using a technique such as this:

<% String sJspHello = “Hello”; %>

<!-- more code here -->

<script type=”text/javascript”>
var sJavaScriptHello = “<%= sJspHello %>”;

571

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 571

alert(sJavaScriptHello);
</script>

This example uses JSP with the intent of outputting the string “Hello” into a JavaScript variable. When
this page gets to the browser, you can view the source:

<script type=”text/javascript”>
var sJavaScriptHello = “Hello”;
alert(sJavaScriptHello);

</script>

The output looks correct and the JavaScript functions as expected. But now consider another example:

<% String sJspHeSaidHi = “He said, \”hi.\””; %>

<!-- more code here -->

<script type=”text/javascript”>
var sJavaScriptHeSaidHi = “<%= sJspHeSaidHi %>”;
alert(sJavaScriptHeSaidHi);

</script>

The output to the browser now becomes this:

<script type=”text/javascript”>
var sJavaScriptHeSaidHi = “He said, “hi.””;
alert(sJavaScriptHeSaidHi);

</script>

Do you see the problem? The string that was outputted from the JSP contained quotation marks, which
creates a syntax error in JavaScript. This is the most common mistake made when internationalizing
Web pages that use JavaScript to output strings. You must be aware of quotation marks contained within
strings if the string is to be output into JavaScript code. The best way to deal with this is to replace the
quotation marks in all strings before outputting to JavaScript, such as in the following:

<% String sJspHeSaidHi = “He said, \”hi.\””; %>

<!-- more code here -->

<script type=”text/javascript”>
var sJavaScriptHeSaidHi = “<%= sJspHeSaidHi.replaceAll(“\\\””, “\\\””) %>”;
alert(sJavaScriptHeSaidHi);

</script>

This example converts all quotation marks to a backslash followed by a quotation mark using the Java
replaceAll() method. The first argument is a string representation of a regular expression (you’ll
remember that regular expression strings must be double-escaped, so \” becomes \\\”); the second
argument is identical, although this one is a string and not a regular expression. This effectively changes
this string:

“He said, \”hi.\””

572

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 572

To this:

“He said, \\\”hi.\\\””

When this is output to JavaScript, you get a valid string:

<script type=”text/javascript”>
var sJavaScriptHeSaidHi = “He said, \”hi.\””;
alert(sJavaScriptHeSaidHi);

</script>

This JavaScript code is syntactically correct and runs without error.

Use double quotes
Another common mistake is to use apostrophes to indicate strings instead of quotation marks. As you
remember, JavaScript allows either to represent strings, so the following two lines of code are equal:

sHello = “Hello”;
sHello = ‘Hello’;

Just because JavaScript lets you use either syntax doesn’t mean you can use them interchangeably when
you want internationalization. In fact, because apostrophes are much more common than quotation
marks in everyday language (especially in languages like French), you run into the same problem we
just explored with quotation marks, but far more often. Because of this, it’s considered best practice to
only use quotation marks to represent strings.

Following the guidelines in this section ensures that your internationalized JavaScript code works
seamlessly.

Optimizing JavaScript
When creating desktop applications, most developers don’t need to think much about optimization. For
the most part, programming languages are optimized when they are compiled: All variables, functions,
objects, and so on, are replaced with symbolic pointers that are understood only by the processor.
Macros are compiled to be faster than function calls. Templates are used to speed up object creation. But
JavaScript is a very different animal because it’s downloaded as source code and then interpreted (not
compiled) by the browser. Because of this, the speed of JavaScript code is split into two categories:
download time and speed of execution.

Download time
When using Java or other such programming languages, developers need not give any thought to hav-
ing variable names that are 100 characters long because the names are all replaced; they need not worry
about writing paragraphs of comments because these, too, are removed. As a JavaScript developer, you
do not have this luxury.

Web browsers download JavaScript as source code, meaning that all long variable names and comments
are included. These and other factors increase the download time and thus increase the overall time it

573

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 573

takes for the script to run. The key factor in decreasing download time is the number of bytes that a
script contains.

The key number to remember is 1160, which is the number of bytes that fit into a single TCP-IP packet.
It’s best to try to keep each JavaScript file to 1160 bytes or less for optimal download time.

Every character in a JavaScript file is a byte. Thus, every extra character (whether it be a variable name,
function name, or comment) counts against the download speed. Before deploying any JavaScript code,
the download time should be optimized as much as possible. Here are a handful of ways that you can
decrease the overall number of bytes in a script.

Remove all comments
This should be a no-brainer, but many developers forget this because, once again, compilers have tradi-
tionally handled this.

Any comments in a script should be removed prior to deployment. Comments are important while you
are developing so that all team members can understand the source code. However, when it comes time
for deployment, those comments are slowing down your JavaScript code dramatically.

Removing comments is the easiest way to cut down the number of bytes in a JavaScript file. Even if
you don’t follow any of the other suggestions I give, this alone can provide dramatic decreases in overall
file size.

Remove tabs and spaces
Most good developers indent their code regularly in order to increase readability. This is good practice,
but the browser doesn’t need all those extra tabs and spaces; they must go. And don’t forget about the
spaces between function arguments, assignments, and comparisons: say goodbye to those as well.
Consider the following two lines:

function doSomething (arg1, arg2, arg3) { alert(arg1 + arg2 + arg3); }

function doSomething(arg1,arg2,arg3){alert(arg1+arg2+arg3);}

To a JavaScript interpreter, these two lines are exactly identical, although the first line contains 12 more
bytes than the second. Removing the extra tabs and spaces between arguments, parentheses, and other
language delimiters helps to decrease the overall file size and, in turn, decreases the download time.

Using semicolons at the end of each line helps to preserve the syntactical meaning
of your code when extra tabs and spaces are removed.

It may be legally necessary to leave in a copyright notice or other such comment in
your file for deployment. If this is the case, ensure that all other comments are
removed and the legal comments are as short as possible.

574

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 574

Remove all line breaks
The next most important (and simple) thing you can do to decrease the size of the script file is to remove
all line breaks. As long as you program appropriately by including a semicolon at the end of each line,
the line breaks are of no consequence.

Many schools of thought exist about line breaks in JavaScript, but the bottom line is that line breaks
increase the readability of your code to prying eyes. Removing them is a fast, easy way to make it more
difficult for anyone to reverse engineer your code.

Replace variable names
This is the toughest optimization method to implement. Replacing variable names usually can’t be done
by hand because the process is not a standard find-and-replace text operation.

The basic idea is that any variable name (or private property of an object) should be replaced with a non-
sense variable name that has no intuitive meaning when read in the code. After all, the name of the vari-
able doesn’t matter to the interpreter, only to the developer who wants his or her code to make sense.
When it comes time to deploy the script, however, eliminate those descriptive variable names with sim-
pler, shorter ones:

function doSomething(sName,sAge,sCity){alert(sName+sAge+sCity);}

function doSomething(a1,a2,a3){alert(a1+a2+a3);}

The first line of code above is the original; the second line has the argument names replaced. By doing
this, the byte count was reduced by 16. Just imagine the savings if all the variable names in your entire
script are replaced with two-character names.

The ECMAScript cruncher
Following the four steps listed previously can be difficult. To help with the process, you can use an
external program.

Use extreme caution when trying to rename variables on your own. Using a standard
Find and Replace method in a text editor is not recommended, as the editor can’t tell
the difference between a variable name and any other text that matches the given
pattern. For example, you may have a variable named on (perhaps a Boolean indicat-
ing if a value is valid or not). If you try to replace on with another value, you also
replace the on at the end of function, thus rendering your entire script useless.

If for some reason removing line breaks is not an option, then — at the very least —
make sure that they are Unix format instead of Windows format. Windows uses two
characters on a line break (carriage return and line feed, ASCII codes 13 and 10
respectively); Unix uses only one. So, translating the line breaks into Unix format
from Windows still yields some byte savings.

575

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 575

One of the best tools for JavaScript code minimizing and variable replacement is the ECMAScript Cruncher
(ESC) by Thomas Loo (available from Saltstorm at http://www.saltstorm.net/depo/esc/). ESC is a
small Windows Shell Script that can do all the optimizations mentioned in this section for you.

To run ESC, you must be using a Windows. Open up a console window and use the following format:

cscript ESC.wsf -l [0-4] -ow outputfile.js inputfile1.js [inputfile2.js]

The first part, cscript, is the Windows Shell Script interpreter. The filename ESC.wsf is the ESC pro-
gram itself. After that is the crunch level, which is a number between 0 and 4, indicating which opti-
mizations should be applied. The –ow option indicates that the next argument is the output file for the
optimization. Finally, all remaining arguments are the JavaScript files to optimize. You can specify only
one file to optimize or multiple files (which are optimized and placed into the output file one after the
other).

The four levels of optimization supported by ESC are explained in the following table:

Level Description

0 Leaves the script as-is. This is valuable if you want to append multiple files into a
single file.

1 Removes all comments.

2 Save as level 1, plus removes extra tabs and spaces.

3 Save as level 2, plus removes line breaks.

4 Save as level 3, plus replaces variable names.

ESC is very good at replacing variable names with nonsense names. It also is intelligent enough to
replace private object properties and methods (those denoted with two underscores at the beginning and
end of the name) with nonsense names, so your private properties and methods stay private.

ESC leaves your constructor names, public properties, and public methods intact, so no need to worry
about those. The only thing to keep in mind when using ESC is that if the JavaScript file references a
constructor in another file (such as the StringBuffer class from earlier in the book), crunching at level
4 replaces the references to this constructor with a nonsense name. The solution is to crunch both files
into a single file, thus retaining the constructor name.

Other ways to decrease the byte count
The following are suggestions to optimize scripts for size using somewhat uncommon methods that
save a lot of bytes. These suggestions aren’t handled by ESC, so you must carry them out by hand.

Replace Boolean values
You learned early on that for comparison purposes, true is equal to 1 and false is equal to 0. Therefore,
anytime a script contains the literal value true, it can be replaced with a 1 and anytime a script contains
false, it can be replaced with a 0. This saves three bytes in the case of a true and four bytes in the case of
a false, but it doesn’t alter the meaning of any Boolean expression.

576

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 576

Consider this example:

var bFound = false;

for (var i=0; i < aTest.length && !bFound; i++) {
if (aTest[i] == vTest) {

bFound = true;
}

}

You can replace the true and false without changing the meaning:

var bFound = 0;

for (var i=0; i < aTest.length && !bFound; i++) {
if (aTest[i] == vTest) {

bFound = 1;
}

}

This code runs exactly the same way, and you’ve gained seven bytes.

Shorten negative tests
It’s quite common to test whether a value is valid. The most these negative tests can do is determine if a
variable is equal (or not equal) to undefined, null, or false, such as in the following:

if (oTest != undefined) {
//do something

}

if (oTest != null) {
//do something

}

if (oTest != false) {
//do something

}

These are all fine, but they can all be rewritten using the logical NOT operator and have the exact same
effect:

if (!oTest) {
//do something

}

How is this possible? Remember way back at the beginning of the book when automatic type conver-
sions were discussed? The NOT operator returns true when its operand is undefined, null, or false
(it also returns true if the operand is 0). Take a look at the byte savings anytime you replace one of these
negative tests with the logical NOT operator.

577

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 577

Use array and object literals
The concept of array literals was touched on briefly earlier in the book. To review, the following two
lines are equivalent:

var aTest = new Array;
var aTest = [];

The second line uses an array literal, which is just as valid as the first line. But as is very apparent, the
second line uses fewer characters (and thus bytes). It’s good practice to always use array literals when
creating arrays.

Likewise, object literals can be used to save a lot of space as well. The following two lines are equivalent,
but the one using an object literal uses fewer bytes:

var oTest = new Object;
var oTest = {};

This also works if you are creating a generic object with a few properties, such as this:

var oFruit = new Object;
oFruit.color = “red”;
oFruit.name = “apple”;

The previous code can be rewritten using an object literal as the following:

var oFruit = { color: “red”, name: “apple” };

This example uses an object literal to assign the two properties color and name, and in doing so, saves a
lot of bytes.

Execution time
The second part of overall JavaScript performance is the amount of time it takes a script to run. Because
JavaScript is an interpreted language, the speed of execution is significantly slower than compiled
languages.

Geoffrery Fox of Syracuse University wrote an online seminar entitled “JavaScript Performance Issues”
(available at http://www.npac.syr.edu/users/gcf/forcps616javascript/msrcobjectsapril99/
tsld022.htm), in which he described JavaScript’s performance relative to other well-known program-
ming languages. According to Fox, JavaScript is:

❑ 5000 times slower than compiled C

❑ 100 times slower than interpreted Java

❑ 10 times slower than interpreted Perl

Keeping this in mind, you can do some simple things to improve the performance of your JavaScript
code.

578

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 578

Be scope aware
In JavaScript, scope is everything. A scope can be thought of as the space where certain variables exist.
The default (or global) scope is the window in JavaScript. Variables created in the window scope aren’t
destroyed until the Web page is unloaded from the browser. Each function you define is another scope
under that global scope. All variables created within the function exist only within the function scope
and are destroyed when execution leaves the function.

You can think of scopes in JavaScript as a hierarchical tree. When a variable is referenced, the JavaScript
interpreter looks to the most recent scope to see if it exists there. If not, it goes up to the next scope, and
the next, and so on, until it reaches the window scope. If the variable is not found in the window scope,
you receive an error during execution.

Every time the interpreter goes up to another scope in search of a variable, execution speed suffers.
Variables that are local to a scope lead to faster script execution when compared to global variables. The
less distance the interpreter has to travel up the tree, the faster your script runs. But what exactly does
this mean? Consider the following example:

var sMyFirstName = “Nicholas”;

function fn1() {
alert(sMyFirstName);

}

function fn2() {
var sMyLastName = “Zakas”;
fn1();

}

function fn3() {
var sMyMiddleInitial = “C”;
fn2();

}

fn3();

When fn3() is called on the last line, a scope tree is created (see Figure 19-1).

The importance of understanding scopes becomes evident in this example as you travel down the scope
tree. The function fn3() calls fn2(), which calls fn1(). The function fn1() then accesses the window-
level variable sMyFirstName, but in order to locate this variable, the interpreter has to look back up the
scope tree all the way to the window scope. This takes significant time. Finding ways to take advantage
of JavaScript scoping is vital in optimizing execution time. You can do a few easy things to help the
interpreter locate variables faster.

579

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 579

Figure 19-1

Use local variables
Always use the var statement to define variables inside functions. Whenever you used var, a local vari-
able is created within the current scope. If you begin using a variable without first defining it with var,
the variable is created at the window scope, meaning that every time you use that variable the interpreter
has to search back up the scope tree to find it. For example, don’t do this:

function sayFirstName() {
sMyFirstName = “Nicholas”;
alert(sMyFirstName);

}

In this function, the variable sMyFirstName is assigned a value without using var; this variable is cre-
ated at the window scope. You can prove this to yourself by defining another function that also uses this
variable:

function sayFirstName() {
sMyFirstName = “Nicholas”;
alert(sMyFirstName);

}

function sayFirstNameToo() {
alert(sMyFirstName);

}

sayFirstName();
sayFirstNameToo();

In this example, you see two alerts displaying “Nicholas”. This happens because the first function call,
sayFirstName(), creates the variable sMyFirstName at the window scope, which means the second

MyMiddleInitial = "C"

MyFirstName = "Nicholas"

(window)(window)

fn3()fn3()

fn2()fn2()

MyLastName = "Zakas"

fn1()fn1()

580

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 580

function, sayFirstNameToo(), can also access it. Suppose you now change this example to use var,
like this:

function sayFirstName() {
var sMyFirstName = “Nicholas”;
alert(sMyFirstName);

}

function sayFirstNameToo() {
alert(sMyFirstName);

}

sayFirstName();
sayFirstNameToo();

When you try to run this code, you get an error after the first alert is displayed because the second func-
tion has no knowledge of a variable named sMyFirstName. The variable was created within the
sayFirstName() scope and was destroyed when the function finished executing.

Using local variables leads to faster execution because the interpreter doesn’t have to leave the local
scope in search of a variable. Local variables are also much more efficient because they are removed
from memory long before the Web page is unloaded.

Avoid the with statement
You probably understand at this point that the fewer scopes you have, the better off you are. This is why
it’s important to avoid the with statement whenever possible.

As a quick refresher, the with statement enables you to access properties of objects as if they were vari-
ables, so instead of doing this:

alert(document.title);
alert(document.body.tagName);
alert(document.location);

You can do this:

with (document) {
alert(title);
alert(body.tagName);
alert(location);

}

This saves bytes by eliminating the need to type document for each of the three lines contained in the
with statement. But the with statement comes with a price: It is another scope. When you use the with
statement, you are forcing the interpreter to not only look up the scope tree for local variables, but you
are also forcing it to test each variable against the object specified to see if it’s a property. After all, you
could have a variable named title or location defined within the function as well.

Your best bet is to avoid using the with statement. The number of bytes saved doesn’t outweigh the per-
formance loss because of an added scope.

581

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 581

Remember Computer Science 101
A lot of the basics relating to optimization of code in other programming languages also apply to
JavaScript. Because JavaScript borrows syntax and statements so heavily from C, Java, and Perl, the
same techniques used to optimize code in those languages can also be used in JavaScript. The techniques
presented in this section have been written about in books and articles such as Koushik Ghosh’s
“Writing Efficient C and C Code Optimization” (available online at http://www.codeproject.com/
cpp/C___Code_Optimization.asp). In this article, Ghosh has compiled a list of the most popular code
optimization techniques for C, many of which apply to JavaScript as well.

Choosing the right algorithm
When programming, choosing the right algorithm is as important as anything you do. The less complex
the algorithm, the faster your code runs. To measure the complexity of algorithms, computer scientists
use Big O notation. Big O notation consists of the letter O defined as a function with certain arguments.

The simplest algorithm is a constant value, represented as O(1). Retrieving a constant value is an extremely
fast process. Constant values are made up of both true constants, such as the number 5, as well as values
stored in variables. Consider the following example:

var iFive = 5;
var iSum = 10 + iFive;
alert(iSum);

This code retrieves three constant values. The first two are the number 10 and the variable iFive in the
second line. Then, in Line 3, the value of iSum is retrieved; this is also a constant value. These three con-
stant retrievals take very little time because of their simplicity.

All values stored in arrays are also constant values, so the following code uses only the constant value
algorithm:

var aNumbers = [5,10];
var iSum = aNumbers[0] + aNumbers[1];
alert(iSum);

In this code the array aNumbers is used to store the numbers to be added. Both aNumbers[0] and
aNumbers[1] are constant value retrievals, so the total number of O(1) algorithms in this code is
also three.

The next algorithm is called linear, represented by O(n). This algorithm is used in simple searches, where
an array is searched through, item by item, until a result is found. The following is an example of a lin-
ear algorithm:

for (var i=0; i < aNumbers.length; i++) {
if (aNumbers[i] == 5) {

alert(“Found 5”);
break;

}
}

582

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 582

This algorithm is fairly common because iterating over the values in an array is a very common tech-
nique. However, another linear algorithm is used commonly in JavaScript: the named property lookup.

Named properties are just basic properties of objects, such as oDog.name. Although this may look like
a variable that is local to the given object, in reality, it’s actually a search through the properties of the
object looking for the one matching name. For this reason, it’s always best to use local variables or
numerically indexed array values instead of named properties.

Consider this example:

var aValues = [1, 2, 3, 4, 5, 6, 7, 8];

function testFunc() {
for (var i=0; i < aValues.length; i++) {

alert(i + “/” + aValues.length + “=” + aValues[i]);
}

}

Here are the algorithms represented in this code:

❑ i in i < aValues.length — constant(O(1))

❑ aValues.length in i < aValues.length — linear(O(n))

❑ i in alert(i + “/” + aValues.length + “=” + aValues[i]); — constant(O(1))

❑ aValues.length in alert(i + “/” + aValues.length + “=” + aValues[i]); —
linear(O(n))

❑ aValues[i] in alert(i + “/” + aValues.length + “=” + aValues[i]); —
constant(O(1))

The linear algorithms are of particular interest here because they can easily be replaced with constant
algorithms. All the linear algorithms are run twice every time the loop runs: once when the i <
aValues.length test is run after each loop iteration, and once in the alert() call. That means the
linear algorithms are executed 16 times throughout the function execution.

