
Mac/PC compatible

US $34.99
www.friendsofed.com
http://foundationphp.com

6 89253 59731 6

ISBN 1-59059-731-1

9 781590 597316

53499

this print for reference only—size & color not accurate spine = 0.924"  488 page count

DAVID POWERS 

In this book you’ll learn how to:

Create dynamic websites with design and usability in mind, as well as functionality 

Understand how PHP scripts work, giving you confidence to adapt them to your own needs

Bring online forms to life, check required fields, and ensure user input is safe to process

Upload files and automatically create thumbnails from larger images

Manage website content with a searchable database

You want to make your websites more dynamic 
by adding a feedback form, creating a private area

where members can upload images that are automati-
cally resized, or perhaps storing all your content in 
a database. The problem is, you’re not a programmer
and the thought of writing code sends a chill up your
spine. Or maybe you’ve dabbled a bit in PHP and
MySQL, but you can’t get past baby steps. If this
describes you, then you’ve just found the right book.

PHP and the MySQL database are deservedly the most
popular combination for creating dynamic websites.
They’re free, easy to use, and provided by many web
hosting companies in their standard packages.
Unfortunately, most PHP books either expect you to
be an expert already or force you to go through endless
exercises of little practical value. In contrast, this book
gives you real value right away through a series of
practical examples that you can incorporate directly
into your sites, optimizing performance and adding
functionality such as file uploading, email feedback
forms, image galleries, content management systems,

and much more. Each solution is created with not only
functionality in mind, but also visual design.

But this book doesn’t just provide a collection of ready-
made scripts: each PHP Solution builds on what’s gone
before, teaching you the basics of PHP and database
design quickly and painlessly. By the end of the book,
you’ll have the confidence to start writing your own
scripts or—if you prefer to leave that task to others—
to adapt existing scripts to your own requirements.

Right from the start, you’re shown how easy it is to
protect your sites by adopting secure coding practices.
The book has been written with an eye on forward and
backward compatibility—recommending the latest PHP
5 techniques, but providing alternative solutions for
servers still running PHP 4.3. All database examples
demonstrate how to use the original MySQL extension,
MySQL Improved, or the PHP Data Objects (PDO)
introduced in PHP 5.1, letting you choose the most
suitable option for your setup.

Po
w

ers

CYAN YELLOW
MAGENTA BLACK

P
H

P
 SO

LU
T
IO

N
S

Create dynamic websites with PHP
and MySQL, quickly and painlessly

Learn practical techniques that
you can use right away

Keep hackers at bay with secure
coding practicesSHELVING CATEGORY

1. PHP

Also Available

THE EASY WAY TO 

MASTER PHP!



PHP Solutions: Dynamic
Web Design Made Easy

David Powers

7311fm.qxd  10/20/06  10:46 AM  Page i



PHP Solutions: 
Dynamic Web Design Made Easy

Copyright © 2006 by David Powers

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher. 

ISBN-13 (pbk): 978-1-59059-731-6

ISBN-10 (pbk): 1-59059-731-1

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark

owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, 

or visit www.springeronline.com. 

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, 
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit www.apress.com. 

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work. 

The source code for this book is freely available to readers at www.friendsofed.com in the 
Downloads section.

Credits

Lead Editor
Chris Mills

Technical Reviewer
Samuel Wright

Editorial Board
Steve Anglin, Ewan Buckingham, Gary Cornell, Jason
Gilmore, Jonathan Gennick, Jonathan Hassell, James
Huddleston, Chris Mills, Matthew Moodie, Dominic

Shakeshaft, Jim Sumser, Keir Thomas, Matt Wade

Senior Project Manager
Kylie Johnston

Copy Edit Manager
Nicole Flores

Copy Editors
Nicole Flores, Ami Knox

Assistant Production Director
Kari Brooks-Copony

Senior Production Editor
Laura Cheu

Compositor
Molly Sharp

Artist
April Milne

Proofreader
Liz Welch

Indexer
John Collin

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

Cover Photography
David Powers

7311fm.qxd  10/20/06  10:46 AM  Page ii



CONTENTS AT A GLANCE

CONTENTS AT A GLANCE

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

About the Cover Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Intro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter 1: What Is PHP—And Why Should I Care? . . . . . . . . . . . . . 3

Chapter 2: Getting Ready to Work with PHP . . . . . . . . . . . . . . . . 15

Chapter 3: How to Write PHP Scripts . . . . . . . . . . . . . . . . . . . . . . 45

Chapter 4: Lightening Your Workload with Includes . . . . . . . . . . 89

Chapter 5: Bringing Forms to Life . . . . . . . . . . . . . . . . . . . . . . . . 117

Chapter 6: Uploading Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Chapter 7: Using PHP to Manage Files . . . . . . . . . . . . . . . . . . . . . 179

Chapter 8: Generating Thumbnail Images . . . . . . . . . . . . . . . . . . 211

Chapter 9: Pages That Remember: Simple Login 
and Multipage Forms . . . . . . . . . . . . . . . . . . . . . . . . . 233

Chapter 10: Setting Up MySQL and phpMyAdmin . . . . . . . . . . . 261

Chapter 11: Getting Started with a Database . . . . . . . . . . . . . . . 285

Chapter 12: Creating a Dynamic Online Gallery . . . . . . . . . . . . . 319

Chapter 13: Managing Content . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Chapter 14: Solutions to Common PHP/MySQL Problems . . . . . 381

Chapter 15: Keeping Intruders at Bay . . . . . . . . . . . . . . . . . . . . . 429

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

7311fm.qxd  10/20/06  10:46 AM  Page iii



7311fm.qxd  10/20/06  10:46 AM  Page iv



CONTENTS

About the Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

About the Technical Reviewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

About the Cover Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Intro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Chapter 1: What Is PHP—And Why Should I Care? . . . . . . . . . . . . . 3

Embracing the power of code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Creating pages that think for themselves . . . . . . . . . . . . . . . . . . . . . . . . . . 5
How hard is PHP to use and learn? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Can I just copy and paste the code? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
How safe is PHP? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

How to use this book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Using the download files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A note about versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
So, let’s get on with it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapter 2: Getting Ready to Work with PHP . . . . . . . . . . . . . . . . 15

What you need to write and test PHP pages . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Checking whether your website supports PHP . . . . . . . . . . . . . . . . . . . . . . . 16
Choosing a good script editor for PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Dreamweaver: Visual display of PHP output . . . . . . . . . . . . . . . . . . . . . . 17
GoLive CS2: Some useful features . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
EditPlus 2: Versatile text-only editor for Windows . . . . . . . . . . . . . . . . . . 19
BBEdit and TextMate: Script editors for Mac OS X . . . . . . . . . . . . . . . . . . 19

Checking your scripts with a file comparison utility . . . . . . . . . . . . . . . . . . . . 19
Deciding where to test your pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

What you need for a local test environment . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Individual programs or an all-in-one package? . . . . . . . . . . . . . . . . . . . . . . 21

7311fm.qxd  10/20/06  10:46 AM  Page v



Setting up on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Getting Windows to display filename extensions . . . . . . . . . . . . . . . . . . . . . 21
Choosing a web server for Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Installing Apache on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Starting and stopping Apache on Windows . . . . . . . . . . . . . . . . . . . . . . 24
Setting up PHP on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Downloading and configuring PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Adding PHP to your Windows startup procedure . . . . . . . . . . . . . . . . . . . 27

Configuring Apache to work with PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Configuring IIS to work with PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Testing PHP on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Setting up on Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Using Apache on Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Starting and stopping Apache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Where to locate your web files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Installing PHP on Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Using a Mac package for PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Configuring PHP to display errors on Mac OS X . . . . . . . . . . . . . . . . . . . 39
Testing PHP on Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Checking your PHP settings (Windows and Mac) . . . . . . . . . . . . . . . . . . . . . . . 41
What’s next? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Chapter 3: How to Write PHP Scripts . . . . . . . . . . . . . . . . . . . . . . 45

PHP: The big picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Telling the server to process PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Embedding PHP in a web page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Using variables to represent changing values . . . . . . . . . . . . . . . . . . . . . . . 48

Naming variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Assigning values to variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Ending commands with a semicolon . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Commenting scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Single-line comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Multiline comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Using arrays to store multiple values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
PHP’s built-in superglobal arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Understanding when to use quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Special cases: true, false, and null . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Making decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Making comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Using indenting and whitespace for clarity . . . . . . . . . . . . . . . . . . . . . . . . 59
Using loops for repetitive tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Using functions for preset tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Displaying PHP output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Joining strings together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Working with numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Understanding PHP error messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Now, on with the show . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

CONTENTS

vi

7311fm.qxd  10/20/06  10:46 AM  Page vi



PHP: A quick reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Using PHP in an existing website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Data types in PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Doing calculations with PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Arithmetic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Determining the order of calculations . . . . . . . . . . . . . . . . . . . . . . . . . 67
Combining calculations and assignment . . . . . . . . . . . . . . . . . . . . . . . . 68

Adding to an existing string . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
All you ever wanted to know about quotes—and more . . . . . . . . . . . . . . . . . 68

How PHP treats variables inside strings . . . . . . . . . . . . . . . . . . . . . . . . 69
Using escape sequences inside double quotes . . . . . . . . . . . . . . . . . . . . 70
Avoiding the need to escape quotes with heredoc syntax . . . . . . . . . . . . . . 70
Unraveling the magic quotes tangle . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Creating arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Using array() to build an indexed array . . . . . . . . . . . . . . . . . . . . . . . . 74
Using array() to build an associative array . . . . . . . . . . . . . . . . . . . . . . . 74
Using array() to create an empty array . . . . . . . . . . . . . . . . . . . . . . . . 74
Multidimensional arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Using print_r() to inspect an array . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

The truth according to PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Explicit Boolean values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Implicit Boolean values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Making decisions by comparing two values . . . . . . . . . . . . . . . . . . . . . . 77
Testing more than one condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Using the switch statement for decision chains . . . . . . . . . . . . . . . . . . . . 79
Using the conditional operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Creating loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Loops using while and do... while . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
The versatile for loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Looping through arrays with foreach . . . . . . . . . . . . . . . . . . . . . . . . . 82
Breaking out of a loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Modularizing code with functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Passing values to functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Returning values from functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Where to locate custom-built functions . . . . . . . . . . . . . . . . . . . . . . . . 85

PHP quick checklist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 4: Lightening Your Workload with Includes . . . . . . . . . . 89

Including code from other files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Introducing the PHP include commands . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Choosing the right filename extension for includes . . . . . . . . . . . . . . . . . . . . 94
Using PHP to identify the current page . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Creating pages with changing content . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Preventing errors when an include file is missing . . . . . . . . . . . . . . . . . . . . 112
Choosing where to locate your include files . . . . . . . . . . . . . . . . . . . . . . . 114
Security considerations with includes . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

CONTENTS

vii

7311fm.qxd  10/20/06  10:46 AM  Page vii



Chapter 5: Bringing Forms to Life . . . . . . . . . . . . . . . . . . . . . . . . 117

How PHP gathers information from a form . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Understanding the difference between post and get . . . . . . . . . . . . . . . . . . 119
Keeping safe with PHP superglobals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Sending email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Removing unwanted backslashes from form input . . . . . . . . . . . . . . . . . . . 124
Processing and acknowledging the message . . . . . . . . . . . . . . . . . . . . . . . 125

Validating user input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Making sure required fields aren’t blank . . . . . . . . . . . . . . . . . . . . . . . . . 130
Preserving user input when a form is incomplete . . . . . . . . . . . . . . . . . . . . 133
Filtering out potential attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Safely including the user’s address in email headers . . . . . . . . . . . . . . . . . . 139

Handling multiple-choice form elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Redirecting to another page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Chapter 6: Uploading Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

How PHP handles file uploads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Checking whether your server supports uploads . . . . . . . . . . . . . . . . . . . . 153
Adding a file upload field to a form . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Understanding the $_FILES array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Establishing an upload directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Creating an upload folder for local testing . . . . . . . . . . . . . . . . . . . . . 158
Uploading files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Moving the temporary file to the upload folder . . . . . . . . . . . . . . . . . . . . . 159
Removing spaces from filenames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Rejecting large files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Accepting only certain types of files . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Preventing files from being overwritten . . . . . . . . . . . . . . . . . . . . . . . . . 169
Organizing uploads into specific folders . . . . . . . . . . . . . . . . . . . . . . . . . 172
Uploading multiple files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Points to watch with file uploads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Chapter 7: Using PHP to Manage Files . . . . . . . . . . . . . . . . . . . . . 179

Checking that PHP has permission to open a file . . . . . . . . . . . . . . . . . . . . . . . 180
Configuration settings that affect file access . . . . . . . . . . . . . . . . . . . . . . . 180
Creating a file storage folder for local testing . . . . . . . . . . . . . . . . . . . . . . 181

Reading and writing files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Reading files in a single operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Opening and closing files for read/write operations . . . . . . . . . . . . . . . . . . . 187

Reading a file with fopen() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Replacing content with fopen() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Appending content with fopen() . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Writing a new file with fopen() . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Combined read/write operations with fopen() . . . . . . . . . . . . . . . . . . . 192
Moving the internal pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

CONTENTS

viii

7311fm.qxd  10/20/06  10:46 AM  Page viii



Exploring the file system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Inspecting a directory the quick way . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Opening a directory to inspect its contents . . . . . . . . . . . . . . . . . . . . . . . 196
Building a drop-down menu of files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Automatically creating the next file in a series . . . . . . . . . . . . . . . . . . . . . . 200

Opening remote data sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Creating a download link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

Chapter 8: Generating Thumbnail Images . . . . . . . . . . . . . . . . . . 211

Checking your server’s capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Manipulating images dynamically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Making a smaller copy of an image . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Getting ready . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Building the script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Resizing an image automatically on upload . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Further improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Transferring your test files to a remote server . . . . . . . . . . . . . . . . . . . . . . . . 230
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

Chapter 9: Pages That Remember: Simple Login and 
Multipage Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

What sessions are and how they work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Creating PHP sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Creating and destroying session variables . . . . . . . . . . . . . . . . . . . . . . . . 236
Destroying a session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
The “Headers already sent” error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Using sessions to restrict access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Using file-based authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Encrypting passwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Setting a time limit on sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Passing information through multipage forms . . . . . . . . . . . . . . . . . . . . . . . . 256
Coming up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Chapter 10: Setting Up MySQL and phpMyAdmin . . . . . . . . . . . 261

Why MySQL? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Which version? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Installing MySQL on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Changing the default table type on Windows Essentials . . . . . . . . . . . . . . . . 268
Starting and stopping MySQL manually on Windows . . . . . . . . . . . . . . . . . . 268
Using the MySQL monitor on Windows . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Updating the PHP connector files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

CONTENTS

ix

7311fm.qxd  10/20/06  10:46 AM  Page ix



Setting up MySQL on Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
Adding MySQL to your PATH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Securing MySQL on Mac OS X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

Using MySQL with a graphical interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Setting up phpMyAdmin on Windows and Mac . . . . . . . . . . . . . . . . . . . . . 277
Launching phpMyAdmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Logging out of phpMyAdmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Backup and data transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Looking ahead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Chapter 11: Getting Started with a Database . . . . . . . . . . . . . . . 285

How a database stores information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
How primary keys work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Linking tables with primary and foreign keys . . . . . . . . . . . . . . . . . . . . . . . 288
Breaking down information into small chunks . . . . . . . . . . . . . . . . . . . . . . 289
Checkpoints for good database design . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Setting up the phpsolutions database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
MySQL naming rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

Case sensitivity of names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Using phpMyAdmin to create a new database . . . . . . . . . . . . . . . . . . . . . . 291
Creating database-specific user accounts . . . . . . . . . . . . . . . . . . . . . . . . . 291
Creating a database table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Inserting records into a table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

Choosing the right column type in MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Storing text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Storing numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Storing dates and times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Storing predefined lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Storing binary data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Connecting to MySQL with PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Checking your remote server setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
How PHP communicates with MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

Connecting with the original MySQL extension . . . . . . . . . . . . . . . . . . . 303
Connecting with the MySQL Improved extension . . . . . . . . . . . . . . . . . . 304
Connecting with PDO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

Building a database connection function . . . . . . . . . . . . . . . . . . . . . . . . . 305
Finding the number of results from a query . . . . . . . . . . . . . . . . . . . . . . . 308
Displaying the results of a query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
MySQL connection crib sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

Chapter 12: Creating a Dynamic Online Gallery . . . . . . . . . . . . . 319

Why not store images in a database? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Planning the gallery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Converting the gallery elements to PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

CONTENTS

x

7311fm.qxd  10/20/06  10:46 AM  Page x



Building the dynamic elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Passing information through a query string . . . . . . . . . . . . . . . . . . . . . . . 327
Creating a multicolumn table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
Paging through a long set of records . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Selecting a subset of records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
Navigating through subsets of records . . . . . . . . . . . . . . . . . . . . . . . . 336

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Chapter 13: Managing Content . . . . . . . . . . . . . . . . . . . . . . . . . . 341

Keeping your data safe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
Understanding the danger of SQL injection . . . . . . . . . . . . . . . . . . . . . . . 342
Basic rules for writing SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

SQL is case-insensitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Whitespace is ignored . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Strings must be quoted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Handling numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

Incorporating variables into SQL queries . . . . . . . . . . . . . . . . . . . . . . . . . 344
Direct incorporation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
MySQLI prepared statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
PDO prepared statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

Setting up a content management system . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Creating the journal database table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
Creating the basic insert and update form . . . . . . . . . . . . . . . . . . . . . . . . 350
Inserting new records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Linking to the update and delete pages . . . . . . . . . . . . . . . . . . . . . . . . . 356
Updating records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Deleting records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
A quick warning about extract() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Reviewing the four essential SQL commands . . . . . . . . . . . . . . . . . . . . . . . . . 374
SELECT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
INSERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
UPDATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

Security and error messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379

Chapter 14: Solutions to Common PHP/MySQL Problems . . . . . 381

Displaying a text extract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Extracting a fixed number of characters . . . . . . . . . . . . . . . . . . . . . . . . . 382

Using PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Using MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

Ending an extract on a complete word . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Extracting the first paragraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Displaying paragraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Extracting complete sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

CONTENTS

xi

7311fm.qxd  10/20/06  10:46 AM  Page xi



Let’s make a date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
How MySQL handles dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Formatting dates in a SELECT query . . . . . . . . . . . . . . . . . . . . . . . . . 389
Adding to and subtracting from dates . . . . . . . . . . . . . . . . . . . . . . . . 390

Working with dates in PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Setting the correct time zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Creating a Unix timestamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Formatting dates in PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394

Inserting dates into MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
Working with multiple database tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Understanding table relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Linking an image to an article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
Selecting records from multiple tables . . . . . . . . . . . . . . . . . . . . . . . . . . 410
Finding records that don’t have a matching foreign key . . . . . . . . . . . . . . . . 414
Creating an intelligent link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Creating a lookup table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Setting up the categories and lookup tables . . . . . . . . . . . . . . . . . . . . . 418
Inserting new records with a lookup table . . . . . . . . . . . . . . . . . . . . . . . . 418

Adding a new category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Updating records with a lookup table . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Deleting records that have dependent foreign keys . . . . . . . . . . . . . . . . . . . 425

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

Chapter 15: Keeping Intruders at Bay . . . . . . . . . . . . . . . . . . . . . 429

Choosing an encryption method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Using one-way encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Creating a table to store users’ details . . . . . . . . . . . . . . . . . . . . . . . . . . 431
Registering new users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Using two-way encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438
Creating the table to store users’ details . . . . . . . . . . . . . . . . . . . . . . . . . 438
Registering new users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
User authentication with two-way encryption . . . . . . . . . . . . . . . . . . . . . . 440
Decrypting a password . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Updating user details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
Where next? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444

CONTENTS

xii

7311fm.qxd  10/20/06  10:46 AM  Page xii



ABOUT THE AUTHOR

David Powers is a professional writer who has been involved in elec-
tronic media for more than 30 years, first with BBC radio and televi-
sion and more recently with the Internet. This is the seventh book he
has written or co-authored for friends of ED/Apress, including the
highly successful Foundation PHP for Dreamweaver 8 (ISBN: 1-59059-
569-6) and Foundation PHP 5 for Flash (ISBN: 1-59059-466-5). He is
an Adobe Community Expert for Dreamweaver, and provides regular
support and advice on PHP and other aspects of web development in
several online forums, including friends of ED at www.friendsofed.com/
forums.

What started as a mild interest in computing was transformed almost overnight into a pas-
sion, when David was posted to Japan in 1987 as BBC correspondent in Tokyo. With no cor-
porate IT department just down the hallway, he was forced to learn how to fix everything
himself. When not tinkering with the innards of his computer, he was reporting for BBC TV
and radio on the rise and collapse of the Japanese bubble economy. Since leaving the BBC to
work independently, he has built up an online bilingual database of economic and political
analysis for Japanese clients of an international consultancy.

When not pounding the keyboard writing books or dreaming of new ways of using PHP and
other programming languages, David enjoys nothing better than visiting his favorite sushi
restaurant. He has also translated several plays from Japanese.

7311fm.qxd  10/20/06  10:46 AM  Page xiii



ABOUT THE TECHNICAL REVIEWER

Samuel Wright is a technical writer and web programmer living near Oxford, England. He is
interested in using computers to facilitate routine tasks, and he enjoys learning about new
technologies and writing about them. The downside to these interests is spending long hours
wrestling with abstruse writing software.

Samuel graduated from the University of Manchester Institute of Science and Technology
(UMIST) with a degree in physics, and he has held various positions since. He is currently
employed full time at Celoxica as a technical writer.

Samuel runs a music webzine, Lykoszine (www.lykoszine.co.uk), and spends much of his
time listening to as much heavy music as he can get his hands on. His remaining time is spent
reading, juggling, and hiking.

7311fm.qxd  10/20/06  10:46 AM  Page xiv



ABOUT THE COVER IMAGE

The photo on the front cover is a picture I took of the stone water basin behind the monks’
quarters at Ryoanji temple in Kyoto, Japan. Ryoanji is perhaps best known for its rock
garden—15 stones in a sea of white gravel. It’s designated by UNESCO as a World Heritage
Site, but was once infamously described by the British travel writer A. A. Gill as “an imprac-
tical joke, medieval builder’s rubbish.” Although I’ve visited Ryoanji on several occasions,
when I went there in early winter 2005, the garden wall was being restored, so for once it
did really look like a builder’s yard. Instead of contemplating the rocks and gravel, I spent
my time admiring this simple, but beautiful water basin.

But why put it on the cover of a book about PHP? Well, apart
from the fact that it’s a nice photograph, the crystal clear water
trickling into the basin through the bamboo pipe symbolizes
for me a constant flow of fresh ideas, a fount of knowledge,
just like the Internet. Viewed from above, the water basin also
has a fascinating inscription (illustrated alongside).

Read clockwise from the left side, the characters mean arrow,
five, short-tailed bird. The final character, at the bottom, has no
meaning on its own—and that’s the clue. In combination with
the square opening of the basin, it forms the character for suf-
ficient. In fact, the mouth of the basin is an integral part of the
inscription. Each character combines with it to form a completely different one.

Once you unlock the secret, it forms the following sentence: ware tada taru wo shiru.
Roughly translated, this means “I know only satisfaction” or “I am content with what I have.” 

This is an important concept in Zen philosophy—knowledge for its own sake is sufficient. A
person who learns to become content is rich in spirit, even if not in material terms. The more
you think about it, the deeper its meaning becomes. Just like the rock garden—if all you can
see is a pile of rubble, you have missed the point.

7311fm.qxd  10/20/06  10:46 AM  Page xv



xvi

ABOUT THE COVER IMAGE

However, the subtitle of this book is not Zen and the Art of Website Maintenance (apolo-
gies to Robert M. Pirsig). I want this book to teach you practical skills. At the same time,
the inscription on this water basin embodies an important message that applies very much
to creating dynamic websites with PHP. The solution to a problem may not always be
immediately obvious, but creative thinking will often lead you to the answer. There is no
single “right” way to build a dynamic website. The more you experiment, the more inven-
tive your solutions are likely to become.

7311fm.qxd  10/20/06  10:46 AM  Page xvi



INTRODUCTION

Dynamic Web Design Made Easy—that’s a pretty bold claim. How easy is easy?

It’s not like an instant cake mix: just add water and stir. Dynamic web design is—well—
dynamic. Every website is different, so it’s impossible to grab a script, paste it into a web
page, and expect it to work. Building dynamic sites involves diving into the code and adjust-
ing it to your own requirements. If that thought makes you break out in a cold sweat, just
relax for a moment. PHP is not difficult, and I’ve written this book very much with the non-
programmer in mind.

I’ve done so because I don’t come from a computing background myself. In fact, I went to
school in the days before pocket calculators were invented, never mind personal computers.
As a result, I don’t assume that you drank in knowledge of arrays, loops, and conditional
statements with your mother’s milk. Everything is explained in plain, straightforward lan-
guage, and I’ve highlighted points where things may go wrong, with advice on how to solve
the problem. At the same time, if you’re working with computers and websites, you’re bound
to have a certain level of technical knowledge and skill. So I don’t talk down to you either.

Over the years, I’ve read a lot of books about PHP and MySQL. The one thing that’s missing
from all of them is any concept of visual design. So I decided to be different. I picked a hand-
ful of the best photographs I took on a visit to Japan in late 2005 and incorporated them into
a site called Japan Journey (http://foundationphp.com/phpsolutions/journey/), which
features throughout the book. I wanted to show that sites powered by PHP don’t have to
look boring; in fact, they shouldn’t—visual appeal is an essential part of any website. All the
pages are built in standards-compliant XHTML and styled with Cascading Style Sheets (CSS).
However, the main focus remains firmly on working with PHP and MySQL, teaching you how
to add a wealth of dynamic features to a website.

Some of the things you’ll learn by working through this book include the following:

Displaying random images of different sizes

Uploading images and automatically making copies that conform to a maximum size

Creating an online photo gallery

Building a navigation system to page through a long set of database results

7311fm.qxd  10/20/06  10:46 AM  Page xvii



Displaying a summary of a long article and linking to the full text

Protecting parts of your site with user authentication

You’ll also learn how to process user input from every type of form element—text fields,
drop-down menus, check boxes, and so forth. Most important of all, you’ll see how a few
simple checks can guard your websites and databases from malicious attack.

In this book, I’ve followed the same technique that has proved successful in Foundation
PHP 5 for Flash and Foundation PHP for Dreamweaver 8. Each chapter takes you through a
series of stages in a single project, with each stage building on the previous one. By work-
ing through the chapter, you get the full picture of how everything fits together. You can
later refer back to the individual stages to refresh your memory about a particular tech-
nique. Although this isn’t a reference book, Chapter 3 is a primer on PHP syntax, and some
chapters contain short reference sections—notably Chapter 7 (reading from and writing to
files), Chapter 9 (PHP sessions), Chapter 11 (MySQL data types and connection com-
mands), and Chapter 13 (the four essential SQL commands).

So, to return to the original question: how easy is easy? I have done my best to ease your
path, but there is no snake oil or magic potion. It will require some effort on your part.
Don’t attempt to do everything at once. Add new dynamic features to your site a few at a
time. Get to understand how they work, and your efforts will be amply rewarded. Adding
PHP and MySQL to your skills will enable you to build websites that offer much richer con-
tent and an interactive user experience.

It’s been great fun writing this book, and the process has been smoothed all the way by
the editorial team at friends of ED/Apress led admirably—as ever—by Chris Mills, the man
with the psychedelic stuffed chicken (www.flickr.com/photos/chrismills/124635002/).
Special thanks go also to Samuel Wright for his helpful technical review, Kylie Johnston for
keeping the project on an even keel, Nicole Flores and Ami Knox for their sensitive copy
editing, Laura Cheu for overseeing the process of turning my words and pictures into the
book you’re now reading, and everybody else who toiled behind the scenes.

My greatest thanks of all go to you for buying this book. What do you mean you haven’t
bought it yet? Rush over to the checkout counter and buy it now. Then let the fun begin.
If you enjoy what you’re doing, then everything becomes easy.

xviii

INTRODUCTION

7311fm.qxd  10/20/06  10:46 AM  Page xviii



7311fm.qxd  10/20/06  10:46 AM  Page xix



1 WHAT IS PHP—AND WHY 
SHOULD I CARE?

7311ch01.qxd  10/10/06  10:08 PM  Page 3



What this chapter covers:

Understanding what PHP can do

Is PHP difficult?

Is PHP safe?

Using the download files

One of the first things most people want to know about PHP is what the initials stand 
for. Then they wish they had never asked. Officially, PHP stands for PHP: Hypertext
Preprocessor. It’s an ugly name that gives the impression that it’s strictly for nerds or pro-
pellerheads. Nothing could be further from the truth.

PHP is a scripting language that brings websites to life in the following ways:

Sending feedback from your website directly to your mailbox

Sending email with attachments

Uploading files to a web page

Watermarking images

Generating thumbnails from larger images

Displaying and updating information dynamically

Using a database to display and store information 

Making websites searchable

And much more . . .

PHP is easy to learn; it’s platform-neutral, so the same code runs on Windows, Mac OS X,
and Linux; and all the software you need to develop with PHP is open source and therefore
free. There was a brief debate on the PHP General mailing list (http://news.php.net/
php.general) in early 2006 about changing what PHP stands for. Small wonder, then, that
it drew the comment that people who use PHP are Positively Happy People. The aim of this
book is to help you become one too.

PHP started out as Personal Home Page in 1995, but it was decided to change the name a
couple of years later, as it was felt that Personal Home Page sounded like something for
hobbyists, and didn’t do justice to the range of sophisticated features that had been
added. Since then, PHP has developed even further, adding extensive support for object-
oriented programming (OOP) in PHP 5. One of the language’s great attractions, though, is
that it remains true to its roots. You can start writing useful scripts very quickly without the
need to learn lots of theory, yet be confident in the knowledge that you’re using a tech-
nology with the capability to develop industrial-strength applications. Although PHP sup-
ports OOP, it’s not an object-oriented language, and the scripts in this book concentrate
on simpler techniques that are quick and easy to implement. If they help you to achieve
what you want, great; if they inspire you to take your knowledge of PHP to the next level,
even better.

Make no mistake, though. Using simple techniques doesn’t mean the solutions you’ll find
in these pages aren’t powerful. They are.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

4

7311ch01.qxd  10/10/06  10:08 PM  Page 4



Embracing the power of code
If you’re the sort of web designer or developer who uses a visual design tool, such as
Dreamweaver, GoLive, or FrontPage, and never looks at the underlying code, it’s time to
rethink your approach. You’re rapidly becoming an endangered species—and not the furry
or cuddly sort that environmentalists will campaign to save from extinction. Good-looking
design is definitely a top priority—and always will be—but it’s no longer enough on its
own. Designers need to have a solid grasp of the underlying structure of their pages. That
means a knowledge of Hypertext Markup Language (HTML)—or its more recent incarna-
tion, Extensible Hypertext Markup Language (XHTML)—and Cascading Style Sheets (CSS).

The CSS Zen Garden, cultivated by Dave Shea, played a pivotal role in convincing 
designers of the power of code. The underlying XHTML of every page showcased at
www.csszengarden.com is identical, but as Figure 1-1 shows, the CSS produces stunningly
different results. You don’t need to be a CSS superhero, but as long as you have a good
understanding of the basics of XHTML and CSS, you’re ready to take your web design skills
to the next stage by adding PHP to your arsenal.

Figure 1-1. CSS Zen Garden has opened the eyes of web designers to the importance of code.

Creating pages that think for themselves

PHP is a server-side language. That means it runs on the web server, unlike CSS or
JavaScript, which run on the client side (that is, the computer of the person visiting your
site). This gives you much greater control. As long as the code works on your server,
everyone receives the same output. For instance, Chapter 4 shows you how to create a
random image generator with PHP. You can do the same thing with JavaScript, but what
visitors to your site actually see depends on two things: JavaScript being enabled in their
web browser, and the browser they are using understanding the version of JavaScript you
have used. With PHP, this doesn’t matter, because the dynamic process takes place entirely

WHAT IS PHP—AND WHY SHOULD I  CARE?

5

1

7311ch01.qxd  10/10/06  10:08 PM  Page 5



on the server and creates the XHTML needed to display the page with a random choice 
of image. The server chooses the image filename and inserts it into the <img> tag before
sending the page to the browser. You can even use images of different sizes, because the
PHP code detects the dimensions of the image and inserts the correct width and height
attributes.

What PHP does is enable you to introduce logic into your web pages. Chapter 3 covers 
this subject in detail, but this logic is based on alternatives. If it’s Wednesday, show
Wednesday’s TV schedules . . . If the person who logs in has administrator privileges, dis-
play the admin menu; otherwise, deny access . . . that sort of thing.

PHP bases some decisions on information that it gleans from the server: the date, the time,
the day of the week, information held in the page’s URL, and so on. At other times, the
decisions are based on user input, which PHP extracts from XHTML forms. As a result, you
can create an infinite variety of output from a single script. For example, if you visit my
blog at http://foundationphp.com/blog/ (see Figure 1-2), and click various internal links,
what you see is always the same page, but with different content. Admittedly, I tend to
write always about the same kinds of subjects, but that’s my fault, not PHP’s.

Figure 1-2. Blogs are a good example of sites ideally suited to PHP.

Another website that I have created and maintained for several years, a subscription-only
Japanese-language site (see Figure 1-3), is driven entirely by PHP. The navigation menu
appears on every page of the site, but it’s contained in a completely separate file, so if it

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

6

7311ch01.qxd  10/10/06  10:08 PM  Page 6



ever needs updating, I need to change only one page. Even though the menu is always
generated by the same page, a little bit of PHP magic automatically highlights the correct
button for the current page. You’ll learn how to move an existing navigation bar to an
external file and implement automatic highlighting in Chapter 4.

Because the site is subscription-only, users need to log in at the top right of the page to see
the content, more than 14,000 articles in Japanese and English stored in a searchable data-
base. When I log in, though, I get to see much more than anyone else: my security setting
gives me administrator status, which enables me to insert new articles, edit existing ones,
and register new users. You won’t be building anything quite so ambitious in this book, but
Chapters 9 through 15 teach you how to control access to your site with PHP sessions, as
well as how to create a content management system with PHP and the MySQL relational
database management system. Don’t worry if you haven’t worked with MySQL before;
Chapter 10 shows you how to install it. Like PHP, it’s open source and free for most users.

Figure 1-3. PHP not only drives all the logic behind this online database, but also restricts access to
subscribers.

Other important uses for PHP in a website are sending email and uploading files, subjects
covered in Chapters 5 and 6. By the time you finish this book, you’ll wonder how you ever
managed without PHP. 

So how difficult is it going to be?

WHAT IS PHP—AND WHY SHOULD I  CARE?

7

1

7311ch01.qxd  10/10/06  10:08 PM  Page 7



How hard is PHP to use and learn?

PHP isn’t rocket science, but at the same time, don’t expect to become an expert in five
minutes. If you’re a design-oriented person, you may find it takes time to get used to the
way PHP is written. What I like about it very much is that it’s succinct. For instance, in clas-
sic ASP, to display each word of a sentence on a separate line, you have to type out all this:

<%@ Language=VBScript %>
<% Option Explicit %>
<%
Dim strSentence, arrWords, strWord
strSentence = "ASP uses far more code to do the same as PHP"
arrWords = Split(strSentence, " ", -1, 1)
For Each strWord in arrWords
Response.Write(strWord)
Response.Write("<br />")

Next
%>

In PHP, it’s simply

<?php
$sentence = 'ASP uses far more code to do the same as PHP';
$words = explode(' ', $sentence);
foreach ($words as $word) {
echo "$word<br />";
}

?>

That may not seem a big difference, but the extra typing gets very tiresome over a long
script. PHP also makes it easy to recognize variables, because they always begin with $.
Most of the functions have very intuitive names. For example, mysql_connect() connects
you to a MySQL database. Even when the names look strange at first sight, you can often
work out where they came from. In the preceding example, explode() “blows apart” text
and converts it into an array of its component parts. Don’t worry if you don’t know what
variables, functions, or arrays are: they’re all explained in Chapter 3, along with the other
main things you need to know about the basics of PHP.

Perhaps the biggest shock to newcomers is that PHP is far less tolerant of mistakes than
browsers are with XHTML. If you omit a closing tag in XHTML, most browsers will still ren-
der the page. If you omit a closing quote, semicolon, or brace in PHP, you’ll get an uncom-
promising error message like that shown in Figure 1-4. This isn’t just a feature of PHP, but
of all server-side technologies, including ASP, ASP.NET, and ColdFusion. It’s why you need
to have a reasonable understanding of XHTML and CSS before embarking on PHP. If the
underlying structure of your web pages is shaky to start with, your learning curve with PHP
will be considerably steeper.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

8

7311ch01.qxd  10/10/06  10:08 PM  Page 8



Figure 1-4. Server-side languages like PHP are intolerant of most coding errors.

PHP isn’t like XHTML: you can’t choose from a range of PHP editors that generate all the
code for you automatically. Dreamweaver does have considerable support for PHP, and it
automates a lot of code generation, mainly for integrating web pages with the MySQL
database. Even so, most of the techniques in this book still need to be coded by hand in
Dreamweaver. For more details of what Dreamweaver can do with PHP, see my book
Foundation PHP for Dreamweaver 8 (friends of ED, ISBN: 1-59059-569-6).

Can I just copy and paste the code?

There’s nothing wrong with copying the code in this book. That’s what it’s there for.
Copying is the way we all learn as children, but most of us progress from the copycat stage
by asking questions and beginning to experiment on our own. Rather than attempt to
teach you PHP by going through a series of boring exercises that have no immediate value
to your web pages, I’ve structured this book so that you jump straight into applying your
newfound knowledge to practical projects. At the same time, I explain what the code is for
and why it’s there. Even if you don’t understand exactly how it all works, this should give
you sufficient knowledge to know which parts of the code to adapt to your own needs and
which parts are best left alone.

If you’re completely new to PHP, I suggest that you read at least the first six chapters in the
order they appear. Chapter 3 covers all the basics of writing PHP. The first half of the

WHAT IS PHP—AND WHY SHOULD I  CARE?

9

1

7311ch01.qxd  10/10/06  10:08 PM  Page 9



chapter offers a bird’s-eye view of the language and is probably all that you need to read
before moving on to work with PHP in the following chapter. But you should come back
regularly to the second half of Chapter 3 to fill in the details of PHP syntax. It’s also a good
idea to work through the PHP Solutions in each chapter in order, because each one builds
on what goes before.

If you’ve already got the basics of PHP under your belt, you’ll be able to hop about more
freely, picking the solutions that are of more immediate interest to you. However, I rec-
ommend that you still read each chapter in its entirety. One of the features of this book is
its emphasis on security. You may miss some important information if you read only part
of a chapter.

How safe is PHP?

PHP is like the electricity or kitchen knives in your home: handled properly, it’s very safe;
handled irresponsibly, it can do a lot of damage. One of the inspirations for this book was
the spate of email header injection attacks that erupted in late 2005. This type of attack
exploits a vulnerability in a popular technique and enables the attacker to turn an online
form into a spam relay. Few people were immune. I certainly wasn’t, but once I was alerted
to the problem, I plugged the hole and stopped the attacks in their tracks. However, day
after day, people were sending frantic pleas for help to online forums. Even when they
were told how to deal with the problem, their response became even more frantic. Many
admitted they didn’t know the first thing about any of the code they were using in their
websites. For someone building websites as a hobby, this might be understandable, but
many of these people were “professionals” who had built sites on behalf of clients. The
clients were naturally unhappy when their mailboxes started filling with spam. They were
no doubt even unhappier when their domains were suspended by hosting companies fed
up with insecure scripts on their servers.

The moral of this story is not that PHP is unsafe; nor does everyone need to become a
security expert to use PHP. What is important is to understand the basic principle of PHP
safety: always check user input before processing it. You’ll find that to be a constant theme
throughout this book. Most security risks can be eliminated with very little effort. The
other important thing is to know enough about scripts that you’re using, so that if a prob-
lem arises, you can implement any remedies suggested to you by the author of the script
or another expert.

How to use this book
PHP books tend to fall into three broad categories: beginner’s tutorials, cookbooks for
experienced users, and project-based books. This book tries to steer a middle course. It
assumes no prior knowledge of PHP or MySQL, but is intended to be of equal value to
designers and developers who already have some experience of these technologies. The
approach I have taken is to explain each section of code in sufficient detail so that readers
of all levels should be able to follow. However, the basic reference material is concen-
trated in Chapter 3, so more advanced readers shouldn’t find themselves needing to wade
through stuff they already know.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

10

7311ch01.qxd  10/10/06  10:08 PM  Page 10



Because the book is aimed at web designers, most of the material centers on the Japan
Journey site shown in Figure 1-4 (you can also view it online at http://foundationphp.com/
phpsolutions/site). It’s not intended to be a book-long case study that you’re expected
to build chapter by chapter. Most PHP books concentrate solely on code and pay zero
attention to design, so the idea is to show you that pages built with PHP don’t need to look
ugly. You also see how to integrate PHP into an existing website. The emphasis is on
enhancing your sites rather than building complex PHP applications from scratch.

Using the download files

PHP sites need to be located where the scripts can be processed by the web server.
Normally, this means keeping them in a folder inside the Apache document root or an IIS
virtual directory. Full instructions for setting up a local test environment are given in the
next chapter. If you follow the recommendations there, Windows users should create a
folder called C:\htdocs\phpsolutions if using Apache or create a virtual directory called
phpsolutions in IIS. On Mac OS X, the phpsolutions folder should be located inside the
Sites subfolder of your home folder.

A ZIP file containing the code for this book is available for download at www.
friendsofed.com—it contains the following four folders:

assets: CSS for the Japan Journey site and other pages

downloads: All the source files arranged by chapter

images: The images used on the Japan Journey site and other pages

includes: Originally empty

Copy these four folders and their contents to the phpsolutions folder. When working
with the example files in Chapter 3, view them in your browser by typing the following
URL into the browser address bar on Windows (using the actual filename instead of
filename.php):

http://localhost/phpsolutions/downloads/ch03/filename.php

On Mac OS X, use the following URL (using your own Mac username instead of username
and the actual filename instead of filename.php):

http://localhost/~username/phpsolutions/downloads/ch03/filename.php

Most of the code for Chapter 4 and beyond should be copied from the appropriate sub-
folder of the downloads folder into the main phpsolutions folder (the Japan Journey site
root). Where a page undergoes several changes in the course of a chapter, I have num-
bered the different versions like this: index01.php, index02.php, and so on. When copying
a file into the site root, remove the number from the filename, so index02.php becomes
index.php. If you are using a program like Dreamweaver, which prompts you to update
links when moving files from one folder to another, do not update them. The files are all
designed to pick up the correct images and stylesheets when located in the site root. I
have done this so that you can use a file comparison utility to compare your code with
mine (instructions for how to do this are in the next chapter).

WHAT IS PHP—AND WHY SHOULD I  CARE?

11

1

7311ch01.qxd  10/10/06  10:08 PM  Page 11



The download files for each chapter contain a complete set of all files, apart from the
images and stylesheets, which are common to all chapters. This means you can safely
move back and forth through the book and always have the right files to work with. Each
chapter gives instructions about which files to use and whether they need to be copied to
a particular folder. The URL for the Japan Journey site on Windows is

http://localhost/phpsolutions/index.php

On Mac OS X the URL is

http://localhost/~username/phpsolutions/index.php

The layout of the Japan Journey site is controlled by CSS. Since this is a book about PHP, it
doesn’t go into details about the style rules or classes, although the stylesheets are fully
commented. To brush up on your CSS skills, take a look at Web Designer’s Reference: An
Integrated Approach to Web Design with XHTML and CSS by Craig Grannell (friends of ED,
ISBN: 1-59059-430-4) and CSS Mastery: Advanced Web Standards Solutions by Andy Budd
(friends of ED, ISBN: 1-59059-614-5).

A note about versions
New versions of open source software are often released at a fast and furious pace. Most
of the time, the new versions are just bug fixes, and the basic software is installed and
operates in exactly the same way as in the previous versions. Sometimes, though, what
should be a minor version upgrade results in significant changes that can confuse new-
comers. This book is based on the following versions:

Apache 2.2.3 and Apache 2.0.59 (Windows), Apache 1.3.33 (Mac) 

PHP 5.2.0 Release Candidate 4 (Windows), PHP 5.1.6 (Mac)

MySQL 5.0.24

phpMyAdmin 2.8.2.4

New versions will inevitably come out during the lifetime of this book. My advice is to
install the most recent version available for your operating system. As this book was about
to go to press, the PHP development team was in the final stages of testing PHP 5.2.0, the
first official version compatible with Apache 2.2 on Windows. However, Mac OS X still ships
with the Apache 1.3 series as the default installation. Quite honestly, the 1.3 series is more
than adequate for a local testing environment.

By the time you read this, the Windows version of PHP should support Apache 2.2, but in
case of an unforeseen hitch, the instructions in the next chapter cover both Apache 2.0
and 2.2. If there are any significant changes to the installation or operation of PHP, MySQL,
or phpMyAdmin, they will be posted on the friends of ED website at www.friendsofed.com
or my website at http://foundationphp.com/phpsolutions.

Some people go to great lengths to find old versions of PHP or MySQL so that they can
install the same setup as their hosting company. This is totally unnecessary. If anything, you
should be pressuring your hosting company to upgrade to the latest versions. Not only do

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

12

7311ch01.qxd  10/10/06  10:08 PM  Page 12



they have more features, but also they are usually safer. Nevertheless, this book has been
written with both backward and forward compatibility in mind. Except where noted, all the
code in this book should run on PHP 4.3.1 and MySQL 3.23.32 or later. I have also deliber-
ately avoided using any code that is likely to break in PHP 6.

So, let’s get on with it . . .
This chapter has provided only a brief overview of what PHP can do to add dynamic fea-
tures to your websites and what you can expect from the rest of this book. The first stage
in working with PHP is to set up a testing environment. The next chapter covers the
process in detail for both Windows and Mac OS X.

WHAT IS PHP—AND WHY SHOULD I  CARE?

13

1

7311ch01.qxd  10/10/06  10:08 PM  Page 13



7311ch02.qxd  10/10/06  10:14 PM  Page 14



2 GETTING READY TO WORK 
WITH PHP 

7311ch02.qxd  10/10/06  10:14 PM  Page 15



What this chapter covers:

Determining what you need

Deciding whether to create a local testing setup

Using a ready-made package

Doing it yourself—setting up Apache and PHP on Windows and Mac OS X

Getting PHP to work with IIS on Windows

Making sure PHP has the right settings

Now that you’ve decided to use PHP to enrich your web pages, you need to make sure that
you have everything you need to get on with the rest of this book. Although you can test
everything on your remote server, it’s usually more convenient to test PHP pages on your
local computer. Everything you need to install is free. In this chapter, I’ll explain the various
options and give instructions for both Windows and Mac OS X.

What you need to write and test PHP pages
PHP is written in plain text, so you don’t need any special authoring software. However,
your life will be a lot easier if you choose a good script editor. I’ll offer some advice on
what to look for. The other thing you need is a web server capable of understanding PHP.

Checking whether your website supports PHP

The easiest way to find out whether your website supports PHP is to ask your hosting
company. The other way to find out is to upload a PHP page to your website and see if it
works. Even if you know that your site supports PHP, do the following test to confirm
which version is running.

1. Open Notepad or TextEdit and type the following code into a blank page:

<?php echo phpversion(); ?>

2. Save the file as phptest.php. It’s important to make sure that your operating sys-
tem doesn’t add a .txt filename extension after the .php. Mac users should also
make sure that TextEdit doesn’t save the file in Rich Text Format (RTF). If you’re at
all unsure, use phptest.php from the download files for this chapter.

3. Upload phptest.php to your website in the same way you would an HTML page,
and then type the URL into a browser. If you see a three-part number like 5.2.0 dis-
played onscreen, you’re in business: PHP is enabled. The number tells you which

Checking the PHP version on your server

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

16

7311ch02.qxd  10/10/06  10:14 PM  Page 16



version of PHP is running on your server. You need a minimum of 4.3.1 to use the
code in this book.

If you get a message that says something like Parse error, it means PHP is supported,
but that you have made a mistake in typing the file. Use the download version
instead.

If you just see the original code, it means PHP is not supported.

Hosting companies have been incredibly slow to update from PHP 4, frequently citing
“lack of demand.” If your server is still running PHP 4, contact your host and tell them you
want PHP 5 (or PHP 6 if that’s the current version by the time you read this). Although you
can do a lot of really cool things with PHP 4, the newer versions are faster, have more fea-
tures, and are more secure. If your host refuses to upgrade, it may be time to move to a
new one. Equally, if you saw the raw code, you need to move to a new server. Try to find
one that offers a minimum of PHP 5.

Choosing a good script editor for PHP

Although PHP isn’t difficult to learn, if there’s a mistake in your code, your page will prob-
ably never make it as far as the browser, and all you’ll see is an error message. So, although
you can write PHP in Notepad or TextEdit, you’re much better off with a script editor that
has at least the first three of the following features:

Line numbering: Most good script editors allow you to toggle on and off the dis-
play of line numbers. Being able to find a specific line quickly makes troubleshoot-
ing a lot simpler.

A “balance braces” feature: PHP uses parentheses (()), square brackets ([]), and
curly braces ({}), which must always be in matching pairs. It’s easy to forget to
close a pair. All good script editors have a feature that finds the matching paren-
thesis, bracket, or brace.

PHP syntax coloring: Some script editors highlight code in different colors. If your
code is in an unexpected color, it’s a sure sign that you’ve made a typing mistake.

PHP code hints: This is mainly of interest to more advanced users, but some 
editors automatically display tooltips with reminders of how a particular piece of
code works.

The following section describes some of the script editors you might like to consider.

Dreamweaver: Visual display of PHP output
My personal choice for writing PHP code, Dreamweaver (www.adobe.com/products/
dreamweaver/), has all of the features just listed. It also has the advantage of strong sup-
port for CSS and valid XHTML, making it an ideal editor for designers who want to add
interactive elements to their web pages. As Figure 2-1 shows, Dreamweaver is capable of

GETTING READY TO WORK WITH PHP

17

2

7311ch02.qxd  10/10/06  10:14 PM  Page 17



displaying the output of your PHP code in Design view, making it easier to envisage how
your final page will look.

Figure 2-1. Dreamweaver lets you see the output of your PHP code in Design view.

The Coding toolbar puts several useful tools, including the balance braces feature, along-
side the code you’re working on. And pressing Ctrl+Space anywhere in a PHP code block
displays code hints for just about every PHP function you can imagine.

GoLive CS2: Some useful features
GoLive (www.adobe.com/products/golive/) is commonly regarded as the HTML editor for
designers who tremble at the mere thought of code, but it does offer quick access to the
underlying code (just click the Source tab at the top of the document window). GoLive
doesn’t have any special PHP features, but its syntax coloring treats PHP more than ade-
quately, and line numbering is displayed by default in Source view. The balance braces fea-
ture is hidden, but it works quite well once you find it: double-click an opening or closing
brace or parenthesis (but not square bracket) and content is highlighted up to the match-
ing brace.

Dreamweaver can also generate a lot of PHP code for you automatically. This book is
designed to be software-neutral, so it doesn’t cover automatic code generation. For that,
see my book Foundation PHP for Dreamweaver 8 (friends of ED, ISBN: 1-59059-569-6).

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

18

7311ch02.qxd  10/10/06  10:14 PM  Page 18



EditPlus 2: Versatile text-only editor for Windows
If you prefer to hew your code in a text-only environment, EditPlus 2 (www.editplus.com)
is an excellent choice. It comes with a lot of built-in features, but you can extend the pro-
gram with custom syntax files. One set that I find particularly useful is www.editplus.com/
files/php504.zip. It specifies syntax coloring and automates many routine tasks. EditPlus
2 is available only for Windows.

BBEdit and TextMate: Script editors for Mac OS X
BBEdit (www.barebones.com/products/bbedit/index.shtml) is the granddaddy of Mac
text editors. It’s excellent for working with XHTML. Although it has line numbering, syntax
coloring, and a balance braces feature, it doesn’t have any special PHP features. A much
cheaper alternative is TextMate (http://macromates.com), which does have extensive sup-
port for PHP through a user-contributed “bundle.”

Checking your scripts with a file comparison utility

You’re bound to make mistakes, particularly in the early stages. Often, you’ll find that the
problem is just a missing comma, semicolon, or quotation mark, but spotting the culprit
can be the devil’s own work in a page full of code. To help you with the learning process,
you can download all the code for this book from www.friendsofed.com/downloads.html.
Even so, comparing my files with yours can be time-consuming, not to mention tedious.
File comparison utilities to the rescue!

A file comparison utility automatically compares two files line by line, highlighting any dif-
ferences. Figure 2-2 shows the results of comparing two versions of the same file in the
Windows program Beyond Compare, using the option to show just the differences. The
section at the bottom of the screenshot shows the same line from each file one on top of
the other, and highlights any differences. Using a file comparison utility with the download
files will save you hours of fruitless searching.

Figure 2-2. A file comparison utility makes light work of finding differences between your code and
the download files.

GETTING READY TO WORK WITH PHP

19

2

7311ch02.qxd  10/10/06  10:14 PM  Page 19



I have found the following file comparison utilities to be reliable:

Windows

Beyond Compare (www.scootersoftware.com): An excellent tool. Try it free for
30 days. Thereafter it requires an individual license ($30 at the time of this writing).

WinMerge (http://winmerge.sourceforge.net): A good open source tool. Free.

Mac OS X

TextWrangler and BBEdit (both from www.barebones.com) contain good file
comparison utilities. TextWrangler is a free, cut-down version of BBEdit.

Deciding where to test your pages

Unlike ordinary web pages, you can’t just double-click PHP pages in Windows Explorer or
Finder on a Mac and view them in your browser. They need to be parsed—processed—
through a web server that supports PHP. If your hosting company supports PHP, you can
just upload your files to your website and test them there. However, you need to upload
the file every time you make a change. In the early days, you’ll probably find you have to
do this often because of some minor mistake in your code. As you become more experi-
enced, you’ll still need to upload files frequently because you’ll want to experiment with
different ideas.

If you want to get working with PHP straight away, by all means use your remote server as
a test bed. However, I’m sure you’ll soon discover the need to set up a local PHP test envi-
ronment. The rest of this chapter is devoted to showing you how to do it, with separate
instructions for Windows and Mac OS X.

What you need for a local test environment
To test PHP pages on your local computer, you need to install the following:

A web server (Apache or IIS)

PHP

To work with a database, you’ll also need MySQL. However, you can do a great deal with
PHP even without a database, so I plan to leave the installation of MySQL until Chapter 10.
All the software you need is free. The only cost to you is the time it takes to download the
necessary files, plus, of course, the time to make sure everything is set up correctly. You
could be up and running in little more than an hour. However, I urge you not to rush
things. Although the installation process isn’t difficult, you do need to get it right.

If you already have a web server and PHP on your local computer, there’s no need to
reinstall. Just check the section at the end of the chapter titled “Checking your PHP set-
tings (Windows and Mac).”

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

20

7311ch02.qxd  10/10/06  10:14 PM  Page 20



Individual programs or an all-in-one package?

If you’re using Mac OS X, the decision is simple: Apache is already installed, so you just
need to switch it on, and both PHP and MySQL are available as Mac packages. Individual
installation is the most sensible way to go. Jump ahead to the section titled “Setting up on
Mac OS X” later in this chapter.

Windows users need to do a bit more work to get everything up and running, so there’s 
a strong temptation to opt for an all-in-one package. Two, in particular, have a good repu-
tation as being stable and easy to install: XAMMP (www.apachefriends.org/en) and
WAMP (www.en.wampserver.com). However, before opting for the “easy” route, you should
consider the following notice on the official PHP site at www.php.net/manual/en/install.
windows.php:

I have no experience of working with XAMMP or WAMP, so I will offer no further advice on
either of them. The instructions in the rest of this chapter concentrate on installing the
official versions of all the software.

Setting up on Windows
These instructions have been tested on Windows 2000, XP Home, and XP Pro. Make sure
that you’re logged on as an Administrator.

Getting Windows to display filename extensions

By default, most Windows computers hide the three- or four-letter filename extension,
such as .doc or .html, so all you see in dialog boxes and Windows Explorer is thisfile
instead of thisfile.doc or thisfile.html. The ability to see these filename extensions is essential
for working with PHP.

If you haven’t already enabled the display of filename extensions, open Start ➤ My
Computer (it’s a desktop icon on Windows 2000). Then from the menu at the top of the
window, choose Tools ➤ Folder Options ➤ View. Uncheck the box marked Hide extensions
for known file types. Click OK.

New versions of software are being released all the time. Check this book’s page at
www.friendsofed.com for updates. Changes relevant to Windows Vista will also be
posted there.

GETTING READY TO WORK WITH PHP

21

2

7311ch02.qxd  10/10/06  10:14 PM  Page 21



I recommend that you leave your computer permanently at this setting because it is 
more secure—you can tell if a virus writer has attached an EXE or SCR executable file to an
innocent-looking document.

Choosing a web server for Windows

As noted earlier, you need a web server to process and display PHP pages. A web server is
a piece of software that normally runs in the background, taking up very few resources,
waiting for requests. The web server of choice for PHP is Apache and that is what you
should install, as described in the next section.

PHP can also run on Microsoft Internet Information Services (IIS). If IIS is already installed
and running, skip ahead to the section titled “Setting up PHP on Windows.” 

Installing Apache on Windows

These instructions assume that you have never installed Apache on your computer before.
The most recent series, Apache 2.2, is not compatible with Windows versions of PHP ear-
lier than PHP 5.2.0. If you plan to use an earlier version of PHP, install Apache 2.0. The
screenshots in this section are based on Apache 2.0, but the installation procedure is iden-
tical for both Apache 2.2 and 2.0.

1. Go to http://httpd.apache.org/download.cgi and select the file marked Win32
Binary (MSI Installer) for the Apache series that you want to install. If there’s no link to
the Windows binary, click Other files, and then follow the links for binaries and win32.

2. Apache comes in a Windows installer package. Close all open programs and tem-
porarily disable virus-scanning software. Double-click the Apache installer pack-
age icon. 

3. A wizard takes you through the installation process. The only part that needs spe-
cial attention is the Server Information screen (see Figure 2-3), in which you enter
the default settings for your web server.

In the Network Domain and Server Name fields, enter localhost; in the last field, enter
an email address. The localhost address tells Apache you will be using it on your
own computer. The email address does not need to be a genuine one; it has no
bearing on the way the program runs and is normally of relevance only on a live
production server.

4. Select the option labeled for All Users, on Port 80, as a Service. Apache will run in the
background, and you don’t need to worry about starting it. Click Next.

5. In the remaining dialog boxes, leave the default options unchanged and click Next.
In the final dialog box, click Install to finish the Apache installation.

6. The process is quite quick, but don’t be alarmed if you see a Command Prompt
window open and close several times. This is perfectly normal. If a software firewall
is installed, you will probably see a warning message asking you whether to block
Apache. You must allow communication with Apache. Otherwise it won’t work.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

22

7311ch02.qxd  10/10/06  10:14 PM  Page 22



7. After the program has been installed, open a browser and type http://localhost/
into the address bar. If all has gone well, you should see the test page shown in
Figure 2-4 (Apache 2.2 displays a test page that simply says “It works!”).

8. If you get an error message, it probably means that the Apache server is not run-
ning. Start up the server, as described in the next section, and try again. If you still
get problems, check C:\Program Files\Apache Software Foundation\Apache2.2\
logs\error.log or C:\Program Files\Apache Group\Apache2\logs\error.log. 
A common cause of failure is that another program, such as Skype, is already using
port 80. If that happens, move the other program to a different port, or reinstall
Apache, and select the Port 8080 option in step 4. 

GETTING READY TO WORK WITH PHP

23

2

Figure 2-3. Filling out the Server Information
dialog box during installation of Apache

Figure 2-4. Confirmation
that Apache 2.0 is running
successfully on Windows

7311ch02.qxd  10/10/06  10:14 PM  Page 23



Starting and stopping Apache on Windows
Apache places a tiny icon (it looks like a red feather with a white circle) in the tray (or noti-
fication area) at the right end of the Windows taskbar. This is the Apache Service Monitor,
which shows you at a glance whether Apache is running. If it’s running, there is a green,
right-facing arrow in the white circle. When Apache has stopped, the arrow turns to a red
dot (see screenshots alongside).

Click the icon once with the left mouse button to reveal a menu to start, stop, or restart
Apache.

Setting up PHP on Windows

The files for PHP come in two versions: a ZIP file for manual installation, and a Windows
installer. Up to PHP 5.1, the Windows installer offered an extremely limited setup and was
not recommended. However, just as this book was about to go to press, the PHP develop-
ment team announced plans to create a new Windows installer capable of automating the
installation of a full-featured PHP setup on either Apache or IIS. The new installer is
expected to be available from PHP 5.2.0 onward.

At the time of this writing, it’s not clear whether the installer is intended to become the
recommended method of installation. Check my website at http://foundationphp.com/
phpsolutions/updates.php for more up-to-date information. The following instructions
show you how to install PHP manually from the ZIP file. Although this takes a little longer,
it has the advantage of not making any changes to your Windows registry. The process
involves four stages, as follows:

1. Download the PHP files and unzip them to a folder on your hard disk.

2. Edit a text file called php.ini that Windows uses to configure PHP on startup.

3. Add PHP to your Windows PATH.

4. Edit the settings for Apache or IIS so that the web server knows what to do with
PHP files.

Downloading and configuring PHP
If you have an old installation of PHP, you must first remove any PHP-related files from
your main Windows folder (C:\WINDOWS or C:\WINNT, depending on your system) and the
system32 subfolder. Deleting the contents of the Windows system folders is not to be
undertaken lightly, so I suggest that you cut and paste them to a temporary folder. Then,
if anything goes wrong, you can easily restore them.

The PHP files you need to remove are php.ini (in the main Windows folder) and
php4ts.dll or php5ts.dll in the system32 subfolder. You should also remove any other
PHP-related DLL files from the system32 subfolder. They are easy to recognize because

If you install Apache on port 8080, you need to start Apache manually and add a colon
followed by the port number after localhost, like this: http://localhost:8080/.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

24

7311ch02.qxd  10/10/06  10:14 PM  Page 24



they all begin with php. If there’s a copy of libmysql.dll in your Windows system folder,
remove that, too.

1. Go to www.php.net/downloads.php and select the Windows binaries ZIP file for the
latest stable version of PHP. Even if your hosting company is running an older ver-
sion of PHP, I suggest downloading the latest version of PHP to avoid problems
when you install MySQL in Chapter 10. When you click the download link, you will
be presented with a list of mirror sites. Choose one and download the ZIP file to a
temporary folder on your hard disk.

2. Unzip the contents of the ZIP file to a new folder called C:\php. The php folder should
contain several other folders, as well as about 30 files.

3. In the php folder, locate the file called php.ini-dist, make a copy of it, and
rename the copy php.ini. (There has been talk of giving php.ini-dist a more
meaningful name, such as php.ini-development, so the name may have changed
by the time you read this.) As soon as you rename the file, its associated icon in
Windows Explorer will change, as shown alongside, indicating that it’s an INI file
that Windows will use to configure PHP each time you start up your web server.

4. Open php.ini in any text editor. Notepad will do, but it’s better to use a script edi-
tor that displays line numbers (such as one listed in the section “Choosing a good
script editor for PHP” earlier in the chapter)—because finding the relevant sections
will be a lot easier.

5. Scroll down to the following lines in the Error Handling and Logging section (the
wording may differ slightly, but you should be able to find them by searching for
error_reporting):

Notice how most lines begin
with a semicolon. This indicates
that they are comments and will
be ignored by Windows. Only
the final line in the screenshot
(indicated by a marker along-
side the number on line 292)
begins without a semicolon, and
this is the one you need to
amend. Change it so that it looks
like this:

error_reporting = E_ALL

This sets error reporting to a higher level, which helps ensure your PHP is robust.

The precise name or location of the folder isn’t important, but it makes sense to
use php or phpx, where x is the PHP version number. If you choose a location dif-
ferent from C:\php, you need to substitute the name of your new folder in all
later steps. Don’t put the PHP files in a folder that contains spaces in either its
name or pathname, because it can create problems with Apache.

GETTING READY TO WORK WITH PHP

25

2

7311ch02.qxd  10/10/06  10:14 PM  Page 25



6. Scroll down to the Paths and Directories section. Locate the following (around
line 460):

extension_dir = "./"

Change it to

extension_dir = "C:\php\ext\"

This is where PHP will look for any extensions. This assumes you extracted the PHP
files to the recommended location. If you chose a different one, change the path
accordingly.

7. Scroll further down until you come to Dynamic Extensions. You will see a long list
titled Windows Extensions (around line 563), all of them commented out. These
extensions add extra features to the core functionality of PHP. You can enable any
of them at any time simply by removing the semicolon from the beginning of the
line for the extension you want, saving php.ini, and restarting Apache or IIS.

Locate the following (around line 569):

;extension=php_mbstring.dll

Enable the extension by removing the semicolon from the beginning of the line like
this:

extension=php_mbstring.dll

This enables support for Unicode. Even if you never plan to use anything other than
English, it’s required to work with the latest versions of MySQL. 

8. About eight lines further down, locate the following:

;extension=php_gd2.dll

Remove the semicolon from the beginning of the line. This will allow you to use
PHP’s image manipulation functions (see Chapters 4 and 8).

9. About 12 lines further down, locate the line containing php_mysql.dll. Copy and
paste it on the line immediately below. Remove the semicolon from the beginning
of both lines and amend the second line so they look like this:

extension=php_mysql.dll
extension=php_mysqli.dll

The line numbers and markers in the screenshots are generated by the script editor
and are not part of php.ini. Use the screenshots and line numbers in this section only
as a general guide. The contents of php.ini undergo constant revision, so your version
may look slightly different. The important thing is to use the settings recommended in
the text. 

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

26

7311ch02.qxd  10/10/06  10:14 PM  Page 26



10. Add the following lines immediately beneath those in the previous step:

extension=php_pdo.dll
extension=php_pdo_mysql.dll

The four lines in this step and the previous one enable all the MySQL-specific func-
tions that will be used in Chapters 11 to 15.

11. In the Module Settings section immediately following the list of extensions, look for
the code shown alongside. Change the line shown in the screen-
shot as line 623 to the name of the SMTP server you normally use
for sending email.

If your email address is, for instance, david@example.com, your
outgoing address is most probably smtp.example.com. In that
case, you would change the line like this:

SMTP = smtp.example.com

12. Remove the semicolon from the beginning of the command shown on line 627,
and put your own email address in place of me@example.com:

sendmail_from = david@example.com

This puts your correct email address in the From: field of emails sent through PHP.

13. The final change you need to make to php.ini is considerably further down
(around line 884). Locate the following:

;session.save_path = "/tmp"

Remove the semicolon from the beginning of the line, and change the setting in
quotes to your computer’s Temp folder. On most Windows computers, this will be
C:\WINDOWS\Temp:

session.save_path = "C:\WINDOWS\Temp"

14. Save php.ini, and close it. Leave it inside the C:\php folder.

Adding PHP to your Windows startup procedure
The installation of PHP is complete, but you still need to tell Windows where to find all the
necessary files whenever you switch on your computer. 

Changes to the settings in this step and the following one are intended to make
it possible to test the mail application in Chapter 5 on your local computer.
However, it won’t work if your ISP’s SMTP server requires a username and pass-
word every time you connect (as happens with Gmail and other webmail serv-
ices). Also, some ISPs reject mail that comes from an unidentified domain. In
such circumstances, you will need to upload the files to your remote server to
test them.

GETTING READY TO WORK WITH PHP

27

2

7311ch02.qxd  10/10/06  10:14 PM  Page 27



1. Open the Windows Control Panel (Start ➤ Settings ➤ Control Panel or Start ➤

Control Panel). Double-click the System icon. Select the Advanced tab and click
Environment Variables, as shown in the following screenshot.

2. In the System variables pane at the bottom of the dialog box that opens, highlight
Path as shown and click Edit.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

28

7311ch02.qxd  10/10/06  10:14 PM  Page 28



3. A smaller dialog box opens. Click inside the Variable value field and move your
cursor to the end of the existing value. Type a semicolon followed by the name of
the PHP folder you created in step 2 of the previous section (;C:\php). As shown
in the screenshot, there should be no spaces between the value just entered and
the existing value or in the new pathname.

4. Click OK. With the Environment Variables dialog box still open, click New in the System
variables pane. Another small dialog box opens, in which you enter the details of
the new system variable. In the Variable name field, type PHPRC. In the Variable
value field, enter the path of the PHP folder (C:\php).

5. Click OK to close all the dialog boxes. The next time you restart your computer,
Windows will know where to find all the necessary files to run PHP. However,
before restarting your computer, you still need to make some changes to your web
server so that it knows how to handle PHP files. If you are using Apache, continue
with the next section. If you are using IIS, skip ahead to the section titled
“Configuring IIS to work with PHP.”

Configuring Apache to work with PHP

Now that all the configuration settings have been made for PHP, you need to make some
adjustments to the main configuration file for Apache.

1. The Apache configuration file httpd.conf is located in C:\Program Files\Apache
Software Foundation\Apache2.2\conf (for Apache 2.0, it’s in C:\Program Files\
Apache Group\Apache2\conf). Use Windows Explorer to locate the file and open it

Note that all the pathnames in the Apache configuration file use forward slashes
instead of the Windows convention of backward slashes. So, c:\php becomes c:/php.
Any path- or filenames that contain spaces must be enclosed in quotes.

GETTING READY TO WORK WITH PHP

29

2

7311ch02.qxd  10/10/06  10:14 PM  Page 29



in a script editor. Like php.ini, httpd.conf is a very long file composed mainly of
comments, which in this case can be distinguished by a pound or hash sign (#) at the
beginning of the line.

2. Scroll down until you find a long list of items that begin with LoadModule (many of
them will be commented out). At the end of the list, add the following on a new
line,  (for Apache 2.2):

LoadModule php5_module c:/php/php5apache2_2.dll

If you are using Apache 2.0, this list is about 60 lines further down. Apache 2.0 uses
a different DLL file, so the command should look like this:

LoadModule php5_module c:/php/php5apache2.dll

3. Scroll down again until you find the section shown in the following screenshot:

Apache automatically looks for all web pages in the server root (or DocumentRoot
as Apache calls it). This is so it can process the scripts and send the right informa-
tion to both the database and the browser. The two lines indicated by a marker
next to the line number (lines 151 and 179 in the screenshot) are where you spec-
ify the location of the server root. In a browser this becomes the equivalent of
http://localhost/. (In Apache 2.0, this section is around lines 230 and 255, and
the server root points to a slightly different address.)

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

30

7311ch02.qxd  10/10/06  10:14 PM  Page 30



Because this is where all your web files will be stored, it’s not a good idea to keep
them in the same place as your program files. Whenever I set up a new computer,
I always create a dedicated folder called htdocs at the top level of my C drive, and
I put all my websites in subfolders of htdocs. I chose that name because it’s the tra-
ditional name used by Apache for the server root folder. Change both lines to indi-
cate the same location, like this:

DocumentRoot "C:/htdocs"
#
# Omitted section
#
<Directory "C:/htdocs">

4. Scroll down a bit further until you come to the following command (around
line 214):

DirectoryIndex index.html 

This setting tells web servers what to display by default if a URL doesn’t end with a
filename, but contains only a folder name or the domain name (for instance,
www.friendsofed.com). Apache will choose the first available page from a space-
separated list. The purpose of this book is to work with PHP, so add index.php. 

DirectoryIndex index.html index.php

In Apache 2.0, this command is around line 323 and includes index.html.var. Just
add index.php at the end of the line as above.

5. Close to the end of httpd.conf, you’ll find a section that includes several com-
mands that begin with AddType. Add the following line in that section on a line of
its own, as shown (in Apache 2.0, this section is around line 760):

AddType application/x-httpd-php .php

6. Save and close httpd.conf.

7. You now need to restart your computer so that the changes made to the Windows
PATH and startup procedure can take effect. Apache should start automatically,
unless you selected the manual option earlier. If everything starts normally, skip
ahead to the section titled “Testing PHP on Windows.” If you see an error message,
read on.

8. If there are any mistakes in httpd.conf, Apache will refuse to start. Depending on
the version you have installed, you might get a helpful message in a Command
Prompt window that tells you what the problem is and which line of httpd.conf it
occurred on. Reopen httpd.conf and correct the error (probably a typo). On the
other hand, Windows might display a very unhelpful message simply telling you
that the operation has failed.

GETTING READY TO WORK WITH PHP

31

2

7311ch02.qxd  10/10/06  10:14 PM  Page 31



Check the Apache error log (C:\Program Files\Apache Software Foundation\
Apache2.2\logs\error.log or C:\Program Files\Apache Group\Apache2\logs\
error.log) for clues about the problem. Alternatively, open a Command Prompt
window. Inside the Command Prompt window, change to the Apache program
folder by typing the following and pressing Enter:

cd c:\program files\apache software foundation\apache2.2\bin

For Apache 2.0, use this:

cd c:\program files\apache group\apache2\bin

Then type this (followed by Enter):

apache

The reason for the failure should appear onscreen, usually with a line number pin-
pointing the problem in httpd.conf. After you correct httpd.conf, resave the file
and restart Apache using the Apache Service Monitor. Assuming everything goes
OK this time, skip ahead to “Testing PHP on Windows.”

Configuring IIS to work with PHP 

These instructions assume that you are familiar with IIS basics, and already have it installed
and running on your computer. You should also have completed the sections titled
“Downloading and configuring PHP” and “Adding PHP to your Windows startup procedure.”

1. Open the Internet Information Services panel (Start ➤ Control Panel ➤ Administrative
Tools ➤ Internet Information Services).

2. Expand the folder tree in the left panel, and highlight Default Web Site, as shown in
the screenshot. Right-click, and select Properties from the context menu.

3. In the Default Web Site Properties
dialog box, select the Home Directory
tab, and set Execute Permissions
to Scripts only, as shown at the 
top of the next page. Then click
Configuration.

If you type apache in the Command Prompt window and nothing appears to happen, it
doesn’t mean that Apache has hung. It indicates that Apache has started normally.
However, while Apache is running, it doesn’t return you to the command line; and if you
close the window, Apache will crash. To close Apache gracefully, open another
Command Prompt window, change the directory to the apache2.2\bin or apache2\bin
folder, and type the following command:

apache -k shutdown

You can then restart Apache using the Apache Service Monitor.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

32

7311ch02.qxd  10/10/06  10:14 PM  Page 32



4. The Application Configuration dialog box opens. Select the Mappings tab, and 
click Add.

5. In the Add/Edit Application Extension Mapping dialog box that opens, enter the full
path to php5isapi.dll in the Executable field. If you used the default location for the
PHP files recommended earlier, this will be C:\php\php5isapi.dll. Enter .php in 
the Extension field. Don’t forget the period at the front of the extension—this is
very important. Make sure that Script engine is checked, and leave the other settings
unchanged. Click OK twice to return to the Default Web Site Properties dialog box.

If you click the Browse button to navigate to the location of your PHP files in
step 5, make sure that the drop-down menu labeled Files of type at the bottom
of the Open dialog box is set to Dynamic Link libraries (*.dll) or All files (*.*).
Otherwise, you won’t be able to locate the correct file.

GETTING READY TO WORK WITH PHP

33

2

7311ch02.qxd  10/10/06  10:14 PM  Page 33



6. Select the Documents tab of the Default Web Site Properties dialog box, and click
Add. In the dialog box that opens, type index.php in the Default Document Name
field, and click OK. Use the up and down arrows to move index.php to the position
you want in the list. IIS uses the list to serve up a default document whenever you
enter a URL in the browser address bar that doesn’t include a filename (such as
www.friendsofed.com). Make sure that Enable Default Document is checked. When
you have finished, click OK to close the Default Web Site Properties dialog box.

7. Before your changes can take effect, you need to restart IIS. Open the Services
panel (Start ➤ Control Panel ➤ Administrative Tools ➤ Services). Highlight IIS Admin,
and click Restart the service. Test PHP as described in the next section.

Testing PHP on Windows

Now comes the moment of truth: checking whether you have installed everything cor-
rectly. If you have followed the instructions carefully, everything should be OK.

1. Open a script editor and type the following code into a blank file (there should be
nothing else in the page):

<?php phpinfo(); ?>

2. Save the file as index.php in your server root folder. If you have set up Apache as
recommended in this chapter, this is C:\htdocs (create a new folder with that
name, if you haven’t already done so). If you are using IIS, save the file in
C:\Inetpub\wwwroot.

3. Open a browser and type http://localhost/index.php in the address bar. (If your web
server is running on a nonstandard port, such as 8080, add a colon followed by the
port number after localhost, like this: http://localhost:8080/index.php.) You
should see a page similar to the one shown in Figure 2-5. Welcome to the world of
PHP! The mass of information displayed by index.php may appear overwhelming at
the moment, but you should always display this page whenever you need to find out
anything about your PHP setup. Assuming everything went OK, skip to the section
titled “Checking your PHP settings (Windows and Mac)” at the end of the chapter.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

34

7311ch02.qxd  10/10/06  10:14 PM  Page 34



Figure 2-5. The phpinfo() command confirms that PHP is installed and displays useful information
about your setup.

Troubleshooting
Use the following checklist if you get error messages or fail to see the page shown in
Figure 2-5:

Test an ordinary HTML web page in the same location. If both fail to display, check
that your web server is running. If just the PHP page fails to display, retrace your
steps through the sections on installing PHP.

IIS doesn’t always recognize PHP after a simple restart, but rebooting the computer
usually does the trick.

If you see an error message that the mysqli extension cannot be loaded, this usu-
ally indicates that an old version of a file called libmysql.dll has been installed in
C:\WINDOWS\system32 by another program. Copy the version from C:\php to
C:\WINDOWS\system32 and restart your web server.

Setting up on Mac OS X
After leafing through so many pages of Windows instructions, you’ll be pleased to know
that this section is considerably shorter. It’s shorter because Apache is preinstalled on Mac
OS X. PHP is also preinstalled, but the default version is lacking in features and isn’t very
easy to set up. Fortunately, an excellent Mac package is available for free download and
will provide you with a full-featured, up-to-date version of PHP 5.

GETTING READY TO WORK WITH PHP

35

2

7311ch02.qxd  10/10/06  10:14 PM  Page 35



Most of the setup is done through the familiar Mac interface, but you need to edit some
configuration files. Although these are ordinary text files, they are normally hidden, so you
can’t use TextEdit to work with them. I suggest that you use BBEdit or TextWrangler. As
mentioned earlier, TextWrangler is a cut-down version of BBEdit, which you can download
free from www.barebones.com/products/textwrangler/.

Using Apache on Mac OS X

The default version of Apache that comes preinstalled with Mac OS X is Apache 1.3. It’s an
excellent web server and does everything you need for developing PHP pages. Because it’s
preinstalled, all you need to do is switch it on. First, make sure that you’re logged into Mac
OS X with Administrative privileges.

Starting and stopping Apache
1. Open System Preferences and select Sharing in Internet & Network.

2. In the dialog box that opens, click the lock in the bottom-left corner, if necessary,
to allow you to make changes, and enter your password when prompted. Highlight
Personal Web Sharing on the Services tab, as shown in Figure 2-6, and then click the
Start button on the right. A message will appear, informing you that personal web
sharing is starting up. After personal web sharing is running, the label on the but-
ton changes to Stop. Use this button to stop and restart Apache whenever you
install a new version of PHP or make any changes to the configuration files. Click
the lock again if you want to prevent accidental changes.

Figure 2-6. The Apache web server on a Mac is switched on and off in the Sharing section
of System Preferences.

These instructions do not cover Mac OS X Server, which uses a different version of
Apache. I have assumed that if you have the skill to run the server version of OS X, you
should be able to handle the configuration without further assistance.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

36

7311ch02.qxd  10/10/06  10:14 PM  Page 36



3. Open your favorite browser and type http://localhost/~username/ into the address
bar, substituting your own Mac username for username. You should see a page like
that shown in Figure 2-7, confirming that Apache is running. That’s all there is to it.

Where to locate your web files

As the message in Figure 2-7 indicates, the place to store all your web files is in the Sites
folder in your home folder. You need to keep them there because Apache needs to process
PHP scripts before it can display the output in your browser. Unlike ordinary web pages, you
can’t just double-click them in Finder and expect them to pop up in your default browser.
To view a page that uses PHP on your local computer, you must enter the correct URL in the
browser address bar in the same way as you access a site on the Internet.

The address for the top level of your Sites folder is http://localhost/~username/. Any
subfolders are accessed by adding the folder name to the end of the URL.

If you’re the only person using the computer, you might prefer to locate all your files in
Macintosh HD:Library:WebServer:Documents. It works exactly the same way, but instead
of needing to include a tilde (~) followed by your username in the URL every time, you use

Sometimes, Macs seem to develop a personality of their own. If you have a local
network, you might discover that the localhost part of the URL changes to some-
thing like deathstar.local or whatever you have called your computer. For testing
on the same machine, localhost is much shorter to type. After you use localhost
a few times, your Mac will probably give up trying to be so clever and accept the
shorter version. You can also use 127.0.0.1 as a synonym for localhost.

GETTING READY TO WORK WITH PHP

37

2

Figure 2-7.
Confirmation that
Apache is running
successfully on
Mac OS X

7311ch02.qxd  10/10/06  10:14 PM  Page 37



just http://localhost/ as the address. If you test it now, you will see the same screen as
shown in Figure 2-4. It makes no difference whether you use the central location or your
own Sites folder. Choose whichever is more convenient for you.

Installing PHP on Mac OS X

Rather than attempt to activate the preinstalled version of PHP, a tedious job at the best 
of times, I suggest you use a precompiled Mac package created by Marc Liyanage
(www.entropy.ch). You get a full-featured version of PHP that works “straight out of the
box.” If you run into problems, there’s a searchable support forum on Marc’s website, on
which answers tend to be fast and accurate. It should be your first port of call in case of
installation problems.

Using a Mac package for PHP
1. Marc Liyanage creates different packages for Apache 1.3 and Apache 2. The default

installation in Mac OS X at the time of this writing is Apache 1.3, but it’s important
to check whether it’s the same in your case. In Finder, open the Utilities folder in
Applications and launch Terminal.

2. A window like the one shown here opens.

All instructions to the computer are
inserted as written commands at what’s
known as the shell prompt. This is the final
line in the screenshot and it looks some-
thing like this:

Vigor19:~ davidpowers$

The first part (before the colon) is the name of your Macintosh hard disk. The tilde
(~) is the Unix shorthand for your home directory (or folder). It should be followed
by your username and a dollar sign. As you navigate around the hard disk, your loca-
tion is indicated in place of ~. All commands in Terminal are followed by Return.

3. To find out which version of Apache is running on your Mac, type the following
command:

httpd -v

After pressing Return, you should see a window similar to the one shown here.

PHP relies heavily on the availability of external code libraries. It is essential that you
have installed all the latest Apple system software updates before proceeding. Click the
Apple menu and select Software Update. Install any security and OS X system updates.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

38

7311ch02.qxd  10/10/06  10:14 PM  Page 38



This window tells you the version of Apache and the date it was built. You need the
first two numbers of the server version—in this case, 1.3—to ensure that you
download the correct PHP package.

4. Go to www.entropy.ch/software/macosx/php/, scroll about halfway down the
page, and select the Universal Binary for PHP 5 that also matches the version of
Apache running on your computer. Marc Liyanage maintains PHP packages only for
the current version of Mac OS X (currently 10.4). If you’re using an older version,
you’ll have to settle for PHP 4 (assuming the link hasn’t been removed by the time
you read this).

Read any installation instructions on the site because they contain the most up-to-
date information about special requirements or restrictions.

5. The Universal Binary is contained in a compressed file named entropy-php-
5.x.x.tar.gz. Double-click the file to extract its contents, and then double-click
the entropy-php.mpkg icon it places your desktop. Follow the instructions
onscreen to install PHP.

6. Your upgraded version of PHP is ready for use, but first you need to make a minor
change to the PHP configuration file php.ini.

Configuring PHP to display errors on Mac OS X
Marc Liyanage’s package uses a version of php.ini that turns off the display of error mes-
sages. When using PHP for development, it’s essential to see what’s gone wrong and why.

1. Open BBEdit or TextWrangler. From the File menu, choose Open Hidden, and navi-
gate to Macintosh HD:usr:local:php5:lib:php.ini. Because php.ini is a pro-
tected file, you need to select All Files from the Enable drop-down menu at the top
of the Open dialog box, shown here. Click Open.

2. When php.ini opens in your text editor, you’ll see that it’s a long text file and that
most lines begin with a semicolon. This means they are comments; the configura-
tion commands are on lines that don’t have a semicolon at the beginning.

GETTING READY TO WORK WITH PHP

39

2

7311ch02.qxd  10/10/06  10:14 PM  Page 39



To make it easier to identify the correct place in the files you edit, choose
Preferences from the BBEdit or TextWrangler menu, and then select Text Status
Display. Make sure that the Show Line Numbers check box is selected, and close the
Preferences dialog box.

3. At the top left of the toolbar, an icon showing a pencil with a line through it indi-
cates that this is a read-only file. Click the pencil icon. You will see the prompt
shown here.

4. Click Yes and locate the following command around line 353 (use the line number
only as a guide—it might be different in a later version of PHP):

display_errors = Off

Change it to this

display_errors = On

5. About ten lines further down, locate the following command:

log_errors = On

Change it to

log_errors = Off

6. From the File menu, choose Save, and enter your Mac administrator password
when prompted. Close php.ini.

7. Restart Apache. You’re now ready to test your PHP installation.

Testing PHP on Mac OS X
1. Open a blank file in BBEdit or TextWrangler, and type the following line of code:

<?php phpinfo(); ?>

2. Save the file in the Sites subfolder of your home folder as index.php.

3. Open a browser and enter the following URL in the address bar:

http://localhost/~username/index.php

If you ever need to make further adjustments to your PHP configuration, follow the
same procedure to edit php.ini, and restart Apache for the changes to take effect.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

40

7311ch02.qxd  10/10/06  10:14 PM  Page 40



Use the name of your Mac Home folder (the one identified by a little house icon in
the Finder sidebar) in place of username.

4. Press Return. You should see a screen similar to that shown in Figure 2-8. This
screen not only confirms that PHP is installed and running, but also provides
masses of detail about the way the installation has been configured. This is the
page you will always be asked to display if you ever need to check why PHP doesn’t
work as expected.

Checking your PHP settings (Windows 
and Mac)

The screen full of information produced by phpinfo(), as shown in Figures 2-5 and 2-8,
tells you just about everything you need to know about your PHP setup in a very user-
friendly format. The following is a quick guide to help you check whether your installation
is set up correctly to work through the rest of this book.

The section at the top of the page contains two vital pieces of information: the PHP ver-
sion number and the path to php.ini. You should be using a minimum of PHP 4.3.1, and
preferably PHP 5 or later.

The value of Configuration File (php.ini) Path tells you the location of the file your computer
is reading at startup. Frequently Windows users complain that changes to php.ini have no
effect. This usually means an old version has been left in the Windows system folder and is
taking precedence. Remove the redundant file, and restart your web server.

GETTING READY TO WORK WITH PHP

41

2

Figure 2-8. The
precompiled PHP
package created 
by Marc Liyanage
comes with an
impressive range 
of features.

7311ch02.qxd  10/10/06  10:14 PM  Page 41



The main settings are displayed in a long list titled PHP Core. In most cases, the default set-
tings are fine. Table 2-1 lists the settings that you need to check for this book, together
with the recommended values.

Table 2-1. Recommended PHP configuration settings

Directive Local value Remarks

display_errors On Essential for debugging mistakes in your scripts. If
set to Off, errors result in a completely blank screen,
leaving you clueless as to the possible cause.

error_reporting See remarks Displayed as a number. Since PHP 5.2.0, a setting 
in php.ini of E_ALL is 6143. The same setting in
previous versions displays 2047.

extension_dir See remarks This is mainly of importance to Windows users. 
It tells Windows where to find the DLL files for
extensions that expand the core functionality 
of PHP. If you installed PHP 5 to the location
recommended in this chapter, this should be
C:\php\ext\.

file_uploads On Self-explanatory. Allows you to use PHP for
uploading files.

log_errors Off With display_errors set on, you don’t need to fill
your hard disk with an error log.

The rest of the configuration page shows you which PHP extensions are enabled. Mac
users will have many more listed than the average Windows user because extensions
need to be built in at compile time on the Mac. Windows users can turn extensions on
and off very quickly by editing the Dynamic Extensions section of php.ini and restarting
their web server.

To work with this book, you need the following extensions enabled:

gd

mbstring

mysql

mysqli

pdo_mysql (optional)

session

Your computer reads the PHP configuration file only when the web server first starts up,
so changes to php.ini require Apache or IIS to be restarted for them to take effect.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

42

7311ch02.qxd  10/10/06  10:14 PM  Page 42



What’s next?
Now that you’ve got a working test bed for PHP, you’re no doubt raring to go. The last thing
I want to do is dampen any enthusiasm, but before using any PHP in a live website, it’s
important to have a basic understanding of the basic rules of the language. So before jump-
ing into the really cool stuff, the next chapter explains how to write PHP. Don’t skip it—it’s
really important stuff. You may also be pleasantly surprised at how few rules there are.

GETTING READY TO WORK WITH PHP

43

2

7311ch02.qxd  10/10/06  10:14 PM  Page 43



7311ch03.qxd  10/17/06  4:11 PM  Page 44



3 HOW TO WRITE PHP SCRIPTS

7311ch03.qxd  10/17/06  4:11 PM  Page 45



What this chapter covers:

Understanding how PHP is structured

Embedding PHP in a web page

Storing data in variables and arrays

Getting PHP to make decisions

Looping through repetitive tasks

Using functions for preset tasks

Displaying PHP output

Understanding PHP error messages

If you’re the sort of person who runs screaming at the sight of code, this is probably going to
be the scariest chapter in the book, but it’s an important one—and I’ve tried to make it as
user-friendly as possible. The reason for putting the rules of PHP in one chapter is to make it
easier for you to dip into other parts of the book and use just the bits that you want. If
there’s anything you don’t understand, you can come back to the relevant part of this chap-
ter to look up the details. That way, you can concentrate on what you need to know without
having to wade through dozens of pages that aren’t of immediate interest to you.

With that in mind, I’ve divided this chapter into two parts: the first section offers a quick
overview of how PHP works and gives you the basic rules; the second section goes into
more detail. Depending on your style of working, you can read just the first section and
come back to the more detailed parts later, or you can read the chapter straight through.
However, don’t attempt to memorize everything at one sitting. The best way to learn any-
thing is by doing it. Coming back to the second part of the chapter for a little information
at a time is likely to be much more effective.

If you’re already familiar with PHP, you may just want to skim through the main headings
to see what this chapter contains and brush up your knowledge on any aspects that you’re
a bit hazy about.

PHP: The big picture
When you load a PHP page into a browser, it looks no different from an ordinary web
page. But before it reaches your browser, quite a lot goes on behind the scenes to gen-
erate the page’s dynamic content. In most cases, this frenetic activity takes only a few
microseconds, so you rarely notice any delay. At first glance, PHP code can look quite intim-
idating, but once you understand the basics, you’ll discover that the structure is remarkably
simple. If you have worked with any other computer language, such as JavaScript,
ActionScript, or ASP, you’ll find they have a lot in common.

Every PHP page must have the following:

The correct filename extension, usually .php

Opening and closing PHP tags surrounding each block of PHP code

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

46

7311ch03.qxd  10/17/06  4:11 PM  Page 46



A typical PHP page will use some or all of the following elements:

Variables to act as placeholders for unknown or changing values

Arrays to hold multiple values

Conditional statements to make decisions

Loops to perform repetitive tasks

Functions to perform preset tasks

Let’s take a quick look at each of these in turn.

Telling the server to process PHP

PHP is a server-side language. This means that the web server processes your PHP code
and sends only the results—usually as XHTML—to the browser. Because all the action is on
the server, you need to tell it that your pages contain PHP code. This involves two simple
steps, namely:

Give every page a PHP filename extension—the default is .php. Do not use any-
thing other than .php unless you are told to specifically by your hosting company.

Enclose all PHP code within PHP tags.

The opening tag is <?php and the closing tag is ?>. It doesn’t matter whether you put the
tags on the same line as surrounding code, but when inserting more than one line of PHP,
it’s a good idea to put the opening and closing tags on separate lines for the sake of clarity.

<?php
// some PHP code
?>

You may come across <? as an alternative short version of the opening tag. However, <?
doesn’t work on all servers. Stick with <?php, which is guaranteed to work.

Embedding PHP in a web page

PHP is an embedded language. This means that you can insert blocks of PHP code inside
ordinary web pages. When somebody visits your site and requests a PHP page, the server
sends it to the PHP engine, which reads the page from top to bottom looking for PHP tags.
XHTML passes through untouched, but whenever the PHP engine encounters a <?php tag,
it starts processing your code and continues until it reaches the closing ?> tag. If the PHP
code produces any output, it’s inserted at that point. Then any remaining XHTML passes
through until another <?php tag is encountered.

To save space, many of the examples in this book omit the opening and closing PHP
tags. You must always use them when writing your own scripts or embedding PHP into
a web page.

HOW TO WRITE PHP SCRIPTS

47

3

7311ch03.qxd  10/17/06  4:11 PM  Page 47



Figure 3-1 shows a block of PHP code embedded in an ordinary web page and what it looks
like in a browser and page source view after it has been passed through the PHP engine.
The code calculates the current year, checks whether it’s different from a fixed year (repre-
sented by $startYear in line 32 of the code on the left of the figure), and displays the
appropriate year range in a copyright statement. As you can see from the page source view
at the bottom right of the figure, there’s no trace of PHP in what’s sent to the browser. The
only clue that PHP has been used to generate that part of the page lies in the whitespace
between the date range and the surrounding text, but that doesn’t affect the way it’s dis-
played because browsers ignore anything more than a single space in XHTML.

Figure 3-1. Output from PHP is normally displayed in the same place as it is embedded in the
XHTML code.

Using variables to represent changing values

The code in Figure 3-1 probably looks like an awfully long-winded way to display a range
of years. Surely it’s much simpler to just type out the actual dates? Yes, it is, but the PHP

PHP doesn’t always produce direct output for the browser. It may, for instance, check
the contents of form input before sending an email message or inserting information
into a database. So some code blocks are placed above or below the main XHTML code.
Code that produces direct output, however, always goes where you want the output to
be displayed.

You can have as many PHP code blocks as you like on a page, but they cannot be nested
inside each other.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

48

7311ch03.qxd  10/17/06  4:11 PM  Page 48



solution saves you time in the long run. Instead of you needing to update the copyright
statement every year, the PHP code does it automatically. You write the code once and for-
get it. What’s more, as you’ll see in the next chapter, if you need to amend the code, it’s
possible to do so by updating only one page, and the changes are reflected on every page
of your site.

This ability to display the correct year automatically relies on two key aspects of PHP: vari-
ables and functions. As the name suggests, functions do things; they perform preset
tasks, such as getting the current date and converting it into human-readable form. I’ll
cover functions a little later, so let’s take variables first. The script in Figure 3-1 contains
two variables: $startYear and $thisYear.

Although the concept of variables sounds abstract, we use variables all the time in every-
day life. When you meet somebody for the first time, one of the first things you ask is
“What’s your name?” It doesn’t matter whether the person you’ve just met is Tom, Dick,
or Harry, we use the word “name” in the same way as PHP uses variables. The word
“name” remains constant, but the value we store in it varies for different people.
Similarly, with your bank account, money goes in and out all of the time (mostly out, it
seems), but as Figure 3-2 shows, it doesn’t matter whether you’re scraping the bottom of
the barrel or as rich as Croesus, the amount available at any particular time is always
referred to as the balance.

Figure 3-2. The balance on your bank statement is an everyday example of a variable—the name
stays the same, even though the value may change from day to day.

So, name and balance are everyday variables. Just put a dollar sign in front of them, and
you have two ready-made PHP variables, like this:

$name
$balance

Simple.

A variable is simply a name that you give to something that may change or that you
don’t know in advance. Variables in PHP always begin with $ (a dollar sign).

HOW TO WRITE PHP SCRIPTS

49

3

7311ch03.qxd  10/17/06  4:11 PM  Page 49



Naming variables
You can choose just about anything you like as the name for a variable, as long as you keep
the following rules in mind:

Variables always begin with a dollar sign ($).

The first character after the dollar sign cannot be a number.

No spaces or punctuation are allowed, except for the underscore (_).

Variable names are case-sensitive: $startYear and $startyear are not the same.

When choosing names for variables, it makes sense to choose something that tells you
what it’s for. The variables you’ve seen so far—$startYear, $thisYear, $name, and
$balance—are good examples. Even if you don’t understand how the code works, a vari-
able’s name should give some indication as to what it’s about. Because you can’t use
spaces in variable names, it’s a good idea to capitalize the first letter of the second or sub-
sequent words when combining them (sometimes called camel case). Alternatively, you
can use an underscore ($start_year, $this_year, etc.). Technically speaking, you can use
an underscore as the first character after the dollar sign, but it’s not a good idea. PHP pre-
defined variables (e.g., the superglobal arrays described a little later in this chapter) begin
with an underscore, so there’s a danger that you may accidentally choose the same name
and cause problems for your script.

Don’t try to save time by using really short variables. Using $sy, $ty, $n, and $b instead of
the more descriptive ones makes code harder to understand—and that makes it hard to
write. More important, it makes errors more difficult to spot.

Assigning values to variables
Variables get their values from a variety of sources, including the following:

User input through online forms

A database

An external source, such as a news feed or XML file

The result of a calculation

Direct inclusion in the PHP code

Wherever the value comes from, it’s always assigned in the same way with an equal sign
(=), like this:

$variable = value;

Although you have considerable freedom in the choice of variable names, you can’t use
$this, because it has a special meaning in PHP object-oriented programming. It’s also
advisable to avoid using any of the keywords listed at www.php.net/manual/en/
reserved.php.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

50

7311ch03.qxd  10/17/06  4:11 PM  Page 50



The variable goes on the left of the equal sign, and the value goes on the right. Because 
it assigns a value, the equal sign is called the assignment operator. Note that the line 
of code ends with a semicolon. This is an important point that I’ll come to after this quick
warning.

