
A01T619816.fm Page 1 Tuesday, March 9, 2004 2:11 PM

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way

Redmond, Washington 98052-6399

Copyright © 2004 by Ed Wilson

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by

any means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data pending.

ISBN 0-7356-1981-6

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 9 8 7 6 5 4

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/learning/. Send comments
to mspinput@microsoft.com.

Microsoft, Microsoft Press, and Outlook are either registered trademarks or trademarks of Microsoft Corpora
tion in the United States and/or other countries. Other product and company names mentioned herein may be
the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided
without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Martin DelRe
Project Editor: Valerie Woolley
Technical Editor: Alex K. Angelopoulos
Indexer: Julie Bess

Body Part No. X10-46139

This book is dedicated to Bobby R. Wilson—

teacher, friend, and dad.

Contents v
Contents

Acknowledgments . xvii
About This Book .xix

A Practical Approach to Scripting . xix
Is This Book for Me? .xx
Outline of This Book .xx

Part 1: Covering the Basics . xxi
Part 2: Basic Windows Administration. xxi
Part 3: Advanced Windows Administration. xxi
Part 4: Scripting Other Applications . xxii
Part 5: Appendices . xxii

About the Companion CD. xxiii
System Requirements . xxiii

Technical Support . xxiv

Part 1 Covering the Basics
1 Starting from Scratch 3

Before You Begin. 3
Running Your First Script . 3

Header Information . 5
Reference Information . 7
Worker Information . 9
Output Information . 10

Enhancing Your Script . 11
Docs That Make House Calls . 12

Modifying an Existing Script . 13
Modifying the Header Information . 14
Modifying the Reference Information. 15
Modifying the Worker Information . 17
Modifying the Output information . 18

Summary . 20
Quiz Yourself. 21
On Your Own . 21
Lab 1 Exploring a VBScript . 21

Lab Instructions . 21
Lab 2 Customizing an Existing Script . 22

Scenario. 22
Lab Instructions . 22
v

vi Contents
2 Getting in the Loop 25
Before You Begin. 25
Adding Power to Scripts . 25
For Each…Next . 26

Header Information . 27
Reference Information . 30
Worker Information . 30

For...Next . 30
Header Information . 31
Reference Information . 32
Worker and Output Information. 33

Do While...Loop . 35
Header Information . 36
Reference Information . 37
Worker and Output Information. 37

Do Until...Loop. 38
Worker and Output Information. 40

Summary . 42
Quiz Yourself. 42
On Your Own . 43
Lab 3 Using the For Each…Next Command . 43

Lab Instructions . 43
Lab 4 Modifying the Ping Script . 44

Lab Instructions . 44

3 Adding Intelligence 45
Before You Begin. 45
If...Then . 45

Header Information . 47
Reference Information . 48
Worker and Output Information. 49
Intrinsic Constants . 50

If...Then...ElseIf . 51
Header Information . 52
Reference Information . 52
Worker and Output Information. 53

If...Then...Else . 54
Select Case. 55

Header Information . 56
Reference Information . 57
Worker and Output Information. 58

Summary . 59

Contents vii
Quiz Yourself. 59
On Your Own . 60
Lab 5 Modifying CPUType.vbs . 60

Lab Instructions . 60
Lab 6 Modifying ComputerRoles.vbs . 61

Scenario. 61

4 The Power of Many 65
Before You Begin. 65
Passing Arguments . 65
Command-Line Arguments . 65

Making the Change . 66
Running from the Command Prompt . 67
No Arguments? . 67
Creating a Useful Error Message . 68

Using Multiple Arguments . 69
Header Information . 70
Reference Information . 71
Worker and Output Information. 71

Tell Me Your Name . 72
Reasons for Named Arguments . 72
Making the Change to Named Arguments . 73
Running a Script with Named Arguments. 74

Working with Arrays . 75
Moving Past Lame Arrays . 76

Header Information . 76
Reference Information . 77
Worker and Output Information. 77
What Does UBound Mean? . 78

Two-Dimensional Arrays . 79
Mechanics of Two-Dimensional Arrays . 80
Header Information . 81
Reference Information . 81
Worker and Output Information. 81

Summary . 82
Quiz Yourself. 83
On Your Own . 83
Lab 7 Working with Passing Arguments . 83

Lab Instructions . 83
Lab 8 Building Arrays. 88

Lab Instructions . 88

viii Contents
Lab 9 Modifying a Script . 90
Lab Instructions . 90

5 The Power of Many More 93
Before You Begin. 93
Strings and Arrays . 93
Parsing Passed Text into an Array . 94

Header Information . 95
Reference Information . 96
Worker Information . 97
Output Information . 98

Parsing Passed Text . 99
Header Information . 101
Reference Information . 101
Worker Information . 102
Output Information . 102

Working with Dictionaries. 103
Using the Dictionary . 104
Adding Items to the Dictionary . 105

Summary . 105
Quiz Yourself. 106
Own Your Own. 106
Lab 10a Implementing Basics for the InStr Command 106

Lab Instructions . 106
Lab 10b Understanding Advanced Features of the InStr Command 107

Lab Instructions . 107
Lab 11 Creating a Dictionary . 108

Lab Instructions . 108

Part 2 Basic Windows Administration
6 Working with the File System 113

Before You Begin. 113
Creating File System Object . 113
File It Under Files . 114

Header Information . 114
Reference Information . 115
Worker and Output Information. 116

File Properties . 116
File Attributes . 117

Implementing the Attributes Property . 118
Setting File Attributes . 119

Contents ix
A File, a File, I Need to Create a File. 120
Writing to a Text File . 120

How Shall I Write Thee? Let Me Count the Ways…. 121
Overwriting a File. 121

Existential File Approaches . 123
Summary . 124
Quiz Yourself. 124
On Your Own . 125
Lab 12 Creating Files . 125
Lab 13 Creating a Log File . 126

7 Fun with Folders 129
Before You Begin. 129
Working with Folders . 129

Creating the Basic Folder . 130
Header Information . 131
Reference Information . 131
Worker Information . 131
Output Information . 132

Automatic Cleanup . 132
Deleting a Folder . 133
Deleting Multiple Folders . 133

Binding to Folders . 134
Does the Folder Exist?. 135

Copying Folders. 135
Moving On Up . 136
Summary . 137
Quiz Yourself. 137
On Your Own . 138
Lab 14 Creating Folders. 138
Lab 15 Deleting Folders. 139

8 Why Windows Management Instrumentation? 143
Before You Begin. 143
What Is WMI? . 144

An Object in Any Other Namespace… . 144
More Than Just a Name. 146

Providers . 147
Adding a Touch of Class. 149
Querying WMI . 150

Header Information . 151

x Contents
Reference Information . 151
Worker and Output Information. 152

Summary . 153
Quiz Yourself. 154
On Your Own . 154
Lab 16 Retrieving Hotfix Information . 154

Lab Instructions . 154
Lab 17 Echoing the Time Zone . 156

Lab Instructions . 156

9 WMI Continued 157
Before You Begin. 157
Alternate Ways of Configuring the WMI Moniker . 157
Accepting Defaults . 158

Reference Information . 158
Worker and Output Information. 159

Moniker Security Settings . 161
WbemPrivilege Has Its Privileges. 163

Summary . 164
Quiz Yourself. 164
On Your Own . 165
Lab 18a Using the Default WMI Moniker . 165

Lab Instructions . 165
Lab 18b Invoking the WMI Moniker to Display the Machine Boot Configuration. . 166

Lab Instructions . 166
Lab 18c Including Additional Security Permissions . 167

Lab Instructions . 167
Lab 19 Using Win32_Environment and VBScript to Learn About WMI 169

Lab Instructions . 169

10 Using WMI Queries 171
Before You Begin. 171
Tell Me Everything About Everything! . 171
Next . 173

Header information . 173
Reference Information . 173

Worker and Output Information. 174
Selective Data from All Instances . 175
Selecting Multiple Properties . 176
Specifying Specifics. 177
Smooth Operator. 178
Where Is the Where Clause? . 179

Contents xi
Summary . 180
Quiz Yourself. 180
On Your Own . 181
Lab 20 Writing an Informative WMI Script . 181

Lab Instructions . 181
Lab 21a Obtaining More Direct Information . 183

Lab Instructions . 183
Lab 21b Using a More Complicated Where Clause . 184

Lab Instructions . 184

Part 3 Advanced Windows Administration
11 Introduction to Active Directory Service Interfaces 187

Before You Begin. 187
Working with ADSI . 187

Reference Information . 188
ADSI Providers . 189
LDAP Names. 190
Worker Information . 191

Output Information . 193
Creating Users . 194

Reference Information . 194
Worker Information . 195
Output Information . 195

Summary . 196
Quiz Yourself. 196
On Your Own . 196
Lab 22 Creating OUs . 196

Lab Instructions . 196
Lab 23 Creating Multi-Valued Users . 198

Lab Instructions . 198

12 Reading and Writing for ADSI 201
Before You Begin. 201
Working with Users . 202

General User Information . 202
Reference Information . 204
Worker Information . 204
Output Information . 205

Creating the Second Page . 206
Reference Information . 207

xii Contents
Worker Information . 207
Output Information . 209

Deleting Users . 210
Summary . 211
Quiz Yourself. 211
On Your Own . 212
Lab 24 Deleting Users. 212

Lab Instructions . 212
Lab 25 Using the Event Log . 213

Lab Instructions . 213

13 Searching Active Directory 215
Before You Begin. 215
Connecting to Active Directory to Perform a Search . 215

Header Information . 217
Reference Information . 217
Worker and Output Information. 218

Creating More Effective Queries . 219
Searching for Specific Types of Objects . 222

Reference Information . 223
Output Information . 223

What Is Global Catalog? . 224
Summary . 226
Quiz Yourself. 227
On Your Own . 227
Lab 26 Creating an ADO Query into Active Directory. 227

Lab Instructions . 227
Lab 27 Controlling How a Script Executes Against Active Directory 229

Lab Instructions . 229

14 Configuring Networking Components 231
Before You Begin. 231
WMI and the Network . 231

Making the Connection . 232
Header Information . 233
Reference Information . 234
Worker and Output Information. 235

Changing the TCP/IP Settings . 236
Header Information . 237
Reference Information . 237
Worker and Output Information. 237

Contents xiii
Merging WMI and ADSI . 238
Win32_NetworkAdapterConfiguration. 239
Summary . 241
Quiz Yourself. 241
On Your Own . 242
Lab 28 Using WMI to Assign Network Settings . 242

Lab Instructions . 242
Lab 29 Combining WMI and ADSI in a Script . 243

Lab Instructions . 243

15 Subs and Other Round Things 245
Before You Begin. 245
Working with Subroutines. 245

Calling the Subroutine . 248
Creating the Subroutine . 248

Creating Users and Logging Results . 249
Header Information . 251
Reference Information . 252
Worker Information . 252
Output Information . 253

Summary . 254
Quiz Yourself. 255
On Your Own . 255
Lab 30 Using ADSI and Subs, and Creating Users . 255

Lab Instructions . 255
Lab 31 Adding a Logging Subroutine. 257

Lab Instructions . 257

16 Logon Scripts 261
Before You Begin. 261
Working with IADsADSystemInfo . 261
Using Logon Scripts . 263
Deploying Logon Scripts. 264

Header Information . 265
Reference Information . 266
Worker Information . 269
Output Information . 269

Summary . 270
Quiz Yourself. 271
On Your Own . 271
Lab 32 Adding a Group to a Logon Script . 271

xiv Contents
Lab Instructions . 271
Lab 33 Adding Logging to a Logon Script. 272

Lab Instructions . 272

17 Working with the Registry 277
Before You Begin. 277
First You Back Up . 277
Creating the WshShell Object . 278

Setting the comspec Variable . 279
Defining the Command Line . 279

Connecting to the Registry . 280
Header Information . 281
Reference Information . 281
Worker and Output Information. 282

Unleashing StdRegProv . 283
Creating Registry Keys. 284

Header Information . 285
Reference Information . 285
Worker and Output Information. 285

Writing to the Registry . 286
Deleting Registry Information . 287
Summary . 288
Quiz Yourself. 288
On Your Own . 288
Lab 34 Reading the Registry Using WMI . 288

Lab Instructions . 288
Lab 35 Creating Registry Keys . 290

Lab Instructions . 290

18 Working with Printers 293
Before You Begin. 293
Working with Win32_Printer . 293
Obtaining the Status of Printers . 295

Header Information . 296
Reference Information . 296
Worker Information . 297
Output Information . 297

Creating a Filtered Print Monitor . 298
Reference Information . 300
Output Information . 300

Monitoring Print Queues . 301

Contents xv
Worker and Output Information. 302
Summary . 302
Quiz Yourself. 303
On Your Own . 303
Lab 36 Monitoring Print Jobs . 303

Lab Instructions . 303
Lab 37 Checking the Status of a Print Server . 305

Lab Instructions . 305

Part 4 Scripting Other Applications
19 Managing IIS 6.0 309

Before You Begin. 309
What’s in a Name? . 309

CIM_ManagedSystemElement . 309
CIM_Setting . 309
IIsStructuredDataClass . 310
CIM_Component . 310
CIM_ElementSetting . 310
Using MicrosoftIISv2 . 310

Making the Connection . 311
Header Information . 311
Reference Information . 312
Worker and Output Information. 313

Creating a Website . 313
Header Information . 314
Reference Information . 315
Worker and Output Information. 316

Summary . 317
Quiz Yourself. 317
On Your Own . 318
Lab 38 Backing Up the Metabase. 318

Lab Instructions . 318
Lab 39 Importing the Metabase . 319

Lab Instructions . 320

20 Working with Exchange 2003 323
Before You Begin. 323
Working with the Exchange Provider . 323
Connecting to MicrosoftExchangeV2 . 325

The Exchange_QueueSMTPVirtualServer Class . 325
Header Information . 326

xvi Contents
Reference Information . 326
Worker Information . 327
Output Information . 327

Exchange Public Folders . 327
Summary . 330
Quiz Yourself. 330
On Your Own . 331
Lab 40 Using the Exchange_Logon Class . 331

Lab Instructions . 331
Lab 41 Using the Exchange_Mailbox Class . 333

Lab Instructions . 333

Part 5 Appendices
A VBScript Documentation 339

Constants. 339
VBScript Run-Time Errors . 341
VBScript Syntax Errors. 342

B ADSI Documentation 345
Computer Object Mapping . 345
Domain Object User Interface Mapping . 346
Group Object User Interface Mapping . 346
Object Property Sheet . 347
Organizational Unit User Interface Mapping . 348
Printer Object User Interface Mapping. 348
Shared Folder Object User Interface Mapping . 349
User Object User Interface Mapping . 349

C WMI Documentation 353
Win32 Classes . 353
WMI Providers. 353
WMI Scripting API Objects . 355
WMI Log Files . 357

D Documentation Standards 359
Header Information Section . 359
Reference Information Section . 359
Worker Information Section . 359
Sample of Documentation Use . 360

Index . 361

Acknowledgments

A book simply does not appear out of thin air, and no book is the work of a single indi
vidual. This book would not have happened without the tireless efforts of my agent
Mike Meehan of the Moore Literary Agency, who ensured the proper publisher for this
book. Martin DelRe at Microsoft Press immediately saw the value of a Visual Basic
Script tutorial and helped everything get going. Valerie Woolley and Sally Stickney, also
at Microsoft Press, guided the project to completion and provided much encourage
ment. Alex K. Angelopoulos, MVP, provided awesome and enthusiastic technical
review. Victoria P. Thulman contributed immensely by forcing me to make my writing
more specific. David Schwinn, MCSE, and Bill Mell, MCSE, reviewed much of the book
and provided valuable suggestions. Lastly, my wife Teresa read the entire book and
offered many insightful comments.

xvii

About This Book

Network administrators and consultants are confronted with numerous mundane and
time-consuming activities on a daily basis. Whether it is going through thousands of
users in Active Directory Users and Computers to grant dial-in permissions to a select
group, or changing profile storage locations to point to a newly added network server,
these everyday tasks must be completed. In the enterprise space, the ability to quickly
write and deploy a Microsoft Visual Basic Script (VBScript) will make the difference
between a task that takes a few hours and one that takes a few weeks.

As an Enterprise Consultant for Microsoft, I am in constant contact with some of the
world’s largest companies that run its software. The one recurring theme I hear is,
“How can we effectively manage thousands of servers and tens of thousands of users?”
In some instances, the solution lies in the employment of specialized software pack€
ages—but in the vast majority of the cases, the solution is a simple VBScript.

In Microsoft Windows Server 2003, enterprise manageability was one of the design
goals, and VBScript is one path to unlocking the rich storehouse of newly added fea€
tures. Using the techniques outlined in Microsoft Windows Scripting Self-Paced Learn-
ing Guide, anyone can begin crafting custom scripts within minutes of opening these
pages. I’m not talking about the traditional Hello World script—I’m talking about truly
useful scripts that save time and help to ensure accurate and predictable results.

Whereas in the past scripting was somewhat hard to do, required special installations
of various implementations, and was rather limited in its effect, with the release of
Microsoft Windows XP and Windows Server 2003, scripting is coming into its own.

This is really as it should be. However, most Administrators and IT professionals do not
have an understanding of scripting, because in the past scripting was not a powerful
alternative for platform management.

However, in a large enterprise, it is a vital reality that one simply cannot perform man€
agement from the GUI applications because it is too time-constraining, too error prone,
and after a while too irritating. Clearly there needs to be a better way, and there is.
Scripting is the answer.

A Practical Approach to Scripting
Microsoft Windows Scripting Self-Paced Learning Guide will equip you with the tools
to automate setup, deployment, and management of Microsoft Windows 2003 net-
works via the various scripting interfaces contained with the product. In addition, it
will provide you with an understanding of a select number of VBScripts adaptable to
xix

xx About This Book
your own unique environments. This will lead you into an awareness of the basics of
programming through modeling of fundamental techniques.

The approach I take to teaching you how to use VBScript to automate your Windows
2003 servers is similar to the approach used in some of the executive foreign language
schools. You’ll learn by using the language. In addition, concepts are presented not in
a dry academic fashion but in a dynamic real-life manner. When a concept is needed
to accomplish something, it is presented. If a topic is not useful for automating network
management, I don’t bring it forward.

This is a practical application-oriented book, so the coverage of VBScript, Windows
Scripting Host, Active Directory Service Interfaces (ADSI), and Windows Management
Instrumentation (WMI) is not exceedingly deep. This is not a reference book; it is a
tutorial, a guide, a springboard for ideas perhaps, but not an encyclopedia.

Is This Book for Me?
Microsoft Windows Scripting Self-Paced Learning Guide is aimed at several audiences,
including:

■	 Windows networking consultants Anyone desiring to standardize and auto-
mate the installation and configuration of .NET networking components.

■	 Windows network administrators Anyone desiring to automate the day-to-
day management of Windows .NET networks.

■	 Windows Help Desk staff Anyone desiring to verify configuration of remotely
connected desktops.

■	 Microsoft Certified Systems Engineers (MCSEs) and Microsoft Certified
Trainers (MCTs) Although not a strategic core competency within the MCP pro-
gram, a few questions about scripting do crop up from time to time on various
exams.

■	 General technical staff Anyone desiring to collect information, configure set€
tings on Windows XP machines, or implement management via WMI, WSH, or
WBEM.

■	 Power users Anyone wishing to obtain maximum power and configurability of
their Windows XP machines either at home or in an unmanaged desktop work-
place environment.

Outline of This Book
This book is divided into four parts, each covering a major facet of scripting. The fol€
lowing sections describe these parts.

About This Book xxi
Part 1: Covering the Basics

OK, so you’ve decided you need to learn scripting. Where do you begin? Start here in
Part 1! In Chapter 1, “Starting From Scratch,” you learn the basics: what a script is, how
to read it, and how to write it. Once you move beyond using a script to figure out what
your IP address is and print it to a file, you need to introduce some logic into the script,
which you do in Chapters 2–5. You’ll learn how to introduce conditions and add some
intelligence to allow the script to check some stuff, and then based upon what it finds,
do some other stuff. This section concludes by looking at troubleshooting scripts. I’ve
made some mistakes that you don’t need to repeat! Here are the chapters in Part 1:

■ Chapter 1, “Starting from Scratch”

■ Chapter 2, “Getting in the Loop”

■ Chapter 3, “Adding Intelligence”

■ Chapter 4, “The Power of Many”

■ Chapter 5, “The Power of Many More”

Part 2: Basic Windows Administration

In Part 2, you dig deep under the covers of VBScript and WMI and really begin to see�
the power you can bring to your automation tasks. In working with the file system, you�
see how to use the file system object to create files, delete files, and verify the existence�
of files. All these basic tasks provide loads of flexibility for your scripts. Next, you move�
on to working with folders, learning how to use VBScript to completely automate the�
creation of folders and files on your servers and users’ workstations. In the last half of�
Part 2, you get an in-depth look at the power of WMI when it is combined with the�
simplicity and flexibility of VBScript. Here are the chapters in Part 2:�

■ Chapter 6, “Working with the File System”�

■ Chapter 7, “Fun with Folders”�

■ Chapter 8, “Why Windows Management Instrumentation?”�

■ Chapter 9, “WMI Continued”�

■ Chapter 10, “Using WMI Queries”�

Part 3: Advanced Windows Administration

This section will shave at least four points off your handicap (because you will get to
play an extra 18 holes a week due to the time you save)! At least three things are really
lame when it comes to administering Windows servers: all those click, click, and save
motions; all the time spent waiting for the screen to refresh; and loosing your place in
a long list of users. Guess what? In this section, some of that pain is relieved. When

xxii About This Book
Human Resources hires 100 people, you tell them to send you a spreadsheet with the�
new users, and you use your script to create those users. It takes 2 minutes instead of�
2 hours. (Dude—that’s the front nine!) In addition to saving time, scripting your admin€�
istrative tasks is more accurate. If you have to set a particular set of access control lists�
on dozens of folders, a script is the only way to ensure all the flags are set correctly.�
Here are the chapters in Part 3:�

■ Chapter 11, “Introduction to Active Directory Service Interfaces”�

■ Chapter 12, “Reading and Writing for ADSI”�

■ Chapter 13, “Searching Active Directory”�

■ Chapter 14, “Configuring Networking Components”�

■ Chapter 15, “Subs and Other Round Things”�

■ Chapter 16, “Logon Scripts”�

■ Chapter 17, “Working with the Registry”�

■ Chapter 18, “Working with Printers”�

Part 4: Scripting Other Applications

Once you learn how to use WMI and VBScript to automate Windows Server 2003, the�
logical question is, “What else can I do?” Well, with the latest version of Microsoft�
Exchange and Internet Information Services (IIS), the answer is quite a lot. So in this�
part of the book, you look at using WMI and VBScript to automate other applications.�

In IIS 6.0, nearly everything that can be configured via GUI tools can also be scripted.�
This enables the Web administrator to simplify management and to also ensure repeat-�
able configuration of the websites from a security perspective.�

In Exchange administration, many routine tasks can be simplified by using VBScript. In�
Part 4, you look at how to leverage the power of VBScript to simplify user manage€�
ment, to configure and administer Exchange, and to troubleshoot some of the common�
issues confronting the enterprise Exchange administrator. The chapters in Part 4 are as�
follows:�

■ Chapter 19, “Managing IIS 6.0”�

■ Chapter 20, “Working with Exchange 2003”�

Part 5: Appendices

The Appendices in this book are not the normal “never read” stuff—indeed you will
find yourself referring again and again to these four crucial documents. In Appendix A
you will find lots of ideas for further work in developing your mastery of VBScript.
Appendix B will save you many hours of searching for the “special names” that unlock

About This Book xxiii
the power of ADSI scripting. Appendix C helps you find the special WMI namespaces
that enable you to perform many cool “tricks” in your scripting—and last but certainly
not least is Appendix D, which contains my documentation “cheat sheet”—actually you
will want to read it rather early in your scripting career.

■ Appendix A, “VBScript Documentation”

■ Appendix B, “ADSI Documentation”

■ Appendix C, “WMI Documentation”

■ Appendix D, “Documentation Standards”

About the Companion CD
The CD accompanying this book contains additional information and software compo€
nents, including the following files:

■	 Lab files The lab files contain starter scripts, same-text files, and completed lab
solutions for each of the 40 labs contained in this book. In addition, each of the
scripts that is discussed in the book is contained in the folder corresponding to the
chapter number. So for instance, in Chapter 1 we talk about enumerating disk
drives on a computer system. The script that makes up the bulk of our discussion
around that topic is contained in the \Labs\Ch01 folder.

■	 eBook You can view an electronic version of this book on screen using Adobe
Acrobat Reader. For more information, see the Readme.txt file included in the root
folder of the Companion CD.

■ Scripts Sample scripts and starter scripts for all labs.

■	 Tools PrimalScript 3.1 30-day Evaluation, WMI Admin Tools, and Windows
Resouce Kit selected tools, and Windows Resource Kit selected tools.

System Requirements
■	 Minimum 233 MHz in the Intel Pentium/Celeron family or the AMD k6/Atholon/

Duron family

■ 64 MB memory

■ 1.5 GB available hard disk space

■ Display monitor capable of 800 x 600 resolution or higher

■ CD-ROM drive or DVD drive

■ Microsoft Mouse or compatible pointing device

■ Windows Server 2003 or Windows XP

xxiv About This Book
Technical Support

Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD-ROM. Microsoft Press provides corrections for books through the
World Wide Web at http://www.microsoft.com/learning/support.

To connect directly with the Microsoft Press Knowledge Base and enter a query regard€
ing a question or an issue that you might have, go to http://www.microsoft.com
/learning/support/search.asp.

If you have comments, questions, or ideas regarding this book or the companion
CD-ROM, please send them to Microsoft Press using either of the following methods:

E-Mail mspinput@microsoft.com

Postal Mail	 Microsoft Press
Attn: Editor, Microsoft Windows Scripting Self-Paced Learning Guide
One Microsoft Way
Redmond, WA 98052

Please note that product support is not offered through the preceding addresses.

Part 1
Covering the Basics

1 Starting from Scratch

In this chapter, you begin your journey down the winding road that leads to the auto
mation of Microsoft Windows Server 2003. Our first step will be to examine several
scripts written in Microsoft Visual Basic Scripting Edition (VBScript). Then you’ll dissect
a few scripts so that you can see what elements make up a script. Finally—and this is
the best part—you’ll write several scripts from scratch. Many of the concepts covered in
this chapter will come up throughout this book, as well as in your day-to-day life as a
network administrator, so be sure you understand the material here before moving on.

Before You Begin
To work through this chapter, you should be familiar with the following concept:

■ Basic Windows Server administration

After completing this chapter you will be familiar with the following:

■ Basic error handling

■ Connect to the file system object

■ Four parts of a script

■ Declaring variables

■ Producing output

■ Reading the registry

■ Running scripts

■ Using Option Explicit

Running Your First Script
It is late at night and the cold air conditioning is drying your eyes out, making it impos
sible to keep them open. You have drunk nearly a dozen cups of coffee, and you try
to steady your hands. The last item on your migration check-off list stares out at you
from the page eerily: “Ensure all servers have the administrator tools installed.” Slowly
your predicament begins to sink in, through the caffeine cloud surrounding your eyes.
“I should have been doing this hours ago.” The hum of the equipment room seems to
grow louder, and the rows of servers stretch for miles and miles. Supper is a distant
memory and sleep a fleeting dream. “How in the world am I supposed to check 1000
servers for administrator tools?”
3

4 Part 1 Covering the Basics
The darkness of foreboding doom begins to envelop you but then suddenly vanishes
with a single fulgurant idea: I bet we can script this! Within five minutes, the following
script is tested on a single server and works like a charm:

Set objShell = CreateObject("Shell.Application")

Set colTools = objShell.Namespace(47).Items

For Each objTool in colTools

WScript.Echo objTool
Next

Just the Steps

� To run an existing script
1. Open a command prompt. (From the Start menu, select Run\CMD).

2. Change the directory to \BookScripts\ch1.

3. Type CScript CheckAdminTools.vbs, and press Enter.

A good way to learn how to write scripts is to read scripts. So what is a script? For our
purposes, a script is nothing more than a collection of commands that we include in a
text file. In this regard, scripts are like batch files that many network administrators have
used since DOS days. Just like batch files, scripts can be written using nothing more
sophisticated than Microsoft Notepad. An important difference between a batch file and
a script is that a script has greater flexibility and its language is more powerful. In this
section, you’ll look at several scripts and learn to identify their common elements. I know
some of you probably want to start typing your first script, but be patient. In the long run,
you’ll benefit from taking the time now to understand the elements found in all scripts.

Just the Steps

� To open an existing script
1. Open Notepad.

2. From the File menu, choose Open. In the Files Of Type box, choose All Files from the
drop-down list.

3. Navigate to the location of the VBScript you want to read.

4. Select the file, and choose Open from the Action menu.

Take a look at the following script, which you’ll be referring to in the next few sections:

Option Explicit

On Error Resume Next

Dim objShell

Dim regActiveComputerName, regComputerName, regHostname

Dim ActiveComputerName, ComputerName, Hostname

regActiveComputerName = "HKLM\SYSTEM\CurrentControlSet\Control\" & _
"ComputerName\ActiveComputerName\ComputerName"

Chapter 1 Starting from Scratch 5
regComputerName = "HKLM\SYSTEM\CurrentControlSet\Control\" & _
"ComputerName\ComputerName\ComputerName"

regHostname = _
"HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Hostname"

Set objShell = CreateObject("WScript.Shell")

ActiveComputerName = objShell.RegRead(regActiveComputerName)

ComputerName = objShell.RegRead(regComputerName)

Hostname = objShell.RegRead(regHostname)

WScript.Echo ActiveComputerName & " is active computer name"

WScript.Echo ComputerName & " is computer name"

WScript.Echo Hostname & " is host name"

As you can see, this script contains a lot of information. Let’s break it down piece by
piece so that it’s not too overwhelming. For the purposes of our discussion, you can
think of the script as being made up of four main parts:

■ Header information

■ Reference information

■ Worker information

■ Output information

Header Information

You can think of the header information as administrative overhead for your script. For
most scripts, you can leave out the Header information section and lose none of the
functionality. In fact, the preceding script would run just fine if the Header information
section were deleted. (And it just so happens that you’ll get a chance to prove this
assertion during the labs at the end of this chapter.) If this information is so unrelated
to the script’s functionality, why should you include it? The header information should
be a standard part of your script for two reasons: it makes the script easier to read and
maintain, and it controls the way the script runs (as opposed to the way it might run by
default). You’ll learn more about how it controls the script later in the chapter when we
look at the Option Explicit command and the On Error Resume Next command.

In the earlier script example, the header information consists of the following lines of
code:

Option Explicit

On Error Resume Next

Dim objShell

Dim regActiveComputerName, regComputerName, regHostname

Dim ActiveComputerName, ComputerName, Hostname

Although this code might look complicated, in reality, only three different commands
are being used: Option Explicit, On Error Resume Next, and Dim. Each of these com
mands is covered in detail in the following sections, but before we dive into the nuts
and bolts, let’s do a quick reality check.

6 Part 1 Covering the Basics
Quick Check

Q. What is one way to run a VBScript?

A. Type CScript before the name of the .vbs file at the command prompt.

Q. What is one tool you can use to read the text of a .vbs file?

A. Notepad.

Q. What are three commands found in the Header information section of a
VBScript?

A. Option Explicit, On Error Resume Next, and Dim.

Option Explicit

The Option Explicit statement tells the script that each variable used in the script is
going to be listed specifically before it is actually used.

Note Not sure what a variable is? The official definition of a variable is a named storage
location capable of containing data that can be modified during program execution. For now,
however, it’s sufficient to think of a variable as a kind of “nickname” for a piece of information
stored in a script.

If you want to use a variable and you specify Option Explicit in the Header information
section of the VBScript, you have to tell the script you’re going to use this variable
before you actually use it. If you omit Option Explicit, VBScript assumes by default that
any statement it doesn’t recognize is a variable. To declare a variable, you must use the
command Dim, as illustrated in the preceding code. Dim stands for dimension. “Dim
ming” is how variables are treated. (This dimensioning of variables is actually setting
aside a portion of memory used to contain the data.)

On Error Resume Next

What does On Error Resume Next sound like it’s trying to do? Let’s break it down. On
Error means that you want the computer to do something if it finds an error. Resume
Next is what you want it to do. But Next what? A very good question. The Next you
want it to resume is the next line of code in the script. So On Error Resume Next tells
the computer that when something is messed up (causing an error), you want the com
puter to just skip that line and try the next line in the script. This process is called error
handling, and it’s a very basic task when writing scripts. You should probably consider
using On Error Resume Next when you’re using VBScript for logon scripts so that you
don’t get lots of phone calls right at 9:00 A.M. when your script has a problem. Of
course, you’ll test the script prior to deploying it, but we all know that tests don’t
always catch every eventuality. You’ll learn about error handling in more detail later,
including some pretty cool tricks, so stay tuned.

Chapter 1 Starting from Scratch 7
Note Even though we show it here for a complete script, your best practice is to not use On

Error Resume Next while developing scripts; it will prevent you from seeing any errors produced
during normal script execution. If you are using it and a script fails to work the way you expect,
your first troubleshooting step should be to remove the On Error Resume Next statement.

Dim

This code has a whole bunch of Dim stuff. As mentioned earlier, you use the word Dim
to declare a variable. For instance, in the code at the end of this section, objShell and all
the other words (except for Dim) are variable names I made up. I could have just as eas
ily used a, b, c, d, and so on as the variables names (kind of like the variables you used
in high school algebra) and saved myself a lot of typing. However, a good variable name
makes the code easier to read and to understand. For example, in the following code,
you can assume that the variable named ComputerName actually holds a computer
name. (I think you’d agree that ComputerName is much more descriptive than a.) And
notice how similar regActiveComputerName, regComputerName, and regHostName are
(except for the reg part) to the following variables: ActiveComputerName, Computer-
Name, and HostName. The variables are arranged according to how they will be used,
that is, variables used to hold registry keys are on one line, and variables containing the
corresponding output values of those registry keys appear on the next line.

Dim objShell

Dim regActiveComputerName, regComputerName, regHostName

Dim ActiveComputerName, ComputerName, Hostname

Quick Check

Q. For what purpose is Option Explicit used?

A. To inform VBScript that all variables will be declared prior to use.

Q. What functionality does On Error Resume Next provide?

A. Basic error handling.

Q. What is the command Dim used for?

A. To declare variables.

Reference Information

The Reference information section of the script gives you the ability to assign values to
the variables you named in the Header information section of the script. Another rea
son for using a variable is to create a shortened alias for some value. Aliases make the
script easier to work with. In the following code, values are assigned to some of the
variables created in the Header information section of the script.

8 Part 1 Covering the Basics
regActiveComputerName = "HKLM\SYSTEM\CurrentControlSet\Control\" &_
"ComputerName\ActiveComputerName\ComputerName"

regComputerName = "HKLM\SYSTEM\CurrentControlSet\Control" &_
"\ComputerName\ComputerName\ComputerName"

regHostname = "HKLM\SYSTEM\CurrentControlSet\Services" &_
"\Tcpip\Parameters\Hostname"

Notice that everything on the right-hand side of the equal sign looks like a registry key.
If you caught that, you can probably figure out what the reg part of the variable name
stands for. You got it—registry! Did you also notice that the three variable names (on
the left-hand sides of the equal signs) are the same ones we talked about in the pre-
ceding section? What you’re doing in this code is tying each of those variables to a reg
istry key. For example, the first line of code shows that regActiveComputerName is
equal to the very long string HKLM\SYSTEM\CurrentControlSet\Control\Computer-
Name\ActiveComputerName\ComputerName. (By the way, HKLM is shorthand for
HKEY_LOCAL_MACHINE. Since VBScript understands this abbreviation, using HKLM
will save you some typing.)

Getting the Proper Registry Key
One easy way to make sure you get the proper registry key for your scripts is to use
the Copy Key Name feature of the Registry Editor (Regedit.exe). As shown in Figure
1-1, you select the registry key containing the information you want VBScript to
extract, open the Edit menu, and select Copy Key Name from the list. The entire
key name is pasted on the clipboard, and from there you paste it into your script.

Figure 1-1 Registry Editor Copy Key Name feature

Chapter 1 Starting from Scratch 9
The Reference information section has the following purposes:

■	 Minimizes typing, and therefore ensures accuracy. You have to type long strings
only once.

■	 Makes the script easier to read. If a variable is used several times in the script, the
variable is “referenced” to the actual item only once.

■	 Makes it easier to change the script later. For example, the sample script you’ve been
examining pulls out computer names. By changing the registry key and nothing
else, you can make the script pull out any other information in the registry.

Worker Information

The Worker information section of the script gets its name because it actually does
something. The variables are declared in the Header section and referenced in the Ref
erence section; in the Worker information section, the variables get busy.

Note I haven’t yet explained WScript, which can also be used to create objects, or how to
create file system objects. These subjects are covered in later chapters. At this point, you
should focus on understanding the flow and the functionality of the script.

Let’s look at some code.

Set objShell = CreateObject("WScript.Shell")

Set objFileSystem = CreateObject("Scripting.FileSystemObject")

ActiveComputerName = objShell.RegRead(regActiveComputerName)

ComputerName = objShell.RegRead(regComputerName)

Hostname = objShell.RegRead(regHostname)

Because you’ve read through the header information and looked at all the Dim state
ments, you know which names in the preceding code are variables. For instance,
objShell and objFileSystem are both variables; that is, they are shorthand for something.
The question is, shorthand for what? Let’s walk through the first line of code:

Set objShell = CreateObject("WScript.Shell")

Notice that the sentence begins with Set. Set is a command in VBScript that is used to
assign an object reference to a variable. For VBScript to be able to read from the reg
istry, it must have a connection to it. This requirement is similar to that for reading from
a database—you must first establish a connection to the database. To create an object
reference, you use the Set keyword to assign the reference to a variable.

VBScript uses automation objects as a way to use the capabilities of other programs to
provide more power to the system administrator who needs to create powerful scripts
to manage today’s complex networking environments. For example, instead of dump-

10 Part 1 Covering the Basics
ing output to a black and white, text-only command prompt, you can use an automa
tion object to leverage the display and formatting capabilities of the products in the
Microsoft Office System and create multicolor, three-dimensional graphs and charts.

You are setting the variable name objShell to the reference you created by using Cre
ateObject. Notice the equal sign following objShell. It indicates that objShell should be
equal to something else—in this case, to everything to the right of the equal sign, or
CreateObject(“WScript.Shell”). For now, pay attention to the CreateObject part of the
expression. The use of the verb Create is a tip-off that some action is about to take
place. As you’ll see in a moment, this line assigns to objShell a connection that will
allow the script to read the registry.

Note You might also see WScript.CreateObject used to assign an object reference to a vari
able instead of VBScript’s plain CreateObject. For our purposes, both ways to assign an object
reference will work.

You can now use the variables ActiveComputerName and regActiveComputerName to
read the registry by using the newfound power of the variable objShell. Remember that
earlier you defined regActiveComputerName as equal to the registry key that contains
the active computer name. You now define ActiveComputerName to be equal to the
name that comes out of the registry key when you read the registry. You do the same
thing for the other two registry keys.

Let’s take a moment to recap what you’ve done so far. You’ve stored three computer
names into memory by using the variables named ActiveComputerName, Computer-
Name, and Hostname. To get the computer names into those variables, you read the
values that are stored in three different registry keys on the computer. To do this, you
created three variables named regActiveComputerName, regComputerName, and reg-
Hostname. You used the prefix reg to denote that the variables contain strings for the
actual registry keys. You then used the RegRead capability of the objShell variable that
you assigned to the object reference by using the CreateObject command. Now that
you have this information stored into three variables, you need to do something with
it. In the script you are examining, you will use the output capability of VBScript,
described in the next section.

Output Information

Being able to read from the registry, though cool, doesn’t do you much good when
you can’t use the information. That’s why it’s important for a script to have an Output
section. Of course, you can write a script that uses the information to perform tasks
other than creating output, such as monitoring the status of a service and re-starting it
when it failed, but even then most network administrators would want at least a log

Chapter 1 Starting from Scratch 11
entry stating that the service was restarted. In our script, output is provided through a
series of Echo commands. The use of the WScript.Echo command is illustrated in the
following code:

WScript.Echo activecomputername & " is active computer name"

WScript.Echo ComputerName & " is computer name"

WScript.Echo Hostname & " is host name"

The WScript.Echo command is used to type text inside a command prompt or to pro
duce a pop-up message box, depending on how the VBScript is actually run. When the
VBScript is run by using CScript, as detailed in the earlier procedure titled “Just the
Steps: To run an existing script,” the script writes inside the command shell.

Each variable name that you just set is equal to the registry key information in the last
section of our script. So what does Echo do? You guessed it—it repeats something. Since
the variables are now linked to the strings contained within the registry keys (via the Ref
erence information section), we can use WScript.Echo to write the information currently
held by the variables. In the code, the ampersand (&), which simply means “and,” is fol
lowed by a phrase within quotation marks. The current value of the variable on the left
side of the ampersand gets put together with the string value contained inside the quo
tation marks on the right side of the ampersand. This “putting together” of two things
with the ampersand is called concatenation. You are echoing what is stored in memory
for each of our three variables, and you’re also adding some text to explain what each
variable is. When you run this script, you’re rewarded with the results in Figure 1-2.

Figure 1-2 Screen output of DisplayComputerNames.vbs

Dealing with only three dialog boxes is a bit tedious, so imagine the frustration that
dealing with a thousand or even just a hundred dialog boxes could cause. Some scripts
can easily return a listing of over a thousand items (for example, a script that queried
all the users in a medium-sized domain). Clearly you need a more efficient way to
write data. In fact, you have several ways to do this, such as using VBScript’s MsgBox
to display a pop-up box containing text, but I am going to save that for Chapter 2,
“Getting in the Loop.”

Enhancing Your Script
You’ve worked your way through your first script, and now let’s see how we can mod
ify it to enhance its capabilities. Here is the new functionality you will add to your
script:

12 Part 1 Covering the Basics
■	 Creating documentation that will keep track of what you learned in the previous
section

■ Obtaining information in addition to the three computer names

Docs That Make House Calls

Let’s first add some documentation to the script so that when you look at it six months
from now, you’ll know what you’re looking at.

To add documentation, you simply type information into the script. To prevent the
script from choking, you need to indicate that you are adding the text. You can do this
in several ways. Perhaps the most efficient way is to preface each note with a single
quotation mark (’) followed by explanatory text (often called a comment). Here’s what
the script looks like with the added documentation:

‘ This script displays various Computer Names by reading the registry

Option Explicit ’Forces the scripter to declare variables
On Error Resume Next ’Tells VBScript to go to the next line

’instead of exiting when an error occurs
‘ Dim is used to declare variable names that are used in the script
Dim objShell

Dim regActiveComputerName, regComputerName, regHostname

Dim ActiveComputerName, ComputerName, Hostname

‘ When you use a variable name and then an equal sign (=)
‘you’re saying the variable contains the information on the right.
‘The registry keys are quite long, so make them easier to read on
‘a single screen by splitting the line in two.

regActiveComputerName = "HKLM\SYSTEM\CurrentControlSet" & _
"\Control\ComputerName\ActiveComputerName\ComputerName"

regComputerName = "HKLM\SYSTEM\CurrentControlSet\Control" & _
"\ComputerName\ComputerName\ComputerName"

regHostname = "HKLM\SYSTEM\CurrentControlSet\Services" & _
"\Tcpip\Parameters\Hostname"

Set objShell = CreateObject("WScript.Shell")

ActiveComputerName = objShell.RegRead(regActiveComputerName)

ComputerName = objShell.RegRead(regComputerName)

Hostname = objShell.RegRead(regHostname)

‘ To make dialog boxes you can use WScript.Echo
‘ and then tell it what you want it to say.

WScript.Echo activecomputername & " is active computer name"

WScript.Echo ComputerName & " is computer name"

WScript.Echo Hostname & " is host name"

Chapter 1 Starting from Scratch 13
Just the Steps

� To add documentation to a script
1. Open the script in Notepad.

2. Preface the line with a single quotation mark (’).

3. On the first line of script, after the single quotation mark, type a short description of the
script’s purpose.

4. Save the script.

Modifying an Existing Script
Now that your script is fully documented, you can modify it to pull in additional infor
mation. Thus far, you can retrieve the active computer name, the host name, and the
computer name. (Actually, these names could be different in certain situations, so this
script really is useful.) What kind of information could you be interested in retrieving at
this juncture? Look at Table 1-1 for some ideas. (Notice in Table 1-1 that the registry keys
are spelled out completely—HKEY_LOCAL_MACHINE, for instance—and the script you
worked on earlier was abbreviated HKLM. VBScript allows you to reference the registry
using several forms. These forms are covered in depth in the section on the registry.)

Table 1-1 Useful registry keys for script writers

Information Location

Service information HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

User name used to log on to HKEY_CURRENT_USER\Software\Microsoft\Windows\Current
the domain Version\Explorer\Logon User Name

Microsoft Exchange 2000
domain information

HKEY_CURRENT_USER\Software\Microsoft\Exchange\Logon-
Domain

Exchange 2000 domain user
information

HKEY_CURRENT_USER\Software\Microsoft\Exchange\User-
Name

Group policy server	 HKEY_CURRENT_USER\Software\Microsoft\Windows\Current-
Version\Group Policy\History\DCName

User’s home directory HKEY_CURRENT_USER\Volatile Environment\HomeShare

The server that authenticated HKEY_CURRENT_USER\Volatile Environment\LOGONSERVER
the currently logged-on user

The DNS domain name of the
currently logged-on user

HKEY_CURRENT_USER\Volatile Environment\USERDNS
DOMAIN

14 Part 1 Covering the Basics
Note Much of the information that you can gather via the registry can be obtained by other
approaches, such as using Active Directory Service Interface (ADSI) or Windows Management
Instrumentation (WMI) (which you’ll learn about in later chapters). These are two other ways
you can use the power of VBScript to gather information you need to manage our network.
You should be aware of this because the registry is a dynamic environment, and keys get
moved around from time to time. Thus, the registry is not always consistent among all
machines on the network. For instance, there are obviously differences between Microsoft
Windows 95 and Microsoft Windows XP, but there are also differences between Microsoft
Windows 2000 and Windows XP, and even between Windows XP and a version of Windows
XP that has been upgraded from Microsoft Windows Me, for example. Mining information from
sources other than the registry can assure a more consistent result. If at all possible, try to
read the registry for items that cannot be obtained via other methods.

To modify your script to gather some of the information listed in Table 1-1, you need
to make a few changes in each of its four sections. Much of your script will be exactly
the same, and a few sections will be similar (meaning that you’ll need to change a few
names to ensure clarity in your documentation). Now you’ll look at each section of
your script to see what needs to be changed.

Modifying the Header Information

The first three lines of your script can remain exactly the same. You still want to make
sure you specify which variables you plan to use in the script, so leave Option Explicit.
You also don’t want the script to blow up when a value is absent or some other prob
lem arises, so leave On Error Resume Next in place. In addition, since you’re connect
ing to the registry to read items, you’ll need the objShell variable in place. There is
really no point in renaming these variables or changing them in any other way. By
keeping the same name for objShell, for example, you’ll always know its purpose. In
this respect, you are developing your own naming convention for your scripts.

Option Explicit

On Error Resume Next

Dim objShell

The first three lines are in place and working fine, so now you need to create variables
that you will use for the new registry values you want to read. For this example, we use
some (but not all) of the values identified in Table 1-1. These variables are here:

Dim regLogonUserName, regExchangeDomain, regGPServer

Dim regLogonServer, regDNSdomain

Dim LogonUserName, ExchangeDomain, GPServer

Dim LogonServer, DNSdomain

Chapter 1 Starting from Scratch 15
Notice that we use our previous naming convention: we preface with reg all names of
variables that will hold registry keys, and we leave reg off the names of all variables
that will hold the information contained in the registry keys. (The variable item names
are the same except for reg.)

Just the Steps

� To modify the header information
1. Open Notepad.

2. Ensure Option Explicit is listed.

3. Ensure On Error Resume Next is listed.

4. Delete variables that are not required.

5. Add variables for new information.

6. Save the script with a new name.

Modifying the Reference Information

Because you are changing the registry keys you will pull information from, you’ll need
to completely replace the Reference information section. The good news is that the for-
mat for the section is exactly the same. The pattern looks like this:

Variable name = Registry key in quotation marks

regLogonUserName = “HKEY_CURRENT_USER\Software\

Microsoft\“ & _“Windows\CurrentVersion\Explorer\Logon User Name”

There are three parts of the script involved in reading a registry key, and all the infor
mation we want to obtain can be easily modified by changing the assignment of values
to the variable names listed in the preceding syntax example. In addition, because you
listed all the variable names we want to use to hold the registry keys in the Header
information section of the script, you can simply cut and paste the variables into the
reference information section. In the next listing, you remove the Dim portion and the
commas and place each variable name on a separate line. The resulting code will look
like Figure 1-3.

Dim regLogonUserName, regExchangeDomain, regGPServer
Dim regLogonServer, regDNSdomain

16 Part 1 Covering the Basics
Figure 1-3 Using Notepad to speed script modification

After the variable names and the equal signs are inserted, add each registry key and
enclose it in quotation marks. Remember to use the copy key feature of Regedit. Once
all the registry keys are pasted into the script, the modified Reference information sec
tion looks like the following listing. Remember that the ampersand and underscore are
used to indicate line continuation and are included here for readability. I also include
them in production scripts to avoid having to scroll to the right while revising code.

regLogonUserName = "HKEY_CURRENT_USER\Software\Microsoft\" & _
"Windows\CurrentVersion\Explorer\Logon User Name"

regExchangeDomain = "HKEY_CURRENT_USER\Software\Microsoft\" & _
"Exchange\LogonDomain"

regGPServer = "HKEY_CURRENT_USER\Software\Microsoft\Windows\" & _
"CurrentVersion\Group Policy\History\DCName"

regLogonServer = "HKEY_CURRENT_USER\Volatile Environment\" & _
"LOGONSERVER"

regDNSdomain = "HKEY_CURRENT_USER\Volatile Environment\" & _
"USERDNSDOMAIN"

Just the Steps

� To modify the reference information
1. Open Notepad.

2. Copy the Dim section of the header information.

3. Paste the Dim section from step 2 into a new Notepad file.

4. From the Edit menu, select Replace to display the Replace dialog box. In the Find What
box, type Dim. Do not type anything in the Replace With box. This will erase all occur
rences of the word Dim.

5. Place each variable on a separate line and remove the commas.

6. Open Regedit and locate the desired registry keys.

7. Using the Copy Key Name feature, paste the key after each variable name.

8. Ensure the variable name is separated from the registry key name with an equal sign.

9. Ensure the registry key name is enclosed in quotation marks.

10. Save the script.

Chapter 1 Starting from Scratch 17
Modifying the Worker Information

You are halfway through creating the new script. The first line in the Worker informa
tion section of the script is fine and does not need to be changed.

Set objShell = CreateObject("WScript.Shell")

Notice that same two variables listed in the third line of the Header information section
are used here. The challenge now is to modify each line so that it assigns the variables
you created without the reg prefixes to the variables you created with the reg prefixes.
This command has four parts associated with it:

Variable name = Worker Registry variable in ()

LogonUserName = objShell.RegRead (regLogonUserName)

Here’s the entire Worker information section of the new script:

LogonUserName = objShell.RegRead(regLogonUserName)
ExchangeDomain= objShell.RegRead(regExchangeDomain)
GPServer = objShell.RegRead(regGPServer)
LogonServer = objShell.RegRead(regLogonServer)
DNSdomain = objShell.RegRead(regDNSdomain)

The variables were all listed in the Header information section and were copied and
pasted on separate lines in this section of the script without the Dim statements—just as
we copied and pasted information for the Reference information section of our script. In
the next part of the script, insert the equal sign and the same worker component (you
always do this), which in this case is the objShell.RegRead. The last part of the script con
tains the registry variable created in the Reference section enclosed in parentheses. This
again can be a really quick cut and paste job from the Reference information section.

Just the Steps

� To modify the worker information
1. Open Notepad.

2. Copy the Dim section of the Header information.

3. Paste the Dim section from step 2 into a new Notepad file.

4. From the Edit menu, select Replace to display the Replace dialog box. In the Find What
box, type Dim. Do not type anything in the Find What box. This will erase all occurrences
of the word Dim.

5. Place each variable on a separate line and remove the commas.

6. Paste an equal sign and the worker component objShell.RegRead onto each line.

7. Paste the appropriate variable from the Reference information section and enclose it in
parentheses.

8. Save the script.

18 Part 1 Covering the Basics
Note I tend to use the cut-and-paste feature when working with scripts because some of
the variable names I create are a little long. Although the names are typically not case-sensi
tive, for the most part spelling counts, to rephrase something I learned in first grade. The best
way I’ve found to avoid messing up the script is to copy and paste the variable names
between my Header information section and my Worker information section.

After you finish modifying the Worker information section of our script, double-check
that all declared variables are in place and that everything else is accounted for. Save
your script under a different name if you were editing the DisplayComputerNames
script. You could try to run it, but it won’t do too well because you need to change the
last section—the Output information section.

Modifying the Output information

The Output information section of the script takes what you’ve learned from the regis
try and displays it in an easy-to-understand format. This section is what really makes
the script usable. It’s amazing that we spend a lot of time figuring out how to find infor
mation but not too much time formatting the data we get. You’ll beef up your knowl
edge of displaying and writing data quite a bit in later chapters. For now, you’ll use
WScript.Echo to bounce data back.

You can’t really salvage much from the old script—the process would be too confusing
because you’d have to change every variable that holds information from the registry, as
well as all the comments added after the keys. So all you will keep are the WScript.Echo
lines. Delete everything after WScript.Echo and start cutting and pasting. Make sure you
include every variable name identified in the Worker information section of the script.
The syntax for this section is made up of four parts and looks something like this:

Command Variable & Comment

WScript.Echo LogonUserName & “ is currently Logged on”

Notice that there’s a space after the first quotation mark in the comment section. You
include the space because the ampersand is used to glue two phrases together, and
VBScript does not add spaces when concatenating lines. Our new code section looks
like this:

WScript.Echo LogonUserName & " is currently Logged on"
WScript.Echo ExchangeDomain & " is the current logon domain"
WScript.Echo GPServer & " is the current Group Policy Server"
WScript.Echo LogonServer & " is the current logon server"
WScript.Echo DNSdomain & " is the current DNS domain"

Chapter 1 Starting from Scratch 19
To put this section together, you just cut and paste each variable assigned to a registry
key in the Worker information section of the script, add an ampersand, and put quota
tion marks around whatever text will be echoed out. Later on, you’ll use WScript.Echo
to troubleshoot problems because it’s an excellent way to follow progress in a script.

Just the Steps

� To modify the output information
1. Open Notepad.

2. Copy each variable added to the Worker information section.

3. Paste the variables from step 2 into the Output information section.

4. Add an ampersand after each variable.

5. Place quotation marks around any text to be echoed out to the screen.

6. Paste an equal sign and the worker component objShell.RegRead onto each line.

7. Preface each line with WScript.Echo.

8. Save the script.

How to Run Scripts
You can run scripts in several ways on Windows Server 2003, each of which has
advantages and disadvantages. Let’s look at some of these approaches now.

Double-Clicking a File with a .vbs Extension
By default, when you double-click a file with a .vbs extension, the file runs within
an instance of WScript.exe. Therefore, using WScript.Echo in the Output informa
tion section of the script results in the cute little pop-up boxes. This might not be
a big deal when we’re talking about two or three variables, but it can be a real
pain when we’re listing all the user names in our domain—which has 11,000
users! Perhaps a better alternative is the CScript approach.

CScript
CScript can be thought of as the command-line version of the Windows Scripting
Host (Figure 1-4). CScript is nice because you don’t have to click any dialog
boxes to make the script continue. (Yes—that’s right—with the default Windows
Scripting Host, the entire script pauses until you click OK in the dialog box, and
then the script waits for you to do the same in each dialog box after that.) In addi
tion, you can pretty easily capture output from CScript because you can enable
Quick Edit mode from the command window. To do this, click C:\ in the upper
left part of the window, and select Properties from the Action menu. Then click
on the Options tab, and select the Quick Edit Mode box. Next, choose Save Prop
erties For Future Windows Of The Same Title, and you’re finished. This feature
enables you to highlight text and copy it to the clipboard from the CMD window.
Once the data is on the clipboard, you can do everything from pasting the data

20 Part 1 Covering the Basics
into Notepad to using the text driver for Microsoft Excel and sorting the data into
various cells that you can use to produce graphs. You’ll learn more about this fea
ture later in the book.

Figure 1-4 CScript offers many options, which can be set from the command line

Embedding Scripts in Web Pages
You can embed scripts inside Web pages. This has some potential use in the enter
prise environment in which users who have access to a particular Web site on the
intranet can click a button to launch a particular script. This might be a useful and
valid use of VBScript for, say, information gathering or troubleshooting. There are
some security concerns, however, which you’ll learn about later in the book.

Dragging and Dropping a .vbs File to an Open Command Prompt
You can drag and drop a .vbs file to an open command prompt, which launches
the script with the default scripting host. The nice thing about this is that you do
not have to type the path to the file because Windows Explorer automatically puts
it onto the command prompt line.

Dragging and Dropping a .vbs File to Notepad
You can drag and drop the .vbs file to an open Notepad file with a blank page to
automatically open the file and display the text.

Adding Notepad to the SendTo Menu
You can easily edit the script by opening it in Notepad. Just add Notepad to the
SendTo menu by going into C:\Documents and Settings\%USERNAME%\SendTo
and adding a shortcut to Notepad.exe.

Summary
In this chapter, you looked at your first script. Recall that the script is broken into four
parts: the Header information, the Reference information, the Worker information, and the
Output information sections. You also looked at variables and how to make the script

Chapter 1 Starting from Scratch 21
engine aware of their presence. We learned how to read from the registry and how to get
information out to the user. Finally, you looked at modifying scripts and learned to deter-
mine which parts of the script can be re-used and which parts need to be re-created.

Quiz Yourself
Q. What is the reason for including Option Explicit as the first line of a VBScript?

A.	 Option Explicit forces you to list each variable you are going to use in your script. It is
useful in that it guards against misspelled words and helps you to know which parts of
the script are real commands and which parts are made-up variable names. When you
do not use Option Explicit, a misspelled variable automatically becomes a new variable.

Q.	 You are trying to read from the registry; however, every time the script gets to a partic�
ular key, the script fails. What can be done to prevent this?

A.	 You can use two approaches to prevent the script from failing when an error is
present. The first is to include On Error Resume Next in your script. The second is to
simply place a single quotation mark (’) in front of the line that is failing. If you run the
script again and it doesn’t fail, you’ve found the problem.

Q. What does it mean to Dim a variable?

A.	 To Dim a variable is to declare it to the script. The operating system then allocates
memory for the variables. In addition, Dim is a good place to add documentation that
explains the purpose of each variable.

Q. To produce a pop-up dialog box, which command do you use?

A.	 The command WScript.Echo will produce a pop-up dialog box in WScript or send out-
put to the console window when run under CScript.

Q. Name the four parts of a VBScript.

A.	 The four parts of a VBScript are the Header information section, Reference informa
tion section, Worker information section, and Output information section.

On Your Own

Lab 1 Exploring a VBScript
In this section, you will explore the parts of a VBScript.

Lab Instructions

1.	 Open the Lab1 folder located on the companion CD-ROM. From there, open the
DisplayComputerNames.vbs script in Notepad.

22 Part 1 Covering the Basics
2.	 Add comments that identify each section of the script. (Make sure to include all
four parts of the script: Header information, Reference information, Worker infor
mation, and Output information.)

3. Save the script with a different filename, such as lab1.vbs.

4. Delete the entire Header information section.

5. Save the script, and then try to run it. Does it run?

6. Add the Option Explicit command again, and save the file. Now does it run?

7. Put a comment mark (’) in front of Option Explicit, and save the file. Does it run?

Lab 2 Customizing an Existing Script
In this lab, you learn to customize an existing script.

Scenario

You are a new network administrator at a Fortune 500 company. You recently had a
server crash, and it did not generate a dump file. Because you have several servers on
your network, you don’t want to have to “mouse around” very much; rather, you’d like
to simply run a script to confirm the crash recovery configuration. Since your company
is fortunate to have a college intern working for the summer, and you haven’t yet
learned how to remotely run the script, you’ve decided to do the following:

1.	 Create a script that reads crash recovery information from the registry. Your
research has revealed the following keys to be of interest:

"HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\AutoReboot"
"HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\MinidumpDir"
"HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters\Hostname"
"HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\LogEvent"
"HKLM\SYSTEM\CurrentControlSet\Control\CrashControl\DumpFile"

2. Copy the script to a share on a local server.

3. Run the script under CScript.

4.	 Have the intern copy the output from the command prompt and paste it into a
Notepad file that has the same name as the server.

Lab Instructions

1.	 Still using the CD-ROM, open the Lab2 folder, which contains the Display-
ComputerName.vbs file.

2.	 Open the DisplayComputerName.vbs file, and save it as ReadCrashRecoveryIn
formation.vbs.

Chapter 1 Starting from Scratch 23
3.	 Edit the Header information section of the script, and include variables for each of
the items you are going to read from the registry. (Remember, you’ll need two
variables for each registry item: one for the registry key itself, and one for the data
contained in the registry key.)

4.	 Edit the Reference information section of the script. (Use the reg variable names
you created in step 3 of this procedure and assign them to the appropriate registry
keys.)

5.	 Edit the Worker information section of the script. (Assign the non-registry variable
names you created in step 3 to the regRead Worker part of the script.)

6.	 Edit the Output information section of the script. (Use the same variables you
assigned to the regRead parts in step 5.)

7.	 Add any documentation to the script you need. (Make sure you over-comment
your script. Concepts that are perfectly clear today will be a dull memory within a
few days.)

8. Save your script.

9. Open a command prompt.

10.	 Type CScript ReadCrashRecoveryInformation.vbs and press Enter. (If you get
a File Not Found comment, change to the directory where you saved your script
and repeat the command.)

2 Getting in the Loop

If you thought the last chapter went fast, wait until you get a load of our objectives for
this chapter.

Before You Begin
In order to work through the material presented in this chapter, you need to be�
familiar with the following concepts from earlier chapters:�

■ How to run a script

■ How to declare a variable by using the Dim command

■ How to perform basic error suppression by using On Error Resume Next

■ How to connect to the file system object

■ How to read from the registry

After completing this chapter you will be familiar with the following:�

■ Using For Each Next

■ Defining constants

■ Implementing collections

■ Using For…Next

■ Controlling script execution by using the Sleep command

■ Implementing line concatenation

■ Using Do While…Loop

■ Using Do Until

Adding Power to Scripts
Reading the registry and echoing the results on the screen are useful tasks. At times,
however, you need to perform repetitive operations. Even the most casual observer
knows that network administration involves many tasks performed over and over
again. As Yogi Berra once said, “It’s déjà vu all over again.”

How can you harness the power of VBScript to relieve some of the banality of day-to-
day network administration on Microsoft Windows Server 2003? At least four constructs
are ideal for the task:
25

26 Part 1 Covering the Basics
■ For Each…Next

■ For…Next

■ Do While

■ Do Until

This chapter begins by examining a real script to see how you can use these powerful
tools in your daily duties as network administrators.

For Each…Next
The For Each…Next tool is really the “For something—do it again” tool. For
Each…Next lets you walk through a collection of objects and perform a particular
action on the object, and then perform that action again on the next object.

In the following script, you use For Each…Next to examine characteristics of fixed
drives on a server:

Option Explicit

On Error Resume Next

Const DriveType = 3

Dim colDrives

Dim drive

set colDrives = _
GetObject(“winmgmts:”).ExecQuery _

(“select DeviceID from Win32_LogicalDisk where DriveType =“ & DriveType)

For Each drive in colDrives
WScript.Echo drive.DeviceID

Next

Let’s peruse this script and see what it’s doing. In your initial reading, you see some
common elements you learned about in Chapter 1, “Starting From Scratch”: the Header
information section of the script (Option Explicit, On Error Resume Next, and Dim); and
the Reference information section (the part with set colDrives). Those are the only ele
ments that should look familiar. This script introduces a number of new concepts, such
as constants, Windows Management Instrumentation (WMI), and collections, in addi
tion to the For Each…Next construct. Dive in! The scripting waters are fine.

Just the Steps

� To use For Each…Next

1. On a new line in a script, type For Each and then a variable name.

2. On the next line, enter a command you want repeated.

3. On the line following the command you want repeated, type Next.

Chapter 2 Getting in the Loop 27
Header Information

The Header information section of your script contains commands that are rapidly
becoming old hat:

Option Explicit

On Error Resume Next

Const DriveType = 3

Dim colDrives

Dim drive

This script begins by using Option Explicit, which says that each variable must be spe
cifically listed (declared) by using the Dim command. On Error Resume Next is a rudi
mentary error handling technique that says “when an error occurs, skip the line that
caused the problem and go on to the next line in the script.” You also see a new item
in the third line—Const. Let’s talk about it now.

Defining Constants

The Const DriveType = 3 line is a new concept. In this line, you define a constant. This
line says that the word DriveType is equal to the number 3. Why do you do this? You
want to use the number 3 later in the script when you build the WMI query. Rather
than hard-coding the number 3 into your query (hard-coding a value into a script is
called creating a literal), you replace it with the constant DriveType. Just like a variable,
the constant can be called anything you want. But since WMI uses the number 3 to
refer to the type of drive, you called the constant DriveType.

Constants vs. Variables

Why did you use a constant instead of a variable? This is a good question, and the answer
is that you could have used a variable in this instance. It would look something like this:

Dim colDrives ’Holder for what comes back from the WMI query

Dim drive ’Holder for name of each logical drive in colDrives

Dim DriveType

DriveType = 3

In this particular case, using a variable instead of a constant wouldn’t have made any
difference. However, variables have a dark secret that will come back to haunt you
one day (guaranteed). Their value can change during script execution, whereas the
value of a constant is set before execution. This is illustrated in the following rather
silly script. First is the normal Header information section: Option Explicit, On Error
Resume Next, and a few Dim statements to declare the variables. Next, in the Refer
ence section, you assign values to each variable and echo out the total. So far so good.
However, you then reassign the FirstValue to be equal to the total, and echo out the
total. Because the variable total is assigned to FirstValue + SecondValue before the
FirstValue is reassigned to the total, the script produces illogical results. If you added

28 Part 1 Covering the Basics
total = FirstValue + SecondValue right before the second echo, the script would work
as expected.

Option Explicit

On Error Resume Next

Dim total

Dim FirstValue

Dim SecondValue

FirstValue = 1

SecondValue = 3

Total = FirstValue + SecondValue

WScript.Echo “ the total of “ & FirstValue & “ and “ & _

SecondValue & “ Is “ & (total)

FirstValue = Total
WScript.Echo “ the total of “ & FirstValue & “ and “ & _

SecondValue & “ Is “ & (Total)

Shared Benefits of Constants and Variables

You gain several advantages by using either a constant or a variable:

■ The script is easier to read. When you read the WMI query, notice that you’re fil
tering by DriveType. This makes more sense than filtering out number 3 drive
types.

■ The script is easier to revise. To change the script to filter out CD-ROMs, simply
change the constant to the number 5.

■ Reusing the value in the script later on is easier. This script does not reuse the con
stant DriveType. However, in longer scripts, you’ll do this, and using constants is
a good habit to get into.

■ The script is easier to document. You can easily add a comment or a series of com
ments such as the following:

Const DriveType = 3 ’used by WMI for fixed disks

‘other drive types are 2 for removable, 4 for Network, 5 for CD

After the constant is defined, you list a couple of variables used by the script. In this
case, you declared two. The first one is colDrives. Now, why did you call this colD
rives? Because the WMI query returns a collection of drives. Let’s look at collections
and see what they do for you.

Chapter 2 Getting in the Loop 29
Quick Check

Q. Name one advantage of using For Each…Next.

A. Using this construct provides the ability to iterate through a collection without
knowing the number of members in advance.

Q. What is the difference between a variable and a constant?

A. A variable can change value, whereas a constant retains a constant value.

Q. List three reasons for using constants.

A. Using constants makes the script easier to read and revise. Reuse later in the
script is also easy.

Collections

When you have the possibility of seeing a group of related items, thinking of them as
a collection is useful. A collection is a familiar concept. For instance, my wife has a col
lection of key chains. Although each of the key chains is different (some have city
names, some have college names, and others have product names), they are also sim
ilar enough to be in her collection called key chains. That is, they all have a ring on
which keys are hung—without that common purpose, they would not be key chains.
In a similar fashion, when you run your script, the script will return all the permanently
fixed hard disk drives on the server. These drives might be IDE or SCSI, but they will
all be hard disk drives.

What’s so groovy about having a collection of hard disks (aside from the fact they’re
pretty)? Consider the alternative. If you couldn’t return a collection of hard drives from a
server, you’d need to know which drives are actually installed on the machine. You’d have
to connect to the server and list the necessary information for each drive—for example,
you’d need to connect to drives A, C, D, E, F, and so on. In addition, to keep the script
from failing when a drive did not exist, you’d need error handling (such as On Error
Resume Next), or you’d have to test for the presence of each drive prior to querying infor
mation about it. Although that approach would work, it would be kludgy, to say the least.

There is only one bad thing about collections: you cannot simply perform a WScript.Echo
(or a WriteLine for that matter) of the information returned from a query. Instead, you
have to do something like a For Each…Next loop and go through the loop as many times
as there are items in the collection. If you had five drives in your collection, guess what?
We, in our current script, make five passes through the loop and echo each of the drives
out. Walking through the loop multiple times, once for each member of the collection, is
called iteration and is a task routinely performed in administrative scripting.

If you have only one drive, guess what? It’s still returned as a collection, and you have to
iterate through the collection using For Each…Next to get out your single drive. Major

30 Part 1 Covering the Basics
bummer! Fortunately, by the end of this chapter, you’ll have so much experience doing
this, it will seem like a piece of cake (or a piece of celery, if you’re on a diet like I am).

Reference Information

In the Reference information section of the script is a new concept mentioned earlier—
WMI. We’re using it here to look at our drives, but you’ll learn more about WMI later
in this chapter. To connect to WMI, you have to use a string that looks like GetOb
ject(“winmgmts:”). Then you simply run a query that selects the desired drives.
Remember that in the Reference information section of our script, you say that colD
rives is equal to all the information on the right side of the equal sign. You are creating
an alias for the long winmgmts connection string that we call colDrives. You can see
this in the following code:

Set colDrives =_
GetObject(“winmgmts:”).ExecQuery _

(“select DeviceID from Win32_LogicalDisk where DriveType =“ & _
DriveType)

Worker Information

The Worker information section is really small in this script. In addition, the Output
information section is sandwiched inside the For Each…Next loop. Let’s look at it:

For Each drive In colDrives
WScript.Echo drive.DeviceID

Next

Because you sent a fine-tuned query to WMI in the Reference information section of
the script, and the purpose of the script was simply to list drives, the Worker informa
tion section has little work to do. All it really needs to do is to walk through the col
lection of drives returned from WMI. You use For Each and then the variable drive that
you created to hold each of the drives returned from colDrives. Once you have the
drive in your hands, you look for the DeviceID of the drive. But, interestingly enough,
you use this in the Output information section of the script, which is the WScript.Echo
part. After you echo the DeviceID, you do it again for the next drive in the collection
using the Next command.

For…Next
I know what you’re thinking: “We just got finished looking at For…Next!” Well, sort of,
but not really. An important difference between For Each…Next and For…Next is that
with For Each…Next, you don’t have to know how many times you want to do some-
thing. With the For…Next construct, you must know exactly how many times you want
to do something. Using For…Next is not necessarily a bad thing, however, because it
gives you a lot of extra control. For example, the next script checks a number of per-

Chapter 2 Getting in the Loop 31
formance indicators on the server (that is, process thread counts, page faults, working
set sizes, and the like). The values for these items can change quite often, so you want
to check them on a regular basis. However, frequent checking can cause a perfor
mance hit on either the server or the network (depending on how the script was uti
lized), so you want to check the status only at certain times. The solution here is to take
measurements of all the running processes, then wait an hour and do it again. You do
this for an 8-hour cycle and then quit. You could use this type of script to monitor per
formance on a server that was heavily utilized during working hours.

Just the Steps

� To implement For…Next

1. On a new line in the script, type For followed by a variable and a count (such as For i = 1
to 10).

2. On the next line, type the command to be performed.

3. On the next line, type Next.

Header Information

Our Header information section begins with the Option Explicit command that tells
VBScript that all our variables will have to be formally announced by using the Dim
command. One issue to keep in mind about Option Explicit is that it must be the first
non-commented line in the script. For instance, in the electronic version of the next
script, notice that several lines have been commented out by using the single quotation
mark character (’). These lines are used to tell basic information about the purpose of
the script, provide documentation on the use of various variables, and explain some of
the syntax peculiarities. Once all that work is done, the first line without a single quo
tation mark (’) must be Option Explicit if you want Option Explicit to work. The reason
for this is that when the line without the single quotation mark is not the first line in the
script, some variables can sneak in without being declared. On Error Resume Next uses
the second line in our script. As you no doubt have noticed, On Error Resume Next and
Option Explicit seem to appear in all scripts. If you were going to create a template for
script creation, Option Explicit and On Error Resume Next would be a couple of good
lines to include, because more than likely you’ll want them in all your scripts. How-
ever, you might want to comment out the On Error Resume Next line by placing a sin
gle quotation mark in front of it. In this way, while you are writing and testing your
script, you will be able to catch all the errors, because On Error Resume Next is turned
off. Once testing is completed, you simply remove the single quotation mark from in
front of On Error Resume Next, turning it back on.

Next, you define a constant named ONE_HOUR and set it equal to 3600000. You’re going
to use this constant in conjunction with the Sleep command, which counts in millisec-

32 Part 1 Covering the Basics
onds. To calculate, you’d multiply 60 minutes by 60 seconds, and then multiply the result
by 1000, which yields 3600000. By defining the ONE_HOUR constant, you make the
script easier to read. In the complete script (on the companion CD), this constant is com
mented to explain that it will be used with the Sleep command, which requires a milli
second value. In addition, you might want to add several other constants in the script,
such as HALF_HOUR, QUARTER_HOUR, and FIVE_MINUTES, and then you could easily
change the sleep timeout value later in the script. Defining constants but not utilizing
them in the script doesn’t adversely affect the running of the script, because you com
ment them to that effect. This script has only three variables: objWMIService, which is
used to hold the connection to WMI, allowing you to query for performance information
about the running processes; objProcess, which is used to hold the name of each process
that comes back from objWMIService; and lastly i, which is one of the weird little vari
ables used to increment the For…Next loop. Since i is, however, a variable, and you
turned on Option Explicit, you need to declare it by using the Dim command.