The following code does the exact same thing, but uses only one linear algorithm:

var aValues = [1, 2, 3, 4, 5, 6, 7, 8];

function testFunc() {
for (var i=0, iCount=aValues.length; i < iCount; i++) {

alert(i + “/” + iCount + “=” + aValues[i]);
}

}

In this example, a second variable is initialized in the for loop, iCount, which is assigned the value of
aValues.length. Then, the test after each iteration of the loop becomes a constant algorithm because
it is accessing the variables i and iCount instead of aValues.length. Likewise, by replacing
aValues.length with iCount in the alert() call, another linear algorithm is eliminated. Ultimately,
this code executes with only one linear algorithm instead of 16, which decreases execution time.

583

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 583

Keep these algorithms in mind when trying to optimize your code. Here are a couple basic rules for
using the correct algorithms:

❑ Whenever possible, use local variables or numerically indexed arrays instead of named properties.

❑ If a named property is going to be used more than once, store its value in a local variable to
avoid running a linear algorithm each time the value is needed.

Reverse your loops
Loops account for a large amount of processing in most programming languages, so keeping them effi-
cient can greatly decrease execution time. A well-known strategy in programming is to iterate through
loops in reverse, starting at the last item and working back to the first. Here’s a regular for loop:

for (var i=0; i < aValues.length; i++) {
//do something here

}

To reverse this, start the iterator (i) at the last item in the array, which is in position aValues.length-1;
then check to see if i greater than or equal to 0 and decrement i instead of incrementing it:

for (var i=aValues.length-1; i >= 0; i--) {
//do something here

}

Reversing the loop helps by reducing the complexity of algorithms. It uses a constant value (0) as the
control statement for the loop to reduce the execution time.

Flip your loops
You can replace while loops with do..while loops to further decrease execution time. Suppose you
have the following while loop:

var i=0;

while (i < aValues.length) {
//do something here

i++;
}

The previous code can be rewritten using a do..while loop without changing its behavior:

var i=0;

For further information on Big O Notation and computer science algorithms, please refer
to “Big O Notation” from the Wikipedia, available at http://en.wikipedia.org/
wiki/Big_O_notation.

584

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 584

do {
//do something here

i++;
} while (i < aValues.length);

This code now runs faster than using the while loop, but it can be optimized further by reversing the loop:

var i=aValues.length-1;

do {
//do something here

i--;
} while (i >= 0);

You can also eliminate an extra statement by putting the decrement into the control statement directly:

var i=aValues.length-1;

do {
//do something here

} while (i-- >= 0);

The loop has now been fully optimized for execution speed.

Unroll your loops
Instead of using loops that execute one statement each time through, you can unroll these loops to run
multiple statements. Consider the following simple for loop:

var aValues = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20];
var iSum = 0;

for (var i=0; i < aValues.length; i++) {
iSum += aValues[i];

}

This loop body executes 20 times, each time adding to the variable iSum. This is a fairly simple opera-
tion, so it’s possible to unroll this operation and execute it several times within the for loop:

var aValues = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20];
var iSum = 0;

for (var i=0; i < aValues.length; i++) {
iSum += aValues[i];
i++;
iSum += aValues[i];
i++;
iSum += aValues[i];
i++;

585

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 585

iSum += aValues[i];
i++;
iSum += aValues[i];
i++;

}

In this example, the addition is done five times within the body of the loop. After each addition, the vari-
able i is incremented, so it moves along the array in the same way as the original for loop did. This
way, the control statement is executed only four times; therefore the entire execution time decreases.

Of course, combining the variable increment with the additions can optimize this loop even further:

var aValues = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20];
var iSum = 0;

for (var i=0; i < aValues.length; i++) {
iSum += aValues[i++];
iSum += aValues[i++];
iSum += aValues[i++];
iSum += aValues[i++];
iSum += aValues[i++];

}

This code eliminates five more statements, once again decreasing execution time. Is there a generic way
to unroll loops? The answer is yes. Using a technique called Duff’s Device (named after Tom Duff, the
inventor), it’s possible to unroll loops without knowing how much iteration is necessary beforehand.

The loop in the previous example executed 20 times, once for each item in an array. Because of this, the
unrolled loop had to contain either ten, five, four, or two statements (all factors of 20) in order to work
properly. Duff’s Device uses the modulus operator to properly execute an unrolled loop containing eight
identical statements. This technique allows any number of iterations to work properly.

Duff’s Device was originally written in C, but has since been ported to JavaScript by Jeff Greenburg,
who has done exhaustive tests on JavaScript optimization at his site, http://home.earthlink.net/
~kendrasg/info/js_opt/. His algorithm is as follows:

var iLoopCount = Math.ceil(iIterations / 8);
var iTestValue = iIterations % 8;

do {

switch (iTestValue) {
case 0: [execute statement];
case 7: [execute statement];
case 6: [execute statement];
case 5: [execute statement];
case 4: [execute statement];
case 3: [execute statement];
case 2: [execute statement];
case 1: [execute statement];

}

586

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 586

iTestValue = 0;

} while (--iLoopCount > 0);

The variable iIterations contains the number of times that the loop that should be executed. The
variable iLoopCount contains the number of times it is necessary to repeat the do..while loop. The
iTestValue variable represents which case in the switch statement should be executed the very first
time the loop is entered; every other time, execution starts with case 0 and runs through all the rest
(notice that no break statements stop execution after a case statement is executed). If you apply Duff’s
Device to the previous example, this is the result:

var aValues = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20];

var iIterations = aValues.length;
var iLoopCount = Math.ceil(iIterations / 8);
var iTestValue = iIterations % 8;
var iSum = 0;
var i = 0;

do {

switch (iTestValue) {
case 0: iSum+= aValues[i++];
case 7: iSum+= aValues[i++];
case 6: iSum+= aValues[i++];
case 5: iSum+= aValues[i++];
case 4: iSum+= aValues[i++];
case 3: iSum+= aValues[i++];
case 2: iSum+= aValues[i++];
case 1: iSum+= aValues[i++];

}

iTestValue = 0;

} while (--iLoopCount > 0);

Notice that iIterations has been set to the number of values in the array, and the iSum and i variables
have been added. The iSum variable, of course, holds the result of adding all the numbers in the array; the
i variable is used as an iterator to move through the array (just as with the for and do..while loops).

Before the loop is executed, iLoopCount is equal to 3, meaning that the loop is executed three times. The
value of iTestValue is equal to 4, so when execution enters the first loop, it skips down to case 4 in the
switch statement. After those four lines are executed, iTestValue is set back to 0. From that point on,
whenever the loop executes, all cases beginning at case 0 are executed.

Greenburg further optimized his JavaScript version of Duff’s Device by splitting the single do..while
loop into two separate loops. The algorithm is as follows:

var iLoopCount = iIterations % 8;
while (iLoopCount--) {

[execute statement]
}

587

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 587

iLoopCount = Math.floor(iIterations / 8);
while (iLoopCount--) {

[execute statement]
[execute statement]
[execute statement]
[execute statement]
[execute statement]
[execute statement]
[execute statement]
[execute statement]

}

The purpose of this algorithm is to account for all the extra iterations that must be done (that won’t be
included when the number of iterations is divided by 8) in the first loop. It then continues on into the
second loop to iterate through the multiples of 8 remaining. Applying this algorithm to the previous
example, you get the following:

var iIterations = aValues.length;
var iLoopCount = iIterations % 8;
var iSum = 0;
var i = 0;

while (iLoopCount--) {
iSum += aValues[i++];

}

iLoopCount = Math.floor(iIterations / 8);

while (iLoopCount--) {
iSum += aValues[i++];
iSum += aValues[i++];
iSum += aValues[i++];
iSum += aValues[i++];
iSum += aValues[i++];
iSum += aValues[i++];
iSum += aValues[i++];
iSum += aValues[i++];

}

Once again, a few variables are added to make the example work, but it has the same result as the origi-
nal Duff’s Device port.

Whether to use an algorithm such as Duff’s Device is entirely up to you. You must weigh the cost of
adding extra bytes (increasing download time) against the speed optimization that doing so provides.

Yes, this algorithm can be optimized even further by switching the two while loops to
do..while loops. However, this wasn’t included in Greenburg’s original algorithm.

588

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 588

Optimize if statements
Whenever using if statements with multiple else statements, make sure you put the most likely condi-
tion first, followed by the second most likely condition, and so forth. For example, if you expect a num-
ber to typically be between 0 and 10, but you have specific functionality for other values, you can
arrange the code like this:

if (iNum > 0 && iNum < 10) {
alert(“Between 0 and 10”);

} else if (iNum > 9 && iNum < 20) {
alert(“Between 10 and 20”);

} else if (iNum > 19 && iNum < 30) {
alert(“Between 20 and 30”);

} else {
alert(“Less than or equal to 0 or greater than or equal to 30”);

}

By always placing the most common conditions first, you can avoid running through multiple false con-
ditions before getting to the true condition.

You should also try to minimize the number of else if statements and arrange the conditions so that
they proceed in a binary search fashion. The previous example, for instance, can be rewritten this way:

if (iNum > 0) {
if (iNum < 10) {

alert(“Between 0 and 10”);
} else {

if (iNum < 20) {
alert(“Between 10 and 20”);

} else {
if (iNum < 30) {

alert(“Between 20 and 30”);
} else {

alert(“Greater than or equal to 30”);
}

}
}

} else {
alert(“Less than or equal to 0”);

}

This may look complicated, but it’s more in line with how the underlying (interpreted) code is executed
and so can result in faster execution. Always try to have a branch where the if condition tests if a value
is greater than, less than, or equal another value; then let an else statement handle the other possibility.

Switch versus If
The classic question of whether to use a switch statement or an if statement applies to JavaScript as
well. Generally speaking, anytime you have more than two conditions to test for, it’s best to use a
switch statement whenever possible. Often, using the switch statement instead of an if statement can
result in execution that is up to 10 times faster. This is even easier to take advantage of in JavaScript
because you can use any type of value in a case statement.

589

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 589

JavaScript gotchas
JavaScript, as you are well aware at this point, is unlike other programming languages in many ways.
Therefore, it helps to keep in mind some of the gotchas of the language.

Avoid string concatenation
Earlier in the book, you learned about the hazards of string concatenation using the plus (+) operator. To
work around this problem, you learned how to create a StringBuffer object to encapsulate string con-
catenations using an Array and the join() method.

Whenever you are doing more than five string concatenations in a row, it’s best to use the StringBuffer
object.

Use built-in methods first
Whenever possible, use built-in methods of JavaScript objects before making your own. The built-in
methods are compiled in C++ and as such, run much faster than JavaScript that must be interpreted on
the fly. For example, you could write a function that calculates the value of a number when raised to the
power of n in this way:

function power(iNum, n) {
var iResult = iNum;

for (var i=1; i < n; i++) {
iResult *= iNum;

}

return iResult;
}

Although this function works perfectly well, JavaScript already provides a way to calculate the power of
a number by using Math.pow():

alert(Math.pow(3, 4)); //raise 3 to the 4th power

The big difference is that Math.pow() is part of the browser, written and compiled in C++, and it is
much faster than the custom power() function defined previously.

Numerous built-in methods are provided specifically to take care of these common tasks. It’s always bet-
ter for execution time to use built-in methods instead of functions you define.

Store commonly used values
Whenever you use the same value more than once, store it in a local variable for easy access. This is
especially true for values that are normally accessed through a property of an object. Consider the fol-
lowing code:

oDiv1.style.left = document.body.clientWidth;
oDiv2.style.left = document.body.clientWidth;

590

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 590

In this example, the value document.body.clientWidth is used twice, but it’s retrieved using named
properties (an expensive operation compared to accessing a single variable). You can rewrite this code to
use a local variable instead of accessing document.body.clientWidth twice:

var iClientWidth = document.body.clientWidth;
oDiv1.style.left = iClientWidth;
oDiv2.style.left = iClientWidth;

Note that this example also reduces the algorithmic complexity of the previous code by cutting two calls
to linear algorithms down to one.

Minimize statement count
It stands to reason that the fewer statements a script has, the less time needed for it to execute. You can
minimize the number of statements in JavaScript code in numerous ways when defining variables, deal-
ing with iterating numbers, and using array and object literals.

Define multiple variables
As mentioned earlier in the book, you can use the var statement to define more than one variable at a
time. Further, you can define variables of different types using the same var statement. For instance, the
following code block uses four separate var statements to define four variables:

var iFive = 5;
var sColor = “blue”;
var aValues = [1,2,3];
var oDate = new Date();

These four statements can be rewritten to use a single var statement:

var iFive = 5 , sColor = “blue”, aValues = [1,2,3], oDate = new Date();

By eliminating three statements you make this code segment run faster.

Insert iterative values
Any time you are using an iterative value (that is, a value that is being incremented or decremented at
various locations), combine statements whenever possible. Consider the following code snippet:

var sName = aValues[i];
i++;

The two preceding statements each have a single purpose: The first retrieves a value from aValues and
stores it in sName; the second iterates the variable i. These can be combined into a single statement by
inserting the iterative value into the first statement:

var sName = aValues[i++];

This single statement accomplishes the same thing as the previous two statements. Because the incre-
ment operator is postfix, the value of i isn’t incremented until after the rest of the statement executes.
Whenever you have a similar situation, try to insert the iterative value into the last statement that uses it.

591

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 591

Use array and object literals
I mentioned doing this to decrease byte count, but you can also replace array and object definitions with
literals to decrease execution time. Consider the following object definition:

var oFruit = new Object;
oFruit.color = “red”;
oFruit.name = “apple”;

As mentioned previously, the previous code can be rewritten using an object literal:

var oFruit = { color: “red”, name: “apple” };

Besides the decrease in byte count, the object literal is one statement whereas the extended syntax is
three statements; one statement is always executed faster than three. The same effect can be achieved
using array literals instead of the extended array syntax.

Use the DOM sparingly
One of the most time-intensive operations in JavaScript is DOM manipulation. Anytime you add,
remove, or otherwise change the underlying DOM structure of a page, you are incurring a significant
time penalty. This happens because every DOM manipulation alters the appearance of the page to a
user, meaning that the entire page must be recalculated to ensure that the page is rendered properly.
The way to get around this problem is to do as many DOM manipulations as possible with elements
that aren’t already in the DOM document.

Consider the following example that adds 10 items to a bulleted list:

var oUL = document.getElementById(“ulItems”);

for (var i=0; i < 10; i++) {
var oLI = document.createElement(“li”);
oUL.appendChild(oLI);
oLI.appendChild(document.createTextNode(“Item “ + i));

}

Two problems arise with this code in terms of execution speed. The first is the oUL.appendChild() call
at the middle of the loop. Each time through, this line executes and the entire page must be recalculated
to allow for the item to be updated. The second problem is the following line that adds the text node to
the list item, which also causes page recalculation. With these two problems, every trip through the loop
causes two page recalculations for a total of 20.

To fix this problem, the list items should not be added until after the text nodes have been assigned.
Additionally, you can use a document fragment to hold all the created list items until it’s time to add
them to the list:

var oUL = document.getElementById(“ulItems”);
var oFragment = document.createDocumentFragment();

for (var i=0; i < 10; i++) {
var oLI = document.createElement(“li”);
oLI.appendChild(document.createTextNode(“Item “ + i));

592

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 592

oFragment.appendChild(oLI);
}

oUL.appendChild(oFragment);

In the rewritten code, a document fragment is created before the loop begins. Then, inside the loop, the list
item is created and the text node is added to it. The last step in the loop is to add the list item to the docu-
ment fragment. Because the fragment isn’t a part of the DOM document, no recalculation is necessary.
After the loop has executed, the list items are added to the list all at once by using the appendChild()
method and passing in the document fragment (which, you’ll remember, appends the children of fragment,
not the fragment itself).

Keep this technique in mind whenever you are manipulating the DOM document. If you are going to be
making more than one change, it’s best to use a document fragment to store the changes before applying
them to the document.

Intellectual Property Issues
After you’ve made all your size and speed improvements, you still must consider protecting your intel-
lectual property. This is something traditional programmers don’t need to worry about because the end
product that is shipped to customers is compiled and fairly safe from reverse engineering. When ship-
ping your JavaScript code, you are actually shipping source code, making it public. Although copyright
notices and other legal wording can provide a small measure of protection in a court of law, it doesn’t
help you keep your code safe in the first place. So what’s a developer to do?

Obfuscating
Obfuscating is the process of mixing up your source code to make it more difficult for prying eyes. ESC,
described earlier, does a small amount of obfuscating by replacing variable and function names. This is
the most basic form of obfuscating, but there are more.

The Dithered JavaScript compression utility (http://www.dithered.com/javascript/compression/
index.html) provides an added amount of obfuscation in a unique way: It extracts sequences of charac-
ters from the JavaScript code and replaces them with special markers. When the code is executed, these
markers are replaced using regular expressions and the entire code is evaluated. For example, consider
the DOM code example from the previous section:

var oUL = document.getElementById(“ulItems”);
var oFragment = document.createDocumentFragment();

for (var i=0; i < 10; i++) {
var oLI = document.createElement(“li”);
oLI.appendChild(document.createTextNode(“Item “ + i));
oFragment.appendChild(oLI);

}

oUL.appendChild(oFragment);

593

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 593

Using the JavaScript compression utility, the script becomes the following:

S=”`4UL = docu`5.getEle`5ById(\”ulItems\”);
`4`2`6Docu`5`2();
for (var i=0; i < 10; i++) {
`4LI`6Ele`5(\”li\”`3LI`1`0eTextNode(\”Item \” + i)`3`2`1oLI);
}oUL`1o`2);”;for(I=6;I>=0;)S=S.replace(eval(‘/`’+I+’/g’),(“document.creat~.appendCh
ild(~Fragment~);

o~var o~ment~ = `0e~”.split(‘~’))[I--]);eval(S);

This doesn’t look smaller, but keep in mind that the original script didn’t have tabs, spaces, or new line
characters removed (the documentation suggests you use another tool for such optimization before
using this utility).

The downside to this sort of obfuscation is that its startup time is slow because of the extra interpretation
of the code. However, the overall file size can be cut significantly.

Microsoft Script Encoder (IE only)
If you are sure that your target audience will be using Internet Explorer on Windows, you can take advan-
tage of the Microsoft Script Encoder to protect your code. The Microsoft Script Encoder is command-line
program that encodes your JavaScript into completely unreadable code.

To begin, you download the utility from Microsoft (http://www.microsoft.com/downloads/
details.aspx?FamilyId=E7877F67-C447-4873-B1B0-21F0626A6329&displaylang=en). After
it is installed, open up a DOS command line window and use the following syntax:

screnc inputfile outputfile

The program accept numerous types of files as input, but for the purposes of encoding JavaScript the
only ones of interest are HTML files and external JavaScript (.js) files. When you specify an HTML file
for input, any code contained within an inline <script/> element is encoded; for .js files, the entire
file is encoded.

For example, the code from the previous section gets encoded into this:

#@~^RAEAAA==-
mD~KjdP’,NK^Es+UYconOAV+snxDAX&[cJ!V&Yn:dE*i@#@&7CD,Wo.mo:nUDPxP9G1Eh xDRmM+mO+GW^E
s+UOwDlTh+ Y`*I@#@&@#@&6W.Pc-
mD~k{Ti,k~@!,F!I~b_Q#,`@#@&~,P,\lMPKJq,’~NKm;h xYc^D lY 3s+s+
YcJsrr#I@#@&~P,PGJ&Rl22 x[Z4r^Nc9W1E: xD
mM+CY KnaD1W9n`rqY h~J,_,kb#I@#@&P~P,GsMlLh xY Cawnx9/4ks9`KSq*i@#@&8@#@&@#@&KjJ
mww UN;tk^[cWwDmoh+UO*i@#@&n18AAA==^#~@

If you specified an HTML file as input, the <script/> element is updated to have a language attribute
equal to “JScript.Encoded”; if you specified a .js file as input, you must manually add the language
attribute when referencing the file:

<script language=”JScript.Encoded” src=”encodedfile.js”></script>

594

Chapter 19

22_579088 ch19.qxd 3/28/05 11:43 AM Page 594

Even if someone downloads your code, it’s now impossible to reverse engineer or otherwise figure out.
All your JavaScript calls from within an HTML file can be used in the exact same way (meaning you
don’t have to worry about encoding your JavaScript calls; just make them as you would normally).