Ending commands with a semicolon

PHP is written as a series of commands or statements. Each statement normally tells 
the PHP engine to perform a particular action, and it must always be followed by a semi-
colon, like this:

<?php
do this;
now do something else;
finally, do that;
?>

As with all rules, there is an exception: you can omit the semicolon if there’s only one
statement in the code block. However, don’t do it. Get into the habit of always using a
semicolon at the end of every PHP statement. PHP is not like JavaScript or ActionScript. It
won’t automatically assume there should be a semicolon at the end of a line if you omit 
it. This has a nice side effect: you can spread long statements over several lines and lay out
your code for ease of reading. PHP, like XHTML, ignores whitespace in code. Instead, it
relies on semicolons to indicate where one command ends and the next one begins.

Commenting scripts

PHP treats everything between the opening and closing PHP tags as statements to be exe-
cuted, unless you tell it not to do so by marking a section of code as a comment. The fol-
lowing three reasons explain why you may want to do this:

To insert a reminder of what the script does

To insert a placeholder for code to be added later

To disable a section of code temporarily

Using a semicolon at the end of a PHP statement (or command) is always right. A
missing semicolon will bring your page to a grinding halt.

Familiarity with the equal sign from childhood makes it difficult to get out of the habit
of thinking that it means “is equal to.” However, PHP uses two equal signs (==) to signify
equality. This is one of the biggest causes of beginner mistakes—and it often catches
more experienced developers, too. The difference between = and == is covered in more
detail later in this chapter.

HOW TO WRITE PHP SCRIPTS

51

3

7311ch03.qxd  10/17/06  4:11 PM  Page 51



When a script is fresh in your mind, it may seem unnecessary to insert anything that isn’t
going to be processed. However, if you need to revise the script several months later, you’ll
find comments much easier to read than trying to follow the code on its own.

During testing, it’s often useful to prevent a line of code, or even a whole section, from
running. Because PHP ignores anything marked as a comment, this is a useful way of turn-
ing code on and off.

There are three ways of adding comments: two for single-line comments and one for com-
ments that stretch over several lines.

Single-line comments
The most common method of adding a single-line comment is to precede it with two for-
ward slashes, like this:

// this is a comment and will be ignored by the PHP engine

PHP ignores everything from the double slashes to the end of the line, so you can also
place comments alongside code (but only to the right):

$startYear = 2006; // this is a valid comment

Instead of two slashes, you can use the hash or pound sign (#). Because # stands out
prominently when several are used together, this style of commenting is used mainly to
indicate sections of a longer script, like this:

##################
## Menu section ##
##################

Multiline comments
If you want a comment to stretch over several lines, you can use the same style of com-
ments as in Cascading Style Sheets (CSS). Anything between /* and */ is treated as a 
comment, no matter how many lines are used, like this:

/* This is a comment that stretches
over several lines. It uses the
same beginning and end markers
as in CSS. */

Multiline comments are particularly useful when testing or troubleshooting, as they can be
used to disable long sections of script without the need to delete them.

A combination of good comments and well-chosen variable names makes code easier
to understand and maintain.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

52

7311ch03.qxd  10/17/06  4:11 PM  Page 52



Using arrays to store multiple values

In common with other computing languages, PHP lets you store multiple values in a spe-
cial type of variable called an array. The simple way of thinking about arrays is that they’re
like a shopping list. Although each item might be different, you can refer to them collec-
tively by a single name. Figure 3-3 demonstrates this concept: the variable $shoppingList
refers collectively to all five items—wine, fish, bread, grapes, and cheese.

Figure 3-3. Arrays are variables that store multiple items, just like a shopping list.

Individual items—or array elements—are identified by means of a number in square
brackets immediately following the variable name. PHP assigns the number automatically,
but it’s important to note that the numbering always begins at 0. So the first item in the
array, wine, is referred to as $shoppingList[0], not $shoppingList[1]. And although
there are five items, the last one (cheese) is $shoppingList[4]. The number is referred to
as the array key or index, and this type of array is called an indexed array.

PHP uses another type of array, in which the key is a word (or any combination of letters
and numbers). For instance, an array containing details of this book might look like this:

$book['title'] = 'PHP Solutions: Dynamic Web Design Made Easy';
$book['author'] = 'David Powers';
$book['publisher'] = 'friends of ED';
$book['ISBN'] = '1-59059-731-1';

This type of array is called an associative array. Note that the array key is enclosed in
quotes (single or double, it doesn’t matter). It mustn’t contain any spaces or punctuation,
except for the underscore.

Arrays are an important—and useful—part of PHP. You’ll use them a lot, starting with the
next chapter, when you’ll store details of images in an array to display a random image on
a web page. Arrays are also used extensively with a database, as you fetch the results of a
search in a series of arrays.

HOW TO WRITE PHP SCRIPTS

53

3

7311ch03.qxd  10/17/06  4:11 PM  Page 53



You can learn the various ways of creating arrays in the second half of this chapter.

PHP’s built-in superglobal arrays

PHP has several built-in arrays that are automatically populated with really useful informa-
tion. They are called superglobal arrays, and all begin with a dollar sign followed by an
underscore. Two that you will meet frequently are $_POST and $_GET. They contain infor-
mation passed from forms through the post and get methods, respectively. The superglob-
als are all associative arrays, and the keys of $_POST and $_GET are automatically derived
from the names of form elements.

Let’s say you have a text input field called address in a form; PHP automatically creates an
array element called $_POST['address'] when the form is submitted by the post method
or $_GET['address'] if you use the get method. As Figure 3-4 shows, $_POST['address']
contains whatever value a visitor enters in the text field, enabling you to display it onscreen,
insert it in a database, send it to your email inbox, or do whatever you want with it.

Figure 3-4. You can retrieve the values of user input through the $_POST array, which is created
automatically when a form is submitted using the post method.

The main superglobal arrays that you'll work with in this book are as follows:

$_POST: This contains values sent through the post method. You'll encounter it in
most chapters, beginning with Chapter 5, where you'll use it to send the content of
an online feedback form by email to your inbox.

$_GET: This contains values sent through a URL query string. You'll use it frequently
in Chapters 12 through 14 to pass information to a database.

$_SERVER: This contains information stored by the web server, such as filename,
pathname, hostname, etc. You'll see it in action in Chapters 4, 12, and 13.

$_FILES: This contains details of file uploads, which are covered in Chapter 6.

$_SESSION: This stores information that you want to preserve so that it's available
to other pages. It's used to create a simple login system in Chapters 9 and 15.

Don’t forget that PHP is case-sensitive. All superglobal array names are written in
uppercase. $_Post or $_Get, for example, won’t work.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

54

7311ch03.qxd  10/17/06  4:11 PM  Page 54



Understanding when to use quotes

If you look closely at the PHP code block in Figure 3-1, you’ll notice that the value assigned
to the first variable isn’t enclosed in quotes. It looks like this:

$startYear = 2006;

Yet all the examples in “Using arrays to store multiple values” did use quotes, like this:

$book['title'] = 'PHP Solutions: Dynamic Web Design Made Easy';

The simple rules are as follows:

Numbers: No quotes

Text: Requires quotes

As a general principle, it doesn’t matter whether you use single or double quotes around
text—or a string, as text is called in PHP and other computer languages. The situation is
actually a bit more complex than that, as explained in the second half of this chapter,
because there’s a subtle difference in the way single and double quotes are treated by the
PHP engine.

The important thing to remember for now is that quotes must always be in matching pairs.
This means you need to be careful about including apostrophes in a single-quoted string
or double quotes in a double-quoted string. Take a look at the following line of code:

$book['description'] = 'This is David's sixth book on PHP.';

At first glance, there seems nothing wrong with it. However, the PHP engine sees things
differently from the human eye, as Figure 3-5 demonstrates.

Figure 3-5. An apostrophe inside a single-quoted string confuses the PHP engine.

The word “string” is borrowed from computer and mathematical science, where it
means a sequence of simple objects—in this case, the characters in text. 

HOW TO WRITE PHP SCRIPTS

55

3

7311ch03.qxd  10/17/06  4:11 PM  Page 55



There are two ways around this problem:

Use double quotes if the text includes any apostrophes.

Precede apostrophes with a backslash (this is known as escaping).

So, either of the following is acceptable:

$book['description'] = "This is David's sixth book on PHP.";
$book['description'] = 'This is David\'s sixth book on PHP.';

The same applies with double quotes in a double-quoted string (although with the rules
reversed). The following code causes a problem:

$play = "Shakespeare's "Macbeth"";

In this case the apostrophe is fine, because it doesn’t conflict with the double quotes, but
the opening quotes in front of Macbeth bring the string to a premature end. To solve the
problem, either of the following is acceptable:

$play = 'Shakespeare\'s "Macbeth"';
$play = "Shakespeare's \"Macbeth\"";

In the first example, the entire string has been enclosed in single quotes. This gets around
the problem of the double quotes surrounding Macbeth, but introduces the need to escape
the apostrophe in Shakespeare’s. The apostrophe presents no problem in a double-quoted
string, but the double quotes around Macbeth both need to be escaped. So, to summarize:

Single quotes and apostrophes are fine inside a double-quoted string.

Double quotes are fine inside a single-quoted string.

Anything else must be escaped with a backslash.

Special cases: true, false, and null
Although text should be enclosed in quotes, three special cases—true, false, and null—
should never be enclosed in quotes unless you want to treat them as genuine text (or strings).
The first two mean what you would expect; the last one, null, means “nothing” or “no value.”

Technically speaking, true and false are Boolean values. The name comes from a
nineteenth-century mathematician, George Boole, who devised a system of logical oper-
ations that subsequently became the basis of much modern-day computing. It’s a com-
plicated subject, but you can find out more at http://en.wikipedia.org/wiki/
Boolean_logic. For most people, it’s sufficient to know that Boolean means true or false.

The key is to remember that the outermost quotes must match. There is more on this
important subject in the second half of this chapter, including a technique that avoids
the need to give special treatment to quotes.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

56

7311ch03.qxd  10/17/06  4:11 PM  Page 56



As the next section explains, PHP makes decisions on the basis of whether something eval-
uates to true or false. Putting quotes around false has surprising consequences. The fol-
lowing code:

$OK = false;

does exactly what you expect: it makes $OK false. Now take a look at this:

$OK = 'false';

This does exactly the opposite of what you might expect: it makes $OK true! Why? Because
the quotes around false turn it into a string, and PHP treats strings as true. (There’s a
more detailed explanation in “The truth according to PHP” in the second half of this
chapter.)

The other thing to note about true, false, and null is that they are case-insensitive. The
following examples are all valid:

$OK = TRUE;
$OK = tRuE;
$OK = true;

So, to recap: PHP treats true, false, and null as special cases.

Don’t enclose them in quotes.

They are case-insensitive.

Making decisions

Decisions, decisions, decisions . . . Life is full of decisions. So is PHP. They give it the ability
to display different output according to circumstances. Decision making in PHP uses con-
ditional statements. The most common of these uses if and closely follows the structure
of normal language. In real life, you may be faced with the following decision (admittedly
not very often if you live in Britain):

If the weather's hot, I'll go to the beach.

In PHP pseudo-code, the same decision looks like this:

if (the weather's hot) {
I'll go to the beach;
}

The condition being tested goes inside parentheses, and the resulting action goes between
curly braces. This is the basic decision-making pattern:

if (condition is true) {
// code to be executed if condition is true
}

HOW TO WRITE PHP SCRIPTS

57

3

7311ch03.qxd  10/17/06  4:11 PM  Page 57



The code inside the curly braces is executed only if the condition is true. If it’s false, PHP
ignores everything between the braces and moves on to the next section of code. How
PHP determines whether a condition is true or false is described in the following section. 

Sometimes, the if statement is all you need, but you often want a default action to be
invoked. To do this, use else, like this:

if (condition is true) {
// code to be executed if condition is true
}

else {
// default code to run if condition is false
}

What if you want more alternatives? One way is to add more if statements. PHP will test
them, and as long as you finish with else, at least one block of code will run. However, it’s
important to realize that all if statements will be tested, and the code will be run in every
single one where the condition equates to true. If you want only one code block to be
executed, use elseif like this:

if (condition is true) {
// code to be executed if first condition is true
}

elseif (second condition is true) {
// code to be executed if first condition fails
// but second condition is true

else {
// default code to run if both conditions are false
}

You can use as many elseif clauses in a conditional statement as you like. It’s important
to note that only the first one that equates to true will be executed; all others will be
ignored, even if they’re also true. This means you need to build conditional statements in
the order of priority that you want them to be evaluated. It’s strictly a first-come, first-
served hierarchy.

Although elseif is normally written as one word, you can use else if as separate words.

Confusion alert: I mentioned earlier that statements must always be followed by a semi-
colon. This applies only to the statements (or commands) inside the curly braces.
Although called a conditional statement, this decision-making pattern is one of PHP’s
control structures, and it shouldn’t be followed by a semicolon. Think of the semicolon
as a command that means “do it.” The curly braces surround the command statements
and keep them together as a group.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

58

7311ch03.qxd  10/17/06  4:11 PM  Page 58



An alternative decision-making structure, the switch statement, is described in the second
half of this chapter.

Making comparisons

Conditional statements are interested in only one thing: whether the condition being
tested equates to true. If it’s not true, it must be false. There’s no room for half-
measures or maybes. Conditions often depend on the comparison of two values. Is this
bigger than that? Are they both the same? And so on.

To test for equality, PHP uses two equal signs (==) like this:

if ($status == 'administrator') {
// send to admin page
}

else {
// refuse entry to admin area
}

Size comparisons are performed using the mathematical symbols for less than (<) and
greater than (>). Let’s say you’re checking the size of a file before allowing it to be uploaded
to your server. You could set a maximum size of 50KB like this:

if ($bytes > 51200) {
// display error message and abandon upload
}

else {
// continue upload
}

You can test for two or more conditions simultaneously. Details are in the second half of
this chapter.

Using indenting and whitespace for clarity

Indenting code helps to keep statements in logical groups, making it easier to understand
the flow of the script. There are no fixed rules; PHP ignores any whitespace inside code, so

Don’t use a single equal sign in the first line like this:

if ($status = 'administrator') {

Doing so will open the admin area of your website to everyone. Why? Because this auto-
matically sets the value of $status to administrator; it doesn’t compare the two val-
ues. To compare values, you must use two equal signs. It’s an easy mistake to make, but
one with potentially disastrous consequences.

HOW TO WRITE PHP SCRIPTS

59

3

7311ch03.qxd  10/17/06  4:11 PM  Page 59



you can adopt any style you like. The important thing is to be consistent so that you can
spot anything that looks out of place.

The limited width of the printed page means that I normally use just two spaces to indent
code in this book, but most people find that tabbing four or five spaces makes for the
most readable code. Perhaps the biggest difference in styles lies in the way individual
developers arrange curly braces. I align the closing brace with the block of code it con-
cludes. Other writers use this style:

if ($bytes > 51200) {
// display error message and abandon upload

} else {
// continue upload

}

Yet others use this style:

if ($bytes > 51200)
{

// display error message and abandon upload
}

else
{

// continue upload
}

Choose whichever style you’re most comfortable with. As long as it’s consistent and easy
to read, that’s all that matters.

Using loops for repetitive tasks

Loops are huge time-savers because they perform the same task over and over again, yet
involve very little code. They’re frequently used with arrays and database results. You can
step through each item one at a time looking for matches or performing a specific task.
Loops are particularly powerful in combination with conditional statements, allowing you
to perform operations selectively on a large amount of data in a single sweep. Loops are
best understood by working with them in a real situation, but details of all looping struc-
tures, together with examples, are in the second half of this chapter.

Using functions for preset tasks

As I mentioned earlier, functions do things . . . lots of things, mind-bogglingly so in PHP.
The last time I counted, PHP had nearly 3,000 built-in functions, and more have been
added since. Don’t worry: you’ll only ever need to use a handful, but it’s reassuring to
know that PHP is a full-featured language capable of industrial-strength applications.

The functions you’ll be using in this book do really useful things, such as get the height and
width of an image, create thumbnails from existing images, query a database, send email,

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

60

7311ch03.qxd  10/17/06  4:11 PM  Page 60



and much, much more. You can identify functions in PHP code because they’re always fol-
lowed by a pair of parentheses. Sometimes the parentheses are empty, as in the case of
phpversion(), which you used in phptest.php in the previous chapter. Often, though, the
parentheses contain variables, numbers, or strings, like this line of code from the script in
Figure 3-1:

$thisYear = date('Y');

This calculates the current year and stores it in the variable $thisYear. It works by feeding
the string 'Y' to the built-in PHP function date(). Placing a value between the parenthe-
ses like this is known as passing an argument to a function. The function takes the value
in the argument and processes it to produce (or return) the result. For instance, if you
pass the string 'M' as an argument to date() instead of 'Y', it will return the current
month as a three-letter abbreviation (e.g., Mar, Apr, May). As the following example shows,
you capture the result of a function by assigning it to a suitably named variable:

$thisMonth = date('M');

The date() function is covered in depth in Chapter 14.

Some functions take more than one argument. When this happens, separate the argu-
ments with commas inside the parentheses, like this:

$mailSent = mail($to, $subject, $message);

It doesn’t take a genius to work out that this sends an email to the address stored in the
first argument, with the subject line stored in the second argument, and the message
stored in the third one. You’ll see how this function works in Chapter 5.

As if the 3,000-odd built-in functions weren’t enough, PHP lets you build your own custom
functions. Even if you don’t relish the idea of creating your own, throughout this book
you’ll use some that I have made. You use them in exactly the same way.

Displaying PHP output

There’s not much point in all this wizardry going on behind the scenes unless you can dis-
play the results in your web page. There are two ways of doing this in PHP: using echo or
print. There are some subtle differences between the two, but they are so subtle, you
can regard them as identical. I prefer echo for the simple reason that it’s one fewer letter
to type.

You’ll often come across the term “parameter” in place of “argument.” There is a tech-
nical difference between the two words, but for all practical purposes, they are inter-
changeable.

HOW TO WRITE PHP SCRIPTS

61

3

7311ch03.qxd  10/17/06  4:11 PM  Page 61



You can use echo with variables, numbers, and strings. Simply put it in front of whatever
you want to display, like this:

$name = 'David';
echo $name;   // displays David
echo 5;       // displays 5
echo 'David'; // displays David

The important thing to remember about echo and print, when using them with a variable,
is that they work only with variables that contain a single value. You cannot use them to
display the contents of an array or of a database result. This is where loops are so useful:
you use echo or print inside the loop to display each element individually. You will see
plenty of examples of this in action throughout the rest of the book.

You may see scripts that use parentheses with echo and print, like this:

echo('David'); // displays David

The parentheses make absolutely no difference. Unless you enjoy typing purely for the
sake of it, I suggest you leave them out.

Joining strings together
PHP has a rather unusual way of joining strings (text). Although many other computer lan-
guages use the plus sign (+), PHP uses a period, dot, or full stop (.) like this:

$firstName = 'David';
$lastName = 'Powers';
echo $firstName.$lastName; // displays DavidPowers

As the comment in the final line of code indicates, when two strings are joined like this,
PHP leaves no gap between them. Don’t be fooled into thinking that adding a space after
the period will do the trick. It won’t. You can put as much space on either side of the
period as you like; the result will always be the same, because PHP ignores whitespace in
code. You must either include a space in one of the strings or insert the space as a string
in its own right, like this:

echo $firstName.' '.$lastName; // displays David Powers

Working with numbers
PHP can do a lot with numbers—from simple addition to complex math. The second half
of this chapter contains details of the arithmetic operators you can use with PHP. All you
need to remember at the moment is that numbers mustn’t contain any punctuation other

The period—or concatenation operator, to give it its correct name—can be difficult
to spot among a lot of other code. Make sure the font size in your script editor is large
enough to read without straining to see the difference between periods and commas.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

62

7311ch03.qxd  10/17/06  4:11 PM  Page 62



than a decimal point. PHP will choke if you feed it numbers that contain commas (or any-
thing else) as the thousands separator.

Understanding PHP error messages

There’s one final thing you need to know about before savoring the delights of PHP: error
messages. They’re an unfortunate fact of life, but it helps a great deal if you understand
what they’re trying to tell you. The following illustration shows the structure of a typical
error message.

The first thing to realize about PHP error messages is that they report the line where PHP
discovered a problem. Most newcomers—quite naturally—assume that’s where they’ve
got to look for their mistake. Wrong . . .

What PHP is telling you most of the time is that something unexpected has happened. In
other words, the mistake lies before that point. The preceding error message means that
PHP discovered an echo command where there shouldn’t have been one. (Error messages
always prefix PHP elements with T_, which stands for token. Just ignore it.)

Instead of worrying what might be wrong with the echo command (probably nothing),
start working backward, looking for anything that might be missing. Usually, it’s a semi-
colon or closing quote on a previous line.

There are four main categories of error, presented here in descending order of impor-
tance:

Fatal error: Any XHTML output preceding the error will be displayed, but once the
error is encountered—as the name suggests—everything else is killed stone dead.
A fatal error is normally caused by referring to a nonexistent file or function.

Parse error: This means there’s a mistake in your code, such as mismatched
quotes, or a missing semicolon or closing brace. Like a fatal error, it stops the script
in its tracks and doesn’t even allow any XHTML output to be displayed.

Warning: This alerts you to a serious problem, such as a missing include file.
(Include files are the subject of Chapter 4.) However, the error is not serious
enough to prevent the rest of the script from being executed.

Notice: This advises you about relatively minor issues, such as the use of depre-
cated code or a nondeclared variable. Although this type of error won’t stop your
page from displaying (and you can turn off the display of notices), you should
always try to eliminate them. Any error is a threat to your output.

HOW TO WRITE PHP SCRIPTS

63

3

7311ch03.qxd  10/17/06  4:11 PM  Page 63



Now, on with the show . . .

Your head is probably reeling by now, but—believe it or not—you have covered all the
fundamentals of PHP. Of course, there are a lot more details, many of which are described
in the reference section that follows. However, rather than plowing straight on, I suggest
you take a short break and then move on to the next chapter. Come back to the next sec-
tion when you’ve gained some practical experience of working with PHP, as it will make
much more sense then. Also, the idea of this book is to put PHP to work and provide real
solutions for your websites. The projects in each chapter use progressively more advanced
techniques, so if you’re new to PHP, cut your teeth on them first before plunging into
working with a database.

PHP: A quick reference
This part of the chapter is intended to provide a quick source of information on PHP
basics. It makes no attempt to cover every aspect of PHP syntax. For that, you should refer
to the PHP documentation at www.php.net/manual/en or a more detailed reference book,
such as Beginning PHP and MySQL 5: From Novice to Professional, Second Edition by W.
Jason Gilmore (Apress, ISBN: 1-59059-552-1).

Using PHP in an existing website

There is no problem mixing .html and .php pages in the same website. However, PHP code
will be processed only in files that have the .php filename extension, so it’s a good idea to
give the same extension to all your pages, even if they don’t all contain dynamic features.
That way, you have the flexibility to add PHP to pages without breaking existing links or
losing search engine rankings.

Data types in PHP

PHP is what’s known as a weakly typed language. What this means in practice is that,
unlike some other computer languages (e.g., Java or C#), PHP doesn’t care what type of
data you store in a variable.

There is a fifth type of error: strict, which was introduced in PHP 5.0.0, mainly for the
benefit of advanced developers. Strict error messages warn you about the use of depre-
cated code or techniques that aren’t recommended. As of this writing, strict error mes-
sages are not displayed by default, but there are plans to change this as a prelude to
removing outdated parts of the language. The idea is to warn you that anything that
generates a strict error in PHP 6 will generate a fatal error in the next major version,
PHP 7. This policy is in the early stages of development, so it may change, but if you see
a strict error message, ignore it at your peril. None of the code in this book generates
strict error messages in the version of PHP current at the time of this writing (5.1.4).

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

64

7311ch03.qxd  10/17/06  4:11 PM  Page 64



Most of the time, this is very convenient, although it does mean that you need to be care-
ful with user input. You may expect a user to enter a number in a form, but PHP won’t
object if it encounters a word instead. Checking user input carefully is one of the major
themes of later chapters.

Even though PHP is weakly typed, it uses the following eight data types:

Integer: This is a whole number, such as 1, 25, 42, or 2006. Integers must not con-
tain any commas or other punctuation as thousand-separators. You can also use
hexadecimal numbers, which should be preceded by 0x (e.g., 0xFFFFFF, 0x000000).

Floating-point number: This is a number that contains a decimal point, such as
9.99, 98.6, or 2.1. Like integers, floating-point numbers must not contain thousand-
separators. (This type is also referred to as float or double.)

String: A string is text of any length. It can be as short as zero characters (an empty
string), and it has no upper limit.

Boolean: This type has only two values: true or false. See “The truth according to
PHP” later in this chapter for details of what PHP regards as true and false.

Array: An array is a variable that is capable of storing multiple values, although it
may contain none at all (an empty array). Arrays can hold any data type, including
other arrays. An array of arrays is called a multidimensional array. See “Creating
arrays” later in this chapter for details of how to populate an array with values.

Object: PHP has powerful object-oriented capabilities, which are mainly of interest
to advanced users. Objects are covered only briefly in this book when connecting
to a database with the MySQL Improved extension or PHP Data Objects (PDO).

Resource: When PHP connects to an external data source, such as a file or data-
base, it stores a reference to it as a resource.

NULL: This is a special data type that indicates that a variable has no value.

An important side effect of PHP’s weak typing is that, if you enclose an integer or floating-
point number in quotes, PHP automatically converts it from a string to a number, allowing
you to perform calculations without the need for any special handling. This is different
from JavaScript and ActionScript, and it can have unexpected consequences. When PHP
sees the plus sign (+), it assumes that you want to perform addition, and it tries to convert
strings to integers or floating-point numbers, as in the following example (the code is in
data_conversion1.php in the download files for this chapter):

$fruit = '2 apples';
$veg = ' 2 carrots';
echo $fruit + $veg;  // displays 4 

PHP sees that both $fruit and $veg begin with a number, so it extracts the number and
ignores the rest. However, if the string doesn’t begin with a number, PHP converts it to 0,
as shown in this example (the code is in data_conversion2.php):

$fruit = '2 apples';
$veg = ' and 2 carrots';
echo $fruit + $veg;  // displays 2 

HOW TO WRITE PHP SCRIPTS

65

3

7311ch03.qxd  10/17/06  4:11 PM  Page 65



Weak typing is a mixed blessing. It makes PHP very easy for beginners, but it means you
often need to check that a variable contains the correct data type before using it.

Doing calculations with PHP

PHP is highly adept at working with numbers and can perform a wide variety of calcula-
tions, from simple arithmetic to complex math. This reference section covers only the
standard arithmetic operators. See www.php.net/manual/en/ref.math.php for details of
the mathematical functions and constants supported by PHP.

Arithmetic operators
The standard arithmetic operators all work the way you would expect, although some of
them look slightly different from those you learned at school. For instance, an asterisk (*)
is used as the multiplication sign, and a forward slash (/) is used to indicate division. 

Table 3-1 shows examples of how the standard arithmetic operators work. To demonstrate
their effect, the following variables have been set:

$x = 20;
$y = 10;
$z = 4.5;

Table 3-1. Arithmetic operators in PHP

Operation Operator Example Result

Addition + $x + $y 30

Subtraction - $x - $y 10

Multiplication * $x * $y 200

Division / $x / $y 2

Modulo division % $x % $z 2

Increment (adds 1) ++ $x++ 21

Decrement (subtracts 1) -- $y-- 9

The modulo operator returns the remainder of a division, as follows:

26 % 5    // result is 1
26 % 27   // result is 26
10 % 2    // result is 0

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

66

7311ch03.qxd  10/17/06  4:11 PM  Page 66



A practical use of the modulo operator is to work out whether a number is odd or even.
$number % 2 will always produce 0 or 1. If the result is 0, there is no remainder, so the
number must be even.

The increment (++) and decrement (--) operators can come either before or after the
variable. When they come before the variable, 1 is added to or subtracted from the value
before any further calculation is carried out. When they come after the variable, the main
calculation is carried out first, and then 1 is either added or subtracted. Since the dollar
sign is an integral part of the variable name, the increment and decrement operators go
before the dollar sign when used in front:

++$x
--$y

Determining the order of calculations
Calculations in PHP follow exactly the same rules as standard arithmetic. Table 3-2 sum-
marizes the precedence of arithmetic operators.

Table 3-2. Precedence of arithmetic operators

Precedence Group Operators Rule

Highest Parentheses () Operations contained
within parentheses are
evaluated first. If these
expressions are nested,
the innermost is
evaluated foremost.

Next Multiplication and division * / % These operators are
evaluated next. If an
expression contains two
or more operators, they
are evaluated from left 
to right.

Lowest Addition and subtraction + - These are the final
operators to be evaluated
in an expression. If an
expression contains two
or more operators, they
are evaluated from left 
to right.

If in doubt, use parentheses all the time to group the parts of a calculation that you want
to make sure are performed as a single unit.

HOW TO WRITE PHP SCRIPTS

67

3

7311ch03.qxd  10/17/06  4:11 PM  Page 67



Combining calculations and assignment
PHP offers a shorthand way of performing a calculation on a variable and assigning the
result back to the same variable through combined assignment operators. The main
ones are listed in Table 3-3.

Table 3-3. Combined arithmetic assignment operators used in PHP

Operator Example Equivalent to

+= $a += $b $a = $a + $b

-= $a -= $b $a = $a - $b

*= $a *= $b $a = $a * $b

/= $a /= $b $a = $a / $b

%= $a %= $b $a = $a % $b

Adding to an existing string

The same convenient shorthand allows you to add new material to the end of an existing
string by combining a period and an equal sign, like this:

$hamlet = 'To be';
$hamlet .= ' or not to be';

Note that you need to create a space at the beginning of the additional text unless you
want both strings to run on without a break. This shorthand, known as the combined con-
catenation operator, is extremely useful when combining many strings, such as you need
to do when building the content of an email message or looping through the results of a
database search.

All you ever wanted to know about quotes—and more

Handling quotes within any computer language—not just PHP—can be fraught with 
difficulties because computers always take the first matching quote as marking the end of
a string. Structured Query Language (SQL)—the language used to communicate with

The period in front of the equal sign is easily overlooked when copying code. When you
see the same variable repeated at the beginning of a series of statements, it’s often a
sure sign that you need to use .= instead of = on its own.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

68

7311ch03.qxd  10/17/06  4:11 PM  Page 68



databases—also uses strings. Since your strings may include apostrophes, the combination
of single and double quotes isn’t enough. Moreover, PHP gives variables and escape
sequences (certain characters preceded by a backslash) special treatment inside double
quotes.

As if that weren’t enough to cope with, PHP has a feature called magic quotes. It was orig-
inally designed to make life simpler for beginners, but is now deemed to cause more prob-
lems than it solves, and has been completely phased out of PHP 6.

Over the next few pages, I’ll unravel this maze and make sense of it all for you.

How PHP treats variables inside strings
Choosing whether to use double quotes or single quotes around strings might just seem
like a question of personal preference, but there’s an important difference in the way that
PHP handles them.

Anything between single quotes is treated literally as text.

Double quotes act as a signal to process variables and special characters known as
escape sequences.

Take a look at the following examples to see what this means. In the first example (the
code is in quotes1.php), $name is assigned a value and then used in a single-quoted string.
As you can see from the screenshot alongside the code, $name is treated like normal text.

$name = 'Dolly';
// Single quotes: $name is treated as literal text
echo 'Hello, $name';

If you replace the single quotes in the final line with double ones (see quotes2.php), $name
is processed and its value is displayed onscreen.

$name = 'Dolly';
// Double quotes: $name is processed
echo "Hello, $name";

Because double quotes are so useful in this way, a lot of people use double quotes all the
time. Technically speaking, using double quotes when you don’t need to process any vari-
ables is inefficient, but the difference it’s likely to make in the speed of your script is infin-
itesimal. My personal style is to use single quotes unless my string contains variables, but
feel free to follow whichever style you find more convenient.

In both examples, the string in the first line is in single quotes. This has no effect on the
outcome. What causes the variable to be processed is the fact that it’s inside a double-
quoted string, not how the variable originally got its value.

HOW TO WRITE PHP SCRIPTS

69

3

7311ch03.qxd  10/17/06  4:11 PM  Page 69



Using escape sequences inside double quotes
Double quotes have another important effect: they treat escape sequences in a special
way. All escape sequences are formed by placing a backslash in front of a character. Most
of them are designed to avoid conflicts with characters that are used with variables, but
three of them have special meanings: \n inserts a new line character, \r inserts a carriage
return, and \t inserts a tab. Table 3-4 lists the main escape sequences supported by PHP.

Table 3-4. The main PHP escape sequences

Escape sequence Character represented in double-quoted string

\" Double quote

\n New line

\r Carriage return

\t Tab

\\ Backslash

\$ Dollar sign

\{ Opening curly brace

\} Closing curly brace

\[ Opening square bracket

\] Closing square bracket

Avoiding the need to escape quotes with heredoc syntax
Using a backslash to escape one or two quotation marks isn’t a great burden, but I fre-
quently see examples of code where backslashes seem to have run riot. It must be difficult
to type, and it’s certainly difficult to read. However, it’s totally unnecessary. The PHP
heredoc syntax offers a relatively simple method of assigning text to a variable without
the need for any special handling of quotes.

The name “heredoc” is derived from here-document, a technique used in Unix and Perl
programming to pass large amounts of text to a command. 

The escape sequences listed in Table 3-4, with the exception of \\, work only in double-
quoted strings. If you use them in a single-quoted string, they will be treated as a literal
backslash followed by the second character.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

70

7311ch03.qxd  10/17/06  4:11 PM  Page 70



Assigning a string to a variable using heredoc involves the following steps:

1. Type the assignment operator, followed by <<< and an identifier. The identifier can
be any combination of letters, numbers, and the underscore, as long as it doesn’t
begin with a number.

2. Begin the string on a new line. It can include both single and double quotes. Any
variables will be processed in the same way as in a double-quoted string.

3. Place the identifier on a new line after the end of the string. Nothing else should be
on the same line, except for a final semicolon. Moreover, the identifier must be at
the beginning of the line; it cannot be indented.

It’s a lot easier when you see it in practice. The following simple example can be found in
heredoc.php in the download files for this chapter:

$fish = 'whiting';
$mockTurtle = <<< Gryphon
"Will you walk a little faster?" said a $fish to a snail.
"There's a porpoise close behind us, and he's treading on my tail."
Gryphon;
echo $mockTurtle;

In this example, Gryphon is the identifier. The string begins on the next line, and the dou-
ble quotes are treated as part of the string. Everything is included until you reach the iden-
tifier at the beginning of a new line. As you can see from the following screenshot, the
heredoc displays the double quotes and processes the $fish variable.

To achieve the same effect without using the heredoc syntax, you need to add the double
quotes and escape them like this:

$fish = 'whiting';
$mockTurtle = "\"Will you walk a little faster?\" said a $fish to a ➥
snail.
\"There's a porpoise close behind us, and he's treading on my tail.\""
echo $mockTurtle;

This is only a short example. The heredoc syntax is mainly of value when you have a long
string and/or lots of quotes.

Unraveling the magic quotes tangle
Several years ago, the developers of PHP decided it would be a lot easier to handle quotes
if input from online forms and certain other sources were escaped automatically with a

HOW TO WRITE PHP SCRIPTS

71

3

7311ch03.qxd  10/17/06  4:11 PM  Page 71



backslash, so they invented magic quotes. In some respects, it was good magic; it went a
long way toward solving some security problems for beginners. Unfortunately, it created
new problems, most notably the proliferation of backslashes in the middle of dynamically
generated text.

After a lot of heated argument, it was finally decided to remove magic quotes from PHP 6.
Although magic quotes are enabled by default in earlier versions of PHP, server adminis-
trators have the option to turn them off. So the only sensible approach to this period of
change is a strategy that assumes magic quotes are off, but removes backslashes if the
server still inserts them.

To find out whether your remote server has magic quotes on or off, upload a PHP page
containing the single-line script <?php phpinfo(); ?> that you used in the previous chap-
ter to display your PHP configuration. Load the page into a browser, and check the PHP
Core section near the top. Find the line indicated in the following screenshot. If the value
of magic_quotes_gpc is Off, you can run all the scripts in this book without taking further
measures. You should also change the setting of magic_quotes_gpc to Off in php.ini in
your local testing environment.

If the value of magic_quotes_gpc is On, you need to use the following custom-built func-
tion, nukeMagicQuotes(), which I have adapted from a solution in the PHP online docu-
mentation. It checks the value of magic quotes and strips out any backslashes if necessary,
leaving you with clean data.

function nukeMagicQuotes() {
if (get_magic_quotes_gpc()) {
function stripslashes_deep($value) {
$value = is_array($value) ? array_map('stripslashes_deep', ➥

$value) : stripslashes($value);
return $value;
}

$_POST = array_map('stripslashes_deep', $_POST);
$_GET = array_map('stripslashes_deep', $_GET);

For security reasons, it’s advisable to delete the phpinfo() page or move it to a password-
protected folder after checking your remote server’s settings. Leaving the script on a
publicly accessible page exposes details about your site that malicious users might try
to exploit.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

72

7311ch03.qxd  10/17/06  4:11 PM  Page 72



$_COOKIE = array_map('stripslashes_deep', $_COOKIE);
}

}

The code for this function is included in corefuncs.php in the download files for this
book. To use the function, add the following code immediately after the opening PHP tag
on any page where it is needed:

include('path/to/file/corefuncs.php');
nukeMagicQuotes();

The value of path/to/file should be a relative path to corefuncs.php. Alternatively, use
the technique described in PHP Solution 4-8 in the next chapter to establish a full path to
the file. Using a dynamically generated full path allows you to use the same code in any
page, regardless of its position in the site folder hierarchy.

Creating arrays

As explained earlier, there are two types of arrays: indexed arrays, which use numbers to
identify each element, and associative arrays, which use strings. You can build both types
by assigning a value directly to each element. Let’s take another look at the $book associa-
tive array:

$book['title'] = 'PHP Solutions: Dynamic Web Design Made Easy';
$book['author'] = 'David Powers';
$book['publisher'] = 'friends of ED';
$book['ISBN'] = '1-59059-731-1';

To build an indexed array the direct way, use numbers instead of strings. Indexed arrays
are numbered from 0, so to build the $shoppingList array depicted in Figure 3-3, you
declare it like this:

$shoppingList[0] = 'wine';
$shoppingList[1] = 'fish';
$shoppingList[2] = 'bread';
$shoppingList[3] = 'grapes';
$shoppingList[4] = 'cheese';

Although both are perfectly valid ways of creating arrays, it’s a nuisance to have to type
out the variable name each time, so there’s a much shorter way of doing it. The method is
slightly different for each type of array.

The nukeMagicQuotes() function is not the ideal solution, because it involves removing
the magic quotes, rather than preventing them from being inserted in the first place.
However, it is the only universally applicable one. It also has the advantage that your
pages will continue to run smoothly even if the server administrator decides to turn off
magic quotes.

HOW TO WRITE PHP SCRIPTS

73

3

7311ch03.qxd  10/17/06  4:11 PM  Page 73



Using array() to build an indexed array 
Instead of declaring each array element individually, you declare the variable name
once, and assign all the elements by passing them as a comma-separated list to array(),
like this:

$shoppingList = array('wine', 'fish', 'bread', 'grapes', 'cheese');

PHP numbers each array element automatically, beginning from 0, so this creates exactly
the same array as if you had numbered them individually. To add a new element to the end
of the array, use a pair of empty square brackets like this:

$shoppingList[] = 'coffee';

PHP simply uses the next number available, so this becomes $shoppingList[5].

Using array() to build an associative array
The shorthand way of creating an associative array uses the => operator (an equal sign fol-
lowed by a greater-than sign) to assign a value to each array key. The basic structure looks
like this:

$arrayName = array('key1' => 'element1', 'key2' => 'element2');

So, this is the shorthand way to build the $book array: 

$book = array('title'     => 'PHP Solutions: Dynamic Web Design ➥

Made Easy',
'author'    => 'David Powers',
'publisher' => 'friends of ED',
'ISBN'      => '1-59059-731-1');

It’s not essential to align the => operators like this, but it makes code easier to read and
maintain.

Using array() to create an empty array
There are two reasons you might want to create an empty array, as follows:

To create an array so that it’s ready to have elements added to it inside a loop (this
is known as initializing an array)

To clear all elements from an existing array

The comma must go outside the quotes, unlike American typographic practice. For ease
of reading, I have inserted a space following each comma, but it’s not necessary to do so.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

74

7311ch03.qxd  10/17/06  4:11 PM  Page 74



To create an empty array, simply use array() with nothing between the parentheses,
like this:

$shoppingList = array();

The $shoppingList array now contains no elements. If you add a new one using
$shoppingList[], it will automatically start numbering again at 0.

Multidimensional arrays
Array elements can store any data type, including other arrays. For instance, the $book array
holds details of only one book. It might be more convenient to create an array of arrays—
in other words, a multidimensional array—containing details of several books, like this:

$books = array(
array(
'title'     => 'PHP Solutions: Dynamic Web Design Made Easy',
'author'    => 'David Powers',
'publisher' => 'friends of ED',
'ISBN'      => '1-59059-731-1'),

array(
'title'     => 'Beginning PHP and MySQL 5',
'author'    => 'W. Jason Gilmore',
'publisher' => 'Apress',
'ISBN'      => '1-59059-552-1')

);

This example shows associative arrays nested inside an indexed array, but multidimen-
sional arrays can nest either type. To refer to a specific element use the key of both arrays,
for example:

$books[1]['author']  // value is 'W. Jason Gilmore'

Working with multidimensional arrays isn’t as difficult as it first looks. The secret is to use
a loop to get to the nested array. Then you can work with it in the same way as an ordinary
array. This is how you handle the results of a database search, which is normally contained
in a multidimensional array.

Using print_r() to inspect an array
To inspect the content of an array during testing, pass the array to print_r() like this (see
inspect_array2.php):

print_r($books);

The following screenshot shows how PHP displays a multidimensional array; load
inspect_array1.php into a browser to see how print_r() outputs the contents of an
ordinary array. Often, it helps to switch to Source view to inspect the details, as browsers
ignore indenting in the underlying output.

HOW TO WRITE PHP SCRIPTS

75

3

7311ch03.qxd  10/17/06  4:11 PM  Page 75



The truth according to PHP

Decision making in PHP conditional statements is based on the mutually exclusive Boolean
values, true and false. If the condition equates to true, the code within the conditional
block is executed. If false, it’s ignored. Whether a condition is true or false is deter-
mined in one of the following ways:

A variable set explicitly to one of the Boolean values

A value PHP interprets implicitly as true or false

The comparison of two non-Boolean values

Explicit Boolean values
This is straightforward. If a variable is assigned the value true or false, and then used in a
conditional statement, the decision is based on that value. As stated in the first half of this
chapter, true and false are case-insensitive and must not be enclosed in quotes, for
example:

Always use print_r() to inspect arrays; echo and print don’t work. To display the con-
tents of an array in a web page, use a foreach loop, as described later in the chapter.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

76

7311ch03.qxd  10/17/06  4:11 PM  Page 76



$OK = false;
if ($OK) {
// do something
}

The code inside the conditional statement won’t be executed, because $OK is false.

Implicit Boolean values
Using implicit Boolean values provides a convenient shorthand, although it has the disad-
vantage—at least to beginners—of being less clear. Implicit Boolean values rely on PHP’s
relatively narrow definition of what it regards as false, namely:

The case-insensitive keywords false and null

Zero as an integer (0), a floating-point number (0.0), or a string ('0' or "0")

An empty string (single or double quotes with no space between them)

An empty array

An object with no values or functions

Everything else is true.

Making decisions by comparing two values
Most true/false decisions are based on a comparison of two values using comparison
operators. Decisions are based on whether two values are equal, whether one is greater
than the other, and so on. Table 3-5 lists the comparison operators used in PHP.

Table 3-5. PHP comparison operators used for decision making

Symbol Name Use

== Equality Returns true if the values are equal;
otherwise, returns false.

!= Inequality Returns true if the values are different;
otherwise, returns false.

=== Identical Determines whether both values are identical.
To be considered identical, they must not only
have the same value, but also be of the same
data type (e.g., both floating-point numbers).

Continues

This definition explains why "false" (in quotes) is interpreted by PHP as true.

HOW TO WRITE PHP SCRIPTS

77

3

7311ch03.qxd  10/17/06  4:11 PM  Page 77



Table 3-5. Continued

Symbol Name Use

!== Not identical Determines whether the values are not
identical (according to the same criteria as 
the previous operator).

> Greater than Determines whether the value on the left is
greater than the one on the right.

>= Greater than or equal to Determines whether the value on the left is
greater than or equal to the one on the right.

< Less than Determines whether the value on the left is
less than the one on the right.

<= Less than or equal to Determines whether the value on the left is
less than or equal to the one on the right.

Testing more than one condition
Frequently, comparing two values is not enough. PHP allows you to set a series of condi-
tions using logical operators to specify whether all, or just some, need to be fulfilled. 

The most important logical operators in PHP are listed in Table 3-6. Negation—testing
that the opposite of something is true—is also considered a logical operator, although it
applies to individual conditions rather than a series.

Table 3-6. The main logical operators used for decision making in PHP

Symbol Name Use

&& Logical AND Evaluates to true if both conditions are true

|| Logical OR Evaluates to true if either is true; otherwise, returns false

! Negation Tests whether something is not true

Technically speaking, there is no limit to the number of conditions that can be tested. Each
condition is considered in turn from left to right, and as soon as a defining point is
reached, no further testing is carried out. When using &&, every condition must be fulfilled,

When comparing two values, you must always use the equality operator (==), the iden-
tical operator (===), or their negative equivalents (!= and !==). A single equal sign
assigns a value; it doesn’t perform comparisons.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

78

7311ch03.qxd  10/17/06  4:11 PM  Page 78



so testing stops as soon as one turns out to be false. Similarly, when using ||, only one
condition needs to be fulfilled, so testing stops as soon as one turns out to be true. 

$a = 10;
$b = 25;
if ($a > 5 && $b > 20) // returns true
if ($a > 5 || $b > 30) // returns true, $b never tested

The implication of this is that when you need all conditions to be met, you should design
your tests with the condition most likely to return false as the first to be evaluated. When
you need just one condition to be fulfilled, place the one most likely to return true first. If
you want a particular set of conditions considered as a group, enclose them in parentheses.

if (($a > 5 && $a < 8) || ($b > 20 && $b < 40))

Using the switch statement for decision chains
The switch statement offers an alternative to if... else for decision making. The basic
structure looks like this:

switch(variable being tested) {
case value1:
statements to be executed
break;

case value2:
statements to be executed
break;

default:
statements to be executed

}

The case keyword indicates possible matching values for the variable passed to switch().
When a match is made, every subsequent line of code is executed until the break keyword
is encountered, at which point the switch statement comes to an end. A simple example
follows:

switch($myVar) {
case 1:
echo '$myVar is 1';
break;

case 'apple':
echo '$myVar is apple';
break;

default:
echo '$myVar is neither 1 nor apple';

}

PHP also uses AND in place of && and OR in place of ||. However, they aren’t exact equiv-
alents. To avoid problems, it’s advisable to stick with && and ||.

HOW TO WRITE PHP SCRIPTS

79

3

7311ch03.qxd  10/17/06  4:11 PM  Page 79



The main points to note about switch are as follows:

The expression following the case keyword must be a number or a string.

You can’t use comparison operators with case. So case > 100: isn’t allowed.

Each block of statements should normally end with break, unless you specifically
want to continue executing code within the switch statement.

You can group several instances of the case keyword together to apply the same
block of code to them.

If no match is made, any statements following the default keyword will be exe-
cuted. If no default has been set, the switch statement will exit silently and con-
tinue with the next block of code.

Using the conditional operator
The conditional operator (?:) is a shorthand method of representing a simple condi-
tional statement. The basic syntax looks like this:

condition ? value if true : value if false;

Here is an example of it in use:

$age = 17;
$fareType = $age > 16 ? 'adult' : 'child';

The second line tests the value of $age. If it’s greater than 16, $fareType is set to adult,
otherwise $fareType is set to child. The equivalent code using if... else looks like this:

if ($age > 16) {
$fareType = 'adult';
}

else {
$fareType = 'child';
}

The if... else version is easier to read, but the conditional operator is more compact.
Most beginners hate this shorthand, but once you get to know it, you’ll realize how 
convenient it can be. Because it uses three operands, it’s sometimes called the ternary
operator.

Creating loops

As the name suggests, a loop is a section of code that is repeated over and over again until
a certain condition is met. Loops are often controlled by setting a variable to count the
number of iterations. By increasing the variable by one each time, the loop comes to a halt
when the variable gets to a preset number. The other way loops are controlled is by running
through each item of an array. When there are no more items to process, the loop stops.

Loops frequently contain conditional statements, so although they’re very simple in struc-
ture, they can be used to create code that processes data in often sophisticated ways.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

80

7311ch03.qxd  10/17/06  4:11 PM  Page 80



Loops using while and do... while
The simplest type of loop is called a while loop. Its basic structure looks like this:

while (condition is true) {
do something
}

The following code displays every number from 1 through 100 in a browser (you can test
it in while.php in the download files for this chapter). It begins by setting a variable ($i)
to 1, and then using the variable as a counter to control the loop, as well as display the
current number onscreen.

$i = 1;  // set counter
while ($i <= 100) {
echo "$i<br />";
$i++; // increase counter by 1
}

A variation of the while loop uses the keyword do and follows this basic pattern:

do {
code to be executed
} while (condition to be tested);

The only difference between a do... while loop and a while loop is that the code within
the do block is executed at least once, even if the condition is never true. The following
code (in dowhile.php) displays the value of $i once, even though it’s greater than the
maximum expected.

$i = 1000;
do {
echo "$i<br />";
$i++; // increase counter by 1
} while ($i <= 100);

The danger with while and do... while loops is forgetting to set a condition that brings
the loop to an end, or setting an impossible condition. When this happens, you create an
infinite loop that either freezes your computer or causes the browser to crash.

The versatile for loop
The for loop is less prone to generating an infinite loop because you are required to
declare all the conditions of the loop in the first line. The for loop uses the following basic
pattern:

for (initialize counter; test; increment) {
code to be executed
}

HOW TO WRITE PHP SCRIPTS

81

3

7311ch03.qxd  10/17/06  4:11 PM  Page 81



The following code does exactly the same as the previous while loop, displaying every
number from 1 to 100 (see forloop.php):

for ($i = 1; $i <= 100; $i++) {
echo "$i<br />";
}

The three expressions inside the parentheses control the action of the loop (note that they
are separated by semicolons, not commas):

The first expression shows the starting point. You can use any variable you like, but
the convention is to use $i. When more than one counter is needed, $j and $k are
frequently used.

The second expression is a test that determines whether the loop should continue
to run. This can be a fixed number, a variable, or an expression that calculates a
value.

The third expression shows the method of stepping through the loop. Most of the
time, you will want to go through a loop one step at a time, so using the increment
(++) or decrement (--) operator is convenient. There is nothing stopping you from
using bigger steps. For instance, replacing $i++ with $i+=10 in the previous exam-
ple would display 1, 11, 21, 31, and so on.

Looping through arrays with foreach
The final type of loop in PHP is used exclusively with arrays. It takes two forms, both of
which use temporary variables to handle each array element. If you only need to do some-
thing with the value of each array element, the foreach loop takes the following form:

foreach (array_name as temporary_variable) {
do something with temporary_variable
}

The following example loops through the $shoppingList array
and displays the name of each item, as shown in the screenshot
(see shopping_list.php):

$shoppingList = array('wine', 'fish', ➥
'bread', 'grapes', 'cheese');
foreach ($shoppingList as $item) {
echo $item.'<br />';
}

Although the preceding example uses an indexed array, you can also use it with an associa-
tive array. However, the alternative form of the foreach loop is of more use with associative
arrays, because it gives access to both the key and value of each array element. It takes this
slightly different form:

foreach (array_name as key_variable => value_variable) {
do something with key_variable and value_variable
}

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

82

7311ch03.qxd  10/17/06  4:11 PM  Page 82



This next example uses the $book associative array from the “Creating arrays” section ear-
lier in the chapter and incorporates the key and value of each element into a simple string,
as shown in the screenshot (see book.php):

foreach ($book as $key => $value) {
echo "The value of $key is $value<br />";
}

Breaking out of a loop
To bring a loop prematurely to an end when a certain condition is met, insert the break
keyword inside a conditional statement. As soon as the script encounters break, it exits
the loop.

To skip an iteration of the loop when a certain condition is met, use the continue key-
word. Instead of exiting, it returns to the top of the loop and executes the next iteration.

Modularizing code with functions

Functions offer a convenient way of running frequently performed operations. In addition
to the large number of built-in functions, PHP lets you create your own. The advantages
are that you write the code only once, rather than needing to retype it everywhere you
need it. This not only speeds up your development time, but also makes your code easier
to read and maintain. If there’s a problem with the code in your function, you update it in
just one place rather than hunting through your entire site. Moreover, functions usually
speed up the processing of your pages.

Building your own functions in PHP is very easy. You simply wrap a block of code in a pair
of curly braces and use the function keyword to name your new function. The function
name is always followed by a pair of parentheses. The following—admittedly trivial—
example demonstrates the basic structure of a custom-built function (see functions1.php
in the download files for this chapter):

function sayHi() {
echo 'Hi!';
}

The foreach keyword is one word. Inserting a space between for and each doesn’t work.

HOW TO WRITE PHP SCRIPTS

83

3

7311ch03.qxd  10/17/06  4:11 PM  Page 83



Simply putting sayHi(); in a PHP code block results in Hi! being displayed onscreen. This
type of function is like a drone: it always performs exactly the same operation. For func-
tions to be responsive to circumstances, you need to pass values to them as arguments (or
parameters).

Passing values to functions
Let’s say you want to adapt the sayHi() function so that it displays someone’s name. You
do this by inserting a variable between the parentheses in the function declaration. The
same variable is then used inside the function to display whatever value is passed to the
function. To pass more than one variable to a function, separate them with commas inside
the opening parentheses. This is how the revised function looks (see functions2.php):

function sayHi($name) {
echo "Hi, $name!";
}

You can now use this function inside a page to display the value of any
variable passed to sayHi(). For instance, if you have an online form
that saves someone’s name in a variable called $visitor, and Chris vis-
its your site, you give him the sort of personal greeting shown along-
side by putting sayHi($visitor); in your page.

A downside of PHP’s weak typing is that if Chris is being particularly
uncooperative, he might type 5 into the form instead of his name, giv-
ing you not quite the type of high five you might have been expecting.

This illustrates why it’s so important to check user input before using it in
any critical situation.

It’s also important to understand that variables inside a function remain exclusive to the
function. This example should illustrate the point (see functions3.php):

function doubleIt($number) {
$number *= 2;
echo "$number<br />";
}

$number = 4;
doubleIt($number);
echo $number;

If you view the output of this code in a browser, you may get a very different result from
what you expect. The function takes a number, doubles it, and displays it onscreen. Line 5
of the script assigns the value 4 to $number. The next line calls the function and passes it
$number as an argument. The function processes $number and displays 8. After the function
comes to an end, $number is displayed onscreen by echo. This time, it will be 4 and not 8.

This example demonstrates that the variable $number that has been declared inside the
function is limited in scope to the function itself. The variable called $number in the main
script is totally unrelated to the one inside the function. To avoid confusion, it’s a good
idea to use variable names in the rest of your script that are different from those used

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

84

7311ch03.qxd  10/17/06  4:11 PM  Page 84



inside functions. This isn’t always possible, so it’s useful to know that functions work like
little black boxes and don’t normally have any direct impact on the values of variables in
the rest of the script.

Returning values from functions
There’s more than one way to get a function to change the value of a variable passed to it
as an argument, but the most important method is to use the return keyword, and to
assign the result either to the same variable or to another one. This can be demonstrated
by amending the doubleIt() function like this:

function doubleIt($number) {
return $number *= 2;
}

$num = 4;
$doubled = doubleIt($num);
echo "\$num is: $num<br />";
echo "\$doubled is: $doubled";

You can test this code in functions4.php. The result is shown in the screenshot alongside
the code. This time, I have used different names for the variables to avoid confusing them.
I have also assigned the result of doubleIt($num) to a new variable. The benefit of doing
this is that I now have available both the original value and the result of the calculation.
You won’t always want to keep the original value, but it can be very useful at times.

Where to locate custom-built functions
If your custom-built function is in the same page as it’s being used, it doesn’t matter where
you declare the function; it can be either before or after it’s used. It’s a good idea, how-
ever, to store functions together, either at the top or the bottom of a page. This makes
them easier to find and maintain.

Functions that are used in more than one page are best stored in an external file and
included in each page. Including external files with include() and require() is covered in
detail in Chapter 4. When functions are stored in external files, you must include the exter-
nal file before calling any of its functions.

PHP quick checklist
This chapter contains a lot of information that is impossible to absorb in one sitting, but
hopefully the first half has given you a broad overview of how PHP works. Here’s a
reminder of some of the main points:

Always give PHP pages the correct filename extension, normally .php.

Enclose all PHP script between the correct tags: <?php and ?>.

Avoid the short form of the opening tag: <?. Using <?php is more reliable.

PHP variables begin with $ followed by a letter or the underscore character.

HOW TO WRITE PHP SCRIPTS

85

3

7311ch03.qxd  10/17/06  4:11 PM  Page 85



Choose meaningful variable names and remember they’re case-sensitive.

Use comments to remind you what your script does.

Remember that numbers don’t require quotes, but strings (text) do.

You can use single or double quotes, but the outer pair must match.

Use a backslash to escape quotes of the same type inside a string.

To store related items together, use an array.

Use conditional statements, such as if and if... else, for decision making.

Simplify repetitive tasks with loops.

Use functions to perform preset tasks.

Display PHP output with echo or print.

Inspect the content of arrays with print_r().

With most error messages, work backward from the position indicated.

Keep smiling—and remember that PHP is not difficult.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

86

7311ch03.qxd  10/17/06  4:11 PM  Page 86



7311ch03.qxd  10/17/06  4:11 PM  Page 87



7311ch04.qxd  10/10/06  10:30 PM  Page 88



4 LIGHTENING YOUR WORKLOAD
WITH INCLUDES

7311ch04.qxd  10/10/06  10:30 PM  Page 89



What this chapter covers:

Using PHP includes for common page elements

Protecting sensitive information in include files 

Automating a “you are here” menu link

Generating a page’s title from its filename

Automatically updating a copyright notice

Displaying random images complete with captions

Using the error control operator

Using absolute pathnames with PHP includes

One of the great payoffs of using PHP is that it can save you a lot of repetitive work.
Figure 4-1 shows how four elements of a static web page benefit from a little PHP magic.

Figure 4-1. Identifying elements of a static web page that could be improved with PHP

The menu and copyright notice appear on each page. Wouldn’t it be wonderful if you
could make changes to just one page and see them propagate throughout the site in the
same way as with CSS? You can with PHP includes. You can even get the menu to display
the correct style to indicate which page the visitor is on. Similar PHP wizardry automati-
cally changes the date on the copyright notice and the text in the page title. PHP can also
add variety by displaying a random image. JavaScript solutions fail if JavaScript is disabled,
but with PHP your script is guaranteed to work all the time. The images don’t all need to

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

90

7311ch04.qxd  10/10/06  10:30 PM  Page 90



be the same size; PHP inserts the correct width and height attributes in your <img> tag.
And with a little extra scripting, you can add a caption to each image.

As you work through this chapter you’ll learn how PHP includes work, where PHP looks for
include files, and how to prevent errors when an include file can’t be found.

Including code from other files
The ability to include code from other files is a core part of PHP. All that’s necessary is to
use one of PHP’s include commands and tell the server where to find the file.

Introducing the PHP include commands

PHP has four commands that can be used to include code from an external file, namely:

include()

include_once()

require()

require_once()

They all do basically the same thing, so why have four?

Normally, include() is the only command you need. The fundamental difference is that
include() attempts to continue processing a script, even if the include file is missing,
whereas require() is used in the sense of mandatory: if the file is missing, the PHP
engine stops processing and throws a fatal error. The purpose of include_once() and
require_once() is to ensure that the external file doesn’t reset any variables that may
have been assigned a new value elsewhere. Since you normally include an external file only
once in a script, these commands are rarely necessary. However, using them does no harm.

To show you how to include code from an external file, let’s convert the page shown in
Figure 4-1. Because the menu and footer appear on every page of the Japan Journey site,
they’re prime candidates for include files. Here’s the code for the body of the page with
the menu and footer highlighted in bold.

<body>
<div id="header">
<h1>Japan Journey </h1>

</div>
<div id="wrapper">
<ul id="nav">
<li><a href="index.php" id="here">Home</a></li>
<li><a href="journal.php">Journal</a></li>
<li><a href="gallery.php">Gallery</a></li>
<li><a href="contact.php">Contact</a></li>

</ul>

LIGHTENING YOUR WORKLOAD WITH INCLUDES

91

4

7311ch04.qxd  10/10/06  10:30 PM  Page 91



<div id="maincontent">
<h1>A journey through Japan with PHP </h1>
<p>Ut enim ad minim veniam, quis nostrud . . .</p>
<div id="pictureWrapper">
<img src="images/water_basin.jpg" alt="Water basin at Ryoanji ➥

temple" width="350" height="237" class="picBorder" />
</div>
<p>Eu fugiat nulla pariatur. Ut labore et dolore . . .</p>
<p>Consectetur adipisicing elit, duis aute irure . . .</p>
<p>Quis nostrud exercitation eu fugiat nulla . . .</p>
</div>
<div id="footer">
<p>&copy; 2006 David Powers</p>
</div>

</div>
</body>

1. Copy index01.php from the download files for this chapter to the phpsolutions
site root, and rename it index.php. If you are using a program like Dreamweaver
that offers to update the page links, don’t update them. The relative links in the
download file are correct. Check that the CSS and images are displaying properly
by loading index.php into a browser. It should look the same as Figure 4-1.

2. Copy journal.php, gallery.php, and contact.php from the download files to
your site root folder. These pages won’t display correctly in a browser yet because
the necessary include files still haven’t been created. That’ll soon change.

3. In index.php, highlight the nav unordered list as shown in bold in the previous list-
ing, and cut (Ctrl+X/Cmd+X) it to your computer clipboard.

4. Create a new file called menu.inc.php in the includes folder. Remove any code
inserted by your editing program; the file must be completely blank.

5. Paste (Ctrl+V/Cmd+V) the code from your clipboard into menu.inc.php and save
the file. The contents of menu.inc.php should look like this:

<ul id="nav">
<li><a href="index.php" id="here">Home</a></li>
<li><a href="journal.php">Journal</a></li>
<li><a href="gallery.php">Gallery</a></li>
<li><a href="contact.php">Contact</a></li>

</ul>

Don’t worry that your new file doesn’t have a DOCTYPE declaration or any
<html>, <head>, or <body> tags. The other pages that include the contents of
this file will supply those elements.

PHP Solution 4-1: Moving the navigation menu and footer to include files

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

92

7311ch04.qxd  10/10/06  10:30 PM  Page 92



6. Open index.php, and insert the following in the space left by the nav unordered
list:

<?php include('includes/menu.inc.php'); ?>

7. Save index.php and load the page into a browser. It should look exactly the same
as before. Although the menu and the rest of the page are coming from different
files, PHP merges them before sending any output to the browser.

8. Do the same with the footer <div>. Cut the lines highlighted in bold in the origi-
nal listing, and paste them into a blank file called footer.inc.php in the includes
folder. Then insert the command to include the new file in the gap left by the
footer <div>:

<?php include('includes/footer.inc.php'); ?>

9. Save all pages and load index.php into a browser. Again, it should look identical to
the original page. If you navigate to other pages in the site, the menu and footer
should appear on every page. The code in the include files is now serving all pages.

10. To prove that the menu is being drawn from a single file, change one of the links in
menu.inc.php like this, for example:

<li><a href="journal.php">Blog</a></li>

11. Save menu.inc.php and view the site again. The change is reflected on all pages. You
can check your code against index02.php, menu.inc01.php, and footer.inc01.php.

As Figure 4-2 shows, there’s a problem with the code at the moment. Even when you nav-
igate away from the home page, the style that indicates which page you’re on doesn’t
change (it’s controlled by the here ID in the <a> tag). Fortunately, that’s easily fixed with a
little PHP conditional logic.

Figure 4-2. Moving the navigation menu to an external file makes maintenance easier, but you need
some conditional logic to apply the correct style to the current page.

Before doing that, let’s take a look at some important aspects of working with include files
in PHP.

L IGHTENING YOUR WORKLOAD WITH INCLUDES

93

4

7311ch04.qxd  10/10/06  10:30 PM  Page 93



Choosing the right filename extension for includes

Both of the include files you created in the preceding section have what may seem rather
unusual filenames with two extensions, .inc and .php, strung together. The truth is that it
doesn’t matter what you use as a filename extension; PHP simply includes the content of
the file and treats it as part of the main page. A common convention is to use .inc for all
include files. However, this potentially exposes you to a major security risk because most
servers treat .inc files as plain text. Let’s say an include file contains the username and
password to your database, and you store the file with an .inc filename extension within
your website’s root folder. Anyone who discovers the name of the file can simply type the
URL in a browser address bar, and the browser will obligingly display all your secret details!

On the other hand, any file with a .php extension is automatically sent to the PHP engine
for parsing before it’s sent to the browser. So, as long as your secret information is inside a
PHP code block and in a file with a .php extension, it won’t be exposed. That’s why it’s now
widely recommended to use .inc.php as a double extension for PHP includes. The .inc
part reminds you that it’s an include file, but servers are only interested in the .php on the
end, which ensures that all PHP code is correctly parsed.

Use index.php and menu.inc.php from the previous section. Alternatively, use
index02.php and menu.inc01.php from the download files for this chapter. If you use the
download files, remove the 02 and 01 from the filenames before using them.

1. Rename menu.inc.php as menu.inc and change the code in index.php so that the
include command refers to menu.inc instead of menu.inc.php, like this:

<?php include('includes/menu.inc'); ?>

2. Load index.php into a browser. You should see no difference.

3. Amend the code inside menu.inc to store a password inside a PHP variable like this:

<ul id="nav">
<li><a href="index.php" id="here">Home</a></li>
<?php $password = 'topSecret'; ?>
<li><a href="journal.php">Journal</a></li>
<li><a href="gallery.php">Gallery</a></li>
<li><a href="contact.php">Contact</a></li>

</ul>

4. Click the Reload button in your browser. As Figure 4-3 shows, the navigation menu
still displays correctly. What’s more, if you view the page’s source code in the

Even if you normally use absolute pathnames in your websites (ones that begin
with a forward slash), use a relative pathname on this occasion. PHP include
commands don’t normally work with absolute pathnames. I’ll show you how to
get around this restriction later in the chapter.

PHP Solution 4-2: Testing the security of includes

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

94

7311ch04.qxd  10/10/06  10:30 PM  Page 94



browser, the password remains hidden. Although the include file doesn’t have a
.php filename extension, its contents have been merged with index.php, and both
files are treated as a single entity.

Figure 4-3. PHP code inside an include file is parsed before the page is sent to the browser.

5. Now type the URL for menu.inc in the browser address bar. It should be http://
localhost/phpsolutions/includes/menu.inc (adjust the URL if your include file
is in a different location). Load the file into your browser. This time, you’ll see
something very different, as shown in Figure 4-4.

Figure 4-4. A file with an .inc filename extension is treated as plain text when accessed
directly.

Neither the server nor the browser knows how to deal with an .inc file, so the entire
contents are displayed onscreen: raw XHTML, your secret password, everything . . .

6. Change the name of the include file back to menu.inc.php, and load it directly into
your browser by adding .php to the end of the URL you used in the previous step.
This time, you should see an unordered list of links, as shown alongside. Inspect the
browser’s source view. It should look similar to the navigation section in Figure 4-3.
The PHP isn’t exposed.

7. Change the include command inside index.php back to its original setting like this:

<?php include('includes/menu.inc.php'); ?>

LIGHTENING YOUR WORKLOAD WITH INCLUDES

95

4

7311ch04.qxd  10/10/06  10:30 PM  Page 95



Using PHP to identify the current page

I’ll have more to say about security issues surrounding include files later in the chapter.
First, let’s fix that problem with the menu style that indicates which page you’re on.

Continue working with the same files. Alternatively, use index02.php, contact.php,
gallery.php, journal.php, includes/menu.inc01.php, and includes/footer.inc01.php
from the download files for this chapter. If using the download files, remove the 01 and 
02 from any filenames.

1. Open menu.inc.php. The code currently looks like this:

<ul id="nav">
<li><a href="index.php" id="here">Home</a></li>
<li><a href="journal.php">Journal</a></li>
<li><a href="gallery.php">Gallery</a></li>
<li><a href="contact.php">Contact</a></li>

</ul>

The style to indicate the current page is controlled by the id="here" highlighted 
in line 3. What you need is a way of getting PHP to insert id="here" into the
journal.php <a> tag if the current page is journal.php, into the gallery.php <a>
tag if the page is gallery.php, and into the contact.php <a> tag if the page is
contact.php.

Hopefully, you have got the hint by now—you need an if statement (see the sec-
tion on conditional statements, “Making decisions,” in Chapter 3) in each <a> tag.
Line 3 needs to look like this:

<li><a href="index.php" <?php if ($currentPage == 'index.php') { ➥

echo 'id="here"'; } ?>>Home</a></li>

The other links should be amended in a similar way. But how does $currentPage
get its value? You need some way of finding out the filename of the current page.

2. Leave menu.inc.php to one side for the moment and create a new PHP page called
scriptname.php. Insert the following code between a pair of PHP tags (alterna-
tively, just use scriptname1.php in the download files for this chapter):

echo $_SERVER['SCRIPT_NAME'];

3. Save scriptname.php and view it in a browser. On a Windows system, you should
see something like the following screenshot. (The download file contains the code
for this step and the next, together with text indicating which is which.)

PHP Solution 4-3: Automatically setting a style to indicate the current page

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

96

7311ch04.qxd  10/10/06  10:30 PM  Page 96



On Mac OS X, you should see something similar to this:

$_SERVER['SCRIPT_NAME'] comes from one of PHP’s built-in superglobal arrays,
and it always gives you the absolute (site root–relative) pathname for the current
page. As you can see from the two screenshots, it works the same regardless of 
the server’s operating system. What you need now is a way of extracting just the
filename.

4. Amend the code in the previous step like this:

echo basename($_SERVER['SCRIPT_NAME']);

5. Save scriptname.php and click the Reload button in your browser. You should now
see just the filename: scriptname.php. If you get a parse error message instead,
make sure that you have included the closing parenthesis just before the final
semicolon.

The built-in PHP function basename() takes the pathname of a file and extracts the
filename. So, there you have it—a way of finding the filename of the current page.

6. Amend the code in menu.inc.php like this (the changes are highlighted in bold):

<?php $currentPage = basename($_SERVER['SCRIPT_NAME']); ?>
<ul id="nav">
<li><a href="index.php" <?php if ($currentPage == ➥

'index.php') {echo 'id="here"';} ?>>Home</a></li>
<li><a href="journal.php" <?php if ($currentPage == ➥

'journal.php') {echo 'id="here"';} ?>>Journal</a></li>
<li><a href="gallery.php" <?php if ($currentPage == ➥

'gallery.php') {echo 'id="here"';} ?>>Gallery</a></li>
<li><a href="contact.php" <?php if ($currentPage == ➥

'contact.php') {echo 'id="here"';} ?>>Contact</a></li>
</ul>

7. Save menu.inc.php and load index.php into a browser. The menu should look no
different from before. Use the menu to navigate to other pages. This time, as
shown in Figure 4-5, the border alongside the current page should be white, indi-
cating your location within the site. If you inspect the page’s source view in the

Make sure that you get the combination of single and double quotes correct.
The value of attributes, such as id, must be enclosed in quotes for valid XHTML.
Since I’ve used double quotes around here, I’ve wrapped the string 'id="here"'
in single quotes. I could have written "id=\"here\"", but a mixture of single
and double quotes is easier to read.

LIGHTENING YOUR WORKLOAD WITH INCLUDES

97

4

7311ch04.qxd  10/10/06  10:30 PM  Page 97



browser, you’ll see that the here ID has been automatically inserted into the cor-
rect link. If you experience any problems, compare your code with menu.inc02.php
in the download files.

Figure 4-5. With the help of some simple conditional code, the include file produces different
output for each page.

Now that you know how to find the filename of the current page, you might also find it
useful to automate the <title> tag of each page. This works only if you use filenames that
tell you something about the page’s contents, but since that’s a good practice anyway, it’s
not really a restriction.

Although the following steps use the Japan Journey website, you can try this out with 
any page.

1. The basename() function used in the previous solution takes an optional second argu-
ment: a string containing the filename extension. Create a new PHP file and insert the
following code between a pair of PHP tags (the code is in scriptname2.php):

echo basename($_SERVER['SCRIPT_NAME'], '.php');

2. Save the page with any name you like (as long as it has a .php filename extension),
and load it into a browser. It should display the name of the file stripped of the
.php extension. The download file displays scriptname2.

Note that when passing more than one argument to a function, you separate
the arguments with commas.

PHP Solution 4-4: Automatically generating a page’s title from its filename

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

98

7311ch04.qxd  10/10/06  10:30 PM  Page 98



You now have the basis for automatically creating the page title for every page in
your site, using basename(), $_SERVER['SCRIPT_NAME'], and an include file.

3. Create a new PHP file called title.inc.php and save it in the includes folder.

4. Strip out any code inserted by your script editor, and type in the following code
(the finished code for title.inc.php is in the ch04/includes folder of the down-
load files):

<?php
$title = basename($_SERVER['SCRIPT_NAME'], '.php');
?>

This finds the filename of the current page, strips the .php filename extension, and
assigns the result to a variable called $title.

5. Open a PHP page in your script editor. If you’re using the Japan Journey site, use
contact.php. Include title.inc.php by typing this above the DOCTYPE declaration:

<?php include('includes/title.inc.php'); ?>

6. Amend the <title> tag like this:

<title>Japan Journey<?php echo "&#8212;{$title}"; ?></title>

This uses echo to display &#8212; (the numerical entity for an em dash) followed 
by the value of $title. Because the string is enclosed in double quotes, PHP dis-
plays the value of $title (see “All you ever wanted to know about quotes—and
more” in Chapter 3 for an explanation of how PHP treats variables inside double
quotes).

The variable $title has also been enclosed in curly braces because there is no
space between the em dash and $title. Although not always necessary, it’s a good
idea to enclose variables in braces when using them without any whitespace in a
double-quoted string, as it makes the variable clear to you and the PHP engine.

The first few lines of your page should look like this:

The code for this include file must be enclosed in PHP tags. This is because the
whole file needs to be treated as PHP. Unlike the menu, it won’t be displayed
directly inside other pages.

LIGHTENING YOUR WORKLOAD WITH INCLUDES

99

4

7311ch04.qxd  10/10/06  10:30 PM  Page 99



7. Save both pages and load the web page into a browser. Figure 4-6 shows how the
change is reflected in contact.php.

Figure 4-6. Once you extract the filename, it’s possible to create the page title dynamically.

8. Not bad, but what if you prefer an initial capital letter for the part of the title
derived from the filename? Nothing could be simpler. PHP has a neat little func-
tion called ucfirst(), which does exactly that (the name is easy to remember
once you realize that uc stands for “uppercase”). Add another line to the code in
step 4 like this:

<?php
$title = basename($_SERVER['SCRIPT_NAME'], '.php');
$title = ucfirst($title);
?>

When confronted by something like this, some people start breaking out into a
sweat, convinced that programming is a black art that is the work of the devil—or
at least of a warped mind. Actually, it’s quite simple: the first line of code after the
PHP tag gets the filename, strips the .php off the end, and stores it as $title. The
next line takes the value of $title, passes it to ucfirst() to capitalize the first let-
ter, and stores the result back in $title. So, if the filename is contact.php, $title
starts out as contact, but by the end of the following line it has become Contact.

You can shorten the code by combining both lines into one like this:

$title = ucfirst(basename($_SERVER['SCRIPT_NAME'], '.php'));

When you nest functions like this, PHP processes the innermost one first and
passes the result to the outer function. It makes your code shorter, but it’s not so
easy to read.

If you’ve been using CSS for a while, you’ll know that putting anything above the
DOCTYPE declaration forces browsers into quirks mode. However, this doesn’t
apply to PHP code, as long as it doesn’t send any output to the browser. The
code in title.inc.php only assigns a value to $title, so the DOCTYPE declara-
tion remains the first thing that the browser sees, and any CSS is displayed in
standards-compliant mode.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

100

7311ch04.qxd  10/10/06  10:30 PM  Page 100



9. A drawback with this technique is that filenames consist of only one word—at least
they should. If you’ve picked up bad habits from Windows and Mac OS X permit-
ting spaces in filenames, get out of them immediately. Spaces are not allowed in
URLs, which is why most web design software replaces spaces with %20. You can get
around this problem, though, by using an underscore. Change the name of the file
you’re working with so that it uses two words separated by an underscore. For
example, change contact.php to contact_us.php.

10. Change the code in title.inc.php like this:

<?php
$title = basename($_SERVER['SCRIPT_NAME'], '.php');
$title = str_replace('_', ' ', $title);
$title = ucwords($title);
?>

The middle line uses a function called str_replace() to look for every underscore
and replace it with a space. The function takes three arguments:

The character you want to replace (you can also search for multiple characters)

The replacement character or characters

The string where you want the changes to be made 

You can also use str_replace() to remove character(s) by using an empty string (a
pair of quotes with nothing between them) as the second argument. This replaces
the string in the first argument with nothing, effectively removing it.

The other change is in the final line of code. Instead of ucfirst(), it uses the
related function ucwords(), which gives each word an initial cap.

11. Save title.inc.php and load into a browser the file that you renamed in step 9.
Figure 4-7 shows the result with contact_us.php.

Figure 4-7. With the help of str_replace(), you can even create titles that contain more
than one word.

12. Change back the name of the file so that it no longer has an underscore. Reload
the file into a browser. You’ll see that the script in title.inc.php still works. There
are no underscores to replace, so str_replace() leaves the value of $title
untouched, and ucwords() converts the first letter to uppercase, even though
there’s only one word.

L IGHTENING YOUR WORKLOAD WITH INCLUDES

101

4

7311ch04.qxd  10/10/06  10:30 PM  Page 101



13. What happens, though, if you have page names that don’t make good titles? The
home page of the Japan Journey site is called index.php. As the following screen-
shot shows, applying the current solution to this page doesn’t seem quite right.

There are two solutions: either don’t apply this technique to such pages or use a
conditional statement (an if statement) to handle special cases. For instance, to
display Home instead of Index, amend the code in title.inc.php like this:

<?php
$title = basename($_SERVER['SCRIPT_NAME'], '.php');
$title = str_replace('_', ' ', $title);
if ($title == 'index') {
$title = 'home';
}

$title = ucwords($title);
?>

The first line of the conditional statement uses two equal signs to check the value
of $title. The following line uses a single equal sign to assign the new value to
$title. If the page is called anything other than index.php, the line inside the curly
braces is ignored, and $title keeps its original value.

14. Save title.inc.php and reload index.php into a browser. The page title now looks
more natural, as shown in the following screenshot.

PHP is case-sensitive, so this solution works only if index is all lowercase. To do 
a case-insensitive comparison, change the fourth line of the preceding code 
like this:

if (strtolower($title) == 'index') {

The function strtolower() converts a string to lowercase—hence its name—
and is frequently used to make case-insensitive comparisons. The conversion to
lowercase is not permanent, because strtolower($title) isn’t assigned to a
variable; it’s only used to make the comparison. To make a change permanent,
you need to assign the result back to a variable as in the final line, when
ucwords($title) is assigned back to $title.

To convert a string to uppercase, use strtoupper().

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

102

7311ch04.qxd  10/10/06  10:30 PM  Page 102



15. Navigate back to contact.php, and you’ll see that the page title is still derived cor-
rectly from the page name.

16. There’s one final refinement you should make. The PHP code inside the <title>
tag relies on the existence of the variable $title, which won’t be set if there’s a
problem with the include file. Before attempting to display the contents of a vari-
able that comes from an external source, it’s always a good idea to check that it
exists, using a function called isset(). Wrap the echo command inside a condi-
tional statement, and test for the variable’s existence like this:

<title>Japan Journey<?php if (isset($title)) {echo "&#8212;{$title}";} ➥

?></title>

If $title doesn’t exist, the echo command will be ignored, leaving just the default
site title, Japan Journey. You can check your code against an updated version of
index.php in index03.php in the download files.

Creating pages with changing content

So far, we’ve looked at using PHP to generate different output depending on the page’s
filename. The next two solutions generate content that changes independently: a copyright
notice that updates the year automatically on January 1 and a random image generator.

Continue working with the files from the previous solution. Alternatively, use index02.php
and includes/footer.inc01.php from the download files for this chapter. If using the
download files, remove the numbers from the filenames when moving them into your
working site.

1. Open footer.inc.php. It contains the following XHTML:

<div id="footer">
<p>&copy; 2006 David Powers</p>

</div>

The advantage of using an include file is that you can update the copyright notice
throughout the site by changing this one file. However, it would be much more effi-
cient to increment the year automatically, doing away with the need for updates
altogether.

2. The PHP date() function takes care of that very neatly. Change the code like this:

<div id="footer">
<p>&copy;
<?php
ini_set('date.timezone', 'Europe/London');
echo date('Y');
?>
David Powers</p>

</div>

PHP Solution 4-5: Automatically updating a copyright notice

LIGHTENING YOUR WORKLOAD WITH INCLUDES

103

4

7311ch04.qxd  10/10/06  10:30 PM  Page 103



Chapter 14 explains dates in PHP and MySQL in detail, but let’s take a quick look at
what’s happening here. The core part of the code is this line:

echo date('Y');

This displays the year using four digits. Make sure you use an uppercase Y. If you
use a lowercase y instead, only the final two digits of the year will be displayed.

The reason for the preceding line is because of changes to the way that PHP handles
dates. Since PHP 5.1.0, PHP requires a valid time-zone setting. This should be set in
php.ini, but if your hosting company forgets to do this, you may end up with ugly
error messages in your page. Using ini_set() in a script like this is good insurance
against this happening. It also allows you to override the hosting company setting, so
this is particularly convenient if your host is in a different time zone from your own.
I live in London, so the second argument for ini_set() is 'Europe/London'. Check
the time zone for where you live at www.php.net/manual/en/timezones.php.

3. Save footer.inc.php and load index.php into a browser. The copyright notice at
the foot of the page should look the same as before—unless, of course, you’re
reading this in 2007 or later, in which case the current year will be displayed.

4. Copyright notices normally cover a range of years, indicating when a site was first
launched. To improve the copyright notice, you need to know two things: the start
year and the current year. If both years are the same, you need to display only the
current year; if they’re different, you need to display both with a hyphen between
them. It’s a simple if... else situation. Change the code in footer.inc.php
like this:

<div id="footer">
<p>&copy;
<?php
ini_set('date.timezone', 'Europe/London');
$startYear = 2006;
$thisYear = date('Y');
if ($startYear == $thisYear) {
echo $startYear;
}

else {
echo "{$startYear}-{$thisYear}";
}

?>
David Powers</p>

</div>

As in PHP Solution 4-4, I’ve used curly braces around the variables in line 11 because
they’re in a double-quoted string that contains no whitespace. Since hyphens aren’t

The date.timezone setting works only in PHP 5.1.0 and above. However,
ini_set() silently ignores any settings it doesn’t recognize, so you can use this
setting safely on older versions of PHP.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

104

7311ch04.qxd  10/10/06  10:30 PM  Page 104



permitted in variable names, this is one of the cases where you could omit the curly
braces. However, their presence makes the code easier to read.

5. Save footer.inc.php and reload index.php in a browser. Experiment by changing
the value of $startYear and alternating between uppercase and lowercase y in the
date() function to see the different output, as shown in the following image.

These values and the name of the copyright owner are the only things you need to
change, and you have a fully automated copyright notice. The finished code for the
footer include file is in footer.inc02.php.

Displaying a random image is very easy. All you need is a list of available images, which you
store in an indexed array (see “Creating arrays” in Chapter 3). Since indexed arrays are num-
bered from 0, you can select one of the images by generating a random number between 0
and one less than the length of the array. All accomplished in a few lines of code . . .

Continue using the same files. Alternatively, use index03.php from the download files 
and rename it index.php. Since index03.php uses menu.inc.php, title.inc.php, and
footer.inc.php, make sure all three files are in your includes folder. The images are
already in the images folder.

1. Create a blank PHP page in the includes folder and name it random_image.php.
Insert the following code (it’s also in includes/random_image01.php in the down-
load files):

<?php
$images = array('kinkakuji', 'maiko', 'maiko_phone', 'monk',
'fountains', 'ryoanji', 'menu', 'basin');

$i = rand(0, count($images)-1);
$selectedImage = "images/{$images[$i]}.jpg";
?>

This is the complete script: an array of image names minus the .jpg filename
extension (there’s no need to repeat shared information—they’re all JPEG), a ran-
dom number generator, and a string that builds the correct pathname for the
selected file.

To generate a random number within a range, you pass the minimum and maximum
numbers as arguments to the function rand(). Since there are eight images in the
array, you need a number between 0 and 7. The simple way to do this would be to
use rand(0, 7). Simple, but inefficient . . . Every time you change the $images array,
you need to count how many elements it contains and change the maximum

PHP Solution 4-6: Displaying a random image

LIGHTENING YOUR WORKLOAD WITH INCLUDES

105

4

7311ch04.qxd  10/10/06  10:30 PM  Page 105



number passed to rand(). It’s much easier to get PHP to count them for you, and
that’s exactly what the count() function does: it counts the number of elements in
an array. You need a number one less than the number of elements in the array, so
the second argument passed to rand() becomes count($images)-1, and the result
is stored in $i.

The random number is used in the final line to build the correct pathname for the
selected file. The variable $images[$i] is embedded in a double-quoted string
with no whitespace separating it from surrounding characters, so it’s enclosed in
curly braces. Arrays start at 0, so if the random number is 1, $selectedImage is
images/maiko.jpg.

2. Open index.php and include random_image.php by inserting the command in the
same code block as title.inc.php like this:

<?php include('includes/title.inc.php');
include('includes/random_image.php'); ?>

Since random_image.php doesn’t send any direct output to the browser, it’s quite
safe to put it above the DOCTYPE without forcing browsers into quirks mode.

3. Scroll down inside index.php and locate the code that displays the image in the
maincontent <div>. It looks like this:

<div id="pictureWrapper">
<img src="images/basin.jpg" alt="Water basin at Ryoanji temple" ➥

width="350" height="237" class="picBorder" />
</div>

4. Instead of using images/basin.jpg as a fixed image, replace it with $selectedImage.
All the images have different dimensions, so delete the width and height attributes,
and use a generic alt attribute. The code in step 3 should now look like this:

<div id="pictureWrapper">
<img src="<?php echo $selectedImage; ?>" alt="Random image" ➥

class="picBorder" />
</div>

If you’re new to PHP, you may find it hard to understand expressions like 
$i = rand(0, count($images)-1). All that’s happening is that you’re passing
an expression to rand(), rather than the actual number. If it makes it easier for
you to follow the logic of the code, rewrite it like this:

$numImages = count($images); // $numImages is 8
$max = $numImages – 1;       // $max is 7
$i = rand(0, $max);          // $i = rand(0, 7)

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

106

7311ch04.qxd  10/10/06  10:30 PM  Page 106



5. Save both random_image.php and index.php, and load index.php into a browser.
The image should now be chosen at random. Click the Reload button in your
browser, and you should see a variety of images, as shown in Figure 4-8.

You can check your code for index.php against index04.php in the download files.
The code for random_image.php is in random_image01.php.

Figure 4-8. Storing image names in an indexed array makes it easy to display a random image.

This is a simple and effective way of displaying a random image, but it would be much bet-
ter if you could add a caption and set the width and height attributes for different sized
images dynamically.

As I explained in Chapter 3, arrays can hold any type of data, including other arrays. To
store more than one piece of information about an image, each image in the original
$images array needs to be represented by a separate array. Each subarray has two

PHP Solution 4-7: Adding a caption to the random image

LIGHTENING YOUR WORKLOAD WITH INCLUDES

107

4

7311ch04.qxd  10/10/06  10:30 PM  Page 107



elements: the filename and a caption. In graphical terms, it looks like this (for space rea-
sons, only the first two items are displayed as arrays):

In the original array, $images[1] is the picture of the two trainee geishas. In the multi-
dimensional array, it still represents the same photo, but the filename is now stored in the
subarray as $images[1]['file'] and the description as $images[1]['caption']. Since
the images are different sizes, you may be thinking it would be a good idea to store their
width and height too. It’s not necessary, because PHP can generate the details dynamically
with a function called, appropriately enough, getimagesize().

This PHP solution builds on the previous one, so continue working with the same files.

1. Open random_image.php and change the code like this:

<?php
$images = array(
array('file'    => 'kinkakuji',

'caption' => 'The Golden Pavilion in Kyoto'),
array('file'    => 'maiko',

'caption' => 'Maiko&#8212;trainee geishas in Kyoto'),
array('file'    => 'maiko_phone',

'caption' => 'Every maiko should have one&#8212;a mobile, ➥

of course'),
array('file'    => 'monk',

'caption' => 'Monk begging for alms in Kyoto'),
array('file'    => 'fountains',

'caption' => 'Fountains in central Tokyo'),
array('file'    => 'ryoanji',

'caption' => 'Autumn leaves at Ryoanji temple, Kyoto'),
array('file'    => 'menu',

'caption' => 'Menu outside restaurant in Pontocho, Kyoto'),
array('file'    => 'basin',

'caption' => 'Water basin at Ryoanji temple, Kyoto')
);

$i = rand(0, count($images)-1);
$selectedImage = "images/{$images[$i]['file']}.jpg";
$caption = $images[$i]['caption'];
?>

Although the code looks complicated, it’s an ordinary indexed array that contains
eight items, each of which is an associative array containing definitions for 'file'

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

108

7311ch04.qxd  10/10/06  10:30 PM  Page 108



and 'caption'. The definition of the multidimensional array forms a single state-
ment, so there are no semicolons until line 19. The closing parenthesis on that line
matches the opening one on line 2. All the array elements in between are sepa-
rated by commas. The deep indenting isn’t necessary, but it makes the code a lot
easier to read.

The variable used to select the image also needs to be changed, because
$images[$i] no longer contains a string, but an array. To get the correct filename
for the image, you need to use $images[$i]['file']. The caption for the selected
image is contained in $images[$i]['caption'] and stored in a shorter variable.

2. You now need to amend the code in index.php to display the caption like this:

<div id="pictureWrapper">
<img src="<?php echo $selectedImage; ?>" alt="Random image" ➥

class="picBorder" />
<p id="caption"><?php echo $caption; ?></p>

</div>

3. Save index.php and random_image.php, and load index.php into a browser. Most
images will look fine, but there’s an ugly gap to the right of the image of the trainee
geisha with a mobile phone, as shown in Figure 4-9. Fortunately, this is easily fixed.

Figure 4-9. The long caption shifts the image too far left.

4. Add the following code to random_image.php just before the closing PHP tag:

if (file_exists($selectedImage) && is_readable($selectedImage)) {
$imageSize = getimagesize($selectedImage);
}

LIGHTENING YOUR WORKLOAD WITH INCLUDES

109

4

7311ch04.qxd  10/10/06  10:30 PM  Page 109



The if statement uses two functions, file_exists() and is_readable(), to make
sure $selectedImage not only exists, but also that it’s accessible (it may be cor-
rupted or have the wrong permissions). These functions return Boolean values
(true or false), so they can be used directly as part of the conditional statement.

The single line inside the if statement uses the function getimagesize() to get the
image’s dimensions. The function returns an array containing four elements. By
assigning the result to $imageSize, you can extract the following information:

$imageSize[0]: The width of the image in pixels

$imageSize[1]: The height of the image in pixels

$imageSize[2]: A number indicating the type of file (see Chapter 8 for details)

$imageSize[3]: A string containing the height and width for use in an <img> tag

The first and last items in this array are just what you need to solve the problem
shown in Figure 4-9.

5. First of all, let’s fix the code in step 2. Change it like this:

<div id="pictureWrapper">
<img src="<?php echo $selectedImage; ?>" alt="Random image" ➥

class="picBorder" <?php echo $imageSize[3]; ?> />
<p id="caption"><?php echo $caption; ?></p>

</div>

This inserts the correct width and height attributes inside the <img> tag.

6. Although this sets the dimensions for the image, you still need to control the width
of the caption. You can’t use PHP inside an external stylesheet, but there’s nothing
stopping you from creating a style block in the <head> of index.php. Put this code
just before the closing </head> tag:

<?php
if (isset($imageSize)) {
?>
<style type="text/css">
p#caption {
width: <?php echo $imageSize[0]; ?>px;
}

</style>
<?php } ?>

This code consists of only nine short lines, but there’s quite a lot going on in there.
Let’s start with the first three lines and the final one. If you strip away the PHP tags
and replace the middle five lines with a comment, this is what you end up with:

if (isset($imageSize)) {
// do something if $imageSize has been set
}

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

110

7311ch04.qxd  10/10/06  10:30 PM  Page 110



In other words, if the variable $imageSize hasn’t been set (defined), the PHP
engine will ignore everything between the curly braces. It doesn’t matter that most
of the code between the braces is XHTML and CSS. If $imageSize hasn’t been set,
the PHP engine skips to the closing brace, and the intervening code isn’t sent to the
browser.

If $imageSize has been set, the style block is created, and $imageSize[0] is used to
set the correct width for the paragraph that contains the caption.

7. Save random_image.php and index.php, and reload index.php into a browser. Click
the Reload button until the image of the trainee geisha with the mobile phone
appears. This time, it should look like Figure 4-10. If you view the source code in
the browser, you will see that the style rule changes automatically for each image.
The correct width and height attributes should also be inside the <img> tag.

Figure 4-10. The ugly gap is removed by creating a style rule directly related to the image size.

Many inexperienced PHP coders wrongly believe that they need to use echo or
print to create XHTML output inside a conditional statement. As long as the
opening and closing braces match, you can use PHP to hide or display sections
of XHTML like this. It’s a lot neater and involves a lot less typing than using echo
all the time.

LIGHTENING YOUR WORKLOAD WITH INCLUDES

111

4

7311ch04.qxd  10/10/06  10:30 PM  Page 111



8. There’s just one final refinement we need to make. The code in random_image.php
and in step 6 prevents errors if the selected image can’t be found, but we’ve left
the most important section of the code completely devoid of similar checks.
Temporarily change the name of one of the images, either in random_image.php or
in your images folder. Reload index.php several times. Eventually, you should see
an error message like the following, making your site look very unprofessional.

9. The conditional statement at the foot of random_image.php sets $imageSize only if
the selected image both exists and is readable, so if $imageSize has been set, you
know it’s all systems go. Add the opening and closing blocks of a conditional state-
ment around the <div> that displays the image in index.php like this:

<?php if (isset($imageSize)) { ?>
<div id="pictureWrapper">
<img src="<?php echo $selectedImage; ?>" alt="Random image" 

class="picBorder" <?php echo $imageSize[3]; ?> />
<p id="caption"><?php echo $caption; ?></p>

</div>
<?php } ?>

Images that exist will display normally, but you’ll avoid any embarrassing error mes-
sages in case of a missing or corrupt file—a much more professional look. Don’t
forget to restore the name of the image you changed in the previous step. You can
check your code against index05.php and random_image02.php.

Preventing errors when an include file is missing

A danger with using includes is that the include file may be corrupted or accidentally deleted
from the server. Or you might type the filename or pathname incorrectly. Figure 4-11 shows
what happened when I mistyped the name of random_image.php. It’s not a pretty sight.

Figure 4-11. Unless you take preventive measures, a missing include file results in ugly error
messages.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

112

7311ch04.qxd  10/10/06  10:30 PM  Page 112



The two warning messages about the missing (or misnamed) file are helpful in a develop-
ment context, as they tell you exactly what the problem is. In a live website, though, they
not only look unprofessional, but also reveal potentially useful information about your site
structure to malicious users.

It’s quite simple to prevent this sort of mess from appearing onscreen. The quick and easy
way is to use the PHP error control operator (@), which suppresses error messages asso-
ciated with the line of code in which it’s used. You place the error control operator either
at the beginning of the line or directly in front of the function or command that you think
might generate an error. So the error messages shown in Figure 4-11 could be eliminated
like this:

@ include('includes/randomimage.php');

A more sophisticated approach involves the following two steps:

Always check that a file exists and is readable before attempting to include it.

Always check the existence of variables or functions defined in external files before
attempting to use them.

PHP Solution 4-7 (“Adding a caption to the random image”) implemented both steps: first
using file_exists() and is_readable() to check whether an image is accessible, and
then using isset() to test whether a variable exists. So the errors in Figure 4-11 could be
eliminated like this:

$file = 'includes/randomimage.php'
if (file_exists($file) && is_readable($file)) {
include($file);
}

Storing the name of the include file in a variable avoids the need to retype its pathname
three times. It also means you need to correct the spelling mistake in only one place.

To check whether a custom-built function has been defined, pass the name of the function
as a string to function_exists() like this:

if (function_exists('myFunction')) {myFunction();}

The name of the function being tested must be in quotes and without the final parentheses.

function_exists('myFunction')    // correct
function_exists(myFunction())    // wrong

The error control operator is extremely useful, but without error messages, you’re often
left with no idea why a script isn’t working. Insert it only after you are sure everything’s
OK. When troubleshooting, the @ mark should be the first thing you remove. Put it back
after you have identified the problem. The error control operator affects only the cur-
rent line. You need to use it in every line that might generate an error message.

LIGHTENING YOUR WORKLOAD WITH INCLUDES

113

4

7311ch04.qxd  10/10/06  10:30 PM  Page 113



Choosing where to locate your include files

A useful feature of PHP include files is they can be located anywhere, as long as the page
with the include command knows where to find them. Include files don’t even need to be
inside your web server root. This means that you can protect include files that contain sen-
sitive information, such as passwords, in a private directory (folder) that cannot be
accessed through a browser. So, if your hosting company provides a storage area outside
your server root, you should seriously consider locating some, if not all, of your include
files there.