Option Explicit

On Error Resume Next

Const ONE_HOUR = 3600000

Dim objWMIService

Dim objProcess

Dim i

Set objWMIService = GetObject(“winmgmts:”) _
& .ExecQuery _
(“SELECT * FROM Win32_Process”)

For i = 1 To 8
For Each objProcess In objWMIService

WScript.Echo Now
WScript.Echo “"
WScript.Echo “Process: “ & objProcess.Name
WScript.Echo “Process ID: “ & objProcess.ProcessID
WScript.Echo “Thread Count: “ & objProcess.ThreadCount
WScript.Echo “Page File Size: “ & objProcess.PageFileUsage
WScript.Echo “Page Faults: “ & objProcess.PageFaults
WScript.Echo “Working Set Size: “ & objProcess.WorkingSetSize

Next

WScript.Echo “******PASS COMPLETE**********"

WScript.Sleep ONE_HOUR

Next

Reference Information

The Reference information section of the script consists of a rather nasty WMI query string
and its attendant assignment to the objWMIService variable. One line of code is all that the
Reference information section takes up in this script. The nasty code is shown here:

Set objWMIService = GetObject(“winmgmts:”) _
& .ExecQuery _
(“SELECT * FROM Win32_Process”)

Chapter 2 Getting in the Loop 33
This line of code connects to WMI and then executes a query that lists all Win32 pro
cesses running on the machine. As mentioned earlier, you’ll learn about WMI in later
chapters, but it is important to notice now that the query looks exactly like a regular
SQL Server query. The code says to select (which means to choose something) from
the Win32 process. The “something” that is being chosen is *. As you no doubt recog
nize, * is the wildcard character and means “everything.” So this query chooses every-
thing from the Win32 process.

Note Notice in the preceding code the underscore (_) that appears at the end of the first
and second lines in the Reference information section. These are used to break up the code
into more than one line to make the code easier to read. The important aspect to pay atten
tion to is the placement of the open and close parentheses and the quotation marks (" ") as
you break up the lines. Notice also that in the beginning of the second line, the ampersand
was used, which as you’ll recall from Chapter 1 is the concatenation character. This amper
sand was used because you’re inside of the parentheses, and you need to stick the two lines
together. At times, you’ll need to embed spaces to ensure commands are not messed up
when you break the lines. The line continuation following ExecQuery does not include the
ampersand because it falls outside of the parentheses.

Worker and Output Information

As in the first script in this chapter, the Worker and the Output information sections kind
of merge together. This section begins with the For i = 1 To 8 command, which means that
you’re going to count to 8 and on each pass increment the value of the variable i. With
each pass, the variable i changes its value. In the second line of the Worker information
section is a For Each…Next command. This tells you that the information returned from
the objWMIService variable is a collection. Since it is a collection, you need to use For
Each…Next to walk (iterate) through the collection. As the code walks, it echoes out the
value of the information you want (such as the process, process ID, and thread count). At
the end of the grouping of WScript.Echo commands is a Next command. The problem
with nested Next commands is trying to keep track of which Next belongs to which For or
For Each. Indenting them a little bit will help you see which For command lines up with
which Next command. This technique makes the script easier to read.

The Now command is used to echo out the date and time, providing an easy way to
timestamp logs and other output obtained from scripts. In addition, since Now is inside
the For Each…Next loop, it will timestamp each process as it is reported. This allows
you to see how long it takes the script to complete its processing—the Now command
reports down to the second.

The WScript.Sleep command is used to pause the execution of the script for a specified
amount of time. As mentioned earlier in this chapter, the Sleep command takes its input

34 Part 1 Covering the Basics
in the form of milliseconds. To pause the script for one second, you would write the
code like this:

WScript.Sleep 1000

I’ve been calling this the Sleep command, but in programming speak it would be called
the Sleep method of the WScript object. However, if I called it that, this book would
sound like a programmer’s reference and therefore would be boring. So I’ll just call it
the Sleep command and be done with it.

This ability to pause the script can have a number of uses. For instance, it allows you
to have a very flexible running schedule. If you attempted to pause the script using the
scheduler service on Windows Server 2003, you would need eight different schedules,
because there is no notion of “pause for an hour, and only do it for 8 hours.” One other
very useful aspect of the Sleep command is that it allows for “spin-up time.” By using
the Sleep command, you can cause a script to wait for a slower component to come on
line prior to execution. The Sleep command is not an atomic clock. Although it’s fine
for generic pausing of a script, don’t think you can use it for scientific timing—it was
never designed for that purpose. In general, it’s not accurate for periods of time less
than a second.

The only other issue that needs to be pointed out in this Worker/Output information
section is the use of WScript.Echo. I know you’re all familiar with this command by
now; however, notice what is done in the fourth line:

WScript.Echo ““

By doing an echo with "", you’re essentially echoing a blank line. This helps to format the
output. You have the date and time, then a blank line at the start of each listing for each
process in the collection of Win32 processes. In addition to the blank line, WScript.Echo
is used to indicate that the script has finished its pass through the processes. Remember
that anything inside the quotation marks will be echoed to the screen. By padding the
script with a bunch of *****, you can more easily find your information.

For i = 1 To 8
For Each objProcess In objWMIService

WScript.Echo Now
WScript.Echo “"
WScript.Echo “Process: “ & objProcess.Name
WScript.Echo “Process ID: “ & objProcess.ProcessID
WScript.Echo “Thread Count: “ & objProcess.ThreadCount
WScript.Echo “Page File Size: “ & objProcess.PageFileUsage
WScript.Echo “Page Faults: “ & objProcess.PageFaults
WScript.Echo “Working Set Size: “ & objProcess.WorkingSetSize

Next
WScript.Echo “******PASS COMPLETE**********"
WScript.Sleep ONE_HOUR

Next

Chapter 2 Getting in the Loop 35
Quick Check

Q. WScript.Sleep is expressed in what unit?

A. WScript.Sleep is expressed in milliseconds.

Q. What is an important difference between For Each…Next and For…Next?

A. With For Each…Next, you don’t need to know the number of elements in
advance.

Do While...Loop
The Do While…Loop allows you to run a script as long as a certain condition is in
effect. If you were in Kauai, the Do While…Loop might look like this:

Do While sun_is_shining
Surf

Loop

Do While…Loop means that as long as the specified condition remains true, the listed
action continues to perform—it just loops around and around. In our silly preceding
example, as long as the sun is shining, we surf. (Not a bad way to spend an afternoon.)

Just the Steps

� To use the Do While…Loop

1. On a new line in the script, type Do While followed by a condition to be tested.

2. On the next line, type the command to be performed.

3. On the next line type, Loop.

In the following script, you monitor the disk space on a server to let you know when
it falls below 100000000 bytes. If the free space falls below 100000000, a message is
echoed to the screen every 5 seconds. Read through this script and see which parts you
can identify. After you finish reading it, we’ll discuss it.

Option Explicit

On Error Resume Next

Const FIVE_SEC = 5000

Const LOCAL_HARD_DISK = 3

Dim colMonitoredDisks

Dim objWMIService

Dim objDiskChange

Dim i

Set objWMIService = GetObject(“winmgmts:” _
& “{impersonationLevel=impersonate}”).ExecQuery _
(“SELECT * FROM Win32_Process”)

36 Part 1 Covering the Basics
Set colMonitoredDisks = objWMIService.ExecNotificationQuery _
(“Select * from __instancemodificationevent within 30 where “ _
& “TargetInstance isa ’Win32_LogicalDisk’”)

i = 0
Do While i = 0

Set objDiskChange = colMonitoredDisks.NextEvent
If objDiskChange.TargetInstance.DriveType = _

LOCAL_HARD_DISK Then
If objDiskChange.TargetInstance.Size < 100000000 Then

WScript.Echo _
“Hard disk space is below 100000000 bytes."

WScript.Sleep(FIVE_SEC)
End If

End If
Loop

Header Information

The Header information section, as shown in the next segment of code, begins with
the Option Explicit command. You can think of Option Explicit as a cheap spelling
checker. Since it forces you to list all your variables, if you later misspell a variable,
VBScript gives you an error, such as the one shown in Figure 2-1.

Figure 2-1 The Option Explicit command acts like a spelling checker for your scripts.

After the Option Explicit command, you see On Error Resume Next. This is one com
mand you want to comment out during testing of the script. The reason for this is that
while you’re in testing and development mode, the On Error Resume Next command
suppresses error messages, and you won’t know what’s going on with the script. One
of the easiest errors to see is failure to declare a variable while using Option Explicit.
The rest of the Header information section of our script is shown here:

Option Explicit

On Error Resume Next

Const FIVE_SEC = 5000

Dim colMonitoredDisks

Dim objWMIService

Dim objDiskChange

Dim i

In the Header information section, we declare the constant FIVE_SEC, which is set to
5000. This will be used by the WScript.Sleep command, which requires the time to be
specified in milliseconds (5000 milliseconds is 5 seconds). By changing the value of

Chapter 2 Getting in the Loop 37
this constant, you can vary the length of time the script will pause before echoing mes
sages. You should be aware that creating a loop statement that does not exit, with a
Sleep command that is very short, can cause VBScript to eat up all your CPU time and
make your server unstable. The variables are listed here:

■	 colMonitoredDisks Used to hold the collection of disks that is returned by the
WMI query.

■ objWMIService Used to hold the connection string and query to WMI.

■	 objDiskChange Used to hold the notification event that comes from WMI,
which lets you know you have a change in disk status.

■	 i This is a trick variable in this script. Since you want the script to run continu
ously, you set i to zero, and then tell the Do loop to Loop While i is equal to zero.
In this script, the value of i will never change, and thus the script will never end.

Reference Information

In the Reference information section, shown next, you make your connection to WMI
and then execute a query:

Set objWMIService = GetObject(“winmgmts:” _
& “{impersonationLevel=impersonate}”).ExecQuery _
(“SELECT * FROM Win32_Process”)

Set colMonitoredDisks = objWMIService.ExecNotificationQuery _
(“Select * from __instancemodificationevent within 30 where “ _

& “TargetInstance isa ’Win32_LogicalDisk’”)

Worker and Output Information

The Worker and Output information section of the script is where you do some pretty
cool stuff. Let’s take a look at what is going on in this section of the script:

i = 0
Do While i = 0

Set objDiskChange = colMonitoredDisks.NextEvent
If objDiskChange.TargetInstance.DriveType = _
LOCAL_HARD_DISK Then

If objDiskChange.TargetInstance.Size < 100000000 Then
WScript.Echo _

“Hard disk space is below 100000000 bytes."
WScript.Sleep(FIVE_SEC)

End If
End If

Loop

First let’s look at the Do While…Loop construction. Notice that the second line of this
section is Do While i = 0. This tells VBScript that you want to invoke a Do While…Loop.
Everything between Do While and Loop will continue to run as long as the Do While
statement is true. So as long as i is equal to zero, our code in the middle will run.

38 Part 1 Covering the Basics
After you set up the Do While…Loop, you assign the objDiskChange variable to be
equal to the next event that comes out of colMonitoredDisks. Once that assignment is
done, you go into a couple of nested If…Then statements. (We’ll look at If…Then in
Chapter 3, “Adding Intelligence,” so let’s skip over this section of the script. Also, we’ll
cover WMI events in later chapters, so we’ll skip over that as well.) If the disk space
falls below 100000000 bytes, however, you’ll get an echo message every 5 seconds.

Quick Check

Q. What is the primary function of a Do While…Loop?

A. It allows you to run a script as long as a certain condition is in effect.

Q. What is one reason for turning off On Error Resume Next during development and
testing?

A. During development and testing, you want to be presented with error messages
to facilitate testing and debug operations.

Note This script is one you would want to run in CScript. To do so, open up a CMD prompt,
and type cscript and the filename. The complete command line would look something like
this: cscript c:\scripts\doWhile.vbs. CScript is nice because when you want to break out of the
program, all you do is press Ctrl+C. If the script is run under WScript (which is the default), to
end the program, you have to open up Task Manager and kill the wscript.exe process.

Do Until...Loop
As you know by now, Do Loop allows the script to continue to perform certain actions
until a specific condition occurs. Do While…Loop allows your script to continue to per-
form these actions as long as the specified condition remains true. Once the specified con
dition is no longer true, Do While…Loop exits. In contrast, the Do Until…Loop has the
opposite effect—the script continues to perform the action until a certain condition is met.

“So what?” you might ask. In and of itself, Do Until is not all that exciting, but you can
use it to perform certain tasks. Here are common uses of Do Until:

■ Read text from a file

■ Read through records in a record set

■ Create a looping condition for monitoring purposes

Each of these implementations will be used in coming chapters. For now, let’s look at
a typical use of Do Until, which is illustrated in the following script:

Chapter 2 Getting in the Loop 39
Option Explicit

On Error Resume Next

Dim error1String

Dim objFSO

Dim objFile

Dim strLine

Dim SearchResult

error1String = “error"

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objFile = objFSO.OpenTextFile(“C:\windows\setuplog.txt", 1)

strLine = objFile.ReadLine

Do Until objFile.AtEndofStream
strLine = objFile.ReadLine
SearchResult = InStr(strLine, error1String)
If SearchResult <> 0 Then

WScript.Echo(strLine)
End if

Loop
WScript.Echo(“all done”)
objFile.Close

In this script, you begin with the Header information section, which is where you declare
your variables and turn on error handling. Here is the Reference information section:

Option Explicit

On Error Resume Next

Dim error1String

Dim objFSO

Dim objFile

Dim strLine

Dim SearchResult

As in other scripts, Option Explicit tells VBScript that you’re going to tell VBScript about
each variable before you use it. If an unnamed item comes up and it’s not a command,
an error is generated. This helps to save us from misspelled variable names and typos.
On Error Resume Next tells VBScript to ignore all the errors it can and to go to the next
line. You don’t want this turned on when you’re writing scripts, because scripts will fail
and not let you know what’s going on.

After the two standard lines of the script, it’s time to declare some variables. Since you can
give variables any name you want (except the names for built-in commands or names
already used for constants), it makes sense to use names that are self-explanatory. In addi
tion, as you have already noticed, in VBScript you seem to always be using the same types
of connections and commands. For instance, by the end of the book, you will certainly
know how to create the file system object, and I tend to use the variable name objFSO for
this. The obj part tells me that the item is associated with an object, and the FSO portion
is simply shorthand for file system object. This object could just as well be named objFile-
SystemObject, but I use it a lot and that name requires way too much typing.

40 Part 1 Covering the Basics
Anyway, since this section is not about the file system object but rather about using Do
Until, let’s plunge ahead. The next part of the script is the Reference information sec
tion. It’s here that you tell VBScript that you’re going to define things to make it easier
to work with them. In the following code, you create several reference assignments:

error1String = “error"

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objFile = objFSO.OpenTextFile(“C:\windows\setuplog.txt", 1)

strLine = objFile.ReadLine

The error1String is set equal to the word error. This is what you want to search for in the
log file you’re going to open. The word assigned to error1String can easily be changed to
search the log file for other words such as “failure,” “failed,” “unable,” or even “can not,”
all of which show up in log files from time to time. By using a variable for the text you are
searching for, you are facilitating the ability to change the script to search for other words.

Once error1String is assigned to the word you’re searching for, you use two Set com
mands to talk to the file system and open a text file. We’ll be covering these commands
in detail in Chapter 3. For now, it’s sufficient to note that the text file you’re opening to
read is “C:\windows\setuplog.txt”, which is the file that Windows Server 2003 creates
during installation. The file is huge and loaded with needed troubleshooting information
if setup were to ever fail. But the installation doesn’t have to be a complete bust for the
file to be useful. For instance, if you’re having problems with Windows Product Activa
tion (WPA), just change error1String and look for WPA. Error codes found in this section
of the setuplog.txt are standard HTTP 1.1 messages (for example, 403 is access denied,
404 is file or directory not found, and 407 is initial proxy authentication required by the
Web server). Armed with this information and the script, you can search setuplog.txt,
parse the return information, and match it with standard HTTP 1.1 messages.

The last line in the Reference information section is strLine = objFile.ReadLine, which
tells VBScript to read one line from the text file referenced by objFile. You use the vari
able strLine in the Worker information section of the script, which we talk about next.
StrLine holds the line of text that comes out of the file via the ReadLine command. If
you printed strLine by using the WScript.Echo command, the line of text would be ech
oed to the screen. You can also use the strLine variable to hold the line of text so that
you can search it for our keyword “error.” In fact, you do both of these actions in our
script, as seen in the next section.

Worker and Output Information

In the same way that the other scripts in this chapter combined the Worker and Output
information sections, our current script also combines these sections. Let’s look at Do
Until…Loop. In the next script part, notice that Do Until is in effect until objFile.AtEnd
ofStream. Think of the ReadLine command as a pump—you’re going to pump text into
Do Until…Loop Until until you reach the end of the text stream. This means that you

Chapter 2 Getting in the Loop 41
read a line of text, one line at a time, until you reach the end of the file. You can see
this process in the first two lines.

Do Until objFile.AtEndofStream
strLine = objFile.ReadLine
SearchResult = InStr(strLine, error1String)
If SearchResult <>0 Then

WScript.Echo(strLine)
End if

Loop
WScript.Echo(“all done”)
objFile.Close

Once the text pump is set up and you have a nice steady stream of letters coming across,
you use the next command in the Worker and Output information section of the script.
You now use the SearchResult variable that you declared earlier. You assign SearchResult
to the result of using the InStr command (think of it as “in string”), which looks through
a string of text and tries to find a match. The command is put together like this:

Command String 1 String 2

InStr String to be searched String being searched for

In this script, you look through each line of text that comes from the Setuplog.txt file
to find the word “error,” which you assigned to the variable named error1String. This
part of the script looks like the following:

SearchResult = InStr(strLine, error1String)

Now the situation gets a little complicated, because the InStr command is rather pecu
liar in the way it hands back information, as detailed in Table 2-1:

Table 2-1 Use of the InStr function

Condition Result Returned

String 1 is zero in length

String 1 is null

String 2 is zero in length

String 2 is null

String 2 is not found

String 2 is found in string 1

0

Null

Start

Null

0

Position at which the match is found

In Table 2-2, the only value we’re interested in is the one that is not equal to zero.
(Although a null value contains no valid data, it is not the same as zero or as the empty
string "", often referred to as a null string. You’ll learn more about that when we talk
about data types.) To evaluate the results of the InStr function, use If…Then to make

42 Part 1 Covering the Basics
sure that what came back from InStr is not equal to zero—which tells us that InStr is
indicating where in the line the word “error” was found. We really don’t care where in
the line the word occurs, only that the word is present. You use WScript.Echo to echo
out the value of strLine. Note that you print out strLine, which is the variable that con
tains the line of text that you read from the log file. You don’t echo out SearchResult
because it contains only a number, as explained in Table 2-1.

After you print out the line containing the error message from the Setuplog.txt file, you
end your If statement by using the End If command, and you Loop (which sends us right
back to the Do Until command). You continue to Loop Until until you reach the end of
the file, at which time, you echo out “all done” and close your file. The “all done” state
ment just lets you know (while you watch stuff scroll on the screen) that you’ve com
pleted running the script (otherwise, there is no indication that the script completed).

Quick Check

Q. What is the difference between Do Until and Do While?

A. Do Until does not run once a condition becomes true, whereas Do While runs as
long as a condition is true.

Q. What is the InStr command used for?

A. InStr is used to look through a string of text to find a specific sequence of char
acters.

Summary
In this chapter, you saw the power that you can bring to scripts by using looping types of
constructs. Tools such as For…Next, which perform specified operations a certain number
of times, allow you to easily perform repetitive actions. As you saw in several script exam
ples, For…Next and For Each…Next are often used in tandem to walk through collections
of information and to perform actions together and in tandem. You are not, however, lim
ited to just manual counting through collections. You can also devise looping conditions
that will monitor until a condition either becomes true or ceases to be true by using either
Do While or Do Until. These two commands are often used to read through a record set
or a text file. Along the way, we also talked about collections, constants, the Sleep com
mand, and InStr. Stay tuned—the next chapter is even more exciting.

Quiz Yourself
Q. What is one reason for using For Each…Next?

A. One reason for using the For Each…Next construction is to walk through a collection

of items such as that often returned by WMI.

Q. What is the advantage of defining either a constant or a variable?

Chapter 2 Getting in the Loop 43
A.� Constants allow you to define numbers that could be confusing if they were embedded
within a script. In addition to making scripts easier to read and maintain, constants
allow you to easily change values that could be utilized throughout a long script.

Q. How do constants differ from variables?

A. Constants do not change their values during script execution as variables can.

Q. How can For…Next and For Each…Next be used together?

A.� You can put For…Next commands outside of a For Each…Next construction to allow
you to perform the For Each…Next operation many times.

Q.� You want to create a looping condition that occurs only as long as a particular condi
tion is true. What command will you use?

A. A looping condition that occurs only when a condition is true is a Do While statement.

Q.� You want to create a looping condition that does not run when a certain condition is
true. What command will you use?

A.� A looping condition that does not run when a certain condition is true is a Do Until
statement.

Q. How do you pause a script for a specified period of time?

A. To pause a script for a certain period of time, you can use the WScript.Sleep command.

Q. What unit does the WScript.Sleep command count in?

A. The WScript.Sleep command counts in thousandths of a second.

On Your Own

Lab 3 Using the For Each…Next Command
In this lab, you’ll explore using the For Each…Next command and the For…Next
command.

Lab Instructions

1. Open up the ping.vbs script in Microsoft Notepad.

2.	 Change the values strMachines = “s1;s2” to one or more computers reachable on
your network.

3. Save the script with a different name, such as lab3.vbs.

4. Open a CMD prompt and switch to the directory where you saved the script.

5.	 Type cscript lab3.vbs and see whether the script runs. If it does not, do a regular
ping to your networked machine and ensure it is reachable. If so, make sure you
have the quotation marks and the semicolon, as shown in step 2.

6. Set Option Explicit.

44 Part 1 Covering the Basics
7. Dim each variable that is used in the script.

8. Set On Error Resume Next.

9. Add comments to identify each section of the script.

10.	 Change the values strMachines = “s1;s2” to one or more computers reachable on

your network.

11. Examine the construct of the For Each…Next statement.

12.	 In the Worker and Output sections of the script, put in a For…Next statement that

makes the script send three pings.

13. Save the script and test.

14. If it runs properly, add the On Error Resume Next statement.

15. Save the script and see whether it runs. If it does, you’re finished.

16. Extra: Play around with the script and see what optimizations you can add.

17.	 Extra, Extra: Add additional comments to the script that explain why certain items

are required.

Lab 4 Modifying the Ping Script
In this lab, you will modify the ping script so that it can be used to monitor your servers.

Lab Instructions

1.	 Open lab3.vbs and save it as lab4.vbs. (You can also use pingsolution.vbs if you

change strMachines = “s1;s2” to your local servers.)

2. Comment out On Error Resume Next so that you can test the script.

3.	 Define a constant called ONE_HOUR and set it equal to 100 for testing purposes.

In the real world, 3600000 is equal to 1 hour for the WScript.Sleep command.

4. Declare a variable to be used to count to 8, such as ihours.

5.	 Add a For ihours = 1 To 8 command to the beginning of the Worker section. It will

go under aMachines = Split(strMachines, “;”).

6.	 Add the WScript.Sleep(ONE_HOUR) command to the bottom of the script (after all

those Next commands). When you define a constant as you did in step 2, testing

your script is a lot nicer.

7. Save the script. Try to run the script. (You should get an error.)

8. Add another Next command after the WScript.Sleep command.

9. Save the script and run it. (It should work now.)

10.	 Add a WScript.Echo command to the bottom of the script with a message letting

you know when the script is finished.

3 Adding Intelligence

Much of the daily work of the intrepid network administrator involves making deci
sions. It’s true that upgrades to network operating systems can’t be automated, but
many tasks, such as reading the event log and responding to critical events, can be
scripted. In this chapter, you build on the skills you learned in Chapter 1, “Starting from
Scratch,” and Chapter 2, “Getting in the Loop,” and combine them with three powerful
tools: If…Then, If…Then…ElseIf, and Select Case.

Before You Begin
To successfully complete this chapter, you need to be familiar with the following
concepts, which were presented in Chapters 1 and 2:

■ Declaring variables

■ Basic error handling

■ Connecting to the file system object

■ Using For Each…Next

■ Using Do While

After completing this chapter you will be familiar with the following:

■ If…Then

■ If…Then…ElseIf

■ If…Then…Else

■ Select Case

■ Intrinsic constants

If…Then
If…Then is one of those programming staples (like fried chicken and mashed potatoes
are staples in the southern United States). What’s nice about If…Then is that it makes
sense. We use this kind of logic all the time.

The basic operation is diagrammed here:

If condition Then action

If store is open Then buy chicken
45

46 Part 1 Covering the Basics
The real power of If…Then comes into play when combined with tools such as those
we looked at in Chapter 2. If…Then is rarely used by itself. Although you could have
a script such as this one, you wouldn’t find it extremely valuable:

Const a = 2

Const b = 3

Const c = 5

If a + b = c Then

WScript.Echo(c)
End If

In this script are defined three constants: a, b, and c. We then sum the numbers and
evaluate the result by using the If…Then statement. There are three important elements
to pay attention to in implementing the If…Then construct:

■ The If and the Then must be on the same line.

■ The action to be taken must be on the next line.

■ You must end your If…Then statement by using End If.

If any of these elements are missing or misplaced, your If…Then statement generates
an error. If you do not see an error and one of these elements is missing, make sure
you have commented out On Error Resume Next.

Now that you have the basic syntax down pat, let’s look at the following more respect-
able and useful script, named GetComments.vbs, which is on the companion CD. If
you put lots of descriptive comments in your VBScripts, Then GetComments.vbs pulls
them out and writes them into a separate file. This file is used to create a book of doc
umentation about the most essential scripts you utilize in your network. In addition, If
you standardize your documentation procedures, Then the created book will require
very little touch-up work when you are finished. (OK, I’ll quit playing If…Then with
you. Let’s look at that code, which is described in the next few sections.)

Option Explicit

On Error Resume Next

Const ForReading = 1

Const ForWriting = 2

Dim scriptFile

Dim commentFile

Dim objScriptFile

Dim objFSO

Dim objCommentFile

Dim strCurrentLine

Dim intIsComment

scriptFile = “C:\scripts\displayComputerNames.vbs"

commentFile = “C:\scripts\comments.txt"

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Chapter 3 Adding Intelligence 47
Set objScriptFile = objFSO.OpenTextFile _
(scriptFile, ForReading)

Set objCommentFile = objFSO.OpenTextFile(commentFile, _
ForWriting, True)

Do While objScriptFile.AtEndOfStream <> True
strCurrentLine = objScriptFile.ReadLine
intIsComment = InAtr(1,strCurrentLine,"‘“)
If intIsComment > 0 Then

objCommentFile.Write strCurrentLine & vbCrLf
End If

Loop
WScript.Echo(“script complete”)
objScriptFile.Close
objCommentFile.Close

Just the Steps

� To implement If…Then

1. On a new line in the script, type If some condition Then.

2. On the next line, enter the command you want to invoke.

3. On the next line, type End If.

Header Information

The first few lines of the GetComments.vbs script contain the header information. We
use Option Explicit to force us to declare all the variables utilized in the script. This helps
to ensure that you spell the variables correctly as well as understand the logic. On Error
Resume Next is rudimentary error handling. It tells VBScript to go to the next line in the
script when there is an error. There are times, however, when you do not want this
behavior, such as when you copy a file to another location prior to performing a delete
operation. It would be disastrous if the copy operation failed but the delete worked.

The third and fourth lines of the GetComments.vbs script define two constants, For-
Reading and ForWriting, which make the script easier to read. (You learned about con
stants in Chapter 2.) You’ll use them when you open the DisplayComputerNames.vbs
file and the Comments.txt file. You could have just used the numbers 1 and 2 in your
command and skipped the two constants; however, someone reading the script needs
to know what the numbers are doing. Defining the constants will make future modifi
cations easier.

After you define the two constants, you define the variables. Listing variables on indi
vidual lines makes commenting the lines in the script easier, and the commenting lets
readers of the script know why the variables are being used. In reality, it doesn’t matter
where you define variables, because the compiler reads the entire script prior to exe
cuting it. This means you can spread constant and variable declarations all over the

48 Part 1 Covering the Basics
script any way you want—such an approach would be hard for humans to read, but it
would make no difference to VBScript.

Reference Information

In the Reference Information section of the script, you assign values to several of the
variables previously declared. Listing scriptFile in this manner makes it easy to modify
the script later so that you can either point it to another file or make the script read all
the scripts in an entire folder. In addition, you could make the script use a command-
line option that specifies the name of the script to parse for comments. However, by
assigning a variable to the script filename, you make all those options possible without
a whole lot of rewriting. This is also where you name the file used to write the com
ments into—the aptly named Comments.txt file.

You also use the Set command three times, as shown here:

Set objFSO = CreateObject(“Scripting.FileSystemObject”)
Set objScriptFile = objFSO.OpenTextFile _

(scriptFile, ForReading)
Set objCommentFile = objFSO.OpenTextFile(commentFile, _

ForWriting, True)

Regarding the first Set command, you’ve seen objFSO used several times already in
Chapters 1 and 2. ObjFSO is a variable name, which we routinely assign to our connec
tion to the file system, that allows us to read and write to files. You have to create the
file system object (as it is technically called) to be able to open text files.

The second Set command uses our objScriptFile variable name to allow us to read the
DisplayComputerNames.vbs file. Note that the OpenTextFile command requires only
one piece of information: the name of the file. VBScript will assume you are opening
the file for reading if you don’t include the optional file mode information. We are
going to specify two bits of information so that the script is easier to understand:

■ The name of the file

■ How you want to use the file—that is, read or write it

By using variables for these two parts of the OpenTextFile command, you make the
script much more flexible and readable.

The third Set command follows the same pattern. You assign the objCommentFile vari
able to whatever comes back from openTextFile command. In this instance, however,
you write to the file instead of read from it. You also used variables for the name of the
comment file and for the option used to write to the file.

Chapter 3 Adding Intelligence 49
Quick Check

Q. Is it permissible to have If on one line and Then on a separate line?

A. No. Both If and Then must be on the same logical line. They can be on separate
physical lines if the line continuation character (_) is used. Typically, If is the first
word and Then is the last command on the line.

Q. If the Then clause is on a separate logical line from the If…Then statement, what
command do you use?

A. End If. The key here is that End If consists of two words, not one.

Q. What is the main reason for using constants?

A. Constants have their value set prior to script execution, and therefore their
value does not change during the running of the script.

Q. What are two pieces of information required by the OpenTextFile command?

A. OpenTextFile requires both the name of the file and whether you want to read or
write.

Worker and Output Information

The Worker and Output information portion is the core engine of the script, where the
actual work is being done. The GetComments.vbs script reads each line of the Display-
ComputerNames file and checks for the presence of a single quotation mark "’". When
the single quotation mark is present, the script writes the line that contains that char
acter out to the comments.txt file.

A closer examination of the Worker and Output information section of the GetCom
ments.vbs script reveals that it begins with a Do While…Loop, as shown here:

Do While objScriptFile.AtEndOfStream <> True
strCurrentLine = objScriptFile.ReadLine
intIsComment = InStr(1,strCurrentLine,"‘“)
If intIsComment > 0 Then

objCommentFile.Write strCurrentLine & vbCrLf
End If

Loop
WScript.Echo(“script complete”)
objScriptFile.Close
objCommentFile.Close

You first heard about the Do While statement in Chapter 2. ObjScriptFile is assigned to
the text that is contained in the variable named objScriptFile. As long as you aren’t at
the end of the text stream, you read the line of text and see whether it contains a single
quotation mark. To check for the presence of the ’ character, you use the InStr func
tion, just as in the last chapter. The InStr function returns a zero or null when it does

50 Part 1 Covering the Basics
not find the character; when it does find the character, it returns the numbered location
of the character.

If InStr finds the ’ character within the line of text, the variable intIsComment holds a
number that is larger than zero. Therefore, you use the If …Then construct, as shown
in the following code, to write out the line to the comments.txt file:

If intIsComment > 0 Then
objCommentFile.Write strCurrentLine & vbCrLf

End If

Notice that the condition to be evaluated is contained within If…Then. If the variable
intIsComment is larger than zero, you take the action on the next line. Here you use
the Write command to write out the current line of the DisplayComputerNames file.

Intrinsic Constants

You use the vbCrLf command to perform what is called a carriage return and line feed.
vbCrLf is an intrinsic constant, which means that it is a constant that is built into
VBScript. Since intrinsic constants are built into VBScript, you don’t need to define
them as you do regular constants. You’ll use other intrinsic constants as you continue
to develop VBScripts in later chapters.

vbCrLf has its roots in the old-fashioned manual typewriter. Those things had a handle
on the end that rolled the platen up one or two lines (the line feed), and then reposi
tioned the type head (the carriage return). Like the typewriter handle, the vbCrLf com
mand positions the text to the first position on the following line. It’s a very useful
command for formatting text in both dialog boxes and text files. The last line in our
If…Then construct is the End If command. End If tells VBScript that we’re finished using
the If…Then command. If you don’t include End If, VBScript complains with an error.

After using End If, you have the Loop command on a line by itself. The Loop command
belongs to the Do While construct that began the Worker and Output Information sec
tion. Loop sends the script execution back to the Do While line. VBScript continues to
Loop through, reading the text file and looking for ’ marks, as long as it doesn’t reach
the end of the text stream. When VBScript reaches the end of the text stream from the
DisplayComputerNames script, you display a message that says you’re finished pro
cessing the script. This is important, because otherwise there would be no indication
that the script has concluded running. You then close your two files and the script is
done. In reality, you don’t need to close the files because they will automatically close
once the script exits memory, but closing the files is good practice and could help to
avoid problems if the script hangs.

Chapter 3 Adding Intelligence 51
If…Then…ElseIf
If…Then…ElseIf adds some flexibility to your ability to make decisions by using
VBScript. If…Then allows you to evaluate one condition and take action based on that
condition. By adding ElseIf to the mixture, you can make multiple decisions. You do
this in the same way you did it using the If…Then command. You start out with an
If…Then on the first line in the Worker information section, and when you are finished,
you end the If…Then section with End If. If you need to make additional evaluations,
add a line with ElseIf and the condition.

Just the Steps

� To Use If…Then…ElseIf

1. On a new line in the script, type If some condition Then.

2. On the next line, enter the command you want to invoke.

3. On the next line, type ElseIf and the new condition to check, and end the line with Then.

4. On the next line, enter the command you want to invoke when the condition on the ElseIf

line is true.

5. Repeat steps 3 and 4 as required.

6. On the next line, type End If.

You can have as many ElseIf lines as you need; however, if you use more than one or two,
the script can get long and confusing. A better solution to avoid a long script is to convert
to a Select Case type of structure, which is covered later in this chapter in the section
“Select Case.” To illustrate the If…Then…ElseIf construction, we’ll use the CPUType.vbs
script, which identifies the type of CPU installed on a machine. As you know, the type of
CPU is normally x86, but I have found old Alpha machines, old Power PCs, and even IA64
machines running in data centers. An accurate inventory of CPU types can help forestall
problems, because most computer rooms are remotely managed, with physical contact
with the actual boxes being a rare occurrence. Here is the CPUType.vbs script:

Option Explicit

On Error Resume Next

Dim strComputer

Dim cpu

Dim wmiRoot

Dim objWMIService

Dim ObjProcessor

strComputer = “."

cpu = “win32_Processor=‘CPU0’"

wmiRoot = “winmgmts:\\” & strComputer & “\root\cimv2"

Set objWMIService = GetObject(wmiRoot)

Set objProcessor = objWMIService.Get(cpu)

If objProcessor.Architecture = 0 Then

52 Part 1 Covering the Basics
WScript.Echo “This is an x86 cpu."
ElseIf objProcessor.Architecture = 1 Then

WScript.Echo “This is a MIPS cpu."
ElseIf objProcessor.Architecture = 2 Then

WScript.Echo “This is an Alpha cpu."
ElseIf objProcessor.Architecture = 3 Then

WScript.Echo “This is a PowerPC cpu."
ElseIf objProcessor.Architecture = 6 Then

WScript.Echo “This is an ia64 cpu."
Else

WScript.Echo “Can not determine cpu type."
End If

Header Information

The Header information section contains the usual information (discussed in Chapter 1
and Chapter 2), as shown here:

Option Explicit

On Error Resume Next

Dim strComputer

Dim cpu

Dim wmiRoot

Dim objWMIService

Dim objProcessor

Option Explicit tells VBScript that you’ll name all the variables used in the script by using
the Dim commands, and On Error Resume Next turns on basic error handling. The str-
Computer variable holds the name of the computer from which we retrieve the CPU
type. The Cpu variable tells VBScript from where in Windows Management Instrumen
tation (WMI) we read information. The wmiRoot variable allows you to perform a task
you haven’t performed before in previous scripts: split out the connection portion of
WMI to make it easier to change and more readable. The variables objWMIService and
objProcessor hold information that comes back from the Reference information section.

Reference Information

The Reference information section is the place where you assign values to the variables
you named earlier in the script. The CPUType.vbs script contains these assignments:

strComputer = “."

cpu = “win32_Processor=‘CPU0’"

wmiRoot = “winmgmts:\\” & strComputer & “\root\cimv2"

Set objWMIService = GetObject(wmiRoot)

Set objProcessor = objWMIService.Get(cpu)

StrComputer is equal to ".", which is a shorthand notation that means the local com
puter that the script is currently executing on. With the cpu variable, you define the
place in WMI that contains information about processors, which is win32_Processor.

Chapter 3 Adding Intelligence 53
Since there can be more than one processor on a machine, you further limit your query
to CPU0. It is necessary to use CPU0 instead of CPU1 because win32_Processor begins
counting CPUs with 0, and although a computer always has a CPU0, it does not always
have a CPU1. In this script, you’re only trying to determine the type of CPU running on
the machine, so it isn’t necessary to identify all CPUs on the machine.

Worker and Output Information

The first part of the script declared the variables to be used in the script, and the sec
ond part of the script assigned values to some of the variables. In the next section, you
use those variables in an If…Then…ElseIf construction to make a decision about the
type of CPU installed on the computer.

The Worker and Output information section of the CPUType.vbs script is listed here:

If objProcessor.Architecture = 0 Then
WScript.Echo “This is an x86 cpu."

ElseIf objProcessor.Architecture = 1 Then
WScript.Echo “This is a MIPS cpu."

ElseIf objProcessor.Architecture = 2 Then
WScript.Echo “This is an Alpha cpu."

ElseIf objProcessor.Architecture = 3 Then
WScript.Echo “This is a PowerPC cpu."

ElseIf objProcessor.Architecture = 6 Then
WScript.Echo “This is an ia64 cpu."

Else
WScript.Echo “Can not determine cpu type."

End If

To write a script like this, you need to know how win32_Processor hands back infor
mation so that you can determine what a 0, 1, 2, 3, or 6 means. By containing that
information in an If…Then…ElseIf construct, you can translate the data into useful
information.

The first two lines listed in the preceding script work just like a normal If…Then state
ment. The line begins with If and ends with Then. In the middle of the If…Then lan
guage is the statement you want to evaluate. So, if the objProcessor returns a zero when
asked about the Architecture, you know the CPU is an x86, and you use WScript.Echo
to print out that data.

If, on the other hand, objProcessor returns a 1, you know that the CPU type is a MIPS.
By adding into the ElseIf statements the results of your research into return codes for
WMI CPU types, you allow the script to handle the work of finding out what kind of
CPU your servers are running. After you’ve used all the ElseIf statements required to
parse all the possible return codes, you add one more line to cover the potential of an
unexplained code, and you use Else for that purpose.

54 Part 1 Covering the Basics
Quick Check

Q. How many ElseIf lines can be used in a script?

A. As many ElseIf lines as are needed.

Q. If more than one or two ElseIf lines are necessary, is there another construct that
would be easier to use?

A. Yes. Use a Select Case type of structure.

Q. What is the effect of using strComputer = "." in a script?

A. The code strComputer is shorthand that means the local computer the script is
executing on. It is used with WMI.

If…Then…Else
It is important to point out here that you can use If…Then…Else without the interven
ing ElseIf commands. In such a construction, you give the script the ability to make a
choice between two options.

Just the Steps

� To use If…Then…Else

1. On a new line in the script, type If some condition Then.

2. On the next line, enter the command you want to invoke.

3. On the next line, type Else.

4. On the next line, type the alternate command you want to execute when the condition is
not true.

5. On the next line, type End If.

The use of If…Then…Else is illustrated in the following code:

Option Explicit

On Error Resume Next

Dim a,b,c,d

a = 1

b = 2

c = 3

d = 4

If a + b = d Then

WScript.Echo (a & “ + “ & b & “ is equal to “ & d)
Else

WScript.Echo (a & “ + “ & b & “ is equal to “ & c)
End If

Chapter 3 Adding Intelligence 55
In the preceding IfThenElse.vbs script, you declare your four variables on one line. You
can do this for simple scripts such as this one. It can also be done for routine variables
that are associated with one another, such as objWMIService and objProcessor from your
earlier script. The advantage of putting multiple declarations on the same line is that it
makes the script shorter. Although this does not really have an impact on performance,
it can at times make the script easier to read. You’ll need to make that call—does mak
ing the script shorter make the script easier to read, or does having each variable on a
separate line with individual comments make the script easier to read?

When you do the WScript.Echo command, you’re using a feature called concatenation,
which puts together an output line by using a combination of variables and string text.
Notice that everything is placed inside the parentheses and that the variables do not go
inside quotation marks. To concatenate the text into one line, you can use the ampersand
character (&). Since concatenation does not automatically include spaces, you have to
put in the appropriate spaces inside the quotation marks. By doing this, you can include
a lot of information in the output. This is one area that requires special attention when
you’re modifying existing scripts. You might need to change only one or two variables in
the script, but modifying the accompanying text strings often requires the most work.

Select Case
When I see a Select Case statement in a VBScript, my respect for the script writer goes
up at least one notch. Most beginning script writers can figure out the If…Then state
ment, and some even get the If…Then…Else construction down. However, few master
the Select Case construction. This is really a shame, because Select Case is both elegant
and powerful. Luckily for you, I love Select Case and you will be masters of this con
struction by the end of this chapter!

Just the Steps

� To use Select Case

1. On a new line in the script, type Select Case and a variable to evaluate.

2. On the next line, type Case 0.

3. On the next line, assign a value to a variable.

4. One the next line, type Case 1.

5. On the next line, assign a value to a variable.

6. On the next line, type End Select.

In the following script, you again use WMI to obtain information about your computer.
This script is used to tell us the role that the computer plays on a network (that is,
whether it’s a domain controller, a member server, or a member workstation). You
need to use Select Case to parse the results that come back from WMI, because the

56 Part 1 Covering the Basics
answer is returned in the form of 0, 1, 2, 3, 4, or 5. Six options would be too messy for
an If…Then…ElseIf construction. The text of computerRoles.vbs is listed here:

Option Explicit

On Error Resume Next

Dim strComputer

Dim wmiRoot

Dim wmiQuery

Dim objWMIService

Dim colComputers

Dim objComputer

Dim strComputerRole

strComputer = “."

wmiRoot = “winmgmts:\\” & strComputer & “\root\cimv2"

wmiQuery = “Select DomainRole from Win32_ComputerSystem"

Set objWMIService = GetObject(wmiRoot)

Set colComputers = objWMIService.ExecQuery _

(wmiQuery)
For Each objComputer In colComputers

Select Case objComputer.DomainRole
Case 0

strComputerRole = “Standalone Workstation"
Case 1

strComputerRole = “Member Workstation"
Case 2

strComputerRole = “Standalone Server"
Case 3

strComputerRole = “Member Server"
Case 4

strComputerRole = “Backup Domain Controller"
Case 5

strComputerRole = “Primary Domain Controller"
End Select
WScript.Echo strComputerRole

Next

Header Information

The Header information section of computerRoles.vbs is listed in the next bit of code.
Notice that you start with the Option Explicit and On Error Resume Next statements,
which are explained earlier in this chapter and in detail in Chapter 1. Next, you declare
seven variables that are recycled from the CPUType.vbs script discussed in the previ
ous section. The variables strComputer, wmiRoot, and objWMIService are exactly the
same as those used in CPUType.vbs.

WmiQuery is, however, a different variable. You’ll use it in the Reference information
section in which you assign a WMI query string to it. By declaring a variable and listing
it separately, you can change the WMI query without having to rewrite the entire script.

ObjWMIService is used to hold your connection to WMI, and the name of colComputers
is actually a little misleading. ColComputers sounds like it would hold a collection of
computer names or objects, but in reality it holds the domain roles that come back. It

Chapter 3 Adding Intelligence 57
too is a recycled variable name, but as long as you know what it does, you’ll be fine.
StrComputerRole holds the friendly description of the actual computer role and is used
by WScript.Echo to print out the results of your script. ObjComputer is used simply to
count through the results and is also a recycled variable name.

Option Explicit

On Error Resume Next

Dim strComputer

Dim wmiRoot

Dim wmiQuery

Dim objWMIService

Dim colComputers

Dim objComputer

Dim strComputerRole

Reference Information

The Reference information section assigns values to many of the variables named in
the Header information part of ComputerRoles.vbs. ComputerRoles.vbs is a very envi
ronmentally friendly script because so much of it is recycled! StrComputer, wmiRoot,
and objWMIService are all recycled from earlier scripts. The Reference information sec
tion of the script is listed here:

strComputer = “."

wmiRoot = “winmgmts:\\” & strComputer & “\root\cimv2"

wmiQuery = “Select DomainRole from Win32_ComputerSystem"

Set objWMIService = GetObject(wmiRoot)

Set colComputers = objWMIService.ExecQuery _

(wmiQuery)

There are two variables that are unique to this script, the first of which is wmiQuery. In
the ListHardDrives script, you embedded the WMI query in the GetObject command,
which makes for a long line. By bringing Query out of the GetObject command and
assigning the query the wmiQuery variable, you make the script easier to read and
modify in the future. Next, you use the colComputers variable and assign it to what
happens when you actually execute the WMI query.

Quick Check

Q. How is Select Case implemented?

A. Select Case begins with the Select Case command and a variable to be evalu
ated. However, it is often preceded by a For Each statement.

Q. How does Select Case make decisions?

A. Select Case is used to parse the results that come back from a query.

Q. What is the advantage of assigning a WMI query to a variable?

A. It provides the ability to easily use the VBScript to query additional information
from WMI.

58 Part 1 Covering the Basics
Worker and Output Information

As mentioned earlier, WMI often returns information in the form of a collection (we
talked about this in Chapter 2), and to work your way through a collection, you need to
use the For Each…Next command structure to pull out specific information. In the
Worker information section of ComputerRoles.vbs, you begin with For Each. As seen in
the next script, for each item that exists in the collection named colComputers, you’re
going to use Select Case to evaluate it. Examine the following Select Case statement and
notice that the Select Case command begins with specifying where the information
comes from—which in this case is the DomainRole portion of the variable objComputer.
Here is the Worker information and the Output information part of the script:

For Each objComputer In colComputers
Select Case objComputer.DomainRole

Case 0
strComputerRole = “Standalone Workstation"

Case 1
strComputerRole = “Member Workstation"

Case 2
strComputerRole = “Standalone Server"

Case 3
strComputerRole = “Member Server"

Case 4
strComputerRole = “Backup Domain Controller"

Case 5
strComputerRole = “Primary Domain Controller"

End Select
WScript.Echo strComputerRole

Next

To find out how the DomainRole field is structured, you need to reference the Platform
SDK for Microsoft Windows Server 2003. Once you do that, you find the value descrip
tions shown in Table 3-1.

Table 3-1 WMI Domain Roles from Win32_ComputerSystem

Value Meaning

0 Standalone Workstation

1 Member Workstation

2 Standalone Server

3 Member Server

4 Backup Domain Controller

5 Primary Domain Controller

Chapter 3 Adding Intelligence 59
The first line of the Select Case command actually has Select Case in it and points to the
part of the connection that has the information we need. Each successive statement is
in the form shown here:

Case 0
strComputerRole = “Standalone Workstation”

The case that is evaluated is the form that comes back from the Select Case part of the
construct. The strComputerRole = “Standalone Workstation” code is our assignment to
a new variable. You use strComputerRole to echo out the role of the computer in the
domain after you use End Select for the Select Case construction.

You end the Select Case construction with End Select, similarly to the way you ended
the If…Then statement with End If. After you use End Select, you use the
WScript.Echo command to send the value of strComputerRole out to the user. Remem
ber that the entire purpose of the Select Case construction in ComputerRoles.vbs is to
find and assign the DomainRole value to the strComputerRole variable. After this is
accomplished, you use the Next command to feed back into the For Each loop used
to begin the script.

Summary
In this chapter, you added decision making to your tool set by using two basic con
structions: If…Then and Select Case. You also looked at two variations on the basic
theme of If…Then: If…Then…Else and If…Then…ElseIf. The If…Then…ElseIf con
struction allows the evaluation of three or more situations but can get cumbersome and
hard to read. For situations that require the evaluation of more than four parameters, it
is almost always easier to use Select Case. Because we were looking at If…Then and
Select Case, I also threw in the concept of intrinsic constants such as vbCrLf, which can
be used to format output by starting a new line. You also looked at using variables to
streamline WMI queries and connection strings.

Quiz Yourself
Q. If…Then requires the condition to be evaluated to be placed where?

A.€ If…Then requires the condition to be evaluated to be contained within the words
If…Then.

Q. To evaluate two conditions, what construction would you use?

A. To evaluate two conditions, you would use If…Then…Else.

Q. How do you end an If…Then…Else construction?

A. You end an If…Then…Else construction with the words End If.

60 Part 1 Covering the Basics
Q. What is an intrinsic constant?

A.€ An intrinsic constant is a constant that is built into VBScript and therefore does not
require assignment of a specific value prior to use.

Q. To evaluate three conditions, what construction can be used?

A. To evaluate three conditions, you can use either If…Then…ElseIf or Select Case.

Q.€ If you have four or more conditions to evaluate, why is it better to use Select Case in
most instances?

A.€ If you have four or more conditions to evaluate, you should use Select Case because
it is usually more compact and much easier to read and maintain.

On Your Own

Lab 5 Modifying CPUType.vbs
In this lab, you will modify CPUType.vbs so that it uses a Select Case format instead of
multiple If…Then…ElseIf statements.

Lab Instructions

1. Open CPUType.vbs and save it as lab5.vbs.

2. Turn off On Error Resume Next by commenting out the line.

3.	 Turn the If…Then line into a Select Case statement. The only element you must
keep out of this line is objProcessor.Architecture because it is hard to type. When
you are finished, your Select Case line looks like the following:

Select Case objProcessor.Architecture

4.	 Start your case evaluation. If objProcessor.Architecture = 0, you know that the pro
cessor is an x86. So your first case is Case 0. That is all you put on the next line.
It looks like this:

Case 0

5. Leave the WScript.Echo line alone.

6.	 ElseIf objProcessor.Architecture = 1 becomes Case 1, which is an MIPS CPU. Delete
the entire ElseIf line and enter Case 1.

7.	 Leave the WScript.Echo line alone.

ElseIf objProcessor.Architecture = 2 becomes simply Case 2, as you can see here:

Case 2

Up to this point, your Select Case configuration looks like the following:

Chapter 3 Adding Intelligence 61
Select Case objProcessor.Architecture
Case 0

WScript.Echo “This is an x86 cpu."
Case 1

WScript.Echo “This is a MIPS cpu."
Case 2

WScript.Echo “This is an Alpha cpu.”

8. Modify the “ElseIf objProcessor.Architecture = 3 Then” line so that it becomes Case 3.

9. Leave the WScript.Echo line alone.

The next case is not case 4 but rather case 6, because you modify the following
line: “ElseIf objProcessor.Architecture = 6 Then”. The Select Case construction now
looks like the following:

Select Case objProcessor.Architecture
Case 0

WScript.Echo “This is an x86 cpu."
Case 1

WScript.Echo “This is a MIPS cpu."
Case 2

WScript.Echo “This is an Alpha cpu."
Case 3

WScript.Echo “This is a PowerPC cpu."
Case 6

WScript.Echo “This is an ia64 cpu.”

10.	 You have one more Case to evaluate, and it will take the place of the Else com
mand, which encompasses everything else that has not yet been listed. You imple
ment Case Else by changing the Else to Case Else.

11. Leave the line WScript.Echo “Can not determine cpu type” alone.

12.	 Change End If to End Select. Now you’re finished with the conversion of
If…Then…ElseIf to Select Case.

13. Save the file and run the script.

Lab 6 Modifying ComputerRoles.vbs
In this lab, you’ll modify ComputerRoles.vbs so that you can use it to turn on DHCP on
various workstations.

Scenario

Your company’s network was set up by someone who really did not understand DHCP.
In fact, the people who set up the network probably could not even spell DHCP, and
as a result every workstation on the network is configured with a static IP address. This
was bad enough when the network only had 100 workstations, but now the network
has grown to over 300 workstations in the last couple of years. The Microsoft Excel

62 Part 1 Covering the Basics
spreadsheet that used to keep track of the mappings between computer names and IP
addresses is woefully out of date, which in the past month alone has resulted in nearly
30 calls to the help desk that were traced back to addressing conflicts. To make matters
worse, some of the helpful administrative assistants have learned to change the last
octet in TCP/IP properties, which basically negates any hope of ever regaining a man-
aged network. Your task, if you should choose to accept it, is to create a script (or
scripts) that will do the following:

■� Use WMI to determine the computer’s role on the network and to print out the
name of the computer, the domain name (if it is a member of a domain), and the
user that belongs to the computer.

■� Use WMI to enable DHCP on all network adapters installed on the computer that
use TCP/IP.

Your research has revealed that you can use Win32_ComputerSystem WMI class to
obtain the information required in the first part of the assignment.

Part A

1. Open up the ComputerRoles.vbs file and save it as lab6a.vbs.

2.	 Comment out On Error Resume Next so that you will receive some meaningful
feedback from the WSH run time.

3.	 Dim new variables to hold the following items:

❑ strcomputerName

❑ strDomainName

❑ strUserName

4.	 Modify wmiQuery so that it returns more than just the DomainRole from
Win32_ComputerSystem. Hint: change DomainRole to a wildcard such as *.

wmiQuery = “Select DomainRole from Win32_ComputerSystem”

The new line looks like this:

“Select * from Win32_ComputerSystem”

5.	 Because colComputers is a collection, you can’t directly query it. You’ll need to use
For Each Next to give yourself a single instance to work with. Therefore, the
assignment of your new variables to actual items will take place inside the For
Each Next loop. Assign each of your new variables in the following manner:

❑ strComputerName = objComputer.name

❑ strDomainName = objComputer.Domain

❑ strUserName = objComputer.UserName

Chapter 3 Adding Intelligence 63
6.	 After the completion of the Select Case statement (End Select) but before the Next
command at the bottom of the file, use WScript.Echo to return the four items
required by the first part of the lab scenario. Use concatenation (by using the
ampersand) to put the four variables on a single line. Those four items are
declared as follows:

❑ Dim strComputerRole

❑ Dim strcomputerName

❑ Dim strDomainName

❑ Dim strUserName

7. Save the file, and run it.

8.	 Modify the script so that each variable is returned on a separate line. Hint: use the
intrinsic constant vbCrLf and the ampersand to concatenate the line. It will look
something like this:

strComputerRole & vbCrLf & strComputerName

9. Save and run the file.

10. Use WScript.Echo to add and run a complete message similar to the following:

WScript.Echo(“all done”)

11. Save and run the file.

Part B

1. Open up the ComputerRoles.vbs file and save it as lab6b.vbs.

2.	 Comment out “On Error Resume Next” so that you will receive some meaningful
feedback from the WSH run time.

3.	 Dim new variables to hold the new items required for this script. Hint: You can
rename the following items:

❑ Dim colComputers

❑ Dim objComputer

❑ Dim strComputerRole

4.	 The new variables are listed here:

❑ colNetAdapters

❑ objNetAdapter

❑ DHCPEnabled

5. Modify the wmiQuery so that it looks like the following:

wmiQuery = “Select * from Win32_NetworkAdapterConfiguration where IPEnabled=TRUE”

64 Part 1 Covering the Basics
6. Change the following Set statement:

Set colComputers = objWMIService.ExecQuery (wmiQuery)

Now, instead of using colComputers, the statement uses colNetAdapters. The line
will look like the following:

Set colNetAdapters = objWMIService.ExecQuery (wmiQuery)

7. Delete the Select Case construction. It begins with the following line:

Select Case objComputer.DomainRole

And it ends with End Select.

8. You should now have the following:

For Each objComputer In colComputers
WScript.Echo strComputerRole

Next

9. Change the For Each line so that it reads as follows:

For Each objNetAdapter In colNetAdapters

10.	 Assign DHCPEnabled to objNetAdapter.EnableDHCP(). You can do it with the fol
lowing:

DHCPEnabled = objNetAdapter.EnableDHCP()

11.	 Use If…Then…Else to decide whether the operation was successful. If DHCP is
enabled, DHCPEnabled will be 0, and you want to use WScript.Echo to echo out
that the DHCP is enabled. The code looks like the following:

If DHCPEnabled = 0 Then
WScript.Echo “DHCP has been enabled.”

12.	 If DHCPEnabled is not set to 0, the procedure does not work. So you have your
Else condition. It looks like the following:

Else
WScript.Echo “DHCP could not be enabled."

End If

13.	 Conclude the script by using the Next command to complete the If…Then…Next
construction. You don’t have to put in a closing echo command, because you’re
getting feedback from the DHCPEnabled commands.

14. Save and run the script.

4 The Power of Many

In this chapter, you’ll look at two very important concepts: passing arguments and
working with arrays.

Before You Begin
To complete this chapter, you’ll need to be familiar with the following concepts:

■ The For Each command

■ The Do Until command

■ The For…Next command

After completing this chapter you will be familiar with the following:

■ Use command-line arguments

■ Use a text file in place of arguments

■ Create a useful error message when arguments are missing

■ Use named arguments

■ Create an array

Passing Arguments
Passing arguments might sound like a technique to help people get along, but in reality
it’s a way to get additional information into a script. Command-line arguments are
words or phrases that follow the name of the script when it is run from the command
line. In this section, you’ll look at two methods for obtaining runtime information: com
mand-line arguments and text file data. You can use these two sources of information
to modify the way a script runs. Let’s first look at command-line arguments and see
how to change the behavior of a script.

Command-Line Arguments
Command-line arguments provide you with the ability to modify the execution of a
script prior to running it.
65

66 Part 1 Covering the Basics
Just the Steps

� To implement command-line arguments
1. On a new line, assign a variable to WScript.Arguments.Item(0).

2. Use the variable assigned to WScript.Arguments.Item(0) as a normal variable.

In the Ping.vbs script, which you examined in Chapter 2, “Getting in the Loop,” and
which appears in the next code listing, you use the variable strMachines to hold the
target of the ping command. To ping other computers on the network, you have to
modify the values within the quotation marks (s1 and s2 in this instance). Modifying
the values might be an acceptable solution when you always ping the same computers,
but when you want the flexibility of the normal command-line ping, a better script is
clearly called for—enter the command-line argument.

strMachines = “s1;s2"

aMachines = Split(strMachines, “;”)

For Each machine In aMachines

Set objPing = GetObject(“winmgmts:”)._
ExecQuery(“select * from Win32_PingStatus where address = ’” _

& machine & “‘“)
For Each objStatus In objPing

If IsNull(objStatus.StatusCode) Or objStatus.StatusCode<>0 Then
WScript.Echo(“machine “ & machine & “ is not reachable”)

Else
WScript.Echo(“reply from “ & machine)

End If
Next

Next

Making the Change

To modify the ping.vbs script to accept multiple computer names prior to running, you
need to make two modifications:

■ In the first line, delete “s1;s2”.

■ After strMachines =, add WScript.Arguments.Item(0).

That’s all you need to do. The new script, named PingMultipleComputers.vbs, is
shown here:

strMachines = WScript.Arguments.Item(0)
aMachines = Split(strMachines, “;”)
For Each machine In aMachines

Set objPing = GetObject(“winmgmts:”)._

Chapter 4 The Power of Many 67
ExecQuery(“select * from Win32_PingStatus where address = ’"_
& machine & “‘“)

For Each objStatus In objPing
If IsNull(objStatus.StatusCode) Or objStatus.StatusCode<>0 Then

WScript.Echo(“machine “ & machine & “ is not reachable”)
Else

WScript.Echo(“reply from “ & machine)
End If

Next
Next

Running from the Command Prompt

To run the script, you go to the command prompt and type the following:

Cscript pingMultipleComputers.vbs s1;s2;s3

You use this syntax because of the Split command you used on the second line, which
expects a “;” to separate the computer names. If you change the “;” on the second line
into a “,” as seen in the next code line, you can use the comma character to separate
the machine names and have a slightly more orthodox command.

aMachines = Split(strMachines, “,”)

Once this modification is made, the command-line syntax looks like the following:

Cscript pingMultipleComputers.vbs s1,s2,s3

Quick Check

Q. To implement command-line arguments, what action needs to be performed?

A. Assign a variable to the command WScript.Arguments.Item(0).

Q. What is the function of the Split command?

A. The Split command can be used to parse a line of text based on a delimiter of
your choosing.

No Arguments?

If a script tries to read unnamed arguments not provided by the user, you get a
Microsoft Visual Basic Script runtime error that makes a rather vague reference to “sub-
script out of range.” This error is illustrated in Figure 4-1.

68 Part 1 Covering the Basics
Figure 4-1 When a VBScript tries to read an unnamed argument that was not supplied, you get a
“subscript out of range” error message

If another administrator is running your script and gets the “subscript out of range”
error, that administrator will have a hard time determining the cause of the message. A
quick search at http://support.microsoft.com returns, maybe, 25 support articles refer
encing “subscript out of range,” but none of them tell you that the VBScript requires
command-line arguments. It behooves you to make sure users of your VBScripts are
not presented with such unfriendly error messages. Let’s look at handling that now.

Creating a Useful Error Message

When you supply command-line arguments for your scripts, the VBScript run time
(called the Windows Scripting Host, or WSH for short) stores the arguments in an area
of memory that is referenced by the WshArguments collection. This is cool because this
storage location allows you to see how many command-line arguments are in there.
Why is this important? It’s important because when you know where the arguments are
stored, and you know that they’re kept in a collection, you can count the contents of
that collection. For your script to run properly, there must be at least one argument
supplied on the command line. You can make sure there is at least one argument by
using the WScript.Arguments.Count method and putting it in an If…Then…Else con
struction. If the value is equal to zero, use WScript.Echo to send a message to the user
that at least one argument is required. Once you make these modifications, ping-
MultipleComputers.vbs looks like the following:

If WScript.Arguments.Count = 0 Then
WScript.Echo(“You must enter a computer To ping”)

Else
strMachines = WScript.Arguments.Item(0)
aMachines = Split(strMachines, “,”)
For Each machine In aMachines

Set objPing = GetObject(“winmgmts:”)._
ExecQuery(“select * from Win32_PingStatus where address = ’"_

& machine & “‘“)
For Each objStatus In objPing

If IsNull(objStatus.StatusCode) Or objStatus.StatusCode<>0 Then
WScript.Echo(“machine “ & machine & “ is not reachable”)

Else
WScript.Echo(“reply from “ & machine)

Chapter 4 The Power of Many 69
End If
Next

Next
End If

Quick Check

Q. What is a possible cause of the “subscript out of range” error message in the pre-
ceding script?

A. The error message could be caused by trying to run a VBScript that requires
command-line arguments without supplying them.

Q. List one method of creating useful error messages to trap the “subscript out of
range” error.

A. You can use an If…Then…Else construct to test WScript.Arguments.Count for
the presence of a command-line argument. If none is present, you can then use
the Else part to display a meaningful error to the user. In addition, it is important
to note, you cannot always rely on the user putting in meaningful data. To solve
this problem, you must parse the input data to ensure it meets the criteria for
correct input.

Using Multiple Arguments
In pingMultipleComputers.vbs, you use only one argument, which you assigned to the
variable strMachines by using this command:

strMachines = WScript.Arguments.Item(0)

When you look at the command, you see that it’s made up of several parts:

Variable = WScript.Arguments.Item Item #

strMachines = WScript.Arguments.Item (0)

If you need to use multiple arguments or multiple items (whichever term you prefer),
you simply add another line and increment the item number contained within the
parentheses.

Just the Steps

� To implement multiple command-line arguments
1. On a new line, assign a variable to WScript.Arguments.Item(0).

2. On a new line, assign a variable to WScript.Arguments.Item(1).

3. Use the variable from step 1 as you would any variable.

4. Use the variable from step 2 as you would any variable.

70 Part 1 Covering the Basics
Remember that the index values for the WScript.Arguments collection are zero-based,
which means that the first item counted will be zero, as used in the PingMultipleCom
puters script. The following script (ArgComputerService.vbs) illustrates how you han
dle zero-based index values. In argComputerService, you use two arguments. The first
one is a computer name, and the second argument is the name of a service. To run this
script, type the following command:

Cscript argComputerService.vbs computer1 lanmanserver

By using this command, the status of the lanmanserver server service on computer1 is
returned to you. Lanmanserver is the name of the server service when it is registered
in the registry. This is the name you must use when running the following script, Arg-
ComputerService.

Option Explicit

On Error Resume Next

Dim computerName

Dim serviceName

Dim wmiRoot

Dim wmiQuery

Dim objWMIService

Dim colServices

Dim oservice

computerName = WScript.Arguments(0)

serviceName = WScript.Arguments(1)

wmiRoot = “winmgmts:\\” & computerName & “\root\cimv2"

Set objWMIService = GetObject(wmiRoot)

wmiQuery = “Select * from Win32_Service” &_

“ where name = “ & “‘“ & ServiceName & “‘"
Set colServices = objWMIService.ExecQuery _

(wmiQuery)
For Each oservice In colServices

WScript.Echo (serviceName) & “ Is: “&_
oservice.Status & (“ on: “) & computerName

Next

Header Information

In the ArgComputerService script is the standard Header information. It begins with
Option Explicit, which tells VBScript that you’re going to specifically name all the vari
ables you’ll be using. If you fail to list a variable here, you get an error from VBScript.
The variables used in argComputerService.vbs are listed in Table 4-1.

Table 4-1 Variables used in ArgComputerService.vbs

Variable name Use

computerName	 Holds the first command-line argument

Holds the second command-line argumentserviceName

Chapter 4 The Power of Many 71
Table 4-1 Variables used in ArgComputerService.vbs

Variable name Use

wmiRoot Holds the namespace of WMI

wmiQuery Holds the query issued to WMI

objWMIService Holds the connection into WMI

colServices Holds the result of the WMI query

oservice Holds each service in colServices as you walk through the collection

Reference Information

In the Reference information section, you assign variable names to specific values to
make the script work properly. By changing reference assignments, you can modify
the script to perform other actions. The variable computerName is used to hold the first
command-line argument. If the first item entered on the command line is not the name
of a valid computer on the network, the script fails. In this particular script, you haven’t
taken steps to ensure the script will end normally. The variable serviceName is used to
hold the value of the second item from the command line. In the same way that com
puterName must be the name of a valid computer on the network, serviceName must
be the name of a valid installed service on the target computer. The service name is not
the same as the display name that is used in the services application, rather it is the
name assigned within the registry when the service is created. The script could be
modified to provide a list of installed services on the target machine and then allow the
user to pick one of those services.

Worker and Output Information

Once again, the Worker and Output information sections of the script are quite simple:

For Each oservice In colServices
WScript.Echo (serviceName) & “ Is: “ & _
oservice.Status & (“ on: “) & computerName

Next

Because WMI returns service information in a collection (even when the collection has
only a single value), you must use a For Each Next loop to walk through each item in
the collection to obtain your information. A For Each Next loop is the engine that drives
your script. The variable colServices contains every service that was returned by the
wmiQuery. The variable oservice holds each individual service and is used as the
“hook” for asking for certain information via WMI. In this instance, you’re interested
only in the status information, and so you echo out the oservice.status information. If

72 Part 1 Covering the Basics
you modified the wmiQuery variable, you’d be able to echo any of the information that
is held within the Win32_Service part of WMI.

See Also To find out more information about Win32_Service, search in the WMI plat-
form SDK.

The only other interesting aspect of the Worker and Output information sections of the
script is the use of concatenation, which was talked about in Chapter 3, “Adding Intel
ligence.” Notice how the ampersand character (&) is used to glue two parts of the out-
put line together. The other use of the ampersand is in conjunction with the underscore
character (_). The underscore character signals to VBScript that the line is continued
onto the next line. The ampersand character is often used with the line continuation
character because the underscore breaks up the long line, and the ampersand is used
to glue pieces together. Because a line might be in parts anyway, the line continuation
character is a convenient place for breaking the script. The continuation character is
primarily used to make a script more readable (both on screen and on paper).

Earlier in this section, you learned that ArgComputerService requires two command-
line arguments: the first must be the name of a target computer, and the second must
be the name of a valid service on the target computer. How would the user of the Arg-
ComputerService script know about this requirement? If the script failed, the user could
open the script in Microsoft Notepad to see which argument is required. A second solu
tion might be to modify the script so that when it failed, it would echo the correct
usage to the user. There is, however, a third choice—the use of named arguments—
which is the subject of the next section.

Tell Me Your Name
One of the rules I learned as a network administrator and as a consultant was to keep
things simple. I’d therefore use short computer names and basic network designs as
much as possible, because at some point, I’d be using ping.exe, tracert.exe,
nslookup.exe, and so forth from the command line. As you know, I hate to type, so “the
shorter the better” is my motto. This being the case, I am in somewhat of a quandary with
this next section, because it will make the command-line implementation longer.

Reasons for Named Arguments

Despite additional typing, there are valid reasons to use named arguments. One of the
biggest reasons is the way VBScript handles unnamed arguments. For instance, in the
ArgComputerService script, you must use command-line syntax such as this:

Cscript argComputerService.vbs computer1 lanmanserver

Chapter 4 The Power of Many 73
Suppose you happen to forget in which order the commands get entered, and you type
the following:

Cscript argComputerService.vbs lanmanserver computer1

The script would fail unless you happen to have a server named lanmanserver on your
network and unless a service named computer1 is running on lanmanserver. Don’t
laugh! I’ve seen stranger happenings. (For example, static DNS entries can point to the
wrong machine. A ping would in fact work—it would just go to the wrong computer.
Those are always fun.) Therefore, in keeping with my philosophy of trying to make
things simple, let’s explore how to create named arguments. You’ll thank me, your
boss will thank me, and even your mom will thank me (because stuff will run so well,
and you’ll be able to make it home for the holidays).

Named arguments can be used to make the order of command-line arguments irrele
vant. This can make correct usage of running the script easier, especially when three or
more distinct arguments are being used with a script that does not intuitively suggest a
particular order.

Just the Steps

� Implementing Named Arguments
1. On a new line, use the Set command to assign a variable to WScript.Arguments.Named.

2. On the next line, assign a variable to the one defined in step 1 and define the name to
be used for the first argument.

3. On the next line, assign a variable to the one defined in step 1 and define the name to
be used for the second argument.

4. Use the variables defined in steps 2 and 3 as you would regular variables.

Making the Change to Named Arguments

To modify the previous script to require named arguments instead of unnamed argu
ments, you need to modify only four lines of code. The first change is to add an addi
tional variable that will be used to hold the named arguments from the command line.
The second modification will take place in the references section, in which you will
assign the new variable to the named arguments collection, and the last two changes
will take place as you assign the variables to hold the server name and the service
names in the script. The revised script follows:

Option Explicit

On Error Resume Next

Dim computerName

Dim ServiceName

Dim wmiRoot

74 Part 1 Covering the Basics
Dim wmiQuery

Dim objWMIService

Dim colServices

Dim oservice

Dim colNamedArguments

Set colNamedArguments = WScript.Arguments.Named

computerName = colNamedArguments(“computer”)

serviceName = colNamedArguments(“service”)

wmiRoot = “winmgmts:\\” & computerName & “\root\cimv2"

Set objWMIService = GetObject(wmiRoot)

wmiQuery = “Select * from Win32_Service” &_

“ where name = “ & “‘“ & ServiceName & “‘"
Set colServices = objWMIService.ExecQuery _

(wmiQuery)
For Each oservice In colServices

WScript.Echo (servicename) & “ Is: “&_
oservice.status & (“ on: “) & computerName

Next

The four lines that were changed in the preceding script are listed here:

Dim colNamedArguments

Set colNamedArguments = WScript.Arguments.Named

computerName = colNamedArguments(“computer”)

serviceName = colNamedArguments(“service”)

Because you added a variable for named arguments in the Reference section, you’ll
need to Dim that variable in the Header section. Declare colNamedArguments in the
Header information section of the script. In the next line, you make colNamed-
Arguments equal to the named arguments by using the Set command. You now give
the names to the named arguments by using the same variables computerName and
serviceName. This time, instead of simply referencing the WScript.Arguments element
by index number, you are referencing the WScript.Arguments element using the col-
NamedArguments variable. Instead of simply using a 0 or a 1, you tell VBScript the
name to expect from the command line.

Running a Script with Named Arguments

To supply data to a script with named arguments, you type the name of the script at the
command prompt and use a forward slash (/) with the name of the argument you are
providing, separated by a colon and the value you assign to the argument. The preced
ing script is named NamedArgCS.vbs, and it takes two arguments: computer and ser
vice. The command to launch this script is run against a computer named S2 and
queries the lanmanserver service on that machine:

cscript namedargcs.vbs /computer:s2 /service:lanmanserver

Chapter 4 The Power of Many 75
Quick Check

Q. What is one reason for using named arguments?

A. With named arguments, when you have multiple command-line arguments, you
don’t need to remember in which order to type the arguments.

Q. How do you run a script with named arguments?

A. To run a script with named arguments, you use a forward slash and then enter
the name of the argument. You follow this with a colon and the value you want
to use.

Working with Arrays
Since we have discussed collections, you might find it easy at this point to think of
arrays as collections that you create and can control. There are several cool aspects of
arrays; for example, you can populate them with information for later use in the script.
In addition, you can create an array dynamically during the execution of the script.
You’ll explore each of these concepts in this section.

Just the Steps

� To create an array
1. On a new line, use the Dim command to declare the name to use for the array.

2. Populate the array by assigning values to the name declared in the first line by using the
array command and enclosing the values in parentheses.