The downside to this technique is that it works only on Internet Explorer on Windows. After it is
encoded, the script is essentially useless to any other browsers on any other operating systems. If you
are sure that your only users are running IE on Windows (such as in a corporate Intranet), this may be
helpful to you. Otherwise it’s best to go with an obfuscating utility that works across all browsers.

Summary
In this chapter, you’ve learned about several issues relating to the deployment of JavaScript to a public
Web site or to a client via a Web application.

The first issue discussed was security. Various security issues, ranging from general concepts (such
as the Same Origin Policy) to browser-specific issues (like Mozilla’s signed scripts), were discussed.
JavaScript’s security limitations in regards to the BOM and the DOM were also covered.

Next, you learned how to optimize JavaScript code. The two ways to optimize JavaScript are to mini-
mize the size of the code (by removing extra white space and comments) and to reduce the time it takes
for the script to execute (by using common programming techniques). I discussed a variety of different
methods to achieve optimization, and I also introduced several utilities that can aid in the process.

The last topic discussed was intellectual property. Code obfuscation and encoding were introduced as
methods to prevent reverse engineering. You learned that obfuscation is a better solution for cross-
browser compatibility than using the Windows Script Encoder, which works only for Internet Explorer
on Windows. Ultimately, the method you use to protect your intellectual property is largely determined
by the Web solution you are developing.

You can learn more about the Microsoft Script Encoder at http://msdn
.microsoft.com/library/default.asp?url=/library/en-us/script56/
html/seusingscriptencoder.asp.

595

Deployment Issues

22_579088 ch19.qxd 3/28/05 11:43 AM Page 595

22_579088 ch19.qxd 3/28/05 11:43 AM Page 596

The Evolution of JavaScript

So far in this book, you have learned about the origins of JavaScript as well as about the imple-
mentations presently in use. This chapter talks about what lies ahead for JavaScript. Since its intro-
duction and the standardization of ECMAScript, JavaScript and derivative languages have been
used in many different programming environments. But JavaScript hasn’t peaked: It’s still grow-
ing and evolving with several interested parties (such as Microsoft and Mozilla) pushing it for-
ward. In this chapter, you learn where the evolution of JavaScript is heading and what this means
to your code.

ECMAScript 4
The future of JavaScript is inescapably tied to the fourth edition of ECMAScript, which has met
with substantial problems since first being proposed.

Technical Committee 39 (TC39), which you may remember as the group inside of ECMA that first
standardized ECMAScript, is still in charge of developing future editions. Like the first edition of
ECMAScript, the fourth edition was first proposed by Netscape Communications, and TC39’s
schedule originally called for its release in 2002. However, issues arose surrounding the clout that
Microsoft had gained on the Web since the first edition of ECMAScript had been standardized.
Microsoft entered its own proposal to TC39 for the future direction of ECMAScript.

TC39 changed the planned release of ECMAScript Edition 4 to the first quarter of 2004, almost two
years later than the originally scheduled release. However, March 2004 came and went without the
release. As of the time of my writing, no indication has been given as to when the next edition of
ECMAScript will be released. All schedules of record still indicate the Q1 2004 date.

Given this lack of direction from the ECMA, the only possible way to investigate the future of
JavaScript is to take a look at the proposal that was sent to TC39 for consideration.

23_579088 ch20.qxd 3/28/05 11:44 AM Page 597

Netscape’s proposal
When Netscape submitted its proposal to TC39, the future of Netscape Communications looked bleak.
Since that time, Netscape was purchased by Time Warner (then AOL Time Warner) and then summarily
disbanded, leaving the future of its Web browser strictly to the open-source Mozilla Foundation. The
Mozilla Foundation still supports the Netscape proposal (which can be viewed at http://www.mozilla
.org/js/language/es4/) and updates it periodically, although the last update noted was in June 2003.

Netscape’s proposal for ECMAScript would turn ECMAScript into a lightweight version of the Java pro-
gramming language. The goals listed in the proposal are the following:

❑ Making the language suitable for writing modular and object-oriented applications

❑ Making it possible and easy to write robust and secure applications

❑ Improving upon ECMAScript’s facilities for interfacing with a variety of other languages and
environments

❑ Improving ECMAScript’s suitability for writing applications for which performance matters

❑ Simplifying the language where possible

❑ Keeping the language implementation compact and flexible

Although these goals seem pretty ambitious, the proposal is quick to point out that its authors do not see
ECMAScript as a replacement for C++ or Java, nor do they intend to push it in that direction.

In order to accomplish the goals listed previously, the Netscape proposal suggests a number of changes
to the language from the third edition. These changes include:

❑ Optional strict typing and type checking of values. As discussed throughout this book,
ECMAScript is currently a loosely typed language. The proposal asks to change this in order to
cut down on errors and bring ECMAScript more in line with other object-oriented languages.

❑ More logical syntax for classes. In the current edition of ECMAScript, a strict difference exists
between defining a global function and defining a class. This proposal suggests the use of the
reserved word class to make the syntax for defining classes more logical (and ultimately, more
Java-like). This would include using the extends reserved word for more straightforward
inheritance and the introduction of private and protected scopes.

❑ Addition of more types. Because one of the main goals of the proposal is to allow for easier
interaction with other languages, it is suggested that the fourth edition of ECMAScript include
more types, such as integer and long, that are supported in other languages.

Keywords and reserved words
Netscape proposes the following keywords:

as break case catch class const continue
default delete do else export extends false
finally for function if import in instanceof
is namespace new null package private public
return super switch this throw true try
typeof use var void while with

598

Chapter 20

23_579088 ch20.qxd 3/28/05 11:44 AM Page 598

You will probably recognize some of these keywords as reserved words in ECMAScript Edition 3, which
is why they are reserved.

Additionally, the proposal asks for the following reserved words:

abstract debugger enum goto implements interface
native protected synchronized throws transient volatile

As you can see, this list of reserved words clearly shows the Netscape proposal moving ECMAScript
more towards a Java-like syntax.

The following words were reserved in ECMAScript Edition 3, but are used as part of the language in
Netscape’s proposal:

boolean byte char double final float int long short static

Finally, special meanings are attached to the words get and set, which cannot be used as variable names.

Variables
According to the Netscape proposal, variables can be defined with an explicit type by including a semi-
colon and the type name when defining the variable, like this:

var color : String = “red”;

In the previous code, a variable with name color is created as type String. Defining the type for a vari-
able is optional under this proposal. This can also be used with classes you would define yourself:

var specialObject : MyClass = new MyClass();

A slight twist on variables is the capability to create true constant values that cannot be changed by
using the const keyword:

const age = 32;

This code defines the variable age as a constant and assigns a value of 32.

Functions
Functions also take advantage of this new type declaration by providing types for its arguments and
return value. Consider the following example:

function sum(num1 : Integer, num2 : Integer) : Integer {
return num1 + num2;

}

For compatibility with future ECMAScript implementations, you should avoid
using these words as variable or function names.

599

The Evolution of JavaScript

23_579088 ch20.qxd 3/28/05 11:44 AM Page 599

Here, the function named sum() takes two parameters of type Integer and returns an Integer (as
indicated by the semicolon after the closing parenthesis). If the function doesn’t return a value, it is
defined as type Void:

function doNothing(num1 : Integer, num2 : Integer) : Void {
num1 + num2;

}

Functions that have argument and return value types defined are type checked, although it is possible to
leave off the types and have functions behave as they do in ECMAScript today.

Netscape’s proposal would make overloading of functions work in a manner similar to overloading in
Java: Just define as many functions as necessary with different argument lists. For example, you could
make two different versions of the sum() function defined earlier, one to take two arguments and one to
take three:

function sum(num1 : Integer, num2 : Integer) : Integer {
return num1 + num2;

}

function sum(num1 : Integer, num2 : Integer, num3 : Integer) : Integer {
return num1 + num2 + num3;

}

Another change to functions is the capability to define named arguments, which are optional and can be
assigned in any order so long as the name of the argument is used. For example, the following function
contains two named arguments:

function sum(num1 : Integer, num2: Integer, named num3 : Integer = 7, named num4 :
Integer = 10) {

return num1 + num2 + num3 + num4;
}

To call this function, you can use only two arguments, three arguments, or all four:

result = sum(10, 20);
result = sum(10, 20, num3: 10);
result = sum(10, 20, num4: 10, num3: 20);

Note the last two lines where the named arguments are used; specifically notice the last line, where num4
is used before num3.

Numeric literals
In order to support more types of numbers, the Netscape proposal introduces three new types of num-
bers: long, unsigned long (ulong), and float. You can indicate the type of number by including an l (or L)
for long values, ul (or uL, Ul, UL) for ulong values, and f (or F) for float values. For example, L25 is a
long, UL25 is a ulong, and F25 is a float.

600

Chapter 20

23_579088 ch20.qxd 3/28/05 11:44 AM Page 600

Types
Netscape’s proposal introduces several new types:

❑ Never — Has no values

❑ Void — Replaces the Undefined type from ECMAScript Edition 3

❑ Integer — All integer values

❑ char — All single 16-bit Unicode characters

❑ Type — The supertype of all types

Unlike ECMAScript Edition 3, all types are considered objects and not primitive values.

New machine types represent primitive number values:

❑ sbyte — Signed byte integer, values between –128 and 127

❑ byte — Byte integer, values between 0 and 255

❑ short — Short integer, values between –32768 and 32767

❑ ushort — Unsigned short integer, values between 0 and 65535

❑ int — Integer, values between –2147483648 and 2147483647

❑ uint — Unsigned integer, values between 0 and 4294967295

❑ long — Long integer, values between –9223372036854775808 and 9223372036854775807

❑ ulong – Unsigned long integer, values between 0 and 18446744073709551615

❑ float — Floating-point number, all single precision IEEE floating-point numbers

The machine types can be used in place of regular types whenever a number must be represented. For
example:

var b : byte = 10;
var longnum : long = L100;

Classes
A class in ECMAScript Edition 4 (per the Netscape proposal) takes a form like this:

class MyClass {
private var color : String = “red”;

public function MyClass(color : String) {
this.color = color;

}

public function sayColor() : Void {
alert(this.color);

}
}

601

The Evolution of JavaScript

23_579088 ch20.qxd 3/28/05 11:44 AM Page 601

Chapter 20

As you can see, the class keyword is used to define MyClass. There is one private variable named
color, one constructor, and one public method named sayColor(). In ECMAScript Edition 4, both
public and private are considered namespaces that define the context in which variables and methods
can be accessed. Classes defined in this manner are instantiated in the same way as in ECMAScript
Edition 3, by using the new keyword:

var myObject : MyClass = new MyClass();

Along with variables and methods, it is possible to define getters and setters for properties. The getter is
called when the variable is used for the value it contains, whereas a setter assigns a new value to a given
variable.

class MyClass {
private var color : String = “red”;

public function get myColor () {
return this.color;

}

public function set myColor (value : String) : Void {
this.color = value;

}
}

The previous code creates a property named myColor, which can be used just like a regular property
(such as color), but whose behavior is defined by the getter and setter functions. For instance:

var myObject : MyClass = new MyClass();
myObject.myColor = “blue”;

Typically, this would be done when you want to perform some other action after a property value
changes (such as changing the color of a UI element when the myColor property changes).

It is also possible to redefine the behavior of operators when they interact with classes. In ECMAScript
Edition 3, all operators use an object’s valueOf() or toString() method, but here it is possible for you
to define exactly how a plus or minus should be used with an instance of a particular class.

class MyClass {
private var value : Integer = 25;

public function MyClass(value : Integer) {
this.value = value;

}

public function getValue() : Integer {
return this.value;

}

operator function “+” (anotherObject : MyClass) : MyClass {
return new MyClass(this.value + anotherObject.getValue());

}
}

602

23_579088 ch20.qxd 3/28/05 11:44 AM Page 602

This class defines a private property named value, which can be initialized using the class constructor. The
last function defines what happens when a plus is used with a MyClass object. This particular function
defines the behavior when the second operand is also a MyClass object: The values of the two objects are
added and a new MyClass object is returned. With this definition, it is possible to use the following line:

var obj1 = new MyClass(20);
var obj2 = new MyClass(30);
var obj3 = obj1 + obj2;
alert(obj3.getValue()); //outputs “50”

Finally, classes can have true static properties and methods by using the static keyword:

class MyClass {
public static var value : Integer = 25;

}

The static members of a class can then be accessed as you might expect:

var value : Integer = MyClass.value;

Inheritance
Inheritance in ECMAScript Edition 4 is done in the same way as in Java, by using the extends keyword.
For example:

class ClassA {
private var value : Integer = 0;

public function ClassA(value : Integer) {
this.value = value;

}
public function getValue() : Integer {

return this.value;
}

}

class ClassB extends ClassA {

public function ClassB(value : Integer) {
super(value);

}

public function sayValue() : Integer {
alert(this.getValue());

}

}

First, note that the extends keyword is used to inherit from ClassA to create ClassB. This is a much
simpler and straightforward way to establish inheritance than the traditional ECMAScript method
(although object masquerading and prototype chaining is still available for backwards compatibility).

The second thing to note is the use of the super() method to use ClassA’s constructor in ClassB. Once
again, this is identical to Java.

603

The Evolution of JavaScript

23_579088 ch20.qxd 3/28/05 11:44 AM Page 603

Implementations
Although ECMAScript Edition 4 isn’t an officially released standard, that hasn’t stopped both Microsoft
and Mozilla from implementing some of it.

Mozilla
Mozilla chose to implement some small features in the Web browser. For instance, it is possible to define
constant values in Mozilla using the const keyword:

const message = “Hello World!”;

This line causes an error in all other browsers because const is a reserved word in ECMAScript Edition 3.
In Mozilla, however, this line defines a constant string named message that cannot have its value changed.

Mozilla also chose to implement getters and setters for object properties, albeit with a different syntax.
You may remember getters and setters from earlier chapters of this book, but here is a brief example:

function MyClass() {
this.__color__ = “red”;

}

MyClass.prototype.color getter = function () {
return this.__color__;

};

MyClass.prototype.color setter = function (value) {
this.__color__ = value;
alert(“Color changed to “ + value);

};

var obj = new MyClass();
alert(obj.color); //outputs “red”
obj.color = “blue”; //outputs “Color change to blue”

This is an alternate syntax (so as not to break syntax in non-Mozilla browsers):

function MyClass() {
this.__color__ = “red”;

}

MyClass.prototype.__defineGetter__(“color”, function () {
return this.__color__;

});

MyClass.prototype.__defineSetter__(“color”, function (value) {
this.__color__ = value;
alert(“Color changed to “ + value);

});

var obj = new MyClass();
alert(obj.color); //outputs “red”
obj.color = “blue”; //outputs “Color change to blue”

604

Chapter 20

23_579088 ch20.qxd 3/28/05 11:44 AM Page 604

Note that even though this example is syntactically correct, it causes an error in browsers other than
Mozilla when it is executed because neither function (defineGetter() or defineSetter()) is defined.

Microsoft
Microsoft hasn’t updated its browser-based implementation of JavaScript since Internet Explorer 5.5 was
released. What it has done, however, is include a language called JScript.NET in the .NET Framework.
JScript.NET is, for all intents and purposes, an implementation of ECMAScript Edition 4 with some
Microsoft-specific additions added for good measure. However, it can’t be used as a client-side scripting
language in Internet Explorer, only as a server-side language in ASP.NET or as a standalone application
(yes, JScript.NET can be compiled).

Unlike other versions of JavaScript, JScript.NET is a compiled language capable of becoming a stan-
dalone executable file. It is compiled down to the same .NET machine code and executed using the
same Common Language Runtime (CLR) as both Visual Basic.NET and C#. Although it is beyond the
scope of this book to discuss the full potential and scope of JScript.NET, more information is available
on Microsoft’s Web site at http://msdn.microsoft.com/library/en-us/dnclinic/html/
scripting07142000.asp?frame=true.

ECMAScript for XML
In 2002, a group of companies led by BEA Systems proposed an extension to ECMAScript to add native
XML support to the language. At that point, XML was starting to gain popularity, and the companies
wanted to make sure that ECMAScript was in the forefront of this next technology wave. In June 2004,
ECMAScript for XML (E4X) was released as ECMA-357. E4X is not its own language; rather, as origi-
nally intended, it is an optional extension to the ECMAScript language. As such, E4X introduces new
syntax for dealing with XML, as well as for XML-specific objects.

Approach
E4X stays away from implementing the current XML standards, such as SAX, XPath, and DOM, and
instead presents a unique way of creating and manipulating XML documents. The E4X approach
takes aspects from technologies such as DOM, XPath, and XSLT, although it doesn’t map specifically
to either one.

For example, suppose you were dealing with the following XML code:

<employees>
<employee position=”Software Engineer”>

<name>Nicholas C. Zakas</name>
</employee>
<employee position=”Salesperson”>

<name>Jim Smith</name>
</employee>

</employees>

This XML could be assigned to an ECMAScript variable by using the following code:

var oXml = <employees>
<employee position=”Software Engineer”>

<name>Nicholas C. Zakas</name>

605

The Evolution of JavaScript

23_579088 ch20.qxd 3/28/05 11:44 AM Page 605

</employee>
<employee position=”Salesperson”>

<name>Jim Smith</name>
</employee>

</employees>;

The data in this XML can then be referenced in a very logical, easy-to-understand way. In E4X, all XML
elements become fully realized objects (based on the XML class, which is discussed later). So, to get a ref-
erence to the first employee, this code can be used:

var oFirstEmployee = oXml.employees.employee;

The name of the first employee can be returned by using this code:

var sName = oXml.employees.employee.name;

The position of the first employee can be returned using the @ symbol (which is also used in XPath to
indicate an XML attribute):

var sPosition = oXml.employees.employee.@position;

To get a specific employee, use the same square bracket notation as used in arrays. The following code
returns the second employee:

var oSecondEmployee = oXml.employees.employee[1];

It is possible to choose a descendant node by using the double-dot (..) notation. For instance, to go right
to the first <name/> element, the following code can be used:

var oFirstEmployeeName = oXml..name;

It’s also possible to use XPath-like expressions to return the correct object. Suppose you want to retrieve
the first salesperson’s name. This code accomplishes just that:

var oFirstSalesperson = oXml..employee.(@position=”salesperson”).name;

All values, aside from XML objects, are regular ECMAScript strings and can be manipulated in the same
way. You can edit the preceding code to alter the first salesperson’s name easily:

oXml..employee.(@position=”salesperson”).name = “Michael Anderson”;

Executing this code automatically updates the XML representation being stored underneath.

Because its developers are always thinking ahead, E4X provides the capability to embed ECMAScript
variables inside of XML to create new XML objects. To do this, curly braces must surround the variables.
For example:

var tagname = “color”;
var value = “blue”;
var oXml = <{tagname}>{value}</{tagname}>;

In this example, the value of oXml becomes <color>blue</color>.

606

Chapter 20

23_579088 ch20.qxd 3/28/05 11:44 AM Page 606

As you can see, E4X represents a radical departure from traditional ECMAScript to support XML in a
simple yet powerful manner.

The for each..in Loop
Throughout the book, you have used the for..in loop to iterate over property names of an object. The
for each..in loop, introduced in E4X, iterates the actual objects in an array. For example:

for each (var oItem in arrItems) {
alert(oItem);

}

To accomplish the same thing using a for..in loop, you use code that looks like this:

for (var sProperty in arrItems) {
alert(arrItems[sProperty]);

}

As you can see, the for each..in loop is a lot more useful and more like similar loops in other languages.

New classes
E4X introduces several new classes to deal specifically with XML:

❑ Namespace objects represent namespaces by using a URI and a prefix.