The include command expects either a relative path or a fully qualified path. This causes
problems for developers who prefer to use absolute paths (beginning with a forward
slash) that are relative to the site root (sometimes known as site root–relative links).
There are two ways to get around this restriction.

The simplest way to use absolute pathnames with an include command is to use one of the
predefined superglobal variables, $_SERVER['DOCUMENT_ROOT']. This variable automati-
cally finds the full pathname to your website’s server root, so you can use it in combina-
tion with an absolute path to build a fully qualified path. For example, if your site is hosted
on a Linux server, the value of $_SERVER['DOCUMENT_ROOT'] might be /home/mydomain/
htdocs, so $_SERVER['DOCUMENT_ROOT'].'/includes/filename.php' always translates to
/home/mydomain/htdocs/includes/filename.php, and it can be used anywhere within
your site’s folder hierarchy.

Unfortunately, some servers don’t support $_SERVER['DOCUMENT_ROOT'], so you need to
find out first whether you can use it.

1. Create a PHP file and insert the following code (or use document_root.php):

if (isset($_SERVER['DOCUMENT_ROOT'])) {
echo 'Supported. The server root is '.$_SERVER['DOCUMENT_ROOT'];
}

else {
echo "\$_SERVER['DOCUMENT_ROOT'] is not supported";
}

2. Upload the file to your remote server and load it into a browser. If you see a mes-
sage displaying the pathname of the server root, you can include files at any level
in your site hierarchy like this:

include($_SERVER['DOCUMENT_ROOT'].'/includes/filename.php');

3. If $_SERVER['DOCUMENT_ROOT'] isn’t supported, you need to create a variable man-
ually to define the correct path. If you are using a Windows server, define the
server root pathname using forward slashes like this:

$docRoot = 'C:/Inetpub/wwwroot/mydomain';

You can then build a fully qualified pathname using $docRoot in the same way as
$_SERVER['DOCUMENT_ROOT'].

PHP Solution 4-8: Using includes with absolute pathnames

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

114

7311ch04.qxd  10/10/06  10:30 PM  Page 114



Security considerations with includes

Include files are a very powerful feature of PHP. With that power come some serious secu-
rity risks. As long as the external file is accessible, PHP includes it and incorporates any
code into the main script. But, as mentioned in the previous section, include files can be
located anywhere—even on a different website. Never use includes from a remote server.
Even if you control the remote server yourself, it’s possible for a malicious attacker to
spoof the address. Because of the security risks involved, some hosting companies turn off
the ability to include files from other servers.

Summary
This chapter has plunged you headlong into the world of PHP, using includes, arrays, and
multidimensional arrays. It has shown you how to extract the name of the current page
and get the dimensions of an image. If it’s your first experience with PHP, your head may
be reeling. Don’t worry. Once you get used to the basic structures, you will find them being
used over and over again, and familiarity will help you overcome any initial confusion.

L IGHTENING YOUR WORKLOAD WITH INCLUDES

115

4

7311ch04.qxd  10/10/06  10:30 PM  Page 115



7311ch05.qxd  10/10/06  10:32 PM  Page 116



5 BRINGING FORMS TO LIFE

7311ch05.qxd  10/10/06  10:32 PM  Page 117



What this chapter covers:

Gathering user input and sending it by email

Displaying errors without losing user input

Checking user input for security risks

Forms lie at the very heart of working with PHP. You use forms for logging in to restricted
pages, registering new users, placing orders with online stores, entering and updating
information in a database, sending feedback . . . The list goes on. The same principles lie
behind all these uses, so the knowledge you gain from this chapter will have practical
value in most PHP applications. To demonstrate how to process information from a form,
I’m going to show you how to gather feedback from visitors to your site and send it to
your mailbox. Unfortunately, user input can lay your site open to malicious attacks. The
PHP Solutions in this chapter show you how to filter out or block anything suspicious or
dangerous. It doesn’t take a lot of effort to keep marauders at bay.

How PHP gathers information from a form
The Japan Journey website contains a feedback form (see Figure 5-1). I’ve kept it deliber-
ately simple to start with, but will add other elements—such as radio buttons, check
boxes, and drop-down menus—later. Although XHTML contains all the necessary tags to
construct a form, it doesn’t provide any means to process the form when submitted. For
that, you need a server-side solution, such as PHP.

Figure 5-1. Activating a feedback form is one of the most popular uses of PHP.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

118

7311ch05.qxd  10/10/06  10:32 PM  Page 118



First, let’s take a look at the XHTML code used to build the form (it’s in contact.php in the
download files for this chapter):

<form id="feedback" method="post" action="">
<p>
<label for="name">Name:</label>
<input name="name" id="name" type="text" class="formbox" />

</p>
<p>
<label for="email">Email:</label>
<input name="email" id="email" type="text" class="formbox" />

</p>
<p>
<label for="comments">Comments:</label>
<textarea name="comments" id="comments" cols="60" rows="8"> ➥

</textarea>
</p>
<p>
<input name="send" id="send" type="submit" value="Send message" />

</p>
</form>

The first thing to notice about this code is that the <input> and <textarea> tags contain
both name and id attributes set to the same value. The reason for this duplication is that
XHTML, CSS, and JavaScript all refer to the id attribute. Form processing scripts, however,
rely on the name attribute. So, although the id attribute is optional, you must use the name
attribute for each element that you want to be processed.

Two other things to notice are the method and action attributes inside the opening <form>
tag. The method attribute determines how the form sends data to the processing script. It
can be set to either post or get. The action attribute tells the browser where to send the
data for processing when the submit button is clicked. If the value is left empty, as here,
the page attempts to process the form itself.

Understanding the difference between post and get

The best way to demonstrate the difference between the post and get methods is with a
real form. The download files for this chapter contain a complete set of files for the Japan
Journey site with all the script from the last chapter incorporated in them. Make sure that
the includes folder contains footer.inc.php and menu.inc.php. Copy contact01.php to
your working site, and rename it contact.php.

The XHTML 1.0 specification (www.w3.org/TR/xhtml1) lists a number of elements, includ-
ing <form>, for which the name attribute has been deprecated. This applies only to the
<form> tag. The name attribute remains valid for <input>, <select>, and <textarea>.

BRINGING FORMS TO LIFE

119

5

7311ch05.qxd  10/10/06  10:32 PM  Page 119



1. Locate the opening <form> tag in contact.php, and change the value of the method
attribute from post to get like this:

<form id="feedback" method="get" action="">

2. Save contact.php and load the page in a browser. Type your name, email, and a
short message into the form, and click Send message.

3. Look in the browser address bar. You should see the contents of the form attached
to the end of the URL like this:

If you break up the URL, it looks like this:

http://localhost/phpsolutions/contact.php
?name=David+Powers
&email=david%40example.com
&comments=I+hope+you+get+this.+%3B%29
&send=Send+message

Each line after the basic URL begins with the name attribute of one of the form ele-
ments, followed by an equal sign and the contents of the input fields. URLs cannot
contain spaces or certain characters (such as my smiley), so the browser encodes
them as hexadecimal values, a process known as URL encoding (for a full list of
values, see www.w3schools.com/tags/ref_urlencode.asp).

The first name attribute is preceded by a question mark (?) and the others by an
ampersand (&). You’ll see this type of URL when using search engines, which helps
explain why everything after the question mark is known as a query string.

4. Go back into the code of contact.php, and change method back to post, like this:

<form id="feedback" method="post" action="">

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

120

7311ch05.qxd  10/10/06  10:32 PM  Page 120



5. Save contact.php, and reload the page in your browser. Type another message,
and click Send message. Your message should disappear, but nothing else happens.
So where has it gone? It hasn’t been lost, but you haven’t done anything to process
it yet.

6. In contact.php, add the following code immediately below the closing </form> tag:

<pre>
<?php if ($_POST) {print_r($_POST);} ?>
</pre>

This displays the contents of the $_POST superglobal array if any post data has
been sent. As explained in Chapter 3, the print_r() function allows you to inspect
the contents of arrays; the <pre> tags simply make the output easier to read.

7. Save the page, and click the Refresh button in your browser. You will probably see
a warning similar to the following. This tells you that the data will be resent, which
is exactly what you want. Click OK or Send depending on your browser.

8. The code from step 6 should now display the contents of your message below the
form as shown in Figure 5-2. Everything has been stored in one of PHP’s super-
global arrays, $_POST, which contains data sent using the post method. The name
attribute of each form element is used as the array key, making it easy to retrieve
the content.

Figure 5-2. Data from a form is stored as an associative array, with each element identified
by its name attribute.

As you have just seen, the get method sends your data in a very exposed way, making it vul-
nerable to alteration. Also, some browsers limit the maximum length of a URL, so it can be
used only for small amounts of data. The post method is more secure and can be used for
much larger amounts of data. By default, PHP permits up to 8MB of post data, although
hosting companies may set a smaller limit.

BRINGING FORMS TO LIFE

121

5

7311ch05.qxd  10/10/06  10:32 PM  Page 121



Because of these advantages, you should normally use the post method with forms. The
get method is used mainly in conjunction with database searches, and has the advantage
that you can bookmark a search result because all the data is in the URL. We’ll return to
the get method later in the book, but the rest of this chapter concentrates on the post
method and its associated superglobal array, $_POST.

Keeping safe with PHP superglobals

While I’m on the subject of security, it’s worth explaining the background to the PHP
superglobal arrays, which include $_POST and $_GET. The $_POST array contains data sent
using the post method. So it should come as no surprise that data sent by the get method
is in the $_GET array.

Before the release of PHP 4.2.0 in April 2002, you didn’t need to worry about using special
arrays to access data submitted from a form. If the name of the form element was email,
all that was necessary was to stick a dollar sign on the front, like this: $email. Bingo, you
had instant access to the data. It was incredibly convenient. Unfortunately, it also left a
gaping security hole. All that an attacker needed to do was view the source of your web
page and pass values to your script through a query string.

When the loophole was closed, millions of PHP scripts stopped working. Inexperienced
web developers were up in arms, and harassed hosting companies changed a setting called
register_globals in php.ini to restore a little peace to their lives. You will find lots of
“advice” on the Internet to turn register_globals on in php.ini, because it will make
your life easier. This is completely misguided. Turning on register_globals is foolish for
the following reasons:

It’s totally insecure.

There is no way to override the setting for individual scripts. If your hosting com-
pany turns register_globals off, any scripts that rely on it will break. 

The register_globals setting has been removed completely from PHP 6. Scripts
that rely on register_globals won’t work, period.

It’s very easy to write scripts that don’t rely on register_globals, so it’s not the major bur-
den that some people imply. It just requires putting the name of the form element in quotes
between square brackets after $_POST or $_GET, depending on the form’s method attribute.
So email becomes $_POST['email'] if sent by the post method, and $_GET['email'] if
sent by the get method. That’s all there is to it.

Although the post method is more secure than get, you shouldn’t assume that it’s
100% safe. For secure transmission, you need to use encryption or the Secure Sockets
Layer (SSL).

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

122

7311ch05.qxd  10/10/06  10:32 PM  Page 122



You may come across scripts that use $_REQUEST, which avoids the need to distinguish
between $_POST or $_GET. It’s less secure. Always use $_POST or $_GET instead.

Old scripts may use $HTTP_POST_VARS or $HTTP_GET_VARS, which have exactly the same
meaning as $_POST and $_GET. The longer versions have been removed from PHP 6. Use
$_POST and $_GET instead.

Sending email
The PHP mail() function takes up to five arguments, all of them strings, as follows:

The address(es) of the recipient(s) 

The subject line

The message body

A list of other email headers

Additional parameters

The first three arguments are required. Email addresses in the first argument can be in
either of the following formats:

'user@example.com'
'Some Guy <user2@example.com>'

To send to more than one address, use a comma-separated string like this:

'user@example.com, another@example.com, Some Guy <user2@example.com>' 

The second argument is a string containing the subject line. The third argument is the
message body, which must be presented as a single string, regardless of how long it is. I’ll
explain how the fourth argument works later. Most people are unlikely to need the fifth
argument, although some hosting companies now make it a requirement. It ensures that
the email is sent by a trusted user, and it normally consists of -f followed (without a
space) by your own email address, all enclosed in quotes. Check your hosting company’s
instructions to see whether this is required and the exact format it should take.

It’s important to understand that mail() isn’t an email program. It passes the address, sub-
ject line, message, and any additional email headers to the web server’s mail transport
agent (MTA). PHP’s responsibility ends there. It has no way of knowing if the email is deliv-
ered to its intended destination.

Email doesn’t always arrive when testing mail() in a local testing environment.
Normally, this has nothing to do with your configuration, but with your service
provider’s security policies. If email fails to arrive, upload the script to your remote
server and test it there.

BRINGING FORMS TO LIFE

123

5

7311ch05.qxd  10/10/06  10:32 PM  Page 123



Removing unwanted backslashes from form input

As explained in “Unraveling the magic quotes tangle” in Chapter 3, many PHP servers
automatically insert backslashes in front of quotes when a form is submitted. You need to
remove these backslashes.

Continue working with the file from the previous exercise. Alternatively, use contact02.php
from the download files for this chapter. Copy it to your working site and rename it
contact.php.

1. Load contact.php into a browser. Enter some text. It doesn’t matter what it is, as
long as it contains an apostrophe or some double quotes. Click Send message.

2. Check the contents of the $_POST array at the bottom of the screen. If magic
quotes are on, you will see something like Figure 5-3. A backslash has been inserted
in front of all single and double quotes (apostrophes are treated the same as single
quotes). If magic quotes are off, you will see no change from your original text.

Figure 5-3. PHP magic quotes automatically insert a backslash in front of quotes when a
form is submitted.

3. It’s the setting on your remote server that matters, not what you see locally. Refer
to Chapter 3 for instructions on how to check whether your remote server uses
magic quotes. If it doesn’t, make sure they are turned off in your local testing
setup, and move on to PHP Solution 5-2. If in doubt, continue with the remaining
steps. You can safely use the nukeMagicQuotes() function even if magic quotes
have been disabled. 

4. If your remote server uses magic quotes, copy includes/corefuncs.php from the
download files for this chapter to the includes folder in your working site, and
add the following code shown in bold to the end of the code block at the top of
contact.php:

<?php
include('includes/title.inc.php');
include('includes/corefuncs.php');

PHP Solution 5-1: Eliminating magic quotes

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

124

7311ch05.qxd  10/10/06  10:32 PM  Page 124



if (function_exists('nukeMagicQuotes')) {
nukeMagicQuotes();
}

?> 

The file corefuncs.php contains the function nukeMagicQuotes(). To prevent
errors if corefuncs.php can’t be accessed, the call to nukeMagicQuotes() is
wrapped in a conditional statement using function_exists() as described in the
last chapter.

5. Save contact.php and click the Reload button in your browser. Confirm that you
want to resend the post data. The $_POST array should now be clear of backslashes,
as shown in Figure 5-4. You can check your code with contact03.php.

Figure 5-4. The nukeMagicQuotes() function cleans up the $_POST array ready for use in
an email.

Processing and acknowledging the message

You can now build the message body with the contents of the $_POST array and email it to
your inbox. You also need some way of informing the user that the message has been sent
or if there is a problem. Rather than redirect the user to a different page, the following
PHP Solution displays the result on the same page. I’ve adopted this approach because an
improved version later in the chapter redisplays the user’s input if any required fields are
missing. Once the final version of the form is complete, you can redirect the user to a sep-
arate acknowledgment page by adding only two lines of code.

Continue using the same files. Alternatively, use contact03.php from the download files.

1. Now that you have finished testing the $_POST array, delete the following three
lines of code that were used to display its contents (they’re just after the closing
</form> tag):

<pre>
<?php if ($_POST) {print_r($_POST);} ?>
</pre>

PHP Solution 5-2: Sending email from the feedback form

BRINGING FORMS TO LIFE

125

5

7311ch05.qxd  10/10/06  10:32 PM  Page 125



2. Add the code to process and send the email. It goes immediately before the clos-
ing PHP tag of the code block above the DOCTYPE declaration. (If your remote
server uses magic quotes, this means immediately after the code you entered in
step 3 of PHP Solution 5-1.) The new code looks like this:

// process the email
if (array_key_exists('send', $_POST)) {
$to = 'me@example.com'; // use your own email address
$subject = 'Feedback from Japan Journey site';

// process the $_POST variables
$name = $_POST['name'];
$email = $_POST['email'];
$comments = $_POST['comments'];

// build the message
$message = "Name: $name\n\n";
$message .= "Email: $email\n\n";
$message .= "Comments: $comments";

// limit line length to 70 characters
$message = wordwrap($message, 70);

// send it  
$mailSent = mail($to, $subject, $message);
}

This entire section of code is wrapped in an if statement, which uses the function
array_key_exists(). If you refer to Figures 5-3 and 5-4, you’ll see that the last ele-
ment in the $_POST array looks like this:

[send] => Send message

This is the name attribute of the form’s submit button and the label shown on the
button. You don’t normally need either of these as part of the email message, but
passing the name of the submit button and $_POST to array_key_exists() is a
foolproof way of checking that a form has been submitted. When the page first
loads, there’s no way that the submit button can have been clicked, so its name
isn’t present in the $_POST array. As a result, array_key_exists('send', $_POST)
equates to false, and everything inside the if statement is ignored. However, as
soon as the button is clicked, the page reloads, array_key_exists('send',
$_POST) equates to true, and the email script is processed.

The code that does the processing consists of five stages. The first two lines assign
your email address to $to and the subject line of the email to $subject.

The next section labeled “process the $_POST variables” reassigns $_POST['name'],
$_POST['email'], and $_POST['comments'] to ordinary variables. This makes them
easier to handle when you subject them to security checks or style the email later.

Next, you build the body of the email message, which must consist of a single
string. By using double quotes, you can embed the variables in the string and use
\n to insert new line characters (see Table 3-4 in Chapter 3). Once the message

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

126

7311ch05.qxd  10/10/06  10:32 PM  Page 126



body is complete, it’s passed to the wordwrap() function, which takes two argu-
ments: a string and an integer that sets the maximum length of each line. Although
most mail systems will accept longer lines, it’s recommended to limit each line to
70 characters.

After the message has been built and formatted, the recipient’s address, the subject
line, and the body of the message are passed to the mail() function. The function
returns a Boolean value indicating whether it succeeded in passing the email to the
MTA. So, it’s useful to capture that value as $mailSent. You can then use $mailSent
to redirect the user to another page or change the contents of the current one.

3. For the time being, let’s keep everything in the same page, because the rest of the
chapter will add further refinements to the basic script. Scroll down and insert the
following code just after the page’s main heading (new code is highlighted in bold):

<h1>Contact us</h1>
<?php
if ($_POST && !$mailSent) {
?>
<p class="warning">Sorry, there was a problem sending your message. 

Please try later.</p>
<?php
}

elseif ($_POST && $mailSent) {
?>
<p><strong>Your message has been sent. Thank you for your feedback.

</strong></p>
<?php } ?>
<p>Ut enim ad minim veniam . . .</p>

This is a straightforward if... elseif conditional statement, but it may look odd
if you’re not used to seeing scripts that mix XHTML with PHP logic. What’s happen-
ing can be summarized like this:

<h1>Contact us</h1>
<?php
if ($_POST && !$mailSent) {
// display a failure message
}

elseif ($_POST && $mailSent) {
// display an acknowledgment
}
?>
<p>Ut enim ad minim veniam . . .</p>

As noted before, many developers mistakenly think that you need to use echo or
print to display XHTML inside a PHP block. It’s more efficient to switch back to
XHTML, except for very short pieces of code. Doing so avoids the need to worry
about escaping quotes. Just make sure that you balance your opening and clos-
ing braces correctly.

BRINGING FORMS TO LIFE

127

5

7311ch05.qxd  10/10/06  10:32 PM  Page 127



Both parts of the conditional statement check the Boolean values of $_POST and
$mailSent. Although the $_POST array is always set, it doesn’t contain any values
unless the form has been submitted. Since PHP treats an empty array as false (see
“The truth according to PHP” in Chapter 3), you can use $_POST on its own to test
whether a form has been submitted. So the code in both parts of this conditional
statement is ignored when the page first loads.

If the form has been submitted, $_POST equates to true, so the next condition is
tested. The exclamation mark in front of $mailSent is the negative operator, mak-
ing it the equivalent of not $mailSent. So, if the email hasn’t been sent, both parts
of the test are true, and the XHTML containing the error message is displayed.
However, if $mailSent is true, the XHTML containing the acknowledgment is dis-
played instead.

4. Save contact.php and load it into a browser. Type something into each text field,
and click Send message. If everything went well, you should see the following
message:

Not long afterward, you should receive the content of your message as an email. If
the email fails to arrive, test contact.php on your remote server. Sometimes email
sent from a local test environment is rejected by ISPs, particularly if the SMTP
server requires a username and password each time you connect. If that happens,
conduct all further tests that involve sending mail on your remote server.

5. The acknowledgment shown in the preceding screenshot is controlled by the if...
elseif conditional statement that you entered in step 3. To prove this, use the site
menu to go to another page, and return to contact.php. (If you’re not using the full
site, click inside the browser address bar and press Enter/Return. If you use the
browser’s Reload button, select the option not to resend the post data.) The
acknowledgment should disappear. Your page is becoming truly interactive.

6. The way to test the failure message is to disable the mail() function temporarily.
Comment out the mail() function and hard-code a false value for $mailSent like
this:

// send it  
$mailSent = false; // mail($to, $subject, $message);

7. Save contact.php and try to send another message. This time you should see the
failure message as shown in the following screenshot.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

128

7311ch05.qxd  10/10/06  10:32 PM  Page 128



8. Again, navigate to a different page and return. The failure message disappears
when you come back. Revert the code in step 6 to its original state, so that you
can send email again. You can check your code against contact04.php in the
download files.

The form contains only 3 input fields, but even if it had 30, the process is the same: extract
the contents of each field from the $_POST array, and combine them into a single string.
Once you’ve built the message, simply pass the recipient’s address, subject, and message
to the mail() function.

Although this is a good start, the feedback form needs a lot of improvement. There’s noth-
ing to stop users from sending a blank email. You also need to check the validity of input
to make sure that your site isn’t exploited by a spam relay. The rest of the chapter shows
you how to make these improvements, plus how to use other form elements: drop-down
menus, radio buttons, and check boxes.

Validating user input
Most visual editors, like Dreamweaver or GoLive, have features that check whether
required fields have been filled in. Dreamweaver performs the checks when the submit
button is clicked; GoLive does it when the focus moves to another field. Both rely on
JavaScript and perform the checks on the user’s computer before the form is submitted to
the server. This is called client-side validation. It’s useful because it’s almost instanta-
neous and can alert the user to a problem without making an unnecessary round-trip to
the server. However, you should never rely on client-side validation alone because it’s too
easy to sidestep. All a malicious user has to do is turn off JavaScript in the browser, and
your checks are rendered useless. So it’s important to check user input on the server side
with PHP, too.

Just because client-side validation with JavaScript can be sidestepped doesn’t mean it’s
not worthwhile doing, as it saves time and bandwidth. However, it’s probably not worth
performing very detailed checks. Just verifying that each required field has a value may
be all you need.

BRINGING FORMS TO LIFE

129

5

7311ch05.qxd  10/10/06  10:32 PM  Page 129



Making sure required fields aren’t blank

When required fields are left blank, you don’t get the information you need, and the user
may never get a reply, particularly if contact details have been omitted.

Continue using the same files. Alternatively, use contact04.php from the download files.
The completed code for this section is in contact05.php.

1. Start by creating two arrays: one listing the name attribute of each field in the form
and the other listing all required fields. Also, initialize an empty array to store 
the names of required fields that have not been completed. For the sake of this
demonstration, make the email field optional, so that only the name and comments
fields are required. Add the following code just before the section that processes
the $_POST variables:

$subject = 'Feedback from Japan Journey site';

// list expected fields
$expected = array('name', 'email', 'comments');
// set required fields
$required = array('name', 'comments');
// create empty array for any missing fields
$missing = array();

// process the $_POST variables

2. In PHP Solution 5-2, the $_POST variables were assigned manually to variables that
use the same name as the $_POST array key. For example, $_POST['email'] became
$email. With three fields, manual assignment is fine, but it becomes a major chore
if you have a dozen or more fields. Let’s kill two birds with one stone by checking
the required fields and automating the naming of the variables at the same time.
Replace the three lines of code beneath the $_POST variables comment as follows:

// process the $_POST variables
foreach ($_POST as $key => $value) {
// assign to temporary variable and strip whitespace if not an array
$temp = is_array($value) ? $value : trim($value);
// if empty and required, add to $missing array
if (empty($temp) && in_array($key, $required)) {
array_push($missing, $key);
}

// otherwise, assign to a variable of the same name as $key
elseif (in_array($key, $expected)) {
${$key} = $temp;
}

}

// build the message

PHP Solution 5-3: Checking required fields

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

130

7311ch05.qxd  10/10/06  10:32 PM  Page 130



If studying PHP code makes your brain hurt, you don’t need to worry about how
this works. As long as you create the $expected, $required, and $missing arrays in
the previous step, you can just copy and paste the code for use in any form. So
what does it do? In simple terms, this foreach loop goes through the $_POST array,
strips out any whitespace from user input, and assigns its contents to a variable
with the same name (so $_POST['email'] becomes $email, and so on). If a
required field is left blank, its name attribute is added to the $missing array.

3. You want to build the body of the email message and send it only if all required
fields have been filled in. Since $missing starts off as an empty array, nothing is
added to it if all required fields are completed, so empty($missing) is true. Wrap
the rest of the script in the opening PHP code block like this:

// go ahead only if all required fields OK
if (empty($missing)) {

// build the message
$message = "Name: $name\n\n";
$message .= "Email: $email\n\n";
$message .= "Comments: $comments";

// limit line length to 70 characters
$message = wordwrap($message, 70);

// send it  
$mailSent = mail($to, $subject, $message);
if ($mailSent) {
// $missing is no longer needed if the email is sent, so unset it
unset($missing);
}

}
}

This ensures that the mail is sent only if nothing has been added to $missing.
However, $missing will be used to control the display in the main body of the
page, so you need to get rid of it if the mail is successfully sent. This is done by
using unset(), which destroys a variable and any value it contains.

Why is the $expected array necessary? It’s to prevent an attacker from injecting
other variables in the $_POST array in an attempt to overwrite your default val-
ues. By processing only those variables that you expect, your form is much more
secure. Any spurious values are ignored.

BRINGING FORMS TO LIFE

131

5

7311ch05.qxd  10/10/06  10:32 PM  Page 131



4. Let’s turn now to the main body of the page. You need to display a warning if any-
thing is missing. Amend the conditional statement at the top of the page content
like this:

<h1>Contact us</h1>
<?php
if ($_POST && isset($missing)) {
?>
<p class="warning">Please complete the missing item(s) indicated.</p>

<?php
}

elseif ($_POST && !$mailSent) {
?>
<p class="warning">Sorry, there was a problem sending your message.

Please try later.</p>
<?php
}

elseif ($_POST && $mailSent) {
?>
<p><strong>Your message has been sent. Thank you for your feedback.

</strong></p>
<?php } ?>
<p>Ut enim ad minim veniam . . . </p>

This simply adds a new condition to the block. It’s important to note that I’ve
placed it as the first condition. The $mailSent variable won’t even be set if any
required fields have been omitted, so you must test for $missing first. The second
and third conditions are impossible if isset($missing) equates to true.

5. To make sure it works so far, save contact.php and load it in a browser. Click Send
message without filling in any of the fields. You should see the message about miss-
ing items that you added in the previous step.

6. To display a suitable message alongside each missing required field, add a PHP code
block to display a warning as a <span> inside the <label> tag like this:

<label for="name">Name: <?php
if (isset($missing) && in_array('name', $missing)) { ?>
<span class="warning">Please enter your name</span><?php } ?>
</label>

Since the $missing array is created only after the form has been submitted, you
need to check first with isset() that it exists. If it doesn’t exist—such as when the
page first loads or if the email has been sent successfully—the <span> is never dis-
played. If $missing does exist, the second condition checks if the $missing array
contains the value name. If it does, the <span> is displayed as shown in Figure 5-5.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

132

7311ch05.qxd  10/10/06  10:32 PM  Page 132



7. Insert a similar warning for the comments field like this:

<label for="comments">Comments: <?php
if (isset($missing) && in_array('comments', $missing)) { ?>
<span class="warning">Please enter your comments</span><?php } ?>
</label>

The PHP code is the same except for the value you are looking for in the $missing
array. It’s the same as the name attribute for the form element.

8. Save contact.php and test the page again, first by entering nothing into any of the
fields. The page should look like Figure 5-5. 

Figure 5-5. By validating user input, you can prevent the email from being sent and display
suitable warnings.

Then try sending a message with all fields filled in. The page should work as before,
and you should receive an email in your inbox. If you have any problems, compare
your code with contact05.php.

All you need to do to change the required fields is change the names in the $required
array and add a suitable alert inside the <label> tag of the appropriate input element
inside the form. It’s easy to do, because you always use the name attribute of the form
input element. Try making the email field required, too. You can see the solution in
contact06.php in the download files.

Preserving user input when a form is incomplete

Imagine you have just spent ten minutes filling in a form. You click the submit button, and
back comes the response that a required field is missing. It’s infuriating if you have to fill
in every field all over again. Since the content of each field is in the $_POST array, it’s easy
to redisplay it when an error occurs.

BRINGING FORMS TO LIFE

133

5

7311ch05.qxd  10/10/06  10:32 PM  Page 133



Continue working with the same file. Alternatively, use contact06.php from the down-
load files.

1. When the page first loads, or the email is successfully sent, you don’t want anything
to appear in the input fields. But you do want to redisplay the content if a required
field is missing. So that’s the key: if the $missing variable exists, you want the con-
tent of each field to be redisplayed. You can set default text for a text input field by
setting the value attribute of the <input> tag, so amend the <input> tag for name
like this:

<input name="name" id="name" type="text" class="formbox" 
<?php if (isset($missing)) {
echo 'value="'.htmlentities($_POST['name']).'"';
} ?>

/>

This PHP code block is quite short, but the line inside the curly braces contains a
combination of quotes and periods that are likely to catch you out if you’re not
careful. The first thing to realize is that there’s only one semicolon—right at the
end—so the echo command applies to the whole line. As explained in Chapter 3, a
period is called the concatenation operator, which joins strings and variables. So
you can break down the rest of the line into three sections, as follows:

'value="'.

htmlentities($_POST['name'])

.'"'

The first section outputs value=" as text and uses the concatenation operator 
to join it to the next section, which passes $_POST['name'] to a function called
htmlentities(). I’ll explain what the function does in a moment, but the third sec-
tion uses the concatenation operator again to join the next section, which consists
solely of a double quote. So, if $missing has been set, and $_POST['name'] con-
tains Joe, you’ll end up with this inside the <input> tag:

<input name="name" id="name" type="text" class="formbox" value="Joe" />

This is the type of situation where you need to keep careful track of double and
single quotes. The double quotes are part of the string value="", so each part of
the string needs to be enclosed in single quotes. Because the closing double quote
stands on its own in the script, it’s easy to forget, but it will play havoc with the
form when displayed in a browser.

So, what’s the htmlentities() function for? Again, it’s all to do with handling
quotes and apostrophes. As the function name suggests, it converts certain charac-
ters to their equivalent HTML entity. The one you’re concerned with here is the
double quote. Let’s say Elvis really is still alive and decides to send feedback
through the form. If you use $_POST['name'] on its own, Figure 5-6 shows what
happens when a required field is omitted and you don’t use htmlentities().

PHP Solution 5-4: Creating sticky form fields

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

134

7311ch05.qxd  10/10/06  10:32 PM  Page 134



Figure 5-6. Quotes within user input need special treatment before form fields can be
redisplayed.

Passing the content of the $_POST array element to the htmlentities(), however,
converts the double quotes in the middle of the string to &quot;. And, as Figure 5-7
shows, the content is no longer truncated. What’s cool about this is that the HTML
entity &quot; is converted back to double quotes when the form is resubmitted. As
a result, there’s no need for any further conversion before the email can be sent.

Figure 5-7. The problem is solved by passing the value to htmlentities() before it’s
displayed.

2. Amend the email input field in the same way, using $_POST['email'] instead of
$_POST['name'].

By default, htmlentities() leaves single quotes untouched. Since I chose to
wrap the value attribute in double quotes, this doesn’t matter. To convert single
quotes to an HTML entity as well, pass ENT_QUOTES (all uppercase) as a second
argument to htmlentities() like this:

htmlentities($_POST['name'], ENT_QUOTES)

BRINGING FORMS TO LIFE

135

5

7311ch05.qxd  10/10/06  10:32 PM  Page 135



3. The comments text area needs to be handled slightly differently because
<textarea> tags don’t have a value attribute. You place the PHP block between
the opening and closing tags of the text area like this (new code is shown in bold):

<textarea name="comments" id="comments" cols="60" rows="8"><?php
if (isset($missing)) {
echo htmlentities($_POST['comments']);
} ?></textarea>

It’s important to position the opening and closing PHP tags right up against the
<textarea> tags. If you don’t, you’ll get unwanted whitespace inside the text area.

4. Save contact.php and test the page in a browser. If any required fields are omitted,
the form displays the original content along with any error messages. However, if
the form is correctly filled in, the email is sent, an acknowledgment is displayed,
and the input fields are cleared. You can check your code with contact07.php.

Filtering out potential attacks

A particularly nasty exploit known as email header injection emerged in mid-2005. It seeks
to turn online forms into spam relays. A simple way of preventing this is to look for the
strings “Content-Type:”, “Cc:”, and “Bcc:”, as these are email headers that the attacker
injects into your script in an attempt to trick it into sending HTML email with copies to
many people. If you detect any of these strings in user input, it’s a pretty safe bet that
you’re the target of an attack, so you should block the message. An innocent message may
also be blocked, but the advantages of stopping an attack outweigh that small risk.

Continue working with the same page. Alternatively, use contact07.php from the down-
load files.

1. As you know, PHP conditional statements rely on a true/false test to determine
whether to execute a section of code. So the way to filter out suspect phrases is to
create a Boolean variable that is switched to true as soon as one of those phrases
is detected. The detection is done using a search pattern or regular expression.
Insert the code for both of these just above the section that processes the $_POST
variables:

// create empty array for any missing fields
$missing = array();

PHP Solution 5-5: Blocking emails that contain specific phrases

Using this technique prevents a form reset button from clearing any fields that have been
changed by the PHP script. This is a minor inconvenience in comparison with the greater
usability offered by preserving existing content when an incomplete form is submitted. 

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

136

7311ch05.qxd  10/10/06  10:32 PM  Page 136



// assume that there is nothing suspect
$suspect = false;
// create a pattern to locate suspect phrases
$pattern = '/Content-Type:|Bcc:|Cc:/i';

// process the $_POST variables

The string assigned to $pattern will be used to perform a case-insensitive search
for any of the following: “Content-Type:”, “Bcc:”, or “Cc:”. It’s written in a format
called Perl-compatible regular expression (PCRE). The search pattern is enclosed in
a pair of forward slashes, and the i after the final slash makes the pattern case-
insensitive. 

2. You can now use the PCRE stored in $pattern to filter out any suspect user input
from the $_POST array. At the moment, each element of the $_POST array contains
only a string. However, multiple-choice form elements, such as check boxes, return
an array of results. So you need to tunnel down any subarrays and check the con-
tent of each element separately. That’s precisely what the following custom-built
function isSuspect() does. Insert it immediately after the $pattern variable from
step 1.

// create a pattern to locate suspect phrases
$pattern = '/Content-Type:|Bcc:|Cc:/i';

// function to check for suspect phrases
function isSuspect($val, $pattern, &$suspect) {
// if the variable is an array, loop through each element
// and pass it recursively back to the same function
if (is_array($val)) {
foreach ($val as $item) {
isSuspect($item, $pattern, $suspect);
}

}

This is a very simple example, but regular expressions (regex) are a complex sub-
ject that can reduce grown men to tears. Fortunately, you can find a lot of tried
and tested regular expressions that you can simply drop into your own scripts. Two
good places to look are http://regexlib.com and Regular Expression Recipes: 
A Problem–Solution Approach by Nathan A. Good (Apress, ISBN: 1-59059-441-X).

In addition to PCRE, you will probably also come across Portable Operating
System Interface (POSIX) regular expressions. They tend to be easier to read, but
they are slower and less powerful than PCRE. The easy way to tell whether a PHP
script uses PCRE or POSIX is to look at the function used with the regex. All PCRE
functions begin with preg_, while POSIX functions begin with ereg. To prevent
your scripts from breaking in future, always use PCRE regular expressions,
because there are plans to drop the ereg functions from the default configura-
tion of PHP 6.

BRINGING FORMS TO LIFE

137

5

7311ch05.qxd  10/10/06  10:32 PM  Page 137



else {
// if one of the suspect phrases is found, set Boolean to true
if (preg_match($pattern, $val)) {
$suspect = true;
}

}
}

The isSuspect() function is another piece of code that you may want to just copy
and paste without delving too deeply into how it works. The important thing to
notice is that the third argument has an ampersand (&) in front of it (&$suspect).
This means that any changes made to the variable passed as the third argument to
isSuspect() will affect the value of that variable elsewhere in the script. The other
feature of this function is that it’s what’s known as a recursive function. It keeps
on calling itself until it finds a value that it can compare against the regex.

3. Don’t worry if that last paragraph makes your brain hurt. Calling the function is
very easy. You just pass it three values: the $_POST array, the pattern, and the
$suspect Boolean variable. Insert the following code immediately after the code in
the previous step:

// check the $_POST array and any subarrays for suspect content
isSuspect($_POST, $pattern, $suspect);

4. If any suspect phrases are detected, the value of $suspect changes to true, so you
need to set $mailSent to false and delete the $missing array to prevent the email
from being sent, and to display an appropriate message in the form. There’s also no
point in processing the $_POST array any further. Wrap the code that processes the
$_POST variables in the second half of an if... else statement like this:

if ($suspect) {
$mailSent = false;
unset($missing);
}

else {
// process the $_POST variables
foreach ($_POST as $key => $value) {
// assign to temporary variable and strip whitespace if not an array
$temp = is_array($value) ? $value : trim($value);
// if empty and required, add to $missing array
if (empty($temp) && in_array($key, $required)) {
array_push($missing, $key);
}

// otherwise, assign to a variable of the same name as $key
elseif (in_array($key, $expected)) {
${$key} = $temp;

Note that you don’t put an ampersand in front of $suspect this time. The amper-
sand is required only when you define the function in step 2, not when you call it.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

138

7311ch05.qxd  10/10/06  10:32 PM  Page 138



}
}

}

Don’t forget the extra curly brace to close the else statement.

5. Just one final change is required to the section of code that builds and sends the
email. If suspect content is detected, you don’t want that code to run, so amend
the condition in the opening if statement like this:

// go ahead only if not suspect and all required fields OK
if (!$suspect && empty($missing)) {
// build the message

6. Save contact.php, and test the form. It should send normal messages, but block any
message that contains any of the suspect phrases. Because the if statement in step
4 sets $mailSent to false and unsets $missing, the code in the main body of the
page displays the same message that’s displayed if there’s a genuine problem with
the server. A neutral, nonprovocative message reveals nothing that might assist an
attacker. It also avoids offending anyone who may have innocently used a suspect
phrase. You can check your code against contact08.php in the download files.

Safely including the user’s address in email headers 

Up to now, I’ve avoided using one of the most useful features of the PHP mail() function:
the ability to add extra email headers with the optional fourth argument. A popular use of
extra headers is to incorporate the user’s email address into a Reply-To header, which
enables you to reply directly to incoming messages by clicking the Reply button in your
email program. It’s convenient, but it provides a wide open door for an attacker to supply
a spurious set of headers. With PHP Solution 5-5 in place, you can block attacks, but safely
pass filtered email addresses to the mail() function.

You can find a full list of email headers at www.faqs.org/rfcs/rfc2076, but some of the
most well-known and useful ones enable you to send copies of an email to other
addresses (Cc and Bcc), or to change the encoding (often essential for languages other
than Western European ones). Each new header, except the final one, must be on a sepa-
rate line terminated by a carriage return and new line character. This means using the \r
and \n escape sequences in double-quoted strings.

Let’s say you want to send copies of messages to other departments, plus a copy to
another address that you don’t want the others to see. Email sent by mail() is often iden-
tified as coming from nobody@yourdomain (or whatever username is assigned to the web
server), so it’s also a good idea to add a more user-friendly “From” address. This is how
you build those additional email headers and pass them to mail():

$additionalHeaders = "From: Japan Journey<feedback@example.com>\r\n";
$additionalHeaders .= "Cc: sales@example.com, finance@example.com\r\n";
$additionalHeaders .= 'Bcc: secretplanning@example.com';

$mailSent = mail($to, $subject, $message, $additionalHeaders);

BRINGING FORMS TO LIFE

139

5

7311ch05.qxd  10/10/06  10:32 PM  Page 139



If you want to send the email in an encoding other than iso-8859-1 (English and Western
European), you need to set the Content-Type header. For Unicode (UTF-8), set it like this:

$additionalHeaders = "Content-Type: text/plain; charset=utf-8\r\n";

The web page that the form is embedded in must use the same encoding (usually set in a
<meta> tag).

Hard-coded additional headers like this present no security risk, but anything that comes
from user input must be filtered before it’s used. So, let’s take a look at incorporating the
user’s email address into a Reply-To header. Although PHP Solution 5-5 should sanitize
any user input, it’s worth subjecting the email field to a more rigorous check.

Continue working with the same page. Alternatively, use contact08.php from the down-
load files.

1. Although I suggested at the end of PHP Solution 5-3 that you add the email field 
to the $required array, there may be occasions when you don’t want to make it
required. So, it makes more sense to keep the code to validate the email address
separate from the main loop that processes the $_POST array.

If email is required, but has been left blank, the loop will have already added
email to the $missing array, so the message won’t get sent anyway.

If it’s not a required field, you need to check $email only if it contains some-
thing. So you need to wrap the validation code in an if statement that uses
!empty(). An exclamation mark is the negative operator, so you read this as
“not empty.”

Insert the code shown in bold immediately after the loop that processes the $_POST
array. It contains a complex line, so you may prefer to copy it from contact09.php.

// otherwise, assign to a variable of the same name as $key
elseif (in_array($key, $expected)) {
${$key} = $temp;
}

}
}

// validate the email address
if (!empty($email)) {
// regex to ensure no illegal characters in email address 
$checkEmail = '/^[^@]+@[^\s\r\n\'";,@%]+$/';
// reject the email address if it doesn't match
if (!preg_match($checkEmail, $email)) {
array_push($missing, 'email');
}

}

PHP Solution 5-6: Automating the reply address

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

140

7311ch05.qxd  10/10/06  10:32 PM  Page 140



// go ahead only if not suspect and all required fields OK
if (!$suspect && empty($missing)) {

Designing a regular expression to recognize a valid-looking email address is notori-
ously difficult, and many that you find in books or on the Internet reject valid email
addresses. Instead of striving for perfection, $checkEmail simply checks for an 
@ mark surrounded by at least one character on either side.

More important, it rejects any attempt to append spurious email headers. If the
contents of $email don’t match the regex, email is added to the $missing array. 
I decided not to create a special variable to indicate a suspected attack because the
user may have innocently mistyped the email address. Moreover, it keeps the logic
of the code simple. If the $missing array contains any elements, the message isn’t
sent, which is the whole point: you’ve stopped the attack.

2. You now need to add the additional headers to the section of the script that sends
the email. Place them immediately above the call to the mail() function like this:

// limit line length to 70 characters
$message = wordwrap($message, 70);

// create additional headers
$additionalHeaders = 'From: Japan Journey<feedback@example.com>';
if (!empty($email)) {
$additionalHeaders .= "\r\nReply-To: $email";
}

// send it  
$mailSent = mail($to, $subject, $message, $additionalHeaders);

If you don’t want email to be a required field, there’s no point in using a nonexist-
ent value in the Reply-To header, so I have wrapped it in a conditional statement.
Since you have no way of telling whether the Reply-To header will be created, it
makes sense to put the carriage return and new line characters at the beginning of
the second header. It doesn’t matter whether you put them at the end of one
header or the start of the next one, as long as a carriage return and new line sepa-
rates each header. For instance, if you wanted to add a Cc header, you could do it
like this:

$additionalHeaders = "From: Japan Journey<feedback@example.com>\r\n";
$additionalHeaders .= 'Cc: admin@example.com';
if (!empty($email)) {
$additionalHeaders .= "\r\nReply-To: $email";
}

Or like this:

$additionalHeaders = 'From: Japan Journey<feedback@example.com>';
$additionalHeaders .= "\r\nCc: admin@example.com";
if (!empty($email)) {
$additionalHeaders .= "\r\nReply-To: $email";
}

Finally, don’t forget to add $additionalHeaders as the fourth argument to mail().

BRINGING FORMS TO LIFE

141

5

7311ch05.qxd  10/10/06  10:32 PM  Page 141



3. Save contact.php and test the form. When you receive the email, click the Reply
button in your email program, and you should see the address that you entered in
the form automatically entered in the recipient’s address field. You can check your
code against contact09.php in the download files.

Handling multiple-choice form elements
You now have the basic knowledge to process user input from an online form and email it
to your inbox, but to keep things simple, the form in contact.php uses only text input
fields and a text area. To work successfully with forms, you also need to know how to han-
dle multiple-choice elements, namely:

Radio buttons

Check boxes

Drop-down option menus

Multiple-choice lists

Figure 5-8 shows contact.php with an example of each type added to the original design.
The principle behind them is exactly the same as the text input fields you have been work-
ing with: the name attribute of the form element is used as the key in the $_POST array.
However, check boxes and multiple-choice lists store the selected values as an array, so
you need to adapt the code slightly to capture all the values.

Let’s look briefly at each type of form element. Rather than go through each step in detail,
I’ll just highlight the important points. The completed code for the rest of the chapter is in
contact10.php.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

142

7311ch05.qxd  10/10/06  10:32 PM  Page 142



Figure 5-8. The feedback form with examples of each type of form element

Radio button groups allow you to pick only one value. This makes it easy to retrieve the
selected one.

1. All buttons in the same group must share the same name attribute, so the $_POST
array contains the value attribute of whichever radio button is selected. If no but-
ton is selected, the radio button group’s $_POST array element remains unset. This
is different from the behavior of text input fields, which are always included in the
$_POST array, even if they contain nothing.

PHP Solution 5-7: Getting data from radio button groups

BRINGING FORMS TO LIFE

143

5

7311ch05.qxd  10/10/06  10:32 PM  Page 143



You need to take this into account in the code that preserves the selected value
when a required field is omitted. The following listing shows the subscribe radio
button group from contact.php, with all the PHP code highlighted in bold:

<fieldset id="subscribe">
<h2>Subscribe to newsletter?</h2>
<p>
<input name="subscribe" type="radio" value="Yes" id="subscribe-yes" 
<?php
$OK = isset($_POST['subscribe']) ? true : false;
if ($OK && isset($missing) && $_POST['subscribe'] == 'Yes') { ?>
checked="checked"
<?php } ?>
/>
<label for="subscribe-yes">Yes</label>
<input name="subscribe" type="radio" value="No" id="subscribe-no" 
<?php
if ($OK && isset($missing) && $_POST['subscribe'] == 'No') { ?>
checked="checked"
<?php } ?>
/>
<label for="subscribe-no">No</label>
</p>

</fieldset>

The checked attribute in both buttons is wrapped in an if statement, which checks
three conditions, all of which must be true. The value of the first condition, $OK, is
determined by the following line of code:

$OK = isset($_POST['subscribe']) ? true : false;

This uses the conditional operator to check whether $_POST['subscribe'] is set. The
only reason for this line is to avoid having to type isset($_POST['subscribe']) in
both if statements. With only two buttons in the radio group, this may hardly
seem worthwhile, but I’ve used the same technique in all multiple-choice elements,
and it certainly makes things easier when you have six items in a group, as is the
case with the check boxes and multiple-choice list.

The other two conditions inside the if statements check whether $missing has
been set and the value of $_POST['subscribe'].

2. When building the body of the email message, you also need to take into account
that $_POST['subscribe'] may not exist. Otherwise, you could end up with unpro-
fessional error messages onscreen. Again, using the conditional operator offers the
most succinct way of doing this. The following code goes in the section that pre-
pares the message prior to sending it:

// go ahead only if not suspect and all required fields OK
if (!$suspect && empty($missing)) {
// set default values for variables that might not exist
$subscribe = isset($subscribe) ? $subscribe : 'Nothing selected';

If $subscribe exists, the value is simply passed to the same variable. If it doesn’t
exist, it’s set to the string Nothing selected. You can now safely use $subscribe
within the body of the message.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

144

7311ch05.qxd  10/10/06  10:32 PM  Page 144



Check boxes are similar to radio button groups, except that they permit multiple selec-
tions. This affects how you name a check box group and extract the selected values.

1. The following listing shows the code for the check boxes in contact.php. To save
space, just the first two check boxes are shown. The name attribute and PHP sec-
tions of code are highlighted in bold.

<fieldset id="interests">
<h2>Interests in Japan</h2>
<div>
<p>
<input type="checkbox" name="interests[]" value="Anime/manga" ➥

id="anime" 
<?php
$OK = isset($_POST['interests']) ? true : false;
if ($OK && isset($missing) && in_array('Anime/manga', ➥

$_POST['interests'])) { ?>
checked="checked"
<?php } ?>
/>
<label for="anime">Anime/manga</label>

</p>
<p>
<input type="checkbox" name="interests[]" value="Arts & crafts" ➥

id="art" 
<?php
if ($OK && isset($missing) && in_array('Arts & crafts', ➥

$_POST['interests'])) { ?>
checked="checked"
<?php } ?>
/>
<label for="art">Arts &amp; crafts</label>

</p>
. . .
</div>
</fieldset>

The really important thing to note about this code is the empty pair of square
brackets following the name attribute of each check box. This tells PHP to treat
interests as an array. If you omit the brackets, $_POST['interests'] contains the
value of only the first check box selected; all others are ignored.

The PHP code inside each check box element performs the same role as in the
radio button group, wrapping the checked attribute in a conditional statement. The
first two conditions are the same as for a radio button, but the third condition uses
the in_array() function to check whether the value associated with that check
box is in the $_POST['interests'] subarray. If it is, it means the check box was
selected.

PHP Solution 5-8: Getting data from check boxes

BRINGING FORMS TO LIFE

145

5

7311ch05.qxd  10/10/06  10:32 PM  Page 145



As with radio buttons, if no check box is selected, the $_POST['interests'] ele-
ment is not even created. So the code for the first check box contains the following:

$OK = isset($_POST['interests']) ? true : false;

This uses the same $OK variable as the radio button group, but that’s not a problem,
since you’ve finished with $_POST['subscribe']. So it’s safe to reuse $OK.

2. Because the check box array might never be created, you need to set a default
value before attempting to build the body of the email. This time, rather than a
string, it needs to be presented as an array like this:

// set default values for variables that might not exist
$subscribe = isset($subscribe) ? $subscribe : 'Nothing selected';
$interests = isset($interests) ? $interests : array('None selected');

3. To extract the values of the check box array, you can use a foreach loop or the
implode() function. This oddly named function joins array elements. It takes two
arguments: a string to be used as a separator and the array. So, implode(', ',
$interests) joins the elements of $interests as a comma-separated string.

Drop-down option menus created with the <select> tag are similar to radio button
groups in that they normally allow the user to pick only one option from several. Where
they differ is one item is always selected in a drop-down menu, even if it’s only the first
item inviting the user to select one of the others. As a result, this means that the $_POST
array always contains an element referring to a menu, whereas a radio button group is
ignored unless a default value is preset.

1. The following code shows the first two items from the drop-down menu in con-
tact.php with the PHP code highlighted in bold. As with all multiple-choice ele-
ments, the PHP code wraps the attribute that indicates which item has been
chosen. Although this attribute is called checked in radio buttons and check boxes,
it’s called selected in <select> menus and lists. It’s important to use the correct
attribute to redisplay the selection if the form is submitted with required items
missing. When the page first loads, the $_POST array contains no elements, so you
can select the first <option> by testing for !$_POST. Once the form is submitted,
the $_POST array always contains an element from a drop-down menu, so you don’t
need to test for its existence.

<p>
<label for="select">How did you hear of Japan Journey?</label>
<select name="howhear" id="howhear">
<option value="No reply" 
<?php
if (!$_POST || $_POST['howhear'] == 'No reply') { ?>
selected="selected"
<?php } ?>
>Select one</option>
<option value="foED"

PHP Solution 5-9: Getting data from a drop-down option menu

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

146

7311ch05.qxd  10/10/06  10:32 PM  Page 146



<?php
if (isset($missing) && $_POST['howhear'] == 'foED') { ?>
selected="selected"
<?php } ?>
>friends of ED</option>

. . .
</select>

</p>

2. Because there is always an element in the $_POST array for a drop-down menu, it
doesn’t require any special handling in the code that builds the body of the email.

Multiple-choice lists are similar to check boxes: they allow the user to choose zero or more
items, so the result is stored in an array. If no items are selected, the $_POST array contains
no reference to the list, so you need to take that into consideration both in the form and
when processing the message.

1. The following code shows the first two items from the multiple choice list in con-
tact.php with the name attribute and PHP code highlighted in bold. Note that the
name attribute needs a pair of square brackets on the end to store the results as an
array. The code works in an identical way to the check boxes in PHP Solution 5-8.

<p>
<label for="select">What characteristics do you associate with ➥

Japan?</label>
<select name="characteristics[]" size="6" multiple="multiple" ➥

id="characteristics">
<option value="Dynamic"
<?php
$OK = isset($_POST['characteristics']) ? true : false;
if ($OK && isset($missing) && in_array('Dynamic', ➥

$_POST['characteristics'])) { ?>
selected="selected"
<?php } ?>
>Dynamic</option>
<option value="Honest"
<?php
if ($OK && isset($missing) && in_array('Honest', ➥

$_POST['characteristics'])) { ?>
selected="selected"
<?php } ?>
>Honest</option>

. . .
</select>

</p>

PHP Solution 5-10: Getting data from a multiple-choice list

BRINGING FORMS TO LIFE

147

5

7311ch05.qxd  10/10/06  10:32 PM  Page 147



2. In the code that processes the message, set a default value for a multiple-choice list
in the same way as for an array of check boxes.

$interests = isset($interests) ? $interests : array('None selected');
$characteristics = isset($characteristics) ? $characteristics : ➥

array('None selected');

3. When building the body of the message, use a foreach loop to iterate through the
subarray, or use implode() to create a comma-separated string like this:

$message .= 'Characteristics associated with Japan: '.implode(', ', ➥

$characteristics);

A complete script using all form elements is in contact10.php in the download files for
this chapter.

Redirecting to another page
Throughout this chapter, everything has been kept within the same page, even if the mes-
sage is sent successfully. If you prefer to redirect the visitor to a separate acknowledgment
page, locate this section of code at the end of the message processing section:

// send it  
$mailSent = mail($to, $subject, $message, $additionalHeaders);
if ($mailSent) {
// $missing is no longer needed if the email is sent, so unset it
unset($missing);
}

}
}

Change it like this:

// send it  
$mailSent = mail($to, $subject, $message, $additionalHeaders);
if ($mailSent) {
// redirect the page with a fully qualified URL
header('Location: http://www.example.com/thanks.php');
exit;
}

}
}

The HTTP/1.1 protocol stipulates a fully qualified URL for a redirect command, although
most browsers will perform the redirect correctly with a relative pathname.

When using the header() function, you must be very careful that no output is sent to the
browser before PHP attempts to call it. If, when testing your page, you see an error mes-
sage warning you that headers have already been sent, check there are no new lines or

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

148

7311ch05.qxd  10/10/06  10:32 PM  Page 148



other whitespace ahead of the opening PHP tag. Also check any include files for white-
space and new lines before the opening PHP tag and after the closing one. The error is fre-
quently triggered by a single new line after the closing tag of an include file.

Summary
What began as a slender 50 lines of XHTML and PHP at the beginning of the chapter has
grown by nearly 300 lines, of which about 100 process the form content ready for sending
by email. This may seem like a lot if you have a phobia about code, but the most impor-
tant sections of code (in PHP Solutions 5-5 and 5-6) filter out suspect input and should
never need changing. Once you have built the script above the DOCTYPE declaration, you
can copy and paste it into any form or use an include file.

The only parts that need tweaking are the $expected and $required arrays and the sec-
tion that builds the body of the email message. In order to concentrate on the mechanics
of working with forms, I have kept the body of the message plain and simple. However,
once you have extracted the form contents into variables, such as $name, $email, and so
on, you can incorporate them into an email message any way you like.

I’ve also avoided talking about HTML email because the mail() function handles only plain
text email. The PHP online manual at www.php.net/manual/en/function.mail.php shows
a way of sending HTML mail by adding an additional header. However, it’s not a good idea,
as HTML mail should always contain an alternative text version for email programs that
don’t accept HTML. If you want to send HTML mail or attachments, I suggest that you use
the PHPMailer class. It’s open source and is available for free from http://
phpmailer.sourceforge.net/. The site has a tutorial showing you how to use it.

As you’ll see in later chapters, online forms lie at the heart of just about everything you do
with PHP. They’re the gateway between the browser and the web server. You’ll come back
time and again to the techniques that you have learned in this chapter.

BRINGING FORMS TO LIFE

149

5

7311ch05.qxd  10/10/06  10:32 PM  Page 149



7311ch06.qxd  10/10/06  10:38 PM  Page 150



6 UPLOADING FILES

7311ch06.qxd  10/10/06  10:38 PM  Page 151



What this chapter covers:

Understanding how PHP handles file uploads

Restricting the size and type of uploads

Preventing files from being overwritten

Organizing uploads into specific folders

Handling multiple uploads

PHP’s ability to handle forms isn’t restricted to text. It can also be used to upload files to a
server. In theory, this opens up great possibilities. For instance, you could build a real
estate website where clients could upload pictures of their properties, or a site for all your
friends and relatives to upload their holiday photos. However, just because you can do it,
doesn’t necessarily mean that you should. Allowing others to upload material to your web-
site could expose you to all sorts of problems. You need to make sure that images are the
right size, that they’re of suitable quality, and that they don’t contain any illegal material.
You also need to ensure that uploads don’t contain malicious scripts. In other words, you
need to protect your website just as carefully as your own computer.

Fortunately, the way that PHP handles file uploads makes it relatively simple to restrict the
type and size of files accepted. What it cannot do is check the suitability of the content. It’s
therefore always a good idea to implement a strategy that prevents indecent or illegal
material from being automatically displayed on your site. One way is to store uploaded
material in a nonpublic directory until it has been approved. Another way is to restrict
uploads to registered and trusted users by placing the upload form in a password-
protected area. A combination of both approaches is even more secure.

Before you dive into the scripts, you’ll next look at how PHP handles file uploads, which
should make the scripts easier to understand when you come to them.

How PHP handles file uploads
The term “upload” means moving a file from one computer to another, but as far as PHP
is concerned, all that’s happening is that a file is being moved from one location to
another. This means you can test all the scripts in this chapter on your local computer
without the need to upload files to a remote server.

PHP supports file uploads by default, but hosting companies can restrict the size of
uploads or disable them altogether. Before going any further, it’s a good idea to check the
settings on your remote server.

User registration and authentication are covered in Chapters 9 and 15. Until you know
how to restrict access to pages with PHP, I recommend that you use the PHP Solutions
described in this chapter only in a password-protected directory if deployed on a public
website. Most hosting companies provide simple password protection through the site’s
control panel.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

152

7311ch06.qxd  10/10/06  10:38 PM  Page 152



Checking whether your server supports uploads

All the information that you need is displayed in the main PHP configuration page that you
can display by creating a PHP page with the following script and uploading it by FTP to
your remote server:

<?php phpinfo(); ?>

Load the page into a browser, and
locate the section shown in the screen-
shot to the right.

Scroll down until you find file_uploads.
If the Local Value column contains
On, you’re ready to go, but you
should also check the other configu-
ration settings listed in Table 6-1.

Table 6-1. PHP configuration settings that affect file uploads

Directive Default value Description

max_execution_time 30 The maximum number of seconds that 
a PHP script can run. If the script takes
longer, PHP generates a fatal error.

max_input_time 60 The maximum number of seconds that 
a PHP script is allowed to parse the
$_POST and $_GET arrays, and file
uploads. Very large uploads are likely 
to run out of time.

post_max_size 8M The maximum permitted size of all
$_POST data, including file uploads.
Although the default is 8MB, hosting
companies may impose a smaller limit.

upload_tmp_dir This is where PHP stores uploaded 
files until your script moves them to 
a permanent location. If no value is
defined in php.ini, PHP uses the system
default temporary directory.

upload_max_filesize 2M The maximum permitted size of a single
upload file. Although the default is 2MB,
hosting companies may impose a smaller
limit. A number on its own indicates the
number of bytes permitted. A number
followed by K indicates the number of
kilobytes permitted.

UPLOADING FILES

153

6

7311ch06.qxd  10/10/06  10:38 PM  Page 153



The default limits set by PHP are quite generous, but you need to make sure that you don’t
exceed any limits set by your hosting company; if you do, scripts that are otherwise perfect
will fail. It’s important to note the limit imposed by post_max_size. Even though the default
values theoretically permit the simultaneous upload of four 2MB files, the upload is likely to
fail because the content of the $_POST array would bring the total to more than 8MB.

If the Local Value of file_uploads is Off, uploads have been disabled. There is nothing you
can do about it, other than ask your hosting company if it offers a package with file
uploading enabled. Your only alternatives are to move to a different host or to use a dif-
ferent solution, such as uploading files by FTP.

Adding a file upload field to a form

Adding a file upload field to an XHTML form is easy. Just add enctype="multipart/ 
form-data" to the opening <form> tag, and set the type attribute of an <input> element
to file. The following code is a simple example of an upload form (it’s in upload01.php in
the download files for this chapter):

<form action="" method="post" enctype="multipart/form-data" ➥

name="uploadImage" id="uploadImage"> 
<p>
<label for="image">Upload image:</label>
<input type="file" name="image" id="image" />

</p>
<p>
<input type="submit" name="upload" id="upload" value="Upload" />

</p>
</form>

In most browsers, this code inserts a text input field with a Browse button alongside, as
shown in Figure 6-1. However, as the figure shows, not only does Safari label the button
differently, but also it doesn’t permit direct input of the filename; users are obliged to click
Choose File to navigate to the local file. This doesn’t affect the operation of an upload
form, but you need to take it into consideration when designing the layout.

After using phpinfo() to check your remote server’s settings, it’s a good idea to remove
the script or put it in a password-protected directory.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

154

Figure 6-1. Browsers automatically
add a button to enable users to
select a file ready for uploading.

7311ch06.qxd  10/10/06  10:38 PM  Page 154



Understanding the $_FILES array

What confuses many people is that their file seems to vanish after it has been uploaded.
This is because you can’t refer to an uploaded file in the $_POST array in the same way as
with text input. PHP transmits the details of uploaded files in a separate superglobal array
called, not unreasonably, $_FILES. Moreover, files are uploaded to a temporary folder and
are deleted unless you explicitly move them to the desired location. Although this sounds
like a nuisance, it’s done for a very good reason: you can subject the file to security checks
before accepting the upload.

The best way to understand how the $_FILES array works is to see it in action. If you have
installed a local test environment, you can test everything on your computer. It works in
exactly the same way as uploading a file to a remote server.

1. Create a new folder called uploads in the phpsolutions site root. Create a new
PHP file called upload.php in the uploads folder, and insert the code from the pre-
vious section. Alternatively, copy upload01.php from the download files for this
chapter, and rename the file upload.php.

2. Insert the following code right after the closing </form> tag (it’s also in
upload02.php):

</form>
<pre>
<?php
if (array_key_exists('upload', $_POST)) {
print_r($_FILES);
}

?>
</pre>
</body>

This uses the array_key_exists() function that you met in the previous chapter. It
checks whether the $_POST array contains upload, the name attribute of the submit
button. If it does, you know the form has been submitted, so you can use
print_r() to inspect the $_FILES array. The <pre> tags make the output easier 
to read.

3. Save upload.php and load it into a browser. It should look like Figure 6-1.

4. Click the Browse (or Choose File) button, and select a file on your hard disk. Click
Open (or Choose on a Mac) to close the file selection dialog box, and then click
Upload. On Windows, you should see something similar to Figure 6-2 on the next
page. A Mac should display the same information, although the value of tmp_name
will probably be something like /var/tmp/phpAVSylw.

Inspecting the $_FILES array

UPLOADING FILES

155

6

7311ch06.qxd  10/10/06  10:38 PM  Page 155



Figure 6-2. The $_FILES array contains five important pieces of information about an
uploaded file.

You can see that the $_FILES array is actually a multidimensional array. The key (or
name) of the top-level array comes from the name attribute of the file input field—
in this case, image. The image subarray consists of five elements, namely

name: The original name of the uploaded file

type: The uploaded file’s MIME type

tmp_name: The location of the uploaded file

error: An integer indicating any problems with the upload (see Table 6-2)

size: The size of the uploaded file in bytes

5. On Windows, open Explorer, and navigate to C:\WINDOWS\TEMP or the location indi-
cated in tmp_name.

On a Mac, open Terminal (it’s in Applications:Utilities), and type the following
commands, both followed by pressing Return:

cd /var/tmp
ls -l

Don’t waste time searching for the temporary file: it won’t be there. It really is tem-
porary. If you don’t do anything with it immediately after uploading, PHP discards
it. It’s a highly efficient way of doing things, because it means your server doesn’t
get clogged up with files that are no longer needed. I’ll explain shortly how to han-
dle a file upload, but first let’s continue our exploration of the $_FILES array.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

156

7311ch06.qxd  10/10/06  10:38 PM  Page 156



6. Click Upload again without selecting a file to upload. The contents of the $_FILES
array should now look like this:

Array
(
[image] => Array
(
[name] => 
[type] => 
[tmp_name] => 
[error] => 4
[size] => 0

)
)

So, even if no file is uploaded, you know that the $_FILES array still exists, but that
each element of the image subarray, except for error and size, is empty. An error
level of 0, as seen in Figure 6-2, indicates a successful upload; 4 indicates that the
form was submitted with no file selected. Table 6-2 lists all the error levels.

7. As one final experiment with the $_FILES array, click the Browse or Choose File
button, and navigate to a program file. Click the Upload button. On a Mac, you will
probably get an error message, but on Windows, the form will happily attempt to
upload the program and display the type as application/x-msdownload. This is a
warning that it’s important to check the MIME type before allowing the upload
process to be completed.

Table 6-2. Meaning of the different error levels in the $_FILES array

Error level Meaning

0 Upload successful

1 File exceeds maximum upload size specified in php.ini (default 2MB)

2 File exceeds size specified by MAX_FILE_SIZE embedded in the form
(see PHP Solution 6-3)

3 File only partially uploaded

4 Form submitted with no file specified

5 Currently not defined

6 No temporary folder (PHP 4.3.10 and 5.0.3 and above)

7 Cannot write file to disk (PHP 5.1.0 and above)

UPLOADING FILES

157

6

7311ch06.qxd  10/10/06  10:38 PM  Page 157



Establishing an upload directory

Another frequent source of confusion is the question of file ownership and how PHP runs
on a web server. If you’re testing in Windows, an upload script that has been working per-
fectly may confront you with a message like this when you transfer it to your remote
server:

Warning:  move_uploaded_file(/home/user/htdocs/testarea/kinkakuji.jpg) 
[function.move-uploaded-file]: failed to open stream: Permission
denied in /home/user/htdocs/testarea/upload_test.php on line 3

Most people react with total bemusement to this message. Why is permission denied? It’s
my own website, after all. The answer is that most hosting companies use Linux servers,
which impose strict rules about the ownership of files and directories. Uploading a file cre-
ates a new version of the file on the server, so the user needs all three privileges—read,
write, and execute. However, in most cases, PHP doesn’t run in your name, but as the web
server—usually nobody or apache. Unless your hosting company has configured PHP to run
in your own name, you need to give global access (chmod 777) to every directory to which
you want to be able to upload files.

Since 777 is the least secure setting, you need to adopt a cautious approach to file
uploads. Begin by testing upload scripts with a setting of 700. If that doesn’t work, try 770,
and use 777 only as a last resort. Your upload directory doesn’t need to be within your site
root; it can be anywhere on the server. If your hosting company gives you a private direc-
tory outside the site root, the most secure solution is to create a subdirectory for uploads
inside the private one. Alternatively, create a directory inside your site root, but don’t link
to it from any web pages. Give it an innocuous name, such as lastyear.

Creating an upload folder for local testing
It doesn’t matter where you create an upload folder in your local test environment, but for
the purposes of this book, I suggest that Windows users create a folder called upload_test
at the top level of the C drive. There are no permissions issues on Windows, so that’s all
that you need to do.

I suggest that Mac users create a folder called upload_test within their own home folder.
After creating the folder, you need to change the permissions on a Mac in the same way as
on Linux. Ctrl-click the folder in Finder, and select Get Info. In the Ownership & Permissions
section at the bottom of the Get Info window, click the triangle alongside Details to reveal
the permissions for all users, as shown in Figure 6-3. Click the padlock icon to the right of
Owner to unlock the settings, and change the setting for Others from Read only to Read &
Write. Click the padlock icon again to preserve the new settings, and close the Get Info win-
dow. Your upload_test folder is now ready for use.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

158

7311ch06.qxd  10/10/06  10:38 PM  Page 158



Uploading files
With the knowledge from the previous section under your belt, you should now be able to
avoid most common mistakes with PHP file uploads.

Moving the temporary file to the upload folder

As the previous exercise demonstrated, the temporary version of an uploaded file has only a
fleeting existence. If you don’t do anything with the file, it’s discarded immediately. You need
to tell PHP where to move it and what to call it. You do this with the move_uploaded_file()
function, which takes the following two arguments:

The name of the temporary file

The full pathname of the file’s new location, including the filename itself

All scripts in the rest of this chapter assume that you have created an upload folder in
your local testing environment as described in the preceding section. If you are using
a remote Linux server for testing, make sure the target directory has the correct
permissions.

UPLOADING FILES

159

6Figure 6-3. On Mac OS X,
you need to set global read
and write permissions on the
upload folder.

7311ch06.qxd  10/10/06  10:38 PM  Page 159



Obtaining the name of the temporary file itself is easy: it’s stored in the $_FILES array as
tmp_name. Because the second argument requires a full pathname, it gives you the oppor-
tunity to rename the file. For example, on a site where users are required to log in, you
could create a new filename based on individual usernames, combined with the current
date and time. To keep things simple, though, let’s use the original filename, which is
stored in the $_FILES array as name.

Continue working with the same file as in the previous exercise. Alternatively, use
upload03.php from the download files for this chapter. The final script for this PHP
Solution is in upload04.php.

1. If you are using the file from the previous exercise, delete the code highlighted 
in bold between the closing </form> and </body> tags (it’s already deleted in
upload03.php):

</form>
<pre>
<?php
if (array_key_exists('upload', $_POST)) {
print_r($_FILES);
}

?>
</pre>
</body>

2. You now need to move the uploaded file from its temporary location to its perma-
nent one. Insert the following code immediately above the DOCTYPE declaration:

<?php
if (array_key_exists('upload', $_POST)) {
// define constant for upload folder
define('UPLOAD_DIR', 'path/to/upload_test/');
// move the file to the upload folder and rename it
move_uploaded_file($_FILES['image']['tmp_name'], ➥

UPLOAD_DIR.$_FILES['image']['name']);
}

?>

Although the code is quite short, there’s a lot going on. The entire code block is
enclosed in a conditional statement that checks whether the Upload button has
been clicked by checking to see if its key is in the $_POST array.

The define() function in line 4 is used to create a constant. Constants are similar
to variables, except they’re values you don’t want to change. The only place you
can change a constant is in the original call to define(). Even if you make a second
call to define(), the value remains the same. To distinguish them from variables,
constants don’t begin with a dollar sign, and they’re normally written entirely in
uppercase.

PHP Solution 6-1: Basic file upload

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

160

7311ch06.qxd  10/10/06  10:38 PM  Page 160



The define() function takes two arguments: the name of the constant and the
value. The first argument, 'UPLOAD_DIR', is the same for everyone. The second
argument depends on your operating system and the location of the upload folder.

If you are using Windows, and you created the upload_test folder at the top
level of the C drive, line 4 should look like this:

define('UPLOAD_DIR', 'C:/upload_test/');

Note that I have used forward slashes instead of the Windows convention of
backslashes. You can use either, but forward slashes avoid problems with the
trailing slash just before the closing quote. If you use backslashes, the final one
needs to be escaped by another backslash, like this:

define('UPLOAD_DIR', 'C:\upload_test\\');

If you are using a Mac, and you created the upload_test folder in your home
folder, line 4 should look like this (replace username with your own Mac
username):

define('UPLOAD_DIR', '/Users/username/upload_test/');

If you are using a remote server for testing, or when you deploy an upload script
on your live website, you need to supply the fully qualified filepath as the sec-
ond argument. On a Linux server, it will probably be something like this:

define('UPLOAD_DIR', '/home/user/private/upload_test/');

The final line inside the if statement moves the file with the move_uploaded_file()
function. Since $_FILES['image']['name'] contains the name of the original file,
the second argument, UPLOAD_DIR.$_FILES['image']['name'], stores the uploaded
file under its original name inside the upload folder.

3. Save upload.php and load it into your browser. Click the Browse or Choose File but-
ton, and select any image on your computer. Click Open (Choose on a Mac) to dis-
play the filename in the form. In browsers other than Safari, the file input field
might not be wide enough to display the full path. That’s a cosmetic matter that I’ll
leave you to sort out yourself with CSS. Click the Upload button. If you’re testing
locally, the form input field should clear almost instantly.

If a file of the same name already exists in the upload folder, the new file will
overwrite it without warning. Later in the chapter, I show some simple tech-
niques to prevent this from happening. PHP Solution 7-4 in the next chapter
offers a much more robust solution.

You may come across scripts that use copy() instead of move_uploaded_file().
Without other checks in place, copy() can expose your website to serious secu-
rity risks. Always use move_uploaded_file(); it’s much more secure.

UPLOADING FILES

161

6

7311ch06.qxd  10/10/06  10:38 PM  Page 161



4. Navigate to the upload_test folder, and confirm that a copy of the image you
selected is there. If you encounter any problems, check your code against
upload04.php. Also check that the correct permissions have been set on the
upload folder, if necessary.

If you get no error messages, and cannot find the file, make sure that the image
didn’t exceed upload_max_filesize (see Table 6-1). Also check that you didn’t
leave the trailing slash off the end of UPLOAD_DIR. Instead of myfile.jpg in
upload_test, you may find upload_testmyfile.jpg one level higher in your disk
structure.

Removing spaces from filenames

Windows and Mac OS X allow you to create long filenames with spaces in them. It makes
them easier to recognize, but spaces in filenames can wreak havoc on Linux servers. Even
if your remote server runs on Windows, you should remove all spaces in the names of files
likely to be used in web pages, and replace them with hyphens or underscores. This is eas-
ily done with a function called str_replace(), which searches for all occurrences of a
string within a string, and replaces them with another. The search string can consist of one
or more characters, and the replacement string can be zero or more characters. (Using
zero characters in the replacement string—a pair of quotes with nothing between them—
effectively removes the search string from the target string.) Although you may not think
of a space as being a string, it’s just the same as any other character to PHP.

Continue working with the same file. Alternatively use upload04.php from the download
files. The finished script is in upload05.php.

1. Add the new code highlighted in bold right after the definition of the upload
folder:

define('UPLOAD_DIR', 'C:/upload_test/');
// replace any spaces in original filename with underscores
// at the same time, assign to a simpler variable
$file = str_replace(' ', '_', $_FILES['image']['name']);

The function str_replace() takes the following three arguments: 

The character or substring that you want to replace—in this case, a space

The character or substring that you want to insert—in this case, an underscore

The string that you want to update—in this case, $_FILES['image']['name']

You’ll need to make frequent references to the filename later, so it’s a good idea to
assign the updated filename to a simpler variable, $file, at the same time.

2. You can make use of the shorter variable right away by amending the line that
moves the uploaded file as follows:

move_uploaded_file($_FILES['image']['tmp_name'], UPLOAD_DIR.$file);

PHP Solution 6-2: Making filenames web-safe

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

162

7311ch06.qxd  10/10/06  10:38 PM  Page 162



3. Save upload.php, and test it with a file that contains spaces in its name, as well as
with one with no spaces. As Figure 6-4 shows, the script works with both types, but
spaces are replaced by underscores. You can check your code with upload05.php.

Figure 6-4. Spaces should be removed from filenames before storage on a web server.

Rejecting large files

The ability to upload files is not enough on its own: you need to make your form more
secure. The first step is to set a maximum size for file uploads. Even if your hosting com-
pany sets a lower limit than the 2MB default, you may want to set a much lower limit your-
self. At the same time, it’s a good idea to make your form more user-friendly by reporting
whether the upload was successful. You can do this easily by checking the error level
reported by the $_FILES array (see Table 6-2).

Continue working with the previous file. Alternatively, use upload05.php from the down-
load files. The final code for this PHP Solution is in upload06.php.

1. In addition to the automatic limits set in the PHP configuration (see Table 6-1), you
can also specify a maximum size for an upload file in your XHTML form. Add the
following line highlighted in bold immediately before the file input field:

<label for="image">Upload image:</label>
<input type="hidden" name="MAX_FILE_SIZE" value="<?php echo ➥

MAX_FILE_SIZE; ?>" />
<input type="file" name="image" id="image" />

This is a hidden form field, so it won’t be displayed onscreen. However, it is vital
that you place it before the file input field; otherwise, it won’t work. The value
attribute sets the maximum size of the upload file in bytes. Instead of specifying a
numeric value, I have used a constant, which needs to be defined next.

PHP Solution 6-3: Setting a size limit and displaying outcome

UPLOADING FILES

163

6

7311ch06.qxd  10/10/06  10:38 PM  Page 163



2. Scroll up to the top of upload.php, and define the value of MAX_FILE_SIZE imme-
diately after the opening PHP tag like this:

<?php
// define a constant for the maximum upload size
define ('MAX_FILE_SIZE', 3000);

if (array_key_exists('upload', $_POST)) {

I have deliberately chosen a very small size (3,000 bytes) for testing purposes.

3. Save upload.php and load it in a browser. Select a file bigger than 2.9KB to upload.
Click the Upload button, and check the upload folder. The file shouldn’t be there. If
you’re in the mood for experimentation, move the MAX_FILE_SIZE hidden field
below the file input field, and try it again. This time the file should be copied to your
upload folder. Move the hidden field back to its original position before continuing.

The advantage of using MAX_FILE_SIZE is that PHP abandons the upload if the file
is bigger than the stipulated value, avoiding unnecessary delay if the file is too big.

4. Unfortunately, users can get around this restriction by faking the value of
MAX_FILE_SIZE in the hidden field, so it’s important to check the actual size of the
file on the server side, too. Add the code shown here in bold immediately after the
line that removes spaces from filenames.

$file = str_replace(' ', '_', $_FILES['image']['name']);
// convert the maximum size to KB
$max = number_format(MAX_FILE_SIZE/1024, 1).'KB';
// begin by assuming the file is unacceptable
$sizeOK = false;

// check that file is within the permitted size
if ($_FILES['image']['size'] > 0 && $_FILES['image']['size'] <= ➥

MAX_FILE_SIZE) {
$sizeOK = true;
}

// move the file to the upload folder and rename it

The first line of new code is typical of the concise way PHP is often written:

$max = number_format(MAX_FILE_SIZE/1024, 1).'KB';

It converts MAX_FILE_SIZE from bytes to kilobytes and formats it all in one pass.
The number_format() function normally takes two arguments: a number that you
want nicely formatted with commas as the thousands-separator and the number of
decimal places to be displayed. To get the number of kilobytes, you need to divide
MAX_FILE_SIZE by 1,024; and PHP takes that calculation as the first argument. It’s also
perfectly happy for you to tag KB on the end with the concatenation operator (a
period). If you find this difficult to follow, the following three lines do exactly the same:

$kilobytes = MAX_FILE_SIZE/1024;
$formatted = number_format($kilobytes, 1);
$max = $formatted.'KB';

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

164

7311ch06.qxd  10/10/06  10:38 PM  Page 164



After converting MAX_FILE_SIZE, the script assumes that the file is too big by set-
ting a variable $sizeOK to false. The guilty until proven innocent approach may
seem harsh, but it’s wise on the Web.

Finally, an if statement checks whether $_FILES['image']['size'] is greater than
0 and less than or equal to MAX_FILE_SIZE. You need to check both conditions,
because $_FILES['image']['size'] is set to 0 if PHP detects that the file is larger
than the maximum permitted by the hidden field or the server configuration. If the
size is within the acceptable range, $sizeOK is set to true.

5. You can now use $sizeOK to control whether the file is moved to the upload folder.
PHP Solutions 6-1 and 6-2 assume that the upload is successful, but that may not
always be the case. It’s a good idea to check the error level (see Table 6-2) reported
by the $_FILES array, so you can inform users what happens to their upload.

This means that you need to create a series of nested decisions. One way is to nest
lots of if... else statements inside each other. The code is more readable,
though, if you use a switch statement (see “Using the switch statement for deci-
sion chains” in Chapter 3) in combination with if... else. Amend the remaining
part of the PHP code above the DOCTYPE declaration like this (new code is in bold):

// check that file is within the permitted size
if ($_FILES['image']['size'] > 0 && $_FILES['image']['size'] <= ➥

MAX_FILE_SIZE) {
$sizeOK = true;
}

if ($sizeOK) {
switch($_FILES['image']['error']) {
case 0:
// move the file to the upload folder and rename it
$success = move_uploaded_file($_FILES['image']['tmp_name'], ➥

UPLOAD_DIR.$file);
if ($success) {
$result = "$file uploaded successfully";
}

else {
$result = "Error uploading $file. Please try again.";
}

break;
case 3:
$result = "Error uploading $file. Please try again.";

default:
$result = "System error uploading $file. Contact webmaster.";

}
}

elseif ($_FILES['image']['error'] == 4) {
$result = 'No file selected';
}

else {
$result = "$file cannot be uploaded. Maximum size: $max.";
}

}
?>

UPLOADING FILES

165

6

7311ch06.qxd  10/10/06  10:38 PM  Page 165



The basic structure here is an if... else statement, which determines whether the
size of the uploaded file is acceptable. If it is, the switch statement examines 
the value of $_FILES['image']['error'].

Error level 0 indicates the file was uploaded successfully, so it’s OK to move it to the
upload folder. As long as the folder has the correct permissions, and there’s suffi-
cient disk space, this operation should succeed. However, move_uploaded_file()
returns a Boolean value, so you can verify the outcome of the operation by captur-
ing the result in $success. If $success is true, you can report the successful upload.
Otherwise, inform the user of a problem.

Error levels 1 and 2 both indicate that the file exceeds the maximum size. You don’t
need to check for either of these, because the code in step 4 already takes care of
files that are too big. Error level 3 indicates that the upload was incomplete, so a
suitable message is stored in $result.

Using default at the end of the switch statement covers any remaining possibili-
ties. Since the $_FILES array reports a size of 0 when no file is selected, $sizeOK
remains false, so the switch statement never encounters error level 4, which is
handled separately in the elseif clause. That leaves error levels 6 (no temporary
folder) and 7 (cannot write file). These are system errors that the user cannot over-
come by trying again, so a suitable catchall message is used.

Finally, if the file is too big, a message is prepared, saying that the file can’t be
uploaded and reporting the maximum permitted size.

6. The common feature of every branch of this decision chain is that a message
reporting the outcome of the upload is stored in $result. All that’s needed now is
to display the contents of $result after the form is submitted. Insert the following
code between the opening <body> and <form> tags:

<body>
<?php
// if the form has been submitted, display result
if (isset($result)) {
echo "<p><strong>$result</strong></p>";
}

?>
<form action="" method="post" enctype="multipart/form-data" ➥

name="uploadImage" id="uploadImage">

Since $result is set only after the form has been submitted, this new code block is
ignored when the form first loads, but displays the outcome of any upload operation.

7. Let’s test the page. Save upload.php and select an image that’s bigger than 2.9KB.
Click Upload. You should see an error message like the following:

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

166

7311ch06.qxd  10/10/06  10:38 PM  Page 166



8. Change MAX_FILE_SIZE to something more reasonable—say, 51200 (50KB)—like
this:

// define a constant for the maximum upload size
define ('MAX_FILE_SIZE', 51200);

9. Save output.php and test the file again, mak-
ing sure you choose an image that’s smaller
than MAX_FILE_SIZE. This time you should see
a message like the one shown to the right.

10. Check inside the upload folder. Your image
should be there. You can compare your code
with upload06.php if you run into any prob-
lems. Change the value of MAX_FILE_SIZE to
suit your particular needs.

Accepting only certain types of files

The upload script is now much more robust, but it still doesn’t restrict the types of files
that users can upload. The script refers to $_FILES['image'], but it’s only a name. As it
stands, it could be used to upload any type of file, so it’s important to check the MIME
type and restrict uploads to permitted ones. You can find definitions of recognized 
MIME types at www.iana.org/assignments/media-types. Table 6-3 lists some of the most
commonly used ones. An easy way to find others not on the list is to use upload02.php,
and see what value is displayed for $_FILES['image']['type'].

Table 6-3. Commonly used MIME types

Category MIME type Description

Documents application/msword Microsoft Word document

application/pdf PDF document

text/plain Plain text

text/rtf Rich text format

Images image/gif GIF format

image/jpeg JPEG format (includes .jpg files)

image/pjpeg JPEG format (nonstandard MIME type used
by Internet Explorer)

image/png PNG format

image/tiff TIFF format

UPLOADING FILES

167

6

7311ch06.qxd  10/10/06  10:38 PM  Page 167



The way you handle acceptable types is very similar to the preceding PHP Solution. First,
you define what is acceptable and assume that the uploaded file is suspect until you have
checked its credentials—in other words, the value of $_FILES['image']['type']. Since
there are several MIME types for images, you store the acceptable ones in an array and
loop through the array until you find one that matches the value in the $_FILES array. If
there’s a match, a Boolean variable is set to true. If not, the file is rejected.

Continue working with the same file. Alternatively, use upload06.php from the download
files. The finished script for this PHP Solution is in upload07.php.

1. Start by adding an array of permitted MIME types and a Boolean variable that
begins by assuming the type is unacceptable. Insert the code just after the line that
converts MAX_FILE_SIZE to kilobytes (new code is shown in bold):

// convert the maximum size to KB
$max = number_format(MAX_FILE_SIZE/1024, 1).'KB';
// create an array of permitted MIME types
$permitted = array('image/gif','image/jpeg','image/pjpeg','image/png');
// begin by assuming the file is unacceptable
$sizeOK = false;
$typeOK = false;

Although image/pjpeg isn’t an official MIME type listed by the Internet Assigned
Numbers Authority (IANA), you need to include it in the $permitted array.
Otherwise, your form will reject all JPEG files submitted through Internet Explorer.

2. You need to loop through each element in the $permitted array to see if one of
them matches $_FILES['image']['type']. Add the code immediately after the
conditional statement that checks the size of the file.

// check that file is within the permitted size
if ($_FILES['image']['size'] > 0 && $_FILES['image']['size'] <= ➥

MAX_FILE_SIZE) {
$sizeOK = true;
}

// check that file is of a permitted MIME type
foreach ($permitted as $type) {
if ($type == $_FILES['image']['type']) {
$typeOK = true;
break;
}

}

This uses a foreach loop (see “Looping through arrays with foreach” in Chapter 3),
which assigns each element of the $permitted array to a temporary variable,
$type, and compares it to the uploaded file’s MIME type. As soon as it finds a
match, it sets $typeOK to true and breaks out of the loop; there’s no need to test
the others.

PHP Solution 6-4: Restricting upload file types

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

168

7311ch06.qxd  10/10/06  10:38 PM  Page 168



3. You can now use $typeOK to control whether the file is moved to the upload folder.
Both $typeOK and $sizeOK must be true for the upload to continue. Immediately
after the code you have just entered, amend the if statement like this:

if ($sizeOK && $typeOK) {
switch($_FILES['image']['error']) {

4. There’s just one final touch needed. Add details of the permitted types to the else
statement at the bottom of the script, just before the DOCTYPE declaration.

else {
$result = "$file cannot be uploaded. Maximum size: $max. ➥

Acceptable file types: gif, jpg, png.";
}

}

You could use the values of $typeOK and $sizeOK to create different error mes-
sages depending on the reason for the failure, but it’s probably more user-friendly
to indicate all restrictions at the same time

5. Save upload.php, and test it with a variety of files to make sure that only files of
the right type and size get through. Check your code against upload07.php if you
encounter any problems.

Preventing files from being overwritten

If you have been testing upload.php regularly through this chapter, by now you probably
have quite a few files in the upload folder. If you have only a handful, it’s probably because
you have been using the same files over and over again. As the script stands, PHP auto-
matically overwrites existing files without warning. That may be exactly what you want. On
the other hand, it may be your worst nightmare.

In Chapter 4, you used file_exists() to check the existence of a file. You may be think-
ing it would be a good idea to use it here and display a message asking the user if the file
should be replaced. It’s not the solution I’m going to suggest. You can never be 100% sure
who is accessing your site, so giving users the opportunity to delete files is something you
should approach with the utmost caution.

A very simple way of giving every file a unique name is to combine it with the date and
time of upload. PHP bases date calculations on Unix timestamps, which measure the num-
ber of seconds since midnight GMT on January 1, 1970. So, by prefixing the existing file-
name with a Unix timestamp, the likelihood of two files ever having the same name is
infinitesimal. Using a timestamp also has the advantage that files are listed in chronologi-
cal order of receipt. By the way, PHP uses Unix timestamps on all operating systems,
including Windows.

Don’t forget that when comparing values to see if they’re the same, you must
use two equal signs. If you use just one equal sign, the test will always equate to
true (see “Making comparisons” in Chapter 3 if you need reminding why).

UPLOADING FILES

169

6

7311ch06.qxd  10/10/06  10:38 PM  Page 169



Continue working with the same file. Alternatively, use upload07.php from the down-
load files.

1. You create a current timestamp by calling the time() function, which takes no
arguments. If you want to apply a timestamp to all filenames, simply add it between
the UPLOAD_DIR constant and the filename in the second argument passed to
move_uploaded_file() like this:

$success = move_uploaded_file($_FILES['image']['tmp_name'], ➥

UPLOAD_DIR.time().$file);

Notice that there are periods on either side of time(). This is the concatenation
operator, so what you’re doing is joining three values together as a single string—
in other words, the path and filename.

2. If you want to prefix only potential duplicates with a timestamp, you need to check
whether a file of the same name already exists, and then use an if... else con-
struct to take the appropriate action. Amend the first section of the switch state-
ment like this:

if ($sizeOK && $typeOK) {
switch($_FILES['image']['error']) {
case 0:
// make sure file of same name does not already exist
if (!file_exists(UPLOAD_DIR.$file)) {
// move the file to the upload folder and rename it
$success = move_uploaded_file($_FILES['image']['tmp_name'], ➥

UPLOAD_DIR.$file);
}

else {
$success = move_uploaded_file($_FILES['image']['tmp_name'], ➥

UPLOAD_DIR.time().$file);
}

if ($success) {
$result = "$file uploaded successfully";
}

3. Save upload.php and test it by uploading the same image twice. As you can see in
Figure 6-5, the message displayed in the form still uses the original name, but the
duplicate in the upload folder has a timestamp in its filename.

PHP Solution 6-5: Using a timestamp to create a unique name

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

170

7311ch06.qxd  10/10/06  10:38 PM  Page 170



Figure 6-5. Prefixing a filename with a timestamp prevents existing files from being overwritten.

4. If you find the timestamps difficult to understand, you can use the date() function
instead to create a more readable date and time. (The date() function and its for-
matting options are described in detail in Chapter 14.) Change the else statement
in the previous step like this:

else {
// get the date and time
ini_set('date.timezone', 'Europe/London');
$now = date('Y-m-d-His');
$success = move_uploaded_file($_FILES['image']['tmp_name'], ➥

UPLOAD_DIR.$now.$file);
}

As explained in Chapter 4, PHP 5.1.0 and above requires a valid time zone when
using date(), so it’s a good idea to future-proof your code by setting the time zone
for your server (see www.php.net/manual/en/timezones.php for a list of valid time
zones). The preceding code produces a filename like that on the right in Figure 6-6.

Figure 6-6. Using the date() function makes the date and time easier to read.

You can check your code against upload08.php in the download files.

UPLOADING FILES

171

6

7311ch06.qxd  10/10/06  10:38 PM  Page 171



This is just a simple example of how you can prevent files from being overwritten, which
also demonstrates the principle of giving upload files names of your choice, rather than
accepting whatever is input by the user. Choosing your own filename also adds an extra
level of security, as long as you don’t reveal the new name in a message displayed
onscreen. PHP Solution 7-4 in the next chapter shows you how to rename files in a con-
secutive series by appending the next available number to its filename.

Organizing uploads into specific folders

You can take the categorization of upload files a step further by creating a new upload folder
(directory) for each user. This assumes that you require users to log in using a user authenti-
cation process (see Chapters 9 and 15) and store the username in a session variable. 

There’s no need to set up the folders in advance; PHP can handle it for you automatically,
as long as the new folders are created inside the upload folder.

Moving uploaded files to specific folders involves just three steps, as follows:

1. Getting the name of the specific folder

2. Creating the folder if it doesn’t already exist

3. Adding the folder name to the upload path

Continue working with the same file. Alternatively, use upload08.php from the download
files. The completed script is in upload09.php.

1. In a real application, you would store the user’s username in a session variable
when logging in, and the upload form would be in a restricted area protected by a
PHP session (see PHP Solution 9-4 in Chapter 9). However, for the purposes of this
demonstration, the username is hard-coded into the script.

Insert the following code at the beginning of the switch statement:

switch($_FILES['image']['error']) {
case 0:
// $username would normally come from a session variable
$username = 'davidp';
// if the subfolder doesn't exist yet, create it
if (!is_dir(UPLOAD_DIR.$username)) {
mkdir(UPLOAD_DIR.$username);
}

This stores the username as $username and then uses it with the is_dir() function
to see whether a subfolder of that name exists in the upload folder. If it doesn’t
exist, the new folder is created by the mkdir() function.

2. All you need to do now is to add $username to the pathname to the next part of the
script, which moves the upload file to its new location. Change the code like this:

PHP Solution 6-6: Creating user-specific upload folders

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

172

7311ch06.qxd  10/10/06  10:38 PM  Page 172



// check if a file of the same name has been uploaded
if (!file_exists(UPLOAD_DIR.$username.'/'.$file)) {
// move the file to the upload folder and rename it
$success = move_uploaded_file($_FILES['image']['tmp_name'], ➥

UPLOAD_DIR.$username.'/'.$file);
}

else {
// get the date and time
ini_set('date.timezone', 'Europe/London');
$now = date('Y-m-d-His');
$success = move_uploaded_file($_FILES['image']['tmp_name'], ➥

UPLOAD_DIR.$username.'/'.$now.$file);
}

Note that you need to add a forward slash as a string between the name of the new
folder and the filename. Figure 6-7 shows two files uploaded to a user-specific
folder, with the duplicate filename prefixed with the date and time of upload.

Figure 6-7. PHP can automatically create subfolders to categorize uploads by date or
username.

Make sure that the username has been properly authenticated before using it to
create a new folder on your server. Never create a new folder name from unfil-
tered form input, as it may contain invalid characters designed to probe your
server’s directory structure and overwrite important files. Authentication is cov-
ered in Chapters 9 and 15.

UPLOADING FILES

173

6

7311ch06.qxd  10/10/06  10:38 PM  Page 173



Uploading multiple files

Since $_FILES is a multidimensional array, it’s capable of handling multiple uploads. You
need to create a file input field for each file to be uploaded. If you give each field a dif-
ferent name, you need to handle each file separately. A more efficient way is to give each
field the same name followed by a pair of square brackets like this:

<input type="file" name="image[]" id="image1" />

You can examine how this affects the $_FILES array by using upload_multi01.php in the
download files. The result should look something like this (to save space, only the first two
subarrays are shown):

Array
(
[image] => Array
(
[name] => Array
(
[0] => basin.jpg
[1] => monk.jpg

)
[type] => Array
(
[0] => image/jpeg
[1] => image/jpeg

)
...
)

)

This makes it easy to use a foreach loop to iterate through the $_FILES array.

The script for handling a multiple upload is very similar to the one that has been built
throughout this chapter. To keep it simple, I have omitted the code from the previous PHP
Solution that creates user-specific folders, and based it on upload07.php.

1. The following listing (which you can find in upload_multi02.php) shows the entire
PHP block above the DOCTYPE declaration with all the changes highlighted in bold.