One way to create an array is to use the Dim command to declare a regular, or normal,
variable. You then use the variable to populate the array with computer names and use
a For Each…Next loop to walk through the array. Remember, an array is basically a col
lection, and you therefore need to use a For Each…Next loop to walk through it. The
following script creates an array with the names of three computers. The variable i is
used as a counter to allow you to walk through the collection. Since an array is zero-
based (that is, it begins counting at zero), you set i to an initial value of zero. Next, you
populate the array with your computer names, making sure to enclose the names in
quotation marks; and you use a comma to separate the values. The collection of com
puter names is placed inside the parentheses. You use a For Each…Next loop to walk
through and echo the computer names to the screen. You then increment the counter
i to the next number, and go back into the For Each…Next loop. This script, Basic-
Array.vbs, follows:

Option Explicit

On Error Resume Next

76 Part 1 Covering the Basics
Dim arComputer

Dim computer

Dim i

i = 0

arComputer = Array(“s1", “s2", “s3”)

For Each computer In arComputer

WScript.Echo(arComputer(i))
i = i+1

Next

Moving Past Lame Arrays
I will admit the previous script was pretty lame. But because the construction of an
array is very finicky, I wanted you to have a reference for the basic array (you will need
it for your labs).

In the next script (ArrayReadTxtFile.vbs), you open up a text file, parse it line by line,
and write the results into an array. You can use this line-parsing tactic later as a way to
feed information into a more useful script. Right now, all you’re doing with the array
after it is built is echoing its contents out to the screen.

Option Explicit

On Error Resume Next

Dim objFSO

Dim objTextFile

Dim arrServiceList

Dim strNextLine

Dim i

Dim TxtFile

Const ForReading = 1

TxtFile = “c\scripts\ServersAndServices.txt"

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objTextFile = objFSO.OpenTextFile _

(TxtFile, ForReading)
Do Until objTextFile.AtEndofStream

strNextLine = objTextFile.Readline
arrServiceList = Split(strNextLine , “,”)
WScript.Echo “Server name: “ & arrServiceList(0)
For i = 1 To UBound(arrServiceList)

WScript.Echo “Service: “ & arrServiceList(i)
Next

Loop
WScript.Echo(“all done”)admit

Header Information

The Header information section of your script incorporates the standard bill of fare.
You use Option Explicit to ensure all variables are specifically declared, which prevents
the misspelling of variable names during the development phase of the script. On Error

Chapter 4 The Power of Many 77
Resume Next is a rudimentary error suppression that tells VBScript to skip a line con
taining an error and proceed to the next line in the script. This is best turned off during
development. After using On Error Resume Next, you declare six variables and a con
stant. The first variable, objFSO, is used to hook the file system object (which allows
you to access files and folders from the script). The next variable, objTextFile, is used
as the connection to the text file itself. The variable arrServiceList is used to refer to the
array of services and servers that you build from the text file. The variable strNextLine
holds the text of the next line in the text file. The i variable is simply a counter that gets
incremented on each loop through the text file. The last variable is TxtFile. It holds the
location inside the file system that points to the specific text file with which you will
work. The constant ForReading is set to 1, which tells VBScript that you are going to
read a text file (as opposed to write to the file).

Option Explicit

On Error Resume Next

Dim objFSO

Dim objTextFile

Dim arrServiceList

Dim strNextLine

Dim i

Dim TxtFile

Const ForReading = 1

Reference Information

The Reference information section of the script is used to point certain variables to
their required values. The text file used as input into the array is defined with the vari
able TxtFile. By using a variable for input into ArrayReadTxtFile.vbs, you make chang
ing the location of the file easy. The ServersAndServices text file needs only to be
defined in this location, and the variable TxtFile is left untouched—wherever it might
be used within the script. You must first connect to FileSystemObject to be able to read
the text file. You do this by using the variable objFSO. You set objFSO equal to what
happens when you create the object Scripting.FileSystemObject. Once you know how
to talk to the File System Object, you define the variable objTextFile to be the result of
opening the TxtFile so that you can read it.

TxtFile = “c\scripts\ServersAndServices.txt"

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objTextFile = objFSO.OpenTextFile _

(TxtFile, ForReading)

Worker and Output Information

In the Worker and Output information section of ArrayReadTxtFile.vbs, you’re finally
going to settle down and do something worthwhile. To work with the array, you need
to implement some type of looping construction. This is where Do Until...Next excels.

78 Part 1 Covering the Basics
You defined objTextFile to be equal to opening the ServersAndServices text file so that
you could read the file. Since you can look inside and read the file by using objTextFile,
you now say that you’ll continue to read the file until you reach the end of the stream
of text. This is a most excellent use of Do Until…Next. What is the script going to do
until it reaches the end of the text file? It’s going to read each line and assign that line
of text to the variable strNextLine. After it’s made that assignment, it will look for com
mas and then split the text up into pieces that are separated by those commas. Each
piece of text will then be assigned to your array. You’re still using a single dimension
array. (A single dimension array is an array that has only one element.) Interestingly
enough, you’re actually creating a new array after you echo out the server names and
the services present in the text file. The cool part is that you can include as many ser
vices as you need to use by adding a comma and the service on the same line. Once
you go to another line in the text file, you have a new array.

The array portion of ArrayReadTxtFile.vbs is not really created until you get to the
Worker and Output information section of the script. In the Header information sec
tion, when you declared the variable arrServiceList, you really didn’t know whether it
was a regular variable or something else. This is why it was given the prefix arr—it sort
of looks like array (and requires less typing). You could have just as easily called it
arrayServiceList, but doing so would have made your script longer. When you use the
WScript.Echo command and the (0) and (i), VBScript knows you want to create an
array. The Worker and Output information sections of the script follow:

Do Until objTextFile.AtEndofStream
strNextLine = objTextFile.Readline
arrServiceList = Split(strNextLine , “,”)
WScript.Echo “Server name: “ & arrServiceList(0)
For i = 1 To UBound(arrServiceList)

WScript.Echo “Service: “ & arrServiceList(i)
Next

Loop

What Does UBound Mean?

Did you notice that I didn’t explain the For…Next construction embedded in the Do
Until Loop? The goal was to make ArrayReadTxtFile.vbs as flexible as possible, and
therefore I didn’t want to limit the number of services that could be input from the text
file. To make sure you echo through all the services that could be listed in the Servers-
AndServices.txt file, you need to use the For…Next loop to walk through the array. You
can find out how many times you need to do For…Next by using UBound. Think of
UBound as standing for the upper boundary of the array. As you might suspect, because
there is an upper boundary, there is also a lower boundary in the array, but because the
lower boundary is always zero, LBound isn’t needed in this particular script.

Chapter 4 The Power of Many 79
When you run ArrayReadTxtFile.vbs, the i counter in For i = 1 To UBound(arrService-
List) changes with each pass through the list of services. To track this progress, and to
illustrate how UBound works, I’ve modified the ArrayReadTxtFile.vbs script to echo
out the value of UBound each time you read a new line from the ServersAndServices
text file. The modified script is called ArrayReadTxtFileUBound.vbs, and its Worker
section follows:

Do Until objTextFile.AtEndofStream
boundary = UBound(arrServiceList)
WScript.Echo “upper boundary = “ & boundary
strNextLine = objTextFile.Readline
arrServiceList = Split(strNextLine , “,”)
WScript.Echo “Server name: “ & arrServiceList(0)
For i = 1 To UBound(arrServiceList)

WScript.Echo “Service: “ & arrServiceList(i)
Next

Loop

To track changes in the size of the upper boundary of the array by looking at the value
of UBound, it was necessary to assign the value of our new variable “boundary” after
the Do Until command but prior to entry into the For…Next construction. At this loca
tion in the script, the new line of text has been read from the ServersAndServices.txt
file, and the script will continue to do this until it reaches the end of the file.

Quick Check

Q. How did we declare an array in the previous example?

A. We declared a regular variable—you use the Dim command.

Q. How can the population of an array be automated?

A. You can automate populating an array by using the For…Next command.

Q. If you do not know in advance how many elements are going to be in the array,
how can you automate populating the array?

A. You can automate populating an array with an unknown number of elements by
using the For…Next command in conjunction with UBound.

Two-Dimensional Arrays
A two-dimensional array gives you the ability to store related information in much the
same way you would store it in a Microsoft Excel spreadsheet. To visualize a two-
dimensional array, it is helpful to think of a spreadsheet that contains both rows and
columns.

80 Part 1 Covering the Basics
Just the Steps

� To create an array
1. On a new line, use the Dim command to declare the name to use for the array, followed

by parentheses and the number of elements to be used for each dimension, separated
by a comma.

2. Populate the array by assigning values to the name declared in line 1 by using the array
name and associating a value with each element.

To create a two-dimensional array, include both dimensions when you declare the vari
able used for the array, as illustrated here:

Dim a (3,3)

All you’ve really done is include the extra dimension inside the parentheses. The Array
just listed contains two dimensions, each holding four elements for a total of 16 ele
ments. Each dimension of the array is separated by a comma within the parentheses.
Remember that the array begins numbering with a zero, and thus Dim a (3,3) states
that the array a has four rows numbered from zero to 3, and four columns numbered
from zero to 3.

The key points to remember about an array are that it resides in memory and can be
used to hold information that will be used by the script. With a two-dimensional array,
you have a matrix (not The Matrix—but a matrix nonetheless). Dim a (3,3) would look
like the matrix in Table 4-2.

Table 4-2 Two-dimensional array

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Each square in the array in Table 4-2 can hold a single piece of information. However,
by using concatenation (putting strings together by using the ampersand) or by manip
ulating the string in other ways, you can get quite creative with the array.

Mechanics of Two-Dimensional Arrays

In the next script (workWith2DArray.vbs), a two-dimensional array is created. The
script then populates each of the 16 elements with the string “Loop” concatenated with
the loop number. In this way, you can keep track of where you are within the matrix
as you echo out the value contained within the elements.

Chapter 4 The Power of Many 81
Option Explicit

Dim i

Dim j

Dim numLoop

Dim a (3,3)

numLoop = 0

For i = 0 To 3

For j = 0 To 3
numLoop = numLoop+1
WScript.Echo “i = “ & i & “ j = “ & j
a(i, j) = “loop “ & numLoop
WScript.Echo “Value stored In a(i,j) is: “ & a(i,j)

Next
Next

Let’s look at the script in a little more detail.

Header Information

The Header information section of the script follows the normal procedure of begin
ning with Option Explicit (which forces the declaration of each variable used in the
script by using the Dim command). Next, two variables (i and j) are declared that will
each be used to count from 0 to 3 within a For…Next construction. The variable
numLoop is used to keep track of the 16 passes that are required to work through all
16 elements contained in the array. The last item in the Header information section
of the WorkWith2DArray.vbs script specifically declares our two-dimensional array:
Dim a (3,3).

Reference Information

The Reference information section of our script consists of one line: numLoop = 0.
Because you use numLoop to keep track of how many loops are made through the
array, it is important to set it to zero. Later, you’ll reassign the value of numLoop to be
equal to its current value in the loop plus 1. By incrementing the numLoop counter,
you can easily know exactly where you are within the array.

Worker and Output Information

The Worker and Output information section of the script (shown in the next code list
ing) begins immediately with a pair of nested For…Next constructions. The reason for
nesting the For…Next in this section of the script is to have a separate value for both
the variable i and the variable j.

Using the For…Next Construction

Because the array was declared as Dim a (3,3) and you happen to know that the array
is zero-based, you use i = 0 to 3 in the For…Next loop, as shown in the first line of the
following script. You next increment the numLoop counter and echo the current values

82 Part 1 Covering the Basics
contained in the variables i and j. Once you know your location in the array, you
assign the word “loop” concatenated with the current value held in the numLoop
counter to the particular array element that is currently described by a(i,j). If, for
instance, the script is in its first loop, the value of i is 0 and the value of j is 0, and when
you get down to the WScript.Echo commands, the value of numLoop has already been
incremented. So, you would echo “i = 0 j = 0”. Look closely at the following script por
tion to make sure you understand what is happening in the first four lines:

For i = 0 To 3
For j = 0 To 3

numLoop = numLoop+1
WScript.Echo “i = “ & i & “ j = “ & j
a(i, j) = “loop “ & numLoop
WScript.Echo “Value stored In a(i,j) is: “ & a(i,j)

Next
Next

Assigning Values to Each Element

Once the loop counter (numLoop) is incremented, it’s time to assign a value to each
element within the array. Rather than typing a whole series of a(0,0) = “loop” & num-
Loop lines, you instead dynamically build the value of a(i,j) by using the two For…Next
loops. Thus, prior to assigning the value “loop” and numLoop to the array element, the
element is empty.

Tip To assign a value to an element within an array, you specify the element number, fol
lowed by the equal sign, and then specify the value. If, however, you use a For…Next loop, you
can in many instances automate the process.

After you assign values to the array, you use one final WScript.Echo command to echo
out the values that are contained within the array. This is where you’d do the actual
work if this were a real script. You close out the script with a pair of Next commands:
one for each For introduced earlier in the script.

Summary
In this chapter, you examined two basic concepts: passing command-line arguments
and working with arrays. These two vital tools are heavily utilized on a daily basis in
enterprise scripts. To make a script more flexible, for example, avoiding having to edit
a script just to enable it to run against various servers on the network, you use com
mand-line arguments. Arrays are used to make scripts more powerful, efficient, and
robust. By storing multiple values in memory, you avoid having to make multiple calls
to either the file system or to another source of information. Indeed, all you need to do
is store your configuration information within an array, and you’re ready to go.

Chapter 4 The Power of Many 83
Quiz Yourself
Q. What are the two categories WScript uses for arguments?

A. Two categories that WScript uses for arguments are named and unnamed.

Q. What is one consideration when using multiple unnamed command-line arguments?

A.	 When using multiple unnamed command-line arguments, the biggest consideration is
getting the arguments mixed up. For instance, you could be trying to ping a server
named S2 three times. But if you get the unnamed arguments mixed up, you might be
trying to ping a server named 3 S2 times.

Q. What is an advantage of named command-line arguments?

A.	 Named command-line arguments have the advantage of being easier on both the
scripter and the user. For instance, a /server:s2 means you’re aiming the command at
a server named s2, and a /numberTimes:3 means you want to perform the command
three times. It does not matter in which order you put the named arguments.

Q. Why would you want to bring input in from a text file?

A.	 Using a text file makes it easy to run the script against any number of servers. In addi
tion, because a text file does not require a command-line argument, script execution
can be fully automated.

Q. What is the advantage of an array?

A.	 An array provides convenient storage inside memory to control operation of a script.
It is like a collection that you have complete control over. It enables quick operation
(because it is in memory) and efficient programming.

On Your Own

Lab 7 Working with Passing Arguments
In this lab, you’ll work with passing arguments by modifying a script that uses WMI to
list all the services associated with a particular process on the machine. This is in fact
a very useful script. While we are at it, we will simplify the script a little to make it eas
ier to read.

Lab Instructions

1. Open the servicesProcess.vbs script and save it as lab7.vbs.

2. Add the Option Explicit command at the top of the script.

84 Part 1 Covering the Basics
3. Declare each variable used in the script. This would include the following:

Dim objIdDictionary

Dim strComputer

Dim objWMIService

Dim colServices

Dim objService

Dim colProcessIDs

Dim i

4.	 Save the script, and run it to ensure you have all the variables defined. If you
missed a variable, Option Explicit will cause the “variable is undefined” error and
list the line number containing the undefined variable.

5.	 Add a declaration for wmiRoot by adding Dim wmiRoot under the line that says
Dim colProcessIDs.

6. Under the line that says strComputer = ".", add the following:

wmiRoot = “winmgmts:\\” & strComputer & “\root\cimv2”

The preceding line shortens the following line:

Set objWMIService = GetObject(“winmgmts:” _
& “\\” & strComputer & “\root\cimv2”)

7.	 Edit the Set objWMIService = GetObject line by deleting everything after the Get-
Object command. Inside the open parenthesis, type wmiRoot and add a close
parenthesis. The line should now look like the following:

Set objWMIService = GetObject(wmiRoot)

What you have done is created shorthand for the long winmgmts string. In addi
tion, you deleted some stuff you didn’t need (which we’ll discuss in detail when
we talk about WMI in Chapter 5, “The Power of Many More”). The script is now
much easier to read.

8.	 Run the script—it should work fine to this point. If it does not, compare it with
lab7pt1.vbs and see where your code needs tweaking. Your script must run cor
rectly at this point to complete the lab.

9. If everything is groovy, look at the following line:

Set colServices = objWMIService.ExecQuery _
(“Select * from Win32_Service Where State <> ’Stopped’”)

You’ll make this line easier to read by placing the “Select * from Win32_Service
Where State <> ‘Stopped’” line into a variable, which we unceremoniously call
wmiQuery. To do this, you must adjust the code in two ways. First, you must declare
the variable wmiQuery by typing the following after the wmiRoot declaration:

Dim wmiQuery

Chapter 4 The Power of Many 85
Your second adjustment is much trickier and therefore much more critical. You
must define wmiQuery to be equal to the Select statement listed in step 9. You
handle this under the following line:

Set objWMIService = GetObject(wmiRoot)

To define wmiQuery, copy the Select statement from the Set colServices line, mak
ing sure to include the quotation marks with your copy. The wmiQuery line now
looks like the following:

wmiQuery = “Select * from Win32_Service Where State <> ’Stopped’”

After you add the wmiQuery line above the Set colServices line, you delete the
Select statement from the Set colServices line. In place of the Select statement, you
use the variable wmiQuery. The modified line looks like this:

Set colServices = objWMIService.ExecQuery _
(wmiQuery)

10.	 Save the file and run the script. It should still work properly. If it does not, com
pare it with the lab7pt2a.vbs file to see whether you can optimize your code.

11.	 Now you will perform the same kind of adjustments to the second half of the
script. Look at the following code (which starts around line 44):

For i = 0 To objIdDictionary.Count - 1
Set colServices = objWMIService.ExecQuery _

(“Select * from Win32_Service Where ProcessID = ’” & _
colProcessIDs(i) & “‘“)

You want to put the Select statement into a wmiQuery variable. Recall from our
discussion in Chapter 1, “Starting from Scratch,” that you can reuse variables
whenever you want to. To illustrate this point, you will reuse the variable name
wmiQuery. You define wmiQuery to be equal to the Select statement. To do this,
you must define it prior to the line where you’ll need to use it. This will be below
the For i = 0 line and above the Set colServices line. After you do this, you replace
the Select statement with the variable wmiQuery. The modified code looks like the
following:

For i = 0 To objIdDictionary.Count - 1
wmiQuery = “Select * from Win32_Service Where ProcessID = ’” & _

colProcessIDs(i) & “‘"
Set colServices = objWMIService.ExecQuery _

(wmiQuery)

12. Run your script. If it does not run, compare it with lab7pt3.vbs.

13.	 One aspect of your script that you might find annoying is that it doesn’t indicate
when it is finished running. Let’s fix this by adding a WScript.Echo command to let
us know the script is done. You just do something like the following:

WScript.Echo “all done”

86 Part 1 Covering the Basics
14.	 To modify the script to accept a command-line argument, simply edit strComputer
= “.” so that the variable strComputer is assigned to be whatever comes in from the
command line, not ".", which means this local computer. The revised line looks
like the following:

strComputer = WScript.Arguments(0)

By doing this, you now will run the script against any computer whose name is
placed on the command line at the time you run the script.

15.	 Save your script. You can compare it with lab7pt4.vbs. To run the script, go to the
directory where you have been saving your work, and open a command prompt.
You will want to run the script under CScript, and you will need to include the
name of a reachable computer on your network. The command line for mine
looks like this:

C:\scriptingBook\ch4\lab7>cscript lab7pt4.vbs s1

16.	 What happens when you try to include two server names? What happens when
you try to run the script without a command-line argument? Let’s now modify the
script so that it will provide a little bit of help when it is run. As it stands now,
when the script is run without a command-line argument, you simply get a “sub-
script out of range” error. In addition, when you try to include several computer
names from the command line, the first one is used and the others are ignored.

17.	 To add some help, check to ensure that the person running the script added a com
mand-line argument when they executed the script. To do this, check
WScript.Arguments.UnNamed.Count and make sure it is not zero. Use an
If…Then…Else construction to perform this check. This construction needs to fol
low the Header information section of the script. The code looks like the following:

If WScript.Arguments.UnNamed.Count = 0 Then
WScript.Echo(“You must enter a computer name”)

Else

18.	 Since you’re using an If...Then...Else construction, you must end the If statement.
To do this, simply place the command End If at the bottom of the script. The script
to this point is saved as lab7pt5.vbs.

19.	 Now use the Split function so that you can enter more than one computer name
from the command line. Doing this will be a little tricky. First you must declare
two new variables, listed here:

Dim colComputers
Dim computer

Because strComputer is used to hold the command-line arguments, and you want
to be able to run the script against multiple computers, you’ll need to be able to
hold a collection of names. ColComputers is used to hold the collection of com
puter names you get after you parse the command-line input and “split” out the

Chapter 4 The Power of Many 87
computer names that are separated by commas. Since you now have a collection,
you have to be able to iterate through the collection. Each iterated item will be
stored in the variable computer.

20.	 Under the strComputer = WScript.Arguments (0) line, add the colComputers line in
which you use the split command to parse the command-line input. Then use a
For Each line to iterate through the collection. The two new lines of code are
listed here:

strComputer = WScript.Arguments(0)
colComputers = Split(strComputer, “,”)

For Each computer In colComputers

21.	 Because you’re modifying the input into the script, you need to change your
wmiRoot statement so that it points to the parsed line that comes from the split
command. To do this, you use the following line of code just after the For Each
command in the colComputers line:

wmiRoot = “winmgmts:\\” & Computer & “\root\cimv2”

22.	 Add an additional Next statement near the end of the script. Since you are doing
a For Each Next construction, you need to add another Next command. The bot
tom section of the script now looks like the following:

For Each objService In colServices
WScript.Echo VbTab & objService.DisplayName

Next
Next

Next

WScript.Echo “all done"
End If

The script starts to get confusing when you wind up with a stack of Next com
mands. You might also notice that in the lab7pt6.vbs script, I indented several of
the lines to make the script easier to read. If you’re careful, you can use the Tab
key to line up each For Each command with its corresponding Next command.

23.	 Save your script, and try to run it by separating several computer names with a
comma on the command line. Compare your script with mine, which is saved as
lab7pt6.vbs.

You’ve completed Lab 7. For extra credit, you might want to consider the following
modifications: improve the spacing between runs of the script when it is run against
other computers. Include the name of the computer at the beginning of each listing.

88 Part 1 Covering the Basics
Lab 8 Building Arrays
In this lab, you explore building arrays. To help you, you’ll take a few ideas from the
script in Lab 7 and use them in a starter file.

Lab Instructions

1.	 Open the Lab8Starter.vbs file, and save it as lab8.vbs. Note that Lab8Starter.vbs
will not run. It is provided to save you some typing so that you can spend more
time working with arrays.

2.	 You first need to declare your arrays. The first array you need to declare is array1.
It is initialized without a specific number of elements, and so you use the format:
Dim array1().

3.	 Declare the second array: array2. Because array2 is created automatically when
you use the filter command, you just simply use the format Dim array2.

4.	 Initialize the variables a and i, which are used for counting the elements in the
array. In fact, in this script you’ll be creating two arrays. The code goes under the
series of Dim statements, which are used to declare the variables used in this
script.

a = 0
i = 0

5. Now you come to the first of the For Each statements in this script:

For Each objService In colServices
ReDim Preserve array1(i)
array1(i) = objService.ProcessID
i = i + 1

Next

Here you are creating a For Each…Next loop that you’ll use to add elements into
the first array, which is called array1. Recall our discussion about arrays: because
you wanted to add information to the array and keep the existing data, and
because you didn’t know how many elements you’d have in the array, you used
the format array1() when you declared it. Now you want to keep the information
you put into the array, so you must use the ReDim Preserve command. Then you
add items to each element of the array by using the following command:

array1(i) = objService.ProcessID

Once you add the process ID into the array, you increment the counter and go to
the beginning of the For Each loop.

6.	 Save the script. Compare your script with the lab8pt1.vbs file. If you try to run it,
you will still get an error.

Chapter 4 The Power of Many 89
7.	 Now you populate array2, once again using a For Each Next loop. The significant
item in the code in this step is the Filter command. If you didn’t create a second
array, when you ran the script, you’d get pages of junk because the looping would
create duplicate process IDs. (Remember, you’re performing a query for process
IDs that are associated with services, and so that behavior is to be expected.)

Since there is no unique command or method for arrays, you have to create a sec
ond array—named array2—by using the Filter command, and use a comparison
filter as you add elements into it. The input into the filter is array1. You are match
ing the ProcessIDs from objService. (This is actually rather sloppy coding. Because
you used objService.ProcessID several times, you could have created an alias for
it.) The false in the last position of the command tells VBScript that the item is
brought into the array only if a match is not found, which gets rid of our duplicate
problem. You might want to change this value to true and see what happens to
your script!

For Each objService In colServices
array2 = Filter(array1,objService.processID, false)
a = a + 1

Next

8.	 Save the script (mine is called lab8pt2.vbs). At this point, the script should run. (It
doesn’t run very far, but it should run.)

9.	 You need to put a For…Next loop around the bottom WMI query. Since you’re
working with an array, determine the upper element in the array by using the
UBound command, as shown in the following code:

For b = 0 To UBound(array2)

This line will be used by the second array. What you are doing now is running a
second WMI query against only the unique elements that reside in the second
array. Make sure you add the last Next command. The completed section of script,
called lab8pt3.vbs, looks like the following:

For b = 0 To UBound(array2)
wmiQuery = “Select * from Win32_Service Where ProcessID = ’” & _

array2(b) & “‘"
Set colServices = objWMIService.ExecQuery _

(wmiQuery)
WScript.Echo “Process ID: “ & array2(b)
For Each objService In colServices

WScript.Echo VbTab & objService.DisplayName
Next

Next

10.	 Run the script. The script should now run as intended. If it doesn’t, compare your
script with lab8pt3.vbs.

90 Part 1 Covering the Basics
Lab 9 Modifying a Script
You are the network administrator of a medium-sized company, and you have been
studying scripting. You recently learned how to write a pretty cool script that will tell
you which services are running in a process. You have been noticing some strangeness
in the processor utilization on some of your servers, and you think you have traced it
down to the way services run inside processes. To further investigate the issue, you
want to modify a script you recently wrote (Lab 7) so that it can be fully automated.

Lab Instructions

1. Open the Lab9Starter.vbs file, and save it as lab9.vbs.

2.	 Edit the list of variables. Remove strComputer and colComputers because they
won’t be used in the new script.

3.	 Since you’re going to feed a text file, you won’t need the code that references the
Arguments collection. Therefore, remove the following lines of code:

If WScript.Arguments.count = 0 Then
WScript.Echo(“You must enter a computer name”)

Else
strComputer = WScript.Arguments(0)
colComputers = Split(strComputer, “,”)

Make sure you leave the line that is used to create the dictionary object. In addi
tion, do not forget to get rid of the End If line at the bottom of the script. See
lab9pt1.vbs to make sure you removed the correct lines of code.

4.	 Add code to accept a command-line text file. You’ll need to create a variable
named txtFile for the text file and then point the variable to a valid text file on your
computer. Inside the text file, you need a list of only those computer names reach-
able on your network, separated by a comma. (Refer to my servers.txt file for a
sample, or simply edit it to your needs.)

Next you create a constant called ForReading and set it equal to 1. This is a good
way to simplify accessing the file. Now create the filesystem object by using the
CreateObject(“Scripting.FileSystemObject”) command, which you set equal to the
objFSO variable.

After you do that, open the text file by setting the objTextFile variable to be equal
to objFSO.OpenTextFile—we feed this the variable for our text file and also the
constant ForReading. Code for accomplishing all this follows. You place this code
right below the Dim commands. You will need to add Dim commands for the fol
lowing variables as well: TxtFile, objFSO, and objTextFile. This code is saved as
lab9pt2.vbs.

Chapter 4 The Power of Many 91
TxtFile = “c:\scriptingBook\bookScripts_vbscript\ch4\lab9\Servers.txt"

Const ForReading = 1

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objTextFile = objFSO.OpenTextFile _

(TxtFile, ForReading)

5.	 Go into the text file and parse out each line so that you know where to look for
services and processes. To do this, use a Do Until loop. The interesting thing about
this section of the code is that the loop is rather large, because you want to work
with one computer at a time and query its services and processes prior to making
another round of the loop. Therefore, placement of the outside Loop command is
vital. In addition, you need to change the variable used in the For Each computer
line, which follows the outside loop. Change Colcomputers to be arrServerList.
Also, add a variable for strNextLine and arrServerList to the Header information
section of your script.

Do Until objTextFile.AtEndofStream
strNextLine = objTextFile.Readline
arrServerList = Split(strNextLine , “,”)

6. Save your file. You can compare your file with lab9pt3.vbs. This file now runs.

7.	 To keep track of how the script runs, add the following line just above the
wmiRoot = “WinMgmts:\\ line:

WScript.Echo” Processes and services on “ & (computer)

8.	 To control the creation of the dictionary, move the line set objIdDictionary =
CreateObject(“Scripting.Dictionary”) inside the For Each computer In arrServerList
line. Save your file and compare it with lab9pt4.vbs, if you want to.

9. Add a new variable called j.

10.	 Change i to j in the following line: For i = 0 To objIdDictionary.Count – 1. This
gives us a new counter the second time the script is run. In addition, edit two
other lines and change colProcesses(i) to j as well.

11.	 To make sure you don’t reuse dictionary items the second time the script runs,
remove all items from the dictionary by employing the objIdDictionary.RemoveAll
command. You need to do this outside the For j loop but inside the For Each com
puter loop. The completed section looks like the following:

For j = 0 To objIdDictionary.Count - 1
wmiQuery = “Select * from Win32_Service Where ProcessID = ’” & _

colProcessIDs(j) & “‘"
Set colServices = objWMIService.ExecQuery _

(wmiQuery)
WScript.Echo “Process ID: “ & colProcessIDs(j)
For Each objService In colServices

WScript.Echo VbTab & objService.DisplayName
Next

92 Part 1 Covering the Basics
objIdDictionary.RemoveAll
Next

Next
Loop
WScript.Echo “all done”

This completes the lab. This section is saved in lab9pt5.vbs.

5 The Power of Many More

In this chapter, you’ll look at two very important concepts: dynamically creating arrays
and creating dictionaries. Both of these techniques will enable you to create enter�
prise-class scripts that will quickly instantiate themselves into your day-to-day net-
work operations.

Before You Begin
In order to work through the material presented in this chapter, you need to be
familiar with the following concepts from earlier chapters:

■ Creating single dimension arrays

■ Creating two-dimensional arrays

■ Implementing the For Next construction

■ Implementing Select Case construction

After completing this chapter you will be familiar with the following:

■ Converting text files into arrays

■ Converting delimited strings into arrays

■ Working with dictionaries

Strings and Arrays
In this section, you’ll use text files as an input into your script to dynamically create an€
array that you’ll use to do real work. Why is this topic important? Even though we all€
know about the event log in Microsoft Windows Server 2003, many network adminis�€
trators and consultants are unaware of the literally hundreds of other log files lying€
about on the hard disk drives of their networks. Indeed, lying about is an appropriate€
state for the vast majority of these log files because they contain little in the way of€
operational guidance for the enlightened network administrator. However, some are€
veritable fountains of elocution and erudition (or maybe not). The following list sum�€
marizes uses for converting a text file into an array construction:€

■ Import existing log files for ease of manipulation€

■ Import comma-separated value (CSV) lists for ease of script operation€

■ Import CSV files to control script execution€
93

94 Part 1 Covering the Basics
Just the Steps

� To convert a text file into an array
1. Implement a text file for the source.

2. Use the InStr function to parse the data.

3. Use the file system object to connect to a data source.

4. Use a dynamic array to hold the data.

5. Use LBound and UBound to iterate through the array.

Parsing Passed Text into an Array
In this example, you work through a script that creates a dynamic array used to hold
information parsed from the Windows 2003 setup log file, Setuplog.txt. One issue to
note: if you’re working on an upgraded version of Windows 2003, your Setuplog.txt
file is contained in the WINNT directory. If you’re working with a fresh installation, the
Setuplog.txt file is contained in the Windows directory. The reason for this is that
beginning with Microsoft Windows XP, the name of the default Windows directory was
changed from WINNT to Windows. However, in an upgrade, the Windows directory
cannot be renamed without breaking a whole bunch of applications.

In our script called SearchTXT.vbs (which is on the companion CD), you create a
dynamic array and set the initial size to zero. You next make a connection to the file
system object and open the Setuplog.txt file, contained in the Windows directory, for
reading. Once the Setuplog.txt file is opened for reading, you define a search string of
“Error” and use the InStr command to look through each line. If the string “Error” is
found on the line being examined, the line with the error is written into the array. You
then increment the next element in the array in case you find another line with the
string “Error” in it. After you go through the entire text file, you use a For…Next loop
and echo out each element of the array. The script concludes with a friendly “all done”
message. The code for SearchTXT.vbs follows:

Option Explicit

On Error Resume Next

Dim arrTxtArray()

Dim myFile

Dim SearchString

Dim objTextFile

Dim strNextLine

Dim intSize

Dim objFSO

Dim i

intSize = 0

myFile = “c:\windows\setuplog.txt"

SearchString = “Error"

Const ForReading = 1

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Chapter 5 The Power of Many More 95
Set objTextFile = objFSO.OpenTextFile _
(myFile, ForReading)

Do Until objTextFile.AtEndofStream
strNextLine = objTextFile.ReadLine
If InStr (strNextLine, SearchString) Then

ReDim Preserve arrTxtArray(intSize)
arrTxtArray(intSize) = strNextLine
intSize = intSize +1

End If
Loop
objTextFile.close
For i = LBound(arrTxtArray) To UBound(arrTxtArray)

WScript.Echo arrTxtArray(i)
Next
WScript.Echo(“all done”)

Header Information

The Header information section of SearchTXT.vbs contains few surprises at this junc�
ture. The important aspect in this section is the listing of all the variables contained in
SearchTXT.vbs. This declaring of the variables provides a blueprint for understanding
the script. Each variable and its use is listed in Table 5-1. The Header information sec�
tion of the script is listed here:

Option Explicit

On Error Resume Next

Dim arrTxtArray()

Dim myFile

Dim SearchString

Dim objTextFile

Dim strNextLine

Dim intSize

Dim objFSO

Dim i

Table 5-1 Variables Declared in SearchTXT.vbs

Variable Use

arrTxtArray() Declares a dynamic array€

myFile Holds the file to open up€

SearchString Holds the string to search for€

objTextFile Holds the connection to the text file€

strNextLine Holds the next line in the text stream€

intSize Holds the initial size of the array€

objFSO Holds the connection to the file system object€

i Used to increment intSize counter€

96 Part 1 Covering the Basics
Reference Information

The Reference information section of the script is used to assign values to many of the
variables that are declared in the Header information section. The Reference informa�
tion section of SearchTXT.vbs follows:

intSize = 0

myFile = “c:\windows\setuplog.txt"

SearchString = “Error"

Const ForReading = 1

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objTextFile = objFSO.OpenTextFile _

(myFile, ForReading)

IntSize is used to hold the value of the initial size of the dynamic array used in this
script. It is set to zero because you do not know how many items you will have in your
dynamic array. You start with the value of zero, and then you later increase the array
to the required size as you read through the log file. A different approach would be to
create an array that is much larger than you think you’d need, and then populate the
array with the items gathered from the log file. However, there are at least two prob�
lems with this approach:

■ Creating an array that is too large wastes memory resources.

■	 Creating an array that is too large results in too many elements that have a zero
value.

The myFile variable is assigned to the physical location of the log file you want to
parse. In this instance, you are looking at the Windows Server 2003 setup log file con�
tained in the Windows directory. This is one modification you will need to make to
your script—changing the location and name of the log file you want to parse. By cre�
ating a variable called myFile, and by assigning it to a log file in the Reference infor�
mation section of the script, you make it easy to modify the script for future use. By
simply changing the file you want to parse, you can use this script to peruse many dif�
ferent log files.

SearchString is the variable that holds the string of letters you want to glean from the log
file. As the script currently stands, you are searching for the word “Error” in the Win�
dows Server 2003 setup log file. By searching for “Error,” you create an array that holds
all the errors that occurred during the installation of the Windows Server 2003 server.

Create a constant called ForReading and set it to the value of 1. Then create a FileSys
temObject and use the ForReading constant to open the log file. When you open a text
file using a FileSystemObject, you must tell VBScript whether you’re going to open the
file and read from it, or open the file and write to it. In your script, you need only to
be able to read from the file to find the lines containing the word “Error.”

Chapter 5 The Power of Many More 97
See Also For more information about creating and using constants, refer to Chapter 2,
“Getting in the Loop.”

You now use the Set command to assign the variable objTextFile to be equal to the
command that opens the text file for reading. Here is the syntax for this command:

Set New variable Command Filename Read or write

Set objTextFile objFSO.OpentextFile myFile ForReading

Worker Information

The Worker information section of the SearchTXT.vbs script, shown in the following
code, is where you create a text-processing engine. This engine is made up of the fol�
lowing components:

■ Do Until...Loop

■ If...Then loop

■ ReDim Preserve

Do Until objTextFile.AtEndofStream
strNextLine = objTextFile.ReadLine
If InStr (strNextLine, SearchString) Then

ReDim Preserve arrTxtArray(intSize)
arrTxtArray(intSize) = strNextLine
intSize = intSize +1

End If
Loop
objTextFile.Close

The Do Until…Loop is used to walk through the text stream that comes from the con�
nection to our setup log file. The Do Until structure controls the entire process and will
continue working until it comes to the end of the data stream (which incidentally
occurs when you reach the bottom of the text file).

The variable strNextLine is assigned to the line of text that comes from the text file
when you use the ReadLine command on objTextFile. (Remember that you defined
objTextFile to be the handle you get back from the setup log file. You do this by using
the read-only version of the OpenTextFile command in the Reference information sec�
tion of the script.)

You use an If…Then structure to look through strNextLine for the value contained in
the variable you called SearchString. In the Reference section, you assigned the value

98 Part 1 Covering the Basics
of “Error” to the variable SearchString. You use the InStr command to search strNext-
Line for the text string “Error.” The InStr command has the following syntax:

InStr	 Starting position String being String searched Compare mode
(optional) searched for (optional)

InStr strNextLine SearchString

When using InStr, the starting position is the first character in the text string to be
searched. It is important to remember that the InStr command is not zero-based. A
position that is actually 38 spaces away will be reported as 38. The optional starting
position field of the InStr command is quite useful when parsing certain log files that
begin each line with a time stamp or other information that makes the file difficult to
parse. By skipping past the time stamp, you can parse the line more easily.

Note Many of the commands you use in VBScript are, for whatever reason, zero-based,
which means that you start counting at zero. OK, that’s groovy. But now you come to InStr,
which is not zero-based. A position that is 12 spaces away will be reported as 12. Forget this
fact, and your scripts will act really strange.

If the InStr command finds the search text in the search string, you use ReDim Preserve
to expand the array by one element. ReDim Preserve actually performs two tasks. The
first is to resize the array, and the second is to make sure you don’t lose any data when
the array is resized. The arrTxtArray(intSize) = strNextLine line adds the value con�
tained in strNextLine to the arrTxtArray element identified by the intSize variable. The
intSize = intSize +1 construct increases the intSize variable by 1. You’ll use this variable
to add one more element to your array when the InStr command finds an additional
line containing the word “Error” in the text string.

When you reach the end of the data string, you use End If to end the If loop and the
objTextFile.Close command to close the text file. This step is not really required,
because the text file automatically closes when the program quits; however, this step is
considered good practice and can prevent potential file-locking problems in the future.

Output Information

After you load the array with the information gathered from the setup log file, you
really have accomplished only half of the task. This is because constructing an array
and not using it is pretty well useless. In this script, you’re going to simply echo out the

Chapter 5 The Power of Many More 99
lines found that contain the word “Error” in them. In many cases, echoing the errors
out is sufficient. In later chapters, you’ll learn how to save this information to a text file
for future manipulation if desired. Because your script is modular in its design, you
could easily replace this output information section with one that saves to a text file or
creates a Web page, or one that creates and sends an e-mail.

You use a For…Next loop to work through the lower boundary and the upper bound�
ary of your dynamic array. Once you get to each new element in the array, you use the
WScript.Echo command to print to the screen the data contained in that element of the
array. Then use the Next command to go back and read the next element in the array.
You continue to do this Until reaching the upper boundary of the array. Once you
reach the end of the array, you use WScript.Echo to let yourself know that the script
completed successfully. This section of the script is listed here:

For i = LBound(arrTxtArray) To UBound(arrTxtArray)
WScript.Echo arrTxtArray(i)

Next
WScript.Echo(“all done”)

Quick Check

Q. What is the advantage of using a dynamic array?

A. You can expand a dynamic array when a new element is needed. This saves
memory and is more efficient.

Q. How is ReDim Preserve used?

A. ReDim Preserve is used to resize a dynamic array while saving the data that is
contained in the element.

Parsing Passed Text
One cool thing you can do with arrays is use them to hold the results of parsing a
comma-separated value (CSV) file. With Windows Server 2003, you can easily create a
CSV file from the event viewer. Right-click the log you are interested in, select Save As
from the menu, and choose CSV File. Now, suppose you have a file such as a CSV (I
included an application log from one of my test machines), and you’re trying to find
out about MSI installer errors on that server. Well, you can try to weed through all those
long lines of text or you can open it up in Microsoft Excel, or you can use a script to
do the heavy lifting.

100 Part 1 Covering the Basics
The ParseAppLog.vbs script follows:

Option Explicit

On Error Resume Next

Dim arrTxtArray()

Dim appLog

Dim SearchString

Dim objTextFile

Dim strNextLine

Dim intSize

Dim objFSO

Dim i

Dim ErrorString

Dim newArray

intSize = 0

appLog = “C:\scriptingBook\BookScripts_VbScript\ch5\applog.CSV"

SearchString = “,"

ErrorString = “1004"

Const ForReading = 1

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objTextFile = objFSO.OpenTextFile _

(appLog, ForReading)
Do Until objTextFile.AtEndofStream

strNextLine = objTextFile.ReadLine
If InStr (strNextLine, SearchString) Then

If InStr (strNextLine, ErrorString) Then
ReDim Preserve arrTxtArray(intSize)
arrTxtArray(intSize) = strNextLine
intSize = intSize +1

End If
End If

Loop
objTextFile.Close

For i = LBound(arrTxtArray) To UBound(arrTxtArray)
If InStr (arrTxtArray(i), “,”) Then
newArray = Split (arrTxtArray(i), “,”)

WScript.Echo “Date: “ & newArray(0)

Just the Steps

� To convert a CSV file into an array
1. Implement a CSV file for the source.

2. Use the InStr function to parse the data.

3. Use the file system object to connect to a data source.

4. Use a dynamic array to hold the data.

5. Use LBound and UBound to iterate through the array.

6. Use the Split function to break the text line into elements.

7. Add the new elements into a multidimensional array.

Chapter 5 The Power of Many More 101
WScript.Echo “Time: “ & newArray(1)

WScript.Echo “Source: “ & newArray(2)& “ “& newArray(3)

WScript.Echo “Server: “ & newArray(7)

WScript.Echo “Message1: “ & newArray(8)

WScript.Echo “Message2: “ & newArray(9)

WScript.Echo “Message3: “ & newArray(10)

WScript.Echo “ “

End If
Next
WScript.Echo(“all done”)

Header Information

The Header information section in ParseAppLog.vbs is similar to the Header section in
the previous script. The variables utilized are listed in Table 5-2.

Table 5-2 Variables Declared in ParseAppLog.vbs

Variable Use

arrTxtArray() Declares a dynamic array€

appLog Holds the file to open€

SearchString Holds the string to search for€

objTextFile Holds the connection to the text file€

strNextLine Holds the next line in the text stream€

intSize Holds the initial size of the array€

objFSO Holds the connection to the file system object€

i Used to increment the intSize counter€

ErrorString Holds the second search string used€

newArray New array created to sort the output€

Reference Information

The Reference information section is where you assign values to certain variables and
define constants that are used in the script. Here is the Reference information section
of the script:

intSize = 0

appLog = “C:\scriptingBook\BookScripts_VbScript\ch5\applog.CSV"

SearchString = “,"

ErrorString = “1004"

Const ForReading = 1

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objTextFile = objFSO.OpenTextFile _

(appLog, ForReading)

102 Part 1 Covering the Basics
Applog is used to point to the CSV file you want to parse. You use SearchString to spec�
ify that you want to look for commas. The ErrorString you are looking for in this script
is 1004, which is an error from MSI installer. By changing the error message ID, you can
use the script to look for everything from dropped IP packets from the ISA server to
bad logon attempts from Windows Server 2003.

Important This technique won’t perfectly parse every CSV file in the world. Some are very
complex and include commas and even line feeds within single pieces of data.

Although special rules for advanced parsing are beyond the scope of this chapter, you are
unlikely to encounter this problem with normal application setup logs (and you definitely won’t
see this in CSV files exported from the Event Viewer).

Worker Information

In the Worker information section of the script, things start to get a little interesting.
You begin by using a Do Until construction that looks for the end of the read-only text
string coming from objTextFile. You then define strNextLine to be equal to what comes
back from the readline command that we used on objTextFile. The magic begins when
you use the InStr command to look for commas in the line-by-line streams of text. After
you find a comma in a line, you look for the error message ID of 1004, which indicates
a problem with an MSI installer package. By nesting a pair of If Then statements and
using InStr, you easily filter only the desired messages. As a result, the size of the array
is smaller and less memory is required. You haven’t implemented error handling here,
which could easily be accomplished by using the Else command.

Do Until objTextFile.AtEndofStream
strNextLine = objTextFile.ReadLine
If InStr (strNextLine, SearchString) > 0 Then

If InStr (strNextLine, ErrorString) > 0 Then
ReDim Preserve arrTxtArray(intSize)
arrTxtArray(intSize) = strNextLine
intSize = intSize + 1

End If
End If

Loop
objTextFile.Close

Output Information

After the array arrTxtArray is created, each element of the array contains an entire
event message from the event log. You could just print out each line, but a more func�
tional approach is to organize the data so that it is more comprehensible. To this end,
you create a multidimensional array that holds specific elements of the event message.
You begin the Output information section by using For…Next to walk from the lower

Chapter 5 The Power of Many More 103
boundary of the single dimensional array arrTxtArray to the upper boundary of arr-
TxtArray. You then look for commas in each line contained in the elements incre�
mented by using the i counter. Once this is done, you build the multidimensional array
and echo out only the elements that contain information you’re interested in seeing.
The script ends by echoing out an “all done” message.

For i = LBound(arrTxtArray) To UBound(arrTxtArray)
If InStr (arrTxtArray(i), “,”) Then

newArray = Split (arrTxtArray(i), “,”)
WScript.Echo “Date: “ & newArray(0)
WScript.Echo “Time: “ & newArray(1)
WScript.Echo “Source: “ & newArray(2)& “ “& newArray(3)
WScript.Echo “Server: “ & newArray(7)
WScript.Echo “Message1: “ & newArray(8)
WScript.Echo “Message2: “ & newArray(9)
WScript.Echo “Message3: “ & newArray(10)
WScript.Echo “ “

End If
Next

Quick Check

Q. What is the simplest way to break up a CSV data stream to populate an array?

A. You need to use the Split command and look for commas.

Q. What is the InStr command used for?

A. The InStr command is used to look for character combinations in a stream of
text.

Q. What construct can be used to hold data records that are separated by commas?

A. A multidimensional array can be used to hold this type of data.

Working with Dictionaries
I don’t know about you, but I always think about using a dictionary to check the spell�
ing of a word or to find a definition. In Windows Scripting, however, a dictionary has
nothing to do with either of these concepts, although its use is just as important, per-
haps more so. So what is a dictionary in our context? Well, a dictionary is kind of like
an array, only easier to work with. It is a place to hold data. Just like an array can be
used to hold data in a convenient place for use within the script, a dictionary also holds
data. A dictionary works like a single dimension array. You can store only one column
worth of data in your dictionary. On the other hand, a dictionary is kind of like an array

104 Part 1 Covering the Basics
that uses names instead of numbers for the index. However you want to look like it,
you are only going to be able to store one column’s worth of data in your dictionary.

Because enterprise scripts have to get information from other places (a command-line
argument, a text file, or an ADSI query), it is convenient to store the information locally
to avoid repeated calls to the outside source. Once the information is local, you can
manipulate it into a more manageable form. In Chapter 4, “The Power of Many,” and
earlier in this chapter, you looked at using arrays to store information locally. In certain
situations, you can use a dictionary to perform the same type of activity—that is, for
convenience, you can stash working information in the dictionary object.

As mentioned earlier, the dictionary works like an array in that each item in the dictio�
nary is stored with its associated key. Inside the dictionary is a key and the item itself.
The dictionary offers a couple of advantages over arrays. The first advantage is that you
can retrieve any specific item from the dictionary simply by knowing the index item,
whereas with an array, you need to know the array index number. The second advan�
tage is that a dictionary doesn’t require any specific size configuration. With an array,
you must either know its exact size or resize it.

Using the Dictionary

To use the VBScript dictionary, you need to first create it. (In technical terms, the dic�
tionary is a COM object and therefore gets instantiated via CreateObject.)

Quick Check

Q. What are the advantages of using a dictionary rather than an array?

A. The dictionary allows retrieval of specific items from the dictionary without
knowledge of the index number. In addition, the dictionary is automatically
dynamically sized.

Q. Since a dictionary is a COM object, how does it get instantiated?

A. A dictionary gets instantiated by using the CreateObject command.

Compare Mode

The dictionary allows us to configure only one property: the compare mode. This is
actually part of what makes the dictionary easy to use (the lack of configurable prop�
erties, not the compare mode itself). In reality, most of the time, the default compare
mode (which is binary mode) is fine. Compare mode actually does what it implies: it

Chapter 5 The Power of Many More 105
allows you to configure the way in which the dictionary compares items when used to
search for previously added items. The other compare mode (besides binary) is text
mode. Text mode is case-insensitive. In binary mode, server1 and Server1 are two dif�
ferent computers, whereas in text mode they would be the same machine. It is impor�
tant to remain aware of these differences.

Note If you want to change the compare mode from binary to text mode, you must do this
before you add any information to the dictionary.

Adding Items to the Dictionary

After you create the dictionary, you add items to it. (It’s basically useless without infor�
mation, just like a real dictionary containing only blank pages.) So how do you add infor�
mation to the dictionary? You guessed it—using the Add method. You use this method to
populate both the key name and the item value, as illustrated in the following script:

Set objDictionary = CreateObject(“Scripting.Dictionary”)

objDictionary.Add “comp1", “server1"

WScript.Echo objDictionary.Item (“comp1”)

In the preceding script, you first create the dictionary and assign it to the variable obj-
Dictionary. You used this variable because you use the CreateObject command to
make a dictionary, and the name objDictionary tells us that the variable is an object
that is a dictionary. You then add one item to the dictionary, called server1, which is
assigned to a key called comp1. From this code, you can see the syntax is add key item,
as illustrated here:

Command Key Item

objDictionary.Add Comp1 Server1

Summary
In this chapter, you examined converting delimited strings into arrays. You found that
by using the InStr command, you could parse incoming text streams and pull out only
the items needed. You then created a new array by using the Split command to look for
commas. In addition, you worked with dictionaries. You found that for many applica�
tions, the dictionary is both quicker to set up and easier to use than an array.

106 Part 1 Covering the Basics
Quiz Yourself
Q. What is the advantage of using a string to populate an array?

A.� The advantage of using a string to populate an array is that strings are available from
many places (such as Excel). In addition, since an array resides in memory, it is
quicker than making multiple trips to read in the string.

Q. What is required to resize a dynamic array?

A.� To resize a dynamic array, you must use the ReDim command. This will allow you to
change the size of the array and permit the addition of elements in the array. Note
that if you do not include the Preserve option, when you ReDim your array, you will
lose all existing data.

Q. The dictionary allows you to configure which property?

A. The dictionary allows you to configure the compare mode property.

Q. How is a dictionary created?

A. A dictionary is created by using the CreateObject command.

Own Your Own

Lab 10a Implementing Basics for the InStr Command
In this lab, you play with the InStr command to become familiar with the basic features
of its implementation. Because this is a short script, you don’t need to implement a full
Header information section.

Lab Instructions

1. Open Notepad.exe.

2.	 Create a variable called searchString and set it equal to 5. Your line will look like
the following:

searchString = “5”

3.	 Create another variable called textSearched and set it equal to 123456789. Your
second line will look like this:

textSearched = “123456789”

4.	 Create a third variable called InStrReturn and set it equal to the following InStr
command: InStr (textSearched, searchString). This line will look like the following:

InStrReturn = InStr (textSearched, searchString)

Chapter 5 The Power of Many More 107
5.	 Use the WScript.Echo command to print out the results of the InStr command. This
line will look like the following:

WScript.Echo (InStrReturn)

6. Save the file and call it lab10a.vbs.

7.	 Run the lab10a.vbs file by double-clicking it. You should see a dialog box with the
number 5 printed in it. This indicates that search string 5 was found in the fifth
position of the script.

Lab 10b Understanding Advanced Features of the InStr
Command

In this lab, you use the InStr command to become familiar with the advanced features
of its implementation. This short script does not need a full Header information section.

Lab Instructions

1. Open Notepad.exe

2.	 Create a variable called searchString and set it equal to 5. Your line will look like
the following:

searchString = “5”

3.	 Create another variable called textSearched and set it equal to 123456789. Your
second line will look like this:

textSearched = “123456789”

4.	 Create a third variable called InStrReturn and set it equal to the following InStr com�
mand: InStr (1, textSearched, searchString, 0). This line will look like the following:

InStrReturn = InStr (1, textSearched, searchString, 0)

5.	 Use the WScript.Echo command to print out the results of the InStr command. This
line will look like the following:

WScript.Echo InStrReturn

6. Save the file and call it lab10b.vbs.

7.	 Run lab10b.vbs by double-clicking it. You should see a dialog box with the num�
ber 5 printed in it. This indicates that the search string 5 was found in the fifth
position of the script when you started looking from the first position of the search
string.

8. Change the 1 to a 5 in your InStrReturn line. It will look like the following:

InStrReturn = InStr(5, textSearched, searchString, 0)

108 Part 1 Covering the Basics
9. Save your work.

10.	 Run lab10b.vbs by double-clicking it. You should see a dialog box with the num�
ber 5 printed in it. This indicates that the search string 5 was found in the fifth
position of the script when you started looking from the fifth position of the search
string.

11. Change the 5 to a 6 in your InStrReturn line. It will look like the following:

InStrReturn = InStr(6, textSearched, searchString, 0)

12. Save your work.

13.	 Run lab10b.vbs by double-clicking it. You should see a dialog box with the num�
ber 0 printed in it. This indicates that the search string 5 was not found in the
search string when you started looking from the sixth position of the search string.

Lab 11 Creating a Dictionary
In this lab, you create a dictionary and then populate it with a list of filenames pro�
vided by the file system object.

Lab Instructions

1. Open Notepad.exe.

2. On the first line, type Option Explicit.

3. Declare the following variables by using the Dim command:

Dim objDictionary

Dim objFSO

Dim objFolder

Dim colFiles

Dim objFile

Dim colItems

Dim colKeys

Dim strKey

Dim strItem

4. Use CreateObject to create the dictionary:

Set objDictionary = CreateObject(“Scripting.Dictionary”)

5. Create the file system object and assign it to the variable objFSO:

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

6. Use the GetFolder method and assign it to the variable objFolder:

Set objFolder = objFSO.GetFolder(“C:\scriptingBook”)

Select a folder available on your machine.

Chapter 5 The Power of Many More 109
7. Use the file command of the GetFolder method and assign it to colFiles:

Set colFiles = objFolder.Files

8. Use For Each to iterate through colFiles:

For Each objFile In colFiles

9.	 Use the Add method of the dictionary object to add the filename and the file size
to the dictionary:

objDictionary.Add objFile.Name, objFile.Size

10. Close out the For Each…Next loop:

Next

11. Assign colItems to the Items collection of the dictionary:

colItems = objDictionary.Items

12. Assign colKeys to the Keys collection of the dictionary:

colKeys = objDictionary.Keys

13. Use For Each to iterate through the collection of keys:

For Each strKey In colKeys

14. Nest another For Each to iterate through the collection of items:

For Each strItem In colItems

15. Echo out the filename and the file size:

WScript.Echo “filename: “ & strKey & “ size: “ & strItem

16.	 Close out the two For Each…Next constructions by typing Next on two separate
lines.

17. Use the Count method to echo out the number of files in the folder:

WScript.Echo “***there are “ & objDictionary.Count & “ files”

Part 2
Basic Windows Administration

6 Working with the File System

In this chapter, you’ll look at two very important concepts: dynamically creating arrays
and dynamically creating dictionaries. Both of these techniques will enable you to cre
ate enterprise-class scripts that will quickly instantiate themselves into your day-to-day
network operations.

Before You Begin
The material presented in this chapter requires you to be familiar with the following
concepts from earlier chapters:

■ Using the For Each…Next construction

■ Applying Select Case constructions

■ Adopting constants

■ Implementing intrinsic VBScript properties such as VbTab and Now

■ Employing If…Then…Else

After completing this chapter you will be familiar with the following:

■ How to create a FileSystemObject instance

■ How to use the FileSystemObject to list files

■ How to use the FileSystemObject to create files

■ How to use the FileSystemObject to verify the existence of files

■ How to use the FileSystemObject to work with file properties

■ How to use the FileSystemObject to work with file attributes

Creating File System Object
To talk to the file system, the script needs to make a connection to it so that it can read
files and folders. The tool used with Microsoft Visual Basic Script (VBScript) is called
the file system object. Once you create an instance of the file system object, you can
leverage its power to perform some or all of the following tasks:

■ Create files and folders

■ Copy files and folders

■ Move files and folders
113

114 Part 2 Basic Windows Administration
■ Delete files and folders

■ List properties of files and folders

Just the Steps

� To enumerate a list of files
1. Use CreateObject to create the FileSystemObject.

2. Define the folder to be searched by using GetFolder.

3. Use the Files command to list files.

4. Use a For Each construct to walk through the folder.

File It Under Files
In your first file system script, Listfiles.vbs, you connect to FileSystemObject, attach it to
a folder defined by the variable FolderPath, and then use the Files command to enable
the For Each loop to echo out each file in the folder. This is just the beginning of what
you can do with this script. Continue to think of ways to expand upon this script so
that you can perform some really useful network administration tasks.

Option Explicit

On Error Resume Next

Dim FolderPath ’ folder to be searched for files

Dim objFSO

Dim objFolder

Dim colFiles

Dim objFile

FolderPath = “C:\scriptingBook\BookScripts_VbScript"

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objFolder = objFSO.GetFolder(FolderPath)

Set colFiles = objFolder.Files

For Each objFile In colFiles
WScript.Echo objFile.Name, objFile.Size

Next

Header Information

In the Header information section of Listfiles.vbs are the normal Option Explicit and On
Error Resume Next commands. These are used to specify the declaration of all variables
and to provide rudimentary error suppression. Next, you declare five variables that are
used in the script. A description of the variables is listed in Table 6-1.

Chapter 6 Working with the File System 115
Table 6-1 Variables Used in Listfiles.vbs

Variable name Use

FolderPath Defines the folder to be searched in the script.

objFSO Creates FileSystemObject.

objFolder	 Holds the connection to the folder by using the FolderPath variable
and the GetFolder method of FileSystemObject.

colFiles Holds the collection of files returned by using the files command.

objFile	 Holds individual files as the script iterates through the collection of
files by using the For Each construction.

See Also For more information about using the Option Explicit and On Error Resume Next

commands, see Chapter 1, “Starting from Scratch.”

Reference Information

The Reference information section of the Listfiles.vbs script is different from some of
the earlier scripts in this book because you make the connection to FileSystemObject,
which enables you to work with file and folders. You also define the FolderPath vari
able created in the Header information section. The FolderPath variable is utilized to
make the script easier to modify in the future. By changing the path contained in the
FolderPath variable, the script can list files on any machine. In addition, FolderPath
provides a great deal of flexibility. With just a little work, you can modify Listfiles.vbs
to take command-line input or to find the value for FolderPath by reading a list of
paths from a text file.

ObjFSO is used to hold the reference that comes back from the CreateObject command.
By using the CreateObject(“Scripting.FileSystemObject”) command, you can work with
the file system to enumerate all the files in the folder.

The folder from which files are listed is defined by using the GetFolder method. The
code objFSO.GetFolder(FolderPath) is set equal to objFolder, which is the variable used
to address the folder defined in the FolderPath variable.

Once you can talk to the folder, you use the Files command to get a list of files contained
in the folder. You assign this list of files to the colFiles variable by using the following
code: Set colFiles = objFolder.Files. The complete Reference information section follows:

FolderPath = “C:\scriptingBook\BookScripts_VbScript"

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objFolder = objFSO.GetFolder(FolderPath)

Set colFiles = objFolder.Files

116 Part 2 Basic Windows Administration
Worker and Output Information

The Worker and Output Information section of the Listfiles.vbs script uses a For
Each…Next loop to walk through the collection of files returned by the Files command
in the Reference information section of the script. The Wscript.Echo command is used
to display the filename and the file size:

For Each objFile In colFiles
WScript.Echo objFile.Name, objFile.Size

Next

Quick Check

Q. What is required to talk to the file system by using FileSystemObject?

A. You use FileSystemObject by using a CreateObject command, assigning to a vari
able the hook that comes back.

Q. Why do you want a hook for FileSystemObject?

A. You want a hook for FileSystemObject because it allows you to work with files
and folders.

File Properties
Name and Size (used in the preceding WScript.Echo command) are just two file prop
erties that can be listed by using FileSystemObject. A file property describes aspects of
the file such as when it was created, when it was last accessed, when it was modified,
its path, its size, and its type. The intrepid network administrator can enumerate vari
ous file properties, which can be used for both security purposes and user data man
agement. For example, as shown in the following code, you can add a couple of lines
to the Listfiles.vbs script to retrieve additional data—in this case, the date the file was
created and the date it was last modified. The vbTab constant is added to make the out-
put easier to read. The completed script is saved as ListfilesExtProperties.vbs on the
companion CD. Here are the additional lines:

WScript.Echo vbTab & “created: “ & objFile.DateCreated
WScript.Echo vbTab & “modified: “ & objFile.DateLastModified

Additional file object properties can be retrieved in the same manner. All are listed in
Table 6-2.

Chapter 6 Working with the File System 117
Table 6-2 File Properties

Property Use

Attributes	 Bitmask representation of the file attributes such as read-only and
hidden.

DateCreated Date the file was created.

DateLastAccessed Date the file was last accessed.

DateLastModified Date the file was last modified.

Drive	 The drive letter representing where the file is stored, followed by a
colon (for example, C:).

Name	 The name of the file, not including the path information (for example,
ListFiles.vbs). The name does include the extension.

ParentFolder	 The folder in which the file is located (not including subfolders). For
example, the parent folder of C:\windows\system32\logfile.txt is
Windows.

Path	 The full path of the file (for example, C:\windows\system32\log
file.txt).

ShortName	 8.3 (MS-DOS format) version of the filename. For example: MyLong-
FileName.txt would become MyLong~1.txt.

ShortPath	 8.3 (MS-DOS style) version of the path. For example, C:\MyLong-
Path\MyLongFileName.txt would become C:\MyLong~1\MyLong~1.txt.

Size The size of the file in bytes.

Type	 The type of file as recorded in the registry. For example, a .doc file is
listed as a Microsoft Word document.

File Attributes
File attributes are aspects such as read-only, hidden, system, and archive that are used
to configure how a file can be utilized by the operating system. These are the same
attributes you can set via the attrib.exe command or the Properties Action menu in
Explorer.exe. These attributes are not hidden from ordinary users (they are easily read
in Explorer.exe), and they are used to control how backups run and to prevent acci
dental overwriting of important configuration and system files. This fact makes file
attributes of interest to network administrators. A file attribute is stored as a bitmask
value to conserve space. When you query the file attribute, only a single number is
returned. When a file is hidden, VBScript returns a 2. When a file is a system file,
VBScript returns a 4. When, however, a file is both a hidden file and a system file,
VBScript return a 6. The numbers are arranged so that each attribute or combination of

118 Part 2 Basic Windows Administration
attributes returns a single and unique number. There are a number of possible combi
nations, each of which would need to be tested in a script returning these attributes.
The bits representing each attribute value are listed in Table 6-3.

Table 6-3 File Attributes and Bitmask Values

Attribute Bitmask value Meaning

Normal 0 No attributes set.

Read-Only 1 File can be read but not changed.

Hidden 2 File cannot be seen in default view of Microsoft
Windows Explorer.

System 4 File is used by the OS.

Archive 32 File changed since last backup.

Alias 64 File is a shortcut to another file.

Compressed 2048 File has been compressed.

Just the Steps

� To access file attributes
1. Create an instance of FileSystemObject.

2. Use the GetFile method to bind to the file.

3. Use the Attributes method to return the bitmask value.

Implementing the Attributes Property

In the FileAttributes.vbs script, you first use CreateObject to create an instance of the
FileSystemObject. Once the instance is created, you use GetFile to provide a reference
to a specific file (in this case, the boot.ini file). After you have a reference to the
boot.ini file, you echo out the filename and also the attribute number by using the
Attributes property in conjunction with the WScript.Echo command. Finally, you use a
Select Case construction to match the attribute number and display the appropriate text.

See Also For a detailed explanation of Select Case, see Chapter 3, “Adding Intelligence.”

Option Explicit

On Error Resume Next

Dim objFSO

Dim objFile

Dim Target

Chapter 6 Working with the File System 119
Target = “C:\boot.ini"

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objFile = objFSO.GetFile(Target)

WScript.Echo “The file Is: “ & target

WScript.Echo “bitmask number Is: “ & (objFile.Attributes)

Select Case objFile.Attributes
Case 0

WScript.Echo “No Attributes Set"
Case 1

WScript.Echo “Read-Only"
Case 2

WScript.Echo “Hidden File"
Case 3

WScript.Echo “Read-Only, Hidden File"
Case 4

WScript.Echo “System File"
Case 6

WScript.Echo “Hidden, System File"
Case 7

WScript.Echo “Read-Only, Hidden, System File"
Case 32

WScript.Echo “Archive bit Set"
Case 64

WScript.Echo “Link or Shortcut"
Case 2048

WScript.Echo “Compressed file"
End Select

Setting File Attributes

You have to use a rather strange operator—the Xor operator—to set the file attributes,
because the bitmask values are actually ones and zeros, and you therefore are going to
do a simple Boolean operation to flip the bit. This sounds more complicated than it is.
You just need to know how to spell Xor to use it in your script. In the following script,
you look for an attribute of 1, which you know from the previous discussion is equal
to the read-only attribute. In Boolean math, 1 And 1 11 1 is equal to 1, which indicates
the file is read-only. 1 And any other combination of numbers is equal to zero, so if the
file is not marked read-only, when it is And’ed with 1, it yields a zero and therefore is
Xor’ed to make it into a read-only attribute.

Set objFSO = CreateObject(“Scripting.FileSystemObject”)
Set objFile = objFSO.GetFile(“C:\scripts\test.txt”)

WScript.Echo “Beginning attribute is “ & objfile.attributes

If (objFile.attributes AND 1) = 0 Then
objFile.Attributes = (objFile.Attributes Xor 1)

Else

120 Part 2 Basic Windows Administration
WScript.Echo(“File attributes are unchanged: “)
End If

WScript.Echo “End File Attribute Is: “ & objFile.Attributes

A File, a File, I Need to Create a File
There are literally thousands of times when a network administrator needs to create a
file. The most common occurrence is when output needs to be captured from a com
mand prompt or from the running of a script. By the time you finish this chapter, you’ll
have a section of code that you can reuse again and again. Once you know how to cre
ate files, you can use this code section instead of the WScript.Echo command to direct
output to either the command prompt or a dialog box. (Later on in Chapter 14, “Con-
figuring Network Components,” you’ll learn how to automatically invoke Notepad.exe
to facilitate reading of the output.) So what is involved in creating a file? The “Just the
Steps” section explains the process at a high level.

Just the Steps

� To create a file
1. Use CreateObject to create an instance of FileSystemObject.

2. Use the CreateTextFile method.

3. Include the full path and the name of the desired file.

As you can see from the preceding steps, the creation of a text file via VBScript is a
very easy and straightforward process. In fact, it can be accomplished with just two
lines of code, as seen in the listing for CreateTextFile.vbs.

Set objFSO = CreateObject(“Scripting.FileSystemObject”)
Set objFolder = objFSO.CreateTextFile(“C:\FSO.txt”)

Writing to a Text File
Creating text files using VBScript is cool but rather useless unless you can also add
information to them. Writing information to a text file gives you a way to save informa
tion. In addition, it’s a good way to create a log file to track the progress of various
automated administrative tasks. You use the WriteLine method to write to a text file.

Chapter 6 Working with the File System 121
Just the Steps

� To write to a text file
1. Create an instance of FileSystemObject.

2. Use the appropriate parameter to indicate that you are going to either overwrite the file
(2) or append data to the file (8).

3. Use either the Write, WriteLine, or WriteBlankLines method to write to the file.

4. Close the text file.

How Shall I Write Thee? Let Me Count the Ways…

There are actually three different ways you can write to files, which are described in
Table 6-4.

Table 6-4 Methods Used to Write to Files

Method Use

Write	 Writes to the file without appending the carriage return. (The car
riage return, you might recall, is when the insertion point is moved
to the beginning of the next line.)

WriteLine Writes to the file and includes a carriage return at the end of the line.

WriteBlankLines(n)	 Writes blank lines to the file. The placeholder (n) specifies the num
ber of lines to write.

Overwriting a File

You use the constant ForWriting in conjunction with the Write method to overwrite to a
file. I use this when I want to track the progress of an operation in a log file. By looking
in the file, I can see when the operation last ran, as illustrated in the BasicLog.vbs script.

LogFile = "C:\fso\fso.txt"

Const ForWriting = 2

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)

objFile.WriteLine “beginning process “ & Now

objFile.WriteLine “working on process “ & Now

objFile.WriteLine “Process completed at “ & Now

objFile.Close

122 Part 2 Basic Windows Administration
The script begins by defining the variable LogFile and assigning a text file to it. You do
this to make it easier to reuse the code and to make it easier to change the file you
want to write to. You then define the constant ForWriting and set it equal to 2, which
is the number that tells VBScript to overwrite any data found in the text file that might
have been previously written to. The variable objFSO is then set to be equal to the
object returned by the CreateObject command that is used to create an instance of File-
SystemObject. In the next line, the variable objFile is set to be equal to the handle to
LogFile that is obtained. You use the OpenTextFile command and specify that you want
to open the file for writing. All the preceding steps are overhead for the write opera
tion. Once you have the ForWriting handle to the log file, you have completed the Ref
erence information section of the script. You’re now ready for the Output information
section, which is the section of the script that actually does work. In the Output sec
tion, you use the WriteLine method.

Quick Check

Q. What are three ways to write to files?

A. You can write to files using the Write, WriteLine, and WriteBlankLines methods.

Q. If you want to overwrite a file, what do you need to do?

A. You need to specify the constant ForWriting.

In a logging situation, the dauntless network administrator is looking for two salient
pieces of information: what operation completed and when it completed. Armed with
this information, a network administrator can judge the success or failure of various
procedures. In the BasicLog.vbs script, you can easily glean this information by incor
porating the WriteLine method inside the For…Next loop of any working script. This is
exactly the type of thing I do in a lab to estimate how long a certain script will take to
complete. If, for instance, a certain WMI script needs 5 minutes to complete, you might
not want to launch it on 100 servers at the same time because doing so could have an
adverse impact on the computing environment.

In the CheckAdminTools_logged.vbs file, you merge BasicLog.vbs with the Check-
AdminTools.vbs file from Chapter 1. This script simply checks when the script begins
and when it ends. You could add an extra line of code to compute the run time of the
script (if you were so inclined). By consulting the log entries, you can estimate how
long it will take to obtain the desired information.

LogFile = “C:\fso\fso.txt"

Const ForWriting = 2

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)

Chapter 6 Working with the File System 123
Set objShell = CreateObject(“Shell.Application”)
Set colTools = objShell.Namespace(47).Items

objFile.WriteLine “beginning process “ & Now
For Each objTool in colTools

WScript.Echo objTool
Next
objFile.WriteLine “Process completed at “ & Now
objFile.Close

Existential File Approaches
Although the approach to file management just discussed might seem laid back and
groovy, in many environments, you need to take a more existential approach. In other
words, you must first determine whether the file exists, and if it does, you want to
append to the file (not overwrite it); if it does not exist, you want to create it. This
ensures that your log file is present on each server running your script.

To check for the existence of a particular file, you use the FileExists method of File-
SystemObject. Although it’s true that this method complicates the script a little, it’s also
true that by checking for and creating a particular file as required, you add an order of
magnitude to the flexibility of the script. Without further ado, take a look at the Verify-
FileExists.vbs:

LogFile = “C:\FSO\fso.txt"

Const ForWriting = 2

Const ForAppending = 8

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

If objFSO.FileExists(LogFile) Then

Set objFile = objFSO.OpenTextFile(LogFile, ForAppending)
objFile.Write “appending “ & Now

Else
Set objFile = objFSO.CreateTextFile(LogFile)
objFile.Close
Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)
objfile.Write “writing to new file “ & Now

End If
objFile.Close

Notice that this script uses code that is very similar to the BasicLog.vbs script mentioned
earlier in this chapter in that you define your logfile and create FileSystemObject via the
CreateObject command. However, that is where the most obvious similarity ends.

In this script, you define two constants, ForWriting and ForAppending, because you
might want to perform one of these operations depending on whether the log file
exists. After you create FileSystemObject, you move into an If…Then…Else loop. Notice
the way in which the FileExists construct is implemented:

If objFSO.FileExists(LogFile) Then

124 Part 2 Basic Windows Administration
To look for the existence of a file, you use the handle to FileSystemObject that you
obtained and call the FileExists method of that object. The only required parameter is
the name of the file for which you want to test existence. In this case, it is the file you
set equal to the variable called LogFile.

If the file does exist, you use the opentextFile method of FileSystemObject and specify
logfile, and then add to the file by using the ForAppending constant. Remember, when
you open a file by using the OpenTextFile command, you have to specify whether you
are opening it in read-only mode, appending mode, or overwriting mode. After you
specify the manner in which you are opening the file, you then use the Write com
mand to write a line to the log file. The Now function simply writes out the current date
and time in a long format.