❑ QName objects represent XML qualified names composed of a local name and an optional
namespace URI.

❑ XML objects represent individual XML elements.

❑ XMLList objects contain any number of XML objects.

The Namespace class
Namespace objects are a convenient way to reference namespaces in E4X. To create a Namespace, use its
constructor with one or two arguments:

var oNamespace1 = new Namespace(“http://www.wrox.com/”);
var oNamespace2 = new Namespace(“wrox”, “http://www.wrox.com/”);

In the first line, the constructor is called with just the URI of the namespace, which can be used when
dealing with XML like this:

<root xmlns=”http://www.wrox.com/”>
<message>Hello World!</message>

</root>

In the second line of the example, the constructor is being called with a namespace prefix and the URI,
which is useful when dealing with XML code that looks like this:

<wrox:root xmlns:wrox=”http://www.wrox.com/”>
<wrox:message>Hello World!</wrox:message>

</wrox:root>

607

The Evolution of JavaScript

23_579088 ch20.qxd 3/28/05 11:44 AM Page 607

A Namespace object can then be used in selection statements:

var oWroxNS = new Namespace(“wrox”, “http://www.wrox.com/”);
var oXml = <wrox:root xmlns:wrox=”http://www.wrox.com/”>

<wrox:message>Hello World!</wrox:message>
</wrox:root>;
var sMessage = oXml.oWroxNS::message;

The highlighted line uses the oWroxNS Namespace object to select the <wrox:message> text Hello
World!. If the XML code specifies a namespace, this method must be used when selecting elements in E4X.

The QName class
The QName class represents a qualified name for XML elements and attributes. The qualified name is
made up of a namespace prefix and a local name, such as the following:

<wrox:message xmlns:wrox=”http://www.wrox.com/”>Hello World!</wrox:message>

In this code, wrox:message is a qualified name, with wrox representing a namespace and message rep-
resenting the local name (also called tag name). The prefix wrox points to a namespace URI of http://
www.wrox.com/. A QName object can represent the wrox:message qualified name like this:

var oWroxNS = new Namespace(“wrox”, “http://www.wrox.com/”);
var oQName = new QName(oWroxNS, “message”);

Using this version of the constructor, a Namespace object must be provided to represent the qualified
name. Alternately, a QName object can be created without any namespace if one isn’t specified:

var oQName = new QName(“message”);

After the object is created, it has two properties that can be accessed: uri and localName. The uri prop-
erty returns the URI of the namespace specified when the object is created (or an empty string if no
namespace is specified); the localName property returns the local-name part of the qualified name. For
example:

var oWroxNS = new Namespace(“wrox”, “http://www.wrox.com/”);
var oQName = new QName(oWroxNS, “message”);
alert(oQName.uri); //outputs “http://www.wrox.com/”
alert(oQName.localName); //outputs “message”

In this example, the uri property returns “http://www.wrox/com/” and localName returns “mes-
sage”. These properties are read-only and cause an error if you try to change their values.

The QName object overrides the toString() object to return a string in the form uri::localName, such
as “http://www.wrox.com/::message” in the previous example.

The XML class
As mentioned previously, an XML object represents an XML element, meaning that it represents an
ordered list of properties with a name, a parent, a set of attributes, child nodes, and a set of namespaces.

An XML object can be created in one of two ways. The first way is to use its constructor and pass in an
XML string like this:

608

Chapter 20

23_579088 ch20.qxd 3/28/05 11:44 AM Page 608

var oXml = new XML(“<person><name>Nicholas C. Zakas</name></person>”);

The second way is to use the syntax extension mentioned earlier, allowing you to enter the XML directly
into the code without using strings:

var oXml = <person>
<name>Nicholas C. Zakas</name>

</person>;

The XML is interpreted according to several flags on the XML constructor:

❑ XML.ignoreComments — If set to true, causes the parser to ignore comments

❑ XML.ignoreProcessingInstructions — If set to true, causes the parser to ignore processing
instruction.

❑ XML.ignoreWhitespace — If set to true, causes the parser to ignore whitespace between
elements

The toString() method is accompanied by the toXMLString() method, both of which returns string
representations of the XML. The toString() method returns an XML-encoded string if the element
contains complex children (that is, anything other than text); if the element contains only simple content
(text), then toString() just returns the text without the start and end tags. On the other hand,
toXMLString() always returns the XML tags regardless of the element’s children. For example:

var oXml = <name>Nicholas C. Zakas</name>;
alert(oXml.toString()); //outputs “Nicholas C. Zakas”
alert(oXml.toXMLString()); //outputs “<name>Nicholas C. Zakas</name>”;

In the previous code, the first alert displays just “Nicholas C. Zakas” because the toString()
method is called. The second alert displays the full XML code, “<name>Nicholas C. Zakas</name>”.
If, however, the element has complex content, both methods return the same value:

var oXml = <name><first>Nicholas</first><last>Zakas</last></name>;
alert(oXml.toString()); //outputs
“<name><first>Nicholas</first><last>Zakas</last></name>”
alert(oXml.toXMLString()); //outputs
“<name><first>Nicholas</first><last>Zakas</last></name>;”;

In this code, toString() and toXMLString() return
“<name><first>Nicholas</first><last>Zakas</last></name>”.

Both methods use a variety of settings on the XML constructor to determine how to output the XML code:

❑ XML.prettyPrinting — When set to true, the methods normalize whitespace between
elements.

❑ XML.prettyIndent — Specifies the line indent in the methods. By default this is set to 2.

All the constructor flags are stored in an object that can be referenced by using the XML.settings()
method. This object can then be used to restore the settings later by using the XML.setSettings()
method, as shown in this example:

609

The Evolution of JavaScript

23_579088 ch20.qxd 3/28/05 11:44 AM Page 609

var oXmlSettings = XML.settings(); //save these settings
XML.prettyIndent = 4;
XML.ignoreWhitespace = true;
//do something here
XML.setSettings(oXmlSettings); //return to the original settings

Here, the settings are initially saved to oXmlSettings before being changed. The settings are then reset
using the setSettings() method. It is also possible to retrieve the default settings of the parser by
using the XML.defaultSettings() method:

XML.setSettings(XML.defaultSettings());

As for XML object instances, you have a large number of methods available to manipulate XML data.
Some of these methods are inspired by the DOM; others are not, but all are useful.

The first group of methods deals with namespaces and Namespace objects. Most of these are pretty
straightforward: addNamespace() adds a given namespace to the element and removeNamespace()
removes a given namespace from the element.

var oWroxNS = new Namespace(“wrox”, “http://www.wrox.com/”);
var oXml = <message>Hello World!</message>;
oXml.addNamespace(oWroxNS);
//do something else
oXml.removeNamespace(oWroxNS);

It’s also possible to retrieve arrays of namespaces by using the inScopeNamespaces() and
namespaceDeclarations() methods. Each of these return an array of Namespace objects, with
inScopeNamespaces() returning only those namespaces from the current element down and
namespaceDeclarations() returning all namespaces represented from the root element down.

To deal with individual namespaces, you can use namespace() to retrieve a namespace and
setNamespace(), as you might assume, to set a namespace for the current element.

var oXml = <wrox:root xmlns:wrox=”http://www.wrox.com/”>
<wrox:message>Hello World!</wrox:message>

</wrox:root>;
var oWroxNS = oXml.namespace();
var oNewNS = new Namespace(“ncz”, “http://www.nczonline.net/”);
oXml.setNamespace(oNewNS);

Attributes are very easy to access in E4X by using the attribute() and attributes() method. The
attribute() method returns the value of the attribute. The attributes() method returns an
XMLList (which is covered in the next section) containing all attributes for the given element.

var oXml = <value type=”string”>Hello World!</value>
var sType = oXml.attribute(“type”); //set to “string”
var oAtts = oXml.attributes();

Children of an XML element can be accessed using either the child() method, which returns a single
XML object indicated by either the child’s index or name, or the children() method, which returns an
XMLList of all children. Additionally the childIndex() method can be used to determine the location
of an element among its siblings. For example:

610

Chapter 20

23_579088 ch20.qxd 3/28/05 11:44 AM Page 610

var oXml = <employees>
<employee position=”Software Engineer”>

<name>Nicholas C. Zakas</name>
</employee>
<employee position=”Salesperson”>

<name>Jim Smith</name>
</employee>

</employees>;

var oFirstEmployee = oXml.child(0);
var oFirstEmployeeToo = oXml.child(“employee”);
var oAllEmployees = oXml.children();
var iFirstEmployeeIndex = oFirstEmployee.childIndex(); //0

This code shows two ways of obtaining the first employee in the XML code. First, the child() method
is used with the position 0, the location of the first element. Then, the child() method is used with the
tag name of the element. Each of these calls returns a reference to the same employee element. To get all
employees, the children() method is called. Finally, the first employee’s childIndex() method is
called, which returns 0.

The methods discussed previously return all types of child nodes for the given element. However, if you
want to return only child nodes of a specific type or nodes that relate to the element in different ways,
several methods are available:

❑ comments() — Returns only comment child nodes

❑ elements() — Returns only element child nodes

❑ processingInstructions() — Returns only processing instruction child nodes

❑ descendants() — Returns all nodes that descend from the given element

❑ parent() — Returns the parent node of the element

A variety of methods are available to alter child nodes:

❑ appendChild(child) — Adds a new child to the end of the children

❑ prependChild(child) — Adds a new child to the beginning of the children

❑ insertChildBefore(child, refchild) — Inserts a child before a given reference node

❑ insertChildAfter(child, refchild) — Inserts a child after a given reference node

❑ replace(childname, newchild) — Replaces the child with the given name (or position)
with a new child

❑ setChildren(list) — Replaces all children with children contained in a given XMLList

These methods are incredibly useful and easy to use:

var oXml = <employees>
<employee position=”Software Engineer”>

<name>Nicholas C. Zakas</name>
</employee>
<employee position=”Salesperson”>

<name>Jim Smith</name>

611

The Evolution of JavaScript

23_579088 ch20.qxd 3/28/05 11:44 AM Page 611

</employee>
</employees>;

oXml.appendChild(<employee position=”Vice President”>
<name>Benjamin Anderson</name>

</employee>);

oXml.prependChild(<employee position=”User Interface Designer”>
<name>Michael Johnson</name>

</employee>);

oXml.insertChildBefore(oXml.child(2), <employee position=”Human Resources Manager”>
<name>Margaret Jones</name>

</employee>);

oXml.setChildren(<employee position=”President”>
<name>Richard McMichael</name>

</employee> +
<employee position=”Vice President”>

<name>Rebecca Smith</name>
</employee>);

This code illustrates some of the methods discussed previously. Note that you can use XML literals in
place of XML objects in all methods. First, the code adds a Vice President named Benjamin Anderson to
the bottom of the list of employees. Second, a User Interface Designer named Michael Johnson is added
to the top of the list of employees. Third, A Human Resources Manager named Margaret Jones is added
just before the employee in position 2, which at this point is Jim Smith (because Michael Johnson and
Nicholas C. Zakas now come before him). Finally, all the children are replaced with President Richard
McMichael and Vice President Rebecca Smith (maybe there was a major layoff). Note, in that line, the
plus symbol between the two employee literals. This indicates that the values are contained in an
XMLList object. The resulting XML looks like this:

<employees>
<employee position=”President”>

<name>Richard McMichael</name>
</employee>
<employee position=”Vice President”>

<name>Rebecca Smith</name>
</employee>

</employees>

There has been a lot of talk in this section about the important concepts of simple and complex content.
They are so important, in fact, that the XML object has methods to help out: hasComplexContent()
and hasSimpleContent(). Each of these methods returns a Boolean value indicating whether the ele-
ment contains the type of content indicated. By rule, only one of these methods can return true for any
given element.

var oSimpleXml = <message>Hello World!</message>;
var oComplexXML =
<message><greeting>Hello</greeting><target>World!</target></message>
var bSimple = oSimpleXml.hasSimpleContent(); //returns true
var bComplex = oComplexXML.hasComplexContent(); //returns true

612

Chapter 20

23_579088 ch20.qxd 3/28/05 11:44 AM Page 612

If you want to create a complete (deep) copy of some XML, you can use the copy() method. This
method returns an exact copy of the node and all its descendants (no ancestors are copied).

var oXml = <message>Hello World!</message>
var oNewXml = oXml.copy();
alert(oNewXml.toXMLString()); //outputs <message>Hello World!</message>

The XML object has a method called length() which always returns 1. This may seem a silly, but it
was done to blur the distinction between XML objects and XMLList objects when writing code. Another
method, contains(), is equally useless in the context of XML objects, but it is included to make the
code compatible with XMLList objects as well. The contains() method returns true only when you
pass in the XML object calling the method, like this:

oXml.contains(oXml);

Again, these two methods have actual uses in XMLList, but aren’t terribly useful in XML.

The nodeKind() method determines what type of node an XML object represents, returning either “text”,
“element”, “comment”, “processing-instruction”, or “attribute”. Consider the following XML object:

var oXml = <employees>
<? Don’t forget the donuts! ?>
<employee position=”President”>

<name>Richard McMichael</name>
</employee>
<!-- just added -->
<employee position=”Vice President”>

<name>Rebecca Smith</name>
</employee>

</employees>

Given this XML, the following table shows what nodeKind() returns depending on which node is
in scope.

Statement Returns

oXml.nodeKind() “element”

oXml.child(0) “processing-instruction”

oXml.employee.@position.nodeKind() “attribute”

oXml.employee.nodeKind() “element”

oXml.child(2) “comment”

oXml.employee.name.child(0) “text”

The normalize() method works the same way as in the DOM: It normalizes (combines) whitespace
and text between elements to create single text nodes instead of multiple ones. Not very exciting, but
necessary for dealing with XML code.

613

The Evolution of JavaScript

23_579088 ch20.qxd 3/28/05 11:44 AM Page 613

Four methods are used to deal with the names of XML nodes:

❑ name() — Returns the qualified name of the node, which is a QName object

❑ localName() — Returns the local name of the node, which is equivalent to
name().localName

❑ setName(qname) — Sets the qualified name of the node

❑ setLocalName(localname) — Sets the local name of the node

Example:

var oXml = <message>Hello World!</message>
oXml.setLocalName(“msg”); //changes the code to <msg>Hello World!</msg>
oXml.setName(new QName(“mess”)); //chnages the code to <mess>Hello World!</mess>

Here, the XML code is changed twice, changing <message/> to <msg/> and then <msg/> to <mess/>.

The last method is text(), which returns the text (simple content) of an element:

var oXml = <name>Nicholas C. Zakas</name>;
var sName = oXml.text(); //returns “Nicholas C. Zakas”;

The XMLList Class
The XMLList class, briefly introduced in the previous section, represents an array of XML objects. Just as
with the XML object, you have a number of ways to create an XMLList object.

First, you can use the constructor and pass in an XML string containing a number of elements that aren’t
enclosed by a root element. For example:

var oXmlList = new XMLList(“<name>Nicholas C. Zakas</name><name>Michael
Smith</name>”);

In this example, a string of two <name/> elements is passed into the XMLList, which creates two sepa-
rate XML objects and stores them. Alternately, you can use the plus sign with existing XML objects to
create an XMLList:

var oXml1 = <name>Nicholas C. Zakas</name>;
var oXml2 = <name>Michael Smith</name>;
var oXmlList = oXml1 + oXml2;

These three lines perform the exact same function as the single line shown previously, creating two XML
objects and storing them in a new XMLList object. But you also have one more way to create an XMLList:

var oXmlList = <><name>Nicholas C. Zakas</name><name>Michael Smith</name></>;

This form is the XML literal for an XMLList object. The important syntax is the empty opening and clos-
ing tags, indicating this isn’t a typical XML object (empty tags are illegal in XML).

As mentioned in the previous section, the XML and XMLList objects are purposely similar to blur the dis-
tinction between the two. As such, XMLList objects have all the same methods as XML objects, although
they behave a bit differently.

614

Chapter 20

23_579088 ch20.qxd 3/28/05 11:44 AM Page 614

In the XMLList object, methods generally call the method of the same name on each XML object in the
list and return the results in another XMLList object. For example, if you call attribute(“id”) on an
XMLList object, it calls the attribute(“id”) on each XML object. If the XML object returns an attribute,
that attribute is added to the result XMLList object. Once all XML objects have contributed, the result
XMLList object is returned. Here’s a list of all the methods that act this way:

❑ attribute() — Returns an XMLList of the given attribute from all XML objects

❑ attributes() — Returns an XMLList of all attributes from all XML objects

❑ child() — Returns an XMLList of all child nodes with the given name from all XML objects

❑ children() — Returns an XMLList of all child nodes from all XML objects

❑ comments() — Returns an XMLList of all child comment nodes from all XML objects

❑ descendants() — Returns an XMLList of all descendant nodes from all XML objects

❑ elements() — Returns an XMLList of all child elements nodes from all XML objects

❑ normalize() — Normalizes each XML object

❑ processingInstructions() — Returns an XMLList of all child processing instruction nodes
from all XML objects

❑ text() — Returns an XMLList of all child text nodes from all XML objects

The two methods that didn’t make sense for the XML object, length() and contains(), make much
more sense when used in the context of an XMLList. The length() method returns the number of
objects in the XMLList; the contains() method determines if a given XML object is contained within
the XMLList, for example:

var oXml1 = <name>Nicholas C. Zakas</name>;
var oXml2 = <name>Michael Smith</name>;
var oXmlList = oXml1 + oXml2;
alert(oXmlList.contains(oXml1)); //outputs “true”

In this example, oXmlList is created by combining oXml1 and oXml2, so when the contains() method
is called with oXml1, the result is true.

Four other methods behave somewhat differently from the XML object:

❑ copy() — Returns an exact duplicate of the XMLList object

❑ hasComplexContent() — Returns true when the XMLList contains one element with com-
plex content or when the XMLList contains more than one XML object

❑ hasSimpleContent() — Returns true when the XMLList is empty and when the XMLList
contains one XML object with simple content

❑ parent() — Returns an XML object if all objects in the XMLList have the same parent; other-
wise returns undefined

Together, the XML and XMLList classes provide a very powerful interface to manipulate XML data.

615

The Evolution of JavaScript

23_579088 ch20.qxd 3/28/05 11:44 AM Page 615

Implementations
The only implementation of E4X is in BEA Weblogic Workshop (not surprising, because BEA initiated
the definition of E4X). In Weblogic Workshop, E4X is called JavaScript for XML (JSX) or Native XML
Scripting, and it is used on the server to manipulate XML. JSX files are compiled into Java classes during
execution in Weblogic Workshop and can then be used in any other Java classes, including Web services.

For more information about JavaScript for XML in Weblogic Workshop, see http://dev2dev.bea
.com/products/wlworkshop/articles/JSchneider_XML.jsp.

According to Mozilla’s roadmap, E4X is anticipated to be included in Mozilla 2.0 (indeed, the code for
Rhino, Mozilla’s JavaScript interpreter, already contains code relating to implementing E4X), making it
the first freely available E4X implementation.

Summary
This chapter looked at the future direction of JavaScript as it relates to certain standards. ECMAScript
Edition 4 is on the horizon (and has been for years), but it is not yet released. This chapter gave an
overview of the Netscape Proposal for ECMAScript 4 and discussed what parts, if any, are currently
implemented.

It also discussed the new standard called ECMAScript for XML, which adds native XML support to the
ECMAScript language. Although this standard isn’t available in client-side scripting for Web browsers,
it is supported in BEA Weblogic Workshop, and the Workshop will continue to push its use in the next
few years.

The bottom line here is that JavaScript is continuing to evolve, and no one can be sure where it will end
up. However, the future is looking bright as JavaScript is being adopted by more and more platforms and
applications. For instance, the soon-to-be-released MacOS X Tiger features a new programming platform
called Dashboard that uses JavaScript to make lightweight applications that can run on the MacOS desk-
top. With this sort of support, along with Microsoft’s JScript.NET, don’t be surprised to see JavaScript
moving more and more out of the world of the Web and onto your desktop.