<?php
// define a constant for the maximum upload size
define ('MAX_FILE_SIZE', 51200);

if (array_key_exists('upload', $_POST)) {
// define constant for upload folder
define('UPLOAD_DIR', 'C:/upload_test/');

PHP Solution 6-7: Processing a multiple file upload

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

174

7311ch06.qxd  10/10/06  10:38 PM  Page 174



// convert the maximum size to KB
$max = number_format(MAX_FILE_SIZE/1024, 1).'KB';
// create an array of permitted MIME types
$permitted = array('image/gif', 'image/jpeg', 'image/pjpeg', ➥

'image/png');

foreach ($_FILES['image']['name'] as $number => $file) {
// replace any spaces in the filename with underscores
$file = str_replace(' ', '_', $file);
// begin by assuming the file is unacceptable
$sizeOK = false;
$typeOK = false;

// check that file is within the permitted size
if ($_FILES['image']['size'][$number] > 0 || ➥

$_FILES['image']['size'][$number] <= MAX_FILE_SIZE) {
$sizeOK = true;

}

// check that file is of a permitted MIME type
foreach ($permitted as $type) {
if ($type == $_FILES['image']['type'][$number]) {
$typeOK = true;

break;
}

}

if ($sizeOK && $typeOK) {
switch($_FILES['image']['error'][$number]) {
case 0:
// check if a file of the same name has been uploaded
if (!file_exists(UPLOAD_DIR.$file)) {
// move the file to the upload folder and rename it
$success = move_uploaded_file($_FILES['image'] ➥

['tmp_name'][$number], UPLOAD_DIR.$file);
}

else {
// get the date and time
ini_set('date.timezone', 'Europe/London');
$now = date('Y-m-d-His');
$success = move_uploaded_file($_FILES['image'] ➥

['tmp_name'][$number], UPLOAD_DIR.$now.$file);
}

if ($success) {
$result[] = "$file uploaded successfully";
}

else {
$result[] = "Error uploading $file. Please try again.";
}

break;

UPLOADING FILES

175

6

7311ch06.qxd  10/10/06  10:38 PM  Page 175



case 3:
$result[] = "Error uploading $file. Please try again.";

default:
$result[] = "System error uploading $file. Contact ➥

webmaster.";
}

}
elseif ($_FILES['image']['error'][$number] == 4) {
$result[] = 'No file selected';
}

else {
$result[] = "$file cannot be uploaded. Maximum size: $max. ➥

Acceptable file types: gif, jpg, png.";
}

}
}

?>

The key line in this code is line 13, which looks like this:

foreach ($_FILES['image']['name'] as $number => $file) {

When two files are uploaded simultaneously, the name part of the array looks 
like this:

$_FILES['image']['name'][0] = basin.jpg;
$_FILES['image']['name'][1] = monk.jpg;

By looping through $_FILES['image']['name'], on the first iteration $number is 0
and $file is basin.jpg. The next time the loop runs, $number is 1 and $file is
monk.jpg. This does the same as the following line in the original script:

$file = $_FILES['image']['name'];

The added bonus is that $number gives you access to the other parts of the $_FILES
array. When $number is 0, $_FILES['image']['size'][$number] gives you the size
of basin.jpg, and on the second pass through the loop, the size of monk.jpg.
Consequently, you need to add [$number] at the end of each reference to the
$_FILES array to access the details of the current file.

The only other changes are that the code to remove spaces from filenames is now
inside the loop and square brackets have been added to $result to turn it into an
array.

2. Since $result is an array, you need to loop through it in the main body of the page
to let users know the outcome of each upload. The revised code looks like this:

if (isset($result)) {
echo '<ol>';
foreach ($result as $item) {
echo "<strong><li>$item</li></strong>";
}

echo '</ol>';
}

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

176

7311ch06.qxd  10/10/06  10:38 PM  Page 176



This produces a numbered list of results as shown
in the screenshot to the right.

Thanks to the use of a foreach loop, this script
can handle as many files as you like. However, you
need a separate file input field for each file. You
should also beware of exceeding any limits
imposed by the server configuration as listed in
Table 6-1.

Points to watch with file uploads
Uploading files from a web form is easy with PHP. The main causes of failure are not set-
ting the correct permissions on the upload directory or folder, and forgetting to move
the uploaded file to its target destination before the end of the script. Letting other peo-
ple upload files to your server, however, exposes you to risk. In effect, you’re allowing vis-
itors the freedom to write to your server’s hard disk. It’s not something you would allow
strangers to do on your own computer, so you should guard access to your upload direc-
tory with the same degree of vigilance.

Ideally, uploads should be restricted to registered and trusted users, so the upload form
should be in a password-protected part of your site. Also, the upload folder does not need
to be inside your site root, so locate it in a private directory whenever possible unless you
want uploaded material to be displayed immediately in your web pages. Remember,
though, there is no way PHP can check that material is legal or decent, so immediate pub-
lic display entails risks that go beyond the merely technical. You should also bear the fol-
lowing security points in mind:

Set a maximum size for uploads both in the web form and on the server side.

Make sure you’re dealing with a genuine uploaded file by using
move_uploaded_file() instead of copy(). Otherwise, sensitive files, such as your
server’s password file, might be copied to a public folder.

PHP has a function called is_uploaded_file(), which can be used to verify a gen-
uine upload, but move_uploaded_file() is sufficient on its own because it checks
the status of a file before moving it.

Restrict the types of uploaded files by inspecting the MIME type in the $_FILES
array.

Adopt a naming policy, such as adding a timestamp to filenames or using the
consecutive series solution in the next chapter, to prevent existing files being
overwritten.

Replace spaces in filenames with underscores or hyphens.

Follow these guidelines, and your upload scripts should remain secure. One final thought:
don’t forget to inspect your upload folder on a regular basis. Make sure there’s nothing in
there that shouldn’t be, and do some housekeeping from time to time. Even if you limit
file upload sizes, you may run out of your allocated space without realizing it.

UPLOADING FILES

177

6

7311ch06.qxd  10/10/06  10:38 PM  Page 177



7311ch07.qxd  10/10/06  11:09 PM  Page 178



7 USING PHP TO MANAGE FILES

7311ch07.qxd  10/10/06  11:09 PM  Page 179



What this chapter covers:

Reading and writing files

Listing the contents of a folder

Automatically naming the next file in a series

Opening remote data sources

Creating a download link

PHP has a huge range of functions designed to work with the server’s file system, but find-
ing the right one for the job isn’t always easy. This chapter cuts through the tangle to show
you some practical uses of these functions, such as reading and writing text files to store
small amounts of information without a database. I’ll also show you how to create a drop-
down menu that lists all images in a folder, automatically name the next file in a series, and
prompt a visitor to download an image or PDF file rather than open it in the browser.

As with file uploads in the previous chapter, setting the correct permissions is crucial to
success in using many of the file management functions. Unfortunately, hosting companies
often impose limits on their use. So, I’ll begin with a quick overview of some of the restric-
tions you need to be aware of.

Checking that PHP has permission to open
a file

As you saw in Chapter 4, a PHP script has the ability to open another file and include the
content as its own. In a default PHP configuration, the file doesn’t even need to be on the
same server; as long as PHP can find the file and open it, the contents of both files are
merged. This is an extremely powerful concept, which—sadly—is open to misuse. As a
result, you must have the right permissions to open a file. This affects not only the file sys-
tem functions that are the main focus of this chapter, but also any function that opens
another file, among them include(), require(), and simplexml_load_file().

As I explained in the previous chapter, PHP runs on most Linux servers as nobody or
apache. Consequently, a folder must have minimum access permissions of 755 for scripts
to open a file. If you also want your scripts to create or alter files, you normally need to set
global access permissions of 777, the least secure setting. If PHP is configured to run in
your own name, you can be more restrictive, because your scripts can create and write to
files in any folder for which you have read, write, and execute permissions. On a Windows
server, you need write permission to create or update a file.

Configuration settings that affect file access

Hosting companies can impose further restrictions on file access through php.ini. To find
out what restrictions have been imposed, run <?php phpinfo(); ?> on your website, and
check the settings in PHP Core. Table 7-1 lists the settings you need to check and notes
changes planned in PHP 6.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

180

7311ch07.qxd  10/10/06  11:09 PM  Page 180



Table 7-1. PHP configuration settings that affect file access

Directive Default value Description

allow_url_fopen On Allows PHP scripts to open public files
anywhere on the Internet. Prior to PHP 6,
if allow_url_fopen is enabled, remote
files can also be used as include files.

allow_url_include Off New in PHP 6. Controls the ability to
include remote files. Disabled by default.

open_basedir no value Restricts accessible files to the specified
directory tree. Even if no value is set,
restrictions may be set directly in the
server configuration.

safe_mode Off Mainly restricts the ability to use certain
functions (for details, see www.php.net/
manual/en/features.safe-mode.
functions.php). Removed from PHP 6.

safe_mode_include_dir no value If safe_mode is enabled, user and group ID
checks are skipped when files are included
from the specified directory tree.

Arguably the most important of these settings is allow_url_fopen. If it’s disabled, you are
prevented from accessing useful external data sources, such as news feeds and public
XML documents. Fortunately, you can get around this problem by creating a socket 
connection, as shown in PHP Solution 7-5. Hopefully, the decision to create a separate
allow_url_include directive in PHP 6 will encourage hosting companies to reverse any
restrictions on the use of allow_url_fopen.

If the Local Value column displays a setting for open_basedir or safe_mode_include_dir, the
meaning depends on whether the value ends with a trailing slash, like this:

/home/includes/

If it does, it means you are restricted to opening or including files from the specified direc-
tory or any of its subdirectories. If the value doesn’t have a trailing slash, it acts as a prefix.
For example, /home/inc gives you access to /home/inc, /home/includes, /home/incredible,
and so on—assuming, of course, that they exist or you have the right to create them.

Creating a file storage folder for local testing

It should be obvious that storing data inside your site root is highly insecure, particularly if
you need to set global access permissions on the folder. If you have access to a private
folder outside the site root, create your data store as a subfolder and give it the necessary
permissions.

USING PHP TO MANAGE FILES

181

7

7311ch07.qxd  10/10/06  11:09 PM  Page 181



For the purposes of this chapter, I suggest that Windows users create a folder called
private on their C drive. Mac users should create a private folder inside their home
folder, and then set Read & Write permissions in Get Info as shown in Figure 6-3 in the pre-
vious chapter.

Reading and writing files
The restrictions described in the previous section reduce considerably the attraction of
reading and writing files with PHP. Using a database is more convenient and offers greater
security. However, that assumes you have access to a database and the necessary knowl-
edge to administer it. So, for relatively small-scale data storage and retrieval, working
directly with text files is worth considering. It’s also useful to know how PHP interacts with
external files, because you can use the same techniques to inspect the contents of a folder
or prompt a user to download a file.

Reading files in a single operation

Since PHP 4.3.0, the simplest way to read the entire contents of a text file is to use the
file_get_contents() function.

1. Create a text file in your private folder, type some text into it, and save it as
filetest01.txt (or use the version in the download files).

2. Create a new folder called filesystem in your phpsolutions site root, and create
a PHP file called file_get_contents.php in the new folder. Insert the following
code inside a PHP block (the download file file_get_contents01.php shows the
code embedded in a web page, but you can use just the PHP for testing purposes):

echo file_get_contents('C:/private/filetest01.txt');

If you’re on a Mac, amend the pathname like this, using your own Mac username:

echo file_get_contents('/Users/username/private/filetest01.txt');

If you’re testing on a remote server, amend the pathname accordingly. 

3. Save file_get_contents.php and view it
in a browser. Depending on what you wrote
in filetest01.txt, you should see some-
thing like the screenshot to the left.

For brevity, the remaining code examples in this chapter show only the Windows
pathname.

PHP Solution 7-1: Reading a text file into a string

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

182

7311ch07.qxd  10/10/06  11:09 PM  Page 182



When testing on your local system, you shouldn’t see any error messages, unless
you typed the code incorrectly or you did not set the correct permissions on a Mac.
However, on a remote system, you may see error messages similar to this:

The error messages in the preceding screenshot were created on a local system to
demonstrate what happens when open_basedir has been set either in php.ini or
on the server. It means that you are trying to access a file outside your permitted file
structure. The first error message should indicate the allowed paths. On a Windows
server, each path is separated by a semicolon. On Linux, the separator is a colon.

Another possible cause of errors on a remote server is the use of spaces or illegal
characters in the names of files or folders. Never use spaces in filenames on the Web.

4. At this stage, using file_get_contents() looks no different from using an include
command. However, file_get_contents() treats the external file as a string,
which means that you can store the contents in a variable and manipulate it in a
way that’s impossible with an include file. Change file_get_contents.php like this
(or use file_get_contents02.php) and load the page into a browser:

$contents = file_get_contents('C:/private/filetest01.txt');
// convert contents to uppercase and display
echo strtoupper($contents);

The result should look like the screenshot
to the right:

Admittedly, this is a trivial example, but it
means that you can use any of PHP’s string
functions to format the contents of an
external file or to search for specific information with regular expressions and pat-
tern matching functions.

5. A danger with an external file is that you may not be able to open it: the file might
be missing, its name misspelled, or the network connection down. Change the code
like this (it’s in file_get_contents03.php):

$contents = file_get_contents('C:/private/filetest01.txt');
if ($contents === false) {
echo 'Sorry, there was a problem reading the file.';
}

else {
// convert contents to uppercase and display
echo strtoupper($contents);
}

USING PHP TO MANAGE FILES

183

7

7311ch07.qxd  10/10/06  11:09 PM  Page 183



If the file_get_contents() function can’t open the file, it returns false. Often,
you can test for false by using the negative operator like this:

if (!$contents) {

The reason I haven’t used that shortcut here is because the external file might be
empty, or you might want it to store a number. As explained in “The truth accord-
ing to PHP” in Chapter 3, an empty string and 0 also equate to false. So, in this
case, I’ve used the identical operator (three equal signs), which ensures that both
the value and the data type are the same.

6. Test the page in a browser, and it should work as before. Change the first line like
this so that it loads filetest02.txt:

$contents = file_get_contents('C:/private/filetest02.txt');

The new text file contains the number 0, which should display correctly when you
test file_get_contents.php. Delete the number in filetest02.txt, and reload
file_get_contents.php. You should get a blank screen, but no error message. This
indicates that the file was loaded successfully, but doesn’t contain anything.

7. Change the first line in file_get_contents.php so that it attempts to load a non-
existent file, such as filetest0.txt. When you load the page, you should see an
ugly error message reporting that file_get_contents() “failed to open stream”—
in other words, it couldn’t open the file.

8. This is an ideal place to use the error control operator (see Chapter 4). Insert an @
mark immediately in front of the call to file_get_contents() like this:

$contents = @ file_get_contents('C:/private/filetest0.txt');

9. Test file_get_contents.php in a browser. You should now see only the following
custom error message:

Text files can be used as a flat-file database—where each record is stored on a separate line,
with a tab, comma, or other delimiter between each field (see http://en.wikipedia.org/
wiki/Flat_file_database). When handling this sort of file, it’s more convenient to store
each line individually in an array ready for processing with a loop. The PHP file() function
builds the array automatically.

Always add the error control operator only after testing the rest of a script. When devel-
oping, error messages are your friends. You need to see them to understand why some-
thing isn’t working the way you expect.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

184

7311ch07.qxd  10/10/06  11:09 PM  Page 184



To demonstrate the file() function, let’s use filetest03.txt, which contains just two
lines as follows:

david, codeslave
chris, bigboss

This will be used as the basis for a simple login system to be developed further in Chapter 9.

1. Create a PHP file called file.php inside the filesystem folder. Insert the following
code (or use file01.php from the download files for this chapter):

<?php
// read the file into an array called $users
$users = file('C:/private/filetest03.txt');
?>
<pre>
<?php print_r($users); ?>
</pre>

This draws the contents of filetest03.txt into an array called $users, and then
passes it to print_r() to display the contents of the array. The <pre> tags simply
make the output easier to read in a browser.

2. Save the page, and load it in a browser. You
should see the output shown in the screenshot
to the right.

It doesn’t look very exciting, but now that each
line is a separate array element, you can loop
through the array to process each line individually.

3. You need to use a counter to keep track of each
line; a for loop is the most convenient (see “The
versatile for loop” in Chapter 3). To find out how
many times the loop should run, pass the array to the count() function to get its
length. Amend the code in file.php like this (or use file02.php):

<?php
// read the file into an array called $users
$users = file('C:/private/filetest03.txt');

// loop through the array to process each line
for ($i = 0; $i < count($users); $i++) {
// separate each element and store in a temporary array
$tmp = explode(', ', $users[$i]);
// assign each element of the temporary array to a named array key
$users[$i] = array('name' => $tmp[0], 'password' => $tmp[1]);
}

?>
<pre>

PHP Solution 7-2: Reading a text file into an array

USING PHP TO MANAGE FILES

185

7

7311ch07.qxd  10/10/06  11:09 PM  Page 185



<?php print_r($users); ?>
</pre>

The count() function returns the length of an array, so in this case the value of
count($users) is 2. This means the first line of the loop is equivalent to this:

for ($i = 0; $i < 2; $i++) {

The loop continues running while $i is less than 2. Since arrays are always counted
from 0, this means the loop runs twice before stopping.

Inside the loop, the current array element ($users[$i]) is passed to the explode()
function, which converts a string into an array by splitting the string each time it
encounters a separator. In this case, the separator is defined as a comma followed
by a space (', '). However, you can use any character or sequence of characters:
using "\t" (see Table 3-4 in Chapter 3) as the first argument to explode() turns a
tab-separated string into an array.

The first line in filetest03.txt looks like this:

david, codeslave

When this line is passed to explode(), the result is saved in $tmp, so $tmp[0] is
david, and $tmp[1] is codeslave. The final line inside the loop reassigns $tmp[0] to
$users[0]['name'], and $tmp[1] to $users[0]['password'].

The next time the loop runs, $tmp is reused, and $users[1]['name'] becomes
chris, and $users[0]['password'] becomes bigboss.

4. Save file.php, and view it in a browser. The result should look like this:

Take a close look at the gap between codeslave and the closing parenthesis of the
first subarray. If a line ends in a new line character, the file() function doesn’t
remove it, so you need to do it yourself. Pass the final item of $tmp to rtrim() to
remove the new line character like this:

$users[$i] = array('name' => $tmp[0], 'password' => rtrim($tmp[1]));

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

186

7311ch07.qxd  10/10/06  11:10 PM  Page 186



5. As always, you need to check that the file is accessible before attempting to
process its contents, so wrap the main PHP block in a conditional statement like
this (see file03.php):

$textfile = 'C:/private/filetest03.txt';
if (file_exists($textfile) && is_readable($textfile)) {
// read the file into an array called $users
$users = file($textfile);

// loop through the array to process each line
for ($i = 0; $i < count($users); $i++) {
// separate each element and store in a temporary array
$tmp = explode(', ', $users[$i]);
// assign each element of the temporary array to a named array key
$users[$i] = array('name' => $tmp[0], 'password' => ➥

rtrim($tmp[1]));
}

}
else {
echo "Can't open $textfile";
}

To avoid typing out the file pathname each time, begin by storing it in a variable. 

This simple script extracts a useful array of names and associated passwords. You could
also use this with a series of sports statistics or any data that follows a regular pattern.

Opening and closing files for read/write operations

The functions we have looked at so far do everything in a single pass. However, PHP also has
a set of functions that allow you to open a file, read it and/or write to it, and then close the
file. The following are the most important functions used for this type of operation:

fopen(): Opens a file

fgets(): Reads the contents of a file, normally one line at a time

fread(): Reads a specified amount of a file

fwrite(): Writes to a file

feof(): Determines whether the end of the file has been reached

rewind(): Moves an internal pointer back to the top of the file

fclose(): Closes a file

The first of these, fopen(), is the most difficult to understand, mainly because you need
to specify how the file is to be used once it’s open: fopen() has one read-only mode,
three write-only modes, and four read/write modes. Sometimes, you want to overwrite

If you’re working with each line as a whole, pass the entire line to rtrim().

USING PHP TO MANAGE FILES

187

7

7311ch07.qxd  10/10/06  11:10 PM  Page 187



the existing content. At other times, you may want to append new material. At yet other
times, you may want PHP to create a file if it doesn’t already exist. The other thing you
need to understand is where each mode places the internal pointer when it opens the
file. It’s like the cursor in a word processor: PHP starts reading or writing from wherever
the pointer happens to be when you call fread() or fwrite(). Table 7-2 brings order 
to the confusion. 

Table 7-2. Read/write modes used with fopen()

Type Mode Description

Read-only r Internal pointer initially placed at beginning of file.

Write-only w Existing data deleted before writing. Creates a file if it
doesn’t already exist.

a Append mode. New data added at end of file. Creates a file
if it doesn’t already exist.

x Creates a file only if it doesn’t already exist, so no danger of
deleting existing data.

Read/write r+ Read/write operations can take place in either order and
begin wherever the internal pointer is at the time. Pointer
initially placed at beginning of file. File must already exist for
operation to succeed.

w+ Existing data deleted. Data can be read back after writing.
Creates a file if it doesn’t already exist.

a+ Opens a file ready to add new data at end of file. Also
permits data to be read back after internal pointer has been
moved. Creates a file if it doesn’t already exist.

x+ Creates a new file, but fails if a file of the same name already
exists. Data can be read back after writing.

Choose the wrong mode, and you could end up overwriting or deleting valuable data. You
also need to be careful about the position of the internal pointer. If the pointer is at the
end of the file, and you try to read the contents, you’ll end up with nothing. On the other
hand, if the pointer is at the beginning of the file, and you start writing, you’ll overwrite
the equivalent amount of any existing data.

You work with fopen() by passing it the following two arguments:

The pathname to the file you want to open

One of the modes listed in Table 7-2 (for a binary file, such as an image, add b) 

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

188

7311ch07.qxd  10/10/06  11:10 PM  Page 188



The fopen() function returns a reference to the open file, which can then be used with any
of the other read/write functions. So, this is how you would open a text file for reading:

$file = fopen('C:/private/filetest03.txt', 'r');

Thereafter, you pass $file as the argument to other functions, such as fgets(), feof(),
and fclose().

Things should become clearer with a few practical demonstrations. Rather than building
the files yourself, you’ll probably find it easier to use the download files. I’ll run quickly
through each mode.

Reading a file with fopen()
The file fopen_read.php contains the following code:

<?php
// store the pathname of the file
$filename = 'C:/private/filetest03.txt';
// open the file in read-only mode
$file = fopen($filename, 'r');
// read the file and store its contents
$contents = fread($file, filesize($filename));
// close the file
fclose($file);
// display the contents
echo nl2br($contents);
?>

If you load this into a browser, you should see the following output:

The inline comments in the code explain the process. Unlike file_get_contents(), the
function fread() needs to know how much of the file to read. So you need to supply a
second argument indicating the number of bytes. This can be useful if you want, say, only
the first 100 characters of a text file. However, if you want the whole file, you need to pass
the file’s pathname to filesize() to get the correct figure.

The nl2br() function in the final line converts new line characters to XHTML <br /> tags.

The other way to read the contents of a file with fopen() is to use the fgets() function,
which retrieves one line at a time. This means that you need to use a while loop in

USING PHP TO MANAGE FILES

189

7

7311ch07.qxd  10/10/06  11:10 PM  Page 189



combination with feof() to read right through to the end of the file. This is done by
replacing this line

$contents = fread($file, filesize($filename));

with this (the full script is in fopen_readloop.php)

// create variable to store the contents
$contents = '';
// loop through each line until end of file
while (!feof($file)) {
// retrieve next line, and add to $contents
$contents .= fgets($file);
}

The while loop uses fgets() to retrieve the contents of the file one line at a time—
!feof($file) is the same as saying until the end of $file—and stores them in $contents.

It doesn’t take a genius to see that both methods are more long-winded than using file()
or file_get_contents(). However, you need to use either fread() or fgets() if you want
to read the contents of a file at the same time as writing to it.

Replacing content with fopen()
The first of the write-only modes (w) deletes any existing content in a file, so it’s useful for
working with files that need to be updated frequently. You can test the w mode with
fopen_write.php, which has the following PHP code above the DOCTYPE declaration:

<?php
// if the form has been submitted, process the input text
if (array_key_exists('putContents', $_POST)) {
// strip backslashes from the input text and save to shorter variable
$contents = get_magic_quotes_gpc() ? ➥

stripslashes($_POST['contents']) : $_POST['contents'];

// open the file in write-only mode
$file = fopen('C:/private/filetest04.txt', 'w');
// write the contents
fwrite($file, $contents);
// close the file
fclose($file);
}

?>

There’s no need to use a loop this time: you’re just writing the value of $contents to the
opened file. The function fwrite() takes two arguments: the reference to the file and
whatever you want to write to it.

In other books or scripts on the Internet, you may come across fputs() instead of
fwrite(). The two functions are identical: fputs() is a synonym for fwrite().

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

190

7311ch07.qxd  10/10/06  11:10 PM  Page 190



If you load fopen_write.php into a browser, type something into the text area, and click
Write to file, PHP creates filetest04.txt and inserts whatever you typed into the text area.
Since this is just a demonstration, I’ve omitted any checks to make sure that the file was
successfully written. Open filetest04.txt to verify that your text has been inserted. Now
type something different into the text area and submit the form again. The original con-
tent is deleted from filetest04.txt and replaced with the new text. No record is kept of
the deleted text. It’s gone forever.

Appending content with fopen()
The append mode is one of the most useful ways of using fopen(), because it adds new
content at the end, preserving any existing content. The main code in fopen_append.php
is the same as fopen_write.php, apart from those elements highlighted here in bold:

// open the file in append mode
$file = fopen('C:/private/filetest04.txt', 'a');
// write the contents after inserting new line
fwrite($file, "\r\n$contents");
// close the file
fclose($file);

If you load fopen_append.php into a browser and insert some text, it should now be added
to the end of the existing text, as shown in the following screenshot.

Notice that I have enclosed $contents in double
quotes and preceded it by carriage return and new line
characters (\r\n). This makes sure that the new con-
tent is added on a fresh line. When using this on Mac
OS X or a Linux server, omit the carriage return, and
use this instead:

fwrite($file, "\n$contents");

This is a very easy way of creating a flat-file database. We’ll come back to append mode in
Chapter 9.

Writing a new file with fopen()
Although it can be useful to have a file created automatically with the same name, it may
be exactly the opposite of what you want. To make sure you’re not overwriting an existing
file, you can use fopen() with x mode. The main code in fopen_exclusive.php looks like
this (changes are highlighted in bold):

// create a file ready for writing only if it doesn't already exist
$file = fopen('C:/private/filetest05.txt', 'x');
// write the contents
fwrite($file, $contents);
// close the file
fclose($file);

USING PHP TO MANAGE FILES

191

7

7311ch07.qxd  10/10/06  11:10 PM  Page 191



If you load fopen_exclusive.php into a browser, type some text, and click Write to file, the
content should be written to filetest05.txt in your target folder, as shown in the fol-
lowing screenshot:

If you try it again, you should get a series of error messages telling you that the file already
exists. I’ll show you later in the chapter how to use x mode to create a series of consecu-
tively numbered files.

Combined read/write operations with fopen()
By adding a plus sign (+) after any of the previous modes, the file is opened for both read-
ing and writing. You can perform as many read or write operations as you like—and in any
order—until the file is closed. The difference between the combined modes is as follows:

r+: The file must already exist; a new one will not be automatically created. The
internal pointer is placed at the beginning, ready for reading existing content.

w+: Existing content is deleted, so there is nothing to read when the file is first
opened.

a+: The file is opened with the internal pointer at the end, ready to append new
material, so the pointer needs to be moved back before anything can be read.

x+: Always creates a new file, so there’s nothing to read when the file is first
opened.

Reading is done with fread() or fgets(), and writing with fwrite() exactly the same as
before, so I won’t go through each mode. What’s important is to understand the position
of the internal pointer.

Moving the internal pointer
Since reading and writing operations always start wherever the internal pointer happens to
be, you normally want it to be at the beginning of the file for reading, and at the end of
the file for writing.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

192

7311ch07.qxd  10/10/06  11:10 PM  Page 192



To move the pointer to the beginning of a file Pass the reference to the open file to
rewind() like this:

rewind($file);

To move the pointer to the end of a file This is a little more complex. You need to use
fseek(), which moves the pointer to a location specified by an offset and a PHP constant.
The constant that represents the end of the file is SEEK_END, so an offset of 0 bytes places
the pointer where you want it. You also need to pass fseek() a reference to the open file,
so all three arguments together look like this:

fseek($file, 0, SEEK_END);

SEEK_END is a constant, so it doesn’t need quotes, and it must be in uppercase. This is
probably the only way you’ll need to use fseek(), but you can also use it to move the
internal pointer to a specific position or relative to its current position. For details, see
www.php.net/manual/en/function.fseek.php.

The file fopen_pointer.php uses the fopen() r+ mode to demonstrate combining sev-
eral read and write operations, and the effect of moving the pointer. The main code looks
like this:

$filename = 'C:/private/filetest05.txt';
// open a file for reading and writing
$file = fopen($filename, 'r+');

// the pointer is at the beginning, so existing content is overwritten
fwrite($file, $contents);

// read the contents from the current position
$readRest = '';
while (!feof($file)) {
$readRest .= fgets($file);
}

// reset internal pointer to the beginning
rewind($file);
// read the contents from the beginning (nasty gotcha here)
$readAll = fread($file, filesize($filename));

// pointer now at the end, so write the form contents again
fwrite($file, $contents);

// read immediately without moving the pointer
$readAgain = '';
while (!feof($file)) {
$readAgain .= fgets($file);
}

// close the file
fclose($file);

USING PHP TO MANAGE FILES

193

7

7311ch07.qxd  10/10/06  11:10 PM  Page 193



The download file also contains code that dis-
plays the values of $readRest, $readAll, and
$readAgain to show what happens at each
stage of the read/write operations. The exist-
ing content in filetest05.txt was This
works only the first time. When I typed
Hello in fopen_pointer.php and clicked Write
to file, I got the results shown to the left.

Opening filetest05.txt revealed the results to
the right.

Compare the screenshots to see what happened.
Table 7-3 describes the sequence of events.

Table 7-3. Sequence of read/write operations in fopen_pointer.php

Command Position of pointer Result

Beginning of file File opened for
processing

fwrite($file, $contents); End of write operation Form contents overwrites
beginning of existing
content

End of file Remainder of existing
content read 

Beginning of file Pointer moved back to
beginning of file

See text Content read from
beginning of file

fwrite($file, $contents); Form contents added at
current position of
pointer

End of file Nothing read because
pointer was already at
end of file

Not applicable File closed and all
changes saved

fclose($file);

while (!feof($file)) {
$readAgain .= fgets($file);
}

At end of previous
operation

$readAll = fread($file,
filesize($filename));

rewind($file);

while (!feof($file)) {
$readRest .= fgets($file);
}

$file = fopen($filename,
'r+');

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

194

7311ch07.qxd  10/10/06  11:10 PM  Page 194



If you study the preceding code, you’ll notice that the second read operation uses
fread(). It works perfectly with this example, but contains a nasty surprise. Change the
code in fopen_pointer.php to add the following line after the external file has been
opened (it’s commented out in the download version):

$file = fopen($filename, 'r+');
fseek($file, 0, SEEK_END);

This moves the pointer to the end of the file before the first write operation. Yet, when
you run the script, fread() ignores the text added at the end of the file. This is because
the external file is still open, so filesize() reads its original size. Consequently, you
should always use a while loop with !feof() and fgets() if your read operation takes
place after any new content has been written to a file.

When you create or open a file in a text editor, you can use your mouse to highlight and
delete existing content, or position the insertion point exactly where you want. You don’t
have that luxury with a PHP script, so you need to give it precise instructions. On the other
hand, you don’t need to be there when the PHP script runs. Once you have designed it, it
runs automatically every time.

Exploring the file system
PHP’s file system functions can also open directories (folders) and inspect their contents.
From a web designer’s viewpoint, the most practical applications of this are building a
drop-down menu of files and creating a unique name for a new file.

Inspecting a directory the quick way

If your server runs PHP 5 or later, you can use the
scandir() function, which returns an array consisting of
the files and directories within a specified directory. Just
pass the pathname of the directory as a string to scan-
dir(), and store the result in a variable like this:

$files = scandir('../images');

You can examine the result by using print_r() to display
the contents of the array, as shown in the screenshot to the
right (the code is in scandir.php in the download files).

The changes to a file with read and write operations are saved only when you call
fclose() or when the script comes to an end. Although PHP saves the file if you forget
to use fclose(), you should always close the file explicitly. Don’t get into bad habits;
one day they may cause your code to break and lose valuable data.

USING PHP TO MANAGE FILES

195

7

7311ch07.qxd  10/10/06  11:10 PM  Page 195



As you can see from the screenshot on the previous page, the folder doesn’t contain only
images, so it’s necessary to extract them before you can build a drop-down menu. First
let’s take a look at how to do the same thing in PHP 4.

Opening a directory to inspect its contents

If your server is still running PHP 4, complain to your hosting company (PHP 5 has been a
stable release since July 2004), and in the meantime do things the old way. Inspecting 
a directory is similar to opening a file for reading or writing. It involves the following three
steps:

1. Open the directory with opendir().

2. Read the directory’s contents with readdir().

3. Close the directory with closedir().

So, instead of the single line of code required in PHP 5 or later, you need this (the code is
in opendir.php in the download files):

// open the directory
$folder = opendir('../images');
// initialize an array to store the contents
$files = array();
// loop through the directory
while (false !== ($item = readdir($folder))) {
$files[] = $item;
}

// close it
closedir($folder);

The readdir() function gets one item at a time and uses an internal pointer in the same
way as the functions used with fopen(). To build a list of the directory’s entire contents,
you need to use a while loop and store each result in an array. The condition for the loop
is contained in the following line:

while (false !== ($item = readdir($folder))) {

The readdir() function returns false when it can find no more items, so to prevent the
loop from coming to a premature end if it encounters an item named 0, for example, you
need to use false with the nonidentical operator (!==).

Each time the while loop runs, $item stores the name of the next file or folder, which is
then added to the $files array. Using this trio of functions isn’t difficult, but the one-line
scandir() is much simpler.

Of course, it’s unlikely you’ll intentionally name an item 0. However, good programmers
expect the unexpected. This makes absolutely sure the function works as intended.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

196

7311ch07.qxd  10/10/06  11:10 PM  Page 196



Building a drop-down menu of files

When you work with a database, you’ll find you often need a list of images or other types
of files in a particular folder. For instance, you may want to associate a photo with a blog
entry or product detail page. Although you can type the name of the image into a text
field, you need to make sure that the image is there and that you spell its name correctly.
Get PHP to do the hard work for you by building a drop-down menu automatically. It’s
always up-to-date, and there’s no danger of misspelling the name.

I find this so convenient that I have turned the whole process into a function. There are
two versions in the download files: one for use with PHP 5 and later, and the other for
PHP 4. So, with just two lines of code, you can create a drop-down menu like that shown
in Figure 7-1.

Figure 7-1. PHP makes light work of creating a drop-down menu of images in a specific folder.

1. Create a PHP page called imagelist.php in the filesystem folder. If you just want
to study the code, use either imagelist_php5.php or imagelist_php4.php from
the download files, depending on the version of PHP running on your server.

2. Copy buildFileList5.php (for PHP 5) or buildFileList4.php (for PHP 4) to your
includes folder.

PHP Solution 7-3: Using the buildFileList() function

USING PHP TO MANAGE FILES

197

7

7311ch07.qxd  10/10/06  11:10 PM  Page 197



3. Create a form inside imagelist.php, and insert a <select> element with just one
<option> like this:

<form id="form1" name="form1" method="post" action="">
<select name="pix" id="pix">
<option value="">Select an image</option>

</select>
</form>

This <option> is the only static element in the drop-down menu.

4. Amend the code in the previous step like this (new code is shown in bold):

<form id="form1" name="form1" method="post" action="">
<select name="pix" id="pix">
<option value="">Select an image</option>

<?php
include('../includes/buildFileList5.php');
buildImageList5('../images');
?>
</select>
</form>

Make sure that the pathnames to the include file and the images folder are correct
for your site’s folder structure. If you’re using PHP 4, the two lines in the PHP code
block need to refer to the PHP 4 version of the function like this:

include('../includes/buildFileList4.php');
buildImageList4('../images');

5. Save imagelist.php and load it into a browser. You should see a drop-down menu
listing all the images in your images folder, as shown in Figure 7-1. When incorpo-
rated into an online form, the filename of the selected image appears in the
$_POST array identified by the name attribute of the <select> element—in this
case, $_POST['pix']. That’s all there is to it!

You can adapt this function to display any type of file simply by changing the filename
extensions listed in the $fileTypes array (highlighted in bold on line 7 in the following
listing). This listing shows the PHP 5 version; the PHP 4 version is identical except for the
way it opens and inspects the directory:

function buildFileList5($theFolder) {
// execute code if the folder can be opened, or fail silently
if ($contents = @ scandir($theFolder)) {
// initialize an array for matching files
$found = array();
// Create an array of file types

For brevity, I’m not using the techniques in Chapter 4 for checking that the
include file exists.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

198

7311ch07.qxd  10/10/06  11:10 PM  Page 198



$fileTypes = array('jpg','jpeg','gif','png');
// traverse folder, and add file to $found array if type matches
$found = array();
foreach ($contents as $item) {
$fileInfo = pathinfo($item);
if (array_key_exists('extension', $fileInfo) && ➥

in_array($fileInfo['extension'],$fileTypes)) {
$found[] = $item;
}

}

// Check the $found array is not empty
if ($found) {
// sort in natural, case-insensitive order, and populate menu
natcasesort($found);
foreach ($found as $filename) {
echo "<option value='$filename'>$filename</option>\n";
}

}
}

}

How the buildFileList() function works I suspect many readers will be happy just to
use the function, but if you’re curious as to how it works, here’s a brief description 
to flesh out the inline comments. After the folder has been opened, each item is 
passed to a PHP function called pathinfo(), which returns an associative array with the
following elements:

dirname: The name of the directory (folder)

basename: The filename, including extension (or just the name if it’s a directory)

extension: The filename extension (not returned for a directory)

Because the extension element is not returned for a directory, you need to use
array_key_exists() before attempting to check its value. The second half of the condi-
tional statement in line 12 uses in_array() to see if the value of extension matches one
of the file types that you’re looking for. It there’s a match, the filename is added to the
$found array. It’s then just a case of building the <option> elements with a foreach loop,
but to add a user-friendly touch, the $found array is first passed to the natcasesort()
function, which sorts the filenames in a case-insensitive order.

Automatically creating the next file in a series

In the last chapter I showed you how to create a unique filename by adding a timestamp
or using the date() function to generate the date and time in human-readable format. It
works, but is hardly ideal. A numbered series, such as file01.txt, file02.txt, and so on,
is usually better. The problem is that a PHP script has no way to keep track of a series of
numbers between requests to the server. However, by inspecting the contents of a direc-
tory, you can use pattern matching to find the highest existing number, and assign the next
one in the series.

USING PHP TO MANAGE FILES

199

7

7311ch07.qxd  10/10/06  11:10 PM  Page 199



I’ve turned this into a function called getNextFilename(), which you can find in
getNextFilename5.php and getNextFilename4.php in the download files for this chapter.
The function takes the following three arguments:

The pathname of the directory where you want the new file to be created

The prefix of the filename, which must consist of alphanumeric characters only

The filename extension (without a leading period)

Let’s say you choose comment as the prefix and txt as the filename extension. The
getNextFilename() function generates a series of files called comment001.txt,
comment002.txt, and so on.

1. Copy getNextFilename5.php (or getNextFilename4.php, if your server is running
PHP 4) from the download files, and save it in the includes folder.

2. Open fopen_exclusive.php from the download files and save it in the filesystem
folder as create_series.php. If you just want to read along, the finished code is in
the download version of create_series.php.

3. Include the file that contains the getNextFilename() function for the appropriate
version of PHP. You need the function only when the form is submitted, so place it
inside the conditional statement at the top of the page like this (again, for brevity,
I’m not checking that the include file exists):

if (array_key_exists('putContents', $_POST)) {
include('../includes/getNextFilename5.php');

4. Then, after the line that removes backslashes from the form output, amend the
rest of the PHP block at the top of the page like this:

$dir = 'C:/private';
$filename = getNextFilename5($dir, 'comment', 'txt');
// attempt to create file only if $filename contains a real value
if ($filename) {
// create a file ready for writing only if it doesn't already exist
if ($file = @ fopen("$dir/$filename", 'x')) {
// write the contents
fwrite($file, $contents);
// close the file
fclose($file);
$result = "$filename created";
}

else {
$result = 'Cannot create file';
}

}
else {
$result = 'Invalid folder or filename';
}

}

PHP Solution 7-4: Using the getNextFilename() function

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

200

7311ch07.qxd  10/10/06  11:10 PM  Page 200



The first two lines assign the target folder to a variable and call getNextFilename5()
(use getNextFilename4() for PHP 4) to generate the next filename in the series. The
function runs a number of checks on the three arguments and returns false if any
fail. So the next section of code is wrapped in a conditional statement to ensure that
the script attempts to create a new file only if a valid filename is obtained.

The call to fopen() is enclosed in another conditional statement. This checks that
the file has been successfully created before attempting to write to it. If the file
can’t be opened, a suitable message is assigned to $result.

The final else clause belongs to the following conditional statement:

if ($filename) {

So, if getNextFilename() returns false, $result reports the likely reasons for
failure.

5. Insert the following PHP code between the opening <body> and <form> tags to dis-
play the outcome of the operation after the form has been submitted.

<body>
<?php
if (isset($result)) {
echo "<p>$result</p>";
}

?>
<form id="writeFile" name="writeFile" method="post" action="">

6. Save create_series.php and load it into a browser. Test the page, and you should
see the following message, indicating that the first file in the series has been created:

7. Submit the form again. This time the message should read comment002.txt created.
Experiment with invalid filename prefixes, such as including a forward slash in the
name. Also try selecting a directory that doesn’t exist or for which you don’t have
the necessary permissions.

How the getNextFilename() function works The function builds a Perl-compatible
regular expression (PCRE) in line 11, using the values in the second and third arguments, to
find the correct series of files and extract the numerical part of matching filenames. The
numbers are stored in an array, and the max() function is used to find the highest number,
to which 1 is added. If the array is empty, no files have yet been created, so it assigns the
number 1. The final part of the function calculates how many leading zeros to add to the

USING PHP TO MANAGE FILES

201

7

7311ch07.qxd  10/10/06  11:10 PM  Page 201



number and then builds the filename from its composite parts. A series can contain up to
999 files and still remain in the correct order. The full listing follows:

function getNextFilename($dir, $prefix, $type) {
// run some security checks on the arguments supplied
if (!is_dir($dir)) return false;
if (!preg_match('/^[-._a-z0-9]+$/i', $prefix)) return false;
$permittedTypes = array('txt','doc','pdf','jpg','jpeg','gif','png');
if (!in_array(strtolower($type), $permittedTypes)) return false;

// if the checks are OK, get an array of the directory contents
$existing = scandir($dir);
// create a search pattern for files that match the prefix and type
$pattern = '/^'.$prefix.'(\d+)\.'.$type.'$/i';
$nums = array();
// loop through the directory
// get the numbers from all files that match the pattern 
foreach ($existing as $file) {
if (preg_match($pattern, $file, $m)) {
$nums[] = intval($m[1]);
}

}
// find the highest number and increase it by 1
// if no file yet created, assign it number 1
$next = $nums ? max($nums)+1 : 1;
// calculate how many zeros to prefix the number with
if ($next < 10) {
$zeros = '00';
}

elseif ($next < 100) {
$zeros = '0';
}

else {
$zeros = '' ;
}

// return the next filename in the series
return "{$prefix}{$zeros}{$next}.{$type}";
}

As with the buildFileList() function, I have created an array of acceptable file types
(highlighted in bold on line 5 in the preceding code). Although create_series.php is used
to create a text file, you can incorporate this function in a file upload script. If you need to
change the range of acceptable file types, amend the $permittedTypes array. The function
should not need any other alteration. The PHP 4 version is identical except for the way it
opens and inspects the directory.

Opening remote data sources
PHP can open publicly available files on other servers just as easily as on the same server.
This is particularly useful for accessing XML files or news feeds. All that you need to do is

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

202

7311ch07.qxd  10/10/06  11:10 PM  Page 202



pass the URL as an argument to the function. Unfortunately, as noted earlier, many host-
ing companies disable the allow_url_fopen setting in PHP. One way to get around this is
to use a socket connection instead.

To create a socket connection, use the fsockopen() function, which takes the following
five arguments:

The target domain name

The port you want to open—for web pages, this is always 80

A variable to capture an error number if the connection fails

A variable to capture any error message

The number of seconds to attempt the connection before timing out 

Only the first argument is required, but using all five is a good idea since you can always
use the same values, and the error message may help you understand what’s gone wrong
if the connection fails. The fsockopen() function works in a very similar way to fopen() by
opening a file for you to read.

Let’s use fsockopen() to access the friends of ED news feed at www.friendsofed.com/
news.php.

1. Create a PHP file called fsockopen.php in the filesystem folder. If you just want to
study the final code, use fsockopen.php in the download files for this chapter.

2. If your script editor automatically inserts a DOCTYPE declaration and XHTML skele-
ton, remove them. You need to start with a blank page. Insert the following code:

<?php
// create a socket connection
$remote = fsockopen('www.friendsofed.com', 80, $errno, $errstr, 30);

if (!$remote) {
// if no connection, display the error message and number
echo "$errstr ($errno)";
}

else {
// otherwise communicate with remote server
}

?>

This is the basic skeleton for any socket connection using fsockopen(). The only
change you normally need to make is to the first argument, which is the domain
name of the site that you want to access. If a connection can’t be made, the first
half of the conditional statement displays the error message and number. If the
error number is 0, it may indicate the socket connections have been disabled on
your server. In that event, consult your hosting company.

If a successful connection is made, the else clause is executed. At the moment, it
contains just a comment. So let’s fix that now.

PHP Solution 7-5: Opening a news feed with fsockopen()

USING PHP TO MANAGE FILES

203

7

7311ch07.qxd  10/10/06  11:10 PM  Page 203



3. First of all, you need to prepare a request and send it to the remote server. Add the
following code after the comment in the else clause:

// otherwise communicate with remote server
// prepare the request
$out = "GET /news.php HTTP/1.1\r\n";
$out .= "Host: www.friendsofed.com\r\n";
$out .= "Connection: Close\r\n\r\n";

// send the request
fwrite($remote, $out);

The request is stored in $out and consists of the following three elements:

The page you want, presented in this format:

GET /path_to_page HTTP/1.1

The URL that we plan to open is www.friendsofed.com/news.php, which
becomes just /news.php. Note that it begins with a forward slash. If you want
the default page of a site, use a forward slash on its own.

Host, followed by a colon and the domain name.

An instruction to close the connection after the response has been sent.

Each part of the request must be followed by a carriage return and new line char-
acter (\r\n), and the final line by an extra carriage return and new line character
(\r\n\r\n). Since these characters are PHP escape sequences, you need to use
double quotes (see “Using escape sequences with double quotes” in Chapter 3).

Once you have built the request, send it by passing $out to fwrite() with a refer-
ence to the remote connection that you have opened.

4. After sending the request, you need to capture the response in a variable, and then
close the socket connection. Add the following code to the else clause immedi-
ately below the code in the previous step:

// initialize a variable to capture the response
$received = '';
// keep the connection open until the end of the response 
while (!feof($remote)) {
$received .= fgets($remote, 1024);
}

// close the connection
fclose($remote);

This uses feof(), fgets(), and fclose() in the same way as with local files. The
only difference is that I have added a second argument to fgets(). This tells the
function how many bytes to retrieve at a time. The fgets() function gets one line
at a time, but some XML files don’t use new lines, so it’s more resource-efficient to
specify a length.

5. Finally, use echo to display the response from the remote server. Add the following
line after the closing curly brace of the conditional statement:

echo $received;

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

204

7311ch07.qxd  10/10/06  11:10 PM  Page 204



6. Save fsockopen.php and load it into a browser. As long as you’re connected to the
Internet, you’ll probably see the friends of ED news feed displayed as continuous
plain text. To get a better understanding of what you have received, open the
browser’s source code view. You should see something similar to Figure 7-2.

Figure 7-2. Remote data sources accessed with fsockopen() include the HTTP headers.

The disadvantage of using fsockopen() to access a remote data source is that you
get all the HTTP headers, in addition to the news feed. If you scroll to the bottom
of the source code view, you may also see some unwanted characters after the
closing XML tag, as shown in the following screenshot:

7. To get rid of the headers and any extraneous characters at the end of the feed,
replace the line of code in step 5 with the following:

// find beginning and end of news feed
$start = strpos($received, '<?xml');
$endTag = '</rdf:RDF>';
$end = strpos($received, $endTag) + strlen($endTag);
// extract news feed and display
$clean = substr($received, $start, $end-$start);
echo $clean;

USING PHP TO MANAGE FILES

205

7

7311ch07.qxd  10/10/06  11:10 PM  Page 205



This uses the strpos() function to find the position of the beginning and end of
the XML feed. At the time of this writing, the friends of ED news feed is enclosed in
<rdf:RDF> tags. Other feeds may use different tags, so you need to adjust the value
of $endTag accordingly to find the end of the feed. The strpos() function returns
the position of the first matching character in the substring that you’re searching
for, so to find the end position, you need to add the number of characters in the
end tag. The strlen() function is designed to do precisely that, so adding
strlen($endTag) to the position of the first character of $endTag gives you the
end of the feed.

Finally, the substr() function extracts the news feed. It takes three arguments: the
original string, the position from which you want to start the extraction (the open-
ing XML tag), and the number of characters (calculated in this case by subtracting
$start from $end).

8. Save the page and reload it. Switch to your browser’s source code view, and you
should see the clean XML feed.

You need to use fsockopen() only if your hosting company has disabled
allow_url_fopen. Once you have captured the remote data, you treat it as any other
string. The easiest way to handle an XML news feed is with SimpleXML, which is available
in PHP 5 and later. To learn more about SimpleXML, visit www.php.net/manual/en/
ref.simplexml.php or see Beginning PHP and MySQL 5: From Novice to Professional by W.
Jason Gilmore (Apress, ISBN: 1-59059-552-1).

Creating a download link
A question that crops up regularly in online forums is, How do I create a link to an image
(or PDF file) that prompts the user to download it? The quick solution is to convert the file
into a compressed format, such as ZIP. This frequently results in a smaller download, but
the downside is that inexperienced users may not know how to unzip the file, or they may
be using an older operating system that doesn’t include an extraction facility. With PHP file
system functions, it’s easy to create a link that automatically prompts the user to down-
load a file in its original format. The script sends the necessary HTTP headers, opens the
file, and outputs its contents as a binary stream.

1. Create a PHP file called download.php in the filesystem folder. The full listing is
given in the next step. You can also find it in download.php in the files for this
chapter.

2. Remove any default code created by your script editor, and insert the following
code:

PHP Solution 7-6: Prompting a user to download an image

If using SimpleXML with fsockopen(), you need to use simplexml_load_string()
instead of simplexml_load_file().

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

206

7311ch07.qxd  10/10/06  11:10 PM  Page 206



<?php
// block any attempt to explore the filesystem
if (isset($_GET['file']) && basename($_GET['file']) == $_GET['file']) {
$getfile = $_GET['file'];
}

else {
$getfile = NULL;
}

// define error handling
$nogo = 'Sorry, download unavailable. <a href="prompt.php">Back</a>.';

if (!$getfile) {
// go no further if filename not set
echo $nogo;
}

else {
// define the pathname to the file
$filepath = 'C:/htdocs/phpsolutions/images/'.$getfile;
// check that it exists and is readable
if (file_exists($filepath) && is_readable($filepath)) {
// get the file's size and send the appropriate headers
$size = filesize($filepath);
header('Content-Type: application/octet-stream');
header('Content-Length: '.$size);
header('Content-Disposition: attachment; filename='.$getfile);
header('Content-Transfer-Encoding: binary');
// open the file in binary read-only mode
// suppress error messages if the file can't be opened
$file = @ fopen($filepath, 'rb');
if ($file) {
// stream the file and exit the script when complete
fpassthru($file);
exit;
}

else {
echo $nogo;
}

}
else {
echo $nogo;
}

}
?>

The only two lines that you need to change in this script are highlighted in bold
type. The first defines $nogo, a variable that is called whenever something prevents
the file from being downloaded. In this script, I have simply created a link to a page
called prompt.php, which you will create in the next step. You could, however, use
the header() function in combination with Location to divert the user to another

USING PHP TO MANAGE FILES

207

7

7311ch07.qxd  10/10/06  11:10 PM  Page 207



page (see ”Redirecting to another page” in Chapter 5). The second line that needs
to be changed defines the pathname to the folder where the download file is
stored.

The script works by taking the name of the file to be downloaded from a query
string appended to the URL and saving it as $getfile. Because query strings can be
easily tampered with, the opening conditional statement uses basename() to make
sure that an attacker cannot request a file, such as one that stores passwords, from
another part of your file structure. As explained in Chapter 4, basename() extracts
the filename component of a path, so if basename($_GET['file']) is different
from $_GET['file'], you know there’s an attempt to probe your server, and you
can stop the script from going any further by setting $getfile to NULL.

After checking that the requested file exists and is readable, the script gets the file’s
size, sends the appropriate HTTP headers, and opens the file in binary read-only
mode by adding b after the r mode argument. Finally, fpassthru() dumps the file
to the output buffer.

3. Test the script by creating another page and add a couple of links to download.php.
Add a query string at the end of each link with file= followed by the name a file to
be downloaded. You’ll find a page called prompt.php in the download files, which
contains the following two links:

<p><a href="download.php?file=maiko.jpg">Download image 1</a></p>
<p><a href="download.php?file=basin.jpg">Download image 2</a></p>

4. Click one of the links, and the browser should present you with a dialog box
prompting you to download the file, as shown in Figure 7-3.

Figure 7-3. The browser prompts the user to download the image, rather than opening it
directly.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

208

7311ch07.qxd  10/10/06  11:10 PM  Page 208



Click OK, and the file should be saved rather than displayed. Click Cancel to aban-
don the download. Whichever button you click, the original page remains in the
browser window. The only time download.php should load into the browser is if the
file cannot be opened. That’s why it’s important to create a back link through
$nogo or send the user to a different page.

I’ve demonstrated download.php with image files, but it can be used for any type of file
because the headers send the file as a binary stream.

Summary
The file system functions aren’t particularly difficult to use, but there are many subtleties
that can turn a seemingly simple task into a complicated one. It’s important to check that
you have the right permissions. Even when handling files in your own website, PHP needs
permission to access any directory where you want to read files or write to them. When
dealing with remote data sources, you also need to check that allow_url_fopen hasn’t
been disabled. Hopefully, this problem will disappear when PHP 6 becomes standard.
However, hosting companies are notoriously slow at implementing major upgrades of PHP,
so it’s useful to know how to work around this issue with fsockopen().

In the next two chapters, we’ll put some of the PHP Solutions from this chapter to further
practical use when working with images and building a simple user authentication system.

This script relies on header() to send the appropriate HTTP headers to the browser. It is
vital to ensure that there are no new lines or whitespace ahead of the opening PHP tag.
If you have removed all whitespace and still get an error message saying “headers
already sent,” your editor may have inserted invisible control characters at the begin-
ning of the file. Try opening your script in a different editor, delete the opening PHP tag,
and press the Backspace key several times before retyping the opening tag.

USING PHP TO MANAGE FILES

209

7

7311ch07.qxd  10/10/06  11:10 PM  Page 209



7311ch08.qxd  10/10/06  10:44 PM  Page 210



8 GENERATING THUMBNAIL IMAGES

7311ch08.qxd  10/10/06  10:44 PM  Page 211



What this chapter covers:

Scaling an image

Saving a rescaled image

Automatically resizing and renaming uploaded images

PHP has an extensive range of functions designed to work with images. You’ve already met
one of them, getimagesize(), in Chapter 4. As well as providing useful information about
an image’s dimensions, PHP can manipulate images by resizing or rotating them. It can also
add text dynamically without affecting the original; it can even create images on the fly.

To give you just a taste of PHP image manipulation, I’m going to show you how to gener-
ate a smaller copy of an uploaded image. Most of the time, you’ll want to use a dedicated
graphics program, such as Photoshop or Fireworks, to generate thumbnail images because
it gives you much better quality control. However, automatic thumbnail generation with
PHP can be very useful if you want to allow registered users to upload images, but make
sure that they conform to a maximum size. You can save just the resized copy, or the copy
along with the original.

Checking your server’s capabilities
Working with images in PHP relies on the GD extension. Originally GD stood for GIF Draw,
but support for GIF files was dropped in favor of JPEG and PNG because of a dispute over
a patent. However, the name GD stuck, even though it no longer stands for anything. The
problematic patent has now expired and GIF is once again supported, but you need to
make sure GD has been enabled on your server and check which features are available.

As in previous chapters, load a page containing <?php phpinfo(); ?> to check the server’s
configuration. Scroll down until you reach the section shown in the following screenshot
(it should be about halfway down the page).

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

212

7311ch08.qxd  10/10/06  10:44 PM  Page 212



If you can’t find this section, it means that the GD extension isn’t enabled, so you won’t be
able to use any of the scripts in this chapter. Your next move depends on your situation.

On a hosting company’s shared server, there’s nothing you can do about it, apart
from complain or move to a different host.

If you’re checking your local testing environment on a Windows computer, open
php.ini and locate the following line in the list of Windows extensions:

;extension=php_gd2.dll

Remove the semicolon at the start of the line, save php.ini, and restart Apache or
IIS. If you still can’t see that GD support has been enabled, refer back to Chapter 2.
Make sure that the correct version of php.ini is being read, extension_dir is
pointing to the correct location, and your Windows path setting includes your PHP
folder.

On a Mac, GD is enabled by default in the package created by Marc Liyanage that I
recommended in Chapter 2.

Assuming that GD support is enabled on your server, check the version and the settings for
GIF Read Support, GIF Create Support, JPG Support, and PNG Support. GD Version needs to
be a minimum of 2. All versions should support JPEG and PNG files, but you need 2.0.28 or
later for full GIF support. If the version number is lower than 2.0.28, you will probably be
able to read GIF files, but not create them. The scripts in this chapter have been designed
to respond appropriately to different levels of support.

Manipulating images dynamically
The GD extension allows you to generate images entirely from scratch or work with exist-
ing images. Either way, the underlying process always follows four basic steps:

1. Create a resource for the image in the server’s memory while it’s being processed.

2. Process the image.

3. Display and/or save the image.

4. Remove the image resource from the server’s memory. 

This process means that you are always working on an image in memory only and not on
the original. Unless you save the image to disk before the script terminates, any changes
are discarded. Working with images requires a lot of memory, so it’s vital to destroy the
image resource as soon as it’s no longer needed. If a script runs very slowly or crashes, it
probably indicates that the original image is too large.

Strictly for abbreviation/acronym freaks: GIF stands for Graphics Interchange Format,
JPEG is the standard created by the Joint Photographic Experts Group, and PNG is short
for Portable Network Graphics. Although JPEG is the correct name for the standard, the
“E” is frequently dropped, particularly when used as a filename extension.

GENERATING THUMBNAIL IMAGES

213

8

7311ch08.qxd  10/10/06  10:44 PM  Page 213



Making a smaller copy of an image

The aim of this chapter is to show you how to resize images automatically on upload. This
involves adapting the file upload form from Chapter 6. However, to make it easier to
understand how to work with PHP’s image manipulation functions, I propose to start by
using images already on the server, and merge the resizing script with the upload code
only at the final stage.

Getting ready
The starting point is the following simple form, which uses the buildFileList() function
from the last chapter to create a drop-down menu of the photos in the images folder. You
can find the code in create_thumb01.php in the download files for this chapter. Copy it to
a new folder called gd in the phpsolutions site root, and rename it create_thumb.php.

<?php 
// execute script only if the form has been submitted
if (array_key_exists('create', $_POST)) {
// image resizing script goes here
}

?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; ➥

charset=iso-8859-1" />
<title>Create thumbnail image</title>
</head>

<body>
<form id="form1" name="form1" method="post" action="">
<p>
<select name="pix" id="pix">
<option value="">Select an image</option>

<?php
// if using PHP 4, use buildFileList4.php and buildFileList4()
include('../includes/buildFileList5.php');
buildFileList5('../images');
?>

</select>
</p>
<p>
<input name="create" id="create" type="submit" ➥

value="Create thumbnail" />
</p>

</form>
</body>
</html>

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

214

7311ch08.qxd  10/10/06  10:44 PM  Page 214



The page requires buildFileList5.php (or buildFileList4.php, if you’re using PHP 4),
which should already be in your includes folder from the previous chapter. If you don’t
have a copy, get it from the download files for Chapter 7. Use buildListFile5() for PHP 5
and buildListFile4() for PHP 4.

When loaded into a browser, the form looks like
the screenshot to the right, and the drop-down
menu should display the names of the photos in
the images folder, as shown in Figure 7-1 in the
previous chapter.

Inside the upload_test folder that you created
in Chapter 6, create a new folder called thumbs,
and make sure it has the necessary permissions
for PHP to write to it. Refer back to “Establishing an upload directory” in Chapter 6 if you
need to refresh your memory.

Building the script
Once you have created the thumbs folder and checked that the drop-down menu in
create_thumb.php is displaying a list of images, you’re ready to start.

1. If you have been reading the chapters in order, you’ll know by now that the
conditional statement above the DOCTYPE declaration checks whether the name
attribute of the submit button is in the $_POST array. Since the submit button is
called create, the script inside the conditional statement runs only if the form has
been submitted. Replace the placeholder comment with the following code:

if (array_key_exists('create', $_POST)) {
// define constants
define('SOURCE_DIR', 'C:/htdocs/phpsolutions/images/');
define('THUMBS_DIR', 'C:/upload_test/thumbs/');
define('MAX_WIDTH', 120);
define('MAX_HEIGHT', 90);
}

The new code defines four constants: the folder containing the original images, the
folder where the resized images are to be stored, and the maximum width and
height you want the thumbnails to be. You could use ordinary variables, but defin-
ing constants at the start of a script makes it easy to identify default values and
change them at a later stage. Note that the folder pathnames must end with a trail-
ing slash.

If you’re using a remote server or a Mac, replace the pathnames just shown with
the correct paths to your images and thumbs folders. The download files also use
the pathnames for a Windows local testing environment, so you need to make
the changes there, too.

PHP Solution 8-1: Calculating the scaling ratio

GENERATING THUMBNAIL IMAGES

215

8

7311ch08.qxd  10/10/06  10:44 PM  Page 215



2. When the form is submitted, the pix element of the $_POST array contains the name
of the image you want to resize. PHP needs to know the full path to the image, so
combine the value of the SOURCE_DIR constant with $_POST['pix'], and assign it to
a shorter variable like this (the code goes inside the conditional statement immedi-
ately after the four constants inserted in the previous step):

// get image name and build full pathname
if (!empty($_POST['pix'])) {
$original = SOURCE_DIR.$_POST['pix'];
}

else {
$original = NULL;
}

The static option of the drop-down menu has no value, so you need to check that
$_POST['pix'] isn’t empty. If it is, $original is set to NULL to prevent the rest of
the script from going ahead.

3. Next comes the script to calculate the scaling ratio. Insert the following code after
the code in the previous step (still inside the original conditional statement):

// abandon processing if no image selected
if (!$original) {
echo 'No image selected';
}

// otherwise resize the image
else {
// begin by getting the details of the original
list($width, $height, $type) = getimagesize($original);
// calculate the scaling ratio
if ($width <= MAX_WIDTH && $height <= MAX_HEIGHT) {
$ratio = 1;
}

elseif ($width > $height) {
$ratio = MAX_WIDTH/$width;
}

else {
$ratio = MAX_HEIGHT/$height;
}

echo "Image selected: $original<br />";
echo "Original width: $width<br />Original height: $height<br />";
echo "Image type: $type<br />Scaling ratio: $ratio";
}

Although there should never be any output ahead of the DOCTYPE declaration, echo
is being used here simply for testing purposes and will be removed later. When
building scripts, it’s always a good idea to display the result of a calculation or con-
ditional statement, as it helps confirm you’re getting the expected results.

The following line of code needs a little explanation:

list($width, $height, $type) = getimagesize($original);

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

216

7311ch08.qxd  10/10/06  10:44 PM  Page 216



As you saw in Chapter 4, getimagesize() returns an array containing four ele-
ments. On that occasion, we were interested only in the fourth element: a string
containing the width and height of an image, ready to insert into an <img> tag. This
time, it’s the first three elements we want: the width, height, and image type.

The list() construct lets you assign array elements directly to variables. The array
elements are assigned to the variables in the same order. So, the first variable ($width)
gets the first element of the array produced by getimagesize($original)—in
other words, the image’s width. The second variable ($height) gets the height of the
image, and so on. If you pass fewer variables to list() than the number of array
elements, any surplus ones are ignored.

The calculation of the scaling ratio is a simple arithmetic calculation. If the width
and height of the original image are smaller or equal to the maximum, you don’t
want to scale the image. So the ratio is set to 1. Otherwise, you divide the maxi-
mum by the larger of the two dimensions. If the image is square, the ratio is deter-
mined by dividing the maximum height by the height of the original.

4. Save create_thumb.php and load it in a
browser. Click Create thumbnail without
selecting an image. You should see No
image selected at the top of the screen.
Then pick an image from the drop-down
menu, and test the page again. You
should see something like the screen-
shot to the right.

Try several different images. The scaling
ratio should change for images of differ-
ent dimensions. All the photos in the
images folder are JPEG files, so Image
type should always be 2.

Compare your code with create_thumb02.php in the download files, if necessary.

The getimagesize() function returns the image type as a number. You can find a full list
at www.php.net/manual/en/function.getimagesize.php. The ones of interest to web
developers are the first three, as follows:

1 GIF

2 JPEG

3 PNG

The GD image functions handle each type of image differently, so these numbers will be
used to create the script’s branching logic.

Continue working with the same file. Alternatively, use create_thumb02.php from the
download files. The finished script for this section is in create_thumb03.php.

PHP Solution 8-2: Creating a scaled-down copy

GENERATING THUMBNAIL IMAGES

217

8

7311ch08.qxd  10/10/06  10:44 PM  Page 217



1. You no longer need to display the results onscreen, so change the first echo com-
mand in step 3 of the previous section like this:

if (!$original) {
$result = 'No image selected';
}

2. Delete the three echo commands at the end of the code in step 3, and replace
them with the following code:

else {
$ratio = MAX_HEIGHT/$height;
}

// strip the extension off the image filename
$imagetypes = array('/\.gif$/','/\.jpg$/','/\.jpeg$/','/\.png$/');
$name = preg_replace($imagetypes, '', basename($original));
}

}

The first new line of code creates an array of regular expressions to identify the
following filename extensions: .gif, .jpg, .jpeg, and .png. The next line uses
basename() to extract the filename and passes it to preg_replace(), which
searches the $imagetypes array for a match and replaces it with nothing. Let’s say
$original contains the following pathname:

C:/htdocs/phpsolutions/images/kinkakuji.jpg

By passing it to basename(), it becomes this:

kinkakuji.jpg

Finally, .jpg is removed, leaving you with this:

kinkakuji

This value is stored in $name and can be used to build the name of the resized
image.

3. As explained earlier, the first step in working with an image in PHP is to create an
image resource in memory. To create a scaled-down copy, you need two image
resources: one for the original image and another for the thumbnail image. Let’s
begin with the original image.

The function used to create an image resource from an existing image depends on
the file type. Since you stored that information in $type, you can use a switch
statement (see “Using the switch statement for decision chains” in Chapter 3) to

Don’t forget that all the code needs to go inside the original conditional state-
ment that makes sure the script runs only when the form has been submitted.
I’ve included the closing curly brace of that statement in the preceding code as
a reminder.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

218

7311ch08.qxd  10/10/06  10:44 PM  Page 218



select the appropriate function. Insert the following code immediately after the
code in the previous step:

$name = preg_replace($imagetypes, '', basename($original));
// create an image resource for the original
switch($type) {
case 1:
$source = @ imagecreatefromgif($original);
if (!$source) {
$result = 'Cannot process GIF files. Please use JPEG or PNG.';
}

break;
case 2:
$source = imagecreatefromjpeg($original);
break;

case 3:
$source = imagecreatefrompng($original);
break;

default:
$source = NULL;
$result = 'Cannot identify file type.';

}
}

}

The switch statement checks the number stored in $type and creates an image
resource called $source using the correct function for the file type. All servers
should support imagecreatefromjpeg() and imagecreatefrompng(), but a server
using an older version of GD might not support imagecreatefromgif(). That’s why
I have used the error control operator (see “Preventing errors when an include file
is missing” in Chapter 4) if $type is 1 (a GIF file). If the server can’t handle GIF files,
$source will be false, so a suitable error message is stored in $result. A different
error message is created if $type is not 1, 2, or 3.

4. After making sure that the image resource for the original is OK, you can go ahead
and create the thumbnail. Insert the following code immediately after the switch
statement from the previous step:

$result = 'Cannot identify file type.';
}

// make sure the image resource is OK
if (!$source) {
$result = 'Problem copying original';
}

else {
// calculate the dimensions of the thumbnail
$thumb_width = round($width * $ratio);
$thumb_height = round($height * $ratio);
// create an image resource for the thumbnail
$thumb = imagecreatetruecolor($thumb_width, $thumb_height);

GENERATING THUMBNAIL IMAGES

219

8

7311ch08.qxd  10/10/06  10:44 PM  Page 219



// create the resized copy
// save the resized copy
// remove the image resources from memory
}

}
}

If $source is false, there must be a problem with copying the original, so there’s
no point in continuing. However, if a valid image resource exists, the else state-
ment is executed. It begins by multiplying the width and height of the original by
the scaling ratio. Because the dimensions of an image must be integers, the calcu-
lation is passed to round(), which returns the nearest whole number.

Then you need to create the image resource for the resized copy. This is done by
passing the width and height of the thumbnail to imagecreatetruecolor() and
storing the resource as $thumb.

Just three more steps remain, as indicated by the three comments at the end of the
new code. Before moving on to them, let’s pause to see how the copy is actually
created.

The function that creates a resized copy of an image is imagecopyresampled(), which
takes—wait for it—ten arguments! While this sounds horrendous, the arguments fall into
five pairs as follows:

References to the two image resources—copy first, original second

The x and y coordinates of where to position the top-left corner of the copied
image

The x and y coordinates of the top-left corner of the original

The width and height of the copy

The width and height of the area to copy from the original

The only time you need to worry about the x and y coordinates is when you want to
extract a specific area, rather than copy the whole image. The coordinates are measured in
pixels from the top left of the image. Figure 8-1 shows the effect of the following code:

imagecopyresampled($thumb, $source, 0, 0, 170, 20, $thumb_width, ➥

$thumb_height, 170, 102);

The x coordinate of the original image is set at 170 pixels from the top left, and the y coor-
dinate is at 20 pixels. By setting the width and height of the original to 170 and 102,
respectively, PHP copies only the area outlined in white. Although this is impressive, you
can probably already see a problem: you need to view the image first to find the best area
to extract and get the correct coordinates. Although you could use a pixel ruler, it’s messy.
You get a much more satisfactory result in a graphics program, such as Photoshop, where
you can crop and rescale the image quickly and accurately.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

220

7311ch08.qxd  10/10/06  10:44 PM  Page 220



Figure 8-1. The x and y coordinates can be used to extract part of an image.

Consequently, when using PHP to create a thumbnail, the x and y coordinates aren’t really
relevant. You simply set all four coordinates to the top-left corner (0), and use the actual
width and height of the original image. This makes a thumbnail of the entire image. So let’s
get back to the code.

5. Insert the following line of code immediately beneath the first of the three com-
ments that you inserted at the end of the previous step:

// create the resized copy
imagecopyresampled($thumb, $source, 0, 0, 0, 0, $thumb_width, ➥

$thumb_height, $width, $height);

Note that you don’t need to assign the result of imagecopyresampled() to a vari-
able; $thumb now contains the scaled-down image, but you still need to save it to 
a file.

6. The functions that save an image to file need to know the file type. So this means
using another switch statement to select the appropriate function: imagegif(),
imagejpeg(), or imagepng(). Each function takes the following two arguments:

The image resource being held in memory

The pathname of the file you want to save the image to

You can build the pathname with THUMBS_DIR, followed by $name (the original file-
name minus the extension), plus _thb.gif, _thb.jpg, or _thb.png, as appropriate.
This results in the thumbnail for kinkakuji.jpg being saved in the thumbs sub-
folder as kinkakuji_thb.jpg.

The function that creates JPEG files takes a third, optional argument: an integer
between 0 and 100 to indicate the quality of the image. JPEG compresses the
image, so a lower number produces a smaller file size, but of lower quality. If you
omit the third argument, the default is 75. Except when saving a GIF in JPEG format,
it’s a good idea to specify 100. You can always reduce the quality later if the file is
too big, but you can’t restore picture quality once it’s been reduced.

GENERATING THUMBNAIL IMAGES

221

8

7311ch08.qxd  10/10/06  10:44 PM  Page 221



Place this code under the second comment:

// save the resized copy
switch($type) {
case 1:
if (function_exists('imagegif')) {
$success = imagegif($thumb, THUMBS_DIR.$name.'_thb.gif');
$thumb_name = $name.'_thb.gif';
}

else {
$success = imagejpeg($thumb, THUMBS_DIR.$name.'_thb.jpg', 50);
$thumb_name = $name.'_thb.jpg created';
}

break;
case 2:
$success = imagejpeg($thumb, THUMBS_DIR.$name.'_thb.jpg', 100);
$thumb_name = $name.'_thb.jpg created';
break;

case 3:
$success = imagepng($thumb, THUMBS_DIR.$name.'_thb.png');
$thumb_name = $name.'_thb.png created';

}
if ($success) {
$result = "$thumb_name created";
}

else {
$result = 'Problem creating thumbnail';
}

As with the earlier switch statement, you need to check whether the server supports
GIF. Even if the server can read GIF files, it might not be able to create them, so case 1
begins by using function_exists() to establish if it’s safe to use imagegif(). If it is,
imagegif() is used to save the thumbnail to file. If GIF creation isn’t supported, the
else clause uses imagejpeg() to save it as a JPEG file with a quality of 50.

The functions that save the image to file return a Boolean true or false, which is
stored in $success. A message reporting the outcome is stored in $result.

7. All that remains is to remove from memory the two image resources that you’ve
been working with. Place this code under the final comment:

// remove the image resources from memory
imagedestroy($source);
imagedestroy($thumb);

Note that function_exists() takes the name of the function as a string with-
out the final parentheses like this:

if (function_exists('imagegif'))  // RIGHT
if (function_exists(imagegif()))  // WRONG

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

222

7311ch08.qxd  10/10/06  10:44 PM  Page 222



In spite of its destructive name, imagedestroy() has no effect on the original image,
nor on the thumbnail that’s just been saved to file. The function simply frees up the
server memory by destroying the image resources required during processing.

8. Before testing the page, you need to add some code just after the opening <body>
tag to display the message reporting the outcome like this:

<body>
<?php
if (isset($result)) {
echo "<p>$result</p>";
}

?>
<form id="form1" name="form1" method="post" action="">

9. Save create_thumb.php and load it in a browser. Select an image from the 
drop-down menu and click Create thumbnail. If all goes well, there should be a scaled-
down version of the image you chose in the thumbs subfolder of upload_test. Check
your code, if necessary, with create_thumb03.php in the download files.

Resizing an image automatically on upload
Now that you have a script that creates a thumbnail from a larger image, it takes only a
few minor changes to merge it with the file upload script from Chapter 6. Rather than
build the entire script in a single page, this is a good opportunity to use a PHP include
(includes were covered in Chapter 4).

The starting point for this PHP Solution is create_thumb.php from the preceding section,
together with upload.php from Chapter 6. Alternatively, use create_thumb03.php and
upload_thumb01.php from the download files for this chapter. The finished scripts are in
create_thumb.inc.php and upload_thumb02.php.

1. In create_thumb.php, select the entire PHP block above the DOCTYPE declaration.
Copy the selected code to your computer clipboard, and paste it inside a blank PHP
page. The new page should contain PHP script only; you don’t need a DOCTYPE or
XHTML skeleton. Save the page in the includes folder as create_thumb.inc.php.

2. Remove the comment on line 2 together with the conditional statement that sur-
rounds the script (don’t forget the closing curly brace just before the closing PHP
tag). You should be left with the following:

<?php
// define constants
define('SOURCE_DIR', 'C:/htdocs/phpsolutions/images/');
define('THUMBS_DIR', 'C:/upload_test/thumbs/');
define('MAX_WIDTH', 120);
define('MAX_HEIGHT', 90);

PHP Solution 8-3: Merging the image upload and resizing scripts

GENERATING THUMBNAIL IMAGES

223

8

7311ch08.qxd  10/10/06  10:44 PM  Page 223



// get image name and build full pathname
if (!empty($_POST['pix'])) {
$original = SOURCE_DIR.$_POST['pix'];

}
else {
$original = NULL;

}
// abandon processing if no image selected
if (!$original) {
$result = 'No image selected';

}
// otherwise resize the image
else {
// begin by getting the details of the original
list($width, $height, $type) = getimagesize($original);
// calculate the scaling ratio
if ($width <= MAX_WIDTH && $height <= MAX_HEIGHT) {
$ratio = 1;
}

elseif ($width > $height) {
$ratio = MAX_WIDTH/$width;
}

else {
$ratio = MAX_HEIGHT/$height;
}

// strip the extension off the image filename
$imagetypes = array('/\.gif$/', '/\.jpg$/', '/\.jpeg$/', '/\.png$/');
$name = preg_replace($imagetypes, '', basename($original));

// create an image resource for the original
switch($type) {
case 1:
$source = @ imagecreatefromgif($original);
if (!$source) {
$result = 'Cannot process GIF files. Please use JPEG or PNG.';
}

break;
case 2:
$source = imagecreatefromjpeg($original);
break;

case 3:
$source = imagecreatefrompng($original);
break;

default:
$source = NULL;
$result = 'Cannot identify file type.';

}
// make sure the image resource is OK
if (!$source) {

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

224

7311ch08.qxd  10/10/06  10:44 PM  Page 224



$result = 'Problem copying original';
}

else {
// calculate the dimensions of the thumbnail
$thumb_width = round($width * $ratio);
$thumb_height = round($height * $ratio);
// create an image resource for the thumbnail
$thumb = imagecreatetruecolor($thumb_width, $thumb_height);
// create the resized copy
imagecopyresampled($thumb, $source, 0, 0, 0, 0, $thumb_width, ➥

$thumb_height, $width, $height);
// save the resized copy
switch($type) {
case 1:
if (function_exists('imagegif')) {
$success = imagegif($thumb, THUMBS_DIR.$name.'_thb.gif');
$thumb_name = $name.'_thb.gif';
}

else {
$success = imagejpeg($thumb, THUMBS_DIR.$name.'_thb.jpg',50);
$thumb_name = $name.'_thb.jpg';
}

break;
case 2:
$success = imagejpeg($thumb, THUMBS_DIR.$name.'_thb.jpg', 100);
$thumb_name = $name.'_thb.jpg';
break;

case 3:
$success = imagepng($thumb, THUMBS_DIR.$name.'_thb.png');
$thumb_name = $name.'_thb.png';

}
if ($success) {
$result = "$thumb_name created";
}

else {
$result = 'Problem creating thumbnail';
}

// remove the image resources from memory
imagedestroy($source);
imagedestroy($thumb);
}

}
?>

As the script now stands, it looks for the name of an image submitted from a form
as $_POST['pix'], and located on the server in whatever you have defined as
SOURCE_DIR. To create a thumbnail from an uploaded image, you need to adapt the
script so that it processes the temporary upload file.

GENERATING THUMBNAIL IMAGES

225

8

7311ch08.qxd  10/10/06  10:44 PM  Page 225



If you cast your mind back to Chapter 6, PHP stores an upload file in a temporary
location until you move it to its target location. This temporary file is accessed
using the tmp_name element of the $_FILES superglobal array and is discarded
when the script ends. Instead of moving the temporary file to the upload folder,
you can adapt the script in create_thumb.inc.php to resize the image, and save
the scaled-down version instead.

3. The form in upload.php uses image as the name attribute of the file upload field, so the
original image (referred to as $original) is now in $_FILES['image']['tmp_name'].
Change the opening section of the code like this (new code is in bold):

// define constants
define('THUMBS_DIR', 'C:/upload_test/thumbs/');
define('MAX_WIDTH', 120);
define('MAX_HEIGHT', 90);

// process the uploaded image
if (is_uploaded_file($_FILES['image']['tmp_name'])) {
$original = $_FILES['image']['tmp_name'];
// begin by getting the details of the original
list($width, $height, $type) = getimagesize($original);

This removes the definition of SOURCE_DIR, which is no longer needed, and simpli-
fies the original if... else statements at the beginning of the script. The code in
upload.php takes care of checking that a file has been selected, so all that’s needed
here is to use is_uploaded_file() to check that the temporary file is a genuine
upload and to assign it to $original.

4. Save create_thumb.inc.php. The rest of the changes are made in the upload file.

5. Open upload.php from Chapter 6 and save it as upload_thumb.php.

6. Locate the following section of code in upload_thumb.php (it should be around
lines 32 through 60):

if ($sizeOK && $typeOK) {
switch($_FILES['image']['error']) {
case 0:
// $username would normally come from a session variable
$username = 'davidp';
// if the user's subfolder doesn't exist yet, create it
if (!is_dir(UPLOAD_DIR.$username)) {
mkdir(UPLOAD_DIR.$username);
}

// check if a file of the same name has been uploaded
if (!file_exists(UPLOAD_DIR.$username.'/'.$file)) {

If you ever had any doubts, this should convince you just how useful variables
are. From this point on, the script treats the temporary upload file in exactly the
same way as a file already on the server. The remaining steps also demonstrate
the value of recycling code.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

226

7311ch08.qxd  10/10/06  10:44 PM  Page 226



// move the file to the upload folder and rename it
$success = move_uploaded_file($_FILES['image']['tmp_name'], ➥

UPLOAD_DIR.$username.'/'.$file);
}

else {
// get the date and time
ini_set('date.timezone', 'Europe/London');
$now = date('Y-m-d-His');
$success = move_uploaded_file($_FILES['image']['tmp_name'], ➥

UPLOAD_DIR.$username.'/'.$now.$file);
}

if ($success) {
$result = "$file uploaded successfully";
}

else {
$result = "Error uploading $file. Please try again.";
}

break;

7. Change it to this:

if ($sizeOK && $typeOK) {
switch($_FILES['image']['error']) {
case 0:
include('../includes/create_thumb.inc.php');
break;

That’s it! Save upload_thumb.php and test it by selecting an image from your 
local file system: a scaled-down copy will be created in the thumbs subfolder of
upload_test (see Figure 8-2).

Check your code, if necessary, with create_thumb.inc.php and upload_test02.php
in the download files.

Figure 8-2. A 400 × 300 pixel image has been automatically resized and renamed on upload.

GENERATING THUMBNAIL IMAGES

227

8

7311ch08.qxd  10/10/06  10:44 PM  Page 227



To understand what has happened, cast your mind back to Chapter 6. The switch state-
ment checks the value of $_FILES['image']['error']. If it’s 0, it means that the upload
succeeded. The original script moved the temporary upload file to its target destination.
The include command simply replaces that part of the script with the code that creates
the thumbnail.

Further improvements

You now have a powerful mini-application that automatically resizes images on upload,
but what if you want to preserve the original image as well? Nothing could be simpler. The
page containing the upload form already defines the upload folder as UPLOAD_DIR, so you
simply need to move the temporary upload file (currently referred to as $original) with
move_uploaded_file().

Continue working with the same files. Alternatively, use create_thumb.inc.php and
upload_thumb02.php from the download files. The finished scripts are in create_both.inc.php
and upload_both.php.

1. Open upload_thumb.php and save a copy as upload_both.php.

2. In upload_both.php, locate the line that includes the script that creates the scaled-
down image. It should be around line 35, and looks like this:

include('../includes/create_thumb.inc.php');

Change it like this and save the page:

include('../includes/create_both.inc.php');

3. Open create_thumb.inc.php and save a copy in the includes folder as
create_both.inc.php.

4. In create_both.inc.php, locate the section of code that strips the extension from
the filename (around line 22), and insert the new code highlighted in bold:

// strip the extension off the image filename
$imagetypes = array('/\.gif$/', '/\.jpg$/', '/\.jpeg$/', '/\.png$/');
$name = preg_replace($imagetypes, '', ➥

basename($_FILES['image']['name']));

// move the temporary file to the upload folder
$moved = @ move_uploaded_file($original, ➥

UPLOAD_DIR.$_FILES['image']['name']);
if ($moved) {
$result = $_FILES['image']['name'].' successfully uploaded; ';
$original = UPLOAD_DIR.$_FILES['image']['name'];
}

else {

PHP Solution 8-4: Saving the uploaded original and scaled-down version

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

228

7311ch08.qxd  10/10/06  10:44 PM  Page 228



$result = 'Problem uploading '.$_FILES['image']['name'].'; ';
}

// create an image resource for the original

The new code moves the temporary upload file to the upload folder and saves it
with its original name. The move_uploaded_file() function returns a Boolean
true or false, so by assigning the result to $moved, you can tell whether the
operation is successful. If it is, a suitable message is created, and the pathname of
the uploaded file is reassigned to $original. This is very important, because
move_uploaded_file() immediately discards the temporary uploaded file. So,
from this point onward, the original file is now the one that has just been saved
on the server.

If $moved is false, there’s no point in reassigning the value of $original, which still
points to the temporary upload file. This means you still have a chance of creating
the thumbnail, even if the main upload fails. I’ve inserted the error control opera-
tor (@) in front of move_uploaded_file() to prevent the display of PHP error mes-
sages, so it’s important to create a custom error message indicating what the
problem is.

5. The outcome of the upload operation uses the same variable, $result, as the sec-
tion of the script that creates the resized image, so you need to make sure that the
second outcome is added to the first. Do this with the combined concatenation
operator (.=) toward the end of the script, by inserting a period in front of the
equal sign like this:

if ($success) {
$result .= "$thumb_name created";
}

else {
$result .= 'Problem creating thumbnail';
}

6. Save create_both.inc.php, and load upload_both.php into a browser. Test it by
selecting an image on your local computer and clicking Upload. The original image
should be copied to the upload_test folder and a scaled-down version to the
thumbs subfolder.

You may be wondering why I inserted the new code in step 4 in that particular location,
because it doesn’t really matter when you move the uploaded file, as long as the script can
create an image resource from it. The answer is because the script currently overwrites
existing images of the same name. For a really robust solution, you need to assign a unique

As it stands, the script gives you the chance to salvage at least part of the oper-
ation if the main upload fails. If you don’t want a thumbnail without the main
image, move the last four lines of new code in step 4 immediately below the
code in step 5. This brings the thumbnail creation script inside the first half of
the conditional statement, so it runs only if $moved is true. 

GENERATING THUMBNAIL IMAGES

229

8

7311ch08.qxd  10/10/06  10:44 PM  Page 229



name to each file as it’s uploaded. By placing move_uploaded_file() at this point, you can
use the value of $name to generate a unique name for the uploaded file and its thumbnail.

Rather than show you how to do it step by step, I’ll just give you a few hints. The
getNextFilename() function from the previous chapter automatically generates a new
filename. It takes three arguments: the target folder (directory), the filename’s prefix, and
the file type. The target directory is UPLOAD_DIR, the filename’s prefix is stored in $name,
and the file type is stored in $type. However, $type is currently a number, so you need to
convert it to a string. If you store the new name in $newName, you can use it in combina-
tion with basename() to build the name for the thumbnail so that the original image and
thumbnail have the same number. Refer back to PHP Solution 4-3 for an explanation of
how to use basename().

The changes involved are quite simple and involve fewer than 20 lines of code. The solu-
tion is in upload_both_new.php and create_both_new.inc.php in the download files. The
new code is clearly marked and commented.

Transferring your test files to a remote server
If you have been testing these files locally, the only changes that you need to make when
deploying them on a remote server are to the definitions of UPLOAD_DIR and THUMBS_DIR.
Use a fully qualified path to each folder (directory). Don’t forget that the necessary read,
write, and execute permissions need to be set on the upload folders. Also make sure that
the path to any include files reflects your site structure.

Change the values of MAX_HEIGHT and MAX_WIDTH if you want the resized images to be
larger or smaller than 120 × 90 pixels.

Summary
Although this is a relatively short chapter, it covers a lot of ground and brings together
techniques from Chapters 4, 6, and 7, in combination with the PHP image manipulation
functions. To get the most out of working with PHP, it’s important to understand the flow
of a script so that you can incorporate solutions from other scripts. It would be a major
project to attempt to build from scratch a form that uploads an image, makes a scaled-
down copy, and gives both of them new names. However, breaking the task down into dis-
crete sections, as done here, makes it a lot easier. It also gives you the opportunity to reuse
code from one project in another, saving time and effort.

There are many other things you can do with the GD extension, including adding dynamic
text to images and generating bar charts. For more details, take a look at Chapter 8 of
PHP 5 Recipes: A Problem-Solution Approach by Lee Babin and others (Apress, ISBN: 
1-59059-509-2). 

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

230

7311ch08.qxd  10/10/06  10:44 PM  Page 230



7311ch08.qxd  10/10/06  10:44 PM  Page 231



7311ch09.qxd  10/10/06  10:45 PM  Page 232



9 PAGES THAT REMEMBER: SIMPLE
LOGIN AND MULTIPAGE FORMS

7311ch09.qxd  10/10/06  10:45 PM  Page 233



What this chapter covers:

Understanding sessions

Creating a file-based login system

Setting a time limit for sessions

Using sessions to keep track of information

The Web is a brilliant illusion. When you visit a well-designed website, you get a great feel-
ing of continuity, as though flipping through the pages of a book or a magazine. Everything
fits together as a coherent entity. The reality is quite different. Each part of an individual
page is stored and handled separately by the web server. Apart from needing to know
where to send the relevant files, the server has no interest in who you are. Each time a PHP
script runs, the variables exist only in the server’s memory and are normally discarded as
soon as the script finishes. Even variables in the $_POST and $_GET arrays have only a brief
life span. Their value is passed once to the next script and then removed from memory
unless you do something with it, such as store the information in a hidden form field. Even
then, it persists only if the form is submitted.

To get around these problems, PHP uses sessions. After briefly describing how sessions work,
I’ll show you how you can use session variables to create a simple file-based login system and
pass information from one page to another without the need to use hidden form fields.

What sessions are and how they work
A session ensures continuity by storing a random identifier on the web server and on the vis-
itor’s computer (as a cookie). The web server uses the cookie to recognize that it’s commu-
nicating with the same person (or, to be more precise, with the same computer). Figures 9-1
and 9-2 show the details of a simple session created in my local testing environment. As you
can see from the left screenshot in Figure 9-1, the cookie stored in the browser is called
PHPSESSID, and the content is a jumble of letters and numbers (it’s actually a 32-digit hexa-
decimal number). A matching file, which contains the same jumble of letters and numbers
as part of its filename, is created on the web server (shown on the right).

Figure 9-1. PHP sessions store a unique identifier as a cookie in the browser (left) and on the server
(right).

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

234

7311ch09.qxd  10/10/06  10:45 PM  Page 234



When a session is initiated, the server stores information in session variables that can be
accessed by other pages as long as the session remains active (normally until the browser
is closed). Because the identifier is unique to each visitor, the information stored in session
variables cannot be seen by anyone else. This means sessions are ideal for user authenti-
cation, although they can be used for any situation where you want to preserve informa-
tion for the same user when passing from one page to the next, such as with a multipage
form or a shopping cart.

The only information stored on the user’s computer is the cookie that contains the identi-
fier, which is meaningless by itself. This means there is no danger of private information
being exposed through someone examining the contents of a cookie on a shared computer.

The session variables and their values are stored on the web server. Figure 9-2 shows the
contents of a simple session file. As you can see, it’s in plain text, and the content isn’t dif-
ficult to decipher. The session shown in the figure has two variables: name and location.
The variable names are followed by a vertical pipe, then the letter “s”, a colon, a number,
another colon, and the variable’s value in quotes. The “s” stands for string, and the num-
ber indicates how many characters the string contains.

Figure 9-2. The details of the session are stored on the server in plain text.

This setup has several implications. The cookie containing the identifier normally remains
active until the browser is closed. So, if several people share the same computer, they all
have access to each other’s sessions unless they always close the browser before handing
over to the next person, something over which you have no control. So, it’s important to
provide a logout mechanism to delete both the cookie and the session variables, keeping
your site secure. You can also create a timeout mechanism, which automatically prevents
anyone regaining access after a certain period of inactivity.

The fact that session variables are stored in plain text on the web server is not, in itself, a
cause for concern. As long as the server is correctly configured, the session files cannot be
accessed through a browser. Inactive files are also routinely deleted by PHP (in theory, the
lifetime is 24 minutes, but this cannot be relied upon). Nevertheless, it should be obvious
that, if an attacker manages to compromise the server or hijack a session, the information
could be exposed. So, although sessions are generally secure enough for password pro-
tecting parts of a website or working with multipage forms, you should never use session
variables to store sensitive information, such as passwords or credit card details. As you’ll
see in “Using sessions to restrict access” later in the chapter, although a password is used

PAGES THAT REMEMBER:  S IMPLE LOGIN AND MULTIPAGE FORMS

235

9

7311ch09.qxd  10/10/06  10:45 PM  Page 235



to gain access to a protected site, the password itself is stored (preferably encrypted) in a
separate location, and not as a session variable.

Sessions are supported by default, so you don’t need any special configuration. However,
since they rely on a cookie, sessions won’t work if cookies are disabled in the user’s
browser. It is possible to configure PHP to send the identifier through a query string, but
this is not considered safe.

Creating PHP sessions

Just put the following command in every PHP page that you want to use in a session:

session_start();

This command should be called only once in each page, and it must be called before the
PHP script generates any output, so the ideal position is immediately after the opening
PHP tag. If any output is generated before the call to session_start(), the command fails
and the session won’t be activated for that page. (See “The ‘Headers already sent’ error”
section later for an explanation.)

Creating and destroying session variables

You create a session variable by adding it to the $_SESSION superglobal array in the same
way you would assign an ordinary variable. Say you want to store a visitor’s name and dis-
play a greeting. If the name is submitted in a login form as $_POST['name'], you assign it
like this:

$_SESSION['name'] = $_POST['name'];

$_SESSION['name'] can now be used in any page that begins with session_start().
Because session variables are stored on the server, you should get rid of them as soon as
they are no longer required by your script or application. Unset a session variable like this:

unset($_SESSION['name']);

To unset all session variables—for instance, when you’re logging someone out—set the
$_SESSION superglobal array to an empty array, like this:

$_SESSION = array();

Do not be tempted to try unset($_SESSION). It works all right—but it’s a little too
effective. It not only clears the current session, but also prevents any further sessions
from being stored.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

236

7311ch09.qxd  10/10/06  10:45 PM  Page 236



Destroying a session

By itself, unsetting all the session variables effectively prevents any of the information
from being reused, but you should also invalidate the session cookie like this:

if (isset($_COOKIE[session_name()])) {
setcookie(session_name(), '', time()-86400, '/');
}

This uses the function session_name() to get the name of the session dynamically, and
resets the session cookie to an empty string and to expire 24 hours ago (86400 is the num-
ber of seconds in a day). The final argument ('/') applies the cookie to the whole domain.

Finally, destroy the session with the following command:

session_destroy();

By destroying a session like this, there is no risk of an unauthorized person gaining access
either to a restricted part of the site or to any information exchanged during the session.
However, a visitor may forget to log out, so it’s not always possible to guarantee that the
session_destroy() command will be triggered, which is why it’s so important not to store
sensitive information in a session variable.

The “Headers already sent” error

Although using PHP sessions is very easy, there’s one problem that causes beginners a
great deal of head banging. Instead of everything working the way you expect, you see the
following message:

Warning: Cannot add header information - headers already sent

I’ve mentioned this problem several times before in conjunction with the header() func-
tion. It affects session_start() and setcookie() as well. In the case of session_start(),
the solution is simple: make sure that you put it immediately after the opening PHP tag (or
very soon thereafter), and check that there’s no whitespace before the opening tag. Some
Mac users say they get the problem even if there is no whitespace ahead of the PHP tag.
This is usually caused by editing software inserting an invisible control character at the
beginning of the script. If this happens to you, try a different script editor.

When using setcookie() to destroy the session cookie, though, it’s quite likely that you
may need to send output to the browser before calling the function. In this case, PHP lets
you save the output in a buffer using ob_start(). You then flush the buffer with
ob_end_flush() after setcookie() has done its job. I’ll show you how to do this in PHP
Solution 9-2.

You may find session_register() and session_unregister() in old
scripts. These functions are deprecated. Use $_SESSION['variable_name']
and unset($_SESSION['variable_name']) instead.

PAGES THAT REMEMBER:  S IMPLE LOGIN AND MULTIPAGE FORMS

237

9

7311ch09.qxd  10/10/06  10:45 PM  Page 237



Using sessions to restrict access
The first words that probably come to mind when thinking about restricting access to a
website are username and password. Although these generally unlock entry to a site, nei-
ther is essential to a session. You can store any value as a session variable and use it to
determine whether to grant access to a page. For instance, you could create a variable
called $_SESSION['status'] and give visitors access to different parts of the site depend-
ing on its value, or no access at all if it hasn’t been set.

A little demonstration should make everything clear, and show you how sessions work in
practice.

This should take only a few minutes to build, but you can also find the complete code in
session01.php, session02.php, and session03.php, in the download files for this chapter.

1. Create a page called session01.php in a new folder called sessions in the
phpsolutions site root. Insert a form with a text field called name and a submit but-
ton. Set the method to post and action to session02.php. The form should look
like this:

<form id="form1" name="form1" method="post" action="session02.php">
<p>
<label for="name">Name:</label>
<input type="text" name="name" id="name" />

</p>
<p>
<input type="submit" name="Submit" value="Submit" />

</p>
</form>

2. In another page called session02.php, insert this above the DOCTYPE declaration:

<?php
// initiate session
session_start();
// check that form has been submitted and that name is not empty
if ($_POST && !empty($_POST['name'])) {
// set session variable
$_SESSION['name'] = $_POST['name'];
}

?>

The inline comments explain what’s going on. The session is started, and as long as
$_POST['name'] isn’t empty, its value is assigned to $_SESSION['name'].

3. Insert the following code between the <body> tags in session02.php:

<?php
// check session variable is set

PHP Solution 9-1: A simple session example

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

238

7311ch09.qxd  10/10/06  10:45 PM  Page 238



if (isset($_SESSION['name'])) {
// if set, greet by name
echo 'Hi, '.$_SESSION['name'].'. <a href="session03.php">Next</a>';
}

else {
// if not set, send back to login
echo 'Who are you? <a href="session01.php">Login</a>';
}

?>

If $_SESSION['name'] has been set, a welcome message is displayed along with a
link to session03.php. Otherwise, the page tells the visitor that it doesn’t recognize
who’s trying to gain access, and provides a link back to the first page.

4. Create session03.php. Type the following above the DOCTYPE to initiate the session:

<?php session_start(); ?>

5. Insert the following code between the <body> tags of session03.php:

<?php
// check whether session variable is set
if (isset($_SESSION['name'])) {
// if set, greet by name
echo 'Hi, '.$_SESSION['name'].'. See, I remembered your name!<br />';
// unset session variable
unset($_SESSION['name']);
// invalidate the session cookie
if (isset($_COOKIE[session_name()])) {
setcookie(session_name(), '', time()-86400, '/');

}
// end session
session_destroy();
echo '<a href="session02.php">Page 2</a>';
}

else {
// display if not recognized
echo 'Sorry, I don\'t know you.<br />';
echo '<a href="session01.php">Login</a>';
}

?>

Take care when typing the following line:

echo 'Hi, '.$_SESSION['name'].'. <a href="session03.php">Next</a>';

The first two periods (surrounding $_SESSION['name']) are the PHP concatena-
tion operator. The third period (immediately after a single quote) is an ordinary
period that will be displayed as part of the string.