If the file is not present, you want to create the log file. This is done by using the
CreateTextFile method of FileSystemObject, as shown in the following code:

Set objFile = objFSO.CreateTextFile(LogFile)

It’s necessary to follow this command up with objFile.Close because you want to write
to the file. If you don’t close the file and try to write to it, you’ll get an “access denied”
error because the previous command has access to the file. After the Close command,
you use the openTextFile command and specify the ForWriting constant. Then you use
the Write command to write out to the file. In reality, you could have specified For-
Appending and appended to the new file, but by using ForWriting, you make it a little
easier to know what is actually contained in the file.

Summary
In this chapter, you examined the use of FileSystemObject to list and create files. You
also saw how to use FileSystemObject to access file properties and attributes. This dis
cussion was followed up with a look at three different ways to write to files, and the
chapter concluded with a section on how to verify the existence of a file prior to
attempting to write to it.

Quiz Yourself
Q. What are the three ways to write to a file?

A. You can write to a file using the Write, WriteLine, and WriteBlankLines methods.

Q. What is the difference between Write and WriteLine?

A. The difference between Write and WriteLine is that WriteLine includes a line termination.

Q. When using <FSO>, what is a method available for checking the existence of a file?

A. To check for the existence of a file, you need to use the FileExists method.

Chapter 6 Working with the File System 125
Q. File attributes are stored in what type of a configuration?

A. File attributes are stored in a bitmask type of construction.

Q.	 What effect does the storage mechanism used by file attributes have on your ability to
successfully query the attributes?

A.	 Because the file attributes are stored in a bitmask type of construction, you have to
use And to test for their existence and Xor to set them.

Q. What is the difference between a file property and a file attribute?

A.	 A file attribute is an item such as read-only, hidden, system, and archive. A file prop
erty describes aspects of the file such as when it was created, when it was last
accessed, when it was modified, its path, its size, and its type.

Q. To enumerate a list of files in a folder, what type of construction is required?

A.	 To enumerate a list of files in a folder, you must create some kind of a collection and
iterate through it by using a construction like a For Each…Next loop.

On Your Own

Lab 12 Creating Files
In this lab, you will practice creating files. The result of this practice is essentially a
code block that you can employ in other scripts to write information to a file instead of
merely echoing it to the screen.

1. Open Notepad.exe.

2. Use Option Explicit and declare the following variables: logfile, objFSO, and objFile.

3.	 Create an assignment for the variable logfile that will hold the name and path of
your log file. The code will look like the following:

LogFile = “C:\FSO\fso.txt”

4.	 Open Windows Explorer and create a folder called FSO and a text file called
Fso.txt on your C drive.

5. Create a constant called ForWriting and set it equal to 2.

6.	 Use CreateObject to create an instance of the FileSystemObject. Set it equal to a
variable called objFSO. Your code will look like the following:

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

7.	 Use the OpenTextFile method of objFSO to open your log file for writing. Set it
equal to a variable called objFile. Your code will look like the following:

Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)

126 Part 2 Basic Windows Administration
8.	 Use the WriteLine method and the Now function to write a line to a text file called
Fso.txt that indicates you are beginning your logging. The code will look like the
following:

objFile.WriteLine “beginning logging “ & Now

9.	 Use the WriteLine method and the Now function to write a line to the text file
called Fso.txt that indicates your process is continuing. Your code will look similar
to this line:

objFile.WriteLine “working on process “ & Now

10.	 Use the WriteLine method and the Now function to indicate the logging is com
plete. Your code will look like the following:

objFile.WriteLine “Logging completed at “ & Now

11.	 Use the Close command to close out your log file. The code will look like the fol
lowing:

objFile.Close

12.	 Add remarks to each of the variables (logfile, objFSO, and objFile) that were added
in step 2 to indicate their use in the script. Here is an example:

Dim logfile ’ holds path to the log file

Dim objFSO ’ holds connection to the fileSystemObject

Dim objFile ’used by OpenTextFile command to allow writing to file

13. Do not delete the folder or the file because you will use them in the next lab.

Lab 13 Creating a Log File
In this lab, you are going to modify the script created in Lab 12 to check for the exist
ence of the log file. If the file exists, you will overwrite it. If it does not exist, you will
create it.

1. Open Notepad.exe.

2. Use Option Explicit and declare the following variables: LogFile, objFSO, and objFile.

3.	 Create an assignment for the variable logfile that will hold the name and path of
your log file. The code will look like the following:

LogFile = “C:\FSO\fso.txt”

4.	 Use Windows Explorer and create a folder called FSO and a text file called Fso.txt
on your C drive.

5. Create a constant called ForWriting and set it equal to 2.

6. Create a constant called ForAppending and set it equal to 8.

Chapter 6 Working with the File System 127
7.	 Use CreateObject to create an instance of FileSystemObject. Set it equal to a vari
able called objFSO. Your code will look the following:

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

8.	 Use an If…Then…Else loop to implement the FileExists method of FileSystem-
Object. In this loop, test for the existence of LogFile. If the LogFile exists, append
to it a line of text that indicates you appended to it, and use the Now function so
that you know when it ran. Your code will look like the following:

If objFSO.FileExists(LogFile) Then
Set objFile = objFSO.OpenTextFile(LogFile, ForAppending)
objFile.Write “appending “ & Now

Else

9.	 If the file does not exist, use the CreateTextFile command to create the log file.
Assign the new file to the variable objFile. Your code will look like the following:

Set objFile = objFSO.CreateTextFile(LogFile)

10.	 Use the Close method to close the LogFile variable you just created. The code will
look like the following:

objFile.Close

11.	 Use the OpenTextFile method to open the LogFile variable for writing. Set this
equal to objFile. The following code illustrates this:

Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)

12.	 Use the Write method of objFile to write to the LogFile variable. Use the Now func
tion to write the date and time this occurred. Use the following code as an example:

objfile.write “writing to new file “ & Now

13. End the If loop. Use End If to do this.

14. Close the log file. Use objFile.Close for this purpose.

7 Fun with Folders

In this chapter, you look at folders. Building on your work in Chapter 6, “Working with
the File System,” you take the next step toward writing bulletproof scripts that examine
the environment into which they are thrust, check for the existence of files and folders,
and create what is needed when the requisite materials are absent. When you finish
this chapter, you’ll be able to create folders, delete folders, and copy folders all from
within a single VBScript. This ability in turn leads to greater network uptime, because
you eradicate the various avenues of confusion.

Before You Begin
To work through the material presented in this chapter, you need to be familiar with�
the following concepts from earlier chapters:�

■ Utilizing the FileSystemObject

■ Using the For Each...Next construction

■ Implementing constants

■ Applying Select Case constructions

After completing this chapter you will be familiar with the following:�

■ How to use the FileSystemObject class to create folders

■ How to use the FileSystemObject class to list folders

■ How to use the FileSystemObject class to delete folders

■ How to use the FileSystemObject class to verify the existence of folders

Working with Folders
In your day-to-day life as a network administrator, you must create folders hundreds of
times if for no other reason than to hold a bunch of files. In my life as a consultant, I
am constantly creating folders that hold project data for my clients. During the year I
wrote this book, I had to create more than two dozen folders to organize the support
materials, labs, and scripts so that I could keep track of them and maintain versioning
information.
129

130 Part 2 Basic Windows Administration
Just the Steps

� To create a folder
1. Create a file system object by using CreateObject.

2. Use the CreateFolder command to create the folder.

Creating the Basic Folder

Creating your basic folder requires only two lines of code. The first line of code creates
an instance of the FileSystemObject class by using the CreateObject method. Set the
handle returned by CreateObject to a variable, which is used in turn to invoke the
CreateFolder method of FileSystemObject. The only items required by CreateFolder are
the path and name of the folder to be created. This process is illustrated in the follow
ing code:

Set objFSO = CreateObject(“Scripting.FileSystemObject”)
Set objFolder = objFSO.CreateFolder(“c:\fso”)

Suppose you need to create some folders for a number of temporary users. You decide
to call the users tempUser1 through tempUser10. It would actually take a while to cre
ate these folders for the users. However, by making some changes to the CreateBasic-
Folder.vbs script, you can easily accomplish this task. The revised script, called
CreateMultiFolders.vbs, follows:

Option Explicit

Dim numFolders

Dim folderPath

Dim folderPrefix

Dim objFSO

Dim objFolder

Dim i

numFolders = 10

folderPath = “C:\"

folderPrefix = “TempUser"

For i = 1 To numFolders

Set objFSO = CreateObject(“Scripting.FileSystemObject”)
Set objFolder = objFSO.CreateFolder(folderPath & folderPreFix & i)

Next
WScript.Echo(i - 1 & “ folders created”)

Caution FSO will not create a folder unless its parent folder already exists. Thus, an
attempt to create C:\tmp\tmpusers\tmpuser1 will fail unless C:\tmp\tmpusers already
exists.

Chapter 7 Fun with Folders 131
Header Information

The Header information section of CreateMultiFolder.vbs begins with Option Explicit to
ensure that no variables are misspelled or mistakenly introduced. You then declare six
variables that are used in the script. The first variable, numFolders, holds the number
of folders you want to create. The next variable, folderPath, points to the location in
which you will create the folders. In this instance, you are going to create 10 folders off
the root of the C drive, but these values aren’t assigned until the Reference section. The
next variable is folderPrefix. In this script, you assign a word or a set of characters that
VBScript will use to begin the creation of the folders. The beauty of this arrangement
is that you can later change the prefix easily. The variable objFSO holds the connection
to FileSystemObject, and objFolder holds the handle to the CreateFolder command. The
last variable declared is i, which is used simply as a counter.

As you can see, we did not use On Error Resume Next. When actually modifying or
moving data, it is a good idea to allow errors to cause the script to fail so that data is
not harmed if something goes wrong.

Reference Information

The Reference information section of the script assigns values to some of the variables
declared in the Header information section. NumFolders holds the number of folders
you want to create. FolderPath is used by the CreateFolder command when it comes
time to create the folders. FolderPrefix is set to TempUser, which is the folder prefix
you will use for each folder that gets created.

Worker Information

The Worker information section of the script begins with a For…Next loop. In this sec
tion we use the counter i to keep track of how many folders you want to create. The
number of folders created is stored in the value numFolders. At any given time, you
have created i number of folders. This counting continues for each number between 1
and numFolders (inclusive).

On the second line of the Worker information section of the script, you use the Create-
Object command to create an instance of the FileSystemObject. This line is exactly the
same as all the scripts written in Chapter 6. In every situation in which you must create
an instance of the FileSystemObject class, the syntax will be exactly the same: Create-
Object(“Scripting.FileSystemObject”). In most of your scripts, you’ll set the handle to
FileSystemObject equal to objFSO (although the variable can be named anything).

The third line of the Worker information section of the CreateMultiFolder.vbs script is
used to actually create the folders. Note the syntax of this command:

CreateFolder (folderPath)

132 Part 2 Basic Windows Administration
In the script, you concatenate folderPath with folderPrefix and a counter number. This
enables you to reuse the script for a multitude of purposes. In our example, you’ll cre
ate 10 folders, named TempUser1 through TempUser10. You could just as easily
change folderPrefix to ch and then create folders labeled ch1 though ch10. In a school
setting, you might want to change folderPrefix to student, and thus create folders
labeled student1 through student10. If you change the value of i, you can create 10,000
or more folders just as easily as you can create 10. As you can see, it is really easy to
create folders using the FileSystemObject class. It can also shave hours off of lengthy
setup procedures. The best thing, however, is that once the script is written and tested,
you get repeatable results. It is done right every single time.

For i = 1 To numFolders
Set objFSO = CreateObject(“Scripting.FileSystemObject”)
Set objFolder = objFSO.CreateFolder(folderPath & folderPreFix & i)

Next

Output Information

After you create the folders, you want confirmation that the task completed success-
fully. In this script, you use WScript.Echo to let you know that the script completed suc
cessfully. The reason you need to use i-1 in our count is that the value of i gets
incremented prior to the Echo command. This is shown in the following code:

WScript.Echo(i - 1 & “ folders created”)

Quick Check

Q. What is required to create a folder?

A. A connection to FileSystemObject is required.

Q. Which command is used to create a folder?

A. The CreateFolder command is used to create a folder.

Automatic Cleanup
One cool way to use the script for creating folders is to reuse it and modify it to delete
folders. The idea here is that when you use scripts to create folders and then use them
to delete folders, you have basically enabled automatic cleanup after your operations
are complete.

Chapter 7 Fun with Folders 133
Just the Steps

� To delete a folder
1. Implement FileSystemObject by using CreateObject.

2. Use the DeleteFolder command to delete the folder.

Deleting a Folder

Deleting a folder requires a connection to FileSystemObject. Once the connection to
FileSystemObject is established, you use the DeleteFolder command to delete the folder.
This is illustrated in the following script, DeleteBasicFolder.vbs. Notice that the big dif
ference between creating a folder and deleting a folder is that the line in which the
folder is deleted does not begin with Set. Rather than include Set, you simply include
objFSO with the DeleteFolder command and then the path to the folder you will delete.

Set objFSO = CreateObject(“Scripting.FileSystemObject”)
objFSO.DeleteFolder(“c:\fso”)

Deleting Multiple Folders

It is just as easy to delete multiple folders as a single folder because the syntax is the
same: make a connection to FileSystemObject, and then call the DeleteFolder method.
In the DeleteMultiFolders.vbs script that follows, to make the script clean up after itself,
you had to make only three changes to CreateMultiFolders.vbs. Imagine how easy it
would be to run CreateMultiFolders.vbs when your school year begins—and then
when the school year ends, run DeleteMultiFolders.vbs with three minor modifications.
What are the modifications? There are no modifications in either the Header informa
tion or the Reference information section of the script. In the Worker information sec
tion of the script, you delete "Set objFolder = " and then change CreateFolder to
DeleteFolder. In the Output information section of the script, you change folders cre
ated to read folders deleted.

Option Explicit

Dim numFolders

Dim folderPath

Dim folderPrefix

Dim objFSO

Dim objFolder

Dim i

numFolders = 10

folderPath = “C:\"

folderPrefix = “TempUser"

For i = 1 To numFolders

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

134 Part 2 Basic Windows Administration
objFSO.DeleteFolder(folderPath & folderPreFix & i)

Next

WScript.Echo(i - 1 & “ folders deleted”)

Quick Check

Q. To delete a folder, what two components are required?

A. You need a connection to FileSystemObject, and you need to use the Delete-
Folder method.

Q. What is the nice aspect of deleting folders programmatically?

A. The nice aspect of deleting folders programmatically is that you can do so by
easily modifying the script used to create the folders.

Q. What are two situations in which creating folders and deleting folders program
matically would be useful?

A. Creating folders programmatically is useful for schools that need to create a lot
of student home folders at the beginning of the school year and then delete
them at the end of the year. The same technique is useful for companies when
they bring in temporary workers.

Binding to Folders
To gain information about the properties or attributes of a folder, you must first bind to
the folder. Because the File System Object represents folders as COM (Component
Object Model) objects, you must create a reference to them prior to connecting to
them—that is, you must bind to them. You already know that to create or delete a
folder, you have to create an instance of FileSystemObject. After you do that, you use
the GetFolder method to connect to the folder.

Just the Steps

� To bind to a folder
1. Implement the FileSystemObject by using CreateObject.

2. Specify the path to the folder.

3. Use the Set keyword to assign the path to a variable.

In the following script, you implement FileSystemObject by using CreateObject. Next,
you use the GetFolder method to bind to the folder called fso found in the C drive.

Set objFSO = CreateObject(“Scripting.filesystemobject”)
Set objFolder = objFSO.getfolder(“c:\fso”)
WScript.Echo(“folder is bound”)

Chapter 7 Fun with Folders 135
Does the Folder Exist?

Binding to a folder in and of itself is rather boring, but what if the folder does not exist?
If you try to bind to a folder that does not exist, you generate an error message, and
your script might fail. The “path not found” error can be prevented from occurring by
using the FolderExists method. In the CreateBasicFolder_checkFirst.vbs script, you
check for the existence of a folder prior to creating a new one.

By incorporating the FolderExists method into the script to create new folders, you gain
the ability to delete the previous folder prior to creating a new one. The scenario for this
would be creating new student folders at the beginning of a new school year. In addition,
this approach could be used to create a folder for logging on a workstation. If a previous
logging folder was found, that folder could be deleted to make room for a new folder. If
you don’t want to delete the folder, if that folder exists, you simply omit the DeleteFolder
command from the script and modify the message displayed to the user.

Set objFSO = CreateObject(“Scripting.FileSystemObject”)
If objFSO.FolderExists (“C:\fso”) Then

WScript.Echo(“folder exists and will be deleted”)
objFSO.DeleteFolder (“C:\fso”)
WScript.Echo(“clean folder created”)
Set objFolder = objFSO.CreateFolder(“c:\fso”)

Else
WScript.Echo(“folder does not exist and will be created”)
Set objFolder = objFSO.CreateFolder(“c:\fso”)

End if

Copying Folders
Copying folders is a fundamental task in network administration. It is important for
backups and for ease of management. Often the suave network administrator consoli
dates files and folders prior to backing them up. This allows for both a more accurate
backup, and in many instances a quicker backup. In many organizations, the so-called
backup window is nearly closed, and getting everything backed up during the time
allotted is a constant struggle. Consolidating folders can help with that problem.

You use the CopyFolder method of FileSystemObject to copy folders. It is important to
realize that this method also copies subfolders (even empty ones). The syntax of the
CopyFolder method follows:

Command Required Required Optional

CopyFolder Source folder Destination folder overwrite

136 Part 2 Basic Windows Administration
Tip Both the source folder and the destination folder can be specified as either a local path
or a UNC (Universal Naming Convention) path. The overwrite parameter is optional and will
overwrite the destination folder if it is set to True.

In the following script, you copy a folder called fso that resides on the C drive to a
folder called fso1 on the C drive. It is important to note that the folder does not need
to exist in order for the copy process to succeed.

Set objFSO = CreateObject (“scripting.fileSystemObject”)
objFSO.CopyFolder “c:\fso","C:\fso1”

You can make the script a little easier to use by creating variables to hold both the
source and the destination folders. In the next script, CopyFolderExtended.vbs, you do
exactly that. In addition, you create a constant called overwriteFiles that you set to
True. Note that in this next script, the destination folder, called dFolder, is located on
a network share. The CopyFolderExtended.vbs script could be used by a network
administrator to copy user data from the local machine to a network drive for consol
idated backup. One bad aspect of the CopyFolder command is that it does not indicate
that it is working or that it is done. To give yourself a little bit more information, you
use the Now command and WScript.Echo to indicate when the command begins. In
addition, after the copy operation is complete, you receive another echo with the state
ment that the copy ended and the time.

Const OverWriteFiles = True
WScript.Echo(“ beginning copy “ & Now)
sFolder = “C:\Documents and Settings"
dFolder = “\\s2\fileBu"

Set objFSO = CreateObject (“scripting.fileSystemObject”)
objFSO.CopyFolder sFolder, dFolder , OverWriteFiles
WScript.Echo(“ending copy “ & Now)

Moving On Up
Copying folders is a very safe operation because nothing happens to the original data.
Copy operations are often used for presenting a consolidated view of data (such as
copying log files) or for creating redundant data for backup purposes (as in the case of
VBScript book manuscripts). Moving folders, on the other hand, can be used to free up
disk space, or can be used simply because two copies of the data are neither required
nor desired. If a copy operation fails halfway through, you simply end up with an extra
copy of half your data. If, on the other hand, a move operation fails halfway through,
to have even one complete set of information, you have to go to the destination
machine and move your data back. As a result, with important data, I always copy, ver
ify, and then delete. For stuff I am not concerned about, I perform a move.

Chapter 7 Fun with Folders 137
To perform a move operation, use the MoveFolder method of FileSystemObject. The
next script you look at, MoveFolder.vbs, illustrates the MoveFolder method. Unlike the
CopyFolder method, MoveFolder has only two parameters: the source and the destina
tion. The overwrite parameter, which enables overwriting an existing folder during a
move operation, is not implemented. It’s common to move folders between drives, but
you can also use the MoveFolder method to move folders on the same drive, and in
effect, you get the ability to rename a folder. In MoveFolder.vbs, you do exactly that.
You begin with a source folder called c:\fso, and the destination folder is c:\fso1. The
MoveFolder operation deletes the old folder, and once the operation completes, it
works just like a rename operation.

Set objFSO = CreateObject (“scripting.fileSystemObject”)
objFSO.MoveFolder “c:\fso","c:\fso1"

Summary
In this chapter, you examined working with folders. You began by examining the
importance of FileSystemObject to give you a handle to talk to the file system. After you
established the handle, you learned to use the CreateFolder method to create folders.
To delete folders, you simply use the DeleteFolder method. Errors can be avoided by
calling the FolderExists method prior to either deleting a folder or creating a folder.

Quiz Yourself
Q.� To prevent errors when either creating or deleting folders, what should you do prior to

executing the command?

A.� You should always check for the existence of the folder prior to trying to either delete
or create the folder. To do this, use the FolderExists command inside an If...Then...Else
construction.

Q. What is used to bind to a folder?

A. To bind to a folder, you use the GetFolder method.

Q. Why do you need to bind to a folder?

A.� You must bind to a folder because folders are COM objects, and prior to accessing
the properties of the folder, you need an object reference. Creating this reference is
called binding.

Q. What command is used to create a folder?

A. The CreateFolder command is used to create a folder.

Q. What command is used to delete a folder?

A. The DeleteFolder command is used to delete a folder.

138 Part 2 Basic Windows Administration
Q.� What is the main difference between the way DeleteFolder is used and the way Create-
Folder is used?

A.� When you use DeleteFolder, you do not begin the line with the Set command. With
CreateFolder, you begin the line with a Set command.

On Your Own

Lab 14 Creating Folders
In this lab, you are going to practice creating folders. The result of this practice will be
a script that can be used for creating multiple folders for a variety of occasions.

1. Open Notepad.exe.

2. At the top of the script, set Option Explicit.

3.	 Declare variables for the following: numFolders, folderPath, folderPrefix, objFSO,
objFolder, and i. The Header section of your script will look like the following:

Option Explicit

Dim numFolders

Dim folderPath

Dim folderPrefix

Dim objFSO

Dim objFolder

Dim i

4. Assign numFolders to be equal to 10.

5.	 Assign folderPath to be “C:\” or some other local drive on your machine. (Note
that the quotation marks are required.)

6.	 Assign folderPrefix to be equal to “Student”. (The quotation marks are required.)
The Reference section of the script will look like the following:

numFolders = 10
folderPath = “C:\"
folderPrefix = “Student”

7. Implement a For...Next loop that begins like this:

For i = 1 To numFolders

8.	 Implement FileSystemObject and set it equal to objFSO. The code will look like the
following:

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

9.	 Use the FolderExists method to check for the existence of the folder prior to cre
ating it. If the folder exists, echo out the path and state that it is not created. The
code for this will look like the following:

Chapter 7 Fun with Folders 139
If objFSO.FolderExists(folderPath & folderPrefix & i) Then
WScript.Echo(folderPath & folderPrefix & i & “ exists.” _

& “ folder not created”)

10.	 If the folder does not exist, you will need to create it. To do this, build the path
and the prefix, and increment the i counter. The code will look like the following:

Else
Set objFolder = objFSO.CreateFolder(folderPath & folderPreFix & i)

11.	 Echo out the folder path, prefix, and counter, and state that the folder was created.
The code will look like the following:

WScript.Echo(folderPath & folderPrefix & i & “ folder created”)

12. Use End If to close out the If...Then section.

13.	 Use Next to close out the For...Next loop.

The completed code follows:

Option Explicit

Dim numFolders

Dim folderPath

Dim folderPrefix

Dim objFSO

Dim objFolder

Dim i

numFolders = 10

folderPath = “C:\"

folderPrefix = “Student"

For i = 1 To numFolders
Set objFSO = CreateObject(“Scripting.FileSystemObject”)
If objFSO.FolderExists(folderPath & folderPrefix & i) Then

WScript.Echo(folderPath & folderPrefix & i & “ exists.” _
& “ folder not created”)

Else
Set objFolder = objFSO.CreateFolder(folderPath & folderPreFix & i)
WScript.Echo(folderPath & folderPrefix & i & “ folder created”)

End If
Next

Lab 15 Deleting Folders
In this lab, you are going to delete the folders created in Lab 14.

1. Open Notepad.exe.

2.	 Open your solution to Lab 14, or open Lab14Solution.vbs from the companion
CD.

3.	 Copy all the Header information section from Lab 14. The code will look like the
following:

140 Part 2 Basic Windows Administration
Option Explicit

Dim numFolders

Dim folderPath

Dim folderPrefix

Dim objFSO

Dim objFolder

Dim i

4.	 Copy the Reference section of the script from Lab 14. The code will look like the
following:

numFolders = 10
folderPath = “C:\"
folderPrefix = “Student”

5.	 Implement a For...Next loop, using the variable i that goes to the variable num-
Folders. You can copy the following line from Lab 14 as well:

For i = 1 To numFolders

6.	 Create an instance of FileSystemObject. Use the CreateObject method, and assign
it to the variable objFSO. This line is also in Lab 14 and looks like the following:

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

7.	 Use an If...Then loop that incorporates the folderExists method to determine
whether the folder is present prior to deleting it. If the folder does exist, echo out
the path. This code is present in Lab 14 and looks like the following:

If objFSO.FolderExists(folderPath & folderPrefix & i) Then
WScript.Echo(folderPath & folderPrefix & i & “ exists.”)

8.	 Use the DeleteFolder method of FileSystemObject to delete the folder if it is present
on the system. You will need to build the name of the folder by using the folder-
Path variable, folderPrefix, and the counter i. The code to do this looks like the
following:

objFSO.DeleteFolder(folderPath & folderPrefix & i)

9. Use WScript.Echo to echo out that the folder was deleted, as illustrated here:

WScript.Echo(folderPath & folderPrefix & i & “ was deleted”)

10.	 The Else clause implements a simple WScript.Echo command that indicates the
folder does not exist on the system. The code for this looks like the following:

Else
WScript.Echo(folderPath & folderPrefix & i & “ does not exist”)

11. End your If...Then loop by using End If.

12.	 End the For...Next loop by using Next.

Completed code for Lab 15 looks like the following:

Chapter 7 Fun with Folders 141
Option Explicit

Dim numFolders

Dim folderPath

Dim folderPrefix

Dim objFSO

Dim objFolder

Dim i

numFolders = 10

folderPath = “C:\"

folderPrefix = “Student"

For i = 1 To numFolders
Set objFSO = CreateObject(“Scripting.FileSystemObject”)
If objFSO.FolderExists(folderPath & folderPrefix & i) Then

WScript.Echo(folderPath & folderPrefix & i & “ exists.”)
objFSO.DeleteFolder(folderPath & folderPrefix & i)
WScript.Echo(folderPath & folderPrefix & i & “ was deleted”)

Else
WScript.Echo(folderPath & folderPrefix & i & “ does not exist”)

End If
Next

8	 Why Windows Management
Instrumentation?

The discussion in the first few chapters of our book focused on what you can do with

Microsoft Visual Basic Script (VBScript). From a network management perspective,

many useful tasks can be accomplished using just VBScript, but to truly begin to

unleash the power of scripting, you need to bring in additional tools. This is where

Windows Management Instrumentation (WMI) comes into play. WMI was designed to

provide access to many powerful ways of managing Microsoft Windows systems. In

Windows Server 2003, WMI was expanded to include management of many aspects of

server operations, including both configuration and reporting capabilities of nearly

every facet of the server. Some of the tasks you can perform with WMI follow:

■ Report on drive configuration

■ Report on available memory, both physical and virtual

■ Back up the event log

■ Modify the registry

■ Schedule tasks

■ Share folders

■ Switch from a static to a dynamic IP address

Before You Begin
The material presented in this chapter assumes you are familiar with the following
concepts from earlier chapters:

■ Implementing a dictionary

■ Implementing the For…Next construction

■ Implementing Select Case constructions

After completing this chapter you will be familiar with the following:

■ Connecting to the WMI provider

■ Navigating the WMI namespace

■ Running queries to retrieve information from WMI

■ Sending the output of a WMI query to a dictionary

143

144 Part 2 Basic Windows Administration
What Is WMI?
WMI is sometimes referred to as a hierarchical namespace, in which the layers build
upon one another like an LDAP directory used in Active Directory, or the file system
structure on your hard disk drive. Although it is true that WMI is a hierarchical
namespace, the term doesn’t really convey the richness of WMI. The WMI model has
three sections that you need to be aware of:

■	 WMI resources Resources include anything that can be accessed by using
WMI—the file system, networked components, event logs, files, folders, disks,
Active Directory, and so on.

■	 WMI infrastructure The infrastructure comprises three parts: the WMI service,
the WMI repository, and the WMI providers. Of these parts, WMI providers are most
important because they provide the means for WMI to gather needed information.

■	 WMI consumers A consumer “consumes” the data from WMI. A consumer can
be a VBScript, an enterprise management software package, or some other tool or
utility that executes WMI queries.

An Object in Any Other Namespace…

Let’s go back to the idea of a namespace introduced earlier in this chapter. You can think
of a namespace as a way to organize or collect data related to similar items. Visualize an
old-fashioned filing cabinet. Each drawer can represent a particular namespace. Inside
this drawer are hanging folders that collect information related to a subset of what the
drawer actually holds. For example, at home in my filing cabinet, I have a drawer
reserved for information related to my woodworking tools. Inside this particular drawer
are hanging folders for my table saw, my planer, my joiner, my dust collector, and so on.
In the folder for the table saw is information about the motor, the blades, and the various
accessories I purchased for the saw (such as an over-arm blade guard).

The WMI namespace is organized in a similar fashion. (However, you will not neces€
sarily find a table saw folder.) Rather, namespaces contain objects, and these objects
contain properties you can manipulate (and as Will Rogers once said, “manipulation is
good”). Let’s use a WMI script, ListWmiNameSpaces.vbs, to illustrate just how the WMI
namespace is organized.

strComputer = “."

Set objSWbemServices = GetObject(“winmgmts:\\” & strComputer & “\root”)
Set colNameSpaces = objSwbemServices.InstancesOf(“__NAMESPACE”)

For Each objNameSpace In colNameSpaces
WScript.Echo objNameSpace.Name

Next

Chapter 8 Why Windows Management Instrumentation? 145
On a Windows 2003 Server, the results would look like the following:

SECURITY

perfmon

RSOP

Cli

MSCluster

WMI

CIMV2

MicrosoftActiveDirectory

Policy

MicrosoftDNS

MicrosoftNLB

Microsoft

DEFAULT

directory

subscription

So what does all this mean, you ask? It means that on a Windows 2003 server, there are
more than a dozen different namespaces from which you could pull information about
our server. Understanding that the different namespaces exist is the first step to being
able to navigate in WMI to find the information you need. Often, students and people
new to VBScript work on a WMI script to make the script perform a certain action,
which is a great way to learn scripting. However, what they often do not know is
which namespace they need to connect to so that they can accomplish their task.
When I tell them which namespace to work with, they sometimes reply, “It is fine for
you, but how do I know that the such and such namespace even exists?” By using the
ListWMInamespaces.vbs script, you can easily generate a list of namespaces installed
on a particular machine, and armed with that information, search on MSDN to see what
information it is able to provide.

Let’s discuss the preceding script, ListWmiNameSpace.vbs, because it’s similar to many
other WMI scripts. The first line sets the variable strComputer equal to ".". This con€
struction (period in quotation marks) means that the script will operate against this
computer only. The period therefore is a wildcard character that allows the script to
run locally on many computers without you needing to define or change the name
included in the script.

The next line of the script is used to define the variable objsWebmServices and set it
equal to the handle that is returned by using the getObject method to connect to Win-
Mgmts and access the root namespace on the local computer. (The connection string in
WMI is sometimes referred to as a moniker. The word moniker comes from Gaelic and
simply means nickname, or familiar name.) We will discuss the WMI moniker in much
more detail in Chapter 9, “WMI Continued.” These first two lines of the script can be
reused time and again in many WMI scripts. In the third line of the script, you use the
Set command to assign colNameSpaces to be equal to a collection represented by the
instances of the command that query for the presence of the word “_NameSpace”. The

146 Part 2 Basic Windows Administration
Worker information section of the script simply uses a For Each...Next loop to iterate
through the collection of namespaces returned by the query and to echo them out to
the screen.

Tip Although in the ListWMInamespaces.vbs script, I used all lowercase in code for the win3

mgmts name. There really is no requirement for name case with this particular moniker, and in
the Microsoft Platform SDK you will find nearly every possible combination: winmgmts, WinM3

mgmts, WINMGMTS, and I bet even winMgmts.

Keep in mind, however, that name case does matter with some monikers such as “WinNT:”.

More Than Just a Name

Knowing the default namespaces gives some information, and though helpful, to better
map out the WMI namespace, you’ll want information about the subnamespaces as
well. You’ll need to implement a recursive query so that you can gain access to the
subnamespace data. The next script, RecursiveListWmiNameSpace.vbs, is similar to
ListWmiNameSpace.vbs except that it utilizes a subroutine to enable it to perform a re-
entrant query. On some computers, this script might seem to perform a little slowly
during the first running, so I included a WScript.Echo (Now) command at the beginning
and at the end of the script. This allows the network administrator to determine how
long the script takes to run.

As with the previous script, RecursiveListWmiNameSpace.vbs uses strNameSpace with
a "." to indicate the script is run against the local computer. It then calls the subroutine
named EnumNameSpaces and starts with the “root” namespace. Subroutines are dis€
cussed in detail in Chapter 15, “Subs and Other Round Things,” but I wanted to use
one in this script, because it adds a lot of power and flexibility.

Subroutines
Basically, a subroutine is a section of a script that you can get to from anywhere
inside the script. All we need to do is call the subroutine by name to jump to a
particular part of the script. You use a subroutine in this script rather than code
that is sequential (as all our other scripts have used so far) because you need to
execute the commands that make up the subroutine as a group. When you are
finished, you exit out. You can easily identify a subroutine because it begins with
the word Sub followed by the name of the subroutine, and it ends with the end
sub command. When you exit a subroutine (via the end sub command), you go
back to the line after the one that caused you to enter the subroutine.

Chapter 8 Why Windows Management Instrumentation? 147
Once you enter the subroutine, you echo strNameSpace, which on the first pass is sim€
ply the root. Next you use GetObject to make a connection to the WMI namespace that
is identified by the subroutine strNameSpace argument. In the first pass, you are con€
nected to the root. The subroutine then retrieves all namespaces that are immediately
below the one it is currently connected to. You then use a For Each…Next construction
to loop through all the namespaces below the currently connected one. In doing so,
you also concatenate the names to provide a fully qualified name to the namespace.
You take the newly constructed name, pass it to EnumNameSpaces, and work through
the namespace one more time.

WScript.Echo(Now)
strComputer = “."
Call EnumNameSpaces(“root”)

Sub EnumNameSpaces(strNameSpace)
WScript.Echo strNameSpace
Set objSWbemServices = _

GetObject(“winmgmts:\\” & strComputer & “\” & strNameSpace)
Set colNameSpaces = objSWbemServices.InstancesOf(“__NAMESPACE”)
For Each objNameSpace In colNameSpaces

Call EnumNameSpaces(strNameSpace & “\” & objNameSpace.Name)
Next

End Sub
WScript.Echo(“all done “ & Now)

Providers
Understanding the namespace assists the network administrator with judiciously apply€
ing WMI scripting to his or her network duties. However, as mentioned earlier, to
access information via WMI, you must have access to a WMI provider. Once the pro€
vider is implemented, you can gain access to the information that is made available.

The following script, ListWmiProviders.vbs, enumerates all the WMI providers instru€
mented on the machine. This information can lead the network administrator to MSDN
or some other place to find details about the methods supported by the provider.

strComputer = “."

Set objSWbemServices = _
GetObject(“winmgmts:\\” & strComputer & “\root\cimv2”)

Set colWin32Providers = objSWbemServices.InstancesOf(“__Win32Provider”)

For Each objWin32Provider In colWin32Providers
WScript.Echo objWin32Provider.Name

Next

148 Part 2 Basic Windows Administration
When you run the script on Windows 2003 Server, you get the following output:

Win32_WIN32_TSLOGONSETTING_Prov

MS_NT_EVENTLOG_PROVIDER

Win32_WIN32_TSENVIRONMENTSETTING_Prov

SCM Event Provider

ProviderSubSystem

VolumeChangeEvents

NamedJobObjectLimitSettingProv

HiPerfCooker_v1

WMIPingProvider

Win32_WIN32_TSNETWORKADAPTERSETTING_Prov

SystemConfigurationChangeEvents

Win32_WIN32_TERMINALSERVICE_Prov

MSVDS__PROVIDER

Win32_WIN32_TSREMOTECONTROLSETTING_Prov

Win32_WIN32_TSNETWORKADAPTERLISTSETTING_Prov

Win32_WIN32_COMPUTERSYSTEMWINDOWSPRODUCTACTIVATIONSETTING_Prov

Win32_WIN32_TSSESSIONDIRECTORY_Prov

CmdTriggerConsumer

Standard Non-COM Event Provider

SessionProvider

WBEMCORE

RouteEventProvider

WhqlProvider

Win32_WIN32_TSSESSIONSETTING_Prov

Win32_WIN32_TERMINALTERMINALSETTING_Prov

Win32_WIN32_TSCLIENTSETTING_Prov

Win32_WIN32_TERMINALSERVICESETTING_Prov

WMI Kernel Trace Event Provider

Win32_WIN32_PROXY_Prov

NamedJobObjectProv

MS_Shutdown_Event_Provider

SECRCW32

Win32ClockProvider

MSVSS__PROVIDER

MS_Power_Management_Event_Provider

Win32_WIN32_WINDOWSPRODUCTACTIVATION_Prov

RouteProvider

Cimwin32A

Msft_ProviderSubSystem

Win32_WIN32_TERMINALSERVICETOSETTING_Prov

NamedJobObjectSecLimitSettingProv

Win32_WIN32_TSSESSIONDIRECTORYSETTING_Prov

Win32_WIN32_TSPERMISSIONSSETTING_Prov

Win32_WIN32_TSACCOUNT_Prov

Win32_WIN32_TERMINAL_Prov

DskQuotaProvider

Win32_WIN32_TSGENERALSETTING_Prov

CIMWin32

NamedJobObjectActgInfoProv

NT5_GenericPerfProvider_V1

WMI Self-Instrumentation Event Provider

DFSProvider

MS_NT_EVENTLOG_EVENT_PROVIDER

Chapter 8 Why Windows Management Instrumentation? 149
Adding a Touch of Class
In addition to working with namespaces, the inquisitive network administrator will also
want to explore the concept of classes. In WMI parlance, you have core classes and
you have common classes. Core classes represent managed objects that apply to all
areas of management. These classes provide a basic vocabulary for analyzing and
describing managed systems. Two examples of core classes are parameters and the sys3
temSecurity class. Common classes are extensions to the core classes and represent
managed objects that apply to specific management areas. However, common classes
are independent from a particular implementation or technology. The CIM_Unitary-
ComputerSystem is an example of a common class. Core and common classes are not
used as much by network administrators because they serve as templates from which
other classes are derived. Therefore, most of the classes stored in root\cimv2 are
abstract classes and are used as templates. However, a few classes in root\cimv2 are
dynamic classes used to hold actual information. The important aspect to remember
about dynamic classes is that instances of a dynamic class are generated by a provider
and are therefore more likely to retrieve “live” data from the system.

A property in WMI is a value that is used to indicate a characteristic (something describ€
able) about a class. A property has a name and a domain that is used to indicate the
class that actually owns the property. Properties can be viewed in terms of a pair of
functions: one to set the property value and another to retrieve the property value.

In addition to properties are methods. As you’ve learned in earlier chapters, a method
answers the question “what does this thing do.” In many cases, the answer is “well, it
does nothing.” However, the cool thing about WMI is that it’s constantly evolving—and
in Windows Server 2003, more methods have been added than ever before. Like a
property, a method also has a name and a domain. And just like a property, the
method’s domain refers back to the owning class. One slightly confusing feature of a
WMI method is that it can have an overriding relationship with a method from another
class. Remember when I said that the domain points to the ownership of a method?
Well, ownership can be overridden when the domain from the overridden method is a
SuperClass. It gets even worse.

Note Just because a class has a method does not guarantee that the method is imple-
mented. You must verify that the implemented qualifier is attached to the method to ensure
the method actually works. (You can do this by looking the method up in the Platform SDK. It
will simply say “implemented.”) This is the only way you can ensure that the implementation
is actually available for the class. I will admit that I have actually wasted several hours trying
to make a particular method work, only to find out it was not even implemented.

150 Part 2 Basic Windows Administration
The following script, ListWmiClasses.vbs, returns a list of classes found in the
root\cimv2 namespace.

strComputer = “."
nSpace = “\root\cimv2"
Set objSWbemServices = _

GetObject(“winmgmts:\\” & strComputer & nSpace)
Set colClasses = objSWbemServices.SubclassesOf()

For Each objClass In colClasses
WScript.Echo objClass.Path_.Path

Next

Querying WMI
In most situations, when you use WMI, you are performing some sort of query. Even
when you’re going to set a particular property, you still need to execute a query to
return a dataset that enables you to perform the configuration. (A dataset is the data
that comes back to you as the result of a query, that is, it is a set of data.) In this sec€
tion, you’ll look at the methods used to query WMI.

Just the Steps

� To query WMI
1. Specify the computer name.

2. Define the namespace.

3. Connect to the provider using GetObject.

4. Issue the query.

5. Use For Each...Next to iterate through collection data.

One of the problems with Windows Server 2003 for the small to medium enterprise is
Windows Server 2003 product activation. Although the larger customers have the
advantage of “select” keys that automatically activate the product, smaller companies
often are not aware of the advantages of volume licensing and as a result do not have
access to these keys. In addition, I’ve seen larger customers that use the wrong key—
you can easily forget to activate the copy of Windows Server 2003. Many customers like
to monitor the newly built machine prior to actual activation because of the problems
resulting from multiple activation requests. As is often the case with many IT depart€
ments, emergencies arise, and it is easy to forget to make the trek back to the server
rooms to activate the machines. This is where the power of WMI scripting can come to
the rescue. The following script uses the new Win32_WindowsProductActivation WMI
class to determine the status of product activation:

Chapter 8 Why Windows Management Instrumentation? 151
Option Explicit

On Error Resume Next

dim strComputer

dim wmiNS

dim wmiQuery

dim objWMIService

dim colItems

Dim objItem

strComputer = “."

wmiNS = “\root\cimv2"

wmiQuery = “Select * from Win32_WindowsProductActivation"
Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)
Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems
WScript.Echo “ActivationRequired: “ & objItem.ActivationRequired
WScript.Echo “IsNotificationOn: “ & objItem.IsNotificationOn
WScript.Echo “ProductID: “ & objItem.ProductID
WScript.Echo “RemainingEvaluationPeriod: “ & _

objItem.RemainingEvaluationPeriod
WScript.Echo “RemainingGracePeriod: “ & objItem.RemainingGracePeriod
WScript.Echo “ServerName: “ & objItem.ServerName

Next

Header Information

The Header information section of DisplayWPAstatus.vbs contains the two normal
items, Option Explicit and On Error Resume Next. (If you are unfamiliar with these
commands, refer to Chapter 1, “Starting from Scratch.”) Next, you declare six variables
to be used in this script. Because you are writing a WMI script, you make up some new
variable names. Table 8-1 lists the variables and their intended use in this script.

Table 8-1 Variables Used in DisplayWPAstatus.vbs

Variable name Variable use

strComputer Holds the name of the computer the query will target at run time

wmiNS Holds the namespace that the WMI query will target

wmiQuery Holds the WMI query

objWMIService Holds the connection to the WMI service

colItems Holds the collection of items returned by the WMI query

objItem Holds the individual item from which the properties will be queried

Reference Information

The Reference information section of the script is used to assign value to some of the
variables declared in the Header information section. The first variable used in the Ref€
erence information section is strComputer, whose value is set to ".". In WMI shorthand,

152 Part 2 Basic Windows Administration
"." is used to mean “this computer only.” So the WMI query will operate on localhost.
The second variable assigned a value is wmiNS, which is used to hold the value of the
WMI namespace you query. You could include the namespace and the query on the
same line of the script; however, by breaking the namespace and the query out of the
connection string, you make it easier to reuse the script. WmiQuery is the next vari€
able, which receives the value of “Select * from Win32_WindowsProductActivation.”
You can easily change the query to ask for other information. You are asking for every-
thing that is contained in the local computer from the Win32_WindowsProduct-
Activation namespace.

You use the Set command to set objWMIService to the handle that is obtained by the
GetObject command. The syntax for this command is very important because it is sem€
inal to working with WMI. When making a connection using winmgmts://, the use of
winmgmts is called a moniker. A moniker works in the same way that the phrase “abra€
cadabra” used to work in the old movies. It’s a shortcut that performs a lot of connec€
tion work in the background. Remember the magic phrase, because it will do much of
the work for you, including opening the door to the storehouse of valuable WMI data.
The last item in the Reference information section is the assignment of the variable
colItems to the handle returned by the ExecQuery method. The Reference information
section follows:

strComputer = “."

wmiNS = “\root\cimv2"

wmiQuery = “Select * from Win32_WindowsProductActivation"

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

Worker and Output Information

The Worker information section is the part of the script that works through the collec€
tion of data returned and produces the WPA information. This section is always going
to be customized for each WMI script you write, because each query or each provider
used returns customized data.

Because WMI returns data in the form of a collection, you need to use a For
Each...Next loop to iterate through the items in the collection. This loop is required—
even when WMI returns only one item, WMI still returns that item in a collection. Your
question at this point is probably “how do I know what to request from WMI?” I looked
that up in the Platform SDK (Software Development Kit). (The Platform SDK contains
tons of detailed information about the operating system and is downloadable for free
from Microsoft.com. In addition to selecting the core SDK, you should also download
the WMI SDK fo r Windows Server 2003 .) By look ing in the SDK fo r
Win32_WindowsProductActivation, you learn that several fields are available as prop€
erties from which you can return information. The SDK also tells you that the fields are

Chapter 8 Why Windows Management Instrumentation? 153
all read-only (which would prevent us from flipping the ActivationRequired field to
false). The Worker and Output information section of this script follows:

For Each objItem In colItems
WScript.Echo “ActivationRequired: “ & objItem.ActivationRequired
WScript.Echo “IsNotificationOn: “ & objItem.IsNotificationOn
WScript.Echo “ProductID: “ & objItem.ProductID
WScript.Echo “RemainingEvaluationPeriod: “ & _

objItem.RemainingEvaluationPeriod
WScript.Echo “RemainingGracePeriod: “ & objItem.RemainingGracePeriod
WScript.Echo “ServerName: “ & objItem.ServerName

Next

The most interesting information in Win32_WindowsProductActivation is listed in
Table 8-2.

Table 8-2 Properties of Win32_WindowsProductActivation

Property Meaning

ActivationRequired4 If 0, activation is not required. If 1, the system must be acti€
vated within the number of days indicated by the Remaining3
GracePeriod property.

IsNotificationOn4 If 0, notification reminders and the activation icon are disabled.
If not equal to 0 and product activation is required, notification
reminders (message balloons) are enabled, and the activation
icon appears in the notification tray.

ProductID4 A string of 20 characters separated by hyphens. This is the same
product ID that is displayed on the General tab of the System
Properties dialog box in Control Panel.

RemainingEvaluationPeriod4 If beta or evaluation media, this returns the number of days
remaining before expiration. If retail media, this field is set to
the largest possible unsigned value.

RemainingGracePeriod4 Numbers of days remaining before activation is required if
ActivationRequired is equal to 1.

ServerName4 Name of the system being queried. This could also be the IP
address of the system.

Summary
In this chapter, you looked at WMI on Windows Server 2003. You learned about the
concept of the namespace and examined several of the default namespaces available
in a default installation of Windows Server 2003. In addition, you looked at the concept
of classes and how they are utilized within WMI. You examined the concept of provid€
ers and saw how they are used to enable WMI to access various parts of the informa€
tion contained within the different namespaces. You learned about querying WMI and
about the use of monikers to abstract some of the complexity of connecting to WMI.

154 Part 2 Basic Windows Administration
Quiz Yourself
Q. What is the default WMI namespace on Windows Server 2003?

A.	 The default WMI namespace on Windows Server 2003 actually depends on how you
define default. Many of the WMI tools will connect to root\cimv2, which contains a lot
of very useful information for managing Windows Server 2003. You could also say
that root is the default namespace as well because it is at the top of the tree.

Q.	 You want to find a class in WMI that will tell you how much memory is installed on a
server. How do you go about finding this class?

A.	 There are several approaches to this task. You could download the WMI SDK, which
includes the WMI browser. After you launch the WMI browser, you could look around
and see what you find. You could also do a search in the WMI SDK for the term “WMI
memory,” which would return the Win32_PhysicalMemory class, and from this class
you could return several pieces of information about installed memory.

Q. Why do many scripts set the computer variable equal to "."?

A.	 When a script sets the computer variable equal to ".", the writer wants the script to
run against the local machine.

Q. What is a moniker?

A.	 A moniker is a connection shortcut that hides much of the complexity of connecting to
WMI from the scripter.

On Your Own

Lab 16 Retrieving Hotfix Information
In this lab, you use the Win32_QuickFixEngineering provider to retrieve information
about hotfixes installed on your server. This lab incorporates techniques learned in ear€
lier chapters into the information about WMI discussed in this chapter.

Lab Instructions

1. Open Notepad.exe.

2. Turn on Option Explicit by typing Option Explicit on the first line of the script.

3.	 Declare variables to be used in the script. There are six variables to be used: str-
Computer, objWmiService, wmiNS, wmiQuery, objItem, and colItems.

4.	 Assign the value of "." to the variable strComputer. The code will look like the fol€
lowing:

strComputer = “.”

Chapter 8 Why Windows Management Instrumentation? 155
5.	 Assign the value of "\root\cimv2" to the variable wmiNS. The code will look like
the following:

wmiNS = “\root\cimv2”

6.	 Assign the query "Select * from Win32_QuickFixEngineering" to the variable
wmiQuery. The code will look like the following:

wmiQuery = “Select * from Win32_QuickFixEngineering”

7.	 Use the winmgmts moniker and the variable objWMIService as well as the Get-
Object method to make a connection to WMI. Use the strComputer and the wmiNS
variables to specify the computer and the namespace to use. The code will look
like the following:

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

8.	 Set the variable colItems to be equal to the connection that comes back from WMI
when it executes the query defined by wmiQuery. Your code should look like the
following:

Set colItems = objWMIService.ExecQuery(wmiQuery)

9.	 Use a For Each...Next construction to iterate through the collection called colItems.
Assign the variable called objItem to each of the items returned from colItems.
Your code should look like this:

For Each objItem In colItems

10.	 Use WScript.Echo to echo out items such as the caption, CSName, and description.
You can copy the fol lowing i tems, or use the WMI SDK to look up
Win32_QuickFixEngineering and choose items of interest to you.

WScript.Echo “Caption: “ & objItem.Caption

WScript.Echo “CSName: “ & objItem.CSName

WScript.Echo “Description: “ & objItem.Description

WScript.Echo “FixComments: “ & objItem.FixComments

WScript.Echo “HotFixID: “ & objItem.HotFixID

WScript.Echo “InstallDate: “ & objItem.InstallDate

WScript.Echo “InstalledBy: “ & objItem.InstalledBy

WScript.Echo “InstalledOn: “ & objItem.InstalledOn

WScript.Echo “Name: “ & objItem.Name

WScript.Echo “ServicePackInEffect: “ & objItem.ServicePackInEffect

WScript.Echo “Status: “ & objItem.Status

11. Close out your For Each...Next loop with the Next command.

12. Save your file as lab16.vbs.

156 Part 2 Basic Windows Administration
Lab 17 Echoing the Time Zone
In this lab, you modify the script from Lab 16 so that it echoes out the time zone con-
figured on the computer.

Lab Instructions

1. Open Notepad.exe.

2. Open Lab16Solution.vbs, and save it as lab17.vbs.

3.	 Edit the wmiQuery so that it points to Win32_TimeZone. The code will look like
the following:

wmiQuery = “Select * from Win32_TimeZone”

4.	 Inside the For Each objItem In colItems loop, delete all but one of the
WScript.Echo statements so that the code looks like the following:

For Each objItem In colItems
WScript.Echo “Caption: “ & objItem.Caption

Next

5.	 Save and run the file. You are now pointing to the Caption field of
Win32_TimeZone. No further changes are required for this lab.

9 WMI Continued

In this chapter, you’ll continue working with WMI. You’ll build upon the concepts
learned in Chapter 8, “Why Windows Management Instrumentation?” and see different
ways to leverage your investment in WMI to assist in day-to-day network administrative
tasks.

Before You Begin
To work through the material presented in this chapter, you need to be familiar with
the following concepts from earlier chapters:

■ Connecting to the default WMI namespace

■ Accessing properties of dynamic WMI classes

■ Implementing the For...Next construction

■ Implementing a WMI query

After completing this chapter you will be familiar with the following:

■ Alternative ways of configuring the WMI moniker

■ Querying WMI

■ Setting impersonation levels

■ Defining the WMI object path

■ Navigating the WMI namespace

Alternate Ways of Configuring the WMI Moniker
In this section, you are going to look at different ways of constructing the WMI moni

ker string. There are essentially three parts to the moniker. Of the three parts, only one

is mandatory. These parts are listed here:

■ The prefix WinMgmts: (This is the mandatory part.)

■ A security settings component

■ A WMI object path component

157

158 Part 2 Basic Windows Administration
Just the Steps

� To construct the moniker
1. Use the prefix WinMgmts:.

2. Define the security settings component, if desired.

3. Specify the WMI object path component, if desired.

Accepting Defaults
Several fields are optional in constructing a finely tuned WMI moniker, and there are
clearly defined defaults for those optional fields. The defaults are stored in the following
registry location: HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WBEM\Scripting.
There are two keys: impersonation level and default namespace. Impersonation level is
set to a default of 3, which means that WMI impersonates the logged-on user. The default
namespace is set to root\cimv2. In reality, these are pretty good defaults. The default
computer is the local machine, so you don’t need to specify the computer name when
you’re simply running against the local machine. All this means is that you can simplify
your connection string to WMI. A default moniker would just be “winmgmts:\\”. When
using the getObject method, you can use the default connection string as follows:

Set objWMIService = GetObject(“winmgmts:\\”)

By using a default moniker and omitting the Header information, you come up with a
rather lean script. You can still shorten it even more, as you’ll learn in a bit, but the
SmallBIOS.vbs script that follows is a shorter script than the DetermineBIOS.vbs script,
which is included on the companion CD-ROM. (The Header information of Small-
BIOS.vbs is omitted.)

wmiQuery = “Select * from Win32_BIOS"

Set objWMIService = GetObject(“winmgmts:\\”)
Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem in colItems
strBIOSVersion = Join(objItem.BIOSVersion, “,”)
WScript.Echo “BIOSVersion: “ & strBIOSVersion
WScript.Echo “: “ & objItem.caption
WScript.Echo “: “ & objItem.releaseDate

Next

Reference Information

The Reference information section of the script comprises three lines. Two of the lines
would be consistent among many WMI scripts; the first line in the Reference informa
tion section would change depending upon what query you wanted to run. For the

Chapter 9 WMI Continued 159
script to return information about the BIOS on the server, you need to connect to the
Win32_BIOS namespace. Your WMI query does nothing fancy—it simply tells WMI
that you want to select everything contained in the Win32_ BIOS namespace. The
actual query looks like the following:

wmiQuery = “Select * from Win32_BIOS”

The two standard lines in the Reference section are the connection to WMI that uses
the GetObject method and the moniker. The short version of the moniker follows:

Set objWMIService = GetObject(“winmgmts:\\”)

Once you have the connection into WMI, you can begin to perform tasks with it. In this
case, you want to issue a query and hold the results of that query in a variable called
colItems. So you use the following line:

Set colItems = objWMIService.ExecQuery(wmiQuery)

By removing the contents of the WMI query from the line that uses the ExecQuery
method, you won’t normally need to change this line of the script. The same is true for
the WMI connection string—as long as you are running the script on your local
machine and working in the root\cimv2 namespace, you don’t need to modify that line
either. Now you can see why in our earlier WMI scripts we specified the computer by
using strComputer—it gave us the ability to modify the value of that variable without
having to change the rest of the script.

Worker and Output Information

The Worker and Output information section of the script is used to iterate through the
collection that is returned by wmiQuery. After that information is loaded into the collec
tion of items (colItems), you use a For Each...Next construction to walk through the col
lection and return the desired information. The code for this section of script follows:

For Each objItem in colItems
strBIOSVersion = Join(objItem.BIOSVersion, “,”)
WScript.Echo “BIOSVersion: “ & strBIOSVersion
WScript.Echo “: “ & objItem.caption
WScript.Echo “: “ & objItem.releaseDate

Next

Each item in the collection is assigned to the variable objItem. In this particular situa
tion, only one BIOS can be queried from Win32_BIOS; however, the nature of WMI is
to return single items as a collection. Display the requested information by using the
For Each...Next construction. Only one item is in the collection, so you make only one
loop through.

160 Part 2 Basic Windows Administration
Working with Multivalue Properties

Most of the items in the Output information section are obvious to readers at this point.
You use WScript.Echo to output specific values. However, the first item, strBIOS-
Version, is unique because you use the VBScript Join method to echo out the informa
tion. (We talk about the Join method in two paragraphs, so for now, let’s think of a Join
as a “black box tool.”) This Join is necessary because the data contained in the BIOS-
Version property is stored as an array. Recall from earlier chapters that you can think
of an array as multiple cells in a spreadsheet, each of which can contain a certain
amount of data. The BIOSVersion property of Win32_BIOS contains several fields of
information, but you can’t simply do a WScript.Echo objItem.BIOSVersion because
WScript won’t know which field you want returned and, consequently, the command
would fail. As you learned in your previous discussion of arrays, you could use some-
thing like objItem.BIOSVersion(0), and if you knew which field in the array contained
the most salient information, this would be a valid approach. However, short of run
ning the script multiple times and changing the array value an arbitrary number of
times, you need to take a better approach.

See Also For more information about arrays, refer to Chapter 4, “The Power of Many.”

One cool way to deal with the multivalue property problem is to use the Join tech
nique demonstrated in our earlier script. Let’s see how that works. First you need to
use a new variable that will hold the result of your Join statement:

strBIOSVersion = Join(objItem.BIOSVersion, “,”)

The Join statement should be old hat to readers who are familiar with T-SQL. An exe
cuted Join takes two arguments. It’s saying, “I want to join the first thing with the sec
ond thing.” This is actually quite sophisticated. In the preceding Join statement, you
join each field from BIOSVersion with a comma. You assign the result of the operation
to the variable strBIOSVersion, and you’re ready to echo it out in the next line of your
script. Keep in mind that the default query language into WMI is WQL. Now WQL is
pronounced “weequil” and SQL is pronounced “seaquil”—they not only sound alike
but are alike in that many of the tasks you can perform in SQL can also be accom
plished in WQL. The Join technique is very important, and you’ll use it again when you
come across other arrayed properties. Wondering how I knew that BIOSVersion was an
array? The Platform SDK told me.

Chapter 9 WMI Continued 161
Quick Check

Q. Why do you need a moniker for WMI?

A. The WMI moniker gives you the ability to connect to WMI in an easier fashion.

Q. What construction is required to return property data stored in an array?

A. You need to either specify the element you’re interested in, or simply use a Join
function with a comma to give you a string to work with.

Q. What part of the WMI moniker is required?

A. The required part of the WMI moniker is the prefix, WinMgmts:.

Q. What are the two optional parts to the WMI moniker?

A. The two optional parts of the WMI moniker are the security settings and the WMI
object path.

Moniker Security Settings
In many cases, the default security settings work just fine for the WMI moniker. In
many example scripts, you will see the line impersonationLevel=impersonate in a
script. This line is often not needed, because the default security setting for Microsoft
Windows 2000, Windows XP, and Windows Server 2003 is set to the impersonation
level to be equal to impersonate.

Note When I first started using WMI in my scripting, I noticed lots of scripts had imperson

ationLevel=impersonate set, and it made me curious. After a lot of searching I found the other
levels. However, when I tried to change the security settings, the script failed. The reason?
You cannot specify security settings when running local. They work only when you are connect0
ing remotely to another computer.

But what does that really mean? Why are there options we would not normally utilize?
You can use four levels of impersonation: Anonymous, Identify, Impersonate, and Del
egate. By default, WMI uses the Impersonate permission, which allows a WMI call to
utilize the credentials of the caller. When the person calling the WMI script is a domain
administrator, the script runs with domain administrator privileges. You can also use
other impersonation levels, as described in Table 9-1.

162 Part 2 Basic Windows Administration
Table 9-1 Impersonation Levels

Moniker Meaning Registry value

Anonymous	 Hides the credentials of the caller. Calls to WMI might fail
with this impersonation level.

Identify	 Allows objects to query the credentials of the caller. Calls
to WMI might fail with this impersonation level.

Impersonate	 Allows objects to use the credentials of the caller. This is
the recommended impersonation level for Scripting API for
WMI calls.

Delegate	 Allows objects to permit other objects to use the creden
tials of the caller. This impersonation will work with Script
ing API for WMI calls but might constitute an unnecessary
security risk.

1

2

3

4

If you decide to specify the impersonation level of the script, the code would look like
the following:

Set objWMIService=GetObject(“winmgmts:{impersonationLevel=impersonate}”)

Because Impersonate is the default impersonation level for WMI, the addition of the
curly braces and impersonationLevel=impersonate code is redundant. If you want to
keep your moniker nice and clean, and yet you feel the need to modify the imperson
ation level, you can do this easily by defining the impersonation level of the SWbem-
Security object. In practice, your code might look like the following:

Set objWMIService=GetObject(“winmgmts:\\” & strComputer & wmiNS)
objWMIService.Security_.ImpersonationLevel = 4

In this code, the first line contains the normal moniker to make the connection to WMI.
You use strComputer and wmiNS to specify target computers and the target namespace,
respectively. Because you haven’t specified an impersonation level, you’re using the
default Impersonate security setting. On the next line, you use the handle that came back
from the GetObject command that was assigned to objWMIService, and you define the
impersonationLevel to be equal to 4. (Impersonation values are listed in Table 9-1.) Obvi
ously, you could define a constant and set it to a value of 4 and then substitute the con
stant value for 4 in the script. ImpersonationLevel is a property of Security_. Security_ is
a property of the SWbemSecurity object. The SWbemSecurity object is used to read or set
security settings for other WMI objects such as SWbemServices, which is actually the
object created when you use GetObject and the WMI moniker. Understanding this “gob
bledygook” is not necessary for writing WMI scripts; however, having a feel for some of
it is useful if you’re going to do much reading in the Platform SDK for WMI.

Chapter 9 WMI Continued 163
WbemPrivilege Has Its Privileges

To add elevated privileges, you need to add a privilege string in the space immediately
following the impersonation level. These privilege strings correspond to the Wbem-
PrivilegeEnum constants, which are documented in the Platform SDK. Some of the
more useful privilege strings for network administrators are listed in Table 9-2. (There
are 26 defined privileges in the Platform SDK, most of which are of interest only to
developers writing low-level WMI applications.)

Table 9-2 Privilege Strings

Privilege Value Meaning

SeCreateTokenPrivilege 1 Required to create a primary token.

SeLockMemoryPrivilege 3 Required to lock physical pages in memory.

SeMachineAccountPrivilege 5 Required to create a computer account.

SeSecurityPrivilege 7	 Required to perform a number of security-related
functions, such as controlling and viewing audit mes
sages. This privilege identifies its holder as a security
operator.

SeTakeOwnershipPrivilege 8	 Required to take ownership of an object without
being granted discretionary access. This privilege
allows the owner value to be set only to those values
that the holder might legitimately assign as the owner
of an object.

SeSystemtimePrivilege 11 Required to modify the system time.

SeCreatePagefilePrivilege 14 Required to create a paging file.

SeShutdownPrivilege 18 Required to shut down a local system.

SeRemoteShutdownPrivilege 23 Required to shut down a system using a network
request.

SeEnableDelegationPrivilege 26 Required to enable computer and user accounts to be
trusted for delegation.

As you can see from Table 9-2, some of these privileges are rather interesting. This
being the case, how do you request them? Well, this is where your work gets a little
interesting. If you’re requesting the privilege in a moniker string, you use the privilege
string listed in Table 9-2, but you have to drop the Se part and the Privilege part of the
string. For example, if you want to request the SeShutdownPrivilege in a moniker, you
would specify the privilege as Shutdown, as illustrated in the following WMI connec
tion string:

Set objWMIService=GetObject(“winmgmts:{impersonationlevel=impersonate, (Shutdown)}”)

164 Part 2 Basic Windows Administration
Summary
In this chapter, you examined the construction of the WMI moniker. You looked at var
ious ways in which the moniker can be built and the ways in which it can be utilized.
In addition, you studied the defaults that are configured on a Windows Server 2003
machine, and saw different ways of modifying that behavior. You then spent quite a bit
of time looking at security surrounding the WMI connection. You looked at both
impersonation features and individual security settings. Finally, the chapter concluded
with a discussion of WbemPrivilegeEnum constants and an exploration of how to con
vert WbemPrivilegeEnum constants into Windows NT and Windows 2000 strings.

Quiz Yourself
Q. What is the WMI moniker, and why should you care?

A.	 The WMI moniker is used to simplify the connection into WMI. It includes both default
security and default namespace configuration information to the amount of scripting
involved.

Q. What are impersonation levels?

A.	 Impersonation levels control allowed privileges when connecting to a remote WMI
namespace.

Q. What are the four impersonation levels available to WMI?

A.	 The four impersonation levels available to WMI are Anonymous, Identify, Impersonate,
and Delegate.

Q. In Windows Server 2003, what is the default impersonation level?

A. In Windows Server 2003, the default impersonation level is Impersonate.

Q.	 How do you use a WbemPrivilegeEnum privilege constant in constructing the WMI
moniker?

A.	 To use the WbemPrivilegeEnum privilege constant in constructing a WMI moniker, you
drop the initial Se and the trailing privilege parts of the constant. For example, if you
want to have the SeRemoteShutdownPrivilege when connecting to a remote WMI
namespace, you would simply use the RemoteShutdown portion of the privilege name
in your moniker, like this: impersonationLevel= RemoteShutdown.

Chapter 9 WMI Continued 165
On Your Own

Lab 18a Using the Default WMI Moniker
In this lab, you will practice using the default WMI moniker. To do this, you write a
cute little script that enumerates all the programs listed in the Add/Remove Programs
dialog box, available from Control Panel.

Lab Instructions

1. Open Notepad.exe.

2. On the first line, type Option Explicit to ensure you declare all variables used in
the script.

3. Declare the following variables: objWMIService, colItems, and objItem. Add com
ments following each declaration to specify what each variable is used for.

4. Set objWMIService equal to what comes back from the GetObject method when
used in conjunction with the WMI moniker. Your code will look like the following:

Set objWMIService = GetObject(“winmgmts:\\”)

5. Set colItems equal to what comes back from issuing the WQL statement “Select *
from AddRemovePrograms” as you use the execQuery method. Your code will
look like the following:

Set colItems = objWMIService.ExecQuery(“SELECT * FROM AddRemovePrograms”)

6. Use a For Each...Next loop to iterate through colItems as you look for the follow
ing properties of the AddRemovePrograms object: displayName, Publisher and
Version. Use the variable objItem to assist you in iterating through the collection.
Make sure you close out the For Each...Next loop with the Next command. Your
code could will look like the following:

For Each objItem In colItems
WScript.Echo “DisplayName: “ & objItem.DisplayName
WScript.Echo “Publisher: “ & objItem.Publisher
WScript.Echo “Version: “ & objItem.Version
WScript.Echo

Next

7. Save your file as Solution18-1.vbs.

8. Make sure you run this program in CScript by going to a command prompt and
typing cscript pathtoyourfile\solution18-1.vbs. (More than likely, you have a
lot of programs in Add/Remove Programs. If you run the program by double-
clicking it, and it runs under WScript, you will have tons of pop-up dialog boxes
to close unless you open Task Manager and kill the WScript.exe process.)

166 Part 2 Basic Windows Administration
Lab 18b Invoking the WMI Moniker to Display the Machine
Boot Configuration

In this lab, you explore an alternate method of invoking the WMI moniker. In so doing,
you write a WMI script that displays the boot configuration of a machine.

Lab Instructions

1. Open Notepad.exe.

2. On the first line, specify Option Explicit to ensure all variables utilized are
declared.

3. Declare three variables (using the same variables we declared in Lab 18a). The
variables are objWMIService, colItems, and objItem.

4. Set objWMIService equal to what comes back from the GetObject method when
used in conjunction with the WMI moniker. In addition, define an impersonation
level of Anonymous. Your code will look like the following:

Set objWMIService = GetObject(“winmgmts:{impersonationLevel=anonymous}”)

5. Set colItems equal to what comes back from issuing the WQL statement “Select *
from Win32_BootConfiguration” as you use the execQuery method. Your code
will look like the following:

Set colItems = objWMIService.ExecQuery(“SELECT * FROM Win32_BootConfiguration”)

6. Use a For Each...Next loop to iterate through colItems as you look for the follow
ing properties of the Win3_BootConfiguration object: BootDirectory, Caption,
ConfigurationPath, Description, LastDrive, Name, ScratchDirectory, SettingID,
and TempDirectory. Use the variable objItem to assist you in iterating through the
collection. Make sure you close out the For Each...Next loop with the Next com
mand. Your code will look like the following:

For Each objItem In colItems
WScript.Echo “BootDirectory: “ & objItem.BootDirectory
WScript.Echo “Caption: “ & objItem.Caption
WScript.Echo “ConfigurationPath: “ & objItem.ConfigurationPath
WScript.Echo “Description: “ & objItem.Description
WScript.Echo “LastDrive: “ & objItem.LastDrive
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “ScratchDirectory: “ & objItem.ScratchDirectory
WScript.Echo “SettingID: “ & objItem.SettingID
WScript.Echo “TempDirectory: “ & objItem.TempDirectory
WScript.Echo

Next

7. Save your work as Solution_18a.vbs.

Chapter 9 WMI Continued 167
8. Use CScript to run the script. It will fail! Why does the script fail? Hint: Check the
impersonation level.

9. Change the line containing the WMI moniker. Set the impersonation level to Identify.

10. Save your work as Solution_18b.vbs.

11. Use CScript to run the script. It will fail!

12. Why does the script fail? Hint: Check the impersonation level.

13. Change the line containing the WMI moniker. Set the impersonation level to
Impersonate.

14. Save your work as Solution_18c.vbs.

15. Use CScript to run the script. It works just fine. Why does the script work?

16. Change the line containing the WMI moniker. Set the impersonation level to Del
egate.

17. Save your work as Solution_18d.vbs.

18. Use CScript to run the script. It works just fine. What does this tell you about using
the different impersonation levels on Windows Server 2003?

Lab 18c Including Additional Security Permissions
In this lab, you will modify the WMI moniker to include the specification of additional
security permissions. You will use a script that displays information about the display.

Lab Instructions

1. Open Notepad.exe.

2. On the first line, specify Option Explicit to ensure variables are declared and
spelled correctly.

3. On the next line, declare the following variables: objWMIService, colItems, and
objItem. These are the same variables you used in previous scripts in this chapter.

4. Set objWMIService equal to what comes back from the GetObject method when
used in conjunction with the WMI moniker. In addition, you want to define an
impersonation level of Impersonate as well as the special debug privilege. Your
code will look like the following:

Set objWMIService = GetObject(“winmgmts:{impersonationLevel=impersonate, (debug)}”
)

168 Part 2 Basic Windows Administration
5. Set colItems equal to what comes back from issuing the WQL statement "Select *
from Win32_DisplayConfiguration" as you use the execQuery method. Your code
will look like the following:

Set colItems = objWMIService.ExecQuery(“SELECT * FROM Win32_DisplayConfiguration”)

6. Use a For Each...Next loop to iterate through colItems as you look for the following
properties of the Win32_DisplayConfiguration object: BitsPerPel, Caption, Descrip
tion, DeviceName, DisplayFlags, DisplayFrequency, DriverVersion, LogPixels,
PelsHeight, PelsWidth, SettingID, and SpecificationVersion. Use the variable objItem
to assist you in iterating through the collection. Make sure you close out the For
Each...Next loop with the Next command. Your code will look like the following:

For Each objItem in colItems
WScript.Echo “BitsPerPel: “ & objItem.BitsPerPel
WScript.Echo “Caption: “ & objItem.Caption
WScript.Echo “Description: “ & objItem.Description
WScript.Echo “DeviceName: “ & objItem.DeviceName
WScript.Echo “DisplayFlags: “ & objItem.DisplayFlags
WScript.Echo “DisplayFrequency: “ & objItem.DisplayFrequency
WScript.Echo “DriverVersion: “ & objItem.DriverVersion
WScript.Echo “LogPixels: “ & objItem.LogPixels
WScript.Echo “PelsHeight: “ & objItem.PelsHeight
WScript.Echo “PelsWidth: “ & objItem.PelsWidth
WScript.Echo “SettingID: “ & objItem.SettingID
WScript.Echo “SpecificationVersion: “ & objItem.SpecificationVersion

Next

7. Save your program as Solution18-3.vbs.

8. Modify the WMI connection string to include not only the debug privilege, but
also the shutdown privilege. Your code will look like the following:

Set objWMIService = GetObject(“winmgmts:{impersonationLevel=impersonate, (debug, s
hutdown)}”)

9. Modify the connection string from line 8 to indicate that the WMI connection
should attach to the local host machine. This WMI connection string is starting to
be rather long, so break the line after impersonationlevel. Your code will look like
the following:

Set objWMIService = GetObject(“winmgmts:{impersonationLevel=impersonate,” _
& “(debug, shutdown)}\\localhost”)

10. Save your work.

11. Modify the connection in the preceding string to indicate that you want WMI to
make a connection to the \root\cimv2 namespace on the computer called local-
host. Your code will look like the following:

Set objWMIService = GetObject(“winmgmts:{impersonationLevel=impersonate,” _
& “(debug, shutdown)}\\localhost\root\cimV2”)

12. Save your work, and then use CScript to run the script.

Chapter 9 WMI Continued 169
Lab 19 Using Win32_Environment and VBScript to Learn
About WMI

In this lab, you use Win32_Environment and VBScript to learn about both WMI and
the environment settings on your server.

Lab Instructions

1. Open Notepad.exe.

2. On the first line, type Option Explicit.

3. Use the Dim command to declare the following variables: objWMIService, col-
Items, objItem, wmiQuery, and strComputer.