616

Chapter 20

23_579088 ch20.qxd 3/28/05 11:44 AM Page 616

In
de

x

Index

SYMBOLS
+ (add operator), 47–48
& (AND operator), 39–40
= (assignment operator), 52–53
/* (begin multiline comment), 12
{} (braces) for code block, 12
^ (caret)

in regular expressions, 199
as XOR operator, 40–41

, (comma operator), 53
- (dash) in regular expression, 199–200
/ (divide operator), 47
$ (dollar sign) and variable name, 13
\\ (double escaping), 197, 198
'' (double quotation marks)

internationalization and, 572–573
string literal and, 21

*/ (end multiline comment), 12
== (equal operator)

dates and, 380
description of, 50–51

// (forward slashes) to begin single-line comment, 12
> (greater than operator), 49–50
>= (greater than or equal to operator), 49–50
=== (identically equal operator), 51–52
<< (left shift operator), 41–42
< (less than operator), 49–50
<= (less than or equal to operator), 49–50
&& (logical AND operator), 44–45

! (logical NOT operator), 43–44
|| (logical OR operator), 45–46
- (minus operator), 36–37
% (modulus [remainder] operator), 47
* (multiply operator), 46
!= (not equal operator), 50–51
!== (not identically equal operator), 52
~ (NOT operator), 39
| (OR operator), 40
–– (postfix decrement operator), 35–36
++ (postfix increment operator), 35–36
–– (prefix decrement operator), 34–35
++ (prefix increment operator), 34–35
; (semicolon)

as optional at end-of-line, 12
using, 574

> (signed right shift operator), 42
' (single quotation mark)

internationalization and, 573
string literal and, 21

[] (square brackets)
Array class and, 71
in regular expressions, 199
XPath and, 466

- (subtract operator), 48–49
+ (Unary plus operator), 36
_ (underscore)

to indicate private scope, 88
variable name and, 13

>> (unsigned right shift operator), 42–43

24_579088 bindex.qxd 3/28/05 11:44 AM Page 617

A
abort event, 286
abs() method of Math object, 85
abstract class, 104–105
accessing

form field, 338
style sheet, 309–312

ActiveX control
embedding, 558
MSXML and, 445, 448, 450

ActiveX object, 533
ActiveX plugin

description of, 535
detecting, 540–542

ActiveXObject class, 445–446
add operator (+), 47–48
addEventHandler() method of EventUtil

object, 292
addEventListener() method (DOM),

268–269, 407
additive operators

add (+), 47–48
subtract (-), 48–49

addParameter() method (XSLT), 475
addPostParam() function, 498
addURLParam() function, 497, 500
Adobe SVG Viewer, 532, 541
aggregation, 68
alert, placing in code, 428
alert dialog, 143
alert() method of window object, 143
algorithm, choosing right, 582–584
allowChars() method of TextUtil object,

350–351, 355
allowing valid characters in text box, 350–351
alternation, 207–208
Amazon.com Web search engine, 506
AND operator (&), 39–40
A9 (Amazon.com Web search engine), 506
appendChild() method
document object, 174–175
using, 361, 372

Apple
Macintosh

error reporting, 415–416
operating system, detecting, 247–248

Quicktime, 532, 542
Safari

detecting, 239–241
DOM and, 8, 182, 191
ECMAScript compliance, 6

error handling, 417–418
events and, 262
user-agent string, 227, 233

applet (Java)
description of, 531, 543
embedding, 543–544
JavaScript-to-Java communication, 546–548
Java-to-JavaScript communication, 548–551
referencing in JavaScript, 544–545
writing, 545–546

apply() method and object masquerading, 108–109
appVersion property of navigator object, 228
arguments object, 62–63
Array class

description of, 70
methods, 71–73
size of arrays, 71
sort() method, 367–369
stack and, 73–74
strings and, 70–71

array literals, 578, 592
arrow keys, using in numeric text box, 354–356
ASCII code, 197–198
ASP.NET and cookies, 486–487
assert() function, 431–432
assign() method of location object, 154
assigning

event handler, 267, 269–270
onload event handler, 288

assignment operators listed, 52–53
asterisk and forward slash (*/) to end multiline

comment, 12
asynchronous mode, loading file in, 447
asyncInvoke() method of SOAPCall object, 519
attachEvent() method, 267–269
attributes

Cascading Style Sheets (CSS), 303–304
description of, 68
<form/> element, 335
<input/> element, 336
<object/> element, 533–534
as properties in HTML DOM, 178–179
XHTML and, 348

autosuggest() method of TextUtil
object, 363–365

autosuggest text box
description of, 362
matching and, 362–363
script for, 363–365

autosuggestMatch() method of TextUtil
object, 362–363

618

abort event

24_579088 bindex.qxd 3/28/05 11:44 AM Page 618

avoiding
hard-coded strings, 569–570
string concatenation, 590
with statement, 581

B
back() method of window object, 148
backreferences, 206–207
base class

creating, 111–112
description of, 103
selecting, 104

BEA Systems, 605, 616
begin multiline comment(/*), 12
beginning comment, 12
behavior, 513
Big O notation, 582, 584
binding, 69, 101
Bitflux blog, 506
bitmap graphics, 133
bitwise operators

AND (&), 39–40
integers and, 37–39
left shift, 41–42
NOT (~), 39
OR (|), 40
signed right shift, 42
unsigned right shift, 42–43
XOR (^), 40–41

block() method of TextUtil object, 349
blocking

invalid characters in text box, 349
paste function in text box, 351–353

blur event, 287, 345
blurAllow() method of TextUtil object, 354
blurBlock() method of TextUtil object, 353–354
<body/> tag, 128
BOM. See Browser Object Model
BOM methods, 82
Boolean class, 27
Boolean operators

logical AND (&&), 44–45
logical NOT (!), 43–44
logical OR (||), 45–46

Boolean() type cast, 24
Boolean value

description of, 18
as primitive type, 16
replacing to optimize download time, 576–577
toString() method of, 22

boundaries, 210–212
braces ({}) for code block, 12
break statement, 56–57
breakpoint, setting

Microsoft Script Debugger, 434
Venkman, 439–440

browser. See also browser detection script;
specific browsers

detection methods
cross-browser code and, 292
object/feature, 226
user-agent string, 226–233

DOM and, 7, 8, 167
ECMAScript and, 3–4, 5
hiding code from, 129–130
possessive quantifiers and, 204
Text node and, 168

browser detection methods
cross-browser code and, 292
object/feature detection, 226
user-agent string detection, 226–233

browser detection script
first steps, 234–236
Internet Explorer, detecting, 241–242
Konqueror/Safari, detecting, 239–241
login page and, 252–259
methodology, 234
Mozilla, detecting, 242–243
Netscape Communicator 4.x, detecting, 243–244
Opera, detecting, 237–239
overview of, 234

Browser Object Model (BOM)
description of, 9, 136
document object, 149–153
history, 148–149
intervals and timeouts, 146–148
location object, 153–155
manipulating windows, 139–140
navigating and opening new windows, 140–141
navigator object, 155–156
onerror event handler, 419–423
Same Origin Policy and, 564
screen object, 156–157
status bar, 144–145
system dialogs, 142–144
window object, 136–139

built-in methods, using, 590
built-in objects

description of, 81
Global object, 81–84

byte, 574

619

byte

In
de

x

24_579088 bindex.qxd 3/28/05 11:44 AM Page 619

C
caching and inline code, 128
call() method and object masquerading, 107
Call Stack view (Venkman), 441
Call Stack window (Microsoft Script Debugger), 433
callback function, 502–503
caller property of function, 300
calling function, 60
callService() method of WebService

component, 514
callWebService() function

cross-browser example, 529
Internet Explorer example, 516
Mozilla example, 521
WebServiceProxyFactory object, 524–525

Camel Notation, 13
caret (^)

in regular expressions, 199
as XOR operator, 40–41

Cascading Style Sheets (CSS)
description of, 303–304
style, accessing, 309–312

case-sensitivity, 11
CDATA sections, 131–132, 162
ceil() method of Math object, 85
CEnvi, 2
change event

HTML, 286
text box and, 345, 354

character class
combination, 200
description of, 199
negation, 199
predefined, 200–201
range, 199–200
simple, 199

character code and event, 277
character literals and string type, 21
characters

allowing valid in text box, 350–351
blocking invalid in text box, 349
limiting in text box, 347–348

charAt() method of String class, 29
charCode property of event object, 296
charCodeAt() method of String class, 29
checkForErrors() function, 461–462
child node, 164
class. See also object; reference types; specific classes

base
creating, 111–112

description of, 103
selecting, 104

character
combination, 200
description of, 199
negation, 199
predefined, 200–201
range, 199–200
simple, 199

combination, 200
description of, 67
ECMAScript for XML, 607–615

clearing breakpoint, 440
clearInterval() method of window object, 147
clearTimeout() method of window object, 146
click event, 280
client-server communication

cookies
ASP.NET and, 486–487
description of, 481
ingredients of, 482
in JavaScript, 483–484
JSP and, 485–486
passing between client and server, 488–489
PHP and, 487–488
restrictions on, 482

hidden frame method
description of, 490–491
iframes, 491–492

HTTP requests
copycat implementations, 496
description of, 493–495
GET request, performing, 496–497
header, using, 495–496
POST request, performing, 497–498

intelligent HTTP requests
description of, 502
get() method, 502–505
post() method, 505–506

LiveConnect requests
description of, 498
POST, performing, 500–502

plugins and, 532
practical applications, 506

client-side scripting language, history of, 2
clientX and clientY properties of event object, 275
cloneContents() method, 325
cloneRange() method, 328
cloning range

DOM, 328
Internet Explorer, 332

620

caching and inline code

24_579088 bindex.qxd 3/28/05 11:44 AM Page 620

close() method of document object, 152–153
closure, 65–66
C-minus-minus (Cmm), 1–2
code block and braces ({}), 12
code injection, 83
code maintenance and inline code, 128
Codebase Principals, 568
collapse() method (Internet Explorer), 331
collapsible section, 308–309
collapsing range

DOM, 327
Internet Explorer, 331

combination class, 200
combo box

adding options, 359–360
moving options, 361
options, 357
removing options, 360–361
reordering options, 361–362
retrieving or changing options, 357–359
<select/> element and, 356–357

comma operator (,), 53
Command Window window (Microsoft Script Debugger),

434
commands

Profile→Save Profile Data (Venkman), 442
Tools→JavaConsole, 429
Tools→Web Development→JavaScript Debugger

(Mozilla), 435
View→Script Debugger (Internet Explorer), 432–433

comments
overview of, 12
removing to optimize download time, 574

communication. See client-server communication
compareBoundaryPoints() method, 328
compareEndPoints() method (Internet Explorer),

332
compareVersions() method, 235–236
comparing

ranges
DOM, 328
Internet Explorer, 332

strings, 49–50
comparison function

multi-column table, sorting, 374–375
one-column table, sorting, 371
overview of, 367–369

complex patterns
alternation, 207–208
backreferences, 206–207
boundaries, 210–212
grouping, 205–206

lookaheads, 210
multiline mode, 212–213
non-capturing groups, 209

complex selection
DOM ranges, 322–323
Internet Explorer, 330

compound assignment operators, 52–53
computed style of element

description of, 312
DOM and, 313–314
Internet Explorer and, 312–313

concat() method
Array class, 72–73
String class, 30

conditional operators, 52
confirm dialog, 143–144
confirm() method of window object, 143–144
conformance with DOM, detecting, 189–191
constructor, 68
constructor paradigm, 92–93
constructor property of Object class, 26
content types, 533
continue statement, 56–57
conversion function, creating, 378–379
conversions

to number, 23–24
overview of, 21
to string, 22–23
string to array, 72
type casting, 24–25

cookies
description of, 481
ingredients of, 482
in JavaScript, 483–484
passing between client and server, 488–489
restrictions on, 482
on server

ASP.NET and, 486–487
JSP and, 485–486
PHP and, 487–488

createDocument() method (DOM), 450–451
createDocumentFragment() method of document

object, 177–178
createElement() method of document

object, 174–175
createNodeIterator() method of document

object, 184–186
createProxy() method of WebServiceProxy-

Factory object, 524
createProxyAsync() method of WebService

ProxyFactory object, 522–523
createRange() method, 317

621

createRange() method

In
de

x

24_579088 bindex.qxd 3/28/05 11:44 AM Page 621

createTextNode() method of document
object, 174–175

createXMLDOM() function, 446–447
credit card, validating, 218–221
Crockford, Douglas (software engineer), 432
cross-browser approach

to detection and plugins, 542–543
to Web services

overview of, 525–527
TemperatureService object, 527–529

cross-browser events
adding or removing event handler, 292–294
description of, 292
EventUtil object, 292

CSS (Cascading Style Sheets)
description of, 303–304
style, accessing, 309–312

cssText property of style object, 305
currentStyle object (Internet Explorer), 312–313
cursor trail script, 399–400

D
dash (-) in regular expression, 199–200
data types

add operator and, 48
sorting table with different, 377–381

dataTransfer object (Internet Explorer)
description of, 393–394
methods, 394–395
properties, 395–397

date, validating, 216–218
Date class

description of, 77–78
methods, 78–81

dblclick event, 280
Debug toolbar

Microsoft Script Debugger, 434
Venkman, 440–441

debuggers
Microsoft Script Debugger, 432–435
overview of, 432
Venkman, 435–443

debugging techniques. See also debuggers
alerts, 428
Java console, 429–430
JavaScript Verifier, 432
overview of, 428
throwing own error, 431–432

declaring
object, 68
variable, 14

decodeURI() method of Global object, 82
decodeURIComponent() method of Global

object, 82
default behavior for event, preventing, 278
defaultStatus() method of window object, 145–146
defineGetter() method of XMLSerializer

object, 453
defining

class or object
constructor paradigm, 92–93
dynamic prototype method, 95–96
example of, 97–98
factory paradigm, 90–92
hybrid constructor/prototype paradigm, 94–95
hybrid factory paradigm, 96
paradigm, choosing, 97
prototype paradigm, 93–94

multiple variables, 591
delete operator, 33
deleteContents() method, 324
deleteCookie() function, 484
deployment issues

intellectual property
Microsoft Script Encoder, 594–595
obfuscating, 593–594
overview of, 593

internationalization
detecting language, 568–569
overview of, 568
strategies for, 569–570
string considerations, 570–573

optimization
of download time, 573–578
of execution time, 578–593
overview of, 573

overview of, 563
security

Mozilla-specific issues, 566–568
resource limitations, 568
Same Origin Policy, 563–564
window object issues, 564–566

depth-first search, 182
dereferencing object, 69
detach() method, 329
detachEvent() method, 267–269
detectFlash() function, 542–543
detectFlashInIE() function, 542
detecting. See also platform/operating system
detection script; user-agent string detection

conformance with DOM, 189–191
Internet Explorer, 241–242

622

createTextNode() method of document object

24_579088 bindex.qxd 3/28/05 11:44 AM Page 622

Konqueror/Safari, 239–241
language, 569
Macintosh operating system, 247–248
Mozilla, 242–243
Netscape Communicator 4.x, 243–244
Opera, 237–239
plugins

ActiveX, 540–542
cross-browser detection, 542–543
Netscape-style, 535–540
overview of, 535

Shift, Alt, or Ctrl key presses, 275
Unix operating system, 248–249
Windows operating system, 245–247

DHTML (Dynamic HTML)
development of, 7
drag and drop functionality and, 387

direct assignment of event handler, 269–270
disabling

Mozilla privileges, 567
Submit button, 341–342

Dithered JavaScript compression utility, 593
divide() function, 431–432
divide operator (/), 47
doAdd() function, 63–65
document element, 162
document object (BOM)

accessing relative nodes, 167–168
appendChild() method, 174–175
attributes, 169–170
collections, 150–151
cookie property, 483
createDocumentFragment() method, 177–178
createElement() method, 174–175
createNodeIterator() method, 184–186
createTextNode() method, 174–175
creating new nodes, 173–174
description of, 149
getElementById() method, 172–173
getElementsByName() method, 171–172
getElementsByTagName() method, 171
insertBefore() method, 175–177
methods, 151–153
nodeType property, 169
properties of, 149–150
removeChild() method, 175–177
replaceChild() method, 175–177

Document Object Model (DOM)
browser support for, 167
computed style of element and, 313–314
description of, 6, 159
event handler methods, 268–269
event model and, 265–266

event object and, 270, 272–274
events and, 261–262
hierarchy of nodes, 163–166
HTML features

attributes as properties, 178–179
table methods, 179–182

implementation object, 189–191
language-specific, 166–167
Level 2
NodeIterator object, 182–187
TreeWalker object, 187–189

Level 3, 191
levels of, 7–8
manipulation of, 174
purpose of, 7
range

clean up, 329
cloning, 328
collapsing, 326–327
comparing, 328
complex selection, 322–323
inserting with range content, 325–326
interacting with range content, 324–325
overview of, 317–318
simple selection, 318–322

Same Origin Policy and, 564
using sparingly to optimize execution time, 592–593
Web browser and, 8
XML and

Internet Explorer and, 445–450
Mozilla and, 450–455
overview of, 163

dollar sign ($) and variable name, 13
DOM. See Document Object Model
domain and cookie, 482
DOMParser object (Mozilla), 451–452
double escaping (\\), 197, 198
double quotation marks (“)

internationalization and, 572–573
string literal and, 21

do-while statement, 54
download time, optimizing

byte count, decreasing, 576–577
comments, removing, 574
ECMAScript Cruncher tool and, 575–576
line breaks, removing, 575
overview of, 573–574
variable names, replacing, 575

drag and drop functionality
description of, 387
simulated type

advantages and disadvantages of, 405
code for, 400–402 623

drag and drop functionality

In
de

x

24_579088 bindex.qxd 3/28/05 11:44 AM Page 623

drag and drop functionality (continued)
description of, 399–400
drop target, creating, 403–405

system type
advantages and disadvantages of, 399
dataTransfer object and, 393–397
description of, 387–388
dragDrop() method, 397–399
dragged item events, 388–389
drop target, creating, 392–393
drop target events, 389–390
events, using all, 390–392

zDragDrop library
creating draggable element, 406
description of, 405
drop target, creating, 406
example, 408–409

drag event, 388
dragDrop() method (Internet Explorer), 397–399
dragend event, 388
dragenter event, 389–390
dragleave event, 389–390
dragover event, 389–390
dragstart event, 388
drop target, creating

simulated drag and drop, 403–405
system drag and drop, 392–393
zDragDrop library, 406

dropEffect property of dataTransfer
object, 395–397

Duff’s Device, 586–588
duplicate() method (Internet Explorer), 332
Dynamic HTML (DHTML)

development of, 7
drag and drop functionality and, 387

dynamic prototype method
description of, 95–96
inheritance and, 114–115
zInherit library and, 118–119

E
early binding, 69
ECMA (European Computer Manufacturers

Association), 2
ECMAScript. See also ECMAScript for XML;

ECMAScript 4
conformance with, 4
conversions

to number, 23–24
overview of, 21

to string, 22–23
type casting, 24–25

description of, 3
editions of, 4
error handling and, 411
functions
arguments object, 61–62
closures, 65–66
description of, 59–61
Function class, 62–65
overloading of, 61

keywords, 15
Language Specification, downloading, 12
operators

additive, 47–49
assignment, 52–53
bitwise, 36–43
Boolean, 43–46
comma, 53
conditional, 52
description of, 32
equality, 50–52
multiplicative, 46–47
relational, 49–50
Unary, 33–36

origins of, 2
primitive and reference values, 15–16
primitive types

Boolean, 18
description of, 16
Null, 18
Number, 18–20
String, 20–21
typeof operator, 16–17
Undefined, 17–18

reference types
Boolean class, 27
description of, 25–26
instanceof operator, 32–33
Number class, 27–29
Object class, 26
String class, 29–32

reserved words, 15
statements
break and continue statements, 55–56
if statement, 53–54
iterative, 54–55
labeled, 55
with statement, 57
switch statement, 58–59

syntax, 11–12

624

drag and drop functionality (continued)