PAGES THAT REMEMBER:  S IMPLE LOGIN AND MULTIPAGE FORMS

239

9

7311ch09.qxd  10/10/06  10:45 PM  Page 239



If $_SESSION['name'] has been set, the page displays it, then unsets it and invali-
dates the current session cookie. By placing session_destroy() at the end of the
first code block, the session and its associated variables will cease to be available.

6. Load session01.php into a browser, and type your name in the text field. Click
Submit.

7. You should see something like the following screenshot. At this stage there is no
apparent difference between what happens here and in an ordinary form.

8. When you click Next, the power of sessions begins to show. The page remembers
your name, even though the $_POST array is no longer available to it. There’s a
problem, though, with that headers already sent error message. We’ll fix that later.

9. Click the link to Page 2 (just below the error message). The session has been
destroyed, so this time session02.php has no idea who you are.

10. Type the address of session03.php in the browser address bar and load it. It, too,
has no recollection of the session, and displays an appropriate message.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

240

7311ch09.qxd  10/10/06  10:45 PM  Page 240



You need to get rid of the warning message in step 8, not only because it looks bad, but
also because it means setcookie() can’t invalidate the session cookie. Even though
session_start() comes immediately after the opening PHP tag in session03.php, the warn-
ing message is triggered by the DOCTYPE declaration, the <head>, and other XHTML being
output before setcookie(). Although you could put setcookie() in the PHP block above
the DOCTYPE declaration, you would also need to assign the value of $_SESSION['name'] to
an ordinary variable, because it ceases to exist after the session is destroyed. Rather than
pull the whole script apart, the answer is to buffer the output with ob_start().

Continue working with session03.php from the previous section.

1. Amend the PHP block above the DOCTYPE declaration like this:

<?php
session_start();
ob_start();
?>

This turns on output buffering and prevents output being sent to the browser until
the end of the script, or until you specifically flush the output with ob_end_flush().

2. Flush the output immediately after invalidating the session cookie like this:

// invalidate the session cookie
if (isset($_COOKIE[session_name()])) {
setcookie(session_name(), '', time()-86400, '/');
}

ob_end_flush();

3. Save session03.php and test the sequence again. This time, there should be no
warning. More importantly, the session cookie will no longer be valid.

As you have just seen, the combination of session variables and conditional statements lets
you present completely different pages to a visitor depending on whether a session vari-
able has been set. All you need to do is add a password checking system, and you have a
basic user authentication system.

Using file-based authentication

In PHP Solution 7-2, I showed you how to use the file() function to read each line of a
text file into an array. You can now adapt that script to create a simple login system using
sessions. Each person’s username and password is separated by a comma and recorded on
a new line of a text file like this:

david, codeslave
chris, bigboss

I’ll use the same text file as before: filetest03.txt, which is in the private folder that
was set up in Chapter 7. Refer back to Chapter 7 if you haven’t already set up a folder for
PHP to read and write files.

PHP Solution 9-2: Buffering the output with ob_start()

PAGES THAT REMEMBER:  S IMPLE LOGIN AND MULTIPAGE FORMS

241

9

7311ch09.qxd  10/10/06  10:45 PM  Page 241



The finished code for this page is in login.php in the download files for this chapter.

1. Create a file called login.php in the sessions folder, and build a form with a text
input field each for username and password, plus a submit button named login,
like this:

<form id="form1" name="form1" method="post" action="">
<p>
<label for="username">Username:</label>
<input type="text" name="username" id="username" />

</p>
<p>
<label for="textfield">Password</label>
<input type="password" name="pwd" id="pwd" />

</p>
<p>
<input name="login" type="submit" id="login" value="Log in" />

</p>
</form>

2. Now add the PHP code above the DOCTYPE declaration to process the login form.
It’s adapted from the main PHP code block in file.php in Chapter 7, so you can
copy and paste most of it from the earlier file. All the changes are highlighted 
in bold.

<?php
// process the script only if the form has been submitted
if (array_key_exists('login', $_POST)) {
// start the session
session_start();
// include nukeMagicQuotes and clean the $_POST array
include('../includes/corefuncs.php');
nukeMagicQuotes();
$textfile = 'C:/private/filetest03.txt';
if (file_exists($textfile) && is_readable($textfile)) {
// read the file into an array called $users
$users = file($textfile);

// loop through the array to process each line
for ($i = 0; $i < count($users); $i++) {
// separate each element and store in a temporary array
$tmp = explode(', ', $users[$i]);
// assign each element of the temp array to a named array key
$users[$i] = array('name' => $tmp[0], 'password' => ➥

rtrim($tmp[1]));
// check for a matching record
if ($users[$i]['name'] == $_POST['username'] && ➥

$users[$i]['password'] == $_POST['pwd']) {

PHP Solution 9-3: Building the login page

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

242

7311ch09.qxd  10/10/06  10:45 PM  Page 242



// if there's a match, set a session variable
$_SESSION['authenticated'] = 'Jethro Tull';
break;
}

}
// if the session variable has been set, redirect
if (isset($_SESSION['authenticated'])) {
header('Location: http://localhost/phpsolutions/sessions/ ➥

menu.php');
exit;
}

// if the session variable hasn't been set, refuse entry
else {
$error = 'Invalid username or password.';
}

}
// error message to display if text file not readable
else {
$error = 'Login facility unavailable. Please try later.';
}

}
?>

PHP Solution 7-2 explains how the original script reads the external text file, so I’ll
concentrate on the new code. First, the entire script has been moved above the
DOCTYPE declaration and is enveloped in a conditional statement. The name attrib-
ute of the submit button is login, so array_key_exists() checks whether it’s in
the $_POST array to ensure that the script runs only when the form is submitted.
You need to initiate a session only if the form has been submitted, so the first com-
mand inside the conditional statement is session_start(). Although the user
input is unlikely to contain quotes, it’s wise to strip any backslashes from the
$_POST array, so corefuncs.php is included and a call made to nukeMagicQuotes()
(see Chapter 3).

The next section of new code is inside the loop that extracts the name and pass-
word from each line. If the record matches username and pwd in the $_POST array,
the script creates a variable called $_SESSION['authenticated'] and assigns it the
name of one of the great folk-rock bands of the 70s. There’s nothing magic about
either of these (apart from Jethro Tull’s music); I’ve chosen the name and value of
the variable arbitrarily. All that matters is a session variable is created. Since you’re
looking for only one record, you can use break to exit the loop as soon as a match
is found.

The rest of the script checks whether the session variable has been created. If it
has, the user is redirected to menu.php by the header() function (adjust the URL
to match your setup, if necessary), and exit prevents the script from running any
further.

If the session variable hasn’t been set, the username and/or password weren’t
found, and a suitable error message is prepared. The final else clause prepares a
different error message in the event that the external file couldn’t be read.

PAGES THAT REMEMBER:  S IMPLE LOGIN AND MULTIPAGE FORMS

243

9

7311ch09.qxd  10/10/06  10:45 PM  Page 243



3. Add the following short code block just after the opening <body> tag to display any
error messages, and save login.php:

<body>
<?php
if (isset($error)) {
echo "<p>$error</p>";
}

?>
<form id="form1" name="form1" method="post" action="">

Sharp-eyed readers will probably have noticed that the code in the loop in step 2 could be
simplified like this:

for ($i = 0; $i < count($users); $i++) {
// separate each element and store in a temporary array
$tmp = explode(', ', $users[$i]);
// check for a matching record
if ($tmp[0] == $_POST['username'] && rtrim($tmp[1]) == ➥

$_POST['pwd']) {
// if there's a match, set a session variable
$_SESSION['authenticated'] = 'Jethro Tull';
break;
}

}

There is no need to assign the name and password to named array elements, because you
don’t need the values after you’ve found a match. The reason I left in the line that assigns
each element of the temporary array to a named key is because it makes the script easier
to understand. When developing scripts, I often find it’s better to use explicit steps like
this, rather than attempt to use the shortest possible code. Short code can be very satisfy-
ing, but it’s often more difficult to read and troubleshoot.

Now, before you can test login.php, you need to create menu.php and restrict access with
a session.

The code for this section is in menu01.php and secretpage01.php in the download files for
this chapter.

1. Create two pages in the sessions folder called menu.php and secretpage.php. It
doesn’t matter what they contain, as long as they link to each other.

2. Protect access to each page by inserting the following above the DOCTYPE declara-
tion:

<?php
session_start();

PHP Solution 9-4: Restricting access to a page with a session

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

244

7311ch09.qxd  10/10/06  10:45 PM  Page 244



// if session variable not set, redirect to login page
if (!isset($_SESSION['authenticated'])) {
header('Location: http://localhost/phpsolutions/sessions/login.php');
exit;
}

?>

After starting the session, the script checks whether $_SESSION['authenticated']
has been set. If it hasn’t, it redirects the user to login.php and exits. That’s all there
is to it! The script doesn’t need to know the value of $_SESSION['authenticated'],
although you could make doubly sure by amending line 4 like this:

if (!isset($_SESSION['authenticated']) || $_SESSION['authenticated'] ➥

!= 'Jethro Tull')  {

This now also rejects a visitor if $_SESSION['authenticated'] has the wrong value.

3. Save menu.php and secretpage.php, and try to load either of them into a browser.
You should always be redirected to login.php.

4. Enter a valid username and password in login.php, and click Log in. You should be
redirected immediately to menu.php, and the link to secretpage.php should 
also work.

All you need to do to protect any page on your site is add the eight lines of code in step 2
above the DOCTYPE declaration. As well as logging into a site, users should be able to log out.

Continue working with the files from the preceding section. The finished files are in
menu03.php, logout.inc.php, and secretpage02.php in the download files for this chapter.

1. Create a logout button in the <body> of menu.php by inserting the following form:

<form id="logoutForm" name="logoutForm" method="post" action="">
<input name="logout" type="submit" id="logout" value="Log out" />

</form>

The page should look similar to the following screenshot:

PHP Solution 9-5: Creating a reusable logout button

PAGES THAT REMEMBER:  S IMPLE LOGIN AND MULTIPAGE FORMS

245

9

7311ch09.qxd  10/10/06  10:45 PM  Page 245



2. You now need to add the script that runs when the logout button is clicked. Amend
the code above the DOCTYPE declaration like this (the code is in menu02.php):

<?php
session_start();
// if session variable not set, redirect to login page
if (!isset($_SESSION['authenticated'])) {
header('Location: http://localhost/phpsolutions/sessions/login.php');
exit;
}

// run this script only if the logout button has been clicked
if (array_key_exists('logout', $_POST)) {
// empty the $_SESSION array
$_SESSION = array();
// invalidate the session cookie
if (isset($_COOKIE[session_name()])) {
setcookie(session_name(), '', time()-86400, '/');

}
// end session and redirect
session_destroy();
header('Location: http://localhost/phpsolutions/sessions/login.php');
exit;
}

?>

This is the same code as in “Destroying a session” earlier in the chapter. The only
differences are that it’s enclosed in a conditional statement so that it runs only
when the logout button is clicked, and it uses header() to redirect the user to
login.php.

3. Save menu.php and test it by clicking Log out. You should be redirected to
login.php. Any attempt to return to menu.php or secretpage.php will bring you
back to login.php.

4. You can put the same code in every restricted page; but PHP is all about saving
work, not making it. It makes sense to turn this into an include file. Create a new
file called logout.inc.php in the includes folder. Cut and paste the new code
from steps 1 and 2 into the new file like this (it’s in logout.inc.php in the down-
load files):

<?php
// run this script only if the logout button has been clicked
if (array_key_exists('logout', $_POST)) {
// empty the $_SESSION array
$_SESSION = array();
// invalidate the session cookie
if (isset($_COOKIE[session_name()])) {
setcookie(session_name(), '', time()-86400, '/');

}
// end session and redirect
session_destroy();

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

246

7311ch09.qxd  10/10/06  10:45 PM  Page 246



header('Location: http://localhost/phpsolutions/sessions/login.php');
exit;
}

?>
<form id="logoutForm" name="logoutForm" method="post" action="">
<input name="logout" type="submit" id="logout" value="Log out" />

</form>

5. At the same point in menu.php from which you cut the code for the form, include
the new file like this:

<?php include('../includes/logout.inc.php'); ?>

Including the code from an external file like this means that there will be output to
the browser before the calls to setcookie() and header(). So you need to buffer
the output, as shown in PHP Solution 9-2.

6. Add ob_start(); immediately after the call to session_start() at the top of
menu.php.

7. Save menu.php and test the page. It should look and work exactly the same as
before.

8. Repeat steps 5 and 6 with secretpage.php. You now have a simple, reusable logout
button that can be incorporated in any restricted page.

Although this file-based user authentication setup is adequate for restricting access to web
pages, all the passwords are stored in plain text. For greater security, it’s advisable to
encrypt passwords.

Encrypting passwords

PHP provides a simple and effective way to encrypt passwords, using the SHA-1 (US Secure
Hash Algorithm 1; for more info, see www.faqs.org/rfcs/rfc3174), which produces a 
40-digit hexadecimal number. When encrypted with SHA-1, codeslave turns into this:

fe228bd899980a7e23fd08082afddb74a467e467

SHA-1 is considered secure because it’s said to be computationally infeasible to work out the
original text or to find two sets of text that produce the same number. This means that even if
your password file is exposed, no one will be able to work out what the passwords are. It also
means that you have no way of converting fe228bd899980a7e23fd08082afddb74a467e467
back to codeslave. In one respect, this is unimportant: when a user logs in, you encrypt the
password again and compare the two encrypted versions. The disadvantage is that there is

There’s no need to add ob_end_flush() to logout.inc.php. You don’t want to
flush the buffer when logging out a user. You could add it to menu.php after the
include command, but it’s not necessary, as PHP automatically flushes the
buffer at the end of the script if you haven’t already done so explicitly.

PAGES THAT REMEMBER:  S IMPLE LOGIN AND MULTIPAGE FORMS

247

9

7311ch09.qxd  10/10/06  10:45 PM  Page 247



no way that you can send users password reminders if they forget them; you must generate
a new password. Nevertheless, good security demands encryption.

Another precaution that’s worth taking is adding a salt to the password before encrypting
it. This is a random value that’s added to make decryption even harder. Even if two people
choose the same password, adding a unique value to the password before encryption
ensures that the encrypted values are different. Sounds difficult? Not really, as you’ll see
over the next few pages.

You need to create a user registration form that checks the following:

The password and username contain a minimum number of characters.

The password matches a second entry in a confirmation field.

The username isn’t already in use.

This PHP Solution assumes that you have set up a private folder that PHP has write access
to, as described in Chapter 7. It also assumes that you are familiar with “Appending 
content with fopen()” in the same chapter. The finished code for this section is in
register02.php in the download files.

1. Create a page called register.php in the sessions folder, and insert a form with
three text input fields and a submit button. Lay out the form, and name the input
elements as shown in the following screen. If you want to save time, use
register01.php in the download files.

2. When building a script to process the input from a form, it’s a good idea to map
out the flow of the script as comments, and then fill in the details. As always, you
want the processing script to run only if the form has been submitted, so every-
thing needs to be enclosed in a conditional statement that checks whether the
name attribute of the submit button is in the $_POST array. Then you need to

PHP Solution 9-6: Creating a file-based user registration form

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

248

7311ch09.qxd  10/10/06  10:45 PM  Page 248



remove any backslashes from the $_POST array and check that the input meets
your minimum requirements.

You can’t check whether the username is unique until you open the file that contains
the registered usernames and passwords, but you know there’s no point in going any
further if the input is too short or the passwords don’t match. So let’s build the basic
code skeleton. Insert the following code above the DOCTYPE declaration:

<?php
// execute script only if form has been submitted
if (array_key_exists('register', $_POST)) {
// remove backslashes from the $_POST array
include('../includes/corefuncs.php');
nukeMagicQuotes();
// check length of username and password
// check that the passwords match
// continue if OK
}

?>

All this does at the moment is remove backslashes from the $_POST array with the
nukeMagicQuotes() function from Chapter 3. Let’s check the user input.

3. When checking the length of user input, begin by stripping any whitespace from
both ends with trim() and saving the result to a shorter variable. Saving to a
shorter variable avoids the need to type out the full $_POST variable name every
time. It also makes it easier to incorporate user input in a string because you don’t
need to worry about the quotes in the $_POST variable name.

Then pass the new variable to strlen(), which returns the length of a string. If
either the username or password is too short, you need an error message to dis-
play. Add this code immediately after the appropriate comment:

// check length of username and password
$username = trim($_POST['username']);
$pwd = trim($_POST['pwd']);
if (strlen($username) < 6 || strlen($pwd) < 6) {
$result = 'Username and password must contain at least 6 characters';
}

You could check that strlen() is greater than 5. However, you still need to make
sure that both passwords match. Consequently, it’s more efficient to turn the logic
around and test for things that you don’t want. In pseudo-code, the logic works
like this:

if (username or password has less than the minimum) {
input is not OK
}

elseif (the passwords do not match) {
input is not OK
}

else {
input is OK to process
}

PAGES THAT REMEMBER:  S IMPLE LOGIN AND MULTIPAGE FORMS

249

9

7311ch09.qxd  10/10/06  10:45 PM  Page 249



4. Add the second test after the appropriate comment like this:

// check that the passwords match
elseif ($pwd != $_POST['conf_pwd']) {
$result = 'Your passwords don\'t match';
}

5. You can now add the else clause that runs only if the first two tests fail, indicating
that the input is OK. This is where the main action takes place.

// continue if OK
else {
// main processing code goes here
}

Let’s pause to consider what the main script needs to do. First, you need to encrypt the
password by combining it with the username as a salt. Then, before writing the details to 
a text file, you must check whether the username is unique. This presents a problem of
which mode to use with fopen().

Ideally, you want the internal pointer at the beginning of the file so that you can loop
through existing records. The r+ mode does this, but the operation fails unless the file
already exists. You can’t use w+, because it deletes existing content. You can’t use x+ either,
because it fails if a file of the same name already exists. That leaves a+ as the only option
with the flexibility you need: it creates the file if necessary, and lets you read and write.
The file is empty the first time you run the script (you can tell because the filesize()
function returns 0), so you can go ahead and write the details. If filesize() doesn’t
return 0, you need to reset the internal pointer and loop through the records to see if the
username is already registered. If there’s a match, you break out of the loop and prepare
an error message. If there isn’t a match by the end of the loop, you not only know it’s a
new username, you also know you’re at the end of the file. So, you write a new line fol-
lowed by the new record. Now that you understand the flow of the script, you can insert
it into register.php.

6. Replace the placeholder comment in the else clause from the preceding step with
the following code:

// continue if OK
else {
// encrypt password, using username as salt
$pwd = sha1($username.$pwd);
// define filename and open in read-write append mode
$filename = 'C:/private/encrypted.txt';
$file = fopen($filename, 'a+');
// if filesize is zero, no names yet registered
// so just write the username and password to file
if (filesize($filename) === 0) {

The various fopen() modes are described in Chapter 7.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

250

7311ch09.qxd  10/10/06  10:45 PM  Page 250



fwrite($file, "$username, $pwd");
}

// if filesize is greater than zero, check username first
else {
// move internal pointer to beginning of file
rewind($file);
// loop through file one line at a time
while (!feof($file)) {
$line = fgets($file);
// split line at comma, and check first element against username
$tmp = explode(', ', $line);
if ($tmp[0] == $username) {
$result = 'Username taken - choose another';
break;
}

}
// if $result not set, username is OK
if (!isset($result)) {
// insert line break followed by username, comma, and password
fwrite($file, "\r\n$username, $pwd");
$result = "$username registered";
}

// close the file
fclose($file);
}

}

The preceding explanation and inline comments should help you follow the script.
The only line that you need to alter is this:

$filename = 'C:/private/encrypted.txt';

Change it to the pathname of the file where you want to store usernames and pass-
words. If you’re on a Mac or plan to deploy this script on a Linux server, you also
need to change the following line:

fwrite($file, "\r\n$username, $pwd");

Remove the \r at the beginning of the second argument. Mac and Linux don’t need
a carriage return to create a new line.

7. The final piece of coding displays the value of $result after the script has run. It
goes just before the form like this:

<h1>Register user</h1>
<?php
if (isset($result)) {
echo "<p>$result</p>";
}

?>
<form id="form1" name="form1" method="post" action="">

PAGES THAT REMEMBER:  S IMPLE LOGIN AND MULTIPAGE FORMS

251

9

7311ch09.qxd  10/10/06  10:45 PM  Page 251



8. Save register.php and test it. Try it with a username or password with fewer than
six characters and with passwords that don’t match. Also try using the same pass-
word for two different usernames. I registered two users, both with the password
codeslave. As Figure 9-3 shows, it’s impossible to tell from the encrypted versions
that both users have the same password.

Figure 9-3. Using a salt produces completely different encryptions of the same password.

Now that you have encrypted passwords, you need to change the login form to handle the
new setup.

All that’s necessary is to select the text file that contains the encrypted passwords and to
encrypt the password before comparing it with the one stored in the file.

1. Open login.php from PHP Solution 9-3 or use login.php from the download files.
Near the top of the script (around line 9), change the name of the text file, and add
the following two lines shown in bold:

$textfile = 'C:/private/encrypted.txt';
$username = trim($_POST['username']);
$pwd = sha1($username.trim($_POST['pwd']));
if (file_exists($textfile) && is_readable($textfile)) {

This removes any whitespace from the username and assigns it to a shorter vari-
able. The next line also removes whitespace from the submitted password and adds
the username to the front before passing it to sha1() for encryption.

2. Now use the shorter variables in the line of code that compares the username and
password in the text file. Find the following line:

if ($users[$i]['name'] == $_POST['username'] && ➥

$users[$i]['password'] == $_POST['pwd']) {

Change it like this:

if ($users[$i]['name'] == $username && $users[$i]['password'] == ➥

$pwd) {

If you used the shorter version in PHP Solution 9-3, change this line:

if ($tmp[0] == $_POST['username'] && rtrim($tmp[1]) == $_POST['pwd']) {

Amend it as follows:

if ($tmp[0] == $username && rtrim($tmp[1]) == $pwd) {

PHP Solution 9-7: Using an encrypted login

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

252

7311ch09.qxd  10/10/06  10:45 PM  Page 252



3. Save login.php and test it. It should work the same as before, but be more secure.
Check your code if necessary with login_encrypted.php in the download files.

PHP Solutions 9-3 to 9-7 show you how to create a simple, yet effective user authentica-
tion system that doesn’t require a database back end. However, it does have its limitations.
Above all, it’s essential that the text file containing the usernames and passwords be out-
side the server root. Even though the passwords are encrypted, knowing the usernames
reduces the effort that an attacker needs to try to break through your security. Another
weakness is that the salt is the username. Ideally, you should create a random salt for each
password, but you need to store it somewhere. If it’s in the same file as the usernames,
they would both be exposed at the same time.

Using a database for user authentication gets around many of these problems. It involves
more coding, but is likely to be more secure. Also, once you get more than a few records,
querying a database is usually much faster than looping through a text file line by line. Of
course, the weakest link in most security systems lies in easily guessed passwords, or users
revealing their login details (intentionally or otherwise) to unauthorized users. Chapter 15
covers user authentication with a database.

Setting a time limit on sessions
Setting a time limit on a PHP session is easy. When the session first starts, typically when
the user logs in, store the current time in a session variable. Then compare it with the lat-
est time whenever the user does anything that triggers a page to load. If the difference is
greater than a predetermined limit, destroy the session and its variables. Otherwise,
update the variable to the latest time.

This assumes that you have set up a login system as described in PHP Solutions 9-3 to 9-7. The
completed scripts are in login_timeout.php, menu_timeout.php, and secretpage_timeout.php
in the download files for this chapter.

1. You need to store the current time after the user’s credentials have been authenti-
cated, but before the script redirects the user to the restricted part of the site.
Locate the redirect code in login.php (around line 31), and insert the new code
highlighted in bold as follows:

// if the session variable has been set, redirect
if (isset($_SESSION['authenticated'])) {
// get the time the session started
$_SESSION['start'] = time();
header('Location: http://localhost/phpsolutions/sessions/menu.php');
exit;
}

The time() function returns a current timestamp. By storing it in $_SESSION['start'],
it becomes available to every page that begins with session_start().

PHP Solution 9-8: Ending a session after a period of inactivity

PAGES THAT REMEMBER:  S IMPLE LOGIN AND MULTIPAGE FORMS

253

9

7311ch09.qxd  10/10/06  10:45 PM  Page 253



2. When a session times out, just dumping a user unceremoniously back at the login
screen isn’t very friendly, so it’s a good idea to explain what’s happened. Scroll
down to the main body of the page, and add the code highlighted in bold:

<?php
if (isset($error)) {
echo "<p>$error</p>";
}

elseif (isset($_GET['expired'])) {
?>
<p>Your session has expired. Please log in again.</p>

<?php } ?>

The message is shown if the URL contains a variable called expired in a query
string.

3. Open menu.php, and amend the PHP code above the DOCTYPE declaration like this:

<?php
session_start();
ob_start();
// set a time limit in seconds
$timelimit = 15;
// get the current time
$now = time();
// where to redirect if rejected
$redirect = 'http://localhost/phpsolutions/sessions/login.php';
// if session variable not set, redirect to login page
if (!isset($_SESSION['authenticated'])) {
header("Location: $redirect");
exit;
}

// if timelimit has expired, destroy session and redirect
elseif ($now > $_SESSION['start'] + $timelimit) {
// empty the $_SESSION array
$_SESSION = array();
// invalidate the session cookie
if (isset($_COOKIE[session_name()])) {
setcookie(session_name(), '', time()-86400, '/');

}
// end session and redirect with query string
session_destroy();
header("Location: {$redirect}?expired=yes");
exit;
}

// if it's got this far, it's OK, so update start time
else {
$_SESSION['start'] = time();
}

?>

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

254

7311ch09.qxd  10/10/06  10:45 PM  Page 254



The inline comments explain what is going on; and you should recognize most of
the elseif clause from PHP Solution 9-5. PHP measures time in seconds, and I’ve
set $timelimit (in line 5) to a ridiculously short 15 seconds purely for demonstra-
tion purposes. To set a more reasonable limit of, say, 15 minutes, change this later
like this:

$timelimit = 15 * 60; // 15 minutes

You could, of course, set $timelimit to 900, but why bother when PHP can do the
hard work for you?

If the sum of $_SESSION['start'] plus $timelimit is less than the current time
(stored as $now), you end the session and redirect the user to the login page. The
line that performs the redirect adds a query string to the end of the URL like this:

http://localhost/phpsolutions/sessions/login.php?expired=yes

The code in step 2 takes no notice of the value of expired; adding yes as the value
just makes it look user-friendlier in the browser address bar.

If the script gets as far as the final else, it means that $_SESSION['authenticated']
has been set, and that the time limit hasn’t been reached, so $_SESSION['start'] is
updated to the current time, and the page displays as normal.

4. Copy the code in the preceding step, and use it to replace the code above the
DOCTYPE declaration in secretpage.php.

5. Save all three pages, and load either menu.php or secretpage.php into a browser.
If the page displays, click Log out. Then log back in, and navigate back and forth
between menu.php and secretpage.php. Once you have verified that the links
work, wait 15 seconds or more, and try to navigate back to the other page. You
should be automatically logged out and presented with the following screen:

The code in step 2 is quite long, and is identical for every page that requires it, so it’s an
ideal candidate for turning into an include. That way, you need update only one script if
you decide to change the time limit or the redirect page. The start_session() command
can also go in the include file as long as it comes before the use of any session variables.

PAGES THAT REMEMBER:  S IMPLE LOGIN AND MULTIPAGE FORMS

255

9

7311ch09.qxd  10/10/06  10:45 PM  Page 255



Passing information through multipage forms
Variables passed through the $_POST and $_GET arrays have only a fleeting existence. Once
they have been passed to a page, they’re gone, unless you save their values in some way.
The usual method of preserving information that’s passed from one form to another is to
extract its value from the $_POST array and store it in a hidden field in XHTML like this:

<input type="hidden" name="address" id="address" ➥

value="<?php echo $_POST['address']; ?>" />

As their name suggests, hidden fields are part of a form’s code, but nothing is displayed
onscreen. Hidden fields are fine for one or two items, but say you have a survey that’s
spread over four pages. If you have 10 items on a page, you need a total of 60 hidden
fields (10 on the second page, 20 on the third, and 30 on the fourth). Session variables can
save you all that coding. They can also make sure that visitors always start on the right
page of a multipage form.

In the download files for this chapter, you’ll find four pages called multiple01.php,
multiple02.php, multiple03.php, and multiple04.php. The first three contain just a sin-
gle field for the user to enter name, age, and address. The final page displays the contents
of the $_SESSION array after each page has been submitted. The forms are simple so that
you can concentrate on how the PHP works.

1. Copy the four files from the download folder for this chapter, and save them in the
sessions folder. If you are using Windows, and have set up your testing environment
as suggested in Chapter 2, the pages should work without any changes. If you are on
a Mac, are using a remote server, or have a different testing environment, open each
page and change the URLs in the header() functions to match your setup. For
instance, on a Mac, I need to change the code in multiple01.php from this:

header('Location: http://localhost/phpsolutions/sessions/ ➥

multiple02.php');

to this:

header('Location: http://localhost/~davidpowers/phpsolutions/ ➥

sessions/multiple02.php');

The header() function is used once each in multiple01.php and multiple04.php,
and twice each in the other two pages.

2. Once you have made any necessary changes, attempt to load any of the final three
pages into a browser. You should be taken directly to multiple01.php. The pages use
the same technique as PHP Solution 9-4. The only difference is that the session vari-
able is called $_SESSION['formStarted'] instead of $_SESSION['authenticated'].
For the purposes of this demonstration, multiple01.php begins by clearing existing
session variables. In a real application, this may not be appropriate. The code in
multiple04.php shows how to exclude any session variables that you don’t want to
pass on with the final form submission.

PHP Solution 9-9: Using sessions for a multipage form

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

256

7311ch09.qxd  10/10/06  10:45 PM  Page 256



3. Try clicking the Next button in multiple01.php. The form tells you that the name
field is missing. Enter anything, and click Next again. The second form asks for Age.
Click Next, and the form takes you without complaint to the third page, which asks
for Address. This page won’t let you get away with entering nothing. Enter anything,
and click Send details. You should see something like the following screenshot:

Rather than go through the code in detail, I’ll leave you to read the inline comments of the
four pages. The first three pages use techniques from the rest of this chapter, combined
with the form processing techniques from Chapter 5. The main code in the final page
looks like this:

<p>The details submitted were as follows:</p>
<ul>
<?php
// unset the formStarted variable
unset($_SESSION['formStarted']);
foreach ($_SESSION as $key => $value) {
// skip the submit buttons
// use identity operator with strpos to prevent false negatives
if (strpos($key, 'Submit') === 0) {
continue;
}

echo "<li>$key: $value</li>";
}
// clear the $_SESSION array and destroy session
$_SESSION = array();
session_destroy();

?>
</ul>

It cleans up the $_SESSION array by removing $_SESSION['formStarted'] and session
variables created by each of the submit buttons. The name and value of the submit button
is always part of the $_POST array, so each submit button is added to $_SESSION array as
you progress through the forms. You can skip them in the foreach loop by using strpos()
to test for the string Submit. Use the same technique for any other session variables that
you want to exclude.

PAGES THAT REMEMBER:  S IMPLE LOGIN AND MULTIPAGE FORMS

257

9

7311ch09.qxd  10/10/06  10:45 PM  Page 257



The strpos() function takes two arguments: a string that you want to search, and a char-
acter or substring that you want to find in it. If it finds the substring that you’re looking for,
strpos() returns the position of the first character. Since the position of characters in
strings is always counted from 0, it’s essential to use the identical operator (three equal
signs) to make sure that the result of strpos($key, 'Submit') is genuinely 0, and not a
false negative. To see what I mean, alter the following line:

if (strpos($key, 'Submit') === 0) {  // CORRECT

Change it to this:

if (strpos($key, 'Submit') == 0) {  // WRONG

If you test the sequence again, you’ll see that no results are displayed. This is because
strpos() returns false if it can’t find the substring; and PHP interprets 0 as false. What
you’re looking for is not false, but Submit at the beginning of the string—in other words,
position 0. The identical operator guarantees that the items you’re comparing not only
have the same value, but are also of the same data type.

The foreach loop on the final page of this example displays the contents of the $_SESSION
array onscreen. In a real application, you would use the session variables to build the 
content of an email message or to prepare a SQL query to insert the information in a 
database.

Coming up . . .
If you started this book with little or no knowledge of PHP, you’re no longer in the begin-
ners’ league, but are leveraging the power PHP in a lot of useful ways. Hopefully, by now,
you’ll have begun to appreciate that the same or similar techniques crop up again and
again. Instead of just copying code, you should start to recognize techniques that you can
adapt to your needs and experiment on your own.

The rest of this book continues to build on your knowledge, but brings a new factor into
play: the MySQL relational database, which will take your PHP skills to a higher level. The
next chapter shows you how to install MySQL and get it ready for use. Then you’ll learn the
basics of working with MySQL and a PHP-driven graphical interface called phpMyAdmin
before bringing PHP back into the picture.

Don’t worry if that last part went over your head. Just remember that when using
strpos() to find a character or substring at the start of a string, use the identical oper-
ator (===) and not the equality operator (==).

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

258

7311ch09.qxd  10/10/06  10:45 PM  Page 258



7311ch09.qxd  10/10/06  10:45 PM  Page 259



7311ch10.qxd  10/10/06  10:48 PM  Page 260



10 SETTING UP MYSQL AND
PHPMYADMIN

7311ch10.qxd  10/10/06  10:48 PM  Page 261



What this chapter covers:

Installing the MySQL database on Windows and Mac OS X

Securing the database

Setting up the phpMyAdmin graphical interface

Backing up and transferring data to another server

Dynamic websites take on a whole new meaning in combination with a database. Drawing
content from a database allows you to present material in ways that would be
impractical—if not impossible—with a static website. Examples that spring to mind are
online stores, such as Amazon.com; news sites, such as the International Herald Tribune
(www.iht.com); and the big search engines, including Google and Yahoo! Database tech-
nology allows these websites to present thousands, sometimes millions, of unique pages
with remarkably little underlying code. Even if your ambitions are nowhere near as
grandiose, a database can increase your website’s richness of content with relatively little
effort. First of all, though, you need to choose and install a database system.

Why MySQL?
Of all the available databases, why choose MySQL? The following reasons should con-
vince you:

Cost: The MySQL Community Edition is free under the open source GPL license
(www.gnu.org/copyleft/gpl.html).

Powerful: The same basic database system as the Community Edition is used by
leading organizations such as NASA, Yahoo!, and Alcatel. It’s feature-rich and fast.

Widespread availability: MySQL is the most popular open source database. Most
hosting companies automatically offer MySQL in combination with PHP.

Cross-platform compatibility: MySQL runs on Windows, Mac OS X, and Linux. A
database created on one system requires no conversion when transferred to
another.

Open source: Although there is a commercial version, the code and features in the
Community Edition are identical. New features are being added constantly.

Security: Bugs, when found, are dealt with quickly.

So, are there any drawbacks to MySQL? I’d love to be able to say it’s perfect, but MySQL is
not as fully featured as its main commercial rivals, Microsoft SQL Server and Oracle, or its
main open source rival, PostgreSQL (www.postgresql.org). However, the missing features
are primarily of interest to advanced users, and most are expected to be implemented by
MySQL 5.2 (currently, MySQL 5.1 is in an advanced beta stage).

Perhaps the biggest drawback for people who don’t come from a programming back-
ground is the fact that MySQL doesn’t come with a glossy interface. That’s because MySQL
is a database workhorse. It’s fast and efficient, and is particularly suited to web-based
applications. There are several graphical interfaces available, the most popular being

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

262

7311ch10.qxd  10/10/06  10:48 PM  Page 262



phpMyAdmin, which is free and the default method many hosting companies provide for
accessing MySQL. This chapter shows you how to install both of them.

Which version?

MySQL and phpMyAdmin release new versions at a fast-and-furious pace. While this
means that new features become available as soon as they’re developed, and bugs get
squashed quickly, hosting companies rarely keep pace. In fact, many hosting companies
are still running the MySQL 3.23 series—an excellent database, even though it is two major
versions behind the current release.

Rather than attempting to find old versions to match the setup on your hosting company,
I recommend that you install the latest stable version of both MySQL and phpMyAdmin.
That way, you will find it easier to get help if you run into difficulties. Wherever possible, 
I have designed the code in this book to be backward compatible with MySQL 3.23, and I
point out anything that isn’t.

You can get MySQL from the downloads page at http://dev.mysql.com/downloads.
Select the link for the Current Release (Recommended) of MySQL Community Edition—
Database Server and Client.

The installation instructions for MySQL are different for Windows and Mac OS X, so Mac
users should skip ahead to the relevant section of the chapter.

Installing MySQL on Windows
MySQL comes in a range of versions, but the one you should choose is Windows
Essentials. It contains all the important stuff, and certainly everything you need for this
book. If you have a version older than MySQL 4.1.5 already installed on your computer,
you must uninstall the old version first.

Because new versions are coming out all the time, I recommend that you check my web-
site at http://foundationphp.com/phpsolutions/updates.php before going ahead.
Any major updates to the instructions will be listed there.

SETTING UP MYSQL AND PHPMYADMIN

263

10

7311ch10.qxd  10/10/06  10:48 PM  Page 263



1. Go to the MySQL download site and select the link for the current release.

2. In the page that opens, scroll down to find the section marked Windows downloads.
There is a separate Windows x64 downloads section for 64-bit versions of Windows.
Choose Windows Essentials from the appropriate section, and click the download
link. (You may be invited to Pick a mirror instead. This directs you to a mirror site
closer to your location, and usually offers a faster download.)

3. Download the MySQL file to your hard disk. It will have a name like mysql-
essential-x.x.x-win32.msi, where x.x.x represents the version number. The 
64-bit version is called mysql-essential-x.x.x-win64.msi. Make sure you have
the correct version.

4. Exit all other Windows programs, and double-click the icon of the file you have just
downloaded. This is a self-extracting Windows Installer package.

5. Windows Installer will begin the installation process and open a welcome dialog
box. If you are upgrading an existing version of the same series of Windows
Essentials to a more recent one, the dialog box will inform you that it has detected
your current installation and will remove it before installing the new one. However,
all your databases will remain intact. Click Next to continue.

6. Another dialog box may give you the opportunity to change the installation desti-
nation. Accept the default and click Next.

7. In the next dialog box, accept the default setup (Typical) and click Next.

8. If you’re happy to go ahead with installation, click Install in the next dialog box.

9. Before launching into the actual installation, MySQL invites you to sign up for a
free MySQL.com account. I suggest that you select Skip Sign-Up and click Next.
After you finish setting everything up, visit www.mysql.com/register.php to see if
you’re interested in the benefits offered. The main advantage is that you get auto-
matic notification of new versions and links to helpful articles about new features
of MySQL.

Installing the Windows Essentials version of MySQL

These instructions are based on the 5.0 series of MySQL, which is installed in
C:\Program Files\MySQL\MySQL Server 5.0. I expect MySQL 5.1 to become the rec-
ommended release shortly after publication of this book. On past experience, the
default location changes for each series of Windows Essentials, so 5.1 is likely to be
installed in C:\Program Files\MySQL\MySQL Server 5.1, and Windows treats different
series as completely separate programs. If you upgrade from one series to another, any
existing databases need to be transferred to the new version as if it were a different
server (see the section titled “Backup and data transfer” near the end of this chapter).

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

264

7311ch10.qxd  10/10/06  10:48 PM  Page 264



10. The actual installation now takes place and is normally very quick. When every-
thing’s finished, you’re presented with a final dialog box.

If this is a new installation or if you are upgrading from one series to another,
click Finish to launch the Configuration Wizard, which is described in the next
section.

If you are upgrading to a later version of the same series (such as from 5.0.10 to
5.0.24), deselect the check box labeled Configure the MySQL Server now before
clicking Finish. MySQL should be ready to use, but needs to be restarted manu-
ally (see “Starting and stopping MySQL manually on Windows” later in the chap-
ter). If you have a software firewall, you might also be prompted to allow
connections to and from MySQL.

There are a lot of dialog boxes to go through, although all you usually need to do is accept
the default setting. These instructions are based on version 1.0.8 of the Configuration
Wizard.

1. The Configuration Wizard opens with a welcome screen. Click Next to proceed.

2. The first dialog box asks whether you want a detailed or standard configuration.
Choose the default Detailed Configuration option and click Next.

3. The three options on the next screen affect the amount of computer resources
devoted to MySQL. Accept the default Developer Machine and click Next. If you
choose either of the other options, all other programs will slow down to a crawl.

4. The next dialog box asks you to select from the following three types of database:

Multifunctional Database: Allows you to use both InnoDB and MyISAM tables.

Transactional Database Only: InnoDB tables only. MyISAM is disabled.

Non-Transactional Database Only: MyISAM tables only. InnoDB is disabled.

Most hosting companies support only MyISAM tables, so choose Non-Transactional
Database Only. Unless you plan to learn MySQL in depth, there is little advantage in
choosing Multifunctional Database, which requires an extra 30MB of disk space.

5. What you see next may vary. If you chose Non-Transactional Database Only in the
preceding step, you should be taken directly to step 6. However, you may see a dia-
log box inviting you to select a drive for the InnoDB data file. Unless you chose
Multifunctional Database, just click Next and move on to step 6.

If you choose Multifunctional Database, you need to edit the MySQL configuration
file later, as described in “Changing the default table type on Windows Essentials.”

Configuring MySQL Windows Essentials

SETTING UP MYSQL AND PHPMYADMIN

265

10

7311ch10.qxd  10/10/06  10:48 PM  Page 265



If you plan to use InnoDB, you need to tell MySQL where to store the data. The
InnoDB engine uses a single tablespace that acts as a sort of virtual file system.
InnoDB files, once created, cannot be made smaller. The default location for the
tablespace is C:\Program Files\MySQL\MySQL Server 5.0\data. If you want to
locate the tablespace elsewhere, the drop-down menu offers some suggested
alternatives. When you have made your choice, click Next.

6. Leave the next dialog box at the default Decision Support (DSS)/OLAP and click Next.

7. The next dialog box sets the networking options and SQL mode. The important set-
tings are in the top half. Make sure Enable TCP/IP Networking is checked, and leave
Port Number on the default setting of 3306. The lower half of the dialog box lets
you choose whether to run MySQL in strict mode. In an ideal world, you should
accept this default setting, but it may cause problems with some PHP applications
written before strict mode was introduced. Deselect the Strict mode check box and
click Next.

8. MySQL has impressive support for most of the world’s languages. The next dialog
box invites you to choose a default character set. In spite of what you might think,
this has no bearing on the range of languages supported—all are supported by
default. The character set mainly determines the order in which data is sorted.
Unless you have a specific reason for choosing anything other than the default
Standard Character Set, I suggest that you accept it without making any changes, as
shown. Click Next.

9. The recommended way of running MySQL is as a Windows service. If you accept
the defaults as shown in the top half of the next dialog box, MySQL will always start
automatically when you boot your computer and run silently in the background. (If
MySQL has already been installed as a Windows service, this section will be grayed
out.) If for any reason you don’t want MySQL to start automatically, uncheck the
Launch the MySQL Server automatically option. You can easily change this option
later (see the section “Starting and stopping MySQL manually on Windows” later in
this chapter).

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

266

7311ch10.qxd  10/10/06  10:48 PM  Page 266



The lower half of the dialog box gives you
the option to include the bin directory in
your Windows PATH. This option enables
you to interact directly with MySQL and its
related utilities at the command line with-
out the need to change directory every
time. You won’t need to do this very
often—if at all—but selecting this option
makes life a little more convenient if the
occasion ever arises. Click Next.

If you get a warning message that a
Windows service with the name MySQL
already exists, you will be asked if you want
to use this name. You must click No and
choose a different name from the drop-
down menu in the Service Name field.

10. A fresh installation of MySQL has no security settings, so anyone can tamper with
your data. MySQL uses the name root to signify the main database administrator
with unrestricted control over all aspects of the database. Choose a password that
you can remember, and enter it in both boxes.

Unless you access your development server from a different computer over a net-
work, leave the Enable root access from remote machines check box unchecked.

Do not check Create An Anonymous Account.
It will make your database insecure.

If you are upgrading an existing version of
Windows Essentials and want to keep your
current root password, deselect the Modify
Security Settings check box. If this is a first-
time installation, you probably won’t have
this check box.

Click Next when you have finished.

11. At long last, everything is ready. Click Execute. If you have installed a software fire-
wall, it will probably warn you that MySQL is trying to connect to a DNS server. You
must allow the connection; otherwise, MySQL will never work.

12. Assuming that all was okay, you should see a screen confirming that the configura-
tion process is complete. MySQL should now be running—even if you selected the
option not to start automatically (the option applies only to automatic start on
bootup).

SETTING UP MYSQL AND PHPMYADMIN

267

10

7311ch10.qxd  10/10/06  10:48 PM  Page 267



13. If you want to change the configuration at a later date, launch the Configuration
Wizard from the Windows Start menu by choosing Programs ➤ MySQL ➤ MySQL
Server 5.0 ➤ MySQL Server Instance Config Wizard. The dialog box that opens offers
the following two options:

Reconfigure Instance: This takes you through all the dialog boxes again.

Remove Instance: This does not remove MySQL from your system, but removes
the Windows service that automatically starts MySQL when you boot your com-
puter. Unfortunately, it also removes the MySQL configuration file. See “Starting
and stopping MySQL manually on Windows” for a less radical solution.

Changing the default table type on Windows Essentials

The instructions in this section are required only if you selected Multifunctional Database in
step 4 of “Configuring MySQL Windows Essentials.”

The Windows Configuration Wizard sets InnoDB as the default table storage engine for a
multifunctional database. Since most hosting companies don’t support InnoDB, you should
reset the default to MyISAM. All it requires is a simple change to the MySQL configuration
file: my.ini.

1. Use Windows Explorer to navigate to the folder in which MySQL was installed. The
default is C:\Program Files\MySQL\MySQL Server 5.0.

2. Locate the file called my.ini, and double-click it. The file will open in Notepad.

3. Approximately 80 lines from the top you should find a line that reads as follows:

default-storage-engine=INNODB

Change it to the following:

default-storage-engine=MyISAM

4. Save the file and close it. To make the change effective, restart MySQL. MySQL will
now create all new tables in the default MyISAM format. To use the InnoDB format
for a database, you can change the table type in phpMyAdmin, the graphical inter-
face for MySQL that you will install later in the chapter.

Starting and stopping MySQL manually on Windows

Most of the time, MySQL will be configured to start up automatically, and you can forget
about it entirely. There are times, however, when you need to know how to start or stop
MySQL manually—whether for maintenance, to conserve resources, or because you’re
paranoid about security (a physical firewall is probably a much better solution).

1. Select Control Panel from the Windows Start menu. Double-click the Administrative
Tools icon and then double-click the Services icon in the window that opens.

2. In the Services panel, scroll down to find MySQL and highlight it by clicking once.
You can now use the video recorder–type icons at the top of the panel to stop or
start the server. The text links on the left of the panel do the same.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

268

7311ch10.qxd  10/10/06  10:48 PM  Page 268



3. To change the automatic startup option, highlight MySQL in the Services panel,
right-click to reveal a context menu, and choose Properties.

4. In the dialog box that opens, activate the Startup type drop-down menu and choose
Automatic, Manual, or Disabled. Click OK. That’s all there is to it.

Using the MySQL monitor on Windows

Although most of your interaction with MySQL will be through phpMyAdmin or your own
PHP scripts, it’s useful to know how to access MySQL through the MySQL monitor (or the
Command Line Client, as it’s called in Windows Essentials). It’s also a good way to test that
your installation went without problems.

To start a session From the Windows Start menu, select Programs ➤ MySQL ➤ MySQL
Server 5.0 ➤ MySQL Command Line Client. This will open the Command Line Client, which
will ask you for your password. Type in the root password that you chose in step 10 of 
the section “Configuring MySQL Windows Essentials” and press Enter. As long as the
server is running—and you typed your password correctly—you will see a welcome
message similar to the one shown here.

If you get your password wrong, your computer will beep and close the window. If you
find this happening repeatedly, even though you’re sure you typed in your password cor-
rectly, there are two likely explanations. The first is that your Caps Lock key is on—MySQL
passwords are case-sensitive. The other is that the MySQL server isn’t running. Refer to the
previous section on how to control MySQL manually before doing too much damage by
banging your forehead on the keyboard.

Ending your session After you finish working with the MySQL monitor, type exit or quit at
the mysql> prompt, followed by Enter. The MySQL Command Line Client window closes
automatically.

Being unable to connect to MySQL because the server isn’t running is probably the most
common beginner’s mistake. The MySQL server runs in the background, waiting for
requests. Opening the Command Line Client does not start MySQL; it opens the MySQL
monitor, which is a channel for you to send instructions to the server. Equally, closing
the Command Line Client does not stop MySQL. The server continues running in the
background until the computer is closed down or until you stop it manually.

SETTING UP MYSQL AND PHPMYADMIN

269

10

7311ch10.qxd  10/10/06  10:48 PM  Page 269



Updating the PHP connector files

Since the release of PHP 5.0.0, the code libraries that control connection between PHP and
MySQL are no longer integrated into the PHP core. MySQL recommends that you replace
the following three files with versions created by MySQL:

php_mysql.dll

php_mysqli.dll

libmysql.dll

The versions created by MySQL are compiled against the most recent MySQL Client
libraries, so they contain fixes for bugs that may not have filtered through to the PHP ver-
sions. It takes about a week after the release of a new version of either MySQL or PHP for
the updated connector files to become available. Using the previous version of connector
files should not make any difference.

1. Go to http://dev.mysql.com/downloads/connector/php.

2. Download the ZIP files for both the mysqli extension and mysql extension for the lat-
est version of MySQL.

3. Unzip both files to a temporary folder. When you unzip the second one, you will be
warned that libmysql.dll already exists. Accept the
option to overwrite it. You should now have the three
files as shown here in your temporary folder (the ver-
sion numbers may, of course, be different).

4. Stop Apache or IIS (refer back to Chapter 2, if necessary).

5. Cut libmysql.dll to your clipboard and paste it in the main PHP folder (C:\php, if
you followed the recommended setup in Chapter 2). When prompted, confirm that
you want to overwrite the existing file.

6. Cut php_mysql.dll and php_mysqli.dll to your clipboard and paste them in the
PHP extension folder (C:\php\ext). Confirm that you want to overwrite the exist-
ing files.

7. Restart Apache or IIS.

8. Load a page containing the script <?php phpinfo(); ?> into a browser, and check
that you have entries for mysql and mysqli as shown in the following screenshots.
The Client API version should be the same as the number indicated on the MySQL
download site in step 2.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

270

7311ch10.qxd  10/10/06  10:48 PM  Page 270



Assuming everything went well, skip ahead to the section “Using MySQL with a graphical
interface.” If you cannot find mysql and mysqli in the PHP configuration, read on.

Troubleshooting
You must be able to see the mysql and mysqli entries in the PHP configuration page before
attempting to go any further. Without them, you can’t connect to MySQL. The most com-
mon cause for them failing to appear lies in Windows not reading the correct version of
php.ini, or not being able to find php.ini at all. This usually happens if you had a previ-
ous installation of PHP and didn’t remove it from the Windows system folders. After run-
ning phpinfo(), check the value for Configuration File (php.ini) Path (it’s the sixth item from
the top). If it’s pointing to C:\WINDOWS\php.ini or C:\WINNT\php.ini, you should return
to Chapter 2 and follow the advice on removing an old version of PHP.

Unfortunately, this doesn’t always work, as there may be other programs preventing Windows
from reading the correct version of php.ini. If this happens to you, the most practical solu-
tion is to copy php.ini to C:\WINDOWS or C:\WINNT (depending on your system). You will
probably also need to copy libmysql.dll to C:\WINDOWS\system32 or C:\WINNT\system32.

Setting up MySQL on Mac OS X
MySQL is available as a Mac PKG file, so everything is taken care of for you, apart from
some minor configuration.

1. Go to www.mysql.com/downloads, and select the link for the Current Release (Recom-
mended) of MySQL Community Edition—Database Server and Client.

MySQL 5 is not supported on Jaguar (OS X 10.2). Download the most recent ver-
sion of MySQL 4.1 instead. It should be listed among Older Releases or Archives.

Downloading and installing MySQL

When upgrading an existing installation of MySQL, the Mac installer will not move your data
files. You must first create a backup, as described at the end of this chapter, and reload them
after upgrading. You must also shut down the MySQL server. If you have never installed
MySQL before, you don’t need any special preparations; just follow these instructions.

SETTING UP MYSQL AND PHPMYADMIN

271

10

7311ch10.qxd  10/10/06  10:48 PM  Page 271



2. Scroll down to the Mac OS X downloads section and choose the Standard version
for your processor and version of OS X—there are separate packages for PowerPC,
64-bit PowerPC, and Intel Macs. The Intel Mac version is labeled x86. As you can see
from the screenshot in the next step, the PKG filename includes not only the MySQL
version number, but also the version of OS X and processor for which it has been
compiled (osx10.4-powerpc). The size of the download file is approximately 27MB.

3. Double-click the DMG icon to mount the disk image on your desktop.

4. Double-click the mysql-standard-x.x.x.pkg icon to start the installation process. The
Mac OS X installer opens. Follow the instructions onscreen.

5. Double-click the MySQLStartupItem.pkg icon, and follow the instructions onscreen.

6. Open a Finder window and drag the MySQL.prefPane icon onto Applications ➤

System Preferences. This installs a MySQL control panel. A dialog box asks whether
you want it to be available to yourself or all users. Make your choice, and click Install.

The MySQL preference pane should open.
Click Start MySQL Server and enter your Mac
administrator password when prompted. It
may take a few seconds before the prefer-
ence pane reports that the server is running,
as shown here.

To start or stop the MySQL server in the future,
open the preference pane by clicking the
MySQL icon in the Other section of System
Preferences.

The Mac files are listed close to the bottom of the downloads page. Make sure
you don’t scroll too far down. There is a separate section at the bottom for TAR
files, which require manual installation. When the download starts, check that
the file has a .dmg filename extension. If the file has a .tar.gz extension, cancel
the download and find the Mac section higher up the page.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

272

7311ch10.qxd  10/10/06  10:48 PM  Page 272



Adding MySQL to your PATH

You normally access MySQL through phpMyAdmin (introduced later in this chapter) or
your own PHP scripts, but sometimes you need to access it directly in Terminal. To avoid
having to type out the full path every time, add it to the PATH in your environmental vari-
ables. If you have a new installation of Mac OS X 10.3 or later, Terminal uses what is known
as the “bash shell.” If you upgraded from Jaguar using Archive and Install, you will proba-
bly be using the “tcsh shell.” The only way to make sure is to open Terminal (in Applications
➤ Utilities) and check the title bar. It will either say Terminal — bash, as shown in the fol-
lowing screenshot, or Terminal — tcsh. Use the appropriate set of instructions.

1. Open BBEdit or TextWrangler.

2. From the File menu, choose Open Hidden and browse to your home folder. If there
is a file called .profile (with a period as the first character), as shown in the
screenshot, highlight it, and click Open.

3. The file exists only if you have already made changes to the way Terminal operates.
If .profile doesn’t exist, click Cancel, and open a blank file.

Amending PATH in the bash shell in OS X 10.4 or later

SETTING UP MYSQL AND PHPMYADMIN

273

10

7311ch10.qxd  10/10/06  10:48 PM  Page 273



4. If you have opened an existing version of .profile, add the following code on a
separate line at the end. Otherwise, enter it in the blank page.

export PATH="$PATH:/usr/local/mysql/bin"

5. Select File ➤ Save, and save the file as .profile in your own home folder. The
period at the beginning of the filename should provoke the following warning:

6. Select Use “.” and close your text editor.

You can’t edit hidden files in TextWrangler or BBEdit in OS X 10.3 (Panther), so you need
to use one of Terminal’s text editors.

1. Open Terminal and type the following command followed by Return:

pico ~/.profile

2. If you already have a hidden file called .profile, the contents will be displayed
in Terminal. Use the keyboard arrow keys to move to a new line before typing. If
nothing is displayed, you can start typing straight away. Enter the following line
of code:

export PATH="$PATH:/usr/local/mysql/bin"

3. Save the file by pressing Ctrl+X, and then press Y and Return. Close Terminal.

1. Open Terminal and enter the following command at the shell prompt:

echo 'setenv PATH /usr/local/mysql/bin:$PATH' >> ~/.tcshrc

Make sure you copy everything exactly, including the quotes and spacing as shown.

2. Press Return and close Terminal. The next time you open Terminal, the MySQL pro-
gram directory will have been added to your PATH.

Amending PATH in the tcsh shell

Amending PATH in the bash shell in OS X 10.3

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

274

7311ch10.qxd  10/10/06  10:48 PM  Page 274



Securing MySQL on Mac OS X

Although you have a fully functioning installation of MySQL, by default it has no security.
Even if you’re the only person working on your computer, you need to set up a similar sys-
tem of passwords and user accounts as on your hosting company’s server. There’s one
important account that exists by default on all MySQL servers. It’s called root, and it is the
main database administrator with unlimited powers over database files. When you first
install MySQL, access to the root account isn’t password-protected, so you need to block
this security gap. The MySQL root user, by the way, is totally unrelated to the Mac OS X
root user, which is disabled by default. Enabling root for MySQL has no effect on the 
OS X root user.

1. Open Terminal and type the following command:

mysql -u root

The command contains three elements:

mysql: The name of the program

-u: Tells the program that you want to log in as a specified user

root: The name of the user

2. You should see a welcome message 
like this:

3. The most common problem is getting an
error message like this instead:

It means that mysqld, the MySQL server,
is not running. Use the MySQL control
panel in System Preferences to start
the server.

Another common problem is for Terminal to report command not found. That
means you have either mistyped the command or that you haven’t added the
MySQL program files directory to your PATH, as described in the previous section.

Setting the MySQL root password

If you have just added MySQL to your PATH, you must close and reopen Terminal before
embarking on this section. Otherwise, Terminal won’t be able to find MySQL.

SETTING UP MYSQL AND PHPMYADMIN

275

10

7311ch10.qxd  10/10/06  10:48 PM  Page 275



4. Assuming that you have logged in successfully, as described in step 2, type the fol-
lowing command at the mysql> prompt:

use mysql

This command tells MySQL that you want to use the database called mysql, which
contains all the details of authorized users and the privileges they have to work on
database files. You should see the message Database changed, which means MySQL
is ready for you to work on the files controlling administrative privileges.

5. Now enter the command to set a password for the root user. Substitute
myPassword with the actual password you want to use. Also make sure you use
quotes where indicated and finish the command with a semicolon.

UPDATE user SET password = PASSWORD('myPassword') WHERE user = 'root';

6. Next, remove anonymous access to MySQL:

DELETE FROM user WHERE user = '';

The quotes before the semicolon are two single quotes with no space in between.

7. Tell MySQL to update the privileges table:

FLUSH PRIVILEGES;

The sequence of commands should produce a series of results like this:

8. To exit the MySQL monitor, type exit, followed by Return. This simply ends your ses-
sion with the MySQL monitor. It does not shut down the MySQL server.

9. Now try to log back in by using the same command as in step 2. MySQL won’t let
you in. Anonymous access and password-free access have been removed. To get in
this time, you need to tell MySQL that you want to use a password:

mysql -u root -p

10. When you press Return, you will be prompted for your password. Nothing will
appear onscreen as you type, but as long as you enter the correct password, MySQL
will let you back in. Congratulations, you now have a secure installation of MySQL.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

276

7311ch10.qxd  10/10/06  10:48 PM  Page 276



Using MySQL with a graphical interface
Although you can do everything using MySQL monitor, it’s a lot easier to use a graphic
interface. There are several to choose from, both commercial and free. Among the free
offerings are two from MySQL itself: MySQL Administrator and MySQL Query Browser
(www.mysql.com/products/tools). Two other popular graphical front ends for MySQL are
the commercial product, Navicat (www.navicat.com), and SQLyog (www.webyog.com),
which is available in both commercial and free versions.

However, the most popular graphical interface for MySQL is phpMyAdmin (www.phpmyadmin.
net). It’s a PHP-based administrative system for MySQL that has been around since 1998,
and it constantly evolves to keep pace with MySQL developments. It works on Windows,
Mac OS X, and Linux and currently supports all versions of MySQL from 3.23.32 to 5.0.
What’s more, many hosting companies provide it as the standard interface to MySQL.

Because phpMyAdmin has a very intuitive interface, I suggest that you try it first. If you
work with databases on a regular basis, you may want to explore the other graphical inter-
faces later. However, since phpMyAdmin is free, you have nothing to lose—and you may
find it does everything you want.

Setting up phpMyAdmin on Windows and Mac

Since phpMyAdmin is PHP-based, all that’s needed to install it is download the files, unzip
them to a website in your local testing environment, and create a simple configuration file.

1. Go to www.phpmyadmin.net and download the latest stable version. The files can be
downloaded in three types of compressed file: BZIP2, GZIP, and ZIP. Choose
whichever format you have the decompression software for.

2. Unzip the downloaded file. It will extract the contents to a folder called
phpMyAdmin-x.x.x, where x represents the version number.

3. Highlight the folder icon and cut it to your clipboard. On Windows, paste it inside
the folder designated as your web server root (C:\htdocs, if you followed my
example). If you’re on a Mac and want phpMyAdmin to be available to all users,
put the folder in Macintosh HD:Library:WebServer:Documents, rather than in
your own Sites folder.

4. Rename the folder you have just moved to this: phpMyAdmin.

5. Like Apache and PHP, phpMyAdmin uses a text file to store all the configuration
details. Since version 2.7.0, you no longer edit the phpMyAdmin configuration 
file, but store your personal details in a new file, which should be named
config.inc.php. There are two ways of doing this: using a built-in script called
setup.php or manually. I prefer the manual method, but instructions for both
methods follow.

Downloading and installing phpMyAdmin

SETTING UP MYSQL AND PHPMYADMIN

277

10

7311ch10.qxd  10/10/06  10:48 PM  Page 277



1. Create a new subfolder called config within the phpMyAdmin folder. Windows users
skip to step 3. Mac users continue with step 2.

2. On Mac OS X, use Finder to locate the config folder that you have just created.
Ctrl-click and select Get Info. In Ownership & Permissions, expand Details, and click
the lock icon so that you can make changes to the settings. Change the setting for
Others to Read & Write. Close the config Info panel.

3. Open a browser, and type the following into the address bar:

http://localhost/phpmyadmin/scripts/setup.php

If you created the phpMyAdmin folder inside your Sites folder on a Mac, use the
following address, replacing username with your Mac username:

http://localhost/~username/phpmyadmin/scripts/setup.php

4. You should see the page shown in Figure 10-1.

Figure 10-1. A built-in script automates the configuration of phpMyAdmin.

Ignore any warning about the connection not being secure. This is intended for
server administrators installing phpMyAdmin on a live Internet server. If, on the

Configuring phpMyAdmin with setup.php

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

278

7311ch10.qxd  10/10/06  10:48 PM  Page 278



other hand, you see the following warning, it means that you have not set up the
config folder correctly, and should go back to step 1.

5. Click the Add button in the Servers section. This loads a form with most of the nec-
essary information already filled in. Check the following settings:

Server hostname: localhost

Server port: Leave blank unless your web server is running on a nonstandard
port, such as 8080

Server socket: Leave blank

Connection type: tcp

PHP extension to use: mysqli

6. The default setting for Authentication type is config. If you don’t need to password
protect access to phpMyAdmin, check that User for config auth is set to root, and
enter your MySQL root password in the next field, Password for config auth.

If you want to restrict access to phpMyAdmin by prompting users for a password,
change Authentication type to http, and delete root from the User for config auth field.

7. Scroll down to the Actions field and click Add. As shown here, there are two Add
buttons close to each other. Click the one circled in the screenshot.

8. The next screen will probably warn you that you didn’t set up a phpMyAdmin data-
base, so won’t be able to use all the phpMyAdmin features. This is not important.
You can set one up later if you decide to use the advanced features of
phpMyAdmin.

9. Scroll down to the Configuration section near the bottom of the page and click
Save.

10. Open the config folder in Explorer or Finder. You should see a new file called
config.inc.php. Move it to the main phpMyAdmin folder. The official instructions
tell you to delete the config folder, but this isn’t necessary in a local testing
environment.

SETTING UP MYSQL AND PHPMYADMIN

279

10

7311ch10.qxd  10/10/06  10:48 PM  Page 279



Although setup.php automates the creation of config.inc.php, it duplicates some
default settings. If you strip out the unnecessary commands, you may find it quicker to
create the file manually.

1. If you don't need to password protect access to phpMyAdmin, type the following
code into a blank document:

<?php
$i = 1;
$cfg['Servers'][$i]['extension'] = 'mysqli';
$cfg['Servers'][$i]['password']  = 'mysqlRootPassword';
?>

Use your own MySQL root password in place of mysqlRootPassword.

If you need password protection for phpMyAdmin, use the following code instead:

<?php
$i = 1;
$cfg['Servers'][$i]['extension'] = 'mysqli';
$cfg['Servers'][$i]['auth_type'] = 'http';
?>

2. Save the file as config.inc.php in the main phpMyAdmin folder. Erm . . . that’s it.

Launching phpMyAdmin

phpMyAdmin is a browser-based application, so you launch it by entering http://localhost/
phpMyAdmin/ in the address bar (on a Mac, use http://localhost/~username/phpMyAdmin/
if you put phpMyAdmin in your Sites folder). If you stored your root password in
config.inc.php, phpMyAdmin should load right away, as shown in Figure 10-2. If you
chose to password protect phpMyAdmin, enter root as the username and whatever you
specified as the MySQL root password when prompted.

The phpMyAdmin front page has a drop-down menu labeled Theme/Style. Currently, there
are two options: Original and Darkblue/orange. Figure 10-2 shows the default Original style.
However, all subsequent screenshots are taken using the Darkblue/orange style, because
the tabbed interface fits better on the printed page. Choose whichever style you prefer.

If you get a message saying that the server is not responding or that the socket is not
correctly configured, make sure that the MySQL server is running.

Configuring phpMyAdmin manually

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

280

7311ch10.qxd  10/10/06  10:48 PM  Page 280



Figure 10-2. phpMyAdmin is a very user-friendly and stable graphical interface to MySQL.

Logging out of phpMyAdmin
If you opted to password protect phpMyAdmin, the Log out link is at the bottom left of the
front page, just beneath Import (as shown in the screenshot). When you click the link, you
are immediately prompted for your username and password. Click Cancel, and you will be
presented with a screen informing you that you supplied the wrong username/password—
in other words, you have been logged out. Odd, but that’s the way it works.

Backup and data transfer
MySQL doesn’t store your database in a single file that you can simply upload to your web-
site. Even if you find the right files (on Windows, they’re located in C:\Program
Files\MySQL\MySQL Server 5.0\data), you’re likely to damage them unless the MySQL
server is turned off. Anyway, most hosting companies won’t permit you to upload the raw
files because it would also involve shutting down their server, causing a great deal of
inconvenience for everyone.

Nevertheless, moving a database from one server to another is very easy. All it involves is
creating a backup dump of the data and loading it into the other database with
phpMyAdmin. The dump is a text file that contains all the necessary Structured Query
Language (SQL) commands to populate an individual table or even an entire database
elsewhere. phpMyAdmin can create backups of your entire MySQL server, individual data-
bases, selected tables, or individual tables. To make things simple, the following instruc-
tions show you how to back up only a single database.

You cannot log back in to phpMyAdmin from the wrong username/password screen.
You must enter the original URL into the browser address bar first.

SETTING UP MYSQL AND PHPMYADMIN

281

10

7311ch10.qxd  10/10/06  10:48 PM  Page 281



1. Launch phpMyAdmin and select the database that you want to back up from the
drop-down menu in the navigation frame.

2. When the database details have loaded into the main frame, select Export from the
tabs along the top of the screen, as shown here:

3. The rather fearsome looking screen shown in Figure 10-3 opens. In spite of all the
options, you need to concern yourself with only a few.

Figure 10-3. phpMyAdmin offers a wide range of choices when exporting data from MySQL.

Creating a backup

If you have just installed MySQL for the first time, bookmark this section for when you
need to upload files to your remote server or upgrade MySQL. If you’re on a Mac, you
must always back up your data before upgrading MySQL. Once the new version has
been installed, you can transfer your data to the new server. Windows users need follow
this procedure only when upgrading from one series to another, such as 5.0 to 5.1.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

282

7311ch10.qxd  10/10/06  10:48 PM  Page 282



4. The Export section on the left of the screen lists all the tables in your database.
Click Select All and leave the radio buttons on the default SQL.

5. If the database has never been transferred to the other server before, the only
option that you need to set on the right side of the screen is the drop-down menu
labeled SQL export compatibility. The setting depends on the version of MySQL on
the other server (only the first two numbers, such as 3.23, 4.0, 4.1, or 5.0, are
important):

If the other server is running the same version of MySQL, choose NONE.

If transferring between MySQL 4.1 and MySQL 5.0 (in either direction), 
choose NONE.

If the other server is running MySQL 3.23, choose MYSQL323.

If the other server is running MySQL 4.0, choose MYSQL40.

6. If the database has already been transferred on a previous occasion, select Add
DROP TABLE in the Structure section. The existing contents of each table are
dropped and are replaced with the data in the backup file.

7. Put a check mark in the box alongside Save as file at the bottom of the screen. The
default setting in File name template is __DB__, which automatically gives the
backup file the same name as your database. So, in this case, it will become
phpsolutions.sql. If you add anything after the final double underscore,
phpMyAdmin will add this to the name. For instance, you might want to indicate
the date of the backup, so you could add 20070228 for a backup made on
February 28, 2007. The file would then be named phpsolutions20070228.sql.

1. Upload the SQL file to your remote server. (This isn’t necessary if you are transfer-
ring data to a new installation of MySQL on your local computer.)

2. If a database of the same name doesn’t already exist on the target server, create
the database, but don’t create any tables.

3. Launch the version of phpMyAdmin that is used by the target server and select the
database that you plan to transfer the data to. Click the Import tab in the main
frame. (On versions of phpMyAdmin earlier than 2.7.0, click the SQL tab instead.)

4. Use the Browse button to locate the SQL file and click Go. That’s it!

Looking ahead . . .
Now that you have MySQL and phpMyAdmin installed, you’re no doubt straining at the
leash to get to work with your first database. Before you can do so, you need to set up at
least one user account in MySQL and learn a little about how a database table is struc-
tured. That’s what the next chapter is all about, but it won’t be page after page of dull
theory. By the end of the chapter, you will have built a simple database ready to start using
with PHP and display dynamic data in your web pages.

Loading data from a backup file

SETTING UP MYSQL AND PHPMYADMIN

283

10

7311ch10.qxd  10/10/06  10:48 PM  Page 283



7311ch11.qxd  10/10/06  10:54 PM  Page 284



11 GETTING STARTED WITH 
A DATABASE

7311ch11.qxd  10/10/06  10:54 PM  Page 285



What this chapter covers:

Creating MySQL user accounts

Creating a new database

Defining a database table

Choosing the right column type

Using MySQL, MySQLI, and PDO to query a database

When I first started working with databases, one of the greatest frustrations was that all
the books and online tutorials I consulted assumed that you already knew the basics of
database design and construction, or—if you didn’t—that you planned to use Microsoft
Access. MySQL is very different from Access, which is intended for use in small office 
environments. MySQL is not only fast and multiplatform; it’s capable of handling a high
number of simultaneous connections without any perceptible loss of performance. The
differences between MySQL and Access also affect the way that you construct and interact
with the database. After describing the basics of a database, I’ll show you how to set up
MySQL user accounts, create your first database, and connect to it with PHP. I’ll also show
you how to choose the correct data type to store each piece of information.

How a database stores information
MySQL is a relational database system. All the data is stored in tables, very much in the
same way as in a spreadsheet, with information organized into rows and columns.
Figure 11-1 shows the database table that you will build later in this chapter, as displayed
in phpMyAdmin.

Figure 11-1. Information in a database table is stored in rows and columns, just like in a
spreadsheet.

Each column has a name (image_id, filename, and caption) indicating what it stores.

The rows aren’t labeled, but the first column (image_id) contains a unique identifier known
as a primary key, which can be used to identify the data associated with a particular row.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

286

7311ch11.qxd  10/10/06  10:54 PM  Page 286



Each row contains an individual record of related data. The significance of primary keys is
explained in the next section.

The intersection of a row and a column, where the data is stored, is called a field. So, for
instance, the caption field for the third record in Figure 11-1 contains the value “The
Golden Pavilion in Kyoto” and the primary key for that record is 3.

How primary keys work

Although Figure 11-1 shows image_id as a consecutive sequence from 1 to 8, they’re not
row numbers. Figure 11-2 shows the same table with the captions sorted in alphabetical
order. The field highlighted in Figure 11-1 has moved to the seventh row, but it still has the
same image_id and filename.

Figure 11-2. Even when the table is sorted in a different order, each record can be identified by its
primary key.

Although the primary key is rarely displayed, it identifies the record and all the data stored
in it. Once you know the primary key of a record, you can update it, delete it, or use it to
display data in a separate page. Don’t worry about how you find the primary key. You’ll see
in the next chapter that it’s easily done using Structured Query Language (SQL), the stan-
dard means of communicating with all major databases. The important thing to remember
is that you should assign a primary key to every record.

A primary key doesn’t need to be a number, but it must be unique.

Social security, staff ID, or product numbers make good primary keys. They may
consist of a mixture of numbers, letters, and other characters, but are always dif-
ferent.

MySQL will generate a primary key for you automatically.

Once a primary key has been assigned, it should never—repeat, never—be
changed.

The terms “field” and “column” are often used interchangeably, particularly by
phpMyAdmin. A field holds one piece of information for a single record, whereas a
column contains the same field for all records.

GETTING STARTED WITH A DATABASE

287

11

7311ch11.qxd  10/10/06  10:54 PM  Page 287



Because a primary key must be unique, MySQL doesn’t normally reuse the number when a
record is deleted. This leaves holes in the sequence. Don’t even think about renumbering.
Gaps in the sequence are of no importance whatsoever. The purpose of the primary key is
to identify the record, and by changing the numbers to close the gaps, you put the
integrity of your database at serious risk.

Linking tables with primary and foreign keys

A major difference between a spreadsheet and a relational database like MySQL is that
most databases store data in lots of smaller tables, rather than in one huge table. The main
reason for doing this is to prevent duplication and inconsistency. Let’s say you’re building
a database of your favorite quotations. Instead of typing out the name of the author each
time, it’s more efficient to put the authors’ names in a separate table, and store a refer-
ence to an author’s primary key with each quotation.

Storing a primary key from one table in another table is known as creating a foreign key.
As you can see in Figure 11-3, every record in the left-hand table identified by author_id 32
is a quotation from William Shakespeare. Because the name is stored in only one place, it
guarantees that it’s always spelled correctly. And if you do make a spelling mistake, just a
single correction is all that’s needed to ensure that the change is reflected throughout the
database.

Figure 11-3. Foreign keys are used to link information stored in separate tables.

Using foreign keys to link information in different tables is one of the most powerful
aspects of a relational database. It can also be difficult to grasp in the early stages, so we’ll

Some people want to remove gaps in the sequence to keep track of the number of
records in a table. It’s not necessary, as you’ll discover later in the chapter.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

288

7311ch11.qxd  10/10/06  10:54 PM  Page 288



work with single tables until Chapter 14, which covers foreign keys in detail. In the mean-
time, bear the following points in mind:

When used as the primary key of a table, the identifier must be unique. So each
author_id in the table on the right is used only once.

When used as a foreign key, there can be multiple references to the same identi-
fier. So 32 appears several times in the author_id column in the table on the left.

Breaking down information into small chunks

You may have noticed that the table on the right in Figure 11-3 has separate columns for
each author’s first name and family name. This is an important principle of a relational
database: break down complex information into its component parts, and store each part
separately.

It’s not always easy to decide how far to go with this process. In addition to first and last
name, you might want separate columns for title (Mr., Mrs., Ms., Dr., and so on) and for
middle names or initials. Addresses are best broken down into street, town, county, state,
zip code, and so on. Although it may be a nuisance to break down information into small
chunks, you can always use SQL and/or PHP to join them together again. However, once
you have more than a handful of records, it’s a major undertaking to try to separate com-
plex information stored in a single field.

Checkpoints for good database design

There is no right way to design a database—each one is different. However, the following
guidelines should point you in the right direction:

Give each record in a table a unique identifier (primary key).

Put each group of associated data in a table of its own.

Cross-reference related information by using the primary key from one table as the
foreign key in other tables.

Store only one item of information in each field.

Stay DRY (don’t repeat yourself).

In the early stages, you are likely to make design mistakes that you later come to regret.
Try to anticipate future needs, and make your table structure flexible. You can add new
tables at any time to respond to new requirements.

That’s enough theory for the moment. Let’s get on with something more practical by
building a database for the Japan Solutions website from Chapters 4 and 5.

As long as author_id remains unique in the table where it’s the primary key, you know
that it always refers to the same person.

GETTING STARTED WITH A DATABASE

289

11

7311ch11.qxd  10/10/06  10:54 PM  Page 289



Setting up the phpsolutions database
MySQL is a relational database management system (RDMS), which can support a large
number of databases. In a local testing environment, there’s no limit to the number of
databases that you can create, and you can call them whatever you like. I am going to
assume that you are working in a local testing environment and will show you how to set
up a database called phpsolutions, together with two user accounts called psquery and
psadmin.

MySQL naming rules

The basic MySQL naming rules for databases, tables, and columns are as follows:

Names can be up to 64 characters long.

Legal characters are numbers, letters, the underscore, and $.

Names can begin with a number, but cannot consist exclusively of numbers.

Some hosting companies seem blissfully ignorant of these rules and assign clients data-
bases that contain one or more hyphens (an illegal character) in their name. If a database,
table, or column name contains spaces or illegal characters, you must always surround it
by backticks (`) in SQL queries. Note that this is not a single quote ('), but a separate
character.

When choosing names, you might accidentally choose one of MySQL’s many reserved
words (http://dev.mysql.com/doc/refman/5.0/en/reserved-words.html), such as date
or time. One technique to avoid this is to use compound words, such as arrival_date,
arrival_time, and so on. Alternatively, surround all names with backticks. phpMyAdmin
does this automatically, but you need to do this manually when writing your own SQL in a
PHP script.

Case sensitivity of names
Windows and Mac OS X treat MySQL names as case-insensitive. However, Linux and Unix
servers respect case sensitivity. To avoid problems when transferring databases and PHP
code from your local computer to a remote server, I strongly recommend that you use
lowercase exclusively in database, table, and column names. When building names from
more than one word, join them with an underscore.

On shared hosting, you may be limited to just one database set up by the hosting com-
pany. If you don’t have the freedom to set up a new database and user accounts, sub-
stitute the name and username allocated by your hosting company for phpsolutions
and psadmin respectively throughout the rest of this book.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

290

7311ch11.qxd  10/10/06  10:54 PM  Page 290



Using phpMyAdmin to create a new database

Creating a new database in phpMyAdmin is easy.

1. Launch phpMyAdmin in a browser, as described in the previous chapter.

2. Type the name of the new database (phpsolutions) into the field labeled Create new
database. Leave the Collation drop-down menu at its default setting, and click
Create, as shown in the following screenshot:

3. The next screen should confirm that the database has been created and offer you
the opportunity to create your first table. Before creating any tables in a new data-
base, it’s a good idea to create user accounts for it. Leave phpMyAdmin open, as
you’ll continue using it in the next section.

Creating database-specific user accounts

At the moment, your installation of MySQL has only one registered user—the superuser
account called “root,” which has complete control over everything. The root user should
never be used for anything other than top-level administration, such as the creation and
removal of databases, creating user accounts, and exporting and importing data. Each indi-
vidual database should have at least one—preferably two—dedicated user accounts with
limited privileges.

When you put a database online, you should grant users the least privileges they need, and no
more. There are four important privileges—all named after the equivalent SQL commands:

SELECT: Retrieves records from database tables

INSERT: Inserts records into a database

Collation determines the sort order of records. Unless you are using a language
other than English, Swedish, or Finnish, you never need to change its value. Even
if you use a different language, you should use the Collation option only if your
remote server uses MySQL 4.1 or higher.

GETTING STARTED WITH A DATABASE

291

11

7311ch11.qxd  10/10/06  10:54 PM  Page 291



UPDATE: Changes existing records

DELETE: Deletes records, but not tables or databases (the command for that is DROP)

Most of the time, visitors need only to retrieve information, so the psquery user account
will have the SELECT privilege only. However, for user registration or site administration,
you need all four privileges. These will be made available to the psadmin account.

1. Return to the main phpMyAdmin screen by clicking either the little house icon at
the top left of the left frame or Server: localhost at the top left of the main frame.

2. Click the Privileges link toward the bottom of the left
column of the main screen.

3. This opens the User overview screen. If you have just installed MySQL, there should
be only one user: root. Click the Add a new User link halfway down the page.

4. In the page that opens, enter psadmin (or the name of the user account that you
want to create) in the User name field. Select Local from the Host drop-down
menu. This automatically enters localhost in the field alongside. Selecting this
option allows the psadmin user to connect to MySQL only from the same com-
puter. Then enter a password in the Password field, and type it again for confirma-
tion in the Re-type field.

5. Beneath the Login Information table is one labeled Global privileges. These give a user
privileges on all databases, including the mysql one, which contains sensitive infor-
mation. Granting such extensive privileges is insecure, so leave the Global privileges
table unchecked, and click the Go button right at the bottom of the page.

6. The next page confirms that the psadmin user has been created and displays many
options, beginning with the Global privileges table again. Scroll down below this to
the section labeled Database-specific privileges. Activate the drop-down menu, as
shown here, to display a list of all databases on your system. Select phpsolutions.

In the download files for this book, I’ve used a simple password (kyoto), but for a
database on the Internet, you should choose a password that’s hard to guess.
MySQL passwords are case-sensitive.

Most links and tabs in phpMyAdmin are context-sensitive. It’s important to go back to
the main screen and click the Privileges link rather than the Privileges tab at the top of
the previous screen. The link on the phpMyAdmin main screen lets you set up new user
accounts. The Privileges tab at the top of a page only provides information about exist-
ing accounts.

Granting user privileges

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

292

7311ch11.qxd  10/10/06  10:54 PM  Page 292



7. The next screen allows you to set the privileges for this user on just the
phpsolutions database. You want psadmin to have all four privileges listed earlier,
so click the check boxes next to SELECT, INSERT, UPDATE, and DELETE. (If you
hover your mouse pointer over each option, phpMyAdmin displays a tooltip
describing what the option is for, as shown.) After selecting the four privileges, click
the top Go button. (Always click the Go button at the foot of or alongside the sec-
tion with the options you want to set.)

8. phpMyAdmin presents you with confirmation that the privileges have been
updated for the psadmin user account: the page displays the Database-specific priv-
ileges table again, in case you need to change anything. Click the Privileges tab at
the top of the page. You should now see psadmin listed with root in the User
overview.

A new installation of MySQL 5 contains three databases: information_schema
(phpMyAdmin escapes the underscore by preceding it with a backslash), mysql, and
test. The first, information_schema, is a virtual database that contains details of all
other databases on the same server. You can view the contents in phpMyAdmin, but you
can’t edit them. The mysql database contains details of all user accounts and privileges.
You should never edit it directly unless you’re sure what you’re doing. Always use the
Privileges link on the main phpMyAdmin page to manage user accounts, privileges, and
passwords. The test database is empty.

GETTING STARTED WITH A DATABASE

293

11

7311ch11.qxd  10/10/06  10:54 PM  Page 293



If you ever need to make any changes to a user’s privileges, click the Edit Privileges
icon to the right of the listing, as shown. To delete a user, select the check box to
the left of the User column, and then click Go in the Remove selected users section.

9. Click Add a new User, and repeat steps 4 through 8 to create a second user account
called psquery. This user will have much more restricted privileges, so when you
get to step 7, check only the SELECT option. The password I used for psquery is
fuji. Again, for an online database, you should choose something more robust.

Creating a database table

Now that you have a database and dedicated user accounts, you can begin creating tables.
Let’s begin by creating a table to hold the details of images, as shown in Figure 11-1.
Before you can start entering data, you need to define the table structure. This involves
deciding the following:

The name of the table

How many columns it will have

The name of each column

What type of data will be stored in each column

Whether the column must always have data in each field

Which column contains the table’s primary key

If you look at Figure 11-1, you can see that the table contains three columns: image_id
(primary key), filename, and caption. Because it contains details of images, that’s a good
name to use. There’s not much point in storing a filename without a caption, so every col-
umn must contain data. Great! Apart from the data type, all the decisions have been made.
I’ll explain the data types as we go along.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

294

7311ch11.qxd  10/10/06  10:54 PM  Page 294



1. Launch phpMyAdmin in a browser, if it’s not already open, and select phpsolutions
from the Database drop-down menu in the left frame. Type the name of the new
table (images) in the field labeled Create new table on database phpsolutions, and
enter 3 as the Number of fields. (As mentioned before, phpMyAdmin refers to
columns as fields. What it means is how many fields each record has.) Then click
the Go button.

2. The next screen is where you define the table. Unless you have a large monitor, you
will probably need to scroll horizontally to see all of it. The following screenshot
shows all the fields filled in, but the values may be difficult to read, so they are also
listed in Table 11-1 (Collation and Default are omitted, as they are both left blank).

Defining the images table

GETTING STARTED WITH A DATABASE

295

11

Table 11-1. Settings for the images table

Field Type Length/Values Attributes Null Extra Primary key

image_id INT UNSIGNED not null auto_increment Selected

filename VARCHAR 25 not null

caption VARCHAR 120 not null

The first column, image_id, is defined as type INT, which stands for integer. Its
attribute is set to UNSIGNED, which means that only positive numbers are allowed.
It’s also set to auto_increment, and is the table’s primary key, so MySQL automati-
cally inserts in this column the next available number (starting at 1) whenever a
new record is inserted.

The next column, filename, is defined as type VARCHAR with a length of 25. This
means it accepts up to 25 characters of text.

The final column, caption, is also VARCHAR with a length of 120, so it accepts up to
120 characters of text.

All columns are defined as not null, so they must always contain something.
However, that “something” can be as little as an empty string. I’ll describe the col-
umn types in more detail in “Choosing the right column type in MySQL” later in the
chapter.

When you have finished, click the Save button at the bottom-center of the screen.

7311ch11.qxd  10/10/06  10:54 PM  Page 295



3. The next screen displays the SQL query that phpMyAdmin used to define the
images table. Beneath that, you’ll see the structure of the table displayed like this:

Don’t be alarmed by the fact that Collation displays latin1_swedish_ci. MySQL is based in
Sweden, and Swedish uses the same sort order as English (and Finnish). The underlining of
image_id indicates that it’s the table’s primary key. To change any settings, click the pencil-
like icon in the appropriate row. This opens a version of the previous screen and allows
you to change the values. If you made a complete mess and want to start again, click the
Drop tab at the top right of the screen, and confirm that you want to drop the table. (In
SQL, delete refers only to records. You drop a table or a database.)

Inserting records into a table

Now that you have a table, you need to put some data into it. Eventually, you’ll need to build
your own content management system using XHTML forms, PHP, and SQL; but the quick and
easy way to do it is with phpMyAdmin. First, I’ll show you how to enter a couple of records
manually; and then I’ll show you how to cheat by loading the entire table from a SQL file.

1. If phpMyAdmin is still displaying the structure of the images table as at the end of
the previous section, skip to step 2. Otherwise, launch phpMyAdmin, and select the
phpsolutions database from the drop-down menu in the left frame. Then click 
the Structure icon alongside images, as shown in the following screenshot:

The breadcrumb trail at the top of the main frame provides the context for the
tabs across the head of the page. The Structure tab at the top left of the preced-
ing screenshot refers to the structure of the phpsolutions database. At the
moment, it contains only one table, images. To access the structure of an indi-
vidual table, click the Structure icon alongside its name. Use your mouse pointer
to reveal tooltips for each icon. Some, such as Browse, are grayed out because
there are no records in the table.

Using phpMyAdmin to insert records manually

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

296

7311ch11.qxd  10/10/06  10:54 PM  Page 296



2. Click the Insert tab in the center top of the page. This displays the following screen,
ready for you to insert up to two records:

3. The forms display the names and details of each column. You can ignore the
Function fields. MySQL has a large number of functions that you can apply to the
values being stored in your table. You’ll learn more about them in the following
chapters. The Value field is where you enter the data you want to insert in the table.

Because you have defined image_id as auto_increment, MySQL inserts the next
available number automatically. So you must leave the first Value field blank. Fill in
the next two Value fields as follows:

filename: basin.jpg

caption: Water basin at Ryoanji temple, Kyoto

4. Deselect the check box labeled Ignore. If you forget to do this, anything entered in
the second form won’t be inserted into the table.

5. Again, leave the Value field for image_id blank, and fill in the next two fields like this:

filename: fountains.jpg

caption: Fountains in central Tokyo

6. Click Go. You should be taken back to the table structure page, but the SQL used
to insert the records is displayed at the top of the page. I’ll explain the basic SQL
commands in the remaining chapters, but studying the SQL that phpMyAdmin dis-
plays is a good way to learn how to build your own queries. SQL is closely based on
human language, so it isn’t all that difficult to learn.

7. Click the Browse tab at the top left of the page. You should now see the first two
entries in the images table, as shown here:

As you can see, MySQL has automatically inserted 1 and 2 in the image_id fields.

You could continue typing out the details of the remaining six images, but let’s speed
things up a bit by using a SQL file that contains all the necessary data.

GETTING STARTED WITH A DATABASE

297

11

7311ch11.qxd  10/10/06  10:54 PM  Page 297



Because the primary key of the images table has been set to auto_increment, it’s neces-
sary to drop the original table and all its data. The SQL file does this automatically and
builds the table from scratch. These instructions assume that phpMyAdmin is open at the
page in step 7 of the previous section.

1. If you’re happy to overwrite the data in the images table, skip to step 2. However,
if you have entered data that you don’t want to lose, copy your data to a different
table. Click the Operations tab at the top of the page, type the name of the new
table in the blank field in the section titled Copy table to (database.table), and click
Go. The following screenshot shows the settings for copying the images table to
images_backup:

After clicking Go, you should see confirmation that the table has been copied. The
breadcrumb trail at the top of the page indicates that phpMyAdmin is still in the
images table, so you can proceed to step 2, even though you have a different page
onscreen.

2. Click the Import tab at the top right of the page. In the next screen, click the Browse
(or Choose File) button in File to import, and navigate to images.sql in the download
files. Leave all options at their default setting, and click Go at the foot of the page.

Loading the images records from a SQL file

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

298

7311ch11.qxd  10/10/06  10:54 PM  Page 298



3. phpMyAdmin drops the original table, creates a new version, and inserts all the
records. When you see confirmation that the file has been imported, click the
Browse button at the top left of the page. You should now see the same data as
shown in Figure 11-1 at the beginning of the chapter.

Now that you’ve got some useful data in your database table, it’s time to bring it together
with PHP, but first, a quick overview of the main column types in MySQL.

Choosing the right column type in MySQL
You may have received a bit of a shock when selecting Type for the image_id column.
phpMyAdmin lists all available column types—there are 28 in MySQL 5.0. Rather than con-
fuse you with unnecessary details, I’ll explain just the most commonly used. You can find
full details of all column types in the MySQL documentation at http://dev.mysql.com/
doc/refman/5.0/en/data-types.html.

Storing text

The difference between the main text column types boils down to the maximum number of
characters that can be stored in an individual field, and whether you can set a default value.

CHAR: A fixed-length character string. You must specify the required length in the
Length/Values field. The maximum permitted value in all versions of MySQL is 255.
You can define a default value.

VARCHAR: A variable-length character string. You must specify the maximum num-
ber of characters you plan to use in the Length/Values field in phpMyAdmin. Prior
to MySQL 5.0, the limit is 255. This has been increased to 65,535 in MySQL 5.0.
Accepts a default value.

TEXT: Stores text up to a maximum of 65,535 characters (slightly longer than this
chapter). Cannot define a default value.

TEXT is convenient because you don’t need to specify a maximum size (in fact, you can’t).
Although the maximum length of VARCHAR is the same as TEXT in MySQL 5.0, other factors
may limit the actual amount that can be stored. Keep it simple: use VARCHAR for short text
items and TEXT for longer ones.

The term “characters” here refers only to characters in the Latin1 (ISO-8859-1) charac-
ter set—the default encoding for most Western European languages. If you store your
data in UTF-8 (Unicode), the limit is calculated in bytes. Accented characters in
Spanish, French, and other Western languages require only one byte in Latin1, but
occupy two bytes in UTF-8.

Use images323.sql for MySQL 3.23 or images40.sql for MySQL 4.0. Older versions of
phpMyAdmin don’t have an Import tab. Click the SQL tab instead. The File to import
form is at the bottom of the page. It looks slightly different, but works the same way.

GETTING STARTED WITH A DATABASE

299

11

7311ch11.qxd  10/10/06  10:54 PM  Page 299



Storing numbers

The most frequently used numeric column types are as follows:

INT: Any whole number (integer) between –2,147,483,648 and 2,147,483,647. If the
column is declared as UNSIGNED, the range is from 0 to 4,294,967,295.

FLOAT: A floating-point number. You can optionally specify two comma-separated
numbers in the Length/Values field. The first number specifies the number of digits
before the decimal point, and the second specifies the precision to which the dec-
imal portion should be rounded. Since PHP will format numbers after calculation, 
I recommend that you use FLOAT without the optional parameters.

DECIMAL: A floating-point number stored as a string. This column type is best avoided.

DECIMAL is intended for currencies, but you can’t perform calculations with strings inside a
database, so it’s more practical to use INT. For dollars or euros, store currencies as cents;
for pounds, use pence. Then use PHP to divide the result by 100, and format the currency
as desired.

Storing dates and times

MySQL stores dates in the format YYYY-MM-DD. This comes as a shock to many people, but
it’s the standard approved by the ISO (International Organization for Standardization), and
avoids the ambiguity inherent in different national conventions. I’ll return to the subject of
dates in Chapter 14. The most important column types for dates and times are as follows:

DATE: A date stored as YYYY-MM-DD. The supported range is 1000-01-01 to 9999-
12-31.

DATETIME: A combined date and time displayed in the format YYYY-MM-DD HH:MM:SS.

TIMESTAMP: A timestamp (normally generated automatically by the computer).
Legal values range from the beginning of 1970 to partway through 2037.

MySQL timestamps are based on a human-readable date
and, since MySQL 4.1, use the same format as DATETIME.
As a result, they are incompatible with Unix and PHP 
timestamps, which are based on the number of seconds
elapsed since January 1, 1970. Don’t mix them.

Don’t use commas or spaces as the thousands-separator. Apart from
numerals, the only characters permitted in numbers are the negative
operator (-) and the decimal point (.).

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

300

7311ch11.qxd  10/10/06  10:54 PM  Page 300



Storing predefined lists

MySQL lets you store two types of predefined list that could be regarded as the database
equivalents of radio button and check box states:

ENUM: This column type stores a single choice from a predefined list, such as “yes,
no, don’t know” or “male, female.” The maximum number of items that can be
stored in the predefined list is a mind-boggling 65,535—some radio-button group!

SET: This column type stores zero or more choices from a predefined list. The list
can hold a maximum of 64 choices.

While ENUM is quite useful, SET tends to be less so, mainly because it violates the principle
of storing only one piece of information in a field. The type of situation where it can be
useful is when recording optional extras on a car or multiple choices in a survey.

Storing binary data

Storing binary data, such as images, isn’t a good idea. It bloats your database, and you
can’t display images directly from a database. However, the following column types are
designed for binary data:

TINYBLOB: Up to 255 bytes

BLOB: Up to 64KB

MEDIUMBLOB: Up to 16MB

LONGBLOB: Up to 4GB

With such whimsical names, it’s a bit of a letdown to discover that BLOB stands for binary
large object.

Connecting to MySQL with PHP
One of the great features of PHP is that it supports all the major database systems—and
some not so major ones, too. It’s also a weakness, because PHP uses dedicated functions
for each type of database. This isn’t a problem if you use the same database all the time,
but it makes code less portable. Consequently, PHP Data Objects (PDO) were introduced in
PHP 5.1. The idea is that you write just one set of code, and it will work with any database.
Strictly speaking, this isn’t 100% true, because there are variations in the way you write SQL
for some databases. Nevertheless, it’s a major change; and the plan is to move PHP data-
base connection entirely to PDO.

Unfortunately, there’s a rather large fly in the ointment . . . Even two years after the release
of PHP 5, a large number of hosting companies still offered only PHP 4, and seemed to be
in no hurry to upgrade. As a result, if your remote server runs on PHP 4, you still need to
use the original MySQL extension. Just to make things more complicated, PHP 5 also offers
the MySQL Improved (MySQLI) extension, which is intended for use with MySQL 4.1 and

GETTING STARTED WITH A DATABASE

301

11

7311ch11.qxd  10/10/06  10:54 PM  Page 301



above. So, before you can work with PHP and MySQL on your website, you need to check
which versions are running. You have the following options:

If your remote server runs PHP 4, you must use the MySQL extension.

If your remote server runs PHP 5 and MySQL 4.1 or above, use the MySQL
Improved extension or—if it’s available—PDO.

Checking your remote server setup

As always, run the following one-line script to find out the PHP configuration of your
remote server:

<?php phpinfo(); ?>

Scroll down the configuration page, and look for the following sections.

All websites should have the first section (mysql), but the mysqli and PDO sections will
depend on the server and the version of PHP installed. If you have PDO, you must also
make sure that mysql is listed among the PDO drivers.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

302

7311ch11.qxd  10/10/06  10:54 PM  Page 302



If your host provides phpMyAdmin, the easiest way to check MySQL is to look at the top
left of the main phpMyAdmin screen: the MySQL version number is displayed there. If you
don’t have phpMyAdmin on your remote server, use mysql_version.php in the download
files for this chapter. Insert the hostname, username, and password that your hosting com-
pany has given you for connecting to MySQL. Save the file, upload it to your site, and view
it in a browser. It will display the version running on your server.