4. Use WScript.Echo and the Now function to indicate the script is beginning its run.

5. Assign the value of "." to the variable strComputer.

6. Assign the query "Select * from Win32_Environment" to the variable wmiQuery.

7. Set objWMIService = to the handle that comes back from the GetObject function
with the winmgmts: moniker. Incorporate the variable strComputer to tell WMI
which computer to use to execute the connection.

8. Use a For Each...Next Loop to iterate through the collection called colItems. For
each objItem in colItems, echo out the following properties: caption, description,
installDate, Name, Status, SystemVariable, UserName, and VariableValue.

9. Close out the For Each...Next loop.

10. Echo a line indicating the script is finished, and use the Now function to print out
the time.

11. Save your work as lab19.vbs.

12. Run the script in CScript.

10 Using WMI Queries

In the last two chapters, you looked at Windows Management Instrumentation (WMI).
So far, you examined connecting to WMI, the structure of WMI, and various ways of
obtaining results. Now you are going to look at ways to make your information gath�
ering more efficient, more powerful, and more directed. Learning about WMI queries
accomplishes more than just reducing network traffic or helping you be more
directed—a well-crafted WMI Query Language (WQL) statement can make your script
easier to write and the returned data easier to manipulate.

Before You Begin
To work through the material presented in this chapter you need to be familiar with
the following concepts from earlier chapters:

■ Creating the WMI moniker

■ Implementing the For…Next construction

■ Navigating the WMI namespace

■ Implementing GetObject

■ Implementing the ExecQuery method

After completing this chapter you will be familiar with the following:

■ Return all properties from all instances of a class

■ Return some properties from all instances of a class

■ Return all properties from some instances of a class

■ Return some properties from some instances of a class

Tell Me Everything About Everything!
When novices first write WMI scripts, they nearly all begin by asking for every property
about all instances of a class that are present on a particular system. (This is also
referred to as the infamous "select * query".) As you have no doubt found out, this
approach can often return an overwhelming amount of data, particularly when you are
querying a class such as installed software, or processes and threads. Rarely would you
need to have so much data. Typically, when you query for installed software, you’re
looking for information about a particular software package.
171

172 Part 2 Basic Windows Administration
There are, however, several occasions when I want to use the “tell me everything about
all instances of a particular class” query:

■ During development of a script to see representative data

■	 When troubleshooting a more directed query, for example, when I’m possibly try�
ing to filter on a field that does not exist

■ When the returned data is so small that being more precise doesn’t make sense

Just the Steps

� To return all information from all instances
1. Make a connection to WMI.

2. Use the Select statement to choose everything: Select *.

3. Use the From statement to indicate the class from which you wish to retrieve data. For
example, From Win32_Share.

In the next script, you make a connection to the default namespace in WMI and return
all the information about all the shares on a local machine. This is actually good prac�
tice, because in the past numerous worms have propagated via unsecured shares, and
you might have unused shares around—a user might create a share for a friend and
then forget to delete it. (As I was writing this script, I found four shares on my laptop
that I didn’t know were present!) In the script that follows, called ListShares.vbs, you
print out all the information about shares that are present on the machine.

Option Explicit

On Error Resume Next

dim strComputer

dim wmiNS

dim wmiQuery

dim objWMIService

dim colItems

dim objItem

strComputer = “."

wmiNS = “\root\cimv2"

wmiQuery = “Select * from Win32_Share"

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For	 Each objItem In colItems
WScript.Echo “AccessMask: “ & objItem.AccessMask
WScript.Echo “AllowMaximum: “ & objItem.AllowMaximum
WScript.Echo “Caption: “ & objItem.Caption
WScript.Echo “Description: “ & objItem.Description
WScript.Echo “InstallDate: “ & objItem.InstallDate
WScript.Echo “MaximumAllowed: “ & objItem.MaximumAllowed
WScript.Echo “Name: “ & objItem.Name

Chapter 10 Using WMI Queries 173
WScript.Echo “Path: “ & objItem.Path
WScript.Echo “Status: “ & objItem.Status
WScript.Echo “Type: “ & objItem.Type
WScript.Echo

Next

Header information

The Header information section of ListShares.vbs contains all the standard information.
You use Option Explicit to force the declaration of all variables. This is followed by On
Error Resume Next to make sure the script goes to the next line of code if it encounters
an error.

Note In Chapter 1, “Starting from Scratch,” we talked about the pros and cons of using On

Error Resume Next. Most of the time, when you are working with WMI, you are displaying prop
erty values, which is a harmless activity. Using On Error Resume Next helps the script to run,
even when the script encounters an error. This is largely a good thing with WMI.

These two standard lines are followed by the same variable names declared in previ�
ous WMI scripts: strComputer, wmiNS, wmiQuery, objWMIService, colItems, and
objItem. The variable strComputer assigns the target computer, wmiNS assigns the tar-
get WMI namespace, wmiQuery holds the value of the query to be executed, and
colItems holds the collection of items that are returned by the query. The variable
objItem is used by the For Next…Each loop to iterate through the collection.

Reference Information

The Reference information section of the script is used to assign values to five of the six
variables. The variable strComputer is assigned the value of ".", which indicates the
script will run against the local computer. The variable wmiNS is assigned to
\root\CIMV2, which is the default WMI namespace. The variable wmiQuery is set to
“Select * from Win32_Share”. This is the query you want to execute against the default
WMI namespace. Select * tells WMI that you want to retrieve all properties from the
Win32_Share object. Note that this query doesn’t display all the properties; it simply
displays all the properties from the Win32_Share object. What you do with the
returned data depends on your current needs. Unless you need it, returning all the data
might not be a very efficient use of networking resources. It is, however, very easy to
construct such a query.

The variable objWMIService is used to connect to WMI and uses the WMI moniker to
do so. You utilize two variables to assist in this operation: strComputer and wmiNS. The

174 Part 2 Basic Windows Administration
colItems variable holds the handle that comes back from the execQuery method that is
used to execute your WMI query against the Win32_Share class.

Worker and Output Information
The Worker information section of the ListShare.vbs script simply uses WScript.Echo to
write the various properties and their associated values to the command line (if run in
CScript) or to a pop-up dialog box (if run in WScript, which is not a really good idea
when you have lots of shares). The most convenient listing of all the available proper-
ties for a particular class is contained in the platform SDK. A quick search for
Win32_Share reveals the properties listed in Table 10-1.

Table 10-1 Win32_Share Properties

Data type Property Meaning

Boolean AllowMaximum Allow maximum number of connections? True or False.

string Caption Short, one-line description.

string Description Description.

datetime InstallDate When the share was created (optional).

uint32 MaximumAllowed Number of concurrent connections allowed. Only valid
when AllowMaximum is set to False.

string Name Share name.

string Path Physical path to the share.

string Status Current status of the share: degraded, OK, or Failed.

uint32 Type Type of resource shared: disk, file, printer, and so on.

Quick Check

Q. What is the syntax for a query that returns all properties of a given object?

A. Select * returns all properties of a given object.

Q. What is one reason for using Select * instead of a more directed query?

A. In troubleshooting, Select * is useful because it returns any available data. In
addition, Select * is useful in trying to characterize the data that might be
returned from a query.

Chapter 10 Using WMI Queries 175
Selective Data from All Instances
The next level of sophistication (from using Select *) is to return only the properties you
are interested in. This is a more efficient strategy. For instance, in the previous exam�
ple, you did a Select * and returned a lot of data you weren’t necessarily interested in.
Suppose you wanted to know only what shares are on each machine. With a simple
change to the wmiQuery variable and by deleting a few WScript.Echo commands, you
can modify your script to get exactly what you want.

Just the Steps

� To select specific data
1. Make a connection to WMI.

2. Use the Select statement to choose the specific property you are interested in, for
example, Select name.

3. Use the From statement to indicate the class from which you want to retrieve data, for
example, From Win32_Share.

You need to make only two small changes in the ListShares.vbs script to enable garner�
ing specific data via your WMI script. In place of the asterisk in the Select statement
assigned in the Reference information section of the script, you substitute the property
you want. In this case, you want only the name of the shares.

The second change is to eliminate all unused properties from the Output section. This
is very important because the script could fail if you try to echo out a property that is
not selected in the Select statement. I said it could fail as opposed to would fail,
because if you include On Error Resume Next, the script will work. If you don’t include
this error handling, the script fails with an “object does not support this property or
method” error. Because this error message is rather confusing, you should be able to
recognize it! It is important that you select each item for which you want to return
information. In this way, WQL acts just like SQL. If you don’t select a property, you
can’t do anything with the property, because to the program, the object doesn’t exist.
Here is the modified ListShares.vbs script:

strComputer = “."

wmiNS = “\root\cimv2"

wmiQuery = “Select Name from Win32_Share"

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems
WScript.Echo “Name: “ & objItem.Name

Next

176 Part 2 Basic Windows Administration
Selecting Multiple Properties
If you’re interested in only a certain number of properties, you can use Select to specify
that. All you have to do is separate the properties by a comma. Suppose you run the
preceding script and find a number of undocumented shares on one of the servers—
you might want a little bit more information such as the path to the share and how
many people are allowed to connect to it. By default, when a share is created, the
“maximum allowed” bit is set, which basically says anyone who has rights to the share
can connect. This can be a problem, because if too many people connect to a share,
they can degrade the performance of the server. To preclude such an eventuality, I
always specify a maximum number of connections to the server.

Note I occasionally see people asking whether spaces or namecase in the property list
matters. In fact, when I first started writing scripts and they failed, I often modified spacing
and capitalization in feeble attempts to make the script work. Spacing and capitalization do

not matter for WMI properties.

Your revised script now looks like the following (excluding the Header information
section, which hasn’t changed):

strComputer = “."

wmiNS = “\root\cimv2"

wmiQuery = “Select Name, Path, AllowMaximum from Win32_Share"

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For	 Each objItem In colItems
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “Path: “ & objItem.path
WScript.Echo “AllowMaximum: “ & objItem.AllowMaximum
WScript.Echo

Next

You can use this technique of specifying using just the properties you’re interested in
with any of the supported properties from Win32_Share listed in Table 10-1. Interest�
ingly enough, you don’t really need to include the Name property on the Select line,
because for Win32_Share, Name is the key property. The key property in WMI works
just like the Key column in a database: it is used to uniquely identify a row, and it is
often the column or property that is indexed to make searching easier. This is just like
the key to a house or to a car. The key provides entry into the house or car so that you
can access the property inside. The key property is always returned, even when it isn’t
specifically mentioned on the Select line.

Chapter 10 Using WMI Queries 177
Quick Check

Q. To select specific properties from an object, what do you need to do on the Select
line?

A. You need to separate the specific properties of an object with a comma on the
Select line of the execQuery method.

Q. To avoid error messages, what must be done when selecting individual proper-
ties on the Select line?

A. Errors can be avoided if you make sure each property used is specified in the
select line. For example, the WMI query is just like a paper bag that gets filled
with items that are picked up by using the select statement. If you do not put
something in the paper bag, you cannot pull anything out of the bag. In the same
manner, if you do not “select” a property, you cannot later print or sort on that
property. This is exactly the way that a SQL Select statement works.

Q. What can you check for in your script if it fails with an “object does not support
this method or property” error?

A. If you are getting “object does not support this method or property” error mes
sages, you might want to ensure you have referenced the property in your Select
statement prior to trying to work with it in an Output section.

Specifying Specifics
In many situations, you will want to limit the data you return to a specific instance of
that class in the data set. If you go back to your query and add a Where clause to the
Select statement, you’ll be able to greatly reduce the amount of information returned by
the query. Notice that in the value associated with the wmiQuery, you added a depen�
dency that indicated you wanted only information with share name C$. This value is
not case-sensitive, but it must be surrounded with single quotation marks, as you can
see in the wmiQuery string in the following script. These single quotation marks are
important because they tell WMI that the value is a string value and not some other
programmatic item. Because the addition of the Where statement was the only thing
you really added to the ListShares.vbs, we’re not going into a long discussion of the
ListShares.vbs script.

strComputer = “."

wmiNS = “\root\cimv2"

wmiQuery = “Select Name, path, allowMaximum from Win32_Share where name = ‘C$’"

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

178 Part 2 Basic Windows Administration
For	 Each objItem In colItems
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “Path: “ & objItem.path
WScript.Echo “AllowMaximum: “ & objItem.AllowMaximum
WScript.Echo

Next

Just the Steps

� To limit specific data
1. Make a connection to WMI.

2. Use the Select statement to choose the specific property you are interested in, for
example, Select name.

3. Use the From statement to indicate the class from which you want to retrieve data, for
example, From Win32_Share.

4. Add a Where clause to further limit the data set that is returned. Make sure the proper-
ties specified in the Where clause are first mentioned in the Select statement, for exam
ple, where name.

5. Add an evaluation operator. You can use the equal sign, or the less than or greater than
symbols, for example, where name = 'C$'.

Smooth Operator
One of the cool things you can do is use greater than and less than operators in your
evaluation clause. What is so cool about greater than? you might ask. It makes working
with alphabetic characters and numeric characters easy. If you work on a server that
hosts home directories for users (which are often named after their user names), you
can easily produce a list of all home directories from the letters T through Z by using
the > S operation. This is illustrated in the following script:

strComputer = “."

wmiNS = “\root\cimv2"

wmiQuery = “Select Name, path, allowMaximum from Win32_Share where name > ‘s’"

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For	 Each objItem In colItems
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “Path: “ & objItem.path
WScript.Echo “AllowMaximum: “ & objItem.AllowMaximum
WScript.Echo

Next

Chapter 10 Using WMI Queries 179
There are many other available operators in VBScript as well. These operators are
listed in Table 10-2.

Table 10-2 VBScript Operators

Operator Description

= Equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

!= Not equal to

<> Not equal to (both != and <> mean not equal to)

Where Is the Where Clause?
To more easily modify the Where clause in a script, substitute the Where clause with a
variable. This configuration can be modified to include command-line input as well.

strComputer = “."
wmiNS = “\root\cimv2"
vWhere = “ name = ‘c$’"
wmiQuery = “Select Name, path, allowMaximum from Win32_Share where “ & vWhere

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For	 Each objItem In colItems
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “Path: “ & objItem.path
WScript.Echo “AllowMaximum: “ & objItem.AllowMaximum
WScript.Echo

Next

Let’s return to our scenario in which you are looking for shares that have not been lim�
ited by the number of connections. You can modify the vWhere variable to look for
AllowMaximum = 'true'. It would look like the following:

strComputer = “."
wmiNS = “\root\cimv2"
vWhere = “ AllowMaximum = ‘true’"
wmiQuery = “Select Name, path, allowMaximum from Win32_Share where “ & vWhere

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For	 Each objItem In colItems
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “Path: “ & objItem.path

180 Part 2 Basic Windows Administration
WScript.Echo “AllowMaximum: “ & objItem.AllowMaximum
WScript.Echo

Next

Quick Check

Q. To limit the specific data returned by a query, what WQL tool can be utilized?

A. The Where clause is very powerful in limiting the specific data returned by a
query.

Q. What are three possible operators that can be employed in creating powerful
Where clauses?

A. The equal sign and the greater than and the less than symbols can be used to
evaluate the data prior to returning the data set.

Summary
In this chapter, you examined how to use the WMI query language to return data from
servers via WMI. By constructing a judicious WMI query, you can both limit the amount
of data sent across the wire and reduce the amount of time required to process the
query. There are essentially three ways to employ WQL techniques in your scripts. The
first one involves limiting the number of properties from which data is returned by spe�
cifically adding them to the Select line. The second approach involves utilizing the
Where clause to limit the number of instances that are returned when querying a par�
ticular object. The third approach involves simply using an asterisk (*) in the Select line
and not having a Where clause.

Quiz Yourself
Q. What method is used to execute a WMI query?

A. The execQuery method is employed to execute a WMI query.

Q. What is the WQL construction that will limit the number of instances that are returned
in response to a query?

A. You can limit the number of instances that are returned in response to a query by
employing a Where clause.

Q. The specific Select construction in which named properties are listed in the Select
statement is utilized to control data returned in what manner?

A. By using a specific Select construction in which named properties are listed, you are
able to limit the number of properties returned from the object but not the number of
instances that are returned.

Chapter 10 Using WMI Queries 181
Q. If you want only specific data about a specific item, how do you construct your WMI
query?

A. A query that returns only specific data about a specific item must use both a specific
Select clause and a Where clause.

On Your Own

Lab 20 Writing an Informative WMI Script
In this lab, you are going to write a WMI script that returns a lot of information about
processes. This will be used as the starter script in Lab 21.

Lab Instructions

1. Open Notepad.exe.

2.	 On the first line, type Option Explicit to ensure you declare all variables used in
the script.

3.	 Declare the following variables: objWMIService, colItems, objItem, and wmiQuery.
Add comments following each declaration specifying what each variable is used for.

4.	 Assign wmiQuery to be equal to a WQL Select statement that returns everything
from the win32_Process. Your code will look like the following:

wmiQuery = “Select * from Win32_Process”

5.	 Set objWMIService equal to what comes back from the GetObject method when
used in conjunction with the WMI moniker. Your code will look like the following:

Set objWMIService = GetObject(“winmgmts:\\”)

6.	 Set colItems equal to what comes back from issuing the WQL statement held by
the variable wmiQuery as you use the execQuery method. Your code will look like
the following:

Set colItems = objWMIService.ExecQuery(wmiQuery)

7.	 Use a For Each…Next loop to iterate through colItems as you look for the standard
properties of the Win32_Process class. Instead of typing all the properties in your
script, open the student resource CD and copy For Each Next Loop from the
Lab20Starter—For Each Next Loop.vbs script. Save your work as Lab20Solution.vbs.
Your completed script will look like the following:

Option Explicit

On Error Resume Next

dim wmiQuery

dim objWMIService

dim colItems

dim objItem

182 Part 2 Basic Windows Administration
wmiQuery = “Select * from Win32_Process"

Set objWMIService = GetObject(“winmgmts:\\”)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For	 Each objItem In colItems
WScript.Echo “Caption: “ & objItem.Caption
WScript.Echo “CommandLine: “ & objItem.CommandLine
WScript.Echo “CreationClassName: “ & objItem.CreationClassName
WScript.Echo “CreationDate: “ & objItem.CreationDate
WScript.Echo “CSCreationClassName: “ & objItem.CSCreationClassName
WScript.Echo “CSName: “ & objItem.CSName
WScript.Echo “Description: “ & objItem.Description
WScript.Echo “ExecutablePath: “ & objItem.ExecutablePath
WScript.Echo “ExecutionState: “ & objItem.ExecutionState
WScript.Echo “Handle: “ & objItem.Handle
WScript.Echo “HandleCount: “ & objItem.HandleCount
WScript.Echo “InstallDate: “ & objItem.InstallDate
WScript.Echo “KernelModeTime: “ & objItem.KernelModeTime
WScript.Echo “MaximumWorkingSetSize: “ & objItem.MaximumWorkingSetSize
WScript.Echo “MinimumWorkingSetSize: “ & objItem.MinimumWorkingSetSize
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “OSCreationClassName: “ & objItem.OSCreationClassName
WScript.Echo “OSName: “ & objItem.OSName
WScript.Echo “OtherOperationCount: “ & objItem.OtherOperationCount
WScript.Echo “OtherTransferCount: “ & objItem.OtherTransferCount
WScript.Echo “PageFaults: “ & objItem.PageFaults
WScript.Echo “PageFileUsage: “ & objItem.PageFileUsage
WScript.Echo “ParentProcessId: “ & objItem.ParentProcessId
WScript.Echo “PeakPageFileUsage: “ & objItem.PeakPageFileUsage
WScript.Echo “PeakVirtualSize: “ & objItem.PeakVirtualSize
WScript.Echo “PeakWorkingSetSize: “ & objItem.PeakWorkingSetSize
WScript.Echo “Priority: “ & objItem.Priority
WScript.Echo “PrivatePageCount: “ & objItem.PrivatePageCount
WScript.Echo “ProcessId: “ & objItem.ProcessId
WScript.Echo “QuotaNonPagedPoolUsage: “ & objItem.QuotaNonPagedPoolUsage
WScript.Echo “QuotaPagedPoolUsage: “ & objItem.QuotaPagedPoolUsage
WScript.Echo “QuotaPeakNonPagedPoolUsage: “ & _

objItem.QuotaPeakNonPagedPoolUsage
WScript.Echo “QuotaPeakPagedPoolUsage: “ & objItem.QuotaPeakPagedPoolUsage

WScript.Echo “ReadOperationCount: “ & objItem.ReadOperationCount
WScript.Echo “ReadTransferCount: “ & objItem.ReadTransferCount
WScript.Echo “SessionId: “ & objItem.SessionId
WScript.Echo “Status: “ & objItem.Status
WScript.Echo “TerminationDate: “ & objItem.TerminationDate
WScript.Echo “ThreadCount: “ & objItem.ThreadCount
WScript.Echo “UserModeTime: “ & objItem.UserModeTime
WScript.Echo “VirtualSize: “ & objItem.VirtualSize
WScript.Echo “WindowsVersion: “ & objItem.WindowsVersion
WScript.Echo “WorkingSetSize: “ & objItem.WorkingSetSize
WScript.Echo “WriteOperationCount: “ & objItem.WriteOperationCount
WScript.Echo “WriteTransferCount: “ & objItem.WriteTransferCount
WScript.Echo “ *********************************"

Next

Chapter 10 Using WMI Queries 183
Lab 21a Obtaining More Direct Information
In this lab, you modify the Lab20Solution.vbs file to return a bit more directed infor
mation.

Lab Instructions

1. Open Notepad.exe.

2.	 Open the Lab21Starter.vbs file or your completed Lab20Solution.vbs file and save
it as Lab21Solution.vbs.

3.	 Under the list of declared variables, add a new declaration for a variable called
vWhere.

4. Insert a new line above the line defining the wmiQuery.

5. Save and run the script from a command line using CScript.

6.	 Identify no more than five “interesting properties” for inclusion in your new script.
I decided to use the following: Name, CommandLine, MaximumWorkingSetSize,
QuotaPeakNonPagedPoolUsage, ProcessID, and ThreadCount. I chose Command-
Line rather than the executable path because many times, programs will launch
with a command-line parameter (or switch), which does not show up in the exe
cutable path variable. In addition, when something is running in the svcHost, the
command-line parameter enables you to see what is actually running in that ser
vice host. Your For Each...Next loop might look something like this code:

For	 Each objItem In colItems
WScript.Echo “CommandLine: “ & objItem.CommandLine
WScript.Echo “PID: “ & objItem.ProcessID
WScript.Echo “MaximumWorkingSetSize: “ & objItem.MaximumWorkingSetSize
WScript.Echo “QuotaPeakNonPagedPoolUsage: “ & _

objItem.QuotaPeakNonPagedPoolUsage
WScript.Echo “ThreadCount: “ & objItem.ThreadCount
WScript.Echo “ *********************************"

Next

7. Save your work.

8.	 Above the wmiQuery line, define the vWhere variable to be equal a Where clause
that specifies the number of threads as greater than 10. Make sure you encase the
entire Where clause in a set of double quotation marks. In addition, make sure that
the number is also encased in single quotation marks. That will entail a ‘10’” at the
end of your Where clause. Your code might look like the following:

vWhere = “ where threadCount > ‘10’”

9. Save your work.

184 Part 2 Basic Windows Administration
10.	 Modify the wmiQuery to utilize the vWhere variable. This is rather simple in that
all you need to do is insert a space at the end of the query inside the double quo
tation marks, and then use the ampersand and type the vWhere variable name.
The code will look like the following:

wmiQuery = “Select * from Win32_Process “ & vWhere

11. Save your script as Lab21aSolution.vbs.

Lab 21b Using a More Complicated Where Clause
In this lab, you modify the Lab21aSolution.vbs file to use a more complicated Where
clause.

Lab Instructions

1. Open Notepad.exe.

2. Open the Lab21aSolution.vbs file, and save it as Lab21bSolution.vbs.

3.	 Modify the vWhere clause to include the requirement that the PID (Process ID) is
greater than 100. Your completed vWhere line might look like the following:

vWhere = “ where threadCount > ‘10’ and ProcessID >100”

4. Save your script, and run it in CScript. Notice how many lines of data are returned.

5.	 Modify the vWhere clause so that the PID must be greater than 1000. Your code
will look like the following:

vWhere = “ where threadCount > ‘10’ and ProcessID >1000”

6. Save the script, and run it in CScript. Notice how the data set has been trimmed.

7.	 Now change the thread count so that it is 50. Your code will look like the following:

vWhere = “ where threadCount > ‘50’ and ProcessID >1000”

8. How many lines of data are returned now? On my machine there are none.

9.	 Now you are going to switch operators. Change the and to an OR. The line will
now look like the following:

vWhere = “ where threadCount > ‘50’ or ProcessID >1000”

10.	 Look through the data that is returned. You will see data in which the thread count
is greater than 50, and you will see data in which the processID is greater than
1000, but you will probably not see both in a single data set (that is what we did
in step 7).

11. Save your script.

Part 3
Advanced Windows Administration

11 Introduction to Active Directory
Service Interfaces

In this chapter, you’re introduced to Active Directory Service Interfaces (ADSI). Notice
that two concepts are presented in its name: Active Directory and service interfaces. To
effectively use Microsoft Visual Basic Script (VBScript) to perform directory operations,
you need to understand both concepts. A full discussion of the Active Directory direc
tory service is beyond the scope of this book, but you’ll look at how to use ADSI to
automate, anticipate, and obviate routine tasks.

Before You Begin
The material presented in this chapter assumes you are familiar with the following
concepts from earlier chapters:

■ Creating arrays

■ Outputting data to text files

■ Reading information contained in text files

■ Implementing the For…Next construction

■ Implementing Select Case constructions

After completing this chapter you will be familiar with the following:

■ Connecting to Active Directory

■ ADSI providers

■ Working with Active Directory namespaces

■ Creating organizational units (OUs) in Active Directory

■ Creating users in Active Directory

Working with ADSI
In this section, you use ADSI and VBScript to perform basic network administration
tasks. The following list summarizes some high-level uses:

■ Importing a list of names and creating user accounts

■ Importing a list and changing user passwords
187

188 Part 3 Advanced Windows Administration
■	 Importing a list and creating an entire organizational unit (OU) structure following
an upgrade to Microsoft Windows Server 2003

■	 Reading the Microsoft Exchange 5.x directory and setting the display name in
Active Directory with the value from Exchange 5.x

■	 Reading the Exchange 5.x directory for a default personalized SMTP address and
setting it in Active Directory

■ Reading the computer name or IP address and mapping local printers to users

■ Creating personalized shortcuts for users at logon time based on group memberships

■ Mapping drives based upon OU membership

Just the Steps

� To connect to Active Directory
1. Implement a connection to Active Directory.

2. Use the appropriate provider.

3. Specify the path to the appropriate object in Active Directory.

4. Use SetInfo to write changes to Active Directory.

In a basic fashion, the following script, CreateOU.vbs, utilizes each of the four steps in
the preceding Just the Steps sidebar. To maintain readability, the Header information
section of the script is left out so that you can focus only on the steps involved in con
necting to Active Directory and creating an OU. CreateOU.vbs uses variables for each
of the four main steps to maintain portability.

provider = “LDAP://"
OU = “ou=hiring, ou=hr,"
domain = “dc=a,dc=com"
oClass = “organizationalUnit"
oOU = “ou="
oOUname = “myOU"

Set objDomain = GetObject(provider & OU & domain)
Set objOU = objDomain.create(oClass, oOU & oOUname)

objOU.SetInfo

WScript.Echo(“OU “ & oOUname & “ was created”)

Reference Information

The Reference information section of the script configures the connection to Active
Directory and specifies the path and target of the operation. The first decision you
need to make is which provider to use. Let’s talk about ADSI providers prior to looking
at the remainder of the Reference information section.

Chapter 11 Introduction to Active Directory Service Interfaces 189
ADSI Providers

Table 11-1 lists four providers available to users of ADSI. Connecting to a Microsoft
Windows NT 4 system requires using the special WinNT provider. During Active Direc
tory migrations, consultants often write a script that copies users from a Windows NT
4 domain to a Microsoft Windows Server 2003 Active Directory OU or domain. In some
situations (such as with customized naming schemes), writing a script is easier than
using the Active Directory Migration Tool (ADMT).

Table 11-1 ADSI Supported Providers

Provider Purpose

WinNT:	 To communicate with Windows NT 4.0 Primary Domain Controllers (PDCs)
and Backup Domain Controllers (BDCs), and with local account databases
for Windows 2000 and newer workstations.

LDAP:	 To communicate with LDAP servers, including Exchange 5.x directory and
Windows 2000 Active Directory.

NDS: To communicate with Novell Directory Services servers.

NWCOMPAT: To communicate with Novell NetWare servers.

The first time I tried using ADSI to connect to a machine running Windows NT, I had
a very frustrating experience because of the way the provider was implemented. You
must type the WinNT provider name exactly as shown in Table 11-1. You cannot type
it using all lowercase letters or all uppercase letters. You type all other provider names
in all uppercase letters, but the WinNT name is Pascal-cased, that is, it is partially
uppercase and partially lowercase. Remembering this will save you a lot of grief later.
In addition, you don’t get an error message telling you that your provider name is
“spelled wrong”—rather, the bind operation simply fails to connect.

Once you specify the ADSI provider, you need to specify the path to the directory tar-
get. This is where a little knowledge of Active Directory comes in handy because of the
way the hierarchical naming space is structured. When you connect to an LDAP (Light-
weight Directory Access Protocol) service provider, you must specify where in the
LDAP database hierarchy to make the connection, as the hierarchy is a structure of the
database itself and not the protocol or the provider. For instance, in the CreateOU.vbs
script, you create an OU that resides inside the hiring OU, which is in the HR OU. This
can get confusing, until you realize that the HR OU is contained in a domain that is
called a.com. It is vital, therefore, that you understand the hierarchy with which you
are working. One tool you can use to make sure you understand the hierarchy of your
domain is ADSI Edit.

190 Part 3 Advanced Windows Administration
Note Perhaps the hardest part of using ADSI is finding out what things are called in the
directory. This is because the names often bear no relationship to the display names you see
in tools such as Active Directory Users and Computers. To see an example of this, refer to
Appendix B, “ADSI Documentation.”

ADSI Edit is included in the support tools on the Windows Server 2003 disk. It is in the
support\tools directory and is installed by clicking Suptools.msi. Installation requires
Help and other programs to be closed. The installation takes only a couple of minutes
and does not require a reboot. After the support tools are installed, you open a blank
MMC console and add the ADSI Edit snap-in. After you install the snap-in, right-click
the ADSI Edit icon, select Connect To, and specify your domain using the drop-down
box, as illustrated in Figure 11-1.

Figure 11-1 Exploring the hierarchy of a forest to ensure correct path information for your script

LDAP Names

When specifying the OU and the domain name, you have to use the LDAP naming
convention in which the namespace is described as a series of naming parts called rel
ative distinguished names (RDNs). The relative distinguished name will always be a
name part that assigns a value by using the equal sign. When you put together all the
relative distinguished names, and the RDNs of each of the ancestors all the way back
to the root, you end up with a single globally unique distinguished name.

Chapter 11 Introduction to Active Directory Service Interfaces 191
The relative distinguished names are usually made up of an attribute type, an equal
sign, and a string value. Table 11-2 lists some of the attribute types you will see when
working with Active Directory.

Table 11-2 Common Relative Distinguished Name Attribute Types

Attribute Description

DC Domain Component

CN Common Name

OU Organizational Unit

O Organization Name

Street Street Address

C Country Name

UID User ID

Worker Information

The Worker information section of the script includes two lines of code: the first line
performs the binding, and the second creates the OU. To perform these tasks, you
need to build the distinguished name, which entails creating the OU after connecting
to the appropriate container in Active Directory.

In the CreateOU.vbs script, the distinguished name is a concatenation of two separate
variables. The variables and their associated values are listed here:

OU = “ou=hiring, ou=hr,"
domain = “dc=a,dc=com”

You can verify that you are connecting to the correct OU by using ADSI Edit. To do
this, right-click the target OU, select Properties, and choose Distinguished Name from
the list of available properties. A dialog box like the one shown in Figure 11-2 appears.

Figure 11-2 Using the string attribute editor in ADSI Edit to quickly verify the distinguished name of
a potential target for ADSI scripting

192 Part 3 Advanced Windows Administration
The next line in the Reference information section specifies the object class you are
working with. When you use the Create method, you need to specify what type of
object you are creating. In CreateOU.vbs, you implement code that looks like the fol
lowing line:

oClass = “organizationalUnit"

IADsContainer

In your script, you are actually using the Create method of a well-known interface
called IADsContainer. It is used to enable an ADSI container object to create, delete, or
otherwise manage ADSI objects. All container objects in Active Directory implement
IADsContainer. IADsContainer supports five methods, listed in Table 11-3, that you
can use on any ADSI container object in Active Directory. You will use each of these
methods in scripts later in this book.

Table 11-3 IADsContainer Methods

Method Meaning

GetObject Binds the directory item with the specified ADsPath to a named variable.

Create Creates a new object of a specified class in the current container.

Delete Removes an object of the specified class from the current container.

CopyHere	 Creates a copy of the object with a specified ADsPath in the current con
tainer. Be aware that the object must be in the same directory namespace.
For example, you cannot copy an object from an LDAP: namespace to a
WinNT: namespace.

MoveHere	 Moves the object with a specified ADsPath from its original location to the
current container. The same namespace restrictions that apply to the Copy-
Here method also apply to the MoveHere method.

In the CreateOU.vbs script, you implement the IADsContainer Create method to create
the OU. You use two variables to do this. The first variable is called oOU, and it holds
the class of the object you want to create. This time, no surprises here—you set oOU
to equal OU. The second variable you use is called oOUname; it looks like it could hold
the name of the OU because it does. You use the variable objOU to hold the connec
tion to the Create method once you implement the connection using the Set command,
as shown in this line of code:

Set objOU = objDomain.create(oClass, oOU & oOUname)

Binding

Whenever you want to do anything with ADSI, you must connect to an object in Active
Directory, a process also known as binding. Think of binding as being like tying a rope

Chapter 11 Introduction to Active Directory Service Interfaces 193
around an object to enable you to work with it. (In Texas, they’d call it lassoing.)
Before you can do any work with an object in Active Directory, you must supply bind
ing information. The binding string enables you to use various ADSI elements includ
ing methods and properties. The target of the proposed action is specified as a
computer, a domain controller, a user, or another element that resides within the direc
tory structure. A binding string consists of five parts. These parts are illustrated in the
following binding string from the CreateOU.vbs script:

Keyword Variable Command Provider ADsPath

Set objDomain GetObject LDAP:// OU=hiring, OU=hr, dc=a, dc=com

Note Avoid a mistake I made early on: make sure that when you finish connecting and cre
ating, you actually commit your changes to Active Directory. Changes to Active Directory are
transactional in nature, so your change will roll back if you don’t commit it. Committing the
change requires you to use the SetInfo method, as illustrated in the following line from the
CreateOU.vbs script: objOU.SetInfo.

Output Information
By default, this script would not have any output information. However, to illustrate
that the script is actually doing something, I implemented a simple WScript.Echo com
mand to echo out the name of the container that was created. Because the OU to be
created is held in the variable named oOUname, it was a simple proposition to echo
out the contents of the variable, as illustrated in the following code snippet, which
comes from the now famous CreateOU.vbs script:

WScript.Echo(“OU “ & oOUname & “ was created”)

Quick Check

Q. What is the process of connecting to Active Directory called?

A. The process of connecting to Active Directory is called binding.

Q. When specifying the target of an ADSI operation, what is the target called?

A. The target of the ADSI operation is called the ADsPath.

Q. An LDAP name is made up of several parts. What do you call each part sepa
rated by a comma?

A. An LDAP name is made up of multiple parts that are called relative distinguished
names.

194 Part 3 Advanced Windows Administration
Creating Users
One cool trick you can do using ADSI is create users. Although using the GUI to create
a single user is easy, using the GUI to create a dozen or more users would certainly not
be. In addition, as you’ll see, because there is a lot of similarity among ADSI scripts,
deleting a dozen or more users is just as simple as creating them. And because you can
use the same input text file for all the scripts, ADSI makes creating temporary accounts
for use in a lab or school a real snap.

Just the Steps

� To create users
1. Use the appropriate provider for your network.

2. Connect to the container for your users.

3. Specify the domain.

4. Specify the User class of the object.

5. Bind to Active Directory.

6. Use the Create Method to create the user.

7. Use the Put method to at least specify the sAMAccountName property.

8. Use SetInfo to commit the user to Active Directory.

The CreateUser.vbs script, which follows, is very similar to the CreateOU.vbs script. In
fact, CreateUser.vbs was created from CreateOU.vbs, so a detailed analysis of the script
is unnecessary. The only difference is that oClass is equal to the “User” class instead of
to an “organizationalUnit” class.

provider = “LDAP://"

OU = “ou=hiring, ou=hr,"

domain = “dc=a,dc=com"

oClass = “User"

oCN = “CN="

oUname = “myuser"

Set objDomain = GetObject(provider & OU & domain)

Set objUser = objDomain.create(oClass, oCN & oUname)

objUser.Put “sAMAccountName", oUname

objUser.SetInfo

WScript.Echo(“User “ & oUname & “ was created”)

Reference Information

The Reference information section is where you assign values to the variables that would
normally be declared in a script of this type. The provider in this case is LDAP://.
Remember that the provider name is case-sensitive—all caps is a requirement. You
next specify the OU you’ll use in the ADsPath portion of the binding string. You are tar-

Chapter 11 Introduction to Active Directory Service Interfaces 195
geting an OU called hiring that resides within another OU called hr. The domain name
is made up of two domain components, or DCs, separated by commas. The domain
name is a.com, so the first component is dc=a, and the second is dc=com.

You must specify the user class when creating user accounts. When creating a user
account, the user name is separated by a “cn=” prefix. In Table 11-2, you learned that
cn actually stands for common name. For users, you must specify the common name
property of the user object.

The user will at least need a sAMAccountName to be able to log on to the network. The
sAMAccountName can be the same as the common name property, and in many cases
it is. You are taking the defaults for everything else, including leaving the account dis
abled. In the lab, you’ll create a better user, but for illustrative purposes, this suffices.

Worker Information

In the Worker information section of the script, the script starts to depart from other
scripts you have looked at thus far. In this script are four lines of code, which follow:

Set objDomain = GetObject(provider & OU & domain)
Set objUser = objDomain.create(oClass, oCN & oUname)
objUser.Put “sAMAccountName", oUname
objUser.SetInfo

The binding to ADSI is exactly the same as in the previous script. You even use the
same variable name. In the next line, however, when you call the Create method, you
use different variables because you create a User instead of an OU. The oClass is equal
to User, oCN is equal to “CN=”, and oUname holds the value of the user to be created.

You now utilize the Put method to specify the sAMAccountName property. In this script,
you use the CN name of oUname and use that variable for the sAMAccountName as well.
Once all that work is done, you call SetInfo and write the data to Active Directory.

Output Information

After creating the user, it would be nice to have some type of feedback. You use the
same methodology as in the previous script by calling WScript.Echo to echo out the
oUname variable with a note that indicates the user was created.

Quick Check

Q. To create a user, which class must be specified?

A. You need to specify the User class to create a user.

Q. What is the Put method used for?

A. The Put method is used to write additional property data to the object that it is
bound to.

196 Part 3 Advanced Windows Administration
Summary
In this chapter, you examined the use of ADSI to connect to Active Directory and create
both OUs and users. You looked at the process of binding to Active Directory and saw
the components that make up the binding construction. You looked at the different
providers that can be employed for ADSI and learned about how you would use them.
In addition, you learned that they’re case-sensitive. You looked at the Create method
that is used to create objects in Active Directory and examined the process for creating
both users and OUs. You reviewed the additional properties available for the User
object and saw how to use the Put method to change the values contained in different
properties of the User object. You also learned about using the setInfo command to
write data to Active Directory.

Quiz Yourself
Q. What is the purpose of an ADSI provider?

A. The purpose of an ADSI provider is that it knows the complexities of the directory it is

talking to, and it hides this from you. Each of the providers is utilized in a similar man
ner to standardize the scripting process.

Q. What are the four ADSI providers included in the box?

A. The four ADSI providers are LDAP, WinNT, NDS, and NWCOMPAT.

Q. What does the LDAP relative distinguished name attribute CN stand for?

A. The LDAP relative distinguished name attribute CN stands for common name.

Q. How is the IADsContainer method named GetObject utilized?

A. The IADsContainer method GetObject is used to bind the directory object with the

specified ADsPath to a named variable.

On Your Own

Lab 22 Creating OUs
In this lab, you are going to practice creating OUs. The result of this will eventually
become a subroutine that you can employ in other scripts when you need OUs.

Lab Instructions

1. Open Notepad.exe.

2. On the first line, type Option Explicit.

3.	 Declare the following variables: provider, domain, oClass, oOU, objDomain,
objOU, oOUname, and oDescription.

Chapter 11 Introduction to Active Directory Service Interfaces 197
4.	 Assign the LDAP provider to the variable called provider. Your code will look like
the following:

provider = “LDAP://”

5.	 Assign the variable domain to a domain that is accessible on the network, such as
a.dom. Split each section of the domain name into domain components. This will
look like the following:

domain = “dc=a,dc=com”

6.	 Assign the variable to the organizationalUnit class. Make sure you encase the
class name in quotation marks, as shown here:

oClass = “organizationalUnit”

7.	 Assign a value to the variable used to hold the OU name. In this case, the variable
is oOUname and the value is Lab22. The code will look like the following:

oOUname = “Lab22”

8.	 Assign an appropriate description to the oDescription variable. It will look some-
thing like the following:

oDescription = “For Lab 22 Use”

9.	 Use the Set command to set the variable objDomain equal to the handle that
comes back from using the GetObject function when fed the provider variable and
the domain variable. The code will look like the following:

Set objDomain = GetObject(provider & domain)

10.	 Use the Set command to set the variable objOU equal to the handle that comes
back from using the Create method when fed the oClass, oOU, and oOUname vari
ables. The code will look like the following:

Set objOU = objDomain.create(oClass, oOU & oOUname)

11.	 Use the Put method to put the data contained in the oDescription variable into the
field designated as Description. Separate the variable from the field name with a
comma. The code will look like the following:

objOU.Put “description", oDescription

12.	 Use the SetInfo method to commit the changes to Active Directory. The code will
look like the following:

objOU.SetInfo

13.	 Conclude your script by using WScript.Echo to echo out the name of the
oOUname and an appropriate description of the action that was taken. I used the
following code to do this:

WScript.Echo(“OU “ & oOUname & “ was created”)

198 Part 3 Advanced Windows Administration
14. Save the script as Lab22Solution.vbs.

15.	 Run the script. For this script, it doesn’t matter whether you run it in CScript or
from WScript. It’s probably easier to just double-click the script and let it run in
WScript.

16. Open Active Directory Users and Computers to verify the presence of the Lab22 OU.

17.	 Right-click the Lab22 OU and choose Properties from the Action menu. On the
General tab, verify that the description you assigned in step 11 is present in the
Description field.

18.	 Close everything out. Do not delete the Lab22 OU because you’ll use it in the
next lab.

Lab 23 Creating Multi-Valued Users
In this lab, you are going to practice creating users. You’ll place the user in the OU cre
ated in Lab 22. The result of this will eventually become a subroutine that you can
employ in other scripts when you need to use Users.

Lab Instructions

1. Open Notepad.exe.

2. On the first line, type Option Explicit.

3.	 Declare the following variables: provider, ou, domain, oClass, oCN, objDomain,
objUser, oUname, and oDescription.

4. Assign the LDAP provider to the variable provider. It will look like the following:

provider = “LDAP://”

5. Assign the Lab22 OU to the OU variable. It will look like the following:

OU = “ou=lab22,”

6.	 Assign the domain used in step 5 of Lab 22 to the domain variable. This domain
should be the one on your local network and the one you created in the Lab22
OU. Your code will look something like the following:

domain = “dc=a,dc=com”

7. Assign the User class to the oClass variable. It will look like the following:

oClass = “User”

8. Assign the “CN=” value to the oCN variable, as shown here:

oCN = “CN=“

Chapter 11 Introduction to Active Directory Service Interfaces 199
9.	 Assign to the oUname variable the name of the user to be created. In the solution
file, you create a user called labUser:

oUname = “labUser”

10.	 Assign an appropriate description for the new user. This entails assigning a value
to the oDescription variable:

oDescription = “created for lab22 use”

11.	 Use the Set command to set the variable objDomain equal to the handle that
comes back from using the GetObject function when fed the provider variable, OU
variable, and the domain variable. The code looks like the following:

Set objDomain = GetObject(provider & OU & domain)

12.	 Use the Set command to set the variable objUser equal to the handle that comes
back from using the Create method when fed the oClass, oCN, and oUname vari
ables. The code will look like the following:

Set objUser = objDomain.Create(oClass, oCN & oUname)

13.	 Use the Put method to put the data contained in the oUname variable into the
field designated as sAMAccountName. Separate the variable from the field name
with a comma. The code looks like the following:

objUser.Put “sAMAccountName", oUname

14.	 Use the Put method to put the data contained in the oUname variable into the
field designated as DisplayName. Separate the variable from the field name with a
comma. The code looks like the following:

objUser.Put “DisplayName", oUname

15.	 Use the Put method to put the data contained in the oDescription variable into the
field designated as description. Separate the variable from the field name with a
comma. The code looks like the following:

objUser.Put “description", oDescription

16.	 Use the SetInfo method to commit the changes to Active Directory. The code will
look like the following:

objUser.SetInfo

17.	 Conclude your script by using WScript.Echo to echo out the name of the oUname
and an appropriate description of the action that was taken. I used the following
code to do this:

WScript.Echo(“User “ & oUname & “ was created”)

18. Save the script as Lab23Solution.vbs.

200 Part 3 Advanced Windows Administration
19.	 Run the script. For this script, it doesn’t matter whether you run it in CScript or
from WScript. It’s probably easier to just double-click the script and let it run in
WScript.

20.	 Open Active Directory Users and Computers to verify the presence of the new
user. The user will be contained in the Lab22 OU.

21.	 Right-click on the new user and choose Properties from the Action menu. On the
General tab, verify that the display name and description you assigned earlier are
present.

22. Close everything out.

12 Reading and Writing for ADSI

In this chapter, you’ll look at several very important concepts such as deleting users
and creating groups. You’ll learn about ways to use Microsoft Visual Basic Script
(VBScript) to modify user information in Active Directory—a fundamental task that
consultants need to perform during upgrades and domain reorganization. You might
also need to modify information in Active Directory to make global changes, such as
when introducing a User Principal Name (UPN).

Note One of the cool things you can do in both Microsoft Windows Server 2003 and Windows
2000 Server is abstract the complexity of the domain environment from your users. In Active
Directory, you can store a logon name that can be used anywhere in the forest. It is called a
User Principal Name and looks like an e-mail address. It is not an e-mail address, but it can be
the same as the user’s e-mail address, making remembering the name easy for the user.

Before You Begin
To work through the material presented in this chapter you need to be familiar with
the following concepts from earlier chapters:

■ Binding to Active Directory

■ Creating users in Active Directory

■ Creating organizational units (OUs) in Active Directory

■ Implementing ADSI providers

■ Working with Active Directory namespaces

■ Implementing constants

After completing this chapter you will be familiar with the following:

■ Deleting users in Active Directory

■ Deleting OUs in Active Directory

■ Modifying users in Active Directory

■ Creating groups in Active Directory
201

202 Part 3 Advanced Windows Administration
Working with Users
In this section, you will use ADSI to modify user properties stored in Active Directory.
The following list summarizes a few of the items you can change or configure:

■ Office and telephone contact information

■ Mailing address information

■	 Department, title, manager, and direct reports (people who report to the user
inside the “chain of command”)

User information that is stored in Active Directory can easily replace several pieces of dis
parate information in a single swoop. For instance, you might have an internal website
that contains a telephone directory; you can put the phone number into Active Directory
as an attribute of the user object. You might also have a website containing a social roster
that includes employees and their hobbies; you can put hobby information in Active
Directory as a custom attribute. You can also add to Active Directory information such as
an organizational chart. The problem, of course, is that during a migration, information
such as a user’s title is the last thing the harried mind of the network administrator thinks
about. To leverage the investment in Active Directory, you need to enter this type of
information because it quickly becomes instrumental in the daily lives of demure users.
This is where the power of ADSI and VBScript really begins to shine. We can update hun
dreds or even thousands of records easily and efficiently using scripting. Such a task
would be unthinkable using conventional point-and-click methods.

Just the Steps

� To modify user properties in Active Directory
1. Implement the appropriate protocol provider.

2. Perform binding to Active Directory.

3. Specify the appropriate ADsPath.

4. Use the Put method to write selected properties to users.

5. Use SetInfo method to commit changes to Active Directory.

General User Information

One of the more confusing issues when you use VBScript to modify information in
Active Directory is that the names displayed on the property page do not correspond
with the ADSI nomenclature. This was not done to make your life difficult; rather, the
names you see in ADSI are derived from LDAP standard naming conventions. Although
this naming convention makes traditional LDAP programmers happy, it does nothing

Chapter 12 Reading and Writing for ADSI 203
for the network administrator who is a casual scripter. This is where the following
script, ModifyUserProperties.vbs, comes in handy. The LDAP properties corresponding
to each field in Figure 12-1 are used in this script. Some of the names make sense, but
others appear to be rather obscure. Notice the series of objUser.Put statements. Each
lines up with the corresponding fields in Figure 12-1. Use the values to see which dis
play name maps to which LDAP attribute name.

provider = “LDAP://"

OU = “ou=lab22,"

domain = “dc=a,dc=com"

oCN = “CN="

oUname = “labUser,"

Set objUser = GetObject(provider & oCN & oUname & OU & domain)

objUser.Put “givenName", “fred"

objUser.Put “initials", “f."

objUser.Put “sn", “flintstone"

objUser.Put “DisplayName", “labUser"

objUser.Put “description", “funny looking dude"

objUser.Put “physicalDeliveryOfficeName", “RQ2"

objUser.Put “telephoneNumber", “999-222-1111"

objUser.Put “mail", “fff@hotmail.com"

objUser.Put “wwwHomePage", “http://www.fred.msn.com"

objUser.SetInfo

WScript.Echo(“User “ & oUname & “ was modified”)

Figure 12-1 All the General User Properties can be set by using ADSI and VBScript

204 Part 3 Advanced Windows Administration
On the CD The Header information section of ModifyUserProperties.vbs has been omitted
for clarity. This section does, however, exist in the original script on the companion CD.

Reference Information

The Reference information section of the script assigns values to the variables used in
the script. Here you assign the LDAP provider to the provider variable. You then assign
the entire OU path to the OU variable. The variable called Domain gets assigned both
of the domain components that are used for constructing a fully qualified name. These
domain components are the "DC=" sections of the code. You use oCN to hold the CN=
reference, and you end the section by equating oUname to the user name you plan to
modify. If you were using a text file to supply the variable, you could still use this vari
able. The Reference section follows:

provider = “LDAP://"

OU = “ou=lab22,"

domain = “dc=a,dc=com"

oCN = “CN="

oUname = “labUser,"

Worker Information

The Worker information section of the ModifyUserProperties.vbs script contains a lot of
code because it modifies all the properties contained on the General tab of the user
properties in Microsoft Windows Server 2003. The first line in the Worker information
section performs the binding to Active Directory. In this instance, you bind not to an
OU but to a specific user, as shown here:

Set objUser = GetObject(provider & oCN & oUname & OU & domain)

You assign "CN" to the variable oCN to keep it separate from the user name portion. In
this way, you can more easily make changes to multiple users. In our particular situa
tion, you connect to the OU created in the previous chapter, and the Lab 22 OU is off
the root in the Active Directory hierarchy. If the OU was nested, you could still use the
script, and in the Reference section specify something like OU = "ou=level1, ou=level2,
ou=level3" (or whatever the actual namespace consisted of). The domain variable holds
the entire domain component. CN, UserName, Ou, and Domain make up the ADsPath
portion of the binding string.

Once you have the binding to Active Directory, you are ready to begin modifying user
information. The cool part about using the Put method is that it overwrites any infor
mation already present in that property of the cached copy of the User object. You will
see the effect only on the particular property being Put until you call SetInfo to write

Chapter 12 Reading and Writing for ADSI 205
the changes to Active Directory. If you don’t specify a particular piece of information
(that is, you leave the space between the quotation marks empty), you’ll be greeted
with an error message. Figure 12-2 shows this friendly message.

Figure 12-2 Error message received when a property value is left out of a Put command

To write information to a specific user property, use the Put method. This entails spec
ifying both the ADSI field name and the desired value. The pertinent Worker informa
tion section of the ModifyUserProperties.vbs script follows:

objUser.Put “givenName", “fred"

objUser.Put “initials", “f."

objUser.Put “sn", “flintstone"

objUser.Put “DisplayName", “labUser"

objUser.Put “description” , “funny looking dude"

objUser.Put “physicalDeliveryOfficeName", “RQ2"

objUser.Put “telephoneNumber", “999-222-1111"

objUser.Put “mail", “fff@hotmail.com”

objUser.Put “wwwHomePage", “http://www.fred.msn.com”

The last item in the Worker information section is the SetInfo command. If SetInfo isn’t
called, the information isn’t written to Active Directory. The information simply does
not exist. There will be no error message—merely an absence of data. The ModifyUser-
Properties.vbs script uses the following SetInfo line to ensure changes are written to
Active Directory:

objUser.SetInfo

Output Information

Once all the changes are loaded into Active Directory, you include an output statement
to let you know that the changes have been made to Active Directory. In the Modify-
UserProperties.vbs script, you use a simple WScript.Echo statement. This echo state
ment is listed here:

WScript.Echo(“User “ & oUname & “ was modified”)

206 Part 3 Advanced Windows Administration
Quick Check

Q. What is the field name for the user’s first name?

A. The field for the user’s first name is called "GivenName". You can find field map-
ping information in the Platform SDK.

Q. Why do you need to do a SetInfo command?

A. Without a SetInfo command, all changes introduced during the script are lost
because the changes are made to a cached set of attribute values for the object
being modified. Nothing is committed to Active Directory until you call SetInfo.

Creating the Second Page
One of the more useful tasks you can perform with Active Directory is exposing address
information. This ability is particularly important when a company has more than one
location and more than a few hundred employees. I remember when one of the first uses
for an intranet was to host a centralized list of employees. Such a project quickly paid for
itself because companies no longer needed an administrative assistant to modify, copy,
collate, and distribute hundreds of copies of the up-to-date employee directory—poten
tially a full-time job for one person. Once an intranet site was in place, personnel at each
location were given rights to modify the list. With Active Directory, you avoid this dupli
cation of work by keeping all information in a centralized location. The “second page” in
Active Directory Users and Computers is the address page, shown in Figure 12-3.

Figure 12-3 Every item on the Address tab in Active Directory Users and Computers can be filled
in via ADSI and VBScript

In the ModifyUserSecondPage.vbs script, you use ADSI to set the street, post office
box, city, state, zip code, and country values for the User object. Table 12-1 lists the

Chapter 12 Reading and Writing for ADSI 207
Active Directory attribute names and their mappings to the Active Directory Users and
Computers (ADUC) management tool “friendly” display names.

Table 12-1 Address Page Mappings

Active Directory Users and Computers label Active Directory attribute name

Street

P.O. Box

City

State/Province

Zip/Postal Code

Country/Region

streetAddress

postOfficeBox

l (Note that this is lowercase.)

st

postalCode

c

provider = “LDAP://"

OU = “ou=lab22,"

domain = “dc=a,dc=com"

oCN = “CN="

oUname = “labUser,"

Set objUser = GetObject(provider & oCN & oUname & OU & domain)

objUser.Put “streetAddress", “123 main st"

objUser.Put “postOfficeBox", “po box 12"

objUser.Put “l", “Bedrock"

objUser.Put “st", “Arkansas"

objUser.Put “postalCode” , “12345"

objUser.Put “c", “RO"

objUser.SetInfo

WScript.Echo(“User “ & oUname & “ was modified”)

Reference Information

The Reference information section assigns values to the variables declared in the script.
In this section, you assign the LDAP provider to the provider variable. You then build
the entire OU path to the OU variable. The domain variable gets assigned both domain
components and constructs a fully qualified name. You use oCN to hold the CN= refer
ence, and then conclude the Reference information section by equating oUname to the
user name you plan to modify.

Worker Information

The Worker information section begins by performing an Active Directory binding:

Set objUser = GetObject(provider & oCN & oUname & OU & domain)

208 Part 3 Advanced Windows Administration
The hardest part of the Worker information section of this script is figuring out how to
make the country assignment show up in ADUC. I will admit that it took me a bit of time
before I realized that the country codes have to be entered in accordance with ISO stan
dard 3166. If you use the c field, you use the two-letter country code. If you use ISO stan
dard 3166-1, which contains two-letter country codes that have been officially assigned,
you will be in fine shape. However, 3166-1 also contains country number assignments
and short text names. The alternate forms of country codes do not work with the c field.
The ISO 3166 is actually divided into three different parts and is updated on a regular
basis to keep up with political changes in the global environment. In compliance with
ISO 3166, country codes can actually be entered in three different ways. The easiest to
deal with uses the letter c as the field and a two-letter country code as the property.

Although the ISO 3166-1 specifies all the country codes as uppercase letters, ADSI
seems to be case-agnostic for this field, so “us” or “US” will both cause the field to dis
play the name of United States. (One interesting thing about the ISO 3166-1 codes is
that they are the same as the national top-level domain names.) A sample two-letter
country code sheet based on ISO 3166-1 is listed in Table 12-2. The full table is avail-
able at http://www.iso.org.

Table 12-2 ISO 3166-1 Country Codes

Country code Country name

AF AFGHANISTAN

AU AUSTRALIA

EG EGYPT

LV LATVIA

ES SPAIN

US UNITED STATES

Staying Put

Filling out the second page of the Active Directory Users and Computers user address
properties entails modifying a lot of fields. To do this you use the Put command, as
shown in the following code:

objUser.Put “streetAddress", “123 main st"

objUser.Put “postOfficeBox", “po box 12"

objUser.Put “l", “Bedrock"

objUser.Put “st", “Arkansas"

objUser.Put “postalCode” , “12345"

objUser.Put “c", “RO"

Most of the fields are self-explanatory. The only two that do not make much sense are the
small letter “l” for city and the country code because of the way you fill it in, which you

Chapter 12 Reading and Writing for ADSI 209
learned about earlier. Unfortunately, you’re not always presented with an error; the script
just does not seem to update, so you are left (or at least I am left) clicking the Refresh but-
ton in Active Directory Users and Computers as you wait for replication to take place.

Note Do not forget to use the SetInfo method to commit your changes to Active Directory. If
I seem to harp on this, it’s because I’ve forgotten to do so on occasion, and I want to spare
you the mental agony. This is one occasion when it is easy to commit. You just use this code:
objUser.SetInfo.

Output Information

After creating all those lovely updates, I for one want to see something to let me know
the script has completed running. Obviously, if you were running this in the scheduler,
you wouldn’t want to present a message box (although you might want to write some-
thing to the event log). In your script, you use a simple WScript.Echo box to let you
know the script completed. Note that even though the script says the updates took
place, it only assumes they worked—it does not perform any verification. WScript.Echo
could just as easily say “go jump in a lake,” although that wouldn’t be the friendliest
message to display. The output code follows:

WScript.Echo(“User “ & oUname & “ was modified”)

Quick Check

Q. To set the country name on the address page for Active Directory Users and Com
puters, what is required?

A. To update the country name on the address page for Active Directory Users and
Computers, you must specify the c field and feed it a two-letter code that is
found in ISO publication 3166.

Q. What field name in ADSI is used to specify the city information?

A. You set the city information by assigning a value to the “l” (lowercase l) field
after making the appropriate connection to Active Directory.

Q. If you put an inappropriate letter code in the c field, what error message is dis
played?

A. No error message is displayed. The update simply fails to display in ADUC. If,
however, you go into ADSI Edit, you will see the value stored there. The Active
Directory Users and Computers tool is smart enough to not display codes it
does not understand.

210 Part 3 Advanced Windows Administration
Deleting Users
There are times when you need to delete user accounts, and with ADSI you can very
easily delete large numbers of users with the single click of a mouse. Some reasons for
deleting user accounts follow:

■	 To clean up a computer lab environment, that is, to return machines to a known
state.

■	 To clean up accounts at the end of a school year. Many schools delete all student-
related accounts and files at the end of each year. Scripting makes it easy to both
create and delete the accounts.

■	 To clean up temporary accounts created for special projects. If the creation of
accounts is scripted, their deletion can also be scripted, ensuring no temporary
accounts are left lingering in the directory.

Just the Steps

� To delete users
1. Perform the binding to the appropriate OU.

2. Use GetObject to make a connection.

3. Specify the appropriate provider and ADsPath.

4. Call the Delete method.

5. Specify object class as User.

6. Specify the user to delete by CN.

To delete a user, call the Delete method after binding to the appropriate level in the
Active Directory namespace. Then specify both the object class, which in this case is
User, and the CN of the user to be deleted. This can actually be accomplished in only
two lines of code:

Set objOU = GetObject(“LDAP://ou=management,dc=fabrikam,dc=com”)
objOU.Delete “User", “cn=myerken”

If you modify the CreateUser.vbs script, you can easily transform it into a DeleteUser.vbs
script, which follows. Notice that the Reference information section is basically the
same. It holds the path to the OU and the path to the user in the variables, enabling
you to modify the script more easily. The main change is in the Worker section of the
script. The binding string is the same as seen earlier. However, you use the connection
that was made in the binding string, and call the Delete method. You specify the class
of the object in the oClass variable in the Reference section of the script. You also list
the oUname and CN= parts as well. The syntax is Delete(Class, target). The deletion
takes effect immediately. No SetInfo command is required.

Chapter 12 Reading and Writing for ADSI 211
provider = “LDAP://"

OU = “ou=Lab22,"

domain = “dc=a,dc=com"

oClass = “User"

oCN = “CN="

oUname = “labUser"

Set objDomain = GetObject(provider & OU & domain)
objDomain.Delete oClass, oCN & oUname

WScript.Echo(“User “ & oUname & “ was deleted”)

Summary
In this chapter, you examined modifying user properties in Active Directory by using
ADSI. To modify these properties, you match the UI names with the names that are uti
lized in Active Directory. Once the properties are mapped to the user interface, you
can use the Put method to write the changes. Writing changes to Active Directory is
transactional in nature, so once changes are made, you must call the SetInfo method to
write them. Country properties of users can present a special challenge because they
aren’t intuitive; you have to use the two-letter codes maintained by ISO 3166. This
chapter concluded by looking at the process of deleting a user. In many cases, it takes
only one or two changes to modify a script that creates a user into a script that deletes
a user. One important issue to keep in mind when using scripts to delete users is that
no SetInfo command is required. When the command completes, the user is deleted.
No additional steps are required to delete users.

Quiz Yourself
Q. What is the main advantage of deleting users via a script?

A.	 The advantage of deleting users via a script is that in many cases, you can use the cre
ation script and make only a few changes to it. This makes for a nice life cycle solution.

Q. What is the command required to commit the deletion of users in Active Directory?

A.	 To commit the deletion of users in Active Directory, no special command is required.
Users are deleted as soon as the Delete method is called.

Q.	 In which publication are the country codes used to fill in the country section of the User
Address tab in Active Directory Users and Computers found?

A.	 The country codes used to fill in the country section of the user address tab in Active
Directory Users and Computers are found in ISO 3166.

Q. How is the user’s first name modified in Active Directory via ADSI?

A.	 A user’s first name is modified by using the Put command to add a value to the Given-
Name field. Once the value is written, you must use the SetInfo command to write the
change to Active Directory.

212 Part 3 Advanced Windows Administration
Q.	 When using the Put method to write to a cached value, what happens when data
already exists in the field being written to?

A.	 When using the Put method to write to Active Directory, any data already existing in
the field is overwritten without prompting. This means you need to be careful when
using scripting to modify user information in Active Directory. Such scripts should
always be tested prior to being run in production.

On Your Own

Lab 24 Deleting Users
In this lab, you will practice deleting users. You begin with a starter file that was used
to create the user. This is a good practice because you can ensure that all created users
get deleted when the time comes. While working on your script, if you need to run the
script several times, you can use the Lab24Starter.vbs file to create your user prior to
deleting the user. If the user isn’t present when you try deletion, you get an error.

Lab Instructions

1. Open Notepad.exe.

2. Open Lab24Starter.vbs.

3. Delete the declaration for the variable objUser.

4.	 Delete three of the four lines that call objUser in the Worker information section of
the script. These lines look like the following:

objUser.Put “sAMAccountName", oUname
objUser.Put “DisplayName", oUname

objUser.SetInfo

5.	 Locate the Set objUser line used to create the user initially so that the line now
deletes the user instead. The original line looks like the following:

Set objUser = objDomain.create(oClass, oCN & oUname)

6. Remove the Set objUser portion of the line. It will look like the following:

objDomain.create(oClass, oCN & oUname)

7.	 Change the method called in the preceding line from Create to Delete. The line
will now look like the following:

objDomain.Delete(oClass, oCN & oUname)

Chapter 12 Reading and Writing for ADSI 213
8.	 Save your work. If you try to run the script now, you’ll get an error because you
need to remove the parentheses. Once removed, the code looks like the following:

objDomain.Delete oClass, oCN & oUname

9.	 Change the output message so that it says deleted instead of created. It looks like
the following once the change is implemented:

WScript.Echo(“User “ & oUname & “ was deleted”)

10. Save your work.

11. Open Active Directory Users and Computers to verify that LabUser was deleted.

12.	 Run the script. If it fails, run the starter script to ensure there is a user on the
server. After this is done, run the script to see whether it works. When it does, run
the starter script again, because you’ll need the user for the next lab.

Lab 25 Using the Event Log
In this lab, you modify the delete user script from Lab 24 and write the resulting output
to the event log instead of to a pop-up dialog box. This gives us an enterprise type of
solution because the script could be scheduled, or the script might delete a large num
ber of users, in which case writing output to a dialog box or even to a command
prompt would be impractical. The event log always exists, so it is a convenient place
to log information. Only three lines of code are required to implement writing to the
event log.

Lab Instructions

1. Open Notepad.exe.

2.	 Open the Lab25Starter.vbs file, and save it as Lab25Solution.vbs. This will
ensure you have a fresh working copy of the script and will give you a fallback
option if required.

3.	 Delete the WScript.Echo line that is at the bottom of the script. This line looks like
the following:

WScript.Echo(“User “ & oUname & “ was deleted”)

4.	 Add two new variables. The first variable is objShell and is used to hold the con
nection to the scripting shell object. The second variable is oMessage and holds the
text of the message you write to the event log. These two declarations look like
the following:

Dim objShell ’ holds connection to scripting shell
Dim oMessage ’ holds text of the message we write.

214 Part 3 Advanced Windows Administration
5.	 Now define a constant called EVENT_SUCCESS and set it equal to 0. The code to
do this looks like the following:

Const EVENT_SUCCESS = 0

6. Save your work.

7.	 At the bottom of the script where the WScript.Echo command used to reside, use
the CreateObject method to create an instance of the scripting shell. Set the handle
equal to objShell. The code to do this looks like the following:

Set objShell = CreateObject(“WScript.Shell”)

8.	 Use the LogEvent method to write your message to the event log. You’re interested
in only a return code of 0, which indicates a success. (Complete information on
LogEvent is available in the WSH 5.6 help file.) The code looks like the following:

objShell.LogEvent EVENT_SUCCESS, oMessage

9. Save the script and run it.

10.	 Notice that there is no feedback. However, if you open the application log on the
machine running the script, you see the event message. This is quite useful
because the event message allows you to log updates as well as to audit them. The
log looks like the one in Figure 12-4.

Figure 12-4 Using the LogEvent method to write scripts that provide notification and don’t
require user intervention

11. Open Active Directory Users and Computers to verify the user was deleted.

13 Searching Active Directory

In this chapter, you’ll look at two very important concepts: searching Active Directory
and making configuration changes. Searching might not sound like a very exciting
topic; however, once you see how easily cords of crucial configuration information is
returned, you might very well begin to carol the capabilities of ADSI.

Before You Begin
To work through the material presented in this chapter you need to be familiar with
the following concepts from earlier chapters:

■ ADSI binding operations

■ ADSI namespace

■ Creating a dictionary object

■ Implementing For Each…Next constructions

■ Implementing Select Case constructions

■ Implementing the While Not Wend construction

After completing this chapter you will be familiar with the following:

■ Connecting to Active Directory to perform a search

■ Controlling the way data is returned

Connecting to Active Directory to Perform a Search
In this section, you are going to use a special query technique to search Active Direc
tory. You’ll be able to use the results returned by that custom query to perform addi
tional tasks. For example, you could search Active Directory for all users who don’t
have telephone numbers assigned to them. You could then send that list to the person
in charge of maintaining the telephone numbers. Even better, you could modify the
search so that it returns the user names and their managers’ names. You could then
take the list of users with no phone numbers that is returned and send e-mail to the
managers to get the phone list in Active Directory updated. The functionality incorpo
rated in your scripts is primarily limited by your imagination. The following summa
rizes uses for search technology:

■ Query Active Directory for a list of computers that meet a given search criterion

■ Query Active Directory for a list of users who meet a given search criterion
215

216 Part 3 Advanced Windows Administration
■ Query Active Directory for a list of printers that meet a given search criterion

■	 Use the data returned from the preceding three queries to perform additional
operations

Just the Steps

� To search Active Directory
1. Create a connection to Active Directory by using ADO.

2. Use the Open method of the object to access Active Directory.

3. Create an ADO command object and assign the ActiveConnection property to the con7
nection object.

4. Assign the query string to the CommandText property of the command object.

5. Use the Execute method to run the query and store the results in a RecordSet object.

6. Read information in the result set using properties of the RecordSet object.

7. Close the connection by using the Close method of the connection object.

The following script, BasicQuery.vbs, illustrates how to search using Active Directory.
This script follows the steps detailed in the “Just the Steps: To search Active Directory”
section.

Option Explicit

On Error Resume Next

Dim oQuery

Dim objConnection

Dim objCommand

Dim objRecordSet

oQuery = “<LDAP://dc=a,dc=com>;;name;subtree"

Set objConnection = CreateObject(“ADODB.Connection”)

Set objCommand = CreateObject(“ADODB.Command”)

objConnection.Open “Provider=ADsDSOObject;"

objCommand.ActiveConnection = objConnection

objCommand.CommandText = oQuery

Set objRecordSet = objCommand.Execute

While Not objRecordSet.EOF
WScript.Echo objRecordSet.Fields(“name”)
objRecordSet.MoveNext

Wend

objConnection.Close

In the BasicQuery.vbs script, you define your query after using the normal Option
Explicit and On Error Resume Next commands. You then assign the value of the query
to the variable called oQuery. The syntax of the query looks similar to the syntax you
used to query WMI, and it follows a SQL-like formula. The aspect of this syntax that is

Chapter 13 Searching Active Directory 217
a little unusual is assigning a search string to a command method. If you envision the
procedure as stating that the command you want to execute is the query you want exe
cuted, perhaps the procedure will make a little more sense.

The query actually consists of two parts. The first part of the query is contained in
angle brackets (< >) and specifies both the provider to utilize and the LDAP name of
the container you want to connect to. The second part of the query lists the fields you
want to return in the result set.

Note The BasicQuery.vbs script query we’re examining follows the same syntax you would
use for an ActiveX Data Objects (ADO) search. ADO is a standard for connecting and querying
different types of data sources. The basic syntax of an ADO connection is discussed in the
next section, “Creating More Effective Queries,” and is highlighted in Table 13-1.

Header Information

The Header information section of the BasicQuery.vbs script contains the Option
Explicit command as the first line as well as the On Error Resume Next line, which
causes the script to continue executing the line after an error occurs. The following
lines of the script detail all the variables that have been declared in the script:

Dim oQuery

Dim objConnection

Dim objCommand

Dim objRecordSet

Reference Information

The Reference information section of the script is used to define the LDAP query, set
up the connection to Active Directory, and execute the query, as shown in the follow
ing code:

oQuery = “<LDAP://dc=a,dc=com>;;name;subtree"

Set objConnection = CreateObject(“ADODB.Connection”)

Set objCommand = CreateObject(“ADODB.Command”)

objConnection.Open “Provider=ADsDSOObject;"

objCommand.ActiveConnection = objConnection

objCommand.CommandText = oQuery

Set objRecordSet = objCommand.Execute

The oQuery variable is used to define the query you will submit to Active Directory. In
this instance, you’re interested in the Name attribute, which is specified following two
semicolons. The subtree part of the query tells VBScript the scope of your query. The
subtree modifier means that you want to search the subtree found under the target that
you specified in the LDAP portion of the query. You define the starting point of your

218 Part 3 Advanced Windows Administration
search by using angle brackets and the LDAP syntax. In this case, you start your search
at the root of a.com, and you’re interested in returning the Name attribute from every
object in the subtree—which means searching the entire hierarchy.

Set ObjConnection creates a connection object that will be used to connect to Active
Directory. Specifying ADODB means you will use the ADSI OLE DB provider to talk to
Active Directory. The CreateObject method actually goes ahead and creates the con
nection object in memory.

Now that you have a connection object resident in memory (named ObjConnection),
you can create a command object that will be used to shuttle a query into Active Direc
tory. You name this command object objCommand and set it equal to the object you
get when you call ADODB.Command.

Having created the command object, you’re now ready to open the connection to
Active Directory. In this case, you use the ADsDSOObject provider. Because you can
use ADO to talk to different data sources, you must specify which data provider to use
when opening the connection. Here’s an analogy to help you understand why you
must specify a particular data provider when opening a connection. Think of opening
a connection as being like opening a can of food in your kitchen. In most cases, the
standard wheel type of can opener provides the needed leverage. At times, however,
you might need a different type of can opener, such as the kind that pokes holes in the
can. In the same way, depending on your data source, you might need to use a differ
ent provider. When talking to Active Directory, you will always use the ADsDSOObject
provider.

Next, you need to define which connection to use for the command object. In this
instance, you tell VBScript to use objConnection as the active connection. After telling
VBScript to use objConnection as the active connection, specify the query to use by
assigning the value of the oQuery variable as equal to commandText.

Now you have a query, a connection, a command, a provider, an active connection,
and command text. All that is left is to execute the command, which you do by using
the following code:

Set objRecordSet = objCommand.Execute

You use the Execute method of the command object and set the data that comes back
equal to the variable called objRecordSet. You do this so that you can feed data into the
Worker information section of the script.