24_579088 bindex.qxd 3/28/05 11:44 AM Page 624

try...catch statement, 423–427
variables, 12–14
Web browsers and, 5

ECMAScript Cruncher tool, 575–576
ECMAScript for XML (E4X)

classes, 607–615
for each..in loop, 607
implementation, 616
overview of, 605–607

ECMAScript 4
implementations of

Microsoft, 605
Mozilla, 604–605

Netscape proposal for
classes, 601–603
functions, 599–600
inheritance, 603
keywords and reserved words, 598–599
numeric literals, 600
overview of, 598
types, 601
variables, 599

overview of, 597
ECMA-262 standard, 4
effectAllowed property of dataTransfer

object, 395–397
E4X. See ECMAScript for XML
Eich, Brendan (developer), 2
Element node methods, 169–170
e-mail address, validating, 222
<embed/> element, 534
embedding

ActiveX control, 558
Flash movie, 552
Java applet, 543–544
plugin, 533–534

enabledPlugin object (Netscape), 536–537
enabling

Microsoft Script Debugger, 435
Mozilla privileges, 566–567

encapsulation, 68
encode() method of SOAPCall object, 518–519
encodeURI() method of Global object, 81–82
encodeURIComponent() method of Global

object, 81–82
end multiline comment (/*), 12
ending comment, 12
e-notation, 19
envelope, 510
equal operator (==)

dates and, 380
description of, 50–51

equality operators
equal (==) and not equal (!=), 50–51
identically equal (===) and not identically equal (!==),

51–52
error event, 286
error handling

ECMAScript and, 411
importance of, 411–412
onerror event handler, 419–423
Opera, 418–419
Safari, 417–418
syntax versus runtime errors, 412–413
try...catch statement, 423–427
using with both IE and Mozilla, 459–463

error messages
developer-thrown error, 428
“Identifier expected,” 15
JavaScript required, 258
line number given in, 415, 416
Mozilla, 416
object expected message, 431
“User did not grant privilege,” 568
for wrong browser or wrong operating system, 253, 257

Error object, 424–425, 426
error reporting

Internet Explorer
Macintosh, 415–416
Windows, 413–415

Mozilla, 416
overview of, 413

European Computer Manufacturers Association
(ECMA), 2

eval() method of Global object, 82–83
evaluate() method of XPathEvaluator

object, 467–471
event bubbling, 262–264, 278–279
event capturing, 264–265
event flow

DOM and, 265–266
Internet Explorer and, 262–264
Netscape Navigator and, 264–265

event handler
adding or removing, 292–294
assigning, 266–267, 269–270
description of, 266
Internet Explorer and, 267–268
keyup, 363
onblur, 353–354, 506
onclick, 266
ondrag, ondragend, ondragstart, 388–389
onerror, 419–423
onkeydown, 354–355

625

event handler

In
de

x

24_579088 bindex.qxd 3/28/05 11:44 AM Page 625

event handler (continued)
onkeypress, 348
onkeyup, 363
onload, 174, 287–288, 451
onmouseover, onmouseout, 281
onreadystatechange, 448
onresult, 514–515
onsubmit, 341
onunload, 288
this object and, 281
using JavaScript as, 128–129

event object
character code and, 277
clientX and clientY properties, 275
description of, 270
detecting Shift, Alt, or Ctrl key presses, 275
differences between IE and DOM versions of, 276–279
DOM and, 270
formatting, 294–299
getting, 274, 299–300
Internet Explorer and, 270
keyCode property, 274
preventing default behavior for, 278
properties/methods

DOM, 272–274
Internet Explorer, 271–272

screenX and screenY properties, 276
similarities between IE and DOM versions of, 274–276
target and, 277

eventPhase property of event object, 296
events. See also event flow; event handler;

specific events
cross-browser

adding or removing event handler, 292–294
description of, 292
EventUtil object, 292

description of, 261
DOM and, 261–262
drag-and-drop, using all, 390–392
dragged item, 388–389
drop target, 389–390 form field, 338–339
types of

HTML, 286–291
keyboard, 284–286
mouse, 280–284
mutation, 291
overview of, 279

zDragDrop library, 406–407
EventUtil object

code example, 300–301
description of, 292

exception
description of, 412
JavaScript-to-Java communication, 547–548

exec() method of RegExp object, 194–195
execution time, optimizing

algorithm, choosing right, 582–584
gotchas, avoiding, 590–591
if statements, optimizing, 589
loops

flipping, 584–585
reversing, 584
unrolling, 585–588

minimizing statement count, 591–592
overview of, 578
scope awareness and, 579–581
switch versus if statements, 589

exp() method of Math object, 85–86
expand() method (Internet Explorer), 330
expando property on table, creating, 376–377
expiration of cookie, 482
eXtensible HTML (XHTML)

attributes and, 348
description of, 159–160
example of, 161–162
<script/> tag, 131–132

eXtensible Markup Language (XML). See also
ECMAScript for XML

API for, 162–163
DOM support for

in Internet Explorer, 445–450
Mozilla and, 450–455

HTTP request
copycat implementations, 496
description of, 493–495
GET request, performing, 496–497
header, using, 495–496
POST request, performing, 497–498

using with both browsers
code for, 463–465
error handling, 459–463
IE branch, 456
modifying DOM creation, 455–456
Mozilla branch, 456–459

eXtensible Stylesheet Language Transformations (XSLT)
overview of, 471–473
support for

in Internet Explorer, 473–477
in Mozilla, 477–479

external file
format for, 126–127
inline code versus, 127–128

extractContents() method, 325

626

event handler (continued)

24_579088 bindex.qxd 3/28/05 11:44 AM Page 626

F
factory paradigm, 90–92
findPlugin() function (Netscape), 538
findText() method (Internet Explorer), 329–330
Flash Detection Kit (Macromedia), 543
Flash movie

description of, 551
embedding, 552
Flash-to-JavaScript communication, 555–557
JavaScript-to-Flash communication and, 553–555
referencing, 552

Flash Player (Macromedia), 532, 541
Flash-to-JavaScript communication, 555–557
flipping loop, 584–585
floating-point value

creating, 19
sorting and, 379

floor() method of Math object, 85, 87
foci, 103
focus event, 287
focus() method of form field, 338, 339–340
for each..in loop (ECMAScript for XML), 607
for statement, 55
for-in statement, 55
form

input elements, 336–337
<label/> element, 337
list box or combo box

adding options, 359–360
moving options, 361
options, 357
removing options, 360–361
reordering options, 361–362
retrieving or changing options, 357–359
<select/> element and, 356–357

text box
allowing valid characters in, 350–351
autosuggest, 362–365
blocking invalid characters in, 349
blocking paste function, 351–353
description of, 342–343
limiting textarea characters, 347–348
numeric, with up and down arrow keys, 354–356
retrieving or changing value, 343–344
selecting text in, 344–346
tabbing forward automatically in, 346–347
validating onblur, 353–354

<form/> element
accessing fields, 338
attributes of, 335
field properties, methods, and events, 338–339

first field, 339–340
getting form references, 337
resetting form, 342
Submit button, 340–342

format of WSDL file, 510–511
formatEvent() method of EventUtil object, 349
formatting event object, 294–299
FormUtil object, 339
forward() method of window object, 148
forward slash and asterisk (/*) to begin multiline com-

ment, 12
forward slashes (//) to begin single-line comment, 12
Fox, Geoffrery (author), 578
frame. See hidden frame method
fscommand() function (Flash), 556–558
Function class, 63–65
functions
addPostParam(), 498
addURLParam(), 497, 500
arguments object, 62–63
assert(), 431–432
callback, 502–503
caller property, 300
callWebService()

cross-browser example, 529
Internet Explorer example, 516
Mozilla example, 521
WebServiceProxyFactory object, 524–525

checkForErrors(), 461–462
checking for existence of, 226
closures, 65–66
comparison

multi-column table, sorting, 374–375
one-column table, sorting, 371
overview of, 367–369

conversion, creating, 378–379
createXMLDOM(), 446–447
deleteCookie(), 484
description of, 59–61
detectFlash(), 542–543
detectFlashInIE(), 542
divide(), 431–432
doAdd(), 63–65
ECMAScript
arguments object, 61–62
closures, 65–66
description of, 59–61
Function class, 62–65
overloading of, 61

ECMAScript 4, Netscape proposal for, 599–600
findPlugin() (Netscape), 538

627

functions

In
de

x

24_579088 bindex.qxd 3/28/05 11:44 AM Page 627

functions (continued)
fscommand() (Flash), 556–558
generateCompareTRs(), 374–375, 379–380,

383–384
getCookie(), 484
getServerInfo(), 490, 491
getURL() (Flash), 556
handleMouseDown(), 401, 402, 404
handleMouseMove(), 402, 404
handleResponse(), 490–491
httpGet(), 499, 504
httpPost(), 500–502
initError(), 461–462
invalid value and, 411–412
isOverDropTarget(), 403–405
onWebServiceResult()

Internet Explorer example, 516
Mozilla example, 521

overloading, 61
paste

blocking in text box, 351–353
validating onblur, 353–354

return, 60–61
setCookie(), 483–484
sortTable()

conversion function and, 380
descending order sort, 376–377
multi-column table, 375–376
one-column table, 371–373

XmlDom(), 455–456

G
garbage collection routine, 69
Gecko style plugins, 535
generateCompareTRs() function, 374–375, 379–380,

383–384
get() method for intelligent HTTP requests, 502–505
GET request, performing

HTTP, 496–497
LiveConnect, 498–500

getAllResponseHeaders() method, 495
getAttribute() method and sorting, 382, 384
getComputedStyle() method, 313–314
getCookie() function, 484
getData() method of dataTransfer object, 394–395
getElementById() method of document

object, 172–173
getElementsByName() method of document

object, 171–172

getElementsByTagName() method of document
object, 171

getLeft() method of zDragDrop library, 408
getParameter() method of XSLTProcessor

object, 479
getParameters() method of SOAPResponse

object, 520
getPropertyPriority() method of style

object, 305
getPropertyValue() method of style object, 305
getResponseHeader() method, 495
getSelectedIndexes() method of options

collection, 358–359
getServerInfo() function, 490, 491
getTimezoneOffset() method of Date class, 79
getting reference to <form/> element, 337
getTop() method of zDragDrop library, 408
getURL() function (Flash), 556
GetVariable() method (Flash), 553
Ghosh, Koushik (author), 582
Global object

description of, 81
methods, 81–84
properties, 83–84

global variable, creating, 14
go() method of window object, 148
greater than operator (>), 49–50
greater than or equal to operator (>=), 49–50
greedy quantifier, 202–204
Greenburg, Jeff, Web site of, 586, 587–588
grouping, 205–206

H
handleMouseDown() function, 401, 402, 404
handleMouseMove() function, 402, 404
handleResponse() function, 490–491
hard-coded strings, avoiding, 569–570
hasOwnProperty() method of Object class, 26
<head/> tag, 128
header and HTTP requests, 495–496
heap, 15, 16
helper application, 531–532
helper object, 166
hexadecimal literal, 19
hidden frame method

description of, 490–491
iframes, 491–492

hiding code from browser, 129–130

628

functions (continued)

24_579088 bindex.qxd 3/28/05 11:44 AM Page 628

history
of browser window, 148
of JavaScript, 1–2
of Windows operating system, 246

history property of window object, 148–149
host object, 87
HotJava browser, 531
href property of location object, 153
HTML

assigning event handler, 267
DOM and

attributes as properties, 178–179
overview of, 159
table methods, 179–182

external file format, 126–127
<form/> element

accessing fields, 338
attributes of, 335
field properties, methods, and events, 338–339
first field, 339–340
getting form references, 337
resetting form, 342
Submit button, 340–342

hiding code from browsers, 129–130
iframes, 491–492
inline code versus external files, 127–128
<noscript/> tag, 130
<script/> tag, 125–126
<select/> element, 356–357
style attribute, 304
tag placement, 128–129

HTML component, 513
HTML event, 286–287
HTTP request

copycat implementations, 496
description of, 493–495
GET request, performing, 496–497
header, using, 495–496
intelligent
get() method, 502–505
post() method, 505–506

POST request, performing, 497–498
Web services and, 509

httpGet() function, 499, 504
httpPost() function, 500–502
Hungarian Type Notation, 14
hybrid constructor/prototype paradigm, 94–95
hybrid factory paradigm, 96
hybrid method, 110–111
HyperText Applications (Microsoft), 568

I
identically equal operator (===), 51–52
“Identifier expected” error messages, 15
IE. See Internet Explorer
if statement

description of, 53–54
optimizing, 589

iframes, 491–492
image loading error, 421
implementation

Browser Object Model (BOM), 9
Document Object Model (DOM), 6–8
ECMAScript, 3–5
parts of, 3

implementation object (DOM), 189–191
indexOf() method of String class, 30, 237
infinity value, 20
information in WSDL file, locating, 511–513
inheritance

in action, 103–104
alternative paradigms

overview of, 115–116
xbObjects, 120–124
zInherit, 116–120

description of, 68, 103
dynamic prototyping and, 114–115
example of, 111–115
implementing, 104–105
methods of, 105–111

inheritFrom() method of Object class, 116
initError() function, 461–462
initializing variable, Java compared to JavaScript, 13
innerHTML property (Internet Explorer), 315
innerText property (Internet Explorer), 314–315
<input/> element

description of, 336
text attribute, 342–343

inRange() method (Internet Explorer), 332
insertBefore() method of document object, 175–177
insertBefore() method of options collection, 362
inserting

item into array, 77
iterative values, 591
range content (DOM), 325–326

insertNode() method, 325–326
instance of class, 67
instance properties of RegExp object, 213–214
instanceOf() method of Object class, 116–117
instanceof operator, 32–33
instantiation, 67, 68

629

instantiation

In
de

x

24_579088 bindex.qxd 3/28/05 11:44 AM Page 629

integer value
bitwise operator and, 37–39
creating, 18–19

intellectual property issues
Microsoft Script Encoder, 594–595
obfuscating, 593–594
overview of, 593

intelligent HTTP request
get() method, 502–505
post() method, 505–506

IntelliSense, 69
interacting with range content

DOM, 324–325
Internet Explorer, 331

interface of object, 67
International Organization for Standardization and Inter-

national Electrotechnical Commission (ISO/IEC), 2
internationalization concerns

detecting language, 569
overview of, 568
strategies, 569–570
string considerations

browser versus operating system support, 571
double quotes, using, 573
error-proofing strings, 571–573
representation and, 571
Unicode and, 570–571

Internet Explorer (IE, Microsoft)
callWebService() function example, 516
cloning ranges, 332
collapse() method, 331
compareEndPoints() method, 332
complex selection, 330
computed style of element and, 312–313
currentStyle object, 312–313
dataTransfer object

description of, 393–394
methods, 394–395
properties, 395–397

detecting, 241–242
developer-thrown error, 428
DOM and, 8
drag and drop functionality and, 387–388
dragDrop() method, 397–399
duplicate() method, 332
ECMAScript compliance, 5–6
Error object and, 425
error reporting

Macintosh, 415–416
Windows, 413–415

event bubbling, 262–264
event handler, 267–269

event object and, 270, 271–272
events and, 261
expand() method, 330
findText() method, 329–330
getElementById() method and, 173
getElementsByName() method and, 172
innerHTML property, 315
innerText property, 314–315
inRange() method, 332
isEqual() method, 332
loading XML, 447–448
move() method, 330
moveEnd() method, 330
moveStart() method, 330
moveToElementText() method, 330
MSXML versions and, 446–447
onWebServiceResult() function example, 516
outerHTML property, 315–317
outerText property, 315–317
parentElement() method, 330
parseError property (XML DOM), 449–450
parsing errors, 449–450
pasteHTML() method, 331
range

cloning, 332
collapsing, 331
comparing, 331
complex selection, 330
interacting with range content, 330
overview of, 329
simple selection, 329–330

readyState property (XML DOM), 448
RegExp.multiline and, 215
retrieving XML, 449
selectNodes() method, 467
selectSingleNodes() method, 467
setAttribute() and, 179
stopping event bubbling, 278–279
syntax error, 449–450
Temperature Service (XMethods) example, 515–516
testing for, 455–456
transformNode() method (XSLT), 473–475
user-agent string

description of, 227
version 3.0, 228–229
version 4.0, 229
version 5.0 and higher, 230

View→Script Debugger, 432–433
WebService component

example, 515–516
using, 513–515

630

integer value

24_579088 bindex.qxd 3/28/05 11:44 AM Page 630

XML DOM support in
Mozilla and, 455–465
overview of, 445–446

xml property (XML DOM), 449
XPath and, 467
XSLT support in, 473–477

intervals, 146, 147
invalid value, 411–412
isChar property of event object, 296
isEqual() method (Internet Explorer), 332
isFinite() method, 20
ISO/IEC (International Organization for Standardization

and International Electrotechnical Commission), 2
isOverDropTarget() function, 403–405
isPrototypeOf() method of Object class, 26
item() method of style object, 305
iterative statements
do-while statement, 54
flipping, 584–585
for each..in (ECMAScript for XML), 607
for statement, 55
for-in statement, 55
reversing, 584
unrolling, 585–588
while statement, 55

J
JAR (Java Archive) file, specifying, 544
Java

JavaScript compared to variables, 13
switch statement, 59

Java applet
description of, 531, 543
embedding, 543–544
JavaScript-to-Java communication, 546–548
Java-to-JavaScript communication, 548–551
referencing in JavaScript, 544–545
writing, 545–546

Java Archive (JAR) file, specifying, 544
Java console, 429–430
Java Development Kit (Sun Microsystems), 545
Java Plugin (Sun Microsystems), 532, 543
Java Server Pages (JSP) and cookies, 485–486
JavaScript console

Mozilla, 416
Opera, 418–419, 430

“JavaScript Performance Issues” seminar (Geoffrery
Fox), 578

JavaScript Verifier, 432
JavaScript-to-Flash communication, 553–555
JavaScript-to-Java communication, 546–548
Java-to-JavaScript communication, 548–551

join() method of Array class, 72
.js extension, 126
JScript (Microsoft), 2, 5
JScript.NET (Microsoft), 605
JSObject class, 548–551
JSP (Java Server Pages) and cookies, 485–486

K
keyboard event

description of, 284
properties, 285
sequencing, 286

keyCode property of event object, 274
keypress event, 348, 355
keyup event handler, 363
keywords

description of, 15
new keyword, 68
this keyword

ActiveX objects and, 448
description of, 89–90
object masquerading and, 105–107
style object and, 305

KHTML, 233, 239
Konqueror

detecting, 239–241
DOM and, 8, 182, 191
ECMAScript compliance, 6
Safari and, 233

L
<label/> element, 337
labeled statement, 56, 57
language

detecting, 569
object-oriented

inheritance and, 103
requirements of, 68

language attribute of <script/> tag, 125–126
language property of navigator object, 569
lastIndexOf() method of String class, 30
last-in-first-out (LIFO) structure, 73
last-in-last-out (LILO) structure, 75
late binding, 69
left shift operator (<<), 41–42
length property
Array class, 71
Function class, 64
window object, 149

less than operator (<), 49–50
less than or equal to operator (<=), 49–50

631

less than or equal to operator (<=)

In
de

x

24_579088 bindex.qxd 3/28/05 11:44 AM Page 631

LIFO (last-in-first-out) structure, 73
LILO (last-in-last-out) structure, 75
limiting textarea characters in text box, 347–348
line breaks, removing to optimize download time, 575
linear algorithm, 583
list box

adding options, 359–360
moving options, 361
options, 357
removing options, 360–361
reordering options, 361–362
retrieving or changing options, 357–359
<select/> element and, 356–357

literals
array, 578, 592
hexadecimal, 19
numeric, 600
object, 578, 592
octal, 19
string, 21

LiveConnect
debugging and, 429–430
Java-to-JavaScript communication, 548–551
request

description of, 498
GET, performing, 498–500
POST, performing, 500–502

LiveScript, 2
load event, 286, 287–288
load() method (XML DOM)

Internet Explorer and, 447–448
Mozilla and, 451–453
updating for use with IE and Mozilla, 458–459

Loaded Scripts pane (Venkman), 437–439
loadXML() method (XML DOM)