After you have checked your remote server settings, remove mysql_version.php and the
phpinfo() script. Although the information may seem harmless, it could be of use to a
potential attacker.

How PHP communicates with MySQL

Regardless of whether you use PHP’s MySQL functions, the MySQL Improved functions, or
PDO, the process always follows this sequence:

1. Connect to MySQL using the hostname, username, and password.

2. Select the database you want to work with (combined with 1 in MySQLI and PDO).

3. Prepare a SQL query.

4. Execute the query and save the result.

5. Extract the data from the result (usually with a loop).

Username and password are straightforward: they’re the username and password of the
accounts you have just created or the account given to you by your hosting company. But
what about hostname? In a local testing environment it’s localhost. What comes as a sur-
prise is that MySQL normally uses localhost even on a remote server. This is because the
database server is normally located on the same server as your website. In other words,
the web server and MySQL are local to each other. However, if your hosting company has
installed MySQL on a separate machine, it will tell you the address to use. The important
thing to realize is that the MySQL hostname is not the same as your website domain name.

Let’s take a quick look at how you connect to a MySQL server with each of the methods.

Connecting with the original MySQL extension
You connect to the MySQL server with the mysql_connect() function, which takes three
arguments: hostname, username, and password, like this:

$conn = mysql_connect($hostname, $username, $password) ➥

or die ('Cannot connect to MySQL server');

When using the original MySQL extension or MySQLI, some commands are followed by
the rather foreboding or die(). This stops the script from going any further if the com-
mand fails, and displays any error message that you have inserted between the parenthe-
ses. PDO requires a different approach because of the way it handles connection errors.

GETTING STARTED WITH A DATABASE

303

11

7311ch11.qxd  10/10/06  10:54 PM  Page 303



It doesn’t matter whether you pass the arguments as variables or as literal strings. If the
connection is successful, the function returns a reference to the connection, which can be
stored as a variable.

After connecting, you need to select the individual database using mysql_select_db()
like this:

mysql_select_db('phpsolutions') or die ('Cannot open database');

Connecting with the MySQL Improved extension
The MySQL Improved extension has two interfaces: procedural and object-oriented. The
procedural interface is designed to ease the transition from the original MySQL functions.
Since the object-oriented version is more compact, that’s the version adopted here.

To connect to a MySQL server, you create a mysqli object by passing four arguments to
new mysqli(): the hostname, username, password, and the name of the database. The new
keyword tells PHP that you want to create an object. Don’t worry if you’re not familiar with
object-oriented programming (OOP). For the most part, objects act like ordinary variables.
The main difference is that objects have methods (functions) and properties (values),
which are accessed using the -> operator.

So this is how you would connect to the phpsolutions database:

$conn = new mysqli($hostname, $username, $password, 'phpsolutions') ➥

or die ('Cannot open database');

This stores the connection object as $conn.

Connecting with PDO
PHP Data Objects are similar to the MySQLI object-oriented interface, but require a slightly
different approach. The most important difference is that, if you’re not careful, a PDO dis-
plays your database username and password onscreen when it can’t connect to the data-
base. This is because a PDO uses a type of error handling called exceptions, which are new
to PHP 5. Unless you catch the exception, PHP displays debugging information onscreen.
This is great for testing purposes, but a disaster in an online situation. Fortunately, the way
you catch an exception is very easy.

To create a connection to the MySQL server, you create a data object by passing the fol-
lowing three arguments to new PDO():

A string specifying the database type, the hostname, and the name of the database.
The string must be presented in the following format:

'mysql:host=hostname;dbname=databaseName'

The username.

The user’s password.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

304

7311ch11.qxd  10/10/06  10:54 PM  Page 304



When creating a PDO—or using any other code that might trigger an exception (the tech-
nical term is throw an exception)—you need to wrap it in a try/catch block. This works
in the same way as if... else. PHP attempts to execute the code in the try block. If it
works, fine. If it doesn’t, it throws an exception for the catch block to . . . well, catch. The
code looks like this:

try {
$conn = new PDO("mysql:host=$hostname;dbname=phpsolutions", ➥

$username, $password);
}

catch (PDOException $e) {
echo 'Error: '.$e->getMessage();
exit;
}

The catch keyword is followed by a pair of parentheses, which take two arguments: the
type of exception (in this case, PDOException) and a variable to catch the exception. The
variable can be anything, but the convention is to use $e.

The catch block uses the -> operator, which tells PHP that you want to use a method
(function) or property (variable) with a particular object. The getMessage() method (func-
tion) gets the error message generated by the exception. Because there’s no point going
any further, exit on the next line terminates the script. It’s not obligatory to display the
error message generated by the exception. You can put anything you like in the catch
block. It may be more user-friendly to send the visitor to an error page using header(), as
described in “Redirecting to another page” in Chapter 5.

Building a database connection function

Connecting to a database is a routine chore that needs to be performed in every page
from now on; and routine tasks are often best left to functions and/or include files. If any
of the details change, you need change them in one place only.

Exceptions are an advanced subject that I wouldn’t normally
cover. However, failure to connect to the database with PDO
throws an automatic exception, so you must handle it in this way
to prevent the exposure of your username and password. Other
PDO errors don’t throw exceptions, so this is the only place I’ll use
a try/catch block.

In PHP 5.1.6, PDOException is case-insensitive. However, there is a
move to make PHP more case-sensitive, so it’s a good idea to
adhere to this mixture of uppercase and lowercase.

GETTING STARTED WITH A DATABASE

305

11

7311ch11.qxd  10/10/06  10:54 PM  Page 305



The finished script is in the download files for this chapter. There are three versions—
one each for the original MySQL extension (conn_mysql.inc.php), MySQL Improved
(conn_mysqli.inc.php), and PDO (conn_pdo.inc.php).

1. In a blank file, insert the following code:

<?php
function dbConnect($type) {
if ($type  == 'query') {
$user = 'psquery';
$pwd = 'fuji';
}

elseif ($type == 'admin') {
$user = 'psadmin';
$pwd = 'kyoto';
}

else {
exit('Unrecognized connection type');
}

// Connection code goes here
}

?>

This is the basic skeleton for all versions of a function called dbConnect(), which
takes a single argument: the type of connection you want. The if... elseif con-
ditional statement checks the value of the argument and switches between the
psquery and psadmin username and password as appropriate.

If your remote server allows you only one username and password, you can omit
the argument and the conditional statement, and just use the following code:

<?php
function dbConnect() {
// Connection code goes here
}

?>

2. Replace the Connection code goes here comment. The code differs according to
which connection method you need to use, as described earlier.

If you are using the original MySQL extension (PHP 4 and/or MySQL prior to ver-
sion 4.1), use this:

$conn = mysql_connect('localhost', $user, $pwd) ➥

or die ('Cannot connect to MySQL server');
mysql_select_db('phpsolutions') or die ('Cannot open database');
return $conn;

PHP Solution 11-1: Making a reusable database connector

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

306

7311ch11.qxd  10/10/06  10:54 PM  Page 306



If you are using MySQL Improved (PHP 5 and MySQL 4.1 or later), use this:

$conn = new mysqli('localhost', $user, $pwd, 'phpsolutions') ➥

or die ('Cannot open database');
return $conn;

If you are using PDO (PHP 5.1 and MySQL 4.1 or later), use this:

try {
$conn = new PDO('mysql:host=localhost;dbname=phpsolutions', ➥

$user, $pwd);
return $conn;
}

catch (PDOException $e) {
echo 'Cannot connect to database';
exit;
}

The script for each version simply encapsulates the connection code described in
the preceding section and returns $conn, which is a reference to the database con-
nection (MySQL) or the connection object (MySQLI and PDO).

3. Because this is an include file, make sure there are no new lines or whitespace
before or after the PHP tags. Save the page in the includes folder. You can either
use the same name as for the download file for your particular version or call it
connection.inc.php.

To use this function, include connection.inc.php, and call the function like this for the
psquery user:

$conn = dbConnect('query');

For the psadmin user, call it like this:

$conn = dbConnect('admin');

Regardless of whether you are using the original MySQL extension, MySQLI, or PDO, 
$conn contains the correct type of connection to the phpsolutions database. To adapt
this for any other database, change the username, password, and database name in
connection.inc.php.

Throughout the rest of the book, in scripts that are not specific to
one particular connection method, I use the generic filename
connection.inc.php to refer to the file that contains the
dbConnect() function. Make sure that you use the correct version
for the database connection functions you’re using.

GETTING STARTED WITH A DATABASE

307

11

7311ch11.qxd  10/10/06  10:54 PM  Page 307



Finding the number of results from a query

Counting the number of results from a database query is useful in several ways. It’s neces-
sary for creating a navigation system to page through a long set of results (you’ll learn how
to do that in the next chapter). It’s also important for user authentication (covered in
Chapter 15). If you get no results from matching a username and password, you know that
the login procedure should fail.

The original MySQL extension and MySQL Improved both have a convenient method of
finding out the number of results returned by a query. However, this isn’t available with
PDO, so you need to take a different approach. If you’re using PDO, skip ahead to PHP
Solution 11-3.

As you work through this PHP Solution, you’ll see just how similar the code is for the orig-
inal MySQL extension and MySQL Improved. This makes transferring from one to the other
very easy, but you also need to be careful not to mix the two styles. I have indicated the
differences clearly in steps 4 and 5.

1. Create a new folder called mysql in the phpsolutions site root, and create a new
file called mysql.php inside the folder. The page will eventually be used to display
a table, so it should have a DOCTYPE declaration and an XHTML skeleton.

2. Include the appropriate connection file for MySQL or MySQLI above the DOCTYPE
declaration, and create a connection to MySQL like this:

<?php
include('../includes/connection.inc.php');
// connect to MySQL
$conn = dbConnect('query');
?>

You don’t need administrative privileges for this exercise, so I have used the
account that has only SELECT privileges.

3. Next, prepare the SQL query. Add this code immediately after the previous step
(but before the closing PHP tag):

// prepare the SQL query
$sql = 'SELECT * FROM images';

This means “select everything from the images table.” The asterisk (*) is shorthand
for “all columns.”

4. Now execute the query.

The original MySQL extension uses a function called mysql_query(), which takes
the SQL query as an argument. The code looks like this (it goes immediately after
step 3):

// submit the query and capture the result
$result = mysql_query($sql) or die(mysql_error());

PHP Solution 11-2: Counting records in a result set (MySQL and MySQLI)

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

308

7311ch11.qxd  10/10/06  10:54 PM  Page 308



The code for MySQL Improved is very similar. You apply the query() method to the
connection object ($conn) using the -> operator, and pass the SQL query as an
argument like this:

// submit the query and capture the result
$result = $conn->query($sql) or die(mysqli_error());

Note that both methods store the result in a variable, which I have imaginatively
named $result. If there is a problem, the database server returns an error mes-
sage, which can be retrieved using mysql_error() or mysqli_error(), depending
on your method of connection. By placing this function between the parentheses
of or die(), the script comes to a halt if there’s a problem and displays the error
message.

5. Assuming there’s no problem, the variable $result now holds a reference to the
number of records found by the SQL query.

If you’re using the original MySQL extension, pass the variable holding the result to
mysql_num_rows() like this (put the code immediately after the preceding step):

// find out how many records were retrieved
$numRows = mysql_num_rows($result);

In MySQL Improved, the number of results is held in the num_rows property of the
result object ($result). You access it with the -> operator like this:

// find out how many records were retrieved
$numRows = $result->num_rows;

6. You can now display the value of $numRows in the body of the page like this:

<p>A total of <?php echo $numRows; ?> records were found.</p>

7. Save the page and load it into a browser. You should see the following result:

Check your code, if necessary, with mysql01.php or mysqli01.php in the down-
load files.

There are no parentheses following num_rows in the MySQLI version.
This is because it’s a property (or value) of the result object.
Functions and methods are followed by parentheses, but variables
and properties are not.

GETTING STARTED WITH A DATABASE

309

11

7311ch11.qxd  10/10/06  10:54 PM  Page 309



Because PDO doesn’t have an equivalent of the MySQLI num_rows property or the MySQL
function mysql_num_rows(), you need to use a SQL function called COUNT().

1. Create a new folder called mysql in the phpsolutions site root, and create a new
file called pdo.php inside the folder. The page will eventually be used to display a
table, so it should have a DOCTYPE declaration and an XHTML skeleton.

2. Include the PDO connection file above the DOCTYPE declaration, and create a con-
nection to MySQL like this:

<?php
include('../includes/conn_pdo.inc.php');
// connect to MySQL
$conn = dbConnect('query');
?>

You don’t need administrative privileges for this exercise, so I have used the
account that has only SELECT privileges.

3. Next, prepare the SQL query. Add this code immediately after the previous step
(but before the closing PHP tag):

// prepare the SQL query
$sql = 'SELECT COUNT(*) FROM images';

This means “count every record in the images table.” The asterisk (*) is shorthand
for “all columns.” The COUNT() function gets the total number of records. Make
sure you don’t leave a space between COUNT and the opening parenthesis, as this
generates a SQL error.

4. Now execute the query and store the result in a variable like this (the code goes
immediately after the code in step 3):

// submit the query and capture the result
$result = $conn->query($sql);
$error = $conn->errorInfo();
if (isset($error[2])) die($error[2]);

$conn is the variable that you used to create the connection, so $conn->query()
means “run this query with my connection.” The result is stored in a variable, which
I’ve named, rather predictably, $result.

PDO uses errorInfo() to build an array of error messages from the database. The
third element of the array is created only if something goes wrong. I’ve stored the
result of $conn->errorInfo() as $error, so you can tell if anything went wrong by
using isset() to check whether $error[2] has been defined. If it has, die() brings
the script to a halt and displays the error message.

5. The SQL query in step 3 returns only one piece of information: the number of
records found, so you can use the fetchColumn() method with $result to retrieve

PHP Solution 11-3: Counting records in a result set (PDO)

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

310

7311ch11.qxd  10/10/06  10:54 PM  Page 310



it, and store the number of rows found like this (put the code immediately after
the preceding step):

// find out how many records were retrieved
$numRows = $result->fetchColumn();

6. You can now display the value of $numRows in the body of the page like this:

<p>A total of <?php echo $numRows; ?> records were found.</p>

7. Save the page and load it into a browser. You should see the same result as shown
in step 8 of PHP Solution 11-2. Check your code, if necessary, with pdo01.php.

Displaying the results of a query

In spite of the different ways that MySQL, MySQLI, and PDO communicate with a database,
they all produce a result that contains all the information sent back from the database
(and stored as $result). In PHP Solution 11-2, $result contains every field in every
record. In PHP Solution 11-3, a different query was used because PDO handles the count-
ing of records differently; but if you run the same query with PDO, $result also contains
every field in every record.

It’s tempting to think of this result as an array. In one sense, it is; but you can’t use it in the
same way as arrays that you have encountered so far. To extract the information, you need
to deal with one record at a time. The most common way is to use a loop in combination
with a function (or method) to extract the current record into a temporary array, which
you can then use to display the information it holds.

With the MySQL extension, you do it like this:

while ($row = mysql_fetch_assoc($result)) {
// do something with the current record
}

With MySQLI, instead of passing $result to a function, you use the -> operator like this:

while ($row = $result->fetch_assoc()) {
// do something with the current record
}

PDO handles it slightly differently. You can use the query() method directly inside a 
foreach loop to create an array for each record like this:

foreach ($conn->query($sql) as $row) {
// do something with the current record
}

In each case, $row is an associative array containing every field in the current record. So, in
the case of the images table, $row contains these three elements: $row['image_id'],
$row['filename'], and $row['caption']. In other words, each element is named after
the corresponding column in the table.

GETTING STARTED WITH A DATABASE

311

11

7311ch11.qxd  10/10/06  10:54 PM  Page 311



Continue using the file from PHP Solution 11-2. The finished code is in mysql02.php.

1. Add the following code to the main body of the page (new code is in bold):

<p>A total of <?php echo $numRows; ?> records were found.</p>
<table>
<tr>
<th>image_id</th>
<th>filename</th>
<th>caption</th>

</tr>
<?php
while ($row = mysql_fetch_assoc($result)) {
?>
<tr>
<td><?php echo $row['image_id']; ?></td>
<td><?php echo $row['filename']; ?></td>
<td><?php echo $row['caption']; ?></td>

</tr>
<?php } ?>
</table>
</body>

The while loop iterates through the database result, using mysql_fetch_assoc()
to extract each record into $row. Each element of $row is displayed in a table cell.
The loop continues until mysql_fetch_assoc($result) comes to the end of the
result set.

2. Save mysql.php and view it in a browser. You should see the contents of the images
table displayed as shown in the following screenshot:

PHP Solution 11-4: Displaying the images table using MySQL

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

312

7311ch11.qxd  10/10/06  10:54 PM  Page 312



Continue using the file from PHP Solution 11-2. The finished code is in mysqli02.php.

1. Insert the same code into the body of the page as in step 1 of PHP Solution 11-4.
However, replace this line:

while ($row = mysql_fetch_assoc($result)) {

with this:

while ($row = $result->fetch_assoc()) {

2. Save the page and view it in a browser. It should look like the preceding screenshot.

Because PDO doesn’t have a convenient way of finding the number of records in a result
set, you need to submit a second query to the database. It’s also necessary to release the
database resources associated with the first query.

Continue working with the same file as in PHP Solution 11-3. The finished script is in
pdo02.php.

1. Amend the last section of code above the DOCTYPE declaration to release the data-
base resource after the first query, and store the second query in a variable like
this:

// find out how many records were retrieved
$numRows = $result->fetchColumn();
// free the database resources
$result->closeCursor();
// prepare second SQL query
$getDetails = 'SELECT * FROM images';
?>

The closeCursor() method frees the connection to the database so that further
queries can be executed. You apply it to the current result; not to the connection.
The second query, stored in $getDetails, retrieves all the records in the images
table.

2. Insert the same code into the body of the page as in step 1 of PHP Solution 11-4.
However, replace this line:

while ($row = mysql_fetch_assoc($result)) {

with this:

foreach ($conn->query($getDetails) as $row) {

3. Save the page and view it in a browser. It should look like the screenshot in PHP
Solution 11-4.

PHP Solution 11-6: Displaying the images table using PDO

PHP Solution 11-5: Displaying the images table using MySQLI

GETTING STARTED WITH A DATABASE

313

11

7311ch11.qxd  10/10/06  10:54 PM  Page 313



MySQL connection crib sheet

Tables 11-2 to 11-4 summarize the basic details of connection and database query for
MySQL, MySQLI, and PDO. Some commands will be used in later chapters, but are
included here for ease of reference.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

314

Table 11-2. Connection to MySQL with the original MySQL extension

Action Usage Comments

Connect $conn = mysql_connect($h,$u,$p); All arguments optional; first three always needed
in practice: hostname, username, password.

Choose DB mysql_select_db('dbName'); Server connection can be second, optional
argument.

Submit query $result = mysql_query($sql); Requires one argument: string containing SQL
query. Server connection can be second, optional
argument. Returns result set.

Count results $numRows = mysql_num_rows($result); Takes result set as sole argument.

Extract record $row = mysql_fetch_assoc($result); Takes result set as sole argument. Extracts
current record as associative array.

Extract record $row = mysql_fetch_row($result); Takes result set as sole argument. Extracts
current record as indexed (numbered) array.

As noted in Table 11-2, you can use a reference to the database connection as an optional
argument with mysql_select_db() and mysql_query(). There is no need to do this unless
you are using more than one connection (say, with different usernames), because PHP
automatically uses the most recent link opened by mysql_connect().

Table 11-3. Connection to MySQL with the MySQL Improved object-oriented interface

Action Usage Comments

Connect $conn = new mysqli($h,$u,$p,$d); All arguments optional; first four always
needed in practice: hostname, username,
password, database name. Creates connection
object.

Choose DB $conn->select_db('dbName'); Use to select different database.

Submit query $result = $conn->query($sql); Returns result object.

Count results $numRows = $result->num_rows; Returns number of rows in result object.

7311ch11.qxd  10/10/06  10:54 PM  Page 314



Action Usage Comments

Release DB resources $result->free_result(); Frees up connection to allow new query.

Extract record $row = $result->fetch_assoc(); Extracts current row from result object as
associative array.

Extract record $row = $result->fetch_row(); Extracts current row from result object as
indexed (numbered) array.

Table 11-4. Connection to MySQL with PDO

Action Usage Comments

Connect $conn = new PDO(DSN,$u,$p); In practice, requires three arguments:
data source name (DSN), username,
password. Must be wrapped in
try/catch block.

Choose DB See comments Choice of database is integral part of
DSN.

Submit query $result = $conn->query($sql); Can also be used inside foreach loop
to extract each record.

Count results See comments Use SELECT COUNT(*) in SQL query.

Get single result $item = $result->fetchColumn(); Gets first record in first column of
result. To get result from other
columns, use column number (from 0)
as argument.

Get next record $row = $result->fetch(); Gets next row from result set as
associative array.

Release DB resources $result->closeCursor(); Frees up connection to allow new
query.

Extract records foreach($conn->query($sql) as $row) { Extracts current row from result set as
associative array.

GETTING STARTED WITH A DATABASE

315

11

When using PDO with MySQL, the data source name (DSN) is a string that takes the 
following format:

'mysql:host=hostname;dbname=databaseName'

7311ch11.qxd  10/10/06  10:54 PM  Page 315



If you need to specify a different port from the MySQL default (3306), use the following
format, substituting the actual port number:

'mysql:host=hostname;port=3307;dbname=databaseName'

MySQL Improved and PDO also use prepared statements, which offer greater security
when incorporating user input into SQL queries. Prepared statement commands are cov-
ered in Chapter 13.

Summary
It’s unfortunate that connection to MySQL is in such a transitional phase. Because PDO is
so new, it may undergo further changes, but along with MySQLI, it has significant advan-
tages over the original MySQL extension, particularly in improved protection against mali-
cious attacks. However, I suspect that a high proportion of readers will have no option
other than to use the traditional method of connecting to MySQL. The good news is that,
for the foreseeable future at least, PHP plans to continue support for all three options.
This means that even when you move to a server that supports PDO, your MySQL or
MySQLI scripts will still work.

In the next chapter, we’ll turn those boring lists of filenames and captions into something
a lot more attractive—an online mini photo gallery. See you there.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

316

7311ch11.qxd  10/10/06  10:54 PM  Page 316



7311ch11.qxd  10/10/06  10:54 PM  Page 317



7311ch12.qxd  10/10/06  10:55 PM  Page 318



12 CREATING A DYNAMIC ONLINE
GALLERY

7311ch12.qxd  10/10/06  10:55 PM  Page 319



What this chapter covers:

Why storing images in a database is a bad idea, and what you should do instead

Planning the layout of a dynamic gallery

Displaying a fixed number of results in a row

Limiting the number of records retrieved at a time

Paging through a long set of results

In the last chapter, I showed you how to display the contents of the images table in a web
page. It didn’t look very attractive—text in an unadorned table. However, I hope you will
have realized by now that all you need to do to display the images themselves is add <img>
tags to the underlying XHTML, and you’ll end up with something far more impressive. In
fact, by the end of this chapter, you will have created the mini photo gallery shown in
Figure 12-1.

Figure 12-1. The mini photo gallery is driven entirely by drawing information from a database.

Although it uses images, the gallery demonstrates some cool features that you will want to
incorporate into text-driven pages, too. For instance, the grid of thumbnail images on the
left displays two images per row. Just by changing two numbers, you can make the grid as
many columns wide and as many rows deep as you like. Clicking one of the thumbnails
replaces the main image and caption. It’s the same page that reloads, but exactly the same
technique is used to create online catalogs that take you to another page with more
details about a product. The Next link at the foot of the thumbnails grid shows you the
next set of photographs, using exactly the same technique as you use to page through a
long set of search results. This gallery isn’t just a pretty face or two . . .

First of all, a word about images and databases.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

320

7311ch12.qxd  10/10/06  10:55 PM  Page 320



Why not store images in a database?
The images table contains only filenames and captions, but not the images themselves.
Even though I said in the last chapter that you can always add new columns or tables to a
database when new requirements arise, I’m not going to add anything to the images table.
Instead, I intend to leave the images in their original location within the website—for the
simple reason that storing images in a database is usually more trouble than it’s worth. The
main problems are as follows:

Images cannot be indexed or searched without storing textual information
separately.

Images are usually large, bloating the size of tables.

Table fragmentation affects performance if images are deleted frequently.

Retrieving images from a database involves passing the image to a separate script,
slowing down display in a web page.

Storing images in a database is messy, and involves more scripting. It’s much more efficient
to store images in an ordinary folder on your website and use the database for informa-
tion about the images. You need just two pieces of information in the database—the file-
name and a caption that can also be used as alt text. You could also store the image’s
height and width, but it’s not absolutely necessary. As you saw in Chapter 4, you can gen-
erate that information dynamically.

Planning the gallery
Unless you’re good at visualizing how a page will look simply by reading its source code, 
I find that the best way to design a database-driven site is to start with a static page and fill
it with placeholder text and images. I then create my CSS style rules to get the page look-
ing the way I want, and finally replace each placeholder element with PHP code. Each time
I replace something, I check the page in a browser to make sure that everything is still
holding together.

Figure 12-2 shows the static mockup that I made of the gallery and points out the ele-
ments that need to be converted to dynamic code. The images are the same as those used
for the random image generator in Chapter 4 and are all different sizes. I experimented by
scaling the images to create the thumbnails, but decided that the result looked too untidy,
so I made the thumbnails a standard size (80 × 54 pixels). Also, to make life easy, I gave
each thumbnail the same name as the larger version and stored them in a separate folder
called thumbs.

As you saw in the previous chapter, displaying the contents of the entire images table was
easy. You created a single table row, with the contents of each field in a separate table cell.
By looping through the result set, each record displayed on a row of its own, simulating
the column structure of the database table. This time, the two-column structure of the
thumbnail grid no longer matches the database structure. This means that you need to
count how many thumbnails have been inserted in each row before triggering the creation
of the next row.

CREATING A DYNAMIC ONLINE GALLERY

321

12

7311ch12.qxd  10/10/06  10:55 PM  Page 321



Figure 12-2. Working out what needs to be done to convert a static gallery to a dynamic one

Figure 12-3 shows the framework I created to hold the gallery together. The table of
thumbnails and the main_image <div> are floated left and right respectively in a fixed-
width wrapper <div> called gallery. I don’t intend to go into the details of the CSS, but
you may study that at your leisure.

Figure 12-3. The underlying structure of the image gallery

Once I had worked out what needed to be done, I stripped out the code for thumbnails 2
to 6, and for the navigation link (which is nested in the final row of the thumbs table). The
following listing shows what was left in the maincontent <div> of gallery.php, with the

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

322

7311ch12.qxd  10/10/06  10:55 PM  Page 322



elements that need to be converted to PHP code highlighted in bold (you can find the
code in gallery01.php in the download files for this chapter):

<div id="maincontent">
<h1>Images of Japan</h1>
<p id="picCount">Displaying 1 to 6 of 8</p>
<div id="gallery">
<table id="thumbs">
<tr>
<!-- This row needs to be repeated -->
<td><a href="gallery.php"><img src="images/thumbs/basin.jpg" ➥

alt="" width="80" height="54" /></a></td>
</tr>
<!-- Navigation link needs to go here -->

</table>
<div id="main_image">
<p><img src="images/basin.jpg" alt="" width="350" height="237" ➥

/></p>
<p>Water basin at Ryoanji temple, Kyoto</p>

</div>
</div>

</div>

Converting the gallery elements to PHP
Before you can display the contents of the gallery, you need to connect to the phpsolutions
database and retrieve all the records stored in the images table. The procedure for doing
so is the same as in the previous chapter, using the following simple SQL query:

SELECT * FROM images

You can then use the first record to display the first image and its associated caption and
thumbnail.

If you set up the Japan Journey website in Chapter 4, you can work directly with the origi-
nal gallery.php. Alternatively, use gallery01.php from the download files for this chap-
ter. You also need to copy title.inc.php, menu.inc.php, and footer.inc.php to the
includes folder of the phpsolutions site.

1. Load gallery.php into a browser to make sure that it displays correctly. The
maincontent part of the page should look like Figure 12-4, with one thumbnail
image and a larger version of the same image.

PHP Solution 12-1: Displaying the first image

CREATING A DYNAMIC ONLINE GALLERY

323

12

7311ch12.qxd  10/10/06  10:55 PM  Page 323



Figure 12-4. The stripped-down version of the static gallery ready for conversion

2. The gallery depends entirely on a successful connection to the database, so the
first thing you need to do is include connection.inc.php. Add the following code
just before the closing PHP tag above the DOCTYPE declaration in gallery.php (new
code is highlighted in bold):

<?php
include('includes/title.inc.php');
// include MySQL connector function
if (! @include('includes/connection.inc.php'))
echo 'Sorry, database unavailable';
exit;
}

?>

Remember, connection.inc.php needs to be the correct version for the way you
plan to connect to MySQL—using the original MySQL extension, the MySQL
Improved object-oriented interface, or PDO. The include command for the con-
nection script is used as the condition for an if statement. The condition also uses
the negative operator (an exclamation mark) and the error control operator (@). If
the connection script is included successfully, the code inside the if statement is
ignored; but if the file can’t be found, a custom error message is displayed, and the
rest of the script is abandoned. In a live application, you would probably redirect
visitors to a custom error page.

3. Connect to the database by calling the dbConnect() function in the include file,
and prepare the SQL query ready to submit it. The gallery needs only SELECT privi-
leges for the database, so pass query as the argument to dbConnect() like this (the
code for steps 3 to 5 goes immediately before the closing PHP tag):

// create a connection to MySQL
$conn = dbConnect('query');
// prepare SQL to retrieve image details
$sql = 'SELECT * FROM images';

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

324

7311ch12.qxd  10/10/06  10:55 PM  Page 324



4. The code for submitting the query and extracting the first record from the result
depends on which method of connection you are using. For the original MySQL
functions, use this:

// submit the query
$result = mysql_query($sql) or die(mysql_error());
// extract the first record as an array
$row = mysql_fetch_assoc($result);

For MySQL Improved, use this:

// submit the query
$result = $conn->query($sql) or die(mysqli_error());
// extract the first record as an array
$row = $result->fetch_assoc();

For PDO, use this:

// submit the query
$result = $conn->query($sql);
// get any error messages
$error = $conn->errorInfo();
if (isset($error[2])) die($error[2]);
// extract the first record as an array
$row = $result->fetch();

The code for the original MySQL extension and MySQL Improved is exactly the
same as you used in the previous chapter.

The PDO code, however, introduces a new method, fetch(), which gets the next
record from the result set. You can’t use a foreach loop like in the previous chap-
ter, because you need to get the first result on its own.

5. All three methods now have the first record from the result set stored as an array
in $row. This means that $row['image_id'] contains the primary key of the first
record, $row['filename'] contains its filename, and $row['caption'] contains its
caption. You need the filename, caption, and the dimensions of the large version so
that you can display the images in the main body of the page. Add the following
code:

// get the name and caption for the main image
$mainImage = $row['filename'];
$caption = $row['caption'];
// get the dimensions of the main image
$imageSize = getimagesize('images/'.$mainImage);

The getimagesize() function was described in Chapters 4 and 8.

6. You can now use this information to display the thumbnail, main image, and its
caption dynamically. The main image and thumbnail have the same name, but you
eventually want to display all thumbnails by looping through the full result set, so
the dynamic code that needs to go in the table cell needs to refer to the current
record—in other words, $row['filename'] and $row['caption'], rather than to

CREATING A DYNAMIC ONLINE GALLERY

325

12

7311ch12.qxd  10/10/06  10:55 PM  Page 325



$mainImage and $caption. You’ll see later why I’ve assigned the values from the
first record to separate variables. Amend the code in the table like this:

<td><a href="gallery.php"> ➥

<img src="images/thumbs/<?php echo $row['filename']; ?>" ➥

alt="<?php echo $row['caption']; ?>" width="80" height="54" /> ➥

</a></td>

7. Save gallery.php and view it in a browser. It should look the same as Figure 12-4.
The only difference is that the thumbnail and its alt text are dynamically gener-
ated. You can verify this by looking at the source code. The original static version
had an empty alt attribute, but as the following screenshot shows, it now contains
the caption from the first record:

If things go wrong, make sure there’s no gap between the static and dynamically
generated text in the image’s src attribute. Also check that you’re using the 
right code for the type of connection you have created with MySQL. You can
check your code against gallery_mysql02.php, gallery_mysqli02.php, or
gallery_pdo02.php.

8. Once you have confirmed that you’re picking up the details from the database, you
can convert the code for the main image. Amend it like this (new code is in bold):

<div id="main_image">
<p><img src="images/<?php echo $mainImage; ?>" ➥

alt="<?php echo $caption; ?>" <?php echo $imageSize[3]; ?> /></p>
<p><?php echo $caption; ?></p>

</div>

As explained in Chapter 4, getimagesize() returns an array, the fourth element of
which contains a string with the width and height of an image ready for insertion
into an <img> tag. So $imageSize[3] inserts the correct dimensions for the main
image.

9. Test the page again. It should still look the same as Figure 12-4, but the images and
caption are being drawn dynamically from the database. You can check your code
against gallery_mysql03.php, gallery_mysqli03.php, or gallery_pdo03.php.

Building the dynamic elements
The first thing that you need to do after converting the static page is to display all the
thumbnails and build dynamic links that will enable you to display the large version of any
thumbnail that has been clicked. Displaying all the thumbnails is easy—just loop through

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

326

7311ch12.qxd  10/10/06  10:55 PM  Page 326



them (we’ll work out how to display them in rows of two later). Activating the link for each
thumbnail requires a little more thought. You need a way of telling the page which large
image to display.

Passing information through a query string

In the last section, you used $mainImage to identify the large image, so you need a way of
changing its value whenever a thumbnail is clicked. The answer is to add the image’s file-
name to a query string at the end of the URL in the link like this:

<a href="gallery.php?image=filename">

You can then check whether the $_GET array contains an element called image. If it does,
change the value of $mainImage. If it doesn’t, leave $mainImage as the filename from the
first record in the result set.

Time to dive back into the code . . .

Continue working with the same file as in the previous section. Alternatively, use
gallery_mysql03.php, gallery_mysqli03.php, or gallery_pdo03.php from the down-
load files.

1. Locate the <a> tag surrounding the thumbnail. It looks like this:

<a href="gallery.php">

Change it like this:

<a href="<?php echo $_SERVER['PHP_SELF']; ?>?image=<?php echo ➥

$row['filename']; ?>">

Be careful when typing the code. It’s easy to mix up the question marks in the PHP
tags with the question mark at the beginning of the query string. It’s also important
there are no spaces surrounding ?image=.

So, what’s all this about? $_SERVER['PHP_SELF'] is a handy predefined variable
that refers to the name of the current page. You could just leave gallery.php
hard-coded in the URL, but I suspect that many of you will use the download files,
which have a variety of names. Using $_SERVER['PHP_SELF'] ensures that the URL
is pointing to the correct page. The rest of the code builds the query string with the
current filename.

2. Save the page, and load it into a browser. Hover your mouse pointer over the
thumbnail, and check the URL displayed in the status bar. It should look like this:

http://localhost/phpsolutions/gallery.php?image=basin.jpg

If nothing is shown in the status bar, click the thumbnail. The page shouldn’t
change, but the URL in the address bar should now include the query string. Check
that there are no gaps in the URL or query string.

PHP Solution 12-2: Activating the thumbnails

CREATING A DYNAMIC ONLINE GALLERY

327

12

7311ch12.qxd  10/10/06  10:55 PM  Page 327



3. To show all the thumbnails, you need to wrap the table cell in a loop. Insert a new
line after the XHTML comment about repeating the row, and create the first half of
a do... while loop like this (see Chapter 3 for details of the different types of
loops):

<!-- This row needs to be repeated -->
<?php do { ?>

4. You already have the details of the first record in the result set, so the code to get
subsequent records needs to go after the closing </td> tag. Create some space
between the closing </td> and </tr> tags, and insert the following code. It’s
slightly different for each method of database connection.

For the MySQL original extensions, use this:

</td>
<?php
$row = mysql_fetch_assoc($result);
} while ($row);
?>
</tr>

For the MySQL Improved object-oriented interface, use this:

</td>
<?php
$row = $result->fetch_assoc();
} while ($row);
?>
</tr>

For PDO, use this:

</td>
<?php
$row = $result->fetch();
} while ($row);
?>
</tr>

This fetches the next row in the result set and sends the loop back to the top.
Because $row['filename'] and $row['caption'] have different values, the next
thumbnail and its associated alt text are inserted into a new table cell. The query
string is also updated with the new filename.

5. Save the page, and test it in a browser. You should now see all eight thumbnails in
a single row across the top of the gallery, as shown at the top of the next page.

Hover your mouse pointer over each thumbnail, and you should see the query string
display the name of the file. You can check your code against gallery_mysql04.php,
gallery_mysqli04.php, or gallery_pdo04.php.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

328

7311ch12.qxd  10/10/06  10:55 PM  Page 328



6. Clicking the thumbnails still doesn’t do anything, so you need to create the logic
that changes the main image and its associated caption. Locate this section of code
in the block above the DOCTYPE declaration:

// get the name and caption for the main image
$mainImage = $row['filename'];
$caption = $row['caption'];

Highlight the line that defines $caption, and cut it to your clipboard. Wrap the
other line in a conditional statement like this:

// get the name for the main image
if (isset($_GET['image'])) {
$mainImage = $_GET['image'];
}

else {
$mainImage = $row['filename'];
}

The $_GET array contains values passed through a query string, so if
$_GET['image'] has been set (defined), it takes the filename from the query string
and stores it as $mainImage. If $_GET['image'] doesn’t exist, the value is taken
from the first record in the result set as before.

7. You finally need to get the caption for the main image. It’s no longer going to be
the same every time, so you need to move it to the loop that displays the thumb-
nails. It goes right after the opening curly brace of the loop. Position your cursor
after the brace and insert a couple of lines, and then paste the caption definition
that you cut in the previous step. You want the caption to match the main image,
so if the current record’s filename is the same as $mainImage, that’s the one you’re
after. Wrap the code that you have just pasted in a conditional statement like this:

<?php
do {
// set caption if thumbnail is same as main image
if ($row['filename'] == $mainImage) {
$caption = $row['caption']; // this is the line you pasted
}

?>

CREATING A DYNAMIC ONLINE GALLERY

329

12

7311ch12.qxd  10/10/06  10:55 PM  Page 329



8. Save the page and reload it in your browser. This time, when you click a thumbnail,
the main image and caption will change. Check your code, if necessary, against
gallery_mysql05.php, gallery_mysqli05.php, or gallery_pdo05.php.

Passing information through a query string like this is an important aspect of working with
PHP and database results. Although form information is normally passed through the
$_POST array, the $_GET array is frequently used to pass details of a record that you want
to display, update, or delete. Like the $_POST array, the $_GET array automatically inserts
backslashes if magic quotes are turned on in php.ini. Since only the filename is being
passed through the query string, there’s no need to use the nukeMagicQuotes() function
from Chapter 3 because quotes are illegal in filenames. That’s one reason I didn’t pass the
caption through the query string. Getting it directly from the database avoids the problem
of handling backslashes.

Creating a multicolumn table

With only eight images, the single row of thumbnails across the top of the gallery doesn’t
look too bad. However, it’s useful to be able to build a table dynamically with a loop that
inserts a specific number of table cells in a row before moving to the next row. You do this
by keeping count of how many cells have been inserted. When you get to the limit for the
row, check whether any more rows are needed. If so, insert a closing tag for the current
row and an opening tag for the next one. What makes it easy to implement is the modulo
operator, %, which returns the remainder of a division.

This is how it works. Let’s say you want two cells in each row. When the first cell is inserted,
the counter is set to 1. If you divide 1 by 2 with the modulo operator (1%2), the result is 1.
When the next cell is inserted, the counter is increased to 2. The result of 2%2 is 0. The
next cell produces this calculation: 3%2, which results in 1; but the fourth cell produces
4%2, which is again 0. So, every time that the calculation results in 0, you know—or to be
more exact, PHP knows—you’re at the end of a row.

So how do you know if there are any more rows left? Each time you iterate through the
loop, you extract the next record into an array called $row. By using is_array(), you can
check whether $row contains the next result. If it does, you add the tags for the next row.
If is_array($row) is false, you’ve run out of records in the result set. Phew . . . let’s try it.

Continue working with the files from the preceding section. Alternatively, use
gallery_mysql05.php, gallery_mysqli05.php, or gallery_pdo05.php.

1. You may decide at a later stage that you want to change the number of columns in
the table, so it’s a good idea to create a constant at the top of the script, where it’s
easy to find, rather than burying the figures deep in your code. Insert the following
code just before the database connection:

// define number of columns in table
define('COLS', 2);

PHP Solution 12-3: Looping horizontally and vertically

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

330

7311ch12.qxd  10/10/06  10:55 PM  Page 330



2. You need to initialize the cell counter outside the loop, so amend the beginning of
the loop like this:

<?php
// initialize cell counter outside loop
$pos = 0;
do {
// set caption if thumbnail is same as main image
if ($row['filename'] == $mainImage) {

3. The remainder of the code goes after the table cell. It should be easy to follow with
the inline comments and the description at the beginning of this section. Amend
the code as follows (the first line of code inside the block is part of the existing
code, and will look slightly different if you’re using MySQLI or PDO):

</td>
<?php
$row = mysql_fetch_assoc($result);
// increment counter after next row extracted
$pos++;
// if at end of row and records remain, insert tags
if ($pos%COLS === 0 && is_array($row)) {
echo '</tr><tr>';
}

} while($row);  // end of existing loop
// new loop to fill in final row
while ($pos%COLS) {
echo '<td>&nbsp;</td>';
$pos++;
}

?>
</tr>

</table>

A new loop is added at the end of the existing loop. If there are no more records,
and $pos%COLS doesn’t equal 0, it means you have an incomplete row at the bot-
tom of the table, so the second loop continues incrementing $pos while $pos%COLS
produces a remainder (which is interpreted
as true) and inserting an empty cell. Note
that this second loop is not nested inside
the first. It runs only after the first loop has
ended.

4. Save the page and reload it in a browser.
The single row of thumbnails across the top
of the gallery should now be neatly lined up
two by two, as shown to the right.

Try changing the value of COLS and reload-
ing the page. See how easy it is to control
the number of cells in each row by chang-
ing just one number. You can check your code against gallery_mysql06.php,
gallery_mysqli06.php, or gallery_pdo06.php.

CREATING A DYNAMIC ONLINE GALLERY

331

12

7311ch12.qxd  10/10/06  10:55 PM  Page 331



Paging through a long set of records

The grid of eight thumbnails fits quite comfortably in the gallery, but what if you have 28
or 48? The answer is to limit the number of results displayed on each page, and build a
navigation system that lets you page back and forth through the results. You’ve seen this
technique countless times when using a search engine; now you’re going to learn how to
build it yourself.

The task can be broken down into the following two stages:

1. Selecting a subset of records to display

2. Creating the navigation links to page through the subsets

Both stages are relatively easy to implement, although it involves applying a little condi-
tional logic. Keep a cool head, and you’ll breeze through it.

Selecting a subset of records
Limiting the number of results on a page is simple. Add the LIMIT keyword to the SQL
query like this:

SELECT * FROM images LIMIT startPosition, maximum

The LIMIT keyword can be followed by one or two numbers. If you use just one number,
it sets the maximum number of records to be retrieved. That’s useful, but it’s not what we
need to build a paging system. For that, you need to use two numbers: the first indicates
which record to start from, and the second stipulates the maximum number of records to
be retrieved. MySQL counts records from 0, so to display the first six images, you need the
following SQL:

SELECT * FROM images LIMIT 0, 6

To show the next set, the SQL needs to change to this:

SELECT * FROM images LIMIT 6, 6

There are only eight records in the images table, but the second number is only a maxi-
mum, so this retrieves records 7 and 8.

To build the navigation system, you need a way of generating these numbers. The second
number never changes, so let’s define a constant called SHOWMAX. Generating the first num-
ber (call it $startRecord) is pretty easy, too. Start numbering the pages from 0, and mul-
tiply the second number by the current page number. So, if you call the current page
$curPage, the formula looks like this:

$startRecord = $curPage * SHOWMAX;

And for the SQL, it becomes this:

SELECT * FROM images LIMIT $startRecord, SHOWMAX

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

332

7311ch12.qxd  10/10/06  10:55 PM  Page 332



If $curPage is 0, $startRecord is also 0 (0 × 6), but when $curPage increases to 1,
$startRecord changes to 6 (1 × 6), and so on.

Since there are only eight records in the images table, you need a way of finding out the
total number of records to prevent the navigation system from retrieving empty result
sets. In the last chapter, you used $numRows to get this information. However, the tech-
nique that was used for the original MySQL extension and the MySQL Improved object-
oriented interface won’t work, because mysql_num_rows() and the num_rows property
report the number of records in the current result set. Since you’re limiting the number of
records retrieved at any one time to a maximum of six, you need a different way to get the
total. If you’re using PDO, you already know the answer is this:

SELECT COUNT(*) FROM images

COUNT() is a SQL function that calculates the total number of results in a query. When used
like this in combination with an asterisk, it gets the total number of records in the table.
So, to build a navigation system, you need to run both SQL queries: one to find the total
number of records, and the other to retrieve the required subset. MySQL is fast, so the
result is almost instantaneous.

I’ll deal with the navigation links later. Let’s begin by limiting the number of thumbnails on
the first page.

Continue working with the same file. Alternatively, use gallery_mysql06.php,
gallery_mysqli06.php, or gallery_pdo06.php.

1. Define SHOWMAX and the SQL query to find the total number of records in the table.
Amend the code toward the top of the page like this (new code is shown in bold):

// define number of columns in table
define('COLS', 2);
// set maximum number of records per page
define('SHOWMAX', 6);
// create a connection to MySQL
$conn = dbConnect('query');
// prepare SQL to get total records
$getTotal = 'SELECT COUNT(*) FROM images';

Although COLS and SHOWMAX are defined as constants, it doesn’t
prevent you from offering visitors a choice of how many columns
and items to display on a page. You could use variables as the sec-
ond arguments to define(), and draw their values from user input.

PHP Solution 12-4: Displaying a subset of records

CREATING A DYNAMIC ONLINE GALLERY

333

12

7311ch12.qxd  10/10/06  10:55 PM  Page 333



2. You now need to run the new SQL query. The code goes immediately after the
code in the preceding step, but differs according to the type of MySQL connection.

If you’re using the original MySQL extension, add this:

// submit query and store result as $totalPix
$total = mysql_query($getTotal);
$row = mysql_fetch_row($total);
$totalPix = $row[0];

This introduces a new function, mysql_fetch_row(), which gets a single record
from a result set as an indexed array (one that refers to elements by numbers). The
result of SELECT COUNT(*) contains just one field, so you access it as $row[0].

For MySQL Improved, use this:

// submit query and store result as $totalPix
$total = $conn->query($getTotal);
$row = $total->fetch_row();
$totalPix = $row[0];

This uses the MySQLI equivalent of mysql_fetch_row() just described. The result
set for the query has been saved as $total, so $total->fetch_row() gets the
record as an indexed array.

For PDO, use this:

// submit query and store result as $totalPix
$total = $conn->query($getTotal);
$row = $total->fetchColumn();
$totalPix = $row[0];
$total->closeCursor();

This is the same as in the previous chapter, using fetchColumn() to get a single
result, and closeCursor() to free the database connection for the next query.

3. Next, set the value of $curPage. The navigation links that you will create later pass
the value of the required page through a query string, so you need to check
whether curPage has been set in the $_GET array. If it has, use that value.
Otherwise, set the current page to 0. Insert the following code immediately after
the code in the previous step:

// set the current page
$curPage = isset($_GET['curPage']) ? $_GET['curPage'] : 0;

This uses the conditional operator (see Chapter 3). If you find the conditional oper-
ator hard to understand, use the following code instead. It has exactly the same
meaning.

if (isset($_GET['curPage'])) {
$curPage = $_GET['curPage'];
}

else {
$curPage = 0;
}

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

334

7311ch12.qxd  10/10/06  10:55 PM  Page 334



4. You now have all the information that you need to calculate the start row, and to
build the SQL query to retrieve a subset of records. Add the following code imme-
diately after the code in the preceding step:

// calculate the start row of the subset
$startRow = $curPage * SHOWMAX;

The original SQL query should now be on the next line. Amend it like this:

// prepare SQL to retrieve subset of image details
$sql = "SELECT * FROM images LIMIT $startRow,".SHOWMAX;

5. Save the page and reload it into a browser. Instead of eight thumbnails, you should
see just six, as shown here:

Change the value of SHOWMAX to see a different number of thumbnails. The text above
the thumbnail grid doesn’t update because it’s still hard-coded, so let’s fix that.

6. Locate the following line of code in the main body of the page:

<p id="picCount">Displaying 1 to 6 of 8</p>

Notice that I’ve used double quotes this time, because I want PHP to
process $startRow. Unlike variables, constants aren’t processed inside
double-quoted strings. So SHOWMAX is added to the end of the SQL query
with the concatenation operator (a period). The comma inside the clos-
ing quotes is part of the SQL, separating the two arguments of the
LIMIT clause.

CREATING A DYNAMIC ONLINE GALLERY

335

12

7311ch12.qxd  10/10/06  10:55 PM  Page 335



Replace it with this:

<p id="picCount">Displaying <?php echo $startRow+1;
if ($startRow+1 < $totalPix) {
echo ' to ';
if ($startRow+SHOWMAX < $totalPix) {
echo $startRow+SHOWMAX;
}

else {
echo $totalPix;
}

}
echo " of $totalPix";
?></p>

Let’s take this line by line. The value of $startRow is zero-based, so you need to
add 1 to get a more user-friendly number. So, $startRow+1 displays 1 on the first
page and 7 on the second page.

In the second line, $startRow+1 is compared with the total number of records. If
it’s less, that means the current page is displaying a range of records, so the third
line displays the text “to” with a space on either side.

You then need to work out the top number of the range, so a nested if... else
conditional statement adds the value of the start row to the maximum number 
of records to be shown on a page. If the result is less than the total number of
records, $startRow+SHOWMAX gives you the number of the last record on the page.
However, if it’s equal to or greater than the total, you display $totalPix instead.

Finally, you come out of both conditional statements and display “of” followed by
the total number of records.

7. Save the page and reload it in a browser. You still get only the first subset of thumb-
nails, but you should see the second number change dynamically whenever you alter
the value of SHOWMAX. Check your code, if necessary, against gallery_mysql07.php,
gallery_mysqli07.php, or gallery_pdo07.php.

Navigating through subsets of records
As I mentioned in step 3 of the preceding section, the value of the required page is passed
to the PHP script through a query string. When the page first loads, there is no query
string, so the value of $curPage is set to 0. Although a query string is generated when you
click a thumbnail to display a different image, it includes only the filename of the main
image, so the original subset of thumbnails remains unchanged. To display the next subset,
you need to create a link that increases the value of $curPage by 1. It follows, therefore,
that to return to the previous subset, you need another link that reduces the value of
$curPage by 1.

That’s simple enough, but you also need to make sure that these links are displayed only
when there is a valid subset to navigate to. For instance, there’s no point in displaying a
back link on the first page, because there isn’t a previous subset. Similarly, you shouldn’t

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

336

7311ch12.qxd  10/10/06  10:55 PM  Page 336



display a forward link on the page that displays the last subset, because there’s nothing to
navigate to.

Both issues are easily solved by using conditional statements. There’s one final thing that
you need to take care of. You must also include the value of the current page in the query
string generated when you click a thumbnail. If you fail to do so, $curPage is automatically
set back to 0, and the first set of thumbnails is displayed instead of the current subset.

Continue working with the same file. Alternatively, use gallery_mysql07.php,
gallery_mysqli07.php, or gallery_pdo07.php.

1. I have placed the navigation links in an extra row at the bottom of the thumbnail
table. Insert this code between the placeholder comment and the closing
</table> tag:

<!-- Navigation link needs to go here -->
<tr><td>
<?php
// create a back link if current page greater than 0
if ($curPage > 0) {
echo '<a href="'.$_SERVER['PHP_SELF'].'?curPage='.($curPage-1).'"> ➥

&lt; Prev</a>';
}

// otherwise leave the cell empty
else {
echo '&nbsp;';
}

?>
</td>
<?php
// pad the final row with empty cells if more than 2 columns
if (COLS-2 > 0) {
for ($i = 0; $i < COLS-2; $i++) {
echo '<td>&nbsp;</td>';
}

}
?>
<td>
<?php
// create a forward link if more records exist
if ($startRow+SHOWMAX < $totalPix) {
echo '<a href="'.$_SERVER['PHP_SELF'].'?curPage='.($curPage+1).'"> ➥

Next &gt;</a>';
}

PHP Solution 12-5: Creating the navigation links

CREATING A DYNAMIC ONLINE GALLERY

337

12

7311ch12.qxd  10/10/06  10:55 PM  Page 337



// otherwise leave the cell empty
else {
echo '&nbsp;';
}

?>
</td></tr>
</table>

It looks like a lot, but the code breaks down into three sections: the first creates a
back link if $curPage is greater than 0; the second pads the final table row with
empty cells if there are more than two columns; and the third uses the same for-
mula as before ($startRow+SHOWMAX < $totalPix) to determine whether to dis-
play a forward link.

When typing this code, make sure that you get the combination of quotes right in
the links. The other point to note is that the $curPage-1 and $curPage+1 calcula-
tions are enclosed in parentheses to avoid the period after the number being mis-
interpreted as a decimal point. It’s used here as the concatenation operator to join
the various parts of the query string.

2. You now need to add the value of the current page to the query string in the link
surrounding the thumbnail. Locate this section of code:

<a href="<?php echo $_SERVER['PHP_SELF']; ?>?image=<?php echo ➥

$row['filename']; ?>">

Change it like this:

<a href="<?php echo $_SERVER['PHP_SELF']; ?>?image=<?php echo ➥

$row['filename']; ?>&amp;curPage=<?php echo $curPage; ?>">

You want the same subset to be displayed when clicking a thumbnail, so you just
pass the current value of $curPage through the query string.

3. Save the page and test it. Click the Next link, and you should see the remaining sub-
set of thumbnails, as shown in Figure 12-5. There are no more images to be dis-
played, so the Next link disappears, but there’s a Prev link at the bottom left of the
thumbnail grid. The record counter at the top of the gallery now reflects the range
of thumbnails being displayed, and if you click the right thumbnail, the same sub-
set remains onscreen while displaying the appropriate large image. You’re done!

Notice that I have used the HTML entity &amp; to add a second name/value pair
to the query string. This is displayed in the browser status bar or address bar
simply as an ampersand. Although using an ampersand on its own also works,
&amp; is required for valid XHTML.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

338

7311ch12.qxd  10/10/06  10:55 PM  Page 338



Figure 12-5. The page navigation system is now complete.

Check your code, if necessary, against gallery_mysql08.php, gallery_mysqli08.php,
or gallery_pdo08.php.

Summary
Wow! In a few pages, you have turned a boring list of filenames into a dynamic online
gallery, complete with a page navigation system. All that’s necessary is to create a thumb-
nail for each major image, upload both images to the appropriate folder, and add the file-
name and a caption to the images table in the database. As long as the database is kept up
to date with the contents of the images and thumbs folders, you have a dynamic gallery.
Not only that, you’ve learned how to select subsets of records, link to related information
through a query string, and build a page navigation system.

The more you use PHP, the more you realize that the skill doesn’t lie so much in remem-
bering how to use lots of obscure functions, but in working out the logic needed to get
PHP to do what you want. It’s a question of if this, do that; if something else, do something
different. Once you can anticipate the likely eventualities of a situation, you can normally
build the code to handle it.

So far, you’ve concentrated on extracting records from a simple database table. In the next
chapter, I’ll show you how to insert, update, and delete material.

CREATING A DYNAMIC ONLINE GALLERY

339

12

7311ch12.qxd  10/10/06  10:55 PM  Page 339



7311ch13.qxd  10/10/06  10:58 PM  Page 340



13 MANAGING CONTENT

7311ch13.qxd  10/10/06  10:58 PM  Page 341



What this chapter covers:

Preventing SQL injection attacks

Inserting, updating, and deleting database records

Using prepared statements with MySQLI and PDO

Although you can use phpMyAdmin for a lot of database administration, there are some
things for which it’s out of the question. The last thing you want is to give outsiders the
freedom to poke around your database, adding and deleting vital records at will. You need
to build your own forms and create customized content management systems.

At the heart of every content management system lie just four SQL commands: SELECT,
INSERT, UPDATE, and DELETE. All four commands either rely on or can accept user input. So
you need to make sure that any input doesn’t expose your data to attack or accidental
corruption. The MySQL Improved extension and PDO offer new, more robust ways of han-
dling user input; but the original MySQL functions are just as safe if handled properly. To
demonstrate the basic SQL commands, this chapter shows you how to build a simple con-
tent management system for a blog-style table called journal.

Even if you don’t want to build your own content management system, the four com-
mands covered in this chapter are essential for just about any database-driven page: user
login, user registration, search form, search results, etc.

Keeping your data safe
All too often, security issues get brushed aside when learning to communicate with a data-
base. You’re not only learning the mechanics of connecting to a database and extracting
the results, but there’s a whole new language to come to grips with—Structured Query
Language (SQL). There is a lot to absorb, but security should be among your highest prior-
ities for these reasons:

There’s no point in spending a lot of effort building a database, if it’s all going to be
blown away by an attacker or careless input.

Handling security properly is probably the least difficult aspect of communicating
with a database through PHP. All that’s needed are a couple of simple precautions.

Understanding the danger of SQL injection

SQL injection is very similar to the email header injection I warned you about in Chapter
5. An injection attack tries to insert spurious conditions into a SQL query in an attempt to
expose or corrupt your data. Although you haven’t studied WHERE clauses with SELECT
queries yet, the meaning of the following query should be easy to understand:

SELECT * FROM users WHERE username = 'xyz' AND pwd = 'abc'

It’s the basic pattern for a login application. If the query finds a record where username is
xyz and pwd is abc, you know that a correct combination of username and password have

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

342

7311ch13.qxd  10/10/06  10:58 PM  Page 342



been submitted, so the login succeeds. All an attacker needs to do is inject an extra con-
dition like this:

SELECT * FROM users WHERE username = 'xyz' AND pwd = 'abc' OR 1 = 1

The OR means only one of the conditions needs to be true, so the login succeeds even
without a correct username and password. SQL injection relies on quotes and other con-
trol characters not being properly escaped when part of the query is derived from a vari-
able or user input. This sort of attack was one of the main reasons behind the introduction
of magic quotes (see Chapter 3), which automatically insert a backslash in front of quota-
tion marks passed through the $_POST, $_GET, and $_COOKIES arrays. Although the back-
slashes prevent SQL injection, they cause problems in variables intended for display
onscreen. So beginners find their heads whirling in confusion over when to remove back-
slashes and when to leave them in. To make the situation even more confusing, not all
servers use magic quotes.

Relying on magic quotes or—if they are turned off—inserting backslashes with the
addslashes() function is no longer considered sufficient protection from SQL injection.
Users of the original MySQL extension should use the rather clumsily named
mysql_real_escape_string() function. The MySQL Improved extension and PDO offer a
more sophisticated approach known as prepared statements, which I’ll describe shortly.
Both methods guarantee your code against SQL injection. Whichever method you use, you
should remove magic quotes by using the nukeMagicQuotes() function from Chapter 3.
First, though, let’s take a look at how you write SQL queries.

Basic rules for writing SQL

SQL syntax doesn’t have many rules, and all of them are quite simple.

SQL is case-insensitive
You’ve probably noticed that the SQL queries in the previous chapter and the preceding
examples use a combination of uppercase and lowercase. All words in uppercase are SQL
keywords; everything else is in lowercase. However, this is purely a convention. The fol-
lowing are all equally correct:

SELECT * FROM images
select * from images
SeLEcT * fRoM images

Although SQL keywords are case-insensitive, the same doesn’t apply to database column
names. The advantage of using uppercase for keywords is that it makes SQL queries easier
to identify within your code. You’re free to choose whichever style suits you best, but the
ransom-note style of the last example is probably best avoided.

Whitespace is ignored
This allows you to spread SQL queries over several lines for increased readability. The one
place where whitespace is not allowed is between a function name and the opening paren-
thesis: COUNT (*) generates an error; it must be COUNT(*).

MANAGING CONTENT

343

13

7311ch13.qxd  10/10/06  10:58 PM  Page 343



Strings must be quoted
All strings must be quoted in a SQL query. It doesn’t matter whether you use single or dou-
ble quotes, as long as they are in matching pairs. Quotes inside strings should be handled
either by passing the string to mysql_real_escape_string() (when using the original
MySQL extension) or by using a prepared statement (with MySQL Improved or PDO).

Handling numbers
As a general rule, numbers should not be quoted, as anything in quotes is a string.
However, MySQL accepts numbers enclosed in quotes and treats them as their numeric
equivalent. Be careful to distinguish between a real number and any other data type made
up of numbers. For instance, a date is made up of numbers, but should be enclosed in
quotes and stored in a date-related column type. Similarly, telephone numbers should be
enclosed in quotes and stored in a text-related column type.

Incorporating variables into SQL queries

There are two ways of incorporating variables into SQL queries: direct incorporation and
using prepared statements (MySQL Improved and PDO only).

Direct incorporation
When using the original MySQL extension, you have no option but to build SQL queries in the
same way as you did with the page navigation system in PHP Solution 12-4 in the previous
chapter. In other words, you must incorporate variables directly in the SQL query like this:

$sql = "SELECT * FROM images LIMIT $startRow,".SHOWMAX;

Both $startRow and SHOWMAX are numbers, so they don’t need to be quoted. As explained
in the previous chapter, constants cannot be used in a double-quoted string, so SHOWMAX is
appended to the rest of the query without any quotes. However, a query that incorporates
string variables needs quotes around the strings like this:

$sql = "SELECT * FROM users WHERE username = '$name' AND pwd = '$pwd'";

Before incorporating variables that come from an external source into a SQL query like
this, you must always pass the variable first to mysql_real_escape_string() to ensure
that it’s safe. The reason it was safe to embed $startRow and SHOWMAX directly in the query
without using mysql_real_escape_string() is because both variables are defined within
your own script. Although $startRow usually derives its value from an external source
($curPage), multiplying $curPage by SHOWMAX always produces a number (0 if $curPage
can’t be converted to a number). This neutralizes any threat.

You can use mysql_real_escape_string() only with a database connection created
using the original MySQL extension—in other words, mysql_connect(). It does not
work with MySQL Improved or PDO. Although there are equivalent functions for MySQL
Improved (www.php.net/manual/en/function.mysqli-real-escape-string.php) and
PDO (www.php.net/manual/en/function.pdo-quote.php), it is strongly recommended
that you use prepared statements instead of embedding variables that contain data
from an external source.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

344

7311ch13.qxd  10/10/06  10:58 PM  Page 344



MySQLI prepared statements
Instead of embedding variables in the SQL query, you replace them with question marks
like this:

$sql = 'SELECT * FROM users WHERE username = ? AND pwd = ?';

Getting the values of the variables into the placeholders is a four- or five-stage process, as
follows:

1. Initialize the statement.

2. Pass the SQL query to the statement to make sure it’s valid.

3. Bind the variables to the query.

4. Bind any results to variables (optional).

5. Execute the statement.

Let’s say you have established a MySQLI connection called $conn; this is how it looks in
PHP code:

// initialize statement
$stmt = $conn->stmt_init();
if ($stmt->prepare($sql)) {
// bind the query parameters
$stmt->bind_param('ss', $_POST['name'], $_POST['pwd']);
// execute the query
$stmt->execute();
}

To initialize the prepared statement, apply the stmt_init() method to the database con-
nection ($conn), and store it in a variable. You can use any variable you like, but $stmt
makes it clear what it’s for.

You then pass the SQL query to $stmt->prepare(). This checks that you haven’t used
question mark placeholders in the wrong place, and that when everything is put together,
the query is valid SQL. If there are any mistakes, $stmt->prepare() returns false, so you
need to enclose the next steps in a conditional statement to ensure they run only if every-
thing is still OK.

Binding the parameters means replacing the question marks with the actual values held in
the variables. This is what protects your database from SQL injection. You pass the vari-
ables to $stmt->bind_param() in the same order as you want them inserted into the SQL
query, together with a first argument specifying the data type of each variable, again in the
same order as the variables. The data type must be specified by one of the following four
characters:

b: Binary (such as an image, Word document, or PDF file)

d: Double (floating point number)

i: Integer (whole number)

s: String (text)

MANAGING CONTENT

345

13

7311ch13.qxd  10/10/06  10:58 PM  Page 345



The number of variables passed to $stmt->bind_param() must be exactly the same as the
number of question mark placeholders. Once the statement has been prepared, you call
$stmt->execute(), and the result is stored in $stmt.

This example doesn’t show the binding of result parameters. That’s explained in PHP
Solution 13-6.

Error messages can be accessed by using $stmt->error.

PDO prepared statements
Whereas MySQLI always uses question marks as placeholders in prepared statements, PDO
offers several options. I’ll describe the two most useful: question marks and named place-
holders.

Question mark placeholders Instead of embedding variables in the SQL query, you
replace them with question marks like this:

$sql = 'SELECT * FROM users WHERE username = ? AND pwd = ? ';

This is identical to MySQLI. However, the way that you bind the values of the variables to
the placeholders is completely different. It involves just two steps, as follows:

1. Prepare the statement to make sure the SQL is valid.

2. Execute the statement by passing the variables to it as an array.

Assuming you have created a PDO database connection called $conn, the PHP code looks
like this:

// prepare statement
$stmt = $conn->prepare($sql);
// execute query by passing array of variables
$stmt->execute(array($_POST['name'], $_POST['pwd']));

The first line of code prepares the statement and stores it as $stmt. The second line binds
the values of the variables and executes the statement all in one go. The variables must be
in the same order as the placeholders. Even if there is only one placeholder, the variable
must be passed to execute() as an array. You’ll see this later in PHP Solution 13-7. The
result of the query is stored in $stmt.

Named placeholders Instead of embedding variables in the SQL query, you replace them
with named placeholders beginning with a colon like this:

$sql = 'SELECT * FROM users WHERE username = :name AND pwd = :pwd';

With named placeholders, you can either bind the values individually or pass an associative
array to execute(). When binding the values individually, the PHP code looks like this:

$stmt = $conn->prepare($sql);
// bind the parameters and execute the statement
$stmt->bindParam(':name', $_GET['name'], PDO::PARAM_STR);
$stmt->bindParam(':pwd', $_POST['pwd'], PDO::PARAM_STR);
$stmt->execute();

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

346

7311ch13.qxd  10/10/06  10:58 PM  Page 346



You pass three arguments to $stmt->bindParam(): the name of the placeholder, the vari-
able that you want to use as its value, and a constant specifying the data type. The main
constants are as follows:

PDO::PARAM_INT: Integer (whole number)

PDO::PARAM_LOB: Binary (such as an image, Word document, or PDF file)

PDO::PARAM_STR: String (text)

There doesn’t appear to be a constant for floating point numbers, but the third argument
is optional, so you can just leave it out.

If you pass the variables as an associative array, you can’t specify the data type. The PHP
code for the same example using an associative array looks like this:

// prepare statement
$stmt = $conn->prepare($sql);
// execute query by passing array of variables
$stmt->execute(array(':name' => $_POST['name'], ':pwd' => ➥

$_POST['pwd']));

In both cases, the result of the query is stored in $stmt.

Error messages can be accessed in the same way as with a PDO connection. However,
instead of applying the errorInfo() method to the connection variable, apply it to the
PDO statement like this:

$error = $stmt->errorInfo();
if (isset($error[2])) {
echo $error[2];
}

Setting up a content management system
Now that we’ve got the theory out of the way, let’s get on with something a bit more prac-
tical by building a content management system for a table called journal. Managing the
content in a database table involves four stages, which I normally assign to four separate
but interlinked pages, as follows:

A page to insert new records

A page to list all existing records

A page to update existing records

A page that asks for confirmation before deleting a record

The list of records serves two purposes: first, to identify what’s stored in the database; and
more importantly, to link to the update and delete scripts by passing the record’s primary
key through a query string. As Figure 13-1 shows, you can put the details of the record into
a form ready for editing or display sufficient details to confirm that the correct entry is
being deleted.

MANAGING CONTENT

347

13

7311ch13.qxd  10/10/06  10:58 PM  Page 347



Figure 13-1. The list of records passes the primary key of the selected record to the update and
delete pages.

The journal table contains a series of titles and text articles to be displayed in the Japan
Journey site as shown in Figure 13-2. In the interests of keeping things simple, the table con-
tains just five columns: article_id (primary key), title, article, updated, and created.

Figure 13-2. The contents of the journal table displayed in the Japan Journey website

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

348

7311ch13.qxd  10/10/06  10:58 PM  Page 348



The final two columns hold the date and time when the article was last updated, and when
it was originally created. Although it may seem illogical to put the updated column first,
this is to take advantage of the way MySQL automatically updates the first TIMESTAMP col-
umn in a table. The created column gets its value from a MySQL function called NOW(),
neatly sidestepping the problem of preparing the date in the correct format for MySQL.
The thorny issue of dates will be tackled in the next chapter.

Creating the journal database table

If you just want to get on with studying the content management pages, use journal.sql
in the download files for this chapter. Open phpMyAdmin, select the phpsolutions data-
base, and import the table in the same way as in the previous chapter. The SQL file creates
the table and populates it with four short articles. Use journal40.sql for MySQL 4.0 or
journal323.sql for MySQL 3.23.

If you would prefer to create everything yourself from scratch, open phpMyAdmin, select
the phpsolutions database, and create a new table called journal with five fields
(columns). Use the settings shown in the following screenshot and Table 13-1.

MANAGING CONTENT

349

13

Table 13-1. Column definitions for the journal table

Field Type Length/Values Attributes Null Default Extra Primary key

article_id INT UNSIGNED not null Selected

title VARCHAR 255 not null

article TEXT not null

updated TIMESTAMP not null

created TIMESTAMP not null

CURRENT_
TIMESTAMP

ON UPDATE
CURRENT_
TIMESTAMP

auto_
increment

7311ch13.qxd  10/10/06  10:58 PM  Page 349



The ON UPDATE CURRENT_TIMESTAMP and CURRENT_TIMESTAMP options aren’t available on
older versions of phpMyAdmin and/or MySQL. This doesn’t matter, because the default is
for the first TIMESTAMP column in a table to update automatically whenever a record is
updated. You don’t want the second TIMESTAMP column to update, in order to keep track
of when a record was originally created.

Creating the basic insert and update form

SQL makes an important distinction between inserting and updating records by providing
separate commands. INSERT is used only for creating a brand new record. Once a record
has been inserted, any changes must be made with UPDATE. Since this involves working
with identical fields, you can use the same page for both operations. However, this makes
the PHP more complex, so I prefer to create the insert page first, save a copy as the update
page, and then code them separately.

The form in the insert page needs just two input fields: for the title and the article. The
contents of the remaining three columns (the primary key and the two timestamps) are
handled automatically either by MySQL or by the SQL query that you will build shortly. The
code for the insert form looks like this:

<form id="form1" name="form1" method="post" action="">
<p>
<label for="title">Title:</label>
<input name="title" type="text" class="widebox" id="title" />

</p>
<p>
<label for="article">Article:</label>
<textarea name="article" cols="60" rows="8" class="widebox" ➥

id="article"></textarea>
</p>
<p>
<input type="submit" name="insert" value="Insert new entry" />

</p>
</form>

You can find the full code in journal_insert01.php in the download files for this chapter.
The content management forms have been given some basic styling with admin.css, which
should be placed in the assets folder. When viewed in a browser, the form looks like this:

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

350

7311ch13.qxd  10/10/06  10:58 PM  Page 350



The update form is identical except for the submit button, which looks like this (the full
code is in journal_update01.php):

<input type="submit" name="update" value="Update entry" />

I’ve given the input fields the same names as the columns in the journal table. This makes
it easier to keep track of variables when coding the PHP and SQL later.

Inserting new records

The basic SQL for inserting new records into a table looks like this:

INSERT [INTO] table_name (column_names)
VALUES (values)

The INTO is in square brackets, which means that it’s optional. It’s purely there to make the
SQL read a little more like human language. The column names can be in any order you
like, but the values in the second set of parentheses must be in the same order.

Although the code is very similar for the original MySQL extension, MySQL Improved, and
PDO, I’ll deal with each one separately to avoid confusion.

Use journal_insert01.php from the download files. The finished code is in
journal_insert_mysql.php.

1. The code that inserts a new record should be run only if the form has been 
submitted, so it’s enclosed in a conditional statement that checks for the name

PHP Solution 13-1: Inserting a new record with the original MySQL extension

Many of the scripts in this chapter use a technique known as setting a flag. A flag
is a Boolean variable that is initialized to either true or false, and used to check
whether something has happened. For instance, if $OK is initially set to false, and
reset to true only when a database query executes successfully, it can be used as
the condition controlling another code block.

As a security measure, some developers recommend using different names from
the database columns because anyone can see the names of input fields just by
looking at the form’s source code. Using different names makes it more difficult to
break into the database. This shouldn’t be a concern in a password-protected part
of a site. However, you may want to consider the idea for publicly accessible forms,
such as those used for user registration or login.

MANAGING CONTENT

351

13

7311ch13.qxd  10/10/06  10:58 PM  Page 351



attribute of the submit button (insert) in the $_POST array. Put the following
above the DOCTYPE declaration:

<?php
if (array_key_exists('insert', $_POST)) {
include('../includes/conn_mysql.inc.php');
include('../includes/corefuncs.php');
// remove backslashes
nukeMagicQuotes();
// prepare an array of expected items
// create database connection
// make $_POST data safe for insertion into database
// prepare the SQL query
// process the query
// if successful, redirect to list of existing records
}

?>

After including the MySQL connection function and the file that contains
nukeMagicQuotes(), the code removes backslashes from the $_POST array. The rest
of the code consists of six comments that map out the remaining steps.

2. First, you need to ensure that you handle only expected data, and that it’s safe 
to insert in the database. Add the code in bold at the points indicated by the
comments:

// prepare an array of expected items
$expected = array('title', 'article');
// create database connection
$conn = dbConnect('admin');
// make $_POST data safe for insertion into database
foreach ($_POST as $key => $value) {
if (in_array($key, $expected)) {
${$key} = mysql_real_escape_string($value);
}

}

This stores the names of the fields that you expect from the form, and then connects
to the database as the administrative user (psadmin). The connection must be estab-
lished before using mysql_real_escape_string(). The conditional statement in the
loop checks that the current $_POST array element is in the $expected array before
passing it to mysql_real_escape_string() and saving the result with a shorter
variable name. So $_POST['title'] becomes $title, and $_POST['article']
becomes $article. The data is now safe to incorporate into a SQL query.

3. Because the $_POST variables have been assigned to shorter variables, it’s easy to
build the SQL query using a combination of single and double quotes like this:

// prepare the SQL query
$sql = "INSERT INTO journal (title, article, created)

VALUES('$title', '$article', NOW())";

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

352

7311ch13.qxd  10/10/06  10:58 PM  Page 352



Although there are five columns in the journal table, the INSERT command needs
values for only three; the primary key and the updated columns are filled automat-
ically by MySQL. As explained earlier, text values must be in quotes in SQL queries,
so $title and $article are enclosed in single quotes. The whole query is enclosed
in double quotes to ensure that the variables are processed.

The value for the created column is generated by a MySQL function, NOW(), which
generates a current timestamp. In the update query later, this column remains
untouched, preserving the original date and time.

4. Finally, you submit the query, using mysql_query(). If the query is processed suc-
cessfully, you redirect the page to a list of existing records. Add the following code:

// process the query
$result = mysql_query($sql) or die(mysql_error());
// if successful, redirect to list of existing records
if ($result) {
header('Location: http://localhost/phpsolutions/admin/ ➥

journal_list.php');
exit;
}

}
?>

There’s nothing new about this last section of code. Before testing the page, you
need to build journal_list.php, which is described in PHP Solution 13-4.

Use journal_insert01.php in the download files. The finished code is in
journal_insert_mysqli.php.

1. The code that inserts a new record should be run only if the form has been sub-
mitted, so it’s enclosed in a conditional statement that checks for the name attrib-
ute of the submit button (insert) in the $_POST array. Put the following above the
DOCTYPE declaration:

<?php
if (array_key_exists('insert', $_POST)) {
include('../includes/conn_mysqli.inc.php');
include('../includes/corefuncs.php');
// remove backslashes
nukeMagicQuotes();
// initialize flag
$OK = false;
// create database connection
// create SQL
// initialize prepared statement
// redirect if successful or display error
}

?>

PHP Solution 13-2: Inserting a new record with MySQL Improved

MANAGING CONTENT

353

13

7311ch13.qxd  10/10/06  10:58 PM  Page 353



After including the MySQLI connection function and the file that contains
nukeMagicQuotes(), the code removes backslashes from the $_POST array and sets
$OK to false. The four comments at the end map out the remaining steps.

2. The first stage in creating a prepared statement is to build a SQL query with place-
holders for the data that will be derived from variables. Create a connection to the
database as the administrative user (psadmin), and build the SQL like this:

// create database connection
$conn = dbConnect('admin');
// create SQL
$sql = 'INSERT INTO journal (title, article, created)

VALUES(?, ?, NOW())';

The values that will be derived from $_POST['title'] and $_POST['article'] are
represented by question mark placeholders. The value for the created column is a
MySQL function, NOW(), which generates a current timestamp. In the update query
later, this column remains untouched, preserving the original date and time.

3. The next stage is to initialize the prepared statement and replace the question
marks with the values held in the variables—a process called binding the param-
eters. Insert the code the following code:

// initialize prepared statement
$stmt = $conn->stmt_init();
if ($stmt->prepare($sql)) {
// bind parameters and execute statment
$stmt->bind_param('ss', $_POST['title'], $_POST['article']);
$OK = $stmt->execute();
}

This is the vital section that protects your database from SQL injection. You pass
the variables to $stmt->bind_param() in the same order as you want them inserted
into the SQL query, together with a first argument specifying the data type of each
variable, again in the same order as the variables. Both are strings, so this argument
is 'ss'. Once the statement has been prepared, you call $stmt->execute() and
capture the success or failure of the operation in $OK.

4. Finally, redirect the page to a list of existing records or display any error message.
Add this code after the previous step:

// redirect if successful or display error
if ($OK) {
header('Location: http://localhost/phpsolutions/admin/ ➥

journal_list.php');
exit;
}

else {
echo $stmt->error;
}

}
?>

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

354

7311ch13.qxd  10/10/06  10:58 PM  Page 354



That completes the insert page, but before testing it, create journal_list.php,
which is described in PHP Solution 13-4.

Use journal_insert01.php from the download files. The finished code is in
journal_insert_pdo.php.

1. The code that inserts a new record should be run only if the form has been sub-
mitted, so it’s enclosed in a conditional statement that checks for the name attrib-
ute of the submit button (insert) in the $_POST array. Put the following above the
DOCTYPE declaration:

<?php
if (array_key_exists('insert', $_POST)) {
include('../includes/conn_pdo.inc.php');
include('../includes/corefuncs.php');
// remove backslashes
nukeMagicQuotes();
// initialize flag
$OK = false;
// create database connection
// create SQL
// prepare the statement
// bind the parameters and execute the statement
// redirect if successful or display error
}

?>

After including the PDO connection function and the file that contains
nukeMagicQuotes(), the code removes backslashes from the $_POST array and sets
$OK to false. The five comments at the end map out the remaining steps.

2. The first stage in creating a prepared statement is to build a SQL query with place-
holders for the data that will be derived from variables. Create a connection to the
database as the administrative user (psadmin), and build the SQL like this:

// create database connection
$conn = dbConnect('admin');
// create SQL
$sql = 'INSERT INTO journal (title, article, created)

VALUES(:title, :article, NOW())';

The values that will be derived from variables are represented by named place-
holders consisting of the column name preceded by a colon (:title and :article).
The value for the created column is a MySQL function, NOW(), which generates a
current timestamp. In the update query later, this column remains untouched, pre-
serving the original date and time.

PHP Solution 13-3: Inserting a new record with PDO

MANAGING CONTENT

355

13

7311ch13.qxd  10/10/06  10:58 PM  Page 355



3. The next stage is to initialize the prepared statement and bind the values from the
variables to the placeholders—a process known as binding the parameters. Add
the following code:

// prepare the statement
$stmt = $conn->prepare($sql);
// bind the parameters and execute the statement
$stmt->bindParam(':title', $_POST['title'], PDO::PARAM_STR);
$stmt->bindParam(':article', $_POST['article'], PDO::PARAM_STR);
$OK = $stmt->execute();

This begins by passing the SQL query to the prepare() method of the database
connection ($conn), and storing a reference to the statement as a variable ($stmt).

Next, the values in the variables are bound to the placeholders in the SQL query.
Because the previous step uses explicit names for the placeholders, you need to do
this separately for each variable. The execute() method runs the query, and the
success or failure of the operation is stored in $OK.

4. Finally, redirect the page to a list of existing records or display any error message.
Add this code after the previous step:

// redirect if successful or display error
if ($OK) {
header('Location: http://localhost/phpsolutions/admin/ ➥

journal_list.php');
exit;
}

else {
$error = $stmt->errorInfo();
echo $error[2];
}

}
?>

Since the prepared statement has been stored as $stmt, you can access an array of
error messages using $stmt->errorInfo(). The most useful information is stored
in the third element of the array.

That completes the insert page, but before testing it, create journal_list.php,
which is described next.

Linking to the update and delete pages

Before you can update or delete a record, you need to find its primary key. A practical way
of doing this is to display a list of all records. The following SQL query retrieves everything
from the journal table:

SELECT * FROM journal

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

356

7311ch13.qxd  10/10/06  10:58 PM  Page 356



To sort the results, add an ORDER BY clause. This sorts the records in alphabetical order by
title:

SELECT * FROM journal ORDER BY title

It’s often convenient to display the most recent entry at the top of the list, so you can sort
the results by the created column. To sort them in reverse (descending) order, add the
DESC keyword like this:

SELECT * FROM journal ORDER BY created DESC

You can use the results of this query to display a list of all records, complete with links
to the update and delete pages. By adding the value of article_id to a query string in
each link, you automatically identify the record to be updated or deleted. As you can
see in Figure 13-3, the URL displayed in the browser status bar (bottom left) identifies
the article_id of the article Trainee geishas go shopping as 2. This is used by
journal_update.php to display the correct record ready for updating. The same infor-
mation is conveyed in the DELETE link to journal_delete.php.

Figure 13-3. The EDIT and DELETE links contain the record’s primary key in a query string.

To create a list like this, you need to start with a table that contains two rows and as many
columns as you want to display, plus two extra columns for the EDIT and DELETE links. The
first row is used for column headings. The second row is wrapped in a PHP loop to display
all the results. The table in journal_list.php starts off like this (it’s in journal_list01.php
in the download files):

<table>
<tr>
<th scope="col">Created</th>
<th scope="col">Title</th>
<th>&nbsp;</th>
<th>&nbsp;</th>

</tr>

MANAGING CONTENT

357

13

7311ch13.qxd  10/10/06  10:58 PM  Page 357



<tr>
<td></td>
<td></td>
<td><a href="journal_update.php">EDIT</a></td>
<td><a href="journal_delete.php">DELETE</a></td>

</tr>
</table>

Use journal_list01.php in the download files. Depending on the method used to connect
to MySQL, the finished code is in journal_list_mysql.php, journal_list_mysqli.php, or
journal_list_pdo.php.

1. You need to connect to MySQL and create the SQL query. Add the following code
above the DOCTYPE declaration:

<?php
include('../includes/connection.inc.php');
// create database connection
$conn = dbConnect('query');
$sql = 'SELECT * FROM journal ORDER BY created DESC';
?>

I have used the generic filename connection.inc.php. Make sure you use the cor-
rect connection file for whichever method you’re using to connect to MySQL.

2. If you’re using the original MySQL extension or MySQL Improved, you need to sub-
mit the query. If you’re using PDO, you can skip straight to step 3.

For the original MySQL extension, add the following line immediately before the
closing PHP tag:

$result = mysql_query($sql) or die(mysql_error());

For MySQL Improved, use this line instead:

$result = $conn->query($sql) or die(mysqli_error());

3. You now need to enclose the second table row in a loop and retrieve each record
from the result set. The following code goes between the closing </tr> tag of the
first row and the opening <tr> tag of the second row.

For the original MySQL extension, use this:

</tr>
<?php while($row = mysql_fetch_assoc($result)) { ?>
<tr>

For MySQL Improved, use this:

</tr>
<?php while($row = $result->fetch_assoc()) { ?>
<tr>

PHP Solution 13-4: Creating the links to the update and delete pages

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

358

7311ch13.qxd  10/10/06  10:58 PM  Page 358



For PDO, use this:

</tr>
<?php foreach ($conn->query($sql) as $row) { ?>
<tr>

This is the same as in the previous chapter, so it should need no explanation.

4. Display the created and title fields for the current record in the first two cells of
the second row like this:

<td><?php echo $row['created']; ?></td>
<td><?php echo $row['title']; ?></td>

5. Add the query string and value of the article_id field for the current record to
both URLs in the next two cells like this:

<td><a href="journal_update.php?article_id=<?php echo ➥

$row['article_id']; ?>">EDIT</a></td>
<td><a href="journal_delete.php?article_id=<?php echo ➥

$row['article_id']; ?>">DELETE</a></td>

What you’re doing here is adding ?article_id= to the URL, and then using PHP to
display the value of $row['article_id']. It’s important that you don’t leave any
spaces that might break the URL or the query string. A common mistake is to leave
spaces around the equal sign. After the PHP has been processed, the opening <a>
tag should look like this (although the number will vary according to the record):

<a href="journal_update.php?article_id=2">

6. Finally, close the loop surrounding the second table row with a curly brace like this:

</tr>
<?php } ?>

</table>

7. Save journal_list.php and load the page into a browser. Assuming that you loaded
the contents of journal.sql into the phpsolutions database earlier, you should see
a list of four items, as shown in Figure 13-3. You can now test journal_insert.php.
After inserting an item, you should be returned to journal_list.php, and the date
and time of creation, together with the title of the new item, should be displayed
at the top of the list. Check your code against the download files if you encounter
any problems.

The code in journal_list.php assumes that there will always be some
records in the table. As an exercise, use the technique in PHP Solution 11-2
(MySQL original and MySQLI), or 11-3 (PDO) to count the number of
results, and use a conditional statement to display a suitable message if no
records are found. The solution is in journal_list_norec_mysql.php,
journal_list_norec_mysqli.php, and journal_list_norec_pdo.php.

MANAGING CONTENT

359

13

7311ch13.qxd  10/10/06  10:58 PM  Page 359



Updating records

An update page needs to perform two separate processes, as follows:

1. Retrieve the selected record and display it ready for editing

2. Update the edited record in the database

The first stage uses the primary key passed in the URL query string. So far, you have used
SELECT to retrieve all records or a range of records (using LIMIT). To retrieve a specific
record identified by its primary key, you add a WHERE clause to the end of the SELECT query
like this:

SELECT * FROM table_name WHERE primary_key_column = primary_key

After you have edited the record in the update page, you submit the form and pass all
the details to an UPDATE command. The basic syntax of the SQL UPDATE command looks
like this:

UPDATE table_name SET column_name = value, column_name = value
WHERE condition

The condition when updating a specific record is the primary key. So, when updating
article_id 2 in the journal table, the basic UPDATE query looks like this:

UPDATE journal SET title = value, article = value
WHERE article_id = 2

Although the basic principle is the same for each method of connecting to MySQL, the
code differs sufficiently to warrant separate instructions.

Use journal_update01.php from the download files. The code for the first stage of the
update process is in journal_update_mysql01php, and the final code is in
journal_update_mysql02.php.

1. The first stage involves retrieving the details of the record that you want to update.
Since the primary key is passed through the query string, you need to extract it
from the $_GET array and make sure that it’s safe to use before incorporating it into
your SQL query. Put the following code above the DOCTYPE declaration:

<?php
include('../includes/conn_mysql.inc.php');
include('../includes/corefuncs.php');

PHP Solution 13-5: Updating a record with the original MySQL extension

Whereas PHP uses two equal signs (==) to test for equality, MySQL uses only one (=).
Don’t get the two mixed up.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

360

7311ch13.qxd  10/10/06  10:58 PM  Page 360



// remove backslashes
nukeMagicQuotes();
// initialize flag
$done = false;
// prepare an array of expected items
$expected = array('title', 'article', 'article_id');
// create database connection
$conn = dbConnect('admin');
// get details of selected record
if ($_GET && !$_POST) {
if (isset($_GET['article_id']) && is_numeric($_GET['article_id'])) {
$article_id = $_GET['article_id'];
}

else {
$article_id = NULL;
}

if ($article_id) {
$sql = "SELECT * FROM journal

WHERE article_id = $article_id";
$result = mysql_query($sql) or die (mysql_error());
$row = mysql_fetch_assoc($result);
}

}
// redirect page if $article_id is invalid
if (!isset($article_id)) {
header('Location: http://localhost/phpsolutions/admin/ ➥

journal_list.php');
exit;
}

?>

Although this is very similar to the code used for the insert page, the first few lines
are outside the conditional statement. Both stages of the update process require
the include files, the removal of backslashes, and the database connection, so this
avoids the need to duplicate code. The $done flag is initialized as false and will be
used later to test whether the update succeeded.

There’s an important addition to the $expected array. When a record is first
inserted, the primary key is generated automatically by MySQL. However, when you
update a record, you need its article_id to identify it.

The first conditional statement checks that the $_GET array contains at least one
value and that the $_POST array is empty. This makes sure that the code inside is
executed only when the query string is set, but the form hasn’t been submitted.
Before building the SQL query, you need to check that $_GET['article_id'] has
been defined and pass it to is_numeric() to make sure that it contains only a
number. If someone comes directly to this page or an attacker tries to pass any-
thing else to your query, $article_id is set to NULL.

If everything is OK, the SQL query is submitted. The result should contain only one
record, so its contents are extracted straight away and stored in $row.

MANAGING CONTENT

361

13

7311ch13.qxd  10/10/06  10:58 PM  Page 361



The final conditional statement redirects the page to journal_list.php if
$article_id was set to NULL earlier. A variable that has been set to NULL is consid-
ered unset, so !isset($article_id) returns true if $article_id is NULL.

2. Now that you have retrieved the contents of the record, you need to display them
in the update form by using PHP to populate the value attribute of each input
field. Before doing so, it’s a good idea to check that you actually have something to
display. If someone changes the value of article_id in the query string, you may
get an empty result set, so there is no point in going any further. Add the following
conditional statement immediately before the opening <form> tag:

<p><a href="journal_list.php">List all entries</a> </p>
<?php if (empty($row)) { ?>
<p class="warning">Invalid request: record does not exist.</p>
<?php } else { ?>
<form id="form1" name="form1" method="post" action="">

If $row contains no values, empty($row) returns true and displays the warning mes-
sage. The form is wrapped in the else clause and is displayed only if the query finds
a valid record to be updated. Add the closing curly brace of the else clause imme-
diately after the closing </form> tag like this:

</form>
<?php } ?>
</body>

3. If $row isn’t empty, you can display the results of the query without further testing.
However, you need to pass text values to htmlentities() to avoid any problems
with the display of quotes. Change the code in the title input field like this:

<input name="title" type="text" class="widebox" id="title" ➥

value="<?php echo htmlentities($row['title']); ?>" />

4. Do the same for the article text area. Because text areas don’t have a value
attribute, the code goes between the opening and closing <textarea> tags like this:

<textarea name="article" cols="60" rows="8" class="widebox" ➥

id="article"><?php echo htmlentities($row['article']); ?></textarea>

Make sure there is no space between the opening and closing PHP and <textarea>
tags. Otherwise, you will get unwanted spaces in your updated record.

5. The UPDATE command needs to know the primary key of the record you want to
change. Store the primary key in a hidden field so that it is submitted in the $_POST
array with the other details. Because hidden fields are not displayed onscreen, the
following code can go anywhere inside the form:

<input name="article_id" type="hidden" value="<?php ➥

echo $row['article_id']; ?>" />

6. Save the update page, and test it by loading journal_list.php into a browser and
selecting the EDIT link for one of the records. The contents of the record should be
displayed in the form fields as shown in Figure 13-4.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

362

7311ch13.qxd  10/10/06  10:58 PM  Page 362



The Update entry button doesn’t do anything yet. Just make sure that everything is
displayed correctly, and confirm that the primary key is registered in the hidden
field. You can check your code, if necessary, against journal_update_mysql01.php.

Figure 13-4. An update form uses the primary key to retrieve and display a record ready for editing.

7. The name attribute of the submit button is update, so all the update processing
code needs to go in a conditional statement that checks for the presence of update
in the $_POST array. Place the code highlighted in bold just before the page redirect
script:

$row = mysql_fetch_assoc($result);
}

// if form has been submitted, update record
if (array_key_exists('update', $_POST)) {
// prepare expected items for insertion into database
foreach ($_POST as $key => $value) {
if (in_array($key, $expected)) {
${$key} = mysql_real_escape_string($value);
}

}
// abandon the process if primary key invalid
if (!is_numeric($article_id)) {
die('Invalid request');
}

MANAGING CONTENT

363

13

7311ch13.qxd  10/10/06  10:58 PM  Page 363



// prepare the SQL query
$sql = "UPDATE journal SET title = '$title', article = '$article'
WHERE article_id = $article_id";
// submit the query
$done = mysql_query($sql) or die(mysql_error());
}

// redirect page on success or $article_id is invalid
if ($done || !isset($article_id)) {

Most of this code should be familiar. Any backslashes inserted by magic quotes will
have been removed by nukeMagicQuotes() because you placed it outside the con-
ditional statements in step 1, so this code block begins by passing items in the
$expected array to mysql_real_escape_string() to prepare them for insertion
into the database, and storing them in shorter variables ($title, $article, and
$article_id).

Because it’s possible to tamper with a hidden field, you make sure that $article_id
is numeric before carrying on.

In the UPDATE query, strings need to be quoted, so the entire query is enclosed in
double quotes, with $title and $article in single quotes.

Although the mysql_query() function returns a result set from a SELECT query,
with UPDATE, it returns true or false. So, if the update succeeds, $done is reset to
true. You need to add $done || to the condition that controls the page redirection
script. This redirects the page either if $done is true or if $article_id is invalid.

8. Save journal_update.php and test it by loading journal_list.php, selecting one
of the EDIT links, and making changes to the record that is displayed. When you
click Update record, you should be taken back to journal_list.php. You can verify
that your changes were made by clicking the same EDIT link again.

Check your code, if necessary, with journal_update_mysql02.php.

Use journal_update01.php from the download files. The code for the first stage of 
the update process is in journal_update_mysqli01php, and the final code is in
journal_update_mysqli02.php.

1. The first stage involves retrieving the details of the record that you want to update.
Put the following code above the DOCTYPE declaration:

<?php
include('../includes/conn_mysqli.inc.php');
include('../includes/corefuncs.php');
// remove backslashes
nukeMagicQuotes();
// initialize flags
$OK = false;
$done = false;

PHP Solution 13-6: Updating a record with MySQL Improved

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

364

7311ch13.qxd  10/10/06  10:58 PM  Page 364



// create database connection
$conn = dbConnect('admin');
// get details of selected record
if (isset($_GET['article_id']) && !$_POST) {
// prepare SQL query
$sql = 'SELECT article_id, title, article

FROM journal WHERE article_id = ?';
// initialize statement
$stmt = $conn->stmt_init();
if ($stmt->prepare($sql)) {
// bind the query parameters
$stmt->bind_param('i', $_GET['article_id']);
// bind the results to variables
$stmt->bind_result($article_id, $title, $article);
// execute the query, and fetch the result
$OK = $stmt->execute();
$stmt->fetch();
}

}
// redirect if $_GET['article_id'] not defined
if (!isset($_GET['article_id'])) {
header('Location: http://localhost/phpsolutions/admin/ ➥

journal_list.php');
exit;
}

// display error message if query fails
if (isset($stmt) && !$OK && !$done) {
echo $stmt->error;
}

?>

Although this is very similar to the code used for the insert page, the first few lines
are outside the conditional statements. Both stages of the update process require
the include files, the removal of backslashes, and the database connection, so this
avoids the need to duplicate the same code later. Two flags are initialized: $OK to
check the success of retrieving the record, and $done to check whether the update
succeeds.

The first conditional statement makes sure that $_GET['article_id'] exists and
that the $_POST array is empty. So the code inside the braces is executed only when
the query string is set, but the form hasn’t been submitted.

You prepare the SELECT query in the same way as for an INSERT command, using a
question mark as a placeholder for the variable. However, note that instead of using
an asterisk to retrieve all columns, the query specifies three columns by name like this:

$sql = 'SELECT article_id, title, article
FROM journal WHERE article_id = ?';

MANAGING CONTENT

365

13

7311ch13.qxd  10/10/06  10:58 PM  Page 365



This is because a MySQLI prepared statement lets you bind the result of a SELECT
query to variables; and to be able to do this, you must specify the column names
and the order you want them to be in.

First, you need to initialize the prepared statement and bind $_GET['article_id']
to the query with $stmt->bind_param(). Because the value of article_id must be
an integer, you pass 'i' as the first argument.

The next line binds the result to variables in the same order as the columns speci-
fied in the SELECT query.

$stmt->bind_result($article_id, $title, $article);

You can call the variables whatever you like, but it makes sense to use the same
names as the columns. Binding the result like this avoids the necessity to use array
names, such as $row['article_id'], later on.

Then the code executes the query and fetches the result.

The next conditional statement redirects the page to journal_list.php if
$_GET['article_id'] hasn’t been defined. This prevents anyone from trying to
load the update page directly in a browser.

The final conditional statement displays an error message if the prepared state-
ment has been created, but both $OK and $done remain false. You haven’t added
the update script yet, but if the record is retrieved or updated successfully, one of
them will be switched to true. So if both remain false, you know there was some-
thing wrong with one of the SQL queries.

2. Now that you have retrieved the contents of the record, you need to display them
in the update form by using PHP to populate the value attribute of each input
field. If the prepared statement succeeded, $article_id should contain the pri-
mary key of the record to be updated, because it’s one of the variables you bound
to the result set with $stmt->bind_result().