Worker and Output Information

The Worker information section of the BasicQuery.vbs script is used to iterate through
the recordset that was returned when you used the Execute method of objCommand.

Chapter 13 Searching Active Directory 219
In this instance, you use the While Not Wend construction to coordinate echoing out
the name field. The While Not Wend control structure allows you to know whether
you’ve reached the end of the recordset file. (The end of the file is referred to as EOF,
or end of file.) If you haven’t reached the end of the file comprising the recordset
(called objRecordSet), you echo out the name retrieved by the initial query. After you
echo out the name, you move to the next record in the recordset. Here’s the code that
illustrates this process:

While Not objRecordSet.EOF
WScript.Echo objRecordSet.Fields(“name”)
objRecordSet.MoveNext

Wend
objConnection.Close

The Output information section of BasicQuery.vbs does a very simple WScript.Echo
output that indicates the result of the search. In more advanced scripts, you might want
to write to a text file, a database, or even a Web page. After you produce output for all
your information, you close the active connection by using objConnection.Close.

Quick Check

Q. What technology is utilized to search Active Directory?

A. ADO is the technology that is used to search Active Directory.

Q. Which part of the script is used to perform the query?

A. The command portion of the script is used to perform the query.

Q. How are results returned from an ADO search of Active Directory?

A. The results are returned in a recordset.

Creating More Effective Queries
Effective querying of Active Directory requires that you understand a little more about
ADO searches. Table 13-1 lists the objects that are associated with searching Active
Directory.

Table 13-1 Objects Used to Search Active Directory

Object Description

Connection An open connection to an OLE DB data source such as ADSI.

Command Defines a specific command to execute against the data source.

Parameter	 An optional collection for any parameters to provide to the command
object.

220 Part 3 Advanced Windows Administration
Table 13-1 Objects Used to Search Active Directory

Object Description

RecordSet	 A set of records from a table, a command object, or SQL syntax. A RecordSet
object can be created without any underlying Connection object.

Field A single column of data in a recordset.

Property A collection of values supplied by the provider for ADO.

Error	 Contains details about data access errors. Refreshed when an error occurs in
a single operation.

For ADO to talk with ADSI, two objects are required. The first object is the connection
object, and the second object is RecordSet. The command object is used to maintain the
connection, pass along the query parameters, and perform such tasks as specifying the
page size and search scope and executing the query. The Connection object is used to
load the provider and to validate the user’s credentials. By default, it utilizes the cre
dentials of the currently logged-on user. If you need to specify alternative credentials,
you can use the properties listed in Table 13-2.

Table 13-2 Authentication Properties for the Connection Object

Property Description

User ID	 A string that identifies the user whose security context is used when per-
forming the search. (For more information about the format of the user
name string, see IADsOpenDSObject::OpenDSObject in the Platform SDK.)
If the value is not specified, the default is the logged-on user or the user
impersonated by the calling process.

Password A string that specifies the password of the user identified by “User ID”.

Encrypt Password	 A Boolean value that specifies whether the password is encrypted. The
default is False.

ADSI Flag	 A set of flags from the ADS_AUTHENTICATION_ENUM enumeration. The
flag specifies the binding authentication options. The default is zero.

A number of search options are available to the network administrator. The use of
these search options will have an extremely large impact on the performance of your
queries against Active Directory. It is imperative, therefore, that you learn to use the
following options. Obviously, not all options need to be specified in each situation. In
fact, in many situations, the defaults will perform just fine. However, if a query is taking
a long time to complete, or you seem to be flooding the network with unexpected traf
fic, you might want to take a look at the search properties in Table 13-3.

Note that you should specify a page size. In Windows Server 2003, Active Directory is
limited to returning 1500 objects from the results of a query when no page size is spec-

Chapter 13 Searching Active Directory 221
ified. The Page Size property tells Active Directory how many objects to return at a
time. When this property is specified, there is no limit on the number of returned
objects Active Directory can provide. If you specify a size limit, the page size must be
smaller.

Table 13-3 ADO Search Properties

Property Description

Asynchronous	 A Boolean value that specifies whether the search is synchronous or
asynchronous. The default is False (synchronous). A synchronous
search blocks until the server returns the entire result (or for a paged
search, the entire page). An asynchronous search blocks until one
row of the search results is available, or until the time specified by
the Timeout property elapses.

Cache results	 A Boolean value that specifies whether the result should be cached
on the client side. The default is True; ADSI caches the result set.
Turning off this option might be desirable for large result sets.

Chase referrals	 A value from ADS_CHASE_REFERRALS_ENUM that specifies how the
search chases referrals. The default is ADS_CHASE_REFERRALS_
EXTERNAL.

Column Names Only	 A Boolean value that indicates that the search should retrieve only
the name of attributes to which values have been assigned. The
default is False.

Deref Aliases	 A Boolean value that specifies whether aliases of found objects are
resolved. The default is False.

Page size	 An integer value that turns on paging and specifies the maximum
number of objects to return in a result set. The default is no page
size. (For more information, see PageSize in the Platform SDK.)

SearchScope	 A value from the ADS_SCOPEENUM enumeration that specifies the
search scope. The default is ADS_SCOPE_SUBTREE.

Size Limit	 An integer value that specifies the size limit for the search. For Active
Directory, the size limit specifies the maximum number of returned
objects. The server stops searching once the size limit is reached and
returns the results accumulated up to that point. The default is no
limit.

Sort on	 A string that specifies a comma-separated list of attributes to use as
sort keys. This property works only for directory servers that support
the LDAP control for server-side sorting. Active Directory supports
the sort control, but this control can have an impact on server per
formance, particularly when the result set is large. Be aware that
Active Directory supports only a single sort key. The default is no
sorting.

222 Part 3 Advanced Windows Administration
Table 13-3 ADO Search Properties

Property Description

Time Limit	 An integer value that specifies the time limit, in seconds, for the
search. When the time limit is reached, the server stops searching
and returns the results accumulated to that point. The default is no
time limit.

Timeout	 An integer value that specifies the client-side timeout value, in sec
onds. This value indicates the time the client waits for results from
the server before quitting the search. The default is no timeout.

Searching for Specific Types of Objects
One of the best ways to improve the performance of Active Directory searches is to limit
the scope of the search operation. Fortunately, searching for a specific type of object is
one of the easiest tasks to perform. For example, to perform a task on a group of com
puters, limit your search to the computer class of objects. To work with only groups,
users, computers, or printers, specify the objectClass or the objectCategory in the search
filter. The objectCategory attribute is a single value that specifies the class from which the
object in Active Directory is derived. In other words, users are derived from an objectCat
egory called users. All the properties you looked at in the last chapter are contained in a
template called an objectCategory. When you create a new user, Active Directory does a
lookup to find out what properties the user class contains. Then it copies all those prop
erties onto the new user you just created. In this way, all users have the same properties
available to them. The attribute called objectClass is a multivalued attribute, and as you
learned in the discussion of WMI, you have to use a For…Next type of construction to
iterate all instances of values contained in the multivalued attribute. Because of this,
objectCategory is easier to work with for filtering out types of objects.

Just the Steps

� To limit the Active Directory search
1. Create a connection to Active Directory by using ADO.

2. Use the Open method of the object to access Active Directory.

3. Create an ADO command object, and assign the ActiveConnection property to the Con-

nection object.

4. Assign the query string to the CommandText property of the command object.

5. In the query string, specify the objectCategory of the target query.

6. Choose specific fields of data to return in response to the query.

7. Use the Execute method to run the query and store the results in a RecordSet object.

8. Read information in the result set using properties of the RecordSet object.

9. Close the connection by using the Close method of the connection object.

Chapter 13 Searching Active Directory 223
In the FilterComputers.vbs script, you use ADO to query Active Directory with the goal
of returning a recordset containing selected properties from all the computers with
accounts in the directory. The Header information and Worker information sections of
the script are the same as in the previous script, so we won’t discuss them.

Option Explicit

On Error Resume Next

Dim qQuery

Dim objConnection

Dim objCommand

Dim objRecordSet

qQuery = “<LDAP://dc=a,dc=com>;” & _
“(objectCategory=computer);” & _
“distinguishedName,name;subtree"

Set objConnection = CreateObject(“ADODB.Connection”)

Set objCommand = CreateObject(“ADODB.Command”)

objConnection.Open “Provider=ADsDSOObject;"

objCommand.ActiveConnection = objConnection

objCommand.CommandText = qQuery

Set objRecordSet = objCommand.Execute

While Not objRecordSet.EOF
WScript.Echo objRecordSet.Fields(“name”)
objRecordSet.MoveNext

Wend

objConnection.Close

Reference Information

The Reference information section is basically the same as in the previous script, with
the exception of the query. You call the query qQuery in this script, as shown here:

qQuery = “<LDAP://dc=a,dc=com>;” & _
“(objectCategory=computer)” & _
“;distinguishedName,name;subtree”

You can see the power of using the ADO connection to query Active Directory. You
choose a couple of attributes from the dozens of available attributes associated with the
computer object in Active Directory. This makes a very efficient query because you
return only the desired information.

Output Information

The studious reader will realize that we’ve returned data on two attributes of the com
puter object: the distinguishedName and the name of the computer. The Output infor
mation section of the script looks like the following:

WScript.Echo objRecordSet.Fields(“name”)

224 Part 3 Advanced Windows Administration
You returned an additional field that you didn’t use. You will, however, use it in the lab.
At this point, it is sufficient to illustrate how to write data from the recordset. You use the
Echo command to send the data out, but the interesting part is you specify the field by
name. It is perhaps confusing here that the field you are sending out is called name. To
send out the distinguishedName field, put distinguishedName in quotation marks.

Quick Check

Q. What is one way to limit the amount of data returned by an ADO query of Active
Directory?

A. To limit the amount of data returned by an ADO query of Active Directory, you can
specify an objectCategory, which is very easy to do. In this way, you can limit
searches to just computers, users, printers, or other objects in Active Directory.

Q. To specify an alternate set of credentials or to encrypt the password, what must
be done in your script?

A. To specify an alternate set of credentials or to encrypt the password, you must
use the authentication properties of the connection object.

Q. What two items must be specified for ADO to talk to Active Directory?

A. The two items that must be specified for ADO to talk to Active Directory are the
connection string and recordset. All other fields are optional.

What Is Global Catalog?
As you become more proficient in writing your scripts, and as you begin to work your
magic on the enterprise on a global scale, you will begin to wonder why some queries
seem to take forever and others run rather fast. After configuring some of the parameters
you looked at earlier, you might begin to wonder whether you’re hitting a Global Cata
log server. A Global Catalog server is a server that contains all the objects and their asso
ciated attributes from your local domain. If all you have is a single domain, it doesn’t
matter whether you’re connecting to a domain controller or a Global Catalog server,
because the information would be the same. If, however, you are in a multiple domain
forest, you might very well be interested in which Global Catalog server you are hitting.
Depending on your network topology, you could be executing a query that is going
across a slow WAN link. You can control replication of attributes by selecting the Global
Catalog check box. You can find this option by opening the Active Directory Schema
MMC, highlighting the Attributes container, and then double-clicking the attribute you
want to modify. You will then be presented with the form shown in Figure 13-1.

Chapter 13 Searching Active Directory 225
Figure 13-1 By indicating inclusion in the Global Catalog server, the industrious network adminis
trator can improve query performance

In addition to controlling the replication of attributes, the erstwhile administrator might
also investigate attribute indexing. (See Figure 13-2.) Active Directory already has
indexes built on certain objects. However, if an attribute is heavily searched on, you
might consider an additional index. You should do this, however, with caution,
because an improperly placed index is worse than no index at all. The reason for this
is the time spent building and maintaining an index. Both of these operations utilize
processor time and disk I/O.

Suppose you create a custom attribute called badge number in our Active Directory.
This attribute is a small number with a high degree of cardinality. Cardinality does not
mean that all the numbers are red! It is a database term that refers to the degree of
uniqueness of the data. High cardinality implies greater uniqueness. For example, in
most cases, the givenName field in Active Directory will have a low level of cardinality
because several users are likely to have the popular first names of Bob, Alice, Sally,
Teresa, and Ed. On the other hand, only one user in Active Directory is associated with
a particular employee number, and so therefore the employee number field has a high
level of cardinality. Employee number, then, would be a good candidate for indexing.

However, just because a field is a good candidate for indexing doesn’t mean it should
be indexed. It simply means it could be indexed. Before you decide to select the check
box for the badge number attribute, for example, decide how often you’ll search on
users by employee number. To help you figure this out, you could audit LDAP queries
that are performed against Active Directory.

226 Part 3 Advanced Windows Administration
Figure 13-2 Indexing improves query performance in situations where the indexed attribute is part
of the selection criteria

Quick Check

Q. Why would a local Global Catalog server not be used in responding to a query?

A. One reason could be that the Global Catalog server does not contain the
attribute you were searching for. If it does not contain the attribute, it must refer
the query to another server.

Q. What are the main questions the network administrator must answer prior to
indexing an attribute in Active Directory?

A. The network administrator should look at the size of the data field, the level of car
dinality, and the amount of use the attribute will generate as a search criterion.

Summary
In this chapter, you examined two basic concepts: searching Active Directory and con-
trolling the way data is returned from Active Directory. When searching Active Direc
tory, you must take several issues into consideration, including the provider you will
use and the fields you will include in the query. After you address these concerns, you
iterate through the recordset data and decide what to do with your information. In the
examples in this chapter, we used the Echo command to display the information, but
we could have just as easily fed it to a text file.

Chapter 13 Searching Active Directory 227
Quiz Yourself
Q. What provider can be used with ADO connections to Active Directory?

A. ADsDSOObject can be used with ADO to talk to Active Directory.

Q. What is the field object in ADO used for in conjunction with Active Directory queries?

A.	 The field object in ADO is often used to hold attribute data that comes back from a
query of Active Directory.

Q.	 The ADO search property “Cache results” is used to determine which aspect of an ADO
search?

A.	 The ADO search property “Cache results” is used to tell VBScript whether to cache the
results of the query on the client side of the connection.

Q. How does “Cache results” affect an ADO search?

A.	 “Cache results” defaults to caching the results of the search on the client side of the
connection. With large data sets, you might not want to bring all the data down to the
client.

On Your Own

Lab 26 Creating an ADO Query into Active Directory
In this lab, you will practice creating an ADO query into Active Directory to pull out
information about computer objects.

Lab Instructions

1. Open Notepad.exe.

2. Type Option Explicit on the first line to force the declaration of all variables.

3.	 Declare the following variables by using the Dim command: qQuery, objConnec
tion, objCommand, and objRecordSet.

4.	 Create a query using the LDAP namespace that connects to your local Domain
Controller. Specify the objectCatagory that is equal to computer. Choose the fol
lowing fields: distinguishedName, name, and logonCount. Set the search dimen
sion to subtree. Assign this query to a variable called qQuery. Your code will look
like the following:

qQuery = “<LDAP://dc=a,dc=com>;” & _
“(objectCategory=computer)” & _
“;distinguishedName,name” & _
“,operatingSystem” & _
“,logonCount” & _
“;subtree”

228 Part 3 Advanced Windows Administration
5.	 Create an ADODB connection object and set it to a variable called objConnection.
Your code will look like the following:

Set objConnection = CreateObject(“ADODB.Connection”)

6.	 Create an ADODB command object and set it to a variable called objCommand.
Your code will look like the following:

Set objCommand = CreateObject(“ADODB.Command”)

7.	 Open your connection object and specify the ADsDSOObject provider. Your code
will look like the following:

objConnection.Open “Provider=ADsDSOObject;”

8.	 Use the ActiveConnection method of the objCommand object to specify the con
nection held by objConnection as the active connection to Active Directory. Your
code will look like the following:

objCommand.ActiveConnection = objConnection

9.	 Use the commandText method to set the query represented by the variable
qQuery to be the command text for the command object. Your code will look like
the following:

objCommand.CommandText = qQuery

10.	 Assign the variable objRecordSet to be equal to the recordset that is returned by
the execute method of objCommand. Your code will look like the following:

Set objRecordSet = objCommand.Execute

11.	 Use a While Not Wend construction to iterate through the recordset and echo out
the following fields: Name, distinguishedname, operatingsystem, and logoncount.

12.	 Once you echo out these fields, use the moveNext method of the objectRecordSet
object to advance to the next record. Your code will look like the following:

While Not objRecordSet.EOF
WScript.Echo objRecordSet.Fields(“name”)
WScript.Echo objRecordSet.Fields(“distinguishedName”)
WScript.Echo objRecordSet.Fields(“operatingSystem”)
WScript.Echo objRecordSet.Fields(“LogonCount”)
objRecordSet.MoveNext

Wend

13. Close the connection. Your code will look like the following:

objConnection.Close

Chapter 13 Searching Active Directory 229
Lab 27 Controlling How a Script Executes Against Active
Directory

In this lab, you modify the FilterMoreComputers.vbs script to control the way it exe
cutes against Active Directory.

Lab Instructions

1. Open the FilterMoreComputers.vbs script in Notepad.exe.

2. Save the script as Lab27Solution.vbs.

3.	 On the line following the objCommand.CommandText = qQuery statement, add
an objCommand property statement that will change the default asynchronous
behavior from false to true. The amended script will look like the following:

Option Explicit

‘On Error Resume Next

Dim qQuery

Dim objConnection

Dim objCommand

Dim objRecordSet

qQuery = “<LDAP://dc=a,dc=com>;” & _
“(objectCategory=computer)” & _
“;distinguishedName,name;subtree"

Set objConnection = CreateObject(“ADODB.Connection”)
Set objCommand = CreateObject(“ADODB.Command”)
objConnection.Open “Provider=ADsDSOObject;"
objCommand.ActiveConnection = objConnection
objCommand.CommandText = qQuery
objCommand.properties(“Asynchronous”)=True
Set objRecordSet = objCommand.Execute

While Not objRecordSet.EOF
WScript.Echo objRecordSet.Fields(“name”)
WScript.Echo objRecordSet.Fields(“distinguishedName”)
objRecordSet.MoveNext

Wend

objConnection.Close

4. Save the script.

5.	 Open a command prompt, and run the script in CScript by typing cscript before
the name of the lab27.vbs script.

230 Part 3 Advanced Windows Administration
6.	 Turn off the caching of results by setting Cache Results to false. Do this under the
objCommand.properties(“Asynchronous”) = True line you added in step 3. Your
code for this command will look like the following:

objCommand.properties(“cache results”) = False

7. Save and run the script.

8.	 Set a page size of 1 to tell Active Directory to return one object at a time. This line
can go below the cache results setting specified in line 6. Your code will look like
the following:

objCommand.properties(“Page Size”) = 1

9. Save and run the script.

10.	 Change the page size to 10, and set a size limit of 100 to limit the number of
objects returned. The two lines of code will look like the following:

objCommand.properties(“Page Size”) = 10
objCommand.properties(“Size limit”) = 100

11.	 Set a query time limit that will limit how long the server is allowed to search for
results. You will use the Time Limit property, as shown in the following code.
Place this code below the size limit line.

objCommand.Properties(“Time Limit”) = 2

12. Save and run the script.

13.	 Set a timeout value that will limit how long the client machine waits for results
from the server. This value should be lower than the time limit value, so set it to
1 second for the lab.

objCommand.Properties(“Timeout”) = 1

14. Save and run the script.

15. Close your work.

14 Configuring Networking
Components

In this chapter, you’ll look at some of the ways that using Microsoft Visual Basic Script
(VBScript) can simplify basic networking tasks. You begin with a common task: switch
ing from static to dynamic IP addresses. This task might seem to be a no-brainer—that
is, you just open the network connection, select Properties, choose TCP/IP, and select
Obtain An IP Address Automatically—but when you do it a thousand times or more
while merging a remote, previously static site into your Dynamic Host Configuration
Protocol (DHCP) hierarchy, the task is daunting.

See Also If you are working with older clients during a migration, you might want to refer to
http://support.microsoft.com/?kbid=197424 for a sample script.

Before You Begin
To work through the material presented in this chapter you need to be familiar with
the following concepts from earlier chapters:

■ Creating text files

■ Writing to text files

■ Making a connection to WMI

■ Making a connection to Active Directory

■ Implementing the For…Next construction

■ Implementing the Select Case construction

After completing this chapter you will be familiar with the following:

■ Using WMI to configure networking components

■ Converting a text file from Active Directory into input for script

■ Working with input text files

WMI and the Network
In this section, you use WMI to configure networking components. However, instead
of just dashing off a quick WMI script, you will take a step forward and begin combin-
231

232 Part 3 Advanced Windows Administration
ing several of the techniques looked at earlier in this book, such as writing to text files

and reading from Active Directory. This little bit of magic will track every step of your

networked operations, enabling you to avoid dire consequences should an operation

fail to properly complete. The following summarizes a few uses for this configuration

technique:

■ Import a list of computers from an OU in Active Directory

■ Import a list of users from an OU in Active Directory

■ Import a list of users from a group that resides in Active Directory

■ Read Active Directory and make changes on workstations

■ Use a Lightweight Directory Access Protocol (LDAP) provider

■ Make an ADO connection

■ Execute an ADO command

■ Use While Not…Wend to iterate through the record set

■ Use WMI to make changes on desktop machines

Making the Connection

When creating a script with multiple parts or multiple actions, taking a systematic
approach vastly simplifies the process. There are five major components to the script
you will examine in this chapter. As you write the script, you will test it after each por
tion is written to ensure it is working properly. Next, you will need to test the query
syntax to ensure it is returning only the machines you want to modify. Once you have
the query working properly, you will want to test the WMI portion of the script to
ensure it works as planned. Lastly, you put the entire script together.

The following script is called ConnectToADou.vbs, and it connects to Active Directory
using the LDAP provider, makes an ADO connection, and executes an ADO command.
Lastly, it uses While Not…Wend to iterate through the returned recordset. It does not
use WMI at this point.

Option Explicit

‘On Error Resume Next

Dim qQuery

Dim oConnection

Dim oCommand

Dim oRecordSet

Dim oDom

Dim oProvider

Dim oOU

oProvider = “‘LDAP://"

oDom = “dc=nwtraders, dc=msft’”

Chapter 14 Configuring Networking Components 233
oOU = “ou=workstations,"
qQuery = “Select Name from “ & oProvider _

& oOU & oDom & “where objectClass=‘computer’"

Set oConnection = CreateObject(“ADODB.Connection”)

Set oCommand = CreateObject(“ADODB.Command”)

oConnection.Open “Provider=ADsDSOObject;"

oCommand.ActiveConnection = oConnection

oCommand.CommandText = qQuery

Set oRecordSet = oCommand.Execute

While Not oRecordSet.EOF
WScript.Echo oRecordSet.Fields(“name”)
oRecordSet.MoveNext

Wend

oConnection.Close

Header Information

The Header information section of the script continues to be rather uninteresting. How-
ever, being boring doesn’t mean you should ignore it (or else my wife would never talk
to me). Remember, the use of Option Explicit means we must declare all our variables.
Since all the variables get listed out, Option Explicit gives us a good place to document
their use. By documenting the use of every variable, you perform two functions: pro-
vide a reference for future modifications, and provide a reference for others who might
read the script at a point later in time. I will admit, there are scripts I did not document
because at the time I understood what the script was doing. However, later, when I had
to modify the script, I had to conduct a lot of additional research to figure out what I
had done. The time to add documentation to a script is when it is being written, not
months later. Additionally, it makes sense to document the changes you make when
you modify the script. This can take the form of comments with an associated date, and
you can easily incorporate these comments into a script template, as shown in the fol
lowing code section:

‘==

‘

‘ VBScript: AUTHOR: Ed Wilson , MS, 11/09/2003

‘

‘ NAME: <ConnectToADOU.vbs>

‘

‘ COMMENT: Key concepts are listed below:

‘1. making connection to AD

‘2. Controlling results by using a filter

‘ REVISIONS:

‘ 11/10/2003 connection string - split into parts

‘ 11/11/2003 added computer filter to query

‘ 11/12/2003 changed names of vars from obj to o

‘==

234 Part 3 Advanced Windows Administration
The standard Header information is placed just below the template section, as shown
here:

Option Explicit

‘On Error Resume Next

Dim qQuery

Dim oConnection

Dim oCommand

Dim oRecordSet

Dim oDom

Dim oProvider

Dim oOU

Reference Information

The Reference information section of the script is used to assign specific values to
variables used in the script. One advantage of breaking the connection string into
multiple parts is that the connection is easier to read and understand while also pro
viding additional flexibility because of the ease of supplying different variables. The
one issue to keep in mind when breaking up connection strings is that when the vari
ables are concatenated back together, these variables must supply exactly what
VBScript is expecting. Remember that with scripting, spelling counts big-time!

Tip I often find myself having to use the WScript.Echo command to spit out my connection
string or my query after it has been put back together. More often than not, I find I’ve left out
a semicolon, comma, or quotation mark that VBScript was expecting. This is where echoing
out the query is invaluable. It takes one second to echo something out, whereas it could take
hours of staring, visualizing, and imagining what the query or connection string looks like
when put back together.

The variable oProvider is assigned to the string ‘LDAP://’ and is used to tell VBScript
you will be talking via LDAP to Active Directory. You use oDOM to hold the domain
components of the connection string. Using normal LDAP language, each part of the
domain name is specified: Dc=nwtraders, dc=msft. In this example, you don’t use a
.com, .net, or .org upper-level domain name; you use the .msft imaginary name. The
next variable you define is oOU, which you set equal to the workstations’ OU. After
assigning values to the provider, domain, and OU variables, you’re ready to create
the query. You use the qQuery variable to hold your constructed query. Notice how
the syntax looks similar to a SQL query. You are selecting the name field from
‘LDAP://ou=workstations, dc=nwtraders, dc=msft’, but you want only the name field if
the object class is a computer. So you specify that in the where clause of our query.

Chapter 14 Configuring Networking Components 235
The next six lines of the script make an ADO connection to Active Directory. You use
oConnection to hold the hook that comes back from using the CreateObject command
to give you an ADODB connection. Next, you use oCommand to hold the hook that
comes back from using the CreateObject command to give us an ADODB command
object. If the previous sentence seems redundant, that’s because it is. This is one of the
features of ADO, in fact! The developers tried very hard to make the syntax similar to
reduce the learning curve. So things often seem boring and repetitive. (But hey, who
wants lots of excitement when writing code?) Once you have the connection object
and the command object, you can move forward with making the connection into
Active Directory. You can think of building the ADO connection into Active Directory
as connecting pipes. The provider is the kind of pipe you are going to run, the con
nection object is the path you are going to take while running the pipes, and the com
mand is the valve that controls the flow of data through the pipes. Just as pipes are run
one stick at a time, so too are each of the plumbing pieces necessary to connect to
Active Directory, one at a time.

Now it’s time to open the valve, but just like a water valve in your house, you need to
know which valve to open and how far to turn the valve. With ADO, you specify the
provider (that is, which pipe), which in this case is ADsDSOObject, and you specify
which connection is the active connection. Next you specify the command text, which
is your qQuery (indicates how far you will open the valve). Once everything is lined
up, you execute (open the valve). But wait! At home, you need a glass or a bucket to
hold the water. With ADO, you need something to hold your data flow—in this script,
you use the variable called oRecordSet to hold the data that comes back.

oProvider = “‘LDAP://"

oDom = “dc=nwtraders, dc=msft’”

oOU = “ou=workstations,"

qQuery = “Select Name from “ & oProvider _

& oOU & oDom & “where objectClass=‘computer’"

Set oConnection = CreateObject(“ADODB.Connection”)

Set oCommand = CreateObject(“ADODB.Command”)

oConnection.Open “Provider=ADsDSOObject;"

oCommand.ActiveConnection = oConnection

oCommand.CommandText = qQuery

Set oRecordSet = oCommand.Execute

Worker and Output Information

The Worker information section of the script is used to iterate through the record set
that comes back from the qQuery. To do this, you use a While Not…Wend construc
tion. Since you don’t know in advance how many computers are in the workstation
OU, you return a set of records from Active Directory and work through each record
in the set until you reach the end of the file, which is designated as oRecordSet.EOF. As
long as there are records in the record set you haven’t touched, you echo out the name

236 Part 3 Advanced Windows Administration
of the record and then move to the next record in the set. If you come to the end of
the recordset, you end the While Not…Wend construction. You are using the Echo
command right now as a test mechanism. After you make sure the script works as
planned, you replace the Echo command with some WMI code to change the TCP/IP
address from static to dynamic.

While Not oRecordSet.EOF
WScript.Echo oRecordSet.Fields(“name”)
oRecordSet.MoveNext

Wend

oConnection.Close

Quick Check

Q. What is an advantage of using WScript.Echo to display the text of a query?

A. An advantage of using WScript.Echo to display the text of a query is that it
makes troubleshooting a concatenated query string easy.

Q. Why do you need to use While Not in the Worker information section of the
script?

A. While Not is used to iterate through the recordset. It gives you the ability to work
with an unknown number of computers.

Changing the TCP/IP Settings
After your script can connect to Active Directory and return a recordset of computer
names, you’re ready to use WMI to convert the machines from static IP addresses to
DHCP-assigned addresses. You scrounge around and come up with a script that uses
WMI to turn on DHCP. This script, called EnableDHCP.vbs, is shown here:

Target = “."

Set oWMIService = GetObject(“winmgmts:\\” & Target & “\root\cimv2”)

Set colNetAdapters = oWMIService.ExecQuery _

(“Select * from Win32_NetworkAdapterConfiguration where IPEnabled=TRUE”)
For Each oNetAdapter In colNetAdapters

errEnable = oNetAdapter.EnableDHCP()
If errEnable = 0 Then

WScript.Echo “DHCP has been enabled."
Else

WScript.Echo “DHCP could not be enabled."
End If

Next

Chapter 14 Configuring Networking Components 237
Just the Steps

� To enable DHCP by using WMI
1. Make a connection to WinMgmts on the target machine.

2. Connect to the root\cimv2 namespace in WMI.

3. Create a collection to hold the result of the query.

4. Use a query to choose network adapter configurations that are enabled for IP.

5. Use a For Each…Next loop to iterate through the collection of network adapter config
urations.

6. Use the EnableDHCP command on each network adapter configuration.

Header Information

The Header information section in this script is similar to that in the previous script.
The variables utilized are Target, oWMIService, colNetAdapters, oNetAdapter, and
errEnable. When you merge the WMI script with the previous ADSI script, you need to
declare each of these new variables.

Reference Information

In the Reference information section, you assign values to the variables used in the
script. The variable oWMIService is assigned to the hook that comes back from WMI
when you use the createObject command. You attach to the root\cimV2 namespace
on the target machine. You use colNetAdapters to hold the hook that comes back
from running a query against the WMI namespace. The query you run is designed to
return all the network adapter configurations installed on the target computer that are
IP-enabled. You do this because there is no point in trying to turn on DHCP on an
IPX/SPX or AppleTalk network adapter configuration.

Worker and Output Information

In the Worker information section of the script, you use the oNetAadapter variable as
a placeholder by using the For Each…Loop to help you iterate through the collection
of network adapter configurations. One cool thing you do here is use a variable called
errEnable. You set errEnable to be equal to the value that is returned by VBScript when
you try to turn on DHCP by using the enableDHCP command. If the operation is suc
cessful, the return code is 0. However, if the operation fails, you get a different return
code. In this script, you’re interested only in whether DHCP works. So if the return
code is 0, everything is copasetic, and you echo out that DHCP was enabled. If DHCP
enablement fails, you get a different error code as just mentioned, and so you use the
Else part of the script and simply echo that DHCP failed.

238 Part 3 Advanced Windows Administration
Quick Check

Q. To programmatically turn on DHCP, which WMI namespace do you connect to?

A. You need to connect to root\cimV2.

Q. In what fashion is the network adapter returned by WMI?

A. The network adapter is returned by WMI as a collection.

Q. What return code indicates a successful WMI operation?

A. A return code of 0 indicates a successful WMI operation.

Merging WMI and ADSI
Now that you know that both the ADSI script and the WMI script work as advertised,
merging the two scripts is a rather easy task. By merging them, you will connect to
Active Directory, perform a query of all computers in the workstation OU, take the
returned data into a recordset, iterate through the recordset, and enable DHCP on each
workstation in the recordset until you reach the end of the file. Along the way, echo
out the results of the DHCP operation. The new script is called AdOuWmiDHCP.vbs.

You need to assign a computer name to the variable Target. You do this inside the
While Not…Wend loop by using Target = oRecordSet.Fields(“name”), because as you
walk through the recordset, Target is the name you want to get back. The variable Tar-
get contains computer names retrieved from ADSI, each of which will then be used as
targets of a WMI query. The rest of the WMI script is placed inside the While
Not…Wend loop without additional alteration. Incorporating the two scripts enables
you to leverage two different technologies to simplify a seemingly daunting desktop
management problem. The only required changes to the ADSI script were declaring
the variables utilized by WMI in the Worker information section of the script. To make
it obvious which variables were added with the merger, I added all new variables to
two lines in the Header information section of the script. Although the only require
ment for doing this is to place a comma between the variable names, I do not normally
use this technique unless I have tons of variables that need to be declared.

Option Explicit

‘On Error Resume Next

Dim qQuery

Dim oConnection

Dim oCommand

Dim oRecordSet

Dim oDom

Dim oProvider

Dim oOU

Dim Target, oWMIService, colNetAdapters

Dim oNetAdapter, errEnable

Chapter 14 Configuring Networking Components 239
oProvider = “‘LDAP://"

oDom = “dc=nwtraders, dc=msft’”

oOU = “ou=workstations,"

qQuery = “Select Name from “ & oProvider _

& oOU & oDom & “where objectClass=‘computer’"

Set oConnection = CreateObject(“ADODB.Connection”)

Set oCommand = CreateObject(“ADODB.Command”)

oConnection.Open “Provider=ADsDSOObject;"

oCommand.ActiveConnection = oConnection

oCommand.CommandText = qQuery

Set oRecordSet = oCommand.Execute

While Not oRecordSet.EOF
Target= oRecordSet.Fields(“name”)
Set oWMIService = GetObject(“winmgmts:\\” & Target _

& “\root\cimv2”)
Set colNetAdapters = oWMIService.ExecQuery _

(“Select * from Win32_NetworkAdapterConfiguration” _
& “ where IPEnabled=TRUE”)

For Each oNetAdapter In colNetAdapters
errEnable = oNetAdapter.EnableDHCP()
If errEnable = 0 Then

WScript.Echo “DHCP has been enabled."
Else

WScript.Echo “DHCP could not be enabled."
End If

Next
oRecordSet.MoveNext

Wend
oConnection.Close

Quick Check

Q. What is one technique for reducing the amount of space in a script that must
declare a large number of variables?

A. You can reduce the space taken up in a script by variables by declaring multiple
variables on the same line.

Q. In the AdOuWmiDHCP.vbs just discussed, why was the WMI section of the script
placed inside the While Not…Wend section?

A. The WMI section of the script was placed inside the While Not…Wend section so
it could gain access to the name field in the recordset. The name then became
the target of the WMI portion of the script.

Win32_NetworkAdapterConfiguration
The Win32_NetworkAdapterConfiguration WMI class is chock-full of both properties
and methods. The properties are elements containing information about the specific

240 Part 3 Advanced Windows Administration
network adapter configuration, and the methods are used to perform a specific action
on the network adapter configuration, such as enabling DHCP. Indeed, with 41 meth
ods defined in Microsoft Windows Server 2003, it is hard to think of an operation that
isn’t covered. Some of the more common methods are listed in Table 14-1. You can
find complete documentation by searching on Win32_NetworkAdapterConfiguration
in the Platform SDK.

Table 14-1 Win32_NetworkAdapterConfiguration Methods

Method Description

DisableIPSec

EnableDHCP

EnableDNS

EnableIPFilterSec

EnableIPSec

EnableStatic

EnableWINS

ReleaseDHCPLease

ReleaseDHCPLeaseAll

RenewDHCPLease

RenewDHCPLeaseAll

SetDatabasePath

SetDNSDomain

SetDNSServerSearchOrder

SetDNSSuffixSearchOrder

SetDynamicDNSRegistration

SetGateways

Disables IP security on this TCP/IP-enabled network
adapter#

Enables the Dynamic Host Configuration Protocol (DHCP)
for service with this network adapter

Enables the Domain Name System (DNS) for service on
this TCP/IP-bound network adapter

Enables IP security globally across all IP-bound network
adapter configurations

Enables IP security on this specific TCP/IP-enabled net-
work adapter

Enables static TCP/IP addressing for the target network
adapter

Enables WINS settings specific to TCP/IP but independent
of the network adapter

Releases the IP address bound to a specific DHCP-enabled
network adapter

Releases the IP addresses bound to all DHCP-enabled net-
work adapter configurations

Renews the IP address on specific DHCP-enabled network
adapter configurations

Renews the IP addresses on all DHCP-enabled network
adapter configurations

Sets the path to the standard Internet database files (Hosts,
LMhosts, Networks, and Protocols)

Sets the DNS domain

Sets the server search order as an array of elements

Sets the suffix search order as an array of elements

Indicates dynamic DNS registration of IP addresses for this
IP-bound adapter

Specifies a list of gateways for routing packets destined for
a different subnet than the one this adapter is connected to

Chapter 14 Configuring Networking Components 241
Table 14-1 Win32_NetworkAdapterConfiguration Methods

Method Description

SetIPConnectionMetric

SetKeepAliveInterval

SetKeepAliveTime

SetTcpipNetbios

Sets the routing metric associated with this IP-bound
adapter

Sets the interval separating Keep Alive Retransmissions
until a response is received

Sets how often TCP attempts to verify that an idle connec
tion is still available by sending a Keep Alive packet

Sets the default operation of NetBIOS over TCP/IP

SetTcpMaxConnectRetransmissions	 Sets the number of attempts TCP will retransmit a connect
request before aborting

SetTcpMaxDataRetransmissions Sets the number of times TCP will retransmit an individual

SetTcpNumConnections

SetTcpWindowSize

SetWINSServer

data segment before aborting the connection

Sets the maximum number of connections that TCP might
have open simultaneously

Sets the maximum TCP Receive Window size offered by
the system

Sets the primary and secondary Windows Internet Naming
Service (WINS) servers on this TCP/IP-bound network
adapter

Summary
In this chapter, you examined integrating WMI and ADSI into a single script. By com
bining these two technologies, you can fine-tune your targeting of management scripts.
In addition, you looked at the Win32_NetworkAdapterConfiguration class in WMI and
saw some of the powerful methods that are exposed through that class.

Quiz Yourself
Q. What are some of the advantages of using ADSI and WMI together?

A.	 ADSI is dynamic and provides up-to-date information from Active Directory. This
means that a query run against the workstation OU today could have different results
than a query run against the workstation OU tomorrow, allowing for more accurate
results.

Q. What WMI class can be used to control the behavior of NetBIOS over TCP/IP?

A.	 To control the behavior of NetBIOS over TCP/IP, you can use the Win32_Network-
AdapterConfiguration class.

242 Part 3 Advanced Windows Administration
Q.	 Which method of Win32_NetworkAdapterConfiguration is used to disable NetBIOS
over TCP/IP?

A.	 The method of Win32NetworkAdapterConfiguration that can be used to disable NetBIOS
over TCP/IP is the SetTcpIpNetbios method (when assigned a value of 2, it is disabled).

Q. How can you specify a unique domain name for a network connection?

A.	 You can specify a unique domain name for a network connection by using the SetDNS-
Domain method. It will show up in the DNS Suffix For This Connection box on the DNS
tab of the Advanced TCP/IP settings sheet.

On Your Own

Lab 28 Using WMI to Assign Network Settings
In this lab, you will practice using WMI to set various networking configuration prop
erties. The result of this will become the Worker information section for use in Lab 29.

Lab Instructions

1. Open Notepad.exe.

2. Open the EnableDHCP.vbs script contained in lab folder 28 on the companion CD.

3. On the first line, add the Option Explicit command.

4.	 Change the variable strComputer to Target everywhere it is mentioned in the
script. (The Find and Replace feature of Notepad is a good tool to use when
renaming variables.)

5.	 Change the variable objWMIService to oWMIService everywhere it is mentioned
in the script.

6.	 Change the variable objNetAdapter to oNetAdapter everywhere it is mentioned in
the script.

7.	 Declare all the variables used in the script by using the Dim command. You will
need to declare seven variables: Target, oWMIService, oNetAdapter, colNetAdapt
ers, DNSDomainErr, DNSsearchErr, and DNSserver.

8.	 Modify the line errEnable = oNetAdapter.EnableDHCP() so that you can assign a
DNS suffix for NWTraders.com. The line will look like the following:

DNSDomainErr = oNetAdapter.SetDNSDomain(“NWTraders.com”)

9. Delete the Output section.

10.	 Add a couple of DNS servers to the DNS search list. To do this, use the SetDNS
searchOrder method. However, because the DNS server is stored as an array, you

Chapter 14 Configuring Networking Components 243
will need to make a couple of entries in the script. On the line below the Target
= “.” line, add the following code:

DNSserver = Array(“128.1.2.1", “129.1.2.2”)

11.	 Add the SetDNSsearchOrder method under the SetDNSDomain line. Your code
will look like the following:

DNSsearchErr=objNetAdapter.SetDNSServerSearchOrder(DNSserver)

12.	 Add a couple of lines of code so that you know the result of your operation. To
do this, you echo out the value of both DNSsearchErr and DNSDomainErr along
with appropriate remarks. The code for this looks like the following:

WScript.Echo “DNSDomain returned “ & (DNSDomainErr)
WScript.Echo “DNSsearchOrder returned “ & (DNSsearchErr)

13. Save your work as lab28.vbs.

Lab 29 Combining WMI and ADSI in a Script
In this lab, you combine the WMI script created in Lab 28 with an ADSI script.

Lab Instructions

1. Open Notepad.exe.

2. Open the Lab29Starter.vbs file.

3. Open the ConnectToADOU.vbs file.

4. Save the ConnectToADOU.vbs file as Lab29Solution.vbs.

5.	 Copy the seven variable declarations from the Lab29Starter.vbs file and paste them
into the Header information section of your Lab29Solution.vbs script. The seven
variable declarations look like the following:

Dim target

Dim oWMIService

Dim colNetAdapters

Dim oNetAdapter

Dim DNSDomainErr

Dim DNSsearchErr

Dim DNSServer

6.	 In your Lab29Solution.vbs file, locate the While Not…Wend section of the script.
Remove the WScript.Echo portion of the WScript.Echo oRecordSet.Fields(“name”)
command.

7.	 Replace the WScript.Echo command with Target = so that the new command looks
like the following:

Target= oRecordSet.Fields(“name”)

244 Part 3 Advanced Windows Administration
8.	 In the Lab29Starter.vbs script, copy the remaining portion of the script and paste
it just below the new Target = oRecordSet.Fields(“name”) command. The new
While Not…Wend construction looks like the following:

While Not oRecordSet.EOF
Target= oRecordSet.Fields(“name”)
DNSserver=Array(“128.1.2.1", “129.1.2.2”)
Set oWMIService = GetObject(“winmgmts:\\” & target & “\root\cimv2”)
Set colNetAdapters = oWMIService.ExecQuery _

(“Select * from Win32_NetworkAdapterConfiguration where IPEnabled=TRUE”)
For Each oNetAdapter In colNetAdapters

DNSDomainErr = oNetAdapter.SetDNSDomain(“NWTraders.com”)
DNSsearchErr=oNetAdapter.SetDNSServerSearchOrder(DNSserver)
WScript.Echo “DNSDomain returned “ & (DNSDomainErr)
WScript.Echo “DNSsearchOrder returned “ & (DNSsearchErr)

Next
oRecordSet.MoveNext

Wend

9. Save your work.

10.	 Test the script. If it works, remove the comment from the On Error Resume Next
command. If it doesn’t work, compare it with Lab29Solution.vbs, which you can
find on the companion CD.

15 Subs and Other Round Things

In this chapter, you’ll examine subroutines—a very important and powerful way to
make your scripts more flexible, easier to read, and easier to modify. Along the way,
you’ll also look at additional user and group management tricks.

Before You Begin
To work through the material presented in this chapter you need to be familiar with
the following concepts from earlier chapters:

■ Reading text files

■ Writing to text files

■ Creating files

■ Creating folders

■ Using the For…Next construction

■ Creating Select Case constructions

■ Connecting to Active Directory

■ Reading information from WMI

After completing this chapter you will be familiar with the following:

■ Converting inline code into a subroutine

■ Calling subroutines

■ Performing Active Directory User management

Working with Subroutines
In this section, you’ll learn about how network administrators use subroutines. For
many, the use of subroutines will be somewhat new territory and might even seem
unnecessary, particularly when you can cut and paste sections of working code. But
before we get into the how-to section, let’s go over the what section.

I used to think a subroutine was getting up in the morning, eating breakfast, standing
a watch, and going to bed. But I’ve since learned that a subroutine is a named section
of code that gets run only when something in the script calls it by name. Nearly every
script we’ve worked with thus far has been a group of commands, which have been
processed from top to bottom in a consecutive fashion. Although this consecutive pro-
245

246 Part 3 Advanced Windows Administration
cessing approach, which I call linear scripting, makes the code very easy for the net-
work administrator to work with, it does not always make his work very efficient. In
addition, when you need to perform a similar activity from different parts of the script,
using the inline cut-and-paste scripting approach quickly becomes inefficient and hard
to understand. This is where subroutines come into play. A subroutine is not executed
when its body is defined in the code; instead, it is executed only when it is called by
name. If you define a subroutine, and use it only one time, you might make your script
easier to read or easier to maintain, but you will not make the script shorter. If, how-
ever, you have something you want to do over and over, the subroutine does make the
script shorter. The following summarizes uses for subroutines in VBScript:

■ Prevents needless duplication of code

■ Makes code portable and reusable

■ Makes code easier to troubleshoot and debug

■ Makes code easier to read and maintain

■ Makes code easier to modify

The following script (LinearScript.vbs) illustrates the problem with linear scripting. In
this script are three variables: a, b, and c. Each of these is assigned a value, and you
need to determine equality. The script uses a series of If Then…Else constructions to
perform the evaluative work. As you can see, the code gets a little redundant.

Option Explicit�
Dim a�
Dim b�
Dim c�

a=1�
b=2�
c=3�

If a = b Then
WScript.Echo a & “ and “ & b & “ are equal"

Else
WScript.Echo a & “ and “ & b & “ are not equal"

End If

If b = c Then
WScript.Echo b & “ and “ & c & “ are equal"

Else
WScript.Echo b & “ and “ & c & “ are not equal"

End If

If a + b = c Then
WScript.Echo a + b & “ and “ & c & “ are equal"

Else
WScript.Echo a + b & “ and “ & c & “ are not equal"

End if

Chapter 15 Subs and Other Round Things 247
OK, so the script might be a little redundant, although if you’re paid to write code by
the line, this is a great script! Unfortunately, most network administrators are not paid
by the line for the scripts they write. This being the case, clearly you need to come up
with a better way to write code. (I am telegraphing the solution to you now….) That’s
right! You will use a subroutine to perform the evaluation. The modified script uses a
subroutine to perform the evaluation of the two numbers. This results in saving two
lines of code for each evaluation performed. In this example, however, the power is
not in saving a few lines of code—it’s in the fact that you use one section of code to
perform the evaluation. Using one section makes the script easier to read and easier to
write.

Note Business rules is a concept that comes up frequently in programming books. The
idea is that many programs have concepts that are not a technical requirement but still must
be adhered to. These are non-technical rules. For instance, a business rule might say that
when a payment is not received within 30 days after the invoice is mailed, a follow-up notice
must be sent out, and a 1 percent surcharge is added to the invoice amount. Because busi
nesses sometimes change these non-technical requirements, such rules would be better
incorporated into a separate section of the code (a subroutine, for example) as opposed to
sprinkling them throughout the entire program. If the business later decides to charge an
additional 1 percent surcharge after 60 days, this requirement can be easily accommodated
in the code.

In the script you are currently examining, your business rules are contained in a single
code section, so you can easily modify the code to incorporate new ways of comparing
the three numbers (to determine, for example, that they are not equal instead of
equal). If conditions are likely to change or additional information might be required,
creating a subroutine makes sense.

Quick Check

Q. To promote code re-use within a script, where is one place you can position the
code?

A. You can place the code within a subroutine.

Q. To make changing business rules easier to code, where is a good place to posi
tion the rules?

A. You can place business rules within a subroutine to make them easier to
update.

248 Part 3 Advanced Windows Administration
Calling the Subroutine

In the next script you’ll examine, SubRoutineScript.vbs, the comparison of a, b, and c
is done by using a subroutine called compare. To use a subroutine, you simply place
its name on a line by itself. Notice that you don’t need to declare the name of the sub-
routine because it isn’t a variable. So, that script works even though you specified
Option Explicit and did not declare the name used for the subroutine. In fact, you can-
not declare the name of your subroutine. If you do, you will get a “name redefined”
error.

Creating the Subroutine

Once you decide to use a subroutine, the code for creating it is very light. Indeed, all
that is required is the word Sub followed by the name you will assign to the subrou
tine. In the SubRoutineScript.vbs script, the subroutine is assigned the name compare
by the following line: Sub Compare. That’s all there is to it. You then write the code
that performs the comparison and end the subroutine with the command End Sub.
After you do all that, you have your subroutine.

Option Explicit

Dim a, b, c

Dim num1, num2

a=1

b=2

c=3

num1 = a

num2 = b

compare

num1 = b

num2 = c

compare

num1 = a + b

num2 = c

compare

Sub compare
If num1 = num2 Then

WScript.Echo (num1 & “ and “ & num2 & “ are equal”)
Else

WScript.Echo(num1 & “ and “ & num2 & “ are not equal”)
End If

End Sub

Chapter 15 Subs and Other Round Things 249
Just the Steps

� To create a subroutine
1. Begin the line of code with the word Sub followed by name of the subroutine.

2. Write the code that the subroutine will perform.

3. End the subroutine by using the End Sub command on a line by itself.

Creating Users and Logging Results
As your scripts become more powerful, they have a tendency to become longer and
longer. The next script, CreateUsersLogAction.vbs, is nearly 80 lines long. The reason
for this length is that you perform three distinct actions. First, you read a text file and
parse the data into an array. Then you use this array to create new users and add the
users into an existing group in Active Directory. As you create users and add them to
groups, you want to create a log file and write the names of the created users. All the
code to perform these actions begins to add up and can make a long VBScript hard to
read and understand. This is a situation in which the subroutine becomes rather useful.
In fact, the subroutine used to create the log file is nearly 30 lines long itself because
you need to check whether the folder exists or the log file exists. If the folder or file
does not exist, you need to create it. If each is present, you need to open the file and
append data to it. By placing this code into a subroutine, you are able to access it each
time you loop through the input data you’re using to create the users in the first place.
After the user is created, you go to the subroutine, open the file, write to it, close the
file, and then go back into the Do Until…Loop to create the next user.

Note Holding the text file open might seem like an easier approach, but I prefer to close
the file after each loop so that I can guarantee the consistency of the file as a log of the
accounts that are being created. There are other benefits of closing the file as well. It makes
the operation more modular and therefore promotes portability. Making an open and a close
part of the routine hides complexity that could arise.

If you kept the file open and wrote to the log file in an asynchronous manner, your log
writer could get behind, and in the event of an anomaly, your log might not be an
accurate reflection of the actual accounts created on the server. Here is the Create-
UsersLogAction.vbs script:

Option Explicit

‘On Error Resume Next

Dim objOU

Dim objUser

250 Part 3 Advanced Windows Administration
Dim objGroup

Dim objFSO

Dim objFile

Dim objFolder

Dim objTextFile

Dim TxtIn

Dim strNextLine

Dim i

Dim TxtFile

Dim LogFolder

Dim LogFile

TxtFile = “C:\UsersAndGroups.txt"

LogFolder = “C:\FSO"

LogFile = “C:\FSO\fso.txt"

Const ForReading = 1

Const ForWriting = 2

Const ForAppending = 8

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objTextFile = objFSO.OpenTextFile _

(TxtFile, ForReading)

Do Until objTextFile.AtEndOfStream
strNextLine = objTextFile.ReadLine
TxtIn = Split(strNextLine , “,”)
Set objOU = GetObject(“LDAP://OU=LabOU,” _

& “dc=nwtraders,dc=msft”)
Set objUser = objOU.Create(“User", “cn="& TxtIn(0))
objUser.Put “sAMAccountName", TxtIn(0)
objUser.SetInfo

Set objGroup = GetObject _
(“LDAP://CN="& TxtIn(1) & “,cn=users,” _
& “dc=nwtraders,dc=msft”)

objGroup.add _
“LDAP://cn="& TxtIn(0) & “,ou=LabOU,” _
& “dc=nwtraders,dc=msft"

Logging
Loop

Sub Logging
If objFSO.FolderExists(LogFolder) Then

If objFSO.FileExists(LogFile) Then
Set objFile = objFSO.OpenTextFile _

(LogFile, ForAppending)
objFile.WriteBlankLines(1)
objFile.Writeline “Creating User “ & Now
objFile.Writeline TxtIn(0)
objFile.Close

Else
Set objFile = objFSO.CreateTextFile(LogFile)
objFile.Close
Set objFile = objFSO.OpenTextFile _

(LogFile, ForWriting)

Chapter 15 Subs and Other Round Things 251
objFile.WriteLine “Creating User “ & Now
objFile.WriteLine TxtIn(0)

objFile.Close
End If

Else
Set objFolder = objFSO.CreateFolder(LogFolder)
Set objFile = objFSO.CreateTextFile(LogFile)
objFile.Close
Set objFile = objFSO.OpenTextFile _

(LogFile, ForWriting)
objfile.WriteLine “Creating User “ & Now
objFile.WriteLine TxtIn(0)
objFile.Close

End If
End Sub

WScript.Echo(“all done”)

Header Information

The Header information section of CreateUsersLogAction.vbs is used to declare all the
variables used in the script. Twelve variables are used in the script and are listed in
Table 15-1.

Table 15-1 Variables Used in CreateUsersLogAction.vbs

Variable Description

objOU Holds connection to target OU in Active Directory.

objUser Holds hook for Create user command. Takes TxtIn(0) as input for user name.

objGroup	 Holds hook for add to Group command. Takes TxtIn(1) as input for name of
group and TxtIn(0) as name of user to add.

objFSO	 Holds hook that comes back from the CreateObject command used to create
the FileSystemObject.

objFile	 Holds hook that comes back from the OpenTextFile command issued to
objFSO.

objFolder	 Holds hook that comes back from CreateFolder command issued to objFSO if
the folder does not exist.

objTextFile	 Holds the data stream that comes from the OpenTextFile command that is
used to open the UsersAndGroups.txt file.

TxtIn	 An array that is created from parsing strNextLine. Each field split by the
comma becomes an element in the array. Holds user name to be created and
the group that the user is to be added to.

strNextLine Holds one line worth of data from the UsersAndGroups.txt file.

TxtFile Holds path and name of text file to be parsed as input data.

252 Part 3 Advanced Windows Administration
Table 15-1 Variables Used in CreateUsersLogAction.vbs

Variable Description

LogFolder Holds path and name of folder used to hold logging information.

LogFile Holds path and name of text file to be used as the log file.

Reference Information

The Reference information section of the script is used to assign values to some of the
variables used in the script. In addition to the mundane items such as defining the path
and title for the text file used to hold the users and groups, in this section, you create
three constants that are used in working with text files.

Note If you create standard variable names, and you consistently use them in your scripts,
you will make it easier to re-use your subroutines without any modification. For instance, if
you use objFSO consistently for creating FileSystemObject, you minimize the work required to
“rewire” your subroutine. Of course, using the Find and Replace feature of Notepad.exe, or
any other script editor, makes it rather easy to rename variables.

These constants are ForReading, ForWriting, and ForAppending. The use of these con
stants was discussed in detail in Chapter 4, “The Power of Many.” The last two tasks
done in the Reference information section of the script are creating an instance of the
FileSystemObject and using the OpenTextFile command so that you can read it in the
list of users that need to be created and the group to which each user will be assigned.
Here is the Reference information section of the script:

TxtFile = “C:\UsersAndGroups.txt"

LogFolder = “C:\FSO"

LogFile = “C:\FSO\fso.txt"

Const ForReading = 1

Const ForWriting = 2

Const ForAppending = 8

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objTextFile = objFSO.OpenTextFile _

(TxtFile, ForReading)

Worker Information

The Worker information section of the script is where the users are actually created and
assigned to a group. To work through the UsersAndGroups.txt file, you need to make
a connection to the file. This was done in a previous Reference information section of
the script in which we assigned objTextFile to be equal to the hook that came back
once the connection into the file was made. Think back to the pipe analogy (in Chap
ter 5, “The Power of Many More”), in which you set up a pump and pulled the text,

Chapter 15 Subs and Other Round Things 253
one line at a time, into a variable called strNextLine. As long as data is in the text file,
you can continue to pump the information by using the ReadLine command. However,
if you reach the end of the text stream, you exit the Do Until…Loop construction you
created.

Do Until objTextFile.AtEndOfStream
strNextLine = objTextFile.ReadLine
TxtIn = Split(strNextLine , “,”)
Set objOU = GetObject(“LDAP://OU=LabOU,” _

& “dc=nwtraders,dc=msft”)
Set objUser = objOU.Create(“User", “cn="& TxtIn(0))
objUser.Put “sAMAccountName", TxtIn(0)
objUser.SetInfo

Set objGroup = GetObject _
(“LDAP://CN="& TxtIn(1) & “,cn=users,” _
& “dc=nwtraders,dc=msft”)

objGroup.add _
“LDAP://cn="& TxtIn(0) & “,ou=LabOU,” _
& “dc=nwtraders,dc=msft"

Logging
Loop

Output Information

Once you create a new user and assign that user to a group, you need to document the
script changes. To do this, you call a subroutine (in our script, called logging) that
opens a log file and writes the name of the new user that was created as well as the
time in which the creation occurred. The first task the logging subroutine does is check
for the existence of the logging folder that is defined by the variable LogFolder. To
check for the presence of the folder, you use the FolderExists method. If the folder is
present on the system, you next check for the existence of the logging file defined by
the LogFile variable. To check for the presence of the LogFile, you use the FileExists
method. If both of these conditions are copasetic, you open the log file by using the
OpenTextFile command and specify that you will append to the file instead of overwrit
ing it (which is normally what you want a log file to do). In writing to the file, you use
two different methods: WriteBlankLines to make the log a little easier to read, and
WriteLine to write the user name and the time that user was created in the log.

If, on the other hand, the log folder exists but the log file does not exist, you need to
create the log file prior to writing to it. This is the subject of the first Else command
present in the subroutine. You use the CreateTextFile command and the LogFile vari
able to create the log file. After the file is created, you must close the connection to the
file; if you do not, you get an error message stating that the file is in use. After you
close the connection to the log file, you reopen it by using the OpenTextFile command,
and then you write your information to the file.

254 Part 3 Advanced Windows Administration
The other scenario our subroutine must deal with is if neither the folder nor the log file
is in existence, in which case you have to create the folder (by using the CreateFolder
method) and then create the file (by using the CreateTextFile method). Once again, it
is necessary to use objFile.Close to close the connection to the newly created text file
so that you can write your logging information to the file. Once you write to the log
file, you exit the subroutine by using the End Sub command, and you enter the Do
Until…Loop again. The logging subroutine is shown here:

Sub Logging
If objFSO.FolderExists(LogFolder) Then

If objFSO.FileExists(LogFile) Then
Set objFile = objFSO.OpenTextFile _

(LogFile, ForAppending)
objFile.WriteBlankLines(1)
objFile.WriteLine “Creating User “ & Now
objFile.WriteLine TxtIn(0)
objFile.Close

Else
Set objFile = objFSO.CreateTextFile(LogFile)
objFile.Close
Set objFile = objFSO.OpenTextFile _

(LogFile, ForWriting)
objfile.WriteLine “Creating User “ & Now
objFile.WriteLine TxtIn(0)

objFile.Close
End If

Else
Set objFolder = objFSO.CreateFolder(LogFolder)
Set objFile = objFSO.CreateTextFile(LogFile)
objFile.Close
Set objFile = objFSO.OpenTextFile _

(LogFile, ForWriting)
objfile.WriteLine “Creating User “ & Now
objFile.WriteLine TxtIn(0)
objFile.Close

End If
End Sub

WScript.Echo(“all done”)

Summary
In this chapter, you examined using subroutines to facilitate code re-use within a single
script. You looked at the advantages of using subroutines: making scripts easier to
read, easier to change, and easier to write. You used a real-world example to look at
the use of subroutines to perform logging when creating a large number of new users
and assigning those users to groups. In the script example in this chapter, all the code
associated with the logging operation was placed into a subroutine. This subroutine

Chapter 15 Subs and Other Round Things 255
could easily be added to several of the other scripts examined in this book. The only
trick would be to make sure you were consistent with the variable naming convention
used in the subroutine.

Quiz Yourself
Q. How do you create a subroutine?

A.	 To create a subroutine, you begin a line with the word Sub followed by the name of the
subroutine. You end the subroutine by using the command End Sub on a line following
your subroutine code.

Q. How do you call a subroutine?

A.	 You call a subroutine by placing the name of the subroutine on a line by itself at the
place in your code where you want to use the subroutine.

Q. What are three uses for subroutines in VBScript?

A.	 Subroutines make code more portable and easier to read and troubleshoot, and they
promote code re-use.

On Your Own

Lab 30 Using ADSI and Subs, and Creating Users
In this lab, you will expand the script used in this chapter. Instead of creating only a user,
you will add information to the user. You will use a subroutine to perform logging.

Lab Instructions

1. Open Notepad.exe.

2. Open the CreateUsers.vbs file and save it as Lab30Solution.vbs.

3.	 Make sure you have a file called UsersAndGroups.txt, and run the
Lab30Solution.vbs file. Go into Active Directory Users and Computers and delete
the users that were created.

4.	 Cut the code used to open the text file that holds the names of users to add to
Active Directory. It is under the variable declarations, in the Reference information
section of the script. It is five lines long. This code looks like the following:

TxtFile = “C:\UsersAndGroups.txt"

Const ForReading = 1

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

Set objTextFile = objFSO.OpenTextFile _

(TxtFile, ForReading)

256 Part 3 Advanced Windows Administration
5. Paste the code after the WScript.Echo command at the end of the script.

6.	 Under the declarations, where the txtFile code used to be, type ReadUsers. This
is the name of the new subroutine you will create. It will look like the following:

Dim objOU

Dim objUser

Dim objGroup

Dim objFSO

Dim objTextFile

Dim TxtIn

Dim strNextLine

Dim i

Dim TxtFile

dim boundary

ReadUsers

7.	 On the line before the code that reads the txtFile that you copied to the end of
your script, use the Sub command to create a subroutine called ReadUsers.

8.	 At the end of the subroutine, add the End Sub command. The completed subrou
tine looks like the following:

Sub ReadUsers
TxtFile = “C:\UsersAndGroups.txt"
Const ForReading = 1
Set objFSO = CreateObject(“Scripting.FileSystemObject”)
Set objTextFile = objFSO.OpenTextFile _

(TxtFile, ForReading)
End Sub

9. Save your work. Run the script to make sure it still works.

10.	 Modify the subroutine so that it is reading a text file called MoreUsersAnd-
Groups.txt. This file is located in the lab starter files folder.

11.	 In the Worker section of the script that creates the user, use the Put method to add
the user’s first name, last name, building, and phone number. The Active Directory
attributes are called givenName, sn, physicalDeliveryOfficeName, and telephone-
Number. Each of these fields is in the array that gets created, so you need to incre
ment the array field. The completed code will look like the following:

Set objUser = objOU.Create(“User", “cn="& TxtIn(0))

objUser.Put “sAMAccountName", TxtIn(0)

objUser.Put “givenName", TxtIn(1)

objUser.Put “sn", TxtIn(2)

objUser.Put “physicalDeliveryOfficeName", TxtIn(3)

objUser.Put “telephoneNumber", TxtIn(4)

12.	 Because the group membership field is the last field and you added fields to the
text file, you need to increment the array index that is used to point to the group
field. The new index number is 5, and the code will look like the following:

Chapter 15 Subs and Other Round Things 257
Set objGroup = GetObject _
(“LDAP://CN="& TxtIn(5) & “,cn=users,dc=nwtraders,dc=msft”)

13.	 Save the script and run it. After you successfully run the script, delete the users
created in Active Directory.

Lab 31 Adding a Logging Subroutine
In this lab, you add logging capability to the script you finished in Lab 30.

Lab Instructions

1. Open Notepad.exe.

2. Open Lab31Starter.vbs and save the file as Lab31Solution.vbs.

3.	 After the objGroup.add command statement but before the Loop command, add a
call to the subroutine called LogAction. The modification to the script will look like
the following:

Set objGroup = GetObject _
(“LDAP://CN="& TxtIn(5) & “,cn=users,dc=nwtraders,dc=msft”)

objGroup.Add _
“LDAP://cn="& TxtIn(0) & “,ou=LabOU,dc=nwtraders,dc=msft"

LogAction
Loop

4.	 Under the ReadUsers subroutine, add a subroutine called LogAction. This will con
sist of the Sub command and the End Sub command. Leave two blank lines in
between the two commands. The code will look like the following:

Sub LogAction

End Sub

5. Save your work.

6.	 Open the CreateLogFile.vbs file and copy all the variable declarations. Paste them
under the variables in your script.

7. Delete the extra objFSO variable.

8.	 Copy the three reference lines from the CreateLogFile.vbs script and paste them
under the variable declarations. This section of the script now looks like the fol
lowing:

Dim objOU

Dim objUser

Dim objGroup

Dim objFSO

Dim objTextFile

Dim TxtIn

Dim strNextLine

258 Part 3 Advanced Windows Administration
Dim i

Dim TxtFile

Dim objFile ’ holds hook to the file to be used

Dim message ’ holds message to be written to file

Dim objData1 ’ holds data from source used to write to file

Dim objData2 ’ holds data from source used to write to file

Dim LogFolder

Dim LogFile

message="Reading computer info “ & Now

objData1 = objRecordSet.Fields(“name”)

objData2 = objRecordSet.Fields(“distinguishedName”)

9.	 Modify the message so that it states that the code is creating a user, and use the
element TxtIn(0) as the user name that gets created. This modified line will look
like the following:

message="Creating user “ & TxtIn(1) & Now

10.	 Move the message line to the line after you parse strNextLine. You do this because
you are using an element of the array that must be an assigned value before it can
be used.

strNextLine = objTextFile.ReadLine
TxtIn = Split(strNextLine , “,”)
message="Creating user “ & TxtIn(1) & Now

11.	 Modify the objData1 and objdata2 data assignments. Use TxtIn(0) for the user
field and TxtIn(5) for the group. The two lines will look like the following:

objData1 = TxtIn(0)
objData2 = TxtIn(5)

12.	 Copy the remainder of the script and paste it between the two lines used to create
the subroutine. The completed section looks like the following:

Sub LogAction
If objFSO.FolderExists(LogFolder) Then

If objFSO.FileExists(LogFile) Then
Set objFile = objFSO.OpenTextFile(LogFile, ForAppending)
objFile.WriteBlankLines(1)
objFile.Writeline message
objFile.Writeline objData1
objFile.Writeline objData2
objFile.Close

Else
Set objFile = objFSO.CreateTextFile(LogFile)
objFile.Close
Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)
objfile.WriteLine message
objFile.WriteLine objData1
objFile.WriteLine objData2
objFile.Close

End If
Else

Set objFolder = objFSO.CreateFolder(LogFolder)

Chapter 15 Subs and Other Round Things 259
Set objFile = objFSO.CreateTextFile(LogFile)

objFile.Close

Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)

objfile.writeline message

objFile.WriteLine objData1

objFile.WriteLine objData2

objFile.Close

End If
End Sub

13. Save and run the script.

16 Logon Scripts

In this chapter, you’ll look at creating logon scripts. Logon scripts have traditionally
been either nonexistent or simple batch files containing a series of net use commands.
With the power of Microsoft Visual Basic Script (VBScript), however, you can make a
number of intelligent decisions in your logon scripts and bring a new level of manage-
ability and configurability to the table.

Before You Begin
To work through the material presented in this chapter you need to be familiar with
the following concepts from earlier chapters:

■ Using WMI

■ Using ADSI

■ Using the InStr function

■ Implementing For…Next constructions

■ Implementing Select Case constructions

■ Implementing the file system object

After completing this chapter you will be familiar with the following:

■ Using the IADsADSystemInfo interface

■ Using WshNetwork

■ Using the Join function

■ Creating dynamic logon scripts

■ Implementing logging for logon scripts

Working with IADsADSystemInfo
In this section, you will use the IADsADSystemInfo interface to obtain data about the
local computer. The IADsADSystemInfo interface is implemented for access to the
ADSystemInfo class. Because this class resides in the adsldp.dll file, which is part of
ADSI, it is present on Microsoft Windows Server 2003, Windows XP, and even Win
dows 2000. To use IADsADSystemInfo, you need to hook it by creating an instance of
the ADSystemInfo class. This process is actually simple—you use the CreateObject
command. Table 16-1 summarizes the nine properties exposed by IADsADSystemInfo.
261

262 Part 3 Advanced Windows Administration
Table 16-1 Properties Exposed by IADsADSystemInfo

Property Meaning

ComputerName Retrieves the distinguished name of the local computer

DomainDNSName Retrieves the DNS name of the local computer’s domain

DomainShortName	 Retrieves the short name of the local computer’s domain (the NetBIOS
version of the name)

ForestDNSName Retrieves the DNS name of the local computer’s forest

IsNativeMode	 Determines whether the local computer’s domain is native or mixed
mode

PDCRoleOwner	 Retrieves the distinguished name of the DC that owns the PDC emula
tor role in the local computer’s domain

SchemaRoleOwner	 Retrieves the distinguished name of the Schema Master in the local
computer’s forest

SiteName Retrieves the site name the local computer resides in

UserName Retrieves the distinguished name of the currently logged-on user

The advantage of using IADsADSystemInfo over other means of gaining user and com
puter information is that IADsADSystemInfo retrieves fully qualified domain names,
which are immediately useful when working with Active Directory. In addition to the
nine properties listed in Table 16-1, there are 13 methods exposed by IADsADSystemInfo.
However, most of them duplicate the properties listed in Table 16-1, so Table 16-2
describes only the methods that provide additional information.

Table 16-2 IADsADSystemInfo Methods Providing Unique Information

Method Description

GetAnyDCName	 Retrieves the DNS name of a domain controller in the local
computer’s domain.

RefreshSchemaCache	 Refreshes ADSI’s Active Directory schema cache on the local
computer.

GetTrees	 Retrieves the DNS names of all the directory trees in the local
computer’s forest. Returned as an array.

The following script, called SysInfo.vbs, illustrates using the IADsADSystemInfo inter-
face. In the first line, you use objSysInfo to hold the hook that comes back when you
use CreateObject to create an instance of ADSystemInfo. After you do this, you use the
RefreshSchemaCache method to refresh the Active Directory schema cache that is res
ident on the local computer. Performing this step ensures that you are working with
the most recent copy of the Active Directory schema. After refreshing the schema cache

Chapter 16 Logon Scripts 263
Next

on the local machine, you echo out the pertinent information. The only step that is a
little tricky is the use of For Each…Next to walk through the array that is returned when
you use the GetTrees method. This step is required, even when only one domain is
present in the forest.

Set objSysInfo = CreateObject(“ADSystemInfo”)

objSysInfo.RefreshSchemaCache

WScript.Echo “User name: “ & objSysInfo.UserName

WScript.Echo “Computer name: “ & objSysInfo.ComputerName

WScript.Echo “Site name: “ & objSysInfo.SiteName

WScript.Echo “Domain short name: “ & objSysInfo.DomainShortName

WScript.Echo “Domain DNS name: “ & objSysInfo.DomainDNSName

WScript.Echo “Forest DNS name: “ & objSysInfo.ForestDNSName

WScript.Echo “PDC role owner: “ & objSysInfo.PDCRoleOwner

WScript.Echo “Schema role owner: “ & objSysInfo.SchemaRoleOwner

WScript.Echo “Domain is in native mode: “ & objSysInfo.IsNativeMode

WScript.Echo “Active Directory DomainController: “ & objSysInfo.GetAnyDCName

For	 Each tree In objSysInfo.GetTrees
WScript.Echo “Domain trees: “ & tree

Using Logon Scripts
In the old days, network administrators spent hours and hours trying to craft the per

fect logon script. In the end, it was a fruitless effort, as needs were always changing,

and the capabilities of logon scripts were limited. Many networks today seem to run

just fine without a logon script. With the widespread adoption of Group Policy, some

people might question why we need logon scripts at all. However, when using

VBScript for your logon scripts, you can craft some very powerful solutions for config

uring and maintaining your users’ environments. In addition, because Group Policy is

often handled by a separate group within enterprise networks, making a change to a

logon script can be easier than talking another group into modifying its “perfect Group

Policy.” There are several tasks that logon scripts can be quickly called into service to

perform:

■ Mapping network drives

■ Mapping printers

■ Collecting system information

■ Checking antivirus signatures

■ Checking hotfix and security updates

■ Checking security settings

264 Part 3 Advanced Windows Administration
Just the Steps

� To create powerful and flexible logon scripts
1. Use IADsADSystemInfo to determine user information.

2. Use ADSI to query for group membership information.

3. Use Windows Scripting Host (WSH) to map network drives.

4. Use WSH to set default printers.

Deploying Logon Scripts
Perhaps the simplest way to implement a logon script is to modify the logon script user
attribute. Although you can assign logon scripts to users by using the GUI interface,
you can also do this easily by using the scriptpath Active Directory attribute of the user
object. I prefer, however, to use Group Policy to assign the logon script to users. How-
ever you choose to assign logon scripts to your users, once you write the script, this
script will need to be saved in the sysvol share in the scripts directory. If you do this,
you can link the script to multiple Group Policy Objects (GPOs). You could, of course,
also save the logon script within the actual GPO itself. If you choose to save it in this
way, you will not be able to reuse the script with other GPOs. In fact, you could end
up deleting the script if you delete the GPO that is hosting the script.

So what does a VBScript logon script look like? The following script (Logonscript.vbs)
is similar to many logon scripts I’ve used with customers in the past. It has several
advantages over the old-fashioned batch files that many of you grew up with. We’ll dis
cuss these advantages as we examine each section that makes up LogonScript.vbs.