Internet Explorer and, 447
Mozilla and, 452–453
updating for use with IE and Mozilla, 458

localeCompare() method of String class, 30–31, 368
location object (BOM), 153–155
log() method of Math object, 85–86
logging message to Java console, 429–430
logical AND operator (&&), 44–45
logical NOT operator (!), 43–44
logical OR operator (||), 45–46
login page example, 252–259
lookaheads, 210
loop statements
do-while statement, 54
flipping, 584–585
for each..in (ECMAScript for XML), 607
for statement, 55

for-in statement, 55
reversing, 584
unrolling, 585–588
while statement, 55

loosely typed variable, 11, 13
Luhn algorithm, 218–221

M
Macintosh (Apple)

error reporting, 415–416
operating system, detecting, 247–248

Macromedia
Flash Detection Kit, 543
Flash movies

description of, 551
embedding, 552
Flash-to-JavaScript communication, 555–557
JavaScript-to-Flash communication, 553–555
referencing, 552

Flash Player, 532, 541
Shockwave, 533

match() method of String object, 195
Math object

methods, 84–87
properties, 84

Mathematical Markup Language (MathML), 8
max() method of Math object, 84–85
memory and dereferencing object, 69
message property of Error object, 425
metacharacters for regular expression, 197
methods. See also specific methods
Array class, 71–77
BOM, 82
built-in, using, 590
compareVersions(), 235–236
Cookie object (JSP), 485
creating new, 99–100
dataTransfer object (Internet Explorer), 394–395
description of, 68
document object

creating new nodes, 173–174
overview of, 151–153

Element node, 169–170
event handler, 267–269
event object

DOM, 272–274
Internet Explorer, 271–272
overview of, 294–295

EventUtil object, 292–294
Flash movies, 553, 554
form field, 338–339
Function class, 64–65632

LIFO (last-in-first-out) structure

24_579088 bindex.qxd 3/28/05 11:44 AM Page 632

getAllResponseHeaders(), 495
getComputedStyle(), 313–314
getResponseHeader(), 495
GetVariable() (Flash), 553
Global object, 81–83
isFinite(), 20
JSObject class, 549
location object, 154–155
Math object, 84–87
navigator object, 155–156
Node interface, 165–166
Number class, 28
Object class, 26
parseFloat(), 23, 235
parseInt(), 23
range, 321–323
redefining existing, 100–101
refresh() (Netscape), 540
RegExp object, 194–195
setRequestHeader(), 495
SetVariable() (Flash), 553
String class, 29–32
style object, 305–307
table (DOM HTML), 179–182
toString()

Array class, 71–72
Date class, 78–79
description of, 22
Function class, 64–65
location object, 154–155
Object class, 26

TotalFrames() (Flash), 553
TreeWalker object (DOM), 187
WebService object, 526
window object (BOM), 139–148
window.close(), 142
window.open(), 140–142, 565
XML class (ECMAScript for XML), 611–614
XMLList class (ECMAScript for XML), 615
zDragDrop library, 408–409

Microsoft. See also Internet Explorer
ECMAScript 4 implementation, 605
HyperText Applications, 568
JScript, 2, 5
JScript.NET, 605
OLE/COM Object Viewer, 540, 541
Script Debugger, 432–435
Script Encoder, 594–595
WebService component, 513
Windows

Media Player, 532, 542
operating system, detecting, 245–247
XP Service Pack 2, 516, 558, 565

MIME types
description of, 533
invisible, 537
Java applet and, 543
Netscape-style plugins and, 535–539

min() method of Math object, 84–85
minus operator (-), 36–37
modal dialog, 144
modifying

CSS rule, 311–312
object

creating new method, 99–100
redefining existing method, 100–101

text between starting and ending tags, 314–315
modulus (remainder) operator (%), 47
mouse event

description of, 280–281
properties, 281–283
sequencing, 284

move() method (Internet Explorer), 330
moveBy() method of window object, 139
moveEnd() method (Internet Explorer), 330
moveStart() method (Internet Explorer), 330
moveTo() method
window object, 139
zDragDrop library, 408

moveToElementText() method (Internet Explorer),
330

moving
options between list or combo boxes, 361
window, 139–140

Mozilla. See also Venkman
callWebService() function example, 521
createDocument() method and, 450–451
detecting, 242–243
developer-thrown error, 428
DOM and, 182, 191
DOM Range implementation and, 323
DOMParser object, 451–452
ECMAScript for XML and, 616
ECMAScript 4 implementation, 604–605
error handling, 459–463
error messages, 416
Error object and, 425
error reporting, 416
event bubbling and, 264
events and, 262
Gecko style plugins, 535
getComputedStyle() method and, 314
keypress event and, 348
loading XML, 451–453
onWebServiceResult() function example, 521

633

Mozilla

In
de

x

24_579088 bindex.qxd 3/28/05 11:44 AM Page 633

Mozilla (continued)
parseError property (XML DOM), creating for, 459–463
parsing error, 454–455
privileges, 566–567
readyState property (XML DOM), updating for use

with, 457–459
retrieving XML, 453–454
security mechanisms, 566–568
selectNodes() method, creating for, 468–469
selectSingleNodes() method, creating for,

469–470
SignTool, 567–568
Simple Object Access Protocol (SOAP) and, 518–521
SOAPCall object, 518
SOAPParameter constructor, 518
SOAPResponse object, 519–520
syntax error, 454–455
Temperature Service example, 520–521
testing for, 455–456
Tools→Web Development→JavaScript Debugger, 435
transformNode() method (XSLT), creating for, 478
Universal Browser Read privilege, 517–518, 567
Universal Browser Write privilege, 567
user-agent string, 227, 230–231
Web services and

enhanced privileges, 517–518
overview of, 516
SOAP methods, using, 518–521
WSDL proxies, using, 522–525

Web site, 563
WebServiceProxyFactory object, 522
XML DOM support in

Internet Explorer and, 455–465
overview of, 450

xml property (XML DOM), 453–454
XMLSerializer object, 453, 454
XPath and, 467–471
XPathEvaluator object, 467–468
XPathResult object, 468–471
XSLT and, 477–479
XSLTProcessor object, 477–479

Mozilla Foundation, 598
MSXML

overview of, 445–446
versions of, 446–447
Windows and, 450
XSLT support and, 473, 477

multiline comment, beginning and ending, 12
multiline mode, 212–213
multiple inheritance

description of, 106
zInherit library and, 119–120

multiplicative operators
divide (/), 47
modulus (remainder, %), 47
multiply (*), 46

multiply operator (*), 46
mutation event, 291

N
name of cookie, 482
named property lookup, 583
Namespace class (ECMAScript for XML), 607–608
naming variable, 13–14
NaN value, 20
native object
Array class, 70–77
Date class, 77–81
description of, 70

Navigator (Netscape)
DOM and, 8
ECMAScript compliance and, 5
event capturing, 264–265
user-agent string and, 227–229

navigator object (BOM)
appVersion property, 228
description of, 155–156
language property, 569
platform property, 245
as standard, 225
userAgent property, 226–227

navigator.plugins collection, 538–540
negation class, 199
negative lookahead, 210
negative test, shortening, 577
nested try...catch statement, 424
Netscape

client-side scripting language and, 2
Communicator 4.0, 229
Communicator 4.x, detecting, 243–244
DevEdge Web site, 120
disbanding of, 598
ECMAScript 4 proposal

classes, 601–603
functions, 599–600
inheritance, 603
keywords and reserved words, 598–599
numeric literals, 600
overview of, 598
types, 601
variables, 599

<embed/> element and, 534
enabledPlugin object, 536–537

634

Mozilla (continued)

24_579088 bindex.qxd 3/28/05 11:44 AM Page 634

findPlugin() function, 538
helper applications, 531–532
Navigator

DOM and, 8
ECMAScript compliance and, 5
event capturing, 264–265
user-agent string and, 227–229

plugins, 535–540
refresh() method, 540

netscape.javascript package, 548
Netscape-style plugins, 535–540
new keyword, 68
NodeFilter object (DOM), 186
NodeIterator object (DOM), 182–187
nodeKind() method of XML class (ECMAScript for

XML), 613
nodes

events and, 266
hierarchy of, 163–166

nodeType property of document object, 169
no-drop symbol, 388
Nombas, 1–2
non-capturing group, 209
<noscript/> tag, 130, 255–256
not equal operator (!=), 50–51
not identically equal operator (!==), 52
NOT operator (~), 39
Null value

description of, 18
as primitive type, 16

Number class, 27–29
Number() type cast, 24–25
Number value

converting to, 23–24
description of, 18–20
as primitive type, 16
toString() method of, 22

Number.MAX_VALUE, 20
Number.MIN_VALUE, 20
Number.NEGATIVE_INFINITY, 20
Number.POSITIVE_INFINITY, 20
numeric text box, 354–356
numericScroll() method of TextUtil

object, 355–356

O
obfuscating, 593–594
object. See also class; specific objects

composition of, 68
declaring and instantiation, 68
defining

constructor paradigm, 92–93

dynamic prototype method, 95–96
example of, 97–98
factory paradigm, 90–92
hybrid constructor/prototype paradigm, 94–95
hybrid factory paradigm, 96
paradigm, choosing, 97
prototype paradigm, 93–94

dereferencing, 69
description of, 67
early versus late binding, 69
helper, 166
modifying

method, creating new, 99–100
method, redefining existing, 100–101
very late binding, 101

types of
built-in, 80–87
host, 87
native, 70–80

Object class, 26
object definition, 67
<object/> element

attributes, 533–534
plugin and, 531

object expected message, 431
object literal, 578, 592
object masquerading
apply() method and, 108–109
call() method and, 107
overview of, 105–107

object/feature detection, 226
object-oriented language

inheritance and, 103
requirements of, 68

octal literal, 19
OLE/COM Object Viewer (Microsoft), 540, 541
onblur event handler, 353–354, 506
onclick event handler, 266
ondrag event handler, 388–389
ondragend event handler, 388–389
ondragstart event handler, 388
onerror event handler

description of, 419–420
extracting error information, 420
image loading errors, 421
syntax errors, 422

onError() method of WebServiceProxyFactory
object, 522–523

onkeydown event handler, 354–355
onkeypress event handler, 348
onkeyup event handler, 363
onload event handler, 174, 287–288, 451

635

onload event handler

In
de

x

24_579088 bindex.qxd 3/28/05 11:44 AM Page 635

onLoad() method of WebServiceProxyFactory
object, 522, 523

onmouseover and onmouseout event handlers, 281
onreadystatechange event handler, 448
onresult event handler, 514–515
onsubmit event handler, 341
onunload event handler, 288
onWebServiceResult() function

Internet Explorer example, 516
Mozilla example, 521

open() method
document object, 152–153
window object, 565

opening new window, 140–143
Opera

detecting, 237–239
detecting key presses and, 282
DOM and, 8, 191
ECMAScript compliance, 6
error handling, 418–419
events and, 262
getComputedStyle() method and, 314
getElementsByName() method and, 172
JavaScript console and, 418–419, 430
postError() method, 430
RegExp.multiline and, 215
regular expressions and, 238
style sheet access and, 310
user-agent string, 227, 232–233

operating system
drag and drop functionality and, 387–388
support for and internationalization, 571

operating system detection script. See platform/oper-
ating system detection script

operation in WSDL, 510
operators

additive
add (+), 47–48
subtract (-), 48–49

assignment, 52–53
bitwise

AND (&), 39–40
integers and, 37–39
left shift (<<), 41–42
NOT (~), 39
OR (|), 40
signed right shift (>), 42
unsigned right shift (>>), 42–43
XOR (^), 40–41

Boolean
description of, 43
logical AND (&&), 44–45

logical NOT (!), 43–44
logical OR (||), 45–46

conditional, 52
equality, 50–52
instanceof operator, 32–33
multiplicative

divide (/), 47
modulus (remainder, %), 47
multiply (*), 46

relational, 49–50
typeof operator, 16–17
Unary
delete operator, 33
plus and minus, 36–37
postfix increment/decrement, 35–36
prefix increment/decrement, 34–35
void operator, 33–34

optimization
download time and

array and object literals and, 578
byte count and, 576–577
comments and, 574
ECMAScript Cruncher and, 575–576
line breaks and, 575
overview of, 573–574
tabs, spaces, and, 574
variable names and, 575

execution time and
basics, remembering, 582–589
DOM manipulation and, 592–593
gotchas, 590–591
overview of, 578
scope awareness and, 578–581
statement count and, 591–592

OR operator (|), 40
outerHTML property (Internet Explorer), 315–317
outerText property (Internet Explorer), 315–317
overloading function, 61

P
<param/> element, 534
parent node, 164
parent object (BOM), 137–138
parentElement() method (Internet Explorer), 330
parse() method of Date class, 78
parseError property (XML DOM)

creating for Mozilla, 459–463
Internet Explorer, 449–450

parseFloat() method, 23, 235
parseInt() method, 23

636

onLoad () method of WebServiceProxyFactory object

24_579088 bindex.qxd 3/28/05 11:44 AM Page 636

parsing error
description of, 412–413
Internet Explorer, 449–450
Mozilla, 454–455
onerror event handler and, 422

Pascal Notation, 14
passing cookies between client and server, 488–489
paste function

blocking in text box, 351–353
validating onblur, 353–354

pasteHTML() method (Internet Explorer), 331
path and cookies, 482
PHP and cookies, 487–488, 489
platform property of navigator object, 245
platform/operating system detection script

first steps, 245
login page and, 252–259
Macintosh OS, detecting, 247–248
methodology, 244–245
overview of, 244
text of full script, 249–252
Unix OS, detecting, 248–249
Windows OS, detecting, 245–247

plugins. See also Flash movie; Java applet
ActiveX controls, 558–560
description of, 531
detecting

ActiveX, 540–542
cross-browser detection, 542–543
Netscape-style, 535–540
overview of, 535

embedding, 533–534
MIME types and, 533
popular, 532–533
purpose of, 531–532

plus operator (+), 36
polymorphism, 68
pop() method of Array class, 74–75
popping item from stack, 73–74
pop-up blocker, 143, 565–566
positive lookahead, 210
possessive quantifier, 202–204
post() method for intelligent HTTP requests, 505–506
POST request, performing

HTTP, 497–498
LiveConnect, 500–502

postError() method (Opera), 430
postfix decrement operator (– –), 35–36
postfix increment operator (++), 35–36
pow() method of Math object, 85, 86
predefined class, 200–201
prefix decrement operator (– –), 34–35
prefix increment operator (++), 34–35

prefixes for Hungarian Type Notation, 14
preventDefault() method of event object, 297
preventing default behavior for event, 278
primitive type and typeof operator, 16–17
primitive value, 15–16
private scope, 88
processing instruction, 162
Profile→Save Profile Data (Venkman), 442
profiling (Venkman), 442–443
prompt dialog, 144
prompt() method of window object, 144
properties
appVersion property of navigator object, 228
attributes in HTML DOM elements as, 178–179
caller property of function, 300
charCode property of event object, 296
constructor property of Object class, 26
cookie property of document object, 483
cssText property of style object, 305
dataTransfer object, 395–397
description of, 68
document object, 149–150
dropEffect property of dataTransfer object,

395–397
effectAllowed property of dataTransfer object,

395–397
event object

DOM, 272–274
Internet Explorer, 271–272

eventPhase property of event object, 296
expando, on table, creating, 376–377
form field, 338–339
Function class, 64
Global object, 83
history property of window object, 148–149
href property of location object, 153
HttpCookie (ASP.NET), 486–487
innerHTML property (Internet Explorer), 315
innerText property (Internet Explorer), 314–315
isChar property of event object, 296
keyboard events, 285
keyCode property of event object, 274
language property of navigator object, 569
length

Array class, 71
Function class, 64
window object, 149

Math object, 84
message property of Error object, 425
mouse events, 281–283
navigator object, 155–156
Node interface, 165–166
nodeType property of document object, 169 637

properties

In
de

x

24_579088 bindex.qxd 3/28/05 11:44 AM Page 637

properties (continued)
Object class, 26
options collection, 357
outerHTML property (Internet Explorer), 315–317
outerText property (Internet Explorer), 315–317
parseError (XML DOM)

creating for Mozilla, 459–463
Internet Explorer, 449–450

platform property of navigator object, 245
prototype property of Object class, 26
range, 318–320
readyState (XML DOM)

Internet Explorer, 448
updating for use with IE and Mozilla, 457–459

RegExp object
instance, 213–214
static, 214–215

relatedTarget property of event object, 297
removeProperty() method of style object, 305
result property, 514–515
screen object, 157
selectorText property for CSS rule, 310
setProperty() method of style object, 305
SOAPResponse object (Mozilla), 519
style object, 304
style property for CSS rule, 310
target property of event object, 298–299
value property of text box, 343–344
WebService object, 526
xml (XML DOM)

Internet Explorer, 449
Mozilla, 453–454

propertyIsEnumerable() method of Object
class, 26

protected scope, 88
protecting intellectual property

Microsoft Script Encoder, 594–595
obfuscating, 593–594
overview of, 593

prototype chaining, 109–110
prototype paradigm, 93–94
prototype property of Object class, 26
pseudo-object, 22
public scope, 88
push() method of Array class, 74–75, 76

Q
QName class (ECMAScript for XML), 608
quantifiers

description of, 201

greedy, reluctant, and possessive, 202–204
simple, 201–202

queue and Array class, 75–76
Quicktime (Apple), 532, 542
quotation marks

double ('')
internationalization and, 572–573
string literal and, 21

single (')
internationalization and, 573
string literal and, 21

R
raising exceptions, 426–427
random() method of Math object, 87
range

description of, 317
DOM and

clean up, 329
cloning range, 328
collapsing range, 326–327
comparing ranges, 328
complex selection, 322–323
inserting with range content, 325–326
interacting with range content, 324–325
overview of, 317–318
simple selection, 318–322

Internet Explorer and
cloning range, 332
collapsing range, 331
comparing ranges, 331
complex selection, 330
interacting with range content, 330
overview of, 329
simple selection, 329–330

practicality of, 332
range class, 199–200
raster graphics, 133
readyState property (XML DOM)

Internet Explorer, 448
updating for use with IE and Mozilla, 457–459

Real Player, 532, 541, 542
redefining existing method, 100–101
reference type
Boolean class, 27
description of, 25
instanceof operator, 32–33
Number class, 27–29
Object class, 26
String class, 29–32

reference value, 15–16

638

properties (continued)

24_579088 bindex.qxd 3/28/05 11:44 AM Page 638

references to object, 69
referencing

Flash movie, 552
Java applet, 544–545

refresh() method (Netscape), 540
RegExp object

description of, 193–194
instance properties, 213–214
methods, 194–195
static properties, 214–215

regular expression. See also RegExp object
character classes

combination, 200
description of, 199
predefined, 200–201
range, 199–200
simple, 199

common patterns
credit card, validating, 218–221
date, validating, 216–218
e-mail address, validating, 222

complex patterns
alternation, 207–208
backreferences, 206–207
boundaries, 210–212
grouping, 205–206
lookaheads, 210
multiline mode, 212–213
non-capturing groups, 209

description of, 193
metacharacters and, 197
Opera and, 238
quantifiers

description of, 201
greedy, reluctant, and possessive, 202–204
simple, 201–202

special characters and, 197–198
String methods and, 195–197
support for, 193–194

relatedTarget property of event object, 297
relational operators, 49–50
reload() method of location object, 154
reluctant quantifier, 202–204
Remember Me check box, 488–489
removeChild() method of document object, 175–177
removeEventHandler() method of EventUtil

object, 293
removeEventListener() method (DOM),

268–269, 407
removeParameter() method of XSLTProcessor

object, 479
removeProperty() method of style object, 305

removing
event handler, 292–294
options from list or combo box, 360–361

renaming variable, 575
reordering options in list or combo box, 361–362
replace() method
location object, 154
String object, 195–196

replaceChild() method of document object, 175–177
representation in Unicode, 571
reserved words, 15
reset event, 286
reset() method