However, if someone alters the query string to an invalid number, $article_id will
be set to 0, so there is no point in displaying the update form. Add the following
conditional statement immediately before the opening <form> tag:

<p><a href="journal_list.php">List all entries </a></p>
<?php if($article_id == 0) { ?>
<p class="warning">Invalid request: record does not exist.</p>
<?php } else { ?>
<form id="form1" name="form1" method="post" action="">

3. Add the closing curly brace of the else clause immediately after the closing
</form> tag like this:

</form>
<?php } ?>
</body>

This wraps the update form in the else clause, preventing it from being displayed
if no valid record is found.

4. If $article_id is not 0, you know that $title and $article also contain valid val-
ues and can be displayed in the update form without further testing. However, you

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

366

7311ch13.qxd  10/10/06  10:58 PM  Page 366



need to pass text values to htmlentities() to avoid problems with displaying
quotes. Display $title in the value attribute of the title input field like this:

<input name="title" type="text" class="widebox" id="title" ➥

value="<?php echo htmlentities($title); ?>" />

5. Do the same for the article text area. Because text areas don’t have a value attrib-
ute, the code goes between the opening and closing <textarea> tags like this:

<textarea name="article" cols="60" rows="8" class="widebox" ➥

id="article"><?php echo htmlentities($article); ?></textarea>

Make sure there is no space between the opening and closing PHP and <textarea>
tags. Otherwise, you will get unwanted spaces in your updated record.

6. The UPDATE command needs to know the primary key of the record you want to
change. You need to store the primary key in a hidden field so that it is submitted
in the $_POST array with the other details. Because hidden fields are not displayed
onscreen, the following code can go anywhere inside the form:

<input name="article_id" type="hidden" value="<?php ➥

echo $article_id; ?>" />

7. Save the update page, and test it by loading journal_list.php into a browser and
selecting the EDIT link for one of the records. The contents of the record should be
displayed in the form fields as shown in Figure 13-4.

The Update entry button doesn’t do anything yet. Just make sure that everything is
displayed correctly, and confirm that the primary key is registered in the hidden
field. You can check your code, if necessary, against journal_update_mysqli01.php.

8. The name attribute of the submit button is update, so all the update processing
code needs to go in a conditional statement that checks for the presence of update
in the $_POST array. Place the following code highlighted in bold immediately
above the code in step 1 that redirects the page:

$stmt->fetch();
}

}
// if form has been submitted, update record
if (array_key_exists('update', $_POST)) {
// prepare update query
$sql = 'UPDATE journal SET title = ?, article = ?

WHERE article_id = ?';
// initialize statement
$stmt = $conn->stmt_init();
if ($stmt->prepare($sql)) {
$stmt->bind_param('ssi', $_POST['title'], $_POST['article'], ➥

$_POST['article_id']);
$done = $stmt->execute();
}

}

MANAGING CONTENT

367

13

7311ch13.qxd  10/10/06  10:58 PM  Page 367



// redirect page on success or if $_GET['article_id']) not defined
if ($done || !isset($_GET['article_id'])) {

This is very similar to the INSERT query. The UPDATE query is prepared with question
mark placeholders where values are to be supplied from variables. You then initial-
ize the statement and bind the variables with $stmt->bind_param(). The first two
variables are strings, and the third is an integer, so the first argument is 'ssi'.

If the UPDATE query succeeds, $done is set to true. You need to add $done || to the
condition in the redirect script. This ensures that the page is redirected either if 
the update succeeds or if someone tries to access the page directly.

9. Save journal_update.php and test it by loading journal_list.php, selecting one
of the EDIT links, and making changes to the record that is displayed. When you
click Update record, you should be taken back to journal_list.php. You can verify
that your changes were made by clicking the same EDIT link again. Check your
code, if necessary, with journal_update_mysqli02.php.

Use journal_update01.php from the download files. The code for the first stage of 
the update process is in journal_update_pdo01php, and the final code is in
journal_update_pdo02.php.

1. The first stage involves retrieving the details of the record that you want to update.
Put the following code above the DOCTYPE declaration:

<?php
include('../includes/conn_pdo.inc.php');
include('../includes/corefuncs.php');
// remove backslashes
nukeMagicQuotes();
// initialize flags
$OK = false;
$done = false;
// create database connection
$conn = dbConnect('admin');
// get details of selected record
if (isset($_GET['article_id']) && !$_POST) {
// prepare SQL query
$sql = 'SELECT * FROM journal WHERE article_id = ?';
$stmt = $conn->prepare($sql);
// execute query by passing array of variables
$OK = $stmt->execute(array($_GET['article_id']));
// fetch the result
$row = $stmt->fetch();
// assign result array to variables
if (is_array($row)) {
extract($row);
}

}

PHP Solution 13-7: Updating a record with PDO

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

368

7311ch13.qxd  10/10/06  10:58 PM  Page 368



// redirect if $_GET['article_id'] not defined
if (!isset($_GET['article_id'])) {
header('Location: http://localhost/phpsolutions/admin/ ➥

journal_list.php');
exit;
}

// display error message if query fails
if (isset($stmt) && !$OK && !$done) {
$error = $stmt->errorInfo();
if (isset($error[2])) {
echo $error[2];
}

}
?>

Although this is very similar to the code used for the insert page, the first few lines
are outside the first conditional statement. Both stages of the update process
require the include files, the removal of backslashes, and the database connection,
so this avoids the need to duplicate the same code later. Two flags are initialized:
$OK to check the success of retrieving the record and $done to check whether the
update succeeds.

The first conditional statement checks that $_GET ['article_id'] exists and that
the $_POST array is empty. This makes sure that the code inside is executed only
when the query string is set, but the form hasn’t been submitted.

When preparing the SQL query for the insert form, you used named placeholders
for the variables. This time, let’s use a question mark like this:

$sql = 'SELECT * FROM journal WHERE article_id = ?';

When using question marks as placeholders, you pass the variables directly as an
array to $stmt->execute() like this:

$OK = $stmt->execute(array($_GET['article_id']));

Even though there is only one variable this time, it must still be presented as an
array.

There’s only one record to fetch in the result, so it’s stored immediately in $row,
and the extract() function is used to assign the values to simple variables. (See “A
quick warning about extract()” later in this chapter for a description of how it
works.) If someone alters the query string and searches for a nonexistent record,
$row will be empty, so it’s necessary to test it with is_array() before passing it to
extract().

The next conditional statement redirects the page to journal_list.php if
$_GET['article_id'] hasn’t been defined. This prevents anyone from trying to
load the update page directly in a browser.

The final conditional statement displays an error message if the prepared state-
ment has been created, but both $OK and $done remain false. You haven’t added
the update script yet, but if the record is retrieved or updated successfully, one of
them will be switched to true. So if both remain false, you know there was some-
thing wrong with one of the SQL queries.

MANAGING CONTENT

369

13

7311ch13.qxd  10/10/06  10:58 PM  Page 369



2. Now that you have retrieved the contents of the record, you need to display them
in the update form by using PHP to populate the value attribute of each input
field. Before doing so, it’s a good idea to check that you actually have something to
display. Add the following conditional statement immediately before the opening
<form> tag:

<p><a href="journal_list.php">List all entries</a> </p>
<?php if (!isset($article_id)) { ?>
<p class="warning">Invalid request: record does not exist.</p>
<?php } else { ?>
<form id="form1" name="form1" method="post" action="">

If someone changes the value of article_id in the query string, you may get an
empty result set, so extract() cannot create $article_id. In that event, there’s no
point in going any further, and a warning message is displayed. The form is
wrapped in the else clause and displayed only if the query finds a valid record.
Add the closing curly brace of the else clause immediately after the closing
</form> tag like this:

</form>
<?php } ?>
</body>

3. If $article_id has been defined, you know that $title and $article also exist
and can be displayed in the update form without further testing. However, you
need to pass text values to htmlentities() to avoid problems with displaying
quotes. Display $title in the value attribute of the title input field like this:

<input name="title" type="text" class="widebox" id="title" ➥

value="<?php echo htmlentities($title); ?>" />

4. Do the same for the article text area. Because text areas don’t have a value attrib-
ute, the code goes between the opening and closing <textarea> tags like this:

<textarea name="article" cols="60" rows="8" class="widebox" ➥

id="article"><?php echo htmlentities($article); ?></textarea>

Make sure there is no space between the opening and closing PHP and <textarea>
tags. Otherwise, you will get unwanted spaces in your updated record.

5. The UPDATE command needs to know the primary key of the record you want to
change. You need to store the primary key in a hidden field so that it is submitted
in the $_POST array with the other details. Because hidden fields are not displayed
onscreen, the following code can go anywhere inside the form:

<input name="article_id" type="hidden" value="<?php ➥

echo $article_id; ?>" />

6. Save the update page, and test it by loading journal_list.php into a browser and
selecting the EDIT link for one of the records. The contents of the record should be
displayed in the form fields as shown in Figure 13-4.

The Update entry button doesn’t do anything yet. Just make sure that everything is
displayed correctly, and confirm that the primary key is registered in the hidden
field. You can check your code, if necessary, against journal_update_pdo01.php.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

370

7311ch13.qxd  10/10/06  10:58 PM  Page 370



7. The name attribute of the submit button is update, so all the update processing
code needs to go in a conditional statement that checks for the presence of update
in the $_POST array. Place the following code highlighted in bold immediately
above the code in step 1 that redirects the page:

extract($row);
}

// if form has been submitted, update record
if (array_key_exists('update', $_POST)) {
// prepare update query
$sql = 'UPDATE journal SET title = ?, article = ?

WHERE article_id = ?';
$stmt = $conn->prepare($sql);
// execute query by passing array of variables
$done = $stmt->execute(array($_POST['title'], $_POST['article'], ➥

$_POST['article_id']));
}

// redirect page on success or $_GET['article_id'] not defined
if ($done || !isset($_GET['article_id'])) {

Again, the SQL query is prepared using question marks as placeholders for values
to be derived from variables. This time there are three placeholders, so the corre-
sponding variables need to be passed as an array to $stmt->execute(). Needless
to say, the array must be in the same order as the placeholders.

If the UPDATE query succeeds, $done is set to true. You need to add $done || to the
condition in the redirect script. This ensures that the page is redirected either if the
update succeeds or if someone tries to access the page directly.

8. Save journal_update.php and test it by loading journal_list.php, selecting one
of the EDIT links, and making changes to the record that is displayed. When you
click Update record, you should be taken back to journal_list.php. You can verify
that your changes were made by clicking the same EDIT link again. Check your
code, if necessary, with journal_update_pdo02.php.

Deleting records

Deleting a record in a database is similar to updating one. The basic DELETE command
looks like this:

DELETE FROM table_name WHERE condition

What makes the DELETE command potentially dangerous is that it is final. Once you have
deleted a record, there’s no going back—it’s gone forever. There’s no Recycle Bin or Trash
to fish it out from. Even worse, the WHERE clause is optional. If you omit it, every single
record in the table is irrevocably sent into cyber-oblivion. Consequently, it’s a good idea to
use PHP logic to display details of the record to be deleted, and ask the user to confirm or
cancel the process (see Figure 13-5).

MANAGING CONTENT

371

13

7311ch13.qxd  10/10/06  10:58 PM  Page 371



Figure 13-5. Deleting a record is irreversible, so it’s a good idea to get confirmation before going
ahead.

Building and scripting the delete page is almost identical to the update page, so I won’t
give step-by-step instructions. However, here are the main points:

Retrieve the details of the selected record.

Display sufficient details, such as the title, for the user to confirm that the correct
record has been selected.

Give the Confirm deletion and Cancel buttons different name attributes, and use each
name attribute in array_key_exists() to control the action taken.

Instead of wrapping the entire form in the else clause, use conditional statements
to hide the Confirm deletion button and the hidden field.

The code that performs the deletion for each method follows.

For the original MySQL extension:

if (array_key_exists('delete', $_POST)) {
if (!is_numeric($_POST['article_id'])) {
die('Invalid request');
}

$sql = "DELETE FROM journal
WHERE article_id = {$_POST['article_id']}";

$deleted = mysql_query($sql) or die(mysql_error());
}

For MySQL Improved:

if (array_key_exists('delete', $_POST)) {
$sql = 'DELETE FROM journal WHERE article_id = ?';
$stmt = $conn->stmt_init();

The curly braces around $_POST['article_id'] are needed even though the variable
uses single quotes. This is a quirk of PHP. Elements of associative arrays (ones that use
a string as the array key) need special treatment inside double-quoted strings.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

372

7311ch13.qxd  10/10/06  10:58 PM  Page 372



if ($stmt->prepare($sql)) {
$stmt->bind_param('i', $_POST['article_id']);
$deleted = $stmt->execute();
}

}

For PDO:

if (array_key_exists('delete', $_POST)) {
$sql = 'DELETE FROM journal WHERE article_id = ?';
$stmt = $conn->prepare($sql);
$deleted = $stmt->execute(array($_POST['article_id']));
}

You can find the finished code in journal_delete_mysql.php, journal_delete_mysqli.php,
and journal_delete_pdo.php.

A quick warning about extract()

PHP Solution 13-7 employs a function called extract() to create shorter variables from
the results of a database query. It’s a very useful function, but since it appears in a section
that you might not read unless you’re using PDO, it deserves to be described separately.
Take the following associative array:

$book = array('author' => 'David Powers', 'title' =>'PHP Solutions');

Pass the array to extract() like this:

extract($book);

This creates a variable from each array key with the same value as the equivalent array ele-
ment. In other words, you get $author with the value David Powers, and $title with the
value PHP Solutions.

This is so convenient that it’s tempting to use extract() to convert the contents of the
$_POST and $_GET arrays into the equivalent variables. It works, but is fraught with danger,
because the default behavior is to overwrite existing variables of the same name. It’s far
safer to process $_POST and $_GET variables individually or by testing for them in an array
of expected items, as shown earlier in this chapter.

You can influence the behavior of extract() by using a constant as the second argument.
For instance, EXTR_PREFIX_ALL prefixes all variables with a string supplied as the third
argument like this:

extract($book, EXTR_PREFIX_ALL, 'php');

This produces two variables called $php_author and $php_title.

MANAGING CONTENT

373

13

7311ch13.qxd  10/10/06  10:58 PM  Page 373



The extract() function generates a PHP warning if you pass it anything other than an
array, so it’s always a good idea to test any argument with is_array() first like this:

if (is_array($myVariable)) {
extract($myVariable);
}

You should also test for the existence of any variables you expect to be created by
extract(). Alternatively, set a Boolean flag to true or false depending on the outcome
of the is_array() test.

To find out more about extract() and the other constants you can use with it, see
www.php.net/manual/en/function.extract.php.

Reviewing the four essential SQL commands
Now that you have seen SELECT, INSERT, UPDATE, and DELETE in action, let’s review the
basic syntax. This is not an exhaustive listing, but it concentrates on the most important
options, including some that have not yet been covered. I have used the same typographic
conventions as the MySQL online manual at http://dev.mysql.com/doc/refman/5.0/en
(which you may also want to consult):

Anything in uppercase is a SQL command.

Expressions in square brackets are optional.

Lowercase italics represent variable input.

A vertical pipe (|) separates alternatives.

Although some expressions are optional, they must appear in the order listed. For exam-
ple, in a SELECT query, WHERE, ORDER BY, and LIMIT are all optional; but LIMIT can never
come before WHERE or ORDER BY.

SELECT

SELECT is used for retrieving records from one or more tables. Its basic syntax is as follows:

SELECT [DISTINCT] select_list
FROM table_list
[WHERE where_expression]
[ORDER BY col_name | formula] [ASC | DESC]
[LIMIT [skip_count,] show_count]

The DISTINCT option tells the database you want to eliminate duplicate rows from the
results.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

374

7311ch13.qxd  10/10/06  10:58 PM  Page 374



The select_list is a comma-separated list of columns that you want included in the
result. To retrieve all columns, use an asterisk (*). The asterix shorthand must always be
used on its own; it cannot be combined with other column names. For example, you
cannot use it with an alias (see “Extracting a fixed number of characters” in the next chap-
ter) to mean “all other columns.” If the same column name is used in more than one table,
you must use unambiguous references by using the syntax table_name.column_name.

The table_list is a comma-separated list of tables from which the results are to be
drawn. All tables that you want to be included in the results must be listed.

The WHERE clause specifies search criteria. For example:

WHERE quotations.family_name = authors.family_name
WHERE quotations.author_id = 32

WHERE expressions can use comparison, arithmetic, logical, and pattern-matching opera-
tors. The most important ones are listed in Table 13-2.

MANAGING CONTENT

375

13

Table 13-2. The main operators used in MySQL WHERE expressions

Comparison Arithmetic

< Less than + Addition

<= Less than or equal to - Subtraction

= Equal to * Multiplication

!= Not equal to / Division

> Greater than DIV Integer division

>= Greater than or equal to % Modulo

IN() Included in list

Logical Pattern matching

AND Logical and LIKE Case-insensitive match

&& Logical and NOT LIKE Case-insensitive nonmatch

OR Logical or LIKE BINARY Case-sensitive match

|| Logical or (best avoided) NOT LIKE BINARY Case-sensitive nonmatch

Between (and including)
two values

BETWEEN min
AND max

7311ch13.qxd  10/10/06  10:58 PM  Page 375



DIV is the counterpart of the modulo operator. It produces the result of division as an inte-
ger with no fractional part, whereas modulo produces only the remainder.

5 / 2     /* result 2.5 */
5 DIV 2   /* result 2  */
5 % 2     /* result 1  */

I suggest you avoid using || because it has a completely different meaning in standard
SQL. By not using it with MySQL, you avoid confusion if you ever work with a different
relational database.

IN() evaluates a comma-separated list of values inside the parentheses and returns true if
one or more of the values is found. Although BETWEEN is normally used with numbers, it
also applies to strings. For instance, BETWEEN 'a' AND 'd' returns true for a, b, c, and d
(but not their uppercase equivalents). Both IN() and BETWEEN can be preceded by NOT to
perform the opposite comparison.

LIKE, NOT LIKE, and the related BINARY operators are used for text searches in combina-
tion with the following two wildcard characters:

%: matches any sequence of characters or none.

_ (an underscore): matches exactly one character.

So, the following WHERE clause matches Dennis, Denise, and so on, but not Aiden:

WHERE first_name LIKE 'den%'

To match Aiden, put % at the front of the search pattern. Because % matches any sequence
of characters or none, '%den%' still matches Dennis and Denise. To search for a literal per-
centage sign or underscore, precede it with a backslash (\% or \_).

Conditions are evaluated from left to right, but can be grouped in parentheses if you want
a particular set of conditions to be considered together.

ORDER BY specifies the sort order of the results. This can be specified as a single column, a
comma-separated list of columns, or an expression such as RAND(), which randomizes the
order. The default sort order is ascending (a–z, 0–9), but you can specify DESC (descending)
to reverse the order.

LIMIT followed by one number stipulates the maximum number of records to return. If
two numbers are given separated by a comma, the first tells the database how many rows
to skip (see “Selecting a subset of records” in Chapter 12).

For more details on SELECT, see http://dev.mysql.com/doc/refman/5.0/en/select.html.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

376

7311ch13.qxd  10/10/06  10:58 PM  Page 376



INSERT

The INSERT command is used to add new records to a database. The general syntax is as
follows:

INSERT [INTO] table_name (column_names)
VALUES (values)

The word INTO is optional; it simply makes the command read a little more like human lan-
guage. The column names and values are comma-delimited lists, and both must be in the
same order. So, to insert the forecast for New York (blizzard), Detroit (smog), and
Honolulu (sunny) into a weather database, this is how you would do it:

INSERT INTO forecast (new_york, detroit, honolulu)
VALUES ('blizzard', 'smog', 'sunny')

The reason for this rather strange syntax is to allow you to insert more than one record at
a time. Each subsequent record is in a separate set of parentheses, with each set separated
by a comma:

INSERT numbers (x,y)
VALUES (10,20),(20,30),(30,40),(40,50)

You’ll use this multiple insert syntax in the next chapter. Any columns omitted from an
INSERT query are set to their default value. Never set an explicit value for the primary key
where the column is set to auto_increment; leave the column name out of the INSERT state-
ment. For more details, see http://dev.mysql.com/doc/refman/5.0/en/insert.html.

UPDATE

This command is used to change existing records. The basic syntax looks like this:

UPDATE table_name
SET col_name = value [, col_name = value]
[WHERE where_expression]

The WHERE expression tells MySQL which record or records you want to update (or perhaps
in the case of the following example, dream about):

UPDATE sales SET q1_2007 = 25000
WHERE title = 'PHP Solutions'

For more details on UPDATE, see http://dev.mysql.com/doc/refman/5.0/en/update.html.

MANAGING CONTENT

377

13

7311ch13.qxd  10/10/06  10:58 PM  Page 377



DELETE

DELETE can be used to delete single records, multiple records, or the entire contents of a
table. The general syntax for deleting from a single table is as follows:

DELETE FROM table_name [WHERE where_expression]

Although phpMyAdmin prompts you for confirmation before deleting a record, MySQL
itself takes you at your word, and performs the deletion immediately. DELETE is totally
unforgiving—once the data is deleted, it is gone forever. The following query will delete all
records from a table called subscribers where the date in expiry_date has already passed:

DELETE FROM subscribers WHERE expiry_date < NOW()

For more details, see http://dev.mysql.com/doc/refman/5.0/en/delete.html.

Security and error messages
When developing a website with PHP and MySQL, it’s essential to display error messages so
that you can debug your code if anything goes wrong. However, raw error messages
look unprofessional in a live website. They can also reveal clues about your database
structure to potential attackers. Therefore, before deploying your scripts live on the
Internet, you should go through them, removing all instances of mysql_error()
(MySQL), mysqli_error() (MySQLI), or echo $error[2] (PDO).

The simplest way to handle this is to replace the MySQL error messages with a neutral
message of your own, such as “Sorry, the database is unavailable.” A more professional
way is to replace or die() routines with an if... else conditional statement, and to use
the error control operator (see “Preventing errors when an include file is missing” in
Chapter 4) to suppress the display of error messages. For example, you may have the fol-
lowing line in a current script:

$result = mysql_query($sql) or die(mysql_error());

You can rewrite it like this:

$result = @ mysql_query($sql);
if (!$result) {
// redirect to custom error page
}

Although the WHERE clause is optional in both UPDATE and DELETE, you should be aware
that if you leave WHERE out, the entire table is affected. This means that a careless slip
with either of these commands could result in every single record being identical—or
wiped out.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

378

7311ch13.qxd  10/10/06  10:58 PM  Page 378



Summary
The availability of three different methods of connecting to MySQL with PHP is both a
good thing and a bad thing. The downside is that you can’t learn just one way of doing
things. Even if you have a remote server that supports PDO, the most up-to-date method,
most books and tutorials will continue to be based on the original MySQL extension.
What’s more, you can’t mix the different techniques in the same script. This makes life dif-
ficult for beginners and experts alike.

The upside is that neither PHP nor MySQL is standing still. Prepared statements make data-
base queries more secure by removing the need to ensure that quotes and control char-
acters are properly escaped. They also speed up your application if the same query needs
to be repeated during a script using different variables. Instead of validating the SQL every
time, the script needs do it only once with the placeholders.

Although this chapter has concentrated on content management, the same basic tech-
niques apply to most interaction with a database. Of course, there’s a lot more to SQL—
and to PHP. In the next chapter, I’ll address some of the most common problems, such as
displaying only the first sentence or so of a long text field, handling dates, and working
with more than one table in a database.

MANAGING CONTENT

379

13

7311ch13.qxd  10/10/06  10:58 PM  Page 379



7311ch14.qxd  10/10/06  11:03 PM  Page 380



14 SOLUTIONS TO COMMON
PHP/MYSQL PROBLEMS

7311ch14.qxd  10/10/06  11:03 PM  Page 381



What this chapter covers:

Extracting the first section of a longer text item

Using an alias in a SQL query

Formatting dates with PHP and MySQL

Working with multiple tables in MySQL

We have some unfinished business left over from the last chapter. Figure 13-2 shows con-
tent from the journal table with just the first two sentences of each article displayed and
a link to the rest of the article. However, I didn’t show you how it was done. The full list of
articles in journal_list.php also displays the MySQL timestamp in its raw state, which
isn’t very elegant, particularly if you’re using MySQL 3.23 or 4.0. In addition to tidying up
those two things, this chapter addresses some of the most common questions about work-
ing with PHP and MySQL, such as inserting dates into a database, formatting text retrieved
from a database, and working with multiple-table databases. I hope that, by this stage, you
have built up sufficient confidence to start adapting scripts without the need for detailed
instructions every step of the way, so I’ll concentrate on the main new features.

Let’s start by extracting the first few lines from the beginning of a longer piece of text.

Displaying a text extract
There are many ways to extract the first few lines or characters from a longer piece of text.
Sometimes, you need just the first 20 or 30 characters to identify an item. At other times,
it’s preferable to show complete sentences or paragraphs.

Extracting a fixed number of characters

You can extract a fixed number of characters from the beginning of a text item either with
the PHP substr() function or with the LEFT() function in a SQL query.

Using PHP
The PHP substr() function extracts a substring from a longer string. It takes three argu-
ments: the string you want to extract the substring from, the starting point (counted from
0), and the number of characters to be extracted. So, the following code displays the first
100 characters of $row['article']:

echo substr($row['article'], 0, 100);

To view the example files for this section, copy them from the download files for this
chapter to the site root of your phpsolutions site. Each file requires the following files
in the includes folder: footer.inc.php, menu.inc.php, title.inc.php, and the cor-
rect connection file for the method you are using with MySQL.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

382

7311ch14.qxd  10/10/06  11:03 PM  Page 382



The substr() function leaves the original string intact. If you omit the third argument,
substr() extracts everything to the end of the string. This makes sense only if you choose
a starting point other than 0.

Using MySQL
The MySQL LEFT() function extracts a specified number of characters from the beginning
of a column. It takes two arguments: the column name and the number of characters to
be extracted. So, the following retrieves article_id, title, and the first 100 characters
from the article column of the journal table:

SELECT article_id, title, LEFT(article, 100)
FROM journal ORDER BY created DESC

Whenever you use a function in a SQL query like this, the column name no longer appears in
the result set as article, but as LEFT(article, 100) instead. So it’s a good idea to assign an
alias to the affected column using the AS keyword. You can either reassign the column’s
original name as the alias or use a descriptive name as in the following example (the code is
in journal_left_mysql.php, journal_left_mysqli.php, and journal_left_pdo.php in the
download files):

SELECT article_id, title, LEFT(article, 100) AS first100
FROM journal ORDER BY created DESC

If you process each record as $row, the extract is in $row['first100']. To retrieve both
the first 100 characters and the full article, simply include both in the query like this:

SELECT article_id, title, LEFT(article, 100) AS first100, article
FROM journal ORDER BY created DESC

However, taking a fixed number of characters from the beginning of an article produces a
very crude result, as Figure 14-1 shows. For a public web page, you need a more subtle
approach.

Figure 14-1. Selecting the first 100 characters from an article chops words in half and looks very
unprofessional.

Ending an extract on a complete word

To end an extract on a complete word, you need to find the final space, and use that to
determine the length of the substring. So, if you want the extract to be a maximum of

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

383

14

7311ch14.qxd  10/10/06  11:03 PM  Page 383



100 characters, use either of the preceding methods to start with, and store the result in
$extract. Then you can use the PHP string functions strrpos() and substr() to find the
last space and end the extract like this (the code is in journal_word_mysql.php,
journal_word_mysqli.php, and journal_word_pdo.php):

$extract = $row['first100'];
// find position of last space in extract
$lastSpace = strrpos($extract, ' ');
// use $lastSpace to set length of new extract and add ...
echo substr($extract, 0, $lastSpace).'... ';

This produces the more elegant result shown in Figure 14-2. It uses strrpos(), which finds
the last position of a character within another string. Since you’re looking for a space, the
second argument is a pair of quotes with a single space between them. The result is stored
in $lastSpace, which is passed as the third argument to substr(), finishing the extract on
a complete word. Finally, add a string containing three dots and a space, and join the two
with the concatenation operator (a period or dot).

Figure 14-2. Two lines of PHP code produce a more elegant result by ending the extract on a
complete word.

Extracting the first paragraph

Assuming that you have entered your text in the database using the Enter or Return key to
indicate new paragraphs, this is very easy. Simply retrieve the full text, use strpos() to
find the first new line character, and use substr() to extract the first section of text up to
that point.

The download files journal_para_mysql.php, journal_para_mysqli.php, and
journal_para_pdo.php use the following SQL query:

Don’t confuse strrpos(), which finds the last instance of a character within a string,
with its counterpart strpos(), which finds the first instance. You can use strpos() to
search not only for a single character, but also for a string within a string. The ability to
use strrpos() to search for a substring is available only in PHP 5 and above. Both func-
tions also have case-insensitive versions. To find out more, visit www.php.net/manual/
en/function.strpos.php.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

384

7311ch14.qxd  10/10/06  11:03 PM  Page 384



SELECT article_id, title, article
FROM journal ORDER BY created DESC

The following code is used to display the first paragraph of article:

echo substr($row['article'], 0, strpos($row['article'], "\n"));

If that makes your head spin, take a look at the third argument on its own:

strpos($row['article'], "\n")

This locates the first new line character in $row['article']. You could rewrite the code
like this:

$newLine = strpos($row['article'], "\n");
echo substr($row['article'], 0, $newLine);

Both sets of code do exactly the same thing, but PHP lets you nest a function as an argu-
ment passed to another function. As long as the nested function returns a valid result, you
can frequently use shortcuts like this.

Displaying paragraphs
Since we’re on the subject of paragraphs, many beginners are confused by the fact that all
the text retrieved from a database is displayed as a continuous block, with no separation
between paragraphs. XHTML ignores whitespace, including new lines. To get text stored 
in a database displayed as paragraphs, you have two main options: convert new lines to
<br /> tags, or store your text as XHTML.

The first of these options is simpler. Pass your text to the nl2br() function before display-
ing it like this:

echo nl2br($row['article']);

Voilà!—paragraphs. Yes, I know that they aren’t properly marked up as paragraphs.
Databases can store XHTML, but they cannot create it for you.

Extracting complete sentences

PHP has no concept of what constitutes a sentence. Counting periods means you ignore all
sentences that end with an exclamation point or question mark. You also run the risk of
breaking a sentence on a decimal point or cutting off a closing quote after a period. To
overcome these problems, I have devised a PHP function called getFirst() that identifies
the punctuation at the end of a normal sentence:

A period, question mark, or exclamation point

Optionally followed by a single or double quote

Followed by one or more spaces

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

385

14

7311ch14.qxd  10/10/06  11:03 PM  Page 385



The getFirst() function takes two arguments: the text from which you want to extract
the first section and the number of sentences you want to extract. The second argument
is optional; if it’s not supplied, the function extracts the first two sentences. The code looks
like this (it’s in getFirst.inc.php):

function getFirst($text, $number=2) {
// regular expression to find typical sentence endings
$pattern = '/([.?!]["\']?)\s/';
// use regex to insert break indicator
$text = preg_replace($pattern, '$1bRE@kH3re', $text);
// use break indicator to create array of sentences
$sentences = explode('bRE@kH3re', $text);
// check relative length of array and requested number
$howMany = count($sentences);
$number = $howMany >= $number ? $number : $howMany;
// rebuild extract and return as single string
$remainder = array_splice($sentences, $number);
$result = array();
$result[0] = implode(' ', $sentences);
$result[1] = empty($remainder) ? false : true;
return $result;
}

You don’t need to understand the fine details, but the line highlighted in bold uses
preg_replace() to insert a combination of characters so unlikely to occur in normal text
that it can be used to identify the end of each sentence. The function returns an array con-
taining two elements: the extracted sentences and a Boolean variable indicating whether
there’s anything more following the extract. You can use the second element to create a
link to a page containing the full text.

If you created the Japan Journey site earlier in the book, use journal.php. Alternatively,
use journal01.php from the download files for this chapter, and copy it to the
phpsolutions site root. You also need footer.inc.php, menu.inc.php, title.inc.php,
and the correct MySQL connection file in the includes folder. The finished code is in
journal_mysql.php, journal_mysqli.php, and journal_pdo.php.

For the sake of brevity, in this chapter I am not going to wrap the include commands
in conditional statements. An include file should always be accessible as long as it’s
located within the same domain and the filepath is correct. Remember, though, that
the accidental deletion or corruption of an include file will result in your site being dis-
figured with warning messages if your server has display_errors turned on. Also, calls
to functions in external files will generate a fatal error unless you first use
function_exists() as described in Chapter 4.

PHP Solution 14-1: Displaying the first two sentences of an article

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

386

7311ch14.qxd  10/10/06  11:03 PM  Page 386



1. Copy getFirst.inc.php from the download files to the includes folder, and
include it in the PHP code block above the DOCTYPE declaration. Also include the
correct connection file for the method you’re using to connect to MySQL, and cre-
ate a connection to the database. This page shouldn’t be given any administrative
privileges, so use query as the argument passed to dbConnect() like this:

include('includes/getFirst.inc.php');
include('includes/connection.inc.php');
// create database connection
$conn = dbConnect('query');

2. Prepare a SQL query to retrieve all records from the journal table like this:

$sql = 'SELECT * FROM journal ORDER BY created DESC';

3. If you’re using the original MySQL extension, submit the query like this:

$result = mysql_query($sql);

For MySQL Improved, use this:

$result = $conn->query($sql);

There’s no need to submit the query at this stage for PDO.

4. Create a loop inside the maincontent <div> to display the results.

For the MySQL original extension, use this:

<div id="maincontent">
<?php
while ($row = mysql_fetch_assoc($result)) {
?>
<h2><?php echo $row['title']; ?></h2>
<p><?php $extract = getFirst($row['article']);
echo $extract[0];
if ($extract[1]) {
echo '<a href="details.php?article_id='.$row['article_id'].'"> ➥

More</a>';
} ?></p>

<?php } ?>
</div>

The code is the same for MySQL Improved and PDO, except for this line:

while ($row = mysql_fetch_assoc($result)) {

For MySQL Improved, replace it with this:

while ($row = $result->fetch_assoc()) {

For PDO, use this instead:

foreach ($conn->query($sql) as $row) {

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

387

14

7311ch14.qxd  10/10/06  11:03 PM  Page 387



The main part of the code is inside the <p> tags. The getFirst() function processes
$row['article'] and stores the result in $extract. The first two sentences of
article in $extract[0] are immediately displayed. If $extract[1] contains any-
thing, it means there is more to display. So the code inside the if statement displays
a link to details.php with the article’s primary key in a query string.

5. Save the page and test it in a browser. You should see the first two sentences of
each article displayed as shown in Figure 13-2 in the previous chapter. Test the
function by adding a number as a second argument to getFirst() like this:

$extract = getFirst($row['article'], 3);

This displays the first three sentences. If you increase the number so that it equals
or exceeds the number of sentences in an article, the More link won’t be displayed.

We’ll look at detail.php later in the chapter after linking the journal and images tables
with a foreign key. Before that, let’s tackle the minefield presented by using dates with a
database.

Let’s make a date
Dates and time are so fundamental to modern life that we rarely pause to think how com-
plex they are. There are 60 seconds to a minute and 60 minutes to an hour, but 24 hours
to a day. Months range between 28 and 31 days, and a year can be either 365 or 366 days.
The confusion doesn’t stop there, because 7/4 means July 4 to an American or Japanese,
but 7 April to a European. As if all that weren’t confusing enough, PHP and MySQL handle
dates differently. Time to bring order to chaos . . .

How MySQL handles dates

In MySQL, dates and time always follow the same order: largest unit first, followed by the
next largest, down to the smallest. In other words: year, month, date, hour, minutes, sec-
onds. Hours are always measured using the 24-hour clock with midnight expressed as
00:00:00. Even if this seems unfamiliar to you, it’s the recommendation laid down by the
International Organization for Standardization (ISO).

If you attempt to store a date in any other format than year, month, date, MySQL stores it
as 0000-00-00. MySQL allows considerable flexibility about the separator between the
units (any punctuation symbol is OK), but there is no argument about the order—it’s fixed.

I’ll come back later to the way you insert dates into MySQL, because it’s best to validate
them and format them with PHP. First, let’s take a look at some of the things you can do
with dates once they’re stored in MySQL. MySQL has a wide range of date and time func-
tions, all of which are listed together with examples at http://dev.mysql.com/doc/
refman/5.0/en/date-and-time-functions.html.

One of the most useful functions is DATE_FORMAT(), which does exactly what its name
suggests.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

388

7311ch14.qxd  10/10/06  11:03 PM  Page 388



Formatting dates in a SELECT query
The syntax for DATE_FORMAT() is as follows:

DATE_FORMAT(date, format)

Normally, date is the table column to be formatted, and format is a string composed of
formatting specifiers and any other text you want to include. Table 14-1 lists the most
common specifiers.

Table 14-1. Frequently used MySQL date format specifiers

Period Specifier Description Example

Year %Y Four-digit format 2006

%y Two-digit format 06

Month %M Full name January,
September

%b Abbreviated name, three letters Jan, Sep

%m Number with leading zero 01, 09

%c Number without leading zero 1, 9

Day of month %d With leading zero 01, 25

%e Without leading zero 1, 25

%D With English text suffix 1st, 25th

Weekday name %W Full text Monday,
Thursday

%a Abbreviated name, three letters Mon, Thu

Hour %H 24-hour clock with leading zero 01, 23

%k 24-hour clock without leading zero 1, 23

%h 12-hour clock with leading zero 01, 11

12-hour clock without leading zero 1, 11

Minutes %i With leading zero 05, 25

Seconds %S With leading zero 08, 45

AM/PM %p

%l
(lowercase “L”)

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

389

14

7311ch14.qxd  10/10/06  11:03 PM  Page 389



As explained earlier, when using a function in a SQL query, assign the result to an alias
using the AS keyword. Referring to Table 14-1, you can now format the date in the created
column of the journal table. To present it in a common U.S. style and retain the name of
the original column, use the following:

DATE_FORMAT(created, '%c/%e/%Y') AS created

To format the same date in European style, reverse the first two specifiers like this:

DATE_FORMAT(created, '%e/%c/%Y') AS created

Use admin/journal_list.php from Chapter 13. The completed code is in
journal_list_fmt_mysql.php, journal_list_fmt_mysqli.php, and journal_list_fmt_pdo.php
in the download files for this chapter.

1. Locate the SQL query in journal_list.php. It looks like this:

$sql = 'SELECT * FROM journal ORDER BY created DESC';

2. Change it like this:

$sql = 'SELECT article_id, title,
DATE_FORMAT(created, "%a, %b %D, %Y") AS created
FROM journal ORDER BY created DESC';

I used single quotes around the whole SQL query, so the format string inside
DATE_FORMAT() needs to be in double quotes. Make sure there is no gap before
the opening parenthesis of DATE_FORMAT().

3. Save the page and load it into a browser. The dates should now be formatted as
shown in Figure 14-3. Experiment with other specifiers to suit your preferences.

Figure 14-3. The MySQL timestamps are now nicely formatted.

Adding to and subtracting from dates
When working with dates, it’s often useful to add or subtract a specific time period. For
instance, you may want to display items that have been added to the database within the
past seven days, or stop displaying articles that haven’t been updated for three months.

PHP Solution 14-2: Formatting a MySQL date or timestamp

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

390

7311ch14.qxd  10/10/06  11:03 PM  Page 390



MySQL makes this easy with DATE_ADD() and DATE_SUB(). Both functions have synonyms
called ADDDATE() and SUBDATE(), respectively.

The basic syntax is the same for all of them and looks like this:

DATE_ADD(date, INTERVAL value interval_type)

When using these functions, date can be the column containing the date you want to alter,
a string containing a particular date (in YYYY-MM-DD format), or a MySQL function, such as
NOW(). INTERVAL is a keyword followed by a value and an interval type, the most common
of which are listed in Table 14-2.

Table 14-2. Most frequently used interval types with DATE_ADD() and DATE_SUB()

Interval type Meaning Value format

DAY Days Number

DAY_HOUR Days and hours String presented as 'DD hh'

WEEK Weeks Number

MONTH Months Number

QUARTER Quarters Number

YEAR Years Number

YEAR_MONTH Years and months String presented as 'YY-MM'

The interval types are constants, so don’t add “S” to the end of DAY, WEEK, and so on to
make them plural.

One of the most useful applications of these functions is to display only the most recent
items in a table.

Use journal.php from PHP Solution 14-1. The finished code is in
journal_week_mysql.php, journal_week_mysqli.php, and journal_week_pdo.php.

1. Locate the SQL query in journal.php. It looks like this:

$sql = 'SELECT * FROM journal ORDER BY created DESC';

2. Change it like this:

$sql = 'SELECT * FROM journal
WHERE updated > DATE_SUB(NOW(), INTERVAL 1 WEEK)
ORDER BY created DESC';

This tells MySQL that you want only items that have been updated in the past week.

PHP Solution 14-3: Displaying items updated within the past week

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

391

14

7311ch14.qxd  10/10/06  11:03 PM  Page 391



3. Save and reload the page in your browser. Depending on when you last updated an
item in the journal table, you should see nothing or a limited range of items. If
necessary, change the interval type to DAY or HOUR to test that the time limit is
working.

4. Open journal_list.php, select an item that isn’t displayed in journal.php, and
edit it. Reload journal.php. The item that you have just updated should now be
displayed.

Working with dates in PHP

PHP handles dates in a very different way from MySQL that’s not as easy to visualize in
everyday terms. MySQL timestamps are based on the human calendar and look like this:

2006-07-05 10:32:19  // MySQL 4.1 and above
20060705103219       // Prior to MySQL 4.1

The format prior to MySQL 4.1 is more difficult to read because it doesn’t have any punc-
tuation, but once you know that the units are year, month, and so on, the meaning is easy
to work out.

The same moment in time is represented like this in PHP:

1152091939  // Unix timestamp for 10:32:19 BST on July 5, 2006

This seemingly arbitrary figure is the number of seconds since midnight UTC (Coordinated
Universal Time)1 on January 1, 1970—a point in time commonly referred to as the Unix
epoch and used as the basis for date and time calculations in many computing languages.
Except when referring to the current time, all dates in PHP need to be converted to a Unix
timestamp. After performing any calculations, you format the result in a more human-
readable way by using the date() or strftime() function, which I’ll describe shortly. But
first, let’s take a look at time zones and Unix timestamps.

Setting the correct time zone
The internal workings of the PHP date and time functions were revised in PHP 5.1 and
require a time zone to be defined. Normally, this should be done by setting the value of
date.timezone in php.ini; but if your hosting company forgets to do so, or you want to
use a different time zone, you need to set it yourself. You can do this three different ways.

The simplest way is to add the following at the beginning of any script that uses date or
time functions:

ini_set('date.timezone', 'timezone');

1. According to Wikipedia (http://en.wikipedia.org), the abbreviation “UTC” for “Coordinated
Universal Time” is a compromise, as the International Telecommunication Union wanted the term to have
a single abbreviation for all languages, and English and French speakers each wanted the term presented
in their respective language. A variation of the English term “coordinated universal time” was agreed upon,
with the verbal adjective trailing as in French, so that the abbreviation UTC can also be read as "universal
time, coordinated.”

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

392

7311ch14.qxd  10/10/06  11:03 PM  Page 392



You can find a full list of valid time zones at www.php.net/manual/en/timezones.php. The
correct setting for where I live is this:

ini_set('date.timezone', 'Europe/London');

ini_set() fails silently if your server doesn’t support the date.timezone setting. As long
as you use a valid PHP time zone, your scripts will automatically use this setting whenever
your server is upgraded.

A slightly longer way is to add this (with the appropriate time zone) before using date and
time functions:

if (function_exists('date_default_timezone_set')) {
date_default_timezone_set('Europe/London');
}

If your remote server runs Apache, you may be able to set a default time zone for your
entire site by putting the following in an .htaccess file in the site root (use the correct
time zone for your location):

php_value date.timezone 'Europe/London'

This works only if Apache has been set up to allow .htaccess to override default settings.

Creating a Unix timestamp
PHP offers two main ways of creating a Unix timestamp. The first uses mktime() and is
based on the actual date and time; the other attempts to parse any English date or time
expression with strtotime().

The mktime() function takes six arguments as follows:

mktime(hour, minutes, seconds, month, date, year)

All arguments are optional. If a value is omitted, it is set to the current date and time.
However, you can’t skip arguments; as soon as you leave one out, all remaining ones must
also be omitted. Consequently, if you are interested only in the date, you need to set the
first three arguments to 0 (midnight) like this:

$Xmas2006 = mktime(0, 0, 0, 12, 25, 2006);

The strtotime() function attempts to parse dates from American English, but holds some
unpleasant surprises. The following expressions produce the correct timestamp for
Christmas Day 2006:

$Xmas2006 = strtotime('12/25/2006');
$Xmas2006 = strtotime('2006-12-25');

However, replacing the slashes with hyphens in the first example, as follows, produces a
false result:

$notXmas = strtotime('12-25-2006'); // produces Dec 31, 1969 timestamp

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

393

14

7311ch14.qxd  10/10/06  11:03 PM  Page 393



To avoid such problems, it’s best to use the name of the month, either spelled out in full
or just the first three letters, and to place the year at the end of the string.

The real value of strtotime(), however, lies in its ability to add or subtract from dates by
parsing simple time-related expressions. For instance, strtotime() understands all these
expressions:

strtotime('tomorrow');
strtotime('yesterday');
strtotime('last Monday');
strtotime('next Thursday');
strtotime('-3 weeks');
strtotime('+1 week 2 days');

The previous examples calculate the timestamp based on the current date and time.
However, you can supply a specific timestamp as a second, optional argument to
strtotime(). This means you can add or subtract from a particular date. The following
example calculates the timestamp for January 6, 2007:

$Xmas2006 = mktime(0, 0, 0, 12, 25, 2006);
strtotime('+12 days', $Xmas2006);

If you ever need to generate a Unix timestamp from a date-type column in MySQL, you
can use the UNIX_TIMESTAMP() function in a SELECT statement like this:

SELECT UNIX_TIMESTAMP(created) AS PHPtimestamp FROM journal

Formatting dates in PHP
PHP offers two functions that format dates: date(), which displays the names of weekdays
and months in English only, and strftime(), which uses the server’s locale. So, if the
server’s locale is set to Spanish, date() displays Saturday, but strftime() displays sábado.
Both functions take as their first, required argument a string that indicates the format in
which you want to display the date. A second, optional argument specifies the timestamp,
but if it’s omitted, the current date and time are assumed.

There are a lot of format characters. Some are easy to remember, but many seem to have
no obvious reasoning behind them. You can find a full list at www.php.net/manual/en/
function.date.php and www.php.net/manual/en/function.strftime.php. Table 14-3 lists
the most useful.

Be careful when using “next” in a strtotime() expression. In versions prior to PHP 4.4,
it is incorrectly interpreted as +2, instead of +1.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

394

7311ch14.qxd  10/10/06  11:03 PM  Page 394



Table 14-3. The main format characters used in the date() and strftime() functions

Unit date() strftime() Description Example

Day d %d Day of the month with leading zero 01 through 31

j %e* Day of the month without leading zero 1 through 31

S English ordinal suffix for day of the month st, nd, rd, or th

D %a First three letters of day name Sun, Tue

%A Full name of day Sunday,
Tuesday

Month m %m Number of month with leading zero 01 through 12

n Number of month without leading zero 1 through 12

M %b First three letters of month name Jan, Jul

F %B Full name of month January, July

Year Y %Y Year displayed as four digits 2006

y %y Year displayed as two digits 06

Hour g Hour in 12-hour format without leading zero 1 through 12

h %I Hour in 12-hour format with leading zero 01 through 12

G Hour in 24-hour format without leading zero 0 through 23

H %H Hour in 24-hour format with leading zero 01 through 23

Minutes i %M Minutes with leading zero if necessary 00 through 59

Seconds s %S Seconds with leading zero if necessary 00 through 59

AM/PM a %p Lowercase am

AM/PM A Uppercase PM

* Note: %e is not supported on Windows.

%l
(lowercase “L”)

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

395

14

7311ch14.qxd  10/10/06  11:03 PM  Page 395



You can combine these format characters with punctuation to display the current date in
your web pages according to your own preferences. For instance, the following code
(also in dates.php in the download files for this chapter) produces output similar to that
shown in the following screenshot:

<p>American style: <?php echo date('l, F jS, Y'); ?></p>
<p>European style: <?php echo date('l, jS F Y'); ?></p>

Inserting dates into MySQL

MySQL’s requirement for dates to be formatted as YYYY-MM-DD presents a headache for
online forms that allow users to input dates. As you have seen, the current date and time
can be inserted automatically by using a TIMESTAMP column or the MySQL NOW() function.
It’s when you need any other date that the problems arise.

If you can trust users to follow a set pattern for inputting dates, such as MM/DD/YYYY, you
can use the PHP explode() function to split the date parts into an array and rearrange
them like this:

if (isset($_POST['theDate'])) {
$date = explode('/', $_POST['theDate']);
$mysqlFormat = "$date[2]-$date[0]-$date[1]";
}

To perform the same conversion from DD/MM/YYYY, just reorder the date parts like this:

$mysqlFormat = "$date[2]-$date[1]-$date[0]";

This works, but as soon as someone deviates from the format, you end up with invalid
dates in your database. It’s better to ensure that dates are both valid and in the correct
format.

This PHP Solution concentrates on checking the validity of a date and converting it to
MySQL format. It’s designed to be incorporated in an insert or update form of your own.
The finished code is in date_converter02.php in the download files for this chapter.

PHP Solution 14-4: Validating and formatting dates for MySQL input

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

396

7311ch14.qxd  10/10/06  11:03 PM  Page 396



1. Create a page called date_converter.php, and insert a form containing the follow-
ing code (or use date_converter01.php in the download files):

<form id="form1" name="form1" method="post" action="">
<p>
<label for="select">Month:</label>
<select name="month" id="month">
<option value=""></option>

</select> 
<label for="day">Date:</label>
<input name="day" type="text" id="day" size="2" maxlength="2" />
<label for="year">Year:</label>
<input name="year" type="text" id="year" size="4" maxlength="4" />

</p>
<p>
<input type="submit" name="convert" id="convert" value="Convert" />

</p>
</form>

This code creates a drop-down menu called month and two text input fields called
day and year. The drop-down menu doesn’t have any values at the moment, but it
will be populated by a PHP loop. The day and year fields both have maxlength
attributes that limit the number of characters accepted. The submit button is called
convert, but the name in a real application should be whatever you use for your
insert or update form.

2. Amend the section that builds the drop-down menu like this:

<select name="month" id="month">
<?php
$months = array('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug', ➥

'Sep','Oct','Nov','Dec');
ini_set('date.timezone', 'Europe/London');
$thisMonth = date('n');
for ($i = 1; $i <= 12; $i++) { ?>
<option value="<?php echo $i < 10 ? '0'.$i : $i; ?>"
<?php if ($i == $thisMonth) { echo ' selected="selected"'; } ?>>
<?php echo $months[$i-1]; ?>
</option>

<?php } ?>
</select> 

This creates an array of month names and uses the date() function to find the
number of the current month (set the correct time zone for your location). A for
loop then populates the menu’s <option> tags. I have set the initial value of $i to
1, because I want to use it for the value of the month. The following code tests
whether $i is less than 10. If it is, a leading zero is added to the number:

echo $i < 10 ? '0'.$i : $i;

If the values of $i and $thisMonth are the same, the if statement inserts
selected="selected" into the <option> tag. The final part of the script displays the

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

397

14

7311ch14.qxd  10/10/06  11:03 PM  Page 397



name of the month by drawing it from the $months array. Because indexed arrays
begin at 0, you need to subtract 1 from the value of $i to get the right month.

3. Save the page and test it in a browser. It should look like the following screenshot,
and the current month should be automatically displayed in the drop-down menu.

If you test the text input fields, the Date field should accept no more than two
characters, and the Year field a maximum of four. Even though this reduces the
possibility of mistakes, you still need to validate the input and format the date
correctly.

4. The code that performs all the checks goes above the DOCTYPE declaration. It’s a
straightforward chain of if... else statements, which looks like this:

if (array_key_exists('convert', $_POST)) {
$m = $_POST['month'];
$d = trim($_POST['day']);
$y = trim($_POST['year']);
if (empty($d) || empty($y)) {
$error = 'Please fill in all fields';
}

elseif (!is_numeric($d) || !is_numeric($y)) {
$error = 'Please use numbers only';
}

elseif (($d < 1 || $d > 31) || ($y < 1000 || $y > 9999)) {
$error = 'Please use numbers within the correct range';
}

elseif (!checkdate($m,$d,$y)) {
$error = 'You have used an invalid date';
}

else {
$d = $d < 10 ? '0'.$d : $d;
$mysqlFormat = "$y-$m-$d";
}

}

You don’t need to perform any checks on the value of the month, because the
drop-down menu has generated it. So, after you trim any whitespace from around
the day and year, these values are checked to see if they are empty or not numeric.
The third test looks for numbers within acceptable ranges. The range for years is
dictated by the legal range for MySQL. In the unlikely event that you need a year
out of that range, you must choose a different column type to store the data.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

398

7311ch14.qxd  10/10/06  11:03 PM  Page 398



By using a series of elseif clauses, this code stops testing as soon as it meets the
first mistake. If the input has survived the first three tests, it’s then subjected to the
PHP function checkdate(), which is smart enough to know when it’s a leap year
and prevents mistakes such as September 31.

Finally, if the input has passed all these tests, it’s rebuilt in the correct format for
insertion into MySQL. The first line of the final else clause uses the ternary opera-
tor, as described in step 2, to add a leading zero to the day of the month if
necessary.

5. For testing purposes, add this code just above the form in the main body of 
the page:

if ($_POST) { 
echo '<p>';
if (isset($error)) {
echo $error;
}

elseif (isset($mysqlFormat)) {
echo $mysqlFormat;
}

echo '</p>';
}

6. Save the page and test it by entering a date and clicking Convert. If the date is valid,
you should see it converted to MySQL format at the top of the page, as shown in
the following screenshot:

If you enter an invalid date, you should see an appropriate message instead.

Although date_converter.php just displays the result, when adapting the code for an
insert form, for example, use the tests like this:

if (isset($error)) {
// abandon insertion of data and display error messages
}

elseif (isset($mysqlFormat)) {
// go ahead with insertion of data
}

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

399

14

7311ch14.qxd  10/10/06  11:03 PM  Page 399



Working with multiple database tables 
As I explained in Chapter 11, one of the major strengths of a relational database is the abil-
ity to link data in different tables by using the primary key from one table as a foreign key
in another table. The phpsolutions database has two tables: images and journal. It’s time
to join them. The first step is to decide what sort of relationship you want to establish
between the tables.

Understanding table relationships

The simplest type of relationship is one-to-one (often represented as 1:1). In the context
of the phpsolutions database, you might associate a single photo in the images table with
an article in the journal table, as shown in Figure 14-4.

Figure 14-4. A one-to-one relationship links one record directly with another.

Since there are only a handful of records in each table, this is the only relationship; as
more articles are added, it’s likely to change. The photo associated with the first article in
Figure 14-4 shows maple leaves floating on the water, so it might be suitable to illustrate
an article about the changing seasons or autumn hues. The crystal-clear water, bamboo
water scoop, and bamboo pipe also suggest other themes that the photo could be used to
illustrate. So you could easily end up with the same photo being used for several articles,
or a one-to-many (or 1:n) relationship, as represented by Figure 14-5.

Figure 14-5. A one-to-many relationship links one record with several others.

SQL normally links records in separate tables with a WHERE clause that matches the foreign
key in one table with the primary key in another like this:

SELECT title, article, filename, caption
FROM journal, images

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

400

7311ch14.qxd  10/10/06  11:03 PM  Page 400



WHERE article_id = 2
AND journal.image_id = images.image_id

The WHERE clause begins by identifying the article you want and then matching the primary
and foreign keys of the image associated with the article. So, when linking tables, you need
to establish a 1:1 relationship. Reading Figure 14-5 from left to right, the image has a 1:n
relationship with several articles. Read it from right to left, and each article has a 1:1 rela-
tionship with the image. What this means is that you need to store the image_id as a for-
eign key in the journal table, and not the other way around. The journal table thus
becomes a secondary or child table in relation to images. As you’ll see later, this has
important implications when you come to delete records from either table.

What happens if you want to associate more than one image to each article? You could
create several columns to hold the foreign keys, but this rapidly becomes unwieldy. You
might start off with image1, image2, and image3, but if most articles have only one image,
two columns are redundant for much of the time. And are you going add an extra column
for that extra-special article that requires four images?

When faced with the need to accommodate many-to-many (or n:m) relationships, you
need a different approach. The images and journal tables don’t contain sufficient records
to demonstrate n:m relationships, but we could easily add a categories table (see
Figure 14-6). All images in the figure belong to the Kyoto category, but the image of the
monk is the only one that also fits into People. The middle two images belong to Autumn
and the bottom one to Eating.

Figure 14-6. Databases often require many-to-many relationships between tables.

When using more than one table in a SQL query, ambiguous column refer-
ences, such as image_id in the previous example, need to be qualified in the
form table_name.column_name. You don’t need to qualify columns that have
unique names, although it’s valid to do so. See “Reviewing the four essential
SQL commands” at the end of the previous chapter.

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

401

14

7311ch14.qxd  10/10/06  11:03 PM  Page 401



The way to resolve complex relationships to 1:1 is to create a lookup table. This is a spe-
cial table containing just two columns, both of which are declared a joint primary key.
Figure 14-7 shows how this works. Although each image is related to several categories
and vice versa, relationships in the lookup table (image_cat_lookup) are always one-to-
one. So, to find all images that belong to the People category, you create a SQL query that
matches cat_id in the categories table with cat_id in the lookup table and image_id in
the lookup table with image_id in the images table. You then narrow down the search to
results where category equals People. The SQL required for the search looks like this:

SELECT filename, caption
FROM images, image_cat_lookup, categories
WHERE categories.cat_id = image_cat_lookup.cat_id
AND image_cat_lookup.image_id = images.image_id
AND category = 'People'

Figure 14-7. A lookup table resolves many-to-many relationships as 1:1.

Now that you know the theory behind working with multiple tables, let’s put it into practice.

Linking an image to an article

Let’s begin with the straightforward scenario outlined in Figures 14-4 and 14-5, and add
an extra column to the journal table to store image_id as a foreign key and associate an
image with individual articles.

This PHP Solution assumes that you created the journal table in the phpsolutions data-
base in the last chapter.

1. Launch phpMyAdmin, select the phpsolutions database, and click the link for the
journal table in the left-hand navigation frame.

PHP Solution 14-5: Adding an extra column to a table

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

402

7311ch14.qxd  10/10/06  11:03 PM  Page 402



2. Below the journal table structure in the main frame is a form that allows you to
add extra columns. You want to add only one column, so the default value in the
Add field(s) text box is fine. It’s normal practice to put foreign keys immediately
after the table’s primary key, so select the After radio button and make sure the
drop-down menu is set to article_id, as shown in the following screenshot. Then
click Go.

3. This opens the screen for you to define column attributes. Use the following
settings:

Field: image_id

Type: INT

Attributes: UNSIGNED

Null: null

Do not select auto_increment or primary key. The Null column has been set to null
because not all articles will necessarily be associated with an image. Click Save.

4. You will be returned to the journal table structure, which should now look 
like this:

5. If you click the Browse tab at the top left of the screen, you will see that the value
of image_id is NULL in each record. The challenge now is to insert the correct for-
eign keys without the need to look up the numbers manually. We’ll tackle that next.

Inserting a foreign key in a database record basically consists of the following two steps:

1. Use a SELECT query to find the primary key that you want to use as a foreign key.

2. Use an INSERT or UPDATE query to add the foreign key to the target record.

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

403

14

7311ch14.qxd  10/10/06  11:03 PM  Page 403



The results of the SELECT query are used to build a drop-down menu in the insert and
update forms (see Figure 14-8), and store each item’s primary key in the value attribute of
the <option> tag. When the form is submitted, the selected value is incorporated into the
INSERT or UPDATE query as the foreign key.

Figure 14-8. A dynamically generated drop-down menu is used to insert the appropriate foreign key.

The principle is the same for both forms, but I’ll focus on the update form, as you need to
ensure that the drop-down menu displays the correct value for an existing foreign key. The
steps involved are the same for the original MySQL extension, MySQL Improved, and PDO,
but the SQL is different, so I’ll explain each one separately.

This PHP Solution builds on admin/journal_update.php from the previous chapter. The
final code is in journal_update_fk_mysql.php in the download files for this chapter.

1. The foreign key is going to be added to the UPDATE query, so you need to add
image_id to the array of expected elements in the $_POST array. Change the defini-
tion of $expected (around line 9) like this (new code is in bold):

$expected = array('title', 'article', 'article_id', 'image_id');

2. You need to display the contents of the images table in the update form by running
a second SELECT statement. Add the following code after the article text area (all
the code is new, but the PHP sections are highlighted in bold for ease of reference):

PHP Solution 14-6: Adding the image foreign key (MySQL)

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

404

7311ch14.qxd  10/10/06  11:03 PM  Page 404



<p>
<label for="image_id">Image:</label>
<select name="image_id" id="image_id">
<option value="">Select image</option>
<?php
// get details of images
$getImages = 'SELECT * FROM images ORDER BY filename';
$imageList = mysql_query($getImages) or die (mysql_error());
while ($image = mysql_fetch_assoc($imageList)) {
?>
<option value="<?php echo $image['image_id']; ?>"
<?php
if ($image['image_id'] == $row['image_id']) {
echo ' selected="selected"';
}

?>><?php echo $image['filename']; ?>
</option>
<?php } ?>

</select>
</p>

The first <option> tag is hard-coded with the label Select image, and its value is
set to an empty string. The remaining <option> tags are populated dynamically
by a while loop that extracts each record to a variable called $image. You can’t
use $row, because that’s already being used to store the details of the record
from the articles table. A conditional statement checks whether the current
image_id is the same as the one already stored in the articles table. If it is,
selected="selected" is inserted into the <option> tag so that it displays the
correct value in the drop-down menu.

Make sure you don’t omit the third character in the following line:

?>><?php echo $image['filename']; ?>

It’s the closing angle bracket of the <option> tag, sandwiched between two PHP tags.

3. Save the page and load it into a browser. You should be automatically redirected to
journal_list.php. Select one of the EDIT links, and make sure that your page
looks like Figure 14-8. Check the browser source code view to verify that the value
attributes of the <option> tags contain the primary key of each image.

4. The final stage is to add the image_id to the UPDATE query after first checking that
it contains a valid value. Amend the update code like this:

// abandon the process if primary key invalid
if (!is_numeric($article_id)) {
die('Invalid request');
}

// check the value of image_id
if (empty($image_id) || !is_numeric($image_id)) {
$image_id = NULL;
}

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

405

14

7311ch14.qxd  10/10/06  11:03 PM  Page 405



// prepare the SQL query
$sql = "UPDATE journal SET image_id = $image_id,

title = '$title', article = '$article'
WHERE article_id = $article_id";

If $image_id contains no value or if it’s not a number, its value is set to NULL. This
is a keyword, so it’s not enclosed in quotes. Equally, $image_id isn’t enclosed in
quotes in the SQL query because it’s either a number or NULL.

5. Test the page again, select a filename from the drop-down menu, and click
Update entry. You can verify whether the foreign key has been inserted into the
articles table by refreshing Browse in phpMyAdmin or by selecting the same
article for updating. This time, the correct filename should be displayed in the
drop-down menu.

Check your code against journal_update_fk_mysql.php, if necessary.

This PHP Solution builds on admin/journal_update.php from the previous chapter. The
final code is in journal_update_fk_mysqli.php in the download files for this chapter.

1. The existing SELECT query that retrieves details of the article to be updated needs to
be amended so that it includes the foreign key, image_id, and the result needs to be
bound to a new result variable, $image_id. You then need to run a second SELECT
query to get the details of the images table, but before you can do so, you need to
free the database resources by applying the free_result() method on the pre-
pared statement ($stmt). Add the following code highlighted in bold to the exist-
ing script:

if ($_GET && !$_POST) {
// prepare SQL query
$sql = 'SELECT article_id, image_id, title, article

FROM journal WHERE article_id = ?';
// initialize statement
$stmt = $conn->stmt_init();
if ($stmt->prepare($sql)) {
// bind the query parameters
$stmt->bind_param('i', $_GET['article_id']);
// bind the results to variables
$stmt->bind_result($article_id, $image_id, $title, $article);
// execute the query, and fetch the result
$OK = $stmt->execute();
$stmt->fetch();
// free the database resources for the second query
$stmt->free_result();
}

}

PHP Solution 14-7: Adding the image foreign key (MySQL Improved)

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

406

7311ch14.qxd  10/10/06  11:03 PM  Page 406



2. You need to display the contents of the images table inside the form. Since the sec-
ond SELECT statement doesn’t rely on external data, it’s simpler to use the query()
method instead of a prepared statement. Add the following code after the article
text area (it’s all new code, but the PHP sections are highlighted in bold for ease of
reference):

<p>
<label for="image_id">Image:</label>
<select name="image_id" id="image_id">
<option value="">Select image</option>
<?php
// get details of the images
$getImages = 'SELECT * FROM images ORDER BY filename';
$imageList = $conn->query($getImages) or die(mysqli_error($conn));
while ($image = $imageList->fetch_assoc()) {
?>
<option value="<?php echo $image['image_id']; ?>"
<?php
if ($image['image_id'] == $image_id) {
echo ' selected="selected"';
}

?>><?php echo $image['filename']; ?>
</option>
<?php } ?>

</select>
</p>

The first <option> tag is hard-coded with the label Select image, and its value is set
to an empty string. The remaining <option> tags are populated by a while loop that
extracts each record to an array called $image. I have used this instead of $row for
ease of comparison with the MySQL script, which still needs $row for the first SELECT
query. It also serves as a reminder that $row is a convention, not a requirement.

A conditional statement checks whether the current image_id is the same as the
one already stored in the articles table. If it is, selected="selected" is inserted
into the <option> tag so that it displays the correct value in the drop-down menu.

Make sure you don’t omit the third character in the following line:

?>><?php echo $image['filename']; ?>

It’s the closing angle bracket of the <option> tag, sandwiched between two PHP tags.

3. Save the page and load it into a browser. You should be automatically redirected to
journal_list.php. Select one of the EDIT links, and make sure that your page
looks like Figure 14-8. Check the browser source code view to verify that the value
attributes of the <option> tags contain the primary key of each image.

4. The final stage is to add the image_id to the UPDATE query like this:

$sql = 'UPDATE journal SET image_id = ?, title = ?, article = ?
WHERE article_id = ?';

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

407

14

7311ch14.qxd  10/10/06  11:03 PM  Page 407



and bind it to the prepared statement like this:

$stmt->bind_param('issi', $_POST['image_id'], $_POST['title'], ➥

$_POST['article'], $_POST['article_id']);

Since $_POST['image_id'] is the first parameter and must be an integer, you add i
to the beginning of the first argument.

5. Test the page again, select a filename from the drop-down menu, and click
Update entry. You can verify whether the foreign key has been inserted into the
articles table by refreshing Browse in phpMyAdmin or by selecting the same
article for updating. This time, the correct filename should be displayed in the
drop-down menu.

Check your code against journal_update_fk_mysqli.php, if necessary.

This PHP Solution builds on admin/journal_update.php from the previous chapter. The
final code is in journal_update_fk_pdo.php in the download files for this chapter.

1. The existing code retrieves the details of the record to be updated, but you also
need to run a second query to display the contents of the images table. This means
you must use closeCursor() to free the database resources like this:

// assign result array to variables
extract($row);
// free the database resources for the second query
$stmt->closeCursor();
}

// if form has been submitted, update record

2. Run the second query and display the contents of the images table in the form by
inserting the following code after the article text area (it’s all new code, but the
PHP sections are highlighted in bold for ease of reference):

<p>
<label for="image_id">Image:</label>
<select name="image_id" id="image_id">
<option value="">Select image</option>
<?php
// get details of the images
$getImages = 'SELECT * FROM images ORDER BY filename';
foreach ($conn->query($getImages) as $image) {
?>
<option value="<?php echo $image['image_id']; ?>"
<?php
if ($image['image_id'] == $image_id) {
echo ' selected="selected"';
}

?>><?php echo $image['filename']; ?>

PHP Solution 14-8: Adding the image foreign key (PDO)

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

408

7311ch14.qxd  10/10/06  11:03 PM  Page 408



</option>
<?php } ?>

</select>
</p>

The first <option> tag is hard-coded with the label Select image, and its value is
set to an empty string. The remaining <option> tags are populated by a foreach
loop that extracts each record to an array called $image. I have used this instead of
$row for ease of comparison with the MySQL script, which still needs $row for the
first SELECT query. It also serves as a reminder that $row is a convention, not a
requirement.

A conditional statement checks whether the current image_id is the same as the
one already stored in the articles table. If it is, selected="selected" is inserted
into the <option> tag so that it displays the correct value in the drop-down menu.

Make sure you don’t omit the third character in the following line:

?>><?php echo $image['filename']; ?>

It’s the closing angle bracket of the <option> tag, sandwiched between two PHP tags.

3. Save the page and load it into a browser. You should be automatically redirected to
journal_list.php. Select one of the EDIT links, and make sure that your page
looks like Figure 14-8. Check the browser source code view to verify that the value
attributes of the <option> tags contain the primary key of each image.

4. The final stage is to add the image_id to the UPDATE query like this:

$sql = 'UPDATE journal SET image_id = ?, title = ?, article = ?
WHERE article_id = ?';

and then add it to the array of values to be bound to the prepared statement
like this:

$done = $stmt->execute(array($_POST['image_id'], $_POST['title'], ➥

$_POST['article'], $_POST['article_id']));

5. Test the page again, select a filename from the drop-down menu, and click
Update entry. You can verify whether the foreign key has been inserted into the
articles table by refreshing Browse in phpMyAdmin or by selecting the same
article for updating. This time, the correct filename should be displayed in the
drop-down menu.

Check your code against journal_update_fk_pdo.php, if necessary.

Since the code for the insert forms is very similar, I haven’t included separate
instructions, but you can study the code in journal_insert_fk_mysql.php,
journal_insert_fk_mysqli.php, and journal_insert_fk_pdo in the down-
load files for this chapter.

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

409

14

7311ch14.qxd  10/10/06  11:03 PM  Page 409



Selecting records from multiple tables

Now that you can store a reference to an image as a foreign key in the journal table, you
can build a page to show the full article together with its associated image. This involves
writing a SELECT query that uses the foreign key to link the images and journal tables.

This PHP Solution builds on the preceding discussion of foreign keys, and assumes that 
you have added a column for image_id in the journal table and amended
journal_update.php to add the image_id foreign key to individual records. The starting
point is in details01.php in the download files for this chapter. The finished script is in
details_mysql.php, details_mysqli.php, and details_pdo.php.

1. Copy details01.php to the phpsolutions site root, and rename it details.php.
Make sure that footer.inc.php, menu.inc.php, and title.inc.php are in the
includes folder, and load the page in a browser. It should look like the following
screenshot:

2. Load journal_list.php into a browser, and update the following three articles by
assigning the image filename as indicated:

Basin of contentment: basin.jpg

Tiny restaurants crowded together: menu.jpg

Trainee geishas go shopping: maiko.jpg

Check that the foreign keys have been registered by navigating to the journal
table in phpMyAdmin and clicking the Browse tab. At least one article should have
NULL as the value for image_id, as shown in Figure 14-9.

PHP Solution 14-9: Building the details page

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

410

7311ch14.qxd  10/10/06  11:03 PM  Page 410



Figure 14-9. One of the articles is not associated with an image, so the foreign key is set
to NULL.

3. In details.php, include the appropriate MySQL connection function and prepare
the SQL query inside the PHP code block above the DOCTYPE declaration like this:

<?php
include('includes/title.inc.php');
// include the connector function for MySQL, MySQLI, or PDO
if (! @include('includes/connection.inc.php')) {
echo 'Sorry page unavailable';
exit;
}

// connect to the database
$conn = dbConnect('query');
// check for article_id in query string
if (isset($_GET['article_id']) && is_numeric($_GET['article_id'])) {
$article_id = $_GET['article_id'];
}

else {
$article_id = 0;
}

// prepare SQL query
$sql = "SELECT title, article, filename, caption

FROM journal, images
WHERE journal.article_id = $article_id
AND journal.image_id = images.image_id";

// process the query and results
?>

I have used the generic connection.inc.php. Replace it with the correct version for
MySQL, MySQLI, or PDO. This is a public page, so you should connect to the database

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

411

14

7311ch14.qxd  10/10/06  11:03 PM  Page 411



using the account that doesn’t have administrative privileges. The code then checks
for article_id in the URL query string and stores it as $article_id if it exists and is
numeric. Otherwise, it sets the value to 0. By setting this value to 0, the SQL query will
produce no results. You could choose a default article instead, but leave it at 0 for
the moment because I want to illustrate an important point shortly.

The SQL query is the same as described earlier in the section titled “Understanding
table relationships,” except that the article number has been replaced by $article_id.

4. Now add the code to process the query and results just before the closing PHP tag.

For the original MySQL extension, use this:

$result = mysql_query($sql) or die (mysql_error());
$row = mysql_fetch_assoc($result);

For MySQL Improved, use this:

$result = $conn->query($sql) or die (mysqli_error());
$row = $result->fetch_assoc();

For PDO, use this:

$result = $conn->query($sql);
$row = $result->fetch();

5. The rest of the code displays the results of the SQL query in the main body of the
page. Replace the placeholder text in the <h2> tags like this:

<h2><?php if ($row) {
echo $row['title'];
}

else {
echo 'No record found';
}

?>
</h2>

If the SELECT query finds no results, $row will be empty, which PHP interprets as
false. So this displays the title, or No record found if the result set is empty.

6. Even if the result set isn’t empty, not all articles are associated with an image, so the
pictureWrapper <div> needs to be wrapped in a conditional statement that also
checks that $row['filename'] contains a value. Amend the <div> like this:

<?php
if ($row && !empty($row['filename'])) {
$filename = "images/{$row['filename']}";
$imageSize = getimagesize($filename);

?>
<div id="pictureWrapper">

Since the data type of $article_id has been checked, it’s safe to use
directly in the SQL query, so there’s no need to use a prepared statement
for MySQL Improved or PDO.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

412

7311ch14.qxd  10/10/06  11:03 PM  Page 412



<img src="<?php echo $filename; ?>" alt="<?php echo $row['caption']; ?>"
<?php echo $imageSize[3];?> />
</div>
<?php } ?>

This uses code that was described in Chapter 12, so I won’t go into it again.

7. Finally, you need to display the article. Amend the rest of the code like this:

<p>
<?php
if ($row) {
echo nl2br($row['article']);
}

else {
?>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<?php }?>
</p>

By passing the article to nl2br(), all the new line characters are converted to XHTML
line breaks (<br />). If the result set is empty, three empty paragraphs are displayed
instead. This prevents the footer from ending up behind the navigation menu.

8. Save the page and load journal.php into a browser. Click the More link for an arti-
cle that has an image assigned through a foreign key. You should see details.php
with the full article and image laid out as shown in Figure 14-10. Check your code,
if necessary, with details_mysql.php, details_mysqli.php, or details_pdo.php.

Figure 14-10. The details page draws the article from one table and the image from another.

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

413

14

7311ch14.qxd  10/10/06  11:03 PM  Page 413



9. Click the link back to journal.php and test the other items. Each article that has an
image associated with it should display correctly. But what happens when you click
the More link for the article that doesn’t have an image? This time you should see
the result shown in Figure 14-11.

Figure 14-11. The lack of an associated image causes the SELECT query to produce an
empty result set.

You know that the article is in the database because the first two sentences wouldn’t be
displayed in journal.php otherwise. To understand this sudden “disappearance,” you need
to look at the SELECT query more closely. If you take the values shown in Figure 14-9, the
article with no image is article_id 1, and the value of journal.image_id for that record
is NULL. So the WHERE clause becomes this:

WHERE journal.article_id = 1
AND NULL = images.image_id

When you use AND as part of a condition in a WHERE clause, both conditions must be true.
Since every record in the images table has a primary key, it’s impossible ever to match
NULL with images.image_id. As a result, this SELECT query can never work if the foreign
key is missing.

How about replacing AND with OR? Yes, that works, but it doesn’t produce the result that
you want. Since article_id = 1 is true, the second condition is never considered. Try
changing the query, and you’ll see that the same image is displayed for every article, even
for the one that doesn’t have an image associated with it. The solution is to join the tables
using what’s called a left join.

Finding records that don’t have a matching foreign key

Take the SELECT query, and remove the condition that searches for a specific article, which
leaves this:

SELECT title, article, filename, caption
FROM journal, images
WHERE journal.image_id = images.image_id

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

414

7311ch14.qxd  10/10/06  11:03 PM  Page 414



If you run this query in the SQL tab of phpMyAdmin, it produces the following result:

When you list the tables as a comma-separated list in the FROM clause, MySQL performs a
full join between the tables, and the SELECT query succeeds only if there is a full match.
However, when you perform a left join, MySQL includes records that have a match in the
left table, but not in the right one. Left and right refer to the order in which you perform
the join. So, rewrite the SELECT query like this:

SELECT title, article, filename, caption
FROM journal LEFT JOIN images
ON journal.image_id = images.image_id

When you run it in phpMyAdmin, you get all four articles like this:

As you can see, MySQL populates the empty fields from the right table (images) with NULL.

The LEFT JOIN syntax is as follows:

FROM column_name LEFT JOIN column_name ON matching_condition

When the column names of the matching condition are the same in both tables, you can
use this alternative syntax:

FROM column_name LEFT JOIN column_name USING (column_name)

Any WHERE clause comes after the LEFT JOIN. So, to find the details for article_id 1
regardless of whether it has a match in image_id, you rewrite the original SELECT query
like this:

SELECT title, article, filename, caption
FROM journal LEFT JOIN images USING (image_id)
WHERE article_id = 1

So, now you can rewrite the SQL query in details.php like this:

$sql = "SELECT title, article, filename, caption
FROM journal LEFT JOIN images USING (image_id)
WHERE journal.article_id = $article_id";

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

415

14

7311ch14.qxd  10/10/06  11:03 PM  Page 415



If you click the More link to view the article that doesn’t have an associated image, you
should now see the article correctly displayed as shown in Figure 14-12. The other articles
should still display correctly, too. The finished code is in details_lj_mysql.php,
details_lj_mysqli.php, and details_lj_pdo.php.

Figure 14-12. Using a left join also retrieves articles that don’t have a matching image_id as a
foreign key.

Creating an intelligent link

The link at the bottom of details.php goes straight back to journal.php. That’s fine with
only four items in the journal table, but once you start getting more records in a data-
base, you need to build a paging mechanism as I showed you in Chapter 12. The problem
with a paging mechanism is that you need a way to return visitors to the same point in the
result set that they came from.

This PHP Solution checks whether the visitor arrived from an internal or external link. If
the referring page was within the same site, the link returns the visitor to the same place.
If the referring page was an external site, or if the server doesn’t support the necessary
superglobal variables, the script substitutes a standard link. It is shown here in the context
of details.php, but it can be used on any page.

PHP Solution 14-10: Creating a link that returns to the same point
in a paging mechanism

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

416

7311ch14.qxd  10/10/06  11:03 PM  Page 416



1. Locate the back link in the main body of details.php. It looks like this:

<p><a href="journal.php">Back to the journal</a></p>

2. Place your cursor immediately to the right of the first quotation mark, and insert
the following code highlighted in bold:

<p><a href="
<?php
// check that browser supports $_SERVER variables
if (isset($_SERVER['HTTP_REFERER']) && isset($_SERVER['HTTP_HOST'])) {
$url = parse_url($_SERVER['HTTP_REFERER']);
// find if visitor was referred from a different domain
if ($url['host'] == $_SERVER['HTTP_HOST']) {
// if same domain, use referring URL
echo $_SERVER['HTTP_REFERER'];
}

}
else {
// otherwise, send to main page
echo 'journal.php';
} ?>">Back to the journal</a></p>

$_SERVER['HTTP_REFERER'] and $_SERVER['HTTP_HOST'] are superglobal variables that
contain the URL of the referring page and the current hostname. You need to check their
existence with isset() because some Windows servers don’t support them. The
parse_url() function creates an array containing each part of a URL, so $url['host']
contains the hostname. If it matches $_SERVER['HTTP_HOST'], you know that the visitor
was referred by an internal link, so the full URL of the internal link is inserted in the href
attribute. This includes any query string, so the link sends the visitor back to the same posi-
tion in a paging mechanism. Otherwise, an ordinary link is created to the target page.

The finished code is in details_link_mysql.php, details_link_mysqli.php, and
details_link_pdo.php.

Creating a lookup table

When dealing with many-to-many relationships in a database, you need to build a lookup
table like the one in Figure 14-7. What’s unusual about a lookup table is that it consists of
just two columns, which are jointly declared as the table’s primary key (known as a
composite primary key). If you look at Figure 14-13 on the next page, you’ll see that the
image_id and cat_id columns both contain the same number several times—something
that’s unacceptable in a primary key, which must be unique. However, in a composite pri-
mary key, it’s the combination of both values that is unique. The first two combinations,
1,2 and 1,4, are not repeated anywhere else in the table, nor are any of the others. If you
refer back to Figure 14-7, you’ll see that image_id 1 refers to basin.jpg, while cat_id 2
and 4 refer to the Kyoto and Autumn categories. Although this sort of relationship is easy
to understand, creating and maintaining a lookup table is a little more complex. However,
it’s not difficult, as long as you follow a logical sequence.

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

417

14

7311ch14.qxd  10/10/06  11:03 PM  Page 417



Table 14-4. Settings for the categories table

Field Type Length/Values Attributes Null Extra Primary key

cat_id INT UNSIGNED not null auto_increment Selected

category VARCHAR 20 not null

Table 14-5. Settings for the image_cat_lookup table

Field Type Length/Values Attributes Null Extra Primary key

image_id INT UNSIGNED not null Selected

cat_id INT UNSIGNED not null Selected

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

418

The first thing to decide is the priority of the relationship between the
tables. In the case of assigning photos to certain categories, it makes
little sense to list all the images each time you add a new category.
You’re far more likely to want to assign the appropriate categories to
an image when it’s first inserted in the database. This means that you
can create the categories independently, and put all the lookup table
logic in the image insert form.

Setting up the categories and lookup tables
In the download files, you’ll find categories.sql, categories40.sql,
and categories323.sql, which contain the SQL to create the
categories table and the lookup table, image_cat_lookup, together
with some sample data. Alternatively, you can build the tables yourself
easily in phpMyAdmin using the settings in Tables 14-4 and 14-5. Both
database tables have just two columns (fields).

Figure 14-13. In a
lookup table, both
columns together
form a composite
primary key.

The important thing about the definition for a lookup table is that both columns are set as
primary key, and that auto_increment is not selected for either column. You must declare
both columns as primary key at the same time. This is because each table can have only
one primary key. Declaring them together ensures that the table recognizes them as a
composite primary key. 

Inserting new records with a lookup table

Figure 14-14 shows how you might implement an image insert form (you can find the code
in image_insert_mysql.php, image_insert_mysqli.php, and image_insert_pdo.php in
the download files).

7311ch14.qxd  10/10/06  11:03 PM  Page 418



Figure 14-14. The image insert form queries the categories table ready for selection.

I have used the buildFileList5() function from Chapter 7 to populate a drop-down
menu with the names of available images. The key feature to notice is that the multiple-
choice list is populated dynamically with the cat_id and category values. Consequently,
when the Insert image button is clicked, the $_POST array contains values for filename,
caption, and—if any categories have been selected—an array called categories. This trig-
gers the following sequence:

1. The user input is validated. If there are any problems, an error message is prepared
and the script goes straight to step 9. 

2. The images table is checked to see if the filename has already been registered.

3. If the filename is registered, the script creates an error message and skips to step 9.

4. The image details are inserted into the images table.

5. The $_POST array is checked to see if any categories were selected. If not, the script
skips to step 9.

6. A SELECT query gets the primary key (image_id) of the newly inserted record.

7. A loop builds image_id, cat_id pairs.

8. A second INSERT query stores the image_id, cat_id pairs in the lookup table.

9. If there are no errors, the page is redirected to a list of images in the database;
otherwise, an error message is displayed.

Incidentally, mapping out the sequence of events like this is a good way to design PHP
scripts. It gives you a clear idea of where you’re going and breaks down your coding task
into manageable chunks. Although my steps give details of how I plan to achieve some-
thing, such as by using a loop, start out simply by defining your objectives. You can also
use your steps as comments within the page. 

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

419

14

7311ch14.qxd  10/10/06  11:03 PM  Page 419



Rather than go through everything step by step, I have reproduced the code for the
MySQL version of the page in its entirety, indicating the point at which each stage of the
process begins. For the most part, the inline comments should be sufficient for you follow
the flow of the script, but I’ve highlighted in bold several sections that merit further expla-
nation. The only difference in the MySQL Improved and PDO versions is in the commands
used to submit the queries to the database. If deploying this on a PHP 4 server, include
buildFileList4.php and use the buildFileList4() function instead of buildFileList5().

<?php
include('../includes/buildFileList5.php');
include('../includes/corefuncs.php');
include('../includes/conn_mysql.inc.php');
// connect to the database with administrative privileges
$conn = dbConnect('admin');
// process the form when submitted
if (array_key_exists('insert', $_POST)) {
// STEP 1
// remove magic quotes and validate input
nukeMagicQuotes();
$filename = $_POST['filename'];
$caption = trim($_POST['caption']);
if (empty($filename) || empty($caption)) {
$error = 'You must select a filename and enter a caption.';
}

// carry only if input OK
else {
// prepare text for database query
$filename = mysql_real_escape_string($filename);
$caption = mysql_real_escape_string($caption);
// STEP 2
// check whether the filename is already registered in the database
$checkUnique = "SELECT filename FROM images

WHERE filename = '$filename'";
$result = mysql_query($checkUnique);
$numRows = mysql_num_rows($result);
// STEP 3
// if $numRows is greater than 0, the image is a duplicate
if ($numRows > 0) {
$error = "$filename is already registered in the database.";
}

// STEP 4
// if not a duplicate, proceed with insertion
else {
// insert the image details into the images table
$insert = "INSERT INTO images (filename, caption)

VALUES ('$filename', '$caption')";
mysql_query($insert);

PHP Solution 14-11: Inserting a new image with categories in a lookup table

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

420

7311ch14.qxd  10/10/06  11:03 PM  Page 420



// STEP 5
// initialize an array for the categories
$categories = array();
// check whether any categories have been selected
if (isset($_POST['categories'])) {
// STEP 6
// get the primary key of the image just inserted
$getImageId = "SELECT image_id FROM images

WHERE filename = '$filename'
AND caption = '$caption'";

$result = mysql_query($getImageId);
$row = mysql_fetch_assoc($result);
$image_id = $row['image_id'];
// STEP 7
// loop through the selected categories and build value pairs
// ready for insertion into the lookup table
foreach ($_POST['categories'] as $cat_id) {
if (is_numeric($cat_id)) {
$categories[] = "($image_id, $cat_id)";
}

}
}

// join the value pairs as a comma-separated string
if (!empty($categories)) {
$categories = implode(',', $categories);
$noCats = false;
}

else {
$noCats = true;
}

// STEP 8
// insert the categories into the lookup table
if (!$noCats) {  
$insertCats = "INSERT INTO image_cat_lookup (image_id, cat_id)

VALUES $categories";
mysql_query($insertCats);
}

// STEP 9
// redirect the page after insertion
// this is inside the else clause initiated in step 4
// it is ignored if there were errors in steps 1 or 3
header('Location: http://localhost/phpsolutions/admin/ ➥

image_list.php');
exit;
}

}
}

?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

421

14

7311ch14.qxd  10/10/06  11:03 PM  Page 421



<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; ➥

charset=iso-8859-1" />
<title>Insert image</title>
<link href="../assets/admin.css" rel="stylesheet" type="text/css" />
</head>

<body>
<h1>Insert image </h1>
<?php if (isset($error)) { ?>
<p class="warning"><?php echo $error; ?></p>
<?php } ?>
<form id="form1" name="form1" method="post" action="">
<p>
<label for="filename">Filename:</label>
<select name="filename" id="filename">
<option value="">Select image file</option>
<?php buildFileList5('../images/'); ?>

</select>
</p>
<p>
<label for="textfield">Caption:</label>
<input name="caption" type="text" class="widebox" id="caption" />

</p>
<p>
<label for="categories">Categories:</label>
<select name="categories[]" size="5" multiple="multiple" ➥

id="categories">
<?php
// build multiple choice list with contents of categories table
$allCats = 'SELECT * FROM categories';
$catList = mysql_query($allCats);
while ($row = mysql_fetch_assoc($catList)) {
?>
<option value="<?php echo $row['cat_id']; ?>">
<?php echo $row['category']; ?>
</option>
<?php } ?>
</select>

</p>
<p>
<input name="insert" type="submit" id="insert" ➥

value="Insert image" />
</p>

</form>
</body>
</html>

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

422

7311ch14.qxd  10/10/06  11:03 PM  Page 422



The validation in step 1 checks only that filename and caption are not empty. In a real
application you would probably want to conduct further checks, such as making sure that
the caption is a minimum length and doesn’t exceed the maximum number of characters
in your database column. (Use the strlen() function, as described in PHP Solution 9-6.)
Devising validation checks is not just about keeping out intruders, but also making sure
that data inserted into your database meets the criteria that you expect. The quality of
information in your database is only as good as what you put in.

The filename is checked against existing records in the images table. If the result set con-
tains any records, it means the file is already registered, so an error message is prepared.
The rest of the script is enveloped in an else clause, so the insertion goes ahead only if the
filename isn’t a duplicate.

The SELECT query highlighted in step 6 uses the filename and caption of the record just
entered as search criteria. This is a more accurate way of finding the primary key than a
technique that you often see recommended. By calling the mysql_insert_id() function,
you can get the primary key of the most recently inserted record (as long as it uses
auto_increment). MySQL Improved and PDO both offer equivalents with the insert_id
and lastInsertId properties. respectively. Most of the time, this will give you the infor-
mation that you want, but on a busy server, someone else might insert another record at
the same time. To be sure that you get the correct primary key, it’s best to be specific in
your request.

The foreach loop in step 7 checks that the values in $_POST['categories'] are numeric.
The following line then combines each one with the primary key of the image and adds it
to the $categories array:

$categories[] = "($image_id, $cat_id)";

Let’s say that $image_id is 9, and $cat_id is 5. The next array element in $categories
is this:

(9, 5)

After the loop has completed, the following line converts $categories into a comma-
separated string:

$categories = implode(',', $categories);

So, if categories 2, 4, and 5 were selected in the insert form, $categories ends up like this:

(9, 2),(9, 4),(9, 5)

Finally, this is incorporated into the following SQL query:

$insertCats = "INSERT INTO image_cat_lookup (image_id, cat_id)
VALUES $categories";

The result is the following INSERT query:

INSERT INTO image_cat_lookup (image_id, cat_id)
VALUES (9, 2),(9, 4),(9, 5)

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

423

14

7311ch14.qxd  10/10/06  11:03 PM  Page 423



As explained in “Reviewing the four essential SQL commands” in the previous chapter, this
is the way you insert multiple records with a single INSERT query.

The code that builds the multiple-choice list in the main body of the page is a straightfor-
ward SELECT query that uses a loop to display the <option> tags. The thing to note here is
that the name attribute of the <select> tag must be followed by a pair of square brackets
to store all selections as an array. As you might recall from Chapter 5, a multiple-choice list
is omitted from the $_POST array if no items are selected. That’s why step 5 needs to check
if $_POST['categories'] has been defined. Failure to do so produces nasty error mes-
sages that prevent the page from working properly.

Adding a new category
A question that may be going through your mind is, “How can I add a new category at the
same time as adding a new image?” The simple answer is that you can’t. Inserting records
into a database follows a linear sequence. The new category must be added to the cate-
gories table before you can register its primary key into the lookup table.

There are several approaches you can take to resolve this problem. I’ll use the images and
categories tables as an example, but the following points apply equally to any situation
involving a lookup table:

Always create a new category before inserting a new image.

If you realize you need a new category when inserting an image, insert the image
first, and then create the new category. Finally, update the image record to associ-
ate the new category with it.

Redesign the image insert form with a check box and text field for a new category.
If the check box is selected, insert the new category into the categories table,
retrieve its primary key, and then build the INSERT query for the lookup table.

Although you can combine both insert operations in the same form, both records must
exist in their respective tables before you can link them through a lookup table.

Updating records with a lookup table

Updating records that have references in a lookup table is very similar to inserting new
records with a lookup table, except that you don’t need to query the database to find out
the primary key of the record being updated—you wouldn’t be able to update it if you
didn’t already know its primary key. However, the lookup table needs special treatment
because each record consists of nothing more than a composite primary key. Trying to
work out which combinations to retain and which to delete will tie you in knots. The sim-
ple answer is to delete all references in the lookup table to the record that is being
updated, and insert them anew.

So, in the previous example, if the image_id of the record being updated is 9, you issue
this command:

DELETE FROM image_cat_lookup WHERE image_id = 9

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

424

7311ch14.qxd  10/10/06  11:03 PM  Page 424



If there is no change to the categories associated with the image, you just insert the same
ones again. However, if the categories have been changed to 3 and 5, the INSERT query
changes to this:

INSERT INTO image_cat_lookup (image_id, cat_id)
VALUES (9, 3),(9, 5)

Inserting the same values again may seem like a waste of effort, but MySQL handles it in a
split second.

The chain of events for updating a record from the images table and its related categories
goes like this:

1. Display a list of existing records in the images table.

2. Select the record to be updated, and send its primary key to the update form in the
URL query string.

3. Display the details of the record in the update form, and store the primary key in a
hidden field. Display the filename in a read-only field, to prevent corruption of
data.

4. Display the contents of the categories table in the update form, and use the
lookup table to select the currently associated categories.

5. When the update form is submitted, validate the user input. If any required fields
are missing, reassign the values from the $_POST array to the same variables used
in step 4, and prepare an error message. This enables you to redisplay the update
form again with all values preserved. If there are any problems, go straight to
step 10.

6. If the user input is OK, update the fields in the images table.

7. Delete all references in the lookup table to the image_id of the record that has just
been updated.

8. Check the $_POST array to see if any categories were selected.

9. If any categories were selected, build an INSERT query to store the image_id,
cat_id pairs in the lookup table. Then execute the query.

10. Redirect the page to the list of records, or redisplay the update form for
corrections.

The fully commented code for each method of connecting to MySQL is in the down-
load files for this chapter in image_update_mysql.php, image_update_mysqli.php, and
image_update_pdo.php.

Deleting records that have dependent foreign keys

Once you have added a foreign key, it’s important to make sure dependencies between
tables aren’t broken when records are deleted. This is known as maintaining referential

PHP Solution 14-12: Updating an image and its categories in the lookup table

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

425

14

7311ch14.qxd  10/10/06  11:03 PM  Page 425



integrity. SQL enforces referential integrity through foreign key constraints.
Unfortunately, the default MyISAM tables in MySQL aren’t expected to support foreign key
constraints until MySQL 5.2. As a result, you need to code the same logic in your PHP
scripts instead.

Once records become orphaned, your data loses much—if not all—of its value. So you
need to establish deletion rules for your records. The best way to understand what this
entails is by looking at an actual example. Figure 14-15 shows the relationships that
basin.jpg has in the phpsolutions database. It has direct relationships with the journal
and lookup tables, and an indirect relationship with the categories table through the
lookup table.

Figure 14-15. When deleting a record in one table, you need to ensure that dependent records
aren’t orphaned.

Let’s say you decide to delete the Autumn category. If you use the categories table only to
select images that belong to a particular category, deleting that record alone would prob-
ably have no impact on the results you get from the database. However, one day, you sud-
denly decide that you want to know the categories that a particular image belongs to.
When the lookup table tries to find cat_id 4, it’s not there. You have broken the referen-
tial integrity of your database. So, whenever you delete a record from the categories
table, you must also delete all matching references to its primary key in the lookup table.

What if you decide to delete the article associated with basin.jpg in the journal table?
The only relationship between the image and the article is that the image’s primary key is
stored as a foreign key in the article record. Delete the article, and you delete the foreign
key, but the image itself is unaffected.

It’s a different story, though, if you decide to delete basin.jpg. A reference to the image
is stored as a foreign key in the journal table. If you delete the image, the next time you
try to display the article, the image will be missing. In other words, article_id 4 is depend-
ent on image_id 1. You need to prevent any record from being deleted if its primary key
is stored as a foreign key in a secondary or child table. The deletion should proceed only
if there are no dependent records, and it should be accompanied by another DELETE com-
mand to remove related records in the lookup table.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

426

7311ch14.qxd  10/10/06  11:03 PM  Page 426



To summarize,

If a record has dependent records, you must delete the dependent records first—
or at least remove the dependency by updating the dependent records.

If there is no dependency, the deletion can go ahead, but you must also delete all
references in other tables.

If you’re new to databases, this may sound confusing, but it’s vital to get right. Otherwise,
you’ll be faced with a far more tedious and confusing situation when the links in your
database stop working.

Before deleting a record that is likely to have dependent records, run a SELECT query on
the dependent table searching for any instances of the record’s primary key in the foreign
key column. So, in the case of the images table, you need to run a search of the journal
table like this:

SELECT image_id FROM journal
WHERE image_id = (primary key of image you want to delete)

For PDO, you need to use SELECT COUNT(*) instead of SELECT image_id.

If the result of the query is 0, you can let the deletion proceed. Any other result should
block the process. The code to do this doesn’t involve any new techniques; it’s simply a
question of controlling the flow of the script with if... else statements. You can study the
fully commented code in the download files for this chapter in image_delete_mysql.php,
image_delete_mysqli.php, and image_delete_pdo.php.

Summary
This chapter began with some basic techniques, but the pace rapidly shifted, and by the
end you were dealing with quite complex concepts. Once you have learned basic SQL and
the PHP commands to communicate with a database, working with single tables is very
easy. Linking tables through foreign keys, however, can be quite challenging. The power of
a relational database comes from its sheer flexibility. The problem is that this infinite flex-
ibility means there is no single “right” way of doing things.