Option Explicit

Dim fServer

Dim home

Dim wshNet

Dim ADSysInfo

Dim CurrentUser

Dim strGroups

Dim GroupMember

Dim a,b,c,d

Const HR = “cn=hrgroup"

Const MARKETING = “cn=marketinggroup"

Const SALES = “cn=salesgroup"

fServer = “\\london"

home = “\\london\users"

Set wshNet = CreateObject(“WScript.Network”)

Set ADSysInfo = CreateObject(“ADSystemInfo”)

Set CurrentUser = GetObject(“LDAP://” _

& ADSysInfo.UserName)
strGroups = LCase(Join(CurrentUser.MemberOf))

wshNet.MapNetworkDrive “h:", fServer & “\Users\” _

Chapter 16 Logon Scripts 265
& wshNet.UserName
WScript.Echo(wshNet.Username & “ “ & strgroups)
GroupMember = True
Select Case GroupMember

Case a = InStr(strGroups, HR)
HRsub

Case b = InStr(strGroups, SALES)
SalesSub

Case c = InStr(strGroups, MARKETING)
MarketingSub

End Select

Sub	 HRsub
WScript.Echo(“made it to HR”)
wshNet.MapNetworkDrive “g:","\\london\Hr\"
wshNet.AddWindowsPrinterConnection _

 “\\london\HrPrinter"
wshNet.SetDefaultPrinter “\\london\HrPrinter"

End Sub

Sub	 SalesSub
WScript.Echo(“made it to sales”)
wshNet.MapNetworkDrive “s:", “\\london\Sales"
wshNet.AddWindowsPrinterConnection _

 “\\london\SalesPrinter"
wshNet.SetDefaultPrinter “\\london\SalesPrinter"

End Sub

Sub	 MarketingSub
WScript.Echo(“made it to marketing”)
wshNet.MapNetworkDrive “m:","\\london\Marketing\"
wshNet.AddWindowsPrinterConnection _

 “\\london\MarketingPrinter"
wshNet.SetDefaultPrinter _

 “\\london\MarketingPrinter"
End Sub

Header Information

The Header information section of LogonScript.vbs includes the Option Explicit com
mand and the declaration of several variables.

Tip You don’t use On Error Resume Next in logon scripts because if the logon script fails,
you want to hear from your user community immediately. You don’t want to suppress error
messages nor risk mapping only a few of the drives that the users need to be able to perform
their work. I’ve seen situations in which the logon script messed up drive mappings for a
group of users, and these users had no idea where their data was stored. We wound up hav
ing to reproduce the error in a lab to determine what drives had been mapped for which user
so that we could find the work the users had “lost.” Once this was done, we removed error
suppression on the logon script, and although doing this might have resulted in a few more
help desk calls, it vastly simplified the consequences when the logon script failed.

266 Part 3 Advanced Windows Administration
Seven variables are used in LogonScript.vbs and are listed in Table 16-3.

Table 16-3 LogonScript.vbs Variables

Variable Use

fServer	 Holds the name of the file server. Used when mapping home directory for
the user. Could be used in other mappings as well, but not implemented in
this version of the script.

Home	 Holds the relative path of the users’ home directory share. This variable
also could be expanded by using site information to point the closed file
server to the users.

wshNet	 Holds the hook that comes back when you create an instance of
WScript.Network. You use this to allow the mapping of drives and printers.

ADSysInfo	 Holds the hook that comes back when you create an instance of ADSystem-
Info. This allows you to obtain current user information.

CurrentUser Holds a connection into Active Directory using LDAP provider.

strGroups Holds a list of all the groups the user is a member of.

GroupMember	 Used by the Select Case construction to hold the value of the group mem
bership.

Tip Depending on how you decide to document your scripts, creating a table of variables
can be an awesome reference tool. I know some Internet administrators who print out all their
production scripts and store them in a binder along with their definitive software library (DSL).
Others store backup copies of production scripts on a network share, and use remarks to
document the scripts. Even if you do not need a variable table for script documentation, you
might find that creating one is sometimes helpful as reference when writing the script—it
forces you to think about the script flow, and in a long script, it is easier to work with a table
than scrolling back up to the Header information section of the script. This is a good habit to
develop if you program in C# or Visual Basic .NET as well.

Reference Information

In addition to defining the variables listed in the Header information section of the
script, you also define some constants. The three constants hold the name of the
groups that are searched for by using the Instr command. In this example, the group
memberships are HrGroup, MarketingGroup, and SalesGroup. You assign the “cn=”
version of the name to the constants called Hr, Marketing, and Sales. You do this
because when you perform the query for the group memberships, the string of data
returned will include the full LDAP name of the groups. However, to make the code

Chapter 16 Logon Scripts 267
easier to type and understand and thus easier to work with, you assign the longer
names to constants. The resultant code looks like the following:

Const HR = “cn=hrgroup"�
Const MARKETING = “cn=marketinggroup"�
Const SALES = “cn=salesgroup”�

The remainder of the Reference information section appears in the code that follows.
You use a variable fServer to hold the name of the file server. This makes it easy to
change the script if you move the shared directories to other servers. In this version of
the script, no drive mappings use variable names for the server. Instead, the drive map-
pings use the hardcoded Universal Naming Convention (UNC) path to a specific server
share. This means that when the data gets moved to a different server, the logon script
must be modified in several places.

fServer = “\\london"�
home = “\\london\users"�
Set wshNet = CreateObject(“WScript.Network”)�
Set ADSysInfo = CreateObject(“ADSystemInfo”)�
Set CurrentUser = GetObject(“LDAP://” _�

& ADSysInfo.UserName)
strGroups = LCase(Join(CurrentUser.MemberOf))

All the users’ home directories are in a shared directory called users. If you move the
share to a different location, you will need to modify the home = \\london\users line
in the script. Changing this line is easier than making a change in the Home Folder
field on the Profile tab in Active Directory Users and Computers (ADUC). Change one
line in the logon script, or make thousands of changes via the GUI in ADUC—seems to
be a relatively painless choice!

Quick Check

Q. What are three ways of assigning a logon script to a user?

A. Three ways of assigning a logon script to a user are via the GUI interface by
using Active Directory Users and Computers, via VBScript by using the script-
Path property, or by using Group Policy.

Q. What are three common activities performed by logon scripts?

A. Three common activities performed by logon scripts are mapping to network
shares, mapping to network printers, and setting default printers for users.

Using the WshNetwork Class

The next order of business is wiring up three connections to turn on the power of
VBScript in our logon script. The first of these connections is used to hold the hook
that comes back from creating an instance of the WScript.Network class. You use the

268 Part 3 Advanced Windows Administration
WScript.Network progid to create an object that is called WshNetwork. WshNetwork
allows you to connect to and disconnect from network shares and network printers. In
addition, we can use WshNetwork to map or remove network shares or to access infor
mation about a user on a network. This said, you might be asking yourself why we
decided to use ADSystemInfo to obtain the user name. The reason is that the user name
coming from WshNetwork is a single-label name, for example, Bob. But to query Active
Directory to obtain all your group memberships, you need the distinguished name—
for example, a name like cn=bob, ou=LabOU, dc=nwtraders, or dc=msft. You can use
the distinguished name to make an LDAP binding and then to query all the information
you need to obtain for the logon script.

After you create an instance of the WshNetwork, you are ready to connect to the IADs-
ADSystemInfo interface so that you can get information about the local computer and
local user. You learned about this in detail earlier in this chapter, so I won’t elaborate
further here.

After you have a hook into the ADSystemInfo interface, you use the UserName com
mand to obtain the fully qualified local user name, and then combine that with the
LDAP provider and make a connection into Active Directory. The hook that comes
back from Active Directory is called CurrentUser. You have now wired up all the con
nections necessary to get the logon script up and running.

You do need to define one more reference—a list of groups that the current user is a
member of. To do this, you use the MemberOf command. The problem is that the
MemberOf command will return with an array.

Using the Join Function

Although arrays are groovy, dealing with an array will make your script just a little bit
more complicated—in fact, because you are interested only in the presence of a par
ticular string sequence, you don’t need an array at all. For assistance, you use the
VBScript Join function. The Join function comes back with a string that gets created by
putting together (that is, joining) the data contained in the array elements. In this way,
you can easily use the InStr command to search the string for the presence of your
group membership items. You can see an example of using the Join function in the
Join.vbs script, which you’ll examine in a moment.

Notice that you begin the Join.vbs script by declaring a five-element array. You then
assign a value to each element in the array. On the next-to-last line, you use the Join
function to pull together all the elements of the array, which is called MyArray. You
assign the string that comes from using the Join function to a variable called MyString.
Because you now have a string that contains all the elements of the array, you can use
WScript.Echo to display the value of MyString.

Chapter 16 Logon Scripts 269
Dim MyString

Dim MyArray(4)

MyArray(0) = “Mr."

MyArray(1) = “Sam"

MyArray(2) = “Spade,"

MyArray(3) = “Private"

MyArray(4) = “Eye"

MyString = Join(MyArray)

WScript.Echo(MyString)

Worker Information

The Worker information section of the script comprises a single Select Case construction.
The Select Case statement is interesting because you are doing something new. Group-
Member is a variable that holds the result of the cases that are being tested against. In
reality, this variable is more of a placeholder than anything else, because you don’t use
it anywhere else in the script. Each case being evaluated is assigned a variable to hold
the results of the test string. When a match is found, the variable GroupMember will be
set to the value of the match that was made when the case was evaluated. The cool part
of this Select Case construction happens on the other side of the equal signs. Instead of
performing a simple match, you’re adding a higher level of intelligence to the script and
are requiring the Select Case construction to use the InStr function to search the string
data contained in the variable strGroups. Each case is therefore tested to see whether
the string represented by each constant is found in strGroups. When a match is found,
you jump to the appropriate subroutine. This type of construction makes the Worker
information section extremely easy to read and understand.

Select Case GroupMember
Case a = InStr(strGroups, HR)

HRsub
Case b = InStr(strGroups, SALES)

SalesSub
Case c = InStr(strGroups, MARKETING)

MarketingSub
End Select

Output Information
Once you work through each case in the Select Case construction, you enter into a sub-
routine. Each subroutine is designed around the particular needs of various groups
within your organization. The WScript.Echo commands let you know which subroutine
is being run—these are primarily used for troubleshooting and can be either left in or
deleted, depending on the type of customer experience your users are willing to put
up with.

To map a network drive, you use the MapNetworkDrive command of a WshNetwork
object. The important issue to keep in mind here is that assigning a drive letter requires

270 Part 3 Advanced Windows Administration
a letter and a colon surrounded by double quotation marks. Next, a comma is required
to separate the drive letter from the path statement.

When you use WshNetwork to map to a printer, you use the AddWindowsPrinter-
Connection command. (Although this command name is descriptive, it could have
been shortened just a tad.) The AddWindowsPrinterConnection command needs only
a UNC path to the print server and the share name. No commas are required here. (In
fact, commas put here will cause the command to fail.)

The last task our subroutine needs to perform is assigning the default Windows printer,
so you use a command named SetDefaultPrinter. Again, the only work you need to do
is include the UNC path to the print server and encase the share name in double quo
tation marks. Here are the subroutines for the Worker information section of the script:

Sub HRsub
WScript.Echo(“made it to HR”)
wshNet.MapNetworkDrive “g:","\\london\Hr\"
wshNet.AddWindowsPrinterConnection _

“\\london\HrPrinter"
wshNet.SetDefaultPrinter “\\london\HrPrinter"

End Sub

Sub SalesSub
WScript.Echo(“made it to sales”)
wshNet.MapNetworkDrive “s:", “\\london\Sales"
wshNet.AddWindowsPrinterConnection _

“\\london\SalesPrinter"
wshNet.SetDefaultPrinter “\\london\SalesPrinter"

End Sub

Sub MarketingSub
WScript.Echo(“made it to marketing”)
wshNet.MapNetworkDrive “m:","\\london\Marketing\"
wshNet.AddWindowsPrinterConnection _

“\\london\MarketingPrinter"
wshNet.SetDefaultPrinter _

“\\london\MarketingPrinter"
End Sub

Summary
In this chapter, you examined the use of logon scripts. The chapter began with a dis
cussion of the traditional uses of logon scripts and then looked at several methods for
assigning logon scripts to users. Then you learned about ADSysInfo and the Wsh-
Network scripting interfaces, and you looked at some of the useful information that can
be obtained from each. You learned about using the Join function to put together mul
tiple elements of an array. The chapter concluded with a detailed discussion of one
way to design and write logon scripts.

Chapter 16 Logon Scripts 271
Quiz Yourself
Q.	 What is the advantage of obtaining user and computer information via ADSysInfo as

opposed to WshNetwork?

A.	 The advantage of using ADSysInfo to obtain user and computer information is that
ADSysInfo returns the distinguished user name, which you can use to directly bind to
Active Directory to query information.

Q. What does the Join function do?

A. The Join function puts elements of an array together into a single string.

Q. What are three tasks that WshNetwork can perform?

A.	 WshNetwork is able to map to network shares, remove network shares, and map to
network printers.

Q. What does RefreshSchemaCache do?

A.	 RefreshSchemaCache is used to refresh the local copy of the Active Directory schema
on a computer.

On Your Own

Lab 32 Adding a Group to a Logon Script
In this lab, you will add a group to a logon script.

Lab Instructions

1. Open Notepad.exe.

2. Open Lab32Starter.vbs and save it as Lab32Solution.vbs.

3.	 Look over the script, and add documentation to each variable that is declared in
the script.

4.	 Under the Constants, declare a new constant called Production. Set it equal to
cn=productiongroup. The completed constant section will look like the following:

Const HR = “cn=hrgroup"

Const MARKETING = “cn=marketinggroup"

Const SALES = “cn=salesgroup"

Const PRODUCTION = “cn=productiongroup”

5.	 Add a new case d to the Select Case construction. Case d is equal to finding the
value assigned to the constant Production in the string assigned to strGroups. If
the case is met, it should jump to a subroutine called ProductionSub. The new
Select Case statement looks like the following:

272 Part 3 Advanced Windows Administration
Select Case GroupMember
Case a = InStr(strGroups, HR)

HRsub
Case b = InStr(strGroups, SALES)

SalesSub
Case c = InStr(strGroups, MARKETING)

MarketingSub
Case d = InStr (strGroups, PRODUCTION)

ProductionSub
End Select

6.	 At the bottom of the various subroutines, add a new subroutine called Production-
Sub. End the subroutine with the End Sub command. It will look like the following:

Sub ProductionSub

End Sub

7.	 For the first line of the Production Sub subroutine, use WScript.Echo to inform the
user that he or she is in the production subroutine. It could look like the following:

WScript.Echo(“made it to production”)

8.	 Use the MapNetworkDrive method of the WshNetwork object to map the drive let
ter “P:” to the production share on the London server. This line of code will look
like the following:

wshNet.MapNetworkDrive “p:","\\london\Production\”

9.	 Use the AddWindowsPrinterConnection method of WshNetwork to add a connec
tion to the ProductionPrinter that is set up on the London server. This line of code
will look like the following:

wshNet.AddWindowsPrinterConnection “\\london\ProductionPrinter”

10.	 Set the new Production Printer to be the default printer for members of the pro
duction group. To do this, use the SetDefaultPrinter command of the WshNetwork
object. This line of code will look like the following:

wshNet.SetDefaultPrinter “\\london\ProductionPrinter”

11. Save and test the script.

Lab 33 Adding Logging to a Logon Script
In this lab, you add logging to the logon script that was created in Lab 32.

Lab Instructions

1. Open Notepad.exe.

2. Open up the Lab33Starter.vbs file and save the file as Lab33Solution.vbs.

Chapter 16 Logon Scripts 273
3. Open the Lab33Starter2.vbs file.

4.	 Copy the declared variables from the Lab33Starter2.vbs file, and paste them into
the Header information section of the Lab33Solution.vbs file. The new Header
information section of the script looks like the following:

Option Explicit

Dim fServer

Dim home

Dim wshNet

Dim ADSysInfo

Dim CurrentUser

Dim strGroups

Dim GroupMember

Dim objFSO ’ holds connection to file system object

Dim objFile ’ holds hook to the file to be used

Dim message ’ holds message to be written to file

Dim objData1 ’ holds data from source used to write to file

Dim objData2 ’ holds data from source used to write to file

Dim LogFolder

Dim LogFile

5.	 Copy the entire Reference information section of the Lab33Starter2.vbs file, includ
ing all the constants and variable assignments. Paste this under the constants in
your script. The completed section looks like this:

Const HR = “cn=hrgroup"

Const MARKETING = “cn=marketinggroup"

Const SALES = “cn=salesgroup"

Const PRODUCTION = “cn=productiongroup"

Const ForWriting = 2

Const ForAppending = 8

LogFolder = “C:\fso"

LogFile = “C:\fso\logFile.txt"

Set objFSO = CreateObject(“Scripting.FileSystemObject”)

message="Reading computer info “ & Now

objData1 = objRecordSet.Fields(“name”)

objData2 = objRecordSet.Fields(“distinguishedName”)

6. Change the message text so that it reads “Processing Logon Script ”.

7.	 Cut the objData1 and objData2 variables and paste them under the strGroups =
lcase line. This section of the script now looks like the following:

Set ADSysInfo = CreateObject(“ADSystemInfo”)

Set CurrentUser = GetObject(“LDAP://” & ADSysInfo.UserName)

strGroups = LCase(Join(CurrentUser.MemberOf))

objData1 = objRecordSet.Fields(“name”)

objData2 = objRecordSet.Fields(“distinguishedName”)

wshNet.MapNetworkDrive “h:", fServer & “\Users\” & wshNet.UserName

WScript.Echo(wshNet.Username & “ “ & strgroups)

274 Part 3 Advanced Windows Administration
8.	 Assign meaningful values to objData1 and objData2. Make objData1 equal to
ADSysInfo.UserName and objData2 equal to strGroups. The two modified objData
lines now look like the following:

objData1 = ADSysInfo.UserName
objData2 = strGroups

9.	 At the bottom of the subroutines in your Lab 33 solution script, create a new
empty subroutine called LoggingSub.

10.	 Inside the empty LoggingSub subroutine, paste the entire If…Then…End If section
from the CreateLogFile.vbs file. The completed LoggingSub subroutine now looks
like the following:

Sub LoggingSub
If objFSO.FolderExists(LogFolder) Then

If objFSO.FileExists(LogFile) Then
Set objFile = objFSO.OpenTextFile(LogFile, ForAppending)
objFile.WriteBlankLines(1)
objFile.WriteLine message
objFile.WriteLine objData1
objFile.WriteLine objData2
objFile.Close

Else
Set objFile = objFSO.CreateTextFile(LogFile)
objFile.Close
Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)
objFile.WriteLine message
objFile.WriteLine objData1
objFile.WriteLine objData2
objFile.Close

End If
Else
Set objFolder = objFSO.CreateFolder(LogFolder)
Set objFile = objFSO.CreateTextFile(LogFile)

objFile.Close

Set objFile = objFSO.OpenTextFile(LogFile, ForWriting)

objfile.WriteLine message

objFile.WriteLine objData1

objFile.WriteLine objData2

objFile.Close

End If
End Sub

11. Save your work.

12.	 In the HrSub subroutine, add a command to go to the LoggingSub subroutine after
the setDefaultPrinter command. The new HrSub subroutine now looks like the
following:

Sub HRsub
WScript.Echo(“made it to HR”)
wshNet.MapNetworkDrive “g:","\\london\Hr\"
wshNet.AddWindowsPrinterConnection “\\london\HrPrinter"

Chapter 16 Logon Scripts 275
wshNet.SetDefaultPrinter “\\london\HrPrinter"
Loggingsub

End Sub

13.	 Add the LoggingSub command to the salesSub, marketingSub, and productionSub
subroutines as well. The completed subroutines look like the following:

Sub SalesSub
WScript.Echo(“made it to sales”)
wshNet.MapNetworkDrive “s:", “\\london\Sales"
wshNet.AddWindowsPrinterConnection “\\london\SalesPrinter"
wshNet.SetDefaultPrinter “\\london\SalesPrinter"
Loggingsub

End Sub

Sub MarketingSub
WScript.Echo(“made it to marketing”)

wshNet.MapNetworkDrive “m:","\\london\Marketing\"
wshNet.AddWindowsPrinterConnection “\\london\MarketingPrinter"
wshNet.SetDefaultPrinter “\\london\MarketingPrinter"
Loggingsub

End Sub

Sub ProductionSub
WScript.Echo(“made it to production”)
wshNet.MapNetworkDrive “p:","\\london\Production\"
wshNet.AddWindowsPrinterConnection “\\london\ProductionPrinter"
wshNet.SetDefaultPrinter “\\london\ProductionPrinter"
Loggingsub

End Sub

14. Save your work, and test it out.

17 Working with the Registry

In this chapter, you’ll look at the registry. For many network administrators, the registry
is like the island of Kauai—dark, foreboding, and yet enchanting and mystical. Just as
the playful swishing and splashing of the waves upon the beach draws you closer to
the island, the power of editing via Microsoft Visual Basic Script (VBScript) lures you
closer to fooling with the registry. The music of the waves, however, is borne aloft by
sharp jagged volcanic rocks. Keep this in mind as you explore your three main tasks
when working with the registry: reading items from the registry, writing to the registry,
and backing up the registry.

Before You Begin
To work through the material presented in this chapter you need to be familiar with
the following concepts from earlier chapters:

■ Creating an instance of the FileSystemObject class

■� Creating a connection into Microsoft Windows Management Instrumentation
(WMI)

■ Implementing the For…Next construction

■ Implementing Select Case construction

After completing this chapter you will be familiar with the following:

■ Implementing the WshShell class€

■ Scripting Reg.exe€

■ Working with the WMI StdRegProv class€

■ Working with the WshController object€

First You Back Up
In this section, you will use the Reg.exe program to back up the registry. Backing up
is an important step, because you can make changes to the registry that would pre�
clude Microsoft Windows Server 2003 from even loading. So before you ever make any
change to the registry, you must have a backup.
277

278 Part 3 Advanced Windows Administration
Note Don’t be scared of working with the registry out of fear of “hosing” your machine. If
you do not have a backup of the registry, and you suspect a registry change caused a prob
lem, try booting your server and selecting “last known good” from the Startup menu. If this
does not work, try booting into the recovery console off of the Microsoft Windows Server
2003 CD-ROM and using the command-line registry editor to undo the changes you previously
made.

Numerous utilities can back up the registry; backing up using a script is convenient as€
well. By using the Reg.exe support tool via VBScript, you can perform the following€
operations:€

■ Back up a registry key prior to making modifications€

■ Back up a registry hive as part of maintenance€

■ Import a registry key as part of maintenance€

■ Import a registry key to restore a previous configuration€

Just the Steps

� To back up the registry using the Reg.exe command
1. Create an instance of the WshShell class.

2. Use the Exec method of WshShell to execute the Reg.exe command.

3. Use the Reg.exe Save command.

4. Specify the registry key to save and the file to save it into.

Creating the WshShell Object
To use the Reg.exe tool to back up the registry, it is necessary to create an instance of
the WshShell class. This allows you to launch programs that are not part of Windows
Scripting Host. The following program, RegBack.vbs, illustrates making a hook into
WshShell:

Option Explicit

dim objShell

WScript.Echo(“beginning “ & Now)

Set objShell = CreateObject(“WScript.Shell”)

objShell.Exec “%comspec% /k reg.exe EXPORT HKLM c:\hklm.reg"

WScript.Echo(“completed “ & Now)

As you can see in RegBack.vbs, you declare a variable called objShell and set it equal
to the hook that comes back from using CreateObject to create an instance of WshShell.

Chapter 17 Working with the Registry 279
After we have this hook into the Shell object, you use the Exec method to launch a
command-line interpreter with the /k option.

Tip The /k in this context means to leave the command window open so that you can
examine anything written to the window by using the program you are executing. However, it
seems the behavior of /k and /c (which means to close the command window after the
script is finished executing) is largely dependant upon the command being executed, and it
therefore could seem to be erratic and unpredictable. As always, if something is important to
you, test it in a lab.

Setting the comspec Variable

The way that you get the command interpreter in RegBack.vbs is by using a well-
known system variable called %comspec%. If you are in doubt as to the value of %com€
spec% on your computer, open a system prompt and type the following:

Echo %comspec%

If you are running on a Windows Server 2003, Windows 2000, or Windows XP
machine, the value returned is C:\WINDOWS\system32\cmd.exe.

Defining the Command Line

When you use the Exec method of WshShell, the command line is placed inside the
quotation marks. Because Reg.exe is a command-line program in the preceding code,
there really was no need to include the %comspec%. Our command line could have
simply been the following:

objShell.Exec “reg.exe EXPORT HKLM c:\hklm.reg”

If, on the other hand, you need to use a command line for a command that is internal
to the command processor (cmd.exe or command.com), such as the dir command, you
need to launch a command shell interpreter, either by using the %comspec% system
variable or by using Cmd.exe, as illustrated by CmdDir.vbs, which follows. The issue of
when to supply a command processor name and when not to is sometimes confusing,
but this explanation should help you.

Option Explicit

Dim objShell

Dim objExec

Dim strLine

Dim dirTxt

Dim dirFile

dirFile = “ntuser.dat"

WScript.Echo(“beginning “ & Now)

280 Part 3 Advanced Windows Administration
Set objShell = WScript.CreateObject(“WScript.Shell”)

Set objExec = objShell.Exec(“%comspec% /c dir /aH c:*.dat /s”)

Do Until objExec.StdOut.AtEndOfStream
strLine = objExec.StdOut.ReadLine()
dirTxt = Instr(strLine,dirFile)
If dirTxt<> 0 Then

Wscript.Echo strLine
End If

Loop
WScript.Echo(“all done “ & Now)

Tip When using the WshShell Exec method, everything inside the outer quotation marks is
executed. One quick way to make sure that you are getting the results you want and that the
code is running properly is to paste your executable code into a Start\Run dialog box. This
approach will not work, however, if you are using embedded quotes in strings. In this case, it
is better to use WScript.Echo to echo out the value of your variable, enabling you to ensure
you are sending the correct commands to VBScript.

Connecting to the Registry
To work with the registry, you need to connect to it first. You can use the WMI StdReg-
Prov class to make a connection and to read or write information into it. Although
reading from the registry is a safe process, writing to the registry could have disastrous
consequences if you don’t take normal safety precautions such as making a backup of
the key you intend to change and testing the script in a lab on machines that would be
easily recoverable.

At times, just being able to read a listing of keys is sufficient for your needs. For
instance, when the hotfix installer is run, it creates an entry under HKLM\SOFTWARE
\Microsoft\Windows NT\CurrentVersion\HotFix. Realizing this, if you read this key,
you can see what hotfixes have been applied to a particular machine. The following
script, ReadHotFixes.vbs, does this very thing. By using the EnumKey method of the
WMI StdRegProv, you can rather easily create a listing of subkeys.

Option Explicit

On Error Resume Next

Dim strKeyPath

Dim strComputer

Dim objReg

Dim subKey

Dim arrSubKeys

Const HKCR = &H80000000 ’HKEY_CLASSES_ROOT

Const HKCU = &H80000001 ’HKEY_CURRENT_USER

Const HKLM = &H80000002 ’HKEY_LOCAL_MACHINE

Const HKU = &H80000003 ’HKEY_USERS

Const HKCC = &H80000005 ’HKEY_CURRENT_CONFIG

Chapter 17 Working with the Registry 281
strKeyPath = “SOFTWARE\Microsoft\Windows NT” _
& “\CurrentVersion\HotFix"

strComputer = “."

Set objReg=GetObject(“winmgmts:\\” &_
strComputer & “\root\default:StdRegProv”)

objReg.EnumKey HKLM, strKeyPath, arrSubKeys

WScript.Echo(“Keys under “ & strKeyPath)
For Each subKey In arrSubKeys

WScript.Echo vbTab & subKey
Next

Header Information

The Header information section of ReadHotFixes.vbs consists of the Option Explicit
and On Error Resume Next commands, as well as the declarations for five variables.
The five variables are described in Table 17-1.

Table 17-1 Variables Used in ReadHotFixes.vbs

Variable Use

strKeyPath The main registry that defines the entry point for the script

strComputer Holds the name of the computer that is targeted by WMI

objReg Holds the hook that comes back from the WMI StdRegProv

subKey Holds the name of the registry key to be enumerated

arrSubKeys Holds an array of registry keys found under the subKey

Reference Information

The Reference information section of the script is used to define constants and vari�
ables used in the operation of the script. There are several tree values defined in win�
reg.h that you can use to define constants and to shorten the length of your scripts. The
default tree is HKEY_LOCAL_MACHINE, so in reality, specifying the tree is unneces�
sary. However, for clarity, and to ensure you hit the correct portion of the registry, I do
not advocate relying on the default registry tree. All the hex numbers that represent the
registry trees are listed in the Reference information section of this script. I normally
include them in all registry scripts so that I don’t have to look them up later. They don’t
take up too much space, and they form the basis of a nice registry script template.

The strKeyPath is the registry key you want to look at. In this instance, since you’re
using the EnumKey method, you’ll get back only a listing of key names that reside
below the strKeyPath. This is a pretty useful method to use when you don’t know what
you’ll find below a particular registry key.

282 Part 3 Advanced Windows Administration
You make your connection to the standard registry provider by using GetObject to
make a connection into winmgmts. By default, StdRegProv resides in the root\default
namespace—it is important to note, however, that software makers can compile the
Regevent.mof file used to define the StdRegProv into a different namespace for use in
their applications. If you’re working with such an application, you should connect to a
different namespace.

Const HKCR = &H80000000 ’HKEY_CLASSES_ROOT

Const HKCU = &H80000001 ’HKEY_CURRENT_USER

Const HKLM = &H80000002 ’HKEY_LOCAL_MACHINE

Const HKU = &H80000003 ’HKEY_USERS

Const HKCC = &H80000005 ’HKEY_CURRENT_CONFIG

strKeyPath = “SOFTWARE\Microsoft\Windows NT” _

& “\CurrentVersion\HotFix"
strComputer = “."

Set objReg=GetObject(“winmgmts:\\” &_
strComputer & “\root\default:StdRegProv”)

Worker and Output Information

The Worker and Output information section of the script is where you use the hook
into the StdRegProv that you obtained to perform some work. In the ReadHotFixes.vbs
file, you use the EnumKey method of the StdRegProv WMI class to read a listing of sub-
keys. Because the hotfix installer documents hotfixes under the hotfix registry key, this
is a useful application of the EnumKey method. Normally, however, you would use the
EnumKey method to find out what subkeys existed prior to performing some other
action on the registry. For instance, you could use EnumKey to find out whether a sub-
key existed to determine whether a particular application had been installed on a com�
puter. It would also be useful in finding certain types of viruses.

The objReg.EnumKey command uses the HKLM constant you defined in the Reference
information section of the script as well as the strKeyPath variable. The information is
written to a variable called arrSubKeys.

The subkeys are stored in an array, so you use a For Each…Next construction to iterate
through each element in the array. You assign each new element to a variable called
subKey. You write the information by using WScript.Echo and use the function vbTab
to indent the results under the heading that was echoed out before entering the For
Each…Next loop.

objReg.EnumKey HKLM, strKeyPath, arrSubKeys

WScript.Echo(“Keys under “ & strKeyPath)
For Each subKey In arrSubKeys

WScript.Echo vbTab & subKey
Next

Chapter 17 Working with the Registry 283
Unleashing StdRegProv
The nice aspect of StdRegProv is the power it brings to a script. In Chapter 1, “Starting
From Scratch,” our tutorial script illustrated using RegRead. You could follow the same
methodology and use the RegWrite and RegDelete methods of WshShell, but there are
limitations to using WshShell to work with the registry: you cannot work remotely, and
there is no enumeration. However, all are resolved by using StdRegProv. It has 16
methods defined. These methods and a description of what they can do are listed in
Table 17-2.

Table 17-2 StdRegProv Methods

Method Description

CheckAccess Verifies that the user has the specified access permissions€

CreateKey Creates a subkey€

DeleteKey Deletes a subkey€

DeleteValue Deletes a named value€

EnumKey Enumerates subkeys€

EnumValues Enumerates the named values of a key€

GetBinaryValue Gets the binary data value of a named value€

GetDWORDValue Gets the DWORD data value of a named value€

GetExpandedStringValue Gets the expanded string data value of a named value€

GetMultiStringValue Gets the multiple string data values of a named value€

GetStringValue Gets the string data value of a named value€

SetBinaryValue Sets the binary data value of a named value€

SetDWORDValue Sets the DWORD data value of a named value€

SetExpandedStringValue Sets the expanded string data value of a named value€

SetMultiStringValue Sets the multiple string values of a named value€

SetStringValue Sets the string value of a named value€

One cool task you can perform as a network administrator is to create a key in the reg�
istry that you use to keep track of certain machines. This is similar to a trick I used to
use with the Microsoft Systems Management Server product, where I placed a certain
text file in the root drive of the workstation and used the presence of the file in creating
ad hoc collections.

284 Part 3 Advanced Windows Administration
Just the Steps

� To create a registry key
1. Create a constant for HKLM and assign it the value of &H80000002.

2. Define variables to hold the registry path you want to create.

3. Use GetObject to create an instance of the WMI StdRegProvider.

4. Use the CreateKey method and feed it the HKLM constant and the registry path variable
defined earlier.

Creating Registry Keys
To create keys and subkeys in the registry, you use the CreateKey method, as illus�
trated in the CreateRegKey.vbs script:

Option Explicit

On Error Resume Next

Dim strKeyPath ’ the portion of registry to read

Dim strComputer ’ the target computer

Dim objReg ’ holds connection to registry provider

Dim subKey ’ used to enumerate throught the array

Dim arrSubKeys ’ holds the sub keys

Dim ParentKey

Const HKCR = &H80000000 ’HKEY_CLASSES_ROOT

Const HKCU = &H80000001 ’HKEY_CURRENT_USER

Const HKLM = &H80000002 ’HKEY_LOCAL_MACHINE

Const HKU = &H80000003 ’HKEY_USERS

Const HKCC = &H80000005 ’HKEY_CURRENT_CONFIG

ParentKey = “SOFTWARE\EdWilson"

strKeyPath = “SOFTWARE\EdWilson\VBScriptBook"

strComputer = “."

Set objReg=GetObject(“winmgmts:\\” & _
strComputer & “\root\default:StdRegProv”)

objReg.CreateKey HKLM, strKeyPath

WScript.Echo(“Created key :” & strKeyPath)
WScript.Echo(“New subkey under : “ & ParentKey)

objReg.EnumKey HKLM, ParentKey, arrSubKeys
For Each subKey In arrSubKeys

WScript.Echo vbTab & subKey
Next

Chapter 17 Working with the Registry 285
Header Information

The Header information section is similar to that in the script you just examined. The
only new variable is ParentKey, which is used to hold the path to the parent key that
gets created.

Reference Information

The Reference information section is where you assign values to the variables defined
in the Header information section. You assign a value to ParentKey of SOFTWARE\
EdWilson. You assign the value of SOFTWARE\EdWilson\VBScriptBook to the strKey-
Path. To create the registry key and subkey, you need only the strKeyPath variable.
However, because you intend to use EnumKey to verify that you successfully created
the new key and subkey, you defined ParentKey to simplify the use of EnumKey. The
remaining items in the Reference information section of the script are the same as in
the previous script. The beauty of the StdRegProv is how similarly you use it through
all the different methods.

Const HKCR = &H80000000 ’HKEY_CLASSES_ROOT

Const HKCU = &H80000001 ’HKEY_CURRENT_USER

Const HKLM = &H80000002 ’HKEY_LOCAL_MACHINE

Const HKU = &H80000003 ’HKEY_USERS

Const HKCC = &H80000005 ’HKEY_CURRENT_CONFIG

ParentKey = “SOFTWARE\EdWilson"

strKeyPath = “SOFTWARE\EdWilson\VBScriptBook"

strComputer = “."

Set objReg=GetObject(“winmgmts:\\” &_
strComputer & “\root\default:StdRegProv”)

Worker and Output Information

In the Worker and Output information section of the script, you create the key and sub-
key and then use EnumKey to verify the existence of the new key. The only difference
between using CreateKey and EnumKey is that CreateKey needs only two arguments:
the registry tree constant and the key path to create. EnumKey, on the other hand, uses
three arguments: the registry tree constant, the key path to enumerate, and the variable
to hold the output.

objReg.CreateKey HKLM, strKeyPath

WScript.Echo(“Created key :” & strKeyPath)
WScript.Echo(“New subkey under : “ & ParentKey)

objReg.EnumKey HKLM, ParentKey, arrSubKeys
For Each subKey In arrSubKeys

286 Part 3 Advanced Windows Administration
WScript.Echo vbTab & subKey
Next

Writing to the Registry
I don’t know about you, but I’ve always thought that writing to the registry would be
really difficult. However, using the appropriate method of the StdRegProv WMI class
makes it as easy as eating pineapple on the beach in Kauai—once you sink your teeth
into it, it’s sweet. In the script WriteToRegKey.vbs, you use the SetStringValue method
to write information into a key called bookReviews that is stored under the SOFTWARE
\EdWilson\VBScriptBook subkey. When you execute the script, the key bookReviews
does not exist. One nice aspect of SetStringValue is that it will create a key and set the
value in one operation. Once you write your data, which is contained in a variable
called strData, to the key, you use the GetStringValue to read the information you just
wrote. The syntax of SetStringValue needs several arguments: the registry tree (in this
case, HKLM); the registry key path (held in strKeyPath); the registry key to modify
(held in strNamedValue); and the data to write (held in strData).

To verify that your changes were made as expected, use GetStringValue to retrieve the
data you just wrote to the registry. GetStringValue works much like SetStringValue
except that the last argument is the variable name you want to use to hold the data
returned from the registry. With setStringValue, the fourth argument is the variable that
holds the data you want to write to the registry. With getStringValue, the fourth argu�
ment is the variable that will hold the data once you read it from the registry. Every-
thing else about the two commands is the same.

Option Explicit

On Error Resume Next

Dim strKeyPath ’ the portion of registry

Dim strComputer ’ the target computer

Dim objReg ’ holds connection to registry provider

Dim subKey ’ used to enumerate thought the array

Dim arrSubKeys ’ holds the sub keys

Dim ParentKey

Dim strNamedValue

Dim strData

Dim strReturnValue

Const HKCR = &H80000000 ’HKEY_CLASSES_ROOT

Const HKCU = &H80000001 ’HKEY_CURRENT_USER

Const HKLM = &H80000002 ’HKEY_LOCAL_MACHINE

Const HKU = &H80000003 ’HKEY_USERS

Const HKCC = &H80000005 ’HKEY_CURRENT_CONFIG

ParentKey = “SOFTWARE\EdWilson"

strKeyPath = “SOFTWARE\EdWilson\VBScriptBook"

strNamedvalue = “book reviews"

strData = “Awesome"

strComputer = “."

Set objReg = GetObject(“winmgmts:\\” & _

Chapter 17 Working with the Registry 287
strComputer & “\root\default:StdRegProv”)

objReg.SetStringValue HKLM, strKeyPath, strNamedValue, strData

WScript.Echo(“value set”)

objReg.GetStringValue HKLM, strKeyPath, strNamedValue, strReturnValue

WScript.Echo strNamedValue & “ contains “ & strReturnValue

Deleting Registry Information
If you need to delete a registry key, perhaps as a result of cleaning up after a virus,
uninstalling software, or cleaning up after you’re finished with the keys you created,
you can use the DeleteKey method of StdRegProv. The next script illustrates how easy
this is to do. Additional cautions about having a good backup and testing on other
machines is applicable here! Be careful!

Though much of the script is similar to other registry provider scripts, a couple of items
are important to note here. Notice in the Worker information section of the script that
you have to delete the subkey before you can delete the parent key. The DeleteKey
method deletes only keys. If you have a large section of the registry you need to lobot�
omize, you could use the EnumKey method and, as you iterate through the array, you
could use DeleteKey.

Option Explicit

On Error Resume Next

Dim strKeyPath ’ the portion of registry to read

Dim strComputer ’ the target computer

Dim objReg ’ holds connection to registry provider

Dim subKey ’ used to enumerate throught the array

Dim arrSubKeys ’ holds the sub keys

Dim ParentKey

Const HKCR = &H80000000 ’HKEY_CLASSES_ROOT

Const HKCU = &H80000001 ’HKEY_CURRENT_USER

Const HKLM = &H80000002 ’HKEY_LOCAL_MACHINE

Const HKU = &H80000003 ’HKEY_USERS

Const HKCC = &H80000005 ’HKEY_CURRENT_CONFIG

ParentKey = “SOFTWARE\EdWilson"

strKeyPath = “SOFTWARE\EdWilson\VbscriptBook"

strComputer = “."

Set objReg=GetObject(“winmgmts:\\” & _
strComputer & “\root\default:StdRegProv”)

objReg.DeleteKey HKLM, strKeyPath
objReg.DeleteKey HKLM, ParentKey

288 Part 3 Advanced Windows Administration
If Err.Number = 0 Then
WScript.Echo(“Deleted key:” & strKeyPath)
WScript.Echo(“Deleted subKey: “ & ParentKey)

Else
WScript.Echo(“Error number “ & Err.Number & “occurred”)

End If

Summary
In this chapter, you looked at using WMI to work with the registry. The StdRegProv
class exposes five methods for working with registry data: GetBinaryValue, Get-
DWORDvalue, GetExpandedStringValue, GetMultiStringValue, and GetStringValue.
These methods are required because of the different types of data that can reside in the
registry. In addition to looking at the WMI provider, you also looked at the WshShell
class and saw the power and flexibility that it brings to your VBScripts.

Quiz Yourself
Q. What object in VBScript allows you to run an external program?

A. The WshShell object allows you to run programs that are external to VBScript.

Q. What is the WMI provider that allows you to work with the registry?

A. The StdRegProv WMI class allows you to work with the registry.

Q. To write a string value to the registry, which method of the StdRegProv do you use?

A. To write a string value to the registry, you use the SetStringValue method.

Q.� If you need to delete a key and several subkeys from the registry using the DeleteKey
method of StdRegProv, what actions do you need to take?

A.� To delete a key and several subkeys, you need to delete the subkeys first. Then you
can delete the parent key.

On Your Own

Lab 34 Reading the Registry Using WMI
In this lab, you will practice reading the registry by using the WMI StdRegProv class.

Lab Instructions

1. Open Notepad.exe.

2. Add Option Explicit to the first line of your script.

Chapter 17 Working with the Registry 289
3. Save the script as Lab34Solution.vbs.

4.	 Declare the following variables: strKeyPath, strComputer, objReg, subKey, and arr-
SubKeys. The Header information section of your script will look like the following:

Option Explicit

Dim strKeyPath

Dim strComputer

Dim objReg

Dim subKey

Dim arrSubKeys

5.	 Define a constant to be used for HKLM. Its hex value is &H80000002. Your code
for this looks like the following:

Const HKLM = &H80000002

6.	 Assign the Software\Microsoft path to the strKeyPath variable. It will look like the
following:

strKeyPath = “SOFTWARE\Microsoft”

7. Assign the value of “.” to the variable strComputer.

8.	 Set the objReg variable to be equal to the hook that comes back from using the
GetObject command into the WMI winmgmts moniker. Connect into the
root\default:stdRegProv namespace on the local computer. Your code to do this
looks like the following:

Set objReg=GetObject(“winmgmts:\\” &_
strComputer & “\root\default:StdRegProv”)

9.	 Now use the EnumKey method to read the subkeys found under the Soft�
ware\Microsoft key. The Software\Microsoft key is located in the HKLM tree. Feed
the results out into a variable called arrSubKeys. The code for this looks like the
following:

objReg.EnumKey HKLM, strKeyPath, arrSubKeys

10.	 Use WScript.Echo to echo out the strKeyPath. This will be a header for the list of
software contained in the Software\Microsoft key. You can use something like
this:

WScript.Echo(“Keys under “ & strKeyPath)

11.	 Use a For Each…Next loop to iterate through the subkeys that are contained in the
arrSubKeys variable. Use WScript.Echo to echo out the subkeys. Use the subKey
variable as your placeholder. Your code will look like the following:

For Each subKey In arrSubKeys
WScript.Echo vbTab & subKey

Next

12. Save and run the program.

290 Part 3 Advanced Windows Administration
Lab 35 Creating Registry Keys
In this lab, you create a couple of registry keys that can be used to keep track of a soft-
ware inventory of the workstation.

Lab Instructions

1. Open Notepad.exe.

2. On the first line, type Option Explicit. Save your script as Lab35Solution.vbs.

3.	 Declare the following variables: strKeyPath, strComputer, objReg, subKey, arrSub-
Keys, and ParentKey. You code will look like the following:

Option Explicit

Dim strKeyPath

Dim strComputer

Dim objReg

Dim subKey

Dim arrSubKeys

Dim ParentKey

4.	 Define the constant for HKLM and set it equal to &H80000002. It will look like the
following:

Const HKLM = &H80000002 ’HKEY_LOCAL_MACHINE

5.	 Assign the value of “SOFTWARE\INVENTORY” to the ParentKey variable. It will
look like the following:

ParentKey = “SOFTWARE\INVENTORY”

6.	 Assign the value of “SOFTWARE\INVENTORY\Conducted” to the strKeyPath vari�
able. It looks like the following:

strKeyPath = “SOFTWARE\INVENTORY\Conducted"

7. Assign the value of “.” to the strComputer variable. It looks like the following:

strComputer = “.”

8.	 Set the objReg variable to be equal to the hook that comes back from using the
GetObject command into the WMI winmgmts moniker. Connect into the
root\default:stdRegProv namespace on the local computer. Your code to do this
looks like the following:

Set objReg=GetObject(“winmgmts:\\” & _
strComputer & “\root\default:StdRegProv”)

9.	 Use the createKey method of objReg to create the new registry keys. It will need
both the HKLM constant and the strKeyPath for arguments. It will look like the fol�
lowing:

objReg.CreateKey HKLM, strKeyPath

Chapter 17 Working with the Registry 291
10.	 Use WScript.Echo to provide feedback to the user that the key and the subkey
were created. Your code could look like the following:

WScript.Echo(“Created key :” & strKeyPath)
WScript.Echo(“New subkey under : “ & ParentKey)

11.	 Use EnumKey to verify the existence of the newly created registry keys. EnumKey
will need HKLM, ParentKey, and arrSubKeys as arguments. Use a For Each…Next
loop to walk through the arrSubKeys variable. Echo out each subkey. Your code
will look like the following:

objReg.EnumKey HKLM, ParentKey, arrSubKeys
For Each subKey In arrSubKeys

WScript.Echo vbTab & subKey
Next

12. Save and run the script.

18 Working with Printers

In this chapter, you’ll look at using Microsoft Windows Management Instrumentation
(WMI) to monitor and manage printers. In the enterprise network, printers—by virtue
of being mechanical devices often located in remote places—are frequently labor-
intensive machines. Although it’s true that most printers operate reliably for extended
periods of time, it’s also true that when they go bad, you’re facing a high-profile issue.
To alleviate some of that pain, you’ll learn some of the ways in which WMI can assist
you in your goal of managing and monitoring printers.

Before You Begin
To work through the material presented in this chapter you need to be familiar with
the following concepts from earlier chapters:

■ Creating a connection into WMI

■ Creating an instance of the FileSystemObject class

■ Implementing the For…Next construction

■ Implementing Select Case constructions

After completing this chapter you will be familiar with the following:

■ Working with the Win32_Printer WMI class

■ Converting status codes into readable text

■ Working with the Win32_PrintJob WMI class

Working with Win32_Printer
In this section, you are going to use the WMI Win32_Printer class. This particular WMI
class is large and robust, defining over 80 properties and implementing 7 methods.
Some of its more useful properties are listed in Table 18-1.

Table 18-1 Useful Win32_Printer Properties

Property Description

Attributes	 Attributes of a Windows printing device. Represented by a combi
nation of flags.

Availability	 Availability and status of the device. Return values are as follows:
2 = unknown, 3 = running or full power, 8 = offline.
293

294 Part 3 Advanced Windows Administration
Table 18-1 Useful Win32_Printer Properties

Property Description

AvailableJobSheets	 Array of all job sheets available on a printer. Also used to describe
the banner a printer might provide.

AveragePagesPerMinute Print rate of the printer.

CharSetsSupported	 Array of available character sets for output. Strings in this property
are defined in RFC 2046 (MIME part 2) and in the IANA character-
set registry. Examples: utf-8, us-ascii, and iso-8859-1.

Comment	 String that contains a comment for a print queue. Example: color
printer.

CurrentLanguage	 Printer language currently being used. Examples: 1 = other,
2 = unknown, 3 = PCL, 6 = PS.

Default Boolean. If true, the printer is the default printer on the computer.

DefaultCopies Number of copies that are produced for one job.

DetectedErrorState	 Printer error information. Examples: 1 = unknown, 2 = other, 3 =
no error, 5 = no paper, 6 = low toner, 9 = jammed, 10 = offline.

Direct	 Boolean. If true, the print job is sent directly to the printer. If false,
the print job is spooled.

DoCompleteFirst	 Boolean. If true, the printer starts jobs that are finished spooling. If
false, the printer starts jobs in the order they are received.

DriverName String. Name of the Windows printer driver.

JobCountSinceLastReset Number of print jobs since the printer was last reset.

KeepPrintedJobs Boolean. If true, the print spooler does not delete completed jobs.

LastErrorCode Last error code that the logical device reports.

Local Boolean. If true, the printer is not attached to a network.

ServerName String. Name of the server that controls the printer.

Shared	 Boolean. If true, the printer is available as a shared network
resource.

ShareName String. Share name of the print device.

Status	 String. Current status. Examples: ok, error, degraded, unknown, and
stopping.

workOffLine	 Boolean. If true, you can queue print jobs on the computer when
the printer is offline.

Chapter 18 Working with Printers 295
Just the Steps

� To use the Win32_Printer class to manage a printer
1. Create a variable to hold a WMI connection.

2. Use GetObject and the WMI moniker to make a WMI connection.

3. Assign the hook that comes back from the WMI connection to the variable in step 1.

4. Use the ExecQuery method to query Win32_Printer.

5. Use For Each…Next to iterate through the printer’s collection.

Obtaining the Status of Printers
In your first printer management script, you’ll use the Win32_Printer WMI class to
obtain information about the status of printers defined on a computer. This particular
script runs on Microsoft Windows Server 2003 and on Windows XP, so it can run on a
server to obtain the status of all the printers defined, or it can run as a diagnostic tool
on a workstation. The MonitorPrinterStatus.vbs follows:

Option Explicit

‘On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

Dim strStatus

strComputer = “."

wmiNS = “\root\cimv2"

wmiQuery = “Select * from Win32_Printer"

Set objWMIService = GetObject(“winmgmts:\\” _

& strComputer & wmiNS)
Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “Location: “ & objItem.Location
subEvalStatus
WScript.Echo “Printer Status: “ & strStatus
WScript.Echo “Server Name: “ & objItem.ServerName
WScript.Echo “Share Name: “ & objItem.ShareName
WScript.Echo

Next

Sub subEvalStatus
Select Case objItem.PrinterStatus

Case 1
strStatus = “Other"

296 Part 3 Advanced Windows Administration
Case 2
strStatus = “Unknown"

Case 3
strStatus = “Idle"

Case 4
strStatus = “Printing"

Case 5
strStatus = “Warmup"

Case 6
strStatus = “Stopped Printing"

Case 7
strStatus = “Offline”

End Select
End sub

Header Information

The Header information section of the script does not perform any real magic. You
begin with Option Explicit so that you’re forced to keep track of your variables. Next
you have On Error Resume Next, which is commented out, and then you have seven
variables. A description of the variables appears in Table 18-2.

Table 18-2 Variables for MonitorPrinterStatus.vbs

Variable Use

strComputer Holds the target computer.

wmiNS Holds the WMI namespace that will be connected to.

wmiQuery Holds the WMI query that will be executed.

objWMIService Holds the connection into WMI.

colItems Holds the collection that comes back as a result of the WMI query.

objItem	 Placeholder that allows us to iterate through the collection of items that was
returned by the WMI query.

strStatus The status of the printer.

Reference Information

The Reference information section of the script is used to assign values to some of the
variables that were declared in the Header information section of the script. You use
the period inside a set of double quotation marks to represent the local machine and
assign it to strComputer. If you wanted to run the script against other computers, you
could substitute their names for the period. The root\cimv2 namespace is assigned to
the variable wmiNS. You use “Select * from Win32_Printer” to return everything from
the Win32_Printer. Though easy to do, this is not the most efficient way to gather your
information, which is somewhat of an issue when working with Win32_Printer

Chapter 18 Working with Printers 297
1

2

3

4

5

6

7

because it is a rather large class. ObjWMIService is your reference to the system’s WMI
service. You use the winmgmts moniker to simplify the connection process. The last
reference information that needs to be set is using the ExecQuery method of objWMI-
Service to execute the query represented by the variable wmiQuery.

strComputer = “."

wmiNS = “\root\cimv2"

wmiQuery = “Select * from Win32_Printer"

Set objWMIService = GetObject(“winmgmts:\\” _

& strComputer & wmiNS)
Set colItems = objWMIService.ExecQuery(wmiQuery)

Worker Information

The Worker information section of the MonitorPrinterStatus.vbs script consists of a sin
gle subroutine called subEvalStatus. The subEvalStatus routine is used to translate the
status code that is returned by the PrinterStatus property into a more meaningful mes
sage. To do the matching, you use a Select Case construction that looks for a match
with one of the seven possible return status codes.

Sub subEvalStatus
Select Case objItem.PrinterStatus

Case
strStatus = “Other"

Case
strStatus = “Unknown"

Case
strStatus = “Idle"

Case
strStatus = “Printing"

Case
strStatus = “Warmup"

Case
strStatus = “Stopped Printing"

Case
strStatus = “Offline"

End Select
End Sub

Output Information

Once you work through matching the return status codes with a more meaningful sta
tus message, it is time to echo out the information. You use a For Each…Next construc
tion to iterate through the collection of items that was returned by the WMI query. You
use WScript.Echo to echo out a few of the more than 80 properties available via the
Win32_Printer class. Because both the Name and the Location properties are simple
string data, you can echo them out directly. However, to properly interpret the printer
status code, you need to enter the subEvalStatus subroutine. You come out of that sub-
routine with a meaningful status message, and so you echo that out as well. Finally,
you echo out the server name and the printer share name.

298 Part 3 Advanced Windows Administration
For Each objItem In colItems
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “Location: “ & objItem.Location
subEvalStatus
WScript.Echo “Printer Status: “ & strStatus
WScript.Echo “Server Name: “ & objItem.ServerName
WScript.Echo “Share Name: “ & objItem.ShareName
WScript.Echo

Next

Quick Check

Q. What WMI class provides more than 80 properties for managing printers?

A. The Win32_Printer class provides more than 80 properties for managing printers.

Q. What is needed to obtain meaningful information from the PrinterStatus property?

A. To obtain meaningful information from the PrinterStatus property, you must inter
pret the status codes.

Q. When using the Win32_Printer class, how is the data returned?

A. When using the Win32_Printer class, the data is returned as a collection of
printer objects.

Creating a Filtered Print Monitor
One cool thing you can do is filter out only the information you need prior to present
ing it to the screen. A Windows Server 2003 print server commonly hosts a couple of
hundred printers, so weeding through all the print devices looking for one that is
offline could take a long time. By making just a couple of changes to the MonitorPrint
erStatus.vbs script, you can allow Microsoft Visual Basic Script (VBScript) to perform
the weeding work for you.

Just the Steps

� To use a filter on the Win32_Printer class to manage a printer
1. Create a variable to hold a connection into WMI.

2. Use GetObject and the WMI moniker to make a connection into WMI.

3. Assign the hook that comes back from the WMI connection to the variable in step 1.

4. Use the ExecQuery method with a Where clause to query Win32_Printer. The Where

clause should look for 1, 2, or 7 in the PrinterStatus property.

5. Use the Count property to determine the population of the collection of printers. If the
collection of printers is empty, echo a message to that effect.

6. If the collection of printers is not empty, use For Each…Next to iterate through the
collection.

Chapter 18 Working with Printers 299
The revised printer monitor script is called FilterPrinterStatus.vbs. Only a couple of
changes were made to effect filtering. The addition of the Where clause to the WMI
query takes place in the Reference information section. The use of If…Then…Else in
conjunction with the Count property takes place in the Output information section.
The FilterPrinterStatus.vbs script is listed here:

Option Explicit

‘On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

Dim strStatus

strComputer = “."

wmiNS = “\root\cimv2"

wmiQuery = “Select * from Win32_Printer” _

& “ Where PrinterStatus = 1” _
& “ or PrinterStatus = 2” _
& “ or PrinterStatus = 7"

Set objWMIService = GetObject(“winmgmts:\\” _
& strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

If colItems.Count = 0 Then
WScript.Echo “all printers are fine"

Else
For Each objItem In colItems

WScript.Echo “Name: “ & objItem.Name
WScript.Echo “Location: “ & objItem.Location
subEvalStatus
WScript.Echo “Printer Status: “ & strStatus
WScript.Echo “Server Name: “ & objItem.ServerName
WScript.Echo “Share Name: “ & objItem.ShareName
WScript.Echo

Next
End If

Sub subEvalStatus
Select Case objItem.PrinterStatus

Case 1
strStatus = “Other"

Case 2
strStatus = “Unknown"

Case 3
strStatus = “Idle"

Case 4
strStatus = “Printing"

Case 5
strStatus = “Warmup"

Case 6
strStatus = “Stopped Printing"

300 Part 3 Advanced Windows Administration
Case 7
strStatus = “Offline"

End Select
End Sub

Reference Information

The Reference information section is where you modify your WMI query. The only
change is adding a compound Where clause to the value you assigned to wmiQuery.
You are interested in only those printers that have a status of 1, 2, or 7.

strComputer = “."

wmiNS = “\root\cimv2"

wmiQuery = “Select * from Win32_Printer” _

& “ Where PrinterStatus = 1” _
& “ or PrinterStatus = 2” _
& “ or PrinterStatus = 7"

Set objWMIService = GetObject(“winmgmts:\\” _
& strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

Output Information

If you tried to iterate through a collection that had no members, you would not receive
a meaningful message. To avoid this, you add an If…Then…Else construction around
the Output information section that appeared in the earlier script. If there are no print
ers with an error condition, the Count property of colItems will be zero. You use
WScript.Echo to send a message to the console that all printers are fine. If, however,
the count is not zero, you echo out the information used in the previous script. The
revised section looks like the following code:

If colItems.count = 0 Then
WScript.Echo “all printers are fine"

Else
For Each objItem in colItems

WScript.Echo “Name: “ & objItem.Name
WScript.Echo “Location: “ & objItem.Location
subEvalStatus
WScript.Echo “Printer Status: “ & strStatus
WScript.Echo “Server Name: “ & objItem.ServerName
WScript.Echo “Share Name: “ & objItem.ShareName
WScript.Echo

Next
End If

Chapter 18 Working with Printers 301
Quick Check

Q. What was required in the FilterPrinterStatus.vbs script to return only selected
records from the WMI query?

A. To return selected records, a Where clause was added to the WMI query.

Q. What is needed in the FilterPrinterStatus.vbs script to ensure you have printers in
your collection?

A. To ensure you have printers in your collection, you used the Count property of
collected items in the FilterPrinterStatus.vbs script.

Q. What does a PrinterStatus code of 7 mean?

A. A PrinterStatus code of 7 means the printer is offline.

Monitoring Print Queues
To understand your print environment, it is necessary to examine the way the queues
on the print servers are utilized. The MonitorPrintQueue.vbs script uses the
Win32_PrintJob WMI class to obtain useful information about the load placed on your
print servers. Because MonitorPrintQueue.vbs is based on previous scripts, you will
look only at the Worker and Output information section of the script. You assign “Select
* from Win32_PrintJob” to the wmiQuery variable in the Reference section. That is the
only change required there.

Option Explicit

‘On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

Dim intTotalJobs

Dim intTotalPages

Dim intMaxPrintJob

strComputer = “."

wmiNS = “\root\cimv2"

wmiQuery = “Select * from win32_PrintJob"

Set objWMIService = GetObject(“winmgmts:\\” _

& strComputer & wmiNS)
Set colItems = objWMIService.ExecQuery(wmiQuery)

302 Part 3 Advanced Windows Administration
If colItems.count = 0 Then
WScript.Echo(“There are no print jobs at this time”)

Else
For Each objitem In colItems

intTotalJobs = intTotalJobs + 1
intTotalPages = intTotalPages + objitem.TotalPages
If objitem.TotalPages > intMaxPrintJob Then

intMaxPrintJob = objitem.TotalPages
End If

Next
WScript.Echo “Total print jobs in queue: “ & intTotalJobs
WScript.Echo “Total pages in queue: “ & intTotalPages
WScript.Echo “Largest print job in queue: “ & intMaxPrintJob

End if

Worker and Output Information

To return meaningful information, you use the Count property of colItems just like you
did in the previous script. If there are print jobs in the collection, iterate through them
by using the For Each…Next construction. To get a count of the total number of print
jobs in the queue, you use a counter called intTotalJobs, which gets incremented each
time you loop through the collection of print jobs. For each print job in the collection,
you get the TotalPages property and add it to the intTotalPages variable. By keeping a
running total of pages, once you iterate through the collection, you will know the total
pages left in the queue. To determine the largest print job in the queue, you use the
variable called intMaxPrintJob and evaluate its size on each iteration through the col
lection of print jobs. Each time a larger print job is found, its value will be stored in int-
MaxPrintJob. At the end of the iteration, the largest print job will be stored in
intMaxPrintJob, the total number of pages will be stored in the intTotalPages variable,
and the total number of print jobs will be stored in the intTotalJobs variable.

Summary
In this chapter, you examined printer management by using VBScript, starting by look
ing at the Win32_Printer WMI class. You wrote a couple of scripts that monitored the
status of printers connected to our print servers. You looked at creating a subroutine
out of a Select Case construction to convert cryptic printer status codes into readable
text. You examined how to use the Count property to avoid attempting operations on
an empty collection. Finally, you concluded this chapter by looking at the
Win32_PrintJobs WMI class and using it to monitor the activity of print queues.

Chapter 18 Working with Printers 303
Quiz Yourself
Q. What is the WMI class that contains a wealth of information about printers?

A. The Win32_Printer class contains a lot of information about printers.

Q. What is the WMI class that represents a print job generated by a Windows application?

A. The Win32_PrintJobs class represents this print job.

Q. What collection property contains the number of items in the collection?

A. The Count property contains the number of items.

Q. What can be added to a WMI query to reduce the number of records returned?

A. A Where clause can be added to the query.

On Your Own

Lab 36 Monitoring Print Jobs
In this lab, you will practice monitoring print jobs by using the Win32_PrintJob WMI
class.

Lab Instructions

1. Open Notepad.exe.

2. Set Option Explicit.

3. Save your script as Lab36Solution.vbs.

4.	 Declare the following variables: strComputer, wmiNS, wmiQuery, objWMIService,
colItems, and objItem. Your Header information section will look like the following:

Option Explicit

‘On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

5. Assign the value "." to the variable strComputer.

6. Assign the value “\root\cimv2” to the variable wmiNS.

304 Part 3 Advanced Windows Administration
7.	 Assign the value “Select * from Win32_PrintJob” to the wmiQuery variable. The
code for steps 5, 6, and 7 is shown here:

strComputer = “."

wmiNS = “\root\cimv2"

wmiQuery = “Select * from win32_PrintJob”

8.	 Set objWMIService equal to the hook that comes back from using the GetObject
command to connect to the root\cimv2 namespace on the local machine. Use the
winmgmts moniker. Specify the target computer as strComputer. Your code for this
will look like the following:

Set objWMIService = GetObject(“winmgmts:\\” _
& strComputer & wmiNS)

9.	 Set the variable colItems equal to the hook that comes back from the ExecQuery
method of objWMIService when it executes the query contained in the variable
wmiQuery. Your code will look like the following:

Set colItems = objWMIService.ExecQuery(wmiQuery)

10.	 Use the colItems.Count property to ensure there are print jobs in the collection.
Implement an If…Then…Else construction to handle this. If there are no print
jobs, echo a message to that effect. If there are print jobs, move into a For Each
loop. Your code for this part looks like the following:

If colItems.Count = 0 Then

WScript.Echo(“There are no print jobs at this time”)

else

11.	 Use a For Each…Next construction to iterate through the print jobs contained in
the colitems collection. Use the variable objitem to hold each job as you walk
through the collection. Echo out the JobId, JobStatus, Owner, and TotalPages
properties. Your code for this looks like the following:

For Each objitem In colItems
WScript.Echo(“Print job: “ & objItem.JobId)
WScript.Echo(“job status: “ & objItem.JobStatus)
WScript.Echo(“Owner: “ & objItem.Owner)
WScript.Echo(“Remaining pages: “ & objItem.TotalPages)

Next

12. Close out the If…Then…Else construction by using End If.

13. Save your work.

14. Run the script.

Chapter 18 Working with Printers 305
1

2

3

4

5

6

7

Lab 37 Checking the Status of a Print Server
In this lab, you will check the status of a print server, and if the server is not OK, you
will cancel all print jobs on the box. This script is based on the FilterPrinterStatus.vbs
script, so you use a starter file.

Lab Instructions

1. Open Notepad.exe.

2. Open the Lab37Starter.vbs file, and save it as Lab37Solution.vbs.

3.	 Delete the entire subEvalstatus subroutine from the bottom of the script. This sub-
routine looks like the following:

Sub subEvalStatus
Select Case objItem.PrinterStatus

Case
strStatus = “Other"

Case
strStatus = “Unknown"

Case
strStatus = “Idle"

Case
strStatus = “Printing"

Case
strStatus = “Warmup"

Case
strStatus = “Stopped Printing"

Case
strStatus = “Offline"

End Select
End sub

4.	 Locate the For Each…Next construction. Delete everything that is between the For
Each and the Next. Following is the For Each…Next construction:

For Each objItem in colItems
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “Location: “ & objItem.Location
subEvalStatus
WScript.Echo “Printer Status: “ & strStatus
WScript.Echo “Server Name: “ & objItem.ServerName
WScript.Echo “Share Name: “ & objItem.ShareName
WScript.Echo

Next
End If

306 Part 3 Advanced Windows Administration
5.	 Inside the For Each…Next construction, echo out the objItem.Name property with
an appropriate label. It will look like the following:

WScript.Echo “Name: “ & objItem.Name

6.	 Under the WScript command, assign the variable canStatus to be equal to
objItem.CancelAllJobs. The CancelAllJobs method has a return value that you want
to capture with the canStatus variable. This line of code looks like the following:

canStatus = objItem.cancelAllJobs

7.	 Use WScript.Echo to echo out the value of canStatus. The completed For
Each…Next construction now looks like the following:

For Each objItem In colItems
WScript.Echo “Name: “ & objItem.Name
canStatus = objItem.CancelAllJobs

WScript.Echo(canStatus)
Next

8. Add the variable canStatus to the declarations section of the script.

9. Save and run the script.

Part 4
Scripting Other Applications�

19 Managing IIS 6.0

In this chapter, you’ll look at managing Microsoft Internet Information Services (IIS) 6.0
by using Microsoft Visual Basic Script (VBScript). IIS 6.0 is a significant improvement
over previous versions in both security and manageability. The new Windows Manage
ment Instrumentation (WMI) provider for IIS 6.0 offers the network administrator tre
mendous flexibility and can significantly reduce the number of hands required to
handle configuration when managing the servers.

Before You Begin
To work through the material presented in this chapter you need to be familiar with
the following concepts from earlier chapters:

■ Connecting to WMI

■ Connecting to Active Directory

■ Implementing the For…Next construction

■ Implementing Select Case constructions

■ Using the ExecQuery method

After completing this chapter you will be familiar with the following:

■ Connecting to the MicrosoftIISv2 namespace

■ Using the IIS WMI providers

■ Working with the IIS metabase

What’s in a Name?
All classes of the IIS 6.0 WMI provider are contained in a namespace called
MicrosoftIISv2. This namespace is made up of five different classes of elements, dis
cussed briefly in the next few sections.

CIM_ManagedSystemElement

The CIM_ManagedSystemElement class contains elements that relate to the IIS meta
base schema. An example of one of these elements is the IISWebServer, which maps to
an instance of an IIS Web server. Another element is the IISWebVirtualDir, which maps
to an instance of a Web virtual directory. The elements in CIM_ManagedSystemElement
are read-only. To set these types of settings, use the CIM_Setting class.
309

310 Part 4 Scripting Other Applications
CIM_Setting

The elements in the CIM_Setting class map closely to the elements in the
CIM_ManagedSystemElement class. This means that the elements correspond to nodes
of the IIS 6.0 metabase schema. The CIM_Setting class contains methods that allow you
to work with the propert ies that match the read-only e lements of the
CIM_ManagedSystemElement class.

Tip The IIsWebServerSetting element in the CIM_Setting element class allows you to make
changes to your IIS Web server. To view data, you use the IIsWebServer element in the
CIM_ManagedSystemElement class. It is important to remember that both of these elements
refer to websites on your server. IIsWebServer is read-only, and IIsWebServerSetting allows
you to make changes.

IIsStructuredDataClass

The IIsStructuredDataClass presents information that is also accessible via Active
Directory Service Interfaces (ADSI). However, the IIsStructuredDataClass information
is structured in a way that is easier to work with than the ADSI data. For instance, the
ServerBinding’s property in ADSI is a string that consists of IP:Port:Hostname. If the
parts are out of order or are missing colons, an error occurs. By using IIsStructured-
DataClass, you can take advantage of the element class called ServerBinding, whose
properties are easier to set.

CIM_Component

CIM_Component is an associat ion class that maps each element in the
CIM_ManagedSystemElement class to other elements in the same class. It does this to
mimic the way the data would be accessed via ADSI.

CIM_ElementSetting

The CIM_ElementSetting class is also an association class. As such, it maps elements in
the CIM_ManagedSystemElement class to elements in the CIM_Setting class. The prop
erties of the elements contained in the CIM_ElementSetting class are simply references
to the two associated elements.

Using MicrosoftIISv2

To use the MicrosoftIISv2 namespace, you need to understand the way the five classes
represent the structure of the IIS 6.0 metabase schema. Instances of the elements in
each of the classes contain current information that is viewable via the IIS Manager or
the Metabase Configuration Editor.

Chapter 19 Managing IIS 6.0 311
On a default installation of IIS 6.0, the IIsWebVirtualDir element of the Cim_Managed-
SystemElement class contains three instances of virtual directories: W3SVC/1/Root,
W3SVC/1/Root/Scripts, and W3SVC/1/Root/Printers. These three virtual directories are
also represented in the IIsWebVirtualDirSetting element of the CIM_Setting class. The
only difference between the two is that you make changes to the virtual directories
using only IIsWebVirtualDirSetting.

Just the Steps

� To connect to the MicrosoftIISv2 namespace
1. Define a variable to hold the hook that comes back from the connection.

2. Specify the namespace as /root/MicrosoftIISv2.

3. Set your variable equal to the hook that comes back from using the GetObject command
to connect through winmgmts to the root/MicrosoftIISv2 on your machine.

4. Use the ExecQuery method to obtain information.

Making the Connection
To get an idea of the types of data accessible from the CIM_Setting element class, you
can use the CIMSettingClass.vbs script. This script also illustrates connecting to the
MicrosoftIISv2 namespace and using WMI to query for information.

Option Explicit

‘On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = “london"

wmiNS = “/root/MicrosoftIISv2"

wmiQuery = “select * from CIM_Setting"

Set objWMIService = GetObject(“winmgmts://” _

& strComputer & wmiNS)
Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems
WScript.Echo “: “ & objItem.Name

Next

Header Information

The Header information section of CimSettingClass.vbs, which follows, contains the
normal Option Explicit, a commented-out On Error Resume Next, and six variables. The

312 Part 4 Scripting Other Applications
advantage of splitting out the variables instead of including the data on the connection
string is that doing so makes the script more portable and easier to modify. Use of the
variables is detailed in Table 19-1.

Option Explicit

‘On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

Table 19-1 Variables Used in CimSettingClass.vbs

Variable Use

strComputer Holds assignment of target computer name

wmiNS Holds the WMI namespace

wmiQuery Holds the WMI query

objWMIService Holds the connection into the target WMI namespace

colItems Holds the collection of items that are returned in result to the WMI query

objItem Used to iterate through the collection

Reference Information

The Reference information section of the script is used to assign values to the variables
that are listed in the Header information section. StrComputer is the target computer—
the one that is running IIS 6.0 and the one from which you are trying to obtain infor
mation. In this case, you are targeting the server called London. You next use the vari
able wmiNS to hold the namespace you want to connect into. When working with IIS
6.0, you will use the /root/MicrosoftIISv2 namespace.

You defined the target computer and the target WMI namespace. Next, you define your
query. You use the generic “Select * ” format and assign the query to the wmiQuery
variable. The only tricky issue with querying WMI is how to know which class to target
and what properties the classes support. For this information, the best tool is to use the
Platform SDK, which is available at http://www.msdn.microsoft.com. You can down-
load a copy of it and install it on your laptop. (It makes for great reading while you are
sitting on the beach in Kauai. The only problem is keeping sand out of the keyboard.)
Pursuant to our earlier discussions, you will query the CIM_Setting element class for
names of all the read/write properties for the IIS 6.0 admin object.

The last task you need to complete in the Reference section is setting the colItems vari
able equal to the data that comes back from running the ExecQuery method when you
feed it your WMI query.

Chapter 19 Managing IIS 6.0 313
strComputer = “london"

wmiNS = “/root/MicrosoftIISv2"

wmiQuery = “select * from CIM_Setting"

Set objWMIService = GetObject(“winmgmts://” _

& strComputer & wmiNS)
Set colItems = objWMIService.ExecQuery(wmiQuery)

Worker and Output Information

The Worker and Output information section of the script is very small because most of
the real work was done in the Reference information section. Since you have a collec
tion of items that comes back from the WMI query, you need to iterate through the col
lection to display the information. The easiest way to iterate through the collection is
to use the For Each…Next construction. ObjItem is used as a placeholder to represent
the present record being worked with. Once you issue the next command, you move
to the next record in the stream and assign it to the objItem variable. You then simply
use WScript.Echo to echo out the name of the item in the collection.

For Each objItem In colItems
WScript.Echo “: “ & objItem.name

Next

Creating a Website
The advantage of using WMI to create websites is that it gives you a consistent product
and vastly simplifies the creation process by automating dozens of minute details. For
companies that create a lot of websites, scripting makes a lot of sense.

Just the Steps

� To use WMI to create a website
1. Define the appropriate variables.

2. Use CreateObject to create an instance of the WbemScripting SWbemLocator object.

3. Use the locator object so that you can use the ConnectServer method to connect to the
MicrosoftIISv2 namespace on the target computer.