HTML form, 342
XSLT, 477

resetting form, 342
resize event, 287, 288–289
resizeBy() method of window object, 139
resizeTo() method of window object, 140
resizing window, 139–140
resource limitations, 568
result property, 514–515
retrieving

list of registered plugins, 538–539
text in text box, 343–344
XML

Internet Explorer and, 449
Mozilla and, 453–454

return statement and function, 60–61
reverse() method
Array class, 76
sorting and, 369

reversing loop, 584
rollover effect, applying, 304–305
round() method of Math object, 85
rows collection, 371
running

Microsoft Script Debugger, 432–433
Venkman, 435

Running Documents window (Microsoft Script
Debugger), 433

runtime error, 412–413

S
Safari (Apple)

detecting, 239–241
DOM and, 8, 182, 191
ECMAScript compliance, 6
error handling, 417–418
events and, 262
user-agent string, 227, 233

639

Safari (Apple)

In
de

x

24_579088 bindex.qxd 3/28/05 11:44 AM Page 639

Same Origin Policy, 563–564
SAX (Simple API for XML), 162–163
Scalable Vector Graphics (SVG)

description of, 8, 133
example of, 133–134
<script/> tag, 134–135
tag placement, 135

scope
description of, 88
execution time and

local variables, using, 580–581
overview of, 579–580
with statement, avoiding, 581

public, protected, and private, 88
static, 88–89
this keyword, 89–90

screen object (BOM), 156–157
screenX and screenY properties of event object, 276
Script Debugger (Microsoft), 432–435
Script Encoder (Microsoft), 594–595
<script/> tag

HTML, 125–126
SVG, 134–135
XHTML, 131

ScriptEase, 2
scripting styles, 303–305
scroll event, 287, 289–291
scrolling message code, 146
scrollLeft and scrollTop properties of event

object, 296
search() method of String object, 195
secure flag and cookie, 482
security

inline code and, 127
JavaScript-to-Java communication, 548
Mozilla-specific issues, 566–568
resource limitations, 568
Same Origin Policy, 563–564
window object issues, 564–566

<select/> element
description of, 336
list and combo boxes and, 356–357
options collection, 357
selectedIndex attribute, 357–358

select event
HTML and, 286
text box and, 345

select() method and text box, 344–345
selecting text in text box, 344–346
selectNode() method, 318–319
selectNodeContents() method, 318–319

selectNodes() method
creating for Mozilla, 468–469
Internet Explorer, 467

selectorText property for CSS rule, 310
selectSingleNodes() method

creating for Mozilla, 469–470
Internet Explorer, 467

semicolon (;)
as optional at end-of-line, 12
using, 574

send() method of WebService object, 526, 528–529
serializeToString() method of XMLSerializer

object, 453, 454
setCookie() function, 483–484
setData() method of dataTransfer object, 394–395
setEnd() method, 322–323
setInterval() method of window object, 147
setParameter() method of XSLTProcessor

object, 478–479
setProperty() method of style object, 305
setRequestHeader() method, 495
setStart() method, 322–323
setStartMode() method (XSLT), 477
setTimeout() method of window object, 146–148
SetVariable() method (Flash), 553
SGML (Standard Generalized Markup Language), 159–160
shift() method of Array class, 75, 76
shiftUp() method of options collection, 362
Shockwave (Macromedia), 533
sibling node, 164
signed integer, 37
signed right shift operator (>), 42
signed script, 567–568
signing applet, 548
SignTool (Mozilla), 567–568
Simple API for XML (SAX), 162–163
simple class, 199
Simple Object Access Protocol (SOAP)

description of, 509–510
Mozilla and, 518–521

simple quantifier, 201–202
simple selection

DOM ranges, 318–322
Internet Explorer, 329–330

simulated drag and drop
advantages and disadvantages of, 405
code for, 400–402
description of, 399–400
drop target, creating, 403–405

single quotation mark (‘)
internationalization and, 573
string literal and, 21

640

Same Origin Policy

24_579088 bindex.qxd 3/28/05 11:44 AM Page 640

size of array, 71
slice() method
Array class, 72–73
String class, 31–32

SMIL (Synchronized Multimedia Integration Language), 8
snapshot Length() and snapshotItem() methods

of XPathResult object, 469
SOAP (Simple Object Access Protocol)

description of, 509–510
Mozilla and, 518–521

SOAPCall object (Mozilla), 518
SOAPParameter constructor (Mozilla), 518
SOAPResponse object (Mozilla), 519–520
sort() method of Array class, 76–77, 367–369
sorting

advanced, 381–385
comparison function and, 367–369
multi-column table

comparison function, 374–375
overview of, 373–374
sortTable() function, 375–376

one-column table
comparison function, 371
overview of, 369–371
sortTable() function, 371–373

overview of, 367
reverse() method, 369
table

in descending order, 376–377
with different data types, 377–381

sortTable() function
conversion function and, 380
descending order sort, 376–377
multi-column table, 375–376
one-column table, 371–373

Source Code view (Venkman), 439
spaces, removing to optimize download time, 574
special characters

regular expressions and, 197–198
XHTML and, 131–132

specifying string literal, 21
splice() method of Array class, 77
split() method of String object, 72, 196
sqrt() method of Math object, 85, 86
square brackets ([])
Array class and, 71
in regular expressions, 199
XPath and, 466

src attribute of <script/> tag, 126
stack

description of, 15, 16
as last-in-first-out structure, 73
popping item from, 73–74

Standard Generalized Markup Language (SGML), 159–160
statements
break and continue, 56–57
description of, 53
if statement, 53–54, 589
iterative
do-while, 54
flipping, 584–585
for, 55
for-in, 55
reversing, 584
unrolling, 585–588
while, 55

labeled, 56, 57
minimizing count of to optimize execution time,

591–592
return, 60–61
switch, 58–59, 589
throw, 426–427
try...catch, 423–427
with

avoiding to improve execution time, 581
description of, 58

static properties of RegExp object, 214–215
static scope, 88–89
status bar, 144–145
status() method of window object, 145–146
stopping event bubbling, 278–279
stopPropagation() method of event object, 297–298
storing commonly used value, 590–591
String class. See String object
string concatenation, avoiding, 590
String object

description of, 29–32
indexOf() method, 237
localeCompare() method, 368
match() method, 195
replace() method, 195–196
search() method, 195
split() method, 72, 196
trim() method, 205–206

String() type cast, 25
String value

converting to, 22–23
description of, 20–21
as primitive type, 16

StringBuffer class/object, 97–98, 528
strings

arrays and, 70–71
comparing, 49–50
concatenating, 97–98, 590
error-proofing, 571–573
hard-coded, avoiding, 569–570 641

strings

In
de

x

24_579088 bindex.qxd 3/28/05 11:44 AM Page 641

strings (continued)
as immutable, 97
relational operator and, 49
Unicode and, 570–571

style object
accessing style sheet, 309–312
collapsible section and, 308–309
custom tooltips and, 307–308
description of, 303–305
methods, 305–307

style property for CSS rule, 310
style sheet. See CSS (Cascading Style Sheets); XSLT

(eXtensible Stylesheet Language Transformations)
style sheet object, 309–310
subclass

creating, 104–105, 112–114
description of, 103

submit event, 286
submit() method, 340–341
submitting form, 340–342
substring() method of String class, 31–32
subtract operator (-), 48–49
Sun Microsystems

HotJava, 531
Java Development Kit, 545
Java Plugin, 543
LiveScript and, 2

superclass, 103
surroundContents() method, 326
SVG (Scalable Vector Graphics)

description of, 8, 133
example of, 133–134
<script/> tag, 134–135
tag placement, 135

SVG Viewer (Adobe), 532, 541
switch statement

description of, 58–59
if statement compared to, 589

Synchronized Multimedia Integration Language (SMIL), 8
synchronous mode, loading file in, 447
syntax

ECMAScript, 11–12
variables, 12–14

syntax error
description of, 412–413
Internet Explorer, 449–450
Mozilla, 454–455
onerror event handler and, 422

system dialog, 143–144
system drag and drop

advantages and disadvantages of, 399
dataTransfer object and, 393–397

description of, 387–388
dragDrop() method, 397–399
dragged item events, 388–389
drop target, creating, 392–393
drop target events, 389–390
events, using all, 390–392

T
tabbing forward in text box, 346–347
table, sorting

in descending order, 376–377
with different data types, 377–381
multi-column

comparison function, 374–375
overview of, 373–374
sortTable() function, 375–376

one-column
comparison function, 371
overview of, 369–371
sortTable() function, 371–373

table methods, 179–182
tabs, removing to optimize download time, 574
tabular data control, 558–560
tags
<body/> tag, 128
<head/> tag, 128
modifying text between starting and ending, 314–315
<noscript/>, 130, 255–256
placement of

HTML, 128–129
SVG, 135

<script/>

HTML, 125–126
SVG, 134–135
XHTML, 131

XML, 159, 160
target of event, 277
target property of event object, 298–299
Technical Committee 39, 597
Temperature Service (XMethods)

code for, 512
cross-browser approach to, 527–529
Internet Explorer example, 515–516
Mozilla example, 520–521
WSDL proxy example, 523–525

TemperatureService object, 527–529
template (XSLT), 472, 476
test() method of RegExp object, 194
testing

for browser, 455–456
form submission, 340

642

strings (continued)

24_579088 bindex.qxd 3/28/05 11:44 AM Page 642

MIME type, 537–538
range collapse, 327
string concatenation, 98

text box
allowing valid characters in, 350–351
autosuggest

description of, 362
matching and, 362–363
script for, 363–365

blocking invalid characters in, 349
blocking paste function, 351–353
description of, 342–343
limiting textarea characters, 347–348
numeric, with up and down arrow keys, 354–356
retrieving or changing value, 343–344
selecting text in, 344–346
tabbing forward automatically in, 346–347
validating onblur, 353–354

Text node, 168
text range

description of, 317
DOM and

clean up, 329
cloning range, 328
collapsing range, 326–327
comparing ranges, 328
complex selection, 322–323
inserting with range content, 325–326
interacting with range content, 324–325
overview of, 317–318
simple selection, 318–322

Internet Explorer and
cloning range, 332
collapsing range, 331
comparing ranges, 331
complex selection, 330
interacting with range content, 330
overview of, 329
simple selection, 329–330

practicality of, 332
<textarea/> element, 336, 343
TextUtil object, 348
this keyword

ActiveX objects and, 448
description of, 89–90
object masquerading and, 105–107
style object and, 305

this object and event handler, 281
throw statement, 426–427
throwing own error, 431–432
timeout, setting, 146–148

toExponential() method of Number class, 28
toFixed() method of Number class, 28
toLocaleLowerCase() method of String class, 32
toLocaleString() method of Array class, 72
toLocaleUpperCase() method of String class, 32
toLowerCase() method of String class, 32
Tools→JavaConsole, 429
Tools→Web Development→JavaScript Debugger

(Mozilla), 435
tooltip, 146–147, 307–308
top object (BOM), 137
toPrecision() method of Number class, 28
toString() method
Array class, 71–72
Date class, 78–79
description of, 22
Function class, 64–65
location object, 154–155
Object class, 26

TotalFrames() method (Flash), 553
toUpperCase() method of String class, 32
transformNode() method (XSLT)

creating for Mozilla, 478
Internet Explorer, 473–475

transversal, 182–189
tree-based API, 163–166
TreeWalker object (DOM), 187–189
trim() method of String object, 205–206
trusted site, 565
try...catch statement

description of, 423–424
determining type of error, 426
Error object and, 424–425
nested, 424
raising exceptions, 426–427

two’s complement format, 38
type, 16
type casting, 24–25
typeof operator and primitive type, 16–17

U
UML (Universal Modeling Language), 103–104
Unary operators
delete operator, 33
plus and minus, 36–37
postfix increment/decrement, 35–36
prefix increment/decrement, 34–35
void operator, 33–34

Undefined value
description of, 17–18, 226
as primitive type, 16

643

Undefined value

In
de

x

24_579088 bindex.qxd 3/28/05 11:44 AM Page 643

underscore (_)
to indicate private scope, 88
variable name and, 13

Unicode characters, 570–571
Unicode Standard

description of, 4, 20
representing character using, 198

Uniform Resource Identifier (URI), 81
Universal Browser Read privilege (Mozilla), 517–518, 567
Universal Browser Write privilege (Mozilla), 567
Universal Modeling Language (UML), 103–104
Universal Time Code (UTC), 77
Unix operating system, detecting, 248–249
unload event, 286, 287–288
unrolling loop, 585–588
unshift() method of Array class, 75
unsigned integer, 37
unsigned right shift operator (>>), 42–43
untrusted site, 565
URI (Uniform Resource Identifier), 81
URL and location object (BOM), 153
user-agent string detection

history of
Internet Explorer 5.0 and higher, 230
Mozilla, 230–231
Netscape Communicator 4.0 and Internet Explorer

4.0, 229
Netscape Navigator 3.0 and Internet Explorer 3.0,

227–229
Opera, 232–233
Safari, 233

overview of, 226–227
storing in local variable, 234–235

useService() method of WebService component,
513–514

UTC (Universal Time Code), 77
UTC() method of Date class, 78

V
validating

credit card, 218–221
data against database, 506
dates, 216–218
e-mail address, 222
form before submission, 341
onblur, 353–354

value attribute and sorting, 382–383
value property of text box, 343–344
valueOf() method
Array class, 71–72
Date class, 78–79

Function class, 64–65
Object class, 26

values
Boolean

description of, 18
as primitive type, 16
replacing to optimize download time, 576–577
toString() method of, 22

cookie and, 482
dropEffect property of dataTransfer object, 396
effectAllowed property of dataTransfer object,

396
floating-point

creating, 19
sorting and, 379

infinity, 20
integer

bitwise operator and, 37–39
creating, 18–19

invalid, 411–412
iterative, inserting, 591
Null, 16, 18
Number

converting to, 23–24
description of, 18–20
as primitive type, 16
toString() method of, 22

primitive, 15–16
reference, 15–16
storing commonly used, 590–591
String

converting to, 22–23
description of, 20–21
as primitive type, 16

text box, retrieving or changing, 343–344
Undefined, 16, 17–18, 226
variables and, 13

var operator
description of, 12–14
loosely typed variable and, 11

variables
declaring, 14
defining, 12
defining multiple, 591
local, using, 580–581
as loosely typed, 11, 13
names, replacing to optimize download time, 575
naming, 13–14
values and, 13
watching for, 441–442

VBScript, 557–558

644

underscore (_)

24_579088 bindex.qxd 3/28/05 11:44 AM Page 644

vector graphics, 133
Venkman

breakpoint, setting, 439–440
description of, 435
Loaded Scripts pane, 437–439
profiling, 442–443
running, 435
stepping through code, 440–441
watches, 441–442
window, 435–437

very late binding, 101
View→Script Debugger (Internet Explorer), 432–433
void operator, 33–34

W
Watches view (Venkman), 442
watching for variable, 441–442
Web browser. See also browser detection script; spe-

cific browsers
detection methods

cross-browser code and, 292
object/feature, 226
user-agent string, 226–233

DOM and, 7, 8, 167
ECMAScript and, 3–4, 5
hiding code from, 129–130
possessive quantifiers and, 204
Text node and, 168

Web services
cross-browser approach to

overview of, 525
TemperatureService object, 527–529
WebService object and, 525–527

description of, 509–510
Internet Explorer and

overview of, 513
WebService component, 513–516

Mozilla and
enhanced privileges, 517–518
overview of, 516
SOAP methods, using, 518–521
WSDL proxies, using, 522–525

Web Services Description Language (WSDL), 510–513
Web sites

algorithms, 584
A9 (Amazon.com Web search engine), 506
applet security and signing, 548
Bitflux blog, 506
credit card number patterns, 221
Dithered JavaScript compression utility, 593
ECMAScript Cruncher tool, 576
ECMAScript for XML, 616

ECMAScript Language Specification, 12
Greenburg, Jeff, 586
“JavaScript Performance Issues,” 578
“JavaScript Security: Signed Scripts” document, 566
JavaScript Verifier, 432
language-specific DOMs, 167
Luhn algorithm, 221
Macromedia Flash Detection Kit, 543
Microsoft

HyperText Applications, 568
JScript.NET, 605
OLE/COM Object Viewer, 540
Script Debugger, 432
Script Encoder, 594
WebService component, 513

Mozilla, 563
Netscape DevEdge, 120
Sun Microsystems

Java Development Kit, 545
Java Plugin, 543

technical comparison of SGML and XML, 160
Venkman, 435
“Writing Efficient C and C Code Optimization,” 582
Wrox, 563
XMethods, 512
XMethods WSDL analyzer tool, 527
zDragDrop library, 405
zInherit library, 116

Weblogic Workshop (BEA Systems), 616
WebService component (Microsoft)

example, 515–516
using, 513–515

WebService object, 525–527
WebServiceProxyFactory object (Mozilla), 522
while statement, 55
white space, trimming, 205–206
Wikipedia Web site, 584
window object (BOM)
alert() method, 143
back() method, 148
clearInterval() method, 147
clearTimeout() method, 146
close() method, 142
confirm() method, 143–144
description of, 136–139
forward() method, 148
go() method, 148
history property, 148–149
length property, 149
manipulating windows, 139–140
onerror event handler, 419–420
onload event handler and, 288
open() method, 140–142, 565 645

window object (BOM)

In
de

x

24_579088 bindex.qxd 3/28/05 11:44 AM Page 645

window object (BOM) (continued)
prompt() method, 144
setInterval() method, 147
setTimeout() method, 146–148
status() and defaultStatus() methods, 145–146

windows. See also window object
Microsoft Script Debugger, 433–434
moving and resizing, 139–140
navigating and opening new, 140–143
security issues related to, 564–566
Venkman, 435–437

Windows (Microsoft)
error reporting and, 413–415
operating system, detecting, 245–247
XP Service Pack 2, 516, 558, 565

Windows Media Player (Microsoft), 532, 542
with statement

avoiding to improve execution time, 581
description of, 58

World Wide Web Consortium (W3C), 7
write() method of document object, 151–152
“Writing Efficient C and C Code Optimization” (Koushik

Ghosh), 582
writing Java applet, 545–546
WSDL (Web Services Description Language), 510–513
WSDL proxies, 522–525
W3C (World Wide Web Consortium), 7

X
xbObjects

example of, 122–124
purpose of, 120–122

XHTML (eXtensible HTML)
attributes and, 348
description of, 159–160
example of, 161–162
<script/> tag, 131–132

XMethods
Temperature Service

code for, 512
cross-browser approach to, 527–529
Internet Explorer example, 515–516
Mozilla example, 520–521
WSDL proxy example, 523–525

WSDL analyzer tool, 527
XML (eXtensible Markup Language). See also

ECMAScript for XML
API for, 162–163
DOM support for

in Internet Explorer, 445–450
Mozilla and, 450–455

HTTP request
copycat implementations, 496
description of, 493–495
GET request, performing, 496–497
header, using, 495–496
POST request, performing, 497–498

using with both browsers, 463–465
error handling, 459–463
IE branch, 456
modifying DOM creation, 455–456
Mozilla branch, 456–459

XML class (ECMAScript for XML), 608–614
XML prolog, 162, 166
xml property (XML DOM)

Internet Explorer, 449
Mozilla, 453–454

XmlDom() function, 455–456
XMLList class (ECMAScript for XML), 614–615
XMLSerializer object (Mozilla), 453, 454
XOR operator (^), 40–41
XPath

Internet Explorer and, 467
Mozilla and, 467–471
overview of, 466
support for, 465

XPathEvaluator object (Mozilla), 467–468
XPathResult object (Mozilla), 468–471
XSLT (eXtensible Stylesheet Language Transformations)

overview of, 471–473
support for

in Internet Explorer, 473–477
in Mozilla, 477–479

XSLTProcessor object (Mozilla), 477–479

Z
zDragDrop library

creating draggable element, 406
description of, 405
drop target, creating, 406
events, 406–407
example, 408–409

zInherit
description of, 116
dynamic prototyping and, 118–119
example of, 116–117
multiple inheritance and, 119–120

646

window object (BOM) (continued)

24_579088 bindex.qxd 3/28/05 11:44 AM Page 646