Don’t let this put you off, though. Your instinct may be to stick with single tables, but down
that route lies even greater complexity. If, for example, you were to create columns called
article1, article2, article3, and so forth in the images table, it would become impos-
sible to sort the records, and you would have to write complex SQL to search through
each column for the information you want. The key to making it easy to work with data-
bases is to limit your ambitions in the early stages. Build simple structures like the one in
this chapter, experiment with them, and get to know how they work. Add tables and for-
eign key links gradually. People with a lot of experience working with databases say they
frequently spend more than half the development time just thinking about the table struc-
ture. After that, the coding is the easy bit!

In the final chapter, we move back to working with a single table—addressing the important
subject of user authentication with a database and how to handle encrypted passwords.

SOLUTIONS TO COMMON PHP/MYSQL PROBLEMS

427

14

7311ch14.qxd  10/10/06  11:03 PM  Page 427



7311ch15.qxd  9/25/06  1:50 PM  Page 428



15 KEEPING INTRUDERS AT BAY

7311ch15.qxd  9/25/06  1:50 PM  Page 429



What this chapter contains:

Deciding how to encrypt passwords

Using one-way encryption for user registration and login

Using two-way encryption for user registration and login

Decrypting passwords

Chapter 9 showed you the principles of user authentication and sessions to password pro-
tect parts of your website, but the login scripts all relied on usernames and passwords
stored in text files. Keeping user details in a database is both more secure and more effi-
cient. Instead of just storing a list of usernames and passwords, a database can store other
details, such as first name, family name, email address, and so on. MySQL also gives you
the option of using either one- or two-way encryption. In the first section of this chapter,
we’ll examine the difference between the two.

Choosing an encryption method
The PHP Solutions in Chapter 9 use the SHA-1 encryption algorithm. It offers a high level
of security, particularly if used in conjunction with a salt (a random value that’s added to
make decryption harder). SHA-1 is a one-way encryption method: once a password has
been encrypted, there’s no way of converting it back to plain text. This is both an advan-
tage and a disadvantage. It offers the user greater security because passwords encrypted
this way remain secret. However, there’s no way of reissuing a lost password, since not
even the site administrator can decrypt it. The only solution is to issue the user a tempo-
rary new password, and ask the user to reset it.

The alternative is to use two-way encryption, which relies on a pair of functions: one to
encrypt the password and another to convert it back to plain text, making it easy to reis-
sue passwords to forgetful users. Two-way encryption uses a secret key that is passed to
both functions to perform the conversion. The key is simply a string that you make up
yourself. Obviously, to keep the data secure, the key needs to be sufficiently difficult to
guess and should never be stored in the database. However, you need to embed the key in
your registration and login scripts—either directly or through an include file—so if your
scripts are ever exposed, your security is blown wide apart. MySQL offers a number of
two-way encryption functions, but AES_ENCRYPT() is currently regarded as the most
secure. AES_ENCRYPT() is not available in MySQL 3.23, but the ENCODE() function should
be more than adequate for most websites.

Both types of encryption have their advantages and disadvantages. I’ll leave it to you to
decide which is best suited to your circumstances, and I’ll concentrate solely on the tech-
nical implementation.

Using one-way encryption
In the interests of keeping things simple, I’m going to use the same basic forms as in
Chapter 9, so only the username, salt, and encrypted password are stored in the database.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

430

7311ch15.qxd  9/25/06  1:50 PM  Page 430



Creating a table to store users’ details

In phpMyAdmin, create a new table called users in the phpsolutions database. The table
needs four columns (fields) with the settings listed in Table 15-1.

KEEPING INTRUDERS AT BAY

431

15

Table 15-1. Settings for the users table

Field Type Length/Values Attributes Null Extra Primary key

user_id INT UNSIGNED not null auto_increment Selected

username VARCHAR 15 not null

salt INT UNSIGNED not null

pwd VARCHAR 40 not null

In Chapter 9, the username doubled as the salt, but storing the details in a database means
that you can choose something more unique and difficult to guess. Although a Unix time-
stamp follows a predictable pattern, it changes every second. So even if an attacker knows
the day on which a user registered, there are 86,400 possible values for the salt, which
would need to be combined with every attempt to guess the password. So the salt col-
umn needs to store an integer (INT). The pwd column, which is where the encrypted pass-
word is stored, needs to be 40 characters long because the SHA-1 algorithm always
produces an alphanumeric string of that length.

Registering new users

The basic registration form is in register_db.php in the download files for this chap-
ter. The completed scripts are in register_mysql.php, register_mysqli.php, and
register_pdo.php.

1. Copy register_db.php from the download files to a new folder called
authenticate in the phpsolutions site root.

2. The entire PHP script needs to go in a conditional statement above the DOCTYPE
declaration to ensure that it runs only when the Register button is clicked. The first
part of the script needs to validate the username and password to make sure they
meet your minimum criteria. Add the following code at the top of the page:

<?php
// execute script only if form has been submitted
if (array_key_exists('register', $_POST)) {

PHP Solution 15-1: Creating a user registration form

7311ch15.qxd  9/25/06  1:50 PM  Page 431



// remove backslashes from the $_POST array
include('../includes/corefuncs.php');
include('../includes/connection.inc.php');
nukeMagicQuotes();
// check length of username and password
$username = trim($_POST['username']);
$pwd = trim($_POST['pwd']);
// initialize message array
$message = array();
// check length of username
if (strlen($username) < 6 || strlen($username) > 15) {
$message[] = 'Username must be between 6 and 15 characters';
}

// validate username
if (!ctype_alnum($username)) {
$message[] = 'Username must consist of alphanumeric characters ➥

with no spaces';
}

// check password
if (strlen($pwd) < 6 || preg_match('/\s/', $pwd)) {
$message[] = 'Password must be at least 6 characters; no spaces';
}

// check that the passwords match
if ($pwd != $_POST['conf_pwd']) {
$message[] = 'Your passwords don\'t match';
}

// if no errors so far, check for duplicate username
if (!$message) {
// connect to database as administrator
$conn = dbConnect('admin');  
// rest of code goes here
}

}
?>

After removing backslashes and trimming whitespace from the username and pass-
word, this series of conditional statements subjects them to a number of validation
tests. You have already met strlen(), which gets the length of a string. The user-
name is passed to the function ctype_alnum(), which returns false if a string con-
tains anything other than alphanumeric characters with no spaces.

You could also use ctype_alnum() for the password, but allowing nonalphanu-
meric characters in passwords makes for greater security. So I’ve used the expres-
sion preg_match('/\s/', $pwd) instead. This checks only for whitespace, including
tabs and new line characters. 

If any of the tests fail, a suitable message is stored in an array called $message.
However, if everything is OK, $message remains empty, and—as I’m sure you
remember—an empty array equates to false. So, if no errors are detected, the
script that goes in the final conditional statement will be executed. This is the code
that connects to the database and inserts the username and password.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

432

7311ch15.qxd  9/25/06  1:50 PM  Page 432



3. Before charging ahead with inserting the new record, you need to find out whether
the username is already recorded in the database. Because it has been tested by
ctype_alnum(), you know that $username doesn’t contain any characters that could
cause problems with SQL injection or quotes. So you can use it directly in the SQL
query. For the original MySQL extension and MySQL Improved, add the following
code at the point indicated by the comment in the final conditional statement:

// check for duplicate username
$checkDuplicate = "SELECT user_id FROM users

WHERE username = '$username'";

For PDO, use this:

// check for duplicate username
$checkDuplicate = "SELECT COUNT(*) FROM users

WHERE username = '$username'";

4. Now run the query. For the original MySQL extension, use this:

$result = mysql_query($checkDuplicate) or die(mysql_error());
$numRows = mysql_num_rows($result);

For MySQL Improved, use this:

$result = $conn->query($checkDuplicate) or die(mysqli_error($conn));
$numRows = $result->num_rows;

For PDO, use this:

$result = $conn->query($checkDuplicate);
$numRows = $result->fetchColumn();
// release database resource for next query
$result->closeCursor();

5. The variable $numRows now contains the number of records matching the user-
name. It should be only 0 or 1. Since any number other than 0 equates to true, you
can use $numRows on its own as a test. Add the following code immediately after
the preceding step (it’s the same for all connection methods):

// if $numRows is positive, the username is already in use
if ($numRows) {
$message[] = "$username is already in use. Please choose another ➥

username.";
}

// otherwise, it's OK to insert the details in the database
else {
// create a salt using the current timestamp
$salt = time();
// encrypt the password and salt with SHA1
$pwd = sha1($pwd.$salt);
// insert details into database

KEEPING INTRUDERS AT BAY

433

15

7311ch15.qxd  9/25/06  1:50 PM  Page 433



If $numRows is anything other than 0, a message is added to the $message array.
Otherwise, it’s OK to register the username and password in the database. The first
step is to store the current Unix timestamp in $salt. Then pass the password and
the salt (joined by a period—the concatenation operator) to sha1() for encryption.

6. Everything is now ready for insertion into the users table. All three values are safe
to use without further processing: $username has already been checked by
ctype_alnum(), $salt is a Unix timestamp, and the sha1() function encrypts what-
ever is passed to it as a 40-character hexadecimal number. This means that you can
embed the variables directly into the SQL query like this:

// insert details into database
$insert = "INSERT INTO users (username, salt, pwd)

VALUES ('$username', $salt, '$pwd')";

You don’t need quotes around $salt because it’s an integer being stored in a
numeric column. Although $pwd is a hexadecimal number, it does need quotes
because it’s being stored in a text-type column. 

7. Execute the query. Use this code for the original MySQL extension:

$result = mysql_query($insert) or die(mysql_error());

For MySQL Improved, use this:

$result = $conn->query($insert) or die(mysqli_error($conn));

For PDO, use this:

$result = $conn->query($insert);

8. An INSERT query returns true if it succeeds, so you can use the value of $result to
prepare the final message as shown in the following code. The code goes immedi-
ately after the previous step, but before the two closing curly braces and PHP tag at
the end of step 2. The new code is shown in bold, with the existing code for context.

if ($result) {
$message[] = "Account created for $username";
}

else {
$message[] = "There was a problem creating an account for ➥

$username";
}

}
}

}
?> 

These variables are safe because they have been processed in ways that remove
any risk of SQL injection or problems with quotes. However, if you have any
doubts about user input, always use mysql_real_escape_string() or a pre-
pared statement. It’s extra work, but it’s better to be safe than sorry.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

434

7311ch15.qxd  9/25/06  1:50 PM  Page 434



9. All that remains is to add the code that displays the contents of the $message array.
A foreach loop iterates through each element to create an unordered list like this
(the code goes just before the opening <form> tag):

<h1>Register user</h1>
<?php
if (isset($message)) {
echo '<ul class="warning">';
foreach ($message as $item) {
echo "<li>$item</li>";
}

echo '</ul>';
}

?>
<form id="form1" name="form1" method="post" action="">

10. Save register_db.php and load it in a browser. Test it thoroughly by entering input
that you know breaks the rules: nonalphanumeric characters in the username, a
password that’s too short or too long, nonmatching passwords, and so on. If you
make multiple mistakes in the same attempt, a bulleted list of error messages
should appear at the top of the form, as shown in the next screenshot.

11. Now fill in the registration form correctly. You should see a message telling you
that an account has been created for the username you chose.

12. Try registering the same username again. This time you should get a message simi-
lar to the one shown in the following screenshot. Check your code, if necessary,
against the download files.

KEEPING INTRUDERS AT BAY

435

15

7311ch15.qxd  9/25/06  1:50 PM  Page 435



Now that you have a username and password registered in the database, let’s wire up the login
form. Copy the following files from the download files for this chapter to the authenticate
folder: login.php, menu.php, and secretpage.php. Also copy logout_db.inc.php to the
includes folder. These files replicate the setup in PHP Solution 9-8, allowing you to log in
and visit two restricted pages. The code in menu.php and secretpage.php is identical to
Chapter 9, except that I have changed the session time limit from 15 seconds to 15 minutes.
The include file is also identical, except that it takes you to the authenticate folder, rather
than the sessions one, after logging out. All the work is done in login.php.

1. The form in login.php is the same as in Chapter 9, but all the code above the
DOCTYPE declaration has been removed. Much of the authentication process is sim-
ilar to working with a text file, but I think it’s easier to start with a clean slate. Begin
by adding the following code above the DOCTYPE declaration:

<?php
// process the script only if the form has been submitted
if (array_key_exists('login', $_POST)) {
// start the session
session_start();
include('../includes/corefuncs.php');
include('../includes/connection.inc.php');
// clean the $_POST array and assign to shorter variables
nukeMagicQuotes();
$username = trim($_POST['username']);
$pwd = trim($_POST['pwd']);
// connect to the database as a restricted user
$conn = dbConnect('query');

The inline comments explain what’s going on. There’s nothing new here.

2. Next, you need to retrieve the username’s details from the database. Use the fol-
lowing code for the original MySQL extension:

// prepare username for use in SQL query
$username = mysql_real_escape_string($username);
// get the username's details from the database
$sql = "SELECT * FROM users WHERE username = '$username'";
$result = mysql_query($sql);
$row = mysql_fetch_assoc($result);

This is a straightforward SELECT query that needs no explanation.

For MySQL Improved, use this:

// get the username's details from the database
$sql = "SELECT salt, pwd FROM users WHERE username = ?";
// initialize and prepare statement
$stmt = $conn->stmt_init();
if ($stmt->prepare($sql)) {
// bind the input parameter
$stmt->bind_param('s', $username);
// bind the result, using a new variable for the password

PHP Solution 15-2: Authenticating a user’s credentials with a database

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

436

7311ch15.qxd  9/25/06  1:50 PM  Page 436



$stmt->bind_result($salt, $storedPwd);
$stmt->execute();
$stmt->fetch();
}

This selects the salt and the stored password. The password needs to be bound to
a new variable, $storedPwd, to prevent overwriting $pwd, which already contains
the version of the password submitted through the login form.

For PDO, use this:

// get the username's details from the database
$sql = "SELECT * FROM users WHERE username = ?";
$stmt = $conn->prepare($sql);
$stmt->execute(array($username));
$row = $stmt->fetch();

This is a straightforward SELECT query that needs no explanation.

3. Once you have retrieved the username’s details, you need to encrypt the password
entered by the user by combining it with the salt and passing them both to sha1().
You can then compare the result to the stored version of the password, which was
similarly encrypted at the time of registration. For the original MySQL extension
and PDO, use the following code:

if (sha1($pwd.$row['salt']) == $row['pwd']) {
$_SESSION['authenticated'] = 'Jethro Tull';
}

Because the results of the SELECT query are already bound to variables in MySQL
Improved, the code is slightly different, as follows:

if (sha1($pwd.$salt) == $storedPwd) {
$_SESSION['authenticated'] = 'Jethro Tull';
}

As in Chapter 9, the value of $_SESSION['authenticated'] is of no real importance.

4. The rest of the script handles a failed login attempt and redirects a successful login
in the same way as in Chapter 9. It looks like this:

// if no match, destroy the session and prepare error message
else {
$_SESSION = array();
session_destroy();
$error = 'Invalid username or password';
}

// if the session variable has been set, redirect
if (isset($_SESSION['authenticated'])) {
// get the time the session started
$_SESSION['start'] = time();
header('Location: http://localhost/phpsolutions/authenticate/ ➥

menu.php');
exit;
}

}
?>

KEEPING INTRUDERS AT BAY

437

15

7311ch15.qxd  9/25/06  1:50 PM  Page 437



5. Save login.php and test it by logging in with the username and password that you
registered at the end of the previous section. The login process should work in
exactly the same way as Chapter 9. The difference is that all the details are stored
more securely in a database, and each user has a unique and probably unguess-
able salt.

Check your code, if necessary, against login_mysql.php, login_mysqli.php, or
login_pdo.php. If you encounter problems, use echo to display the values of the
freshly encrypted password and the stored version. The most common mistake is
creating too narrow a column for the encrypted password in the database. It must
be at least 40 characters wide.

Using two-way encryption
The main differences in setting up user registration and authentication for two-way
encryption are that the password needs to be stored in the database as a binary object
using the BLOB data type, and that the comparison between the encrypted passwords takes
place in the SQL query, rather than in the PHP script. Although you can use a salt with the
password, doing so involves querying the database twice when logging in: first to retrieve
the salt and then to verify the password with the salt. To keep things simple, I’ll show you
how to implement two-way encryption without a salt.

Creating the table to store users’ details

In phpMyAdmin, create a new table called users_2way in the phpsolutions database. 
It needs three columns (fields) with the settings listed in Table 15-2.

Although storing an encrypted password in a database is more secure than
using a text file, the password is sent from the user’s browser to the server in
plain, unencrypted text. This is adequate for most websites, but if you need a
high level of security, the login and access to subsequent pages should be made
through a Secure Sockets Layer (SSL) connection.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

438

Table 15-2. Settings for the users_2way table

Field Type Length/Values Attributes Null Extra Primary key

user_id INT UNSIGNED not null auto_increment Selected

username VARCHAR 15 not null

pwd BLOB not null

7311ch15.qxd  9/25/06  1:50 PM  Page 438



Registering new users

The validation process for the user registration form is identical to the one used for one-
way encryption in PHP Solution 15-1, apart from the SQL that checks for a duplicate user-
name. The name of the table needs to be changed from users to users_2way.

After checking that the username isn’t already in use, you store the encryption key in a
variable. I have chosen takeThisWith@PinchOfSalt as my secret key, but a random series
of characters would be more secure. The password and key are then passed as strings to
ENCODE() or AES_ENCRYPT() in the INSERT query. Those are the only changes required.

The code for the original MySQL extension looks like this (new code is highlighted in bold):

// otherwise, it's OK to insert the details in the database
else {
// create key
$key = 'takeThisWith@PinchOfSalt';
// insert details into database
$insert = "INSERT INTO users_2way (username, pwd)

VALUES ('$username', ENCODE('$pwd', '$key'))";
$result = mysql_query($insert) or die(mysql_error());
if ($result) {
$message[] = "Account created for $username";

The code for MySQL Improved looks like this:

// otherwise, it's OK to insert the details in the database
else {
// create key
$key = 'takeThisWith@PinchOfSalt';
// insert details into database
$insert = "INSERT INTO users_2way (username, pwd)

VALUES ('$username', AES_ENCRYPT('$pwd', '$key'))";
$result = $conn->query($insert) or die(mysqli_error($conn));
if ($result) {
$message[] = "Account created for $username";

For PDO, it looks like this:

// otherwise, it's OK to insert the details in the database
else {
// create key
$key = 'takeThisWith@PinchOfSalt';

The following scripts embed the encryption key directly in the page. If you have a pri-
vate folder outside the server root, it’s a good idea to define the key in an include file
and store it in your private folder.

KEEPING INTRUDERS AT BAY

439

15

7311ch15.qxd  9/25/06  1:50 PM  Page 439



// insert details into database
$insert = "INSERT INTO users_2way (username, pwd)

VALUES ('$username', AES_ENCRYPT('$pwd', '$key'))";
$result = $conn->query($insert);
if ($result) {
$message[] = "Account created for $username";

You can find the finished code in register_2way_mysql.php, register_2way_mysqli.php,
and register_2way_pdo.php in the download files.

User authentication with two-way encryption

Creating a login page with two-way encryption is very simple. After connecting to the data-
base, you incorporate the username, secret key, and unencrypted password in the WHERE
clause of a SELECT query. If the query finds a match, the user is allowed into the restricted
part of the site. If there’s no match, the login is rejected. The code is the same as in PHP
Solution 15-2, except for the following section. For the original MySQL extension, it looks
like this:

// prepare username for use in SQL query
$username = mysql_real_escape_string($username);
// create key
$key = 'takeThisWith@PinchOfSalt';
$sql = "SELECT * FROM users_2way

WHERE username = '$username'
AND pwd = ENCODE('$pwd', '$key')";

$result = mysql_query($sql);
$numRows = mysql_num_rows($result);
if ($numRows) {
$_SESSION['authenticated'] = 'Jethro Tull';

For MySQL Improved, it looks like this:

// connect to the database as a restricted user
$conn = dbConnect('query');
// create key
$key = 'takeThisWith@PinchOfSalt';
$sql = "SELECT * FROM users_2way 

WHERE username = ? AND pwd = AES_ENCRYPT(?, '$key')";
// initialize and prepare statement
$stmt = $conn->stmt_init();
if ($stmt->prepare($sql)) {
// bind the input parameters
$stmt->bind_param('ss', $username, $pwd);
$stmt->execute();
$stmt->store_result();
$numRows = $stmt->num_rows;
}

if ($numRows) {
$_SESSION['authenticated'] = 'Jethro Tull';

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

440

7311ch15.qxd  9/25/06  1:50 PM  Page 440



Note that with MySQL Improved you need to store the result of the prepared statement
before you can access the num_rows property. If you fail to do this, $numRows will always be
0, and the login will fail even if the username and password are correct.

The revised code for PDO looks like this:

// connect to the database as a restricted user
$conn = dbConnect('query');
// create key
$key = 'takeThisWith@PinchOfSalt';
$sql = "SELECT COUNT(*) FROM users_2way 

WHERE username = ? AND pwd = AES_ENCRYPT(?, '$key')";
$stmt = $conn->prepare($sql);
$stmt->execute(array($username, $pwd));
$numRows = $stmt->fetchColumn();
if ($numRows) {
$_SESSION['authenticated'] = 'Jethro Tull';

The completed code for all versions is in the download files login_2way_mysql.php,
login_2way_mysqli.php, and login_2way_pdo.php.

Decrypting a password

Decrypting a password encrypted with two-way encryption simply involves passing the
secret key as the second argument to the appropriate function like this (using DECODE()
for the original MySQL extension):

$key = 'takeThisWith@PinchOfSalt';
$getDecryptedPassword = "SELECT DECODE(pwd, '$key') AS pwd

FROM users_2way
WHERE username = '$username'";

For MySQL Improved and PDO, you use AES_DECRYPT() in a prepared statement like this:

$key = 'takeThisWith@PinchOfSalt';
$getDecryptedPassword = "SELECT AES_DECRYPT(pwd, '$key') AS pwd

FROM users_2way
WHERE username = ?";

The key must be exactly the same as the one originally used to encrypt the password. If
you lose the key, the passwords remain as inaccessible as those stored using one-way
encryption.

Normally, the only time you need to decrypt a password is when a user requests a password
reminder. Creating the appropriate security policy for sending out such reminders depends
a great deal on the type of site that you’re operating. However, it goes without saying that
you shouldn’t display the decrypted password onscreen. You need to set up a series of
security checks, such as asking for the user’s date of birth or mother’s maiden name, or
posing a question whose answer only the user is likely to know. Even if the user gets the
answer right, you should send the password by email to the user’s registered address.

KEEPING INTRUDERS AT BAY

441

15

7311ch15.qxd  9/25/06  1:50 PM  Page 441



All the necessary knowledge should be at your fingertips if you have succeeded in getting
this far in the book.

Updating user details
I haven’t included any update forms for the user registration pages. It’s a task that you
should be able to accomplish by yourself at this stage. The most important point about
updating user registration details is that you should not display the user’s existing pass-
word in the update form. If you’re using one-way encryption, you can’t anyway. If the
update form is exclusively for changing passwords, you don’t need to check that the user-
name is unique in the database, but you should ask for the old password and check that it
matches before updating it. Failure to do so would allow anyone to change another per-
son’s password at will. If you offer the opportunity to change a username, you also need to
check that the new one is unique.

If the user wants to change other details but not the existing password, you could add a
check box or radio button to signal that choice. Your PHP script needs to use conditional
statements to execute different UPDATE queries depending on the choices made. If the
user selects the option not to update the password, all references to the password need to
be left out of the SQL; otherwise, you run the risk of replacing the existing password with
a blank one, leaving your site wide open. Another, perhaps simpler approach is to have
separate forms for updating the password and other details.

Where next?
This book has covered a massive amount of ground. If you master all the techniques cov-
ered here, you are well on your way to becoming an intermediate PHP developer, and with
a little more effort, you will enter the advanced level. If it’s been a struggle, don’t worry.
Go over the earlier chapters again. The more you practice, the easier it becomes.

You’re probably thinking, “How on earth can I remember all this?” You don’t need to.
Don’t be ashamed to look things up. Bookmark the PHP online manual (www.php.net/
manual/en/index.php) and use it regularly. It’s constantly updated, and it has lots of use-
ful examples. The search box at the top right of every page (as shown in the following
screenshot) takes you straight to a full description of any function that you want to know
more about. Even if you can’t remember the correct function name, it takes you to a page
that suggests the most likely candidates.

PHP SOLUTIONS:  DYNAMIC WEB DESIGN MADE EASY

442

7311ch15.qxd  9/25/06  1:50 PM  Page 442



What makes dynamic web design easy is not an encyclopedic knowledge of PHP functions,
but a solid grasp of how conditional statements, loops, and other structures control the
flow of a script. Once you can visualize your projects in terms of “if this happens, what
should happen next?” you’re the master of your own game. I consult the PHP online man-
ual many times a day. To me, it’s like a dictionary. Most of the time, I just want to check
that I have the arguments in the right order, but I often find that something catches my
eye and opens up new horizons. I may not use that knowledge immediately, but I store it
at the back of my mind for future use and go back when I need to check the details.

The MySQL online manual (http://dev.mysql.com/doc/refman/5.0/en/index.html) is
equally useful. Make both the PHP and MySQL online manuals your friends, and your
knowledge will grow by leaps and bounds.

KEEPING INTRUDERS AT BAY

443

15

7311ch15.qxd  9/25/06  1:50 PM  Page 443



7311index.qxd  10/19/06  8:35 PM  Page 444



INDEX

7311index.qxd  10/19/06  8:35 PM  Page 445



SYMBOLS AND Numerics
<<< (heredoc syntax), 70
% modulo operator, 86, 330, 375
% wildcard, SELECT command, 376
_ (underscore) wildcard, SELECT command, 376
& character, effect on variable in function argument, 138
&amp;, HTML entity, 338
&quot;, 135
= (equal sign)

assignment operator, PHP, 50–51
confusion with PHP equality operator, 51
difference between PHP and MySQL, 360
equal to, MySQL, 375

== equality operator, PHP, 51, 59, 77
=== identical operator, 77, 78
=> array assignment operator, 74
! negative operator, 78
!= not equal to, 77, 375
!== not identical, 78
? query string, 327
?: conditional operator, 80
@ error control operator, 113
{} curly braces

in conditional statements, 57–58
in functions, 83
indentation conventions, 60
with associative array elements, 372
with variables in double-quoted strings, 99

~ home directory on Mac OS X, 38
* multiplication operator, 86, 375
* shorthand for all columns, 375
/ division operator, 66, 375
++ increment operator, 66
-- decrement operator, 66
$ variable prefix, 50

A
a mode, fopen() function, 188

appending content with fopen(), 191
<a> tag

passing information through query strings, 327
a+ mode, fopen() function, 188

combined read/write operations, 192
creating file-based user registration form, 250

absolute pathnames
using includes with, 114

access
see also file access
using sessions to restrict access, 238–253

Access (Microsoft), 286
action attribute, <form> tag, 119
AddType command (Apache), 31
ADDDATE() function, MySQL, 391
addition operator (+), 66

precedence of arithmetic operators, 67
addslashes() function

SQL injection, 343

INDEX

446

AES_DECRYPT() function, MySQL, 441
AES_ENCRYPT() function, MySQL, 430
aliases, MySQL, 383

handling dates, 390
all-in-one installation, 21
allow_url_fopen directive, 181

checking if disabled, 209
creating socket connection if disabled, 203, 206

allow_url_include directive, 181
AM/PM

MySQL date format specifiers, 389
PHP format characters, 395

&amp;, HTML entity, 338
ampersand (&) character

effect on variable in function argument, 138
AND operator

logical AND (&&), PHP, 78
SELECT command, 375

WHERE clause, 414
anonymous access

securing MySQL on Mac OS X, 276
securing MySQL on Windows, 267

Apache
choosing web server for Windows, 22
configuring for PHP, on Windows, 29–32
confirmation that running successfully, 37
installing on Windows, 22–24
starting and stopping Apache on Windows, 24
using Apache on Mac OS X, 36–37
versions, 12

apostrophes
htmlentities() function, 134
when to use quotes, 55

append mode, fopen() function, 188, 191
combined read/write operations, 192

arguments
passing multiple arguments to functions, 98

arithmetic operators, 66–67
combining calculations and assignment, 68
precedence of, 67

array data type, 65
arrays

array elements, 53
associative arrays, 53, 73, 74
creating arrays, 73–76
destroying session variables, 236
empty arrays, 74
$_FILES array, 155–157
$_GET array, 54
indexed arrays, 53, 73, 74
initializing, 74
inspecting with print_r() function, 75
looping through arrays, 82–83
multidimensional arrays, 75
$_POST array, 54
reading text file into, 185–187
$_SESSION array, 54, 238
$_SERVER array, 54

7311index.qxd  10/19/06  8:35 PM  Page 446



storing multiple values, 53
superglobal arrays, 54

array_key_exists() function, 126, 199
AS keyword, MySQL, 383, 390
assignment operators

assigning values to variables, 51
combining calculations and assignment, 68
equality operator confusion, 51

associative arrays, 53, 73, 74
authentication

authenticating user credentials, 436–438
building login page, 242–244
creating file-based user registration form, 248–252
creating reusable logout button, 245–247
encrypting passwords, 247–253
limitations without using database, 253
restricting access to page using $_SESSION, 244–245
sessions, 235
two-way encryption, 440–441
using encrypted login, 252–253
using file-based authentication, 241–247

Authentication type
configuring phpMyAdmin, 279

auto_increment (MySQL), 295, 297, 377

B
b mode modifier, fopen() function

example using, 207
reading/writing binary files, 188

backslash (\) character, 70
see also escape sequences
addslashes() function, 343
automatic insertion before quotes, 124
removing from form input, 124–125
SQL injection, 343
use with LIKE in SELECT command, 376
use with quotes, 56

backticks (`)
MySQL naming, 290

backups, MySQL, 281–283
balance braces feature

choosing script editor for PHP, 17
basename() function, 97, 98

creating download link, 208
creating scaled-down image copy, 218
saving original and resized images, 230

bash shell
setting up MySQL on Mac OS X, 273–274

BBEdit
checking scripts with file comparison utility, 20
choosing script editor for PHP, 19

“Bcc:” header/string
blocking emails containing, 136, 137

BETWEEN keyword
SELECT command, 375, 376

Beyond Compare tool, 20
binary data column types, MySQL, 301
binary files

fopen() function modes, 188

INDEX

447

binding parameters
MySQLI prepared statements, 345–346, 354
PDO prepared statements, 346–347, 356

bindParam() method (PDO), 346–347, 356
bind_param() method (MySQLI), 345–346, 354, 366, 368
bind_result() method (MySQLI), 366
BLOB type, MySQL, 301
blogs

suitability of PHP for, 6
Boolean data type, 65
Boolean values, 76

derivation of term, 56
explicit Boolean values, 76
implicit Boolean values, 77
using quotes with, 56

<br /> tags
nl2br() function, 385

break keyword
loops, 83
switch statement, 80

buffer, output
buffering output with ob_start() function, 241
creating reusable logout button, 247
flushing, 237, 241

buildFileList() custom function, 198–199
resizing images, 214

buildListFile4() custom function, 215, 420
buildListFile5() custom function, 215, 419, 420

C
calculations in PHP, 66–68

arithmetic operators, 66–67
combining calculations and assignment, 68
precedence of arithmetic operators, 67

camel casing, 50
captions

adding to random image, 107–112
changing in dynamic gallery, 329

carriage return character (\r), 70
case keyword, switch statement, 79, 80
case sensitivity, SQL, 343
catch block, 305
categories

adding, 424
creating lookup table, 418
inserting image in lookup table, 420–424, 425

“Cc:” header/string
automating reply address, 141
blocking emails containing, 136, 137

CHAR type, MySQL, 299
characters

extracting
complete sentences, 385–388
ending on complete word, 383–384
first paragraph, 384–385
fixed number of characters, 382–383

MySQL text column types, 299
replacing with other characters, 101

7311index.qxd  10/19/06  8:35 PM  Page 447



check boxes
getting data from, 145–146

checked attribute, <input> tag
getting data from check boxes, 145
getting data from radio button groups, 144

chmod settings
establishing upload directories, 158

client-side validation, 129
closeCursor() function (PDO), 313, 315
closedir() function, 196
closing files

fclose() function, 187
closing tags, PHP, 47
code

includes, 91–115
indenting, 59–60
modularizing with functions, 83–85
nesting PHP code blocks, 48
putting PHP code above DOCTYPE declaration, 100
repeating, 80–83

code hints, 17
collation, 291, 296
column types, MySQL, 299–301

binary data, 301
date and time, 300
numeric, 300
predefined list, 301
text, 299

columns
adding extra columns to tables, 402–404
breaking down information into, 289
description, 286
naming for greater security, 351

combined assignment operators, 68
Command Line Client (Windows)

accessing MySQL through, 269
command not found error (Mac OS X), 275
commands

see also functions
echo command, 127, 134
ending commands, 51
exit command, MySQL monitor, 276
include commands, 91–93
use command, MySQL monitor, 276

commands, SQL
DELETE command, 378
INSERT command, 351–356, 377
SELECT command, 374–376
UPDATE command, 377

comments
commenting scripts, 51, 86
httpd.conf file, Apache, 30
php.ini file, 39
multiline comments, 52
single-line comments, 52

comparison operators, PHP, 77–78
comparison operators, MySQL, 375

INDEX

448

comparisons
conditional statements, 59

composite primary key
creating lookup table, 417

concatenation operator (.)
combined concatenation operator (.=), 68
joining strings, 62

conditional operator (?:), 80
getting data from radio button groups, 144

conditional statements, 57–59
above DOCTYPE, 215
break keyword, 83
comparisons, 59
creating XHTML output inside, 111
do ... while loop, 81
else clause, 58
elseif clause, 58
if statement, 57, 58
logical operators, 78–79
while loop, 81

configuration directives, PHP
allow_url_fopen, 181
allow_url_include, 181
display_errors, 42, 386
error_reporting, 42
extension_dir, 42
file_uploads, 42, 153, 154
log_errors, 42
max_execution_time, 153
max_input_time, 153
open_basedir, 181
post_max_size, 153
safe_mode, 181
safe_mode_include_dir, 181
upload_max_filesize, 153
upload_tmp_dir, 153

configuration settings, PHP
affecting file access, 180–181
affecting file uploads, 153

configuration window, PHP core
checking if server supports uploads, 153

Configuration Wizard
configuring MySQL on Windows, 265

Connection type
configuring phpMyAdmin, 279

connections
building database connection function, 305–307
connecting to MySQL with PHP, 301–316

checking remote server setup, 302–303
how PHP communicates with MySQL, 303–305
MySQL extension, 303, 314
MySQLI, 304, 314
PDO, 304, 315

reusable database connector, 306–307
socket connection to remote file, 203
updating PHP/MySQL connector files, 270–271

7311index.qxd  10/19/06  8:35 PM  Page 448



constants
defining, 215
description, 160
moving temporary file to upload folder, 160
not using in double-quoted string, 344

content management system
creating basic insert and update forms, 350–351
setting up, 347–374

“Content-Type:” header/string
blocking emails containing, 136, 137

continue keyword, 83
cookies

how sessions work, 234
invalidating session cookie, 237

copy() function
file upload security, 177
moving temporary file to upload folder, 161

copyright notice
automatically updating, 103–105

count() function, PHP, 106
using with for loop, 185

COUNT() function, MySQL
counting records in result set, 310, 315
selecting subset of records, 333

credentials, user
authenticating with database, 436–438
authenticating with text files, 241–247

ctype_alnum() function, 432, 434
curly braces

in conditional statements, 57–58
in functions, 83
indentation conventions, 60
with associative array elements, 372
with variables in double-quoted strings, 99

current page
generating page title from filename, 98–103
setting style to indicate, 96–98
using PHP to identify, 96–103

custom-built PHP functions
locating custom-built functions, 85

D
data access

opening remote data sources, 203–206
data types in PHP, 64–66

weak typing in PHP, 64–65
database columns see columns
database fields see columns
database queries see queries
database query results see results
database records see records
database rows see records
databases

see also relational databases
choosing database

mysql_select_db() function (MySQL), 314
select_db() method (MySQLI), 314

INDEX

449

connecting to MySQL with PHP, 301–316
content management system, 347–374
creating database tables, 294–296
creating user accounts, 291–294
deleting records, 371–373
displaying results from query, 311–313
finding number of results from query, 308–311
flat-file database, 184
information_schema (MySQL 5), 293
inserting records, 351–356
inserting records with phpMyAdmin, 296–299
keeping data safe, 342–347
making reusable database connector, 306–307
not storing images in database, 321
updating records, 360–371
using phpMyAdmin to create, 291

date and time column types, MySQL, 300
date format specifiers, MySQL, 389
DATE type, MySQL, 300
date() function, 103

description, 61
format characters used, 395
formatting dates in PHP, 394
using timestamp to create unique name, 171

dates
adding to and subtracting from, 390–392
cultural differences, 388
displaying in various languages, 394
displaying items updated within past week, 391
formatting, 389–390
inserting into MySQL, 396–399
interval types, 391
MySQL handling, 388–392
PHP handling, 392–396

creating Unix timestamp, 393–394
formatting dates in PHP, 394–396
setting correct time zone, 392–393

Unix epoch, 392
DATETIME type, MySQL, 300
DATE_ADD() function, MySQL, 391
DATE_FORMAT() function, MySQL, 389–390
DATE_SUB() function, MySQL, 391
DAY interval type, MySQL, 391
days

MySQL date format specifiers, 389
PHP format characters, 395

DAY_HOUR interval type, MySQL, 391
dbConnect() custom function

making reusable database connector, 306–307
DECIMAL type, MySQL, 300
decisions, 57–59

comparison operators, 77–78
if statement, 57, 58
switch statement, 79–80

DECODE() function, MySQL 441
decrement operator (--), 66, 67

in for loops, 82

7311index.qxd  10/19/06  8:35 PM  Page 449



decryption see encryption
default keyword, switch statement, 80
define() function, 160
DELETE command, 378

deleting records, 371
delete page

deleting records, 371–373
linking to, 356–359

DELETE privilege, SQL, 292
deleting data

choosing wrong fopen() mode, 188
deleting records, 371–373

maintaining referential integrity, 426
DESC keyword, 357
details page, building, 410–414
die() function, 303

replacing error messages, 378
directories

closedir() function, 196
inspecting directory contents, 195–197
opendir() function, 196
open_basedir directive, 181
readdir() function, 196
scandir() function, 195

displaying PHP output, 61
display_errors directive

PHP configuration settings, 42
warning messages, 386

DISTINCT option, SELECT, 374
DIV operator, SELECT, 376
division operator (/), 66, 375

precedence of arithmetic operators, 67
do ... while loop, 81
DOCTYPE declaration

conditional statement above, 215
putting PHP code above, 100

DocumentRoot, Apache, 30
DOCUMENT_ROOT variable, $_SERVER array

using includes with absolute pathnames, 114
Dollar symbol ($)

escaping, 70
naming variables, 50

double data type, 65
double quotes

difference between single and double quotes, 69
escaping double quote character, 70
preserving user input when form incomplete, 134
using escape sequences inside, 70
when to use quotes, 56

Dreamweaver, 9, 17
drop-down menu

building drop-down menu of files, 197–199
getting data from, 146–147
inserting records with a lookup table, 419

DSN (data source name)
connecting to MySQL with PDO, 315

INDEX

450

dump file, MySQL, 281
Dynamic Extensions section, php.ini, 26, 42

E
echo command

creating XHTML output inside conditional statement, 111
displaying PHP output, 61
displaying XHTML inside PHP block, 127
preserving user input when form incomplete, 134

editor
choosing script editor for PHP, 17–19

EditPlus 2, 19
else/elseif clauses, if statement, 58

sending email from feedback form, 127
em dash HTML entity (&#8212;), 99
email

adding extra headers, 139
automating reply address, 140–142
blocking specific phrases, 136–139
encoding, 139, 140
full list of headers, 139
header injection, 136
including user address in headers, 139–142
mail function, 123
message body, 123
PHP responsibility for delivery, 123
processing and acknowledging messages, 125–129
redirecting user after sending, 148
sending, 123–129

from feedback form, 125–129
subject line, 123
trusted users, 123

empty arrays
implicit Boolean values, 77
using array() function to create, 74

empty strings
implicit Boolean values, 77

empty() function, 131
not empty, 140
updating records with MySQL extension, 362

ENCODE() function, MySQL
two-way encryption, 430

encoding
email, 139, 140
URL encoding, 120

encryption, 430–442
AES_DECRYPT() function, MySQL, 441
AES_ENCRYPT() function, MySQL, 430
choosing encryption method, 430
DECODE() function, MySQL, 441
ENCODE() function, MySQL, 430
encrypting passwords, 247–253
one-way encryption, 430–438

registering new users, 431–438
user authentication with, 436–438

salt, 430

7311index.qxd  10/19/06  8:35 PM  Page 450



SHA 1 algorithm, 247, 430, 431
sha1() function, 252, 434, 437
two-way encryption, 430, 438–442

decrypting password, 441–442
registering new users, 439–440
user authentication with, 440–441

using encrypted login, 252–253
enctype attribute, <form> tag

adding file upload field to forms, 154
ENUM type, MySQL, 301
EOF (end of file)

feof() function, 187
equality comparison operator (=), MySQL, 375

difference between PHP and MySQL, 360
equality comparison operator (==), PHP, 77

assignment operator confusion, 51
making comparisons, 59

ereg-type regular expression functions, 137
error control operator (@)

during testing, 184
preventing errors when include file missing, 113

error element, $_FILES array, 156
error messages

fatal error, 63
MySQL, 378
notices, 63
parse error, 63
strict errors, 64
understanding PHP error messages, 63–64
warnings, 63

errorInfo() function (PDO), 310
errors

command not found, 275
error levels in $_FILES array, 157

setting file size limit, 166
“headers already sent” error, 237
preventing errors when include file missing, 112–113
tolerance of errors in PHP, 8

error_reporting directive, 42
escape sequences

see also backslash (\) character
double quotes, 69
heredoc syntax, 70
using inside double quotes, 70
when to use quotes, 56

exceptions
PDO (PHP Data Objects), 304

execute() method
inserting records with MySQLI, 354
inserting records with PDO, 356
MySQLI prepared statements, 346
named placeholders, PDO, 346
question mark placeholders, PDO, 346
updating records with PDO, 369, 371

exit command, MySQL monitor, 276
exit command, PHP, 243
$expected array

checking required fields not blank, 131
explicit Boolean values, 76

INDEX

451

explode() function, 8
inserting dates into MySQL, 396
reading text file into array, 186

exploring file system see file system, exploring
Export section, phpMyAdmin

backup and data transfer, MySQL, 283
extensions

recommended PHP configuration settings, 42
Windows displaying filename extensions, 21

extension_dir directive, 42
external files

calls to functions in, 386
creating reusable logout button, 247
include commands, 91–93
includes, 91–115
locating custom-built functions, 85

external links
creating an intelligent link, 416–417

extract() function, 373
updating records with PDO, 369, 370

EXTR_PREFIX_ALL constant, 373

F
false value

explicit Boolean values, 76
impact of using quotes, 56–57
implicit Boolean values, 77

fatal error, 63
fclose() function, 187, 195
feedback

gathering information from forms, 118–123
sending email from feedback form, 125–129

feof() function, 187
position of internal pointer, 194, 195

fetch() method (PDO), 315, 325
fetchColumn() method (PDO) , 310, 313, 315, 334
fetch_assoc() method (MySQLI) , 313, 315
fetch_row() method (MySQLI), 315, 334
fgets() function, 187

controlling bytes retrieved, 205
position of internal pointer, 194, 195
reading and writing together, 190
reading file contents with, 189, 190

fields
checking required fields not blank, 130–133
creating sticky form fields, 134–136
database, 286, 287

file access
configuration settings affecting, 180–181
minimum access permissions for scripts, 180

file comparison utility
checking scripts with, 19–20

file() function, 185–187
file management, 180–209

checking permission to open files, 180–182
creating download link, 207–209
exploring file system, 195–203
opening remote data sources, 203–206
reading and writing files, 182–195

7311index.qxd  10/19/06  8:35 PM  Page 451



file storage
creating folder for local testing, 181

file system, exploring, 195–203
opendir() function, 196–197
readdir() function, 196
scandir() function, 195–196

file uploads, 152, 177
adding file upload field to forms, 154
checking if server supports, 153–154
controlling types of files, 167–169
creating folder for local testing, 158
directive settings affecting

max_execution_time, 153
max_input_time, 153
post_max_size, 153
upload_max_filesize, 153
upload_tmp_dir, 153

how PHP handles, 152–158
moving temporary file to upload folder, 159–162
organizing uploads into specific folders, 172–173
overwriting files without warning, 161
permissions, 158, 159
points to watch with, 177
preventing files being overwritten, 169–172
rejecting large files, 163–167
removing spaces from filenames, 162–163
resizing images automatically on upload, 223–230
security, 177
setting file size limit, 163–167
understanding $_FILES array, 155–157
uploading multiple files, 174–177
using timestamp to create unique name, 170–172
vanishing file after uploading, 155

filename extension, PHP, 47
includes, 94–95
using .inc for includes, 94, 95
using .inc.php as double extension, 94

filenames
extracting from pathname, 97
generating page title from, 98–103
making web safe by removing spaces, 162–163

files
appending content with fopen() function, 191
automatically naming next file in series, 200–203
building drop-down menu of, 197–199
checking permission to open, 180–182
functions for read/write operations, 187

reading and writing together, 190
managing see file management
reading files, 182–190, 192–195

combined read/write operations, 192
fgets() function, 187
file() function, 185–187
file_get_contents() function, 182–184
fopen() function, 189–190
fread() function, 187
functions for, 187
moving internal pointer, 192

INDEX

452

reading text file into array, 185–187
reading text file into string, 182–184

uploading files see file uploads
using file-based authentication, 241–247
writing files, 190–195

combined read/write operations, 192
fopen() function, 190–192
fwrite() function, 187
functions for, 187
moving internal pointer, 192–195
writing new file, 191–192

$_FILES array, 155–157
error levels in, 157

setting file size limit, 166
moving temporary file to upload folder, 160, 161
uploading multiple files, 174, 176

filesize() function, 250
file_exists() function, 110, 113
file_get_contents() function, 182–184
file_uploads directive, 42

checking if server supports uploads, 153
uploads disabled by host, 154

flag, 351
flat-file database, 184
float data type, PHP, 65
FLOAT type, MySQL, 300
floating-point number data type, PHP, 65
folders

building drop-down menu of files, 197–199
locating scripts for web server processing, 11
organizing uploads into specific, 172–173

footers
moving to include files, 92

fopen() function, 187, 188
appending content to file with, 191
combined read/write operations, 192
modes, 187, 188

binary files, 188
creating file-based user registration form, 250

position of internal pointer, 194
reading file with, 189–190
writing files with, 190–192

for loop, 81–82
foreach loop, 82–83
foreign keys, 288–289

creating lookup table, 417–418
deleting records having dependent, 425–427
finding records without matching, 414–416
linking images to articles, 402–409
selecting records from multiple tables, 410–414
table relationships, 400

form element
name attribute, 121

forms
see also web pages
adding file upload field to, 154
automatic insertion of backslash before quotes, 124
creating basic insert and update forms, 350–351

7311index.qxd  10/19/06  8:35 PM  Page 452



creating sticky form fields, 134–136
creating user registration form, 431–436

file-based form, 248–252
difference between post/get methods, 119–122
gathering information from, 118–123
handling multiple-choice form elements, 142–148
linking to update and delete pages, 356–359
passing information through multipage forms, 256–258
preserving information passed between, 256
preserving user input when form incomplete, 133–136
redirecting to another page, 148
removing unwanted backslashes from form input,

124–125
security with superglobals, 122
sending email from feedback form, 125–129
uses of, 118
using sessions for multipage forms, 256–258
validating user input, 129–142

fpassthru() function
creating download link, 208

fputs() function, 190
fread() function, 187

knowing how much to read, 189
position of internal pointer, 194, 195
reading and writing together, 190

free_result() method (MySQLI), 315, 406
fseek() function, 193
fsockopen() function, 203–206
function keyword

modularizing code with functions, 83
functions

see also commands
building database connection function, 305–307
calls to functions in external files, 386
date and time functions, MySQL, 388–392
date and time functions, PHP, 392–399
function naming in PHP, 8
introduction, 60–61
locating custom-built functions, 85
modularizing code with, 83–85
nesting functions, 100
passing multiple arguments to, 98
passing values to, 84–85
recursive functions, 138
returning values from, 85
using parentheses, 309

functions, MySQL
ADDDATE(), 391
AES_DECRYPT(), 441
AES_ENCRYPT(), 430
COUNT(), 310, 315, 333
DATE_ADD(), 391
DATE_FORMAT(), 389–390
DATE_SUB(), 391
DECODE(), 441
ENCODE(), 430
LEFT(), 383
NOW(), 349

INDEX

453

SUBDATE(), 391
UNIX_TIMESTAMP(), 394

functions, PHP array
array(), 74
array_key_exists(), 126, 155, 199
count(), 106
explode(), 186
extract(), 373
implode(), 146
in_array(), 145
is_array(), 330
list(), 217
natcasesort(), 199
print_r(), 75, 86, 121

functions, PHP custom
buildFileList(), 198–199
buildListFile4(), 215
buildListFile5(), 215
dbConnect(), 306
getFirst(), 385
getNextFilename(), 200–203
isSuspect(), 137
nukeMagicQuotes(), 124, 125

functions, PHP Data Objects (PDO methods)
bindParam(), 347
closeCursor(), 313, 315
errorInfo(), 310, 347
execute(), 346
fetch(), 315
fetchColumn(), 310, 315
getMessage(), 305
prepare(), 356
query(), 310, 315
quote(), 344

functions, PHP date and time
date(), 103, 394–396
mktime(), 393
strftime(), 394
strtotime(), 393
time(), 170

functions, PHP email
mail(), 123

functions, PHP file management
basename(), 97
closedir(), 196
copy(), 161
fclose(), 187
feof(), 187
fgets(), 187
file(), 185–187
filesize(), 250
file_exists(), 110
file_get_contents(), 182–184
fopen(), 187
fpassthru(), 208
fputs(), 190
fread(), 187
fseek(), 193

7311index.qxd  10/19/06  8:35 PM  Page 453



functions, PHP file management (continued)
fsockopen(), 203–206
fwrite(), 187
is_readable(), 110
is_uploaded_file(), 177
mkdir(), 172
move_uploaded_file(), 159
opendir(), 196–197
parse_url(), 417
pathinfo(), 199
readdir(), 196
rewind(), 187
scandir(), 195–196
simplexml_load_file(), 206

functions, PHP image manipulation
getimagesize(), 108
imagecopyresampled(), 220
imagecreatefromgif(), 219
imagecreatefromjpeg(), 219
imagecreatefrompng(), 219
imagecreatetruecolor(), 220
imagedestroy(), 223
imagegif(), 221
imagejpeg(), 221
imagepng(), 221

functions, PHP math
rand(), 105
round(), 220

functions, PHP MySQL
mysql_connect(), 303, 314
mysql_error(), 309
mysql_fetch_assoc(), 312, 314
mysql_fetch_row(), 314
mysql_insert_id(), 423
mysql_num_rows(), 309, 314
mysql_query(), 308, 314
mysql_real_escape_string(), 343
mysql_select_db(), 304, 314

functions, PHP MySQL Improved (methods)
bind_param(), 345
bind_result(), 366
fetch_assoc(), 313, 315
fetch_row(), 315
free_result(), 315
mysqli(), 304, 314
mysqli_error(), 309
mysqli_real_escape_string(), 344
prepare(), 345
query(), 309, 314
select_db(), 314
stmt_init(), 345

functions, PHP script and variable control
define(), 160
die(), 303
empty(), 131
exit, 243
function_exists(), 113

INDEX

454

header(), 148
include(), 85
ini_set(), 104
isset(), 103
is_array(), 330
is_numeric(), 361
ob_end_flush(), 237
ob_start(), 237
require(), 85
unset(), 131

functions, PHP session
session_name(), 237
session_register() (deprecated), 237
session_unregister() (deprecated), 237
setcookie(), 237

functions, PHP string
addslashes(), 343
ctype_alnum(), 432
explode(), 186
htmlentities(), 134
implode(), 146
nl2br(), 189, 385
number_format(), 164
preg_match(), 432
preg_replace(), 218
rtrim(), 186
sha1(), 252
simplexml_load_string(), 206
strlen(), 206
strops(), 206, 257, 384
strrpos(), 384
strtolower(), 102
strtoupper(), 102
str_replace(), 101
substr(), 206, 382
trim(), 249
ucfirst(), 100
ucwords(), 101
wordwrap(), 127

function_exists() function, 113, 125
calls to functions in external files, 386
creating scaled-down image copy, 222

fwrite() function, 187
arguments for, 190
position of internal pointer, 194

G
gallery

activating thumbnails, 327–330
building dynamic elements, 326–339
converting gallery elements to PHP, 323–326
creating multicolumn table for thumbnails, 330–331
navigating through subset of records, 336–339
paging through a long set of records, 332–339
planning gallery, 321–323
selecting subset of records, 332–336

GD extension, 212–213

7311index.qxd  10/19/06  8:35 PM  Page 454



$_GET array
description, 54
passing information through query string, 329, 330, 360,

361, 365, 369
security with superglobals, 122
writing scripts without register_globals, 122

get method
bookmarking search results, 122
post method compared, 119–122
sending data with, 121

getFirst() custom function
displaying first two sentences of an article, 388
extracting complete sentences, 385

getimagesize() function, 108, 110, 325, 326
resizing images, 217

getMessage() method (PHP exceptions), 305
getNextFilename() custom function

automatically naming next file in series, 200–203
saving original and resized images, 230

GIF
acronym expanded, 213
checking GD extension enabled, 212–213
image type number, 217

GoLive as script editor for PHP, 18
graphical interface

using MySQL with, 277–281
greater than comparison operator (>), 78

making comparisons, 59
SELECT command, 375

H
header() function, 148

building login page, 243
creating download link, 208, 209
creating reusable logout button, 246
“headers already sent” error, 237
using sessions for multipage forms, 256

headers
adding extra email headers, 139
email header injection, 136
full list of email headers, 139
including user address in, 139–142

“headers already sent” session error, 237
height attribute, <img> tag

displaying varying sizes of images, 106, 110, 111
resizing images, 217

heredoc syntax, 70
hidden fields

preserving information passed between forms, 256
hosting companies

checking GD extension enabled, 213
checking if server supports uploads, 153–154
checking PHP version on server, 17
checking website supports PHP, 16–17
connecting to MySQL with PHP, 301
rejecting large files as uploads, 163

INDEX

455

hostname
configuring phpMyAdmin, 279
how PHP communicates with MySQL, 303

hours
MySQL date format specifiers, 389
PHP format characters, 395

htdocs folder, 31
HTML (Hypertext Markup Language)

mixing .html and .php pages, 64
htmlentities() function, 134, 135, 362, 367, 370
httpd.conf file, Apache, 30, 32
$HTTP_GET_VARS array (deprecated), 123
HTTP_HOST variable, $_SERVER array, 417
$HTTP_POST_VARS array (deprecated), 123
HTTP_REFERER variable, $_SERVER array, 417

I
id attribute, <input> tag

duplicating value in name attribute, 119
identical comparison operator (===), 77

reading text file into string, 184
if statement

else clause, 58
elseif clause, 58

sending email from feedback form, 127
making comparisons, 59
making decisions, 57

IIS (Internet Information Services)
choosing web server for Windows, 22
configuring for PHP on Windows, 32–34

imagecopyresampled() function, 220, 221
imagecreatefromgif() function, 219
imagecreatefromjpeg() function, 219
imagecreatefrompng() function, 219
imagecreatetruecolor() function, 220
imagedestroy() function, 223
imagegif() function, 221, 222
imagejpeg() function, 221, 222
imagepng() function, 221
images

adding caption to random image, 107–112
creating dynamic online gallery, 321–339
displaying random image, 105–107
displaying varying sizes of, 90, 106
generating thumbnails, 212–230
getimagesize() function, 108
image type numbers ($_FILES array), 217
manipulating dynamically, 213–223
MIME types, 167
not storing in database, 321
prompting user to download, 207–209
resizing, 213–230

automatically on upload, 223–230
calculating scaling ratio, 215–217
creating scaled-down copy, 217–223
merging with image upload, 223–228
saving original and resized versions, 228–230

uploading, 161, 166, 170

7311index.qxd  10/19/06  8:35 PM  Page 455



implicit Boolean values, 77
implode() function, 146, 148
Import tab, phpMyAdmin

backup and data transfer, MySQL, 283
IN() comparison operator, SELECT command, 375, 376

using absolute/relative pathnames, 94
includes, 90–115

creating pages with changing content, 103–112
filename extension for, 94–95
include commands, 91–93
merging image upload with resizing, 223
moving footer to, 92
moving navigation menu to, 92
preventing errors when missing, 112–113
security issues

choosing location for include files, 114
including files from other servers, 115
using .inc as filename extension, 94, 95
using .inc.php as double extension, 94

using with absolute pathnames, 114
include_once() command, 91
increment operator (++), 66, 67

for loops, 82
indenting code, 59–60
indexed arrays, 73

adding new element to end, 74
description, 53
using array() function to build, 74

inequality comparison operator (!=), 77
information_schema database, 293
initializing an array, 74
ini_set() function, 104

setting correct time zone, 393
injection

email header injection, 136
SQL injection, 342–343

InnoDB tables, 265, 266
<input> tag

duplication of name/id attributes, 119
INSERT command, 377

auto_increment columns, 377
creating basic insert form, 350

INSERT privilege, SQL, 291
inserting records, 351–356

using MySQL extension, 351–353
using MySQLI, 353–355
using PDO, 355–356

INT type, MySQL, 300
integer data type, 65
internal links

creating an intelligent link, 416–417
internal pointers see pointers
INTERVAL keyword, MySQL, 391
INTO keyword, INSERT command, 377
in_array() function, 145, 199
isset function(), 103, 113, 362
isSuspect() custom function, 137, 138

INDEX

456

is_array() function, 330, 374
is_numeric() function, 361
is_readable() function, 110, 113
is_uploaded_file() function, 177, 226

J
Jaguar (OS X 10.2)

MySQL 5 not supported, 271
PHP 5 Mac package not available, 39

Japan Journey site, 12
Japanese-language site, 6, 7
JavaScript, 5
joining strings, 62

combined concatenation operator, 68
join, left, 415
JPEG

acronym expanded, 213
checking GD extension enabled, 212–213
creating scaled-down image copy, 221
image type number ($_FILES array), 217

K
keys

two-way encryption, 430
keywords, MySQL

AS (alias), 383
BETWEEN (comparison operator), 375, 376
DESC (sort order), 357
INTERVAL (date), 391
INTO (INSERT), 351, 377
LIKE (comparison operator), 375, 376
LIMIT (SELECT), 332, 376

keywords, PHP
break (loops), 80, 83
case (switch), 79, 80
catch (try/catch blocks), 305
continue (loops), 83
default (switch), 80
function keyword, 83
new (objects), 304
return (functions), 85
this (objects), 50

L
LEFT JOIN, MySQL, 414, 415
LEFT() function, MySQL, 383
less than comparison operator (<), 59, 78, 375
libmysql.dll

problems with duplicate version, 35
removing from Windows system folder, 24–25
updating PHP connector files, 270

LIKE keyword, SELECT command, 375, 376
LIMIT keyword, SELECT command, 376

selecting subset of records, 332
line numbering

choosing script editor for PHP, 17

7311index.qxd  10/19/06  8:35 PM  Page 456



links
creating an intelligent link, 416–417
creating download link, 207–209
site root relative links, 114

list column types, predefined, 301
list() construct (function)

assign array elements to variables, 217
Liyanage, Mark, 38, 41
LoadModule php5_module, Apache, 30
local test environment

checking PHP settings, 41–42
creating file storage folder for, 181
creating upload folder for, 158
requirements for, 20
setting up on Mac OS X, 35–41

installing PHP, 38–41
locating web files, 37
starting and stopping Apache, 36–37
testing PHP, 40–41

setting up on Windows, 21–35
choosing web server, 22
configuring Apache for PHP, 29–32
configuring IIS for PHP, 32–34
displaying filename extensions, 21
installing Apache, 22–24
setting up PHP, 24–29
starting and stopping Apache, 24
testing PHP, 34–35

localhost
how PHP communicates with MySQL, 303
synonym for, 37

logical AND (&&) operator, 78
using AND in place of &&, 79

logical negation (!) operator, 78
logical operators, 78–79

SELECT command, 375
logical OR (||) operator, 78

using OR in place of ||, 79
login/logout

authenticating user credentials, 437
building login page, 242–244
creating reusable logout button, 245–247
ending session after inactivity, 253–255
using encrypted login, 252–253

log_errors directive, 42
LONGBLOB type, MySQL, 301
lookup tables

creating, 417–418
inserting image with categories in, 420–424
inserting records with, 418–424
many-to-many table relationship, 402
updating image and categories in, 425
updating records with, 424–425

loops, 80–83
break keyword, 83
continue keyword, 83
creating multicolumn table, 330–331
do ... while loop, 81

INDEX

457

for loop, 81–82
foreach loop, 82–83
introduction, 60
looping through arrays, 82–83
while loop, 81

M
Mac OS X

checking PHP settings, 41–42
configuring PHP to display errors on, 39–40
installing PHP on, 38–41
MySQL on see MySQL on Mac OS X
setting up local test environment on, 35–41

locating web files, 37
setting up phpMyAdmin, 277–281
testing PHP on, 40
URL for Japan Journey site, 12
using Apache on, 36–37

magic quotes, 69, 71–73, 124
eliminating, 124–125
nukeMagicQuotes() custom function, 72, 73

mail() function, 123
adding extra email headers, 139
email addresses, 123
message body, 123
sending email from feedback form, 127
subject line, 123
trusted users, 123

managing files see file management
manipulating images dynamically, 213–223
manuals

MySQL online, 443
PHP online, 442

many-to-many table relationship, 401
creating lookup table, 417
lookup tables, 402

max_execution_time directive, 153
MAX_FILE_SIZE constant, 163–167
max_input_time directive, 153
MEDIUMBLOB type, MySQL, 301
method attribute, <form> tag, 119
methods see functions
Microsoft Access, 286
MIME types

controlling types of files for upload, 167
file upload security, 177
table of commonly used, 167

minutes
MySQL date format specifiers, 389
PHP format characters, 395

mkdir() function, 172
mktime() function, 393
modes

fopen() function, 187, 188
binary files, 188
creating file-based user registration form, 250

safe_mode directive, 181
safe_mode_include_dir directive, 181

7311index.qxd  10/19/06  8:35 PM  Page 457



modularizing code with functions, 83–85
locating custom-built functions, 85
passing values to functions, 84–85
returning values from functions, 85

Module Settings section, php.ini, 27
modulo division operator (%), 66, 67, 330
MONTH interval type, MySQL, 391
months

MySQL date format specifiers, 389
PHP format characters, 395

move_uploaded_file() function
file upload security, 177
moving temporary file to upload folder, 159, 161
saving original and resized images, 228, 230
setting file size limit, 166

multidimensional arrays, 65, 75
Multifunctional Database type, 265, 268
multiline comments, 52
multiple-choice list

getting data from multiple-choice list, 147–148
multiplication operator (*), 66, 375

precedence of arithmetic operators, 67
MyISAM tables, 265
MySQL

see also SQL (structured query language)
ADDDATE() function, 391
AES_ENCRYPT() function, 430
aliases, 383
AS keyword, 383
backticks (`), 290
backup and data transfer, 281–283
building database connection function, 305–307
case sensitivity, 290
changes to installation or operation of, 12
column types, 299–301
connecting with PHP, 301–316

checking remote server setup, 302–303
how PHP communicates with MySQL, 303–305
MySQL extension, 303, 314
MySQLI, 304, 314
PDO, 304, 315

creating database tables, 294–296
creating database-specific user accounts, 291–294
date format specifiers, 389
dates, 388–392

adding to and subtracting from, 390–392
displaying items updated within past week, 391
formatting, 389–390

DATE_ADD() function, 391
DATE_FORMAT() function, 389–390
DATE_SUB() function, 391
displaying results from query, 311–313
download page, 263
drawbacks, 262
ENCODE() function, 430
error messages, 378
finding number of results from query, 308–311
formatting date or timestamp, 390

INDEX

458

IN() comparison operator, 375
inserting dates into, 396–399
inserting records into tables, 296–299

manually, 296–297
loading image records from SQL file, 298–299

INTERVAL keyword, 391
LEFT JOIN, 414, 415
LEFT() function, 383
naming conventions/rules, 290
NOW() function, 349
privileges, 291
reasons for choosing, 262–263
SUBDATE() function, 391
UNIX_TIMESTAMP() function, 394
using with graphical interface, 277–281

setting up phpMyAdmin, 277–280
using older versions, 12
using phpMyAdmin to create new database, 291
versions, 12, 263

MySQL 5, 293
MySQL Administrator, 277
mysql command, 275
mysql database, 293
MySQL extension

connecting to MySQL with PHP, 303, 314
counting records in result set, 308–309
deleting records, 372
displaying results from query, 311
fetching next row in result set, 328
incorporating variables into SQL queries, 344
inserting records, 351–353
linking to update and delete pages, 358
making reusable database connector, 306
processing query and results, 412
retrieving all records, 387
selecting subset of records, 334
updating records, 360–364

MySQL improved extension see MySQLI
MySQL monitor

using on Mac OS X, 275–276
using on Windows, 269

MySQL on Mac OS X, 271–276
downloading and installing MySQL, 271, 272
securing, 275–276
setting up, 271–276

adding MySQL to PATH, 273–274
amending PATH in bash shell, 273–274
amending PATH in tcsh shell, 274

MySQL on Windows
installation, 263–271
starting and stopping MySQL manually, 268
uninstalling old version of, 263
updating PHP connector files, 270–271
upgrading, 264
using MySQL monitor on Windows, 269
Windows Essentials version of MySQL

changing default table type, 268
configuring, 265–268

7311index.qxd  10/19/06  8:35 PM  Page 458



download for, 264
installing, 264–265

MySQL online manual, 443
MySQL Query Browser, 277
MySQLI (MySQL improved extension)

connecting to MySQL with PHP, 304, 314
counting records in result set, 308–309
deleting records, 372
displaying results from query, 311
fetching next row in result set, 328
incorporating variables into SQL queries, 345–346
inserting records, 353–355
linking to update and delete pages, 358
making reusable database connector, 306, 307
processing query and results, 412
retrieving all records, 387
selecting subset of records, 334
updating records, 364–368
using external variables, 344

mysqli() function, 304, 314
mysqli_error() method, 309, 378
mysql_connect() function, 8, 303, 314
mysql_error() function, 309, 378
mysql_fetch_assoc() function, 312, 314
mysql_fetch_row() function, 314, 334
mysql_insert_id() function, 423
mysql_num_rows() function, 309, 314
mysql_query() function

connecting with MySQL extension, 314
counting records in result set, 308
inserting records, 353
retrieving all records, 387
updating records, 364

mysql_real_escape_string() function
handling strings in SQL, 344
inserting records, 352
SQL injection, 343
updating records, 364
using external variables, 344

mysql_select_db() function, 304, 314

N
name attribute, <input> tag

duplicating value in id attribute, 119
form element, 121
getting data from check boxes, 145
getting data from multiple-choice list, 147
getting data from radio button groups, 143
URL query strings, 120

name element, $_FILES array, 156
moving temporary file to upload folder, 160
uploading multiple files, 176

named placeholders
PDO prepared statements, 346

naming conventions
file upload security, 177
MySQL, 290

INDEX

459

naming files
automatically naming next file in series, 200–203
getNextFilename() custom function, 200–203

natcasesort() function, 199
Navicat, 277
navigation menu

moving to include files, 92
negation  operator (!), 78
nesting functions, 100
nesting PHP code blocks, 48
new file only modes, fopen() function, 188

combined read/write operations, 192
writing new file, 191–192

new keyword, 304
new line character (\n), 70

removing with rtrim(), 186–187
new lines

nl2br() function, 385
news feed

handling XML news feed, 206
opening with fsockopen() function, 203

nl2br() function, 189
displaying paragraphs, 385

nobody, running PHP as, 158
Non-Transactional Database Only type, 265
not identical comparison operator (!==), 78
not null, 295
Notepad, 17
notices (PHP error type), 63
NOW() function, MySQL, 349
nukeMagicQuotes() custom function, 72, 73, 124, 125
null value

implicit Boolean values, 77
should not be in quotes, 56

numbers
handling in SQL, 344
MySQL numeric column types, 300
should not be in quotes, 55, 86
writing numbers in PHP, 63

number_format() function, 164
numeric column types, MySQL, 300
num_rows property (MySQLI), 309, 314

O
object data type, 65
ob_end_flush() function, 237, 241

creating reusable logout button, 247
ob_start() function, 237

buffering output with, 241
one-to-many table relationship, 400
one-to-one table relationship, 400
one-way encryption, 430–438

creating table to store user details, 431
registering new users, 431–438
SHA 1 algorithm, 247, 430
user authentication with, 436–438

OOP (object-oriented programming), 304
PHP and, 4

7311index.qxd  10/19/06  8:35 PM  Page 459



opendir() function, 196–197
opening files

checking permission to open files, 180–182
fopen() function, 187

opening tags, PHP, 47, 85
open_basedir directive, 181
operators

array assignment (=>), 74
arithmetic, PHP, 66–67
arithmetic, MySQL, 375
assignment (=), 68
comparison, MySQL, 375
comparison, PHP, 77–78
concatenation (.), 62, 68
conditional (?:), 80
equality (=), MySQL, 375
equality (==), PHP, 77
error control (@), 113
logical, MySQL, 375
logical, PHP, 78–79
precedence of arithmetic operators, 67
ternary (?:), 80

or die() expression see die() function
OR operator, logical OR (||), 78

SELECT command, 375
WHERE clause, 414

ORDER BY clause, SELECT command, 376
output

displaying PHP output, 61
where displayed, 48

overwriting data
choosing wrong fopen() mode, 188
preventing files being overwritten, 169–172

P
pages see web pages
paging mechanism

creating intelligent link, 416–417
navigating through many records, 332–339

paragraphs
displaying, 385
extracting first paragraph, 384–385

PARAM_XYZ constants
named placeholders, PDO, 347

parse error, 63
parse_url() function, 417
passwords

adding salt before encrypting, 248, 252
AES_DECRYPT() function, 441
building login page, 242, 244
caution using .inc filename extension, 94, 95
configuring MySQL on Windows, 267
DECODE() function, 441
decrypting, 441–442
encrypting, 247–253
how PHP communicates with MySQL, 303
one-way encryption, 430

INDEX

460

securing MySQL on Mac OS X, 275–276
storing in session variables, 235
two-way encryption, 430, 438–442
updating user details, 442

pathinfo() function, 199
paths

adding MySQL to PATH in OS X, 273–274
amending PATH in bash shell, 273–274
amending PATH in tcsh shell, 274
extracting filename from, 97
using includes with absolute pathnames, 114

Paths and Directories section, php.ini, 26
PCRE (Perl-compatible regular expression), 137
PDO (PHP Data Objects)

connecting to MySQL with PHP, 301, 315
counting records in result set, 310–311
deleting records, 373
displaying results from query, 311
exceptions, 304
fetching next row in result set, 328
how PHP communicates with MySQL, 304–305
incorporating variables into SQL queries, 346–347
inserting records, 355–356
making reusable database connector, 306, 307
processing query and results, 412
retrieving all records, 387
selecting subset of records, 334
updating records, 368–371
using external variables, 344

PDO::PARAM_XYZ constants
named placeholders, PDO, 347

permissions
checking permission to open files, 180–182
establishing upload directories, 158
minimum access permissions for scripts, 180

PHP
calculations in, 66–68
changes to installation or operation of, 12
checking settings, 41–42
checking version on server, 16–17
checking website support for, 16–17
choosing script editor for, 17–19
configuring Apache for PHP on Windows, 29–32
configuring IIS for PHP on Windows, 32–34
configuring to display errors on Mac OS X, 39–40
connecting to MySQL with, 301–316
dates, 392–396

creating Unix timestamp, 393–394
formatting dates in PHP, 394–396
setting correct time zone, 392–393

function naming in, 8
how hard is PHP to learn and use, 8
installing on Mac OS X, 38–41
locating scripts for web server processing, 11
logic in web pages, 6
necessity of filename extension, 47
necessity of PHP tags, 47
official meaning of, 4

7311index.qxd  10/19/06  8:35 PM  Page 460



OOP and, 4
original name, 4
overview, 46
PHP page essentials, 46
PHP page optional parts, 47
platforms supported, 4
recognizing variables, 8
recommended configuration settings, 42
safety of, 10
security and user input, 10
server-side languages, 5
setting up on Windows, 24–29

adding PHP to startup procedure, 27–29
downloading and configuring PHP, 24–27

testing on Mac OS X, 40
testing on Windows, 34–35
tolerance of errors, 8
uses other than direct output, 48
using Apache on Mac OS X, 36–37

starting and stopping Apache, 36–37
versions, 12

PHP 6
magic quotes, 72
register_globals setting, 122

PHP code see code
PHP online manual, 442
.php pages

mixing .html and, 64
php.ini file

checking GD extension enabled, 213
checking PHP settings, 41
configuring PHP to display errors on Mac OS X, 39
downloading and configuring PHP, 24, 25, 27
updating PHP connector files, 271

phpinfo() command
examining PHP configuration settings, 41–42
security considerations on live website, 154
testing PHP, 35, 40

phpMyAdmin
backup and data transfer, MySQL, 281–283
changes to the installation or operation of, 12
column types, MySQL, 299–301
configuring manually, 280
configuring with setup.php, 278–279
creating database, 291
creating database tables, 294–296
creating user accounts, 291–294
downloading and installing, 277
granting user privileges, 292–294
inserting records into tables, 296–299

inserting records manually, 296–297
loading records from SQL file, 298–299

launching, 280
logging out of, 281
setting up, 277–280

php_mysql.dll/php_mysqli.dll files
updating PHP connector files, 270, 271

INDEX

461

PHP_SELF variable, $_SERVER array, 327
placeholders

MySQLI prepared statements, 345
PDO prepared statements, 346

PNG
abbreviation expanded, 213
checking GD extension enabled, 212–213
image type number ($_FILES array), 217

pointer, file internal
fopen() function modes, 188
moving internal pointer, 192–195
positioning internal pointer, 188
rewind() function, 187

ports
configuring MySQL on Windows, 266
connecting to MySQL with PDO, 316
installing Apache on Windows, 23

POSIX regular expressions, 137
$_POST array

blocking emails containing specific phrases, 138
checking if empty, 361
checking required fields not blank, 130
deleting records, 372
description, 54
eliminating magic quotes, 124
getting data

from check boxes, 145
from drop-down option menu, 146
from multiple-choice list, 147
from radio button groups, 143

post method, 121
post_max_size directive, 153
preserving information passed between forms, 256
preserving user input when form incomplete, 133, 134
security with superglobals, 122
sending email from feedback form, 125, 126, 128, 129
writing scripts without register_globals, 122

post method
get method compared, 119–122
sending data with, 121

post_max_size directive, 153
host company limits affecting, 154

<pre> tags, 121
reading text file into array, 185

precedence of arithmetic operators, 67
predefined list column types, MySQL, 301
preg_match() function, 432
preg_replace() function, 218, 386
prepare() method

inserting records with PDO, 356
MySQLI prepared statements, 345

prepared statements
defense against SQL injection, 343

prepared statements, MySQLI
binding parameters, 354
incorporating variables into SQL queries, 345–346
inserting records with MySQLI, 354, 366

7311index.qxd  10/19/06  8:35 PM  Page 461



prepared statements, PDO
binding parameters, 356
incorporating variables into SQL queries, 346–347

primary keys, 287–288
composite primary key, 417
creating lookup table, 417–418
description, 286
foreign keys linking to, 288–289
renumbering sequences, 288

print command
comparison with echo, 61
creating XHTML output inside conditional statement, 111
displaying PHP output, 61
displaying XHTML inside PHP block, 127

print_r() function
inspecting an array, 75, 121

privileges, SQL, 291
granting user privileges, 292–294

.profile file
setting up MySQL on Mac OS X, 273, 274

punctuation
getFirst() custom function, 385

Q
QUARTER interval type, MySQL, 391
queries

counting records in result set
MySQL/MySQLI, 308–309
PDO, 310–311

displaying results from, 311–313
incorporating variables into, 344–347
mysql_query() function, 314
query() method, 314, 315

query strings
passing information through, 327–330
URLs, 120

question mark placeholders
MySQLI prepared statements, 345
PDO prepared statements, 346

quirks mode
putting PHP code above DOCTYPE declaration, 100

&quot; HTML entity, 135
quotes

automatic insertion of backslash before, 124
double quotes, 69
handling, 68
handling strings in SQL, 344
htmlentities() function, 134
magic quotes, 69, 71–73

eliminating, 124–125
matching, 55, 56
preserving user input when form incomplete, 134
single quotes, 69
updating records with MySQLI, 367
using double or single quotes, 69
when to use, 55

special cases (true/false/null), 56

INDEX

462

R
r mode, fopen() function, 188

reading files with fopen(), 189–190
r+ mode, fopen() function, 188

combining read/write operations, 192, 193
creating file-based user registration form, 250

radio button groups
getting data from, 143–144

rand() function, 105
random images

adding caption to, 107–112
displaying, 105–107

RDMS (relational database management system), 290
read-only modes, fopen() function, 188
read/write modes, fopen() function, 188
readdir() function, 196
reading files see under files
records

counting records in result set
MySQL/MySQLI, 308–309
PDO, 310–311

deleting, 371–373
having dependent foreign keys, 425–427

description, 287
extracting

fetch_assoc() method (MySQLI), 315
fetch_row() method (MySQLI), 315
mysql_fetch_assoc() function (MySQL), 314
mysql_fetch_row() function (MySQL), 314
query() method (MySQLI), 314
query() method (PDO), 315

fetch() method (PDO), 315
finding, without matching foreign key, 414–416
getting next record, 315
good relational database design, 289
inserting, 351–356

into tables, 296–299
with lookup table, 418–424

navigating through subset of, 336–339
paging through a long set of, 332–339
selecting from multiple tables, 410–414
selecting subset of, 332–336
updating, 360–371

with lookup table, 424–425
recursive functions, 138
referential integrity

deleting records having dependent foreign keys, 425–427
registering new users

creating user registration form, 431–436
entering duplicated user name, 435
entering invalid data, 435
one-way encryption, 431–438
two-way encryption, 439–440

register_globals setting, 122
regular expressions

automating reply address, 141
blocking emails containing specific phrases, 136

7311index.qxd  10/19/06  8:35 PM  Page 462



creating scaled-down image copy, 218
Perl-compatible, 137
POSIX, 137

relational databases
see also databases
breaking down information for, 289
foreign keys see foreign keys
good relational database design, 289
how data is stored in, 286–289
lookup table, 417–425
primary keys see primary keys
table relationships, 400–402
working with multiple database tables, 400–427

relative links
site root relative links, 114

remote access
checking remote server setup, 302–303
opening remote data sources, 203–206

repeating code
loops, 80–83

“Reply-To:” header, 139
automating email reply address, 141

$_REQUEST array
comparison with $_POST and $_GET, 123

require() command, 91
required fields

checking not blank, 130, 133
require_once() command, 91
resizing images, 214–223

automatically on upload, 223–230
calculating scaling ratio, 215–217
creating scaled-down copy, 217–223
merging with image upload, 223–228
saving original and resized versions, 228–230

resource data type, 65
resources, releasing database

closeCursor() method (PDO), 315
free_result() method (MySQLI), 315

result sets
counting records in result set

COUNT() function, 315
MySQL and MySQLI, 308–309
mysql_num_rows() function (MySQL), 314
num_rows property (MySQLI), 314
PDO, 310–311

displaying results from query, 311–313
fetchColumn() method (PDO), 315
fetching next row in result set, 328
finding number of results from query, 308–311
getting single result, 315

return keyword
returning values from functions, 85

rewind() function, 187
moving internal file pointer, 193

root access
configuring MySQL on Windows, 267
securing MySQL on Mac OS X, 275–276
when to use, 291

INDEX

463

round() function, 220
rows, 287
rtrim() function

reading text file into array, 186

S
safety of PHP, 10
safe_mode directive, 181
safe_mode_include_dir directive, 181
salt

encrypting passwords, 248, 252, 430
one-way encryption, 431
two-way encryption, 438

scaling ratio
calculating, 215–217
resizing images, 217

scandir() function
inspecting directory contents, 195–196

scope, variable
passing values to functions, 84

script editor
choosing for PHP, 17–19

scripts
checking with file comparison utility, 19–20
commenting, 51
minimum access permissions for, 180

SCRIPT_NAME variable, $_SERVER array, 97
seconds

MySQL date format specifiers, 389
PHP format characters, 395

secret keys
two-way encryption, 430

Secure Sockets Layer (SSL) connection, 122, 438
security

adding extra email headers, 139, 140
blocking emails containing specific phrases, 136–139
configuring MySQL on Mac OS X, 275–276
configuring MySQL on Windows, 267
encrypting passwords, 247–253
encryption, 430–442

one-way encryption, 430–438
two-way encryption, 438–442

establishing upload directories, 158
file-based authentication, 241–247
file_exists() function, 169
filtering out potential attacks, 136–139
include files

choosing location for, 114
including files from other servers, 115
testing the security of includes, 94–95
using .inc as filename extension, 94, 95
using .inc.php as double extension, 94

including user address in headers, 139–142
inserting records with MySQL extension, 352
keeping data safe, 342–347
moving files to upload folder, 161
naming columns for greater security, 351

7311index.qxd  10/19/06  8:35 PM  Page 463



security (continued)
phpinfo() command, 154
points to watch with file uploads, 177
preventing error message when include file missing, 113
register_globals setting, 122
sending data with get or post method, 121
sessions, 235
SQL injection, 342–343
storing sensitive information, 235
superglobals, 122
transferring password, browser to server, 438
using encrypted login, 252–253

SEEK_END constant, fseek() function, 193
SELECT command, 374–376

* shorthand for all columns, 375
% wildcard, 376
_ (underscore) wildcard, 376
BETWEEN keyword, 375, 376
comparison operators, 375
DISTINCT option, 374
DIV operator, 376
IN() comparison operator, 375, 376
LIKE keyword, 375, 376
LIMIT keyword, 376
logical operators, 375
ORDER BY clause, 376
WHERE clause, 375

SELECT privilege, SQL, 291
select_db() method (MySQLI), 314
semicolons

ending commands and statements, 51
sentences

displaying first two sentences of article, 386–388
extracting complete sentences, 385–388

sequences
renumbering primary keys, 288

$_SERVER array
DOCUMENT_ROOT, 114
HTTP_HOST, 417
HTTP_REFERER, 417
PHP_SELF, 327
SCRIPT_NAME, 97

Server hostname/port/socket
configuring phpMyAdmin, 279
how PHP communicates with MySQL, 303

server root
configuring Apache for PHP on Windows, 30
where to store PHP files on Mac OS X, 37

server-side languages, 5, 47
tolerance of errors, 8, 9

servers
checking if server supports file uploads, 153–154
checking PHP version on, 16–17
checking remote server setup, 302–303

$_SESSION array
building login page, 243
creating and destroying session variables, 236
ending session after inactivity, 253

INDEX

464

restricting access to page using, 244–245
using sessions for multipage forms, 256–258
using sessions to restrict access, 239, 240

session variables
creating and destroying, 236
storing, 235
storing sensitive information, 235

sessions, 234–258
buffering output with ob_start() function, 241
building login page, 242–244
cookies, 234
creating PHP sessions, 236
creating reusable logout button, 245–247
destroying, 237
encrypting passwords, 247–253
ending after inactivity, 253–255
“headers already sent” error, 237
how sessions work, 234–237
invalidating session cookie, 237
passing information through multipage forms, 256–258
restricting access to page using $_SESSION, 244–245
security, 235
setting session.save_path on Windows, 27
setting time limit on, 253–255
user authentication, 235
using file-based authentication, 241–247
using for multipage forms, 256–258
using to restrict access, 238–253

session_destroy() command, 237, 240
session_name() function, 237
session_register() function (deprecated), 237
session_start() command

building login page, 243
creating PHP sessions, 236
creating session variables, 236
ending session after inactivity, 253, 255
“headers already sent” session error, 237

session_unregister() function (deprecated), 237
SET type, MySQL, 301
setcookie() command, 241

“headers already sent” session error, 237
setup.php

configuring phpMyAdmin with, 278–279
SHA 1 algorithm

encrypting passwords, 247, 430
sha1() function

creating user registration form, 434
using encrypted login, 252

SimpleXML
handling XML news feed, 206

simplexml_load_file() function, 206
simplexml_load_string() function, 206
single quotes, 55–56, 69

difference between single and double quotes, 69
htmlentities() function, 135
preserving user input when form incomplete, 134

single-line comments, 52
site root relative links, 114

7311index.qxd  10/19/06  8:35 PM  Page 464



Sites folder (Mac OS X)
locating web files, 37

size element, $_FILES array, 156
uploading multiple files, 176

socket connections, creating, 203
spaces

file upload security, 177
removing from filenames, 162–163
replacing underscores with, 101
URLs, 101

special characters
escape sequences in double–quoted strings, 70

SQL (structured query language)
see also MySQL
case sensitivity, 343
enhancing readability of SQL, 343
handling numbers, 344
handling strings, 344
incorporating variables into SQL queries, 344–347

MySQL extension, 344
MySQLI prepared statements, 345–346
PDO prepared statements, 346–347

keeping data safe, 342–347
mysql_real_escape_string() function, 343
quotes, 344
referential integrity, 426
rules for writing, 343–344
whitespace, 343

SQL commands
DELETE command, 378
INSERT command, 351–356, 377
SELECT command, 374–376
UPDATE command, 377

SQL export compatibility
backup and data transfer, 283

SQL injection, 342–343
SQLyog

using MySQL with graphical interface, 277
square bracket characters

escaping, 70
src attribute, <img> tag

displaying first image, 326
start up

adding PHP to Windows startup procedure, 27–29
statements

conditional statements, 57–59
ending statements, 51

static page
converting to dynamic PHP page, 323–339

stmt_init() method (MySQLI), 345
strftime() function, 394, 395
strict errors, PHP, 64
strict mode, MySQL, 266
string data type, 65
strings

see also, functions, PHP string
combined concatenation operator (.=), 68
definition, 55
extracting characters

INDEX

465

complete sentences, 385–388
ending on complete word, 383–384
first paragraph, 384–385
fixed number of characters, 382–383

handling in SQL, 344
joining, 62
MySQL text column types, 299
reading text file into, 182, 184
replacing characters in, 101
when to use quotes, 55

strlen() function
checking length of password, 249, 432
finding end of substring, 206

strpos() function, 206, 257
confusing with strrpos() function, 384
extracting first paragraph, 384

strrpos() function
confusing with strpos() function, 384
ending character extract on complete word, 384

strtolower() function, 102
strtotime() function, 393
strtoupper() function, 102
str_replace() function, 101

removing spaces from filenames, 162
SUBDATE() function, MySQL, 391
subject line, mail() function, 123
substr() function, 206

ending character extract on complete word, 384
extracting fixed number of characters, 382
extracting first paragraph, 384

subtraction operator (-), 66, 375
precedence of arithmetic operators, 67

superglobal arrays, 54
$HTTP_GET_VARS (deprecated), 123
$HTTP_POST_VARS (deprecated), 123
$_FILES, 155–157
$_GET, 54
$_POST, 54
$_REQUEST, 123
$_SERVER, 114
$_SESSION, 236
security with, 122

switch statement, 79–80
break keyword, 80
case keyword, 79
default keyword, 80

syntax coloring
choosing script editor for PHP, 17

syntax errors
checking scripts with file comparison utility, 19–20

T
tab character (\t), 70
table relationships, 400–402

lookup tables, 402
many-to-many, 401
one-to-many, 400
one-to-one, 400

7311index.qxd  10/19/06  8:35 PM  Page 465



tables
adding extra columns to, 402–404
creating database tables, 294–296
defining images table, 295–296
deleting records, 371–373
displaying multicolumn table in web page, 330–331
foreign keys linking to primary keys, 288–289
inserting records into, 296–299, 351–356
lookup tables

creating, 417–418
inserting records, 418–424
updating records, 424–425

selecting records from multiple tables, 410–414
updating records, 360–371
working with multiple database tables, 400–427

tablespace, InnoDB
configuring MySQL on Windows, 266

tags, PHP, 47, 85
closing tag (?>), 47
nesting PHP code blocks, 48
opening tag (<?php), 47
short form of opening tag (<?), 85

tcsh shell, 274
temporary files

moving to upload folder, 159–162
setting session.save_path on Windows, 27
upload_tmp_dir directive, 153

ternary operator (?:), 80
test database, 293
testing

see also local test environment
adding error control operator, 184
where to test web pages, 20

text
displaying first two sentences of an article, 386–388
extracting, 382–388

complete sentences, 385–388
ending on complete word, 383–384
first paragraph, 384–385
fixed number of characters, 382–383

MIME types, 167
single and double quotes compared, 69
when to use quotes, 55

special cases (true/false/null), 56
text column types, MySQL, 299
TEXT type, MySQL, 299
<textarea> tag

duplication in name/id attributes, 119
preserving user input when form incomplete, 136
preventing unwanted whitespace, 136
updating records with MySQL extension, 362

TextEdit
choosing script editor for PHP, 17

TextWrangler
checking scripts with file comparison utility, 20

this keyword, 50

INDEX

466

thousands separator
inserting with number_format(), 164
writing numbers in PHP, 63

throwing exceptions, 305
thumbnail images

displaying in multicolumn table, 330, 331
fetching next image in result set, 328
generating, 212, 230
resizing images, 214, 223

time
setting time limit on sessions, 253–255

time directives
max_execution_time directive, 153
max_input_time directive, 153

time zones
setting the correct time zone in PHP, 392–393

time() function
see also, functions, PHP date and time
ending session after inactivity, 253
using timestamp to create unique name, 170

TIMESTAMP column
automatic updating, 349–350

TIMESTAMP type, MySQL, 300
timestamps

see also Unix timestamps
difference between MySQL and PHP timestamps, 392
formatting MySQL date or timestamp, 390
mktime() function, 393
strtotime() function, 393

TINYBLOB type, MySQL, 301
titles

generating page title from filename, 98–103
tmp_name element, $_FILES array, 156

merging image upload with resizing, 226
moving temporary file to upload folder, 160

Transactional Database Only type, 265
trim() function, 249
troubleshooting

error control operator, 113
making sure PHP supports MySQL on Windows, 271
PHP installation problems on Windows, 35
using comments to disable script, 52

true value
effect of using quotes, 56–57
explicit Boolean values, 76
implicit Boolean values, 77

trusted users, mail() function, 123
try/catch block, 305
two-way encryption, 438–442

AES_DECRYPT() function, 441
AES_ENCRYPT() function, 430, 439–441
creating table to store user details, 438
decrypting password, 441–442
DECODE() function, 441
ENCODE() function, 430, 439–440
passwords, 430
registering new users, 439–440
user authentication with, 440–441

7311index.qxd  10/19/06  8:35 PM  Page 466



type element, $_FILES array, 156
controlling types of files for upload, 168

U
ucfirst() function, 100
ucwords() function, 101
underscores

replacing with spaces, 101
SELECT command, 376

Universal Binary (Mac OS X), 39
Unix epoch, 392
Unix timestamps

see also functions, PHP date and time
compared with MySQL timestamps, 392
PHP handling dates, 393–394
preventing files being overwritten, 169
using to create unique name, 170–172

UNIX_TIMESTAMP() function, MySQL, 394
unset() function, 131, 237

destroying session variables, 236
UNSIGNED attribute, INT type, MySQL, 300

setting in phpMyAdmin, 295
UPDATE command, 377

creating basic update form, 350
updating records, 360

with MySQL extension, 362
with MySQLI, 367, 368
with PDO, 370

WHERE clause, 377, 378
update page

linking to, 356–359
updating records, 360–371

UPDATE privilege, SQL, 292
uploading files see file uploads
upload_max_filesize directive, 153
upload_tmp_dir directive, 153
URL encoding, 120
URLs

allow_url_fopen directive, 181
allow_url_include directive, 181
query strings, 120
spaces in, 101
using $_SERVER['PHP_SELF'], 327

use command, MySQL monitor, 276
user authentication see authentication
User for config auth, phpMyAdmin, 279
user input

automating email reply address, 140–142
checking required fields not blank, 130–133
filtering out potential attacks, 136–139
getting data

from check boxes, 145–146
from drop-down option menu, 146–147
from multiple-choice list, 147–148
from radio button groups, 143–144

handling multiple-choice form elements, 142–148

INDEX

467

including user address in headers, 139–142
PHP security and, 10
preserving when form incomplete, 133–136
validating, 129–142

usernames
building login page, 242, 244
connecting to MySQL with PHP, 303

users
authenticating user credentials, 436–438
creating table to store user details

one-way encryption, 431
two-way encryption, 438, 439

creating user registration form, 431–436
granting MySQL user privileges, 292–294
prompting user to download images, 207–209
registering new users

one-way encryption, 431–438
two-way encryption, 439–440

updating user details, 442

V
validating user input, 129–142

blocking emails containing specific phrases, 136–139
checking required fields not blank, 130–133
filtering out potential attacks, 136–139
including user address in headers, 139–142
preserving user input when form incomplete, 133–136

validation
client-side validation, 129
dates for MySQL input, 396–399
server-side validation, 129–142

values
passing values to functions, 84–85
returning values from functions, 85
using arrays to store multiple values, 53
when to use quotes, 55

VARCHAR type, MySQL, 299
setting in phpMyAdmin, 295

variables, 48–51
assigning values to, 50
description, 49
hyphens not permitted in variable names, 104–105
incorporating into SQL queries, 344–347
naming, 50, 85
passing values to functions, 84–85
recognizing in PHP, 8
returning values from functions, 85
treatment inside double quotes, 69
using placeholders

MySQLI prepared statements, 345
PDO prepared statements, 346

when to use quotes, 55
versions, 12

checking PHP version on server, 16–17
MySQL, 263

7311index.qxd  10/19/06  8:35 PM  Page 467



W
w mode, fopen() function, 188

writing files with fopen(), 190–191
w+ mode, fopen() function, 188

combined read/write operations, 192
creating file-based user registration form, 250

WAMP
setting up local test environment on Windows, 21

warnings, 63
weakly typed language, 64, 65, 84
web design

understanding code underlying web pages, 5
web files, locating, 11, 20

defining Apache server root on Windows, 30–31
setting up on Mac OS X, 37
using IIS on Windows, 11, 34

web pages
see also forms
adding caption to random image, 107–112
automatically updating copyright notice, 103–105
building login page, 242–244
creating multicolumn table, 330–331
creating pages with changing content, 103–112
creating reusable logout button, 245–247
displaying a random image, 105–107
embedding PHP in, 47–48
generating page title from filename, 98–103
mixing .html and .php pages, 64
paging through a long set of records, 332–339

returning to same point in paging mechanism, 416–417
planning dynamic image gallery, 321–323
preventing errors when include file missing, 112–113
redirecting to another page, 148
restricting access using $_SESSION, 244–245
setting style to indicate current page, 96–98
understanding underlying code, 5
using PHP to identify current page, 96–103
where to test, 20

web servers
choosing for Windows, 22
locating scripts for processing, 11
server-side languages, 5

websites
checking PHP version on server, 16–17
checking website supports PHP, 16–17
gathering information from forms, 118–123
ways PHP brings to life, 4

WEEK interval type, MySQL, 391
WHERE clause, 375

AND operator, 414
deleting records, 371, 378
OR operator, 414
table relationships, 400
updating records, 360, 377, 378

while loop, 81
whitespace, 59–60

removing with trim(), 249
SQL, 343

INDEX

468

width attribute, <img> tag
displaying varying sizes of images, 106, 110, 111
resizing images, 217

Windows
checking PHP settings, 41–42
choosing web server for, 22
configuring Apache for PHP, 29–32
configuring IIS for PHP, 32–34
displaying filename extensions, 21
installing Apache on, 22–24
MySQL on see MySQL on Windows
setting up local test environment on, 21–35
setting up PHP on, 24–29
setting up phpMyAdmin, 277–281
starting and stopping Apache on, 24
testing PHP on, 34–35
URL for Japan Journey site, 12

Windows Essentials version of MySQL
changing default table type, 268
configuring, 265–268
installing, 264–265

Windows Extensions section, php.ini, 26
WinMerge tool, 20
wordwrap() function, 127
write-only mode, fopen() function, 188
writing files see under files

X
x mode, fopen() function, 188

writing new file with fopen(), 191–192
x+ mode, fopen() function, 188

combined read/write operations, 192
creating file-based user registration form, 250

XAMMP
setting up local test environment on Windows, 21

XHTML (Extensible Hypertext Markup Language)
creating XHTML output inside conditional statement, 111
displaying XHTML inside PHP block, 127
understanding code underlying web pages, 5

XML
handling XML news feed, 206

Y
YEAR interval type, MySQL, 391
years

MySQL date format specifiers, 389
PHP format characters, 395

YEAR_MONTH interval type, MySQL, 391

Z
zero

implicit Boolean values, 77

7311index.qxd  10/19/06  8:35 PM  Page 468


	PHP Solutions: Dynamic Web Design Made Easy
	Table of Content
	INTRODUCTION
	Chapter 1: What Is PHP—And Why Should I Care?
	Chapter 2: Getting Ready to Work with PHP
	Chapter 3: How to Write PHP Scripts
	Chapter 4: Lightening Your Workload with Includes
	Chapter 5: Bringing Forms to Life
	Chapter 6: Uploading Files
	Chapter 7: Using PHP to Manage Files
	Chapter 8: Generating Thumbnail Images
	Chapter 9: Pages That Remember: Simple Login and Multipage Forms
	Chapter 10: Setting Up MySQL and phpMyAdmin
	Chapter 11: Getting Started with a Database
	Chapter 12: Creating a Dynamic Online Gallery
	Chapter 13: Managing Content
	Chapter 14: Solutions to Common PHP/MySQL Problems
	Chapter 15: Keeping Intruders at Bay
	Index