4. Use the service object to get an instance of “IIsWebService=‘W3SVC’”.

5. Use the server binding object to set your bindings.

6. Use the createNewSite method to create the website.

The following code is CreateSite.vbs:

Option Explicit

‘On Error Resume Next

Dim strComputer

Dim wmiNS

314 Part 4 Scripting Other Applications
Dim siteName

Dim strSiteObjPath

Dim locatorObj

Dim providerObj

Dim objPath

Dim vDirObj

Dim serverObj

Dim serviceObj

Dim bindings

Dim strSitePath

strComputer = “London"

wmiNS = “root/MicrosoftIISv2"

siteName = “LondonWebSite"

Set locatorObj = CreateObject(“WbemScripting.SWbemLocator”)
Set providerObj = locatorObj.ConnectServer _

& (strComputer, wmiNS)
Set serviceObj = providerObj.Get _

& (“IIsWebService=‘W3SVC’”)
Set objPath = CreateObject(“WbemScripting.SWbemObjectPath”)

Bindings = Array(0)

Set Bindings(0) = providerObj.Get(“ServerBinding”) _

& .SpawnInstance_()
Bindings(0).IP = “"
Bindings(0).Port = “8383"
Bindings(0).Hostname = “"

strSiteObjPath = serviceObj.CreateNewSite _
& (siteName, Bindings, “C:\Inetpub\Wwwroot”)

objPath.Path = strSiteObjPath
strSitePath = objPath.Keys.Item(““)

subCheckErrors

WScript.Echo “Created “ & siteName
WScript.Echo “The path/ID is “ & strSitePath

Sub subCheckErrors
If Err Then

WScript.Echo “Error: “ & Hex(Err.Number) _
& “: “ & Err.Description

WScript.Quit(1)
End If

End Sub

Header Information

The Header information section of CreateSite.vbs includes a lot of variables. Under-
standing how to use these variables will further your understanding of the script. The
variables used in this script are described in Table 19-2.

Chapter 19 Managing IIS 6.0 315
Table 19-2 Variables Used in CreateSite.vbs

Variable Use

strComputer Holds assignment of the target computer name

wmiNS Holds the WMI namespace

siteName Holds the name of the new website to create

strSiteObjPath Holds the path to the new website

locatorObj Holds the hook that comes back from SWbemLocator

providerObj Uses the hook from locatorObj to make a connection to the server

objPath Holds the hook that comes back from SWbemObjectPath

serviceObj	 Holds the hook that comes back from the providerObj to get an instance of
IIsWebService=‘W3SVC’

bindings Holds the elements of the array that is used for ServerBinding

strSitePath Holds the key items from objPath

Reference Information

The Reference information section in CreateSite.vbs is very large. This section could be
condensed somewhat by combining statements and pulling data directly into the script
instead of first populating variables. However, reducing the code by a few lines would
make a much less readable script. You begin the Reference information section of the
script by assigning a value to strComputer. In previous WMI scripts, you were able to
use a period inside double quotation marks to denote the local computer. This will not
work with the IIS WMI provider, which requires a name. You then set the wmiNS vari
able to be equal to the root/MicrosoftIISv2 namespace. Note that the MicrosoftIISv2
namespace is under the root. It is not in root\cimv2, as many of your WMI scripts have
been. You now assign a name to the siteName variable, which is the name of the web-
site you will be creating.

We set the variable locatorObj to be equal to the hook that comes back when you use
CreateObject to create an instance of the SWbemLocator object. You need to create an
instance of the SWbemLocator object so that you can gain access to the ConnectServer
method. You use ConnectServer to connect to the root/MicrosoftIISv2 namespace on
your target server. You set providerObj equal to this connection.

316 Part 4 Scripting Other Applications
Quick Check

Q. Why is it necessary in the CreateSite.vbs script to use the SWbemLocator object?

A. The SWbemLocator object is necessary so that you can use the ConnectServer
method that it exposes.

Q. Where does the MicrosoftIISv2 namespace reside?

A. The MicrosoftIISv2 namespace resides under the root WMI namespace.

You now set serviceObj equal to the hook you get when you connect to the Web ser
vice on your London server. Once you make your connection to the Web service, you
need to build a binding object. The binding object is a required parameter of the Cre
ateNewSite method, and because it has multiple elements, it is stored as an array.
SpawnInstance is the WMI method used because you’re creating a new instance on an
object.

strComputer = “London"
wmiNS = “root/MicrosoftIISv2"
siteName = “LondonWebSite"

Set locatorObj = CreateObject(“WbemScripting.SWbemLocator”)
Set providerObj = locatorObj.ConnectServer _

& (strComputer, wmiNS)
Set serviceObj = providerObj.Get _

& (“IIsWebService=‘W3SVC’”)
Set objPath = CreateObject(“WbemScripting.” _

& “SWbemObjectPath”)

Bindings = Array(0)

Set Bindings(0) = providerObj.Get(“ServerBinding”) _

& .SpawnInstance_()
Bindings(0).IP = “"
Bindings(0).Port = “8383"
Bindings(0).Hostname = “"

Worker and Output Information

In the Worker and Output information section of the script, the website is created. Str-
SiteObjPath is the variable that holds the return information from using the Create-
NewSite method of the IIsWebService object. To call the CreateNewSite method, you
have to specify the site name, the bindings, and the physical path for the files. StrSite-
ObjPath is in the format of IIsWebServer=‘W3SVC/1180970907’; therefore, to parse out
the absolute path, you use the SWbemObjectPath WMI object.

After you complete parsing out the absolute path, you call the subCheckErrors subrou
tine. In the subCheckErrors subroutine, you check the err object and echo out both the
number and description of the error.

Chapter 19 Managing IIS 6.0 317
The script ends by echoing out the completed site name as well as the path and the
unique site ID number that was built by using the strSitePath variable.

strSiteObjPath = serviceObj.CreateNewSite _
& (siteName, Bindings, “C:\Inetpub\Wwwroot”)

objPath.Path = strSiteObjPath
strSitePath = objPath.Keys.Item(““)

subCheckErrors

WScript.Echo “Created “ & siteName
WScript.Echo “The path/ID is “ & strSitePath

Sub subCheckErrors
If Err Then

WScript.Echo “Error: “ & Hex(Err.Number) _
& “: “ & Err.Description

WScript.Quit(1)
End If

End sub

Summary
In this chapter, you examined the structure of the MicrosoftIISv2 namespace, including
the five different classes of elements that it consists of. In looking at the different
classes, you discovered that some of the classes are read-only, whereas some allow
you to set data. The data that you can discover via the MicrosoftIISv2 namespace is the
same data and configuration available via the IIS manager tool or by editing the meta
base. You looked at using the IIS 6.0 WMI provider to manage IIS and saw that by mak
ing a connection into the namespace, you can discover properties or even use WMI to
create new websites.

Quiz Yourself
Q. What is the WMI namespace used to manage IIS 6.0?

A. The WMI namespace MicrosoftIISv2 is used to manage IIS 6.0.

Q. Where does the MicrosoftIISv2 namespace reside?

A. The MicrosoftIISv2 namespace resides directly under \root.

Q. To create a new website, what method do you use?

A.€ To create a new website, you can use the CreateNewSite method of the IIsWebService
provider.

318 Part 4 Scripting Other Applications
On Your Own

Lab 38 Backing Up the Metabase
In this lab, you are going to practice backing up the metabase.

Lab Instructions

1. Open Notepad.exe.

2. On the top of a blank page, set Option Explicit.

3. Save your file as Lab38Solution.vbs.

4.	 Declare the following variables: strPassword, strFilePath, strMetabasePath, int-
Flags, locatorObj, providerObj, and computerObj. Your completed Header infor
mation section will look like the following:

Option Explicit

Dim strPassword

Dim strFilePath

Dim strMetabasePath

Dim intFlags

Dim locatorObj

Dim providerObj

Dim computerObj

5.	 Define three constants to be used to control the export behavior:
EXPORT_CHILDREN = 0, EXPORT_INHERITED = 1, and EXPORT_NODE_ONLY = 2.
The EXPORT_CHILDREN constant is used to add the properties of child keys to
the export file. The EXPORT_INHERITED constant is used to add inherited prop
erties to the exported keys, and the EXPORT_NODE_ONLY constant does not add
subkeys of the specified key to the export file. The constants section of the script
will look like the following:

Const EXPORT_CHILDREN = 0
Const EXPORT_INHERITED = 1
Const EXPORT_NODE_ONLY = 2

6. Assign the password “ExportingPassw0rd” to the strPassword variable.

7.	 Specify the physical path for the exported metabase. To do this, assign the value
of “C:\exported.xml” to the strFilePath variable.

8.	 Set the strMetabasePath to be equal to “/lm/logging/custom logging”. This is rep
resented in the metabase.xml file.

Chapter 19 Managing IIS 6.0 319
9.	 Set the intFlags variable equal to EXPORT_NODE_ONLY OR EXPORT_INHERITED
constants. This will tell the export command to show only the node with inherited
properties. This section of the script looks like the following:

strPassword = “ExportingPassw0rd"

strFilePath = “C:\exported.xml"

strMetabasePath = “/lm/logging/custom logging"

intFlags = EXPORT_NODE_ONLY OR EXPORT_INHERITED

10.	 Set the locatorObj variable equal to the hook that comes back to the SWbemLoca
tor object when you use the CreateObject command. This code looks like the fol
lowing:

Set locatorObj = CreateObject(“WbemScripting.SWbemLocator”)

11.	 Set the providerObj variable equal to the hook that comes back from using the
ConnectServer method of SWbemLocator. At this point, the hook will be used to
connect into the London server MicrosoftIISv2 namespace. This line of code looks
like the following:

Set providerObj = locatorObj.ConnectServer _
(“London", “root/MicrosoftIISv2”)

12.	 Set the computerObj variable equal to the hook into IIsComputer = ‘LM’ when you
use the Get command of the providerObj. This line of code looks like the following:

Set computerObj = providerObj.Get(“IIsComputer = ‘LM’”)

13.	 Call the export method from the computer object. The command needs the str-
Password, the strFilePath, the strMetabasePath, and the intFlags. The code looks
like the following:

computerObj.Export strPassword, strFilePath, strMetabasePath, intFlags

14.	 Print out the results by using the WScript.Echo command to echo out a message
that includes the strMetabasePath and the strFilePath. Your code could look like
the following:

WScript.Echo “Exported the node at “ & strMetabasePath _
& “ to “ & strFilePath

15. Save and run the script.

Lab 39 Importing the Metabase
In this lab, you will import the metabase that was exported in Lab 38.

320 Part 4 Scripting Other Applications
Lab Instructions

1. Open Notepad.exe.

2. On the top of a blank page, set Option Explicit.

3. Save your file as Lab39Solution.vbs.

4.	 Declare the following variables: strPassword, strFilePath, strMetabasePath,
intFlags, locatorObj, providerObj, and computerObj. Your completed Header
information section will look like the following:

Option Explicit

Dim strPassword

Dim strFilePath

Dim strSourceMetabasePath

Dim strDestinationMetabasePath

Dim intFlags

Dim locatorObj

Dim providerObj

Dim computerObj

5.	 Create four constants to control the import behavior. CONST IMPORT_CHILDREN = 0
recursively imports the subkeys of the specified key; CONST IMPORT_INHERITED =1
imports the inherited properties of the keys; CONSTANT IMPORT_NODE_ONLY = 2
does not import subkeys from the specified file. The last constant is CONST
IMPORT_MERGE = 4, which merges the imported keys into the existing configuration
instead of completely replacing what previously existed. The code for this looks like
the following:

Const IMPORT_CHILDREN = 0
Const IMPORT_INHERITED = 1
Const IMPORT_NODE_ONLY = 2
Const IMPORT_MERGE = 4

6. Assign the password “ExportingPassw0rd” to the strPassword variable.

7.	 Specify the physical path for the exported metabase by assigning the value of
“C:\exported.xml” to the strFilePath variable.

8.	 Set the strSourceMetabasePath to be equal to “/lm/logging/custom logging”. This is
represented in the metabase.xml file.

9.	 Set the strDestinationMetabasePath to be equal to “/lm/logging/custom logging”.
This value can be different from the strSourceMetabasePath if required.

10.	 Set the intFlags to be equal to IMPORT_NODE_ONLY OR IMPORT_INHERITED.
This will import only the node with the inherited properties. This section of code
looks like the following:

Chapter 19 Managing IIS 6.0 321
strPassword = “ExportingPassw0rd"

strFilePath = “C:\exported.xml"

strSourceMetabasePath = “/lm/logging/custom logging"

strDestinationMetabasePath = “/lm/logging/custom logging"

intFlags = IMPORT_NODE_ONLY OR IMPORT_INHERITED

11.	 Set the locatorObj variable equal to the hook that comes back to the SWbemLoca
tor object when you use the CreateObject command. This code looks like the fol
lowing:

Set locatorObj = CreateObject(“WbemScripting.SWbemLocator”)

12.	 Set the providerObj variable equal to the hook that comes back from using the
ConnectServer method of SWbemLocator. The providerObj variable is used to con
nect to the London server MicrosoftIISv2 namespace. This line of code looks like
the following:

Set providerObj = locatorObj.ConnectServer _
(“London", “root/MicrosoftIISv2”)

13.	 Set the computerObj variable equal to the hook into IIsComputer = ‘LM’ when you
use the get command of the providerObj. This line of code looks like the following:

Set computerObj = providerObj.Get(“IIsComputer = ‘LM’”)

14.	 Call the import method from the computer object. The import method requires the
strPassword, the strFilePath, the strSourceMetabasePath, the strDestinationMeta
basePath, and the intFlags. This line of code looks like the following:

computerObj.Import strPassword, strFilePath, _
strSourceMetabasePath, strDestinationMetabasePath, intFlags

15.	 Echo out the results. Include the strFilePath variable and the strDestinationMeta
basePath variables as confirmation. Your code could look like the following:

WScript.Echo “Imported the node in “ & strFilePath & “ to “ _
& strDestinationMetabasePath

16. Save and test your file.

20 Working with Exchange 2003

In this chapter, you’ll look at querying Microsoft Exchange 2003 by using Windows
Management Instrumentation (WMI). Though much of the client configuration data is
available in Active Directory via Active Directory Service Interface (ADSI), a wealth of
information is also available either from the Exchange 2003 System Manager utility or
by using the appropriate WMI namespace.

Before You Begin
In order to work through the material presented in this chapter you need to be famil�
iar with the following concepts from earlier chapters:

■ Creating a connection into WMI

■ Creating a WMI query

■ Implementing the For…Next construction

■ Implementing the Select Case construction

After completing this chapter you will be familiar with the following:�

■ Connecting to the MicrosoftExchangeV2 namespace

■ Querying the Exchange_Logon class

■ Querying the Exchange_Mailbox class

■ Querying the Exchange_PublicFolder class

■ Querying the Exchange_QueueSMTPVirtualServer class

Working with the Exchange Provider
When Exchange 2003 is installed, it creates the MicrosoftExchangeV2 namespace that
resides under the root WMI namespace. This is a very rich namespace covering a wide
range of management and data issues. Changes to the MicrosoftExchangeV2
namespace for Exchange 2003 are detailed in Table 20-1.
323

324 Part 4 Scripting Other Applications
Table 20-1 Changes to the Exchange WMI Namespace

WMI class Changes in Exchange 2003

ExchangeClusterResource

ExchangeConnectorState

ExchangeLink

ExchangeQueue

ExchangeServerState

Exchange_DSAccessDC

Exchange_FolderTree

Exchange_Link

Exchange_Logon

Exchange_Mailbox

Exchange_MessageTrackingEntry

Exchange_PublicFolder

Exchange_Queue

Exchange_QueueCacheReloadEvent

Exchange_QueuedMessage

Exchange_QueuedSMTPMessage

Exchange_QueuedX400Message

Exchange_QueueSMTPVirtualServer

Exchange_QueueVirtualServer

Exchange_QueueX400VirtualServer

Exchange_ScheduleInterval

Exchange_Server

Exchange_SMTPLink

Exchange_SMTPQueue

Exchange_X400Link

Exchange_X400Queue

No changes.

No changes.

No changes. Additional capabilities are provided in
the new Exchange_Link class.

No changes. Additional capabilities are provided in
the new Exchange_Queue class.

No changes. Additional capabilities are provided in
the new Exchange_Server class.

No changes.

New class.

New class.

New class.

New class.

Additional message-tracking entry-type values were
added to provide more detailed tracking of internal
message-transfer events.

New class.

New class.

New class.

New class.

New class.

New class.

New class.

New class.

New class.

New class.

New class.

New class.

New class.

New class.

New class.

Chapter 20 Working with Exchange 2003 325
Just the Steps

� To query the Exchange_QueueSMTPVirtualServer class
1. Create a variable to hold the connection into the \root\MicrosoftExchangeV2

namespace.

2. Use the ExecQuery method to select * from Exchange_QueueSMTPVirtualServer.

3. Use For Each…Next to iterate through the returned collection.

4. Use WScript.Echo to echo out the important properties.

Connecting to MicrosoftExchangeV2
To use WMI to retrieve information from Exchange 2003, you need to make a connec�
tion into the MicrosoftExchangeV2 namespace, which is even easier to work with than
the IIS namespace. As you will soon see, the MicrosoftExchangeV2 namespace is very
logically laid out, and the scripts will rapidly become redundant. The only trick to
using the namespace is finding the data you want to retrieve.

The Exchange_QueueSMTPVirtualServer Class

For the first code sample (ExchangeSMTPQueue.vbs), consider the Exchange_Queue-
SMTPVirtualServer class, which returns properties for SMTP queue virtual servers.
ExchangeSMTPQueue.vbs is shown here:

Option Explicit

On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = “."

wmiNS = “\root\MicrosoftExchangeV2"

wmiQuery = “Select * from Exchange_QueueSMTPVirtualServer"

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems
WScript.Echo “Caption: “ & objItem.Caption
WScript.Echo “Description: “ & objItem.Description
WScript.Echo “GlobalActionsSupported: “ _

& objItem.GlobalActionsSupported
WScript.Echo “GlobalStop: “ & objItem.GlobalStop
WScript.Echo “InstallDate: “ & objItem.InstallDate
WScript.Echo “Name: “ & objItem.Name

326 Part 4 Scripting Other Applications
WScript.Echo “ProtocolName: “ & objItem.ProtocolName

WScript.Echo “Status: “ & objItem.Status

WScript.Echo “VirtualMachine: “ & objItem.VirtualMachine

WScript.Echo “VirtualServerName: “ & objItem.VirtualServerName

WScript.Echo “-=-"

Next

Header Information

The Header information section is going to look very similar in each of the Exchange
2003 WMI scripts, so this is the only place you will look at it. You turn on Option
Explicit and On Error Resume Next, and then name several variables, which are
described in Table 20-2.

Table 20-2 Variables Used in ExchangeSMTPQueue.vbs

Variable Use

strComputer Holds the name of the target computer

wmiNS Holds the target namespace

wmiQuery Holds the WMI query text

objWMIService Holds the connection into WMI

colItems Holds the returned data

objItem Used to iterate through the data

Reference Information

The Reference information section of the script is used to assign values to variables that
were declared in the Header information section. StrComputer is set to a period, which
means that the query will run against the local computer. WmiNS is set to the
“\root\MicrosoftExchangeV2” namespace to enable you to work with Exchange 2003.
In most of our scripts, the strComputer, wmiNS, and wmiQuery references will remain
exactly the same. The only item needing modification in the Reference information sec�
tion of the script is the class from which Select * is going to run. You set objWMIService
to be equal to the hook that comes back from using GetObject and the WMI moniker.
This connection into WMI is targeted at strComputer and the namespace represented
by wmiNS. The advantage of using variables to create the connection string is that the
line of code will never need to be modified! Once you have the hook into WMI, you
use that hook to cast your query. The query is contained in the wmiQuery variable, and
as a result, you don’t have to touch that line of code either.

strComputer = “."

wmiNS = “\root\MicrosoftExchangeV2"

wmiQuery = “Select * from Exchange_QueueSMTPVirtualServer"

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

Chapter 20 Working with Exchange 2003 327
Worker Information

The Worker information section of the script is a For Each…Next construction. You use
the objItem variable to iterate through the data held in the colItems collection. This
code does not need to be modified. This construction looks like the following:

For Each objItem In colItems

Next

Output Information

The Output information section of the script consists of a series of WScript.Echo state�
ments. These statements are contained inside the For Each…Next construction in the
Worker information section of the script. The Output information section will need to
be customized for every WMI script you create using the MicrosoftExchangeV2
namespace. For ExchangeSMTPQueue.vbs, the Output information section looks like
the following:

WScript.Echo “Caption: “ & objItem.Caption
WScript.Echo “Description: “ & objItem.Description
WScript.Echo “GlobalActionsSupported: “ _

& objItem.GlobalActionsSupported
WScript.Echo “GlobalStop: “ & objItem.GlobalStop
WScript.Echo “InstallDate: “ & objItem.InstallDate
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “ProtocolName: “ & objItem.ProtocolName
WScript.Echo “Status: “ & objItem.Status
WScript.Echo “VirtualMachine: “ _

& objItem.VirtualMachine
WScript.Echo “VirtualServerName: “ _

& objItem.VirtualServerName

Exchange Public Folders
Working with public folders in Exchange 2003 is a lot better than working with them
in previous versions of Exchange. And with the addition of new and expanded WMI
classes, working with public folders is especially easy. The script ExchangePublicFold�
ers.vbs points this out. As you can see from the code listing, much of the process of
connecting to and accessing useful information about Exchange 2003 public folders via
the Exchange_PublicFolder class is similar to this process in other WMI scripts. Indeed,
the only changes are using the Exchange_PublicFolder class to the select statement you
will use for the query and, of course, the Output information section of the script.

Option Explicit

On Error Resume Next

Dim strComputer

Dim wmiNS

328 Part 4 Scripting Other Applications
Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = “."

wmiNS = “\root\MicrosoftExchangeV2"

wmiQuery = “Select * from Exchange_PublicFolder"

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems
WScript.Echo “AddressBookName: “ & objItem.AddressBookName
WScript.Echo “AdministrativeNote: “ & objItem.AdministrativeNote
WScript.Echo “AdminSecurityDescriptor: “ _

& objItem.AdminSecurityDescriptor
WScript.Echo “ADProxyPath: “ & objItem.ADProxyPath
WScript.Echo “AssociatedMessageCount: “ _

& objItem.AssociatedMessageCount
WScript.Echo “AttachmentCount: “ & objItem.AttachmentCount
WScript.Echo “Caption: “ & objItem.Caption
WScript.Echo “CategorizationCount: “ & _

objItem.CategorizationCount
WScript.Echo “Comment: “ & objItem.Comment
WScript.Echo “ContactCount: “ & objItem.ContactCount
WScript.Echo “ContainsRules: “ & objItem.ContainsRules
WScript.Echo “CreationTime: “ & objItem.CreationTime
WScript.Echo “DeletedItemLifetime: “ _

& objItem.DeletedItemLifetime
WScript.Echo “Description: “ & objItem.Description
WScript.Echo “FolderTree: “ & objItem.FolderTree
WScript.Echo “FriendlyUrl: “ & objItem.FriendlyUrl
WScript.Echo “HasChildren: “ & objItem.HasChildren
WScript.Echo “HasLocalReplica: “ & objItem.HasLocalReplica
WScript.Echo “InstallDate: “ & objItem.InstallDate
WScript.Echo “IsMailEnabled: “ & objItem.IsMailEnabled
WScript.Echo “IsNormalFolder: “ & objItem.IsNormalFolder
WScript.Echo “IsPerUserReadDisabled: “ _

& objItem.IsPerUserReadDisabled
WScript.Echo “IsSearchFolder: “ & objItem.IsSearchFolder
WScript.Echo “IsSecureInSite: “ & objItem.IsSecureInSite
WScript.Echo “LastAccessTime: “ & objItem.LastAccessTime
WScript.Echo “LastModificationTime: “ _

& objItem.LastModificationTime
WScript.Echo “MaximumItemSize: “ & objItem.MaximumItemSize
WScript.Echo “MessageCount: “ & objItem.MessageCount
WScript.Echo “MessageWithAttachmentsCount: “ _

& objItem.MessageWithAttachmentsCount
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “NormalMessageSize: “ & objItem.NormalMessageSize
WScript.Echo “OwnerCount: “ & objItem.OwnerCount
WScript.Echo “ParentFriendlyUrl: “ & objItem.ParentFriendlyUrl
WScript.Echo “Path: “ & objItem.Path
WScript.Echo “ProhibitPostLimit: “ & objItem.ProhibitPostLimit
WScript.Echo “PublishInAddressBook: “ _

Chapter 20 Working with Exchange 2003 329
& objItem.PublishInAddressBook
WScript.Echo “RecipientCountOnAssociatedMessages: “ _

& objItem.RecipientCountOnAssociatedMessages
WScript.Echo “RecipientCountOnNormalMessages: “ _

& objItem.RecipientCountOnNormalMessages
WScript.Echo “ReplicaAgeLimit: “ & objItem.ReplicaAgeLimit
WScript.Echo “ReplicaList: “ & objItem.ReplicaList
WScript.Echo “ReplicationMessagePriority: “ _

& objItem.ReplicationMessagePriority
WScript.Echo “ReplicationSchedule: “ _

& objItem.ReplicationSchedule
WScript.Echo “ReplicationStyle: “ & objItem.ReplicationStyle
WScript.Echo “RestrictionCount: “ & objItem.RestrictionCount
WScript.Echo “SecurityDescriptor: “ & objItem.SecurityDescriptor
WScript.Echo “Status: “ & objItem.Status
WScript.Echo “StorageLimitStyle: “ & objItem.StorageLimitStyle
WScript.Echo “TargetAddress: “ & objItem.TargetAddress
WScript.Echo “TotalMessageSize: “ & objItem.TotalMessageSize
WScript.Echo “Url: “ & objItem.Url
WScript.Echo “UsePublicStoreAgeLimits: “ _

& objItem.UsePublicStoreAgeLimits
WScript.Echo “UsePublicStoreDeletedItemLifetime: “ _

& objItem.UsePublicStoreDeletedItemLifetime
WScript.Echo “WarningLimit: “ & objItem.WarningLimit

WScript.Echo “-=-"
Next

Exchange_FolderTree
To look at the folder structure defined on an Exchange 2003 server, you can use the
Exchange_FolderTree class. The only changes you must make to your script are the same
changes you made to the other scripts—changing the class portion of the wmiQuery to
point to the Exchange_FolderTree class. Then you must modify the Output information
section to echo out the properties you are interested in. The completed ExchangeFolder-
Tree.vbs script is listed here:

Option Explicit

On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

strComputer = “."

wmiNS = “\root\MicrosoftExchangeV2"

wmiQuery = “Select * from Exchange_FolderTree"

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

Set colItems = objWMIService.ExecQuery(wmiQuery)

For Each objItem In colItems

330 Part 4 Scripting Other Applications
WScript.Echo “AdministrativeGroup: “ _
& objItem.AdministrativeGroup

WScript.Echo “AdministrativeNote: “ _
& objItem.AdministrativeNote

WScript.Echo “AssociatedPublicStores: “ _
& objItem.AssociatedPublicStores

WScript.Echo “Caption: “ & objItem.Caption
WScript.Echo “CreationTime: “ & objItem.CreationTime
WScript.Echo “Description: “ & objItem.Description
WScript.Echo “GUID: “ & objItem.GUID
WScript.Echo “HasLocalPublicStore: “ _

& objItem.HasLocalPublicStore
WScript.Echo “InstallDate: “ & objItem.InstallDate
WScript.Echo “LastModificationTime: “ _

& objItem.LastModificationTime
WScript.Echo “MapiFolderTree: “ & objItem.MapiFolderTree
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “RootFolderURL: “ & objItem.RootFolderURL
WScript.Echo “Status: “ & objItem.Status
WScript.Echo “-=-"

Next

Summary
In this chapter, you examined querying WMI data by using the MicrosoftExchangeV2
namespace. The MicrosoftExchangeV2 namespace is located under the root WMI
namespace and contains numerous classes that can be used to monitor nearly every
aspect of daily exchange administrator activities. Because of a high level of consistency
in the design of the MicrosoftExchangeV2 namespace, many of the WMI scripts are
reusable, requiring only a small degree of modification.

Quiz Yourself
Q. What is the WMI namespace for managing and monitoring Exchange 2003?

A.€ The MicrosoftExchangeV2 namespace is designed for managing and monitoring
Exchange 2003.

Q. How do you connect to the MicrosoftExchangeV2 namespace?

A.€ You connect to the MicrosoftExchangeV2 namespace by using GetObject, the WMI
moniker, and by specifying the target computer and the root\MicrosoftExchangeV2
namespace.

Q.€ To obtain information about Exchange 2003 public folders, what class should you
query?

A.€ To obtain information about Exchange 2003 public folders, you should query the
Exchange_PublicFolder class in the root\MicrosoftExchangeV2 namespace.

Chapter 20 Working with Exchange 2003 331
On Your Own

Lab 40 Using the Exchange_Logon Class
In this lab, you practice using the Exchange_Logon class from the MicrosoftExchangeV2
namespace.

Lab Instructions

1. Open Notepad.exe.

2. On the first line of a new file, type Option Explicit.

3. Save your file as Lab40Solution.vbs.

4.	 You need to declare six variables: strComputer, wmiNS, wmiQuery, objWMIService,
colItems, and objItem. The completed Header information section of your script will
look like the following:

Option Explicit

‘On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

5.	 Assign the variable strComputer to be equal to “.”. This line of code will look like
the following:

strComputer = “.”

6.	 Assign the variable wmiNS to be equal to “\root\MicrosoftExchangeV2”. This line
of code looks like the following:

wmiNS = “\root\MicrosoftExchangeV2”

7.	 Assign the wmiQuery variable to be equal to “Select * from Exchange_Logon”. This
line of code looks like the following:

wmiQuery = “Select * from Exchange_Logon”

8.	 Set the variable objWMIService to be equal to the hook that comes back from
using the GetObject command into WMI. Use the winmgmts moniker, specify the
strComputer as the target computer, and specify wmiNS as the target namespace.
This line of code looks like the following:

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

332 Part 4 Scripting Other Applications
9.	 Set the colItems variable to hold the data that comes back from running the query
contained in the variable wmiQuery when you use the ExecQuery method. This
line of code looks like the following:

Set colItems = objWMIService.ExecQuery(wmiQuery)

10.	 Create an empty For Each…Next construction. Use objItem as your placeholder,
and use colItems as the collection to be iterated through. This will look like the fol
lowing:

For Each objItem In colItems

Next

11.	 Open the Lab40Starter.vbs file. This file contains the series of WScript.Echo com
mands that go inside the empty For Each…Next construction that was created in
step 10.

12.	 Copy all the WScript.Echo commands contained in StarterLab40.txt and paste them
into the For Each…Next construction. When completed, the script will look like
the following:

For Each objItem In colItems
WScript.Echo “AdapterSpeed: “ & objItem.AdapterSpeed
WScript.Echo “Caption: “ & objItem.Caption
WScript.Echo “ClientIP: “ & objItem.ClientIP
WScript.Echo “ClientMode: “ & objItem.ClientMode
WScript.Echo “ClientName: “ & objItem.ClientName
WScript.Echo “ClientVersion: “ & objItem.ClientVersion
WScript.Echo “CodePageID: “ & objItem.CodePageID
WScript.Echo “Description: “ & objItem.Description
WScript.Echo “FolderOperationRate: “ _

& objItem.FolderOperationRate
WScript.Echo “HostAddress: “ & objItem.HostAddress
WScript.Echo “InstallDate: “ & objItem.InstallDate
WScript.Echo “LastOperationTime: “ & objItem.LastOperationTime
WScript.Echo “Latency: “ & objItem.Latency
WScript.Echo “LocaleID: “ & objItem.LocaleID
WScript.Echo “LoggedOnUserAccount: “ _

& objItem.LoggedOnUserAccount
WScript.Echo “LoggedOnUsersMailboxLegacyDN: “
& objItem.LoggedOnUsersMailboxLegacyDN
WScript.Echo “LogonTime: “ & objItem.LogonTime
WScript.Echo “MacAddress: “ & objItem.MacAddress
WScript.Echo “MailboxDisplayName: “ & objItem.MailboxDisplayName
WScript.Echo “MailboxLegacyDN: “ & objItem.MailboxLegacyDN
WScript.Echo “MessagingOperationRate: “ _

& objItem.MessagingOperationRate
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “OpenAttachmentCount: “ _

& objItem.OpenAttachmentCount
WScript.Echo “OpenFolderCount: “ & objItem.OpenFolderCount
WScript.Echo “OpenMessageCount: “ & objItem.OpenMessageCount
WScript.Echo “OtherOperationRate: “ & objItem.OtherOperationRate

Chapter 20 Working with Exchange 2003 333
WScript.Echo “ProgressOperationRate: “ _
& objItem.ProgressOperationRate

WScript.Echo “RowID: “ & objItem.RowID
WScript.Echo “RPCSucceeded: “ & objItem.RPCSucceeded
WScript.Echo “ServerName: “ & objItem.ServerName
WScript.Echo “Status: “ & objItem.Status
WScript.Echo “StorageGroupName: “ & objItem.StorageGroupName
WScript.Echo “StoreName: “ & objItem.StoreName
WScript.Echo “StoreType: “ & objItem.StoreType
WScript.Echo “StreamOperationRate: “ _

& objItem.StreamOperationRate
WScript.Echo “TableOperationRate: “ & objItem.TableOperationRate
WScript.Echo “TotalOperationRate: “ & objItem.TotalOperationRate
WScript.Echo “TransferOperationRate: “ _

& objItem.TransferOperationRate
WScript.Echo “-=-"
Next

13. Save and run the script.

Lab 41 Using the Exchange_Mailbox Class
In this lab, you create a script that connects to the MicrosoftExchangeV2 namespace
and queries the Exchange_Mailbox class.

Lab Instructions

1. Open Notepad.exe.

2. On the first line of a new file, type Option Explicit.

3. Save your file as Lab41Solution.vbs.

4.	 You need to declare six variables: strComputer, wmiNS, wmiQuery, objWMIService,
colItems, and objItem. The completed Header information section of your script will
look like the following:

Option Explicit

‘On Error Resume Next

Dim strComputer

Dim wmiNS

Dim wmiQuery

Dim objWMIService

Dim colItems

Dim objItem

5.	 Assign the variable strComputer to be equal to “.”. This line of code will look like
the following:

strComputer = “.”

6.	 Assign the variable wmiNS to be equal to “\root\MicrosoftExchangeV2”. This line
of code looks like the following:

wmiNS = “\root\MicrosoftExchangeV2”

334 Part 4 Scripting Other Applications
7.	 Assign the wmiQuery variable to be equal to “Select * from Exchange_Logon”. This
line of code looks like the following:

wmiQuery = “Select * from Exchange_Logon”

8.	 Set the variable objWMIService to be equal to the hook that comes back from
using the GetObject command into WMI. Use the winmgmts moniker, specify the
strComputer as the target computer, and specify wmiNS as the target namespace.
This line of code looks like the following:

Set objWMIService = GetObject(“winmgmts:\\” & strComputer & wmiNS)

9.	 Set the colItems variable to hold the data that comes back from running the query
contained in the variable wmiQuery when you use the ExecQuery method. This
line of code looks like the following:

Set colItems = objWMIService.ExecQuery(wmiQuery)

10.	 Create an empty For Each…Next construction. Use objItem as your placeholder,
and use colItems as the collection to be iterated through. This will look like the fol
lowing:

For Each objItem In colItems

Next

11.	 Open the Lab41Starter.txt file. This file contains the series of WScript.Echo com
mands that go inside the empty For Each…Next construction that was created in
step 10.

12.	 Copy all the WScript.Echo commands contained in Lab40Starter.txt and paste them
into the For Each…Next construction. When completed, the script will look like
the following:

For Each objItem In colItems
WScript.Echo “AssocContentCount: “ & objItem.AssocContentCount
WScript.Echo “Caption: “ & objItem.Caption
WScript.Echo “DateDiscoveredAbsentInDS: “ _

& objItem.DateDiscoveredAbsentInDS
WScript.Echo “DeletedMessageSizeExtended: “ _

& objItem.DeletedMessageSizeExtended
WScript.Echo “Description: “ & objItem.Description
WScript.Echo “InstallDate: “ & objItem.InstallDate
WScript.Echo “LastLoggedOnUserAccount: “ _

& objItem.LastLoggedOnUserAccount
WScript.Echo “LastLogoffTime: “ & objItem.LastLogoffTime
WScript.Echo “LastLogonTime: “ & objItem.LastLogonTime
WScript.Echo “LegacyDN: “ & objItem.LegacyDN
WScript.Echo “MailboxDisplayName: “ & objItem.MailboxDisplayName
WScript.Echo “MailboxGUID: “ & objItem.MailboxGUID
WScript.Echo “Name: “ & objItem.Name
WScript.Echo “ServerName: “ & objItem.ServerName
WScript.Echo “Size: “ & objItem.Size

Chapter 20 Working with Exchange 2003 335
WScript.Echo “Status: “ & objItem.Status

WScript.Echo “StorageGroupName: “ & objItem.StorageGroupName

WScript.Echo “StorageLimitInfo: “ & objItem.StorageLimitInfo

WScript.Echo “StoreName: “ & objItem.StoreName

WScript.Echo “TotalItems: “ & objItem.TotalItems

WScript.Echo “-=-"

Next

13. Save and run your Lab41Solution.vbs script.

Part 5
Appendices

Appendix A

VBScript Documentation

Constants
The constants in Tables A-1 through A-6 are built into VBScript and therefore do not
need to be defined prior to use. You can use them anywhere in your code to represent
the values shown.

Table A-1 String Constants

Constant Value Description

vbCr Chr(13) Carriage return.

VbCrLf Chr(13) and Chr(10) Carriage return–linefeed combination.

vbFormFeed Chr(12) Form feed; not useful in Microsoft Windows.

vbLf Chr(10) Line feed.

vbNewLine	 Chr(13) and Chr(10) or Platform-specific newline character; whatever is

Chr(10) appropriate for the platform.

vbNullChar Chr(0) Character having the value 0.

vbNullString String having value 0 Not the same as a zero-length string (“”); used for
calling external procedures.

vbTab Chr(9) Horizontal tab.

vbVerticalTab Chr(11) Vertical tab; not useful in Microsoft Windows.

Table A-2 Comparison Constants

Constant Value Description

vbBinaryCompare 0 Perform a binary comparison.

vbTextCompare 1 Perform a textual comparison.
339

340 Part 5 Appendices
Table A-3 Date and Time Constants

Constant Value Description

vbSunday

vbMonday

vbTuesday

vbWednesday

vbThursday

vbFriday

vbSaturday

1 Sunday

2 Monday

3 Tuesday

4 Wednesday

5 Thursday

6 Friday

7 Saturday

vbUseSystemDayOfWeek 0 Use the day of the week specified in your system set-
tings for the first day of the week.

vbFirstJan1 1 Use the week in which January 1 occurs (default).

vbFirstFourDays 2 Use the first week that has at least four days in the
new year.

vbFirstFullWeek 3 Use the first full week of the year.

Table A-4 Date Formatting Constants

Constant Value Description

vbGeneralDate 0	 Display a date and/or time. For real numbers, display a date
and time. If there is no fractional part, display only a date. If
there is no integer part, display time only. Date and time dis
play is determined by your system settings.

vbLongDate 1 Display a date using the long date format specified in your
computer’s regional settings.

vbShortDate 2 Display a date using the short date format specified in your
computer’s regional settings.

vbLongTime 3 Display a time using the long time format specified in your
computer’s regional settings.

vbShortTime 4 Display a time using the short time format specified in your
computer’s regional settings.

Table A-5 Tri-State Constants

Constant Value Description

vbUseDefault -2 Use default from your computer’s regional settings.

vbTrue -1 True

vbFalse 0 False

Appendix A VBScript Documentation 341
Table A-6 Color Constants

Constant Value Description

vbBlack &h00

vbRed &hFF

vbGreen &hFF00

vbYellow &hFFFF

vbBlue &hFF0000

vbMagenta &hFF00FF

vbCyan &hFFFF00

vbWhite &hFFFFFF

Black

Red

Green

Yellow

Blue

Magenta

Cyan

White

VBScript Run-Time Errors
VBScript run-time errors result when your script attempts to perform an action that the
system cannot execute. The errors are called run-time errors because they happen
while your script is being executed. Run-time errors are listed in Table A-7.

Table A-7 Run-Time Error Numbers and Descriptions

Error Number Description

429 ActiveX component can’t create object.

507 An exception occurred.

449 Argument not optional.

17 Can’t perform requested operation.

430 Class doesn’t support Automation.

506 Class not defined.

11 Division by zero.

48 Error in loading DLL.

5020 Expected ‘)’ in regular expression.

5019 Expected ‘]’ in regular expression.

432 Filename or class name not found during Automation operation.

92 For loop not initialized.

5008 Illegal assignment.

51 Internal error.

505 Invalid or unqualified reference.

481 Invalid picture.

5 Invalid procedure call or argument.

342 Part 5 Appendices
Table A-7 Run-Time Error Numbers and Descriptions

Error Number Description

5021 Invalid range in character set.

94 Invalid use of Null.

448 Named argument not found.

447 Object doesn’t support current locale setting.

445 Object doesn’t support this action.

438 Object doesn’t support this property or method.

451 Object not a collection.

504 Object not safe for creating.

503 Object not safe for initializing.

502 Object not safe for scripting.

424 Object required.

91 Object variable not set.

7 Out of memory.

28 Out of stack space.

14 Out of string space.

6 Overflow.

35 Sub or function not defined.

9 Subscript out of range.

VBScript Syntax Errors
VBScript syntax errors occur when the structure of one of your script statements vio
lates one or more grammatical rules that govern the use of the scripting language.
VBScript syntax errors occur during the program compilation stage, before the program
has begun to be executed, and are therefore sometimes referred to as compile time
errors. Syntax errors are listed in Table A-8.

Table A-8 Syntax Error Numbers and Descriptions

Error Number Description

1052 Cannot have multiple default properties/methods in a Class.

1044 Cannot use parentheses when calling a Sub.

1053 Class initialize or terminate do not have arguments.

1058 ‘Default’ specification can only be on property Get.

1057 ‘Default’ specification must also specify ‘Public’.

1005 Expected ‘(’.

Appendix A VBScript Documentation 343
Table A-8 Syntax Error Numbers and Descriptions

Error Number Description

1006 Expected ‘)’.

1011 Expected ‘=’.

1021 Expected ‘Case’.

1047 Expected ‘Class’.

1025 Expected end of statement.

1014 Expected ‘End’.

1023 Expected expression.

1015 Expected ‘Function’.

1010 Expected identifier.

1012 Expected ‘If’.

1046 Expected ‘In’.

1026 Expected integer constant.

1049 Expected Let, Set, or Get in property declaration.

1045 Expected literal constant.

1019 Expected ‘Loop’.

1020 Expected ‘Next’.

1050 Expected ‘Property’.

1022 Expected ‘Select’.

1024 Expected statement.

1016 Expected ‘Sub’.

1017 Expected ‘Then’.

1013 Expected ‘To’.

1018 Expected ‘Wend’.

1027 Expected ‘While’ or ‘Until’.

1028 Expected ‘While,’ ‘Until,’ or end of statement.

1029 Expected ‘With’.

1030 Identifier too long.

1014 Invalid character.

1039 Invalid ‘exit’ statement.

1040 Invalid ‘for’ loop control variable.

1013 Invalid number.

1037 Invalid use of ‘Me’ keyword.

1038 ‘loop’ without ‘do’.

1048 Must be defined inside a class.

344 Part 5 Appendices
Table A-8 Syntax Error Numbers and Descriptions

Error Number Description

1042 Must be first statement on the line.

1041 Name redefined.

1051 Number of arguments must be consistent across properties specification.

1001 Out of memory.

1054 Property Set or Let must have at least one argument.

1002 Syntax error.

1055 Unexpected ‘Next’.

1015 Unterminated string constant.

Appendix B

ADSI Documentation
For network administrators, one of the most frustrating aspects of using ADSI is trying
to match what is found in Active Directory Users and Computers with what is expected
in a Microsoft Visual Basic Script (VBScript) that uses ADSI to manipulate Active Direc
tory. Although it is possible to use ADSI Edit to view the field names, reviewing Tables
B-1 through B-20 will lessen some of your learning curve.

Computer Object Mapping
Tables B-1 through B-4 show computer object names displayed in the Active Directory
Users and Computers tool as they map to names available via ADSI scripting.

Table B-1 Computer Object General Property Sheet

UI Label Active Directory attribute Comments

Computer Name (pre–Microsoft

Windows 2000)

DNS Name

Role

Description

Trust Computer for delegation

sAMAccountName

dNSHostName

userAccountControl	 Toggles a bit in the user-
AccountControl bitmask.

description

userAccountControl	 Toggles a bit in the user-
AccountControl bitmask.

Table B-2 Computer Object Location Property Sheet

UI label Active Directory attribute

Location location

Table B-3 Computer Object Member of Property Sheet

UI label Active Directory attribute Comments

Member of memberOf The member attribute of each of the
groups in this list contains the distin-
guished name of this computer object.

Set Primary Group primaryGroupID
345

346 Part 5 Appendices
Table B-4 Computer Object Operating System Property Sheet

UI label Active Directory attribute

Name operatingSystem

Version operatingSystemVersion

Service Pack operatingSystemServicePack

Domain Object User Interface Mapping
Table B-5 shows user object names displayed in the Active Directory Users and Com
puters tool as they map to names available via ADSI scripting.

Table B-5 Domain Object General Property Sheet

UI label Active Directory attribute

Domain Name (pre–Windows 2000) DC

Description description

Group Object User Interface Mapping
Tables B-6 though B-8 show group object names displayed in the Active Directory
Users and Computers tool as they map to names available via ADSI scripting.

Table B-6 Group Object General Property Sheet

UI label Active Directory attribute

Group Name (pre–Windows 2000)

Description

E-Mail

Group Scope

Group Type

Notes

sAMAccountName

description

mail

groupScope

groupType

info

Appendix B ADSI Documentation 347
Table B-7 Group Object Member of Property Sheet

Active Directory
UI label attribute Comments

Member of memberOf	 Contains the distinguished names of the groups to which
this group belongs. The member attribute of each of the
groups in this list contains the distinguished name of this
group object.

The user interface does not directly modify the memberOf
attribute. It modifies the “member” attribute on the group
object of which this object is made a member of. Active
Directory maintains the memberOf attribute.

Table B-8 Group Object Member Members Property Sheet

Active Directory
UI label attribute Comments

Members member	 Contains the distinguished names of the members of this
group object.

Object Property Sheet
Table B-9 shows object property names displayed in the Active Directory Users and
Computers tool as they map to names available via ADSI scripting.

Table B-9 Object Property Sheet

UI label Active Directory attribute Comments

Fully qualified domain
name of object

Object class objectClass

Created whenCreated

Modified whenChanged

Update Sequence uSNChanged
Numbers: Current

Update Sequence uSNCreated
Numbers: Original

This is the object’s distinguished
name in canonical form.

348 Part 5 Appendices
Organizational Unit User Interface Mapping
Table B-10 and Table B-11 show organizational unit object names displayed in the
Active Directory Users and Computers tool as they map to names available via ADSI
scripting.

Table B-10 OU General Property Sheet

UI label Active Directory attribute Comments

Description

Street

City

State/Province

Zip/Postal Code

Country/Region

description

street

l

st

postalCode

c

The l attribute name is a lowercase
“L”.

This is a lowercase “c”.

Table B-11 OU Managed by Property Sheet

UI label Active Directory attribute Comments

Name

Manager can update
membership list

Office

Street

City

State/Province

Country/Region

Telephone Number

Fax Number

managedBy

n/a

physicalDeliveryOfficeName

streetAddress

l

st

c

telephoneNumber

facsimileTelephoneNumber

Changes the ownership to the
person named in the name
(managedBy) attribute.

The l attribute name is a lowercase
“L”.

This is a lowercase “c”.

Printer Object User Interface Mapping
Table B-12 shows printer object names displayed in the Active Directory Users and
Computers tool as they map to names available via ADSI scripting.

Appendix B ADSI Documentation 349
Table B-12 Printer Object General Property Sheet

UI label Active Directory attribute

Location

Model

Description

Color

Staple

Double-sided

Printing Menu

Maximum Resolution

location

driverName

description

printColor

printStaplingSupported

print DuplexSupported

printRate

printMaxResolutionSupported

Shared Folder Object User Interface Mapping
Table B-13 shows shared folder object names displayed in the Active Directory Users
and Computers tool as they map to names available via ADSI scripting.

Table B-13 Shared Folder Object General Property Sheet

UI label Active Directory attribute

Description description

UNC Name uNCName

Keywords keywords

User Object User Interface Mapping
Tables B-14 through B-20 show user object names displayed in the Active Directory
Users and Computers tool as they map to names available via ADSI scripting.

Table B-14 User Object General Property Sheet

UI label Active Directory attribute

First Name givenName

Last Name sn

Initials initials

Description description

Office physicalDeliveryOfficeName

350 Part 5 Appendices
Table B-14 User Object General Property Sheet

UI label Active Directory attribute

Telephone Number telephoneNumber

Telephone: Other otherTelephone

E-Mail mail

Web Page wwwHomePage

Web Page: Other url

Table B-15 User Object Account Property Sheet

UI label Active Directory attribute Comments

UserLogon Name userPrincipalName LDAP = logonPrincipalName,
which prefixes the Logon Name
drop-down list and adds the full
text to the attribute.

User logon name sAMAccountname
(pre–Windows 2000)

Logon Hours logonHours

Log On To logonWorkstation

Account is locked out userAccountControl Toggles a bit in the userAccount-
Control bitmask (flag:
UF_ACCOUNTSDISABLE).

User must change pwdLastSet
password at next logon

User cannot change N/A This is the Change Password
password control in the ACL.

Other Account Options userAccountControl The remaining items in Account
Options toggle bits in the user-
AccountControl bitmask (flags in a
DWORD).

Account Expires accountExpires

Appendix B ADSI Documentation 351
Table B-16 User Object Address Property Sheet

UI label Active Directory attribute Comments

Street streetAddress

P.O. Box postOfficeBox

City l The l attribute name is a lowercase
“L” as in Locale.

State/Province st

Zip/Postal Code postalCode

Country/Region c, co, and countryCode

Table B-17 User Object Member of Property Sheet

UI label Active Directory attribute Comments

Member of memberOf

Set Primary Group primaryGroupID LDAP: Tied to primaryGroupToken of
the primary group.

Table B-18 User Object Organization Property Sheet

UI label Active Directory attribute Comments

Title title

Department department

Company company

Manager: Name manager

Direct Reports directReports Back linked by Active Directory to
directReports

352 Part 5 Appendices
Table B-19 User Object Profile Property Sheet

UI label Active Directory attribute Comments

Profile Path

Logon Script

Home Folder: Local Path

Home Folder: Connect

Home Folder: To

profilePath

scriptPath

homeDirectory

homeDrive

homeDirectory

If Local path is selected, the local
path is stored in the homeDirectory
attribute.

If Connect is selected, the mapped
drive is stored in the homeDrive
attribute.

If Connect is selected, the path is
stored in the homeDirectory
attribute.

Table B-20 User Object Telephone Properties Sheet

UI label Active Directory attribute Comments

Home

Home: Other

Pager

Pager: Other

Mobile

Mobile: Other

Fax

Fax: Other

IP phone

telephoneNumber LDAP: homePhone

otherTelephone LDAP: otherHomePhone

pager

pagerOther LDAP: otherPager

mobile

otherMobile

facsimileTelephoneNumber

otherFacsimileTelephoneNumber

ipPhone

IP phone: Other otherIpPhone

Notes info

Appendix C

WMI Documentation

Win32 Classes
Microsoft Windows classes give you the means to manipulate a variety of objects. Table
C-1 identifies the categories of Windows classes.

Table C-1 Win32 Classes

Category Description

Computer system hardware Classes that represent hardware-related objects.

Operating system Classes that represent operating system-related objects.

Installed applications Classes that represent software-related objects.

WMI service management Classes used to manage WMI.

Performance counters Classes that represent formatted and raw performance data.

WMI Providers
The providers in Table C-2 can request information from and send instructions to
Windows Management Instrumentation (WMI) objects.

Table C-2 WMI Providers

Provider Description

Active Directory Provider	 The Active Directory Provider maps Active Directory objects to
WMI. By accessing the Lightweight Directory Access Protocol
(LDAP) namespace in WMI, you can reference or make an
object an alias in Active Directory. Supports the standard
IWbemInit interface.

Cooked Counter Provider	 Microsoft Windows XP: High-performance provider that is the
preferred source of cooked (calculated) data. Cooked data is the
same data displayed in the System Monitor. WMI supplies cooked
classes such as Win32_PerfFormattedData_PerfOS_Cache, which
allows applications to obtain cooked data for performance objects
such as the cache.

DFS Provider	 Microsoft Windows Server 2003 family: Supplies Distributed File
System (DFS) functions that logically group shares on multiple
servers and link them transparently to a tree-like structure in a
single namespace.
353

354 Part 5 Appendices
Table C-2 WMI Providers

Provider Description

Disk Quota Provider	 Windows XP: Allows administrators to control the amount of
data that each user stores on a Microsoft Windows NT File Sys
tem (NTFS) volume.

Event Log Provider	 Windows NT/2000: Provides access to data from the event log
service to notifications of events.

IP Route Provider Windows Server 2003: Supplies network routing information.

Job Object Provider	 Windows XP: Provides access to data on named kernel job
objects.

Performance Counter Microsoft Windows 2000 and later: High-performance provider
Provider	 that is the preferred source of raw performance data. WMI sup-

plies raw classes such as Win32_PerfRawData_PerfOS_Cache,
which allow applications to obtain raw performance data for
performance objects such as the cache.

Performance Monitoring
Provider

Windows NT/2000 and earlier: Provider for cooked data. In
Windows XP, the Cooked Counter provider supplies the C++
and scripting APIs that access cooked data.

Ping Provider	 Windows XP: Supplies WMI access to the status information
provided by the standard ping command.

Policy Provider	 Windows XP: Provides extensions to group policy and permits
refinements in the application of policy.

Power Management Event
Provider

Windows 2000 and later: Supplies information to the
Win32_PowerManagementEvent class to describe power man
agement events that result from power state changes by model
ing the Windows 2000 power management protocols.

Security Provider	 Retrieves or changes security settings that control ownership,
auditing, and access rights to Windows NT/Windows 2000 file
system (NTFS) files, directories, and shares.

Session Provider	 Windows NT/2000 and later: Manages network sessions and
connections.

SNMP Provider	 Maps Simple Network Management Protocol (SNMP) objects
defined in Management Information Base (MIB) schema objects
to WMI CIM classes. This provider is not preinstalled but is
available for Windows NT/Windows 2000 and later.

System Registry Provider	 Enables management applications to retrieve and modify data in
the system registry and receive notifications when changes
occur. This provider is not preinstalled but is available for all
operating systems.

Terminal Services
Provider

WMI classes that you can use for consistent server administra
tion in a Terminal Services environment.

Appendix C WMI Documentation 355
Table C-2 WMI Providers

Provider Description

Trustmon Provider	 Windows Server 2003: Provides access information about
domain trusts.

View Provider	 Creates new instances and methods based on instances of other
classes.

WDM Provider	 Windows NT/2000 and later: Provides access to the classes,
instances, methods, and events of hardware drivers that conform
to the Windows Driver Model (WDM).

Win32 Provider	 Provides access and updates data from Windows systems such
as the current settings of environment variables and the
attributes of a logical disk.

Windows Installer Provides access information collected from Windows Installer–
Provider	 compliant applications, and makes Windows Installer proce

dures available remotely.

Windows Server 2003: The Windows Installer provider is included
on the companion CD as an optional Windows component that
you can install by using Control Panel. Optional installation of the
Windows Installer provider ensures backward compatibility with
the Windows XP and Windows 2000 feature sets.

Windows Product Activa
tion Provider

Windows XP: Supports Windows Product Activation (WPA)
administration by using WMI interfaces, and provides consistent
server administration in Windows XP.

WMI Scripting API Objects
Table C-3 describes WMI scripting objects and how they are used.

Table C-3 WMI Scripting API Objects

Object Description

SWbemDateTime	 Constructs and parses CIM date/time values. This is a helper
object that is available in Windows XP.

SWbemEventSource	 Retrieves events in conjunction with SWbemServices.ExecNotifica
tionQuery.

SWbemLastError Provides extended error information when an error occurs.

SWbemLocator	 Obtains an SWbemServices object that can get access to WMI on a
particular host computer.

SWbemMethod Contains a single WMI method definition.

SWbemMethodSet Gets a collection of SWbemMethod objects.

356 Part 5 Appendices
Table C-3 WMI Scripting API Objects

Object Description

SWbemNamedValue Contains a single named value.

SWbemNamedValueSet Gets access to a collection of SWbemNamedValue objects.

SWbemObject Contains and manipulates a single WMI object class or instance.

SWbemObjectEx	 Extends the functionality of SWbemObject in Windows XP operat
ing systems. This object adds the Refresh method for SWbemRe
fresher objects.

SWbemObjectPath Generates and validates an object path.

SWbemObjectSet Gets access to a collection of SWbemObject objects.

SWbemPrivilege Sets or clears a privilege.

SWbemPrivilegeSet Gets access to a collection of SWbemPrivilege objects.

SWbemProperty Contains a single WMI property.

SWbemPropertySet Gets access to a collection of SWbemProperty objects.

SWbemQualifier Contains a single property qualifier.

SWbemQualifierSet Gets access to a collection of SWbemQualifier objects.

SWbemRefresher	 Collects and updates object property values in one operation. This
object is available in Windows XP.

SWbemRefreshableItem	 Represents a single refreshable element in an SWbemRefresher
object, such as a property. This object is available in Windows XP.

SWbemSecurity	 Manages security settings such as Component Object Model
(COM) Privileges, AuthenticationLevel, and ImpersonationLevel.

SWbemServices Creates, updates, and retrieves instances or classes.

SWbemServicesEx	 Extends the functionality of SWbemServices in Windows XP oper
ating systems. This object adds the Put and PutAsync methods to
allow a class or instance to be saved to multiple namespaces.

SWbemSink	 Receives the results of asynchronous operations and event notifi
cations, which are used by client applications.

Appendix C WMI Documentation 357
WMI Log Files
Table C-4 lists the log files created by WMI and the WMI providers.

Table C-4 WMI Log Files

File Description

Dsprovider.log	 Traces information and error messages for the Directory Services Pro
vider.

Framework.log	 Traces information and error messages for the provider framework and
the Win32 Provider.

Mofcomp.log Compiles details from the MOF compiler.

Ntevt.log Traces messages from the Event Log Provider.

This provider requires that you set any bit value for the mask level in the
system registry.

Setup.log	 Reports MOF files that failed to load during the setup process. However,
the error that caused the failure is not reported. You must review the
Mofcomp.log file to determine the reason for the failure. After the error
has been corrected, you can recompile the MOF file (using mofcomp)
with the autorecover switch.

Viewprovider.log	 Traces information from the View Provider based on the mask level you
set in the registry.

Wbemcore.log Reports wide spectrum of trace messages.

Wbemess.log Logs entries related to events.

Wbemprox.log Traces information for the WMI proxy server.

Wbemsnmp.log	 Traces information from the Simple Network Management Protocol
(SNMP) Provider.

Winmgmt.log Traces information that is typically not used for diagnostics.

Wmiadap.log	 Reports error messages related to the AutoDiscoveryAutoPurge (ADAP)
process.

Wmiprov.log	 Manages data and events from WMI-enabled Windows Driver Model
(WDM) drivers.

Appendix D

Documentation Standards

As network administrators begin to write lots of scripts, a need for standards becomes
rapidly apparent. Large companies commonly maintain a collection of enterprise scripts
that have been tested and approved for use as network tools. To ensure these scripts
can be readily maintained, modified, and debugged, proper documentation must be
included with them. This appendix offers suggestions for what kind of information to
include with these scripts.

Header Information Section
The following items should be considered for inclusion in the Header information sec€
tion of a script:

■ Script name

■ Script writer

■ Date the script was written

■ Version information

■ Description of the purpose of the script

■ Special requirements for use of the script (for example, command-line arguments
and access to Active Directory)

Reference Information Section
The following items should be documented in the Reference information section of the
script:

■ Use of all variables

■ Use of all constants

Worker Information Section
The following items should be documented in the Worker information section of the
script:

■ Explanation of constructions used to gather information

■ Explanation of constructions used to configure settings

■ Explanation of any other constructions used in the script
359

360 Part 5 Appendices
Sample of Documentation Use
The following script illustrates how you might include the elements described in the
previous sections of this appendix to fully “document” a script. Although documenting
a script does add considerably to its length, it also makes the script easier to under-
stand when you need to modify it at a later date.

‘ +++

‘ Written by Ed Wilson, 7/13/2003

‘ version 1.0 basic script

‘ version 1.1 -- added additional documention, 1/14/2003

‘ Key concepts are listed below:

‘ This script displays various Computer Names by reading

‘ the registry

‘ ++

Option Explicit

On Error Resume Next

Dim objShell ’ holds connection to wscript.shell

Dim regActiveComputerName ’ holds registry string for

’active computer name
Dim regComputerName ’ holds registry string for computer name
Dim regHostname ’ holds registry string for hostname
Dim ActiveComputerName ’ holds value found in registry
Dim ComputerName ’ holds value found in registry
Dim Hostname ’holds value found in registry

regActiveComputerName = “HKLM\SYSTEM\CurrentControlSet” & _
“\Control\ComputerName\ActiveComputerName\ComputerName"

regComputerName = “HKLM\SYSTEM\CurrentControlSet\Control” & _
“\ComputerName\ComputerName\ComputerName"

regHostname = “HKLM\SYSTEM\CurrentControlSet\Services” & _
“\Tcpip\Parameters\Hostname"

Set objShell = CreateObject(“WScript.Shell”)

Set objFileSystem = CreateObject(“Scripting.FileSystemObject”)

ActiveComputerName = objShell.RegRead(regActiveComputerName)

ComputerName = objShell.RegRead(regComputerName)

Hostname = objShell.RegRead(regHostname)

WScript.Echo activecomputername & “ is active computer name"

WScript.Echo ComputerName & “ is computer name"

WScript.Echo Hostname & “ is host name”

About the Author
Ed Wilson is an Enterprise Consultant who works with Microsoft. Prior to joining
Microsoft, Ed was a Senior Consultant with a solutions provider partner in Cincinnati.
He is also a Microsoft Certified Trainer and has taught numerous networking and
administration classes. His Microsoft Visual Basic Script (VBScript) workshop has been
taught to hundreds of premier customers, as well as to Microsoft employees. Ed has
written or contributed to seven books and holds nearly two dozen industry certifica€
tions including the MCSE and the CISSP.

	Cover
	Copyright

	Dedication
	Contents
	Acknowledgments
	About This Book
	A Practical Approach to Scripting
	Is This Book for Me?
	Outline of This Book
	Part 1: Covering the Basics
	Part 2: Basic Windows Administration
	Part 3: Advanced Windows Administration
	Part 4: Scripting Other Applications
	Part 5: Appendices

	About the Companion CD
	System Requirements
	Technical Support

	Part I Covering the Basics
	Chapter 1 Starting from Scratch
	Before You Begin
	Running Your First Script
	Header Information
	Reference Information
	Worker Information
	Output Information

	Enhancing Your Script
	Docs That Make House Calls

	Modifying an Existing Script
	Modifying the Header Information
	Modifying the Reference Information
	Modifying the Worker Information
	Modifying the Output information
	Summary

	Quiz Yourself
	On Your Own
	Lab 1 Exploring a VBScript
	Lab Instructions

	Lab 2 Customizing an Existing Script
	Scenario
	Lab Instructions

	Chapter 2 Getting in the Loop
	Before You Begin
	Adding Power to Scripts
	For Each…Next
	Header Information
	Reference Information
	Worker Information

	For…Next
	Header Information
	Reference Information
	Worker and Output Information

	Do While...Loop
	Header Information
	Reference Information
	Worker and Output Information

	Do Until...Loop
	Worker and Output Information
	Summary

	Quiz Yourself
	On Your Own
	Lab 3 Using the For Each…Next Command
	Lab Instructions

	Lab 4 Modifying the Ping Script
	Lab Instructions

	Chapter 3 Adding Intelligence
	Before You Begin
	If…Then
	Header Information
	Reference Information
	Worker and Output Information
	Intrinsic Constants

	If…Then…ElseIf
	Header Information
	Reference Information
	Worker and Output Information

	If…Then…Else
	Select Case
	Header Information
	Reference Information
	Worker and Output Information
	Summary

	Quiz Yourself
	On Your Own
	Lab 5 Modifying CPUType.vbs
	Lab Instructions

	Lab 6 Modifying ComputerRoles.vbs
	Scenario

	Chapter 4 The Power of Many
	Before You Begin
	Passing Arguments
	Command-Line Arguments
	Making the Change
	Running from the Command Prompt
	No Arguments?
	Creating a Useful Error Message

	Using Multiple Arguments
	Header Information
	Reference Information
	Worker and Output Information

	Tell Me Your Name
	Reasons for Named Arguments
	Making the Change to Named Arguments
	Running a Script with Named Arguments

	Working with Arrays
	Moving Past Lame Arrays
	Header Information
	Reference Information
	Worker and Output Information
	What Does UBound Mean?

	Two-Dimensional Arrays
	Mechanics of Two-Dimensional Arrays
	Header Information
	Reference Information
	Worker and Output Information
	Summary

	Quiz Yourself
	On Your Own
	Lab 7 Working with Passing Arguments
	Lab Instructions

	Lab 8 Building Arrays
	Lab Instructions

	Lab 9 Modifying a Script
	Lab Instructions

	Chapter 5 The Power of Many More
	Before You Begin
	Strings and Arrays
	Parsing Passed Text into an Array
	Header Information
	Reference Information
	Worker Information
	Output Information

	Parsing Passed Text
	Header Information
	Reference Information
	Worker Information
	Output Information

	Working with Dictionaries
	Using the Dictionary
	Adding Items to the Dictionary
	Summary

	Quiz Yourself
	Own Your Own
	Lab 10a Implementing Basics for the InStr Command
	Lab Instructions

	Lab 10b Understanding Advanced Features of the InStr Command
	Lab Instructions

	Lab 11 Creating a Dictionary
	Lab Instructions

	Part 2 Basic Windows Administration
	Chapter 6 Working with the File System
	Before You Begin
	Creating File System Object
	File It Under Files
	Header Information
	Reference Information
	Worker and Output Information

	File Properties
	File Attributes
	Implementing the Attributes Property
	Setting File Attributes

	A File, a File, I Need to Create a File
	Writing to a Text File
	How Shall I Write Thee? Let Me Count the Ways…
	Overwriting a File

	Existential File Approaches
	Summary

	Quiz Yourself
	On Your Own
	Lab 12 Creating Files
	Lab 13 Creating a Log File

	Chapter 7 Fun with Folders
	Before You Begin
	Working with Folders
	Creating the Basic Folder
	Header Information
	Reference Information
	Worker Information
	Output Information

	Automatic Cleanup
	Deleting a Folder
	Deleting Multiple Folders

	Binding to Folders
	Does the Folder Exist?

	Copying Folders
	Moving On Up
	Summary

	Quiz Yourself
	On Your Own
	Lab 14 Creating Folders
	Lab 15 Deleting Folders

	Chapter 8 Why Windows Management Instrumentation?
	Before You Begin
	What Is WMI?
	An Object in Any Other Namespace…
	More Than Just a Name

	Providers
	Adding a Touch of Class
	Querying WMI
	Header Information
	Reference Information
	Worker and Output Information
	Summary

	Quiz Yourself
	On Your Own
	Lab 16 Retrieving Hotfix Information
	Lab Instructions

	Lab 17 Echoing the Time Zone
	Lab Instructions

	Chapter 9 WMI Continued
	Before You Begin
	Alternate Ways of Configuring the WMI Moniker
	Accepting Defaults
	Reference Information
	Worker and Output Information

	Moniker Security Settings
	WbemPrivilege Has Its Privileges
	Summary

	Quiz Yourself
	On Your Own
	Lab 18a Using the Default WMI Moniker
	Lab Instructions

	Lab 18b Invoking the WMI Moniker to Display the Machine Boot Configuration
	Lab Instructions

	Lab 18c Including Additional Security Permissions
	Lab Instructions

	Lab 19 Using Win32_Environment and VBScript to Learn About WMI
	Lab Instructions

	Chapter 10 Using WMI Queries
	Before You Begin
	Tell Me Everything About Everything!
	Next
	Header information
	Reference Information

	Worker and Output Information
	Selective Data from All Instances
	Selecting Multiple Properties
	Specifying Specifics
	Smooth Operator
	Where Is the Where Clause?
	Summary

	Quiz Yourself
	On Your Own
	Lab 20 Writing an Informative WMI Script
	Lab Instructions

	Lab 21a Obtaining More Direct Information
	Lab Instructions

	Lab 21b Using a More Complicated Where Clause
	Lab Instructions

	Part 3 Advanced Windows Administration
	Chapter 11 Introduction to Active Directory Service Interfaces
	Before You Begin
	Working with ADSI
	Reference Information
	ADSI Providers
	LDAP Names
	Worker Information

	Output Information
	Creating Users
	Reference Information
	Worker Information
	Output Information
	Summary

	Quiz Yourself
	On Your Own
	Lab 22 Creating OUs
	Lab Instructions

	Lab 23 Creating Multi-Valued Users
	Lab Instructions

	Chapter 12 Reading and Writing for ADSI
	Before You Begin
	Working with Users
	General User Information
	Reference Information
	Worker Information
	Output Information

	Creating the Second Page
	Reference Information
	Worker Information
	Output Information

	Deleting Users
	Summary

	Quiz Yourself
	On Your Own
	Lab 24 Deleting Users
	Lab Instructions

	Lab 25 Using the Event Log
	Lab Instructions

	Chapter 13 Searching Active Directory
	Before You Begin
	Connecting to Active Directory to Perform a Search
	Header Information
	Reference Information
	Worker and Output Information

	Creating More Effective Queries
	Searching for Specific Types of Objects
	Reference Information
	Output Information

	What Is Global Catalog?
	Summary

	Quiz Yourself
	On Your Own
	Lab 26 Creating an ADO Query into Active Directory
	Lab Instructions

	Lab 27 Controlling How a Script Executes Against Active Directory
	Lab Instructions

	Chapter 14 Configuring Networking Components
	Before You Begin
	WMI and the Network
	Making the Connection
	Header Information
	Reference Information
	Worker and Output Information

	Changing the TCP/IP Settings
	Header Information
	Reference Information
	Worker and Output Information

	Merging WMI and ADSI
	Win32_NetworkAdapterConfiguration
	Summary

	Quiz Yourself
	On Your Own
	Lab 28 Using WMI to Assign Network Settings
	Lab Instructions

	Lab 29 Combining WMI and ADSI in a Script
	Lab Instructions

	Chapter 15 Subs and Other Round Things
	Before You Begin
	Working with Subroutines
	Calling the Subroutine
	Creating the Subroutine

	Creating Users and Logging Results
	Header Information
	Reference Information
	Worker Information
	Output Information
	Summary

	Quiz Yourself
	On Your Own
	Lab 30 Using ADSI and Subs, and Creating Users
	Lab Instructions

	Lab 31 Adding a Logging Subroutine
	Lab Instructions

	Chapter 16 Logon Scripts
	Before You Begin
	Working with IADsADSystemInfo
	Using Logon Scripts
	Deploying Logon Scripts
	Header Information
	Reference Information
	Worker Information

	Output Information
	Summary

	Quiz Yourself
	On Your Own
	Lab 32 Adding a Group to a Logon Script
	Lab Instructions

	Lab 33 Adding Logging to a Logon Script
	Lab Instructions

	Chapter 17 Working with the Registry
	Before You Begin
	First You Back Up
	Creating the WshShell Object
	Setting the comspec Variable
	Defining the Command Line

	Connecting to the Registry
	Header Information
	Reference Information
	Worker and Output Information

	Unleashing StdRegProv
	Creating Registry Keys
	Header Information
	Reference Information
	Worker and Output Information

	Writing to the Registry
	Deleting Registry Information
	Summary

	Quiz Yourself
	On Your Own
	Lab 34 Reading the Registry Using WMI
	Lab Instructions

	Lab 35 Creating Registry Keys
	Lab Instructions

	Chapter 18 Working with Printers
	Before You Begin
	Working with Win32_Printer
	Obtaining the Status of Printers
	Header Information
	Reference Information
	Worker Information
	Output Information

	Creating a Filtered Print Monitor
	Reference Information
	Output Information

	Monitoring Print Queues
	Worker and Output Information
	Summary

	Quiz Yourself
	On Your Own
	Lab 36 Monitoring Print Jobs
	Lab Instructions

	Lab 37 Checking the Status of a Print Server
	Lab Instructions

	Part 4 Scripting Other Applications
	Chapter 19 Managing IIS 6.0
	Before You Begin
	What’s in a Name?
	CIM_ManagedSystemElement
	CIM_Setting
	IIsStructuredDataClass
	CIM_Component
	CIM_ElementSetting
	Using MicrosoftIISv2

	Making the Connection
	Header Information
	Reference Information
	Worker and Output Information

	Creating a Website
	Header Information
	Reference Information
	Worker and Output Information
	Summary

	Quiz Yourself
	On Your Own
	Lab 38 Backing Up the Metabase
	Lab Instructions

	Lab 39 Importing the Metabase
	Lab Instructions

	Chapter 20 Working with Exchange 2003
	Before You Begin
	Working with the Exchange Provider
	Connecting to MicrosoftExchangeV2
	The Exchange_QueueSMTPVirtualServer Class
	Header Information
	Reference Information
	Worker Information
	Output Information

	Exchange Public Folders
	Exchange_FolderTree
	Summary

	Quiz Yourself
	On Your Own
	Lab 40 Using the Exchange_Logon Class
	Lab Instructions

	Lab 41 Using the Exchange_Mailbox Class
	Lab Instructions

	Part 5 Appendices
	Appendix A VBScript Documentation
	Constants
	VBScript Run-Time Errors
	VBScript Syntax Errors

	Appendix B ADSI Documentation
	Computer Object Mapping
	Domain Object User Interface Mapping
	Group Object User Interface Mapping
	Object Property Sheet
	Organizational Unit User Interface Mapping
	Printer Object User Interface Mapping
	Shared Folder Object User Interface Mapping
	User Object User Interface Mapping

	Appendix C WMI Documentation
	Win32 Classes
	WMI Providers
	WMI Scripting API Objects
	WMI Log Files

	Appendix D Documentation Standards
	Header Information Section
	Reference Information Section
	Worker Information Section
	Sample of Documentation Use

	About the Author

